v I“ . ‘ V9... ' ' .~ , ‘ ‘ , . .0 00' - - ' - 7 r ., D p a .n.. . .._ -. r I . __ - .g.. 'i . -- . . -. , a . .. - - - i ' I v , " . . . o .‘ . ., . ' . I . " . ‘ " - ' " ‘ . _ , a . o ' ’ ' . I . . _. . . .. . - - . . v '.- ‘,o . ' ‘ . '1 ... - I -~. . -. - . . . . _ ., .. - u . h ' ' O ‘ v . _ _ . - . . . - V y u . u . . . . no . O o n b . . I _ o I , u v - ', o _ .-- . a . , . ‘ ~ , . _ a v v . 1 ' . . . . a 0 ' . ~ ‘ . ‘. . ., ..0 .. o. . c ' ' ‘ ' ' : ~n -. ~c- ' ' ° ' . . _ o .. , . . .- v . . . . _ . ' Il' . - v o o . r . a - . 0- ~ ’ o - '- . ' _ . . .0 . . ‘ o , . - . - . o n n I v l . O I l I p c . 0 . n v - . .‘ . . ' _ . . . . -- c v ~ . ' ' . . _ ‘ . . v . - . .. . ,. O ‘. c . I A Q o . ‘ I a. v u '- o o . . a v ’3 I " 'o ‘ ' ' ' ' . o -- ' n ' ‘ ~ ' l ‘ ‘ u. . 4 ',. 'l a u v _, g u . 40 a 'Q C o -0 O , v .0 ‘ ' . . , ¢ . I 0‘ -' ' ‘ v 5 9~ - ' "0 D ‘ .. ., ‘ g c v . . . ... . . ' . . ., . . . n‘ o v . . . . . ' . . .. . . . . .0 . . a ' ' .... _ ,v . , -_ o . . . - - . ~ . a. ._ ’ 4. - . , v Q t 0- oo_ - , . , v c- - a v . 0. .o0 v , - Or"00 ’ ‘— ‘ -- ~ . ‘ . , ,, . ... v - ~ - o . . . , -. . . u . ' 0| , u. o . . . _ . I _-."' . _ . _ ... . . I) CC. . l 0.. . . . . . _, n . .. . o . .... . . . _ . . . ~. , , . t é ... u ._ . I . . .- I ' " I - v v ‘ - ... I . . . g .. . .n . ' . . . . _ . .. I . . -, .. , ._ I Io '. O I " ' ' ' ' ' ' ' v . O . . '__ o .. . . v I. ' ~01. 0 .n ‘9 .. .- :. - o , ~ .- v 0' u . . ‘ . , .: . .o -. -. ~ 0‘ 'I ' ' ' ' ‘D o . , . ~ , . . . . _ ., . .0 - I '| - . o , . . a.. fi .... o . . ' - . , u . . . ‘., . .. n. 0 0 ' o ' ' . I .,. . - . ‘ a .- - - ' ° ‘ -0 ~ . .. ' .,. . , 1.. . C . . . I I -- . .0. - .. . , . g . . . p . o~ - - Io . n . . . . .. -- . - ..- ' . .. . . . . . . . , . ,. o. . . .. .. , _ ' . ' . . ' . _.,, . u ' . . O on. - _ . - . _ , , .. . .l .u _ ‘ ... o . . . .. , _. . . . . . - .. - o . - . , o - . a u'f I " o - a a. on , . .. . . - . -.. ‘. , 0 . o ~o 0‘. . . . . _ . o I u ‘ ..-- .. '0 o. - ’ . .. ' . ‘ . . --. n. .. .. .. .. , . " '0' '. -o v ' n 0- r . . . - ' 0 - - ".q . -. » . . o . .. _ a .. . . , - 0' ‘ . ' Q - ‘ ' ' o O o. ' r - u . - q . o - _, ‘ " 0 . ' . o ‘y ' . _ . o- - o 0 o. . - . . I .- ‘. ' .4. . ' I K . ‘ . ,, . '. _ . . . ,>. . v . - l D A o . , u- . u .. v .-.‘ . , . ., _ , . ' . . . c o . ..- ,u. .- . ' . .. _ O I O o v ’.'.' , . ' no. mu. ’0: «. . n- - r . "(c‘o.I erO -- ~11 -~. . r... - ‘1 ‘- r a 9...; v ‘ I! . _-‘.' 2L! 57943521 1: mm: HIHHHHHIIHIMI""1”?" M .4 .\ 300135 9466 MlCHififafi SI’U'E UWVERSHY LIBRARY ~ “ UBMRY Michigan State University A u- - . .0 ’ l . , MICHIGAN STATE UN; v LIBRARY ERSITY w - PLACE IN RETURN BOX remove this checkout ftom your r TO AVOID FINES rot DATE DUE EATE DUE DATE DUE : > ' MOV L 9 1991. J TW== MSU Is An Afflrmdive Action/Equal Opponunity Indltutlon “:3 t‘wvl 339‘ p a. . 2:! l 4:; {- L "N'JflVw‘w 1 0"!“ “W," ---- .U vu-fi-""‘" \ ‘ “kc-u ‘1. y.‘-A:~: l .u»u-.~ 5 (D CHARACTERISTICS OF ASPHALT PAVING MIXTURES UNDER CYCLIC LOAD USING FLEXURAL TESTS BY KISE LEE A DISSERTATION Submitted to Michigan State University in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Civil and Environmental Engineering 1988 ABSTRACT CHARACTERISTICS OF ASPHALT PAVING MIXTURES UNDER CYCLIC LOAD USING PLEXURAL TESTS BY RISE LEE Increasing heavy wheel loads and truck traffic on flexible highway and airport pavements has necessitated more rational design approaches. Recently, significant progress has been made to develop new pavement structural design models (e.g. elastic and viscoelastic, and finite element models). This gave rise to the problem of material characterization under simulated field loading conditions. Moreover, attempts to directly relate mix design variables to the structural properties of the materials are limited or non-existence. Consequently, the need for quantifying relationships between the structural properties of compacted asphalt mixes and mix design parameters was realized. In this study, it was hypothesized that relationships between the structural properties of the asphalt mixes and the asphalt mix design parameters can be found using statistical analyses. To verify the hypothesis, laboratory flexural cyclic load tests were designed and conducted to evaluate the structural properties of the mix, and the .3.-. . ..' “9 _:,;...E..‘...u.. 2121;:rstips t4 351:: 2.2"” ..’..... k-“S . 3.1.... “‘P' ran-u. .ug u. I . h-V‘NDQU. I standard Marshall mix design procedures were employed to obtain the mix design parameters. Based upon physical interpretation of the test results, statistical relationships between the structural properties of asphalt mixes and their mix design parameters were examined. These relationships are presented and discussed in this dissertation. TO MY PARENTS ii up u.".;‘ D": ...-_Q. - ':"' 'Vhoaccn' “'o v.v.»- ‘ a ' a " A--- :‘l .’v V F ~"'¢~~..- .- . , ‘ D‘... .- - .~.. .‘3 . a - . ‘11::v-h ,. D-uc Ca cg. .- on: -._c' -- ~ ‘ host-y. 0—: ' u 3' "'2‘”; -- .c..“_' ‘ 4 ya 5‘54 '1 :u. u‘ c ..I .‘. ~- . I l .v‘ ‘ \v..’ ‘1": .. v...“ . .l ‘ bl . ‘ 1: ::.I'~ ‘-. . ‘~“‘-j : I lu'gb a ‘ ‘t a..‘ ,- s“! ':I._ L ‘ ._‘ . - . 5,-5. a" \' ~.‘;. ‘ .d. \ - -.-“‘-.c:t ‘v‘ Ir, ACKNOWLEDGEMENTS The writer wishes to express his appreciation to his major professor, Dr. Gilbert Y. Baladi, Professor of Civil and Environmental Engineering, for his guidance and numerous helpful suggestions during the conducting of the research and preparation of this dissertation. Thanks also to the other members of the writer’s doctoral commitee: Dr. R. D. Lepage, Professor of Statistics; Dr. R. W. Lyles, Associate Professor of Civil and Environmental Engineering; and Dr. R. S. Harichandran, Assistant Professor of Civil and Environmental Engineering. The writer also owes his appreciation to Dr. Young-Shik Paik, Professor of Civil Engineering of Kyung Hee University, who initiated the writer into the pursuit of learning. Many thanks are also extended to Mr. Cha-don Lee for his thoughtfulness during the course of this study: Mr. Kyu- bong Kim for his friendship; and Mrs. Siham Baladi for her care and kindness. Special appreciation, admiration, and love are due his parents who make it all worth while. iii .... .- -‘ on. n" -. Q. can. q ' I. \u’V— . ' —. '- ..—..,.M..‘. l . , ""ovva.u.‘ . . ' 'I~>v-— - U a: - a .- ‘~.IO..\~ ‘-‘-.‘ . 'l I - .‘. n...- -‘r..-. - .."O .“ '0‘ ".~. . "'.~-~,|. ~.:': I\ fill I (I I" TABLE OF CONTENTS PAGE vii ix 11 12 14 16 19 21 23 26 27 3O 33 4O 40 LIST OF TABLES ......................................... LIST OF FIGURES ........................................ LIST OF SYMBOLS ........................................ xiii INTRODUCTION ........................................... LITERATURE REVIEW ...................................... 2.1 GENERAL ........................................... 2.2 MATERIAL EVALUATION ............................... 2.3 RESILIENT CHARACTERISTICS OF ASPHALT MIXES ........ 2.3.1 EFFECTS OF TEST VARIABLES ................... 2.3.2 EFFECTS OF MIX AND SAMPLE VARIABLES ......... 2.3.3 CORRELATIONS ................................ 2.4 PLASTIC CHARACTERISTICS ........................... 2.4.1 PLASTIC DEFORMATION PREDICTION MODELS ....... 2.4.2 EFFECTS OF TEST VARIABLES ................... 2.4.3 EFFECTS OF SAMPLE AND MIX VARIABLES ......... 2.5 FATIGUE PROPERTIES ................................ 2.5.1 FATIGUE MODELS .................. L ............ 2.5.2 EFFECTS OF TEST, SAMPLE, AND MIX VARIABLES ... 2.5.3 CORRELATIONS ..... ............................ 2.5.3.1 BONNAURE, GRAVOIS, AND UDRON METHOD 2.5.3.2 PELL AND COOPER METHOD ............... 2.5.4 FATIGUE LIFE OF INSERVICE PAVEMENT ........... 2.5.5 SUMMARY ...................................... iv 3. LABORATORY INVESTIGATION ............................... 51 3.1 GENERAL ........................................... 51 3.2 TEST MATERIALS .................................... 51 3.2.1 AGGREGATE AND MINERAL FILLER ................ 51 3.2.2 ASPHALT BINDER .............................. 57 3.3 ASPHALT MIX DESIGN ................................ 57 3.4 TEST VARIABLES .................................... 66 3.4.1 CYCLIC LOAD ................................. 66 3.4.2 TEST TEMPERATURE ............................ 68 3.4.3 NUMBER OF LOAD REPETITIONS .................. 69 3.5 MIX VARIABLES ............. ......................... 70 3.5.1 AGGREGATE ANGULARITY ........................ 70 3.5.2 ASPHALT TYPE ................................ 71 3.5.3 AGGREGATE GRADATION ......................... 71 3.6 SPECIMEN VARIABLES ................................ 72 3.7 TEST MATRICES .. ................................... 73 3.8 SPECIMEN DESIGNATION NUMBER ....................... 77 3.9 SPECIMEN PREPARATION PROCEDURE .................... 78 3.10 MEASUREMENT SYSTEM ................................ 82 3.11 TEST PROCEDURES ................................... 83 4. TEST RESULTS ........................................... 86 4.1 GENERAL .... ....................................... 86 4.2 TEST RESULTS ...................................... 86 5. ANALYSIS AND DISCUSSION ................................ 102 5.1 GENERAL ........ ................................... 102 5.2 STUDY OBJECTIVES .................................. 103 5.3 DATA PREPARATION .................................. 104 . ‘1“ 1‘ :.~. .-.~.-.-.--- . 0 "‘ .0 \o ..‘no - v 0 Q -.. D _ ,' ,.1.¢. .. (I; .. “.‘I--—.- .--..b.. :‘-..'.- n , . “..-...”- \U. “I l ' “- P. ‘- I . I ... D '- .- U 'I .I s I f:.\.. .: ‘ O“ . Q 0.. Q 5.4.1 SEPARATION OF VARIABLES ..................... 109 5.4.2 GENERAL EQUATION ............................ 126 5.4.3 STEPWISE CORRELATION ........................ 127 5.5 ANALYSIS OF PERMANENT DEFORMATION ................. 130 5.6 ANALYSIS OF PERMANENT DEFORMATION USING DEFLECTION BASIN .................................. 138 5.7 FATIGUE LIFE ...................................... 147 5.7.1 FATIGUE LIFE: TOTAL PLASTIC DEFORMATION ..... 151 5.7.2 FATIGUE LIFE: PLASTIC DEFORMATION RATIO ..... 157 5.8 ANALYSIS OF RESILIENT AND TOTAL MODULUS ........... 159 5.8.1 GENERAL ..................................... 159 5.8.2 STATISTICAL ANALYSIS ........................ 164 5.9 SUMMARY ...... ........ . ............................ 198 5.10 IMPLEMENTATION .... ................................ 199 6. CONCLUSIONS AND RECOMMENDATIONS ........................ 200 6.1 CONCLUSIONS .. ..................................... 200 6.2 RECOMMENDATIONS ................................... 201 LIST OF REFERENCES ... ..................................... 202 APPENDICES APPENDIX A ................................................ 212 APPENDIX B ................................................ 320 APPENDIX C . ............................................... 336 APPENDIX D ................................................ 356 APPENDIX E .... ............................................ 364 vi C 1:" ,. ul— '— "l‘ . .o. I vn‘ ... .—-v-o It‘— 3 I .”~.t'n p. . ‘7’ = u. uh '- a... Q. U. ' . n. :u :5.. ob .- sungqnvfl C. ‘QQV‘. ' ' Jan-fiw H: -‘-:‘ R”. an...“ ADI: 5 u. n:::"' 'V ..--“'5‘" 004 7“.“ “N- I-.-; \ ,- ‘ C 1:?:‘., v. “‘4‘" -1 e.- N. "Q. .::‘CAY A C .. C l 7:”, , ~40. C"! \ l.‘ ‘I‘A‘ I .~o 'V‘ F? ‘ "‘t‘ A' ... ... LIST OF TABLES TABLE PAGE 3.1 PERCENT PASSING BY WEIGHT FOR GRADATIONS A AND B .... 53 3.2 SPECIFIC GRAVITY OF THE COARSE AGGREGATE ............ 54 3.3 SPECIFIC GRAVITY OF THE FINE AGGREGATE ............. 55 3.4 ASPHALT PROPERTIES ....................... ........ ... 58 3.5 MARSHALL MIX DESIGN RESULTS FOR VISCOSITY GRADEDASPHALTAC-lo ......OOOOOOOOOOOOO0...... ..... O 59 3.6 MARSHALL MIX DESIGN RESULTS FOR VISCOSITY GMDEDASPHALTAC-S ......OOOOOOOOOOOOOOOOOO......... 61 3.7 MARSHALL MIX DESIGN RESULTS FOR VISCOSITY GRADEDASPHALTAC-ZOS ......OCOOOOOOIOOOOOOOOO. ...... 63 3.8 ASPHALT MIX DESIGN FOR THREE PERCENT AIR VOIDS ...... 67 3.9 TYPICAL COMPACTION VARIABLES FOR 3 PERCENT AIR VOIDS USING LIMESTONE AND AC-lO ................. 80 3.10 TYPICAL COMPACTION VARIABLES FOR 5 PERCENT AIR VOIDS USING LIMESTONE AND AC-10 ........ ......... 80 3.11 TYPICAL COMPACTION VARIABLES FOR 7 PERCENT AIR VOIDS USING LIMESTONE AND AC-lO ................. 80 5.1 REGRESSION MATRIX FOR THE CUMULATIVE PLASTIC DEFORMATIONS UNDER THE LOADED AREA, FLEXURAL BEMTESTS AT 77F00.000.000.000...00.0.0.0......... 131 5.2 REGRESSION MATRIX FOR THE CUMULATIVE PLASTIC DEFORMATION8 UNDER THE LOADED AREA, FLEXURAL BEAM TESTS AT 40F0..........OOOOIOOOO00.00.00.000...0.0. 132 5.3 REGRESSION MATRIX FOR THE CUMULATIVE PLASTIC DEFORMATIONS UNDER THE LObDED AREA, FLEXURAL BMTESTS AT 77FMD 40F......OOOCOCOOOOOOOOO.... 137 5.4 REGRESSION MATRIX FOR THE PARAMETER A OF THE DEFLESTION BASIN OF THE SURFACE OF THE BEAM AT 77F0.000..........OOOOOOOOOOO......OOOOOOO...... 141 5.5 REGRESSION MATRIX FOR THE PARAMETER B OF THE DEFLESTION BASIN OF THE SURFACE OF THE BEAM AT 77 F O.......OOOOOOOOOOOOOOOO.....OOOOOOO......... 141 5.6 REGRESSION MATRIX FOR THE PARAMETER A OF THE vii .... I”. 'q‘ E} “...-I'" guru... . " '15::3h' HI ”O'QA ‘ '3‘..." 5" £457 337:2” v -5 ...-And in 'TT'F 5.3 7333335225 V. L, 77'F I 0 O 0 533225 AT 7 3333323): H 1! OT Ii: 0 I o . 3' -:S::\"v 9 Au v F ,._. I... :5" 332ch y A!” F “:3 . . '1 hi I '::.~‘ IEEQVA. , r. DEFLESTION BASIN OF THE SURFACE OF THE BEAM AT 40F......OOOOOOOOOOOOOOOOO......OOOOOOOOO ....... 142 REGRESSION MATRIX FOR THE PARAMETER B OF THE DEFLESTION BASIN OF THE SURFACE OF THE BEAM AT 40 F 00.00.000.000.........OOOOOOOOOOOOOO ......... 142 REGREfiSION MATRIX FOR THE RESILIENTT MODULUS AT 77FO..........OOOOOOOOOOOOOO0.0.0.0....O ...... O. 171 REGRESSION MATRIX FOR THE TOTAL MODULUS AT 77F......OOOOOOOOOOOO000......0......O .......... 172 PARTIAL CORREBATION MATRIX FOR RESILIENT MODULUS AT 77 F ......OOOOOOOOOOOCO00...... ..... .0... 177 REGREESION MATRIX FOR THE RESILIENT MODULUS AT 40F......OOOOOOOCOOOO0...... ...... O 0000000000000 183 REGREESION MATRIX FOR THE TOTAL MODULUS AT 40F...............OCOOOOOOOOOOOOO....O.... ...... 183 REGRE6$ION MATBIX FOR THE RESILIENT MODULUS AT 77FMD 40F000............OOOOOOOOOOOOOOO ...... 188 REGREESION MATBIX FOR THE TOTAL MODULUS AT 77FAND 40F00.0.0.0.........OOOOOOOO0.0.0....O. 188 viii ’4 .1- I Vt%~ll'l.' l . u. I 1‘}! .3 ,4 . 1: , I." _ ,4. ‘1“. a 9‘. n - ~0— "— v- n: I. 0’ .--.'.—- V. .- .-.-‘Q’ d: Lilia; EEC-3.1.153 l I. O IA’Q ' ' S ...-n.-. v“ 3 rl'lfig‘Fa ! "0' ‘0 In: ..- v ....a I “0'!“ Vb) ‘ 0.. 1 :‘FMUS‘T L h I I‘FAMFI 5553);; T] ‘ ‘3. $1.41, A: 9. *- ...-R .52 a I {an Nu—Ar-c I 35:31! . .. "~L S ”‘3‘”? fr :‘\Ir hw~~D ‘2' V.‘ Vv,‘ 35“ ‘ . r5}. r~ ~T a \“A u ““wQTs. >. d.“ v. N) V???" e: a, ... «VQ‘TA I t )u *v“ I h. \ ‘A. *"én‘x, LIST OF FIGURES FIGURE 2.1 FEATURES OF THE CYCLIC STRESS-STRAIN CURVE OF ASPHALTMIXES O.......OOOOOOOOOOOOOOOOOO00'. ..... O. 2.2 NOMOGRAPH FOR PREDICTING THE FATIGUE LIFE OF BITUMINOUS MATERIALS (AFTER BONNAURE ET. AL.) ....... 2.3 NOMOGRAPH FOR PREDICTION OF FATIGUE LIFE OF BITUMINOUS MATERIALS (AFTER PELL AND COOPER) ........ 3.1 STRAIGHT LINE AND A AND B GRADATIONS OF AGGREGATE ... 3.2 FULL-FACTORIAL EXPERIMENT MATRIX FOR WHALLTESTS ......OCOOOOOOOOCCO0.0.0.... .......... 3.3 PARTIAL FACTORIAL EXPERIMENT MATRIX FORTHE BMTESTS .........OOOOOOOOOOOOOOOO0.0...... 3.4 BEAM SPECIMEN SAWED TO EIGHT EQUAL PARTS FOR DENSITY MALYSIS ......OCOOCOOOOOOOCCOOO ......... 3.5 SCHEMATIC DIAGRAM OF THE BEAM TEST SET-UP .... ....... 4.1 MARSHALL STABILITY VERSUS PERCENT ASPHALT CONTENT FOR LIMESTONE GRADATION A AND VISCOSITY GRADEDASPHALTAC-lo ............OOOOOOOOOOOOOOOO0.0. 4.2 BULK SPECIFIC GRAVITY OF THE MIX VERSUS PERCENT ASPHALT CONTENT FOR LIMESTONE GRADATION A AND VISCOSITY GRADED ASPHALT AC-lO ...................... 4.3 PERCENT AIR VOIDS VERSUS PERCENT ASPHALT CONTENT FOR LIMESTONE GRADATION A AND VISCOSITY GRADED “PMTAC-lo 0......0.00.0000.........COCOOOOOOO.... 4.4 PERCENT VOIDS IN MINERAL AGGREGATE VERSUS PERCENT ASPHALT CONTENT FOR LIMESTONE GRADATION A AND VISCOSITY GMDED ASPHALT AC-lo ......OOCCOIOOIOO ..... 4.5 PERCENT VOIDS FILLED WITH ASPHALT VERSUS PERCENT ASPHALT CONTENT FOR LIMESTONE GRADATION A AND VISCOSITY GMDEDASPMLTAC-1O ......OOOOOOOOOOOOOOOO 4.6 FLOW VERSUS PERCENT ASPHALT CONTENT FOR LIMESTONE GRADATION A AND VISCOSITY GRADED ASPHALT AC-lO ...... 4.7 MARSHALL STABILITY VERSUS THE PERCENT AIR VOIDS ix 46 56 65 75 81 84 88 89 90 91 92 93 .. fix i .. -1...‘ .’ . . .1 a- \‘I I .' n D . .- - no 1,} :‘r‘zA .. A‘ no." 00‘ ""'“ :.~‘ V L: ”- QQ'R'V'” II \r' ' ”:0. .n* R 0* ohm-AU“ O it 53533 C? QOVA‘ -- ..' .4» Ar: " W]. fi--A-A nigh. “...: er 9‘. -v. -‘ .3 .1: Eu)! r'wwva‘ncp‘u Il:u\-At&v'.‘ ”v” ‘--'.. "Hr-‘5‘ I L -.- “1:. "P m3 0?} ‘-:V‘ ' . ~Q‘ "“" him) an 5:22:24 “ L'"’A -YA‘ ‘g-A ‘tu‘l ‘:."Q ”NEXT 1 . . if 31:" ma. Q 7:: ?‘h~\'fi ”I “(binu -va . ALI:- i: ’1." o ..‘z IRA. s‘ . bfll“, ’YA m. .v“ 4‘ BEAM 51 - x ‘ J‘ "PIA; '1‘? H h . h ‘4. :p‘ T I ) OF THE SPECIm 00............OOOOOOOOOOOO ........... 94 FLOW VALUES VERSUS THE PERCENT AIR VOIDS OF THESPECIMENS 0..........OOOOOOOOOIOOOOOOOC..0...O0.0 95 RESILIENT DEFORMATIONS AT FOUR POINTS ON THE SURFACE OF THE BEAM SPECIMEN VERSUS THE NUMBER OF mADAPPLICATIONS ......OOOOOOOOOOOOOOOOO......... 96 TOTAL DEFORMATIONS AT FOUR POINTS ON THE SURFACE OF THE BEAM SPECIMEN VERSUS THE NUMBER OF LOAD APPLICATIONS ......OOOOOOOOIOOOOOOOO0.0.0.0000....... 97 CUMULATIVE PLASTIC DEFORMATIONS AT FOUR POINTS ON THE SURFACE OF THE BEAM SPECIMEN VERSUS THE NUMBER OF mADAPPLICATIONS ......OOOOCOOOOCOO ....... 98 NORMALIZED PLASTIC DEFORMATION BASIN OF THE BEAM SPECIMEN AT DIFFERENT NUMBER OF LOAD APPLICATIONS ......OOOOOOOOOOOOOOOOOO0.0.0.0.... ..... 99 RESILIENT AND TOTAL DEFORMATIONS AT THE CENTER OF THE LOADED AREA AT CYCLE NUMBER 100 VERSUS THE PERCENT AIR VOIDS OF THE BEAM SPECIMEN .......... 100 CUMULATIVE PLASTIC DEFORMATIONS AT THE CENTER OF THE LOADED AREA AT DIFFERENT NUMBER OF LOAD APPLICATIONS VERSUS THE PERCENT AIR VOIDS OF THE BEAM SPECIMEN ................................... 101 TYPICAL LOAD AND DEFORMATION RECORDS VERSUS TIME .... 106 TYPICAL LOAD AND DEFORMATION RECORDS VERSUS THE NUMBER OF LOAD APPLICATIONS ..................... 107 PARTIAL FACTORIAL EXPERIMENT MATRIX FOR THEBEMTEST ......OOOOOOOOOOOOOOOO......OOOOO...... 111 CUMULATIVE PLASTIC DEFROMATIONS AT FOUR POINTS ON THE SURFACE OF THE BEAM SPECIMEN VERSUS THE WEROF mADAPPLICATIONS ......OOOOOOOOCCOOOOO.... 112 SLOPE OF EQUATION 5.1 VERSUS THE PERCENT AIR VOIDS FOR THREE LEVELS OF THE CYCLIC LOAD AND A KINEMATIC VISCOSITY VALUE OF 270 CENTISTOKE .. ..... 115 SLOPE OF EQUATION 5.1 VERSUS THE PERCENT AIR VOIDS FOR THE TWO LEVELS OF THE GRADATION OF AGGREGATE ......OOOOO......OOOOOOOOOOCOOOOO0.0.0...O. 116 SLOPE OF EQUATION 5.1 VERSUS THE KINEMATIC VISCOSITY OF THE ASPHALT ............................ 117 4.. no I ,‘ \‘i L: '- .‘ :'u n. F . 51:?! .F E. .--?D“ z? 5.5% 5433?? ‘ "a“:V?‘ 'va... HEAR: 72' ”$ 3:23.“. . "-M’. U:bv>..! T17"??? l b. ...Ebonb Q " "av-5 L!‘ 'U. AS: A .152 ”can ‘. :1wa An: : rut-c- “~va on .L‘ '3 ”31197;! ' c :Md“b - .TI‘:MVA\. ~-.~".V.‘ E:'IFIQQF .“¢..‘V SEEIA’In ¢ 5 5:?! CF T mt. s“"»S W5... \\‘\ “ ‘::-‘\‘ - 5‘. ‘, ‘. $ ‘A “Z:. «)0 ‘ - Arpr 5.8 SLOPE OF EQUATION 5.1 VERSUS THE ANGULARITY OPAGGREGATE ......COOCCCCOOOOO......OCOOOOOO. ....... INTERCEPT OF EQUATION 5.1 VERSUS THE KINEMATIC VISCOSITY FOR THREE VALUES OF THE AGGREGATE ”GUMITY 0............OOOOOOOOOOOO0......OO. ..... O. INTERCEPT OF EQUATION 5.1 VERSUS THE KINEMATIC VISCOSITY FOR AGGREGATE GRADATIONS A AND B ... ....... INTERCEPT OF EQUATION 5.1 VERSUS THE PERCENT AIR VOIDS FOR THREE LEVELS OF THE CYCLIC LOAD AND A KINEMATIC VISCOSITY OF 270 CENTISTOKE ......... SLOPE AND INTERCEPT (A1 AND Bl) OF EQUATION 5.4 VERSUS THE APPLIED CYCLIC LOAD .................. SCHEMATIC REPRESENTATION OF THE PLASTIC DEELECTION BASIN OF THE BEAM SPECIMEN AT 77 F AND FOR DIFFERENT NUMBER OF LOAD APPLICATIONS ........................................ SCHEMATIC REPRESENTATION OF THE DEFLECTED SHAPE OF THE BEAM SPECIMEN .......................... STRESS-FATIGUE LIFE CURVES FOR THE BEAM SPECIMENS FOR 3 VISCOSITY GRADED ASPHALTS AND 3 VALUES OF THE PERCENT AIR VOIDS ............... BOUNDARY CONDITIONS AND THE FINITE ELEMENT MESH ..... FLOW CHART OF THE ITERATION PROCEDURE OF THE FINITE ELEMENT COMPUTER PROGRAM ................. CALCULATED RESILIENT MODULUS USING FEM PROGRAM VERSUS THE NUMBER OF LOAD APPLICATION AT DIFFERENT PERCENT AIR VOIDS ......................... CALCULATED TOTAL MODULUS USING FEM PROGRAM VERSUS THE NUMBER OF LOAD APPLICATION AT DIFFERENT PERCENT AIR VOIDS .................. ....... MEASURED CUMULATIVE PERMANENT DEFORMATION VERSUS THE NUMBER OF LOAD APPLICATION AT DIFFERNT PERCENT AIR VOIDS .......................... NORMALIZED RESILIENT MODULUS VERSUS THE NUMBER OF LOAD APPLICATIONS AT DIFFERENT PERCENT AIR VOIDS .... CALCULATED RESILIENT MODULUS USING EQUATION 5.20 VERSUS CALCULATED RESILIENT MODULUS USING FEM PROGRAM 0............OOOOOOOOOOCOO0.0...... xi 118 119 120 121 123 146 149 158 161 163 165 166 167 169 180 .- n- :I.‘ .- 0* W‘s-v: ...»..A..'. 2.5.5 CA' " ”Alfl:‘ ' .'....:.'.r... o o u I" "‘01: 5J5; :A't‘-.. w-Aon/N VT 1.5:): rfl"Ar TOM.-. 5 25 "1.328 d: M G 2::A: ' 1:332:32) ':': :Cnva 2% AIION S. CALCULATED TOTAL MODULUS USING EQUATION 5.19 VERSUS CALCULATED TOTAL MODULUS USING FEM PRWRAM 0......0.000.000.0000.0.0.0.0...0....... ..... CALCULATED RESILIENT MODULUS USING EQUATION 5.21 VERSUS CALCULATED RESILIENT MODULUS USING FEM PROGW ......OOOOOOOOOOOOOO0.0...O....O... CALCULATED TOTAL MODULUS USING EQUATION 5.22 VERSUS CALCULATED TOTAL MODULUS USING FEM PROGRAM ......OOOOOCOOOO......OOOOOOOOOOOOOO0....O... CALCULATED RESILIENT MODULUS USING THE A.I. EQUATION VERSUS CALCULATED RESILIENT MODULUS USING EQUATION 5.23 ......OOOCOOOOOOOOOOOOOOO......O. CALCULATED RESILIENT MODULUS USING EQUATION 5.25 VERSUS CALCULATED RESILIENT MODULUS USING EQUATION 5.23 ......OOOOOOOO00.0.0.0...00...... CALCULATED TOTAL MODULUS USING EQUATION 5.26 VERSUS CALCULATED TOTAL MODULUS USING EQUATION 5.24 0........................ 00.00.0000... xii 185 186 192 195 196 (A- II parazetc -" = regress A: = the act: 55: = a;;re;a' = agar r.‘ E = nrshall 17 = yercent '73 = averaze #4 = bulk. t‘tatal :- i: thal s' 6 ‘E‘e‘astic K. a V‘SCOGIa Q .‘ m p P-eStiC t». ‘9': LIST OF SYMBOLS A and B = parameters of the plastic basin. A1 and Bl = regression coefficients. AC the actual percent asphalt content. ANG aggregate angularity. APP - apparent. AS = marshall stability adjusted to the sample height. AV = percent air voids. AVG average BK bulk. CD. = permanent deformation of LVDTi. CD(X) - cumulative plastic deformation of a point on the surface of the beam located at distance x from the edge of the loaded area. CFP = compactor foot pressure (psi). CL = cyclic loads (pounds). dCDi/dN a the rate of change of the cumulative plastic deformation with respect to_N. C C C2, and C = coefficients. 1' 3 E = total modulus (psi). 0' eT = total strain. e = elastic strain. I'll eVE a viscoelastic strain. e 2 plastic strain. EXP = exponential function. F = flow (1/100"). GB = the bulk specific gravity of the beam specimen. xiii 1"? "1k ”12.1% 1! z the ran 1: : graiatzc :5 = s;ecific ' s'pb y!- c ..- 3 .lu'egb I. l? = kLnezati (centist L: 2 natural 1°? = logaritf 131' = linear \ 5 * resilie: I: Erie: c I - ,.- b I” GMM GRAD GS ln LVDT SE SSD STAB TAV TAC xaé X1 X2 the maximum theoretical specific gravity of the mix. gradation of aggregate. specific gravity. intercepts of equation 5.1. kinematic viscosity of the asphalt binders (centistokes). natural logarithm. logarithm to base 10. linear variable differential transducer. resilient modulus (psi). number of load applications. number of load applications to fatigue failure. number of tamping. coefficient of determination. marshall stability (pounds). standard error of the estimate. coefficients of equation 5.1. saturated surface dry. marshall stability. the target percent air voids. the target percent asphalt content. percent voids in mineral aggregates. weight of asphalt mixes (grams). lateral area. percent distance from the edge of the loaded passing #200 sieve; percent air voids in mix: xiv E : 35:316.: 14 = percer. E test t IE=the l pcises te:;e: X3 X4 X5 X6 asphalt viscosity at 70 OF (106 poises); percent asphalt by total weight of mix; test temperature (OF): the logarithmic value of the viscosity (in poises) of the asphalt at the test temperature: XV A5331... ll: mn-JxC4 3'2! the 1 I. .';‘,"AI 'IE booobAvaA "zeta-.129 t3 ‘.:'3 .F' a... 'E ....- 5“-~u‘ 23.51:!) cf ”II-Il‘ ‘. _ ““3539 t: me been :3: hi" 5" firade 91% n‘ .‘. «Else he ‘~~,.; \.e3:‘3n 1.. M _ bra -¢ C\ C! .‘e :‘ ‘ X‘g‘e ’ I CCan \i "-t‘ \‘s‘ L ..- b. CHAPTER 1 INTRODUCTION 1.1 INTRODUCTION Over the years, Americans alone have invested more than one trillion dollars in their highway systems and are just beginning to realize that the conditions of the highway infrastructures are a major problem that requires the infusion of funds for maintaining, rehabilitating, and rebuilding. the systems. Public and legislative attentions have been focused on the scope of public programs to rebuild and upgrade existing facilities and on the financing aspects of these programs. Financing alone cannot solve the problem because the needs far exceed the available resources. Innovation in structural and material mix design is the key to bridging the gap and to accelerate the search for a better solution. In general, the highway systems were built using two types of surfacing materials: rigid (Portland cement concrete) and flexible (asphalt mixes). The latter pavement type (flexible) is the subject of this research study. As stated by Yoder and Witczak, the classical definition of flexible pavements includes those pavements that have an asphalt concrete surface (185). An asphalt pavement may consist of thin wearing surface course built over a base course, subbase course, and compacted subgrade. Thus, the a 5.": - .fl’" :53 Pak'EZE.‘ 11339:..5: .:"" " ‘ as: :0 ‘5 F b a ‘ . C. :8 p v 1.3.) a... 9' ' ' “4 Jere: v‘ C ’r-‘v 3 QA afifI’a“ (.3 A ."Vfifi'n “12*“— ‘d 6:1e‘oc “Per 1 \ ,‘ e‘p‘rlCA L term pavement herein implies all the layers (courses) in the pavement structure. The load carrying-capacity of a flexible pavement is brought about by the load distribution characteristics of the layered system. The highest quality layer is placed at or near the surface. Hence, the strength of the pavement is the result of building up thick layers and, thereby, distributing the load over the relatively weak subgrade (185). A typical asphalt paving mix consists of four major components: asphalt, coarse and fine aggregates, mineral fillers, and air. Also, certain types of additives or modifiers could be added to the mix to alter some of its properties. The so called "properties" of an asphalt concrete mix are dependent upon the properties of the material in the mix, the proportioning of the different component in the mix (the asphalt mix design), the test type and procedure, and temperature and environmental conditions. The structural design of flexible pavements has evolved from rule-of-thumb procedures to methods based primarily on the experience and judgement of highway engineers augmented by empirical relationships developed through research and field observations. Recently, significant progress has been made to develop new pavement structural design models (e.g. elastic and viscoelastic, and finite element models). The accuracy of these models, however, depends upon the accuracy of the input data such as the structural and material ;:::e.".ies, were devel: Sieve: ' mastered as diztat zlzsate fi relate nix :‘ t ' a. '3 ::e 5.:- “53 few or «is beta-e Cami} te raiiticna} I‘a' - Heshagl “Lstéfice ft) The chje n beta: Stand 1:} Bette: ‘iXES C) ”'1‘ k ‘3: Q ‘Q properties, and others. Several laboratory test procedures were developed for the evaluation of these properties. However, numerous practical difficulties are often encountered in each test to exactly load the test specimen as dictated by theoretical considerations and/or to duplicate field conditions. Moreover, attempts to directly relate mix design variables (e.g. asphalt type and content) to the structural properties of the materials are either very few or non-existence. Consequently, there have been few links between the newly develOped laboratory tests (e.g., flexural tests and indirect tensile tests) and the traditional mix design methods (e.g., Hveem stabilometer, and Mashall stability and flow method) that have been in existence for many decades. The objectives of this study are to: a) Determine the asphalt mix design parameters using the standard Marshall tests. b) Determine the structural properties of the asphalt mixes using cyclic load flexural tests. c) Quantify relationships between the structural properties of the asphalt mix and the types of the material in the mix. d) Identify a laboratory test procedure whereby the asphalt mix design can be tailored to optimize its structural properties. 2.1 «ET-EAL '.':e f iel :xi: 1 r; .- ’3.;A.al ‘ - "' Hun-av" I (:E‘: ‘ s‘a* P1 4.. fly. ‘ 3“ leae Q ‘ ‘ ‘ w Cris?- a. :5 :n‘ Me 1» ‘0 Ex J :59. $7.338 C a A is: , th y .3 5 oz: ‘- ...“SES I. 5. a‘a .gx. ~u“ CHAPTER 2 LITERATURE REVIEW 2.1 GENERAL The field of flexible pavement design has evolved from empirical rule-of-thumb procedures based on past experience to rational methods based on soil classification systems and later on road test data. Beginning in the 19505, however, heavy wheel loads and truck traffic resulted in severe breakup of some highways which necessitated more rational approaches. Consequently, analytical (mechanistic) pavement design methods were introduced which provided a better understanding of pavement response under traffic loading. This, however, gave rise to the problem of material characterization under simulated field loading conditions. To solve the problem, new laboratory tests such as the resilient modulus and permanent deformation-creep were developed, which enabled pavement engineers to obtain material properties necessary for mechanistic pavement design models (50). In order to understand the material properties and to be able to extract the design parameters, the stress-strain responses of the material under simulated traffic loading must be obtained. Statistical and actual variations of the responses and the design parameters relative to other factors (e.g., temperature) should also be determined. ....p.;h ;"‘ u.)'.”g .U. . mes are pm 2.2 laterial Tze mesh; ‘0 . b: .3 .3..C a: k) U) 'I.’ m (’ the L.) v Existing information concerning these variations of asphalt mixes are presented in the following sections. 2.2 Material Evaluation The mechanical response of most asphalt mixes subjected to static and quasi-static loading is complex and differs considerably from that of the constituent materials in the mixes (109). The response depends on several variables which can be divided into three common groups (26, 32, 35, 44, 47, 71, 100): l) Asphalt mix variables including types of asphalt, the percent asphalt content, types of aggregate and their proportion and gradation, types and proportion of the mineral filler, and types and concentration of modifier (if any). 2) Specimen variables including compaction variables, density or the percent air voids, specimen size, and the amount of induced moisture. 3) Test variables including temperature, load intensity and frequency, and loading and relaxation periods. Figure 1 depicts a typical mechanical response (stress- strain) of asphalt mixes subjected to cyclic loading (81). The pertinent features of the strain response include: 1) Time-independent elastic strain (also called resilient strain) which is immediately recoverable upon unloading. This is shown as ab in figure 2.1. .v« git—.- I, .moxfie pfimsnmo mo o>uzo :wopumlmmokum oHHozo may no mohsudom NZHB . ~.~ «gauge «50H cobwmumsm \\\ mZHB a. d\. caduuu mood owumauooona> pocwoumam U mu u ..Illou «so cwouuw cwouuo l . oquuuam n O cwouun o and o E a a H _ uxezus 2) Tue-:4 IECCVEI ya :1 '4‘ . o. u] h Plastil Y'I 9L Add 5.0 I r-‘ew on an . 3:12.131 :4 “Sire: 175‘s. .~=E of 3"~ \ atlf‘w ‘3‘ V: «near 9‘ net in. \_"\ ‘I i i t ., 0 9C; Uzi: lbs 2) Time-dependent viscoelastic strain which is recoverable during and after removal of the load (be in figure 2.1). 3) Plastic (permanent) strain which is irrecoverable (ed in the figure). In order to obtain an analytical assessment of the mechanical response, a constitutive model should be used that can account for the pertinent features of the stress- strain properties of the asphalt mixes. Laboratory observations suggest that several different models can be constructed that include: 1) Linear or nonlinear elastic. 2) Elasto-plastic. 3) Elastic-viscoelastic-plastic. 4) Elastic-viscoelastic. 5) Viscoelastic-plastic. The model to be selected for the analysis depends upon the desired type or types of strain to be modeled, the degree of accuracy, the desired mathematical simplicity, and the anticipated load intensity. For example: mathematically, the linear elastic model is the simplest. However, the model does not account for the viscoelastic and plastic deformations of the mix. In general, the elastic- viscoelastic-plastic model is appropriate because of its ability to accurately manage the actual pavement response when subjected to traffic loading (17, 18). The basic 4 A .‘ "ELSE U s 12:12; in:: sell plast1 5:23., and a ‘ ..‘.. , . aka-..I'; CXC‘i 3:532 : e *1 premise of this model is the assumption that, at each loading increment, the material is capable of undergoing a small plastic (permanent) strain, a small viscoelastic strain, and a small elastic strain. Mathematically, for each loading cycle, the total strain is the sum of the plastic, viscoelastic, and elastic components, i.e. eT = eE + eVE +eP (2.1) where : = total strain; elastic strain; e'1' eE eVE = viscoelastic strain: and ep 2 plastic strain. Since the elastic strain is time independent, the total strain rate is the sum of the components of the viscoelastic and plastic strain rates. That is: de deVB de (2.2) *where: the strain rate is the first derivative of strain with respect to time. It should be noted that equation 2.2 indicates that the stress is applied and removed instantly. That is, the stress :tetsity is stasincreas nee; lead 1: 5:23. rates 1' 3:13”; derive 31%." vsuld be 5131. r tes c Sexerthele l‘é tam define H Resiliq 1" w J intensity is either zero or a prespecified value. If the stress increases gradually with time (as the case of moving wheel load in the field and most laboratory tests) then strain rates in equation 2.2 should be expressed in terms of partial derivatives. All strain rates (including the elastic one) would be stress-dependent. Equation 2.2 represents the strain rates during the period of constant stress. Nevertheless, using figure 2.1 and the above scenario, one can define the three types of strain as follows: a) Resilient strain - The resilient strain for each load cycle is defined as the difference between the instantaneous values of the strain at peak and zero loads. This is shown as line ab in figure 2.1. b) Viscoelastic strain - For each load cycle, the viscoelastic strain can be measured by the differences between the values of strain at zero load and that when the second load cycle commences. In figure 2.1, line bc is a measure of the viscoelastic strain. c) Plastic strain - The value of the plastic strain per load cycle is very small and difficult to measure. Therefore, the cumulative plastic strain due to a certain number of load repetitions is generally measured. This is shown as line de in figure 2.1. It should be noted that the accuracy of the actual measurement of strains depends on the rate of unloading. )vver rate ’es"ient an. 2’- the val .., "'reases a.. band, the te: "* .c n. . .. ...e vi: 3: the resil £33:er dete In genera TESLZient, v; . . ‘ :21“ the s. 213.139 def ; ’:. ...: 733 and Ca 1) Resilien deviatOr 10 A higher rate permits more accurate measurement of the resilient and viscoelastic strains. In reference to figure 2.1, the values of the resilient strain represented by ab increases and the viscoelastic (bc) decreases with decreasing unloading rate. Because, during the unloading period, the test specimen will recover all the resilient and part of the viscoelastic strains. Hence, the actual values of the resilient and viscoelastic strains cannot be accurately determined In general, the applied cyclic stress, and the resilient, viscoelastic, and plastic strains are used to obtain the structural properties of asphalt mixes. The following definitions of the structural properties are relevant and can be found throughout the literature. 1) Resilient modulus is the ratio of the applied cyclic deviatoric stress to the resilient part of the axial strain (ab). 2) Resilient Poisson's ratio is the ratio of the radial (not shown in figure 2.1) to the axial resilient strains. 3) Viscoelastic modulus is the ratio of the applied cyclic deviatoric stress to the viscoelastic part of the axial strain (bc). 4) Total modulus is the ratio of the applied cyclic deviatoric stress to the total axial strain (ac). 5) Stiffness is a general term describing any one of the E. 0 :1 .i i“. “Haitian cc. 1‘. ; um I: . . W\n Val-1‘ 13.3“: 11 above moduli. 6) Fatigue life is the number of load repetitions a material can withstand prior to the initiation of microcracks. 7) Permanent deformation is the sum (cumulative) of the plastic axial deformation (de) developed during the total number of load repetitions. Whereas the above terms are generally accepted, one can find (in the literature) several terms describing the modulus of a material (e.g., stiffness modulus, mix modulus, complex modulus, dynamic modulus, elastic modulus, elastic stiffness, flexural ‘stiffness) (81, 104). Unfortunately, most of the existing literature do not properly define these terms nor do they offer any explanations concerning the method of calculation. Hence, one can find the same term being used by several authors even though the methods of calculation are different (e.g., one author uses resilient strain, while another uses total strain, to calculate the same modulus). 2.3 RESILIENT CHARACTERISTICS OF ASPHALT MIXES The resilient characteristics of asphalt mixes are the resilient modulus and resilient Poisson’s ratio. Existing information concerning the effects of the test, mix, and specimen variables on the resilient characteristics of asphalt mixes are presented below. 2.3.1 Effects The effe: :fasphalt :i: 32, 28, 51 1;;Liei stres: P532311, and m The effe: o~ -. n 46 rather: "E :ESI type NI... “IL...“‘YU'A- u;sly L"increasing 3:335:39 N 3 Brown an: [23.59: and r8] ““3 is 4 :‘w “MY. y - 12 2.3.1 Effects of Test variables The effects of test variables on the resilient modulus of asphalt mixes were investigated by several researchers (27, 28, 51, 52, 54, 106, 109). These variables include applied stress, test temperature, load frequency, relaxation period, and number of load repetitions. The effects of the number of load applications (N) on the resilient modulus (MR) of asphalt mixes are dependent on the test type and boundary conditions. For example; for a continuously supported beam specimen, increasing N results in increasing MR. While for simply supported beam specimen, increasing N yields a decrease in the values of MR (48, 71). Brown and Cooper (27) stated that, for a stiff asphalt binder and relatively moderate stress levels, the resilient modulus is independent of stress level (51, 52, 54). Similarly, Yeager and Wood (106) found that a constant value of the resilient modulus can be obtained for a stress level up to 70 psi and test temperatures between 40 and 100°F. The effects of load duration and frequency upon the resilient response of asphalt mixes were also evaluated by several investigators. Generally, it has been found that longer load durations and lower frequencies result in lower values of the resilient modulus (27, 28, 106, 109). Also, since the response of viscoelastic materials, such as asphalt mixes, to load is temperature dependent, higher test tezferat'xes :f tie 10122;: The resi elastic rate: aba'e, ty t resemble a zer: or cats: F“-S$«e t: 2) 13 temperatures result in higher deflections and lower values of the modulus (24, 27, 87, 99, 107, 108,). The resilient Poisson's ratio for isotropic linear elastic material under uniaxial stress is defined, as noted above, by the ratio of recoverable radial strain to the recoverable axial strain. This definition applies only for zero or constant confining pressure. For variable confining pressure, the definition is more complex. The theoretical range of the values of Poisson's ratio is between -1.0 and 0.5, although values higher than 0.5 were reported (51, 52). This can be attributed to several factors: 1) Asphalt mixes are not perfectly linear elastic material. 2) Laboratory test conditions do not exactly duplicate those dictated by the theory of elasticity. 3) The test specimen experiences volume change during shear which is not permissible in the theory of elasticity. Because of the problems associated with laboratory measurements of Poisson's ratio and since pavement response is relatively insensitive to variations in this parameter, estimated values of Poisson’s ratio are generally used by pavement engineers (108). A typical range of Poisson's ratio for asphalt concrete mixes is between 0.2 and 0.4 (109). Nevertheless, researchers have evaluated the effects of the test variables on the value of Poisson's ratio. It was found 2.3.2 Effects The res: 5:51:33 of v. ‘6 “ EneCts c ls'-:.I Mt lixes 9 a " “5'9 re; Bit! ebta me, ' ASr-ha] and 14 that: a) Higher test temperature yields higher values of Poisson's ratio (104). b) Increasing number of load applications yields higher values of Poisson’s ratio (15). 2.3.2 Effects of Mix and Sample variables The resilient modulus of asphalt mixes is also a function of the mix and specimen variables including aggregate type, asphalt type and content, gradation of aggregate, and percent air voids. Bonnaure et a1. studied the effects of several factors upon the resilient modulus of asphalt mixes utilizing a two-point bending apparatus for testing trapezoidal specimens (24). Some of their test specimens were fabricated in the laboratory while others were obtained from the field. They concluded that: . Asphalt content, percent air voids, grade of binder, and volume concentration of the aggregate significantly affect the test results. . Accurate estimates of the stiffness modulus and phase angle of the mix can be obtained using the above noted variables with the aid of nomographs (Van Der Poel). Saraf and Majidzadeh performed dynamic tests on simply supported beams (12 in. long, 2 in. wide, and 2 in. high) to examine the effects of the type of asphalt binder on the .n—v-fi-E" fpic zodu 25;:32t aged :rstant tez; 15:9; 0.2 relaxation pe . The dj with a} - For an] aSphalt lOdulus ' Aging c and d} -The d} .534 y .‘ r1a1: t; b Se heat .31 resea ‘XES t 1. 15 dynamic modulus (85). They used six different types of asphalt aged for 2, 4, and 6 hours in an oven heated to a constant temperature of 4250?. The tests were conducted using 0.2 second loading time followed by 0.8 second relaxation period. They concluded that: . The dynamic modulus of the compacted mix increases with an increase in the binder viscosity. . For any given grade of asphalt, there is an optimum asphalt content at which the value of the dynamic modulus is maximum. . Aging of asphalt causes an increase in its viscosity and dynamic modulus. . The dynamic modulus increases with an increase in the compacted density of the mix. The effects of aggregate gradation on the resilient characteristics of aggregates and asphalt mixes were also investigated by several researchers.. In general, it was found that these effects are insignificant (64, 90, 91, 105, 108, 109). Because of the complexity of the laboratory tests to obtain the structural properties of asphalt mixes, and because these tests are expensive and time consuming, several researchers correlated the structural properties of the mixes to some of the mix parameters which are easy to obtain. Some of these correlations are presented in the following section. IJJCBEEIJ Effzrts l I .. ‘ e a=;ha.t 1 "-1 “1&1: ‘5‘, " ‘ u ““ 5~atis 16 2.3.3 CORRELATIONS Efforts have been made to correlate the dynamic modulus of asphalt mixes to the test, mix, and sample variables. Shook and Kallas (93) used data from several different tests to develop correlation equations (known as the Asphalt Institute (A.I.) equations) between the dynamic modulus of asphalt mixes and several mix, test, and specimen variables. The tests included: . Marshall stability and flow at 40, 70, 100, and 140°F. . Hveem tests at the same temperatures. . Direct and indirect tensile tests. . Dynamic modulus tests on 4-in diameter and 8-in high cylindrical specimens. Their statistically correlated equations are: Log E = 1.54536 + 0.020108(x1) - 0.0318606(x2) 4 + 0.068142(x3) - 0.00127003(X4)°'4(XS)1' (2.3) R2 = 0.968, and 3.3. = 0.0888904 Log E = 3.12197 + 0.0248722(Xl) - 0.0345875(X2) - 9.02594(X4)0'19/(X6)o°9 (2.4) R2 = 0.971, and S.E. = 0.0849186 t." n‘ m I. X2: X38 X4: X5: Where: Log = X1 X2 = X3 8 X4 8 X5 8 X6 3 S.E. R2:- 17 logarithm to base 10: dynamic modulus, 105 psi (4 Hz loading frequency): percent passing #200 sieve: percent air voids in mix: asphalt viscosity at 70 oF (106 poises): percent asphalt by total weight of mix: test temperature (OF): the logarithmic value of the viscosity (in poises) of the asphalt at the test temperature: = standard error of the estimate: and coefficient of determination. Shook and Kallas noted that: . For a constant asphalt content, the resilient modulus decreases as the percent air voids increases. . The resilient modulus of the mix increases as the asphalt viscosity increases, or as penetration decreases. Later, Witczak utilized an expanded data base to modify the AI equations and to include the test frequency as one of the variables (104). Miller et al. compared nearly 1200 laboratory measured dynamic modulus values with those predicted using the AI equations (66). They observed that for all mixes made using cruShed aggregate, the measured and predicted moduli showed sped agree: mes uie us e;;e:i::s to 11:13; by xix de; mi crigizal A: zeta“. grave ”5‘4. calcul 331: agree: 3:93:85 (5 58723319: 6. NC A, ... I'd-1:1 I“ te‘Pera 3e; .8. and k 3f n 18 a good agreement. However, very poor agreement was noted for mixes made using slag and sand. Thus, they modified the AI equations to obtain a better correlation for all mixes. The findings by Miller support that the modulus of the asphalt mix depends upon the constituent material in the mix. The original AI equations were ‘obtained using crushed and natural gravel. Consequently, when similar aggregates were used, calculated and measured moduli showed a relatively good agreement compared to that of using different aggregates (slag). Nevertheless, when the AI equations failed to predict the modulus to within reasonable limits, researchers developed alternative equations. For example, Terrel et al. correlated the resilient modulus to the asphalt content, test temperature, and percent air voids in the mix (96). Yeager and Wood correlated the dynamic modulus to the slope of the lines representing the logarithmic values of the kinematic viscosity against the inverse values of the temperature, loading rate, and test temperature (106). Their correlations, however, were limited to a specific aggregate type, gradation, asphalt type, and asphalt content. To summarize, several correlations relating the resilient and/or total characteristics of asphalt mixes to the mix, test, and specimen variables were developed. These, however, were found to be limited to specific types of aggregate and asphalt, and to the specific tests and 55-3637? c377: 2" PLASTIC ‘ 2: be divid if: creep - tie: a air-5t Tnecretic exalt nix i: Eterial dens ripetitive 8111 r“- m. 110 " V0143 I .H We fi .0 densi: ‘...CatiCT“ p.39 19 boundary conditions. 2.4 PLASTIC CHARACTERISTICS In general, the plastic characteristics of any material can be divided into two categories: permanent deformation and creep. The basic difference between the two categories is that the former is the cumulative plastic deformation under cyclic load (e.g., a moving wheel load) while the latter is, typically, measured as the total deformation under a constant static load (e.g., a parked vehicle). Theoretically, permanent deformation of a compacted asphalt mix is a manifestation of two different mechanisms: material densification that results in a volume change: and repetitive shear deformation that results in a plastic flow with no volume change (58). The portion of the deformation due to densification can be minimized by proper compaction specifications (17, 18, 19, 58). To control or minimize plastic flow in a pavement section, the applied shear stress should be minimized by a proper design. In practice, the separation of the two components of permanent deformation is not possible. Therefore, the term permanent deformation herein refers to the sum of both deformations. Permanent deformation represents a basic concern in the structural design of pavement system. It causes two different distress modes in the pavement: ruts and fatigue cracking (85). Ruts in flexible pavements are simply a :rfa:e dist 72:5 exfase n .0. ‘u‘ 43...... ..CH 4 20 surface distortion that can be found in the wheel paths. This surface distortion can be caused by any one layer or a combination of layers in the pavement system. Water tends to accumulate in the rutted area of the pavement causing a safety problem (hydroplaning). Fatigue cracking (also known as alligator cracking) is the result of the accumulation of cyclic plastic strain induced by repeated traffic loads. These cracks cause slow disintegration of the asphalt course which shortens pavement life. Concentrated efforts to control both ruts and fatigue cracking resulted in the development of two pavement design methodologies that are based upon limiting permanent deformations (109): . Empirical methods based on correlations of excessive deformations to preselected failure conditions of the pavement. . Quasi-elastic or viscoelastic methods that are used to predict the cumulative permanent deformations in pavement systems. The latter methodology is preferred because it can be used in more theoretical and rational pavement design methods. It should be noted, however, that neither method is perfected to the point where permanent deformations can be accurately predicted. In the following sections, plastic deformation prediction models and the effects of several variables upon - ‘ O‘r- ue :.3SU.V . 2.4.1 Plast I--.“ ... "Una lib LN”; A. 1 O'nbtavuaA In". ' «have. C f K’- 7 - '3' In, 72’ 181e,) = . P itere : a. : a :.":".:‘a« “C i. ‘ Rea; H‘C‘. ‘ Q=\ nah: 21 the plastic characteristics of asphalt mixes are summarized. 2.4.1 Plastic Deformation Prediction MOdels Monismith et al. found that, for asphalt mixes, the functional relationship between the permanent strain and the number of load cycles can be described as follows (67, 68, 69, 70, 72). 2 3 log (ep) = C0 + C1 log(N) + C2 (log(N)) + C3 (log(N)) (2.5) where: log a logarithm to base 10: ep = plastic strain: Co' C1, C2, and C3 = coeffic1ents: and N = number of load application. The basic concept of the model is based upon the assumption that for a given stress and material properties the plastic deformation of asphalt mixes is a function of the number of load applications. This implies that the prediction of permanent deformation can be determined by repeated load laboratory tests. Allen and Deen confirmed the above finding and expanded the relationship to include the effects of test temperature and applied deviatoric stress (16). Comparisons of predicted permanent deformation with actual rut depths measured from, full-depth asphalt pavements showed a fleas and H tetaeen the r iefxzation t :e;etiti0r.s a 43.; We percen a. A differe 23- They s: *r ‘4 the Voids xeknient v «5 . ‘“" l=plies .9 . the I :1qu Pita- .Ient de f ('42, t :a ‘ . Agent .a 5““ .the1 lie . the Ft . Kai‘s: I e‘s’e a; 5:... 22 reasonable agreement. Haas and Morris et al. introduced a polynomial function between the ratio of the logarithmic value of the permanent deformation to the logarithmic value of the number of load repetitions and the applied stress, the test temperature, and the percent air voids in the mix (40, 74, 75). A different approach was proposed by Brown and Cooper (27). They stated that the permanent deformation of asphalt mixes can be better expressed by using the percent air voids or the voids in the mineral aggregate (VMA) as the independent variable rather than the number of load cycles. This implies that the permanent deformation is independent of the number of load applications. This is true if the permanent deformation term includes only creep. For this case, time becomes important. In general, permanent deformation of asphalt mixes is a function of several variables including time of loading, percent air voids, temperature, material properties, applied stresses, service life, and environmental conditions (26, 32, 35, 40, 42, 44, 45, 47, 50, 53, 55, 71, 73, 76, 78, 79, 83, 86, 173). . For example, the performance and service life of two similar pavement sections are drastically different if one section is subjected to a high number of trucks (high axle loads), while the other is subjected only to automobile traffic. Further, even if the traffic characteristics are the same, pavements located in different geographical areas (e.g. presence, atser d;ffe:ently. I iefcrmticns c beincluded ir feud in the ninly due to effects of all 3‘35- These 14.2 Effects The Effect in Damage“ :3 “Vern re la'els and/0r fifzmtiOns ( 33, 86) . 23 presence/absence of freeze-thaw cycles) will perform differently. These imply that to properly model permanent deformations of asphalt mixes, all factors involved should be included in the model. Thus, the differences in opinion found in the literature concerning plastic deformation are mainly due to the fact that each study did not include the effects of all possible independent variables and/or their ranges. These are presented in the following section. 2.4.2 Effects of Test variables The effects of cyclic stress level and test temperature on permanent deformation of asphalt mixes were investigated by several researchers. They reported that higher stress levels and/or test temperatures result in higher permanent deformations (40, 42, 45, 47, 50, 53, 55, 73, 76, 78, 79, 83, 86). Allen and Deen found that the permanent deformation at the first load application (initial response) is a function of the stress level and test temperature (16). The increment of permanent deformation between any subsequent cycles, however, is independent of stress level and test temperature. Haas and Meyer, on the other hand, reported that the accumulated permanent deformation (in percent) per the logarithmic value of the number of load application increases with increasing axial stress and test temperature (40). The difference between the two findings could be attributed mixed in tests nay carsegaentl', chiszit relaxation defer-..aticn Variables, Statistical] Effects Of 1 7:5? Show eq-ln'alent 3710a d...“ finite, t 5:43.34» 10.2 iffECt the in”), isfcr2am. vn Pen . h “he“ dt 3"”; 1 5“: A . .- ‘ ‘ ‘s I L tue e” "4:“ ‘1 24 attributed to the total number of independent variables included in the study or to the type of test used. Different tests may yield different stress distributions and, consequently, the results may not be directly compared. Monismith and Vallerga examined the effects of the relaxation period during load-unload cycles on permanent deformation (73). They found that, relative to other variables, the effect of the relaxation period is statistically insignificant. Allen and Deen studied the effects of the load duration on permanent deformation (16). They showed that regardless of the load frequency, equivalent loading times (number of load cycles multiplied by load duration) yield similar permanent deformation. In practice, the above findings imply that spacing between equally loaded truck axles (relaxation period) does not affect the permanent deformation. Traffic speed (loading period), on the other hand, inversely affects permanent deformation. That is, the higher the speed the lower the permanent deformation. The finding by Allen and Deen however,' was disputed by Brown and Cooper (16, 27). They examined the behavior of asphalt mixes under static and cyclic load (stationary and moving vehicle) using a square wave. In both tests, the peak cyclic load was equal to the static load in the creep test. Thus, the equivalent loading time for the creep test is much higher than that of the cyclic test. They found that the pemnent de significantly 3mm and C0< are. Cease: have forts. Azain, I :‘f, 33 12H 1 H :v. d‘ H fl'y'e‘ hebs V. I \ .43; “ I! than .'S a 25 permanent deformation obtained from the cyclic test is significantly higher than that measured from the creep test. Brown and Cooper attributed this to the shape of the loading wave. Consequently, they recommended the use of sinusoidal wave forms. Again, the differences in the findings are actually related to the variables involved. Allen and Deen used a sinusoidal wave form while Brown and Cooper used a square wave form. To summarize, the effects of test variables on permanent deformation of asphalt mixes vary. Results appear to depend upon the number of independent variables under consideration. Ideally, the effects of the independent variables can be separated by holding all variables but one to be constant. Then the test results from two different investigations can be compared if and only if the constant values in both investigations are equal. The most significant findings are those reported by Allen and Deen (16). That is, regardless of the applied stress level and other mix variables, the permanent deformation at the first load cycle is dependent on the stress level and mix variables and that the increment of permanent deformation between any subsequent cycles is load independent. These findings imply that, in the field, the permanent deformation of a pavement system under the first application of axle load plays a major role in the extent of future ruts of that want this areal) con 3 ;ts tutu! Per 2.1.3 Effects The effec tenement de stdied exter :trsisten , tresented bel: . For a voids 4o). 26 pavement. Thus, measurements of the permanent deformation of a newly constructed pavement is crucial to the prediction of its future performance. 2.4.3 Effects of Sample and.Mix Variables The effects of sample and mix variables upon the permanent deformation of asphalt mixes have been studied extensively. Since the findings are similar and consistent, a summary with illustrative citations is presented below: . For a constant asphalt content, lower percent air voids results in lower permanent deformation (27, 40). . The effects of the percent fine content depend upon the type of the aggregate in the mix (21, 46, 47). . The percent of coarse aggregate and top size aggregate in the mix cause no significant effects on permanent deformation (46). . Softer ’asphalt binder causes higher permanent deformation (40). . Higher asphalt contents cause higher permanent deformations (46). These findings have a direct impact on this study in the selection of the specimen and test variables and their ranges. In this study the test matrix was designed to include the following: three values of percent air voids: three 'viscosity graded asphalts: three types of aggregate with one top 5 prcpcrtions of three levels Itese variable 2.5 FATIGUE PP The sutj: “WW5 (2. Pegatdless c: isstudied, i: :ltilately re: kink state: fil-induced Fatigue f; citation in In" 'fiveaent fa” C‘ . Jule Pave. 27 with one top size and a constant percent fine content: two proportions of fine and coarse aggregates (two gradations): three levels of cyclic load; and two test temperatures. These variables and their ranges are detailed in chapter 3. 2.5 FATIGUE PROPERTIES The subject of fatigue is complex and can be studied in many ways (2, 39, 52, 59, 63, 65, 84, 88, 92, 94, 101, 103). Regardless of the complexity of the subject and the way it is studied, it should be clear that cyclic plastic strain is ultimately responsible for fatigue damage (84). Yoder and Witczak stated that fatigue is the phenomenon of repetitive load-induced cracking due to a repeated stress or strain below the ultimate strength of the material (108). Fatigue failure is one of the most commonly used failure criterion in structural engineering and has been adopted as a pavement failure criterion. In general, tensile cracks in flexible pavements initiate at the bottom of the asphalt mix layer and are located under or in the vicinity of the wheel loads where the tensile strain is high. Hence, the maximum tensile stress and/or strain that can be permitted at the bottom fiber of the asphalt layer can be specified such that fatigue cracks are minimized. Fatigue tests (although not standardized) have been conducted utilizing several test methods and various specimen sizes (14, 15, 31, 37, 48, 49, 65, 74, 80, 85, 97). It is gene: stiffness 0 because I: tez‘eratur test speci: fatigue flexxal te 1835118 te Eatently, 2331;“ :8 skiing t8. '33-‘50.) whee 1 ~15: ”I p 28 It is generally agreed that because of the effects of the stiffness of the asphalt binder upon fatigue properties and because binder stiffness is temperature-dependent, a temperature-controlled chamber should be used around the test specimens. Fatigue test methods vary from the repeated load flexural test using beam specimens to repeated load indirect tensile tests on Marshall-type specimens (14, 15, 31, 41). Recently, a test method based upon the principles of fracture mechanics has also been used (43, 63). In addition, fatigue tests may be conducted either in stress or strain- controlled modes (26, 35). In the stress-controlled mode, a constant peak cyclic stress is continuously applied and removed which results in a decrease in stiffness and, consequently, an increase in the actual flexural strain with an increasing number of load applications. In the strain- controlled approach, the peak cyclic load is continuously varied to yield a constant flexural strain. This results in a peak cyclic stress that continuously decreases with increasing load applications. It should be noted that it is difficult (especially in the strain-controlled tests) to establish the number of load repetitions to failure. Consequently, arbitrary definitions of fatigue life of a test specimen has been adopted (fatigue life is defined as the number of load cycles for which the specimen stiffness is reduced to half of its initial value) (26). This 29 definition should not be interpreted as the higher the stiffness modulus the higher the fatigue life. Indeed, it is well known that softer asphalt has longer fatigue life (85). Nevertheless, In practice, strain-controlled tests are considered to be applicable to thin asphalt layer pavements (less than 2-in), while stress-controlled tests are considered applicable to thick (more than 6-in) asphalt pavement layers (35, 109). Other thicknesses are considered to be in the intermediate range. The cyclic load applied to the beam specimen (in the flexural tests) is normally a sinusoidal wave with 0.1 second loading time and 0.4 second relaxation time (48). Other wave forms and several loading and relaxation periods have also been used (32, 34, 71). Irrespective of the test procedure, specimen size, and loading characteristics, nine test specimens (triplicate for each stress level, three stress levels) are generally used to establish the necessary fatigue relationship for any given asphalt mix and test conditions (44, 48, 109). In this study, nine specimens were used (triplicate for each of the following cyclic load levels: 100, 200 and 500 pounds). The test results (fatigue life) were then statistically correlated to the applied cyclic load levels to obtain the fatigue life curve of each type of asphalt mix. Also, in this study, several definitions of fatigue life were employed which are detailed in chapter 5. 30 In the following section, two types of fatigue models are introduced. 2.5.1 Fatigue Mbdels Several fatigue models have been suggested in the literature. These can be separated into two types (95, 96): phenomenological models (32, 44, 97) and mechanistic models (43, 48, 85, 98). The phenomenological models are essentially based on Miner's law (82) (fatigue damage of asphalt mixes is directly proportional to the number of load application): and they have the advantages of simplicity and availability of data for different materials. Their principal disadvantages are that they do not account satisfactorily for the influence of geometry and material heterogeneities, and they do not provide a quantitative measure for the extent of cracking in pavements. The mechanistic models, although impractical to use due to their complexity, are more amenable than the phenomenological models in providing a quantitative description of the degree of cracking in pavements. Soussou and Moavenzadeh presented a closed form probabilistic solution based on Miner's law to characterize the accumulation of fatigue damage in flexible pavements (95). Their solution relates the expected values and variances of the measure of damage to the statistical characteristics of load factors and material properties. they e:p‘.':a :aterial lean-regent average siz Fatigue have been Iodels. 1 lirectly r 31 They emphasized the need for obtaining more complete material characterization procedures which include measurements of spatial variabilities to determine the average size of cracked areas. Fatigue life and fatigue properties of asphalt mixes have been evaluated using several different mechanistic models. Irwin used the fracture energy criterion which is directly related to the mechanism that causes materials to fail due to cracking (43, 44). He showed that: . Unlike stress and strain, the minimum energy required to cause fracture is independent of specimen stiffness. . Fracture energy is an invariant scalar, relatively simple to calculate, and independent of direction. Using strain-controlled dynamic bending tests, Van Dijk and Visser found that fatigue behavior of asphalt mixes can be satisfactorily modeled using a mechanistic model (energy concept) (97,'98). Permissible strain and fatigue behavior were shown to depend not only on stiffness, but also on the type of mix. Further, evidence from the data was the positive effect of intermittent loading as opposed to continuous loading on the fatigue life of mixes (i.e., the former results in a longer fatigue life). Secor and Honsmith, on the other hand, showed that a linear Viscoelastic model (phenomenological model) predicted the structural response of pavement within 30 percent of the 32 measured values (89). In general, this model is the most preferred due to the capability of obtaining cumulative deformations of any pavement system (109). Other researchers introduced guidelines, methodologies, and nomographs for use in the structural design of pavement against fatigue failure (25, 38, 80). Witczak developed a theoretical design procedure for a full depth asphalt concrete airfield pavement based on fatigue failure (102). The procedure limits the development of compressive strain in the subgrade layer and the tensile strains at the bottom fiber of the asphalt layer. Finally, Kasianchuck et al. suggested a series of required researches and development tasks to improve the design technology. They developed and introduced relationships between fatigue, permanent deformation, and shrinkage cracking for use in the overall design of asphalt pavements (49). Regardless of the method employed , nomograph, or guide lines, fatigue life of pavement cannot be predicted with reasonable accuracy. Most methods tend to underpredict pavement life (109). Further, there are obvious differences between fatigue failure criteria. These differences exist between methods as well as stiffness levels. At low stiffness, the criterion by Secor and Monismith (71) is more conservative than the others. However, at high stiffness, the Kingham and Kallas criterion (53) is much more ccrsemtiw significar‘t carv’e is “a: ti“; Critic differences: the desigf - :essary N be azple eVi fatigae res‘u‘ life (95, 98 Neverthe in'estigator: xix, and 8a: were used to: . Under life. - Correl compo: 33 conservative than the others. These differences lead to significant variance when interpretation of the fatigue curve is made on the basis of cumulative damage to determine the critical fatigue period. Regardless of these differences, however, there is no significant difference in the design thickness of the asphalt concrete course necessary for fatigue distress (109). There also appears to be ample evidence that the use of laboratory-developed fatigue results lead to a conservative estimate of fatigue life (95, 98, 109). Nevertheless, laboratory tests were used by several investigators to evaluate the effects of the different test, mix, and sample variables on fatigue life. The test results were used to: . Understand the effects of the variables on fatigue life. . Correlate fatigue life to the different mix compositions. . Predict the fatigue life of in-service pavements. These are presented in the following sections. 2.5.2 Effects of Test, Sample, and Mix variables Throughout this presentation, it should be noted that the tests were conducted using different specimen dimensions, different loading modes, different types of test, and different materials. Consequently, there is no canon basis taiies. 1 illustrate u! dare to stanc serrated. 1 literature c references a: an are prese Bonnaure secrete [ix mmlar flattened “PER (40- with! fIEqu 25 tiles ”filtratures Emeline" ( far a tee: 3332135 0f t. 1) longs CYCle~ 2’ The the a. U Highe- Stir- 34 common basis to compare the findings of the different studies. The objectives of the presentation are to illustrate what has been done and to define what should be done to standardize the tests so that the results can be compared. It should also be noted that a large volume of literature can be found in this area. Thus, the cited references are not exhaustive, rather they are illustrative and are presented to show the need for standardization. Bonnaure et al. examined the effects of the relaxation (rest) period upon the fatigue characteristics of asphalt concrete mixes (26). They tested 9- by 1.2- by 0.8-in rectangular beam specimens in the stress and strain- controlled modes utilizing two types of penetration graded asphalt (40-60 and 80-100): a three point bending apparatus with a frequency of 50 Hz: rest periods of 0, 3, 5, 10, and 25 times the length of the loading period: and test temperatures of 41, 68, and 77°F. They defined the failure condition (fatigue life) as the number of cycles required for a reduction of 50 percent of the initial stiffness modulus of the mix. They concluded that: 1) Longer rest periods yield higher number of load cycles to failure (longer fatigue life). 2) The most beneficial rest period is equal to 25 times the load period. 3) Higher test temperatures result in lower mix stiffness and higher service life. 4) The (stre Ecnisnit rd stress fatigae prop. n 2' by 3-i1 Here lade us; (3.544!) tOp g 5.333 ceze 517m later: frefiencies that: 1) For a Strai‘ 2) The behav . a) T. 35 4) The test results were independent of the test mode (stress or strain-controlled). Monismith et al. studied the effects of load frequency and stress reversal (from tension to compression) on the fatigue properties of asphalt mixture (71). They tested 12- by 2- by 3-in beam specimens supported on springs. The beams were made using dense graded crushed granite aggregate with (3/4-in top size) and two types of 85-100 penetration graded asphalt cements (a conventional paving asphalt and an air blown material). The tests were conducted under a range of frequencies from 3 to 30 cycles per minute. They concluded that: 1) For a given load, higher frequencies result in lower strain. 2) The test frequency has no effect upon the mix behavior in repeated flexure due to two reasons: a) The deflections were measured near the load which may reflect densification within the beam itself. b) The spring base did not allow cumulative deformation to build up. 3) For the same value of maximum strain, there is no difference in results obtained from beams flexed in two directions compared to those from beams flexed in one direction. 4) Higher asphalt contents yield longer fatigue life. Irwin and Gallaway examined the influence of laboratory test nethc Emir test specizers), stress we :c'rared t test specin (fieli-ccz; 1) Th 2) Patig fielc the s 3) The l: the n term The res 36 test method upon the fatigue life of asphalt mixes (44). Their test methods included uniaxial stress fields (beam specimens), biaxial stress fields (plate specimens), full stress reversal, and no stress reversal. In addition, they compared test results obtained from laboratory-compacted test specimens to those obtained from field-cored specimens (field-compacted asphalt concrete). They concluded that: 1) The degree of stress reversal affects fatigue properties of the mixtures. 2) Fatigue characteristics obtained from laboratory and field prepared beam specimens are not statistically the same. 3) The beam test method allows a better definition of the number of cycles to failure than the biaxial test method using plate specimens. The results presented above and those found in other references (15, 22, 23, 34, 35, 37, 48, 60, 61, 62) illustrate the fact that different tests and/or specimen sizes lead to different conclusions. A similar point was also made by Epps and Monismith (35). They summarized available information (from 1954 to 1971) concerning the effects of several mixture and test variables upon fatigue properties of asphalt mixes. For convenience, only parts of their summary is presented below. a) Stress-controlled conditions may not be found in a real pavement subjected to traffic loading. In the b) d) f) 9) 37 laboratory, however, this mode of testing provides a conservative estimate of fatigue life and it is applicable to relatively thick and stiff asphalt concrete layers. Load frequencies in the range of 3 to 30 cycles per minute have no effect on specimen fatigue life. Frequencies of 30 to 100 cycles per minute, on the other hand, significantly decrease the fatigue life (by approximately 20 percent). For stress-controlled tests, lower test temperatures yield higher specimen stiffness and longer fatigue life. For strain-controlled tests, lower test temperatures result in higher specimen stiffness and shorter fatigue life. Although not conclusively demonstrated, absorption of moisture by asphalt mixtures may lead to a reduction in stiffness and a potential reduction in fatigue life. For the stress-controlled mode of loading, a higher mixture stiffness leads to a longer fatigue life and for the strain-controlled mode of loading, a higher mixture stiffness yields a shorter fatigue life. It should be noted that in real pavements a higher mixture stiffness results in a shorter fatigue life. This is because the stress-controlled mode of loading 38 is never realized in real pavement conditions (32). h) For both stress-controlled and strain - controlled modes, a lower percent air voids in the mixture leads to a longer fatigue life. i) A higher angularity and roughness of the aggregate result in a higher mix stiffness. The effects of stiffness were noted in items 9 and h above. Fatigue life of asphalt mixes is also a function of the stress distribution within the material and the magnitude of the applied load. In the field, traffic load is not uniform in intensity and frequency and the actual pavement response is affected by the load variation. Deacon and Monismith studied the effects of load variation on the fatigue life of asphalt mixes (32). They tested 15- by 3.25- by 3.5-in beam specimens made using crushed granite aggregate and penetration graded asphalt cement of 85-100. They employed three types of compound loading ( sequence type, repeated block type, and random type) at a frequency of 0.1 Hz to simulate traffic loads. They concluded that: l) The mode of loading has a profound influence on the observed fatigue behavior of asphalt-concrete specimens. For the stress-controlled mode, specimens exhibiting the largest initial stiffness moduli tend to perform most satisfactory as long as the mixture is nonbrittle and has a reasonable balance among the proportions of its constituent materials. The reverse is t 2) Fati dete n The two- 2) 3) 4) 5) Thus, 39 is true for the strain-controlled mode. Fatigue behavior is a stochastic rather than a deterministic phenomenon. The mean fracture lives of specimens subjected to two-level decreasing-sequence tests exceeds that of specimens subjected to two-level increasing-sequence tests if the applied percentage of the larger stress level is small. The mean fracture lives for random and repeated-block (small block size) load histories are identical if the probabilities of application of the various stress levels for the random loading equal the corresponding applied percentages (expressed in decimal form) for the repeated-block loading. The variability of fracture life for random tests exceeds that for comparable repeated-block tests with the relative difference decreasing as the fracture life increases. one can conclude that, in the field, traffic pattern and distribution have profound effects on fatigue life. These effects vary from one pavement to another and they cannot be easily simulated in the laboratory. Consequently, the use of laboratory results to predict fatigue life of a pavement is problematic. Laboratory results, however, may Jbe used to analyze the effects of the mix and test variables. CH1 fatigue life and, consequently, to improve the asphalt nix desigt 2.5.3 Cor The a zoiulus, :‘esign of .....talt estitate 1 tests has ‘levelsped asphalt mj titcen 5 {rated in s ccfrelatic ”531115. Wified V3»: ‘0 at) «w‘es. “Phil: l ’ Q R ‘3 N A 40 mix design procedure. 2.5.3 Correlations The characteristics of asphalt mixes such as stiffness modulus, creep, and fatigue life are needed for an adequate design of pavement structures. These characteristics are difficult and time consuming to measure. Thus, the need to estimate these characteristics from the results of simple tests have been recently recognized. Van Der Paul (82) developed a nomograph to estimate the stiffness modulus of asphalt mixes based on the knowledge of the modulus of the bitumen and of the volumetric composition of the mix. As noted in section 2.3.3, Shook and Kallas (93) also developed correlation equations (AI equations) to obtain the stiffness modulus. Later, other researchers (66, 96, 104, 106) modified the equations to include the effects of more variables. Similarly, methods for predicting the fatigue life of asphalt mixes were investigated and developed by several researchers (24, 25, 38, 43, 80, 97, 98). Two of these methods are presented below. 2.5.3.1 Bonnaure, Gravois, and Udron Method Bonnaure et al. studied and analyzed 146 fatigue curves (75 stress-controlled and 71 strain-controlled) utilizing a statistical approach (25). The data (fatigue life, asphalt prcperties, exposition; lflxratorie: was to pred. :88! on 4 Obtain. The] U Test 41 properties, stiffness modulus of the mix, and mix composition) were obtained from five different European laboratories and universities. The objective of their study was to predict the fatigue characteristics of asphalt mixes based on a small number of parameters that are easy to obtain. They made the following general observations. 1) Test data from stress-controlled tests showed a shorter lifetime than those from strain-controlled tests. 2) For a given level of initial strain, a softer asphalt binder leads to a longer fatigue life. 3) The slope of the fatigue line in the log strain versus log number of load repetition space varies from 0.14 for asphalt binders with a high penetration index to 0.3 for those with a low penetration index. 4) For a given asphalt stiffness modulus and initial strain, higher asphalt contents and/or lower percent air voids result in longer fatigue life. Based upon these observations, Bonnaure et al. made the following two approximations. 1) Although the slopes of the fatigue lines are dependent on the asphalt type, the test temperature, the asphalt content, and the test type a constant value of 0.2 is assumed to represents all of the 146 fatigue lines. 2) The slope of the line representing the initial strain 42 as a function of the binder stiffness modulus (in logarithmic space) was assigned two values: 0.36 for the constant strain tests, and 0.28 for the constant stress tests. Based on these approximations, statistical analyses were conducted and a general mathematical equation was obtained. Solutions of the equation for all possible parameters were then constructed in the form of a nomograph as shown in figure 2.2. They then examined the accuracy of the predicted fatigue life relative to the available data and concluded that: 1) For the 75 fatigue lines obtained in stress- controlled tests, the accuracy of the equation is around plus or minus 40 percent of the original data. 2) For the 71 fatigue lines obtained in strain- controlled tests, the accuracy of the equation is within plus or minus 50 percent of the original data. Differences between calculated and measured data are mainly due to the two approximations made prior to generating the final equation. Also, the fact that fatigue data were collected from different laboratories where the specimen size and the boundary conditions were not exactly the same contributed to the variance of the data. Nevertheless, the above conclusions indicate that stress- controlled tests are slightly more consistent than strain- cpntrolled tests. It should be remembered that the accuracy _I----,., I a‘-~.\u>.yuv wig-urn. "KL-Na- : \ \ \ \ : 43 .~.Hm um unsuccon “mummy mamwudumfi msocwasufin mo mufia dsmwumu any onwuuwpdum you ammumoaoz ~.~ dusmflm . ..ov ezmazoo zHemem smueHzH . zmzaenm,onanzsqo> oH mu . m. m. = n . q q q u d c :- umuu umcu mmouun :«owum a assumsoo uncensoo f L fl. I. I. ...-“.1 .1/./ . k , ,I. mod I III I I I! .l. / I HCHI.// .0 .cr..... loo-t0. J r1 a... ...finwm . OI / I, / I ......o: .0. .I.I v 0000000000.0 5 «y . . oaoa v. \ I I 9 I z 0. / r6190 I a O I I I A I ,,/ ,. a I I; I A_5;c xes.:n.uo. n H5005 numemuwun Amadosoc mane mqu xapug uornexnauad 44 of the calculated data may drop significantly if compared to field measured data. The nomograph, however, represents a significant contribution in the field of fatigue analysis in that it can be used to qualitatively assess the effects of the mix variables on pavement life. 2.5.3.2 Fall and Cooper Method Pell and Cooper examined the effects of test and mix variables on the fatigue life of asphalt mixes (80). They conducted a series of 48 tests on a wide variety of base and wearing course mixes made with gap-graded and continuously- graded aggregates. Stress-controlled flexural tests at 50°F were conducted on necked-type specimens (2.5-in diameter at the neck). The specimens were mounted as a vertical cantilever cylinder on a shaft rotating at a constant speed around the specimen axis, while a single constant point load was applied perpendicular to the axis. This produced a sinusoidal bending stress throughout the specimen with a maximum stress amplitude at the neck. They established two linear logarithmic relationships: the first relates fatigue life (expressed in terms of the number of load repetitions (N) to failure) and the maximum amplitude of the applied dynamic stress: the second relates (N) to the maximum amplitude of the initial dynamic strain. They assumed that all the fatigue lines for the first relationship meet at one focal point as shown in figure 2.3. 45 They concluded that: 1) Asphalt content is the most important mix variable affecting fatigue life: higher asphalt contents and lower percent air voids result in higher fatigue lives. 2) For good fatigue performance, an aggregate should be rounded to allow effective compaction to take place, have a high crushing strength to prevent fracture during compaction, and have a coarse surface texture for firm binding with the asphalt. 3) In the axial load fatigue tests, fatigue life is independent of the confining stress and temperature. Again, figure 2.3 can be used to assess the effects of the variables (asphalt type, asphalt content, and strain amplitude) upon the fatigue life of asphalt mixes. Such an assessment leads to a better pavement design relative to fatigue life. The figure should not be used, on the other hand, to predict pavement fatigue life. 2.5.4 Fatigue Life of Inservice Pavement Craus et al. and Kenis assessed the effects of heavier axle loads and higher contact pressures on the fatigue life of pavement structures containing relatively thin layers of asphalt concrete (less than 4-in) (17, 29, 30). Their assessment was made by three computer programs: ELSYMS and PSAD'which are based on layered elastic theory: and VESYS 46 as w as _ m>.gad2I “ocean o ousumuofifimu Hana can scam .Auomooo oco Hume Houusv maowumuoa moonwasufin no mafia osmwuou on» so :oHuoaooua MOM amoumoaoz .OH 2 .ousadom ou moaoao .v ow "n ca oH. n.~ musofim OH xrm u; urezns OTx 47 which is based on a viscoelastic model. Further, the fatigue response of asphalt pavement with less than 10 percent cracking was defined using the Finn equation (36). It was concluded that: 1) 2) 3) 4) 5) The influence of the asphalt concrete stiffness on fatigue life is dependent upon the layer thickness. For pavements with 4- and 6-in thick asphalt-bound layers, fatigue life increases as the stiffness of the asphalt concrete increases. For a 2-in thick layer, on the other hand, the fatigue life increases as the stiffness of the asphalt concrete decreases. For a constant contact area, an increase in the wheel load and contact pressure causes a proportional decrease in the fatigue life (about 75 percent) for all layer thicknesses. For a constant load, an increase in contact pressure (decrease ’in the contact area) causes a decrease in the fatigue life. A reduction of 25 to 50 percent in-the thicknesses of the base and subbase courses has little influence on the fatigue life of the 2-in thick asphalt concrete structure. However, rutting becomes important. Similar reductions for the 4- and 6-in thick layers cause a decrease of 20 to 25 percent in the fatigue life. The reduction in the values of the resilient modulus of . s‘. . lcn con lif Based the stres capacted layer paw fless than RSPhalt la test We 1 the fatigi the rasil “Wade ‘ Meant f 3f the as; Wheat 1 € ». “at""\ . we 11 1 2.5.5 sun: It “ I ¢5I ‘i. meter: 48 of the base, subbase, and subgrade layers significantly decreases the fatigue life of thin layer asphalt concrete pavement structures. 6) Thin asphalt concrete pavement structures yield longer service lives if the modulus of the asphalt concrete surface course remains low throughout its life. Based on item (1) above, researchers have agreed to use the stress-controlled tests to study the fatigue life of compacted asphalt mixes in thick (4-in or larger) asphalt layer pavements, and the strain-controlled tests for thin (less than 2-in) asphalt layer pavements. For pavements with asphalt layer thicknesses in between 2- and 4-in however, no test mode has been selected as yet. Item (6), indicates that the fatigue life of asphalt pavement is also a function of the resilient modulus values of the base, subbase, and subgrade materials. This implies that the prediction of pavement fatigue life based solely on the fatigue life data of the asphalt layer is problematic. The properties of all pavement layers should be considered in the prediction of fatigue life. 2.5.5 Summary It is apparent that no standard test procedure to characterize fatigue life, nor a standard definition of fatigue life, has been developed and universally adopted. 49 Researchers have utilized different size specimens, several testing procedures, and various analysis methods to characterize the fatigue life of asphalt mixes. Several methods to predict fatigue life using asphalt mix variables have also been developed. Problems still exist since the ability of all of these methods in predicting the fatigue life of pavement systems is very poor. It should be noted that: a) Fatigue life depends upon the stress distribution in the materials and other environmental and material factors. b) The stress distribution in a pavement system depends upon the characteristics of the different pavement courses. c) Fatigue life depends on the values of cyclic plastic strain induced by moving wheel loads and has no relationship to the cyclic elastic or viscoelastic strains. d) There is a significant variation in the definition of fatigue life. There is still no laboratory test available that will duplicate field conditions. Consequently, prediction of pavement fatigue life is problematic. Despite these facts, the understanding of fatigue life and fatigue failure has improved considerably over the last few decades. A better understanding can be developed only after a long-term 50 pavement evaluation and monitoring program is established. Such a program has just begun (the Strategy Highway Research Program) and the future seems very promising. . . ...; o. I r... . . . .. .I’.JrL-O. W: ..z.,.....;:.. 2...... .....z. :1." marten: ......x: ‘ 51 CHAPTER 3 LABORATORY INVESTIGATION 3.1 GENERAL The primary objective of this study is to quantify relationships between structural properties and asphalt mix parameters. These properties include: a) Elastic and resilient characteristics. b) Permanent deformation. c) Fatigue life. To accomplish the objective of the study, flexural cyclic load beam tests (or simply, beam tests) were conducted using several asphalt mixes. The mixes were made using several different materials which are described in the next section. 3.2 TEST MATERIALS Several materials were selected for this study. These include: three types of aggregate, one type of mineral filler (fly ash), and three types of asphalt. 3.2.1 AGGREGATE AND MINERAL FILLER Two primary types of coarse and fine aggregates were used in this study. These are crushed limestone, and rounded river deposited gravel. A third type of aggregate was obtained by mixing (for each sieve size) fifty percent by weight crushed limestone with fifty percent rounded river 52 deposited gravel. This last type is designated throughout this dissertation as 50/50 mix. Each type of aggregate (crushed limestone, rounded river deposited gravel, and 50/50 mix) was sieved using AASHTO T 27-84 (ASTH C 136-84a) test procedure and separated into different size fractions. Each size fraction was washed, dried to a constant weight and then recombined in accordance with the two grain size distribution curves ( A and B) shown in figure 3.1, along with the straight line gradation. It should be noted that the abscissa in the figure is scaled to sieve openings raised to the power 0.45. It should also be noted that both grain size distribution curves (gradation curves) had the same top size aggregate of 0.75 inches and percent by weight passing sieve number 200 of 8.29. The percent passing by total weight for each sieve size for gradations A and B are listed in table 3.1. For each of the coarse and fine portions of each type of aggregate, two values of each of the bulk Gs (BK), saturated surface dry Gs (SSD), and apparent Gs (APP) specific gravity were determined using AASHTO test procedures T-8 (for coarse aggregate) and T-84 (for fine aggregate). The data from each test and the average values are listed in tables 3.2 and 3.3. It should be noted that neither the limestone dust, nor the material passing sieve number 200 of the natural aggregate was used. Rather, fly ash was used as the mineral 53 Table 3.1 Percent passing by weight for gradations A and B. sieve percent passing by weight number size(inch) size (mm) gradation a gradation b 3/4" 0.750 19.000 100.001 100.001 3/8" 0.375 9.500 70.71 78.46 4.0 0.186 4.750 49.842 61.422 8.0 0.093 2.360 36.91 43.93 16.0 0.046 1.180 27.54 31.42 30.0 0.024 0.600 20.40 22.65 50.0 0.012 0.300 15.11 16.20 100.0 0.006 0.150 11.193 11.593 200.0 0.003 0.075 8.29 8.29 1 Percent coarse aggregate by total weight: 50.16 for gradation A, and 38.58 for B. Percent fine aggregate (excluding - #200 sieve) by total weight: 41.55 for gradation A and 53.13 for B. Fly ash. 2 J. Lin-L O I arch}. (EM-.Jofi L. v 54 Table 3.2 Specific gravity of the coarse aggregate. gradation A B sample 1 2 AVG 1 2 AVG number Gs (BK) 2.665 2.676 2.671 2.757 2.699 2.728 limestone Gs (SSD) 2.688 2.699 2.694 2.768 2.716 2.742 Gs (APP) 2.728 2.740 2.734 2.789 2.747 2.768 Gs (BK) 2.683 2.704 2.694 2.623 2.703 2.663 natural Gs (SSD) 2.712 2.732 2.722 2.653 2.732 2.693 gravel Gs (APP) 2.763 2.783 2.773 2.702 2.784 2.743 Gs (BK) 2.663 2.726 2.695 2.697 2.726 2.712 50/50 mix Gs (SSD) 2.686 2.747 2.717 2.722 2.748 2.735 Gs (APP) 2.725 2.785 2.755 2.767 2.787 2.777 AVG = average Gs 8 specific gravity. BK a bulk. SSD a saturated surface dry. APP apparent. 55 Table 3.3 Specific gravity of the fine aggregate. gradation A B sample 1 2 AVG . 1 2 AVG . number limestone Gs (BK) 2.794 2.810 2.802 2.809 2.803 2.806 natural Gs (BK) 2.720 2.746 2.733 2.722 2.750 2.736 gravel 50/50 mix Gs (BK) 2.765 2.776 2.771 2.783 2.770 2.777 AVG. = average. Gs = specific gravity. BK = bulk. SSD = saturated surface dry. APP = apparent. 56 GENIVIBH 1N3383d OO— 00 On ON 00 on 0? On ON 0— .mcofiuooopm m pad < was ocwa usufiohum H.m opsmwm 3N.» ”>2... , .2.-. .273. .z_-«\_ .273” .273 v a o. 2 898 0203 ...-o; ov.o o. 6....- ..co.«.: c. ..-c_c.ao ....» o. u...uu ....o.a< \ \\ .4 w\ MI V zonatodmu ‘ mzHg 9: H525 Z l 0|. ”S 6 ..6 .6 .9 .0 Z 3 I O 00 0 O r t V I. s .0 0 .0 q .z .s .0... ... w 6 7.0 S W. 3523.: 2. «lasso .0— 0“ On 0v On 00 ON on 00 oo— ONISSVJ 1N3383d 57 filler. 3 . 2 .2 ASPHALT BINDER Three viscosity graded asphalt cements (AC10, AC5, and AC2 .5) were used in this study. Each of these asphalts was tested in accordance with the proper AASHTO test procedures to determine their properties. The test results are listed in table 3.4. 3- 3 ASPHALT NIX DESIGN The asphalt mix design was conducted in accordance with the standard Marshall test and test procedures and the full- factorial experiment matrix shown in figure 3.2. It can be seen that there are eighteen cells in the matrix for ej~9ht:een possible combinations of the variables (3 asphalts; 3 aggz'egates, 2 gradations). Each cell, represents a total 9f 12 specimens: one triplicate for each of the following Percent asphalt contents by total weight of mix, 3.5, 4.2, 4-9 and 5.6. Thus, total of 216 specimens were tested. The test results are summarized in tables 3.5 through 3.7. For each asphalt content, the average values for stability, 151°". density, percent air voids, and percent voids in mineral aggregates were calculated. These values are also listed in the tables. For each combination of the variables (asphalt, aggregate, and gradation), the stability, flow, density, 58 Table 3.4 Asphalt properties. Penetration Grade 75-100 120-150 200-250 Viscosity Grade AC-10 AC-S AC-2.5 Laboratory Number 86B-296 868-297 86B-298 Penetration, 4 c, 200 g., 60 sec. 35 52 84 Penetration, 25 C, 100 g., 5 sec. 96 154 272 Penetration, 30 C, 100 g., 5 sec. 157 233 * Specific Gravity 25/25 C. 1.024 1.020 1.015 Flash Point (0.0.0.), 0. 288 310 314 Softening Point (R88), 0. 42.0 37.5 35.0 Solubility in Trichloroethylene, % 99.60 99.70 99.60 Tmctinty, 25 c, cm/min, cm. 150+ 150+ 95 Viscosity (cone) 77 F, K poises 793 407 162 Viscosity (absolute) 140 F, poises 1026 594 271 Viscosity (kinematic) 275 F, cs 270 212 159 T/s" Thin Film, 163 c, 5 hr, 50 g. Change in Weight, percent 0.47 0.43 0.34 Penetration, 25 C, 100 g, 5 sec. 48 73 123 % of Original Penetration 50 47 45 Ductility, 25 C, 5 cm/min, cm 150+ 150+ 106 Viscosity (abs.) 140 F, poises 3083 1614 727 Viscosity (kin.) 275 F, cs 419 335 237 Viscosity (cone) 77 F, K poises 4554 1742 634 \ * Hit Bottom. 59 Table 3.5 Marshall mix design results for viscosity graded asphalt AC-lo S AS P 63 AV VHA \ ' much-11 0tebility (pounce). Inch-ll stability edJueted to the 0q1e height. 210- (11100"). np0¢ific gravity. eir voids in percent. void- in ninerel euregetee in percent. ouresete I line-tone neturel srevel mix of 50/50 by night gradetion A I I A 6 I A I 6 sale no. I 1 I 3 3 I 1 3 3 1 3 I 3 1 I 3 I 3 1 I 3 I 3 I 1 I 2 I 3 percent asphalt S 2040 2500 2660 2560 2075 3020 2530 2430 2300 2760 2770 2600 2080 2460 2220 3380 2930 3310 content As 3114 2722 2611 2660 3116 3174 2666 2560 2473 2670 2603 2909 2206 2621 2332 3523 3064 3467 P 6 7 7 6 7 7 7 7 7 7 7 7 7 7 6 6 6 7 3-5 63 2.43 2.43 2.42 2.42 2.42 2.43 2.43 2.45 2.45 2.40 2.41 2.40 2.44 2.44 2.43 2.41 2.42 242 AV 5.03 5.66 6.26 6.26 6.12 5.07 5.00 4.34 4.07 5.66 5.53 6.06 5.14 5.10 5.45 5.96 5.61 5.77 VHA 14.20 14.20 14.50 14.50 14.40 14.30 13.30 12.70 12.40 14.10 13.60 14.301350 13.40 13.801420 14.101400 everuee S 2734 2652 2420 2763 2260 3207 AS 2662 2067 2563 2604 2367 3351 as 2.43 2.42 2.44 2.40 2.43 2.42 AV 6.02 6.13 4.46 5.63 5.23 5.65 V014 14.30 14.40 12.60 14.00 13.50 14.10 5 2510 2350 2000 2650 2705 2760 1020 2050 2250 1660 1650 1050 1600 1750 1770 2560 2460 2480 AS 2726 2536 2244 2624 2066 2077 2106 2215 2411 1766 1741 2066 1046 1663 1606 2736 2646 2634 0 10 0 0 6 0 6 7 6 6 6 0 0 11 11 11 6 6 6 4 . 2 06 2.47 2.47 2.47 2.46 2.46 2.46 2.46 2.47 2.46 2.45 2.43 2.44 2.46 2.47 2.47 2.45 2.46 2.45 AV 3.15 3.31 3.35 3.61 3.60 3.60 1.05 2.36 2.66 2.63 3.76 3.22 2.55 2.63 2.76 3.30 3.22 3.61 M 13.30 13.40 13.50 13.00 10.60 13.60 12.10 12.50 12.00 12.00 13.70 13.20 12.70 12.60 12.00 13.4013.30 13.60 everecee S 2107 2742 2073 1753 1773 2507 AS 2503 2030 2245 1656 1910 2673 63 2.47 2.46 2.47 2.44 2.47 2.45 AV 3.27 3.73 2.40 3.26 2.66 3.36 M 13.40 13.60 12.50 13.30 12.60 13.40 "nvlonm Ill 2 l3 I 1| 2| 3| 1 I: I: I: I2 I: I 1| 2! 3 l1 I2 I: 60 Table 3.5 Continued agrogate I linsstone I natural gravel I mix of 50/50 by weight .rod-tion A I s I A I s | A l 6 sun-33:1.e no. 1 I 2 I 3 I 1 I 2 I 3 I 1 I 2 I 3 I 1 I 2 I 3 I 1 I 2 I 3 I 1 I 2 I 3 ;:aas:¢:ssnm asphalt 3 1450 1450 1530 1670 2070 2040 1070 1000 1050 1460 1530 1650 1210 1360 1200 1450 1470 1650 cont-mt AS 1577 1570 1654 1601 2256 2217 1153 1067 1147 1500 1626 2014 1302 1466 1296 1550 1573 1756 F 17 17 17 15 13 14 21 17 16 13 15 12 16 17 17 13 13 12 A -50 65 2.46 2.46 2.47 2.47 2.46 2.46 2.46 2.47 2.47 2.45 2.44 2.47 2.47 2.47 2.47 2.45 _ 45 2.45 AV 1.65 1.65 1.03 2.32 2.01 2.01 1.66 1.34 1.34 1.01 2.27 0.01 1.72 1.65 1.65 2.32 2.26 2.01 VHA 13.50 13.50 13.60 14.10 13.60 13.60 13.40 13.20 13.20 13.60 14.00 12.70 13.50 13.50 13.50 14.10 14.00 13.80 averages S 1477 1027 1040 1620 1257 1523 AS 1604 2001 1120 1743 1356 1630 06 2.46 2.47 2.47 2.45 2.47 2.46 AV 1.76 2.05 1.45 1.70 1.67 2.10 VHA 13.60 13.00 13.30 13.40 13.50 13.00 8 1100 1350 1100 1525 1650 1570 660 6” 050 1100 1200 1170 1020 1050 050 1060 1160 1070 A8 1267 1466 1105 1640 1700 1667 072 064 1052 1171 1277 1241 1100 1144 1020 1156 1242 1145 P 21 23 21 17 20 21 24 27 31 17 16 20 24 20 27 20 10 24 3 ' 8 63 2.47 2.47 2.46 2.46 2.47 2.46 2.46 2.44 2.46 2.43 2.44 2.42 2.46 2.46 2.46 2.44 2.45 2.44 AV 1.12 0.02 1.56 1.40 0.“ 1.44 0.52 1.37 0.65 1.46 1.42 1.66 0.07 0.36 1.17 1.60 1.37 1.57 “M 14.60 14.40 15.00 14.00 14.50 14.00 14.00 14.70 14.30 14.60 14.70 15.10 14.40 13.00 14.60 15.00 14.6014.00 \ 69086206 5 1213 1562 007 1157 1007 1103 AS 1316 1706 006 1230 1001 1161 65 2.46 2.47 2.46 2.32 2.46 2.44 AV 1.21 1.26 0.01 1.56 0.63 1.55 V714 14.70 14.60 14.30 14.00 14.30 14.00 3 .p1.lm.ll I2 I: I: I: I3 I: I2 Isl 1| 2| 3| 1| 2| 3| 1| 2| 3 marshall stability (pounds). ‘- ‘ anrshsll stability adjusted to tbs sample height. ‘ flow (1/100"). ' specific gravity. air voids in percent. voids in mineral aggregates in percent. {5.9.3. 61 Table 3.6 Marshall mix design results for viscosity graded asphalt AC-S. “3;..." I 11.000009 I natural .zgval I mix or 30730 by «an: gradation A I 6 I A I 6 I A I 6 ...-pi. no. 1 I 2 I 3 I 1 2 3 I 1 | 2 I 3 I 1 2 3 I 1 2 I 3 I 1 I 2 I 3 percent naps-1-10 s 2310 2000 2010 2290 2020 2000 1920 2320 2130 2320 2210 2300 2710 2003 2920 3300 3130 3100 cont-at 10 2001 2703 2931 2113 2710 2923 2013 2110 2230 2023 2290 2370 2911 3027 3097 3192 3203 3310 r 9 7 0 7 7 7 0 7 0 0 7 0 7 0 0 7 0 7 3-5 as 2.13 2.11 2.13 2.13 2.12 2.12 2.13 2.11 2.13 2.11 2.10 2.39 2.11 2.13 2.11 2.10 2.10 211 AV 3.07 3.31 3.90 3.03 0.20 0.21 1.22 1.09 1.93 3.01 3.00 0.20 3.07 3.20 1.93 0.17 0.39 0.10 9311 11.00 13.90 11.20 11.20 11.30 11.30 12.00 13.10 13.30 13.90 11.10 11.10 13.10 13.00 11.30 11.70 11.00 11.10 averages s 2030 2370 2123 2110 2012 3230 AS 2799 2092 2211 2190 3013 3330 ms 2.13 2.13 2.11 2.10 2.11 2.10 AV 3.09 0.10 1.01 3.91 3.10 0.11 m 11.00 11.10 12.90 11.10 13.10 11.00 0 2210 2300 2230 2000 2330 2310 1100 1130 1130 1930 2010 1990 2203 2030 2170 3030 2000 2090 10 2371 2302 2119 2700 2702 2077 1390 1301 1330 2030 2103 2107 2303 2102 2332 3230 3039 2031 r 9 10 9 s 0 0 11 0 9 0 0 0 9 10 11 0 9 9 4.2 as 2.17 2.17 2.17 2.13 2.13 2.10 2.10 2.17 2.10 2.13 2.13 2.11 2.10 2.17 2.17 2.13 2.13 2.11 417 3.11 3.11 2.99 3.03 3.97 3.71 2.03 2.33 2.03 3.19 2.93 3.37 2.39 2.07 2.70 3.20 3.33 3.09 Van 13.30 13.30 13.20 11.00 11.10 13.90 12.00 12.30 13.00 13.30 13.00 13.10 12.00 12.00 13.00 13.10 13.00 13.00 \ averages 0 2200 2317 1100 1993 2133 2007 as 2132 2713 1301 2110 2299 3030 60 2.17 2.13 2.10 2.11 2.17 2.13 av 3.00 3.03 2.02 3.20 2.02 3.30 VH1 13.20 13.90 12.70 13.30 12.00 13.30 S”: 5‘ no. I 1 I 2 | 3 I 1 2 3 I 1 I 2 I 3 | 1 2 3 I 1 I 2 I 3 I 1 I 2 3 \ S ‘ Iarsbail stability (pounds). As ‘ tarsbaii stability adjusted to tbe sqle height. I" ~ 2109 (17100"). ‘ specific grwity. ‘ air voids in percent. In ‘ voids in mineral aggregates in percent. 62 Table 3.6 Continued. .3‘regata I limestone I natural gravel I nix o! 50/50 by weight ‘radntion A I 0 I A I 0 I A I 0 aapleno.1I2I3I1I2I3I1I2I3I1I2I3I1I2I3I1I2I3 pox-cant asphalt S 1530 1440 1560 1620 1660 1600 020 1000 1020 1100 1230 1300 1240 1160 1260 1660 1770 1830 contant A8 1656 1564 1661 1061 1606 1050 066 1077 1006 1263 1314 1300 1336 1266 1360 1600 1004 1955 F 14 16 16 12 14 12 20 15 15 13 13 12 10 15 16 16 12 11 a . 9 63 2.46 2.46 2.47 2.46 2.47 2.46 2.45 2.47 2.47 2.44 2.45 2.45 2.46 2.46 2.46 2.46 2.47 2.116 AV 1.45 1.73 1.60 1.60 2.32 1.61 2.26 1.40 1.46 2.04 1.76 1.06 1.06 2.20 1.37 1.60 1.61 2.1 WA 13.40 13.60 13.60 13.60 14.20 13.70 14.00 13.20 13.30 13.60 13.50 13.70 13.60 14.00 13.3013.70 13.50 13.00 averages 6 1510 1767 060 1240 1227 1760 A8 1634 1007 1054 1322 1324 1666 GS 2.46 2.47 2.46 2.45 2.46 2.46 AV 1.60 2.01 1.72 1.02 1.63 1.66 VHA 13.60 13.60 13.50 13.60 13.60 13.60 '6 060 1130 1130 1220 1260 1340 750 700 700 600 600 650 670 605 600 1230 1300 1210 A8 1053 1230 1230 1312 1356 1446 705 754 636 045 051 000 035 067 063 1322 1300 1203 I 32 10 21 17 17 16 35 33 37 23 16 17 25 26 25 10 16 23 3“ 68 2.45 2.46 2.47 2.46 2.46 2.47 2.42 2.44 2.42 2.43 2.44 2.43 2.44 2.46 2.46 2.45 2.45 2.45 AV 1.66 0.66 0.64 1.40 1.26 1.20 2.10 1.37 2.14 1.54 1.01 1.62 1.61 1.13 1.05 1.13 1.37 1.41 “1A 15.30 14.30 14.40 14.00 14.60 14.60 15.40 14.60 15.40 14.00 14.40 15.00 15.00 14.60 14.50 14.60 14.60 14.60 \ averages 3 1060 1273 747 677 665 1247 A3 1171 1372 706 032 955 1335 65 2.47 2.46 2.43 2.43 2.45 2.45 AV 1.14 1.30 1.67 1.36 ' 1.27 1.20 “M 14.60 14.60 15.20 14.70 14.70 14.70 '“M-uo.lzlzlaI1IzI3I1IzI3IxlzlalzlzIalxlzla \ s - aershall 0010111137 (ponds). ‘ aarshall stability adjusted to the sale height. " £10- (11100”). ‘ specific gravity. ‘ air voids in percent. ‘ voids in nineral aggregates in percent. ‘8 F GS AV M 63 Table 3.7 Marshall mix design results for viscosity graded asphalt AC-2.5. “‘raggtg I limestone I natural gravel I mix at 50/50 by weight gradation A l 0 I A | 0 I A I 0 a-Iaplsno.1I2I3I1I2I3I1I2I3I1I2I3I1I2I3I1I2|3 parcont aapllalt S 2610 2450 2600 2020 2050 3200 2070 2150 1660 2560 2500 2500 2200 2010 2300 2190 2360 2300 contain A8 2765 2631 2776 3100 3107 3366 2210 2254 1760 2654 2666 2574 2374 2157 2460 2320 2457 2131 I 10 6 7 6 5 6 5 6 6 6 7 6 6 5 5 6 6 6 3 - 5 GS 2.45 2.45 2.45 2.44 2.44 2.44 2.45 2.42 2.43 2.30 2.36 2.30 2.47 2.45 2.47 2.43 2.41 2.43 AV 5.01 4.03 4.65 5.27 5.54 5.31 4.23 5.16 4.03 6.06 6.44 6.32 3.70 4.37 3.50 5.07 5.93 5.19 VHA 13.40 13.40 13.30 13.70 13.00 13.70 12.70 13.50 13.30 14.30 14.70 14.60 12.20 12.60 12.1013.50 14.20 13.60 averages S 2553 3023 1060 2550 2170 2263 A8 2731 3201 2075 2632 2340 2403 GS 2.45 2.44 2.43 2.30 2.46 2.42 AV 4.03 5.30 4.77 6.27 3.00 5.40 M 13.30 13.70 13.10 14.40 12.30 13.70 6 1020 1660 2000 2430 2400 2660 1215 1150 1460 2060 2200 2270 1460 1500 1760 1920 1650 1760 A8 2077 2000 2160 2620 2676 2673 1306 1226 1504 2165 2315 2360 1614 1627 1030 2052 1001 1013 Y 10 0 0 6 0 6 6 10 6 0 7 7 6 0 0 7 6 7 7‘2 N 2.40 2.46 2.46 2.46 2.47 2.47 2.46 2.45 2.40 2.44 2.43 2.44 2.40 2.46 2.46 2.46 2.46 2.47 AV 2.43 2.66 2.55 2.06 3.25 3.25 2.61 3.06 1.46 3.41 3.65 3.05 1.67 2.46 2.16 2.07 2.65 2.73 M 12.70 13.10 12.60 13.20 13.50 13.50 13.00 13.20 11.60 13.50 13.70 13.20 12.20 12.70 12.40 13.20 13.00 12.00 \ averages S 1027 2533 1275 2163 1567 1650 A3 2065 2723 1376 2206 1724 1965 68 2.46 2.47 2.47 2.44 2.46 2.46 AV 2.63 3.16 2.45 3.36 ' 2.17 2.65 M 12.60 13.30 12.60 13.40 12.30 13.00 "‘m1-rm.|1 l2 I: I1 I2 I: I1 I2 I3| 1| 2| 3| 1| 2| 3| 1| 2| 3 \ S ‘ nsrshall stability (pounds). As ‘ narshall stability adJusted to the sqle height. P - 210- (11100"). Gs ‘ specilic gravity. AV ' air voids in percent. M - voids in ninsral aggregates in percent. 64 Table 3.7 Continued. aggregate I limestone I natural gravel I oil of 50]” by vsigbt gradation A I 6 I A I 6 I A I 6 ...-331100.1I2|3I1I2I3I1I2I3|1I2|3l1|2|3|1I2l3 parcent aapl'inlt 3 1160 1400 1300 1650 1560 1660 060 000 1000 1050 1140 1200 600 660 960 1300 1230 1380 content A8 1265 1527 1510 1703 1607 1601 1036 063 1062 1117 1211 1264 960 027 1073 1395 1320 1495 F 16 13 14 15 13 12 13 12 14 12 12 10 16 16 15 12 10 10 A - 9 63 2.46 2.46 2.40 2.40 2.40 2.46 2.46 2.46 2.46 2.44 2.44 2.47 2.46 2.46 2.46 2.46 2.47 2.47 AV 1.51 1.55 1.23 1.47 1.43 1.50 1.72 0.72 1.52 2.00 2.00 1.06 1.62 1.00 1.14 1.96 1.56 1.42 VHA 13.50 13.50 13.20 13.50 13.40 13.60 13.60 12.70 13.40 13.00 13.60 13.00 13.70 13.60 13.10 13.60 13.5013.40 averages 8 1323 1623 053 1130 010 1303 A8 1444 1763 1034 1204 067 1406 66 2.46 2.46 2.47 2.45 2.47 2.47 AV 1.43 1.50 1.32 1.73 1.62 1.66 WA 13.30 13.40 13.10 13.50 13.40 13.50 6 040 000 070 1020 1200 1100 615 745 650 020 620 010 600 630 720 900 070 930 A8 1024 061 1042 1103 1300 1266 660 600 020 060 660 065 664 010 776 962 1055 994 I 25 24 21 16 10 10 20 27 21 21 16 20 30 26 32 20 17 17 5" 66 2.47 2.47 2.45 2.47 2.46 2.46 2.46 2.44 2.45 2.45 2.43 2.43 2.45 2.46 2.45 2.45 2.46 2.45 AV 0.06 0.64 1.73 1.12 0.60 0.60 1.” 1.33 1.13 0.65 1.62 1.34 1.17 0.73 1.25 1.21 0.16 1.25 m 14.50 14.50 15.20 14.70 14.30 14.50 15.30 14.60 14.60 14.40 15.00 14.60 14.70 14.30 14.70 14.70 13.60 14.60 \ "626.66 6 037 ‘ 1137 737 663 763 933 AS 1015 1230 703 036 651 1004 63 2.46 2.47 2.44 2.44 2.46 2.46 AV 1.16 0.65 1.45 1.26 1.04 0.60 WA 14.70 14.40 14.60 14.60 14.50 14.30 '“Pl-noJ1|2I3I1I2I3I1I2I3I1|2I3|1|2|3|1I2I3 \ - nershall stability (pounds). ~ marshall stability adjusted to the sqle height. ‘ 21090 (11100"). - specitic gravity. air voids in percent. N - voids in ninsral aggregates in percent. 3.50 AV 65 .mummu Haaswuma pom xfipuoe pcoafiuonxo HdwhOpOdhlfiash N.m ousmwm my to ma no v~ «H ouunoom 2 S 3 m . m e 3702 m a v a a H 872. x m < m < a 4 9H0? . L€.jfiw :2 33... 3:56 3852. mzoammzs 9 «w 9.3.9 4“ *0“ V§ Qk v v 09 to 66 percent air voids, and the percent voids in mineral aggregate were then related to the percent asphalt content. The values of the percent asphalt content corresponding to the three percent air voids were then selected as the design asphalt contents. These values are listed in table 3.8 and were used throughout the rest of the testing program. It should be noted that, for all mixes, the values of the design asphalt content were slightly lower than those determined by the Asphalt Institute criterion and slightly higher than the Corps of Engineers criterion. Nevertheless, the testing program was designed and conducted to evaluate the effects of the test, mix, and specimen variables on the structural properties of the a8phalt mixes. These variables are presented in the fol lowing sections . 3 - 4 TEST VARIABLES The effects of three test variables on the structural properties of asphalt mixes were investigated in this study. These are the magnitude of the applied cyclic load, the test tenlperature, and the number of load applications. 3 - “ ~ 1 CYCLIC LOAD The characteristics of the stress-strain diagram of a sE>lla1t mixes suggest that the mixes possess a nonlinear b ehavior. Some researchers, however, found that (for a 67 Table 3.8 Asphalt mix design for three percent air voids. aggregate type asphalt limestone rounded 50% mix mix asphalt design A B A B A B pen variables % A.C. 4.310 4.460 3.990 4.280 4.160 4.400 MAX. 8. G. 2.546 2.543 2.539 2.520 2.541 2.530 75 BULK S. G. 2.470 2.467 2.463 2.445 2.465 2.454 - STAB.(1bs) 2242. 2590. 2177. 1984. 1884. 2302. 100 V.M.A 13.39 13.75 12.60 13.21 13.01 13.54 FLOW (0.01”) 11.34 10.38 7.33 9.42 10.38 8.95 % A.C. 4.250 4.480 4.030 4.320 4.140 4.380 MAX. 8. G. 2.547 2.541 2.537 2.517 2.541 2.530 125 BULK S. G. 2.471 2.465 2.460 2.442 2.465 2.454 - STAB. (lbs) 2289. 2392. 1701. 1896. 2238. 2655. 150 V.M.A. 13.26 13.79 12.70 13.31 12.96 13.49 FLOW (0.01”) 9.90 9.76 7.42 8.34 9.99 9.68 % A.C. 4.070 4.240 3.990 4.330 3.860 4.200 MAX. 8. G. 2.553 2.549 2.537 2.516 2.551 2.535 200 BULK S. G. 2.477 2.473 2.461 2.441 2.474 2.459 - STAB. (lbs) 2173. 2548. 1584. 1942. 1955. 1935. 250 V.M.A. 12.85 13.23 12.61 13.31 12.33 13.08 FLOW (0.01”) 8.85 8.85 6.63 7.86 6.39 7.03 AC a percent asphalt content. cum 8 maximum theoretical specific gravity. STAB a marshall stability. percent voids in mineral aggregates. 68 moderate stress level) the resilient modulus of asphalt mixes are independent of the applied stress level (i.e., they possess a linear behavior). Others stated that increasing stress level yields lower modulus values. To further investigate this point, and to quantify relationships between the structural properties and the magnitude of the applied cyclic load, three cyclic loads were used throughout the testing program of this study. These are 100, 200, and 500 pounds which resulted in applied cyclic stress levels of 50, 100, and 250 psi, respectively. The reason for selecting these stress levels is to simulate field conditions. In general, pavements are subjected to stresses equal to the vehicle tire pressure which varies from about 50 psi for some vehicles to about 100 psi for trucks. The 250 psi value is representative of the tire pressure of a new type of tire (the super tire) that is to be introduced by the tire industry in the near future. 3.4.2 TEST TEMPERATURE Structural properties of asphalt mixes are also functions of the mix temperature. The functional relationships, however, are well known and they are documented throughout the literature (see chapter 2). The purpose of the investigation herein is to verify existing information rather than to develop new models relating the structural properties to test temperature. Consequently, role 1 nixes. deters. Fat nuzber initiat. the as} 69 only two test temperatures were used in this study. These are 40 and 70°F. 3 .4. 3 NUMBER OF LOAD APPLICATIONS The number of load applications plays an insignificant role in determining the resilient characteristics of asphalt mixes. In practice, the resilient characteristics are determined after 500 or 1,000 load applications after which the test is terminated. Fatigue life, on the other hand, is defined by the number of load application at which microcracks are initiated in the test specimen or the flexural modulus of the asphalt mix is reduced to half of its original value. Thus, it is clear that in the fatigue test, the number of load application to failure will vary and is dependent on several variables. Early in the testing program of this study it was found that the number of load applications to fatigue failure varied from a few thousands for the seven percent air void specimens to a few millions for the three percent air void specimens. This represented a problem because the application of one million load repetitions at a frequency of 2 Hz. requires 6 days of continuous testing. since about 100 specimens were made at the three percent air 'voids, it implied that more than five years of continuous testing is required. Consequently, it was decided to subject all specimens to about 100,000 load cycles unless 70 the specimen fails prior to this number. In addition, to verify the extrapolation of the relationships between plastic strain and the number of load application, a few specimens were subjected to more than 600,000 cycles. 3.5 MIX VARIABLES The effects of three mix variables on the structural properties of asphalt mixes were investigated in this study. These are: aggregate angularity, asphalt type, and gradation of the angularity. 3.5.1 AGGREGATE ANGULARITY Aggregate angularity is a measure of the degree of curvature of the aggregate. In qualitative terms, aggregate angularity can be described as rounded, subrounded, subangular, or angular. Quantitatively, aggregate angularity can be obtained by estimating and/or calculating the proximity of an aggregate to a circumscribing sphere. The calculation, however, has not been standardized. Researchers have suggested several equations (56, 105) and/or scales for calculating or estimating the angularity. In this study, aggregate angularity was "quantified” using a scale from 1.0 to 4.0 (105). A value of 1.0 describes a perfectly spherical and smooth aggregate while a value of 4.0 describes an angular aggregate such as a crushed aggregate. Hence, angularities of the crushed limestone, 71 natural aggregate and 50/50 mix were assigned the values of four, two, and three, respectively. These numerical values were used to examine the effects of aggregate angularity on the structural properties of the asphalt mixes. 3.5.2 ASPHALT TYPE Traditionally, penetration or viscosity of the asphalt are used to characterize the asphalt type. Since the beam specimens, in this study, are subjected to cyclic loads (a psudodynamic type load) it was thought that the kinematic viscosity of the asphalt is a better descriptor of the asphalt type because kinematic viscosity is the ratio of the asphalt viscosity to its density. Consequently, the kinematic viscosity of the asphalt binder was used to quantify the asphalt type and to examine its effects on the structural properties of the mix. The values of the kinematic viscosity of the three types of asphalt (AC 10, AC5, and AC 2.5) used in this study are 159, 212, and 270 centistokes, respectively. These values are listed in table 3.4. 3.5.3 AGGREGATE GRADATION As noted in the Chapter 2, several investigators have found that aggregate gradation have an insignificant effect on the structural properties of asphalt mixes (64, 90, 91, 105, 108, 109). To substantiate their findings, two 3.1 afial 72 gradations (A and B) are used in this study (see table 3.3 and figure 3.1). It can be noted that gradation A had a higher percent of coarse aggregate than gradation B. For analytical purpose, these gradations can be characterized by the weight ratio of coarse to fine aggregate, by their volume or percent passing ratio, or by the volume concentration of the fine. Since, the same percent fine was used for both gradations (A and B), and since the purpose of the investigation in this study is to determine whether aggregate gradation affects the structural properties or not, it was decided to assign the values of 1 and 2 for gradations A and B, respectively. These two values were then used in the analysis. 3.6 SPECIMEN VARIABLES The effect of only one specimen variable on the structural properties of asphalt mixes was investigated in this study. This was percent air voids. The percent air voids of the beam specimens were varied by varying the compaction efforts. Three values of the percent air voids (three, five, and seven) were targeted. For each combination of material and for each target value of the percent air voids, three specimens (triplicate) were made. Each specimen was then tested to determine its actual (not target) air voids. This last value was then used in the analysis. FE le' 73 3.7 TEST MATRICES As noted above, a total of six independent variables were considered in this study. Each had either two or three levels as follows: . Three target levels of the percent air voids (AV). These are 3, 5, and 7 percent. The actual values of the percent air voids varied from about three to about seven percent. . Three values of the kinematic viscosity (KV) of the asphalt binder. The values of RV are 159, 212, and 270 centistokes. . Three aggregate angularities (ANG). The value of ANG are: two for rounded gravel, three for the 50/50 mix, and four for crushed limestone. . Three magnitudes of the cyclic load (CL). The values of CL are 100, 200, and 500 pounds. . Two gradations (GRAD) of the aggregates. The value of GRAD is either one for gradation A or two for gradation B. . Two test temperatures (TT). The values of TT are 40 and 77°F. Thus, the possible number of combinations of these values is 324 (3 air voids x 3 kinematic viscosities x 3 aggregates x: 3 cyclic loads x 2 gradations x 2 test temperatures). 'This implies that, for the beam tests and for a full 74 factorial study, 324 specimens (972 specimens in triplicates) were required. This is impractical because of the time involved. Consequently, a partial factorial experiment design matrix was established based on the concept of separation of variables such that the effects of each variable on the structural properties of asphalt mixes could be independently and satisfactorily assessed. This matrix is shown in figure 3.3. There are total of 72 designated cells in the matrix and each cell represents a triplicate for a total of 216 beam tests. The test data can be grouped and subgrouped in certain ways such that the values of all independent variables but one are constants within that group. These groups are: . Group 1: percent air voids. This group was subdivided to nine subgroups. The only independent variable within each subgroup is the percent air voids. For example: subgroup 1.1 for cells 1, 2, and 3; subgroup 1.2 for Cells 13, 14, and 15. . Group 2: cyclic load. The data in this group were separated into 24 subgroups The independent variables within each subgroup are the cyclic load and the percent air voids although the target values of the percent air voids are the same. For example: subgroup 2.1 for cells 1, 13, and 25: and subgroup 2.2 for cells 70, 71 and 72. . Group 3: kinematic viscosity. The data in this group 75 .mummu anon on» you anuoa unmawuomxo Hmfiuouuou Hosanna n.n musoflm e We m :. as N 2. S 1 ace 8 we .. 8 We 8 m 8 8 mm a S. we no a 3:3. . m on me me be me me as N me me He as mm an em H . 6:. an an an Idflafldfllldfi-lnldfldudw. cm mm «N E on 2 m: S S 2 WW 2 N 2 Z S m m s m o v m N a a x... me smmsmmsmmsmmsmmsmmsmmsnmsmm 366$. 08-8w. 02-6.2 STE. ommuoom o .792 872. omuuoom 8762 8T9. so 6&5 28m: 2 i: 836 $238 ameSom n ...—22.325 «.5. s a. wxMS§13§¢o .oaoonnatu o nouoaaeov Huoo noun .. NV QNV 76 was separated into 9 subgroups. The independent variables within each subgroup are the kinematic viscosity of the asphalt and the percent air voids although the target values of the latter is constant. For example: subgroup 3.1 for cells 1, 4, and 5, and subgroup 3.7 for cells 39, 40, and 41. . Group 4: aggregate angularity. This group was also subdivided into 9 subgroups. The independent variables within each subgroup are the aggregate angularity and the percent air voids. For example: subgroup 4.1 for cells 1, 6, and 11 and subgroup 4.4 for cells 15, 20, and 24. . Group 5; gradation. Twelve subgroups were found herein. For example: subgroup 5.1 for cells 1 and 37 and subgroup 5.10 for cells 7 and 42. The disadvantage herein is that, since only two gradations were used, the effects of this variable cannot be accurately assessed. . Group 6: temperature. Fifteen subgroups were established. For example: subgroup 6.1 for cells 1 and 58 and subgroup 6.6 for cells 29 and 63. Again, since only two temperatures were used, the effects of the test temperature cannot be accurately assessed. During the analysis, data subgroups were recalled to analyze the effect of the variable within that subgroup. For example, data from three cells that have all variables, 'c'.‘ we va 3.! 77 but one, constant (e.g., cells 1, 4, and 5 in figure 3.3) were analyzed to infer the effects of the independent variable (asphalt type in this case) on test results (e.g., cell 1 corresponds to asphalt type 1: 2 to asphalt type 2; 3 to asphalt type 3; while all other variables are invariant). Similarly, data from cells 1, 2, and 3 can be analyzed to examine the effects of the percent air voids on the structural properties of asphalt mixes. 3.8 SPECIMEN DESIGNATION NUMBER For a proper data storage, retrieval, and _management, each test specimen was assigned an unique eight-digit designation number. The designation number was based on the following (the numerical order here is that of the designation, e.g.; number one corresponds to the first significant digit of the designation number): 1. Aggregate type: limestone = 1, gravel = 2, 50/50 mix by weight a 3. 2. Gradation type: gradation A = 1, B = 2. 3. Asphalt viscosity, 1, 2, and 3 for kinematic viscosity of 270, 212, and 159 cs, respectively. 4. Test temperature: 77°F = 1, 40°F = 2. 5. Test type: Beam 8 0. 6. Percent air voids: 3% air voids = 5: 5% air voids = 6; 7% air voids = 7. 7. Sample number (SN) for a triplicate by order of test: aSp tr; 3.9 ash I OVen as 5 prGPe blend ISFha 78 (SN 8 1 to 3). 8. Load level: 100 pounds cyclic load = 1, 200 pounds a 2, and 500 pounds a 5). To illustrate, a designation number of 11110521 implies (from left to right): limestone: gradation A: high viscosity asphalt; 77°F: beam test; 3% air voids: second beam of a triplicate: and 100 pounds cyclic load. 3.9 SPECIMEN PREPARATION PROCEDURE For all beam specimens, each aggregate fraction (size) was washed and oven dried to constant weight at 230°F (100°C) for a 24-hour period. After drying, all aggregate fractions were brought back to room temperature. A portion of each fraction, starting with the top size, was then weighed to the nearest 0.1 gram in accordance with the specific gradation curve (A or B). The proper amount of fly ash was then added. The aggregate mix was then placed in an oven to bring its temperature to the compaction temperature as specified in the AASHTO T 245-82 test procedure. The proper weight of asphalt was then added to the aggregate blend to yield the design asphalt content. The aggregate and asphalt were mixed according to AASHTO T 245-82 procedure. After mixing, the beam specimens were compacted using a California Kneading compactor model CS-1000 and a beam mold 16-in. long, 4-in. wide, and 4-in. high. Bach specimen was compacted in four layers. The compaction parameters (weight 79 of the material, the number of tampings, and the foot pressure per layer) were varied. Three trial beams were made to determine these variables. After compaction, the density of the trial beams were determined as specified in the AASHTO T 166-82. The beams were then sawed to eight equal parts as shown in figure 3.4. The density and the percent air voids of each part was determined. From these trials, the proper weight of asphalt mix, the number of tampings, and the foot pressure per layer were selected to yield uniform beams with near target air voids. The final set of the compaction parameters are listed in tables 3.9 through 3.11. After compaction, the beam specimen was extracted from the mold, placed on a rubber mat and allowed to cool to room temperature. After cooling, the density and the percent air voids were determined. It should be noted that the maximum variation of the percent air voids of any triplicate was generally less than 0.2 percent. However, the actual air voids in some triplicates varied by as much as one percent from the target air voids, which was mainly related to the hydraulic system of the compactor which did not deliver exactly the specified foot pressure. The specimen were then air-dried and stored overnight in a temperature-controlled chamber which was set at the test temperature of either 77 or 40°F. The next day, the specimen was tested. 80 Table 3.9 Typical compaction variables for 3 % air voids using limestone and AC10 layer number WM CFP NT 1 3393 200 78 2 2714 250 78 3 2262 300 78 4 1809 350 78 WM = weight of asphalt mixes (grams). CFP = compactor foot pressure (psi). NT = number of tamping. Table 3.10 Typical compaction variables for 5 % air voids using limestone and AC10 layer number WM CFP NT 1 3383 200 39 2 2706 250 39 3 2255 300 39 4 1804 350 39 WM - weight of asphalt mixes (grams). CFP - compactor foot pressure (psi). NT = number of tamping. Table 3.11 Typical compaction variables for 7 % air voids using limestone and AC10 layer number WM CFP NT 1 3267 200 26 2 2612 250 26 3 2177 300 26 4 1741 350 26 WM = weight of asphalt mixes (grams). CFP a compactor foot pressure (psi). NT = number of tamping. 81 Figure 3.4 Beam specimen sawed to eight equal parts for density analysis. .. _.—_—. -- in: an: the C0336: ’v 82 3.10 MEASUREMENT SYSTEM Early in the testing program, several beams were instrumented using several types of strain gauges (2-, 3-, and 4-in long) mounted at different heights on the side of the beam. The values of the measured strains were found to be random and inconsistent for three reasons: a) The long (4-in) strain gauges spanned along the neutral axis (the tensile and compressive regions) of the beam. Hence, measured strain values represented the net values of the tensile and compressive strains. b) Some of the short strain gauges (2-in) spanned only two adjacent aggregates: others spanned only parts of the aggregates: still others were mounted on the asphalt binder on one side and on a part of an aggregate on the other side. c) Several types of epoxy resins were used to firmly attach the strain gauges to the side of the beam. The magnitude of the cumulative plastic strains at the higher number of load applications caused the epoxy to crack and hence, the strain gauge was separated from the beam. Consequently, a different measurement system was used that consisted of four linear variable differential transducers (LVDT) mounted on a steel frame along the central line of the surface of the beam specimen at different distances from 83 the point of load application. The LVDTs were placed at the center of the beam, 2.25-in., 4.25-in., and 6.31-in from the center as shown in figure 3.5. The total surface deflection of the specimen due to the applied cyclic load was recorded at different number of load applications using a strip chart recorder. 3.11 TEST PROCEDURES All beam specimens were prepared using the procedure outlined in section 3.9. The tests were conducted at either 77 or 40°F in a temperature-controlled chamber. The sustained and cyclic loads were applied using an MTS hydraulic system. Prior to testing, all equipments used in the flexural beam tests (e.g. MTS hydraulic system, LVDT’s, strip chart recorders, and so on) were calibrated in accordance with a proper procedure before commencing the test. After each specimen was conditioned to the test temperature, the beam specimen was continuously supported by placing it on a rubber pad (1 in. thick) which was then rested on a steel block (8 in. thick) in the test chamber. The rubber plate and the steel block, herein, represent the base or subbase course underlain by a rigid foundation. After placement, all LVDTs were adjusted to a reference position. A loading strip (0.5 inch-wide and 4 inch-long) 84 HTS ACTUATOR J/ LVDT HOLDER LOAD STRIP . ~ _‘— I. RUBBER STEEL \\\§.\\\\\\\m5 Figure 3.5 Schematic diagram of the beam test set-up. SEC rel 85 attached to the actuator of the MTS system was then lowered to make contact with the beam. A sustained load of 50 pounds was then applied and the consequent deformations were recorded. When the rate of deformation dropped to near zero (10 to 20 minutes), the cyclic load with a sinusoidal wave form was applied and the resulting resilient, viscoelastic, plastic deformations, and number of load applications were recorded. The load frequency was set at two cycles per second with 0.1 second loading time and 0.4-second relaxation period. The peak cyclic load, however, was either 100, 200 or 500 pounds. For each load, three beam specimens (triplicate) were tested. CHAPTER 4 TEST RESULTS 4.1 GENERAL In this study, the laboratory tests were performed according to the respective partial factorial experiment matrix shown in chapter 3. The tests were conducted in the laboratory of the Division of Materials and Technology at the Michigan Department of Transportation (MDOT). It should be recalled that all tests were conducted in triplicates. Typical test results are presented in this chapter. 4.2 TEST RESULTS For each of the test materials, the Mashall mix design tests were conducted using four values of the percent asphalt contents by total weight of the mix (3.5, 4.2, 4.9 and 5.6). The test results were analyzed and the design asphalt content was determined as the percent asphalt content by total weight of mix that corresponding to three percent air voids. Typical diagrams relating the stability, specific gravity (density), percent air voids, voids in the mineral aggregates, percent voids filled with asphalt, and flow to the percent asphalt contents are shown in figures 4.1 through 4.6. Nine specimens (three triplicates) were made at the design asphalt content for each of the test materials. Each 86 (1. re th. SpI 0f 87 triplicate was compacted to yield specimens with uniform density near the target values of the percent air voids (AV) of either three, five or seven percent. Figures 4.7 and 4.8 show typical diagrams of Mashall stability and flow versus the percent air voids, respectively. For each beam at the 77°F, the cyclic load was applied for a period of 24 hours or until failure. Beams at 40°F were tested for a period of three to six days (one million load applications). During the test, the resilient, total, and plastic deformations at four points on the surface of the beam were measured and recorded. Figures 4.9, 4.10, and 4.11 show typical curves of resilient, total and plastic deformations of the beam versus the number of load applications, respectively. The maximum specific gravity of the mix (GMM), the bulk specific gravity of the beam specimen (GB), the target air voids (TAV), the actual air voids (AV), the target asphalt content (TAC), and the actual asphalt content (AC) are also shown in the figures. Figure 4.12 depicts typical shapes of the deflection basin at several numbers of load applications. Figure 4.13 shows typical curves of the resilient and total deformations at cycle number 100 versus the percent air voids. Figure 4.14 depicts typical plots of the cumulative plastic deformation versus the percent air voids for cycles number 100, 1,000, 10,000, and 150,000. The test results, for all beams, are presented in Appendix A. ... .13... .... ~I¢paho .. . I. .& I. y . 4 I . . I .2 1 88 .o_-o< usanama sweats suamooma> ecu < soapstone occumoewd toe acmucoo udosnmm uCQOLOQ mamh0> hufiawndvm Hangman: ~.e otsuwu x”: to .taa >2 cc 3 ,. «.6 a... . . . . 6.6 1.6 p.v a v ".4 a e o.n s n m.n fl . tau 5 / :2 / in / . .l/ 2:. 1 3 «Cau-—u—ro-o.amuuo / sung”; -..un £39 .o~nU< o_osmno possum homecomM> was < cofiampmtm occumoswfi tom Xuc to .hoa >n ac u .u a.v 0.9 «.v v.9 m.u n u.m 6.v n.v 0.0 ococccc s_o:emo beeches mcmto> xme 0:» mo haw>otu oflufiooem x—sn ~.v otzumu as... uv.~ at.“ ' V e N 5‘ v e N hv.fl .v.~ av.“ MtUMHO 08 C 3* >- 9O .o~|o< uaosmnd popmtu huwmoomw> pca < cofiumpmhu ocoomoEWH ace ocmocoo passage acoOAoQ mzmto> mowo> use vasomon m.v otzmmm x2. 3 JR: >. 8 n. . a... a... .... «.6 an ...m . 1.... a; " 91 .o~u0< wannabe gotcha haemoomw> pco < newvopmtu occuwosfla toe acopcoo pannemm acmOLoQ manho> ounmoammm amAcCME cm mtwo> ¢:¢0t0m v.v seamen Xuc to .hoa >h 0‘ a n.m OJ. .v . . u.u «.u 6.? a 0.? a v 0.0 h n u.n . .mu D.Nu .0“ r11 fl H...”— \\\\A c \\\\ 7//// n \ I a'd " .\\\ . m.v« .mu u.m« .0“ 92 .o~|o< uaonqmm cocoon homecomm> can < someopmtm escortedd sch acoacoo pfiosams enacted msmto> paszgmm new: peafime mpwc> untouca m.e mt:w_m x—t8.hg>~o¢m «.... a; .v . . ad ‘ ..m 1.; u a... a. «6 pm a.» \ K at but 93 .o_nu< newsman popntm mammccmm> pco < cowompmnm ocoumoswa tom acoucco badgers scooped maxtm> 30am v.8 seamen Xuc no .ho: >h QC m n.m o.v .v . . u.u u.& 6.9 n n.v a V O." h n u.n m.mu $.00: “\O'OOC 4": 0 Y\V .m« T\\\\\ u.ha \ ... 94 .coafloomu ecu no mowo> use useouom any usuu0> auwawnouu Hangman: h.v choose mvwo> ua< ucoouom m o a N o ; . oooH ccflx_ ooo~ (spunod) KnIIIqens IIBHSJPW . ooom 95 .mcoewoomm one no mpwo> new Homoeoe ego mzmto> mozeo> 30am m.e obzmdm opao> uw< uaoouom o a . N _ o AA V WWIIINII 4 . «a (..001/1) “01.! gm .qm 96 .mcowumOwaqsm mood no Lopez: 0:» msmto> coewoonm 5603 Org mo cometam one :o mucfion snow as mCOMHmEtomop ucowuwmom m.v seamen 2225.3: 23 18 mum—32 2 m3 «3 m3 «3 a3 9:25 8 m.” mBe/A U NHG>A m. e. .. BQ>1H uquOU Anuu m g u. m m. as o... g a s. > Hm.¢ .l 04H. GG.~. I >149 WW.“ I :20 WMFQfiHfiH Ow.“ m. 97 .mcofiasOMHQQo good no tones: 03a mamt0> coswomsm z°_asemau= aces aossmm==z ea>o “mucus mahoqafiq seen one mo somehow may :0 macaon snow as mcowodEhoeop Houoe o_.¢ ot:u_m as an ass and com (saqour) V-OIX uornemiogaq {9301, 98 .mCOwuooflanqm coca mo tones: on» mammo> seafloonm soon 0:» ho coautzm 0:» co mucwom poem as mcowumatomop Ugandan 0>maoazezo ~_.e assume 3 2225mm: 23 so mums—E m: 3 3 E e m m «98>; a»; .. eo>o possum Nea>o $41 a 9.. 36 .. 3 Sim u no :6 .. 3.9 so...“ .. >5. mm.“ .. as $83: (saqour) uornemiogeq orqsetg .mcofluoOwaneo mood no tones: economedo um coewoonm Boob one mo canon cospostomov owomodm touflamstoz N_.e otzmflm 323:: 32ng .332— 99 m To «6 N.” a.“ a 13%: mg ccoom cocoa mg DD 1.. 2. 36 .. o< vaé u >4 Sim a mo 22¢ . 92. 8;.“ 12:. mm.“ .. =26 .333; 133u33 aqn :19 uonemzogaq x aouensrq 39 uouemogaq ... ...».1................r?$. £41. naming»... ......» . 1... .. .. 100 40 f; 0 .fl 0 t: 44 a. q C 2: ... x 30 3 e ‘—' e h e ‘6 (ll, 0 '5 e g Total 4 Deformation . O .m " 20 , 4. o u 3 A esilient a in 0 - o e .m ‘6 z; 10 I o o «d a s e h o H e a 0 2 4 6 Percent Air Voids IHTHB 4.13 Resilient and total deformations at the center of the loaded area at cycle number 100 versus the percent air voids of the beam specimen. 101 .coswooam 5600 one 00 mtwo> two tomcat: 6:0 xzmto> x::_oso__aeo flood 00 tones: acotoemwt on some tones. or; so Lasso: are on acomuoEtchb omam6~a o>maomsezc v~.e otzmwe Amosoch mou< popmoq ecu mo noucoo onu um acOHumEhowoo Ugandan o>aumH=Edo 00H HnOH ~10H . muoa 0H cl 000.0 000.00H sproA 11v nuaoiad CHAPTER 5 ANALYSIS AND DISCUSSION 5.1 GENERAL Structural properties of asphalt mixes have a direct bearing on the pavement performance under the anticipated traffic loading and environmental conditions (109). The determination of relevant structural properties can be very tedious and involved because said properties change with changing environmental conditions. Unlike the mineral aggregate in the mix or in the pavement base and subbase layers whose properties are relatively constant, physical and chemical asphalt binder properties are dynamic in nature and are influenced by temperature, moisture, and time (35). In addition, the response of asphalt mixes to load (as noted in chapter 2) is the result of three different mechanisms: elastic: viscoelastic: and plastic. Thus, some of the relevant structural properties of asphalt mixes that are needed for the design of asphalt pavement include resilient and/or total characteristics, permanent deformation, creep, and fatigue behavior. Asphalt mixes are largely composed of coarse and fine aggregates, mineral filler, asphalt binder, and air voids. The proportioning of these components in any given mix (the asphalt mix design) dictates its behavior under traffic loading and affects its structural properties (24, 34, 40, 102 103 74, 75, 85). Existing practices, however, divorce the asphalt mix design procedures from those to obtain the structural properties. Hence, a major question facing the pavement engineer is "how to tailor the asphalt mix design procedure to optimize its structural properties which will :result in the best pavement performance under traffic loads and environmental conditions?" 5 . 2 STUDY OBJECTIVES The objectives of this study include: a) Determining the structural properties of asphalt mixes using cyclic load flexural tests. b) Determining the asphalt mix design parameters using the standard Marshall tests and test procedures. c) Quantifying relationships between the standard properties of the asphalt mix and the types of the material in the mix. d) Identifying a laboratory test procedure whereby the asphalt mix design can be tailored to optimize its structural properties. To accomplish these objectives, it was hypothesized that relationships between the structural properties and the asphalt mix design parameters can be found using statistical analyses. To verify the hypothesis, laboratory flexural cyclic load tests was designed and conducted to evaluate the structural properties of the mix. The asphalt mix design 104 parameters (on the other hand) were obtained using standard Marshall tests. The measured structural properties and the asphalt mix design parameters were then analyzed to: a) Model the structural properties of the compacted mixes as functions of load and temperature. b) Model the structural properties of the compacted mixes as a function of the types of material in the mix. c) Correlate items a and b. d) Evaluate the repeatability of the test results. e) Examine the feasibility of the beam test. Items (a), and (b) above are required to verify the hypothesis (item c). Items (d) and (e) are necessary to determine whether the flexural beam test can be used to identify a laboratory test procedure whereby the asphalt mix design can be tailored to optimize the structural properties of the mix. 5.3 DATA PREPARATION For each test, the applied cyclic and the corresponding specimen total deformation were continuously recorded using strip chart recorders at cycles number 100, 500, and a multiple of 10 of these values thereafter. After the test, each data record was examined and the values of the resilient, total, and plastic (permanent) deformations were digitized separately. This can be illustrated with the aid 105 of figures 5.1 and 5.2. Figure 5.1 depicts a typical load and deformation record versus time during one load-unload cycle. The sustained and cyclic loads, and the loading and relaxation periods are shown on the load record in the figure. The total peak deformation, the time lag between the peak load and peak deformation, and the resilient, viscoelastic, and plastic deformations are designated on the deformation record in figure 5.1. The length of the lines DG, DE, EF, and FG in the figure are proportional to the total resilient, viscoelastic, and plastic deformations, respectively. It can be seen that the length of the line FG is much smaller than those of DE and EF. Indeed, it was noted that the values of the plastic deformation due to any one load-unload cycle is very small and within the accuracy of the measurement system. Consequently, the plastic deformation due to any one load cycle was neglected and the total and resilient deformations (lines DG and DE) were digitized. The viscoelastic deformation is simply the difference between the total and resilient deformations. It should be noted that the value of the viscoelastic deformation depends on several variables such as temperature and loading and relaxation periods. For example, higher temperatures and/or longer loading and relaxation periods produce higher viscoelastic deformation. Since (in this study) the rate of specimen recovery was not recorded and only one loading and relaxation periods were used, the 106 M .oewu msmto> mptoooh cowumEtomop 0cm nooH ~oomahb ..m otzmwa onus 3. casuaauomoo caveman J. sewuostomov cabooaooouu> acmuoatouop oceaauwom. pofitoa soauaxaaom uoriemao;op need {910; _ coca pocuouosm new 03:. ILGTI LI ,d/IL / 110?}?an PBO‘I mood cauoao uoyzomJOJoa P901 107 .cofipmomaego flood mo tones: are mammo> mosoooh cowuosuomct 0cm flood Haemahk «.0 shaman e acoauoo«uaao coca mo tones: o ~00 00~ «OH . ~0~ a L/W . 4 _ uorzomao;oa Hi} ocuuostomov Aucocoatoav cauoedd .i + 7 . mood pocfioumam q 4 poo" Camemo 9°01 ..H. H... L... ...:x...,.:.......... 1:... .. 108 calculation of the viscoelastic properties becomes tedious and misleading. Thus, only the resilient, total, and plastic deformations were considered in the analyses. As noted above, the value of the plastic deformation of the test specimen for any one load cycle is very small and within the accuracy of the measurement system. For this reason, the cumulative plastic deformation due to a number of load applications were determined and analyzed. This can be illustrated using figure 5.2 which shows a typical load and deformation record versus the number of load applications. The records for cycles 101, 102, 103, and 501 were obtained using a higher speed setting on the chart- recorder. The records between cycles number 104 and 500 were obtained using a slow speed setting on the chart- recorder. As it can be seen, the deformation signal drifts away from the horizontal axis as the number of load application increases. The length of the line AB in the figure is proportional to the cumulative plastic deformation between load cycles number 103 and 501. In this study, the value of the cumulative plastic deformation between load cycle number and any other load cycle in question was used in the analysis. 5.4 ANALYSIS METHODS Analytical and statistical methods were used to analyze the data obtained from the flexural tests. The analytical 109 method was based on the elastic-viscoelastic-plastic model (equation 2.2). In this method, the magnitude of the applied cyclic load and the measured resilient and total deformations of the beam specimens were analyzed using a linear elastic finite element computer program to extract the resilient and total characteristics of the asphalt mixes. The analyses are presented in section 5.7. For each beam specimen, the values of the resilient and total characteristics obtained using the finite element program, and the values of the measured plastic deformations (permanent deformations) were statistically correlated to the different mix, specimen, and test variables using an available multiple linear regression analysis computer program (SPSS/PC+). In this analysis, three procedures were utilized based on the following concepts: a) Separation of variables: b) Determination of the general correlation equations: and c) Stepwise procedure which is based on the order of significance of the variables. The three procedures are presented in the following sections. 5.4.1 SEPARATION OF VARIABLES The separation of variables method can be illustrated by considering the partial factorial experiment matrix of the 110 beam tests repeated, for convenience, in figure 5.3. Each cell in the matrix represents three specimens (triplicate). Data from each triplicate were statistically analyzed to assess the repeatability of the test results and the variability of the percent air voids within each triplicate. For each test within any triplicate in the matrix, the only variable is the number of load repetitions. Hence, the data (e.g. permanent deformation) from each test was first plotted against the number of load applications as shown in figure 5.4. From the figure, the plastic deformations were modeled as a function of the number of load applications using the following equation: _ s where: CDi = permanent deformation of LVDTi: I1 and Si = regression constants: N = number of load applications: and i = LVDT number (location). In the logarithmic space, equation 5.1 can be written as 1n(co)i = 1nIi + SilnN (5.2) where: 1n - natural logarithm: all other variables are as before. 111 .omcu Egon one How xwtaos acoewtomxo Howtouosm Hmwuhmm 0.0 ossuwm N aw Ni :. 8 N S. 5 H 60¢ me Me a 8 No on N 5 He 8 H No on an 3 mm. No E N on 2. NH. 3 we 3 S. N N4 .Nre He 2. mm mm 8 H 666 NN an «N NN _. din mfillgfidfl mN NN NN HN oN NH NH NH 6H 6H 4H NH N NH HH 2 N N > m n q NIN H H Ft >6N>6N>mN>mm>mLN>eNmLem>mm>mN 4&5». 8N-8N 8782 87.2. omNuoEboflmNH 872. ooNuoo LE .32 8T9. soN 486 26:... 5 NH: 33... .3258 @558 NzoemmrHH 5. .N a. QMNoa $.36 66033.3 6 eouoduaaov :00 soon .w 3.0. QNV 112 3 .0:o_uooHHQQo tooH mo H0nasc 0:» msmh0> :0EH0090 5003 0:» no 0000:50 0:0 co mucHoe boom 00 chHuoEOHm0U Gwammam 0>wunaosso v.0 0H3mHm 22,—.230: 23 no 502:: 3 3 3 3 H. H N qea>s men: . eo>H noucmo Neo>H Hmé .. 3 36 .. 3.. St.“ u N6 86 ... 9a. 86 .. >5. mmé .. 2:6 H392: (saqour) uo;39m10;aq ornsetg 113 Equation 5.2 represents a straight line having an intercept of lnIi and slope of Si' This equation was employed to model the data (permanent deformation) and to obtain the values of I1 and Si for each specimen and for all LVDT(s). It should be noted that the values of the slope (Si) of equation 5.2 should not be interpreted as the rate of change of CD1 with respect to N. This rate can be obtained by taking the first derivative of equation 5.1 with respect to N as follows: (dcni/dN> = (Ii) (5:) [N‘Si'l’l (5.3) where: (dCDi/dN) = the rate of change of the cumulative plastic deformation with respect to N: and all else are as before. Thus, the rate of change of CD1 is dependent on the values of Si' Ii' and N. The values of I1 and S1 of equation 5.1 can be regarded as descriptors of the permanent deformation and fatigue life of the compacted asphalt mix in question. For example, higher values of I1 and Si imply higher permanent deformation and perhaps shorter fatigue life of the mix. Nevertheless, the values of the parameters I1 and Si along with the coefficient of determination(R2) and standard error for all beam specimens are tabulated in Appendix B. 114 The values of II and S1 for the center LVDT were used in the next step of the analysis. In this step, the values of I1 and S1 were first separated into nine groups relative to the independent variables as previously described in section 3.7. After grouping, the values of the slope ($1) and intercept (I of the center LVDT of all tests at 77°F were 1) examined. It was found that: a) The values of S are independent of the percent air 1 voids, the magnitude of the cyclic load and the gradation of the aggregate (see figures 5.5 and 5.6). b) The values of S1 are dependent on the kinematic viscosity of the asphalt (figure 5.7) and the aggregate angularity (figure 5.8). Increasing RV and ANG causes a decrease in the value of 81‘ c) The values of I1 are independent of the kinematic viscosity of the asphalt, the aggregate angularity and the gradation of the aggregate (see figures 5.9 and 5.10). d) The values of I1 are dependent on both the percent air voids and the magnitude of the cyclic load as shown in figure 5.11. For each of the curves in figure 5.11, equation 5.4 was selected to express the intercept (I in term of the 1) percent air voids (AV). 115 1 .0 1 r y I I ‘ o 10L.- comes I I ' :1 2GB ocunds f I I a SOC pounds . . I I . | . . I I I I I . I I I . , I I I . * I I I o I I I 0 8 If “a I .i . "’ I 0 051—v r i r :L . : e 03 L 0.4 T I I I I I I 02L 3. a 7. 9 Precent Air Voids Figure 5.5 Slope of equation 5.1 versus the percent air voids for three levels of the cyclic load and a kinematic viscosity value of 270 centistoke. 116 o GrodotionA A Gradation B 0.8 {/3 WW 39° 0) O. 0.6 2 (f) 0.4 0.2 1, 3. 5. 7'. 9- Percent Air Voids Figure 5.6 Slope of equation 5.1 versus the percent air . voids for aggregate gradations A and B. Fj . gun 117 1007 030 m N 0) 0.050 9 U) 040 020 o. 100. 200. 300. 400. Kinematic Viscosity (centistokes) Figure 5.7 Slope of equation 5.1 versus the kinematic viscosity of the asphalt. I), 01'4"" “gun 118 <30 3 I I I. ) \1 (fl sums SI 0.60 0.55 0.50 P m I. 2. 3. Angulority of Aggrregote Figure 5.8 Slope of equation 5.1 versus the angularity of aggregate. lnic'ri up: I I Figure 119 o limestone o qrovoi A 50/50 mix 0.00 3 I Q) - L I; 1 0 ‘50 I F c: *0 .3 E I I —I.00 —I.50 : O. 100. 200. 360. 400. Immenqofic'WSCOSMy IcentStokes) Figure 5.9 Intercept of equation 5.1 versus the kinematic viscosity for three values of the aggregate angularity. 120 o Gradation A A Gradation 8 0.0 Intercept|1 I U‘ O. 100. 200. 300. 400. Kinematic Viscosity (centistokes) Figure 5.10 Intercept of equation 5.1 versus the kinematic viscosity for aggregate gradations A and B. 121 o 100 pounds 200 pounds A 500 pounds 0 lnknceptl1 J a AV 0. [Era 1. i. 5. 7. Precent Air Voids Figure 5.11 Intercept of equation 5.1 versus the percent air voids for three levels of the cyclic load and a kinematic viscosity of 270 centistoke. 122 ln(Ii) = ln(A1) + Bl(AV) (5.4) where: AV = percent air voids (AV = 3 to 7): I1 = intercept of equation 5.1; and A1 and 81 are regression coefficients. Figure 5.12 depicts the values of A1 and Bl plotted against the magnitude of the applied cyclic load. It can be noted that Al is a function of the cyclic load while Bl is independent of the cyclic load. Next, the values of A1 were statistically correlated to the cyclic load and the resulting equation was then substituted into equation 5.4. The last step yielded an equation of the intercept I1 in terms of the percent air voids and the cyclic load. Similar steps were taken to model the effects of the other variables (kinematic viscosity, aggregate angularity, and cyclic load). Equation 5.5 represents the final regression equation which expresses the plastic deformations as a function of the specimen and test variables. 0.204 1n(col) = -7.373 + 2(CL) + 0.357(AV) 5 1.3986 + {0.988 - 2.6237 x 10' (RV) } x {1.0557 - 0.01447(ANG)} x ln(N) (5.5) 123 1.00 0.75 / 0.50 1 “/ ' /’ Values of A1 and 81 0.00 o. 150. 300. .50. 500. Cycnc Lood (pounds) Figure 5.12 Slope and intercept (A1 and 81) of equation 5.4 versus the applied cyclic load. 124 R2 = 0.98 and S.E. = 0.05 where: ln = natural logarithm: CD1 a permanent deformation at LVDT l: N = number of load applications: CL a cyclic loads (pounds): AV a percent air voids; RV = kinematic viscosity (centistokes): ANG = aggregate angularity: R2 = coefficient of determination: and SE = standard error. The advantage of the above procedure is that the effects of each variable can be analyzed separately. The disadvantages however are that: a) the interaction between the variables cannot be assessed due to the nature of the procedure: and b) the final equation was of second and third order. Since the objective herein is to obtain a simple procedure not a complicated mathematical equation, it was concluded that the analysis method which yields the simplest, yet accurate, equation be employed. Consequently, two other statistical methods were considered. In spite of the above noted disadvantages of this procedure, several conclusions can be drawn from the analysis. These are: a) The arithmetic or logarithmic values of the increment of the plastic deformation due to the first load b) 125 application are functions of the percent air voids and the magnitude of applied cyclic load. The difference in the logarithmic (not arithmetic) values of the plastic deformation between any subsequent cycles is dependent on the aggregate angularity and the kinematic viscosity of the asphalt. These findings, in part, support those reported by Allen and Deen (16). The implications of these findings (assuming that the laboratory behavior of compacted asphalt mixes is similar to that in the field) are: a) b) C) d) In the field, the increment of the plastic deformation at a point on the surface of the pavement caused by the first vehicle of each type of vehicle (e.g., trucks, semi, cars) trafficking that pavement should be independently measured. The equivalent value of S for any pavement section can be obtained by knowing the number of load applications (N) and by measuring the plastic deformations (rut depth) at any two points in time. The equivalent value of the slope (S) is the same for any one pavement section trafficked by trucks, automobiles, or any mixed traffic. The damage delivered to a pavement section by different type of vehicles can be assessed by knowing the plastic deformation caused by the first vehicle of each type of vehicle trafficking that 126 pavement section (item a) and the value of S (item b). The cumulative damage due to any number of passages is related to the magnitude of CD which can be estimated using equation 5.5. If the value of I is not measured prior to opening the pavement section to mixed traffic then the assessment of the damage due to different vehicular types becomes very tedious and involved. 5.4.2 GENERAL EQUATION In this procedure, unlike the separation of variables, the entire data base is utilized to correlate the dependent and all independent variables based on a user specified equation form. The outcome of the analysis includes a tabulation of the regression coefficient(s) for each independent variable, and the coefficients of determination and standard error of the entire equation. The disadvantages of this method are: a) Separate analysis of the resulting equation should be conducted to determine the most significant variable. b) All variables, important or not, are included in the correlation equation. Item b above implies that the user of the computer program should possess prior knowledge, and/or estimate, of the variables that affect the test results. Further, the inclusion of one or more variables in the equation may or 127 may not mean that the variable(s) do affect the test results. It may simply mean that the two sets of number are statistically related and the physical meaning of the resulting equation still needs to be examined. Nevertheless, the method, in general, yielded an equation very similar to that obtained in another method "Stepwise Correlations” except that the order of the variables in the resulting equations were different. In the general equation method, the order of the variables were the same as those dictated by the user. The variables in the resulting equation from the stepwise correlation were listed in their order of significance. This last procedure is presented in the next section. 5.4.3 STEPWISE CORRELHTIONS In this procedure, first, all available data (e.g. permanent deformation) and the corresponding identified variables were first entered into the memory of a microcomputer. The dependent and independent variables were then correlated using a multivariate regression program (SPSS/PC+). Unlike the general equation method, the independent variables are separately entered in several steps. In the first step, the first variable considered for entry into the equation is the one with the largest positive or negative correlation with the dependent variable. An F test is then conducted for the null hypothesis that the 128 coefficient of the entered variable is 0. To evaluate whether this variable (and each succeeding variable) should be used, the F value is compared to an established criterion (minimum value of 3.84). If the variable fails to meet this criterion, the procedure terminates with no independent variables in the equation. If it passes the criterion, the second variable is selected based on the highest partial correlation. If it passes the entry criterion, it also enters the equation. After each step of entering a variable, the variables already in the equation are examined for removal based on the removal criterion (minimum value of F statistic of 2.71). Again, from each step, a new regression matrix (regression coefficients and the coefficients of determination and standard error) was obtained. Variables that did not have a significant level higher than 0.05 percent relative to the previous variable were not included in the final equation. The advantages of this method are: . In each step, the variables in the equation are listed in the order of their significance and a regression matrix was produced. . The interaction between variables can be assessed by comparing the values of the regression constants from two consecutive regressions and partial correlation matrices. . The method produced the simplest possible, yet 129 accurate, equation. Like the general equation method and any other statistical analyses, the physical meaning of the resulting correlation equation still has to be assessed by the user. Further, a sensitivity analysis of the final equation has to be conducted to assess the rate of change of the values of the dependent variable due to changes in the values of each independent variable with all others held constant. Due to the above stated advantages, this method was employed for the statistical analysis of all test results. It should be noted that during the analysis several transformation forms (logarithmic, semi-logarithmic, and arithmetic) were employed for the dependent and each of the independent variables. The final selection of the transformation form was based upon: . Physical interpretations of the test results. . Simplicity of the resulting equation. . High value of the coefficient of determination (R2) of the resulting equation. . Examination of the residuals in order to satisfy the assumptions of the linear regression (independency, constant variance, and normality of residuals). It should also be noted that the selection of the final form of the dependent variable based only on the value of R2 may be misleading. Variations in the logarithmic values of any variable are naturally less than those of the arithmetic 130 values. Nevertheless, the analysis and discussion of the test results are presented in the following section. 5.5 ANALKSIS OF PERMANENT DEFORMATION The measured plastic deformations at the center of each beam specimen were correlated to the test, mix, and specimen variables using a stepwise linear multivariate regression program SPSS/PC+ (77). The resulting regression matrices for beam specimens tested at 77°F and those at 40°F are listed in tables 5.1 and 5.2, respectively. Equations 5.6 and 5.7 are the corresponding regression equations. For 77°F: 1n(col) = -7.145 + 0.6481 x 1n(N) + 1.250 x ln(CL) + 0.3618 x AV - 0.002578 x KV - 0.08064 x ANG (5.6) R2 = 0.99 and SE - 0.07 where: all variables are as before. For 40°F: 1n(col) = -1.04940 + 0.2970 x ln(N) + 0.3854 x AV + 0.2855 x 1n(CL) - 0.001270 x xv - 0.02137 x ANG (5.7) 131 Table 5.1. Regression matrix for the cumulative plastic deformations under the loaged area, flexural beam.tests at 77 F. plastic Inter- defor- cept Regression coefficients of the independent variables mation, R2 SE CDl 1n(CL) (ANG) (10-3) (10' 0.822 - - 0.63 1.03 -6.310 1.281 - 0.88 0.60 ln(CDl) -8.006 1.242 - 0.99 0.14 -7.426 1.246 - 0.99 0.10 -7.145 6.481 1.250 -8.064 0.99 0.07 ln = natural log: CD1 = plastic deformation (inches N a number of load applications: CL = cyclic loads (100, 200 and 500 lbs): AV 8 percent air voids: RV = kinematic viscosity (centistokes): ANS a aggregate angularity: R = coefficient of correlation: and SE = standard error. 132 Table 5.2. Regression matrix for the cumulative plastic deformations under the loaged area, flexural beam tests at 40 F. plastic Inter- Regression coefficients of defor- cept the independent variables 2 mation, R SE 001 ln(N) (AV) 1n(CL) (KV) (ANG) (10‘1) (10'1) (10‘1) (10‘3) (10'2) 1.6967 2.938 - - - - 0.82 0.40 0.2689 2.945 3.463 - - - 0.95 0.20 1n(CD1) -1.3570 2.970 3.667 2.868 - - 0.99 0.07 -1.1891 2.970 3.998 2.863 -l.245 - 0.99 0.05 -1.0494 2.970 3.854 2.855 -1.270 -2.137 0.99 0.05 ln = natural log: _4 C01 = plastic deformation (inches x10 ): N = number of load applications: CL a cyclic loads (100, 200 and 500 lbs): AV a percent air voids: RV = kinematic viscosity (centistokes): ANG a aggregate angularity: R - coefficient of correlation: and SE a standard error. 133 R2 = 0.99 and SE = 0.05 where: all variables are as before. It should be noted that the variables in tables 5.1 and 5.2, and in equations 5.6 and 5.7 are listed in their order of significance. The sensitivity of the arithmetic (not logarithmic) values of CD1 of equations 5.6 and 5.7 was determined. It was found that: a) N is the most significant variable affecting CD1 at 77 and 40°F. Increasing N from 1 to 100,000 cycles causes an increase in the arithmetic value of CD1 by a factor of 1735 at 77°F and by a factor of 30 at 40°F. b) CL is the second-most significant variable affecting the values of CD at 77°F, and the third-most 1 significant at 40°F. Increasing CL from 100 to 500 pounds causes an increase in CD1 at 77°F by a factor of 7.5 and at 40°F by a factor of 1.6. c) The effect of AV on CD at 77°F is slightly lower 1 than that at 40°F. Increasing AV from three to seven results in increasing CD by factors of 4.3 and 4.7 1 at 77 and 40°F, respectively. d) The effect of RV on CD at 77°F is higher than that 1 at 40°F. Increasing KV from 159 to 270 centistokes causes a decrease in CD by factors of 0.75 and 0.87 1 134 at 77 and 40°F, respectively. e) The effects of aggregate angularity on CD at 77°F is 1 also higher than that at 40°F. Using angular (crushed) aggregates instead of rounded ones results in a decrease in the value of CD1 by factors of 0.91 and 0.97 at 77 and 40°F, respectively. It should be noted that the gradation term, which has only two levels, is eliminated for both equations 5.6 and 5.7 during the stepwise procedure because of its insignificant effects on the results of permanent deformation. This finding is consistent with that reported by Kalcheff, et. al. (46). The above observations imply that plastic deformation (rut potential) of compacted asphalt mixes is a function of the number of cycle, the magnitude of applied cyclic load, the percent air voids, the kinematic viscosity of asphalt, and the aggregate angularity and it can be reduced by using a lower percent air voids in the mix and a higher viscosity graded asphalt. Further, heavy vehicles cause higher rut potential (item b) and, from equations 5.6 and 5.7, it can be also noted that a lower temperature results in less rutting. These test temperature effects on the permanent deformation are also reported in the literature (40, 42, 45, 47, 50, 53, 55, 73, 76, 78, 79, 83, 86). It should be noted that the values of the coefficient of determination of equations 5.6 and 5.7 are artificially high 135 because they relate to the correlation between the logarithmic values of the dependent and independent variables. Variations in the arithmetic values are much higher. This point can be illustrated by considering the regression matrix in table 5.1. The value of the coefficient of determination (R2) in the third step of the analysis (in which CD1 is correlated to N, CL, and AV) is 0.99. This value of R2 may incorrectly indicate that the other two variables (RV and ANG) have no significant effects on CD1. Arithmetic values of CD1 estimated using the third step of table 5.1 varied by as much as thirty-two percent from the 2 of 0.99 does measured values. It is clear that a value of R not reflect this variation. The accuracy of equations 5.6 and 5.7 was examined relative to the measured values of C01. It was found that the maximum differences between the arithmetic values of CD1 estimated using equations 5.6 and 5.7 and the measured values are 7 and 9 percent, respectively. After determining equations 5.6 and 5.7, the test results at 77 and 40°F were combined in one analysis which included the test temperature as one of the independent variables. In this analysis, it was assumed that a semi- logarithmic relationship exists between CD1 and the test temperatures. This assumption was necessary because only two values (77 and 40°) of the test temperature were used in this study. Table 5.3 summarizes the resulting regression 136 matrix of this analysis. Equation 5.8 is the corresponding equation. ln(CDl) = -8.543 + 0.5459 x ln(N) + 0.04110 x TT + 1.0399 x ln(CL) + 0.3650 x AV - 0.001950 x KV - 0.07417 x ANG (5.8) R2 - 0.93 and SE - 0.45 where: TT = test temperature:and all variables are as before. It can be noted that the disadvantage of this analysis is the loss of accuracy of the equation relative to equations 5.6 and 5.7. The reason for this is that the effects of the test and specimen variables (AV, CL, RV, and ANG) are also dependent on the test temperature. These effects can only be modeled by using a complex nonlinear transformation which is not practical. Nevertheless, the maximum arithmetic difference between the estimated values of CD1 using equation 5.8 and the measured values were 30 percent for the 77°F tests and 45 percent for the 40°F tests. These differences were only 7 and 9 percent for equations 5.6 and 5.7, respectively. Hence, it is concluded herein that equations 5.6 and 5.7 are more reliable than equation 5.8 and therefore they were used to study variations of the values of CD1 due to variations in the values of the 137 Table 5.3 Regression matrix for the cumulative plastic deformations under the loaded ares, flexural beam tests at 77 and 40 F. plastic Inter- Regression coefficients of defor- cept the independent variables 2 mation, R SE 001 ln(N) TT ln(CL) (AV) (KV) (ANG) (10’1) (10’2 (10'1)(10’3) (10'2) 1.597 4.638 - - - - - 0.45 1.23 -2.324 5.145 5.017 - - - - 0.64 0.99 ln(CDl) -8.058 5.356 4.873 1.057 - - - 0.82 0.71 -9.232 5.451 4.088 1.036 3.684 - - 0.92 0.46 -8.839 5.455 4.096 1.036 3.708 -1.705 - 0.93 0.45 -8.543 5.459 4.110 1.040 3.650 -1.950 -7.417 0.93 0.45 ln = natural log: _4 CD1 = plastic deformation (inches x10 ): N a number of load applications: TT = test temperature ( F): CL = cyclic loads (100, 200 and 500 lbs): AV a percent air voids: RV = kinematic viscosity (centistokes): ANS = aggregate angularity: R a coefficient of correlation: and SE = standard error. 138 independent variables. Similar equations were also obtained for plastic deformations measured at different lateral distances from the edge of the loaded areas (CD2, CD3, and CD4). It was noted, however, that expressing these measurements (CD2, CD3, and CD4) in terms of CD1 and the lateral distance from the edge of the loaded area would provide a better understanding of the plastic shape (basin) of the beam specimens. It should be noted that the plastic basin of the beam specimen is analogous to the shape of the rut channel of a pavement section. The analysis of the plastic basin is presented in the next section. 5.6 ANALKSIS OE PERMANENT DEFORMATION USING DEFLECTION BASIN The plastic basin of each beam specimen was modeled using the following equation: CD(X) = (CD1)(EXP(A x xB)) (5.9) where: CD(X) cumulative plastic deformation of a point on the surface of the beam located at distance x from the edge of the loaded area: X = lateral distance from the edge of the loaded area, (X=2, 4, and 6.06 inch): EXP a exponential function: A and B 2 parameters of the plastic basin: and 139 all else are as before. The A and B parameters of equation 5.9 may be regarded as descriptors of the distribution of plastic deflection from the edge of the loaded area. For example, if B is equal to two, equation 5.9 resembles the normal distribution with A being proportional to the variance. Thus, as might be expected, changes in the values of A and B of a beam specimen (or in this sense, of a pavement section) reflect changes in the distribution of the plastic deflections (shape of the rut depth or the shape of the plastic deflection basin) and consequently, the distribution of the damage (distress) delivered to that specimen or pavement section. Further, the shape of the plastic deflection basin can be generally defined by its width (extent of lateral spread from the edge of the loaded area) and its depth. The width of the basin (the lateral spread) may be thought of as a measure of the stored energy and its lateral attenuation in the beam. For example, narrower and deeper basins indicate concentration of energy in the vicinity of the loaded area. These observations gave rise to the use of the A and 8 parameters as indicators of the beam performance under the load. For each beam and for different number of load applications, closed form solutions of equation 5.9 were obtained and the values of the parameters A and 8 were 140 calculated. These values, for all beam specimens, are tabulated in Appendix C. It should be noted that each and solution was based on the measured values of CD CD 1' 2' CD3 and their corresponding lateral distances of 0.-, 2.-, and 4.-in, respectively. The values of CD were not used 4 because, at low number of load applications, these values were small and in the range of the accuracy of the LVDT. The values of the parameters A and B were then statistically correlated to the number of load applications and to the test, mix and specimen variables. The regression matrices for A and B at 77°F are summarized in tables 5.4 and 5.5, respectively. The regression matrices for A and B at 40°F are summarized in tables 5.6 and 5.7, respectively. Equations 5.10 through 5.13 are the corresponding equations. For 77°F: A 3 -0.3298 - 0.07093 x AV - 0.009660 x ln(N) - 0.00004082 x CL + 0.004319 x ln(KV) (5.10) R2 = 0.99, and SE - 0.06 B = 0.2650 + 0.04041 x ln(N) + 0.0002969 x CL - 0.0001458 X KV + 0.001756 x AV - 0.0005330 x ANG (5.11) 141 Table 5.4 Regression matrix for the parameter A of the plastic deflection basin of the surface the beam at 77 F. of para- Inter- Regression coefficients of meter cept the independent variables 2 A R SE AV ln(N) CL ln(KV) ANG (10’1) (10‘2) (10'3) (10’s) (10‘3) -3.980 -7.038 - - - - 0.96 0.02 A -3.182 -7.111 -9.390 - - - 0.99 0.01 -3.061 -7.095 -9.651 -4.065 - - 0.99 0.06 -3.298 -7.093 -9.660 -4.082 4.319 - 0.99 0.06 Table 5.5 Regression matrix for the parameter B of the plastic deflectson basin of the surface of the beam.at 77 F. para- Inter- Regression coefficients of meter cept the independent variables 2 B R SE ln(N) CL KV AV ANG (10'1) (10’2) (10") (10") (10'3) (10") 3.332 3.833 - - - - 0.74 0.05 B 2.375 4.028 2.963 - - - 0.99 0.10 2.728 4.034 2.974 -1.476 - _ - 0.99 0.07 2.631 4.041 2.968 -1.450 1.766 - 0.99 0.06 2.650 4.041 2.969 -1.458 1.756 -5.330 0.99 0.06 ln a natural log: _4 CD1 a plastic deformation (inches x10 ): N = number of load applications: CL a cyclic loads (100, 200 and 500 lbs): AV = percent air voids: RV = kinematic viscosity (centistokes): ANS = aggregate angularity: R a coefficient of correlation: and SE = standard error. 142 Table 5.6 Regression matrix for the parameter A of the plastic deflection basin of the surface of the beam at 40 F. para- Inter- Regression coefficients of meter cept the independent variables 2 A R SE ANS ln(N) ln(KV) AV CL (10'1) (10'2) (10‘1) (10’1) -l.779 3.0437 - - - - 0.18 0.56 A -1.096 3.584 -8.785 - - - 0.33 0.50 -4.973 2.806 -10.193 9.890 -2.678 - 0.42 0.47 Table 5.7 Regression matrix for the parameter B of the plastic deflection basin of the surface of the beam at 40 F. para- Inter- Regression coefficients of meter cept the independent variables 2 B R SE ANS CL AV ln(KV) ln(N) (10'1) (10") (10") -0.041 1.723 - - - - 0.03 0.79 B 0.164 1.805 -9.033 - - - 0.07 0.77 -1.366 3.760 -9.102 2.144 - - 0.09 0.77 ln = natural log: _4 CD1 = plastic deformation (inches x10 ): N a number of load applications: CL = cyclic loads (100, 200 and 500 lbs): AV = percent air voids: RV = kinematic viscosity (centistokes): ANS 8 aggregate angularity: R = coefficient of correlation: and SE standard error. 143 R2 = 0.99, and SE = 0.06 For 40°F: A = - 4.973 + 0.2806 x ANG - 0.10193 x ln(N) + 0.9890 x ln(KV) - 0.2678 x CL (5.12) R2 = 0.42, and SE = 0.47 B = -1.366 + 0.3760 x ANS - 0.0009102 x CL + 0.2144 x AV (5.13) R2 = 0.09, and SE = 0.77 where: all variables are as before. Examinations of the values of the regression coefficients and the coefficient of determinations of equations 5.10 through 5.13 indicated that: . There is little or no correlation between the values of A and B at 40°F and the specimen and test variables. The values of A and B seem to be random and inconsistent. The reason for this is that, for most 144 tests at 40°F, the values of the measured plastic deformation under the center of the loaded area were very small and those of CD2 and CD3 were within the accuracy of the LVDT(s) (0.0001-in. ). Plastic deformations of beam specimens tested using 100, or 200 pounds cyclic load were less than 0.0004-in under the point of load application and less than 0.0001-in at a point 4-in away. The shape of the plastic deflection basin at 77°F changes with increasing number of load applications. At the start of the test, the basin is shallow and flat: it gets deeper and steeper as the number of load applications increases (see figure 4.4.) The effect of N on the values of B at 77°F is higher and opposite to its effect on A. Increasing N from 1 to 100,000 cycles causes a decrease in the value of A by 0.1112, and an increase in the value of B by 0.4652. At 77°F, the effects of AV and KV on the values of the parameter A are higher than those on B. Indeed, AV is the most significant variable affecting A while it is the fourth-most significant for B. Increasing the values of AV and CL cause deeper and steeper deflection basins. Increasing the values of RV and ANS result in shallower and flatter deflection basins. 145 The significance of the above observations and the values of the parameters A and B can be illustrated with the aid of figure 5.13. The figure shows schematic representation of typical plastic deflection basins with corresponding relative values of the number of load applications (N) and the relative values of the A and B parameters. It can be seen that higher values of N cause higher values of the B parameter, smaller values of the A parameter, and deeper basins. Implicit in this is that a higher N causes a more rapid lateral attenuation of energy, and a deeper plastic deflection basin. Thus, at the higher number of load applications, more work is done to the beam in the vicinity of the loaded area. Consequently, greater distress might be expected to occur with fewer number of load applications. Visual observations of beam specimens subjected to cyclic loading tend to confirm this. Specimens which showed smaller values of A and higher values of B failed at a fewer number of load applications. The reason for this is that, for the same value of CD a steeper plastic deflection basin 1. implies a higher tensile plastic strain. The higher the cumulative tensile plastic strain, the closer the beam approaches fatigue failure. Indeed, during the tests at 77°F, it was noticed that hair-size cracks were initiated when the value of CD is about 30 percent of CD or when the 2 1 value of CD1 approaches 0.45 inches. These values were 7 percent and 0.1-in for the 40°F tests. Shortly thereafter, 146 .mc0wuandano mood no Loses: usouommwfi now can menu as coaflooem Boon one mo canon cofiuooamoo caumoan on» no coaamHCQQOLQoL ofiumeonom n~.m ousmdm Anoc«v gauge «caused emu we ammo osu souu mocnuoaa 6 6. N I l I // 3666.6 ... u . Inlay 683.66.. ... 66666.6 u 6 J/ 666 62 u 2 II: 66666.6- ... < I 666.63 u z c~mmo.o N~N00.01 cod .1 I 01381 UOIJUBJOJGG 147 the beam failed. The definition of the fatigue life of the beam specimens presented in section 5.6 was based upon these observations. It should be noted that the values of 30 and 7 percent are just approximate values based upon visual observations. For example, the thirty percent value could be a function of the mix variables such as KV, AV and others. Indeed, the only difference between tests conducted at 40°F and 77°F is the kinematic viscosity of the asphalt bitumen. This scenario indicates that lower viscosity asphalts yield smaller values for the ratio CDz/CDI. The functional relationship between the viscosity of the asphalt and the value of the deflection ratio however, could not be determined in this study. The above scenario implies that the fatigue life of the beam specimen can be estimated using either equations 5.6 and 5.7 or equations 5.9, 5.10 and 5.11. Eventually, only one fatigue life will be estimated, the one that corresponds to the smallest of the number of load applications obtained from equations 5.6 and 5.7 or equations 5.9, 5.10, and 5.11. Equations 5.12 and 5.13 were not used because of their poor accuracy. The procedures to estimate the fatigue life are explained in the following section. 5.7 FATIGUE LIFE Traditionally, stress- or strain- controlled flexural tests are conducted using simply supported beams flexed in 148 one or two directions. Beam theory is then used to calculate the stiffness of the beam assuming that the neutral axis of the beam (the axis along which the strain is zero) is located at mid-height of the beam. In addition, fatigue life is defined by the number of load applications at which the stiffness of the beam decreases to half of its original value (26). In this study, beam specimens were continuously supported during the tests by a rubber pad which was rested on a steel block. This boundary condition was thought to better reflect field conditions than simply supported beams. During early tests, however, it was noticed that the neutral axis of the continuously supported beam was closer to the top of the beam. This implies that the asphalt mix behavior in tension is different than that in compression. Further, the deflected shape of the continuously supported beam (shown in figure 5.14) was similar to the shape of the deflected pavement under actual traffic loading. These two observations gave rise to a new problem. That is, the use of the traditional beam theory to analyze the test data and to extract the fatigue life of the test specimens is not adequate because of the assumptions involved in the theory. Nevertheless, laboratory fatigue-life data of asphalt mixes has been accumulated in large quantities. These fatigue life data of asphalt mixes are traditionally plotted as stress or strain amplitude versus the resulting fatigue life expressed by the number of load application to fatigue 149 .coewomnm soon was cc moczm o0633_moo OCH mo c0wamacomohamt Caumaonom 6H.m msammm sauna «daemon 6663 auauao xoo~a macaw :39... moon uamnqn< 150 failure. For asphalt mixes, as for most materials, fatigue life steadily increases with decreasing stress or strain amplitude until the stress or strain level of the fatigue limit is reached. In general, stresses at or below the fatigue limit cause only elastic strains and the fatigue life becomes infinitely long. Regardless of the applied stress, it should be noted that cyclic plastic strain is ultimately responsible for fatigue damage and the consequent fatigue failure. In fact, a perfectly elastic material will never experience any fatigue damage regardless of the number of load applications. As noted above, due to the shape of the plastic deflection basin, beam theory is inadequate and it cannot be used for data analysis. Also, the behavior of the short and square specimens would be expected to deviate significantly from the elementary beam theory that is only valid for relatively long and slender beams. Hence, the traditional definition of' fatigue life based on the reduction in the value of the initial stiffness modulus is not applicable in this study. Consequently, a new definition of fatigue life was established as follows: The fatigue life of asphalt mixes tested in flexure is defined by the smaller of the number of load applications at which: a) The measured total cumulative plastic deformation under the load reaches values of 0.45- and 0.10- inches for tests conducted at 77 and 40°F, 151 respectively (equations 5.6 and 5.7). b) The measured total cumulative plastic deformation at a point two inches away from the edge of the loaded area reaches a value of about 30 and 7 percent of that under the load for tests conducted at 77 and 40°F, respectively (equations 5.9, 5.10, and 5.11). It should be noted that the above definition is based on visual observations of the beam specimens which showed the initiation of hair-size cracks at the stated number of load applications. The estimations of fatigue life based upon the above two definitions are presented and discussed in the following sections. 5.7.1 Fatigue Life: Total Plastic Deformation In this method, the fatigue life (N of each beam FL) specimen was estimated using equation 5.6 or 5.7 to calculate the value of N that corresponds to a value of CD1 of 0.45- or 0.1-in for the 77 and 40 °F tests, respectively. For 77°F: NFL = EXP{24.0032 - 1.9281 x ln(CL) - 0.5583 x AV + 0.004278 x xv + 0.07196 x ANS) (5.14) 152 For 40°F: NFL 8 EXP{26.7928 - 1.2976 X AV - 0.96121 X ln(CL) + 0.004278 X KV + 0.12442 X ANG} (5.15) where: NFL 8 number of load applications to fatigue failure: and all other parameters are as before. A summary of the values of NFL for all beam specimens along with the values of the test and specimen variables and the values of the ratio of CD2 to CD1 is tabulated in Appendix D. Examination of the fatigue life listed in Appendix D and equations 5.14 and 5.15 indicated that: a) Increasing the magnitude of the cyclic load from 100 to 500 pounds (50 to 250 psi) results in a decrease of fatigue life by factors of about 22 and 5 for the 77 and 40°F tests, respectively. b) Increasing the percent air voids from three to seven yields a decrease in the fatigue life by factors of 9 and 180 for the 77 and 40°F tests, respectively. c) Increasing the kinematic viscosity of the asphalt binder from 159 to 270 centistokes causes an increase of the fatigue life by a factor of about 1.6 for all tests at 77 and 40°F. It should be noted that field d) e) f) 153 data does not support this observation and it indicates that higher viscosities yields lower fatigue life (higher crack potential). The reason for the difference between the laboratory and field data could be attributed to the nature of the definition of fatigue life. Recall that the fatigue life is defined by the value of N at which CD is 0.45-in. A 1 constant value of CD of 0.45-in for all beams may 1 not be reasonable. Unfortunately, visual observation of hair cracks is difficult and inaccurate. Hence, discrepancy in the data should be expected. The fatigue life of asphalt mixes made using crushed aggregate is longer than those made using rounded aggregate by factors of about 1.2 and 1.3 for tests at 77 and 40°F, respectively. The variations of the fatigue life, estimated from the equations, for the most favorable and the most unfavorable combinations of the test and specimen variables are from 3,500,000 to 9,000 cycles for all tests at 77°F: and from 75,000,000,000 to 22,000,000 cycles for the 40 °F tests. Although the value of CD for all beams is 0.45 1 inches, the value of the ratio of CD2 to CD1 varies and it depends upon the specimen and test variables. Thus using a constant value of CD of 0.45 does not 1 necessarily mean that the deflection basin is the 154 same for all beam specimens. The implications of the above observations based upon the definition of fatigue life are that: 1) Fatigue life of asphalt mixes can be increased by using higher viscosity asphalts, angular aggregates, and lower percent air voids in the mix. 2) The effect of the percent air voids on the fatigue life of asphalt mixes subjected to cyclic loads in cold regions (e.g., Michigan, Minnesota) is much higher than that in moderate climates (e.g., Arizona, Florida). 3) Temperature is the most important factor affecting the fatigue life of asphalt mixes. It should be noted that the above findings do not mean that fatigue life of asphalt pavement in a cold region is higher than that of a compatible pavement in a moderate region. The cyclic strain caused by environmental changes should be assessed before such a conclusion can be made. Indeed, there is ample evidence indicating that cyclic plastic strains due to freeze-thaw cycles are much higher than those caused by traffic loads. Further, the values of the fatigue life listed in .Appendix D are expected to be much lower than those expected in the field. The reasons for this include: 1) The beam specimens were loaded using a loading strip that is fixed in one position during the entire test. 155 In the field, the wheel path is not fixed in one position for all vehicles. Traffic tends to weave close and away from the pavement edge (lateral wander or lateral placement). Hence, a point on the surface of the pavement will not always be located under the tire of each passing vehicle. 2) The beam specimens were loaded at the edge. The number of vehicles which travel at the edge of an inservice pavement is much lower than the total number of vehicles traveling that pavement. To relate the laboratory fatigue life to that of inservice pavements, a study of the lateral weaving, and the edge effects should be conducted. For example, if one assumes that a point located on the surface of the pavement is subjected to direct load 50 percent of the time, and that the edge effects shorten the fatigue life by a factor of two, then it should be expected that the laboratory fatigue lives listed 'in Appendix D are shorter than the actual fatigue life of the pavement by, at least, a factor of four. Actual fatigue life data of inservice pavements should help the engineer to relate laboratory results to field conditions. In addition, the observation in item f above is very important, and was to be expected. The value of the ratio of C02 to CD can be regarded as a measure of the tensile 1 strain. The lower the ratio, the steeper is the deflection 156 basin, and the higher is the tensile strain. The value of the tensile strain at failure varies and is dependent upon the test and specimen variables. Hence, one may expect that the value of the ratio of CD to CD1 is also a function of 2 the same variables. To verify this, a statistical correlation between the ratio of CD2 to CD1 at 77 °F (listed in Appendix D) and the test and specimen variables was conducted. This resulted in the following equation. ln(CDz/CDI) = - 0.89264 - 0.09375 X AV + 0.00005105 X CL - 0.004896 X ANG - 0.00004482 X KV (5.16) where all variables are as before. Sensitivity analysis of equation 5.16 indicated that: a) The percent air voids (AV) in the mix is the most significant variable affecting and CDz/CDl. Increasing AV from three to seven yields a decrease in the values of CDZ/CD1 by a factor of 1.45. b) The values of CDZ/CD1 is affected by the magnitude of the cyclic load. Increasing the magnitude of CL from 100 to 500 pounds causes an increase in the ratio of CDz/CD1 by a factor of 1.02. c) Using crushed aggregate causes a decrease in the values of CDz/CD1 by a factor of 1.01 relative to rounded aggregate. 157 d) Increasing kinematic viscosity causes a decrease in the values of CDz/CD1 by a factor of 1.005. The above observations support the concept that the ratio of CDz/CD1 is a measure of the tensile strain in the beam. It should be noted that a decrease in the values of CDz/CD1 causes a decrease in the fatigue life. Item b was also expected because the shape of the deflected beam is load dependent. Higher loads cause steeper deflection basins. Finally, figure 5.15 depicts the fatigue life of beam specimens (using equation 5.14 for 77°F) as a function of the applied cyclic stress. A similar plot can be obtained for the 40°F tests using equation 5.15. 5.7.2 Fatigue Life: Plastic Deformation Ratio The fatigue life of each beam specimen was also estimated using item b of the definition of the fatigue life of section 5.6 and equation 5.9 as follows: (CDz/CDI) = 0.3 or 0.07 = EXP(A x x3) (5.17) Equations 5.10 and 5.11 (for the 77°F tests) and equations 5.12 and 5.13 (for the 40°F) were then substituted into equation 5.9 for the parameters A and B. The resulting equation was solved to calculate the number of load applications (N at which the fatigue life is reached. FL) Calculated values of NFL for the higher percent air voids 158 .mowo> Lem scooped one no mosdc> m can mudmzemo poooLu hammoomw> n tom mccswooom soon are Low mo>Lso omwa msufiummnmmopum m~.m enough unsafimm ou ocoaquAHam< mood mo yonssz mod mofi o~ mod 6o~ 603363600 63 d. 33.363660 «2.. O 63.363660 65 D (15d) $83133 paxtddv 159 (AV larger than 4 percent) were much smaller than those observed during the tests. This implied that constant ratios of CDz/CD1 of 0.3 for all beams tested at 77°F and 0.07 for the 40°F tests are invalid. This was expected because the fatigue lives of the beams and the values of the plastic deformation ratios for different beams should be different. Recall that the values of 0.3 (at 77°F) and 0.07 (at 40°F) were assigned based upon the visual detection of hair-size cracks. This is neither accurate nor consistent. In addition, the accuracy of equations 5.12 and 5.13 is poor. Thus, it is recommended that this method (plastic deformation ratio) not be used until a better and more accurate techniques for the detection of crack initiation and the determination of the corresponding value of the ratio of CD2 to CD1 can be found. Hence, it is recommended that equations 5.15 and 5.16 be used to estimate the fatigue life of beam specimens. 5.8 ANALNSIS OF THE RESILIENT ANU.TOTALIMODULI 5.8.1 GENERAL As noted in the previous section, elementary beam theory cannot be used in the analysis of the beam test data because the deflected shape of the beam specimen, and the location of the neutral axis do not satisfy the assumptions of the theory. Hence, an existing two dimensional finite element (FEM) computer program was modified based on the assumption 160 of plane-stress and employed in the analysis of the resilient and total moduli. All test data was analyzed using the FEM mesh depicted in figure 5.16. It should be noted that only half the domain of the beam specimen needs to be modeled since the y- axis is an axis of symmetry. A two layer system (asphalt and rubber) was used in the analysis of each beam specimen as shown in figure 5.16. Line AB, in the figure, represents the boundary between the asphalt beam and the rubber pad, while line CD represents the boundary of the rigid support (steel block). The boundary conditions along the line of symmetry and along the rigid boundary are also shown in the figure. The following data were used in the analysis of all the test results: a) Poisson's ratio of the asphalt mix of 0.25. This is an average value which was obtained from cyclic load indirect tensile tests. b) Beam dimensions: 4-in. thick and 16-in. long. c) Modulus of elasticity and Poisson's ratio of the rubber of 3,000 psi and 0.4, respectively. These values were obtained from the rubber industry. d) Rubber pad dimensions: 1-in. thick and 16.-in.long. The FEM analysis was based on an iterative process as depicted in figure 5.17. First, for a given mix, specimen, and test variables, a seed (initial) modulus value of the 1651 .zmme acoaofio ouwcflm on» mac mc0wuaocoo humocsom w~.m assume x A nu mg n w 8 l m .9. 3 ML .o._ .m. cu .m. a V - N an .m. d H 3 I m. ... mm .mm. .mm. .mm. .mm. L .6.— o. _ o. ~ .m. .mm..m~..m~. .m .H .253H >. Il-_—__ 162 asphalt mix was assumed and the corresponding surface deflection basin was calculated at several lateral distances from the line of symmetry that correspond to the actual locations of the LVDT(s). The calculated basin was then compared to the measured one and the ratio of calculated to measured deflection (RCM) under the load was determined. In subsequent iterations, the value of the modulus was adjusted by multiplying the value of the RCM by the value of the modulus from the previous iteration. The value of the modulus which produced an RCM values between 0.99 and 1.01 was accepted as the final modulus value of the asphalt mix and the iteration process was terminated. In general, a value of RCM between 0.99 and 1.01 was reached within a few iterations (generally 2 to 4). That is, the value of the calculated deflection under the load converged to the measured value within 2 to 4 iterations. It should be noted that the maximum percent difference between .the calculated and measured deflections at LVDT 2 and 3 at 77°F were 42 and 69 percent, respectively. For the 40°F tests, these differences were 7 and 24 percent, respectively. The final values of the resilient and total moduli for each beam specimen and for several number of load applications are listed in Appendix E. These values were statistically correlated to the mix, specimen, and test variables. The statistical analysis is presented in the next section. 163 E s TART? Seed Values for MR or E 3 Adjust the Value Calculate CDCI of MR or E CDC] - CD1 N0 ‘-—-— <1 % CD1 MR = Resilient modulus of asphalt mix E = Total modulus of asphalt mix CDC] = Calculated deflection at the center LVDT CD1 = Measured deflection at the center LVDT Figure 5.17 Flow chart of the iteration procedure of the finite element computer program. 164 5.8.2 STATISTICAL.ANALESIS Figures 5.18 an 5.19 depict,respectively, the values of the resilient (MR) and total (E) moduli of beam specimens at 3, 5, and 7 percent air voids plotted against the logarithmic values of the number of load applications (N). It can be seen that increasing N produces higher values of resilient and total moduli. That is, the resilient and total deflections decrease as the number of load applications increases (see figure 4.9). This was expected because the specimen experienced densification and plastic flow under the cyclic load. This can be explained with the aid of figure 5.20. In this figure, the logarithmic values of the cumulative permanent deformations (of the same specimens of figures 5.18 and 5.19) are plotted against the logarithmic values of the number of load applications. It can be seen that increasing N yields an increase in the permanent deformation. That is the total volume of the beam specimen decreases and hence, its density increases. Further examination of figures 5.18 and 5.19 have indicated that the rate of increase in the resilient and total moduli (the slope of the curves) are dependent on the percent air voids of the beam specimens. Lower percent air voids produces higher rates (slopes) of resilient and total moduli. This was expected because higher percent air voids results in higher plastic flow and relatively lower densification in the asphalt mix. This can also be noted in 2165 SUE-+05 0 11110535: AV=3.07 7. A 11110615:1N=5.30 X 0 11110725: AIM-7.01 x / 7.0905 ( [C seems / 5.0E +05 4.05+05 / Calculated Resilient Modulus Using FEM (psi) 3.09-05 E 20E+05 1.0E+05 10. 100. 1000. 1.E+O4 1.E+05 1.E+06 Number of Load Applications Figure 5.18 Calculated resilient modulus using FEM program versus the number of load application at different percent air voids. 166 8.0E+05 0 11110535; Alv=3.o7 z 8 11110615; 1111:5310 x 0 11110725: 107-701 S 706+05 6.0E+OS / sOE+os (“4’s Calculated Total Modulus Using FEM (psi) 4.0E +05 3.0E+OS J 3‘0 A/ 20151-05 C 10E+OS 10. 100. 1000. 1.5+04 . 1.E+05 l.E+06 Number of Load Applications Figure 5.19 Calculated total modulus using FEM program versus the number of load application at different percent air voids. 167 LOE+O4 0 11110535; AN=3.07 X 5 11110615; Alv=530 x 13 11110725; Alvs7.01 x 1: .9 ...: o E 5/~\ ‘- m “’0 O; D +2 0 1000.0 c!: F, yr 0.- Cd- 0 1 Es dYV mi- .21— 420 E 52> 34 0 moo =5 0 4—0 '8 O L 3 C V) O a) 2 10010, 100. 1000. l.E+04 1.E+05 1.6-+06 Nunnbercfi Load AppHcafions Figure 5.20 Measured cumulative permanent deformation versus the number of load application at differnt percent air voids. 168 figure 5.20. which indicates that the slope of the curves increases as the percent air voids increases. That is, for the same magnitude of cyclic load, the net volume change of the asphalt mix at high percent air voids is less than those at the lower percent air voids. It should be noted that, although the slope of the curves in figures 5.18 and 5.19 increases with decreasing air voids, the percent increase in the values of MR relative to its initial value is higher for the 7 percent air voids curve than that for the 3 percent air voids. This can be illustrated with the aid of figure 5.21. In this figure, the values of the resilient modulus for any number of load application is divided (normalized) by the corresponding value of MR at load cycle number 100. It can be seen that, for the 7 percent air voids curve, the value of MR at N equal 10,000 cycles increases by a factor of 1.455 relative to its value at N equal 100 cycles. This factor is 1.405 for the 3 percent air voids. The implication of this is that asphalt pavement constructed using high percent air voids in the mix will experience (due to traffic effects) higher plastic flow (rut depth) and higher increase in the initial resilient modulus than pavement constructed at lower percent air voids. Nevertheless, in practice, resilient modulus tests are conducted only to 100 or 500 load cycles for sample conditioning. After which the resilient modulus is 169 1 8 o 11110535;Alv=3.o7x A 11110615;AV=5.307. a 11110725:Alv-7.01x 1.7 m 15 3 3 ‘C‘ O 2 15 A +4 c: .0.) .‘73 d a) 1.4 Cl: '0 Q) ._’l_‘ 1.3 O E L O 2 1.2 1.1 1.0 10. 1 . 1000. 1.E+04 1.E+05 1.E+06 Number of Load Applications Figure 5.21 Normalized resilient modulus versus the number of load application at different percent air voids. 170 <3etermined and tests are terminated. Hence, in the statistical analysis of this study, the values of MR and E .at. load cycle number 100 were correlated to the specimen, ‘test, and asphalt mix variables. The reader should keep in Inind that MR increases with increasing N and that the value «of MR at load cycle number 100 is a very conservative value. Tables 5.8 and 5.9 summarize the regression matrices of ‘the resilient and total moduli at 77°F, respectively. The regression coefficients, coefficient of determination (R2), and standard error (SE) obtained from each step of the stepwise procedure are listed in the tables. It should be noted that the variables in the tables are listed in their order of significance. For example, the percent air voids in table 5.8 is the most significant variable while the gradation of the aggregate is the least significant one. INevertheless, equations 5.18 and 5.19 are the corresponding :equations to tables 5.8 and 5.9, respectively. .1n(MR) = 13.895 - 0.1974 X AV - 0.0007096 x XV + 0.007225 X ANG + 0.008685 X GRAD (5.18) R2 a 0.998 and SE = 0.014 3L11(E) = 13.745 - 0.2089 x AV -o.000712 x KV + 0.0108 x ANS (5.19) 171 Table 5.8 Regression matrix for the resilient modulus at 77°F. Regression coefficients of 141! the independent variables 2 Intercept R SE (1321) (1152‘) ($33) (313591 14.750 -1.959 - - - 0.988 0.034 3411(MR) 13.928 -1.967 -7.157 - - 0.997 0.017 13.897 -1.965 -7.038 8.569 - 0.998 0.015 13.895 -1.974 -7.096 7.225 8.685 0.998 0.014 1n =- natural log: 511% a resilient modulus (psi): 15" a air voids (%): 151¢<3 s angularity: 15" - kinematic viscosity (centistokes): <3§§1XD - gradation of aggregate: It a coefficient of correlation: and 5313 - standard error. Table 5.9 Regression matrix for the total modulus at 77°F. 172 Regression coefficients of E the independent variables 2 Intercept R SE M11 KY4 ”'92 (10 ) (10 ) (10 ) 13.604 -2.084 - - 0.987 0.039 ln(E) 13.786 -2.091 -7.274 - 0.995 0.024 13.745 -2.089 -7.120 1.108 0.996 0.022 ln = natural 109: E = total modulus (psi): AV 2 air voids (%): ANS = angularity: Kg = kinematic viscosity (centistokes): R = coefficient of correlation: and SE = standard error. 173 R2 = 0.996 and SE = 0.022 where: ln natural 109: MR a resilient modulus (psi): M II total modulus (psi): and AV 2 air voids (%): ANS - angularity: KV - kinematic viscosity (centistokes): GRAD a gradation of aggregate: R = coefficient of correlation: and SE = standard error. Examination of the values of the regression coefficients and the order of significance of the independent variables of tables 5.8 and 5.9, and equations 5.18 and 5.19 have indicated: 1) The resilient modulus at 77°F is affected (in order of decreasing significance ) by the air voids (AV), the kinematic viscosity (XV), the aggregate angularity (ANS), and the gradation of the aggregate (GRAD) while the total modulus is affected by AV, RV, and ANG. The effects of the AV and KV on the arithmetic values of MR are slightly lower than those on E. Increasing AV from 3 to 7 percent causes a decrease in MR and E by factors of 0.45 and 0.43, respectively. While increasing KV from 159 to 270 174 centistoke yields a decrease in MR and E by factors of 0.93 and 0.92, respectively. The effect of aggregate angularity on the values of MR and E is less than 1.5 percent. Finally, aggregate gradation has no significant effect (less than 1 percent) on either modulus. The above observations were anticipated because the values of MR were calculated using the resilient deformation while the values of E were obtained using the total deformation (elastic and viscoelastic). Since asphalt binders are viscoelastic material and since the AV is a measure of the ability of the material to flow under the load (higher AV produces higher flow), one can expect that the effects of RV and AV on the viscoelastic component of the deformation are higher than those on the elastic (resilient) one. Equations 5.18 and 5.19 indicate that MR is inversely proportional to the kinematic viscosity of the asphalt binder. That is, increasing KV (harder asphalt binder) causes a higher resilient deformation and hence a lower resilient modulus. This finding is in contrast to that reported in the literature and to that relative to plastic deformation reported in section 5.5. From an engineering view point, higher KV (harder asphalt binder) should result in lower 2) 3) 175 resilient and total deformations and consequently, higher resilient and total moduli. The test results however, do not support this view. Unfortunately, no sound explanation can be offered at this time to explain this discrepancy. The magnitude of the cyclic load possesses no significant effects on the values of the resilient and total moduli. This indicates a linear behavior of the beam specimens within the range of the magnitude of the applied cyclic load. The implication of this finding is that the application of linear elasticity in the analysis of the resilient and total moduli is valid. It should be noted that results obtained from indirect tensile tests showed a nonlinear behavior (increasing cyclic load causes a decrease in the values of the resilient and total moduli). The difference in the finding between the two tests can be related to the physical dimensions of the test specimens and to the boundary conditions. Beam specimens are 4-in. thick and subjected mainly to compression while indirect tensile test specimens are 2.5-in. thick and subjected to both compression and tension. The values of the regression coefficients (see tables 5.8 and 5.9) for all variables are only slightly changed as more variables are added in the stepwise 176 procedure (e.g., the values of the coefficient of AV in both tables change very little as additional variables entered into the analysis). This implies that there is no significant interaction between the independent variables. This conclusion was reached after examination of the partial correlation matrix (PCM) shown in table 5.10. The values of the partial correlation coefficients (PCC) listed under each variable in the table indicate the degree of dependency of that variable on the others. The value of PCC may range from -1.0 to +1.0. A negative value of PCC between any two variables implies that the variables are inversely proportional to each other while a positive value indicates direct proportionality. Nevertheless, the values of the PCC in the PCM of table 5.10 indicate some degree of interaction between AV and GRAD, and ANG and SRAD. This was expected because the percent air voids in an aggregate mix is a function of the gradation of the mix. A well graded mix possesses lower air voids than a uniform mix. Similarly, aggregate angularity affects its gradation. Angular aggregates tend to interlock causing higher friction and therefore, offer higher resistance for finer materials to enter and fill the air space between the larger size aggregates. Due to these interactions, the AV and 177 Table 5.10 Partial correlation matrix for resilient modulus at 77 F ln(MR) AV AG KV CL GR ln(MR) 1.000 -.994 .060 -.055 -.058 -.286 AV -.994 1.000 -.029 -.040 .054 .302 AG .060 -.029 1.000 -.064 .018 .275 CL -.058 .054 .018 .013 1.000 -.015 GR -.286 .302 .275 .027 -.015 1.000 ln = natural 109: MR = resilient modulus (psi): AV a air voids (%): ANS = angularity: RV = kinematic viscosity (centistokes): C1 = cyclic load: S3 - gradation: R = coefficient of correlation: and SE standard error. 178 ANG terms in equations 5.18 and 5.19 may also include some of the effects of aggregate gradation on MR and E. Unfortunately, 'the separation of the effects of these variables cannot be obtained due to the limited number of gradation (only two gradations were used) employed in this study . 4) The final values of the coefficient of determination and standard error in both tables indicate a high degree of correlation between the dependent and independent variables. That is no significant scatter of the logarithmic values of the resilient and total moduli about the mean. It should be noted that the values of R2 in the tables may be artificially high because of the nature of transformation (logarithmic). Variations in the arithmetic values are naturally much higher than those in the logarithmic values. The scenario in items 1 and 3 above implies that equation 5.18 can be simplified by eliminating the gradation term (GRAD has no statistical significance on MR). Considering the third step of table 5.8, the following equation was obtained. ln(MR) = 13.897 - 0.1965 X AV - 0.0007038 X KV + 0.008569 X ANG (5.20) ll 179 R2 = 0.998 and SE = 0.015 where: all variables are as before. The advantages of this last equation are it is simpler than equation 5.18 and that it is similar to equation 5.19. Figures 5.22 and 5.23 depict, respectively, the values of the resilient and total moduli obtained from FEM and those calculated using equations 5.20 and 5.19. The straight lines in the figures represent the locus of points of equality. It should be noted that the maximum percent difference between the values of resilient and total moduli obtained using FEM and those from equations 5.20 and 5.19 were 6 and 7 percent, respectively. Tables 5.11 and 5.12 summarize, respectively, the regression matrices (regression coefficients, coefficient of determination, and standard error) of the resilient and total moduli of the beam specimens tested at 40°F. Equations 5.21 and 5.22 are the resulting equations. ln(MR) = 14.736 - 0.1248 X AV - 0.0002116 X CL (5.21) R2 = 0.882 and SE = 0.049 where: CL = applied cyclic load: and all other variables are as before. 180 600.0 t/l‘l. /, / ./ ”a: 0.”. 1“ . co" ' I. . 0‘ u. m 500.0 " s 31‘: 1 3 in 8:5 2c) . ...“! C10 <1) :5 C . U) 0 400.0 01.3 0: O 3 a 'o a“ mo .' ...: o 2 Ch .. . 3 C .96 , ~ ' 6:) .x c. xpe ,’ / O /-' I 200.0 200.0 ' 300.0 400.0 500.0 600.0 Calculated Resilient Modulus Using FEM Program (ksi) Figure 5.22 Calculated resilient modulus using equation 5.20 versus calculated resilient modulus using FEM program. 181 .3 ,’3t 1 . ‘5 ~ ‘ 1. .3 {'1 ' i -woo¥A ' ' I / n2? "’ :07 ‘/ 3:2 /" 1 .33‘ /:/ I 2 _: a". . ‘ _ua -/l ! a__ 1 " l f: (L. / 8 g 6’ fl. l Ecr ‘.. ‘ ELL] ..1/ . i :1 O, .x/ 3 c /.’ O_ 6“ egg ’ awe i E . : I.’ I i ‘ I 100.0 L” 100.0 200.0 300.0 400.0 500.0 Calculated Total Modulus Usmg rEM Program (ksi) Figure 5.23 Calculated total modulus using equation 5.19 versus calculated total modulus using FEM program. 182 ln(E) = 14.42 - 0.139 x AV (5.22) R2 = .679 and SE = 0.099 where: all other variables are as before. Examination of the values of the coefficient of correlation in tables 5.11 and 5.12, and equations 5.21 and 5.22 have indicated that: 1) The resilient modulus at 40°F is affected (in order of decreasing significant) by the air voids (AV) and the applied cyclic load (CL), while the total modulus is affected only by AV. This implies that the total response (elastic and viscoelastic) of the specimen is linearly proportional to the magnitude of the applied cyclic load. Each component of the total response (elastic and viscoelastic), however, is nonlinearly related to CL. That is increasing CL causes an increase in both elastic and viscoelastic deformations such that the ratio of load to elastic deformation decreases while the ratio of load to viscoelastic deformation increases. This finding was not expected and it departs from that found in the literature. The reason of the discrepancy could be related to the magnitude of the total deformation which was within the accuracy of the measurement 183 Table 5.11 Regression matrix for the resilient modulus at 40°F. Regression coefficients of MR the independent variables 2 Intercept R SE Ayl C94 (10 ) (10 ) 14.671 -1.220 - 0.813 0.060 ln(MR) 14.736 -1.248 -2.116 0.882 0.049 1n = natural log: MR = resilient modulus (psi): AV = air voids (t): CL = cyclic load (pounds): R = coefficient of correlation: and SE = standard error. Table 5.12 Regression matrix for the total modulus at 40°F. Regression coefficients of MR the independent variables Intercept R2 SE A111 (10 ) _1n(MR) 14.420 -1.390 0.678 0.099 ln = natural 109: E a resilient modulus (psi): A3 a air voids (%): R = coefficient of correlation: and SE = standard error. 184 system. Nevertheless, increasing AV from 3 to 7 percent caused decreases in MR and E by factors of 0.61 and 0.57, respectively. While increasing CL from 100 to 500 pounds caused a decrease in MR by a factor of 0.82. 2) The values of the coefficient of determination and standard error of tables 5.11 and 5.12 indicate a low degree of correlation between the dependent and independent variables compared to the results from 77°F. This observation does not mean that the values of the resilient and total moduli at 40°F are inconsistent or, in a statistical sense, random. This is mainly due, as noted above, to the magnitude of the measured deflection which was within the accuracy of the measurement system. Figures 5.24 and 5.25 depict the values of the resilient and total moduli calculated using the FEM program and the corresponding moduli calculated using equations 5.21 and 5.22, respectively. Again, the straight line in the figures represents the locus of the points of equality. It was found that the maximum per cent difference between the values of resilient and total moduli calculated using FEM and those calculated using equations 5.20 and 5.21 were 13 and 20 percent, respectively. A second statistical analysis was performed using the test results at 77 and 40°F. In this analysis, the test 185 lculated Resflient Modulus 2000. . 1750. . - A e 9 0 .. , . / m e .. .0 °/ ‘— O '/r' 9! l J) i /’ 1: g ,2/ Q 1500 74= E /' :1 0' Lu ./ ./ g /" a / o D L) ’ l 1250. . , . / l/. ' - , . ,/,I .: e ‘ o // O '/ . / / / ’/ 1000 / 1000. 1250. 1500. 1750. 2000. Calculated Resilient Modulus Using FEM Program (ksi) Figure 5.24 Calculated resilient modulus using equation 5.21 versus calculated resilient modulus using FEM program. 186 1500.0 . ’/ 1250.0 ‘ v: . . 21 o / av / 0N / :0! /'/ _tn 0 5 5 10000 “'8 ‘ / ,3 D 33 a: / 52L” . ° - ° 3 ' o . o 2 g ’ ° . J. 0 [0'5 1 I K.) D o / 0 7.50.0 , l// // /// 500900.0 750.0 1000.0 1250.0 1500.0 Calculated Total Modulus Using FEM Program (ksi) Figure 5.25 Calculated total modulus using equation 5.22 versus calculated total modulus using FEM program. 187 temperature was included as one of the independent variable. A semi-logarithmic relationship between MR or E and the test temperature (TT) was assumed based on the Asphalt Institute equation which was reported in chapter 2. Tables 5.13 and 5.15 summarize the resulting regression matrices (regression coefficients, coefficient of determination, standard error) for the resilient and the total moduli, respectively. Equations 5.23 and 5.24 are the corresponding equations. ln(MR) = 16.382 -o.03326 x TT -0.1899 x AV - 0.0004148 x KV (5.23) R2 - 0.994 and SE - 0.046 where: TT 8 test temperature: and all variables are as before. ln(E) = 15.969 -0.02982 x TT - 0.2029 x AV - 0.0003927 x KV (5.24) R2 - 0.990 and SE = 0.057 where: all other variables are as before. Examination of the values of the correlation coefficient of tables 5.13 and 5.14, and equations 5.23 and 5.24 has indicated: 188 Table 5.13 Regression matrix for the resilient modulus at 77 and 40 F. Regression coefficients of MR the independent variables 2 Intercept R SE (1022) (1:21) (102‘) 15.671 -3.755 - - 0.763 0.291 ln(MR) 16.284 -3.327 -1.903 - 0.993 0.049 16.382 -3.326 -1.899 -4.148 0.994 0.046 In natural log: resilient modulus (psi): test temperature ( F): air voids (%): kinematic viscosity (centistokes): coefficient of correlation: and standard error. ES’UEEEEEE Table 5.14 Regression matrix for the total modulus at 77 and 40 °F. Regression coefficients of E the independent variables Intercept R2 SE (1022) (1021) (102‘) 15.234 -3.456 - - 0.699 0.312 ln(E) 15.877 -2.984 -2.032 - 0.989 0.060 15.969 -2.982 -2.029 -3.927 0.990 0.057 natural log: total modulus (psi): test temperature ( F): air voids (%): kinematic viscosity (centistokes): coefficient of correlation: and standard error. 35233”? I I III" III 189 1) Both resilient and total moduli are affected (in order of decreasing significance) by the test temperature, the percent air voids, and the kinematic viscosity of the asphalt binder. Increasing TT form 40 to 77°F causes a decrease in MR and E by factors of 3.42 and 2.99, respectively. It should be noted that, in equations 5.23 and 5.24, the RV term is also a function of the test temperature. Lower temperatures cause higher KV (harder asphalt). In order to separate the two variables (RV and TT), the value of RV at the test temperature should be used in the analysis. Unfortunately, this data was not available to the author nor it was possible to conduct the laboratory tests because of lack of equipment. Hence, it is recommended, for future study, to obtain the values of RV at the test temperatures whenever possible and to use these values in the analysis. 2) The values of the coefficient of determination and standard error show a high degree of correlation between the dependent and the independent variables. Again, it should be noted that the values of R2 in the tables may be artificially high because of the nature of the transformation (logarithmic). It should noted that (in the range of the mix, test, and specimen variables) the maximum differences between the values of MR and E at 77°F predicted using equations and 5.24, 190 5.23 and those calculated using the finite element program were found to be 7.6 and 9 percent respectively. These differences were 17 and 24.5 percent for the 40°F. In addition, institute equation (equation 2.3) equation 5.23 was compared to the asphalt which is repeated below for convenience. Log MR - 1.54536 + 0.020108(x1) - 0.0318606(x2) + 0.068142(x3) - 0.00127003(X4)°"(X5)1‘4 (2.3) R2 = 0.968, and S.E. = 0.0888904 Log MR - 3.12197 + 0.0248722(x1) - 0.0345875(x2) - 9.02594((X4) Where: Log X1 X2 X3 X4 X5 0.19/(xs)0.9 (2.4) 0.971, and S.E. = 0.0849186 logarithm to base 10: dynamic (resilient) modulus, 105 psi (4 Hz loading frequency): percent passing #200 sieve: percent air voids in mix: asphalt viscosity at 70 °F (106 poises): percent asphalt by total weight of mix: test temperature (°F): 191 X6 = the logarithmic value of the viscosity (in poises) of the asphalt at the test temperature: SE = standard error of the estimate: and 2 R = coefficient of determination. The results of this comparison are illustrated in figure 5.26. The straight line in the figure represents the locus of the points of equality. Further, a sensitivity analysis of the calculated values of MR from both equation to the range of the mix, test, and specimen variables was conducted. It was found that: 1) The agreement between the values of MR obtained from 2) 3) both equations was found to be dependent on the value of the percent air voids. In general, the values of MR obtained using equation 5.23 were higher than, equal to, and lower than those obtained using equation 2.3 for 3, 5, and 7 percent air voids, respectively. Increasing AV from 3 to 7 percent causes a decrease in MR by factors of 0.75 and 0.47 for equations 2.3 and 5.23,respectively. The values of the resilient modulus from A.I. equation increase by factor of 3.81 as the temperature decreases from 77°F to 40°F, while those of equation 5.23 increase by a factor of 3.42. 192 2200. 9 C 7,; 1700. n D ’0'. inc: 7 3 01 Ex / UV r“, /’ O C J’l // 2.9 / “‘5 3:: 1mm. :zfif /’ s / 0% 8 <0 / ‘65 / 3 2 700 J o ' /, 7 Q '0 ‘0' 200. 700. 1200. 1700. Calculated Resilient Modulus Using Usmg Equation 5.23 (ksi,1 M O JL.___..._.__L..- ..-- . _ 8 Figure 5.26 Calculated resilient modulus using the A.I. equation versus calculated resilient modulus using equation 5.23. 193 4) An increase in the kinematic viscosity of the asphalt binder from 159 to 270 centistokes leads to an increase in the value of the resilient modulus by a factor of 1.0001 for A.I. equation, and a decrease by a factor of 0.95 for equation 5.23. 5) The values of MR in equation 2.3 are also functions of the percent passing sieve number 200 (percent fine) and the percent asphalt content in the mix. These two variables were not included in this study (equation 5.23). The above observations imply that the values of MR of equation 5.23 are more sensitive to the variation of the percent air voids than those of the A.I. equation. The effects of the test temperature on the values of MR of both equations are almost the same. In addition, although the effects of kinematic viscosity of the asphalt on the values of MR is small, the trend in both equations is not compatible as noted before. Equations 5.23 and 5.24 were also compared to the equations 5.25 and 5.26 which were obtained from indirect tensile cyclic load tests. The tests were conducted using the same test, mix, and specimen variables as those used in this study (82). ln(MR) 8 16.092 - 0.03658 X TT - 0.1401 X AV - 0.0003409 X CL + 0.04353 x ANG + 0.0008793 x KV (5.25) 194 R2 = 0.997: and SE = 0.033 where: all variables are as before. ln(E) = 16.385 - 0.04529 X TT - 0.1549 X AV - 0.0003339 X CL + 0.04258 X ANG + 0.0008364 X KV (5.26) R2 = 0.998: and S.E. = 0.034 where E = total modulus (psi): and all other variables are as before. Figures 5.27 and 5.28 depict, respectively, the values of MR and E obtained using equations 5.25 and 5.26 plotted against those from equations 5.23 and 5.24. The straight line in the figures depict the locus of the points of equality. This comparison and a sensitivity analysis of both equations revealed that: 1) Increasing AV from 3 to 7 percent results in: a) decrease in MR by factors of 0.468 and 0.571 for equations 5.23 and 5.25, respectively. b) decrease in E by factors of 0.444 and 0.538 for equations 5.24 and 5.26, respectively. 2) Decreasing test temperatures from 77 to 40°F yields: a) an increase in MR by factors of 3.42 and 3.87 for equations 5.23 and 5.25, respectively. 2400. 0" E a, 1800. D U) 3r: ‘3 m 3:: 21.0 ‘EN' 4,“) 1200. E C 0') o 42': o: a 3 thr 01.1.1 ...-I 2 3 2 an. O o 0. 195 600. 1200. 1800. Calculated Resilient Modulus Usmg Equation 5.23 (ksi) 2400. Figure 5.27 Calculated resilient modulus using equation 5.25 versus calculated resilient modulus using equation 5.23. Calculated Total Modulus Using Equation 5.26 (ksu) 1800. 1200. 196 600. 1200. 1800. 2400. Calculated Total Modulus Using Equation 5.24 061) Figure 5.28 Calculated total modulus using equation 5.26 versus calculated total modulus using equation 5.24. 3) 4) 197 b) an increase in E by factors of 3.014 and 5.16 for equations 5.24 and 5.26, respectively. Increasing kinematic viscosity from 159 to 270 centistokes causes the values of MR and E to increase by a factor of 1.1 for the indirect equations and to decrease by a factor of 0.95 for equations 5.23 and 5.25. The values of the resilient and total moduli obtained from the indirect tensile tests are affected by the aggregate angularity (ANG) the magnitude of the cyclic load (CL). Increasing CL or decreasing ANG results in lower values of MR and E. The values of MR and E of equations 5.23 and 5.24, on the other hand, are independent of CL and ANG. The above observations imply that: 1) 2) The percent air voids of the test specimen posses similar effects on both results obtained from the indirect tensile and beam tests. Although the effects of the test temperature on the values of MR are almost the same for both types of tests, its effects on E are different. Since the values of E are calculated using the measured total specimen deformation (resilient and viscoelastic) and since the values of MR are calculated using only the measured resilient deformation, one can conclude that the viscoelastic behavior of the indirect tensile 198 test specimens is different than that of the beam specimens. That is, the asphalt binder in the indirect tensile test specimens appears to become much stiffer, at 40°F relative to its stiffness at 77°F, than the binder in the beam specimen. Again, this could be related to the boundary conditions of the both tests. 3) Once again, the discrepancy relative to the effects of the kinematic viscosity between the two test results cannot be explained at this time. 4) The asphalt mixes in the indirect tensile test passes a nonlinear behavior (increasing load causes a decrease in the values of MR and E), while they showed a linear behavior in the beam tests. 5.9 SUMMARY Laboratory test results obtained using the standard Marshall mix design procedures and flexural cyclic beam tests are presented and discussed. It is shown that statistical correlations between the structural properties of compacted asphalt mixes and their mix design parameters are -useful to analyze the effects of the different mix, specimen, and test variables on the structural properties of the mix. The statistical equations presented in this dissertation were proven to be accurate within the range of the values of 199 the independent variables employed in this study. Any interpolation should be checked with some laboratory test results. Extrapolation, however, is strongly discouraged. 5.10 IMPLEMENTATION The statistical equations presented in this dissertation can be used to analyze the effects (in a qualitative terms) of the independent variables on the structural properties (resilient and total moduli, permanent deformations, and fatigue life) of compacted asphalt mixes. The statistical equations, however, should not be used for predicting the properties and behaviors of inservice pavements unless they are calibrated using field data. A limited field data base (4 pavement sections) has indicated that the effects of some of the independent variables on the laboratory test results are almost the same as their effects on the inservice pavements. However, the effects of the kinematic viscosity of the asphalt binder on the laboratory test results (fatigue life) are inconsistent with its effects on inservice pavements. 200 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 6.1 CONCLUSIONS Based upon the test results, the analysis, and the findings presented in this dissertation, the following conclusions may be drawn: 1) Statistical relationships between the structural 2) 3) 4) 5) properties and the test, mix, and specimen variables have been found. These relationships can be used, in the laboratory, to assess the effect of each variable upon the structural properties of the asphalt mixes. The application of these relationships to field data need to be verified. Rutting (Permanent deformation) in the flexible pavement can be improved by using a lower percent air voids, harder asphalt binder, higher aggregate angularity, or combinations thereof in the asphalt mixes. Fatigue life of asphalt mixes can be increased by using a lower percent air voids, angular aggregates, or a combination thereof in the mix. The use of beam theory in the analysis of resilient and total moduli of beam specimens is inadequate because of the assumptions involved in the theory. The modulus of asphalt mixes can be increased by the 201 use of a lower percent air voids, higher aggregate angularity, or a combination thereof in the asphalt mixes. 6.2 RECOMMENDATIONS The results of this study showed that it is possible to evaluate, in the laboratory, the effects of the test, mix, and specimen variables on the structural properties of asphalt mixes. It is recommended that the statistical equations presented in this dissertation be calibrated to field data prior to their use. It is further recommended that the effects of the asphalt content on the structural properties of asphalt mixes be calculated. It was shown that the criterion used to determine the fatigue life of the beam specimens led to an erroneous conclusion relative to the effects of the kinematic viscosity of the asphalt binder. Therefore, it is recommended that, in future studies, the criterion be refined and the actual net assumed limit on the value of the cumulative plastic deformation under the load at which the fatigue life is reached be monitored and, perhaps, be related to the test, mix, and specimen variables. REFERENCES REFERENCES 1. Test and Material Specifications. Parts I and II, 13th edition, American Association for State Highway and Transportation Officials, 1982. 2. Interim Guide for Desianof Poavement Structures. American Association for State Highway and Transportation Officials, 1972, chapter III revised, 1981. 3. AASHTO Proposed Guide for Design of Pavement Structures, National Cooperative Highway Research Program, Project 20- 7/24, Volume 1 & 2, July 15, 1985. 4. Annual Book of Standard, Section 4, Volume 04.08, American Society for Testing and Materials, Philadelphia, Pennselvania, 1984 5. Revision of Section II. Manual on Fatigue Testing. American Society for Testing and Materials, Special Technical Paper no. 91, Philadelphia, Pennselvania, 1959. 6. Standard definitions of terms relating to fatique testing and statistical analysis of dataL American Society for Testing and Materials, Philadelphia, Pennselvania, Designation E206-72. 7. A grief introduction to Asphalt and Some of its UsesI the Asphalt Institute, Manual Series no.5 (MS-5) 7th ed., College Park, MD. 1977. 8. Mix Design Methods for Asphalt Concrete and other Hot-Mix TypesI the Asphalt Institute, Manual Series no. 2 (MS-2), College Park, Maryland, 1979. 9. Proceedings, Conference on Methods for Prediction of Permanent Deformation in Pavement Systems, University of Texas at Austin, Texas, Aug. 1973. 10. Asphalt Cold Mix Recycling_, the Asphalt Institute, Manual Series no. 21 (MS-21), 1983. 11. Asphalt Hot -Mix Recycling, the Asphalt Institute, Manual Series no. 20 (MS-20), 1981. 12. Asphalt in Pavement Maintenance, the Asphalt Institue, Manual Series no.16 (MS-16), March 1983 edition. 13. Asphat Overlays for Higyay and Stret Rehabilitation. the Asphalt Institute, Manual Series no. 17 (MS-17), June 1983. 202 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 203 Test Procedure for Chareacterizinq. Dynamic Stress-Strain Properties of Pavement Materials, Indirect Tensile Test, Transportation Research Board, Special Report no.162, 1975, pp.32-34. Adedimila, A.S., and Kennedy, T.W., Fatigue and Resilient Characteristics of Asphalt Mixtures By Repeated-Load In- direct Tensile Test. Report No. CFHR 3-9-72-183-5, Trans- portation Planning Division, Texas State Department of Highways and Public Transportation, Austin, Texas, August 1975. Allen, D. L. and Deen, R.C., Rutting Models for Asphaltic Concrete and Dense-Graded Aggregate From Repeated Load Tests, the Association of Asphalt Paving Technologists, vol. 49,1980, pp. 653-667. Baladi, G.Y., Characterization of Flexible Pavement: A Case Study, American Society for Testing and Material, Special Technical Paper no. 807, 1983, pp.164—171. Baladi, G.Y., Linear Viscosity, U.S. Army Engineer Waterways Experiment Station, October 1985, pp. 1-6. Baladi, G.Y., Numerical Implementation of a Transverse- ;eptropic. Inelastic. Work-Hardening Conetitutiye Model. Soil Dynamics Division, Soils and Pavement Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicks-burg, Miss., pp. 1-12. Baladi, G.Y., Integrated Material and Structural Design Method for Flexible Pavement, FHWA/RD-88/109, 1988. Barksdale, R.D., Compressive Stress Pulse Times in Flexible Pavments for Use in Dynamic Testing. Highway Research Board no. 345, 1971, pp.32-43. Barksdale, R.D., Laboratory Evaluation of Rutting in Base Course Materials, the 3rd International Conference on the Structural Design of Asphalt Pavement, University of Michigan, Ann Arbor, Michigan, vol. 1, 1972, pp. 161-174. Barksdale, R.D., Practical Application of Fatigue and Rutting Tests on Bituminous Base Mixes, the Association of Asphalt Paving Technologists, vol. 47, 1978, pp. 115-160. Bonnaure, F., Gravois, A. and Udron, J., A New Method for Predicting the Fatigue Life of Bituminous Mixes, the Association of Asphalt Paving Technologists, vol. 49, 1980, pp. 499-529. Bonnaure, F.B., Gest, G., Gravois, G.A., and Uge, P., A New 204 Method of Predicting the Stiffiness of Asphalt Paving Mixtures, the Association of Asphalt Paving Technologist, vol. 46, 1977, pp. 64-104. 26. Bonnaure, F.P., Huibers, A.H.J.J. and Boonders, A., A Laboratory Investigation of the Influence of Rest Periods on the Fatigue Characteristics of Bituminous Mixes- the Association of Asphalt Paving Technologists, vol. 51, 1982, pp. 104-129. 27. Brown, S.E. and Cooper, K.E., A Fundamental Study of the Stress-Strain Characterietics of a Bitumenous Material. the Association of Asphalt Paving Technologists, vol. 49, 1980, pp. 476-499. 28. Brown, S.F., and Hyde, A.F.L., Siginficance of Cyclic Confining Stress in Repeated-Load Triaxial Testing of Granular Material. Transportation Research Record no. 537, 1975, pp. 49-58. 29. Chou, Y.T., Egpations for Nonbonded Concrete Overlays, Miscellaneous Paper GL-85-25, U.S. Army Corps of Engineers Huntsville, Alabama, September 1985, pp. 1-26. 30. Christison, J.T., Anderson, K.O., and Shields, B.P., In Situ Measurements of Strains and Deflections 'n a Ful De th Asphlatic Concrete Pavement, the Association of Asphalt Paving Technologist, vol. 47, 1978, pp. 398-433. 31. Cowher, C.E., and Kennedy, T.W., Cumulative Damage of Asphalt Materials Under Repeated-Load Indirect Tension, Interim Research Study 3-9-72-183, Planning & Research Division, Texas Highway Department, Austin, Texas, January 1975. 32. Deacon, J.A., and Monismith, C.L., Laboratory Flexural- Fatigue Testing of Asphalt-Concrete With Emphasis of Compound-Loading Tests- Highway Research Record no. 158, 1967, pp. 1-31. 33. Desai, C.S., Elementary Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1979. 34. Epps, J.A., and Monismith, C.L., Influence of Mixture Variables on the Flexural Fatigue Properties of Asphalt Concrete- the Association of Asphalt Paving Technologist, vol. 38, 1969, pp. 423-464. 35. Epps, J.A., and Monismith, C.L., Fatigue of Asphalt Concrete Mixtures: Summary of Existing Informations. American Society for Testing and Material, Special Technical Paper no.508, 1972, pp. 19-45. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 205 Finn, F.N., Factors Involved in the Design of Asphaltic Pavement Surfaces- National Cooperative Highway Research Program, Report no. 39, 1967, pp. 1-112. Francken, L., and Verstraeten, J., Methods for Predicting Moduli and Fatigue Laws of Bituminoue Road Mixes Under Repeated Bending. Transportation Research Record no. 515, 1974, pp. 114-123. Fuchs, H.O., A Set of Fatigue Failure Criteria. ASME Journal of Basic Engineering, vol. 87, June 1965, pp. 333- 343. Fuchs H.O., and Stephens, R.I., Metal Fatigue Engineering, John Wiley and Sons Publishers, 1980. Haas, R., and Meyer, F., Cyclic Creep of Bituminous Materials Under Trapeient. High-Volume Loads- Transportation Research Record no. 549, 1975, pp. 1-14. Hadley, W.O., and Vahida, H., A Fundamental Comparison of the Flexural and Indirect Tensile Tests, Transportation Research Board, 1983. Hveem, F.N., Zube, E., Bridges, R., and Forsyth, R., Tpe Effect of Resilience-Deflection Relationship on the Structural Design of Asphaltic Pavemente- the International Conference on Structural Design of Asphalt Pavements, 1962, pp. 649-666. Irwin, L.h., Use of Fracture Energy ae-a Fatigge Failure Criterion, the Association of Asphalt Paving Technologists, vol. 46, 1977, pp.41-63. Irwin, L.H., and Gallaway, B.M., Inflgence of Laboratory Ieet Method on Fatigue Test Re§u1t§ for Asphaltic Concrete, American Society for Testing and Material, Special Technical Paper no.561, 1973, pp.12-46. Jones, G.M., Darter, M.I., and Littlefield, 6., Thermal Expansion-Contraction of Asphaltic Concrete. the Association of Asphalt Paving Technologists, Vol. 37 1968, pp. 56-63. Kalcheff, I.V. and Hicks, R.G., A Teet Procedure for Determining the Resilient Properties of Granular Materials. American Society for Testing and Material, Journal of Testing and Evaluation, vol. 1, no. 6, 1973 pp. 472-479. Kalcheff, I.V., and Tunnicliff, D.G., Effecte-of Crueged Stone Aggregate Size and Shape on Properties of Asphalt 49 53. 54. .3 .3 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 206 Concrete. the Association of Asphalt Paving Technologists, vol. 51, 1982, pp. 453-484. Kallas, B.P., and Puzinauskas, V.P., Flexture Fatigue Tests on Asphalt Paving Mixtures- American Society for Testing and Material, Special Technical Paper no. 508, 1972. Kasianchuk, D.A., Terrel, R.L., and Haas, R.C.G., A Design System for Minimizing Fatigue-. Permanent Deformation, and Shrinkage Fracture Distress of Asphalt Pavements- the 3rd International Conference on the Strutural Design of Asphalt Pavements, London, vol. 1, September 1972, pp. 629-655. Kenis, W. J., Material Characterions for Rational Pavement Design, American Society for Testing and Material, Special Technical Paper no.561, 1973, pp. 132-152. Kennedy, T. W., Charaterization of Asphalt Pavement Materials Using the Indirect Tensile Test, the Association of Asphalt Paving Technologists, vol. 46, 1977, pp. 132-150. Kennedy, T.W., Tensile Characterization of Highway Pavement Materials, Report No. FHWA/TX-84/21+183-15F, Transportation Planning Division, Texas State Department of Highways and Public Transpotation, Austin, Texas, July 1983. Kinghan, R.I. and Kallas, B.P., Laboratory Fatigue and its Relationship to Pavement Performance, Asphalt Inst. Research Report 72-3, the 3RD International Conference on the Stuctural Design of Asphalt Pavements, London, England 1972. Kim, O.K., Bell, C.A., and Hicks, R.G., Effect of Mix Conditioning on Properties of Asphaltic Mixtures, Transportation Research Record no. 968, Transportation Research Board, National Research Council, 1984, pp. 86-92. Klomp, A.J.G., and Niesman, T.W., Observed and Calculated Strains at Various Depths in Asphalt Pavements- the 2nd International Conference on Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, Michigan, 1967, pp. 671-688. Koerner, R.M, Effect of Particle Characteristics on Soil Strength, Journal of the Soil Mechanics and Foundation Division, ASCE, vol. 96, SM4, July 1970. Kolbuszewski, J.J, Fundamental Factors Affecting Experimental Experimental Procedures-Dealing with Pressure Distribution in Sands, Proceedings, the Brussels Conference on Earth Pressure Problems, Brussels, 1958. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 207 Landgraf, R.W., Morrow, J., and Endo, T., Determination of Cyclic Stress-Strain Curve, J. Mater. vol. 4, no. 1, March 1969, pp. 176-189. Little, R.E., and Jobe, E.H., Manual on Statistical Planning and Anaslysis for Fatigue Experiments, American Society for Testing and Material, Special Technical Paper no. 588, 1975. Lottman, R. P., Laboratory Test Method for Predictipg Moisture Induced Damage to Asphalt Concrete, Transportation Research Record no. 843, 1982, pp. 88-95. Lottman, R.P., Prediction Moisture-Induced Damage to Asphltic Concrete Field Evaluation, National Cooperative Highway Research Program, Report no. 246, 1982, pp. 1-50. Lottman, R.P., Chen, R.P., Kumar,K.S., and Wolf, L.W., A Laboratory Test System for Prediction of Asphalt Concrete Moisture Damage. Transportation Research Record 515, 1974, pp. 18-26. Majidzadeh, K., and Kerakouzian; M., Practicel Method for Evaluating Fatigue and Fracture Toughness of Pavement Materials, Transportation Research Record no. 695, 1978, pp. 7-14. Marachi, N.D., Chan, C.K., and Seed, H.B., Evaluation of Properties of Rockfill Materiais, Journal of the Soil Mechanics and Foundations Division, American Society of Civil Engineers, 8M1, 1972, pp.95-114. Maupin, G.W. Jr., Test for Predicting Fatigue Life of Birpmipous Concrete, Transportation Research Record no. 659, 1978, pp. 32-36. Miller, J.S., Uzan, J., and Witczak, M.W., Modification of the Asphalt Institute Bituminous Mix Modulus Predictive Eguation, Transportation Research Record no. 911, 1983, pp.27-36. - Monismith, C.L., Flexibility Characteristics of Asphlt Paving Mixtures, the Association of Asphlt Paving Technologists, vol.27, 1958, pp.74-106. Monismith, C.L., Symposium on Flexibie Pavement Behavior as Related to Deflection, Part II-Significance of Pavement Deflections, the Association of Asphlt Paving Technologists, vol.31, 1962, pp.231-260. Monismith, C.L., Ogawa, N., and Freeme, C.R., Permanent Deformation Characteristics of Subgrade Soils Due to Repeated Loading, Transportation Research Record no. 537, 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 800 208 1975, pp.1-17. Monismith, C.L., and Salam, Y.M., Distress Characteristics of Asphalt Concrete Mixes, the Association of Asphalt Paving Technologists, vol. 43, 1973, pp. 320-350. Monismith, C.L., Secor, K.E., and Blackmer, E.W., Asphalt Mixture Behavior in Repeated Flexure- the Association of Asphalt Paving Technologists, vol. 30, 1961, pp. 188-222. Monismith, C.L., Seed, H.B., Mitry, F.G., and Chan, C.K., Prediction of Pavement Deflections From Laboratory Tests, the 2nd International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, Michigan, 1967, pp.109-140. Monismith, C.L., and Vallegra, B.A., Relationship Between Density and Stability of Asphaltic Paving Mixtures, the Association of Asphalt Paving Technologists, vol. 25, 1956, pp. 88-108. Morris, J., and Haas, R.C.G., Dynamic Testing of Bituminous Mixtures for Permanent Qeformation Response, American Society for Testing and Material, Special Technical Paper no. 561, 1973, pp. 115-131. Morris, J., Haas, R.C.G., Reilly, P., and Hignell, E.T., Permanent Deformation in Asphalt Pavements Can Be Predicted, the Association of Asphalt Paving Technologist, vol.43, 1974, pp.41-76. Nijboer, L. W., Mechanical Properties of Asphalt Materials and Structural Design of Asphalt Roads, Highway Research Board, vol. 33, 1954, pp. 185-200. Norusis, M., SPSS/PC+ for the IBM PC/XT/AT. SPSS Inc., Chicago, 1986. Pavlovich, R.D., and Goetz, W.H., Direct Tension Test Results for Some Asphalt Concretes- the Association of Asphalt Paving Technologists, vol. 45, 1976, pp. 400-428. Pell, P.S. and Brown, S.F., The Characteristies of Materials for the Design of Flexible-Pavement Structures- the 3rd International Conference on the Structural Design of Asphalt Pavements, University of Michigan, vol. I, 1972, pp.326-342. Pell, P.S., and Cooper, K. E., The Effect of Testing and Mix Variables on the Fatigue Performance of Bituminous Materials, the Association of Asphalt Paving Technologists, vol. 44, 1975, pp. 1- 37. 81. 82. 83. 84. 1.. 1. (h I . 5 8 Ch b-CL .NA 6 8 S DER O 7 8 SOET 8 8 81. 82. 83. 84. 85. 86. 87. 88. 89. 90. 91. 92. 209 Perl, M., Uzan, J., and Sides, A., Visco-Elastic-Plastic Constitutive Law for a Bituminous Mixture Under Repeated Loading, Transportation Research Record no. 911, 1983, pp. 20-27. Ready, J.N., An Introduction to the Finite Element Method. McGraw-Hill, New York, 1984. Romain, J.E., Rut Depth Prediction in Asphalt Pavements. the 3rd International Conference on Structural Design of Asphalt Pavements, London, 1972, pp. 705-718. Sandor, 3.1., Fundamentals of Cyclic Stress and Strain. the University of Wisconsin press, 1972. Saraf, C.L., and Majidzadeh, K., Dynamic Response and Fatigue Characteristics of Asphaltic Mixtures, American Society for Testing and Material, Special Technical Paper no. 561, 1973, pp.95-114. Sayegh, G., Viscoelastic Properties of Bituminous Mixtures, the 2nd International Conference on the Structural Design of Asphalt Pavements, University of Michgan, 1967, pp. 743-755. Schmidt, R.J., A Practical Method for Measuring the Resilient Modulus of Asphalt-Treated Mixes, Highway Research Record no.404, 1972, pp.22-32. Schuette, E.H., A Simplified Statistical Procedure for Obtaining Design Level Fatigue Curves. American Society for Testing and Material, vol. 54, 1954 pp.853-874. Secor, K.E., and Monismith, C.L., Viscoelastic PrOperties of Asphalt Concrete, Highway Research Board, vol. 41, National Research Council, 1962, pp. 299-320. Seed, H.B., Chan, C.K., and Lee, C.E., Resilience Characteristics of Subgrade Soils and Their Relation to Fatigue Failures in Asphalt Pavements, the International Conference on the Structural Design of Asphlat Pavements, University of Michgan, Ann Arbor, Michigan, 1962, pp. 611- 636. Seed, H.B., Mitry, F.G., Monismith, C.L., and Chan, C.K., Prediction of Flexible Pavement Deflections from Laboratory Tests, National Cooporative Highway Research Program Report no. 35, 1967. Sharma, M.G., Modification of Rut Depth Model, Final Report no. 80-P-30113, Federal Highway Administration, 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 103. 210 Washington, D.C., Nov., 1981, pp. 1-15. Shook, J.F., and Kallas, B. F., Factors Influencing Dynamic Modulus of Asphalt Concrete- the Association of Asphalt Paving Technologists vol.38, 1969, pp.140-178. Smith, W., Finn, F., Kulkarni, R., Saraf, C., and Nair, K., Bayesian Methodology for Verifying Recommendations to Minimize Asphalt Pavement Distress- National Cooporative Highway Research Program, Report 213, 1979, pp. 1-52. Soussou, J. E., and Moavenzadeh, F., Statistical Characteristics of Fatigue Damage Accumulation in Flexible Pavements. American Society for Testing and Material, Special Technical Paper no.561, 1973, pp. 3-11. Terrel, R. L., Fatigue Behavior: Field Observations and Ana tical Predictions American Society for Testing and Material, Special Technical Paper no. 508, 1971, pp. 117- 143. Van Dijk, W., Practical Fatigue Characterization of Bituminous Mixes, the Association of Asphalt Paving Technologists, vol. 44, 1975, pp. 38-74. Van Dijk, W., and Visser, W., The Energy Approach to Fatigue for Pavement Design, the Association of Asphalt Paving Technologists, vol. 46, 1977, pp.1-40. Von Quintus H. L., Rauhut, J.E., and Kennedy T.W., Comparisons of Asphalt Concrete Stiffness as Measured by Various Testing Technigpes, the Association of Asphalt Paving Technologists, vol.51, 1982, pp.35-52. Wedding, P.A., and Gaynor, R.D., The Effects of Using Crushed Gravel as the Coarse and Pipe Aggregate in Dense Graded Bituminous Mixtures, the Association of Asphalt Paving Technologists, vol. 30, 1961, pp.469-492. Witczak, M.W., Repeated Load Fracture of Pavement Systems. Pavement Performance Models, Soils and Pavements Laboratory U.S. Army Engineer Waterways Experiment Station, vol. 1 Vicksburg, Miss., August, 1976. Witczak, M.W., Prediction of Egpivalent Damage Repetitions From Aircraft Traffic Mixtures for Full- Depth Asphalt Airfield Pavements, the Association of Asphalt Paving Technologists, vol. 42, 1973, pp. 277-299. Witczak, M.W., Fatigue Subsystem for Asphalt Concrete Airfield Pavements, the Third International Conference on the Structural Design of Asphalt Pavements, University of 105. 106. VirL_r... ”YD—l 104. 105. 106. 107. 108. 109. 211 Michigan, Vol 1, 1972. Witczak, M.W. and Root, R.E.,Summary of Complex Modulus Laboratory Test Proceedures-and Resultsy American Society for Testing and Material, Special Technical Paper no.561, 1974, pp. 67-94. Wu, T.H., The Effects of Grain Characteristics on the Shear Strength of Cohesionless Soils- Ph.D theises, Michgan State University, Department of Civil Engineering, 1985. Yeager, L.L., and Wood, L.E., Recommended Procedure for Determining the-Dynamic Modulus of Asphalt Mixtures. Transportation Research Record no. 549, 1974. Yoder, E.J., and Lowrie, C.R., Triaxial Testing Applied to Design of Flexible Pavements- Highway Research Board, vol. 31, 1952, pp. 487-499. Yoder, E.J., Selection of Soil Strength Values for the Design of Flexible Pavements- Highway Research Board Record no. 276, 1969, pp. 1-13. Yoder, E.J., and Witczak, M.W., Principles of Pavement Design, 2nd. edition, John Wiley and Sons, Inc., New York, 1975. APPENDICES appl theo: total appli APPENDIX A Physical characteristics (weights, percent air voids, applied sustained and cyclic loads, and the maximum theoretical specific gravity), and the measured elastic, total, and plastic deformations at several number of load applications are presented in this Appendix. 212 213 BEAM CYCLIC LOAD DATA SAMPLE HA HE AC SL CL HEW WBA Gm AV NUMBER (3r) (3r) (1) (lbs) (lbs) (gr) (3:) (2) 11110511 10000 449 4.30 50 100 6032.0 10130.0 2.55 2.91 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT 83(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 150 16.7 19.4 7.3 9.0 10.4 3.4 7.2 8.4 .5 5.6 6.5 1.8 520 13.9 16.1 14.8 7.4 8.5 6.5 5.7 6.6 .6 4.1 4.7 3.0 1000 12.6 14.5 24.0 6.6 7.6 10.3 5.0 5.8 .0 3.4 3.9 4.3 5000 9.9 11.4 60.8 5.1 5.9 24.3 3.6 4.2 15.1 2.1 2.4 7.8 10000 8.9 10.2 104.7 4.6 5.2 40.6 3.1 3.6 24.2 1.7 2.0 11.5 21940 7.9 9.0 158.4 4.0 4.5 59.4 2.6 3.0 33.7 1.3 1.5 14.3 164925 5.8 6.7 618.0 2.9 3.3 212.1 1.7 1.9 104.0 0.6 0.7 31.0 SAMPLE WA W8 AC SL CL HEW NBA GM‘I AV NUMBER (5:) (It) (1) (lbs) (lbs) (8:) (5:) (2) 11110521 10000 449 4.30 50 100 6035.0 10138.0 2.55 2.95 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 52(2.0 IN.) LVDT i3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 17.9 20.3 5.7 9.6 10.9 2.7 7.8 8.9 2.0 6.2 7.0 1.5 500 14.0 16.3 14.3 7.4 .6 6.3 5.7 6.6 4.4 4.1 4.7 2.9 1000 12.7 14.6 24.7 6.6 .7 10.5 5.0 5.8 7.1 3.4 3.9 4.4 5000 9.9 11.8 62.7 5.1 6.1 25.0 3.6 4.3 15.5 221 2.5 8.0 10000 9.0 10.3 104.3 4.6 5.3 40.3 3.1 3.6 24.0 1.7 1.9 11.3 36235 7.4 8.7 215.6 7.2 11.0 - 7.3 10.7 - 7.0 9.7 - 170420 5.9 .7 649.5 2.9 3.3 221.8 1.7 1.9 108.0 0.6 0.7 31.8 HA - TOTAL HEIGHT OF DRY AGGREGATES; NB - HEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL - SUSTAINED LOAD; - HEIGHT OF SAMPLE IN AIR; CL - CYCLIC LOAD; - WEIGHT 0? SAMPLE IN HATER; AV - PERCENT AIR VOIDS; . AND TOT. - ELASTIC AND TOTAL DEFORMATION/CYCLE; NBA WEN GM! - MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA PLA - CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 214 BEAM CYCLIC LOAD DATA SAMPLE WA WB AC 81. CL Haw NBA Gm AV NUMBER (3:) (8r) (2) (lbs) (lbs) (8r) (8:) (2) 11110531 10000 449 4.30 50 100 6040.0 10150.0 2.55 3.00 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 18.0 20.7 5.7 9.7 11.1 2.7 7.8 9.0 2.0 6.2 7.1 1.5 500 14.2 16.3 14.6 7.5 8.6 6.4 5.7 6.6 4.5 4.1 4.7 2.9 1000 12.8 14.7 25.2 6.7 7.7 10.7 5.0 5.8 7.2 3.4 3.9 4.4 5010 10.0 11.7 62.7 5.1 6.0 24.8 3.6 4.2 15.3 2.1 2.5 7.9 10025 .0 10.4 109.3 4.6 5.3 42.0 3.1 3.6 24.9 1.7 1.9 11.7 21200 8.1 9.2 156.7 2.6 3.1 - 2.1 2.5 - 1.7 1.9 - 164725 .9 6.8 646.4 2.9 3.3 219.6 1.7 1.9 106.8 0.6 0.7 31.4 SAMPLE NA NB AC SL CL HEW NBA GM! AV NUMBER (3:) (st) (1) (lbs) (lbs) (8:) (8r) (1) 11110512 10000 449 4.30 50 200 6042.0 10152.0 2.55 2.98 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT l3(4.0 IN.) LVDT I4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 155 33.7 38.1 17.1 17.6 19.9 7.7 13.7 15.5 5.5 10.2 11.5 3.8 525 28.1 31.8 33.8 14.5 16.4 14.5 10.8 12 2 9.8 7.3 8.3 6.1 1000 25.5 28.9 54.9 13.0 14.8 22.8 9.5 10.7 14.9 6.1 6.9 8.7 5000 20.0 22.9 142.0 10.0 11.5 55.1 6.8 7.8 32.8 3.7 4.3 15.9 10000 18.0 20.6 237.4 9.0 10.2 89.4 5.9 6.7 50.9 3.0 3.4 22.5 26730 15.6 17.9 414.0 7.6 8.8 149.3 4.7 5.4 79.5 2.1 2.4 30.2 169100 11.8 13.5 1435.9 5.6 6.4 476.8 3.1 3.6 220.3 1.0 1.1 58.4 HA I TOTAL WEIGHT OP DRY AGGREGATES; NB I HEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I HEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; WBW I HEIGHT OF SAMPLE IN HATER; AV - PERCENT AIR VOIDS; GMM I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 215 BEAM CYCLIC LOAD DATA SAMPLE WA NB AC SL CL HEW WBA GIVH AV NUMBER (5:) (5r) (1) (lbs) (lbs) (8!) (8r) (2) 11110522 10000 449 4.30 50 200 6050.0 10175.0 2.55 3.12 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 82(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 36.8 42.3 13.4 19.1 21.9 6.1 15.0 17.2 4.5 11.4 13.0 .1 500 28.9 32.9 34.1 14.7 16.8 14.4 10.9 12.4 9.7 7.4 6.4 .0 1000 26.1 29.6 58.6 13.2 14.9 24.0 9.5 10.6 15.6 6.1 6.9 .0 5025 20.5 23.4 149.1 10.1 11.6 57.0 6.8 7.8 33.6 3.7 4.2 16.1 10000 18.5 20.8 253.9 9.0 10.2 94.2 5.8 6.6 53.2 2.9 3.3 23.2 158650 12.2 13.9 1312.1 5.7 6.5 430.2 3.1 3.6 197.3 1.0 1.1 51.8 SAMPLE WA NB AC 51. CL HEW NBA GM! AV NUMBER (8r) (3:) (2) (lbs) (lbs) (st) (8r) (2) 11110532 10000 449 4.30 50 200 6040.0 10151.0 2.55 3.02 DEFORMATION (inches x 0.0001) LVDT 91(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT 94(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 38.2 42.1 13.0 19.0 22.1 5.9 14.9 17.4 4.4 11.4 13.2 3.1 500 28.4 32.3. 33.8 14.6 16.6 14.3 10.9 12.4 9.7 7.4 8.5 6.0 1000 25.6 29.8 55.5 13.1 15.2 23.0 9.5 11.0 15.0 6.1 7.1 .7 5000 20.1 22.9 141.2 10.0 11.4 54.8 6.8 7.7 32.4 3.7 4.2 15.7 10000 18.1 20.8 240.3 9.0 10.3 90.2 5.8 6.7 51.2 3.0 3.4 22.6 30000 15.4 17.4 444.3 7.5 8.5 158.8 4.6 5.2 83.6 2.0 2.3 31.0 163740 11.9 13.7 1421.8 5.7 6.5 471.0 3.1 3.6 217.5 1.0 1.1 57.7 I TOTAL WEIGHT OP DRY AGGREGATES; WB I HEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I HEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; I WEIGHT OP SAMPLE IN HATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 5,5339%” 216 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (3:) (5r) (2) (lbs) (lbs) (5:) (gr) (2) 11110515 10000 449 4.30 50 500 6047.0 10166.0 2.55 3.06 DEFORMATION (inches X 0.0001) LVDT '1(0.0 IN.) LVDT 92(2.0 IN.) LVDT #3(4.0 IN.) LVDT 94(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. -ELA. TOT. PLA. ELA. TOT. PLA. 100 91.2104.8 44.0 44.5 51.1 18.7 31.8 36.2 12.4 21.3 24.4 7.8 500 71.6 81.0 112.7 34.2 38.7 44.7 22.7 25.6 27.0 13.3 15.0 14.4 1000 64.6 74.7 192.8 30.6 35.3 74.2 19.6 22.6 42.8 10.7 12.3 21.0 5000 50.7 58.8 481.3 23.5 27.2 172.4 13.8 16.0 89.1 6.1 7.1 34.8 10000 45.7 52.8 809.3 20.9 24.1 281.0 11.8 13.6 137.8 4.7 5.4 47.8 50000 35.9 41.2 2111.2 16.0 18.4 681.0 8.1 9.3 292.4 2.4 2.7 72.8 100000 32.4 36.6 3589.6 14.3 16.2 1121.2 6.8 7.7 452.1 1.7 1.9 94.7 SAMPLE NA NB AC SL CL NBN NBA CM! AV NUMBER (st) (5:) (1) (lbs) (lbs) (st) (st) (2) 11110525 10000 449 4.30 50 500 6047.0 10164.0 2.55 3.03 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 92(2.0 IN.) LVDT I3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 90.8105.0 43.4 44.5 51.4 18.5 31.6 36.5 12.3 21.3 24.7 7.7 500 71.3 80.9 111.0 34.2 38.8 44.2 22.7 25.7 26.7 13.3 15.1 14.3 1000 64.3 73.1 186.4 30.5 34.7 72.0 19.8 22.3 41.6 10.7 12.2 20.5 5000 50.5 58.0 483.4 23.4 28.9 173.7 13.8 15.8 90.0 6.1 7.0 35.2 10000 45.5 52.9 819.0 20.9 24.3 285.3 11.8 13.7 140.3 4.7 5.5 48.8 50000 35.7 40.4 2070.5 16.0 18.1 670.2 8.1 9.2 288.7 2.4 2.7 72.2 100000 32.2 36.8 3508.7 14.3 16.3 1099.8 .9 7.8 444.9 1.7 2.0 93.8 I TOTAL HEIGHT OP DRY AGGREGATES; NB I HEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; I WEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIM!!! THECRETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. £5395“: 217 BEAM CYCLIC LOAD DATA SAMPLE NA W8 AC SL CL NBN NBA GM»! AV NUMBER (3r) (5:) (1) (lbs) (lbs) (3:) (gr) (2) 11110535 10000 449 4.30 50 500 6058.0 10185.0 2.55 3.07 DEFORMATION (inches X 0.0001) LVDT l1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 91.5103.6 43.7 44.6 50.5 18.5 31.7 35.9 12.3 21.3 24.2 7.7 500 71.9 83.2 111.7 34.3 39.7 44.3 22.7 26.3 26.7 13.3 15.4 14.2 1000 64.8 73.3 192.7 30.6 34.7 74.1 19.6 22.2 42.7 10.7 12.1 21.0 5027 50.8 59.0 493.1 23.5 27.3 176.4 13.8 16.0 91.1 6.1 7.1 35.5 10400 45.6 52.1 833.4 20.8 23.8 288.6 11.7 13.4 141.0 4.6 5.3 48.5 18000 42.0 49.1 1093.2 19.0 22.2 369.3 10.3 12.1 172.8 3.7 4.3 53.5 SAMPLE NA NB AC SL CL NBN NBA (314 AV NUMBER (8!) (8r) (1) (lbs) (lbs) (8!) (8r) (2) 11210511 10000 444 4.25 50 100 6032.0 10146.0 2.55 3.17 DEFORMATION (inches X 0.0001) LVDT f1(0.0 IN.) LVDT f2(2.0 IN.) LVDT f3(4.0 IN.) LVDT f4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 17.9 20.5 6.8 9.4 10.7 .1 7.5 8.6 2.3 5.8 6.6 1.7 500 14.1 15.9 18.0 7.2 8.1 .7 5.4 6.2 5.3 3.8 4.3 3.3 1000 12.7 14.4 30.8 6.4 7.3 12.7 4.7 5.4 8.4 3.1 3.6 5.0 5000 9.9 11.3 80.7 5.0 5.6 31.1 3.4 3.9 18.8 1.9 2.2 9.3 10000 9.0 10.3 141.6 4.4 5.1 53.0 2.9 3.4 30.6 1.5 1.8 13.9 30500 7.6 8.8 265.5 3.7 4.3 94.6 2.3 2.7 50.7 1.0 1.2 19.4 683000 4.8 5.4 2231.5 2.2 2.5 690.7 1.1 1.3 287.5 0.3 0.3 55.4 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 53.53%?” 218 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA 68M AV NUMBER (3:) (8r) (1) (lbs) (lbs) (5:) (3r) (2) 11210521 10000 444 4.25 50 100 6041.0 10150.0 2.55 3.02 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 17.5 20.6 6.4 9.3 10.9 3.0 7.4 8.8 2.2 5.8 6.8 1.6 500 13.7 15.5 17.0 7.2 8.1 7.4 5.4 6.1 5.1 3.8 4.3 3.3 1000 12.4 14.0 29.1 6.4 7.2 12.2 4.7 5.4 8.2 3.2 3.6 4.9 5000 9.7 11.0 76.4 4.9 5.6 30.0 3.4 3.9 18.3 1.9 2.2 9.2 10000 8.8 10.1 134.5 4.4 5.1 51.2 2.9 3.4 29.9 1.6 1.8 13.8 30550 7.4 8.4 255.4 3.7 4.2 92.6 2.3 2.6 50.2 1.1 1.2 19.5 40000 7.1 8.2 327.6 3.5 4.0 117.4 2.2 2.5 62.4 1.0 1.1 23.2 352030 5.1 5.9 1255.1 2.4 2.8 407.9 1.3 1.5 182.9 0.4 0.4 43.4 SAMPLE NA NB AC SL CL NBN NBA (3’! AV NUMBER (8!) (8r) (1) (lbs) (lbs) (6!) (8r) (1) 11210531 10000 444 4.25 50 100 6032.0 10136.0 2.55 3.03 DEFORMATION (inches x 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 150 16.4 19.1 8.4 8.7 10.1 .8 6.9 8.0 2.8 5.2 6.1 2.0 550 13.5 15.3 18.0 7.0 7.9 .8 5.3 6.0 5.3 3.7 4.2 3.4 1000 12.4 14.2 29.7 6.4 7.3 12.4 4.7 5.4 8.3 3.1 3.6 5.0 5000 9.7 11.2 76.4 4.9 5.7 29.9 3.4 3.9 18.2 1.9 2.2 9.2 10000 8.8 10.1 133.8 4.4 5.1 50.9 2.9 3.4 29.6 1.6 1.8 13.6 33100 7.3 8.3 266.2 3.8 4.1 96.0 2.3 2.6 51.6 1.0 1.1 19.8 145000 5.9 8.7 785.6 2.8 3.2 265.3 1.6 1.9 127.8 0.6 0.6 37.1 NA I TOTAL HEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I WEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; all! I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE: PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 219 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (5:) (5r) (2) (lbs) (lbs) (6:) (8r) (2) 11210512 10000 444 4.25 50 200 6034.0 10143.0 2.55 3.08 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 35.3 40.5 14.9 18.2 20.9 6.7 14.2 16.3 4.9 - - - 500 27.7 32.2 39.5 14.0 16.3 16.6 10.3 12.0 11.1 ‘ - - 1000 25.0 28.5 86.9 12.5 14.3 27.3 8.9 10.2 17.5 ' - - 5000 19.6 22.1 178.7 9.6 10.9 68.0 6.4 7.2 39.7 - - - 10000 17.7 20.0 304.2 8.6 9.7 112.4 5.5 6.2 62.6 - ' ' 20000 15.9 18.5 438.8 7.7 8.9 157.2 4.7 5.5 83.4 - - - 34000 14.7 17.1 691.2 7.0 8.2 241.8 4.2 4.9 123.4 - - - 164600 11.6 13.4 1790.0 5.4 6.2 583.2 2.9 3.4 262.5 - - - SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (8!) (8r) (2) (lbs) (lbs) (sr) (3r) (2) 11210522 10000 444 4.25 50 200 6031.0 10140.0 2.55 3.11 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT f3(4.0 IN.) LVDT 94(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 35.4 41.2 15.1 18.2 21.2 6.8 14.2 16.5 4.9 ' - - 500 27.8 32.1 39.4 14.1 16.2 16.5 10.3 11.9 11.0 - - - 1000 25.1 29.2 68.2 12.6 14.6 27.8 8.9 10.4 17.8 - - - 5000 19.7 22.9 181.4 9.7 11.2 68.8 6.4 7.4 40.1 - - ' 10000 17.8 20.7 304.1 8.6 10.0 112.0 5.5 6.4 62.2 - - - 44000 14.2 16.1 743.1 8.8 7.6 256.1 4.0 4.5 127.9 ~ * - 165000 11.7 13.4 1968.2 5.4 6.2 639.0 2.9 3.3 286.7 - - - I TOTAL HEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I WEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; F3329?“ I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; 220 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA Gm AV NUMBER (8:) (8r) (1) (lbs) (lbs) (3:) (5r) (1) 11210532 10000 444 4.25 50 200 6028.0 10138.0 2.55 3.15 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 35.6 41.5 15.3 18.3 21.3 6.8 14.2 16.5 4.9 10.6 12.3 3.4 500 28.0 32.5 40.3 14.1 16.3 16.8 10.3 11.9 11.2 6.9 8.0 6.8 1000 25.2 29.1 69.3 12.6 14.5 28.1 8.9 10.3 18.0 5.6 6.5 10.2 5000 19.8 23.1 183.3 9.7 11.3 69.2 6.4 7.4 40.2 3.4 3.9 18.8 10000 17.9 20.5 317.4 8.6 9.9 116.3 5.5 6.3 64.4 2.7 3.1 27.3 27100 15.4 17.5 551.9 7.3 8.3 193.5 4.4 5.0 99.9 1.9 2.1 36.0 49800 14.0 16.2 912.2 6.6 7.7 311.2 3.8 4.4 153.4 1.5 1.7 49.4 195000 11.4 13.0 2042.3 5.3 6.0 654.6 2.8 3.2 288.4 0.8 0.9 68.9 SAMPLE NA NB AC SL CL NBN NBA (344 AV NUMBER (8:) (8r) (1) (lbs) (lbs) (st) (3:) (2) 11210515 10000 444 4.25 so 500 6035.0 10142.0 2.55 3.05 DEFORMATION (inches X 0.0001) LVDT ’1(0.0 IN.) LVDT 02(2.0 IN.) LVDT I3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT: PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 87.6 99.0 49.0 42.5 48.0 20.7 29.8 33.7 13.5 19.8 22.3 8.4 500 68.8 79.1 127.2 32.7 37.6 50.1 21.3 24.5 29.8 12.3 14.1 15.6 1000 82.0 70.1 219.6 29.2 32.9 83.9 18.4 20.8 47.8 9.8 11.1 23.0 5000 48.7 55.1 582.1 22.4 25.3 207.1 12.9 14.6 105.3 5.6 6.3 40.0 10000 43.9 49.7 1000.9 20.0 22.6 345.1 11.1 12.5 166.4 4.3 4.8 56.0 21000 39.3 45.1 1473.4 17.7 20.3 491.1 9.3 10.7 222.9 3.1 3.6 64.9 30400 37.2 42.9 2076.5 16.6 19.2 680.5 8.5 9.8 299.4 2.7 3.1 80.5 122877 30.2 34.7 4763.7 13.2 15.1 1462.9 .1 7.0 566.5 1.4 1.6 107.6 I TOTAL HEIGHT OF DRY AGGREGATES; NB I HEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I HEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I HEIGHT OF SAMPLE IN HATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 6.339%“ 221 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SI. CL WBW WBA GM! AV NUMBER (3:) (3r) (2) (lbs) (lbs) (3:) (3r) (2) 11210525 10000 444 4.25 50 500 6029.0 10134.0 2.55 3.07 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT 94(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 88.0101.8 48.8 42.5 49.2 20.6 29.8 34.4 13.4 19.7 22.8 8.3 500 69.1 82.5 129.7 32.7 39.0 50.9 21.3 25.4 30.2 12.2 14.6 15.8 1000 62.3 70.6 225.6 29.2 33.1 85.9 18.4 20.8 48.8 9.8 11.1 23.4 5200 48.6 55.2 596.4 22.2 25.2 211.1 12.8 14.5 106.7 5.5 .2 40.1 10000 44.1 49.9 1007.7 20.0 22.6 346.2 11.0 12.5 166.4 4.2 .8 55.8 20000 39.7 47.5 1449.4 17.8 21.3 482.4 9.4 11.2 219.2 3.2 3.8 64.2 98850 31.3 35.5 4618.3 13.6 15.5 1427.4 6.4 7.3 562.5 - - - SAMPLE HA NB AC SL CL NBN NBA (311 AV NUMBER (st) (81:) (2) (lbs) (lbs) (8:) (st) (2) 11210535 10000 444 4.25 50 500 6057.0 10186.0 2.55 3.14 DEFORMATION (inches X 0.0001) LVDT '1(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 89.4102.4 49.8 42.9 49.1 20.8 29.9 34.2 13.5 19.7 22.6 8.3 500 70.2 79.7 133.8 33.0 37.4 52.1 21.4 24.3 30.8 12.2 13.8 16.0 1000 63.3 72.4 230.0 29.4 33.6 86.9 18.4 21.1 49.1 9.7 11.1 23.4 5000 49.7 56.9 599.3 22.6 25.8 210.7 12.9 14.8 106.2 5.5 6.3 39.8 10000 44.8 51.3 1041.2 20.1 23.1 354.7 11.0 12.6 169.4 4.2 4.8 56.2 20000 40.4 46.3 1477.3 17.9 20.5 487.5 .4 10.8 220.0 3.2 3.6 63.6 37500 36.7 41.4 2455.3 16.2 18.2 787.0 8.1 9.1 336.4 2.4 2.7 84.7 100900 31.7 38.2 4369.1 13.7 15.6 1337.1 6.4 7.3 521.6 1.5 1.7 102.3 I TOTAL HEIGHT OF DRY AGGREGATES; NB I HEIGHT OF BITUMBN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I HEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I HEIGHT OF SAMPLE IN HATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. $3328?” 222 BEAM CYCLIC LOAD DATA SAMPLE WA NB Ac SL CL NBN NBA GMM AV NUMBER (5:) (st) (2) (lbs) (lbs) (5:) (3r) (2) 11310511 10000 424 4.07 50 100 6074.0 10188.0 2.55 3.00 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT IZ(2.0 IN.) LVDT I3(4.0 IN.) LVDT f4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 17.1 19.6 6.9 9.1 10.4 3.2 7.2 8.3 .4 5.6 6.4 .7 500 13.4 15.5 18.1 7.0 8.0 7.8 5.3 6.1 .4 3.7 4.2 .4 1000 12.1 14.1 31.7 6.2 7.2 13.3 4.6 5.3 .8 3.0 3.5 .2 5000 9.5 10.8 86.1 4.8 5.5 33.7 3.3 3.8 20.4 1.9 2.1 10.2 10000 8.6 9.7 148.2 4.3 4.9 56.3 2.9 3.2 32.6 1.5 1.7 14.8 32142 7.2 8.4 304.2 3.5 4.1 109.7 2.2 2.6 58.7 1.0 1.1 22.4 172900 5.6 6.3 1001.7 2.7 3.0 335.2 1.5 1.7 158.0 0.5 0.6 43.5 SAMPLE HA NB AC SL CL NBN NBA (391 AV NUMBER (3:) (3r) (2) (lbs) (lbs) (5:) (st) (2) 11310521 10000 424 4.07 50 100 6048.0 10144.0 2.55 2.99 DEFORMATION (inches X 0.0001) LVDT 01(0.0 IN.) LVDT IZ(2.0 IN.) LVDT §3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 17.0 19.6 6.9 9.0 10.4 3.2 7.2 8.3 2.4 5.6 6.4 1.7 500 13.4 15.5 19.2 6.9 8.1 8.3 5.3 6.1 5.7 3.7 4.2 3.6 1000 12.0 13.8 32.0 6.2 7.1 13.4 4.6 5.2 8.9 3.0 3.5 5.3 5000 9.5 10.7 87.0 4.8 5.4 34.0 3.3 3.7 20.6 1.9 2.1 10.3 10000 8.5 9.9 150.0 4.3 5.0 57.0 2.8 3.3 33.0 1.5 1.7 15.0 21000 7.6 8.9 222.5 3.8 4.4 81.8 2.4 2.8 45.1 1.1 1.3 18.4 50535 6.7 7.5 444.0 3.3 3.7 157.1 2.0 2.3 81.4 0.8 0.9 28.7 154500 5.7 6.5 844.8 2.7 3.1 284.3 1.5 1.8 135.3 0.5 0.6 38.2 I TOTAL WEIGHT OF DRY AGGREGATES; NB I WEIGHT OP BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I WEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I HEIGHT OF SAMPLE IN HATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EEHE“ 223 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM“! AV NUMBER (5:) (5r) (1) (lbs) (lbs) (5:) (3r) (2) 11310531 10000 424 4.07 50 100 6048.0 10145.0 2.55 3.01 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT f4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 17.0 19.8 6.9 9.0 10.5 3.2 7.2 8.3 2.4 5.6 6.5 1.7 200 15.4 17.6 10.1 8.1 9.2 4.5 6.3 7.2 3.3 4.7 5.3 2.2 500 13.4 15.5 20.0 7.0 8.0 8.6 5.3 6.1 5.9 3.7 4.2 3.8 1000 12.1 13.7 29.7 8.2 7.0 12.5 4.6 5.2 8.3 3.0 3.4 4.9 5000 9.5 11.0 95.1 4.8 5.5 37.2 3.3 3.8 22.5 1.9 2.1 11.2 10000 8.5 9.9 138.9 4.3 4.9 52.7 2.8 3.3 30.5 1.5 1.7 13.9 30000 7.2 8.2 314.6 3.6 4.0 113.7 2.2 2.5 61.1 1.0 1.1 23.5 164700 5.6 6.4 888.2 2.7 3.1 297.6 1.5 1.8 140.7 0.5 0.6 39.1 SAMPLE NA NB AC SL CL NBN NBA Gad AV NUMBER (sr) (st) (2) (lbs) (lbs) (sr) (st) (2) 11310512 10000 424 4.07 50 200 6043.0 10137.0 2.55 3.01 DEFORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT 52(2.0 IN.) LVDT I3(4.0 IN.) LVDT l4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 34.1 39.2 15.4 17.7 20.3 6.9 13.7 15.7 5.0 10.2 11.7 3.5 500 26.8 31.1 41.2 13.6 15.6 17.4 9.9 11.5 11.5 6.6 7.7 7.0 1000 24.1 27.5 70.9 12.2 13.9 29.0 8.6 9.8 18.6 5.4 6.2 10.5 5000 19.0 21.7 193.0 9.3 10.7 73.7 6.2 7.1 42.8 3.3 3.8 20.0 10000 17.1 19.7 339.3 8.3 9.6 125.7 5.3 6.1 69.7 2.6 3.0 29.6 30000 14.5 16.7 652.7 7.0 8.1 230.3 4.2 4.8 118.2 1.7 2.0 41.9 75200 12.6 14.5 1307.6 6.0 6.9 442.8 3.4 3.9 211.6 1.2 1.4 62.9 I TOTAL WEIGHT OP DRY AGGREGATES; NB I NEIGHT OF BITUMPN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I WEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I WEIGHT OF SAMPLE IN HATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. E5???” 224 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA 6PM AV NUMBER (3:) (5r) (2) (lbs) (lbs) (3:) (5r) (2) 11310522 10000 424 4.07 50 200 6044.0 10142.0 2.55 3.06 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT I2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 34.4 39.5 15.7 17.7 20.4 7.1 13.7 15.8 5.1 - - - 500 27.0 30.8 41.7 13.6 15.6 17.5 9.9 11.3 11.6 - - - 1000 24.3 27.5 72.7 12.2 13.8 29.6 8.6 9.8 18.9 - - - 5000 19.1 21.9 199.5 9.4 10.7 75.8 6.2 7.1 43.9 - - - 10000 17.2 19.9 338.0 8.4 .7 124.6 5.3 6.1 68.8 - - - 30000 14.6 17.0 659.7 7.0 .1 231.5 4.2 4.8 118.3 - - - 56700 13.3 15.4 1113.5 6.3 .3 379.8 3.6 4.2 184.9 - - - SAMPLE NA NB AC SL CL NBN NBA GM“) AV NUMBER (8:) (sr) (1) (lbs) (lbs) (st) (31:) (2) 11310532 10000 424 4.07 50 200 6061.0 10172.0 2.55 3.08 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT f2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 120 33.6 38.8 17.8 17.3 19.9 7.9 13.3 15.3 5.6 - - - 500 27.2 30.9 42.8 13.7 15.6 17.9 10.0 11.4 11.9 - - - 1000 24.5 28.2 72.8 12.2 14.1 29.6 8.7 10.0 18.9 - - - 5000 19.2 22.2 196.3 9.4 10.9 74.4 6.2 7.1 43.0 - - - 10000 17.3 19.7 343.3 8.4 9.6 126.2 5.3 6.1 69.7 - - - 35340 14.3 16.2 767.9 6.8 7.7 266.9 4.0 4.5 134.5 - - - 41700 14.0 16.1 900.4 6.8 7.7 310.6 3.9 4.5 154.8 - - - NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OP BITUMBN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I HEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; AV I PERCENT AIR VOIDS; NBN I NEIGHT OF SAMPLE IN NATER; GMM I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 225 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM“! AV NUMBER (5:) (3r) (1) (lbs) (lb8) (St) (5:) (2) 11310515 10000 424 4.07 50 500 6058.0 10164.0 2.55 3.04 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT '2(2.0 IN.) LVDT ’3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 85.8 97.8 52.2 41.4 47.2 22.0 28.8 32.9 14.3 18.9 21.6 8.7 500 67.4 76.7 138.0 31.9 36.2 54.1 20.6 23.5 31.9 11.7 13.3 16.5 1000 60.7 69.0 244.2 28.4 32.3 92.9 17.8 20.2 52.4 9.4 10.6 24.9 5000 47.7 53.9 655.9 21.8 24.6 232.3 12.5 14.1 116.9 5.3 6.0 43.7 10000 43.0 50.0 1124.1 19.5 22.6 385.8 10.7 12.4 184.0 4.0 4.7 60.8 30000 36.5 41.6 2192.4 20.2 32.0 - 16.0 24.4 - - 7.6 - SAMPLE NA NB AC SL CL NBN NBA GM‘I AV NUMBER (3:) (st) (2) (lbs) (lbs) (5:) (st) (2) 11310525 10000 424 4.07 50 500 6070.0 10197.0 2.55 3.22 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT ’3(4.0 IN.) LVDT l4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 88.5100.7 54.6 41.9 47.7 22.5 28.8 32.8 14.5 18.7 21.3 8.8 500 69.5 79.6. 150.1 32.2 36.8 57.7 20.6 23.5 33.6 11.5 13.2 17.1 1000 62.7 71.8 257.6 28.7 32.9 95.9 17.7 20.3 53.4 9.2 10.5 24.9 5000 49.2 57.1 687.2 22.0 25.5 238.1 12.4 14.4 117.9 5.1 6.0 43.0 10000 44.4 50.5 1204.0 19.6 22.3 404.1 10.6 12.0 189.4 3.9 4.4 60.9 20300 39.9 45.9 1789.2 17.5 20.1 581.2 8.9 10.3 256.8 2.9 3.3 71.5 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OP BITUMBN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GUM I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 226 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GNM AV NUMBER (3:) (st) (2) (lbs) (lbs) (st) (31:) (1) 11310535 10000 424 4.07 50 500 6056.0 10153.0 2.55 2.93 DEFORMATION (inches X 0.0001) LVDT 51(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 84.2 97.7 49.6 41.2 47.7 21.1 28.8 33.4 13.8 19.1 22.1 8.5 500 66.2 75.8 134.9 31.7 36.3 53.6 20.7 23.6 31.8 11.8 13.6 16.6 1000 59.6 69.1 235.0 28.3 32.7 90.6 17.8 20.6 51.5 9.5 11.0 24.7 5300 46.4 52.4 640.7 21.5 24.3 229.3 12.4 14.0 116.0 5.3 8.0 43.5 10000 42.2 49.0 1088.9 19.4 22.4 378.8 10.7 12.4 182.5 4.1 4.8 61.3 30000 35.8 40.9 2110.0 16.1 18.4 698.2 3 9.5 307.4 2.6 3.0 82.8 42100 34.0 38.9 2820.5 15.3 17.4 918.8 7 8.7 392.9 - - - SAMPLE NA NB AC SL CL NBN NBA G!!! AV NUMBER (31:) (st) (1) (lbs) (lbs) (sr) (st) (1) 11110611 10000 450 4.31 50 100 5987.0 10143.0 2.55 4.14 DEFORMATION (inches x 0.0001) LVDT I1(0.0 IN.) LVDT '2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 21.5 24.7 8.8 10.3 11.8 3.7 8.0 9.3 .7 ' - - 500 16.9 19.3 22.0 7.9 9.0 8.6 5.8 6.6 5.7 - - - 1000 15.2 17.7 38.0 7.1 8.2 14.3 5.0 5.8 9.2 - - - 2170 13.5 15.7 57.0 6.2 7.2 20.7 4.3 4.9 12.7 - - - 5870 11.7 13.5 116.4 5.3 6.1 40.6 3.4 4.0 23.3 - - - 10350 10.7 12.1 149.4 4.8 5.4 50.7 3.0 3.4 28.0 - - - 30000 9.1 10.5 329.4 4.0 4.6 106.5 2.4 2.7 54.2 - - - 150000 7.2 8.3 819.8 3.1 3.5 245.8 1.6 1.9 109.4 - s - I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EEHE” 227 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (at) (at) (1) (lbs) (lbs) (5:) (5r) (2) 11110621 10000 450 4.31 50 100 5991.0 10142.0 2.55 4.04 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 52(2.0 IN.) LVDT #3(4.0 IN.) LVDT f4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 21.1 24.0 8.3 10.2 11.6 3.5 8.0 9.1 2.6 6.1 6.9 1.8 500 16.6 19.3 21.6 7.9 9.1 8.5 5.8 6.7 5.7 3.9 4.5 3.5 1000 15.0 17.2 36.0 7.0 8.1 13.7 5.0 5.8 .9 3.2 3.7 5.1 5000 11.8 13.6 92.8 5.4 6.3 32.9 3.6 4.1 19.2 1.9 2.2 9.0 10000 10.6 12.2 155.3 4.8 5.5 53.4 3.1 3.5 29.7 1.5 1.7 12.7 33000 8.9 10.1 307.9 3.9 4.5 100.3 2.3 2.7 51.0 1.0 1.1 17.8 181000 .9 9 993.4 3.0 3.4 298.7 1.6 1.8 132.0 0.5 0.5 32.0 351000 6.2 1 1386.4 2.7 3.0 404.0 1.3 1.5 167.9 0.3 0.4 34.2 SAMPLE NA NB AC SL CL NBN NBA (348 AV NUMBER (3:) (gr) (2) (lbs) (lbs) (3:) (3r) (2) 11110631 10000 450 4.31 50 100 5992.0 10138.0 2.55 3.96 DEFORMATION (inches X 0.0001) LVDT ll(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 20.9 23.7 8.3 10.2 11.5 3.5 8.0 9.1 2.6 6.1 6.9 1.8 500 16.4 19.0 20.4 7.8 9.1 8.1 5.8 6.7 5.5 3.9 4.5 3.4 1170 14.4 16.9 39.0 6.8 8.0 14.9 4.9 5.7 9.5 3.1 3.6 5.4 5000 11.6 13.5 88.3 5.4 6.2 31.6 3.6 4.2 18.5 1.9 2.2 8.8 10000 10.5 11.9 149.9 4.8 5.5 52.0 3.1 3.5 29.1 1.5 1.7 12.5 30000 8.9 10.1 280.3 4.0 4.6 92.5 2.4 2.7 47.7 1.0 1.1 17.1 165000 6.9 7.8 906.4 3.0 3.4 276.2 1.6 1.8 123.9 0.5 0.6 31.1 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; G”! I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 228 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM“) AV NUMBER (3:) (5r) (1) (lbs) (lbs) (st) (5:) (1) 11110612 10000 450 4.31 50 200 6044.0 10139.0 2.55 2.75 DEFORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT I2(2.0 IN.) LVDT ’3(4.0 IN.) LVDT f4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 34.6 39.8 11.8 18.6 21.4 5.5 14.8 17.0 4.1 11.4 13.1 2.9 500 27.2 31.5 30.5 14.4 18.7 13.4 10.8 12.5 9.2 7.5 8.7 5.8 1000 24.5 27.9 50.5 12.9 14.7 21.5 9.4 10.8 14.2 8.2 7.1 8.4 5000 .19.3 22.0 130.1 9.9 11.3 51.8 6.8 7.7 31.2 3.8 4.4 15.5 10000 17.4 20.1 220.4 8.8 10.2 85.2 5.9 6.8 49.2 3.1 3.5 22.3 42200 14.0 16.0 497.7 7.0 8.0 180.6 4.3 4.9 94.7 1.8 2.1 34.4 163500 11.4 13.2 1283.9 5.6 6.5 438.7 3.2 3.7 207.7 1.1 1.2 57.8 216000 11.0 12.7 1438.8 5.3 8.2 485.5 3.0 3.5 224.7 0.9 1.1 58.8 337750 10.2 11.7 2066.3 5.0 5.7 683.4 2.7 3.1 304.7 0.8 0.9 71.6 510000 9.6 10.9 2438.1 4.6 5.2 791.5 2.4 2.7 340.5 0.6 0.7 72.0 855300 .9 10.1 3755.0 4.3 4.8 1190.8 2.1 2.4 488.9 0.5 0.5 89.4 SAMPLE NA N8 AC 81. CL NBN NBA GM“! AV NUMBER (st) (st) (1) (lbs) (lbs) (st) (st) (2) 11110622 10000 450 4.31 50 200 5936.0 10152.0 2.55 5.42 DEPORMBTION (inches X 0.0001) LVDT 01(0.0 IN.) LVDT '2(2.0 IN.) LVDT I3(4.0 IN.) LVDT 54(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 51.8 59.5 30.7 21.2 24.4 11.0 15.3 17.6 7.4 10.5 12.0 .7 500 40.7 45.9 79.2 16.2 18.4 26.3 10.8 12.2 15.9 6.4 7.2 8.6 1000 36.6 42.6 133.6 14.5 16.8 42.9 9.3 10.8 24.8 5.1 5.9 12.2 5000 28.8 32.5 338.3 11.0 12.5 100.5 6.4 7.2 51.4 2.8 3.2 19.9 10000 25.9 29.5 574.3 9.8 11.2 165.0 5.4 6.2 79.7 2.1 2.4 27.1 30000 22.0 25.4 1050.2 8.2 9.4 285.8 4.2 4.8 125.1 1.3 1.5 33.8 166800 17.0 19.2 3358.2 6.1 6.9 838.1 2.7 3 0 308.6 0.5 0.6 52.7 229 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NUMBER (3:) (8r) (1) (lbs) (lbs) 11110632 10000 450 4.31 50 200 DEFORMATION (inches x LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVD CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA 100 44.3 50.0 21.3 20.3 22.9 8.5 15. 500 34.8 39.9 54.0 15.6 17.8 20.0 10. 1000 31.4 36.5 90.2 13.9 16.1 32.4 9. 5000 24.7 28.1 231.7 10.6 12.1 77.3 6. 10000 22.2 25.3 390.5 9.5 10.8 126.2 5. 36000 18.3 21.8 805.2 7.6 9.1 245.1 4. 161600 14.6 16.8 2269.1 5.9 6.8 642.6 2. SAMPLE NA NB AC SL CL NUMBER (3:) (5r) (2) (lbs) (lbs: 11110615 10000 450 4.31 50 500 DEFORMATION (inches ) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVI CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. 100 127.1146.5 99.2 48.2 55.6 32.8 30.4 500 99.9115.8 251.5 36.8 42.7 77.0 21.1 1000 90.0102.4 416.9 32.8 37.3 123.4 17.9 5000 70.7 81.4 1082.8 24.9 28.7 296.0 12.2 10000 63.7 73.0 1837.8 22.2 25.4 485.1 10 20000 57.4 66.7 2646.8 19.7 22.9 674.5 8 40000 51.7 60.1 4463.1 17.5 20.3 1097.4 7 44200 51.0 57.8 4336.6 17.2 19.5 1060.9 6 NA I TOTAL NEIGHT OF DRY AGGREGATES; AC I PERCENT ASPHALT CONTENT; NBA I NEIGHT OF SAMPLE IN AIR; NBN I NEIGHT OF SAMPLE IN NATER; GM! I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCI PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATIOI 230 new CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (5:) (8r) (1) (lbs) (lbs) (5:) (5r) (2) 11110625 10000 450 4.31 50 500 6046.0 10137.0 2.55 2.68 DEFORMATION (inches X 0.0001) LVDT 01(0.0 IN.) LVDT 92(2.0 IN.) LVDT #3(4.0 IN.) LVDT 54(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 85.5 96.7 38.7 43.6 49.3 17.2 31.6 35.7 11.6 21.8 24.7 7.5 500 67.2 76.8 97.1 33.6 38.3 40.3 22.8 26.0 24.9 13.8 15.7 13.7 1000 60.6 69.7 163.6 30.0 34.5 65.8 19.7 22.7 39.0 11.1 12.8 19.9 5000 47.6 54.7 426.6 23.0 26.5 160.1 14.0 16.1 85.4 6.5 7.5 35.0 10000 42.9 49.5 709.9 20.6 23.8 258.4 12.0 13.9 131.2 5.0 5.8 48.1 26000 37.1 42.4 1212.1 17.6 20.0 422.7 9.7 11.0 199.5 3.5 3.9 61.3 51000 33.6 38.8 2014.8 15.7 18.2 681.6 8.3 9.5 304.5 2.6 3.0 81.3 166770 28.1 32.3 3923.3 12.9 14.9 1257.5 6.2 7.2 505.9 1.5 1.7 100.9 SAMPLE NA NB AC SL CL NBN NBA (3&1 AV NUMBER (3:) (5r) (2) (lbs) (lbs) (3:) (5r) (2) 11110635 10000 450 4.31 50 500 5982.0 10065.0 2.55 3.18 DEFORMATION (inches X 0.0001) LVDT 11(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(4.0 IN.) LVDT I4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 92.0104.9 45.3 44.3 50.5 19.0 31.3 35.6 12.5 - ' - 600 70.3 80.1 132 7 33.1 37.7 51.5 21.5 24.5 30.5 ' - - 1000 65.1 75.2 198.6 30.4 35.1 75.4 19.3 22.3 43.2 - - - 5050 51.1 57.9 512 0 23.3 26.4 180.7 13.5 15.3 92.4 - - - 10150 46.0 52.4 866.8 20.7 23.7 296.5 11.6 13.2 143.7 - - - 47000 36.5 42.5 2089.7 16.1 18.7 666.1 8.1 9.4 284.1 - ‘ - I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EESEE” 231 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM“! AV NUMBER (3:) (3r) (1) (lbs) (lbs) (3:) (3r) (2) 11110711 10000 450 4.31 50 100 5630.0 9722.0 2.55 6.68 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 29.5 34.2 21.1 11.0 12.7 6.9 7.9 9.2 4.6 5.4 6.3 2.9 500 23.2 27.0 55.9 8.4 9.8 16.8 5.6 6.5 10.1 3.2 3.8 5.4 1050 20.8 24.2 96.1 7.4 8.6 27.9 4.7 5.5 15.9 2.5 2.9 7.7 5000 16.4 18.8 237.3 5.7 6.5 63.6 3.3 3.7 32.0 1.4 1.6 12.0 10200 14.8 17.1 405.5 5.0 5.8 104.8 2.7 3.2 49.5 1.0 1.2 16.3 36700 12.2 13.8 876.6 4.0 4.6 212.2 2.0 2.2 88.7 0.6 0.6 21.8 159340 9.8 11.4 2382.4 3.1 3.6 533.7 1.3 1.6 190.4 0.3 0.3 30.8 SAMPLE NA NB AC SL CL NBN NBA (301 AV NUMBER (5:) (st) (2) (lbs) (lbs) (3:) (at) (2) 11110711 10000 450 4.31 50 100 5756.0 9721.0 2.55 3.70 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT '2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 19.3 21.8 7.5 9.6 10.9 .3 7.6 8.7 2.4 5.8 6.6 1.7 500 15.1 17.2 18.7 7.4 8.4 .6 5.5 6.3 5.2 3.8 4.3 3.2 1000 13.6 15.5 31.7 6.6 7.5 12.5 4.8 5.5 8.2 3.1 3.5 4.8 5000 10.7 12.5 81.5 5.1 5.9 30.0 3.4 4.0 17.8 1.9 2.2 8.6 10000 9.7 11.2 137.7 4.5 5.3 49.1 3.0 3.4 27.9 1.5 1.7 12.3 30000 8.2 9.3 253.5 3.8 4.3 86.0 2.3 2.6 45.1 1.0 1.1 16.7 152000 6.4 7.5 774.8 2.9 3.4 243.9 1.6 1.9 112.6 0.5 0.6 30.0 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMBN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. E5???” 232 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (911 AV NUMBER (8:) (at) (2) (lbs) (lbs) (st) (3:) (2) 11110721 10000 450 4.31 so 100 5685.0 9706.0 2.55 5.19 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT §4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 23.9 27.6 12.6 10.3 11.9 4.7 7.8 9.0 3.3 5.6 6.5 2.2 500 18.8 21.8 31.9 7.9 9.2 11.2 5.6 6.5 7.1 3.5 4.1 4.1 1000 17.0 19.6 54.9 7.1 8.1 18.6 4.8 5.5 11.4 2.8 3.3 6.1 5400 13.2 15.2 148.2 5.3 6.2 46.4 3.3 3.8 25.2 1.6 1.8 10.6 10400 11.9 13.9 237.3 4.8 5.6 72.0 2.8 3.3 37.2 1.2 1.4 14.1 43000 .6 10.9 555.3 3.8 4.2 157.2 2.0 2.3 72.1 0.7 0.8 20.6 169500 7.8 8.9 1448.1 3.0 3.4 383.0 1.4 1.6 154.2 0.3 0.4 31.3 SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (8!) (8!) (1) (lbs) (lbs) (8!) (8r) (1) 11110731 10000 450 4.31 50 100 5736.0 9714.0 2.55 4.09 DEFORMATION (inches X 0.0001) LVDT '1(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(4.0 IN.) LVDT l4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 20.4 23.0 8.5 9.8 11.1 3.5 7.7 8.7 .6 5.8 6.6 1.8 500 16.0 18.4 21.7 7.5 8.7 8.5 5.6 6.4 5.7 3.7 4.3 3.5 1000 14.4 16.5 36.6 6.7 7.7 13.9 4.8 5.5 8.9 3.0 3.5 5.1 5000 11.3 13.2 94.1 5.2 6.0 33.2 3.4 4.0 19.3 1.8 2.1 9.1 10000 10.2 11.8 159.7 4.6 5.3 54.6 2.9 3.4 30.3 1.4 1.6 12.8 30000 8.7 10.0 292.7 3.8 4.4 95.2 2.3 2.6 48.6 0.9 1.1 17.2 159800 6.7 7.8 931.3 2.9 3.4 280.0 1.5 1.8 124.5 0.5 0.5 30.8 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; a” I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 233 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GIN AV NUMBER (at) (at) (1) (lbs) (lbs) (8r) (8:) (1) 11110712 10000 450 4.31 50 200 5670.0 9725.0 2.55 5.80 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 52.3 60.7 35.5 20.6 23.9 12.2 14.6 17.0 8.1 9.9 11.5 5.1 500 41.1 47.7 89.4 15.8 18.3 28.5 10.3 12.0 17.0 6.0 6.9 8.9 1000 37.0 42.9 155.3 14.0 16.3 47.9 8.8 10.2 27.1 4.7 5.4 13.0 5000 29.1 33.4 385.1 10.7 12.3 109.8 6.1 7.0 54.9 2.6 3.0 20.4 10600 26.0 29.5 687.0 9.4 10.7 188.7 5.1 5.8 88.4 1.9 2.1 28.6 33400 21.9 25.3 1310.7 .8 9.0 339.8 3.8 4.4 143.0 1.1 1.3 35.8 151100 17.4 20.0 3614.3 .0 6.8 867.1 2.6 2.9 311.6 0.5 0.6 51.3 SAMPLE NA NB AC SL CL NBN NBA CPD! AV NUMBER (51:) (st) (1) (lbs) (lbs) (st) (3:) (2) 11110712 10000 450 4.31 50 200 5636.0 9725.0 2.55 6.59 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT 52(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 58.3 66.1 47.5 21.2 24.1 15.1 14.6 16.6 9.7 9.6 10.8 5.9 500 45.8 54.0 119.0 16.2 19.1 34.9 10.2 12.0 20.1 5.6 6.6 10.1 1000 41.3 46.9 205.0 14.4 16.4 58.2 8.7 9.9 31.7 4.4 5.0 14.4 5000 32.4 38.7 518.3 11.0 13.1 135.6 5.9 7.1 64.5 2.3 2.8 22.4 18000 26.8 30.3 1278.5 8.8 9.9 313.2 4.3 4.9 132.1 1.3 1.5 34.8 30000 24.8 28.6 1591.5 8.1 9.3 379.6 3.8 4.3 152.0 1.0 1.2 35.3 61232 22.3 25.9 2798.7 7.1 8.3 642.9 3.1 3.6 238.5 0.7 0.8 45.4 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GT4 I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 234 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GNM AV NUMBER (5:) (3r) (2) (lbs) (lbs) (5:) (3r) (1) 11110712 10000 450 4.31 50 200 5703.0 9719.0 2.55 4.95 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 46.3 52.4 26.0 19.9 22.6 9.8 14.6 16.5 6.7 10.2 11.6 .4 500 36.4 41.1 66.9 15.3 17.3 23.3 10.4 11.8 14.5 6.3 7.1 .0 1000 32.8 37.6 112.5 13.6 15.6 38.0 8.9 10.3 22.5 5.1 5.8 11.5 5000 25.7 29.3 282.8 10.4 11.8 88.5 6.2 7.1 46.6 2.9 3.2 18.8 10000 23.2 27.0 492.3 .3 10.8 149.1 5.3 6.2 74.4 2.2 2.5 26.7 30000 19.7 22.5 894.9 7.7 8.8 257.0 4.1 4.7 116.7 1.4 1.6 33.6 173100 15.1 17.5 2944.1 5.7 6.6 775.5 2.6 3.0 297.4 0.6 0.7 54.8 SAMPLE NA NB AC SL CL NBN NBA GUM AV NUMBER (st) (3:) (1) (lbs) (lbs) (st) (5:) (2) 11110722 10000 450 4.31 50 200 5650.0 9707.0 2.55 6.02 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 110 53.1 61.7‘ 41.2 20.5 23.8 13.8 14.3 16.6 9.0 9.5 11.0 5.6 500 42.3 49.0 96.1 15.9 18.4 29.9 10.3 11.9 17.6 5.9 6.8 9.2 1000 38.1 43.7 163.6 14.1 16.2 49.3 8.8 10.1 27.6 4.6 5.3 13.1 5000 29.9 35.2 420.6 10.8 12.6 117.0 6.0 7.1 57.7 2.5 2.9 21.1 10000 27.0 31.4 725.5 9.6 11.1 195.0 5.1 5.9 90.4 1.9 2.2 28.9 38000 22.1 25.4 1503.5 7.6 8.7 377.6 3.6 4.2 154.2 1.0 1.2 36.3 164800 17.7 20.5 4153.6 5.9 6.8 966.6 2.5 2.9 336.9 0.5 0.5 51.8 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 5,5299” 235 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA 6M1 AV NUMBER (3:) (3r) (2) (lbs) (lbs) (8r) (5:) (2) 11110732 10000 450 4.31 50 200 5690.0 9722.0 2.55 5.29 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT f3(4.0 IN.) LVDT {4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 48.7 55.0 29.6 20.2 22.9 10.7 14.6 16.5 7.2 10.1 11.4 .6 500 38.2 43.7 75.5 15.5 17.7 25.4 10.4 11.8 15.5 6.2 7.1 .4 1000 34.5 40.0 129.1 13.8 16.0 42.0 8.9 10.3 24.4 4.9 5.7 12.2 5000 27.1 31.2 325.6 10.5 12.1 98.1 6.2 7.1 50.6 2.7 3.2 19.8 10000 24.4 28.4 547.8 9.4 10.9 159.6 5.2 6.1 77.8 2.1 2.4 26.9 30000 20.7 23.9 1024.7 7.8 9.0 282.9 4.0 4.6 125.1 1.3 1.5 34.4 33300 20.4 23.3 1188.5 7.6 8.7 326.5 3.9 4.5 142.9 1.2 1.4 38.4 163200 16.0 18.4 2946.9 5.8 6.7 747.4 2.6 3.0 279.1 0.5 0.6 49.1 SAMPLE NA NB AC SL CL NBN NBA (3W! AV NMER (sr) (sr) (1) (lbs) (lbs) (5:) (sr) (1) 11110715 10000 450 4.31 50 500 5633.0 9755.0 2.55 7.05 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT f2(2.0 IN.) LVDT §3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 155.7179.9 185.1 48.6 56.1 50.3 27.9 32.2 26.9 14.7 17.0 13.2 500 122.3138.2 471.2 36.9 41.7 117.9 18.9 21.3 55.0 7.9 9.0 21.0 1000 110.2124.5 792.4 32.7 37.0 191.2 15.9 17.9 83.6 5.9 6.7 28.1 5000 86.6 98.9 2015.6 24.8 28.3 446.4 10.4 11.9 165.5 2.8 3.2 38.9 11200 76.7 87.0 3730.1 21.5 24.4 790.6 8.4 9.5 267.5 1.8 2.1 50.6 12000 75.9 87.9 3500.4 21.3 24.6 739.1 8.2 9.5 248.1 1.8 2.0 46.0 13100 74.9 84.6 4081.6 20.9 23.6 857.7 8.0 9.0 284.9 1.7 1.9 51.4 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. E523?” 236 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA Gm AV NUMBER (5:) (3r) (2) (lbs) (lbs) (5:) (5r) (1) 11110715 10000 450 4.31 50 500 5635.0 9758.0 2.55 7.04 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT §3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 155.6178.9 184.0 48.6 55.9 50.1 27.9 32.0 26.8 14.7 16.9 13.2 500 122.2141.5 461.8 36.9 42.7 115.6 18.9 21.9 54.0 7.9 9.2 20.6 1000 110.2124.7 795.5 32.7 37.1 192.1 15.9 18.0 84.0 5.9 6.7 28.3 5000 86.5 99.8 1991.8 24.8 28.6 441.5 10.4 12.0 163.8 2.8 3.2 38.5 8000 80.6 93.3 3002.8 22.8 26.4 648.8 9.2 10.6 228.3 2.2 2.5 47.5 10000 78.0 90.3 3133.9 21.9 25.4 668.9 8.6 10.0 229.5 1.9 2.2 44.8 12100 75.8 87.1 3898.7 21.2 24.4 823.5 8.2 9.4 276.3 1.7 2.0 51.1 SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (5:) (5r) (1) (lbs) (lbs) (3:) (3r) (2) 11110725 10000 450 4.31 50 500 5656.0 9710.0 2.55 5.92 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT §2(2.0 IN.) LVDT I3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 132.6153.5 124.9 47.0 54.3 38.5 28.6 33.1 21.9 16.2 18.7 11.5 500 104.3121.3 312.8 35.8 41.6 89.1 19.7 22.9 44.7 9.1 10.6 18.8 1000 94.0109.4 534.8 31.8 37.0 147.2 16.7 19.4 69.6 6.9 8.1 26.0 5000 73.9 86.0 1374.3 24.2 28.2 348.5 11.2 13.0 141.9 3.4 4.0 38.5 10000 66.6 77.4 2287.8 21.5 25.0 559.7 9.3 10.9 212.3 2.5 2.9 48.7 20000 60.0 69.1 3245.6 19.1 22.0 765.8 7.8 9.0 269.4 1.7 2.0 51.3 22544 58.9 68.5 3895.9 18.7 21.7 913.4 7.5 8.7 317.0 1.6 1.9 58.3 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. ENE?” 237 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM“! AV NUMBER (3:) (st) (2) (lbs) (lbs) (3:) (3r) (1) 11110725 10000 450 4.31 50 500 5632.0 9750.0 2.55 7.00 DEFORMATION (inches X 0.0001) LVDT f1(0.0 IN.) LVDT 52(2.0 IN.) LVDT l3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 154.7176.7 181.8 48.5 55.4 49.7 27.9 31.8 26.6 14.7 16.8 13.1 500 121.5139.0 467.4 36.8 42.1 117.5 18.9 21.6 55.0 8.0 9.1 21.1 1000 109.5127.1 755.7 32.7 37.9 183.3 15.9 18.5 80.4 6.0 6.9 27.1 5000 86.0 99.0 1970.1 24.7 28.5 438.6 10.5 12.0 163.2 2.8 3.2 38.5 10000 77.5 88.3 3419.6 21.9 24.9 733.1 8.7 9.9 252.3 2.0 2.2 49.6 15000 73.0 82.5 3999.6 20.4 23.1 838.6 7.7 8.7 275.2 1.6 1.8 48.0 16000 72.3 84.1 4633.8 20.2 23.5 968.2 7.6 8.8 315.2 1.5 1.7 53.9 SAMPLE NA NB AC SL CL NBN NBA (as! AV NUMBER (at) (at) (1) (lbs) (lbs) (st) (31') (2) 11110735 10000 450 4.31 50 500 5660.0 9715.0 2.55 5.90 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT '2(2.0 IN.) LVDT I3(4.0 IN.) LVDT 14(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 132.4150.8 123.3 47.0 53.5 38.1 28.7 32.8 21. 500 104.0119.2 312.2 35.8 41.0 89.2 19.7 22.6 44. 1000 93.8106.4 533.6 31.8 36.1 147.3 16.7 19.0 69. 5000 73.6 83.2 1384.1 24.2 27.3 352.1 11.2 12.7 143. 10000 66.4 76.9 2289.5 21.5 24.9 561.9 9.4 10.9 213. 20200 59.7 69.2 3288.6 19.0 22.1 777.9 7.8 9.0 274. 16.2 18.5 11. 9.1 10.5 18. 7.0 7.9 26. 3.5 3.9 39. 2.5 2.9 49. 1.7 2.0 52. OOOOQN UNHNCDk NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV G“ I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PERCENT AIR VOIDS; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 238 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GPH AV NUMBER (3r) (5:) (2) (lbs) (lbs) (3:) (st) (2) 11110735 10000 450 4.31 50 500 5636.0 9755.0 2.55 6.98 DEFORMATION (inches X 0.0001) LVDT l1(0.0 IN.) LVDT §2(2.0 IN.) LVDT I3(4.0 IN.) LVDT P4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 154.3177.1 181.7 48.5 55.7 49.8 27.9 32.0 26.7 14.8 16.9 13.2 500 121.2140.2 452.6 36.8 42.6 114.2 18.9 21.9 53.5 8.0 9.2 20.6 1000 109.2126.7 775.1 32.7 37.9 188.5 15.9 18.5 82.8 6.0 6.9 28.0 5000 85.8 97.7 1962.9 24.7 28.2 438.3 10.5 11.9 163.4 2.8 3.2 38.7 10000 77.3 88.5 3372.7 21.9 25.1 725.3 8.7 9.9 250.2 2.0 2.2 49.3 20200 69.6 79.5 4728.0 19.4 22.1 978.3 7.1 8.2 310.3 1.3 1.5 49.6 SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (Br) (Br) (1) (lbs) (lb!) (8r) (5:) (2) 21110511 10000 416 3.99 50 100 6149.0 10349.0 2.54 2.95 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 18.3 21.4 6.2 9.8 11.5 2.9 8.0 9.3 .2 6.3 7.3 1.6 500 14.4 16.7 16.3 7.6 8.8 7.2 5.8 6.8 5.0 4.2 4.8 3.3 1000 13.0 14.8 28.0 6.8 7.7 11.9 5.1 5.8 8.1 3.4 3.9 4.9 5020 10.2 11.5 73.1 5.2 5.9 29.0 3.7 4.1 18.0 2.1 2.4 9.2 10300 9.1 10.5 128.1 4.6 5.3 49.4 3.2 3.6 29.2 1.7 2.0 13.7 31220 7.7 8.9 239.7 3.9 4.5 88.0 2.5 2.9 48.4 1.2 1.3 19.4 176550 .0 6.9 824.3 2.9 3.4 280.4 1.7 1.9 135.9 0.6 0.7 39.5 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 53528835” 239 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (8:) (5r) (1) (lbs) (le) (8:) (3r) (2) 21110521 10000 416 3.99 50 100 6145.0 10348.0 2.54 3.03 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 18.5 21.2 6.5 9.9 11.3 3.0 8.0 9.2 2.3 6.3 7.2 1.7 500 14.6 16.6 17.0 7.6 8.7 7.4 5.9 6.7 5.2 4.2 4.7 3.3 1050 13.0 14.8 29.7 6.8 7.7 12.5 5.0 5.7 8.4 3.4 3.8 5.1 5000 10.3 11.7 75.7 5.2 6.0 29.8 3.7 4.2 18.4 2.1 2.4 9.4 10000 .3 10.5 128.5 4.7 5.3 49.2 3.2 3.6 29.0 1.7 1.9 13.6 35000 7.7 8.7 269.2 3.8 4.3 97.5 2.4 2.7 53.0 1.1 1.3 20.6 150600 .2 .2 767.7 3.0 3.5 260.8 1.8 2.0 127.1 0.6 0.7 37.7 SAMPLE NA NB AC SL CL NBN NBA (301 AV NIMBER (st) (81:) (2) (lbs) (lbs) (st) (8:) (2) 21110531 10000 416 3.99 50 100 6144.0 10341.0 2.54 2.96 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT i3(4.0 IN.) LVDT I4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 18.3 21.2’ 6.3 9.8 11.4 2.9 8.0 9.2 2.2 6.3 7.3 1.6 500 14.4 16.5 16.3 7.6 8.7 7.1 5.8 6.7 5.0 4.2 4.8 3.2 1100 12.8 14.5 29.6 6.7 7.6 12.6 5.0 5.7 8.5 3.4 3.8 5.1 5000 10.2 11.6 74.2 5.2 5.9 29.5 3.7 4.2 18.2 2.1 2.4 9.4 10200 9.1 10.4 126.4 4.6 5.3 48.7 3.2 3.6 28.8 1.7 1.9 13.6 33500 7.7 8.7 250.8 3.8 4.3 91.8 2.5 2.8 50.2 1.1 1.3 19.9 159300 .1 7.0 772.6 3.0 3.4 263.8 1.7 2.0 128.8 0.6 0.7 38.2 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; G“ I MAXIWM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 240 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (8!) (at) (1) (lbs) (lbs) (8!) (8r) (2) 21110512 10000 416 3.99 50 200 6134.0 10321.0 2.54 2.91 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 36.3 41.1 13.7 19.2 21.7 6.3 15.2 17.2 4.6 11.6 13.1 3.3 500 28.5 32.2 36.4 14.8 16.7 15.7 11.0 12.5 10.7 7.6 8.6 6.7 1000 25.7 29.2 61.6 13.2 15.1 25.8 9.6 10.9 16.9 6.2 7.1 9.9 5000 20.2 23.0 161.6 10.2 11.6 63.1 6.9 7.9 37.6 3.8 4.4 18.4 10600 18.0 20.5 289.2 9.0 10.2 109.3 5.9 6.7 62.1 3.0 3.4 27.4 20900 16.3 18.5 412.7 8.1 9.2 151.4 5.1 5.8 82.2 2.3 2.7 32.7 158700 12.0 14.0 1706.6 5.8 6.7 572.2 3.2 3.7 266.7 1.0 1.2 72.2 SAMPLE NA NB AC SL CL NBN NBA an AV NIMBER (8:) (3r) (2) (lbs) (lbs) (st) (3:) (2) 21110522 10000 418 3.99 50 200 6128.0 10317.0 2.54 3.00 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT 52(2.0 IN.) LVDT §3(4.0 IN.) LVDT l4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 36.8 42.3 14.1 19.3 22.2 6.4 15.2 17.5 4.7 11.5 13.3 3.4 500 28.9 33.3 36.7 14.9 17.1 15.7 11.0 12.7 10.6 7.5 8.7 6.6 1000 26.0 30.9 64.3 13.3 15.8 26.7 9.6 11.4 17.4 6.2 7.4 10.1 5000 20.4 23.5 165.1 10.2 11.8 63.9 6.9 7.9 37.9 3.8 4.4 18.3 10000 18.4 20.9 289.6 9.1 10.3 108.7 5.9 6.7 61.7 3.0 3.4 27.1 31300 15.5 17.7 549.9 .6 8.6 196.4 4.6 5.3 103.0 2.0 2.3 37.9 176600 12.0 13.7 1877.5 5.7 6.5 620.3 3.1 3.6 284.4 1.0 1.1 74.0 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; AC NBA NBN GM“! I MAXIMUM THECRETICAL SPECIFIC GRAVITY; ELA PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 241 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (5:) (8r) (2) (lbs) (lbs) (8!) (8r) (1) 21110532 10000 416 3.99 50 200 6126.0 10321.0 2.54 3.10 DEFORMATION (inches X 0.0001) LVDT f1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 37.4 43.0 14.9 19.4 22.3 6.7 15.2 17.5 4.9 11.5 13.2 3.5 500 29.4 33.6 38.8 14.9 17.1 16.4 11.1 12.7 11.1 7.5 8.6 6.8 1000 26.5 30.0 65.9 13.4 15.1 27.0 9.6 10.9 17.5 6.2 7.0 10.1 5000 20.8 23.8 172.1 10.3 11.8 65.8 6.9 7.9 38.8 3.7 4.3 18.6 10400 18.6 21.5 305.1 .1 10.5 113.1 5.9 6.8 63.6 2.9 3.4 27.5 30000 15.9 18.4 550.4 .7 8.8 194.7 4.7 5.4 101.6 2.0 2.3 37.1 166000 12.3 14.2 1845.4 .8 6.7 604.2 3.2 3.6 275.8 1.0 1.1 71.4 SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (6r) (8!) (1) (lb!) (lbs) (8!) (8r) (1) 21110515 10000 416 3.99 50 500 6124.0 10319.0 2.54 3.12 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 120 91.1 104.6 56.4 44.0 50.5 23.6 30.9 35.4 15.4 20.4 23.4 9.5 500 73.6 85.6 128.7 34.9 40.6 50.6 23.0 26.7 30.4 13.3 15.5 16.1 1000 66.3 76.8 224.7 31.1 36.0 85.8 19.8 22.9 49.2 10.7 12.4 23.9 5000 52.1 61.4 588.9 23.9 28.1 209.2 13.9 16.4 107.3 6.1 .2 41.4 10000 46.9 53.7 998.8 21.3 24.4 343.9 11.9 13.6 167.3 4.7 .3 57.3 33200 39.2 44.8 1994.4 17.5 19.9 650.0 9.0 10.3 286.6 2.8 .2 77.1 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 35329?” 242 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (st) (31:) (2) (lbs) (lbs) (at) (at) (2) 21110525 10000 416 3.99 50 500 6129.0 10317.0 2.54 2.97 DEFORMATION (inches X 0.0001) LVDT {1(0.0 IN.) LVDT #2(2.0 IN.) LVDT §3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 91.6 105.2 47.3 45.1 51.8 20.3 32.1 36.9 13.5 21.7 24.9 8.5 500 71.9 82.6 124.7 34.7 39.8 49.9 23.0 26.5 30.2 13.5 15.6 16.2 1000 64.8 73.6 213.1 31.0 35.2 82.7 19.9 22.6 47.9 10.9 12.4 23.7 5000 50.9 58.0 566.2 23.8 27.1 204.7 14.0 16.0 106.2 .3 7.1 41.7 10000 45.9 52.1 952.2 21.2 24.1 333.7 12.0 13.6 164.5 .8 5.5 57.5 20600 41.2 47.3 1413.7 18.8 21.6 479.4 10.2 11.7 223.2 .6 4.1 68.0 SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (81:) (st) (1) (lbs) (lbs) (st) (sr) (2) 21110535 10000 416 3.99 50 500 6114.0 10306.0 2.54 3.17 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 94.3 108.0 50.2 45.4 52.0 21.0 32.0 36.6 13.8 21.4 24.5 8.6 500 74.1 84.5 131.6 34.9 39.8 51.5 22.9 26.1 30.8 13.3 15.1 16.2 1000 66.8 75.9 219.7 31.2 35.4 83.3 19.8 22.5 47.6 10.6 12.1 23.1 5000 52.5 59.7 590.0 23.9 27.2 208.3 13.9 15.8 106.4 6.0 6.9 40.7 10000 47.3 54.9 1016.0 21.3 24.8 347.6 11.9 13.8 168.3 4.6 5.4 57.2 30000 40.1 46.4 1915.1 17.8 20.6 623.0 9.2 10.6 275.6 2.9 3.4 75.1 66000 35.6 41.1 3471.5 15.6 18.0 1088.6 7.6 8.8 449.1 2.0 2.3 101.6 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA . I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; Gl‘fl I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 243 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM“! AV NUMBER (5:) (3r) (1) (lbs) (lbs) (3!) (at) (2) 21110611 10000 416 3.99 50 100 5926.0 10103.0 2.54 4.74 DEFORMATION (inches X 0.0001) LVDT 91(0.0 IN.) LVDT '2(2.0 IN.) LVDT 93(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 23.4 26.5 11.7 10.6 11.9 4.6 8.1 9.1 3.3 5.9 6.7 2.3 500 18.4 20.8 31.3 8.1 9.2 11.5 5.8 6.6 7.5 3.7 4.2 4.4 1000 16.6 19.3 53.4 7.2 8.4 18.9 5.0 5.8 11.8 3.0 3.5 6.4 5000 13.0 15.0 139.5 5.5 6.4 45.9 3.5 4.1 25.7 1.8 2.0 11.4 10000 11.7 13.4 239.5 4.9 5.6 76.3 3.0 3.4 40.5 1.4 1.6 16.1 30300 9.9 11.4 454.3 4.1 4.7 137.3 2.3 2.7 66.8 0.9 1.0 21.7 160300 7.7 8.8 1464.4 3.1 3.5 408.4 1.6 1.8 171.2 0.4 0.5 37.8 SAMPLE NA NB AC SL CL NBN NBA (391 AV NUMBER (5:) (st) (1) (lbs) (lbs) (3:) (3r) (2) 21110621 10000 416 3.99 50 100 5923.0 10111.0 2.54 4.91 DEFORMATION (inches X 0.0001) LVDT '1(0.0 IN.) LVDT I2(2.0 IN.) LVDT I3(4.0 IN.) LVDT 14(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 24.0 27.7 12.5 10.6 12.3 4.8 8.1 9.3 .4 5.9 6.8 .3 500 18.9 21.5 32.7 8.2 9.3 11.8 5.8 6.6 .6 3.7 4.2 .4 1000 17.0 19.6 57.4 7.3 8.4 20.0 5.0 5.8 12.4 3.0 3.5 .7 5400 13.2 15.2 155.5 5.5 6.3 50.0 3.4 4.0 27.6 1.7 1.9 11.9 10900 11.9 13.7 270.0 4.9 5.6 84.1 2.9 3.4 43.9 1.3 1.5 16.9 31050 10.2 11.8 485.8 4.1 4.8 143.8 2.3 2.7 69.0 0.8 1.0 21.8 168930 7.9 9.1 1633.3 3.1 3.5 445.3 1.5 1.7 183.0 0.4 0.4 38.7 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. E3338” 244 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (3:) (5r) (1) (lbs) (lbs) (3:) (at) (2) 21110631 10000 416 3.99 50 100 5910.0 10092.0 2.54 4.95 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 24.1 27.5 12.7 10.6 12.1 4.9 8.1 9.2 .5 5.9 6.7 2.4 500 19.0 21.6 33.6 8.2 9.3 12.0 5.8 6.6 .8 3.7 4.2 4.5 1000 17.1 19.8 58.1 7.3 8.4 20.1 5.0 5.8 12.4 3.0 3.5 .7 5000 13.4 15.3 150.1 5.6 6.3 48.3 3.5 4.0 26.7 1.7 2.0 11.6 10000 12.1 13.8 261.5 5.0 5.7 81.4 3.0 3.4 42.7 1.3 1.5 16.6 50000 9.5 10.8 676.1 3.8 4.3 194.7 2.0 2.3 89.4 0.7 0.8 25.4 100000 8.6 9.7 1173.1 3.4 3.8 326.6 1.7 2.0 140.7 0.5 0.6 33.9 SAMPLE NA NB AC SL CL NBN NBA GM“! AV NUMBER (3:) (st) (2) (lbs) (lbs) (st) (3:) (2) 21110612 10000 416 3.99 50 200 5901.0 10078.0 2.54 4.97 DEFORMATION (inChes X 0.0001) LVDT l1(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(4.0 IN.) LVDT {4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 46.3 54.6“ 29.1 20.7 23.4 10.9 15.1 17.1 7.4 10.6 11.9 .8 500 38.0 43.6 75.5 15.9 18.2 26.2 10.8 12.4 16.2 6.5 7.5 .9 1000 34.2 38.7 130.3 14.1 16.0 43.8 9.3 10.5 25.8 5.2 5.9 13.1 5000 26.9 31.3 342.5 10.8 12.6 106.7 6.4 7.5 56.0 2.9 3.4 22.5 10000 24.2 28.1 574.7 9.6 11.2 173.3 5.5 6.4 86.0 2.2 2.6 30.6 30000 20.5 23.6 1095.4 8.0 9.2 313.2 4.2 4.9 141.5 1.4 1.6 40.3 169200 15.8 18.1 3740.9 6.0 6.8 981.8 2.7 3.1 375.1 0.6 0.7 68.7 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; G!“ I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 245 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GT! AV NUMBER (3:) (3r) (1) (lbs) (lbs) (8r) (8!) (2) 21110622 10000 416 3.99 50 200 5914.0 10109.0 2.54 5.09 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 49.3 55.9 29.8 20.9 23.7 11.0 15.2 17.2 7.5 10.5 12.0 .8 500 38.7 44.1 78.0 16.0 18.2 26.7 10.8 12.3 16.4 6.5 7.4 .0 1000 34.9 40.2 137.0 14.3 16.4 45.5 9.3 10.7 26.7 5.2 6.0 13.4 5000 27.4 31.3 358.1 10.9 12.4 110.2 6.4 7.3 57.4 2.9 3.3 22.8 10000 24.7 28.2 616.3 9.7 11.1 183.4 5.5 6 3 90 3 2.2 2.5 31.7 30000 21.0 24.4 1130.1 8.1 9.4 318.8 4.2 4.9 142.7 1.4 1.6 40.1 162310 16.3 18.7 3761.2 6.0 6.9 975.7 2.7 3 2 370.3 0.6 0.7 67.2 SAMPLE NA NB AC SL CL NBN NBA (381 AV NUMBER (8r) (8:) (1) (lbs) (lbs) (8:) (8r) (2) 21110632 10000 416 3.99 50 200 5915.0 10111.0 2.54 5.09 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT §3(4.0 IN.) LVDT {4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 49.3 55.9 30.3 20.9 23.7 11.2 15.2 17.2 7.6 10.5 12.0 .9 500 38.7 45.1 79.3 16.0 18.6 27.2 10.8 12.5 16.7 6.5 7.5 9.1 1000 34.9 39.6 137.2 14.3 16.1 45.5 9.3 10.5 26.7 5.2 5.9 13.4 5000 27.4 31.2 353.2 10.9 12.4 108.6 6.4 7.3 56.6 2.9 3.3 22.4 10000 24.7 28.5 610.7 9.7 11.2 181.7 5.5 6.3 89.4 2.2 2.5 31.4 30000 21.0 24.3 1142.3 8.1 9.3 322.1 4.2 4.9 144.2 1.4 1.6 40.5 164500 16.2 18.3 3819.2 .0 6.8 989.6 2.7 3.1 374.9 0.6 0.7 67.8 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 35388535 246 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM‘I AV NUMBER (3:) (st) (1) (lbs) (lbs) (8:) (3r) (2) 21110615 10000 416 3.99 50 500 5913.0 10107.0 2.54 5.09 DEFORMATION (inches X 0.0001) LVDT Il(0.0 IN.) LVDT f2(2.0 IN.) LVDT #3(4.0 IN.) LVDT 04(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 123.1 143.0 101.5 47.8 55.5 34.3 30.4 35.3 20.4 18.0 20.9 11.3 500 96.7 112.3 266.3 36.5 42.4 83.5 21.2 24.6 44.0 10.4 12.1 19.8 1000 87.2 99.3 458.5 32.5 37.0 139.0 18.0 20.5 69.4 8.1 9.2 28.0 5000 68.5 79.7 1194.5 24.8 28.8 334.6 12.2 14.2 145.6 4.2 4.9 43.7 10000 61.7 71.2 2038.0 22.0 25.4 551.5 10.3 11.9 224.7 3.0 3.5 57.8 30700 51.9 58.8 3938.3 18.1 20.5 1005.3 .6 8.7 364.0 1.7 1.9 69.7 31700 52.2 59.4 4210.7 18.2 20.7 1076.6 .7 8.8 391.2 1.7 2.0 75.5 SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (81) (3:) (1) (lbs) (lbs) (sr) (8r) (1) 21110625 10000 416 3.99 50 500 5914.0 10103.0 2.54 5.01 DEPORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT §2(2.0 IN.) LVDT §3(4.0 IN.) LVDT '4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 121.8 137.7 98.1 47.7 53.9 33.5 30.4 34.4 19.9 18.1 20.5 11.1 500 95.6 111.3 258.2 36.4 42.4 81.6 21.2 24.7 43.3 10.5 12.2 19.6 1000 86.2 99.6 434.3 32.4 37.5 132.8 18.1 20.9 66.7 8.1 9.4 27.1 5000 67.7 79.8 1148.9 24.7 29.1 324.8 12.3 14.5 142.2 4.2 5.0 43.1 10000 61.0 70.9 2003.0 22.0 25.5 547.1 10.3 12.0 224.4 3.1 3.6 58.4 30800 51.5 59.9 3784.3 18.1 21.1 976.7 7.8 9.0 357.5 1.8 2.1 69.9 35000 50.6 58.0 4506.8 17.7 20.4 1155.6 7.5 8.6 417.2 1.7 1.9 78.7 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; G“ I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 247 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GEM AV NUMBER (3:) (5r) (2) (lbs) (lbs) (5:) (3r) (2) 21110635 10000 416 3.99 50 500 5902.0 10080.0 2.54 4.98 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT f2(2.0 IN.) LVDT #3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 120.9 139.2 97.6 47.5 54.7 33.4 30.4 35.0 19.9 18.1 20.9 11.1 500 95.0 108.2 250.8 36.3 41.4 79.6 21.2 24.1 42.3 10.5 12.0 19.2 1000 85.6 99.6 432.7 32.3 37.6 132.8 18.1 21.0 66.9 8.2 .5 27.3 5000 67.2 75.9 1147.9 24.6 27.8 325.8 12.3 13.9 143.0 4.2 4.8 43.5 10600 60.1 68.6 2017.6 21.7 24.8 551.7 10.2 11.6 225.7 3.0 3.5 58.2 30300 51.3 58.9 3686.3 18.1 20.8 956.1 7.8 8.9 351.8 1.8 2.1 69.5 SAMPLE NA NB AC SL CL NBN NBA (391 AV NUMBER (5:) (st) (1) (lbs) (lbs) (8r) (3:) (2) 21110711 10000 416 3.99 50 100 5715.0 9896.0 2.54 6.78 DEFORMATION (inches X 0.0001) LVDT 51(0.0 IN.) LVDT f2(2.0 IN.) LVDT §3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 30.5 35.3 24.7 11.3 13.0 7.9 8.0 9.3 5.3 5.5 6.3 3.4 500 24.0 27.5 65.6 8.6 9.8 19.5 5.6 6.5 11.7 3.3 3.7 6.2 1000 21.8 24.8 112.9 7.8 8.7 32.4 4.8 5.5 18.4 2.6 2.9 8.9 5000 17.0 19.5 288.9 5.8 6.7 76.5 3.3 3.8 38.2 1.4 1.6 14.2 10000 15.3 17.4 496.0 5.2 5.9 126.8 2.8 3.2 59.5 1.0 1.2 19.3 31900 12.9 15.0 979.2 4.2 4.9 235.8 2.1 2.4 99.0 0.6 0.7 24.8 175800 10.0 11.4 3295.9 3.1 3.6 725.1 1.3 1.5 252.7 0.2 0.3 38.7 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; NBN W I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 248 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM"! AV NUMBER (3:) (8r) (1) (lbs) (lbs) (8:) (3r) (1) 21110721 10000 416 3.99 50 100 5711.0 9896.0 2.54 6.87 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT §3(4.0 IN.) LVDT {4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 30.9 35.9 25.7 11.3 13.1 8.2 8.0 9.3 5.4 5.5 6.3 3.4 500 24.3 27.7 66.7 8.6 9.8 19.6 5.6 6.4 11.7 3.3 3.7 6.2 1000 21.9 24.8 116.3 7.7 8.7 33.1 4.8 5.5 18.7 2.6 2.9 9.0 5300 17.0 19.7 314.1 5.8 6.7 82.2 3.2 3.7 40.6 1.3 1.6 14.8 10000 15.5 18.0 512.2 5.2 6.0 129.7 2.8 3.2 60.5 1.0 1.2 19.5 31000 13.1 14.9 997.0 4.3 4.9 238.1 2.1 2.4 99.6 0.6 0.7 24.8 171000 10.1 11.6 3267.8 3.2 3.6 712.8 1.3 1.5 247.3 0.2 0.3 37.6 SAMPLE NA NB AC SL CL NBN NBA (381 AV NUMBER (5:) (5r) (1) (lbs) (lbs) (3:) (3r) (2) 21110731 10000 416 3.99 50 100 5703.0 9886.0 2.54 6.92 DEFORMATION (inches X 0.0001) LVDT f1(0.0 IN.) LVDT 02(2.0 IN.) LVDT §3(4.0 IN.) LVDT #4(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 31.1 35.6 25.9 11.3 13.0 8.2 8.0 9.2 5.4 5.4 6.2 .4 500 24.4 28.4 67.6 8.6 10.0 19.8 5.6 6.5 11.8 3.2 3.8 .2 1000 22.0 24.8 116.3 7.7 8.6 32.9 4.8 5.4 18.6 2.5 2.9 8.9 5000 17.3 20.0 308.0 5.8 6.7 80.4 3.3 3.8 39.8 1.4 1.6 14.6 10000 15.6 17.9 519.9 5.2 6.0 131.0 2.8 3.2 60.9 1.0 1.2 19.5 30000 13.2 15.1 992.7 4.3 4 9 236.2 2.1 2.4 98.8 0.6 0.7 24.7 170000 10.2 11.8 3367.1 3.2 3 7 730.5 1.3 1.5 252.5 0.2 0.3 38.2 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD: NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; NBN GMM I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 249 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (3:) (at) (2) (lbs) (lbs) (3:) (31') (1) 21110712 10000 616 3.99 50 200 5700.0 9896.0 2.56 7.09 DEFORMATION (inches X 0.0001) LVDT fl(0.0 IN.) LVDT IZ(2.0 IN.) LVDT '3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 63.7 73.1 62.6 22.0 25.3 18.6 16.8 17.0 11.6 9.5 10.8 7.0 500 50.0 56.5 165.6 16.6 16.9 66.0 10.3 11.6 25.7 5.5 6.2 12.5 1000 65.1 52.2 276.6 16.9 17.2 76.3 8.7 10.1 39.3 6.2 6.9 17.2 5000 35.6 61.0 730.9 11.3 13.1 160.7 5.9 6.8 83.1 2.2 2.6 27.3 10000 31.9 36.3 1267.2 10.0 11.6 302.1 5.0 5.6 130.0 1.6 1.8 36.8 30900 26.9 31.0 2387.0 6.3 9.5 536.0 3.7 6.2 205.1 0.9 1.1 63.9 68500 23.9 27.5 6369.6 7.2 .3 935.7 3.0 3.6 327.2 0.6 0.7 55.6 SAMPLE NA NB AC SL CL NBN NBA . (1!! AV NUMBER (3:) (3r) (1) (lbs) (lbs) (8!) (5r) (1) 21110722 10000 616 3.99 50 200 5701.0 9892.0 2.56 7.06 DEFORMATION (inches x 0.0001) LVDT 51(0.0 IN.) LVDT #2(2.0 IN.) LVDT '3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 63.2 73.6 61.2 22.0 25.6 18.5 16.8 17.3 11.7 9.5 11.0 6.9 500 69.7 56.5 161.6 16.7 19.0 65.2 10.3 11.7 25.6 5.5 6.3 12.3 1000 66.8 50.5 276.6 16.9 16.8 76.0 8.8 9.9 39.3 6.3 6.8 17.3 5200 35.0 39.5 763.9 11.2 12.7 186.5 5.9 6.6 86.8 2.2 2.5 27.8 10000 31.7 36.3 1222.1 10.0 11.5 292.9 5.0 5.7 126.6 1.6 1.9 36.0 30000 26.9 30.9 2306.0 8.3 9.5 521.5 3.7 6.3 200.9 0.9 1.1 63.6 66335 26.0 27.5 6137.3 - - ‘ ' - ' - - - I TOTAL NEIGHT OP DRY AGGREGATES; NB I NEIGHT OP BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD: I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE: I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EEHE” 250 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GUM AV NUMBER (5:) (5r) (1) (lbs) (lbs) (5:) (3r) (2) 21110732 10000 616 3.99 50 200 5697.0 9885.0 2.56 7.06 DEFORMATION (inches X 0.0001) LVDT 91(0.0 IN.) LVDT #2(2.0 IN.) LVDT 93(6.0 IN.) LVDT 06(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 63.2 71.5 61.0 22.0 26.8 18.5 16.8 16.8 11.6 9.5 10.7 6.9 500 69.6 56.1 161.1 16.7 16.9 65.0 10.3 11.6 25.2 5.5 6.2 12.3 1000 66.7 51.1 278.2 16.9 17.0 75.1 8.7 10.0 39.8 6.3 6.9 17.5 5000 35.1 39.8 716.6 11.3 12.8 178.1 5.9 6.7 82.2 2.2 2.5 27.1 10000 31.7 36.5 1266.5 10.0 11.5 296.8 5.0 5.7 129.0 1.6 1.9 36.7 30000 26.9 30.5 2281.6 8.3 9.6 516.0 3.7 6.2 198.8 0.9 1.1 63.1 52652 26.7 28.5 3657.7 - - - - - - - - - SAMPLE NA NB AC 81. CL NBN NBA cm Av NUMBER (3:) (st) (1) (lbs) (lbs) (3:) (5t) (2) 21110715 10000 616 3.99 50 500 5698.0 9889.0 2.56 7.07 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(6.0 IN.) LVDT 96(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 158.7 180.1 207.3 69.3 56.0 56.1 28.2 31.9 29.9 16.8 16.7 16.6 550 122.9 161.6 572.2 36.8 62.6 161.9 18.6 21.6 65.3 7.6 8.8 26.6 1000 112.3 130.6 922.1 33.2 38.6 221.6 16.0 18.6 96.6 5.9 6.9 32.2 5000 88.2 101.1 2380.5 25.1 28.8 526.9 10.5 12.1 193.5 2.8 3.2 65.0 10000 79.5 90.6 6198.5 22.3 25.6 891.5 8.7 9.9 303.8 1.9 2.2 58.7 13365 76.1 87.0 6661.0 ‘ ' ' - ' - - - - I TOTAL NEIGHT OP DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT: SL I SUSTAINED LOAD; I NEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EEHE’” 251 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA Gtfl AV NUMBER (5:) (st) (1) (lbs) (lbs) (sr) (st) (2) 21110725 10000 616 3.99 50 500 5701.0 9896.0 2.56 7.09 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT i3(6.0 IN.) LVDT i6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 159.3 182.3 206.8 69.6 56.5 55.8 28.2 32.2 29.7 16.7 16.9 16.5 500 125.1 166.8 565.7 37.5 63.6 135.6 19.1 22.1 62.9 7.9 9.2 23.6 1000 112.8 127.6 933.0 33.2 37.6 223.6 16.0 16.1 97.1 5.9 6.7 32.3 5000 88.6 101.2 2600.0 25.1 26.7 527.8 10.5 12.0 196.2 2.8 3.2 65.1 10000 79.8 92.8 6150.0 22.3 25.9 878.7 8.7 10.1 298.8 1.9 2.2 57.5 11632 76.2 69.2 6626.6 21.6 26.6 972.9 6.6 9.6 325.7 1.6 2.0 60.3 SAMPLE NA NB AC SL CL NBN NBA cm AV UMBER (sr) (st) (1) (lbs) (lbs) (sr) (at) (2) 21110735 10000 616 3.99 50 500 5696.0 9890.0 2.56 7.12 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 52(2.0 IN.) LVDT #3(6.0 IN.) LVDT §6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 159.9 181.7 211.1 69.6 56.1 56.8 28.1 31.9 30.2 16.7 16.7 16.7 500 125.6 163.0 567.2 37.5 62.6 135.5 19.0 21.7 62.6 7.9 9.0 23.7 1000 113.2 128.6 932.3 33.2 37.8 222.5 16.0 18.1 96.6 5.9 6.7 32.0 5000 88.9 103.6 2632.8 25.1 29.2 532.8 10.5 12.2 195.6 2.8 3.2 65.2 10000 80.2 91.2 6200.3 22.3 25.3 885.7 8.7 9.9 300.2 1.9 2.2 57.5 11050 79.0 90.7 6685.1 ' - - ' ' ' ' - - NA I TOTAL NEIGHT OP DRY AGGREGATES; NB I NEIGHT OP BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; 3?: I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 252 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GNM AV NUMBER (at) (3:) (2) (lbs) (lbs) (st) (31:) (2) 31110511 10000 636 6.16 50 100 6127.0 10306.0 2.56 2.97 DEFORMATION (inches x 0.0001) LVDT 91(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(6.0 IN.) LVDT 16(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 110 16.0 20.7 6.7 9.7 11.1 3.1 7.6 6.9 .3 6.1 7.0 1.7 500 16.6 16.6 16.0 7.6 6.7 7.0 5.6 6.7 .9 6.1 6.6 3.2 1000 12.9 16.7 27.7 6.6 7.7 11.6 5.1 5.7 .9 3.6 3.9 6.8 5000 10.2 11.6 72.1 5.2 5.9 28.6 3.6 6.1 17.6 2.1 2.6 9.0 10000 9.2 10.6 122.3 6.6 5.3 67.1 3.2 3.6 27.6 1.7 1.9 13.1 30500 7.6 .9 233.6 3.9 6.5 85.5 2.5 2.9 67.0 1.2 1.3 18.6 162050 6.0 7.0 765.6 2.9 3.6 253.8 1.7 2.0 123.5 0.6 0.7 36.3 SAMPLE NA NB AC SL CL NBN NBA (3&1 AV NUMBER (3:) (at) (1) (lbs) (lbs) (st) (5:) (2) 31110521 10000 636 6.16 50 100 6128.0 10310.0 2.56 2.98 DEFORMATION (inches X 0.0001) LVDT 51(0.0 IN.) LVDT ’2(2.0 IN.) LVDT '3(6.0 IN.) LVDT §6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 18.3 20.9 6.1 9.8 11.2 2.8 7.9 9.1 2.1 6.2 7.1 1.6 520 16.3 16.3 16.6 7.5 8.6 7.2 5.8 6.6 5.1 6.1 6.7 3.3 1000 13.0 16.7 28.1 6.8 7.7 11.9 5.1 5.8 8.0 3.6 3.9 6.9 5250 10.1 11.5 73.9 5.2 5.9 29.2 3.6 6.1 18.0 2.1 2.6 9.2 10600 .1 10.8 121.8 6.6 5.5 66.8 3.1 3.7 27.6 1.7 2.0 12.9 30000 7.8 8.9 229.8 3.9 6.6 86.3 2.5 2.9 66.6 1.2 1.3 18.6 165600 .0 .9 758.6 2.9 3.6 257.8 1.7 2.0 125.1 0.6 0.7 36.6 NA I TOTAL NEIGHT OP DRY AGGREGATES; NB I NEIGHT OP BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GM I MAXIMUM THEORETICAL SPECIFIC RAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 253 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM-l AV NUMBER (3:) (3r) (1) (lbs) (lbs) (5:) (3r) (2) 31110531 10000 636 6.16 50 100 6138.0 10333.0 2.56 3.06 DEFORMATION (inches X 0.0001) LVDT f1(0.0 IN.) LVDT 62(2.0 IN.) LVDT I3(6.0 IN.) LVDT 96(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 16.6 21.6 6.6 9.9 11.6 2.9 6.0 9.2 2.2 6.2 7.2 500 16.6 16.7 17.0 7.6 6.7 7.6 5.8 6.7 5.1 6.1 6.7 1000 13.2 16.9 26.8 6.6 7.7 12.1 5.1 5.6 6.1 3.6 3.9 5000 10.3 11.9 75.2 5.2 6.0 29.5 3.7 6.2 16.1 6.9 6.5 - 10000 .3 10.7 126.3 6.7 5.6 66.1 3.2 3.6 26.3 6.3 5.6 - 30000 7.9 9.1 260.5 3.9 6.5 67.3 2.5 2.9 67.8 3.0 3.7 - 162900 .1 7.3 766.9 3.0 3.5 266.6 1.7 2.0 127.5 2.0 2.2 - SAMPLE NA NB AC SL CL NBN NBA (2&1 AV NUMBER (3:) (st) (1) (lbs) (lbs) (3:) (5r) (2) 31110512 10000 636 6.18 50 200 6162.0 10361.0 2.56 3.08 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT 52(2.0 IN.) LVDT '3(6.0 IN.) LVDT 06(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 37.3 63.3 16.5 19.6 22.5 6.6 15.2 17.6 6.8 11.5 13.3 3.6 500 29.3 36.1 37.2 16.9 17.6 15.7 11.1 12.9 10.6 7.5 8.7 6.5 1000 26.6 30.0 66.8 13.3 15.2 26.6 9.6 10.9 17.3 6.1 7.0 10.0 5000 20.7 23.6 168.1 10.3 11.7 66.6 6.9 7.8 38.0 3.7 6.3 18.2 10000 18.7 21.5 285.7 .2 10.6 106.2 5.9 6.8 59.8 3.0 3.6 26.1 30600 15.8 17.9 553.3 .6 8.6 195.8 6.6 5.2 102.0 2.0 2.2 37.2 167600 12.2 13.9 1777.9 .8 6.5 582.7 3.1 3.6 265.8 1.0 1.1 68.7 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 5E3 254 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM“! AV NUMBER (3:) (5r) (1) (lbs) (lb!) (8!) (3r) (2) 31110522 10000 636 6.16 50 200 6132.0 10322.0 2.56 3.05 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT IZ(2.0 IN.) LVDT #3(6.0 IN.) LVDT f6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 37.1 62.6 16.2 19.3 22.1 6.5 15.2 17.3 6.7 11.5 13.1 .3 500 29.1 33.9 38.6 16.9 17.3 16.3 11.0 12.8 11.0 7.5 8.7 .8 1000 26.2 29.7 63.1 13.3 15.1 26.0 9.6 10.9 16.9 6.2 7.0 .8 5000 20.6 23.6 165.7 10.2 11.6 63.7 6.9 7.8 37.6 3.7 6.2 18.1 10300 18.5 21.3 293.3 .1 10.5 109.3 5.9 6.8 61.6 2.9 3.6 26.8 30000 15.8 17.9 529.1 .6 8.7 188.0 6.7 5.3 98.3 2.0 2.3 36.1 166500 12.2 16.0 1767.8 .8 6.6 575.3 3.2 3.6 263.6 1.0 1.1 68.8 SAMPLE NA NB AC SL CL NBN NBA (1%! AV NUMBER (3r) (3:) (1) (lbs) (lbs) (3:) (st) (2) 31110532 10000 636 6.16 50 200 6127.0 10311.0 2.56 3.02 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 52(2.0 IN.) LVDT 93(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 36.8 61.9 16.3 19.3 21.9 6.5 15.1 17.2 6.8 11.5 13.1 3.6 500 28.9 33.6 36.6 16.8 17.1 15.6 11.0 12.7 10.6 7.5 8.7 6.5 1000 26.1 29.9 62.3 13.3 15.2 25.8 9.6 11.0 16.8 6.2 7.1 9.7 5000 20.5 23.7 165.1 10.2 11.8 63.7 6.9 8.0 37.7 3.8 6.6 18.2 10000 18.6 21.0 280.1 .1 10.6 106.9 5.9 6.8 59.6 3.0 3.6 26.0 30500 15.6 18.6 535.5 .6 9.0 190.9 6.6 5.5 100.0 2.0 2.6 36.8 168000 12.1 16.0 1736.0 .7 6.6 572.6 3.1 3.7 262.7 1.0 1.1 68.7 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIEET OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; (314 I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 255 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (301 AV NUMBER (8!) (at) (1) (Lbs) (Lbs) (8!) (8r) (2) 31110515 10000 636 6.16 50 500 6136.0 10333.0 2.56 3.16 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT §6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 96.3 107.3 50.6 65.6 51.7 21.2 32.0 36.6 13.9 21.3 26.3 8.7 500 76.1 86.5 130.8 36.9 39.9 51.2 22.9 26.1 30.6 13.2 15.1 16.1 1000 66.7 77.3 222.6 31.2 36.1 86.5 19.8 22.9 68.3 10.6 12.3 23.6 5000 52.6 60.7 576.3 23.9 27.7 203.7 13.9 16.1 106.0 16.0 16.0 - 10000 67.3 56.1 996.7 21.3 26.6 360.7 11.9 13.6 166.9 13.6 13.6 - 30000 60.1 66.5 1867.6 17.8 20.6 608.2 9.2 10.7 269.0 12.0 12.0 - 63188 35.8 61.6 3263.5 15.7 18.2 1026.7 7.7 8.9 625.1 - - - SAMPLE NA NB AC SL CL NBN NBA (31! AV mm (31:) (sr) (2) (lbs) (lbs) (5:) (sr) (2) 31110525 10000 636 6.16 50 500 6118.0 10296.0 2.56 2.99 DEFORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT 52(2.0 IN.) LVDT 63(6.0 IN.) LVDT 96(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 91.5 103.3 66.3 66.9 50.7 19.8 31.9 36.0 13.1 21.5 26.3 8.3 500 71.9 82.1 120.3 36.6 39.5 68.0 22.9 26.2 29.0 13.6 15.3 15.5 1000 66.8 73.3 209.8 30.9 36.9 81.2 19.8 22.6 66.9 10.8 12.2 23.1 5200 50.6 57.2 556.2 23.5 26.6 199.5 13.8 15.6 103.0 6.1 6.9 60.0 10000 65.9 53.2 930.7 21.1 26.5 325.3 11.9 13.8 159.9 6.8 5.5 55.6 30200 38.9 66.8 1729.5 17.6 20.3 576.9 9.2 10.7 258.5 3.0 3.5 72.3 98000 32.6 37.9 6039.7 16.5 16.8 1271.7 7.0 8.1 515.3 1.8 2.0 109.1 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EESQEE 2556 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA cm AV NUMBER (5:) (st) (2) (lbs) (lbs) (8:) (3r) (2) 31110535 10000 636 6.16 50 500 6136.0 10322.0 2.56 2.96 DEFORMATION (inches X 0.0001) LVDT 91(0.0 IN.) LVDT #2(2.0 IN.) LVDT i3(6.0 IN.) LVDT 16(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 91.3 105 0 65.7 65.0 51.8 19.6 32.0 36.8 13.0 21.6 26.9 8.2 500 71.7 81.2 116.9 36.6 39.2 67.6 23.0 26.0 28.8 13.5 15.3 15.6 1000 66.6 76.6 209.3 30.9 35.7 81.3 19.9 22.9 67.1 10.9 12.5 23.2 5000 50.8 57.8 539.9 23.7 27.0 195.6 16.0 15.9 101.6 6.2 7.1 39.8 10000 65.8 52.2 923.3 21.2 26.1 323.9 12.0 13.7 159.7 6.6 5.5 55.8 30000 38.8 65.1 1726.6 17.6 20.5 576.6 9.3 10.8 260.1 3.1 3.6 73.3 112800 31.6 36.1 6606.7 16.2 16.1 1383.2 6.8 7.7 555.2 1.7 1.9 116.0 SAMPLE NA NB AC SL CL NBN NBA (R11 AV NUMBER (3:) (st) (1) (lbs) (lbs) (sr) (st) (2) 31110711 10000 636 6.16 50 100 5696.0 9865.0 2.56 6.92 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(6.0 IN.) LVDT §6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 31.0 35.3 26.2 11.3 12.8 8.3 8.0 9.1 5.5 5.6 6.2 3.5 500 26.6 28.3 67.0 8.6 10.0 19.6 5.6 6.5 11.6 3.2 3.7 6.1 1000 22.0 25.0 115.0 7.6 8.7 32.5 6.8 5.6 18.3 2.5 2.9 8.7 5000 17.2 19.9 300.3 5.8 6.7 78.3 3.3 3.8 38.7 9.8 16.3 * 10000 15.5 17.6 509.3 5.2 5.8 128.1 2.7 3.1 59.5 8.6 13.7 ° 36800 12.9 16.8 1059.3 6.2 6.8 269.7 2.0 2.3 102.6 5.5 9.7 ~ 165700 10.2 11.7 3201.2 3.2 3.7 696.6 1.3 1.5 260.1 2.6 6.7 - NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT 0F SAMPLE IN NATER; AV I PERCENT AIR VOIDS; M I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 257 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM“! AV NUMBER (3:) (3r) (1) (lbs) (lb!) (8r) (3:) (2) 31110721 10000 636 6.16 50 100 5705.0 9886.0 2.56 6.95 DEFORMATION (inches X 0.0001) LVDT ll(0.0 IN.) LVDT '2(2.0 IN.) LVDT #3(6.0 IN.) LVDT 96(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 135 29.8 36.1 31.6 10.7 12.3 9.8 7.5 8.6 6.6 6.9 5.6 3.9 500 26.5 27.9 68.5 8.6 9.8 20.0 5.8 6.6 11.9 3.2 3.7 6.2 1150 21.6 26.6 129.2 7.5 8.6 36.2 6.6 5.2 20.1 2.6 2.7 9.6 5000 17.3 19.8 305.8 5.8 6.6 79.5 3.3 3.7 39.2 1.6 1.5 16.3 10000 15.6 17.9 515.7 5.2 5.9 129.6 2.8 3.1 60.0 1.0 1.1 19.1 32000 13.1 15.0 996.1 6.2 6.8 236.7 2.0 2.3 97.1 0.6 0.7 23.7 162650 10.3 12.0 3212.5 3.2 3.7 695.6 1.3 1.5 260.5 0.2 0.3 36.6 SAMPLE NA NB AC SL CL NBN NBA (361 AV NUMBER (51:) (st) (2) (lbs) (lbs) (st) (51:) (2) 31110731 10000 636 6.16 50 100 5708.0 9896.0 2.56 7.01 DEFORMATION (inches X 0.0001) LVDT '1(0.0 IN.) LVDT 62(2.0 IN.) LVDT i3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 160 29.3 33.7 36.6 10.5 12.0 11.2 7.2 8.3 7.2 6.7 5.6 6.3 500 26.7 28.1 68.5 8.6 9.8 19.9 5.6 6.6 11.8 3.2 3.6 6.1 1000 22.3 25.6 119.5 7.7 8.8 33.5 6.8 5.5 18.8 2.5 2.9 8.9 5100 17.5 19.7 310.6 5.8 6.6 80.1 3.2 3.7 39.3 1.3 1.5 16.2 11000 15.6 17.7 556.8 5.1 5.8 138.1 2.7 3.1 63.2 1.0 1.1 19.6 20500 16.2 16.0 772.2 6.6 5.2 185.6 2.3 2.6 79.9 0.7 0.8 21.6 169500 10.3 12.3 3362.5 3.2 3.8 717.0 1.3 1.6 265.6 0.2 0.3 36.6 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. Eff???” 258 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (RI! AV NUMBER (gr) (3:) (1) (lbs) (lbs) (8:) (61') (1) 31110712 10000 636 6.16 50 200 5709.0 9896.0 2.56 6.99 DEFORMATION (inches X 0.0001) LVDT 61(0.0 IN.) LVDT 62(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 62.8 71.6 59.7 21.9 26.9 18.1 16.8 16.8 11.6 9.5 10.7 6.8 500 69.3 56.6 152.5 16.7 19.2 62.8 10.3 11.8 26.0 5.5 6.3 11.7 1000 66.6 50.9 259.5 16.6 17.0 70.3 8.7 10.0 37.6 6.3 6.9 16.6 5200 36.7 39.6 700.1 11.2 12.8 176.5 5.8 6.7 80.3 2.2 2.5 26.3 10600 31.3 36.1 1216.2 9.9 11.6 291.8 6.9 5.7 125.7 1.6 1.8 35.5 23500 27.7 31.6 1906.2 8.6 9.8 638.8 6.0 6.5 173.8 1.1 1.2 60.6 SAMPLE NA NB AC SL CL NBN NBA (314 AV NUMBER (8!) (8r) (1) (lbs) (lbs) (8!) (Br) (1) 31110722 10000 636 6.16 50 200 5689.0 9853.0 2.56 6.88 DEPOM‘IATION (inches x 0.0001) LVDT 61(0.0 IN.) LVDT §2(2.0 IN.) LVDT I3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 61.6 70.2 57.8 21.7 26.8 17.8 16.7 16.8 11.3 9.5 10.8 6.7 500 68.6 56.0 167.9 16.5 19.2 62.0 10.2 11.9 23.7 5.5 6.6 11.6 1000 63.6 69.7 257.2 16.7 16.8 70.5 8.7 9.9 37.7 6.3 6.9 16.7 5500 33.8 38.5 699.5 11.0 12.5 175.9 5.8 6.6 81.0 2.2 2.5 26.6 10600 30.7 35.7 1168.3 9.9 11.5 279.3 6.9 5.7 121.1 1.6 1.9 36.7 27800 26.5 31.5 2002.5 8. 9.9 662.5 3.8 6.5 181.5 1.0 1.2 60.9 52500 26.1 27.9 3361.8 7. 8.6 750.6 3.2 3.7 276.7 0.7 0.8 51.8 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; a” I MAXIMLM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 259 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (31:) (sr) (2) (lbs) (lbs) (5:) (sr) (2) 31110732 10000 636 6.16 50 200 5716.0 9908.0 2.56 6.98 DEFORMATION (inches X 0.0001) LVDT il(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 62.8 72.6 59.3 21.9 25.3 18.0 16.8 17.1 11.6 9.5 10.9 6.8 500 69.6 56.6 155.5 16.7 19.1 63.7 10.3 11.8 26.5 5.5 6.3 11.9 1000 66.5 50.6 267.7 16.8 16.9 72.6 8.7 9.9 38.6 6.3 6.9 17.0 5750 36.2 60.9 756.7 11.0 13.1 187.6 5.7 6.8 85.5 2.1 2.5 27.5 10900 31.1 35.1 1265.0 9.9 11.1 298.5 6.9 5.5 128.0 1.6 1.8 35.8 26800 27.2 30.7 2067.0 8.6 9.5 672.6 3.8 6.3 186.7 1.0 1.1 61.6 62100 23.9 27.3 3906.1 7.3 8.3 853.6 3.1 3.5 303.7 0.6 0.7 53.6 SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (sr) (5:) (2) (lbs) (lbs) (st) (81') (2) 31110715 10000 636 6.16 50 500 5708.0 9876.0 2.56 6.75 DEFORMATION (inches X 0.0001) LVDT ”(0.0 IN.) LVDT ”(2.0 IN.) LVDT ”(6.0 IN.) LVDT “(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 110 169.5 168.7 196.9 68.0 56.2 56.3 27.7 31.2 29.2 16.6 16.5 16.3 500 119.1 137.7 669.7 37.1 62.8 121.3 19.2 22.2 57.3 8.2 9.5 22.3 1000 107.6 125.0 806.6 32.9 38.3 200.9 16.2 18.9 89.1 6.2 7.2 30.6 5500 83.2 96.8 2226.0 26.5 28.0 506.3 10.6 11.9 189.2 2.8 3.2 66.6 10100 75.9 87.1 3690.6 22.1 25.3 769.1 8.8 10.2 268.7 2.0 2.3 56.0 12650 73.6 83.2 3777.9 21.3 26.1 823.0 8.6 9.6 280.7 1.8 2.1 53.1 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN - NEIGHT 0F SAMPLE IN NATER; AV - PERCENT AIR VOIDS; GIN I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 260 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (3:) (5r) (1) (lbs) (lbs) (5:) (5r) (2) 31110725 10000 636 6.16 50 500 5716.0 9903.0 2.56 6.92 DEFORMATION (inches X 0.0001) LVDT Il(0.0 IN.) LVDT 62(2.0 IN.) LVDT I3(6.0 IN.) LVDT 56(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 110 153.6 176.3 205.3 68.3 56.2 56.2 27.6 32.1 29.9 16.6 16.7 16.5 580 119.6 136.9 552.6 36.6 61.6 138.6 16.5 21.1 66.0 7.6 .7 23.9 1000 110.2 127.7 668.0 33 1 36.6 212.0 16.1 16.7 93.0 6.0 .0 31.6 5500 85.3 99.1 2369.7 26.6 26.6 526.1 10.3 12.0 193.1 18.6 21.3 - 10000 78.0 90.7 3887.3 22.2 25.8 839.6 8.8 10.2 289.1 18.6 20.6 - 13800 76.3 85.5 6366.3 21.0 26.1 922.1 6.0 9.2 305.8 17.5 18.5 - SAMPLE NA NB AC SL CL NBN NBA 0361 AV NUMBER (3:) (st) (1) (lbs) (lbs) (3:) (st) (2) 31110735 10000 636 6.16 50 500 5710.0 9697.0 2.56 6.96 DEFORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT IZ(2.0 IN.) LVDT i3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 110 156.5 176.9 210.0 68.6 55.6 57.1 27.5 31.5 30.3 16.3 16.6 16.7 530 122.1 161.1 532.3 36.9 62.7 133.5 18.8 21.8 61.9 7.8 9.0 23.6 1000 111.0 128.0 877.6 33.1 38.2 212.9 16.0 18.5 93.0 6.0 6.9 31.2 5600 86.2 101.3 2629.5 26.7 29.1 536.7 10.3 12.1 197.9 2.7 3.2 65.5 6820 83.2 95.9 3020.2 23.7 27.6 661.3 9.7 11.2 236.7 2.6 2.8 51.2 8800 80.1 92.7 3333.6 22.7 26.3 719.8 9.0 10.5 250.3 2.1 2.6 50.6 10800 77.7 89.3 6119.7 21.9 25.2 879.7 8.6 9.8 298.7 1.9 2.2 57.0 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT 0F SAMPLE IN NATER; AV I PERCENT AIR VOIDS; G!“ I MAXIMJM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 261 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (51:) (sr) (1) (lbs) (lbs) (31') (31:) (2) 21210611 10000 619 6.02 50 100 5918.0 10116.0 2.56 6.99 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT 66(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 130 22.6 25.6 17.6 9.8 11.1 6.5 7.3 8.2 6.5 - - - 500 18.5 21.6 39.8 7.8 9.1 16.1 5.5 6.3 8.9 - - - 1030 16.6 18.9 69.7 7.0 7.9 23.8 6.7 5.3 16.6 - - - 5000 13.1 15.0 183.5 5.3 6.1 58.2 3.3 3.8 31.5 - - - 10000 11.8 13.6 329.5 6.8 5.6 101.1 2.8 3.2 51.9 - - - 26050 10.3 12.0 565.5 6.1 6.8 160.6 2.3 2.6 76.7 - - - 177800 7.6 8.8 2265.6 2.9 3.6 598.8 1.6 1.6 237.6 - - - SAMPLE NA NB AC SL CL NBN NBA (341 AV NUMBER (31:) (8:) (1) (lbs) (lbs) (3:) (sr) (2) 21210621 10000 619 6.02 50 100 5912.0 10106.0 2.56 6.99 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT f6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 110 23.2 26.6 15.6 10.1 11.5 5.9 7.5 8.6 6.1 5.3 6.1 .7 500 18.6 20.8 39.6 7.8 8.9 16.0 5.5 6.2 8.9 3.6 3.9 .1 1020 16.6 19.2 70.6 7.0 8.1 26.0 6.7 5.6 16.6 2.7 3.2 .7 5600 12.8 16.6 203.6 5.2 6.0 66.1 3.2 3.6 36.6 1.5 1.7 16.3 10600 11.7 13.5 336.2 6.7 5.5 102.2 2.8 3.2 52.3 1.2 1.6 19.6 26500 10.3 11.6 563.6 6.1 6.6 159.7 2.3 2.6 76.2 0.8 0.9 26.2 177100 7.6 8.6 2266.7 2.9 3.3 603.8 1.6 1.6 239.6 0.3 0.6 67.2 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT 0F SAMPLE IN AIR; CL I CYCLIC LOAD: I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. BEBE?” 262 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (5:) (gr) (1) (lbs) (lbs) (8:) (3r) (2) 21210631 10000 619 6.02 50 100 5911.0 10112.0 2.56 5.12 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT 03(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 23.9 27.2 15.6 10.3 11.7 5.8 7.7 8.7 .0 5.5 6.2 .7 500 18.8 21.6 61.7 7.9 9.0 16.5 5.5 6.3 .2 3.6 3.9 .2 1000 17.0 19.3 71.8 7.0 8.0 26.2 6.7 5.6 16.6 2.7 3.1 .6 5000 13.3 15.1 196.6 5.6 6.1 60.8 3.3 3.7 32.7 1.6 1.8 13.6 10620 11.9 13.8 358.3 6.7 5.5 108.0 2.8 3.2 56.8 1.2 1.3 20.1 23600 10.5 12.2 553.7 6.1 6.8 160.7 2.3 2.6 76.2 0.8 1.0 26.0 156600 8.0 9.2 2096.1 3.0 3.5 553.9 1.6 1.7 220.6 0.3 0.6 66.1 SAMPLE NA NB AC SL CL NBN NBA (3!! AV NIMBER (gr) (5:) (2) (lbs) (lbs) (31:) (st) (2) 21210612 10000 619 6.02 50 200 5905.0 10106.0 2.56 5.18 DEFORMATION (inches X 0.0001) LVDT i1(0.0 IN.) LVDT I2(2.0 IN.) LVDT f3(6.0 IN.) LVDT 66(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 68.2 55.1 36.6 20.1 22.9 12.5 16.3 16.6 8.3 9.8 11.1 5.3 520 37.7 63.8 96.9 15.3 17.7 32.5 10.1 11.7 19.5 5.9 6.8 10.6 1000 36.2 39.0 166.8 13.7 15.6 56.3 8.7 9.9 31.2 6.7 5.6 15.2 5120 26.7 30.8 656.1 10.6 12.0 137.3 6.0 6.9 69.6 2.6 3.0 26.5 10700 23.9 27.7 806.6 2 10.6 236.6 5.0 5.8 111.8 1.9 2.2 37.2 23650 21.3 26.0 1287.6 8.0 9.1 359.9 6.2 6.7 160.0 1.6 1.5 65.1 51700 18.9 21.6 2336.7 7.0 8.0 628.3 3.6 3.9 259.6 0.9 1.1 60.7 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GM! I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 263 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA cm AV NUMBER (3:) (5r) (1) (lbs) (lbs) (3:) (3r) (2) 21210622 10000 619 6.02 50 200 5911.0 10116.0 2.56 5.18 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(6.0 IN.) LVDT {6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 68.3 57.1 36.5 20.1 23.8 12.5 16.3 17.0 8.3 9.8 11.6 5.3 500 37.9 63.6 96.1 15.6 17.6 31.7 10.2 11.6 19.1 6.0 6.8 10.2 1000 36.2 39.3 162.2 13.7 15.7 52.8 8.7 10.0 30.3 6.7 5.6 16.8 5000 26.8 30.6 666.3 10.5 11.9 160.0 6.0 6.9 71.2 2.6 3.0 27.2 10000 26.2 28.1 778.6 3 10.8 227.0 5.1 5.9 108.9 2.0 2.3 36.7 30500 20.5 23.3 1550.3 7.7 8.8 628.1 3.9 6.6 185.9 1.2 1.6 69.5 67800 18.2 21.1 2873.7 6.7 7.8 762.5 3.2 3 7 306.6 0.8 1.0 66.9 SAMPLE NA NB AC SL CL NBN NBA (3!! AV NUMBER (st) (8:) (1) (lbs) (lbs) (sr) (st) (2) 21210632 10000 619 6 .02 50 200 5913 . 0 10111 . 0 2 . 56 5. 06 DEFORMATION (inches X 0.0001) LVDT Il(0.0 IN.) LVDT #2(2.0 IN.) LVDT 63(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 67.5 55.1 33.0 20.0 23.2 12.1 16.3 16.6 8.1 9.8 11.6 .2 500 37.3 63.0 89.3 15.3 17.6 30.6 10.2 11.7 18.6 6.0 6.9 .9 1000 33.6 38.0 155.9 13.6 15.6 51.6 8.7 9.9 29.7 6.8 5.6 16.6 5000 26.6 30.1 626.1 10.6 11.9 129.5 6.1 6.9 66.3 2.7 3.0 25.6 10000 23.8 27.6 750.7 9.3 10.7 221.7 5.1 5.9 107.2 2.0 2.3 36.6 30000 20.2 23.3 1665.5 7.7 .9 606.6 3.9 6.5 177.6 1.2 1.6 68.2 71600 17.7 20.0 2873.6 6.6 .5 770.3 3.2 3.6 311.0 0.8 0.9 68.1 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. BE???” 264 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (5:) (5r) (1) (lbs) (lbs) (5:) (3r) (1) 21210615 10000 619 6.02 50 500 5918.0 10117.0 2.56 5.03 DEFORMATION (inches X 0.0001) LVDT 51(0.0 IN.) LVDT 62(2.0 IN.) LVDT f3(6.0 IN.) LVDT 66(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 118.2 136.3 108.7 65.7 51.9 36.6 28.6 32.5 21.6 16.7 18.9 11.6 500 92.8 107.6 293.7 36.9 60.6 91.6 19.9 23.0 67.6 9.6 11.1 20.9 1000 83.7 97.1 517.8 31.1 36.0 156.2 16.9 19.6 76.8 7.6 8.6 30.2 5000 65.7 76.3 1621.5 23.7 26.7 396.3 11.5 13.0 169.2 3.8 6.3 69.2 10000 59.2 68.6 2633.3 21.0 26.3 655.3 9.6 11.2 261.8 2.8 3.2 65.2 19500 53.6 61.6 3513.1 18.8 21.6 916.7 8.1 9.3 361.5 2.0 2.3 71.8 SAMPLE NA NB AC SL CL NBN NBA GEM AV NUMBER (5:) (8r) (1) (lbs) (lbs) (3:) (8r) (1) 21210625 10000 619 6.02 50 500 5920.0 10122.0 2.56 5.05 DEFORMATION (inches X 0.0001) LVDT 01(0.0 IN.) LVDT §2(2.0 IN.) LVDT 03(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 118.6 135.0 111.3 65.7 52.1 37.6 28.6 32.6 21.8 16.6 18.9 11.8 500 93.2 105.3 301.3 36.9 39.6 93.7 19.9 22.5 68.6 9.6 10.8 21.3 1000 86.0 97.0 523.0 31.1 35.9 157.6 16.9 19.5 77.2 7.6 8.5 30.3 5000 66.0 76.9 1600.9 23.7 26.9 389.5 11.5 13.0 166.0 3.8 6.3 68.2 10000 59.6 67.6 2516.9 21.0 23.9 675.5 9.6 10.9 269.3 2.7 3.1 66.8 16500 55.1 66.0 3215.0 19.3 22.6 862.0 8.5 9.8 319.2 2.1 2.5 69.9 NA - row. NEIGHT or on! AGGREGATES; us - NEIGHT or 3110mm; Ac - 9mm ASPHALT CONTENT; sz. - SUSTAINED LOAD; NBA - wuss: or SAMPLE m AIR; c1. - cycuc LOAD; NBN - NEIGHT or SAMPLE IN NATER; AV - menu AIR voms; cm - MAXIMUM monmcu. SPECIFIC GRAVITY; ' ELA. AND 101'. - ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA - cummnvs PLASTIC (PERMANENT) baromnou. 265 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA cm AV NUMBER (3:) (5r) (2) (lbs) (lbs) (5:) (3r) (2) 21210635 10000 619 6.02 50 500 5916.0 10110.0 2.56 6.98 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 117.3 135.7 106.6 65.6 52.7 36.0 28.6 33.1 21.1 16.7 19.3 11.5 500 92.2 105.3 290.6 36.8 39.8 91.1 19.9 22.8 67.5 9.6 11.0 20.9 1000 83.1 96.7 516.7 31.0 35.3 156.2 17.0 19.3 77.0 7.6 8.5 30.5 5000 65.2 76.5 1398.1 23.6 27.0 392.0 11.5 13.1 168.1 3.8 .6 69.2 10000 58.8 68.0 2630.1 21.0 26.3 658.3 .7 11.2 266.1 2.8 3.2 66.2 27600 50.5 57.8 6627.9 17.7 20.2 1139.5 .6 8.5 612.1 1.7 1.9 79.5 27850 50.6 57.3 6790.2 17.6 20.0 1232.2 .6 8.6 665.1 8.3 8.7 - SAMPLE NA NB AC SL CL NBN NBA (314 AV NUMBER (8!) (8r) (1) (lbs) (lbs) (8:) (8r) (1) 21310611 10000 616 3.99 50 100 5910.0 10100.0 2.56 6.99 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT §2(2.0 IN.) LVDT i3(6.0 IN.) LVDT {6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 23.0 26.1 15.6 10.0 11.3 5.8 7.6 8.6 6.0 5.3 6.0 .7 500 18.1 21.0 62.7 7.6 8.9 15.0 5.3 6.1 9.6 3.3 3.8 .3 1000 16.3 18.7 75.7 6.8 7.8 25.7 6.5 5.2 15.5 2.6 3.0 .1 5000 12.8 16.8 211.2 5.2 6.0 66.6 3.2 3.7 35.7 1.5 1.7 16.8 10700 11.6 13.1 383.3 6.6 5.3 116.6 2.7 3.1 58.9 1.1 1.3 21.5 29500 .8 11.2 717.8 3.9 6.6 207.9 2.1 2.6 96.5 0.7 0.8 28.9 163900 .6 8.8 2563.5 2.9 3.6 677.0 1.6 1.6 267.2 0.3 0.6 52.6 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT 0F SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EESEE‘P 265 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA CW! AV NUMBER (5:) (3r) (2) (lbs) (lbs) (5:) (3r) (2) 21310621 10000 616 3.99 50 100 5923.0 10116.0 2.56 6.93 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 150 21.5 25.5 20.1 9.3 11.1 7.5 6.8 6.1 5.1 6.7 5.6 .3 550 17.7 20.0 66.1 7.5 8.5 15.5 5.2 5.9 9.7 3.2 3.6 .6 1060 16.1 16.2 75.8 6.8 7.7 25.9 6.5 5.1 15.6 2.6 3.0 .1 5000 12.7 16.6 203.0 5.2 6.0 66.6 3.2 3.6 36.7 1.5 1.7 16.5 10000 11.6 13.3 361.3 6.6 5.6 110.9 2.7 3.2 56.6 1.2 1.3 21.0 32000 9.6 10.9 727.5 3.8 6.3 211.2 2.1 2.3 97.7 0.7 0.8 28.9 167500 .5 8.7 2555.3 2.9 3.3 663.6 1.6 1.6 270.7 0.3 0.6 53.3 SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (5:) (st) (1) (lbs) (lbs) (st) (3:) (1) 21310631 10000 616 3.99 50 100 5910.0 10096.0 2.56 6.91 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT i3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 22.7 26.6 16.9 9.9 11.5 5.7 7.6 8.6 3.9 5.3 6.1 2.6 500 17.8 20.5 61.1 7.6 8.7 16.6 5.3 6.1 9.2 3.3 3.8 5.2 1000 16.1 18.6 72.9 6.8 7.8 25.0 6.5 5.2 15.1 2.6 3.0 7.9 5050 12.6 16.8 202.6 5.2 6.1 66.6 3.2 3.7 36.7 1.5 1.8 16.5 10500 11.3 12.9 368.7 6.6 5.2 113.2 2.7 3.1 57.6 1.1 1.3 21.3 18500 10.6 12.0 506.7 6.2 6.8 151.6 2.3 2.7 73.6 0.9 1.0 26.6 161600 7.5 8.6 2626.1 2.9 3.3 652.2 1.6 1.6 259.7 0.3 0.6 51.8 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; Q“ I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 267 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (3:) (5r) (2) (lbs) (lbs) (8:) (at) (z) 21310612 10000 616 3.99 50 200 5916.0 10103.0 2.56 6.96 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT l3(6.0 IN.) LVDT l6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 150 62.9 69.0 66.5 18.1 20.6 16.1 12.7 16.5 10.5 6.6 9.5 6.6 500 35.9 61.7 96.8 16.6 17.2 32.5 9.8 11.6 19.6 5.8 6.7 10.5 1000 32.3 37.8 166.7 13.2 15.6 56.7 8.6 9.8 31.5 6.6 5.3 15.6 5000 25.6 29.2 658.9 10.1 11.6 161.3 5.6 6.7 72.1 2.6 2.9 27.7 10200 22.8 26.1 813.5 .9 10.2 262.0 6.9 5.7 116.5 1.9 2.2 39.6 28000 19.6 22.6 1523.9 .5 6.6 631.6 3.9 6 6 190.1 1.2 1.6 52.1 68000 18.1 20.7 2626.6 .9 7.9 666.7 3.6 3 9 280.0 - - - SAMPLE NA NB AC 8L CL NBN NBA (2%! AV NUMBER (st) (8!) (1) (lbs) (lbs) (st) (sr) (2) 21310622 10000 616 3.99 50 200 5911.0 10102.0 2.56 6.99 DEFORMATION (inches X 0.0001) LVDT fl(0.0 IN.) LVDT 02(2.0 IN.) LVDT 63(6.0 IN.) LVDT 06(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 66.0 52.0 36.1 19.6 21.9 12.5 13.8 15.7 8.3 9.6 10.6 5.3 500 36.1 61.6 96.2 16.8 17.0 32.8 9.8 11.2 19.7 5.7 6.6 10.5 1000 32.6 37.5 168.1 13.2 15.2 55.5 8.6 9.7 31.8 6.6 5.3 15.6 5000 25.6 29.7 675.6 10.1 11.7 165.5 5.8 6.8 76.0 2.5 2.9 28.3 10000 23.1 26.6 830.6 .0 10.6 265.7 5.0 5.7 118.0 1.9 2.2 39.8 30000 19.6 22.6 1628.1 7.5 8.5 656.6 3.8 6.3 199.0 7.2 6.2 - 33000 19.3 22.2 1908.0 7.6 8.5 532.7 3.7 6.3 230.1 - ‘ - I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 353%?“ 268 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GIN AV NUMBER (5:) (st) (1) (lbs) (lbs) (8:) (3r) (2) 21310632 10000 616 3.99 50 200 5913.0 10106.0 2.56 6.97 DEFORMATION (inches X 0.0001) LVDT '1(0.0 IN.) LVDT 62(2.0 IN.) LVDT 63(6.0 IN.) LVDT i6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 65.9 52.1 36.3 19.6 22.0 12.6 13.8 15.7 8.6 9.6 10.7 5.3 500 36.0 61.3 93.9 16.8 17.0 32.1 9.8 11.3 19.3 5.8 6.6 10.3 1000 32.5 36.9 168.6 13.2 15.0 55.7 8.6 9.6 32.0 6.6 5.2 15.7 5000 25.5 28.9 671.3 10.1 11.6 166.5 5.8 6.6 73.6 2.5 2.9 26.2 10000 23.0 26.5 815.6 9.0 10.3 261.9 5.0 5.7 116.3 1.9 2.2 39.3 29000 19.6 22.5 1552.6 7.5 8.6 637.1 3.8 6.6 191.6 1.2 1.6 51.8 123300 15.8 16.2 6687.0 5.9 6.6 1226.1 2.7 3.1 666.6 0.6 0.7 86.8 SAMPLE NA NB AC SL CL NBN NBA (361 AV NUMBER (st) (5:) (1) (lbs) (lbs) (3:) (st) (2) 21310615 10000 616 3.99 50 500 5913.0 10105.0 2.56 6.98 DEFORMATION (inches X 0.0001) LVDT 61(0.0 IN.) LVDT '2(2.0 IN.) LVDT 63(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 120 111.8 126.5 131.2 63.0 68.7 63.7 26.5 29.9 25.0 15.0 17.8 - 500 90.3 102.9 318.5 33.9 38.6 99.2 19.2 21.8 51.1 16.7 17.2 - 1000 81.6 92.1 555.5 30.2 36.1 167.6 16.3 18.6 81.5 15.0 17.2 - 5000 63.9 76.0 1539.1 23.0 26.6 628.5 11.0 12.8 181.1 15.0 16.0 - 10100 57.5 66.8 2736.9 20.6 23.7 735.7 9.2 10.7 290.6 16.0 16.5 - 22000 51.2 58.8 6363.1 17.9 20.5 1127.6 7.6 8.7 611.1 13.8 12.8 - NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GUN I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMBTION. 269 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GEM AV NUMBER (3:) (at) (1) (lbs) (lbs) (8:) (st) (2) 21310625 10000 616 3.99 50 500 5918.0 10129.0 2.56 5.19 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 118.6 136.3 123.7 66.7 50.7 60.6 27.5 31.1 23.3 15.6 17.7 12.3 500 93.2 107.0 366.0 36.2 39.2 105.2 19.0 21.8 53.6 8.9 10.2 22.7 1000 86.0 95.5 611.8 30.6 36.5 179.9 16.2 18.6 86.3 6.8 7.8 32.8 5100 65.8 76.6 1693.6 23.0 26.1 659.6 10.9 12.3 190.6 3.6 3.9 52.8 10000 59.5 67.7 2998.2 20.6 23.6 786.1 9.1 10.6 306.8 2.5 2.8 72.2 20756 53.3 62.0 6551.6 18.1 21.1 1169.8 7.6 6.8 613.0 1.7 2.0 80.8 SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (81:) (st) (1) (lbs) (lbs) (81') (st) (1) 21310635 10000 616 3.99 50 500 5899.0 10087.0 2.56 5.06 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 62(2.0 IN.) LVDT I3(6.0 IN.) LVDT 16(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 116.0 136.9 119.3 66.6 51.6 39.8 27.6 31.9 22.9 500 91.1 103:0 326.9 33.9 38.3 100.9 19.1 21.5 51.7 - A - - 1000 82.1 96.7 576.6 30.2 36.8 172.0 16.2 18.7 83.3 - - - 5000 66.5 73.6 1606.8 23.0 26.1 663.1 11.0 12.5 186.0 - - - 9850 58.3 67.5 2789.0 20.5 23.7 763.6 9.2 10.7 292.1 ' ' ‘ NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; W I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 270 BEAM CYCLIC LOAD DATA SAMPLE WA NB AC SL CL NBN WBA GM"! AV NUMBER (3:) (3r) (2) (lbs) (lbs) (5r) (3:) (2) 12110511 10000 667 6.66 50 100 6176.0 10388.0 2.56 3.02 DEFORMATION (inches x 0.0001) LVDT I1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 18.2 21.2 6.0 9.7 11.3 2.8 7.9 9.1 .1 6.2 7.2 1.5 500 16.3 16.5 16.9 7.5 8.6 6.5 5.8 6.6 .5 6.1 6.7 2.9 1000 12.9 16.7 25.0 6.7 7.6 10.6 5.0 5.7 .1 3.6 3.9 6.3 5000 10.1 11.8 66.2 5.2 6.0 25.3 3.6 6.2 15.6 2.1 2.6 8.0 10000 1 10.6 108.6 6.6 5.6 61.5 3.1 3.6 26.5 1.7 2.0 11.5 30300 7 .9 203.7 3.8 6.6 76.6 2.5 2.8 60.8 1.1 1.3 16.2 157000 0 7.0 635.0 2.9 3.6 215.6 1.7 2.0 106.7 0.6 0.7 30.8 SAMPLE NA NB AC 81. C1. NBN NBA Gui AV NUMBER (5:) (st) (1) (lbs) (lbs) (3:) (3r) (1) 12110521 10000 667 6.66 50 100 6172.0 10375.0 2.56 2.93 DEFORMATION (inches X 0.0001) LVDT f1(0.0 IN.) LVDT 62(2.0 IN.) LVDT #3(6.0 IN.) LVDT {6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 17.9 20.8 5.7 9.7 11.2 2.7 7.8 9.1 .0 6.2 7.2 1.5 500 16.1 16.0 16.3 7.5 8.5 6.3 5.7 6.5 6.6 6.1 6.7 2.9 1000 12.7 16.3 26.3 6.7 7.5 10.6 5.0 5.6 7.0 3.6 3.8 6.3 5300 9.9 11.5 63.9 5.1 5.9 25.6 3.6 6.1 15.7 2.1 2.6 8.0 10000 9.0 10.5 105.9 6.6 5.3 60.9 3.1 3.6 26.3 1.7 2.0 11.5 30000 7.6 8.8 192.6 3.8 6.6 70.9 2.5 2.8 39.2 7.5 9.0 - 166200 5.9 6.9 623.3 2.9 3.6 213.0 1.7 2.0 103.8 - - - HA I TOTAL WEIGHT OF DRY AGGREGATES; NB I WEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I HEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I HEIGHT OF SAMPLE IN HATER; AV I PERCENT AIR VOIDS: GM! I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 271 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA QM AV NUMBER (5:) (5r) (2) (lbs) (lbs) (3:) (5r) (2) 12110531 10000 667 6.66 50 100 6177.0 10381.0 2.56 2.90 DEFORMATION (inches X 0.0001) LVDT ll(0.0 IN.) LVDT §2(2.0 IN.) LVDT I3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 17.9 20.6 5.7 9.7 11.1 2.7 7.8 9.0 .0 6.2 7.1 1.5 500 16.0 16.0 16.2 7.6 8.5 8.3 5.7 6.5 .6 6.1 6.7 2.9 1000 12.6 16.7 26.0 6.7 7.7 10.3 5.0 5.8 .0 3.6 3.9 6.3 5150 9.9 11.5 63.7 5.1 5.9 25.6 3.6 6.2 15.7 2.1 2.6 8.1 10000 9.0 10.6 103.6 6.6 5.3 60.1 3.1 3.6 23.8 1.7 2.0 11.3 30000 7.6 8.8 191.6 3.8 6.6 70.8 2.5 2.9 39.2 0.7 2.6 - 189900 5.8 .6 686.0 2.8 3.3 233.2 1.6 1.9 112.8 - - - SAMPLE NA NB AC SL CL NBN NBA (361 AV NUMBER (5:) (5r) (2) (lbs) (lbs) (st) (31:) (2) 12110512 10000 667 6.66 50 200 6170.0 10373.0 2.56 2.95 DEFORMATION (inchos X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 36.0 61.7 13.0 19.0 22.0 5.9 16.9 17.3 6.6 11.6 13.2 3.1 500 28.3 32.3 32.3 16.6 16.7 13.8 10.9 12.6 9.6 7.6 8.5 5.9 1000 25.5 29.3 56.8 13.1 15.0 22.8 9.5 10.9 16.9 6.1 7.0 .7 5000 20.0 22.6 162.6 10.0 11.6 55.6 6.8 7.7 32.9 3.7 6.2 16.0 10000 18.0 20.6 262.7 9.0 10.3 91.6 5.9 6.7 52.1 3.0 3.6 23.0 26600 15.6 17.8 609.1 7.6 8.7 167.9 6.7 5.6 78.7 2.1 2.6 29.9 166000 12.1 16.1 1301.8 5.8 6.7 636.6 3.2 3 8 206.2 1.1 1.2 56.0 HA I TOTAL WEIGHT OF DRY AGGREGATES; "B I WEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I WEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I WEIGHT OF SAMPLE IN HATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. if.“ 272 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (5:) (Br) (1) (lbs) (lbs) (5:) (8r) (2) 12110522 10000 667 6.66 50 200 6169.0 10372.0 2.56 2.96 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT f3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 150 33.9 39.6 16.7 17.8 20.7 7.5 13.8 16.1 5.6 10.3 11.9 3.7 500 28.3 32.9 32.8 16.6 17.0 16.1 10.9 12.6 9.5 7.6 8.6 5.9 1100 25.2 28.8 58.9 12.9 16.7 26.6 9.3 10.6 15.9 6.0 6.8 9.2 5200 19.9 23.0 166.6 10.0 11.5 56.8 6.7 7.8 33.7 3.7 6.3 16.2 10100 18.0 20.6 239.0 .0 10.3 90.0 5.8 6.7 51.2 3.0 3.6 22.6 27600 15.5 17.6 620.0 7.6 8.6 151.5 6.7 5.3 80.6 2.1 2.3 30.3 175550 11.8 13.6 1695.1 5.6 .6 696.2 3.1 3.5 228.2 1.0 1.1 59.8 SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (8!) (8:) (2) (lbs) (lbs) (8:) (8r) (2) 12110532 10000 667 6.66 50 200 6166.0 10369.0 2.56 2.99 DEFORMBTION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT I3(6.0 IN.) LVDT 56(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 36.2 61.0 12.6 19.0 21.5 5.7 16.9 16.9 .2 11.6 12.9 .0 500 28.6 32.9 32.9 16.6 16.9 16.0 10.9 12.6 .5 7.6 8.6 .9 1600 26.6 28.0 69.8 12.6 16.2 28.6 8.8 10.2 18.3 5.5 6.6 10.3 5000 20.1 22.8 161.5 10.1 11.6 56.8 6.8 7.7 32.5 3.7 6.2 15.7 12300 17.6 20.0 276.2 8.7 9.9 102.1 5.6 6.6 57.1 2.8 3.1 26.6 20100 16.3 18.6 360.2 8.0 9.1 126.0 5.0 5.7 67.1 2.3 2.6 26.6 167500 11.9 13.5 1639.9 5.7 6.6 677.3 3.1 3.5 219.8 - - - NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; Gk“ I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 273 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (51:) (st) (1) (lbs) (lbs) (91:) (91:) (2) 12110515 10000 667 6.66 50 500 6168.0 10372.0 2.56 2.98 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT 93(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 90.6 105.2 62.8 66.5 51.7 18.3 31.6 36.8 12.1 21.3 26.8 7.7 500 71.0 83.5 110.9 36.2 60.2 66.3 22.7 26.7 26.8 13.3 15.7 16.3 1000 66.0 76.5 188.0 30.5 35.5 72.9 19.6 22.8 62.2 10.7 12.5 20.8 5000 50.3 58.2 670.6 23.6 27.1 169.9 13.8 16.0 88.1 6.1 7.1 36.5 10000 65.3 51.3 813 5 20.9 23.7 286.7 11.8 13.6 160.1 6.7 5.6 68.8 30000 38.6 66.1 1692 1 17.6 20.0 696.8 9.2 10.5 223.8 3.0 3.5 62.9 102631 32.0 36.6 3693 6 16.2 16.2 1098.9 6.8 7.8 666.1 1.7 1.9 93.2 SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (81') (8!) (1) (lbs) (1138) (Br) (Br) (1) 12110525 10000 667 6 . 66 50 500 6161 . 0 10371 . 0 2 . 56 3 . 13 DEFORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT IZ(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 150 97.1 99.5 59.9 61.9 67.9 26.8 29.1 33.2 15.9 - - - 500 72.7 97.0 115.6 36.6 61.2 65.3 22.9 27.1 27.1 - - - 1000 95.5 75.9 196.5 30.7 35.5 76.1 19.5 22.9 62.5 - - - 5000 51.5 59.6 509.0 23.9 27.2 179.6 13.7 15.9 91.9 - - - 11500 65.6 52.9 962.2 20.5 23.9 321.9 11.3 13.2 156.9 - - - 30000 39.3 66.6 1563.7 17.5 19.9 506.5 9.1 10.2 223.9 - - - 95100 35.0 60.9 2915.9 15.6 17.9 997.9 7.5 9.9 399.0 - - - w9 - 10191 w91991 or 091 9999999119; 99 - w91991 or BITUMEN; 9c - 9190191 9519911 con1191; 91 - 509191910 1090; wa9 - w11991 or SAMPLE IN AIR; c1 - CYCLIC 1090; wan - waxcar or SAMPLE IN NATER; 9v - pzacsn1 919 voxos; 9m - 1191:me 19909911091 SPECIFIC 912917111; 919. 990 101. - 919511c AND 10191 DEFORMATION/CYCLE; 919. - CUMULATIVE 9199110 (PERMANENT) DEFORMATION. . ...- 274 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GI“! AV NUMBER (51') (51') (2) (1139) (lbs) (31') (3:) (2) 12110535 10000 667 6.66 50 500 6170.0 10375.0 2.56 2.98 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT 03(6.0 IN.) LVDT 56(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 90.6 102.5 63.9 66.5 50.6 18.8 31.6 35.9 12.5 21.6 26.2 7.9 500 71.0 81.7 110.6 36.2 39.6 66.2 22.7 26.1 26.7 13.3 15.3 16.3 1000 66.0 72.5 188.2 30.5 36.6 73.0 19.6 22.2 62.3 - - - 5300 69.8 57.9 688.8 23.2 27.0 176.1 13.6 15.9 90.9 - - - 10300 65.1 51.3 821.5 20.8 23.7 287.3 11.7 13.6 161.1 - - ' 30000 38.6 66.0 1685.6 17.6 20.0 696.9 9.2 10.5 223.1 - - - 62200 36.6 39.5 2597.5 15.6 17.7 836.8 7.7 8.9 356.2 - - - SAMPLE NA NB AC SL CL NBN NBA Gd! AV NUMBER (51:) (51:) (1) (lbs) (lbs) (gr) (5:) (2) 12110611 10000 667 6.66 50 100 5958.0 10168.0 2.56 5.03 DEFORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT f2(2.0 IN.) LVDT '3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 26.1 28.0 12.0 10.6 12.3 6.6 8.0 9.3 3.2 5.8 6.7 2.2 500 18.9 21.5 30.6 8.1 9.2 10.8 5.7 6.5 6.9 3.6 6.1 6.0 1000 17.1 19.6 51.9 7.2 8.2 17 8 6.9 5.6 11.0 2.9 3.3 5.9 5000 13.6 15.2 131.6 5.5 6.3 61.9 3.6 3.9 23.1 1.7 1.9 9.9 10000 12.1 13.7 227.2 6.9 5.6 70.1 2.9 3.3 36.6 1.3 1.5 16.1 30250 10.2 11.7 621.9 6.1 6.7 123.5 2.3 2.6 58.8 0.8 0.9 18.6 163700 8.1 9.2 1209.9 3.1 3.6 328.1 1.5 1.8 135.5 0.6 0.5 29.6 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; an I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 275 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! 9v NUMBER (gr) (5:) (1) (lbs) (lbs) (gr) (gr) (2) 12110621 10000 667 6.66 50 100 5926.0 10106.0 2.56 6.93 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT i3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 23.6 26.9 11.8 10.6 11.9 6.6 7.9 9.0 3.2 5.8 6.6 2.2 500 18.6 20.9 29.6 8.0 9.0 10.6 5.7 6.6 6.8 3.6 6.1 .0 1000 16.7 19.2 50.8 7.1 8.2 17.6 6.9 5.6 10.9 2.9 3.6 .9 5500 12.9 15.0 136.2 5.6 6.2 63.7 3.6 3.9 26.0 1.6 1.9 10.3 10700 11.7 13.6 226.5 6.8 5.6 70.6 2.9 3.6 36.8 1.3 1.5 16.1 30000 10.0 11.6 398.8 6.0 6.7 118.0 2.3 2.6 56.7 0.8 1.0 18.0 192000 7.6 8.6 1611.0 3.0 3.6 381.6 1.6 1.6 156.6 0.6 0.6 31.6 SAMPLE NA NB AC SL CL NBN NBA GM AV NUMBER (8!) (91') (2) (lbs) (lbs) (at) (91:) (2) 12110631 10000 667 6.66 50 100 5960.0 10183.0 2.56 5.18 DEFORMATION (inches X 0.0001) LVDT Il(0.0 IN.) LVDT 92(2.0 IN.) LVDT '3(6.0 IN.) LVDT l6(6.0625 1N.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 26.7 28.0 12.8 10.6 12.1 6.8 8.0 9.1 3.6 5.8 6.6 .3 500 19.6 22.0 32.6 8.2 9.3 11.6 5.7 6.5 7.3 3.6 6.1 6.2 1000 17.5 20.1 56.7 7.3 8.6 18.5 6.9 5.7 11.3 2.9 3.3 .0 5000 13.7 15.5 139.7 5.6 6.3 63.8 3.6 3.9 23.9 1.7 1.9 10.2 10000 12.6 16.3 239.3 6.9 5.7 72.6 2.9 3.6 37.5 1.3 1.5 16.2 50000 9.7 11.1 602.5 3.8 6.3 169.2 2.0 2.3 76.3 0.6 0.7 21.0 100000 .8 10.1 1031.1 3.6 3.9 279.8 1.7 1.9 118.2 0.5 0.5 27.5 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 353%?” 276 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GEM 9v NUMBER (gr) (3r) (1) (lbs) (lbs) (3:) (at) (2) 12110612 10000 667 6.66 50 200 5956.0 10169.0 2.56 5.08 DEFORMATION (inches X 0.0001) LVDT 51(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(6.0 IN.) LVDT 56(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 130 66.7 56.2 32.9 19.7 22.9 12.0 16.2 16.6 8.0 9.6 11.2 5.1 500 38.2 63.3 70.8 15.8 17.9 26.3 10.6 12.1 16.9 - - - 1000 36.6 38.9 118.9 16.1 15.9 39.5 9.1 10.3 23.1 - - - 6000 26.3 29.8 365.6 10.6 11.8 105.6 6.1 6.9 56.1 - - - 10100 26.3 27.5 526.6 5 10.8 156.1 5.6 6.1 76.8 - - - 30200 20.6 23.6 937.6 9 9.0 266.6 6.1 6.7 118.2 ' - - 186800 15.7 17.8 3307.1 8 .6 852.0 2.6 3.0 318.3 - - - SAMPLE NA NB AC SL CL NBN NBA (318 AV NUMBER (9:) (8t) (1) (lbs) (lbs) (st) (91') (2) 12110622 10000 667 6.66 50 200 5963.0 10163.0 2.56 6.85 DEFORMATION (inches X 0.0001) LVDT i1(0.0 IN.) LVDT I2(2.0 IN.) LVDT '3(6.0 IN.) LVDT 56(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 66.9 56.6 25.3 20.6 23.7 9.6 16.9 17.6 6.6 10.5 12.2 6.3 500 36.9 62.6 65.9 15.6 17.9 23.2 10.6 12.2 16.6 6.5 7.5 8.0 1000 33.2 37.7 111.1 13.9 15.8 37.8 9.2 10.6 22.6 5.2 5.9 11.5 5000 26.1 29.6 281.9 10.6 12.1 89.0 6.6 7.2 67.0 2.9 3.3 19.1 10000 23.5 28.2 675.3 9.5 11.6 165.3 5.6 6.5 72.6 2.3 2.7 26.2 27900 20.2 22.8 863.0 .0 9.0 265.2 6.3 6.8 112.5 1.5 1.7 33.1 191500 15.1 17.1 3100.9 .8 6.5 820.5 2.6 3.0 312.8 0.6 0.6 56.6 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GM! I MAXIMUM THEQETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 277 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA 6191 AV NUMBER (3:) (3r) (1) (lbs) (le) (8r) (9:) (1) 12110632 10000 667 6.66 50 200 5961.0 10168.0 2.56 6.96 DEFORMATION (inches X 0.0001) LVDT f1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 67.7 55.0 26.6 20.5 23.6 9.9 15.0 17.2 6.7 10.6 12.0 6.6 500 37.5 63.2 67.6 15.7 18.1 23.6 10.6 12.3 16.5 6.6 7.6 8.0 1000 33.8 38.5 112.8 16.0 15.9 38.0 9.2 10.6 22.6 5.1 5.9 11.6 5100 26.5 30.6 298.6 10.7 12.3 93.1 6.3 7.3 68.8 2.9 3.3 19.5 10800 23.6 27.2 511.5 9.6 10.8 153.8 5.3 6.1 75.9 2.1 2.5 26.6 30000 20.3 23.3 912.2 .9 9.1 261.1 6.2 6.8 118.0 1.6 1.6 33.6 166100 15.7 18.3 2973.0 .9 6.9 781.9 2.7 3.2 299.6 0.6 0.7 55.2 SAMPLE NA NB AC SL CL NBN NBA (391 AV NUMBER (91') (st) (1) (lbs) (lbs) (9:) (91:) (2) 12110615 10000 667 6.66 50 500 5960.0 10169.0 2.56 6.99 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT '2(2.0 IN.) LVDT 93(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 150 112.9 131.3 116.2 66.0 51.1 38.3 27.6 31.9 22.1 15.7 18.2 11.7 500 96.2 107.8 229.1 35.9 61.1 72.5 20.9 23.9 38.5 10.6 11.9 17.6 1000 86.9 98.8 381.5 32.0 37.2 116.8 17.8 20.7 58.7 8.0 9.3 23.9 5600 65.9 76.0 1028.6 26.1 27.7 290.1 11.9 13.7 126.1 6.0 6.7 37.6 11100 59.2 67.7 1766.2 21.3 26.3 680.6 9.9 11.6 195.2 - - - 30100 51.0 59.3 3105.8 18.0 20.9 803.7 7.7 .0 295.0 - - - 51000 67.1 53.6 6678.3 16.6 18.6 1178.6 6.7 .6 608.5 - - - NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GM‘I I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 278 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (5:) (9r) (1) (lbs) (lbs) (3:) (3r) (2) 12110625 10000 667 6.66 50 500 5966.0 10166.0 2.56 6.82 DEFORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT 62(2.0 IN.) LVDT I3(6.0 IN.) LVDT {6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 116.9 133.0 86.3 66.8 53.2 29.6 30.1 36.2 17.6 18.1 20.6 9.9 500 91.9 106.3 216.6 35.8 61.6 70.0 21.1 26.6 37.5 10.6 12.3 17.2 1000 82.8 93.5 366.6 31.8 36.0 113.9 18.0 20.3 58.0 8.2 9.3 26.0 5000 65.0 76.2 931.6 26.3 27.7 269.6 12.3 16.0 119.7 6.3 6.9 37.1 10000 58.6 68.2 1586.7 21.6 25.1 663.6 10.3 12.0 186.9 3.2 3.7 69.6 30000 69.7 56.7 2902.5 17.9 20.6 767.9 7.8 8.9 287.0 1.9 2.1 58.3 53800 65.5 51.8 6510.7 16.2 18.5 1158.6 .7 7.6 606.9 1.6 1.5 70.0 SAMPLE NA NB AC SL CL NBN NBA (301 AV NUMBER (9:) (8r) (2) (lbs) (lbs) (91:) (8t) (2) 12110635 10000 667 6.66 50 500 5933.0 10130.0 2.56 5.09 DEFORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT '2(2.0 IN.) LVDT I3(6.0 IN.) LVDT 16(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 125 117.1 135.9 107.3 65.3 52.5 35.9 28.6 32.9 20.9 16.6 19.1 11.3 500 95.1 109.3 238.6 35.9 61.2 76.7 20.8 23.9 39.6 10.2 11.7 17.7 1000 85.8 98.2 398.9 32.0 36.6 120.8 17.7 20.3 60.3 7.9 9.0 26.3 5100 67.2 75.8 1036.9 26.3 27.6 290.0 12.0 13.5 125.7 6.1 6.6 37.5 10200 60.5 69.3 1707.6 21.6 26.7 661.2 10.1 11.5 187.3 3.0 3.6 67.9 21600 56.1 61.2 2666.5 19.0 21.5 688.3 8.3 9.6 259.2 2.0 2.3 56.9 27700 52.1 59.8 3338.3 18.2 20.9 857.6 .8 8.9 316.5 - - ‘ NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GMM I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 279 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (51) (gr) (2) (lbs) (lbs) (91:) (31:) (2) 12110711 10000 667 6.66 50 100 5737.0 9962.0 2.56 7.03 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT 06(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 31.1 35.1 25.0 11.2 12.6 7.8 7.9 8.9 5.2 5.3 6.0 3.2 500 26.5 29.0 63.8 9.5 9.8 19.5 5.5 6.3 10.9 3.2 3.6 5.7 1000 22.0 25.6 107.0 7.6 9.9 29.9 6.7 5.5 16.8 2.5 2.9 9.0 5300 17.2 19.7 280.6 5.7 6.5 72.1 3.2 3.6 35.3 1.3 1.5 12.7 10000 15.6 17.6 663.3 5.1 5.9 115.3 2.7 3.1 53.2 1.0 1.1 16.9 25500 13.6 15.7 759.3 6.6 5.1 179.7 2.1 2.5 75.7 0.6 0.7 19.6 168700 10.6 11.9 2569.7 3.2 3.6 556.3 1.3 1.5 192.6 0.2 0.3 29.9 SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (9:) (91) (1) (lbs) (lbs) (9:) (9:) (2) 12110721 10000 667 6.66 50 100 5735.0 9937.0 2.56 7.01 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT 06(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 120 30.2 36.6 27.7 10.8 12.6 8.6 7.6 8.7 5.6 5.0 5.8 3.5 510 26.3 28.7 63.5 8.5 10.0 18.6 5.5 6.5 10.9 3.1 3.7 5.7 1000 22.0 25.5 105.2 7.6 8.8 29.5 6.7 5.5 16.6 2.5 2.9 7.9 5620 17.1 19.3 281.9 5.7 6.6 72.5 3.2 3.6 35.6 1.3 1.5 12.7 11580 15.2 17.6 506.1 5.0 5.8 125.3 2.6 3.0 57.1 0.9 1.1 17.6 16800 16.6 16.7 567.6 6.7 5.6 162.6 2.6 2.8 62.7 0.8 0.9 17.8 167300 10.2 11.6 2722.1 3.1 3.6 586.7 1.3 1.5 200.7 0.2 0.3 30.0 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GEN I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 280 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (3:) (at) (2) (lbs) (lbs) (gr) (gr) (1) 12110731 10000 667 6.66 50 100 5738.0 9966.0 2.56 7.05 DEFORMATION (inches X 0.0001) LVDT Il(0.0 IN.) LVDT 52(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 31.3 35.8 25.3 11.2 12.8 7.9 7.9 9.1 5.2 5.3 6.1 .3 500 26.6 28.2 66.2 8.5 9.8 18.5 5.5 6.6 10.9 3.2 3.6 .7 1000 22.1 25.5 109.2 7.6 8.7 30.6 6.7 5.6 17.1 2.5 2.8 .1 5000 17.6 19.7 275.3 5.8 6.5 70.8 3.2 3.6 36.7 1.3 1.5 12.6 11700 15.3 17.8 516.0 5.0 5.8 127.0 2.6 3.0 57.6 0.9 1.1 17.6 26800 13.5 15.3 909.0 6.3 6.9 190.6 2.1 2.6 79.8 0.6 0.7 20.1 159000 10.3 11.9 2681.6 3.2 3.7 576.6 1.3 1.5 197.5 0.2 0.3 29.8 SAMPLE NA NB AC SL CL NBN NBA an AV NUMBER (9:) (9:) (2) (lbs) (lbs) (9:) (9:) (2) 12110712 10000 667 6.66 50 200 5720.0 9911.0 2.56 7.01 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT I3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 61.9 70.5 55.5 21.6 26.5 16.8 16.6 16.6 10.6 9.3 10.6 6.3 500 68.6 55.6 161.9 16.6 18.8 39.8 10.1 11.6 22.3 5.6 6.2 10.9 1000 63.8 69.8 260.5 16.6 16.6 65.1 8.6 9.8 36.6 6.2 6.8 15.2 5600 33.8 39.2 653.5 10.9 12.6 161.9 5.6 6.5 76.0 ' - - 10000 31.0 36.1 1018.6 8 11.6 266.8 6.9 5.7 105.8 - - 1 27000 26.7 30.7 1791.9 8.3 9.5 608.7 3.8 6.3 159.6 - - - 102200 21.9 25.6 6661.2 6 7.6 967.1 2.6 3.0 317.5 - - - NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; M I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 281 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (31) (gr) (1) (lbs) (lbs) (Br) (gr) (2) 12110722 10000 667 6.66 50 200 5736.0 9966.0 2.56 7.10 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT 63(6.0 IN.) LVDT §6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 130 60.5 71.6 66.8 20.8 26.5 19.8 13.8 16.3 12.2 8.5 10.1 7.0 500 69.6 56.9 167.6 16.5 19.0 60.9 10.1 11.7 22.9 5.6 6.2 11.1 1000 66.5 50.8 267.0 16.7 16.7 66.2 8.6 9.8 35.0 6.2 6.8 15.3 5250 36.7 39.7 637.8 11.1 12.6 156.9 5.7 6.6 71.7 2.1 2.6 23.3 7500 32.9 38.2 876.6 10.6 12.0 211.7 5.2 6.1 93.5 1.8 2.1 28.1 10300 31.6 36.2 1007.7 .8 11.6 239.6 6.8 5.6 102.5 - - - 30000 26.7 30.9 2167.8 .2 .6 682.0 3.7 6.2 186.6 - - 1 110500 22.0 26.9 6560.9 .5 .6 969.6 2.6 2.9 312.7 - - - SAMPLE NA NB AC SL CL NBN NBA QM AV NUMBER (3:) (3r) (1) (lbs) (lbs) (5:) (gr) (2) 12110732 10000 667 6.66 50 200 5736.0 9950.0 2.56 7.19 DEFORMATION (inches X 0.0001) LVDT Il(0.0 IN.) LVDT #2(2.0 IN.) LVDT i3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 63.8 72.9 58.9 21.8 26.9 17.5 16.6 16.7 11.0 9.3 10.6 6.5 500 50.1 56.7 150.1 16.6 18.8 61.2 10.1 11.5 22.9 5.6 6.1 11.0 1000 65.1 51.8 255.0 16.7 16.9 67.6 8.6 9.9 35.6 6.1 6.7 15.6 5000 35.5 60.8 679.6 11.2 12.8 165.9 5.8 6.7 75.7 2.1 2.5 26.6 10000 32.0 37.1 1118.9 9.9 11.5 263.6 6.9 5.6 112.6 1.6 1.8 31.6 50000 25.1 28.6 2826.5 7.5 .6 610.1 3.2 3.6 219.0 0.7 0.8 60.1 100000 22.6 26.0 6792.6 6.6 .6 996.6 2.6 3.0 329.5 0.5 0.5 68.3 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. E526?” 282 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM“! AV NUMBER (31) (gr) (2) (lbs) (lbs) (31) (9r) (2) 12110715 10000 667 6.66 50 500 5728.0 9936.0 2.56 7.12 DEFORMATION (inches X 0.0001) LVDT f1(0.0 IN.) LVDT #2(2.0 IN.) LVDT §3(6.0 IN.) LVDT I6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 157.6 179.1 196.1 68.6 55.3 52.2 27.7 31.6 27.7 - - - 500 123.8 163.9 689.2 36.9 62.9 121.0 18.7 21.8 55.9 - - - 1000 111.6 127.5 823.2 32.7 37.6 196.6 15.7 18.0 85.0 - - - 5000 87.6 101.6 2131.6 26.8 28.6 666.5 10.3 11.9 170.9 - - - 10800 78.1 90.8 3733.3 21.6 25.2 783.3 8.3 9.7 262.8 - - - 11300 77.6 87.6 3556.5 21.5 26.2 766.6 8.2 9.3 268.6 - - - SAMPLE NA NB AC SL CL NBN NBA (391 AV NUMBER (st) (6:) (2) (lbs) (lbs) (6:) (st) (1) 12110725 10000 667 6.66 50 500 5761.0 9962.0 2.56 6.96 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 92(2.0 IN.) LVDT #3(6.0 IN.) LVDT l6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 153.8 175.9 178.5 68.5 55.6 69.0 27.8 31.8 26.3 16.7 16.8 12.9 500 120.8 160.0 660.2 36.8 62.6 116.3 18.9 21.9 56.6 7.9 9.2 20.9 1000 108.9 123.8 781.2 32.7 37.1 190.5 15.9 18.1 83.5 5.9 6.8 28.2 5000 85.5 98.8 1997.6 26.7 28.6 667.1 10.5 12.1 166.3 2.8 3.2 39.3 10000 77.1 88.9 3321.6 21.9 25.3 716.0 8.7 10.0 266.5 2.0 2.2 68.6 13300 73.9 85.6 3729.7 20.8 26.1 791.5 8.0 9.2 263.5 ~1.7 1.9 67.7 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; G194 I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 283 BEAM CYCLIC LOAD DATA 9911911 NA 149 9c 91. CL 919 NBA 9114 AV 909119 (31) (at) (2) (lbs) (11.) (9:) (5:) (2) 12110735 10000 667 6.66 50 500 5723.0 9913.0 2.56 6.97 01909991109 (inches x 0.0001) LVDT #1(0.0 IN.) LVDT 12(2.0 IN.) LVDT 93(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE 91191119 119. 101. 919. 119. 101. 919. 119. 101. 919. 119. 101. 919. 165 165.6 166.7 232.6 65.6 51.3 62.5 25.6 28.7 32.6 12.8 16.6 15.1 500 120 9 139.9 656.9 39.7 62.2 116 9 19.9 21.9 53.5 7.9 9.1 20.5 1000 109.0 129.0 792.5 32.9 39.3 192.9 15.9 19.9 86.3 5.9 9.9 29.3 5100 85.6 99.9 2035.3 26.6 27.9 653.5 10.3 11.7 199.0 2.9 3.1 39.3 8700 78.8 90.5 3073.6 22.6 25.7 665.3 9.0 10.3 232.1 2.1 2.6 67.2 9700 77.5 99.1 2999.9 22.0 25.2 665.3 9.7 10.0 222.6 2.0 2.3 63.9 9911911 99 99 9c 91. 91 NBN 6119 9914 AV 909119 (5:) (gr) (x) <11.) <11.) (3:) (9:) ' (2) 11110715 10000 650 6.31 50 500 5766.0 9955.0 2.55 7.10 01109991109 (inches x 0.0001) 1v01 #1<0.0 19.) 1v01 #2(2.0 19.) 1v01 93(6.0 19.) 1v01 #6(6.0625 19.) c1c11 9111919 119. 101. 91.9. 119. 101. 919. 11.9. 101. 919. 119. 101. 919. 100 190.1 192.2 199.2 69.6 59.5 50.9 28.6 32.3 27.1 16.9 17.0 13.3 500 125.7 163.9 676.1 37.7 63.1 117.9 19.2 22.0 56.8 9.0 9.2 20.9 1000 113.3 130.2 903.7 33.6 38.6 192.7 19.2 19.9 93.9 9.0 9.9 29.1 5000 99.0 102.7 2038.6 25.3 29.2 669.5 10.9 12.2 195.5 2.9 3.2 39.9 11200 79.9 99.9 3757.3 22.0 25.0 791.1 9.5 9.7 299.3 1.9 2.1 69.9 12000 79.1 99.3 3595.7 21.7 26.5 752.1 9.3 9.6 251.1 1.9 2.0 66.1 13100 77.0 86.9 6132.8 21.6 26.1 862.6 8.1 9.2 285.1 1.7 1.9 51.0 99 - 10191 911991 09 091 9999199119; 91 - 911991 09 9110919; - 9190191 9999911 9091191; 91 - 909191910 1090; - w11991 01 999111 19 919; CL - CYCLIC 1090; - 911991 09 999911 19 NATER; 9v - 9191191 919 vozos; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; AC NBA NBN GMM ELA PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 15.- 284 BEAM CYCLIC LOAD DATA SAMPLE WA NB AC SL CL WBW NBA GM! AV NUMBER (8:) (gr) (1) (1b!) (lbs) (gr) (3r) (2) 12210711 10000 669 6.68 50 100 5719.0 9960.0 2.56 7.32 011091191109 (inches x 0.0001) LVDT I1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 31.3 35.6 30.8 10.8 12.2 9.3 7.5 8.6 6.0 6.9 5.5 3.6 500 26.6 28.6 80.1 8.2 9.5 22.2 5.2 6.0 12.7 2.8 3.3 6.6 1000 22.2 25.6 161.2 7.3 8.6 37.8 6.6 5.0 20.5 2.2 2.5 9.3 5000 17.6 19.9 371.9 5.5 6.3 91.7 3.0 3.6 63.6 1.2 1.3 16.8 10000 15.7 18.1 636.1 6.9 5.7 150.8 2.5 2.9 66.8 0.9 1.0 19.8 30000 13.3 15.3 1207.6 6.1 6.7 270.9 1.9 2.2 107.2 0.5 0.6 26.3 159200 10.6 12.0 3916.0 3.0 3.5 801.9 1.2 1.6 261.6 0.2 0.2 35.6 SAMPLE HA NB AC 3L CL NBN NBA (314 AV NUMBER (51:) (gr) (2) (1139) (1b!) (5:) (er) (2) 12210721 10000 669 6.68 50 100 5731.0 9926.0 2.56 6.86 DEFORMATION (inches X 0.0001) LVDT §1(0.0 IN.) LVDT §2(2.0 IN.) LVDT §3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 29.6 33.8 25.8 10.8 12.3 8.1 7.6 8.8 5.3 6.9 5.7 3.3 500 23.1 28.8 68.7 8.1 9.3 20.0 5.2 6.0 11.7 2.9 3.6 6.0 1000 20.8 23.9 116.5 7.2 8.3 32.8 6.6 5.1 18.2 2.3 2.6 8.5 5100 16.3 18.5 323.2 5.6 8.2 83.8 3.0 3.6 60.6 1.2 1.6 16.6 10000 16.7 16.6 530.5 6.9 5.5 132.8 2.5 2.9 60.6 - - - 30000 12.5 16.5 1030.0 6.0 6.7 263.5 1.9 2.2 99.6 - - - 167000 9.6 11.1 3606.5 6.8 5.6 - 1.2 1.6 268.6 - - - HA I TOTAL WEIGHT OP DRY AGGREGATES; "B I HEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I HEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; "B“ I NEIGHT OP SAMPLE IN HATER; AV I PERCENT AIR VOIDS; W I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE: PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. - .7 ..-—Q- . ..__a--‘ m 9......- ’1! i 285 BEAM CYCLIC LOAD DATA SAMPLE HA HB 99 SL CL NBN NBA (3%! 9v NUMBER (31) (at) (2) (lbs) (lbs) (51) (5:) (1) 12210731 10000 669 6.68 50 100 5732.0 9956.0 2.56 7.22 DEFORMATION (inches X 0.0001) LVDT 51(0.0 IN.) LVDT 92(2.0 IN.) LVDT §3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 120 30.1 36.5 33.6 10.5 12.0 10.0 7.2 8.2 6.6 6.6 5.3 3.8 500 26.3 27.6 78.8 8.2 9.3 22.1 5.2 5.9 12.7 2.9 3.3 6.6 1000 21.9 26.9 132.8 7.3 8.3 36.0 6.6 5.0 19.6 2.2 2.5 9.0 5200 17.1 19.6 360.6 5.5 6.3 89.8 3.0 3.6 62.6 - - - 10000 15.5 17.6 618.6 6.9 5.6 168.9 2.5 2.9 66.6 - - - 30000 13.1 15.1 1165.0 6.1 6.7 260.0 1.9 2.2 103.7 - - - 191300 10.0 11.3 6195.3 2.9 3.6 861.6 1.1 1.3 277.6 - - - SAMPLE HA WE AC SL CL NBN NBA (3’1 AV NUMBER (3:) (5t) (2) (lbs) (lbs) (3:) (gr) (2) 12210712 10000 660 6.68 50 200 5735.0 9950.0 2.56 7.10 DEFORMATION (inchca X 0.0001) LVDT #1(0.0 IN.) LVDT '2(2.0 IN.) LVDT 53(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 80.8 88.6 83.8 20.7 23.7 18.9 13.7 13.7 11.7 8.8 9.8 8.8 500 67.8 56.5 187.1 15.8 18.0 65.8 0.5 10.8 25.1 6.9 5.8 11.8 1000 63.1 50.0 288.2 16.0 18.3 78.3 8.0 8.3 39.5 3.8 6.6 16.8 6600 32.6 36.9 903.6 10.2 11.5 217.2 5.1 5.8 95.1 1.7 2.0 28.5 10000 30.5 36.7 1286.0 9.6 10.8 302.0 6.5 5.2 126.5 1.6 1.6 36.3 28500 26.1 30.0 2612.7 7.9 9.1 535.7 3.6 6.0 200.8 0.8 1.0 61.7 56000 23.7 27.6 3933.0 7.0 8.1 863.6 2.9 3.3 296.0 0.6 0.7 50.6 HA I TOTAL WEIGHT OP DRY AGGREGATES; "B I HEIGHT OP BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I WEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I HEIGHT OP SAMPLE IN HATER; AV I PERCENT AIR VOIDS; GMM I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. «_l.v—-_._ 286 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (3!! AV NUMBER (5:) (gr) (1) (lbs) (lbs) (5:) (at) (1) 12210722 10000 669 6.68 50 200 5738.0 9953.0 2.56 7.07 DEFORMATION (lncho: X 0.0001) LVDT 51(0.0 IN.) LVDT I2(2.0 IN.) LVDT #3(6.0 IN.) LVDT 16(6.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 80.8 70.1 83.6 20.7 26.0 18.9 13.7 15.9 11.7 8.6 9.9 8.8 500 67.8 55.2 183.7 15.8 18.3 65.0 9.5 11.0 26.7 6.9 5.7 11.7 1000 62.9 69.8 289.6 16.0 18.2 78.8 8.1 9.3 39.8 3.8 6.6 16.9 5500 33.2 37.9 809.0 10.5 11.9 196.8 5.3 8.0 87.5 1.9 2.1 27.2 10000 30.6 36.8 1300.7 9.6 10.8 306.6 6.5 5.2 128.5 9.1 10.6 - 29000 25.9 29.7 2622.7 7.8 9.0 539.2 8.7 10.2 ' - - - 70900 22.7 26.0 6729.6 6.7 7.7 1002.7 2.7 3.1 339.2 - - - SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (8!) (8!) (I) (lbI) (lb!) (5:) (8r) (1) 12210732 10000 689 6.68 50 200 5739.0 9962.0 2.56 8.91 DEFORMATION (inchos X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT l3(6.0 IN.) LVDT {6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 59.2 68.5 58.7 20.8 23.8 17.8 13.7 15 9 11.1 8.6 10.0 8.5 500 68.5 53.5 156.6 15.7 18.0 63.2 9.5 10.9 23.9 5.0 5.7 11.6 1000 61.9 67.6 267.8 13.8 15.7 72.3 8.1 9.1 37.8 3.9 6.6 18.3 5000 32.9 37.3 701.2 10.6 12.0 176.6 5.5 8.2 79.1 2.0 2.3 25.5 10000 29.7 36.0 1232.7 .6 10.8 295.7 6.8 5.2 125.5 1.5 1.7 36.8 50000 23.3 28.8 3219.8 .1 8.2 709.0 3.0 3.6 253.6 0.6 0.7 66.0 80000 21.7 25.3 6766.6 .5 7.8 1018.9 2.8 3.1 366.7 0.5 0.8 56.0 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. BE???” I 287 BEAM CYCLIC LOAD DATA SAMPLE HA NB AC SL CL HBH NBA (311 AV NUMBER (3:) (8r) (1) (lbs) (lbs) (3:) (3r) (2) 12210715 10000 689 6.68 50 500 5755.0 9988.0 2.56 8.88 DEFORMATION (inches X 0.0001) LVDT #1(0.0 IN.) LVDT 92(2.0 IN.) LVDT I3(6.0 IN.) LVDT §6(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 167.5 171.3 191.7 66.3 53.7 52.6 26.1 30.3 27.6 - - - 500 115.9 136.6 519.3 35.1 60.8 130.7 17.7 20.5 59.9 - - - 1030 106.0 119.3 887.6 31.0 35.6 215.0 16.8 16.9 92.1 - - - 5000 82.0 93.8 2353.3 23.8 27.0 526.2 9.8 11.2 190.8 ' - ' 10000 73.9 86.1 6069.2 20.9 23.8 888.8 8.1 9.2 292.1 - - - 12500 71.5 81.1 6312.0 20.1 22.8 913.7 7.6 8.8 299.3 - - - 13000 71.1 81.5 6773.5 20.0 22.9 1009.6 7.5 8.6 329.1 - - * SAMPLE HA NB AC SL CL NBN NBA (3!! AV NUMBER (8!) (8r) (1) (1b!) (1b!) (3:) (8t) (1) 12210725 10000 689 6.68 50 500 5756.0 9963.0 2.56 6.80 DEFORMATION (inchOI X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 166.3 169.8 189.2 66.2 53.6 52.0 28.2 30.6 27.5 13.6 15.7 13.3 500 116.9 131.9 695.6 35.1 60.3 125.5 17.7 20.6 57.8 7.3 8.6 21.7 1000 103.6 117.1 859.2 31.1 35.2 210.0 16.9 16.9 90.8 5.5 8.2 29.9 5000 81.3 96.5 2277.7 23.8 27.6 511.1 9.8 11.6 187.0 2.6 3.0 62.9 10000 73.3 83.3 3970.8 20.9 23.7 858.2 8.1 9.2 290.3 .1.8 2.0 55.3 12100 71.2 82.6 6122.6 20.2 23.6 881.8 7.7 8.9 291.8 1.8 1.9 52.5 HA I TOTAL NEIGHT OP DRY AGGREGATES; NB I HEIGHT OP BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I WEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I WEIGHT OE SAMPLE IN HATER; AV I PERCENT AIR VOIDS; (MI I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 288 BEAM CYCLIC LOAD'DATA SAMPLE HA “B A: SL CL NEH HBA (3!! Av NUMBER (3:) (3r) (2) (lbs) (lbs) (3:) (5r) (2) 12210735 10000 669 6.68 50 500 5717.0 9923.0 2.56 7.15 DEFORMATION (1ncho. X 0.0001) LVDT I1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(8.0625 IN.) CYCLE . NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 152.8 172.7 216.9 66.6 52.6 56.8 25.7 29.1 29.6 13.1 16.7 13.9 500 120.0 137.1 583.6 35.2 60.2 137.0 17.6 19.8 61.6 6.9 7.9 22.6 1000 108.2 122.6 985.6 31.2 35.3 231.0 16.6 16.5 97.2 5.1 5.8 30.9 5000 85.0 96.3 2566.3 23.6 26.7 566.9 9.5 10.8 196.0 2.6 2.7 62.5 10000 76.6 86.8 6688.2 20.9 23.7 928.8 7.8 8.9 303.9 1 6 1.8 56.9 13000 73.6 86.9 6835.9 19.9 23.0 986.1 7.3 8.6 312.6 1 6 1.6 52.2 SAMPLE WA HB AC SL CL WBH NBA (3%! AV NUMBER (3:) (5r) (1) (lbs) (lbs) (3:) (5r) (2) 12310711 10000 663 6.26 50 100 5769.0 9983.0 2.55 7.25 DEFORMATION (lnchou X 0.0001) LVDT 91(0.0 IN.) LVDT 52(2.0 IN.) LVDT 93(6.0 IN.) LVDT #6(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 30.6 36.6 31.8 10.5 11.9 9.6 7.2 8.2 8.1 6.8 5.3 3.7 500 23.8 27.3 85.0 8.0 9.1 23.6 5.0 5.7 13.6 2.7 3.1 8.7 1000 21.5 26.9 168.9 7.1 8.2 39.6 6.2 6.9 21.2 2.1 2.6 9.5 5000 16.9 19.3 606.3 5.6 6.1 100.3 2.9 3.3 67.0 1.1 1.3 15.9 10000 15.2 17.2 698.9 6.8 5.6 166.3 2.6 2.7 72.9 0.8 0.9 21.3 28000 13.0 15.1 1268.2 6.0 6.6 285.8 1.8 2.1 112.8 0.5 0.8 25.7 187660 10.0 11.6 6851.7 2.9 3.6 951.1 1.1 1.3 305.0 0.2 0.2 39.9 HA I TOTAL HEIGHT OF DR! AGGREGATES; “B I HEIGHT OP BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I HEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; WBW I WEIGHT OF SAMPLE IN HATER; AV - PERCENT AIR VOIDS; GM! I MAXIMUM THEMETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. la ’1!“ l 289 BEAM CYCLIC LOAD DATA SAMPLE NA W6 AC SL CL HEW NBA Gui AV NUMBER (5:) (at) (1) (lbs) (le) (5r) (3:) (1) 12310721 10000 663 6.26 50 100 5753.0 9966.0 2.55 7.17 DEFORMATION (inchss X 0.0001) LVDT il(0.0 IN.) LVDT 62(2.0 IN.) LVDT #3(6.0 IN.) LVDT 66(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 30.1 36.5 30.8 10.5 12.0 9.3 7.2 8.2 6.0 6.7 5.6 3.8 500 23.6 27.5 63.2 6.0 9.3 23.3 5.0 5.6 13.3 2.7 3.2 6.6 1000 21.3 26.3 163.3 7.1 6.1 38.7 6.2 6.6 20.9 2.1 2.6 9.6 5000 16.7 19.0 395.8 5.6 6.1 98.5 2.9 3.3 66.3 1.1 1.3 15.8 10300 15.0 17.6 689.3 6.7 5.5 165.2 2.6 2.8 72.6 0.6 0.9 21.2 30900 12.7 16.6 1310.5 3.9 6.6 296.2 1.8 2.1 116.3 0.5 0.5 26.0 166300 10.1 11.7 6037.6 3.0 3.5 639.6 1.2 1.6 276.1 0.2 0.2 38.6 SAMPLE HA NB AC SL CL WEN NBA (361 AV NUMBER (3:) (st) (2) (lbs) (lbs) (3:) (5r) (2) 12310731 10000 663 6.26 50 100 5769.0 9956.0 2.55 7.13 DEFORMATION (inches X 0.0001) LVDT 01(0.0 IN.) LVDT 62(2.0 IN.) LVDT l3(6.0 IN.) LVDT {6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 29.9 36.3 30.3 10.6 12.0 9.2 7.2 8.2 5.9 - - - 500 23.5 27.3 63.2 7.9 9.2 23.6 5.0 5.8 13.6 - - - 1000 21.1 26.6 161.3 7.1 6.2 36.3 6.2 6.9 20.6 - - - 5500 16.6 19.0 615.3 5.3 6.1 103.3 2.8 3.3 66.3 - - - 10600 16.6 16.6 666.3 6.7 5.3 166.9 2.6 2.7 72.6 ~ - - 30000 12.7 16.3 1290.2 3.9 6.6 293.6 1.6 2.0 115.9 - - - 129200 10.2 11.5 3719.0 3.1 3.6 781.6 1.2 1.6 261.6 - - - 130000 10.2 11.5 3601.6 3.0 3.5 716.6 1.2 1.6 236.8 - - - WA - TOTAL HEIGHT OF DRY AGGREGATES; H8 - HEIGHT OP BITUMEN; AC - PERCENT ASPHALT CONTENT; SL - SUSTAINED LOAD; NBA - HEIGHT OF SAMPLE IN AIR; CL - CYCLIC LOAD; HEW - WEIGHT OF SAMPLE IN NATER; AV - PERCENT AIR VOIDS; GUM - MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 290 BEAM CYCLIC LOAD DATA SAMPLE NA WB AC SI. CL NBN NBA Gui Av NUMBER (3:) (5r) (1) (lbs) (lbs) (5:) (3r) (2) 12310712 10000 663 6.26 50 200 5760.0 9935.0 2.55 7.09 DEFORMATION (inches X 0.0001) LVDT I1(0.0 IN.) LVDT §2(2.0 IN.) LVDT '3(6.0 IN.) LVDT #6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 59.3 67.9 86.6 20.1 23.0 19.6 13.1 15.1 12.0 8.1 9.3 6.9 500 66.6 52.6 183.0 15.3 17.3 69.8 9.1 10.3 27.0 6.6 5.3 12.6 1000 62.0 67.9 316.7 13.6 15.5 83.2 7.7 8.8 62.6 3.6 6.1 17.8 5700 32.3 36.9 912.6 10.1 11.5 219.2 5.0 5.7 95.7 1.7 2.0 28.6 22180 26.6 30.6 2506.5 .0 9.2 560.3 3.5 6.0 212.6 0.9 1.0 66.1 31570 25.0 29.1 2899.9 .5 8.7 836.0 3.2 3.7 232.0 0.7 0.9 65.6 52000 23.2 26.9 6688.2 .9 8.0 958.0 2.8 3.2 329.9 0.8 0.8 55.8 SAMPLE WA HB AC SL CL NBN NBA (3!! AV NUMBER (5:) (8r) (1) (lbs) (lbs) (3:) (at) (1) 12310722 10000 663 6.26 50 200 5765.0 9967.0 2.55 7.13 DEFORMATION (inchss X 0.0001) LVDT '1(0.0 IN.) LVDT 02(2.0 IN.) LVDT 93(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 59.7 68.1 88.1 20.1 23.0 20.0 13.2 15.0 12.2 8.1 9.2 7.0 500 66.9 55.9 183.8 15.3 18.3 69.8 9.1 10.8 26.9 6.6 5.5 12.5 1000 62.3 68.1 319.6 13.6 15.5 83.6 7.7 8.8 62.6 3.8 6.1 17.8 5200 33.0 38.6 898.1 10.2 11.9 215.8 5.1 8.0 96.8 1.8 2.1 29.0 10300 29.8 36.1 1528.1 9.1 10.6 356.1 6.3 6.9 165.3 1.3 1.5 38.1 27000 25.8 29.9 2663.5 7.7 .9 586.2 3.3 3.9 218.9 0.8 0.9 66.3 55200 23.2 26.3 6685.8 6.8 .7 991.9 2.7 3.1 337.9 0.5 0.6 55.7 HA I TOTAL HEIGHT OP DRY AGGREGATES; "B I HEIGHT OP BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I HEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; I WEIGHT OP SAMPLE IN HATER; AV I PERCENT AIR VOIDS; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; NBA NBN GM I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 291 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (5:) (3r) (1) (lbs) (lbs) (8:) (8r) (1) 12310732 10000 663 6.26 50 200 5763.0 9969.0 2.55 7.02 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT 92(2.0 IN.) LVDT I3(6.0 IN.) LVDT #6(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 58.9 67.1 65.3 20.1 22.9 19.6 13.2 15.0 11.9 8.2 9.3 6.9 500 66.2 53.1 180.9 15.3 17.6 69.8 9.1 10.5 27.0 6.7 5.6 12.6 1000 61.7 67.1 305.8 13.6 15.3 81.0 7.7 8.7 61.6 3.8 6.1 17.5 5500 32.3 38.9 898.1 10.1 11.6 218.0 5.1 5.8 98.0 1.8 2.0 29.3 10900 29.1 33.5 1506.2 9.0 10.6 352.2 6.3 6.9 166.9 1.3 1.5 38.0 30000 25.0 28.6 2771.3 7.6 8.6 816.7 3.3 3.7 226.9 0.8 0.9 65.7 57000 22.7 26.2 6586.3 6.8 7.8 982.5 2.7 3.1 336.9 0.5 0.8 58.0 SAMPLE NA NB AC SL CL NBN NBA (3!! AV NUMBER (8:) (8r) (1) (lbs) (lbs) (8r) (8:) (1) 12310715 10000 663 6.26 50 500 5768.0 9968.0 2.55 7.08 DEFORMATION (inchss x 0.0001) LVDT Il(0.0 IN.) LVDT 02(2.0 IN.) LVDT §3(6.0 IN.) LVDT l6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 168.1 172.3 221.0 65.0 52.3 58.5 26.7 28.8 30.0 12.6 16.6 16.0 500 118.6 131.8 605.2 36.1 38.8 167.2 16.7 18.9 85.6 6.6 7.6 23.5 1000 106.9 121.8 1036.6 30.3 35.1 262.6 16.0 16.2 101.0 - - - 2000 96.5 108.7 1513.1 28.8 30.9 362.0 11.7 13.6 132.7 - - - 5000 82.6 95.0 3117.1 22.9 26.6 670.6 9.1 10.5 235.2 ‘ - - 7000 78.3 90.2 3587.9 21.8 26.8 757.5 8.3 9.6 255.7 - - - 9000 75.6 86.2 6800.6 20.6 23.6 957.9 - - ' - - - NA I TOTAL NEIGHT OP DRY AGGREGATES; NB I NEIGHT OP BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; Q“ I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. Ir! I'll-{In I __ ___ --.. , 292 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (3:) (at) (1) (lbs) (lb!) (8r) (8:) (1) 12310725 10000 663 6.26 50 500 5763.0 9963.0 2.55 7.13 DEFORMATION (inchss X 0.0001) LVDT §1(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(6.0 IN.) LVDT 16(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 169.0 172.2 226.9 65.0 52.0 59.2 26.7 26.5 30.3 12.3 16.3 16.1 500 117.1 136.5 602.6 36.1 39.2 165.6 16.6 19.1 66.7 6.5 7.5 23.1 1000 105.5 119.7 1063.7 30.3 36.3 263.6 13.9 15.8 101.0 - - - 2000 95.1 109.0 1567.8 26.8 30.8 367.8 11.6 13.3 136.6 - - - 5000 82.9 96.1 3153.6 22.9 26.0 876.3 9.1 10.3 235.6 - - - 8000 77.2 89.5 3872.8 21.1 26.6 807.0 6.0 9.2 267.0 - - - 9000 75.9 66.6 6653.3 20.6 23.6 963.3 7.7 6.6 316.3 - - - SAMPLE HA NB AC SL CL NBN NBA (311 AV NUMBER (8:) (st) (2) (lbs) (lbs) (8:) (5r) (1) 12310735 10000 663 6.26 50 500 5707.0 9976.0 2.55 6.99 DEFORMATION (inchss X 0.0001) LVDT I1(0.0 IN.) LVDT 62(2.0 IN.) LVDT #3(6.0 IN.) LVDT f6(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 168.8 189.9 216.6 65.0 52.1 57.3 26.9 28.8 29.5 12.5 16.5 13.9 500 115.3 130.7 582.8 36.2 38.7 163.3 16.8 19.0 66.2 6.7 7.6 23.2 1000 103.9 120.8 1016.2 30.3 35.2 260.9 16.1 16.6 101.0 6.9 5.7 31.9 5000 81.6 93.2 2712.6 22.9 26.2 589.7 9.2 10.5 208.5 2.3 2.6 65.6 8000 79.6 90.8 3363.6 22.2 25.6 719.6 8.8 10.0 269.3 '2.1 2.6 51.7 7000 77.6 87.8 3632.6 21.6 26.6 732.6 8.6 9.5 269.3 1.9 2.2 69.5 8000 76.1 86.9 6058.5 - - - - ' - - ' ' NA I TOTAL NEIGHT OP DRY AGGREGATES; NB I NEIGHT OP BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; (if! I MAXIMJM TMETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. _J , a‘—‘ —-I---—u—__ 293 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (R14 AV NUMBER (3:) (5r) (1) (lbs) (lbs) (3:) (5r) (2) 22110811 10000 667 6.28 50 100 5859.0 10065.0 2.52 6.78 DEFORMATION (inchss X 0.0001) LVDT '1(0.0 IN.) LVDT 52(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 23.2 28.2 12.3 10.6 11.7 6.8 7.9 8.9 .6 5.8 8.5 2.3 500 18.2 21.2 31.3 8.0 9.3 11.6 5.7 6.6 .6 3.7 6.2 6.3 1000 18.6 18.7 56.9 7.1 8.1 19.3 6.9 5.6 12.0 2.9 3.6 8.5 5000 12.9 16.8 166.9 5.6 8.2 67.6 3.6 3.9 26.6 1.7 2.0 11.6 10000 11.8 13.5 266.5 6.8 5.6 78.0 2.9 3.6 61.2 1.3 1.5 16.2 30000 .8 11.3 660.8 6.0 6.6 138.6 2.3 2.6 67.0 0.9 1.0 21.5 183000 7.6 8.8 1512.7 3.0 3.5 618.8 1.5 1.7 176.0 0.6 0.6 37.7 SAMPLE NA NB AC SL CL NBN NBA (391 AV NUMBER (5:) (5:) (2) (lbs) (lbs) (8:) (8r) (2) 22110621 10000 667 6.28 50 100 5838.0 10011.0 2.52 6.80 DEPCRMATION (inchos X 0.0001) LVDT 51(0.0 IN.) LVDT #2(2.0 IN.) LVDT §3(6.0 IN.) LVDT I6(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 23.2 26.8 12.5 10.6 12.0 6.9 7.9 9.1 3.6 5.8 6.7 2.6 500 18.2 20.7 31.9 8.0 9.0 11.6 5.7 8.6 7.5 3.6 6.1 6.6 1000 16.6 18.5 56.5 7.1 8.0 19.1 6.9 5.5 11.9 2.9 3.3 8.6 5500 12.7 16.6 151.6 5.3 6.1 69.1 3.6 3.8 27.1 1.6 1.9 11.7 10200 11.8 13.3 256.9 6.8 5.5 80.6 2.9 3.3 62.3 1.3 1.5 18.5 27800 10.0 11.3 667.3 6.1 6.8 136.5 2.3 2.8 85.6 0.9 1.0 21.3 189865 7.5 8.5 1886.6 2.9 3.3 661.6 1.6 1.6 188.6 - - - I TOTAL NEIGHT OP DRY AGGREGATES; NB I NEIGHT OP BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. E5299” 294 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (5:) (3r) (1) (lbs) (lbs) (3:) (5r) (2) 22110831 10000 667 6.28 50 100 5826.0 10000.0 2.52 6.93 DEFORMATION (1n0hss X 0.0001) LVDT f1(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(6.0 IN.) LVDT {6(6.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 23.8 28.7 13.0 10.6 11.8 5.0 7.9 8.9 .5 5.7 6.5 2.6 500 18.5 20.9 33.5 8.0 9.0 12.0 5.8 6.6 .7 3.6 6.1 6.5 1000 16.7 19.2 57.1 7.1 8.2 19.8 6.9 5.8 12.2 2.9 3.3 8.8 5000 13.1 15.5 152.0 5.6 6.6 68.9 3.6 6.0 27.0 1.7 2.0 11.7 10300 11.8 13.3 286.7 6.8 5.5 82.9 2.9 3.3 63.3 1.3 1.6 18.7 26100 10.6 11.9 623.6 6.2 6.8 126.5 2.6 2.7 61.7 0.9 1.0 20.3 180000 7.7 8.8 1897.8 3.0 3.6 659.6 1.5 1.7 188.6 0.6 0.6 38.6 SAMPLE NA NB AC SL CL NBN NBA 13”! AV NUMBER (3:) (st) (1) (lbs) (lbs) (5:) (3r) (2) 22110612 10000 667 6.28 50 200 5838.0 10023.0 2.52 6.96 DEFORMATION (inchss X 0.0001) LVDT 91(0.0 IN.) LVDT 02(2.0 IN.) LVDT §3(6.0 IN.) LVDT #6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 67.5 55.3 29.0 20.6 23.7 10.8 16.8 17.3 7.6 10.3 12.0 6.8 500 37.3 62.6 77.3 15.6 17.7 28.8 10.5 12.0 18.5 8.6 7.2 9.1 1000 33.6 38.6 131.2 13.9 15.9 66.1 9.1 10.6 25.9 5.1 5.8 13.1 5000 26.6 30.6 368.5 10.6 12.2 108.5 6.3 7.3 56.8 2.9 3.3 22.7 10000 23.8 27.0 590.2 9.5 10.7 177.8 5.6 8.1 88.0 2.2 2.5 31.1 30000 20.2 23.5 1108.2 7.9 9.1 318.0 6.1 6.8 162.3 1.6 1.8 60.3 167200 15.6 18.1 3676.0 5.9 .8 986.6 2.7 3.1 367.8 0.6 0.7 67.1 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 55299“ mnmiW . _"—-——————~_- ~ Mai—- 295 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (81') (at) (1) (lbs) (lb!) (31:) (5r) (2) 22110622 10000 667 6.28 50 200 5821.0 10000.0 2.52 5.06 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT I2(2.0 IN.) LVDT i3(6.0 IN.) LVDT 06(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 68.0 55.0 30.2 20.6 23.6 11.2 16.8 17.0 7.6 10.3 11.8 6.9 500 37.7 63.6 78.7 15.6 18.0 27.1 10.5 12.1 18.8 6.3 7.3 9.1 1000 36.0 38.7 136.6 13.9 15.9 66.8 9.0 10.3 28.2 5.0 5.7 13.2 5000 26.7 30.1 355.5 10.6 12.0 109.7 6.3 7.1 57.1 2.8 3.2 22.6 10000 26.0 27.6 815.3 9.5 10.9 183.7 5.3 6.1 90.6 2.2 2.5 31.7 28800 20.7 26.0 1058.1 .0 9.3 301.1 6.2 6.9 136.1 1.6 1.8 39.1 189010 15.7 18.0 3798.7 .9 6.7 986.1 2.7 3.0 372.5 0.6 0.7 88.7 SAMPLE NA NB AC SL CL NBN NBA (3’! AV NUMBER (8:) (5r) (1) (lbs) (1b!) (8!) (8r) (2) 22110832 10000 667 6.28 50 200 5825.0 10012.0 2.52 5.11 DEFORMATION (inchss X 0.0001) LVDT fl(0.0 IN.) LVDT f2(2.0 IN.) LVDT I3(6.0 IN.) LVDT 56(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 68.5 56.3 30.8 20.5 23.8 11.3 16.8 17.2 7.8 10.3 11.9 6.9 550 37.5 62.8 86.7 15.6 17.8 28.8 10.3 11.7 17.5 6.1 7.0 9.6 1000 36.3 60.2 138.6 16.0 16.3 65.7 9.0 10.6 26.7 5.0 5.9 13.6 5600 28.5 30.8 386.6 10.5 12 1 117.1 6.1 7.1 60.1 2.7 3.1 23.2 10850 26.0 28.0 666.6 9.6 10 9 196 7 5.2 6.1 95.7 2.1 2.6 32.8 20250 21.9 25.6 900.9 8.6 9.8 257.9 6.5 5.2 118.9 1.6 1.8 38.0 36000 20.1 22.6 1620.0 7.6 8.6 395 2 3.9 6.6 173.0 1.2 1.6 66.1 186600 16.0 18.5 3537.9 5.9 6.8 912.8 2.7 3.1 363.5 0.6 0.7 81.3 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GM! I MAXIMIM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 296 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA Gm AV NUMBER (gr) (5:) (2) (lbs) (lbs) (3:) (st) (2) 22110615 10000 667 6.26 50 500 5805.0 9968.0 2.52 6.98 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT I3(6.0 IN.) LVDT #6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 118.5 135.6 98.2 66.6 53.1 33.5 29.8 33.8 19.9 17.6 20.1 11.0 500 93.1 106.2 256.6 35.5 60.5 80.6 20.6 23.5 62.8 10.2 11.6 19.2 1000 83.9 95.6 638.8 31.6 35.9 136.2 17.6 20.0 67.3 7.9 9.0 27.3 5000 85.9 75.8 1156.9 26.1 27.7 326.8 11.9 13.7 162.7 6.1 6.7 63.1 10000 59.6 88.0 1960.6 21.6 26.5 538.0 10.1 11.5 219.6 3.0 3.6 58.8 20000 53.5 81.3 2887.8 19.0 21.8 762.5 8.6 9.7 291.2 2.1 2.6 83.7 30000 50.6 57.0 3912.9 17.8 20.1 1012.2 7.6 8.6 370.8 1.7 2.0 72.6 SAMPLE NA NB AC SL CL NBN NBA (316 AV NUMBER (8:) (9r) (1) (lbs) (lbs) (sr) (8r) (2) 22110625 10000 667 6.28 50 500 5825.0 10010.0 2.52 5.08 DEFORMATION (inchss X 0.0001) LVDT ”(0.0 IN.) LVDT 02(2.o IN.) LVDT ”(6.0 IN.) LVDT f6(6.0625 IN.) CYCLE - mm ELA. TOT. PLA. 81.6. mt. PLA. m. 101'. PLA. ELA. row. PLA. 100 120.7 138.8 102.7 66.8 53.0 36.7 29.6 33.6 20.5 - - - 500 96.8 108.5 263.5 35.7 60.9 82.6 20.8 23.6 63.3 - - - 1000 85.5 99.0 658.0 31.8 38.8 138.5 17.8 20.3 69.0 - - - 5500 68.2 77.0 1265.7 23.8 27.7 352.1 11.6 13.5 151.2 - - - 10300 60.2 89.5 2083.0 21.6 26.7 561.8 10.0 11.5 227.1 ‘ ‘ ' 27000 52.1 58.9 3616.2 18.2 20.5 928.1 7.8 8.8 360.1 - - ' 31000 51.1 59.6 6356.3 17.8 20.7 1110.6 7.5 8.7 600.9 ' - - NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GUM I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. . .-- h 297 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (5:) (3r) (2) (lbs) (lbs) (8!) (5r) (1) 22110635 10000 667 6.28 50 500 5826.0 10010.0 2.52 5.11 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT f3(6.0 IN.) LVDT I6(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 121.1 160.9 101.8 66.8 56.5 36.2 29.6 36.6 20.2 17.6 20.3 11.1 500 95.1 109.1 269.0 35.8 61.0 83.9 20.8 23.6 66.0 10.1 11.6 19.6 1000 85.8 98.5 666.7 31.8 36.5 160.2 17.5 20.1 69.7 7.8 8.9 27.9 5000 67.6 77.9 1219.0 26.2 28.0 339.8 11.9 13.8 166.9 6.0 6.6 63.6 10000 60.7 69.1 2078.2 21.5 26.5 559.6 10.0 11.6 228.5 2.9 3.3 57.6 23200 53.5 61.7 3333.1 18.7 21.5 860.2 8.1 9.3 319.6 1.9 2.2 85.8 33000 50.8 59.7 6518.6 17.8 20.7 1165.3 7.6 8.6 609.8 1.6 1.9 76.5 SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (81') (8r) (2) (lbs) (lbs) (8:) (st) (1) 32110811 10000 660 6.60 50 100 5825.0 9990.0 2.53 5.20 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT 92(2.0 IN.) LVDT i3(6.0 IN.) LVDT 56(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 26.6 27.6 16.0 10.5 11.9 5.2 7.9 8.9 3.7 - - - 500 19.2 21.6 36.9 8.0 9.1 12.9 5.6 6.3 8.2 - - - 1000 17.3 19.8 62.6 7.2 8.1 21.0 6.8 5.5 12.8 - - - 5000 13.6 15.6 166.1 5.5 8.3 51.3 3.6 3.9 27.8 - - - 10000 12.2 16.0 281.8 6.9 5.6 85.2 2.9 3.3 63.8 - - - 27000 10.5 12.2 688.6 6.1 6.8 160.7 2.3 2.6 66.6 - - - 186700 7.9 8.9 1835.3 3.0 3.6 680.9 1.6 1.6 189.8 - - - NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; 8L I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; Gl‘fl I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 298 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (366 AV NUMBER (3:) (8r) (1) (lbs) (lbs) (8!) (st) (2) 32110621 10000 660 6.60 50 100 5871.0 10060.0 2.53 5.08 DEPORMBTION (inchss X 0.0001) LVDT Il(0.0 IN.) LVDT '2(2.0 IN.) LVDT f3(6.0 IN.) LVDT {6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 26.1 28.1 13.3 10.5 12.2 5.0 7.9 9.2 .5 5.7 6.6 2.6 500 19.0 21.8 36.9 8.0 9.2 12.3 5.6 6.5 .8 3.6 6.1 6.5 1000 17.1 19.7 60.5 7.2 8.2 20.6 6.9 5.6 12.6 2.9 3.3 6.7 5000 13.6 15.3 156.7 5.5 8.3 69.0 3.6 3.9 26.7 1.6 1.9 11.6 10365 12.0 16.6 276.9 6.9 5.8 86.0 2.9 3.5 63.6 1.3 1.5 16.6 25000 10.5 12.0 666.1 6.2 6.8 130.1 2.3 2.7 62.5 0.9 1.0 20.0 162000 8.0 9.1 1808.6 3.1 3.5 629.6 1.5 1.7 173.5 0.6 0.6 35.7 SAMPLE NA NB AC SL CL NBN NBA (3!! AV NUMBER (st) (8:) (2) (lbs) (lbs) (81:) (st) (1) 32110631 10000 660 6.60 50 100 5839.0 10013.0 2.53 5.18 DEFORMATION (inchss X 0.0001) LVDT '1(0.0 IN.) LVDT §2(2.0 IN.) LVDT '3(6.0 IN.) LVDT #6(6.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 26.6 27.8 16.1 10.5 12.0 5.3 7.9 9.0 3.7 5.7 6.5 .5 500 19.2 21.9 38.6 8.0 9.2 12.7 5.6 6.6 8.1 3.5 6.0 .6 1000 17.3 19.8 62.1 7.2 8.2 20.9 6.8 5.5 12.7 2.8 3.3 .7 5000 13.6 15.7 162.6 5.5 6.3 50.8 3.6 3.9 27.6 1.8 1.9 11.7 10850 12.1 13.8 293.6 6.8 5.5 88.5 2.8 3.2 65.2 1.2 1.6 16.8 30000 10.6 11.9 525.1 6.1 6.6 150.7 2.2 2.5 70.8 0.8 0.9 21.6 166300 8.0 9.1 1718.2 3.0 3.6 653.5 1.5 1.8 181.6 0.6 0.6 38.5 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. E5393” 299 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SI. CL NBN NBA GM! AV NUMBER (at) (8:) (1) (lbs) (lbs) (st) (51:) (2) 32110612 10000 660 6.60 50 200 5862.0 10016.0 2.53 5.13 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 68.6 55.6 30.9 20.6 23.3 11.3 16.7 16.9 7.7 10.2 11.6 6.9 500 38.0 63.8 81.0 15.6 18.0 27.8 10.5 12.1 18.8 6.2 7.2 9.1 1000 36.3 39.9 137.5 13.9 16.2 65.3 9.0 10.6 28.6 5.0 5.8 13.2 5100 28.8 31.0 361.2 10.8 12.2 110.3 6.2 7.2 56.9 2.8 3.2 22.2 10000 26.3 28.0 807.0 9.5 10.9 179.6 5.3 6.1 87.6 2.1 2.6 30.6 28000 20.8 26.0 1080.7 7.9 9.2 303.7 6.1 6.8 135.8 1.6 1.6 38.1 208700 15.6 17.8 6320.7 5.7 6.6 1098.8 2.5 2.8 602.0 0.5 0.8 86.6 SAMPLE NA NB AC SL CL NBN NBA 0!!! AV NUMBER (5!) (at) (1) (lbs) (lbs) (st) (8:) (1) 32110622 10000 660 6.60 50 200 5870.0 10069.0 2.53 6.95 DEFORMATION (inchss X 0.0001) LVDT '1(0.0 IN.) LVDT 52(2.0 IN.) LVDT I3(6.0 IN.) LVDT #6(6.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 67.6 56.9 29.1 20.3 23.5 10.8 16.8 17.1 7.6 10.3 11.9 6.8 500 37.2 63.2 76.2 15.6 18.0 26.6 10.5 12.2 18.3 8.3 7.3 8.9 1000 33.6 38.6 130.6 13.9 18.0 63.8 9.0 10.6 25.7 5.1 5.8 13.0 5000 26.6 30.9 338.1 10.6 12.6 105.3 6.3 7.6 55.0 2.8 3.3 21.9 11300 23.3 26.7 617.3 9.2 10.8 186.9 5.2 6.0 90.6 2.1 2.6 31.2 28000 20.6 23.6 965.2 8.0 9.2 277.6 6.3 6.9 126.6 1.6 1.7 38.9 170200 15.5 18.0 3868.2 5.8 6.8 956.2 2.7 3 1 383.1 - ' ' I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. Eff???“ 300 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (3:) (5r) (1) (lbs) (lbs) (3:) (3r) (1) 32110832 10000 660 6.60 50 200 5868.0 10038.0 2.53 6.85 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 66.7 53.5 27.7 20.2 23.2 10.5 16.8 16.9 7.1 10.3 11.6 6.6 500 36.7 62.1 72.2 15.5 17.8 25.3 10.5 12.1 15.8 6.6 7.3 8.6 1000 33.0 37.7 126.3 13.8 15.6 62.2 9.0 10.3 26.9 5.1 5.8 12.7 5000 25.9 30.0 326.6 10.5 12.2 102.2 6.3 7.3 53.7 2.9 3.3 21.6 10000 23.6 26.6 552.1 .6 10.6 168.2 5.6 6.1 63.7 2.2 2.5 29.9 26000 20.5 23.7 906.6 .1 9.6 266.7 6.6 5.0 122.3 1.5 1.8 36.8 161500 15.6 18.0 3362.8 .9 6.9 889.0 2.7 3.2 362.7 - - - SAMPLE NA NB AC SL CL . NBN NBA GM! AV NUMBER (3:) (8r) (1) (lbs) (lbs) (st) (3:) (2) 32110615 10000 660 6.60 50 500 5861.0 10036.0 2.53 6.99 DEFORMATION (incbss X 0.0001) LVDT I1(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 118.9136.3 96.8 66.5 53.3 33.0 29.6 33.9 19.6 - - - 500 93.6107.8 257.6 35.6 61.0 81.3 20.6 23.8 63.0 - - - 1000 86.2 96.2 633.9 31.6 36.2 132.6 17.8 20.1 86.6 - - - 5000 66.1 76.6 1167.3 26.1 28.0 326.2 11.9 13.9 161.3 - - - 10000 59.6 68.9 1916.0 21.6 26.8 522.5 10.1 11.6 213.3 - - - 25000 51.9 60.0 3206.6 18.3 21.2 835.6 7.9 9.2 311.0 - - - 30000 50.5 58.6 3912.0 17.8 20.5 1010.5 7.6 8.8 369.0 - - - I TOTAL NEIGHT OP DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; E529?” I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; 301 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA Gl‘fl AV NUMBER (3r) (3:) (1) (lbs) (lbs) (st) (31:) (1) 32110625 10000 680 6.60 50 500 5870.0 10069.0 2.53 6.95 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT §3(6.0 IN.) LVDT f6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 118.5133.9 97.2 66.8 52.6 33.3 29.8 33.5 19.8 17.6 19.9 11.0 500 93.1105.3 255.9 35.6 60.2 81.2 20.7 23.6 63.0 10.2 11.6 19.3 1000 83.9 95.6 633.7 31.7 36.0 133.1 17.6 20.0 66.7 7.9 9.0 27.0 5000 85.9 78.6 1130.3 26.1 28.1 320.6 12.0 13.9 160.1 6.1 6.8 62.3 13900 56.5 66.1 2353.6 20.3 23.0 636.5 9.3 10.5 251.5 2.6 2.9 60.3 30300 50.3 56.8 3829.1 17.8 20.1 960.7 7.6 8.8 366.3 1.7 2.0 87.3 32000 69.9 56.9 6116.2 17.8 20.1 1083.5 7.5 8.5 386.9 1.7 1.9 76.5 SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (8!) (ET) (1) (lbs) (lbs) (Cr) (2:) (2) 32110835 10000 660 6.60 50 500 5880.0 10063.0 2.53 6.91 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT §3(6.0 IN.) LVDT I6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 118.0136.1 95.1 66.8 52.9 32.7 29.7 33.8 19.5 17.7 20.1 10.8 500 92.7106.7 268.9 35.6 60.2 78.7 20.7 23.6 61.8 10.3 11.8 18.9 1000 83.5 96.6 618.2 31.7 36.6 128.9 17.7 20.6 66.8 8.0 9.2 28.6 5000 85.6 76.3 1098.8 26.1 28.1 313.3 12.0 16.0 137.6 6.1 6.8 61.7 10000 59.1 68.5 1873.2 21.5 26.9 516.0 10.1 11.7 212.1 3.0 3.5 55.3 20000 53.3 61.8 2700.3 19.1 22.1 718.5 8.5 9.8 275.7 2.2 2.5 80.7 35000 69.0 55.7 6236.6 17.3 19.7 1095.8 7.3 8.6 396.6 1.8 1.8 75.1 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. Efigéén 302 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC 8!. CL NBN NBA Gui AV NUMBER (5:) (5r) (1) (lbs) (lb!) (at) (at) (2) 11120511 10000 650 6.31 50 100 8166.0 10329.0 2.55 3.06 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 120 9.7 13.2 12.3 8.8 11.7 31.0 8.3 11.2 36.3 7.9 10.6 39.0 560 9.3 12.6 19.3 8.2 11.1 37.3 7.8 10.5 62.8 7.3 9.8 65.0 1000 6.9 11.7 22.2 7.8 10.3 60.3 7.6 9.8 65.6 6.9 9.0 67.5 5000 7.9 9.7 33.1 6.9 6.5 69.1 6.6 7.9 56.6 5.8 7.1 58.5 13800 8.6 11.5 69.0 7.6 10.0 58.6 6.8 9.3 65.5 8.0 8.2 87.5 20000 8.0 10.5 52.7 7.0 9.1 61.7 6.6 6.6 66.8 5.6 7.3 70.7 27900 7.5 9.2 56.8 8.5 8.0 86.1 6.0 7.6 71.6 5.2 6.6 73.6 172800 7.1 8.7 93.1 6.1 7.5 75.1 5.5 6.8 63.1 6.5 5.5 76.9 338300 6.9 8.5 113.6 6.0 7.6 76.1 5.3 6.6 86.1 6.2 5.2 86.6 715700 7.0 9.0 166.9 6.1 7.6 66.6 5.6 6.9 91.1 6.1 5.3 93.6 661900 7.0 9.1 155.6 6.1 7.8 86.6 5.3 6.9 91.1 6.0 5.2 93.6 SAMPLE NA NB AC 8L CL NBN NBA. GMM AV NUMBER (ar) (81:) (2) (lbs) (lbs) (8:) (st) (2) 11120521 10000 669 6.30 50 100 6162.0 10357.0 2.55 3.03 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT f3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 10.0 13.9 11.8 6.9 12.3 66.5 8.5 11.8 66.6 '6.1 11.2 63.0 500 6.7 11.0 17.2 7.7 9.7 50.0 7.3 9.2 68.8 6.8 8.6 67.2 1000 9.0 12.0 22.2 7.9 10.5 56.0 7.5 10.0 52.3 6.9 9.2 50.6 5000 6.0 10.1 33.5 7.1 8.9 66.0 6.6 6.3 63.6 5.9 7.5 59.8 10500 8.6 11.6 66.6 7.6 10.0 73.2 6.6 9.2 69.6 6.1 8.2 63.9 155600 7.6 10.1 96.2 8.6 8.8 110.6 6.0 7.9 96.1 6.9 6.5 79.6 187200 7.8 10.6 106.1 6.7 9.2 115.2 6.1 8.2 100.1 6.9 6.7 82.0 333060 8.7 6.0 106.0 5.8 6.9 126.8 5.2 6.2 107.0 6.1 6.9 85.1 NA I TOTAL NEIGHT OP DRY AGGREGATES; NB I NEIGHT OP BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; GM! I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. ‘IIIII I!" n {I | a.“ J I66 hi i I 303 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (3:) (8r) (2) (lbs) (lbs) (st) (3:) (2) 11120531 10000 669 6.30 50 100 8182.0 10367.0 2.55 3.17 DEFORMATION (lnchss X 0.0001) LVDT #1(0.0 IN.) LVDT 12(2.0 IN.) LVDT #3(6.0 IN.) LVDT 16(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 10.0 13.7 12.2 8.9 12.1 27.6 8.5 11.6 30.1 8.1 11.0 30.1 500 8.8 11.1 18.0 7.8 9.8 33.6 7.6 9.3 35.0 8.9 8.7 35.3 1000 9.2 12.6 23.8 8.1 10.9 37.2 7.8 10.3 39.0 7.1 9.5 39.6 5000 8.7 11.8 37.6 7.6 10.2 50.9 7.1 9.5 51.8 8.6 8.5 51.8 10000 8.5 11.6 65.7 7.6 9.9 59.5 6.9 9.2 59.2 8.1 8.1 58.2 188500 7.7 10.1 102.2 8.8 8.7 102.2 8.0 7.8 97.1 6.8 8.6 86.0 352725 7.8 10.6 131.7 8.7 9.1 121.9 8.0 8.1 107.5 6.7 8.6 95.1 SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (51:) (st) (1) (lbs) (lbs) (81') (at) (2) 11120512 10000 669 6.30 50 200 8180.0 10380.0 2.55 3.12 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT f2(2.0 IN.) LVDT #3(6.0 IN.) LVDT 96(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 19.3 26.3 13.6 17.0 21.6 31.5 16.2 20.6 29.2 15.6 19.6 25.8 510 19.7 26.6 23.1 17.3 23.3 38.0 16.3 22.0 35.9 15.1 20.6 27.8 1020 19.3 26.0 28.3 16.9 22.8 60.6 15.8 21.6 39.6 16.5 19.8 31.6 5000 17.1 21.5 61.9 16.9 18.8 69.5 13.8 17.3 68.3 12.2 15.6 61.2 10000 16.5 20.5 50.7 16.6 17.9 53.6 13.2 18.6 52.3 11.5 16.6 65.2 31000 18.7 21.7 73.8 16.5 18.8 59.6 13.1 17.1 58.5 11.1 16.5 50.8 181500 18.3 21.6 122.7 16.1 18.9 72.3 12.5 16.8 88.5 10.0 13.6 80.1 327700 16.7 18.2 139.3 12.7 15.7 89.0 11.2 13.8 86.5 8.6 10.7 76.8 501370 15.0 19.2 163.0 12.9 18.5 91.6 11.3 16.5 86.0 8.6 10.9 77.6 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; Q” I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 304 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (181 AV NUMBER (5:) (as) (2) (lbs) (lbs) (8r) (3:) (2) 11120522 10000 669 6.30 50 200 8126.0 10303.0 2.55 3.18 DEFORMATION (inchos X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT 03(6.0 IN.) LVDT #6(6.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 18.9 23.3 13.6 16.6 20.5 16.3 15.9 19.5 18.2 15.0 18.5 15.5 500 17.9 21.9 21.2 15.7 19.2 20.3 16.8 18.1 19.7 13.7 18.8 17.6 1000 18.6 23.7 27.3 16.1 20.7 23.3 15.1 19.6 21.9 13.8 17.8 18.8 5100 16.8 20.8 62.2 16.6 18.1 37.3 13.5 16.7 30.6 12.0 16.9 20.8 10600 18.1 26.7 57.2 15.7 21.5 67.3 16.6 19.7 35.9 12.6 17.2 20.8 20300 17.7 26.2 69.5 15.6 21.0 59.6 16.0 19.1 61.9 12.0 18.6 19.8 176900 16.8 16.2 117.1 12.6 15.7 112.1 11.6 13.9 66.9 9.0 11.0 12.8 516800 15.5 20.6 172.6 13.3 17.5 139.8 11.6 15.3 76.9 8.8 11.5 6.8 691800 15.8 21.6 196.0 13.6 18.5 166.6 11.8 18.1 78.6 6.8 12.0 3.8 SAMPLE NA NB AC SL CL NBN NBA (RT! AV NUMBER (5:) (sr) (2) (lbs) (lbs) (st) (2:) (1) 11120532 10000 669 6.30 50 200 6160.0 10327.0 2.55 3.12 DEFORMATION (inchss X 0.0001) LVDT 51(0.0 IN.) LVDT OZ(2.0 IN.) LVDT 53(6.0 IN.) LVDT 66(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 130 19.8 25.9 15.1 17.6 22.8 21.0 16.6 21.7 23.5 15.7 20.5 25.0 500 18.6 23.7 21.8 16.3 20.8 26.0 15.6 19.6 27.0 16.2 18.2 28.0 1000 17.1 20.6 25.0 16.9 17.9 26.0 16.0 16.8 29.0 12.8 15.6 30.0 5000 17.6 22.5 63.0 15.2 19.6 32.0 16.1 16.1 33.0 12.5 18.1 32.5 10200 18.8 21.3 52.1 16.8 18.5 36.0 13.6 17.0 35.0 11.7 16.9 36.0 20000 15.8 18.8 80.2 13.5 16.3 60.0 12.6 16.9 37.0 10.6 12.7 36.0 177600 16.1 21.6 125.5 13.9 18.6 55.0 12.3 18.6 62.5 9.8 13.0 31.0 361000 15.3 19.8 167.7 13.2 17.1 81.3 11.6 15.0 65.5 9.0 11.8 28.5 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 53.33%?” 305 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (5:) (at) (2) (lbs) (lbs) (Br) (3:) (2) 11120515 10000 669 6.30 50 500 8112.0 10282.0 2.55 3.15 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 69.6 59.8 17.2 62.9 51.9 30.0 60.1 68.5 33.8 37.1 66.9 28.3 500 69.1 82.2 28.8 62.6 53.7 36.3 39.1 69.5 38.8 35.2 66.8 33.3 1000 65.6 56.7 33.6 39.3 67.2 60.0 38.0 63.2 61.8 31.9 38.3 35.8 5800 67.0 81.6 80.0 60.3 52.7 50.0 36.2 67.6 68.0 30.8 60.2 38.8 10000 68.5 81.3 71.7 39.9 52.8 55.0 35.8 68.9 51.0 29.7 39.1 60.0 19500 65.2 59.1 88.6 38.7 50.6 81.3 36.2 66.8 56.8 27.9 38.5 60.8 170900 66.0 60.1 169.6 37.6 51.0 67.6 32.1 63.8 66.8 23.7 32.6 36.3 366100 38.8 67.7 167.7 32.9 60.6 99.3 27.6 36.2 68.3 19.8 26.3 32.8 SAMPLE NA NB AC SL CL NBN NBA (3&4 AV NUMBER (5:) (3r) (1) (lbs) (lbs) (5:) (3:) (2) 11120525 10000 669 6.30 50 500 6126.0 10301.0 2.55 3.16 DEFORMATION (lnchss X 0.0001) LVDT ll(0.0 IN.) LVDT i2(2.0 IN.) LVDT §3(6.0 IN.) LVDT #6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 69.0 58.8 17.0 62.5 51.1 27.0 39.6 67.8 26.3 36.8 66.2 18.8 500 52.6 71.6 30.7 65.5 81.7 39.0 61.9 56.9 36.3 37.8 51.2 30.5 1100 68.5 62.1 38.6 61.8 53.8 67.0 38.3 69.1 65.1 33.9 63.6 38.0 5600 68.9 81.2 59.0 60.3 52.8 67.9 36.3 67.3 63.3 30.8 60.2 58.3 10600 65.1 57.8 70.0 38.7 69.5 78.6 36.5 66.2 73.0 28.8 36.9 63.8 23200 60.9 68.8 82.3 35.0 61.7 92.6 30.9 38.9 85.1 25.1 29.9 72.5 123900 61.3 52.3 162.6 35.1 66.5 121.8 30.3 38.6 106.5 22.8 28.9 86.0 339200 39.8 69.8 189.5 33.6 62.2 162.8 28.5 35.8 119.6 20.3 25.5 90.0 670000 61.5 55.3 220.7 35.2 68.8 150.2 29.7 39.5 123.6 20.7 27.5 91.5 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. FEES???” 306 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (Rid AV NUMBER (8!) (8!) (1) (lbs) (lbs) (8r) (3:) (1) 11120535 10000 669 6.30 50 500 6121.0 10300.0 2.55 3.19 DEFORMATION (inchss X 0.0001) LVDT #1(°.0 IN.) LVDT §2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 110 50.3 61.6 16.2 63.8 53.6 35.5 60.7 50.0 35.5 37.6 66.2 37.3 500 53.1 72.1 31.3 65.8 62.3 60.8 62.2 57.6 60.0 38.0 51.6 62.3 1000 52.0 70.8 38.6 66.8 61.1 62.5 61.0 55.9 61.8 38.6 69.5 63.5 5100 69.6 67.3 61.7 62.6 57.7 69.5 38.1 51.9 65.8 32.6 66.1 67.3 10500 62.8 51.7 87.6 38.7 66.3 53.0 32.7 39.5 67.8 27.2 32.8 68.3 27000 63.3 56.6 92.8 38.9 68.6 59.0 32.5 60.9 51.8 28.1 32.9 69.8 186100 62.6 55.9 169.3 36.1 67.6 76.0 30.9 60.8 61.6 22.7 29.6 53.8 510000 62.6 58.6 236.5 36.2 69.3 85.0 30.6 61.5 68.3 21.0 26.7 51.3 1061500 60.6 53.7 286.0 36.2 65.3 66.6 26.3 37.5 68.3 18.6 26.6 52.3 SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (5:) (at) (2) (lbs) (lbs) (3:) (5r) (2) 11320511 10000 626 6.07 50 100 8127.0 10290.0 2.55 3.18 DEFORMATION (lncbss X 0.0001) LVDT #1(0.0 IN.) LVDT §2(2.0 IN.) LVDT #3(6.0 IN.) LVDT 06(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 9.6 12.8 13.2 8.3 11.3 20.9 7.9 10.8 67.2 7.5 10.3 38.3 550 8.2 10.2 20.5 7.2 9.0 26.7 6.8 8.5 69.2 8.3 7.9 39.8 1000 8.6 10.9 25.7 7.3 9.5 26.3 6.9 9.0 51.2 8.3 8.3 60.8 5000 7.6 8.9 39.1 8.6 7.8 28.7 8.0 7.2 55.0 5.3 8.5 63.6 10200 7.3 8.9 69.3 8.6 7.8 29.1 5.9 7.2 80.9 5.1 6.3 66.2 30975 7.6 9.6 73.1 6.5 8.3 33.8 5.9 7.8 62.3 5.0 8.6 51.1 327866 6.7 8 6 167.0 5.8 7.3 38.6 5.1 6.6 76.3 6.0 5.0 72.1 511050 7.0 9 6 178.9 8.0 8.1 62.5 5.3 7.1 75.5 6.1 5.6 73.1 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. Eff???” 307 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC 51. CL NBN NBA Gui AV NUMBER (5:) (3r) (2) (lbs) (lbs) (3:) (3r) (1) 11320521 10000 626 6.07 50 100 6165.0 10329.0 2.55 3.30 DEFORMATION (lnchss X 0.0001) LVDT I1(0.0 IN.) LVDT §2(2.0 IN.) LVDT I3(6.0 IN.) LVDT §6(6.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 9.2 11.9 13.2 8.1 10.5 7.7 7.7 10.0 6.0 7.3 9.5 5.6 500 8.3 10.3 20.7 7.3 9.0 9.1 8.9 8.5 7.5 8.6 7.9 7.1 1000 8.6 10.9 28.8 7.6 9.5 10.1 6.9 8.9 8.2 6.6 8.2 8.1 5500 8.6 11.5 67.6 7.3 10.0 13.5 8.8 9.3 11.7 8.0 8.2 11.7 10000 7.6 9.6 52.0 8.6 8.2 15.1 8.0 7.5 13.1 5.3 6.8 13.0 30160 7.2 8.9 72.6 8.3 7.7 18.1 5.7 7.0 16.1 6.8 6.0 15.8 187820 7.6 9.9 132.9 8.6 8.5 23.1 5.7 7.8 21.1 6.5 6.1 19.9 697250 8.5 7.9 188.6 5.6 6.8 28.0 6.9 5.9 23.0 3.7 6.5 20.9 SAMPLE NA NB AC SL CL NBN NBA (301 AV NUMBER (5:) (8r) (1) (lbs) (lbs) (8:) (st) (2) 11320531 10000 626 6.07 50 100 6165.0 10306.0 2.55 2.98 DEFORMATION (inchss X 0.0001) LVDT Il(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT I6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 160 9.1 12.3 16.2 8.0 10.9 18.9 7.6 10.6 13.3 7.2 9.8 7.7 500 7.9 9.7 18.2 8.9 8.5 20.6 6.6 8.1 16.6 6.1 7.5 8.5 1000 8.5 11.5 26.8 7.5 10.1 21.5 7.0 9.5 16.9 6.5 8.8 9.0 5000 7.6 9.1 37.1 6.6 7.9 25.9 6.0 7.6 19.6 '5.6 6.6 11.5 11500 7.6 9.3 69.2 6.6 8.1 28.8 5.9 7.5 20.9 5.2 6.6 12.7 36300 7.5 9.9 73.6 6.5 8.8 31.7 5.9 7.9 23.6 5.0 8.7 13.6 362000 7.0 9.6 151.3 6.1 8.2 38.6 5.6 7.2 28.6 6.2 5.7 16.6 882000 6.6 7.9 189.9 5.5 6.8 60.5 6.8 6.0 29.6 3.7 6.5 15.3 899350 6.6 8.5 177.2 5.7 7.3 61.0 5.0 6.6 29.5 3.8 6.8 18.0 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIOBT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. BEN?“ 308 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (3!! AV NUMBER (8r) (3:) (1) (lbs) (lbs) (st) (61') (1) 11320512 10000 626 6.07 50 200 8108.0 10265.0 2.55 3.26 DEFORMATION (lnchss X 0.0001) LVDT #1(0.0 IN.) LVDT 92(2.0 IN.) LVDT §3(6.0 IN.) LVDT 06(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 19.7 28.6 16.6 17.2 23.1 13.9 16.3 21.9 13.9 15.6 20.7 12.8 500 18.7 25.1 26.8 18.3 21.9 17.3 15.3 20.5 16.9 16.1 18.9 16.5 1000 18.6 20.1 30.1 16.6 17.5 19.2 13.6 18.6 18.2 12.2 16.9 15.2 5000 15.6 18.8 68.9 13.5 18.3 25.5 12.6 16.9 22.7 10.9 13.1 18.3 10200 18.3 20.9 65.0 16.1 18.1 28.6 12.8 18.5 25.3 11.1 16.2 19.3 21900 18.6 22.6 86.1 16.6 19.6 32.0 13.0 17.5 27.8 11.0 16.8 20.8 135800 16.8 18.3 160.3 12.5 15.7 39.8 11.1 13.9 33.0 8.7 11.0 22.2 693600 15.0 20.1 223.5 12.8 17.2 66.7 11.1 16.9 38.5 8.2 11.1 22.6 863950 16.0 17.7 269.5 11.9 15.1 68.8 10.2 13.0 37.8 7.6 9.3 22.6 SAMPLE NA NB AC SL CL NBN NBA (3!! AV NIMBER (8:) (5r) (1) (lbs) (lbs) (st) (8:) (1) 11320522 10000 626 6.07 50 200 8125.0 10295.0 2.55 3.30 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(6.0 IN.) LVDT 56(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 19.9 28.8 16.6 17.6 23.5 22.1 16.5 22.3 20.8 15.5 21.0 18.0 500 17.2 21.1 26.7 15.0 18.6 28.9 16.0 17.3 25.7 12.9 15.9 19.1 1000 18.0 23.7 32.8 15.7 20.6 33.7 16.6 19.2 28.7 13.3 17.5 20.1 5000 16.5 21.0 51.9 16.3 18.1 50.0 13.1 16.7 39.6 11.8 16.7 23.7 10000 17.6 23.9 69.3 15.1 20.8 59.6 13.7 18.8 65.5 11.9 18.3 26.8 27800 15.8 20.3 88.7 13.6 17.5 73.8 12.3 15.8 56.2 10.3 13.2 28.9 366800 16.2 17.8 187.0 6.3 9.3 - 8.0 8.9 - 5.7 8.8 - 501150 13.5 16.2 202.6 11.5 13.8 107.8 10.0 12.0 70.5 7.6 8.9 30.5 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. E51328?” 309 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (5:) (5r) (1) (lbs) (lbs) (51:) (st) (1) 11320532 10000 626 6.07 50 200 8161.0 10315.0 2.55 3.20 DEFORMATION (lnchss X 0.0001) LVDT ll(0.0 IN.) LVDT 62(2.0 IN.) LVDT l3(6.0 IN.) LVDT 06(6.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 19.9 27.1 16.2 17.6 23.8 22.1 16.6 22.6 20.8 15.8 21.3 18.0 500 18.9 25.7 26.5 16.5 22.6 28.9 15.5 21.1 25.7 16.3 19.6 19.1 1000 18.5 25.2 32.8 16.1 21.9 33.7 15.0 20.5 28.7 13.7 18.7 20.1 5000 17.0 22.3 52.0 16.7 19.6 50.0 13.5 17.8 39.8 11.9 15.7 23.7 11100 18.6 21.8 66.6 16.6 18.9 59.6 13.1 17.3 65.5 11.6 15.0 28.8 31800 16.9 18.2 81.5 12.9 15.7 73.6 11.6 16.2 56.2 9.8 11.9 28.9 171600 16.7 19.2 152.0 12.7 15.6 91.0 11.2 16.0 68.8 .5 12.0 32.1 369600 16.8 18.9 188.1 12.0 15.2 101.0 13.0 18.0 71.0 10.5 12.0 36.0 627900 16.3 18.6 209.5 12.3 15.8 107.6 12.5 15.0 72.0 10.2 11.7 36.5 720000 16.2 18.6 219.5 12.5 15.6 110.0 12.6 15.2 72.2 10.1 11.2 36.0 SAMPLE NA NB AC SL CL NBN NBA (361 AV NIMBER (st) (91') (1) (lbs) (lbs) (8:) (st) (1) 11320515 10000 626 6.07 50 500 6180.0 10380.0 2.53 2.63 DEFORMATION (lncbss X 0.0001) LVDT l1(0.0 IN.) LVDT #2(2.0 IN.) LVDT I3(6.0 IN.) LVDT #6(6.0825 IN.) CYCLE ' NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 65.7 58.2 15.1 60.2 51.2 66.3 37.7 68.0 66.2 35.0 66.6 62.7 500 63.8 58.6 25.0 38.6 69.6 52.0 35.8 65.8 69.2 32.2 61.6 65.8 1000 61.7 52.2 30.1 38.5 65.7 56.8 33.8 62.1 52.2 30.0 37.6 66.9 5000 62.9 58.0 53.6 37.3 50.6 89.3 33.8 65.8 57.1 29.1 39.6 63.8 10150 37.2 66.8 58.9 32.6 38.9 75.6 29.1 35.0 60.1 26.5 29.5 63.2 35900 37.7 67.7 91.5 32.6 61.3 86.7 28.9 36.6 66.8 23.3 29.5 61.2 157900 36.6 61.8 138.3 29.7 36.1 98.5 25.8 31.3 69.5 19.5 23.7 38.1 336800 36.3 67.6 188.2 31.3 61.0 106.3 26.8 35.1 71.5 19.5 25.6 38.5 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. E5238” 310 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (3:) (3r) (2) (lbs) (lbs) (5:) (5:) (1) 11320525 10000 626 6.07 50 500 6180.0 10383.0 2.55 2.96 DEFORMATION (inches X 0.0001) LVDT 81(0.0 IN.) LVDT 02(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 66.6 56.8 17.5 60.3 69.3 61.3 37.6 68.0 80.0 36.7 62.5 85.0 500 66.7 55.8 29.2 38.7 68.1 73.8 35.6 66.3 70.0 32.0 39.7 75.0 1000 63.9 56.7 36.2 37.9 67.2 79.3 36.7 63.2 75.5 30.8 38.2 80.0 5000 66.8 59.9 83.8 38.6 51.6 92.8 36.8 66.3 85.5 29.6 39.3 87.5 10700 61.6 52.9 76.6 35.7 65.6 98.1 31.8 60.6 90.5 28.3 33.5 89.5 20750 63.7 59.5 100.7 37.6 51.0 106.1 33.0 65.0 96.5 26.7 36.6 91.5 191200 39.9 53.6 195.8 36.0 65.6 125.6 29.0 38.7 107.0 21.2 28.3 92.8 351650 38.9 51.8 236.2 33.0 63.8 131.6 27.9 37.0 109.8 19.7 28.1 92.8 SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (8r) (5:) (2) (lbs) (lbs) (st) (81') (2) 11320535 10000 626 6.07 50 500 8026.0 10150.0 2.55 3.86 DEFORMATION (inches X 0.0001) LVDT ’1(0.0 IN.) LVDT 52(2.0 IN.) LVDT i3(6.0 IN.) LVDT 06(6.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 53.5 71.0 26.3 65.8 60.8 22.6 62.6 58.3 21.6 38.8 51.5 20.5 500 51.6 69.5 60.5 66.0 59.2 27.7 60.1 56.0 25.9 35.5 67.9 26.6 1000 65.6 55.5 65.2 38.8 67.2 31.2 35.1 62.7 28.6 30.8 37.3 25.9 5300 66.6 81.2 81.6 39.6 51.8 61.6 35.0 65.9 35.6 29.1 38.2 30.6 10225 67.5 66.8 103.7 60.1 56.7 66.8 35.3 68.1 38.9 28.7 39.1 32.8 30000 66.0 57.5 138.3 37.0 68.6 58.1 32.0 61.9 68.1 26.9 32.6 38.2 153100 38.6 68.8 210.9 32.3 39.0 88.8 27.2 32.8 57.9 19.5 23.5 66.7 325300 37.2 66.6 282.8 31.1 37.1 75.6 25.8 30.8 82.9 17.6 21.0 50.6 501200 37.1 66.8 303.6 30.9 37.3 79.5 25.5 30.8 68.2 18.8 20.3 53.3 NA I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; G“ I MAXIM.” THEORETICAL SPEIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 311 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA GM! AV NUMBER (8:) (3r) (1) (lbs) (lbs) (Er) (gr) (2) 22120811 10000 667 6.28 50 100 5790.0 9935.0 2.52 6.89 DEFORMATION (Inches X 0.0001) LVDT 01(0.0 IN.) LVDT #2(2.0 IN.) LVDT 53(6.0 IN.) LVDT #6(6.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 10.9 16.0 22.6 9.3 12.0 13.0 8.8 11.3 8.8 8.3 10.7 6.3 500 10.6 13.6 38.6 8.8 11.6 16.9 8.3 10.7 9.8 7.8 9.8 6.8 1000 10.1 12.9 66.6 8.8 10.9 16.1 7.9 10.1 10.5 7.2 9.2 5.0 7700 9.3 11.6 80.0 7.8 9.7 22.9 7.1 8.9 16.5 6.1 7.6 7.0 10500 10.0 13.6 95.7 8.6 11.5 26.6 7.6 10.6 15.1 6.5 8.9 7.2 136800 8.9 11.7 198.6 7.6 9.8 36.9 6.5 .6 19.8 5.0 8.8 8.5 309300 .6 10.8 267.5 7.0 9.0 37.1 8.0 .7 19.3 6.5 5.7 6.5 1011900 8.2 10.5 356.5 6.8 8.7 60.9 5.7 .3 19.6 3.9 5.0 2.2 SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (3:) (8r) (1) (lbs) (lbs) (8:) (st) (1) 22120821 10000 667 6.28 50 100 5770.0 9905.0 2.52 6.96 DEFORMATION (lnchss X 0.0001) LVDT #1(0.0 IN.) LVDT 02(2.0 IN.) LVDT !3(6.0 IN.) LVDT 16(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 11.2 16.7 23.6 9.5 12.5 10.1 9.0 11.8 6.6 8.5 11.1 .8 500 10.9 16.5 38.6 9.2 12.3 13.0 8.6 11.5 8.8 7.9 10.6 .3 1000 9.7 11.8 63.3 8.2 10.0 15.0 7.6 9.3 10.1 8.9 8.6 .6 5000 9.8 12.7 76.7 8.3 10.7 22.6 7.5 9.8 16.5 8.6 8.5 12.2 10000 9.8 13.0 96.0 8.2 11.0 27.2 7.5 9.9 17.5 8.6 8.5 16.9 30500 9.8 13.6 136.6 8.2 11.6 35.8 7.6 10.2 22.2 8.0 8.6 19.0 185800 8.6 11.1 218.2 7.2 9.3 52.3 8.2 8.0 31.5 6.7 8.1 26.2 330538 8.5 11.0 259.7 7.1 9.1 60.0 6.1 7.8 36.6 6.5 5.8 27.0 515900 8.6 11.6 306.9 7.1 9.5 87.8 6.1 8.1 37.6 6.6 5.8 29.3 876900 8.3 10.7 321.1 8.9 8.8 89.0 5.8 7.5 38.8 6.1 5.3 30.3 895700 8.8 11.5 335.6 7.1 9.5 69.5 6.0 8.0 39.0 6.2 5.7 30.5 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. BEEP” 312 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC 81. Cl. NBN NBA Gm AV NUMBER (3:) (st) (1) (lbs) (lbs) (3:) (8r) (2) 22120831 10000 667 6.28 50 100 5805.0 9975.0 2.52 5.08 DEFORMATION (lnches X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT f3(6.0 IN.) LVDT I6(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 11.9 16.2 25.5 10.1 13.6 9.3 9.6 13.1 8.7 9.0 12.3 8.7 500 10.8 16.0 39.3 9.1 11.9 10.8 8.5 11.1 9.7 7.8 10.1 9.7 1260 9.9 12.1 68.7 8.3 10.2 11.9 7.7 9.6 10.9 8.9 8.5 10.5 5000 10.5 16.3 82.2 8.8 12.0 16.6 8.0 11.0 16.3 7.0 9.5 13.7 10000 10.5 16.8 103.6 8.8 12.3 17.0 8.0 11.1 18.5 8.8 9.5 15.8 69600 9.5 12.5 158.3 7.9 10.5 28.1 7.0 9.3 26.3 5.6 7.6 23.9 171800 8.8 11.6 223.2 7.3 9.6 33.6 6.6 8.2 31.5 6.8 6.2 31.2 359000 8.8 11.6 282.6 7.3 9.5 38.3 6.2 8.1 35.9 6.5 5.9 35.0 511600 8.8 11.7 319.5 7.3 9.7 60.8 6.2 8.2 38.3 6.6 5.9 37.2 708000 8.7 11.6 369.6 7.2 9.6 63.2 6.1 8.0 60.7 6.2 5.8 39.6 SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (5r) (3:) (2) (lbs) (lbs) (8:) (st) (2) 22120612 10000 667 6.28 50 200 5772.0 9900.0 2.52 6.83 DEFORMATION (lnchss X 0.0001) LVDT ’1(0.0 IN.) LVDT §2(2.0 IN.) LVDT O3(6.0 IN.) LVDT #6(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 21.8 26.9 25.6 18.5 22.9 62.6 17.6 21.5 61.8 18.3 20.1 61.3 500 22.9 31.2 65.7 19.6 26.6 67.6 18.0 26.5 68.9 16.3 22.2 65.8 1000 21.6 28.3 56.2 18.2 23.9 51.9 18.8 22.0 50.0 15.0 19.7 68.1 5000 19.3 23.9 82.7 18.2 20.1 63.1 16.7 18.2 80.5 12.6 15.8 52.7 10000 19.8 25.3 105.8 16.5 21.2 69.6 16.8 19.0 86.1 12.6 18.0 56.7 136200 18.7 25.0 239.5 15.6 20.7 76.7 13.6 17.9 72.1 10.1 13.5 57.2 11111 20.5 27.7 116.5 17.2 23.2 93.0 15.6 20.8 85.8 12.9 17.6 59.8 322900 17.2 21.7 293.2 16.3 18.0 100.8 12.1 15.3 91.5 8.7 11.0 59.6 695800 18.6 25.1 380.9 15.2 20.7 102.9 12.8 17.5 96.0 9.0 12.3 59.6 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EEEE” 32113 BEAM CYCLIC LOAD DATA SAMPLE HA WB AC SL CL WBW WBA GM! AV NUMBER (5:) (5r) (1) (lbs) (1b!) (3r) (8:) (1) 22120622 10000 667 6.28 50 200 5815.0 9972.0 2.52 6.81 DEFORMATION (inchOI X 0.0001) LVDT #1(0.0 IN.) LVDT f2(2.0 IN.) LVDT f3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 23.2 30.3 28.9 10.7 25.8 16.8 18.8 26.3 13.0 17.3 22.8 11.7 500 21.1 28.3 61.5 17.8 22.2 15.8 18.5 20.8 16.9 15.0 18.7 12.7 1000 22.5 30.8 55.0 19.0 25.9 17.3 17.5 23.0 18.0 15.7 21.6 13.7 5000 19.8 26.5 82.9 18.5 20.8 25.8 16.9 18.8 22.1 12.8 16.0 19.0 10000 20.2 28.8 107.6 18.9 22.3 31.6 ‘15.2 20.0 27.0 12.8 16.8 23.6 33500 20.8 28.7 183.6 17.2 26.0 37.5 15.2 21.2 31.9 12.2 17.1 28.3 163000 18.8 25.0 260.7 15.8 20.7 62.9 13.5 17.9 35.7 10.1 13.5 30.7 328500 18.8 25.1 313.6 15.6 20.7 68.1 13.1 17.8 38.2 9.6 12.7 32.0 690000 18.3 19.5 313.7 13.5 18.1 68.5 11.6 13.8 39.6 8.0 9.8 32.5 887000 17.3 22.6 373.9 16.3 18.5 69.5 12.0 15.5 39.7 8.2 10.8 32.5 SAMPLE WA RB AC 3L CL HBH NBA (3%! Av NUMBER (3:) (at) (1) (lbs) (lbs) (3:) (3r) (1) 22120832 10000 667 6.28 50 200 5808.0 9980.0 2.52 5.07 DEFORMATION (inches X 0.0001) LVDT '1(0.0 IN.) LVDT f2(2.0 IN.) LVDT 13(6.0 IN.) LVDT 06(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 22.8 28.6 28.2 19.3 26.1 12.1 18.1 22.6 11.6 16.9 21.1 12.8 500 21.8 27.2 65.9 18.3 22.9 16.5 17.0 21.2 13.6 15.3 19.2 16.7 1000 22.8 30.7 60.5 19.2 25.8 16.5 17.6 23.7 15.0 15.7 21.1 15.9 5000 19.3 23.1 87.2 16.1 19.3 22.6 16.6 17.6 18.5 12.5 16.9 18.3 10800 21.1 28.3 123.2 17.8 23.6 29.0 15.7 21.1 22.9 13.1 17.6 21.7 167150 18.3 23.2 253.7 15.1 19.1 68.2 13.0 16.6 30.5 .7 12.2 26.0 320100 17.3 21.2 309.9 16.2 17.6 56.2 12.1 16.7 32.0 .6 10.5 23.5 505000 18.8 20.2 369.6 13.8 16.6 58.1 11.6 13.9 33.0 .0 9.6 23.5 HA I TOTAL WEIGHT OF DRY AGGREGATES; NB I HEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I WEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; "B“ I WEIGHT OF SAMPLE IN WATER; AV I PERCENT AIR VOIDS; G“ I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 314 BEAM CYCLIC LOAD DATA SAMPLE WA NB AC SL CL NBN NBA (31! AV NUMBER (5:) (BE) (2) (lbs) (lbs) (5:) (8r) (2) 22120815 10000 667 6.28 50 500 5780.0 9935.0 2.52 5.12 DEFORMATION (inchos X 0.0001) LVDT i1(0.0 IN.) LVDT 52(2.0 IN.) LVDT §3(6.0 IN.) LVDT 06(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 59.6 72.5 36.9 69.6 60.2 33.8 65.2 55.1 32.6 60.7 69.7 31.2 500 61.7 82.2 65.3 51.0 67.9 36.8 65.8 61.0 35.0 39.8 53.1 33.1 1000 62.6 86.7 83.6 51.7 71.5 38.5 66.0 63.6 36.6 39.3 56.3 36.1 5000 53.6 66.8 121.7 66.0 56.8 63.9 38.3 67.7 60.1 31.0 38.6 35.6 10000 57.6 78.2 163.8 66.9 66.0 66.8 60.6 55.1 62.1 31.8 63.6 36.2 36600 53.1 69.8 232.5 63.2 56.8 52.0 36.6 67.8 65.5 28.9 35.6 36.8 158700 50.1 65.0 356.7 60.5 52.5 58.3 33.1 63.0 50.8 22.6 29.0 37.0 332900 65.6 55.2 615.3 36.7 66.5 61.0 29.6 35.8 53.5 18.9 22.9 37.0 SAMPLE HA NB AC SL CL NBN NBA (3!! AV NUMBER (5:) (5r) (1) (lbs) (lbs) (8:) (3r) (2) 22120625 10000 667 6.28 50 500 5815.0 9980.0 2.52 6.91 DEFORMATION (inchOI X 0.0001) LVDT I1(0.0 IN.) LVDT #2(2.0 IN.) LVDT §3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 63.7 86.6 37.6 53.1 70.6 20.8 68.7 66.7 25.2 66.0 58.6 29.3 500 58.3 76.6 58.6 68.6 62.0 26.6 63.8 55.8 29.0 38.0 68.7 36.2 1100 55.0 68.1 71.5 65.5 56.6 28.3 60.8 50.3 29.6 36.7 63.0 36.6 5500 57.3 77.8 126.9 67.2 66.1 30.8 61.2 55.9 30.6 33.6 65.3 61.5 10900 56.3 76.8 156.6 66.3 63.1 32.8 39.9 56.5 32.3 31.5 62.9 63.9 22000 55.0 76.9 192.8 65.1 61.6 35.8 38.6 52.6 36.3 29.6 60.0 66.1 161700 65.7 55.0 309.7 37.1 66.7 62.9 30.5 36.7 60.6 20.8 25.0 52.2 353200 69.2 65.6 631.8 39.8 52.9 62.9 32.2 62.7 60.6 20.7 27.5 52.2 HA I TOTAL HEIGHT OF DRY AGGREGATES; NB I HEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I WEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; HEW I WEIGHT OF SAMPLE IN HATER; AV I PERCENT AIR VOIDS; G!!! I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 315 BEAM CYCLIC LOAD DATA SAMPLE HA WB AC SL CL NBN NBA (311 AV NUMBER (3:) (5r) (2) (lbs) (lbs) (3:) (3r) (1) 22120635 10000 667 6.28 50 500 5812.0 9993.0 2.52 5.15 DEFORMATION (inchos X 0.0001) LVDT #1(0.0 IN.) LVDT 52(2.0 IN.) LVDT §3(6.0 IN.) LVDT 56(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 67.1 91.5 61.9 55.7 78.0 17.1 50.9 89.6 18.7 65.9 82.8 17.7 500 63.3 85.8 87.6 52.3 70.8 22.6 67.0 83.8 22.5 60.8 55.3 23.1 1000 56.5 86.9 72.9 66.9 53.6 26.9 39.9 67.8 26.9 36.1 60.8 28.2 5500 57.1 75.3 136.3 68.8 61.8 35.8 60.8 53.5 38.1 32.7 63.1 38.6 10000 58.3 76.5 161.3 66.0 60.8 39.3 39.8 52.3 62.6 31.1 61.1 66.5 128000 67.9 58.6 319.5 38.7 67.3 56.6 31.8 38.9 86.8 21.8 28.6 72.6 337900 66.0 55.8 622.8 37.0 66.8 86.9 29.8 38.0 78.0 18.9 22.9 83.8 SAMPLE HA NB AC SL CL NBN NBA (391 AV NUMBER (8!) (5r) (1) (lbs) (lbs) (5:) (3r) (2) 32120811 10000 680 6.60 50 100 5828.0 9996.0 2.53 5.23 DEFORMATION (inchss X 0.0001) LVDT l1(0.0 IN.) LVDT §2(2.0 IN.) LVDT §3(6.0 IN.) LVDT 06(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 11.6 16.8 25.3 9.8 12.6 5.2 9.1 11.7 3.7 - - - 500 11.6 15.8 63.2 9.6 13.1 12.9 9.0 12.3 8.2 - - - 1000 10.9 16.6 51.6 9.2 12.1 21.0 8.5 11.2 12.8 ' - - 5500 10.6 13.9 86.6 8.7 11.8 51.3 7.9 10.8 27.8 ' ' ' 12000 9.7 12.6 106.5 8.1 10.6 85.2 7.3 9.6 63.8 ' ' - 37000 9.8 13.2 153.6 8.2 11.0 160.7 7.3 9.8 66.6 - - - 166500 8.9 11.2 225.5 7.3 9.3 680.9 8.3 8.0 189.8 - - - 365550 8.3 10.2 275.9 ‘ - - - - - - - - HA I TOTAL NEIGHT OF DRY AGGREGATES; “B I HEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; NBA I HEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I HEIGHT OF SAMPLE IN HATER; AV I PERCENT AIR VOIDS; a“ I MAXIMUM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. 316 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (1%! AV NUMBER (5:) (5r) (2) (lbs) (lbs) (3:) (5r) (1) 32120821 10000 680 6.60 50 100 5828.0 9997.0 2.53 5.22 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(8.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 11.8 15.7 28.1 10.0 13.3 5.2 9.6 12.8 3.7 - - - 500 10.8 13.5 60.1 9.0 11.6 12.9 8.6 10.8 8.2 - - - 1000 10.0 12.3 67.5 8.6 10.3 21.0 7.8 9.8 12.8 - - - 5000 10.8 16.5 85.6 8.9 12.1 51.3 8.1 11.0 27.8 - - - 10000 9.5 12.0 98.8 8.0 10.0 85.2 7.2 9.0 63.8 - - - 29500 9.9 13.2 162.5 8.2 11.0 160.7 7.3 9.8 68.8 - - - 156700 8.8 11.0 218.9 7.3 9.1 680.9 8.3 7.9 189.8 - - - 387650 9.1 12.2 308.5 - - - - - - - - SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (3:) (3r) (2) (lbs) (lbs) (5:) (3r) (2) 32120831 10000 680 6.60 50 100 5825.0 9991.0 2.53 5.21 DEFORMATION (inchss X 0.0001) LVDT #1(0.0 IN.) LVDT i2(2.0 IN.) LVDT #3(6.0 IN.) LVDT 06(8.0825 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 11.2 16.2 26.8 9.5 12.1 5.2 9.0 11.6 3.7 - - - 500 11.2 15.0 62.1 9.6 12.8 12.9 8.8 11.8 8.2 - - - 1000 11.0 16.7 51.9 9.2 12.6 21.0 8.8 11.5 12.8 - - - 5100 10.8 15.0 87.3 9.0 12.8 51.3 8.2 11.6 27.8 - - - 10500 9.7 12.3 99.3 8.1 10.3 85.2 7.3 9.3 63.8 - - - 28800 9.7 12.8 138.8 8.1 10.8 160.7 7.2 9.5 86.8 - - - 156700 8.8 10.8 213.8 7.1 8.8 680.9 8.2 7.8 189.8 - - - 612350 9.2 12.5 315.9 - - - - - - - - NA I TOTAL NEIGHT OP DRY ACGREGATES; NB I NEIGHT OF BITUMEN; AC I PERCENT ASPHALT CONTENT; 8L I SUSTAINED LOAD: NBA I NEIGHT OP SAMPLE IN AIR; CL I CYCLIC LOAD; NBN I NEIGHT OP SAMPLE IN NATER; AV I PERCENT AIR VOIDS; (in I MAXINMM THEORETICAL SPECIFIC GRAVITY; ELA. AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; PLA. I CUMULATIVE PLASTIC (PERMANENT) DEPORMATION. 317 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (3%! AV NUMBER (5:) (at) (1) (lbs) (lbs) (8:) (3r) (1) 32120812 10000 680 6.60 50 100 5820.0 9980.0 2.53 5.18 DEFORMATION (inches X 0.0001) LVDT Il(0.0 IN.) LVDT I2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 11.8 18.0 26.0 10.0 13.5 5.2 9.5 12.8 .7 - - - 500 11.1 16.8 61.6 9.6 12.5 12.9 8.7 11.8 .2 - - - 2000 9.9 12.2 58.2 8.3 10.3 21.0 7.8 9.6 12.8 - - - 5100 9.6 11.6 75.3 7.9 9.5 51.3 7.2 8.7 27.8 - - - 16200 9.8 12.8 110.3 8.2 10.7 85.2 7.6 9.8 63.8 - - - 27150 9.0 11.0 126.9 7.5 9.1 160.7 8.7 8.1 88.8 - - - 196700 8.7 11.1 232.5 7.2 9.1 680.9 8.2 7.9 189.8 - - - 618800 9.2 12.5 313.8 - - - - - - - - - SAMPLE NA NB AC SL CL NBN NBA (31! AV NUMBER (3:) (3r) (1) (lbs) (lbs) (3:) (3r) (1) 32120822 10000 680 6.60 50 200 5795.0 9955.0 2.53 5.61 DEFORMATION (inches X 0.0001) LVDT 01(0.0 IN.) LVDT I2(2.0 IN.) LVDT f3(6.0 IN.) LVDT §6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 25.5 36.6 36.6 21.6 29.1 26.6 20.1 27.3 23.6 18.6 25.3 18.5 500 26.6 33.2 56.1 20.6 27.8 31.3 18.8 25.6 27.9 16.9 23.1 22.0 1000 20.9 25.0 60.5 17.6 20.9 36.3 16.0 19.1 30.3 16.2 17.0 23.9 5000 21.8 28.7 107.2 18.1 23.8 61.2 16.3 21.6 37.0 13.8 18.2 29.9 10000 20.6 25.6 125.9 16.9 21.2 66.6 15.0 18.8 39.5 12.5 15.7 32.8 153800 17.9 21.5 271.6 16.7 17.6 58.6 12.5 15.0 50.5 9.2 11.0 66.5 322600 19.3 25.5 373.6 15.7 20.8 62.3 13.2 17.5 53.5 9.3 12.3 67.5 671900 17.5 21.2 383.6 16.2 17.3 66.7 11.9 16.6 55.5 8.1 9.9 69.5 698000 19.1 25.7 676.7 15.5 20.9 66.5 12.9 17.3 57.3 8.5 11.5 50.9 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. ENE?“ 318 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA G!!! AV NUMBER (5:) (5r) (1) (lbs) (lbs) (at) (5:) (1) 32120832 10000 660 6.60 50 200 5805.0 9965.0 2.53 5.05 DEFORMATION (inchos X 0.0001) LVDT 51(0.0 IN.) LVDT §2(2.0 IN.) LVDT §3(6.0 IN.) LVDT 16(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 26.7 33.7 30.5 20.9 28.5 19.0 19.6 26.8 15.2 18.3 26.9 11.7 500 20.5 26.6 63.0 17.3 20.6 22.0 16.0 19.0 17.1 16.5 17.2 12.7 1000 21.8 28.1 57.6 18.3 23.7 26.0 16.8 21.7 18.0 15.0 19.6 13.7 5000 20.1 25.3 90.1 18.8 21.2 30.1 15.2 19.1 21.5 13.0 18.3 15.6 10000 21.3 29.0 119.9 17.8 26.2 36.1 15.9 21.8 23.7 13.3 18.1 18.1 22700 20.1 28.5 168.2 18.7 22.0 38.9 16.8 19.5 26.1 12.0 15.9 18.8 167950 18.6 23.8 251.5 15.2 19.5 69.3 13.0 16.7 30.8 9.7 12.5 18.3 681800 18.7 25.3 376.8 15.6 20.7 58.1 12.9 17.6 33.9 9.0 12.1 15.8 1025500 16.1 19.2 616.6 13.2 15.7 80.1 10.9 13.0 35.6 7.2 8.5 15.5 1196900 18.3 25.0 698.0 15.0 20.6 59.8 12.6 18.8 35.0 8.0 10.9 16.6 SAMPLE NA NB AC SL CL NBN NBA (301 AV NUMBER (3:) (8r) (1) (lbs) (lbs) (3:) (3r) (1) 32120615 10000 680 6.60 50 100 5827.0 9989.0 2.53 5.16 DEFORMATION (inchos X 0.0001) LVDT §1(0.0 IN.) LVDT #2(2.0 IN.) LVDT f3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 11.2 16.2 26.3 9.5 12.1 5.2 9.0 11.6 3.7 - - - 500 10.7 13.9 39.7 9.1 11.7 12.9 8.5 10.9 8.2 ‘ - - 1000 11.1 15.0 51.3 9.3 12.7 21.0 8.6 11.8 12.8 - - - 5000 10.5 16.6 83.2 8.9 12.1 51.3 8.1 11.0 27.8 - - - 12000 10.0 13.2 106.7 8.3 11.0 85.2 7.5 9.9 63.8 - - - 32500 10.0 13.8 166.2 8.3 11.5 160.7 7.6 10.2 66.6 - - - 176350 8.2 9.8 208.7 6.8 8.1 680.9 5.9 7.0 189.8 - - - 390500 6.5 10.8 282.1 ‘ ’ ' - - ' - - ' I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EB???” 319 BEAM CYCLIC LOAD DATA SAMPLE NA NB AC SL CL NBN NBA (311 AV NUMBER (5:) (at) (1) (lbs) (lbs) (5:) (3r) (2) 32120625 10000 660 6.60 50 500 5800.0 9950.0 2.53 5.23 DEFORMATION (inches X 0.0001) LVDT ll(0.0 IN.) LVDT #2(2.0 IN.) LVDT #3(6.0 IN.) LVDT #6(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 67.1 91.5 62.9 55.6 75.8 25.9 50.8 69.2 23.9 65.7 62.3 21.5 500 62.9 86.8 68.6 51.9 69.9 31.7 66.5 62.6 28.7 60.6 56.6 26.6 1000 61.9 83.9 86.6 50.9 68.9 35.5 65.2 61.3 31.1 38.5 52.2 25.8 5000 57.6 75.7 133.1 66.9 61.9 69.7 60.7 53.8 60.6 32.8 63.3 28.7 10000 53.6 66.9 155.5 63.5 56.6 57.9 37.6 66.9 65.7 29.3 36.7 30.2 29800 53.2 69.0 222.2 63.2 55.9 71.6 36.6 67.2 51.1 27.1 35.1 30.2 199500 52.8 71.6 610.5 62.3 57.5 92.6 36.3 66.6 61.1 22.7 30.8 28.7 690700 67.6 59.8 698.1 38.0 68.0 101.5 30.2 38.1 65.8 18.5 23.6 28.2 862500 67.3 60.5 597.8 37.8 68.6 106.2 29.6 37.9 67.5 17.2 22.1 27.7 SAMPLE NA NB AC SL CL NBN NBA GMM AV NUMBER (gr) (8:) (1) (lbs) (lbs) (3:) (3r) (2) 32120635 10000 660 6.60 50 500 5760.0 9895.0 2.53 5.62 DEFORMATION (inch69 X 0.0001) LVDT §1(0.0 IN.) LVDT #2(2.0 IN.) LVDT '3(6.0 IN.) LVDT 96(6.0625 IN.) CYCLE NUMBER ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. ELA. TOT. PLA. 100 69.1 95.6 66.6 57.0 79.1 25.6 52.0 72.1 22.2 66.7 66.8 19.0 500 63.1 86.0 72.2 51.8 68.9 28.3 66.3 61.7 26.3 60.1 53.6 21.0 1000 58.8 76.6 86.8 68.1 61.1 30.3 62.7 56.1 25.8 36.2 65.9 22.0 5000 53.3 86.5 130.3 63.6 52.6 35.7 37.6 65.6 30.2 30.1 36.5 25.5 10000 58.0 78.2 178.2 67.1 63.6 37.8 60.3 56.3 31.7 31.6 62.3 26.9 33300 50.3 60.9 229.6 60.6 69.2 60.9 36.0 61.2 33.9 25.0 30.3 27.9 150600 53.7 72.8 602.2 63.0 58.6 65.0 35.0 67.6 37.2 23.6 31.7 29.1 353200 52.6 71.6 520.6 61.9 57.0 68.0 33.6 65.5 39.3 20.9 28.6 30.1 I TOTAL NEIGHT OF DRY AGGREGATES; NB I NEIGHT OF BITUMEN; I PERCENT ASPHALT CONTENT; SL I SUSTAINED LOAD; I NEIGHT OF SAMPLE IN AIR; CL I CYCLIC LOAD; I NEIGHT OF SAMPLE IN NATER; AV I PERCENT AIR VOIDS; I MAXIMUM THEORETICAL SPECIFIC GRAVITY; . AND TOT. I ELASTIC AND TOTAL DEFORMATION/CYCLE; I CUMULATIVE PLASTIC (PERMANENT) DEFORMATION. EEHE” APPENDIX B The values of the slope and intercept of equation 5.1 .are presented in this Appendix. 320 Table B. Parameters of the versus the number 321 cumulative plastic deformation of load application curves. 2 2 SAMPLE NUMBER LVDT O S I R 62 SAMPLE NUMBER LVDT I 3 I R SE 11110511 1 0.8363 I.5367 0.9991 0.02227 11110535 1 0.6278 0.3792 0.9966 0.02130 2 0.5909 I.7726 0.9989 0.02260 2 0.5861 0.0965 0.9968 0.02115 3 0.5325 '.7663 0.9990 0.01916 3 0.5166 0.0558 0.9982 0.02166 6 0.6086 I.8165 0.9967 0.02686 6 0.3803 0.1607 0.9939 0.02886 11110521 1 0.6362 ’.5300 0.9989 0.02555 11210511 1 0.8567 I.6973 0.9993 0.02366 2 0.6036 I.9063 0.9991 0.02310 2 0.6127 I.7691 0.9993 0.02270 3 0.5659 I.8977 0.9992 0.01960 3 0.5675 -.7350 0.9993 0.02027 6 0.6163 I.7152 0.9965 0.03110 6 0.3990 I.5266 0.9915 0.05166 11110531 1 0.6372 -.5330 0 9987 0.02707 11210521 1 0.8516 I.5063 0.9993 0.02128 2 0.6212 '.9625 0.9966 0.02605 2 0.6071 I.7656 0.9992 0.02109 3 0.5612 I.9297 0.9969 0.02309 3 0.5666 I.7651 0.9987 0.02627 6 0.6311 '.7656 0.9955 0.03503 6 0.6133 '.5752 0.9905 0.05066 11110512 1 0.6366 '.1755 0.9993 0.01996 11210531 1 0.8582 ‘.5260 0.9966 0.02669 2 0.5909 I.6255 0.9992 0.01932 2 0.6153 I.7729 0.9967 0.02569 3 0.5266 I.6272 0.9992 0.01660 3 0.5566 I.7692 0.9966 0.02511 6 0.3966 '.2656 0.9963 0.02766 6 0.6252 I.6067 0.9965 0.02666 11110522 1 0.8267 '.1310 0.9991 0.02600 11210512 1 0.6520 “.1619 0.9993 0.02033 2 0.5626 '.3651 0.9969 0.02625 2 0.6066 '.6012 0.9992 0.02032 3 0.5163 I.3626 0.9963 0.02716 3 0.5660 I.6016 0.9969 0.02066 6 0.3669 I.2635 0.9690 0.05110 6 I I . - 11110532 1 0.6331 I.1667 0.9993 0.02096 11210522 1 0.6555 '.1669 0.9992 0.02300 2 0.5906 I.6226 0.9992 0.02052 2 0.6115 ‘.6072 0.9991 0.02316 3 0.5266 I.6160 0.9991 0.01672 3 0.5675 '.6123 0.9991 0.02050 6 0.3966 '.2777 0.9961 0.03012 6 - I - - 11110515 1 0.6361 0.3626 0.9991 0.02276 11210532 1 0.6523 '.1303 0.9992 0.02236 2 0.5696 0.0611 0.9990 0.02253 2 0.8090 °.3939 0.9991 0.02239 3 0.5171 0.0555 0.9969 0.02060 3 0.5662 '.3966 0.9987 0.02351 6 0.3575 0.2065 0.9937 0.03399 6 0.6060 I.2620 0.9919 0.06362 11113525 1 0.8365 0.3555 0 9992 0.02130 11210515 1 0.8501 0.3777 0 9990 0.02233 2 0.5696 0.0758 0.9991 0.02107 2 0.8056 0.0936 0 9969 0.02233 3 0.5160 0.0501 0.9989 0.02068 3 0.5325 0.0636 0.9986 0.02361 6 0.3592 0.2005 0.9928 0.03866 6 0.3696 0.2196 0.9690 0.06331 - regression costtictsncs equation 5.1); I coefficient of dotsrminstion: snd I standstd OTTO! . (slaps 6nd incsrcspt of Table B. Parameters of the cumulative plastic deformation 31222 versus the number of load application curves. 2 00901: NUMBER LVDT 0 s 1 a s: SAMPLE uuunzn LVDT 0 s 1 02 00 11210020 1 0.0070 0.3007 0.0000 0.02000 11310010 1 0 0010 0.3032 0.0000 0.02230 2 0.8119 0.0786 0.9967 0.02669 2 0.5616 0.2065 0.9960 0.02553 3 0.5395 0.0633 0.9968 0.02265 3 0.6630 0.1626 0.9977 0.02651 6 0.3360 0.2818 0.9938 0.03073 6 0.3685 0.1613 0.9982 0.02606 11210030 1 0 0010 0.3003 0 0001 0.02130 11310020 1 0.0020 0.0000 0.0000 0 02000 2 0.0000 0.0000 0.0000 0.02130 2 0.0170 0.1121 0.0000 0.02030 3 0.0331 0.0001 0.0000 0 02230 3 0.0000 0.0070 0.0000 0.02003 0 0.3700 0.2100 0.0000 0.00100 0 0.3000 0.1013 0.0000 0.02700 11310011 1 0.0000 -.0200 0 0003 0.02200 11310030 1 0.0007 0.3010 0.0000 0.02212 2 0.0200 —.7070 0.0001 0.02230 2 0.0220 0.0702 0.0000 0.02107 3 0.0000 -.7021 0.0002 0.01070 3 0.0010 0.0320 0 0007 0.02102 0 0.0303 -.0200 0 0007 0.03003 0 0.3013 0.1002 0.0001 0.03100 11310021 1 0 0002 -.0000 0.0003 0.01001 11110011 1 0.0270 -.3220 0.0007 0.02000 2 0.0100 -.7320 0 0002 0.02007 2 0.0010 -.0070 0.0000 0 02007 3 0.0000 -.7203 0.0000 0.02100 3 0.0100 -.0021 0.0070 0.02000 0 0.0317 ~.0072 0.0002 ' 0.03021 0 - - - - 11310031 1 0.0001 -.0000 0.0003 0.02000 11110021 1 0.0331 -.3007 0.0000 0.01007 2 0.0220 -.7033 0 0002 0.02100 2 0.0070 -.0000 0.0000 0.01071 3 0.0000 - 7070 0.0000 0.02200 3 0.0100 -.0107 0 0002 0.02020 0 0.0377 -.0230 0.0031 0.00301 0 0.3007 -.0220 0.0001 0.00021 11310012 1 0.0700 -.1717 0.0001 0.02230 11110031 1 0.0301 -.3720 0.0000 0.02010 2 0.0201 -.0327 0.0001 0.02100 2 0.0000 -.0000 0.0000 0.02001 3 0.0007 -.0020 0.0000 0.02070 3 0.0220 -.0030 0.0000 0.02100 0 0.0373 -.3173 0.0072 0.02002 0 0.3000 -.0012 0.0000 0.03300 11310022 1 0.0702 -.1021 0.0001 0.02220 11110012 1 0.0300 -.2123 0.0000 0.02000 2 0.0201 -.0101 0.0000 0.02207 2 0.0010 -.0000 0.0000 0.01000 3 0.0000 -.0331 0.0000 0.02007 3 0.0200 -.0370 0.0003 0.01010 0 - - - - 0 0.3700 -.2230 0.0027 0.00000 11310032 1 0.0700 -.1000 0 0002 0.01003 11110022 1 0.0310 0.2120 0 0003 0.02000 2 0 0270 -.0210 0 0001 0.01030 2 0.0031 -.1300 0.0001 0.02000 3 0.0000 -.0300 0.0001 0.01701 3 0.0020 -.1300 0.0000 0.02022 . - - - - 0 0.3270 0.0037 0.0000 0.00030 I rsgrssslon costtic1snts (slaps and Incsrcspt 0t squstion 5.1); I costticisnt of dotsrlinstlon; and I stsndsrd stror. 323 Table B. Parameters of the cumulative plastic deformation versus the number of load application curves. 2 SAMPLE NUMBER LVDT O S I R SE SAMPLE NUMBER LVDT l S 1 22 SE 11110632 1 0.6316 0.0695 0.9992 0.02122 11110712 1 0.6322 0.2723 0.9990 0.02368 2 0.5652 '.2566 0.9991 0.02106 2 0.5631 I.0919 0.9989 0.02337 3 0.5133 I.2607 0.9991 0.01926 3 0.6997 I.0927 0.9988 0.02257 6 0.3565 I.0796 0.9926 0.03692 6 0.3196 0.1107 0.9851 0.06763 11110615 1 0.8313 0.7188 0.9990 0.02080 11110712 1 0.8332 0.3939 0.9987 0.02592 2 0.5816 0.3363 0.9989 0.02036 2 0.5626 I.0020 0.9985 0.02586 3 0.6921 0.2956 0.9985 0.01961 3 0.6985 I.0130 0.9962 0.02362 6 0.1878 0.5609 0.9937 0.02027 6 0.3155 0.1670 0.9911 0.03386 11110625 1 0.8303 0.3130 0.9993 0.01968 11110712 1 0.6336 0.1361 0.9991 0.02309 2 0.5863 0.0696 0.9992 0.01975 2 0.5660 '.1960 0.9989 0.02316 3 0.5170 0.0287 0.9966 0.02075 3 0.5067 I.1935 0.9986 0.02152 6 0.3612 0.1686 0.9900 0.06271 6 0.3616 I.0001 0.9890 0.06363 11110835 1 0.6275 0.3990 0.9991 0.01960 11110722 1 0.6321 0.3056 0.9969 0.02536 2 0.5829 0.1117 0.9990 0.01997 2 0.5823 '.0667 0.9967 0.02526 3 0.5126 0.0771 0.9966 0.02170 3 0.6971 '.0673 0.9966 0.02630 6 - I I - 6 0.3066 0.1561 0.9635 0.06667 11110711 1 0.6397 0.0366 0.9995 0.01796 11110732 1 0.6262 0.2062 0.9992 0.02106 2 0.5666 '.3669 0.9996 0.01799 2 0.5602 I.1382 0.9990 0.02110 3 0.5060 '.3632 0.9993 0.01610 3 0.5012 I.1369 0.9963 0.02396 6 0.3212 -.1276 0.9660 0.06666 6 0.3305 0.0532 0.9612 0.05290 11110711 1 0.6335 '.6116 0.9991 0.02315 11110715 1 0.6312 0.9926 0.9963 0.02360 2 0.5663 '.6793 0.9969 0.02366 2 0.5763 0.5331 0.9960 0.02380 3 0.5255 '.6795 0.9990 0.02016 3 0.6791 0.6656 0.9976 0.02231 6 0.3967 I.5357 0.9950 0.03359 6 0.2666 0.6019 0.9862 0.02669 11110721 1 0.8371 “.1901 0.9993 0.02127 11110715 1 0.6326 0.9653 0.9977 0.02817 2 0.5903 I.5209 0.9993 0.01991 2 0.5798 0.5266 0.9973 0.02806 3 0.5161 I.5166 0.9991 0.01925 3 0.6615 0.6573 0.9965 0.02676 6 0.3573 -.3315 0.9916 0.06121 6 0.2760 0.5659 0.9868 0.02771 11110731 1 0.6360 I.3563 0.9992 0.02230 11110725 1 0.8309 0.6206 0.9985 0.02361 2 0.5925 I.8512 0.9991 0.02096 2 0.5603 0.6115 0.9963 0.02366 3 0.5261 °.6392 0.9990 0.01966 3 0.6882 0.3576 0.9978 0.02257 6 0.3660 I.6632 0.9963 0.03528 6 0.2909 0.5006 0.9665 0.03066 S. R SE I I rsgrsss1an castticisnts (slaps snd lntstcspc at squstian 5.1); I costticisnt at dststulnstian; and I stsndstd sttar. Table B. Parameters of the versus the number 325 cumulative plastic deformation of load application curves. SAMPLE NUMBER LVDT O S 1 R S! SAMPLE NUMBER LVDT O 3 1 R 52 11110725 1 0.8336 0.9788 0.9966 0.02370 21110532 1 0.8692 -.1621 0.9991 0.02367 2 0.5608 0.5201 0.9961 0.02351 2 0.8082 -.6016 0.9990 0.02279 3 0.6812 0.6566 0.9977 0.02168 3 0.5626 -.6019 0.9990 0.02061 6 0.2862 0.5966 0.9697 0.02565 6 0.6090 -.2511 0.9959 0.03166 11110735 1 0.8278 0.6275 0.9966 0.02107 21110515 1 0.8626 0.6059 0.9987 0.02332 2 0.5772 0.6190 0.9988 0.02105 2 0.5960 0.1206 0.9985 0.02367 3 0.6685 0.3818 0.9979 0.02163 3 0.5262 0.0650 0.9960 0.02379 6 0.2952 0.6698 0.9658 0.03678 6 0.3616 0.1982 0.9927 0.03317 11110735 1 0.8266 0.9995 0.9962 0.02586 21110525 1 0.8650 0.3776 0.9991 0.01915 2 0.5716 0.5660 0.9979 0.02553 2 0.6009 0.0990 0.9969 0.01913 3 0.6723 0.6766 0.9989 0.02588 3 0.5339 0.0597 0.9968 0.01936 6 0.2593 0.8266 0.9763 0.03766 6 0.3976 0.1669 0.9953 0.02880 21110511 1 0.8525 I.5278 0.9991 0.02386 21110535 1 0.8522 0.3795 0.9992 0.02089 2 0.8095 I.7895 0.9990 0.02303 2 0.8077 0.0915 0.9991 0.02017 3 0.5502 I.7866 0.9989 0.02206 3 0.5358 0.0800 0.9991 0.01630 6 0.6268 I.8281 0.9967 0.02999 6 0.3606 0.1950 0.9955 0.02862 21110521 1 0.8507 I.5058 0.9992 0.02190 21110811 1 0.8530 -.2668 0.9993 0.02073 2 0.8066 I.7568 0.9992 0.02111 2 0.8083 I.5593 0.9993 0.02002 3 0.5672 I.7629 0.9992 0.01858 3 0.5339 -.5502 0.9992 0.01865 6 0.6253 I.8055 0.9973 0.02892 6 0.3820 I.3706 0.9939 0.03816 21110531 1 0.8512 I.5215 0.9991 0.02306 21110821 1 0.8539 I.2253 0.9990 0.02560 2 0.8101 I.7721 0.9991 0.02233 2 0.8073 I.5668 0.9989 0.02688 3 0.5503 I.7867 0.9990 0.02081 3 0.5365 I.5391 0.9987 0.02336 6 0.6313 I.8383 0.9985 0.03108 6 0.3812 I.3828 0.9919 0.06198 21110512 1 0.8537 I.1880 0.9992 0.02166 21110831 1 0.8521 I.2112 0.9990 0.02619 2 0.8107 I.6357 0.9991 0.02163 2 0.8051 -.5306 0.9989 0.02611 3 0.5697 -.6605 0.9992 0.01678 3 0.5317 I.5226 0.9987 0.02267 6 0.6202 I.2950 0.9983 0.03026 6 0.3608 I.3539 0.9938 0.03835 21110522 1 0.8536 I.1732 0.9989 0.02605 21110812 1 0.8522 0.1615 0.9992 0.02289 2 0.8108 -.6278 0.9966 0.02538 2 0.8065 I.1691 0.9991 0.02263 3 0.5681 -.6296 0.9967 0.02625 3 0.5276 I.l916 0.9991 0.01895 6 0.6162 I.2736 0.9956 0.03662 6 0.3801 I.0018 0.9917 0.03996 5.1 I rsgrsss1an casttictsnts (slaps snd Intsrcspt at squstlan 5.1); R I castticisnt at dstsruinstian; and SE I stsndstd straz. 326 Table B. Parameters of the cumulative plastic deformation versus the number of load application curves. 2 SAHPLI NUMBER LVDT I S 1 R S! SAMPLE NUMBER LVDT 8 S I 22 S! 21110822 1 0.8533 0.1552 0.9990 0.02681 21110712 1 0.8688 0.6883 0.9992 0.02098 2 0.8057 -.1816 0.9989 0 02676 2 0.5989 0.0898 0.9990 0.02072 3 0.5270 -.1809 0.9988 0.02616 3 0.5073 0.0585 0.9987 0.02002 6 0.3589 0.0073 0.9888 0.06863 6 0.3157 0.2513 0.9877 0.03919 21110832 1 0.8517 0.1827 0.9991 0.02622 21110722 1 0.8690 0.6775 0.9992 0.01969 2 0.8038 '.1729 0.9989 0.02386 2 0.5389 0.1658 0.9991 0.01858 3 0.5255 -.1762 0.9988 0.02158 3 0.6580 0.1172 0.9985 0.01979 6 0.3588 0.0158 0.9908 0.06208 6 0.2998 0.2633 0.9880 0.03719 21110615 1 0.8689 0.7033 0.9990 0.02191 21110732 1 0.8692 0.6772 0.9988 0.02679 2 0.5980 0.3311 0.9988 0.02188 2 0.5658 0.1219 0.9986 0.02653 3 0.5111 0.2857 0.9983 0.02197 3 0.6888 0.0913 0.9975 0.02808 6 0.3223 0.6376 0.9891 0.03521 6 0.3061 0.2323 0.9850 0.06157 21110825 1 0.8509 0.8788 0.9989 0.02250 21110715 1 0.8666 1.0185 0.9983 0.02656 2 0.8019 0.3086 0.9997 0.02260 2 0.5708 0.5225 0.9976 0.02758 3 0.5159 0.2823 0.9986 0.02162 3 0.6772 0.6527 0.9989 0.02550 6 0.3276 0.6182 0.9910 0.03290 6 0.2830 0.5736 0.9906 0.02880 21110835 1 0.8637 0.8908 0.9989 0.02196 21110725 1 0.8686 1.0169 0.9986 0.02663 2 0.5951 0.3229 0.9987 0.02172 2 0.5933 0.5529 0.9981 0.02639 ‘ 3 0.5109 0.2732 0.9982 0.02211 3 0.6926 0.6979 0.9971 0.02681 6 0.3298 0.6077 0.9890 0.03580 6 0.2759 0.8387 0.9802 0.03852 21110711 1 0.8526 0.0766 0.9991 0.02351 21110735 1 0.8669 1.0235 0.9997 0.02265 2 0.8022 '.3179 0.9990 0.02275 2 0.8115 0.6275 0.9997 0.02203 3 0.5151 “.3080 0.9990 0.01997 3 0.5069 0.3905 0.9979 0.02279 6 0.3288 '.0763 0.9973 0.06517 6 0.2729 0.8107 0.9759 0.06222 21110721 1 0.8507 0.0937 0.9992 0.02187 31110511 1 0.8687 '.5138 0.9991 0.02308 2 0.5999 '.3000 0.9991 0.02177 2 0.8062 -_75.7 0.9990 0.02251 3 0.5139 '.2952 0.9990 0.01997 3 0.5683 I.7810 0.9991 0.01952 6 0.3256 -.0878 0.9862 0.05002 6 0.6222 “.8129 0.9988 0.02868 21110731 1 0.8560 0.0882 0.9993 0.02135 31110521 1 0.8677 -.5200 0.9993 0.02163 2 0.8033 '.3083 0.9992 0.02075 2 0.8089 I.7730 0 9992 0.02090 3 0.5188 '.3021 0.9992 0.01813 3 0.5678 I.7888 0.9993 0.01791 6 0.3278 ’.0756 0.9858 0.06757 6 0.6218 -.8126 0.9970 0.02791 5,! R S! oqu661on 5.1); I coottlcxout o! donor-1866100; 6nd I standard orror. I rogrossLon coot£1c16nta (I1opo 6nd 1ntorcopt of Table B. Parameters of the versus the number 327 cumulative plastic deformation of load application curves. 2 2 SAMPLE NUMBER LVDT O S 1 R S! SAMPLE NUMBER LVDT O S 1 R 58 31110531 1 0.8695 '.5028 0.9996 0.01969 31110721 1 0.8685 0.1055 0.9990 0.02600 2 0.8072 -.7577 0.9996 0.01800 2 0.5977 -.2928 0.9989 0.02353 3 0.5676 -.7562 0.9993 0.01899 3 0.5088 -.2785 0.9987 0.02166 6 0.2238 -.3306 0.9987 0.02018 6 0.3186 -.0395 0.9856 0.06512 31110512 1 0.8688 -.1531 0.9992 0.02195 31110731 1 0.8698 0.1083 0.9989 0.02691 2 0.8050 —.6060 0.9991 0.02225 2 0.5979 '.2890 0.9987 0.02652 3 0.5620 -.6108 0.9991 0.02021 3 0.5083 '.2737 0.9988 0.02135 6 0.6089 -.2828 0.9951 0.03658 6 0.3135 '.0270 0.9859 0.06287 31110522 1 0.8679 -.1538 0.9993 0.02071 31110712 1 0.8627 0.6759 0.9987 0.02323 2 0.8037 -.6055 0.9992 0.02081 2 0.5922 0.0598 0.9985 0.02283 3 0.5619 -.6120 0.9992 0.01908 3 0.5072 0.0351 0.9981 0.02222 6 0.6102 -.2877 0.9952 0.03627 6 0.3368 0.1777 0.9923 0.02930 31110532 1 0.8675 -.1595 0.9993 0.02096 31110722 1 0.8652 0.6557 0.9987 0.02527 2 0.8063 '.6129 0.9992 0.02065 2 0.5939 0.0673 0.9985 0.02501 3 0.5605 '.6100 0.9992 0.01867 3 0.5058 0.0362 0.9982 0.02325 6 0.6092 '.2885 0.9959 0.03187 6 0.3229 0.2079 0.9907 0.03395 31110515 1 0.8658 0.3983 0.9991 0.02196 31110732 1 0.8682 0.6867 0.9990 0.02221 2 0.8009 0.1106 0.9989 0.02181 2 0.5970 0.0508 0.9989 0.02179 3 0.5293 0.0777 0.9989 0.02027 3 0.5078 0.0390 0.9988 0.02083 6 0.2169 0.6166 0.9927 0.02829 6 0.3197 0.2252 0.9899 0.03563 31110525 1 0.8678 0.3593 0.9990 0.02371 31110715 1 0.8368 0.9869 0.9989 0.01957 2 0.8032 0.0791 0.9999 0.02350 2 0.5826 0.5373 0.9997 0.01960 3 0.5321 0.0501 0.9988 0.02255 3 0.6856 0.6705 0.9981 0.01918 6 0.3768 0.1985 0.9930 0.03827 6 0.2810 0.5990 0.9899 0.02726 31110535 1 0.8693 0.3698 0.9991 0.02312 31110725 1 0.8608 0.9988 0.9981 0.02568 2 0.8050 0.0717 0.9989 0.02292 2 0.5978 0.5625 0.9978 0.02539 3 0.5337 0.0666 0.9987 0.02260 3 0.6896 0.6769 0.9989 0.02518 6 0.3782 0.1939 0.9923 0.03888 6 0.2085 0.8880 0.9885 0.02799 31110711 1 0.8680 0.1028 0.9991 0.02331 31110735 1 0.8650 0.9963 0.9988 0.01998 2 0.5970 '.2938 0.9990 0.02280 2 0.5922 0.5370 0.9986 0.01986 3 0.5098 '.2886 0.9990 0.02008 3 0.6960 0.6872 0.9979 0.01999 6 0.1785 0.1169 0.9902 0.02797 6 0.2876 0.5960 0.9913 0.02236 5.1 2 R SE I regression coetficlents (slope end 1utercepc at equet1on 5.1): I coeffic1ent ot deter-inectan; end I stenderd error. 328 of the cumulative plastic deformation number of load application curves. Table B. Parameters versus the 2 2 SAMPLE NUMBER LVDT 9 S I R 38 SAMPLE NUMBER LVDT 8 S 1 R 58 21210611 1 0.8761 -.2008 0.9992 0.02258 21210635 1 0.8763 0.6892 0.9990 0.02156 2 0.8271 -.5282 0.9991 0.02171 2 0.8255 0.2970 0.9969 0.02158 3 0.5512 -.5168 0.9990 0.02076 3 0.5366 0.2683 0.9966 0.02186 6 - - - - 6 0.3619 0.3803 0.9666 0.03858 21210821 1 0.8731 -.1986 0.9993 0.02202 21310811 1 0.8895 -.2089 0.9996 0 02122 2 0.8256 °.5210 0.9992 0.02138 2 0.8628 -.5356 0.9993 0.02069 3 0.5503 -.5167 0.9991 0.01927 3 0.5875 -.5380 0.9992 0.01921 6 0.3698 -.3252 0.9928 0.03978 6 0.6060 °.3628 0.9935 0.03953 21210831 1 0.8699 -.1868 0.9992 0.02193 21310821 1 0.8899 ‘.2191 0.9969 0.02705 2 0.8221 -.6956 0.9991 0.02199 2 0.8625 -.5633 0.9987 0.02875 3 0.5671 -.6966 0.9990 0.02028 3 0.5880 -.5381 0.9968 0.02682 6 0.3856 -.3056 0.9921 0.06079 6 0.6001 -.3306 0.9936 0.03856 21210612 1 0.8733 0.1608 0.9992 0.02038 21310831 1 0.8906 -.2253 0.9992 0.02239 2 0.8252 -.1827 0.9991 0.02062 2 0.8628 -.5685 0.9992 0.02199 3 0.5690 -.1600 0.9999 0.01985 3 0.5895 -.5519 0.9992 0.01939 6 0.3891 I.0278 0.9968 0.03012 6 0.6098 '.3886 0.9929 0.06096 21210822 1 0.8781 0.1871 0.9996 0.01787 21310812 1 0.8897 0.1339 0.9991 0.02108 2 0.8302 -.1770 0.9996 0.01761 2 0.8628 -.2060 0.9990 0.02075 3 0.5530 -.1913 0.9993 0.01809 3 0.5857 '.2187 0.9999 0.01965 6 0.3891 -.0278 0.9968 0.03119 6 0.3769 -.0288 0.9952 0.02730 21210832 1 0.8760 0.1656 0.9990 0.02632 21310822 1 0.8903 0.1618 0.9992 0.02072 2 0.8303 -.1961 0.9999 0.02606 2 0.8631 °.1989 0.9991 0.02058 3 0.5533 -.2063 0.9967 0.02213 3 0.5881 -.2202 0.9988 0.02023 6 0.3909 I.0631 0.9969 0.03131 6 0.3868 -.0723 0.9976 0.02080 21210615 1 0.8879 0.8922 0.9989 0.02181 21310832 1 0.8698 0.1391 0.9991 0.02630 2 0.8191 0.3178 0.9967 0.02181 2 0.8621 -.1993 0.9990 0.02380 3 0.5338 0.2805 0.9962 0.02208 3 0.5835 -.2086 0.9969 0.02202 6 0.3539 0.3788 0.9910 0.03278 6 0.3961 -.0289 0.9928 0.03981 21210825 1 0.8872 0.7017 0.9965 0.02650 21310815 1 0.8798 0.8930 0.9989 0.02131 2 0.8186 0.3281 0.9963 0.02669 2 0.8308 0.3177 0.9966 0.02117 3 0.5337 0.2863 0.9976 0.02382 3 0.5663 0.2808 0.9965 0.02058 6 0.3556 0.3771 0.9926 0.02986 6 - 5,1 I regression coettictents (s1ope end 1ntercept of 2 equst1on 5.1); R I coeffic1ent of determinetion; end S! I stendsrd error. 329 Table B. Parameters of the cumulative plastic deformation versus the number of load application curves. 2 2 SAMPLE NUMBER LVDT 8 S 1 R St SAMPLE NUMBER LVDT 8 5 I R 5.2. 21310825 1 0 8625 0.7200 0.9966 0 02366 12110515 1 0.8337 0.3562 0.9991 0.02207 2 0.8336 0.3351 0.9968 0.02362 2 0.5696 0.0750 0 9990 0.02167 3 0.5655 0.2751 0.9960 0.02385 3 0.5166 0.0683 0.9966 0.02117 6 0.3596 0.3937 0.9908 0.03625 6 0.3807 0.1987 0.9925 0.03829 21310835 1 0.8639 0.8956 0.9965 0.02657 12110525 1 0.6339 0.3779 0.9968 0.02517 2 0.8350 0.3168 0.9963 0.02661 2 0.5689 0.0935 0.9966 0.02520 3 0.5516 0.2679 0.9961 0.02261 3 0.5189 0.0836 0.9961 0.02391 6 - - - - 6 - - - - 12110511 1 0.6360 -.5136 0.9990 0.02378 12110535 1 0.8316 0.3829 0.9988 0.02656 2 0.5908 -.7587 0.9969 0.02355 2 0.5678 0.0639 0.9968 0.02632 3 0.5326 -.7565 0.9990 0.02057 3 0.5176 0.0533 0.9966 0.02266 6 0.6129 -.8315 0.9989 0.02763 6 0.1611 0.3676 1.0000 0.00000 12110521 1 0.8331 -.5263 0.9990 0.02639 12110611 1 0.8358 °.2075 0.9991 0.02275 2 0.5891 -.7852 0.9986 0.02668 2 0.5862 -.5292 0.9990 0.02265 3 0.5326 -.7716 0.9989 0.02158 3 0.5186 -.5306 0.9986 0.02180 6 0.3177 -.6926 0.9989 0.02275 6 0.3807 -.3681 0.9918 0.03983 12110531 1 0.8362 -.5337 0.9991 0.02297 12110821 1 0.8328 -.2103 0.9991 0.02381 2 0.5906 -.7898 0.9990 0.02258 2 0.5868 -.5255 0.9989 0.02387 3 0.5335 -.7762 0.9991 0.01925 3 0.5132 -.5286 0.9988 0.02185 6 0.3127 -.6775 0.9979 0.01836 6 0.3550 -.3323 0.9913 0.06081 12110512 1 0.8350 -.1786 0.9990 0.02382 12110831 1 0.8333 -.1739 0.9991 0.02321 2 0.5932 -.6336 0.9969 0.02311 2 0.5682 -.5063 0.9969 0.02276 3 0.5298 -.6292 0.9966 0.02193 3 0.5116 -.6989 0.9968 0.02167 6 0.6013 '.2908 0.9958 0.03155 6 0.3588 -.3233 0.9936 0.03651 12110522 1 0.6382 ..1798 0.9992 0.02102 12110812 1 0.8336 0.1828 0.9990 0.02366 2 0.5931 -.6316 0.9992 0.02005 2 0.5655 -.1730 0.9969 0.02306 3 0.5306 -.6310 0.9991 0.01677 3 0.5088 °.1722 0.9967 0 02166 6 0.3987 -.2761 0.9958 0.03051 6 - - - - 12110532 1 0.6371 -.1666 0.9991 0.02261 12110822 1 0.8350 0.1228 0.9993 0.02008 2 0.5951 -.6622 0.9990 0.02288 2 0.5676 -.2028 0.9992 0.01976 3 0.5323 -.6617 0.9966 0.02170 3 0.5101 -.2012 0 9992 0.01610 6 0.3623 -.1855 0.9966 0.02975 6 0.3626 -.0085 0.9666 0.06668 5.1 I regression coefficients (s1ope end intercept at 2 equetion 5.1): R I coetticient of deterninetion; end S! I stenderd error. Table B. Parameters versus the 330 of the cumulative plastic deformation number of load application curves. 2 2 SAMPLE NUMBER LVDT 8 S 1 R 5.8. SAMPLE NUMBER LVDT 8 S 1 R 5.8. 12110832 1 0.8386 0.1317 0.9993 0.02010 12110722 1 0.8308 0.6838 0.9991 0.01950 2 0.5887 -.1983 0.9992 0.01991 2 0.5792 0.0880 0.9990 0.01955 3 0.5120 -.2021 0.9993 0.01861 3 0.6889 0.0822 0.9983 0.02111 6 0.3638 '.0072 0.9915 0.03853 6 0.2521 0.2882 0.9921 0.02698 12110815 1 0.8350 0.8861 0.9992 0.01909 12110732 1 0.8357 0.6873 0.9993 0.02076 2 0.5859 0.2989 0.9990 0.01893 2 0.5860 0.0851 0.9991 0 02080 3 0.6981 0.2571 0.9988 0.01783 3 0.6909 0.0808 0.9988 0.02205 6 0.2253 0.5182 0.9909 0.02511 6 0.2888 0.2819 0.9796 0.06976 12110825 1 0.8319 0.8519 0.9991 0.02059 12110715 1 0.8280 1.0268 0.9988 0.02039 2 0.5832 0.2922 0.9990 0.02060 2 0.5729 0.5811 0.9985 0.02028 3 0.6980 0.2698 0.9988 0.02038 3 0.6735 0.6901 0.9981 0.01919 6 0.3091 0.6113 0.9877 0.03761 6 - - 12110835 1 0.8332 0.8889 0.9991 0.01898 12110725 1 0.8288 0.9881 0.9989 0.01911 2 0.5863 0.3187 0.9989 0.01875 2 0.5259 0.5327 0.9997 0.01911 3 0.6980 0.2891 0.9988 0.01888 3 0.6778 0.6868 0.9981 0.01928 6 0.2988 0.6107 0.9929 0.02515 6 0.2708 0.5921 0.9859 0.03019 12110711 1 0.8327 0.1188 0.9990 0.02396 12110735 1 0.8236 1.0076 0.9978 0.02533 2 0.5820 °.2958 0.9989 0.02307 2 0.5705 0.5513 0.9972 0.02533 3 0.6939 -.2781 0.9987 0.02106 3 0.6722 0.6830 0.9980 0.02698 6 0.3076 I.0809 0.9836 0.06739 6 0.2839 0.8183 0.9838 0.02866 12110721 1 0.8350 0.1061 0.9991 0.02217 11110715 1 0.8316 0.9973 0.9983 0.02366 2 0.5861 -.2983 0.9990 0.02189 2 0.5785 0.5353 0.9981 0.02318 3 0.6981 -.2889 0.9989 0.01969 3 0.6787 0.6879 0.9975 0.02185 6 0.3031 '.0668 0.9827 0.06888 6 0.2859 0.8087 0.9891 0.02528 12110731 1 0.8329 0.1222 0.9992 0.02180 12210711 1 0.8573 0.1579 0.9992 0.02298 2 0.5820 °.2805 0.9991 0.02118 2 0.8050 °.2575 0.9990 0.02289 3 0.6963 -.2765 0.9989 0.02007 3 0.5133 '.2528 0.9988 0.02187 6 0.3031 ‘.0629 0.9833 0.06763 6 0.3162 -.0207 0.9813 0.05222 12110712 1 0.8320 0.6878 0.9992 0.02000 12210721 1 0.8586 0.0805 0.9998 0.01879 2 0.5807 0.0532 0.9992 0.01963 2 0.6995 -.0983 0.9993 0.01813 3 0.6900 0.0652 0.9989 0.01832 3 0.5192 '.3162 0.9996 0.01560 6 0.1838 0.3527 0.9927 0.02329 6 0.2628 °.0268 0.9956 0.02262 s: 2 R I regression coefficients; I coefficient of deter-inetion; end I stenderd error. Table B. Parameters versus the 331 of the cumulative plastic deformation number of load application curves. 2 SAMPLE NUMBER LVDT O S 1 R S.E. SAMPLE NUMBER LVDT O S 1 R2 S.E. 12210731 1 0.8555 0.1659 0.9992 0.02256 12310721 1 0.8895 0.1353 0.9993 0 02065 2 0.8061 -.2866 0.9991 0.02169 2 0.8161 -.2797 0.9993 0.02017 3 0.5120 - 2596 0.9966 0.02101 3 0.5282 -.2756 0 9991 0.01916 6 0.1710 0.1832 0 9961 0.02053 6 0.3267 -.0517 0.9663 0.06953 12210712 1 0.8539 0.6633 0.9993 0.01963 12310731 1 0.8886 0.1386 0.9995 0.01806 2 0.8026 0.0595 0.9992 0.01902 2 0.8169 -.2735 0.9995 0.01765 3 0.5111 0.0623 0.9990 0.01766 3 0.5226 -.2876 0.9991 0.01696 6 0.3162 0.2286 0.9901 0.03689 6 - - - - 12210722 1 0.8581 0.6763 0.9969 0.02610 12310712 1 0.8892 0.6766 0.9990 0.02376 2 0.8068 0.0519 0.9966 0.02366 2 0.8176 0.0678 0 9969 0.02338 3 0.5161 —.0562 0.9968 0.02212 3 0.5269 0.0269 0.9968 0.02166 6 0.2692 0.2596 0.9696 0.03160 6 0.3271 0.2193 0.9916 0.03369 12210732 1 0.8581 0.6635 0.9990 0.02373 12310722 1 0.8868 0.6838 0.9992 0.02091 2 0.6066 0.0296 0.9969 0.02352 2 0.8187 0.0565 0.9990 0.02072 3 0.5123 0.0190 0.9985 0.02339 3 0.5266 0.0355 0.9966 0.02005 6 0.3131 0.2262 0.9668 0.06586 6 0.3273 0.2253 0.9685 0.03617 12210715 1 0.8577 0.9577 0.9990 0.01659 12310732 1 0.8873 0.6719 0.9995 0.01625 2 0.8066 0.5009 0.9989 0.01661 2 0.8156 0.0688 0.9996 0.01800 3 0.5069 0.6281 0.9985 0.01767 3 0.5239 0.0297 0.9993 0.01568 6 - - - - 6 0.3276 0.2210 0.9902 0.03579 12210725 1 0.8532 0.9567 0.9986 0.02376 12310715 1 0.8728 0.9669 0.9963 0.02171 2 0.8008 0.5036 0.9962 0.02380 2 0.8195 0.5168 0.9960 0.02158 3 0.5021 0.6295 0.9978 0.02271 3 0.6993 0.6288 0.9972 0.02076 6 0.2926 0.5567 0.9665 0.02900 6 0.2259 0.5325 1.0000 0.00000 12210735 1 0.8697 1.0238 0.9962 0.02595 12310725 1 0.8705 0.9959 0.9979 0.02631 2 0.5983 0.5531 0.9978 0.02562 2 0.8170 0.5238 0.9975 0.02613 3 0.6966 0.6783 0.9989 0.02551 3 0.5180 0.6606 0.9986 0.02301 6 0.2761 0.8070 0.9637 0.03319 6 0.2128 0.5713 1.0000 0.00000 12310711 1 0.8716 0.1610 0.9992 0.02253 12310735 1 0.8856 0.9919 0.9966 0.02112 2 0.8193 -.2739 0.9991 0.02226 2 0.8180 0.6678 0.9962 0.02118 3 0.5278 -.2736 0.9990 0.01966 3 0.5181 0.3758 0 9976 0.02168 6 0.3263 -.0311 0.9636 0.05071 6 0.3088 0.5066 0.9677 0.02788 8 1 I regression coefficients; R I coefficient of deter-inetion; end S.E. I stenderd error. 332 Table B. Parameters of the cumulative plastic deformation versus the number of load application curves. 2 2 SAMPLE NUMBER LVDT O S 1 R 8.6. SAMPLE NUMBER LVDT 0 S 1 R S.E. 22110611 1 0.8515 -.2316 0.9991 0.02618 22110635 1 0.8522 0.8928 0.9991 0 02053 2 0.6050 -.5681 0 9990 0.02336 2 0.8032 0.3165 0.9969 0.02060 3 0.5330 -.5611 0.9989 0.02158 3 0.5186 0.2706 0.9988 0.02010 6 0.3617 -.3896 0.9922 0.06083 6 0.3285 0.6155 0.9910 0.03195 22110821 1 0.6515 -.2266 0.9990 0.02509 32110611 1 0.8662 -.1826 0.9993 0.02053 2 0.8062 -.5608 0.9969 0.02666 2 0.8013 -.6957 0.9993 0.01937 3 0.5335 -.5622 0.9969 0.02182 3 0.5260 -.6619 0.9991 0.01906 6 0.3268 -.2800 0.9955 0.02731 6 - - - - 22110831 1 0.6515 -.2065 0.9992 0.02230 32110821 1 0.8666 -.1868 0.9991 0.02303 2 0.6068 -.5263 0.9991 0.02173 2 0.8020 -.5139 0.9991 0.02216 3 0.5323 -.5287 0.9991 0.01976 3 0.5286 -.5120 0.9967 0.02269 6 0.3768 -.3353 0.9919 0.06062 6 0.3669 -.3207 0.9909 0.06225 22110812 1 0.8516 0.1689 0.9996 0.01960 32110831 1 0.8690 -.1872 0.9992 0.02218 2 0.8061 -.1639 0.9993 0.01910 2 0.8016 -.6985 0.9991 0.02171 3 0.5259 -.1832 0.9992 0.01630 3 0.5285 -.6918 0.9992 0.01669 6 0.3575 0.0096 0.9901 0.06313 6 0.3865 -.3065 0.9927 0.03610 22110822 1 0.8510 0.1625 0.9992 0.02231 32110612 1 0.8660 0.1861 0.9993 0.02175 2 0.8032 -.1718 0.9991 0.02198 2 0.5963 -.1557 0.9992 0.02103 3 0.5250 -.1739 0.9969 0.02063 3 0.5179 -.1526 0.9991 0.01962 6 0.3553 0.0200 0.9891 0.06665 6 0.3660 0.0691 0.9679 0.06868 22110832 1 0.6678 0.1611 0.9990 0.02381 32110822 1 0.8672 0.1551 0.9991 0.02360 2 0.5996 -.1551 0.9989 0.02370 2 0.8003 -.1793 0.9990 0.02275 3 0.5215 -.1599 0.9962 0.02582 3 0.5217 -.1775 0.9990 0.02006 6 0.3522 0.0318 0.9860 0.05125 6 0.3083 0.0856 0.9929 0.03207 22110815 1 0.6679 0.8635 0.9991 0.01920 32110832 1 0.6693 0.1296 0.9993 0.02053 2 0.5993 0.3168 0.9990 0.01690 2 0.8018 -.1986 0.9992 0.02053 3 0.5161 0.2853 0.9987 0.01637 3 0.5259 -.2036 0.9991 0 01909 6 0.3306 0.6025 0.9926 0.02902 6 0.3181 0.0516 0.9939 0.03001 22110825 1 0.8501 0.8951 0.9988 0.02670 32110815 1 0.8666 0.8668 0.9992 0.01608 2 0.8010 0.3228 0.9966 0.02655 2 0.5981 0.3198 0.9991 0.01798 3 0.5163 0.2765 0.9961 0.02329 3 0.5100 0.2725 0.9966 0.01799 6 - 6 - ' ' ‘ S 1 I regression coefficients; R I coefficient of deter-inetion; end S.E. I stenderd error. Table B. Parameters versus the 333 of the cumulative plastic deformation number of load application curves. 2 SAMPLE NUMBER LVDT O S I R 8.8. SAMPLE NUMBER LVDT O S I R2 S.E. 32110825 1 0.8651 0.8871 0.9991 0.02025 22210815 1 0.7087 0.6029 0.9993 0.01796 2 0.5962 0.3206 0.9990 0.02012 2 0 3285 0.6067 0.9999 0.00366 3 0.5099 0.2762 0.9967 0.01923 3 0.1806 1.1609 0.9611 0.02156 6 0.3222 0.6233 0.9921 0.03062 6 0.1670 0.1988 0.0865 0.56115 32110835 1 0.8662 0.6716 0.9969 0.02167 22210825 1 0.8798 0.8522 0.9993 0.01711 2 0.5975 0.3057 0.9968 0.02119 2 0.3266 0.6206 0.9968 0.02273 3 0.5121 0.2567 0.9993 0.01953 3 0.2531 0.7357 0.9961 0.01633 6 0.3263 0.3993 0.9929 0.02816 6 - - - - 22210811 1 0.8782 -.1238 0.9996 0.01889 22210835 1 0.8629 0.8057 0 9995 0.01671 2 0.3062 0.1700 0.9998 0.00636 2 0.3382 0.6000 0.9980 0.01952 3 0.1892 0.1896 0.9957 0.01091 3 0.2585 0.7223 0.9902 0.02382 6 0.6376 -1.1701 1.0000 0.00000 6 - - - - 22210821 1 0.8616 -_17.3 0.9996 0.01920 11120511 1 0.2835 0.6985 0.9965 0.01533 2 0.2685 0.6387 0.9913 0.02785 2 0.1169 1.2888 0.9870 0.01609 3 0.1806 0.8325 0.9785 0.02632 3 0.1083 1.3562 0.9809 0.02032 6 -.0116 0.9952 0.0276 0.07978 6 0.0986 1.3989 0.9726 0.02273 22210831 1 0.8868 -.1368 0.9999 0.00780 11120521 1 0.2880 0.6869 0.9970 0.02219 2 0.2665 0.5108 0.9986 0.01829 2 0.1333 1.3671 0.9662 0.02068 3 0.1992 0.5729 0.9983 0.00959 3 0.1139 1.3919 0.9909 0.01552 6 0.0619 0.9923 0.2983 0.07561 6 0.0872 1.6699 0.9988 0.00723 22210812 1 0.8852 0.1500 0.9998 0.01528 11120531 1 0.2927 0.6681 0.9903 0.01300 2 0.2729 0.2878 0.9807 0.06213 2 0.1678 1.0267 0.9937 0.02128 3 0.1507 0.2208 0.9875 0.01685 3 0.1860 1.1181 0.9928 0.01991 6 0.3672 '1.3177 0.9138 0.16327 6 0.1665 1.1763 0.9980 0.01309 22210822 1 0.8667 0.2831 0.9991 0.02181 11120512 1 0.2690 0.5850 0.9966 0.01808 2 0.2766 0.2851 0.9798 0.06332 2 0.1260 1.2366 0.9691 0.01618 3 0.1517 0.2165 0.9693 0.01728 3 0.1268 1.2171 0.9926 0.01525 6 0.3681 -1.3103 0.6977 0.15812 6 0.1365 1.1090 0.9637 0.02616 22210832 1 0.6853 0.2062 0.9995 0.01737 11120522 1 0.2989 0.5322 0.9960 0.01981 2 0.2837 0.2930 0.9752 0.06789 2 0.2675 0.8109 0.9909 0.03718 3 0.1656 0.2339 0.9652 0.02032 3 0.1907 0.7960 0.9938 0.02222 6 0.3761 -1.2818 0.9066 0.16739 6 -.1510 1.7258 0.5268 0.20636 5 1 I regression coefficients; R I coefficient of deter-instion; end 5.6. I stenderd error. 3 34 Table B. Parameters of the cumulative plastic deformation versus the number of load application curves. 2 Z SAMPLE NUMBER LVDT 9 S 1 R S.E. SAMPLE NUMBER LVDT 8 S 1 R S.E. 11120532 1 0.2936 0.5603 0.9979 0.01735 11320522 1 0.2993 0.8138 0.9961 0.01663 2 0.1387 1.0080 0.9968 0.01298 2 0.1826 0.9837 0.9838 0.03398 3 0.0812 1.2122 0.9936 0.00858 3 0.1620 1.0236 0.9772 0.03128 6 0.0181 1.6111 0.2226 0.06396 6 0.0753 1.0898 0.9179 0.03267 11120515 1 0.2998 0.8638 0.9978 0.01862 11320532 1 0.2960 0.8266 0.9966 0.01722 2 0.1681 1.1812 0.9968 0.01666 2 0.1837 0.9927 0.9878 0.03009 3 0.0671 1.3571 0.9986 0.00659 3 0.1683 1.0388 0.9838 0.02783 6 0.0155 1.6885 0.1277 0.05365 6 0.0882 1.0505 0.9808 0.01773 11120525 1 0.2928 0.8878 0.9978 0.01985 11320515 1 0.3058 0.5883 0.9980 0.01619 2 0.2023 1.0565 0.9928 0.02370 2 0.1088 1.6318 0.9952 0.01008 3 0.1891 1.0815 0.9776 0.03962 3 0.0598 1.5335 0.9937 0.00831 6 0.1798 1.0116 0.9312 0.08888 6 c.0267 1.7195 0.8836 0.02365 11120535 1 0.2966 0.8800 0.9988 0.02357 11320525 1 0.3196 0.8089 0.9993 0.01158 2 0.1028 1.3283 0.9909 0.01338 2 0.0918 1.8182 0.9951 0.00856 3 0.0756 1.3909 0.9889 0.01087 3 0.0730 1.8506 0.9819 0.01321 6 0.0388 1.5189 0.8973 0.01791 6 0.0608 1.7887 0.8296 0.02677 11320511 1 0.3059 0.6853 0.9981 0.01910 11320535 1 0.2981 0.7991 0.9978 0.01935 2 0.0775 1.1888 0.9710 0.01897 2 0.1528 1.0661 0.9983 0.01302 3 0.0588 1.5390 0.9787 0.01229 3 0.1358 1.0502 0.9989 0.00860 6 0.0818 1.3719 0.9121 0.03598 6 0.1132 1.0757 0.9985 0.00939 11320521 1 0.3063 0.5098 0.9979 0.01995 22120811 1 0.3012 0.7679 0.9991 0.01283 2 0.1508 0.5883 0.9950 0.01656 2 0.1600 0.8117 0.9906 0.01926 3 0.1877 0.6362 0.9925 0.01996 3 0.1125 0.7015 0.9726 0.02868 6 0.1876 0.6155 0.9829 0.03013 6 0.0282 0.8368 0.1629 0.09836 11320531 1 0.3081 0.6587 0.9982 0.01919 22120821 1 0.3003 0.7850 0.9989 0.01660 2 0.0966 1.0823 0.9959 0.00898 2 0.2278 0.5183 0.9975 0.01888 3 0.0989 0.9021 0.9872 0.01882 3 0.2081 0.3898 0.9977 0.01688 6 0.0832 0.7219 0.9512 0.02788 6 0.2032 0.3175 0.9908 0.02893 11320512 1 0.3086 0.5853 0.9979 0.02081 22120831 1 0.2985 0.7970 0.9965 0.01857 2 0.1378 0.8812 0.9890 0.02106 2 0.1878 0.5253 0.9807 0.03808 3 0.1129 0.9303 0.9896 0.01895 3 0.1899 0.6896 0.9863 0.03686 6 0.0887 0.9923 0.9292 0.02889 6 0.1882 0.6855 0.9780 0.06079 S I R 3.2. I regression coefficients; I coefficient of determinetion; end I stenderd error. 335 Table B. Parameters of the cumulative plastic deformation versus the number of load application curves. 2 2 SAMPLE NUMBER LVDT 8 S 1 R S.E. SAMPLE NUMBER LVDT 8 S 1 R S.E. 22120812 1 0.3030 0.8186 0.9982 0.01777 32120831 1 0.2928 0.8295 0.9973 0.01828 2 0.1036 1.6257 0.8850 0.05816 2 0.8085 I.5201 0.9980 0.03307 3 0.0961 1.6392 0.8857 0.05092 3 0.5305 '.5038 0.9983 0.02858 6 0.0616 1.5578 0.8668 0.02639 6 . - - - 22120822 1 0.2988 0.8325 0.9978 0.02115 32120812 1 0.2883 0.8292 0.9977 0.01688 2 0.1527 0.8326 0.9885 0.03955 2 0.8018 I.5385 0.9918 0.06830 3 0.1336 0.8512 0.9881 0.03583 3 0.5268 I.5208 0.9930 0.05362 6 0.1307 0.7920 0.9503 0.06290 6 - I I - 22120832 1 0.2968 0.8732 0.9980 0.01976 32120822 1 0.2931 0.9366 0.9971 0 02613 2 0.1958 0.8568 0.9928 0.02676 2 0.1068 1.2190 0.9979 0.00761 3 0.1311 0.7905 0.9880 0.02157 3 0.1002 1.1809 0.9952 0.01070 6 0.0761 0.9801 0.9292 0.03068 6 0.1187 1.0350 0.9975 0.00895 22120815 1 0.2988 1.0062 0.9985 0.02332 32120832 1 0.3011 0.9556 0.9972 0.02130 2 0.0782 1.3856 0.9958 0.00876 2 0.1362 0.9923 0.9968 0.01328 3 0.0820 1.3798 0.9968 0.00811 3 0.0990 0.9726 0.9960 0.01038 6 0.0208 1.6858 0.8881 0.00985 6 0.0387 1.0196 0.7051 0.03387 22120825 1 0.2985 0.9708 0.9989 0.02203 32120815 1 0.2933 0.8170 0.9957 0.02380 2 0.0928 1.1390 0.9922 0.01082 2 0.5957 I.6970 0.9979 0.03623 3 0.0575 1.2896 0.9871 0.01397 3 0.5192 '.6768 0.9982 0.02760 6 0.0722 1.3393 0.9798 0.01376 6 I I I ' I 22120835 1 0.2872 1.0618 0.9972 0.02161 32120835 1 0.2916 1.0670 0.9992 0.01221 2 0.1881 0.9083 0.9969 0.01887 2 0.1868 1.0793 0.9893 0.02535 3 0.1937 0.9317 0.9977 0.01309 3 0.1188 1.1519 0.9865 0.02202 6 0.1977 0.8615 0.9973 0.01660 6 0.0267 1.3323 0.6971 0.03885 32120811 1 0.2968 0.8275 0.9968 0.01252 32120835 1 0.2988 1.0508 0.9959 0.02526 2 0.5938 '.6858 0.9952 0.05069 2 0.0797 1.2688 0.9928 0.00918 3 0.5175 I.6760 0.9959 0.06129 3 0.0721 1.2013 0.9912 0.00902 6 I I - I 6 0.0579 1.1761 0.9588 0.01838 32120821 1 0.2986 0.8115 0.9970 0.01967 2 0.8088 '.5186 0.9977 0.03688 3 0.5306 I.5021 0.9979 0.02906 ‘ - - - - S I I regression coefficients; R I coefficient of deterninetion; end S.E. I stenderd error. APPENDIX C The values of the parameters of the deflection basin of all beam specimens are presented in this Appendix. 336 337 Table C. Parameters of the deflection basin of the beam specimens. 000 0v 0 0 A 000 AV 0 0 A 11110511 2.000 150 -0.505 0.000 5000 -0.025 0.710 520 -0.570 0.500 10000 -0.002 0.700 1000 -0.501 0.500 50000 -0.000 0.005 5000 I0.806 0.803 100000 I0.856 0.832 10000 I0.813 0.829 11110525 3.033 100 I0.577 0.586 21960 I0.822 0.858 500 I0.595 0.830 100025 -0.002 0.707 1000 -0.000 0.057 11110521 2.951 100 I0.533 0.687 5000 I0.823 0.718 500 I0.570 0.526 10000 I0.830 0.762 1000 -0.507 0.500 50000 -0.000 0 005 5000 -0.005 0.000 100000 -0.052 0.002 10000 -0 015 0.020 11110505 0 000 100 -0.500 0.511 170020 -0.005 0.700 500 -0.500 0 000 11110501 0.001 100 -0.500 0.007 1000 -0 000 0.057 500 -0 570 0.510 5027 -0.020 0.710 1000 -0.500 0.500 10000 -0.000 0.705 5010 -0.010 0.005 10000 -0.000 0.705 10025 -0.010 0.020 11210511 0.172 100 -0.500 0 005 100725 -0.007 0.700 500 -0.500 0.520 11110512 2.002 155 -0.501 0.500 1000 -0.000 0.552 525 -0.570 0.500 5000 -0.020 0 012 1000 -0.502 0.570 10000 -0.000 0.001 5000 -0.012 0.000 00500 -0.000 0.002 10000 -0 010 0.057 000000 -0.071 0.005 20700 -0.000 0.000 11210521 0.010 100 -0.500 0.005 100100 -0.000 0.700 ' 500 -0.575 0.500 11110522 0.110 100 -0.500 0.072 1000 -0.507 0.500 500 -0.501 0.500 5000 -0.011 0.012 1000 -0.002 0.500 10000 -0.020 0.000 5025 -0.021 0.002 00550 -0.000 0.001 10000 -0.020 0.050 00000 -0.005 0.002 150050 -0.050 0.705 052000 -0.050 0.777 11110502 0.015 100 -0.570 0 050 11210501 0.002 150 -0.570 0.070 500 -0.507 0 500 550 -0.572 0.500 1000 -0.500 0 571 1000 -0 500 0.500 5000 -0.010 0.002 5000 -0.010 0.010 10000 -0.021 0.050 10000 -0.010 0 002 00000 -0.000 0.000 00100 -0.000 0.000 100700 -0 050 0.705 105000 -0.000 0.702 11110515 0.001 100 -0.570 0.500 11210512 0.000 100 -0.570 0.077 500 -0.500 0.020 500 -0.502 0.550 1000 -0.000 0.050 1000 -0.500 0.501 SD! I been designetion number; A,B ' percent eir voids; number of iced epplicetions; end regression coefficients. 3238 Table C. Parameters of the deflection basin of the beam specimens. 000 0v 0 0 A soc 0v 0 0 A 5000 -0.021 0.000 100000 -0.000 0.000 10000 I0.827 0.887 11310511 3.000 100 I0.559 0.659 20000 -0.005 0.000 500 -0.500 0.520 00000 -0.000 0.710 1000 -0.500 0.501 186800 I0.855 0.778 5000 I0.811 0.816 11210522 0.111 100 -0.505 0 000 10000 -0.010 0.000 500 -0.500 0.552 02102 -0.002 0 000 1000 -0.000 0.502 172000 -0.000 0.755 5000 -0.020 0 000 11010521 2.000 100 -0.550 0.050 10000 -0.020 0.000 500 -0.570 0.500 00000 -0.005 0.720 1000 -0.502 0.550 105000 -0.057 0.770 5000 -0.010 0.017 11210502 0.150 ‘ 100 -0.570 0.000 10000 -0.010 0.000 500 -0.500 0.500 21000 -0.027 0.070 1000 -0.000 0.570 50505 -0.000 0.707 5000 -0.025 0.000 150500 -0.000 0.750 10000 -0.002 0.000 11010501 0.000 100 -0.550 0.050 27100 -0.000 0.700 200 -0 500 0.000 00000 -0.000 0.720 500 -0.500 0.500 105000 -0.001 0.700 1000 -0.507 0 550 11210515 0.005 100 -0.570 0.501 5000 -0.011 0.010 500 -0.500 0.000 10000 -0.020 0.000 1000 -0.007 0.000 00000 -0.002 0.007 5000 -0.025 0.720 100700 -0.000 0.750 10000 -0.002 0.750 11010512 0.010 100 -0.570 0.007 21000 -0.000 0.702 500 -0.502 0.500 00000 -0.000 0.700 1000 -0.507 0.502 122077 -0.055 0.051 5000 -0.015 0.000 11210525 0.070 100 -0.575 0.500 10000 -0.020 0.070 500 -o.000 0.000 00000 -0 005 0.710 1000 -0.000 0.005 75200 -0.000 0.750 5200 -0.027 0.720 11010522 0.000 100 -0.500 0.500 10000 -0.000 0.753 '500 -0.500 0.550 20000 -0.001 0.700 1000 —0 500 0 500 00050 -0 055 0.002 5000 —0.010 0.000 11210505 0.100 100 -0.500 0.500 10000 -0 020 0.070 500 -0.000 0.000 00000 -0 000 0.715 1000 -0 010 0.000 50700 -0.000 0.700 5000 -0.001 0.727 11010502 0.001 120 -0.571 0.510 10000 -0.000 0 750 500 -0.500 0.550 20000 -0.005 0.700 1000 -0.001 0.500 07500 -0.051 0.005 5000 -0.020 0.000 SD! I been designetion number; AV I percent eir voids; N I number of loed eppiicetions; end A.B I regression coefficients. 339 Table C. Parameters of the deflection basin of the beam specimens. 50! AV N 6 A 808 AV N 6 A 10000 I0.828 0.872 30000 I0.896 0.878 35360 I0.861 0.721 185000 I0.710 0.766 61700 I0.663 0.727 11110812 2.752 100 I0.551 0.670 11310515 3.039 100 I0.577 0.566 500 I0.586 0.563 500 I0.599 0.665 1000 I0.575 0.571 1000 I0.807 0.871 5000 I0.596 0.833 5000 I0.825 0.733 10000 I0.602 0.856 10000 I0.832 0.759 62200 I0.819 0.711 11310525 3.220 100 I0.593 0.561 163500 I0.833 0.782 500 I0.811 0.867 218000 I0.838 0.773 1000 -0.820 0.871 337750 I0.860 0.791 5000 I0.837 0.736 510000 I0.863 0.607 10000 I0.866 0.781 655300 I0.867 0.626 20300 I0.851 0.766 11110822 5.621 100 I0.760 0.671 11310535 2.932 100 I0.571 0.562 500 -0.757 0.563 500 I0.590 0.867 1000 I0.788 0.586 1000 I0.598 0.871 5000 I0.762 0.835 5300 I0.816 0.736 10000 I0.786 0.883 10000 I0.826 0.756 30000 I0.798 0.709 30000 I0.835 0.601 188600 I0.607 0.762 62100 I0.838 0.813 11110832 6.356 100 I0.857 0.663 11110811 6.161 100 I0.635 0.667 500 I0.862 0.563 500 I0.853 0.526 1000 I0.891 0.587 1000 I0.873 0.537 5000 I0.709 0.632 2170 I0.863 0.586 10000 I0.715 0.880 5670 I0.690 0.811 36000 I0.728 0.713 10350 I0.896 0.832 181800 I0.736 0.776 30000 I0.708 0.876 11110815 5.303 100 I0.766 0.585 150000 I0.720 0.762 500 I0.786 0.831 11110821 6.035 100 I0.862 0.627 1000 I0.770 0.860 500 I0.653 0.516 5000 I0.765 0.725 1000 I0.866 0.533 10000 I0.790 0.756 5000 I0.863 0.803 20000 I0.795 0.763 10000 I0.669 0.832 60000 I0.799 0.612 33000 I0.700 0.861 66200 I0.800 0.618 161000 -0.715 0.766 11110825 2.878 100 I0.568 0.571 351000 I0.720 0.778 500 I0.588 0.830 11110831 3.957 100 I0.862 0.627 1000 I0.579 0.855 500 -0.851 0.505 5000 I0.597 0.715 1170 -0.858 0.556 10000 I0.805 0.760 5000 I0.878 0.805 28000 I0.815 0.778 10000 I0.866 0.831 51000 -0.822 0.602 SDI I been designetion number; AV I percent eir voids; N I number of loed epplicetions; end A.B I regression coefficients. 340 Table C. Parameters of the deflection basin of the beam specimens. 30; AV N a A SD! AV N 6 A 188770 I0.632 0.666 11110712 8.568 100 I0.627 0.671 11110835 3.176 100 I0.588 0.587 500 I0.668 0,535 800 I0.809 0.835 1000 I0.669 0.586 1000 I0.815 0.655 5000 I0.683 0.838 5050 I0.836 0.717 16000 I0.672 0.890 10150 -0.860 0.766 30000 I0.675 0.712 67000 I0.855 0.603 81232 I0.679 0.763 11110711 8.663 100 I0.620 0.667 11110712 6.968 100 I0.702 0.675 500 I0.665 0.509 500 I0.726 0.538 1050 I0.650 0.561 1000 I0.732 0.586 5000 I0.685 0.608 5000 I0.766 0.836 10200 I0.671 0.838 10000 I0.755 0.882 38700 I0.676 0.891 30000 I0.786 0.707 159360 -0.668 0.758 173100 I0.776 0.761 11110711 3.706 100 I0.592 0.673 11110722 8.023 110 I0.768 0.678 500 I0.633 0.507 500 I0.603 0.560 1000 I0.860 0.539 1000 I0.608 0.589 5000 I0.857 0.808 5000 I0.626 0.835 10000 I0.886 0.831 10000 I0.629 0.885 30000 I0.877 0.875 36000 I0.636 0.721 152000 I0.693 0.739 186600 I0.668 0.765 11110721 5.191 100 I0.728 0.662 11110732 5.296 100 I0.732 0.676 500 I0.729 0.522 500 I0.750 0.539 1000 I0.765 0.536 1000 I0.757 0.589 5600 I0.781 0.809 5000 I0.773 0.636 10600 I0.786 0.838 10000 I0.779 0.862 63000 I0.760 0.896 30000 I0.766 0.706 189500 I0.790 0.752 33300 -0.766 0.713 11110731 6.066 100 I0.885 0.617 183200 I0.799 0.761 500 I0.857 0.512 11110715 7.066 100 I0.660 0.588 1000 I0.683 0.568 500 I0.696 0.833 5000 I0.865 0.805 1000 I0.699 0.882 10000 I0.893 0.831 5000 I0.909 0.730 30000 I0.703 0.877 11200 I0.913 0.766 159600 I0.716 0.766 12000 I0.916 0.787 11110712 5.802 100 I0.772 0.686 13100 I0.916 0.771 500 I0.767 0.536 11110715 7.062 100 I0.676 0.586 1000 I0.792 0.570 500 I0.696 0.832 5000 I0.606 0.836 1000 I0.696 0 882 10800 I0.616 0.886 5000 -0.909 0.730 33600 I0.623 0.715 6000 -0.911 0.750 151100 I0.631 0.760 10000 -O.912 0.759 SD! beem designetion number; AV percent sir voids; N number of loed epplicetions; end A,B regression coefficients. 341 Table C. Parameters of the deflection basin of the beam specimens. 000 AV 0 0 A so: 0v 0 0 0 12100 -0.010 0.700 500 -0.500 0.500 11110725 5.020 100 -0.700 0.505 1100 -0.505 0 507 500 -0.011 0 002 5000 -0.005 0.007 1000 -0 010 0.000 10200 -0.015 0.000 5000 -0 020 0.727 00500 -0.020 0.070 10000 -0.000 0 750 150000 -0.005 0.707 20000 -0 000 0 705 21110512 2.010 100 -0.550 0.000 22500 -0 000 0.700 500 -0 570 0.502 11110725 7.005 100 -0.075 0.500 1000 -0.500 0.572 500 -0.001 0.002 5000 -0.007 0.000 1000 -0 000 0.002 10000 -0.015 0.001 5000 -0.000 0.700 20000 -0.020 0.000 10000 -0.010 0 750 150700 -0.000 0 700 15000 -0.012 0.777 21110522 2.000 100 -0.500 0 070 10000 -0.012 0.700 500 -0.501 0.500 11110705 5.000 100 -0.700 0.505 1000 -0.501 0.570 500 —0.000 0 002 5000 -0 012 0 000 1000 -0.015 0 000 10000 -0.021 0.050 5000 -0.027 0.727 01000 -0.000 0.702 10000 -0.002 0.750 170000 -0.050 0 700 20200 -0.000 0 700 21110502 0.000 100 -0.570 0.077 11110705 0.000 100 -0.070 0.507 500 -0.500 0.500 500 -0.000 0.000 1000 -0.000 0.571 1000 -0.000 0.002 5000 -0.021 0.002 5000 -0.000 0.700 10000 -0.020 0 000 10000 -0.000 0.750 00000 -0.000 0.701 20200 -0.011 0.700 100000 -0.050 0.700 21110511 2.052 100 -0.557 0.007 21110515 0.110 120 -0 505 0.575 500 -0.505 0.502 500 -0.000 0.020 1000 -0.500 0.500 1000 -0.010 0.050. 5020 -0.010 0.000 5000 -0.020 0 710 10000 -0.010 0.000 10000 -o.000 0.705 01220 -0.020 0.075 00200 —0.000 0.701 170550 -0.005 0.701 21110525 2.075 100 -0.571 0.500 21110521 0 001 100 -0.575 0 020 500 -0.502 0.001 500 -0 500 0 510 1000 —0.000 0.057 1050 -0.500 0 505 5000 -0.010 0 710 5000 -0.010 0.001 10000 -0.020 0 700 10000 -0.010 0 000 20000 -0 000 0 771 05000 -0.005 0 070 21110505 0.171 100 -0.500 0.507 150000 -0.000 0.705 500 -0.000 0.000 21110501 2.050 100 -0.572 0.000 1000 -0.015 0.057 SD! I been designetion number; AV I percent eir voids; N I number of loed epplicetions; end A,B I regression coefficients. 3‘12 Table C. Parameters of the deflection basin of the beam specimens. SD! AV N A SD! AV N B A 5000 I0.833 0.716 5000 I0.780 0.835 10000 I0.860 0.765 10000 I0.785 0.885 30000 I0.851 0.788 30000 I0.776 0.709 86000 I0.858 0.816 186500 I0.768 0.761 21110811 .737 100 '0.889 0.639 21110815 5.068 100 I0.736 0.585 500 I0.702 0.513 500 I0.767 0.836 1000 I0.715 0.560 1000 I0.756 0.882 5000 I0.730 0.808 5000 I0.789 0.728 10000 I0.738 0.838 10000 “0.775 0.756 30300 I0.767 0.860 30700 I0.783 0.802 180300 I0.780 0.769 31700 I0.763 0.801 21110621 .912 100 I0.706 0.666 21110825 5.010 100 “0.726 0.570 500 I0.712 0.516 500 I0.763 0.632 1000 I0.725 0.539 1000 I0.769 0.881 5600 I0.765 0.808 5000 I0.786 0.728 10900 I0.769 0.839 10000 I0.789 0.756 31050 I0.759 0.861 30800 I0.776 0.601 188930 I0.772 0.752 35000 I0.778 0.608 21110831 .955 100 I0.706 0.638 21110835 6.977 100 I0.723 0.588 500 -0.720 0.500 500 -0.700 0.000 1000 -0.720 0.501 1000 -0.707 0.000 5000 -0.705 0.007 5000 -o.702 0.720 10000 -0.752 0.005 10000 -0.700 0.750 50000 -0.700 0.701 00000 -0.775 0.000 imam «Ln1 mm» zuumn 0Jn m0 «Lu0 00” 21110812 .973 100 I0.706 0.660 500 I0.856 0.507 500 -0.720 0.500 1000 -0.050 0.500 1000 -0.700 0.571 5000 -0.070 0.007 ' 5000 -0 . 751 0 . 005 10000 -0.077 0.007 10000 -0.757 0.000 01000 -0.005 0.007 30000 I0.788 0.709 175800 I0.693 0.782 189200 I0.776 0.762 21110721 8.687 100 I0.638 0.650 21110822 .090 100 I0.720 0.689 500 I0.682 0.507 500 I0.737 0.561 1000 I0.686 0.560 1000 I0.763 0.589 5300 I0.676 0.810 5000 I0.759 0.835 10000 I0.683 0.837 10000 I0.785 0.886 31000 I0.690 0.868 30000 I0.776 0.709 171000 I0.696 0.781 182310 I0.765 0.761 21110731 8.917 100 I0.666 0.667 21110632 .096 100 I0.718 0.675 500 I0.686 0.507 500 I0.735 0.562 1000 I0.670 0.538 1000 I0.766 0.588 5000 I0.862 0.807 SD! I been designetion number; AV I percent eir voids; I number of loed epplicetions; end A.B I regression coefficients. 343 Table C. Parameters of the deflection basin of the beam specimens. 00; av 11 0 A s00 0v 0 0 A 10000 -0 000 0.000 10000 -0.015 0.005 00000 -0.000 0.000 00500 -0.020 0 070 170000 I0.901 0.781 182050 I0.868 0.738 21110712 7.068 100 I0.886 0.673 31110521 2.978 100 I0.589 0.656 500 -0.000 0.501 520 -0.501 0.000 1000 I0.885 0.570 1000 I0.588 0.568 5000 -0.000 0.000 5250 -0.010 0.005 10000 -0 000 0 007 10000 -0 010 0.000 00000 —0 000 0.710 00000 -0.020 0.070 00500 -0 010 0.752 105000 -0.000 0 700 21110722 7.038 100 I0.685 0.688 31110531 3.083 100 I0.587 0.632 500 -0.070 0.500 500 -0.575 0.500 1000 ~0.000 0.500 1000 -0.500 0.500 5200 -0.005 0.000 5000 -0.015 0.000 10000 -0.000 0 007 10000 -0.020 0.002 00000 -0.000 0.715 00000 -0.000 0.070 21110702 7.000 100 -0.050 0.070 102000 -0.051 0 700 500 -0.077 0.501 01110512 0 000 100 —0.500 0.000 1000 -0.002 0 570 500 -0.500 0 501 5000 -0.005 0.007 1000 -0.000 0.500 10000 -0.000 0.007 5000 -0.010 0.002 00000 -0.000 0.715 10000 -0.020 0.000 21110715 7.007 100 -0.002 0.507 00000 -0.000 0.700 550 -0.000 0.000 107000 -0.055 0.700 1000 -0.000 0.000 01110522 0.051 100 -0.552 0.501 5000 -0.011 0.701 500 -0 507 0.505 10000 -0.010 0.701 1000 -0.507 0.571 21110725 7.000 100 -0.000 0.507 5000 -0.010 0 000 500 -0.007 0 000 10000 -0.020 0.001 1000 -0.002 0 000 00000 -0.000 0 702 5000 -0.012 0.701 100500 ~0.050 0.700 10000 -0.010 0 701 01110502 0.015 100 -0 500 0.000 11002 -0.017 0.707 500 -0 507 0.500 21110705 7.120 100 -0.000 0.507 1000 -0 500 0.572 500 -0.000 0.005 5000 -0.010 0.000 1000 -0.005 0.000 10000 -0.022 0 050 5000 -0.015 0.702 00500 -0.000 0.702 10000 -0.010 0 701 100000 -0.051 0.700 01110511 2.070 110 ~0.550 0.072 01110515 0.155 100 -0.502 0 570 500 -0.570 0.517 500 -0.000 0.001 1000 I0.580 0.558 1000 I0.816 0.858 5000 -0.000 0.000 5000 -0 002 0.710 SD! I been designetion number; AV I percent eir voids; N I number of loed eppiicetions; end A,B I regression coefficients. Table C. Parameters of the deflection basin of the 344 beam specimens. SD! AV N 8 A 508 AV N B A 10000 “0.839 0.768 10600 “0.698 0.870 30000 “0.850 0.788 23500 “0.901 0.705 63168 “0.858 0.818 31110722 6.676 100 “0.850 0.671 31110525 .989 100 “0.572 0.572 500 “0.685 0.561 500 “0.593 0.831 1000 “0.872 0.589 1000 “0.801 0.858 5500 “0.886 0.863 5200 “0.820 0.720 10600 “0.869 0.870 10000 “0.827 0.765 27600 “0.895 0.712 30200 “0.638 0.787 52500 “0.898 0.760 96000 “0.669 0.833 31110732 8.983 100 “0.882 0.688 31110535 .956 100 “0.570 0.570 500 “0.872 0.562 500 “0.591 0.831 1000 “0.879 0.570 1000 “0.600 0.857 5750 “0.692 0.665 5000 “0.818 0.718 10900 “0.697 0.672 10000 “0.825 0.766 28800 “0.902 0.711 30000 “0.838 0.787 82100 “0.905 0.768 112800 “0.868 0.838 31110715 8.750 110 “0.880 0.571 31110711 .921 100 “0.868 0.661 500 “0.871 0.838 500 “0.882 0.513 1000 “0.877 0.885 1000 “0.889 0.561 5500 “0.889 0.738 5000 “0.882 0.808 10100 “0.892 0.781 10000 “0.887 0.837 12650 “0.893 0.770 36800 “0.895 0.892 31110725 8.919 110 “0.871 0.572 185700 “0.902 0.781 580 “0.885 0.862 31110721 .968 135 “0.858 0.668 1000 “0.890 0.886 500 “0.888 0.508 5500 “0.901 0.738 1150 “0.870 0.568 10000 “0.906 0.782 5000 “0.883 0.809 13800 “0.908 0.778 ' 10000 “0.889 0.838 31110735 8.978 110 “0.878 0.572 32000 “0.898 0.888 530 “0.889 0.838 182850 “0.903 0.781 1000 “0.896 0.886 31110731 .007 180 “0.857 0.659 5600 “0.905 0.735 500 “0.889 0.509 8820 “0.908 0.765 1000 “0.875 0.560 8800 “0.907 0.758 5100 “0.886 0.609 10800 “0.908 0.785 11000 “0.893 0.862 21210611 6.991 130 “0.717 0.658 20500 “0.897 0.869 500 “0.719 0.529 169500 “0.907 0.783 1030 “0.732 0.553 31110712 .985 100 “0.880 0.672 5000 “0.768 0.818 500 “0.873 0.561 10000 “0.755 0.868 1000 “0.880 0.589 26050 “0.786 0.881 5200 “0.891 0.860 177800 “0.778 0.785 SD! I been designetion number; AV I percent eir voids; N I number of loed epplicetions; end A,B I regression coefficients. 345 Table C. Parameters of the deflection basin of the beam specimens. 80' AV N 8 A SD. AV N 8 A 21210621 6.996 110 “0.707 0.659 500 “0.768 0.663 500 “0.726 0.522 1000 “0.756 0.872 1020 “0.738 0.568 5000 “0.786 0.737 5800 “0.750 0.622 10000 “0.773 0.785 10800 “0.757 0.867 18500 “0.777 0.768 26500 “0.786 0.882 21210835 6.963 100 “0.728 0.578 177100 “0.778 0.785 500 “0.763 0.863 21210831 5.122 100 “0.707 0.685 1000 “0.768 0.872 500 “0.738 0.517 5000 “0.783 0.738 1000 “0.763 0.551 10000 “0.769 0.785 5000 “0.759 0.818 27800 “0.778 0.807 10620 “0.788 0.867 27650 “0.778 0.807 23800 “0.772 0.881 21310811 6.986 100 “0.707 0.665 156600 “0.788 0.780 500 “0.723 0.533 21210812 5.179 100 “0.721 0.690 1000 “0.738 0.556 520 “0.766 0.553 5000 “0.769 0.823 1000 “0.751 0.579 10700 “0.758 0.856 5120 “0.787 0.867 29500 “0.785 0.895 10700 “0.773 0.877 183900 “0.778 0.788 23850 “0.779 0.710 21310821 6.930 150 “0.709 0.678 51700 “0.785 0.763 550 “0.722 0.536 21210822 5.175 100 “0.723 0.689 1060 “0.729 0.558 500 “0.762 0.552 5000 “0.768 0.822 1000 “0.751 0.580 10000 “0.753 0.850 5000 “0.787 0.865 32000 “0.782 0.899 10000 “0.772 0.875 187500 “0.776 0.788 30500 “0.781 0.721 21310831 6.908 100 “0.889 0.680 87800 “0.787 0.756 500 “0.718 0.532 21210832 5.086 100 “0.717 0.685 1000 “0.727 0.557 500 “0.735 0.552 5050 “0.766 0.822 1000 “0.763 0.579 10500 “0.751 0.853 5000 “0.758 0.868 18500 “0.758 0.875 10000 “0.786 0.876 181800 “0.772 0.788 30000 “0.773 0.720 21310812 6.935 150 “0.718 0.508 71800 “0.779 0.758 500 “0.727 0.558 21210815 5.030 100 “0.729 0.578 1000 “0.735 0.588 500 “0.766 0.863 5000 “0.750 0.852 1000 “0.753 0.871 10200 “0.758 0.881 5000 “0.787 0.737 28000 “0.785 0.722 10000 “0.772 0.785 66000 “0.789 0.765 19500 “0.777 0.793 21310822 6.990 100 “0.713 0.696 21210825 5.051 100 “0.730 0.580 500 “0.730 0.580 SDI I bean designstion number; AV I percent sir voids; N I number of loed epplicstions; end A.B I regression coefficients. Table C. Parameters of the deflection basin of the beam specimens. 346 SD, AV N 8 A SDI AV N B A 1000 “0.738 0.587 188200 “0.663 0.739 5000 “0.756 0.852 12110531 2.696 100 “0.533 0.687 10000 “0.780 0.880 500 “0.566 0.528 30000 “0.789 0.725 1000 “0.581 0.563 33000 “0.770 0.729 5150 “0.606 0.607 21310632 6.971 100 “0.713 0.690 10000 “0.811 0.833 500 “0.726 0.580 30000 “0.626 0.873 1000 “0.737 0.568 189900 “0.862 0.766 5000 “0.753 0.851 12110512 2.969 100 “0.578 0.658 10000 “0.759 0.860 500 “0.568 0.538 29000 “0.787 0.726 1000 “0.590 0.571 123300 “0.777 0.765 5000 “0.808 0.636 21310815 6.966 120 “0.729 0.593 10000 “0.817 0.859 500 “0.766 0.850 28800 “0.828 0.698 1000 “0.750 0.878 166000 “0.865 0.781 5000 “0.786 0.763 12110522 2.959 150 “0.588 0.698 10100 “0.770 0.771 500 “0.575 0.556 22000 “0.775 0.606 1100 “0.593 0.571 21310825 5.189 100 “0.763 0.583 5200 “0.810 0.836 500 “0.759 0.850 10100 “0.819 0.858 1000 “0.785 0.878 27600 “0.829 0.897 5100 “0.779 0.766 175550 “0.867 0.789 10000 “0.786 0.772 12110532 2.987 100 “0.573 0.670 20758 “0.789 0.803 500 “0.588 0.560 21310835 5.083 100 “0.730 0.588 1600 “0.595 0.585 500 “0.769 0.850 5000 “0.812 0.833 1000 “0.758 0.878 12300 “0.822 0.887 5000 “0.770 0.763 20100 “0.827 0.888 9850 “0.775 0.771 187500 “0.869 0.787 12110511 3.017 100 “0.553 0.682 12110515 2.982 100 “0.571 0.572 500 “0.575 0.529 500 “0.593 0.830 1000 “0.565 0.553 1000 “0.801 0.857 5000 “0.813 0.803 ‘5000 “0.819 0.718 10000 “0.820 0.631 10000 “0.627 0.766 30300 “0.831 0.875 30000 “0.837 0.767 157000 “0.866 0.737 102831 “0.869 0.635 12110521 2.931 100 “0.533 0.687 12110525 3.129 150 “0.585 0.590 500 “0.570 0.526 500 “0.806 0.632 1000 “0.579 0.552 1000 “0.812 0.858 5300 “0.606 0.805 5000 “0.830 0.718 10000 “0.815 0.830 11500 “0.839 0.751 30000 “0.828 0.872 30000 “0.866 0.788 SDI I been designstion number; AV I percent eir voids; N I number of loed epplicstions; end A.B I regression coefficients. 347 Table C. Parameters of the deflection basin of the beam specimens. 50' AV N 8 A 80' AV N 8 A 65100 “0.855 0.818 191500 “0.771 0.787 12110535 2.977 100 “0.573 0.587 12110832 6.956 100 “0.702 0.663 500 “0.592 0.832 500 “0.728 0.538 1000 “0.801 0.858 1000 “0.732 0.571 5300 “0.820 0.721 5100 “0.750 0.838 10300 “0.827 0.768 10600 “0.757 0.687 30000 “0.837 0.768 30000 “0.765 0.709 82200 “0.866 0.615 188100 “0.777 0.781 12110611 5.025 100 “0.898 0.683 12110815 6.996 150 “0.727 0.568 500 “0.722 0.519 500 “0.762 0.832 1000 “0.738 0.538 1000 “0.769 0.881 5000 “0.751 0.805 5600 “0.783 0.730 10000 “0.757 0.835 11100 “0.789 0.759 30250 “0.788 0.882 30100 “0.778 0.600 163700 “0.778 0.768 51000 “0.760 0.622 12110821 6.927 100 “0.880 0.670 12110825 6.818 100 “0.708 0.572 500 “0.717 0.518 500 “0.728 0.835 1000 “0.730 0.538 1000 “0.738 0.880 5500 “0.766 0.811 5000 “0.750 0.728 10700 “0.751 0.837 10000 “0.758 0.756 30000 “0.780 0.880 30000 “0.786 0.799 192000 “0.776 0.758 53800 “0.788 0.626 12110831 5.176 100 “0.728 0.635 12110835 5.087 125 “0.733 0.579 500 “0.738 0.510 500 “0.769 0.833 1000 “0.765 0.561 1000 “0.755 0.881 5000 “0.782 0.808 5100 “0.789 0.728 10000 “0.788 0.838 10200 “0.775 0.758 50000 “0.781 0.702 21800 “0.781 0.787 100000 “0.785 0.732 27700 “0.782 0.797 12110812 5.066 130 “0.719 0.688 12110711 7.028 100 “0.886 0.631 500 “0.736 0.563 500 “0.887 0.513 1000 “0.761 0.572 1000 “0.878 0.538 8000 “0.780 0.863 '5300 “0.690 0.810 10100 “0.785 0.885 10000 “0.696 0.836 30200 “0.776 0.710 25500 “0.900 0.878 168800 “0.768 0.767 168700 “0.908 0.758 12110822 6.666 100 “0.899 0.672 12110721 7.008 120 “0.658 0.651 500 “0.717 0.563 510 “0.871 0.509 1000 “0.728 0.571 1000 “0.878 0.536 5000 “0.762 0.838 5620 “0.689 0.812 10000 “0.766 0.885 11580 “0.693 0.866 27900 “0.757 0.708 18600 “0.698 0.880 SD! I been designetion number; AV I percent sir voids; number of iced spplicetions; end A,6 I regression coefficients. 348 Table C. Parameters of the deflection basin of the beam specimens. SDI AV N 8 A 80' AV N 8 A 187300 “0.907 0.781 12110735 6.965 165 “0.676 0.585 12110731 7.055 100 “0.858 0.663 500 “0.668 0.835 500 “0.673 0.511 1000 “0.693 0.886 1000 “0.862 0.538 5100 “0.906 0.732 5000 “0.690 0.809 6700 “0.907 0.755 11700 “0.698 0.865 9700 “0.907 0.780 28600 “0.902 0.860 11110715 7.103 100 “0.685 0.585 159000 “0.910 0.759 500 “0.697 0.833 12110712 7.008 100 “0.883 0.670 1000 “0.903 0.682 500 “0.873 0.562 5000 “0.913 0.730 1000 “0.661 0.589 11200 “0.917 0.785 5800 “0.896 0.863 12000 “0.917 0.766 10000 “0.697 0.888 13100 “0.918 0.771 27000 “0.903 0.711 12210711 7.326 100 “0.677 0.650 102200 “0.909 0.770 500 “0.896 0.521 12110722 7.099 130 “0.870 0.686 1000 “0.900 0.550 500 “0.886 0.538 5000 “0.913 0.818 1000 “0.887 0.570 10000 “0.917 0.866 5250 “0.900 0.860 30000 “0.922 0.898 7500 “0.902 0.858 159200 “0.929 0.771 10300 “0.906 0.889 12210721 6.855 100 “0.868 0.650 30000 “0.910 0.718 500 “0.680 0.521 110500 “0.915 0.776 1000 “0.885 0.551 12110732 7.196 100 “0.878 0.687 5100 “0.878 0.820 500 “0.889 0.560 10000 “0.886 0.868 1000 “0.895 0.589 30000 “0.890 0.898 5000 “0.908 0.838 12210731 7.218 120 “0.880 0.656 10000 “0.910 0.888 500 “0.885 0.522 50000 “0.918 0.739 1000 “0.891 0.552 100000 “0.921 0.770 5200 “0.905 0.820 12110715 7.123 100 “0.888 0.588 10000 “0.909 0.868 500 “0.900 0.835 30000 “0.915 0.898 1000 “0.906 0.886 191300 “0.922 0.779 5000 “0.915 0.732 12210712 7.099 100 “0.873 0.679 10600 “0.919 0.785 500 “0.666 0.551 11300 “0.919 0.787 1000 “0.689 0.561 12110725 8.938 100 “0.673 0.587 8600 “0.902 0.859 500 “0.888 0.836 10000 “0.905 0.879 1000 “0.891 0.886 28500 “0.911 0.726 5000 “0.901 0.732 56000 “0.916 0.753 10000 “0.905 0.781 12210722 7.071 100 “0.870 0.680 13300 “0.907 0.776 SDI I been designetion number; AV I percent eir voids; N I number of loed epplicetions; and A,B I regression coefficients. 349 Table C. Parameters of the deflection basin of the beam specimens. 503 AV 3 3 A 503 3v 3 3 A 1000 -0.337 0.531 30000 -0.013 0 700 5500 -0.000 0.553 100300 -0.010 0.772 10000 -0.003 0.370 12310731 7.133 100 -0.333 0.057 70000 -0.013 0.750 500 -0 331 0.523 12210732 5.000 100 -0.355 0.031 1000 -0.330 0.550 500 -0 370 0.551 5500 -0.000 0.320 1000 -0 373 0 530 10500 -0.000 0.557 5000 -0 337 0 300 30000 -0.010 0.702 10000 -0.302 0.373 120200 —0.013 0 737 50000 -0.001 0.703 130000 -0.013 0 733 30000 -0.903 0.730 12310712 7.030 100 -0.373 0.037 12210715 5.331 100 -0.353 0.570 500 -0 335 0.555 500 -0 331 0.307 1000 -0.301 0 533 1030 -0.337 0.573 5700 -0.002 0.351 5000 -0.303 0 702 22130 -0.010 0 720 10000 -0.001 0.772 31570 -0.011 0.735 12500 -0.003 0 732 52000 -0.010 0.757 13000 -0.003 0.730 12310722 7.132 100 -0.373 0.030 12210725 3.301 100 -0.335 0.573 500 -0.337 0.557 500 -0.373 0.303 1000 —0.302 0.533 1000 -0.332 0.375 5200 -0.000 0.357 5000 -0 303 0.702 10300 -0.000 0.533 10000 -0.307 0.772 27000 -0.010 0.723 12100 -0.303 0.730 55200 -0.017 0.730 12210735 7.153 100 -0.300 0.530 12310732 7.015 100 -0.335 0.033 500 -0.003 0.303 500 -0.330 0.553 1000 -0.000 0.375 1000 —0.335 0.533 5000 -0 013 0.703 5500 -0.303 0.350 10000 -0.022 0.773 10000 -0.001 0.330 '13000 -0.023 0.735 30000 -0.003 0.733 12310711 7.207 100 -0.330 0.053 57000 -0.000 0.731 500 -0.330 0.523 12310715 7.073 100 -0 335 0.537 1000 -0.305 0 557 500 -0.000 0.352 5000 -0.007 0.325 1000 -0 000 0.332 10000 -0.012 0.555 2000 -0.000 0 711 23000 -0.013 0.300 5000 -0.010 0.750 157000 -0.025 0.770 7000 -0.015 0.730 12310721 7.172 100 -0.377 0 050 12310725 7.125 100 -0.030 0.537 500 -0.330 0.527 500 -0.002 0.353 1000 —0.300 0.553 1000 -0.003 0.332 5000 -0.002 0.323 2000 -0.012 0.711 10300 -0.007 0.353 5000 -0.017 0 750 SDI I been designetion number; AV I percent eir voids; I number of load epplicstions; end A.B I regression coefficients. 350 a Table C. Parameters of the deflection basin of the beam specimens. SDI AV N 8 A SD! AV N 8 A 8000 “0.920 0.770 189010 “0.783 0.786 9000 “0.920 0.775 22110832 5.111 100 “0.713 0.686 12310735 6.991 100 “0.678 0.588 550 “0.738 0.568 500 “0.692 0.853 1000 “0.768 0.570 1000 “0.697 0.862 5600 “0.781 0.863 5000 “0.908 0.750 10850 “0.767 0.889 6000 “0.909 0.757 20250 “0.773 0.895 7000 “0.910 0.786 38000 “0.777 0.719 22110811 6.775 100 “0.869 0.650 186800 “0.767 0.786 500 “0.707 0.516 22110815 6.983 100 “0.725 0.570 1000 “0.719 0.561 500 “0.760 0.836 5000 “0.733 0.808 1000 “0.768 0.882 10000 “0.760 0.637 5000 “0.782 0.726 30000 “0.750 0.881 10000 “0.766 0.758 163000 “0.783 0.752 20000 “0.773 0.785 22110621 6.602 100 “0.876 0.675 30000 “0.778 0.602 500 “0.707 0.517 22110825 5.086 100 “0.731 0.571 1000 “0.722 0.537 500 “0.768 0.838 5500 “0.737 0.811 1000 “0.758 0.882 10200 “0.761 0.838 5500 “0.770 0.732 27800 “0.751 0.878 10300 “0.775 0.756 189885 “0.785 0.758 27000 “0.782 0.798 22110631 6.929 100 “0.898 0.658 31000 “0.783 0.806 500 “0.717 0.518 22110835 5.107 100 “0.736 0.589 1000 “0.727 0.563 500 “0.750 0.838 5000 “0.766 0.808 1000 “0.757 0.683 10300 “0.751 0.838 5000 “0.771 0.728 26100 “0.758 0.873 10000 “0.777 0.758 180000 “0.773 0.757 23200 “0.783 0.792 22110812 6.981 100 “0.716 0.688 33000 “0.785 0.808 500 “0.727 0.566 32110811 5.195 100 “0.737 0.628 1000 “0.733 0.576 500 “0.736 0.517 5000 “0.751 0.837 1000 “0.769 0.561 10000 “0.758 0.888 5000 “0.782 0.811 30000 “0.788 0.711 10000 “0.789 0.636 187200 “0.777 0.763 27000 “0.777 0.679 22110622 5.063 100 “0.713 0.678 166700 “0.791 0.781 500 “0.730 0.568 32110821 5.078 100 “0.717 0.668 1000 “0.739 0.573 500 “0.728 0.523 5000 “0.758 0.837 1000 “0.760 0.562 10000 “0.782 0.888 5000 “0.752 0.812 28600 “0.770 0.708 10365 “0.781 0.839 80! I been designetion number; AV I percent sir voids; N I number of load epplicetions; end A,6 I regression coefficients. Table C. Parameters of the deflection basin of the 351 beam specimens. SD! AV N 8 A SDI AV N B A 25000 “0.789 0.875 30300 “0.776 0.603 182000 “0.782 0.756 32000 “0.776 0.805 32110631 .162 100 “0.718 0.651 32110635 6.913 100 “0.719 0.570 500 “0.738 0.513 500 “0.738 0.635 1000 “0.767 0.563 1000 “0.763 0.686 5000 “0.782 0.809 5000 “0.757 0.728 10850 “0.788 0.862 10000 “0.783 0.757 30000 “0.778 0.883 20000 “0.788 0.765 186300 “0.769 0.755 35000 “0.772 0.609 32110612 .127 100 “0.726 0.688 22210811 5.598 120 “0.600 “0.115 500 “0.737 0.567 500 “1.182 0.126 1000 “0.767 0.572 1000 “1.615 0.166 5100 “0.781 0.860 5000 “1.926 0.176 10000 “0.788 0.887 10000 “2.290 0.180 28000 “0.778 0.710 30300 “2.578 0.209 208700 “0.769 0.796 187600 “3.398 0.205 32110622 .955 100 “0.716 0.688 22210821 5.938 100 “0.368 0.386 500 “0.729 0.561 500 “1.168 0.128 1000 “0.733 0.576 1500 “1.856 0.098 5000 “0.769 0.839 5000 “2.066 0.131 11300 “0.757 0.872 10050 “2.383 0.129 28000 “0.786 0.708 21300 “2.579 0.159 170200 “0.777 0.785 170500 “3.388 0.181 32110832 .856 100 “0.891 0.689 22210831 5.723 100 “0.839 0.708 500 “0.718 0.567 500 “1.056 0.800 1000 “0.728 0.576 1000 “1.223 0.801 5000 “0.762 0.839 8000 “1.883 0.585 10000 “0.769 0.888 10100 “1.860 0.559 26000 “0.758 0.702 20000 “2.071 0.538 181500 “0.770 0.782 22210812 5.502 100 “1.198 0.681 32110815 .967 100 “0.725 0.570 500 “1.763 0.633 500 “0.762 0.835 1000 “1.858 0.659 1000 “0.769 0.883 8000 “2.311 0.676 5000 “0.783 0.729 10000 “2.651 0.685 10000 “0.786 0.757 52000 “3.338 0.390 25000 “0.775 0.795 22210622 5.778 100 “1.382 0.661 30000 “0.778 0.603 500 “1.682 0.616 32110625 .955 100 “0.721 0.571 1000 “1.905 0.651 500 “0.739 0.838 5000 “2.355 0.688 1000 “0.765 0.886 11100 “2.593 0.667 5000 “0.760 0.729 69500 “3.309 0.393 13900 “0.788 0.771 22210832 5.318 100 “1.228 0.676 SD! I been designetion number; AV I percent eir voids; N I number of loed epp1icetions; end A,8 I regression coefficients. 352 Table C. Parameters of the deflection basin of the beam specimens. 504 0v 3 3 3 303 3v 0 3 A 500 —1.701 0.000 500 0.575 0.105 1000 -1.337 0.053 1000 0.012 0 103 5500 “2.278 0.679 5000 0.292 0.080 12000 “2.695 0.659 10000 0.289 “0.026 83500 “3.369 0.389 352725 “0.029 1.393 22210615 6.126 110 “0.912 “0.085 11120512 3.118 100 0.938 “0.136 500 “1.118 0.293 510 0.582 “0.175 1000 “1.602 0.319 1020 0.396 “0.125 5500 “1.822 0.372 5000 0.195 “0.230 10000 -1.931 0.373 10000 0.037 -0.700 20000 -2.131 0.372 31000 -0.203 0.003 22210625 5.171 100 “0.927 0.661 181500 “0.680 0.160 500 “1.331 0.683 327700 “0.601 0.156 1000 “1.398 0.699 501370 “0.523 0.166 5050 -1.015 0 033 11120522 3.135 100 0.202 -0.003 10050 -2.003 0.300 500 -0.023 0.753 15000 -2 353 0.353 1000 -0.110 0.073 13000 -2.053 0.331 5100 -0.007 1.331 22210835 6.993 100 “0.835 0.676 10600 “0.078 1.293 500 -1 225 0.000 20300 -0.007 1.710 1000 -1.301 0.512 173000 -0 003 3.331 5050 —1.335 0.000 513300 -0.055 1.033 10050 -2.033 0.003 301300 -0 037 1.303 12000 -2.133 0.335 11120532 3.125 130 0.203 0.023 17000 -2.271 0.332 500 0.003 1.150 11120511 3.030 120 0.700 0.227 1000 0.010 1.020 530 0 505 0.270 5000 —0.330 -0.150 1000 0.001 0.230 10200 -0.303 0.103 5000 0.233 0.050 20000 -0.303 0.252 13300 0 072 1.000 177300 -0.320 0.302 20000 0 003 0.753 301000 -0.357 0.021 27000 0.002 0.771 11120515 3.150 100 0.053 0.230 172300 -0.003 -0.010 500 0.130 0.335 333300 -0.505 -0.037 1000 0.105 0.315 715700 “0.837 “0.208 5800 “0.169 0.291 331000 -0.300 -0.137 10000 -0.203 0.332 11120521 3.029 100 1.330 -0 002 10500 -0.250 0.003 500 1.002 -0.033 170000 -0.051 0.507 1000 0 022 -0.053 303100 -0.001 0.337 5000 0.721 -o.033 11120525 3.137 100 0.500 -0 373 10500 0.555 -0.130 500 0.302 -0 510 11120531 3.133 100 0 725 0.150 1100 0.305 -0.250 50! I been designetion number; AV I percent eir voids; N I number of loed epplicetions; end A,8 I regression coefficients. 353 Table C. Parameters of the deflection basin of the beam specimens. SD! AV N 8 A 8D! AV N B A 5600 0.281 “0.998 663950 “1.686 0.173 10600 0.320 “1.685 11320522 3.297 100 0.383 “0.363 23200 0.601 “1.791 500 0.821 “1.986 123900 “0.085 0.669 5000 “0.005 2.858 339200 “0.176 0.702 10000 “0.056 1.680 670000 “0.255 0.595 27600 “0.071 1.600 11120535 500 0.288 “0.112 501150 “0.379 0.739 1000 0.121 “0.258 11320532 3.202 100 0.368 “0.313 5100 “0.183 0.638 5000 “0.008 2.798 10500 “0.171 0.510 11100 “0.017 2.185 27000 “0.350 0.388 31600 “0.025 2.000 186100 “0.660 0.266 171800 “0.319 0.888 510000 “0.863 0.279 369600 “0.397 0.668 1081500 “0.990 0.283 827900 “0.618 0.861 11320511 3.162 100 0.188 1.671 720000 “0.629 0.887 550 0.060 2.232 11320515 2.631 100 1.079 “0.003 1000 0.001 6.900 500 0.792 “0.113 30975 “3.722 “2.271 1000 0.732 “0.208 327888 “2.861 “0.978 5000 1.016 “1.980 511050 “2.395 “0.738 10150 3.089 “3.830 11320521 3.302 100 “0.388 0.569 35900 “0.008 2.892 500 “0.885 0.305 157900 “0.187 1.020 1000 “0.797 0.281 336800 “0.380 0.713 5500 “1.127 0.158 11320525 2.981 100 1.275 “0.025 10000 “1.109 0.157 500 0.983 “0.085 30160 “1.278 0.117 1000 0.837 “0.093 187820 “1.886 0.073 5000 0.676 “0.368 697250 “1.753 0.092 10700 0.387 “0.589 11320531 1000 “0.060 1.835 191200 “0.328 0.660 5000 “0.199 0.851 351650 “0.661 0.390 11500 “0.335 0.877 11320535 3.862 100 “0.052 0.862 38300 “0.819 0.666 500 “0.323 0.235 382000 “1.126 0.287 1000 “0.298 0.328 882000 “1.172 0.291 5300 “0.569 0.301 899350 “1.195 0.293 10225 “0.868 0.301 11320512 500 “0.615 0.075 30000 “0.761 0.286 1000 “0.602 0.182 153100 “0.971 0.207 5000 “0.552 0.237 325300 “1.090 0.198 10200 “0.716 0.201 501200 “1.179 0.185 21900 “0.887 0.192 22120811 6.666 100 “0.309 0.815 135800 “1.097 0.200 500 “0.599 0.577 693600 “1.629 0.171 1000 “0.716 0.507 SD! I been designetion number; AV I percent sir voids; N I number of loed epplicetions; end A.6 I regression coefficients. 354 Table C. Parameters of the deflection basin of the beam specimens. SD. AV N 8 A SDI AV N 6 A 7700 “0.918 0.669 326500 “1.765 0.135 10500 “1.011 0.636 690000 “1.660 0.152 136800 “1.311 0.607 667000 “1.823 0.169 309300 '1-‘12 0.627 22120632 5.076 100 “0.790 0.096 1011900 “1.811 0.623 500 “1.076 0.098 22120821 6.966 100 “0.565 0.828 1000 “1.210 0.102 500 “0.769 0.686 5000 “1.178 0.199 1000 “0.772 0.657 10600 “1.263 0.218 5000 “0.685 0.665 167150 “1.302 0.351 10000 “0.915 0.639 320100 “1.339 0.361 30500 “0.968 0.661 505000 “1.366 0.395 165600 “1.056 0.638 22120615 5.115 100 “0.082 0.698 330536 “1.085 0.680 500 “0.527 0.121 515900 “1.066 0.676 1000 “0.725 0.091 878900 “1.119 0.659 5000 “0.938 0.123 695700 “1.152 0.651 10000 “1.155 0.117 22120631 5.078 100 “0.968 0.092 38600 “1.375 0.123 500 “1.193 0.115 156700 “1.883 0.108 1260 “1.327 0.087 332900 “1.795 0.095 5000 “1.708 0.017 22120825 6.916 100 “0.672 “0.571 10000 “1.778 0.026 500 “1.088 “0.318 69600 “1.736 0.058 1100 “1.128 “0.170 171800 “1.863 0.066 5500 “1.609 0.007 359000 “1.935 0.068 10900 “1.567 0.016 511600 “1.997 0.066 22000 “1.853 0.031 708000 “2.033 0.061 181700 “1.918 0.063 22120812 6.631 100 0.529 “0.055 353200 “2.251 0.037 500 0.051 “0.695 22120835 5.155 100 “0.873 0.038 1000 “0.023 0.895 500 “1.108 “0.008 -5000 “0.236 0.209 5500 “1.362 “0.015 10000 “0.378 0.158 10000 “1.692 “0.080 138200 “1.080 0.078 128000 “1.922 “0.168 11111 “0.150 0.672 337900 “2.078 “0.169 322900 “0.979 0.125 32120611 5.228 100 “1.302 0.261 695800 “1.170 0.100 500 “0.879 0.659 22120622 6.606 100 “0.588 0.112 1000 “0.560 0.833 500 “0.910 0.065 5500 “0.260 1.121 1000 “1.098 0.093 12000 “0.068 2.090 5000 “1.066 0.170 37000 “0.009 3.271 10000 “1.095 0.187 32120821 5.220 100 “1.332 0.278 33500 “1.328 0.150 500 “0.610 0.685 163000 “1.559 0.168 1000 “0.508 0.886 SD! I been designetion number; percent eir voids; N I number of loed epplicetions; end A,B I regression coefficients. 355 Table C. Parameters of the defl beam specimens. SDI AV N A SD, 5000 “0.231 1.139 10000 “0.020 2.655 29500 “0.000 5.903 32120631 5.209 100 “1.263 0.266 500 “0.655 0.666 1000 “0.565 0.630 32120535 5100 “0.267 1.106 10500 “0.029 2.616 32120612 5.178 100 “1.329 0.277 500 “0.660 0.676 2000 “0.686 0.571 5100 “0.168 1.376 16200 “0.072 1.839 32120622 5.616 100 “0.167 0.532 500 “0.667 0.280 1000 “0.666 0.265 5000 “0.860 0.156 10000 “0.929 0.180 153600 “1.606 0.130 322600 “1.650 0.118 671900 “1.638 0.119 696000 “1.631 0.105 32120832 5.052 100 “0.322 0.557 500 “0.667 0.680 1000 “0.858 0.611 5000 “0.639 0.388 10000 “0.975 0.387 22700 “1.030 0.377 167950 “1.281 0.370 681800 “1.508 0.339 1025500 “1.523 0.365 1196900 “1.897 0.323 32120615 5.138 100 “1.263 0.288 500 “0.601 0.689 1000 “0.575 0.638 5000 “0.213 1.181 12000 “0.069 2.080 32500 “0.002 6.356 32120625 5.236 100 “0.635 0.213 500 “0.661 0.175 1000 “0.756 0.205 5000 “0.616 0.275 SD! I been designetion number; AV I percent sir voids; z I A,B I regression coefficients. number of loed applications; end APPENDIX D The calculated fatigue lives of the beam specimens based on a maximum allowable cumlative plastic deformation under the loaded area of 0.45-in. are presented in this Appendix. 356 357 Table D. Fatigue life of beam specimens based on a maximum allowable cumulative plastic geformation of 0.45 and 0.1-in for the 77 and 40 F tests, respectively. SD# AV KV ANG CS TT CD2/CD1 NFL CD1 11110511 2.909 270 4 50 77 0.300 3512081 4500.0 11110521 2.951 270 4 50 77 0.299 3431208 4500.0 11110531 3.001 270 4 50 77 0.297 3335606 4500.0 11110512 2.982 270 4 100 77 0.309 885929 4500.0 11110522 3.116 270 4 100 77 0.305 822165 4500.0 11110532 3.015 270 4 100 77 0.308 869683 4500.0 11110515 3.061 270 4 250 77 0.304 144914 4500.0 11110525 3.033 270 4 250 77 0.305 147197 4500.0 11110535 3.068 270 4 250 77 0.304 144341 4500.0 11210511 3.172 212 4 50 77 0.293 2407828 4500.0 11210521 3.016 212 4 50 77 0.298 2627008 4500.0 11210531 3.032 212 4 50 77 0.297 2603976 4500.0 11210512 3.083 212 4 100 77 0.306 665019 4500.0 11210522 3.111 212 4 100 77 0.306 654459 4500.0 11210532 3.154 212 4 100 77 0.304 639050 4500.0 11210515 3.045 212 4 250 77 0.306 116064 4500.0 11210525 3.074 212 4 250 77 0.305 114182 4500.0 11210535 3.143 212 4 250 77 0.303 109872 4500.0 11310511 3.000 159 4 50 77 0.299 2147055 4500.0 11310521 2.994 159 4 50 77 0.299 2153660 4500.0 11310531 3.008 159 4 50 77 0.298 2136748 4500.0 11310512 3.014 159 4 100 77 0.309 559781 4500.0 11310522 3.060 159 4 100 77 0.308 545320 4500.0 11310532 3.081 159 4 100 77 0.307 539053 4500.0 11310515 3.039 159 4 250 77 0.307 94294 4500.0 11310525 3.220 159 4 250 77 0.301 85270 4500.0 11310535 2.932 159 4 250 77 0.310 100145 4500.0 11110611 4.141 270 4 50 77 0.266 1765305 4500.0 11110621 4.035 270 4 50 77 0.268 1872924 4500.0 11110631 3.957 270 4 50 77 0.270 1956109 4500.0 11110612 2.752 270 4 100 77 0.316 1007701 4500.0 SD# = sample designation number; AV = percent air voids (AV = 3 to 7); KV = kinematic viscosity (centistokes); ANG = angularity; CS = cyclic stress (psiA = cyclic load/loaded area; TT = test temperature ( F); N = number of load applications to fatigue failure: C51 = cumulative plastig4deformation at the center of the loaded area (x 10 in.); and C02 = cumulative plastic deformation 2.25-in from the center of the at a radial distance of loaded area (x 10 ' in.). 358 Table D. Fatigue life of beam specimens based on a maximum allowable cumulative plastic and 0.1-in for the 77 and 40 geformation of 0.45 F tests, respectively. SD# AV KV ANG CS TT CDZ/CDl NFL CDl 11110622 5.421 270 4 100 77 0.245 226967 4500.0 11110632 4.358 270 4 100 77 0.270 411053 4500.0 11110615 5.303 270 4 250 77 0.245 41437 4500.0 11110625 2.676 270 4 250 77 0.317 179669 4500.0 11110635 3.178 270 4 250 77 0.301 135760 4500.0 11110711 6.683 270 4 50 77 0.210 427105 4500.0 11110711 3.704 270 4 50 77 0.277 2253501 4500.0 11110721 5.191 270 4 50 77 0.240 982105 4500.0 11110731 4.088 270 4 50 77 0.267 1818846 4500.0 11110712 5.802 270 4 100 77 0.236 183495 4500.0 11110712 6.586 270 4 100 77 0.221 118498 4500.0 11110712 4.946 270 4 100 77 0.256 295935 4500.0 11110722 6.023 270 4 100 77 0.232 162222 4500.0 11110732 5.294 270 4 100 77 0.248 243682 4500.0 11110715 7.048 270 4 250 77 0.210 15647 4500.0 11110715 7.042 270 4 250 77 0.210 15700 4500.0 11110725 5.924 270 4 250 77 0.232 29293 4500.0 11110725 7.005 270 4 250 77 0.210 16024 4500.0 11110735 5.899 270 4 250 77 0.232 29708 4500.0 11110735 6.980 270 4 250 77 0.211 16250 4500.0 21110511 2.952 270 2 50 77 0.302 2673333 4500.0 21110521 3.031 270 2 50 77 0.300 2558497 4500.0 21110531 2.958 270 2 50 77 0.302 2664829 4500.0 21110512 2.914 270 2 100 77 0.314 717529 4500.0 21110522 2.998 270 2 100 77 0.312 684672 4500.0 21110532 3.099 270 2 100 77 0.309 647067 4500.0 21110515 3.118 270 2 250 77 0.306 109430 4500.0 21110525 2.975 270 2 250 77 0.311 118533 4500.0 21110535 3.171 270 ’2 250 77 0.305 106250 4500.0 21110611 4.737 270 2 50 77 0.254 986743 4500.0 21110621 4.912 270 2 50 77 0.250 894907 4500.0 21110631 4.955 270 2 50 77 0.249 873914 4500.0 SD# = sample designation number: AV = percent air voids (AV = 3 to 7); KV = kinematic viscosity (centistokes); ANG = angularity; CS = cyclic stress (psiA = cyclic load/loaded area; TT = test temperature ( F); N = number of load applications to fatigue failure; CB1 = cumulative plastig4deformation at the center of the loaded area (x 10 in.); and CD2 = cumulative plastic deformation at a radial distan 2.25-in from the center of the loaded area (x 10 5e of in.). 359 Table D. Fatigue life of beam specimens based on a maximum allowable cumulative plastic geformation of 0.45 and 0.1-in for the 77 and 40 F tests, respectively. SD# AV KV ANG CS TT CD2/CD1 NFL CD1 21110612 4.973 270 2 100 77 0.258 227319 4500.0 21110622 5.090 270 2 100 77 0.255 212982 4500.0 21110632 5.094 270 2 100 77 0.255 212524 4500.0 21110615 5.086 270 2 250 77 0.253 36477 4500.0 21110625 5.010 270 2 250 77 0.255 38051 4500.0 21110635 4.977 270 2 250 77 0.256 38765 4500.0 21110711 6.778 270 2 50 77 0.211 315720 4500.0 21110721 6.867 270 2 50 77 0.209 300400 4500.0 21110731 6.917 270 2 50 77 0.208 292191 4500.0 21110712 7.086 270 2 100 77 0.214 69868 4500.0 21110722 7.038 270 2 100 77 0.215 71754 4500.0 21110732 7.038 270 2 100 77 0.215 71784 4500.0 21110715 7.067 270 2 250 77 0.212 12071 4500.0 21110725 7.089 270 2 250 77 0.212 11918 4500.0 21110735 7.124 270 2 250 77 0.211 11693 4500.0 31110511 2.974 270 3 50 77 0.300 2991184 4500.0 31110521 2.978 270 3 50 77 0.300 2983881 4500.0 31110531 3.063 270 3 50 77 0.297 2845763 4500.0 31110512 3.080 270 3 100 77 0.307 740589 4500.0 31110522 3.051 270 3 100 77 0.308- 752983 4500.0 31110532 3.015 270 3 100 77 0.309 768081 4500.0 31110515 3.155 270 3 250 77 0.303 121377 4500.0 31110525 2.989 270 3 250 77 0.308 133153 4500.0 31110535 2.958 270 3 250 77 0.309 135515 4500.0 31110711 6.921 270 3 50 77 0.207 330200 4500.0 31110721 6.946 270 3 50 77 0.207 325631 4500.0 31110731 7.007 270 3 50 77 0.205 314629 4500.0 31110712 6.985 270 3 100 77 0.214 83709 4500.0 31110722 6.878 270 3 100 77 0.216 88880 4500.0 31110732 6.983 270 3 100 77 0.214 83790 4500.0 31110715 6.750 270 3 250 77 0.217 16313 4500.0 SD# = sample designation number: AV = percent air voids (AV = 3 to 7); KV = kinematic viscosity (centistokes): ANG = angularity: C8 = cyclic stress (psig = cyclic load/loaded area; TT = test temperature ( F): N = number of load applications to fatigue failure: C51 = cumulative plastig4deformation at the center of the loaded area (x 10 in.): and C02 = cumulative plastic deformation 2.25-in from the center of the at a radial distagge of loaded area (x 10 ' 1n.). 360 Table D. Fatigue life of beam specimens based on a maximum allowable cumulative plastic geformation of 0.45 and 0.1-in for the 77 and 40 F tests, respectively. SD# AV KV ANG CS TT CDZ/CDl NFL CD1 31110725 6.919 270 3 250 77 0.213 14841 4500.0 31110735 6.976 270 3 250 77 0.212 14381 4500.0 21210611 4.991 212 2 50 77 0.249 680131 4500.0 21210621 4.994 212 2 50 77 0.249 678850 4500.0 21210631 5.122 212 2 50 77 0.246 631863 4500.0 21210612 5.179 212 2 100 77 0.254 160903 4500.0 21210622 5.175 212 2 100 77 0.254 161222 4500.0 21210632 5.064 212 2 100 77 0.257 171545 4500.0 21210615 5.030 212 2 250 77 0.255 29874 4500.0 21210625 5.051 212 2 250 77 0.255 29527 4500.0 21210635 4.983 212 2 250 77 0.257 30676 4500.0 21310611 4.986 159 2 50 77 0.249 552183 4500.0 21310621 4.930 159 2 50 77 0.251 569681 4500.0 21310631 4.906 159 2 50 77 0.251 577318 4500.0 21310612 4.935 159 2 100 77 0.260 149285 4500.0 21310622 4.990 159 2 100 77 0.259 144789 4500.0 21310632 4.971 159 2 100 77 0.260 146318 4500.0 21310615 4.984 159 2 250 77 0.257 24821 4500.0 21310625 5.189 159 2 250 77 0.252 22148 4500.0 21310635 5.063 159 2 250 77 0.255 23755 4500.0 12110511 3.017 270 4 50 77 0.297 3307200 4500.0 12110521 2.931 270 4 50 77 0.299 3469943 4500.0 12110531 2.898 270 4 50 77 0.300 3534547 4500.0 12110512 2.949 270 4 100 77 0.310 902350 4500.0 12110522 2.959 270 4 100 77 0.309 897649 4500.0 12110532 2.987 270 4 100 77 0.308 883695 4500.0 12110515 2.982 270 4 250 77 0.307 151443 4500.0 12110535 2.977 270 4 250 77 0.307 151865 4500.0 12110611 5.025 270 4 50 77 0.244 1077415 4500.0 12110621 4.927 270 4 50 77 0.246 1138239 4500.0 12110631 5.178 270 4 50 77 0.241 989374 4500.0 SD# = sample designation number: AV = percent air voids (AV = 3 to 7): KV = kinematic viscosity (centistokes); ANG = angularity; C8 = cyclic stress (psi) = cyclic load/loaded area; TT = test temperature ( F): N = number of load applications to fatigue failure: C51 = cumulative plastig4deformation at the center of the loaded area (x 10 in.); and CD2 = cumulative plastic deformation 2.25-in from the center of the at a radial distange of loaded area (x lO ' 1n.). 361 Table D. Fatigue life of beam specimens based on a maximum allowable cumulative plastic geformation of 0.45 and 0.1-in for the 77 and 40 F tests, respectively. SD# AV KV ANG CS TT CDZ/CDl NFL CD1 12110612 5.084 270 4 100 77 0.252 274055 4500.0 12110622 4.846 270 4 100 77 0.258 312932 4500.0 12110632 4.958 270 4 100 77 0.255 294032 4500.0 12110615 4.994 270 4 250 77 0.252 49255 4500.0 12110625 4.818 270 4 250 77 0.257 54325 4500.0 12110635 5.087 270 4 250 77 0.250 46743 4500.0 12110711 7.026 270 4 50 77 0.204 352629 4500.0 12110721 7.006 270 4 50 77 0.204 356506 4500.0 12110731 7.055 270 4 50 77 0.203 346984 4500.0 12110712 7.006 270 4 100 77 0.213 93689 4500.0 12110722 7.099 270 4 100 77 0.211 88960 4500.0 12110732 7.194 270 4 100 77 0.209 84369 4500.0 12110715 7.123 270 4 250 77 0.208 15002 4500.0 12110725 6.938 270 4 250 77 0.212 16638 4500.0 12110735 6.965 270 4 250 77 0.211 16382 4500.0 11110715 7.103 270 4 250 77 0.209 15174 4500.0 12210711 7.324 212 4 50 77 0.199 237040 4500.0 12210721 6.855 212 4 50 77 0.207 307938 4500.0 12210731 7.216 212 4 50 77 0.201 251850 4500.0 12210712 7.099 212 4 100 77 0.212 70638 4500.0 12210722 7.071 212 4 100 77 0.212 71751 4500.0 12210732 6.909 212 4 100 77 0.215 78557 4500.0 12210715 6.861 212 4 250 77 0.214 13786 4500.0 12210725 6.801 212 4 250 77 0.215 14259 4500.0 12210735 7.153 212 4 250 77 0.208 11714 4500.0 12310711 7.247 159 4 50 77 0.201 200381 4500.0 12310721 7.172 159 4 50 77 0.202 208996 4500.0 12310731 7.133 159 4 50 77 0.203 213616 4500.0 12310712 7.089 159 4 100 77 0.212 57520 4500.0 12310722 7.132 159 4 100 77 0.211 56163 4500.0 12310732 7.015 159 4 100 77 0.214 59951 4500.0 SD# = sample designation number: AV = percent air voids (AV = 3 to 7); KV = kinematic viscosity (centistokes): ANG = angularity: C8 = cyclic stress (psi = cyclic load/loaded area; TT = test temperature ( F); N = number of load applications to fatigue failure; C51 = cumulative plastig4deformation at the center of the loaded area (x 10 in.): and CD2 = cumulative plastic deformation at a radial distan e of 2.25-in from the center of the loaded area (x 10- in.). 362 Table D. Fatigue life of beam specimens based on a maximum allowable cumulative plastic deformation of 0.45 and 0.1-in for the 77 and 40 F tests, respectively. SD# AV KV ANG CS TT CDZ/CDl NFL CD1 12310715 7.078 159 4 250 77 0.210 9890 4500.0 12310725 7.125 159 4 250 77 0.209 9635 4500.0 12310735 6.991 159 4 250 77 0.212 10387 4500.0 22110611 4.775 270 2 50 77 0.253 966062 4500.0 22110621 4.802 270 2 50 77 0.252 951783 4500.0 22110631 4.929 270 2 50 77 0.249 886445 4500.0 22110612 4.961 270 2 100 77 0.259 228840 4500.0 22110622 5.043 270 2 100 77 0.257 218606 4500.0 22110632 5.111 270 2 100 77 0.255 210497 4500.0 22110615 4.983 270 2 250 77 0.256 38631 4500.0 22110625 5.084 270 2 250 77 0.253 36508 4500.0 22110635 5.107 270 2 250 77 0.253 36048 4500.0 32110611 5.195 270 3 50 77 0.242 865322 4500.0 32110621 5.078 270 3 50 77 0.244 923905 4500.0 32110631 5.182 270 3 50 77 0.242 871810 4500.0 32110612 5.127 270 3 100 77 0.253 236227 4500.0 32110622 4.955 270 3 100 77 0.257 260055 4500.0 32110632 4.854 270 3 100 77 0.259 275119 4500.0 32110615 4.987 270 3 250 77 0.254 43656 4500.0 32110625 4.955 270 3 250 77 0.255 44443 4500.0 32110635 4.913 270 3 250 77 0.256 45482 4500.0 11120511 1.276 270 4 50 40 - 4178193000 1000.0 11120521 1.244 270 4 50 40 - 4353370000 1000.0 11120531 1.384 270 4 50 40 - 3631464000 1000.0 11120512 1.333 270 4 100 40 - 1992056000 1000.0 11120522 1.383 270 4 100 40 - 1867469000 1000.0 11120532 1.342 270 4 100 40 - 1969142000 1000.0 11120515 1.372 270 4 250 40 - 785514600 1000.0 11120525 1.355 270 4 250 40 - 802680100 1000.0 11120535 1.412 270 4 250 40 - 745664500 1000.0 11320511 4.932 159 4 50 40 - 22625860 1000.0 SD# = sample designation number: AV = percent air voids (AV = 3 to 7); KV = kinematic viscosity (centistokes): ANG = angularity: C8 = cyclic stress (psi) = cyclic load/loaded area: TT = test temperature ( F): N = number of load applications to fatigue failure: C61 = cumulative plastig4deformation at the center of the loaded area (x 10 in.): and C02 = of cumulative plastic deformation at a radial distange 2.25-in from the center of the loaded area (x 10 in.). 363 Table D. Fatigue life of beam specimens based on a maximum allowable cumulative plastic 8eformation of 0.45 and 0.1-in for the 77 and 40 F tests, respectively. SD# AV KV ANG CS TT CDZ/CDl NFL CDl 11320521 5.050 159 4 50 40 - 19397270 1000.0 11320531 4.738 159 4 50 40 - 29087340 1000.0 11320512 5.026 159 4 100 40 - 10285220 1000.0 11320522 5.045 159 4 100 40 - 10029730 1000.0 11320532 4.952 159 4 100 40 - 11320480 1000.0 11320515 1.143 159 4 250 40 - 657489600 1000.0 11320525 4.715 159 4 250 40 - 6379867 1000.0 11320535 5.384 159 4 250 40 - 2677309 1000.0 22120611 4.125 270 2 50 40 - 89680980 1000.0 22120621 4.184 270 2 50 40 - 83142020 1000.0 22120631 4.317 270 2 50 40 - 69985780 1000.0 22120612 4.070 270 2 100 40 - 49512020 1000.0 22120622 4.046 270 2 100 40 - 51050680 1000.0 22120632 4.314 270 2 100 40 - 36041680 1000.0 22120615 4.356 270 2 250 40 - 14150430 1000.0 22120625 4.154 270 2 250 40 - 18403690 1000.0 22120635 4.396 270 2 250 40 - 13436780 1000.0 32120611 4.088 270 3 50 40 - 101133300 1000.0 32120621 4.083 270 3 50 40 - 101893400 1000.0 32120631 4.071 270 3 50 40 - 103420200 1000.0 32120612 4.038 270 3 100 40 - 107888500 1000.0 32120622 4.279 270 3 100 40 - 40563260 1000.0 32120632 3.913 270 3 100 40 “ 65205160 1000.0 32120615 3.998 270 3 250 40 - 113692000 1000.0 32120625 4.096 270 3 250 40 - 21302600 1000.0 32120635 4.281 270 3 250 40 - 16774870 1000.0 SD# = sample designation number: AV = percent air voids (AV = 3 to 7): KV = kinematic viscosity (centistokes); ANG = angularity: CS = cyclic stress (psi) = cyclic load/loaded area; TT = test temperature ( F): N = number of load applications to fatigue failure; C51 = cumulative plastig4deformation at the center of the loaded area (x 10 in.): and CD2 = cumulative plastic deformation 2.25-in from the center of the at a radial distange of loaded area (x 10 ' in.). APPENDIX E The values of the resilient and total moduli obtained using the FEM for all beam specimens are presented in this Appendix. 364 365 Table E. Calculated resilient and total moduli using FEM program SAMPLE AV N MR E SAMPLE AV N MR E NUMBER (psi) (psi) NUMBER (psi) (Pei) 11110511 2.909 150 526623 636696 500 565682 696836 520 565623 676761 1000 622536 509501 1000 620356 512222 5000 690695 566732 5000 688661 570615 10000 711696 595076 10000 712213 599561 50000 739362 617333 21960 736586 619087 100000 739362 630672 166925 767576 619067 11110525 3.033 100 508960 619599 11110521 2.951 100 516390 663227 500 569177 699399 500 603675 691766 1000 626355 528985 1000 637107 527201 5000 696267 577992 5000 712366 565757 10000 715663 586838 10000 727912 610990 50000 766636 837976 36235 756663 610990 100000 766636 637976 170620 756663 626037 11110535 3.066 100 505069 631695 11110531 3.001 100 513627 632202 500 562662 677662 500 592663 690732 1000 619913 523366 1000 630176 522527 5027 666323 586965 5010 703016 571225 10600 709630 596863 10025 725695 603773 16000 725222 596863 21200 760155 626105 11210511 3.172 100 516390 637721 166725 750375 626105 500 598166 507156 11110512 2.962 155 513626 662037 1000 638750 537827 525 576607 665282 5000 712366 596073 1000 608803 513815 10000 727908 810110 5000 377320 535000 30500 752200 323072 10000 700210 565383 683000 662177 583309 26730 721176 801921 11210521 3.016 100 538159 635011 169100 721176 609360 500 621886 529880 11110522 3.115 100.- 500000 015031 1000 357557 550001 500 576750 663305 5000 731667 820353 1000 816376 517679 10000 766938 627928 5025 660535 570629 30550 777309 666687 10000 700906 603953 60000 786925 657909 156650 721627 611625 11210531 3.032 150 538911 663359 11110532 3.015 100 510630 616176 550 606997 506677 500 592655 500822 1000 626211 526278 1000 630277 511606 5000 706610 566375 5000 696772 568309 10000 726619 803180 10000 720719 601193 33100 756016 865370 30000 762626 836966 165000 756016 665370 163760 762626 625006 11210512 3.083 100 530367 666888 11110515 3.061 100 506713 621830 500 612907 699785 N I number of load applications; AV I percent air voids; MR I calculated resilient modulus using FEH program; E I calculated total modulus using FEM program. 366 Table E. Calculated resilient and total moduli using FEM program SAMPLE AV N MR 8 SAMPLE AV N MR 2 NUMBER (psi) (psi) NUMBER (psi) (psi) 1000 650680 566376 1000 678782 553782 5000 722005 615898 5000 751632 836151 10000 762613 632985 10000 770757 857281 20000 763683 632985 32162 798398 857281 36000 776665 832985 172900 798398 878269 11210522 3.111 100 528600 636967 11310521 2.996 100 558132 683878 500 810028 500888 500 860865 528603 1000 667065 528025 1000 685825 589100 5000 717363 587627 5000 752027 862816 10000 737159 606656 10000 779956 662816 66000 767087 858721 21000 802685 855918 165000 757687 862818 50535 812023 702578 11210532 3.156 100 526880 630872 11310531 3.008 100 558132 657796 500 500220 002521 200 592303 003112 1000 303070 520532 500 503203 523010 5000 712312 531327 1000 370052 570535 10000 732050 515305 5000 751302 321003 27100 755030 533533 10000 770330 300750 00300 753330 333533 30000 303050 333013 11210515 3.065 100 535358 657796 11310512 3.016 100 556098 683805 500 313305 512350 500 300317 520235 1000 357203 553777 1000 332205 571532 5000 727880 818882 5000 751830 831635 10000 709732 337533 10000 775320 303332 21000 730203 505000 30000 301051 337000 30000 773233 305000 75200 313305 373353 11210525 3.070 100 532273 001530 11310522 3.030 100 507075 050233 500 310703 030010 500 330201 530330 1000 353120 500070 1000 375070 572023 5200 725320 313003 5000 703331 320352 10000 765807 833867 10000 789785 838620 20000 735001 313200 30000 700705 350110 98850 776378 859920 56700 802703 883730 11210535 3.163 100 518905 638288 11310532 3.081 120 565332 653898 500 301052 505320 500 313137 510123 1000 639531 533916 1000 656980 566696 5000 708888 592813 5000 730198 803193 10000 730315 811052 10000 752823 839378 20000 703730 523573 35300 731300 330005 37500 761983 868282 61700 781396 886605 11310511 3.000 100 552078 683878 11310515 3.039 100 569826 685023 500 660366 528603 500 635685 533576 N I number of load applications; AV I percent air voids; MR I calculated resilient modulus using FEM program; E I calculated total modulus using FEM program. 367 Table E. Calculated resilient and total moduli using FEM program SAMPLE AV N MR 2 SAMPLE AV N MR 8 NUMBER (psi) (psi) NUMBER (psi) (psi) 1000 675821 589861 500 358815 298255 5000 707867 638867 1000 382316 303881 10000 789926 838867 5000 626638 359371 30000 796735 875625 10000 666860 387598 11310525 3.220 100 528638 667851 30000 659228 376690 500 609983 507367 11110832 6.358 100 389399 326315 1000 667888 539718 500 668795 389983 5000 718228 590632 1000 676729 381237 10000 739051 827803 5000 529956 666788 20300 758681 835066 10000 568570 658111 11310535 2.932 100 562887 685858 36000 578220 658111 500 650878 561721 11110815 5.303 100 318330 256885 1000 502102 550105 500 353313 200573 5300 788173 856385 1000 391888 321729 10000 730133 350335 5000 037733 353153 30000 816515 890766 10000 657268 375015 62100 823761 890766 20000 667380 375015 11110511 0.101 100 005000 333305 11110525 2.373 100 552073 071357 500 665781 388259 500 838067 533311 1000 003303 300133 1000 577351 532011 2170 530638 628689 5000 769869 826767 5370 550000 053130 10000 772173 501325 10350 570037 037013 23000 707507 375313 11110521 0.035 100 015313 307303 11110535 3.173 100 500000 020103 500 077303 335332 500 537030 005327 1000 503232 017730 1000 510313 505130 5000 550273 033132 5050 532320 573710 10000 530023 035352 10150 703335 503073 33000 503205 511325 07000 731375 303205 11110531 3.057 100 022037 353710 11110711 5.533 100 252007 107132 500 035070 300302 500 203303 230303 1170 528187 620298 1050 313088 266609 5000 577350 037703 5000 351500 237570 10000 503235 501031 10200 355500 203031 30000 513303 517215 35700 332032 315500 11110612 2.752 100 566019 656802 11110711 3.706 100 673037 398217 500 628039 516980 500 565018 656570 1000 557332 550032 1000 531120 035010 5000 736788 620339 5000 863855 522813 10000 753573 330033 10000 550523 501302 62200 788078 688632 30000 883636 582126 11110522 5.021 100 307530 203733 11110721 5.101 100 300551 270201 N I number of load applications; AV I percent air voids; MR I calculated resilient modulus using FIB program; 8 I calculated total modulus using FEM program. 3(58 Table E. Calculated resilient and total moduli using FEM program SAMPLE AV N MR 3 SAMPLE AV N MR 2 NUMBER (psi) (psi) NUMBER (psi) (psi) 500 003550 323033 500 270130 221001 1000 025112 305002 1000 233123 233001 5600 677057 388765 5000 326911 265965 10600 699776 398212 11200 361690 280975 63000 517003 636579 12000 361690 277277 11110731 6.088 100 660659 389168 11110715 .062 100 231785 183029 500 503005 013175 500 270532 213230 1000 537530 663939 1000 288178 237828 5000 598050 683826 5000 327659 259988 10000 616115 508763 8000 336869 268300 30000 533553 520200 10000 330030 270030 11110712 5.802 100 303160 261086 11110725 .926 100 296092 238788 500 353500 231212 500 305711 273351 1000 375205 300070 1000 357070 201000 5000 020051 305203 5000 010525 330000 10300 030303 355020 10000 020033 300101 33000 052533 330705 20000 033773 353050 11110712 5.535 100 255710 203003 11110725 .005 100 233010 133307 500 200332 231135 500 273000 210537 1000 313303 232122 1000 201033 230023 5000 353130 275002 5000 330332 235130 13000 332200 313531 10000 300105 230310 30000 333303 313531 15000 307233 237253 11110712 0.005 100 355700 302270 11110735 .300 100 207005 203030 500 022053 353530 500 307222 231511 1000 003020 333332 1000 333300 303700 5000 501303 015000 5000 012357 307253 10000 517003 020502 10000 030031 307253 30000 530300 007373 20200 001002 355305 11110722 5.023 110 230007 220731 11110735 .030 100 230335 133112 500 335205 233371 500 270035 213532 1000 355333 233035 1000 202232 230555 5000 399929 316010 5000 ~331588 270698 10000 017202 333032 10000 301000 277573 33000 035531 350021 20200 351233 230203 11110732 5.200 100 300303 230320 21110511 .052 100 500000 003330 500 300251 322023 500 531150 073325 1000 017107 335750 1000 517510 515713 5000 665282 378700 5020 686939 583168 10000 031330 333302 10300 711033 502531 30000 503818 610663 21110521 .031 100 500000 616116 11110715 7.003 100 231550 131307 500 571203 077532 N I number of load applications; AV I percent air voids; MR I calculated resilient modulus using FD! program; E I calculated total modulus using FEM program. 23659 Table E. Calculated resilient and total moduli using FEM program SAMPLE AV N MR E SAMPLE AV N MR E NUMBER (psi) (psi) NUMBER (psi) (psi) 1050 813183 513989 10000 510258 626867 5000 373332 570753 21110821 .912 100 367398 277898 10000 698125 591357 500 600696 329927 21110531 .958 100 500000 010110 1000 625805 365823 500 581150 681379 5000 077027 388838 1100 622593 525092 10900 091913 005999 5000 685536 577785 21110631 .955 100 365382 280826 10200 711937 597567 500 397356 327882 21110512 .910 100 509203 638298 1000 622220 337623 500 589759 698985 5000 672598 393183 1000 627029 527872 10000 687515 606601 5000 590355 530333 21110612 .973 100 300351 283985 10600 718712 605288 500 397378 323856 21110522 .998 100 500000 615681 1000 622285 351065 500 578750 075001 5000 070289 378960 1000 617233 035205 10000 686789 397028 5000 635331 555027 21110822 .090 100 336352 273918 10000 705786 599983 500 388832 317807 21110532 .099 100 696220 608066 1000 610182 332966 500 585813 689382 5000 658009 378770 1000 801855 507562 10000 673291 396961 5000 888159 555100 21110832 .096 100 336352 273918 10600 890888 571800 500 388832 306672 21110515 .118 120 693578 608019 1000 610152 338002 500 555877 650509 5000 658009 378978 1000 591188 682813 10000 673291 387113 5000 858097 525300 21110815 .088 100 336960 286608 10000 877662 588853 500 387169 308811 21110525 .975 100 500000 018077 1000 010081 337202 500 582261 680989 5000 658058 388218 1000 819885 520877 10000 673890 388955 5000 887188 577520 21110625 .010 100 360099 280196 10000 707792 597726 500 - 393689 310757 21110535 .171 100 000082 003000 1000 617396 336100 500 559882 685562 5000 665778 387681 1000 595232 099500 10000 681657 391033 5000 659790 555122 21110635 .977 100 303767 275590 10000 680351 581675 500 397360 328762 21110611 .737 100 380220 297110 1000 621596 335166 500 618337 367187 5000 670682 397685 1000 660755 353081 10800 688778 605385 5000 693151 601007 21110711 .778 100 239228 187188 N I number of load applications; AV I percent air voids; MR I calculated resilient modulus using FEM program; E I calculated total modulus using FEM program. 376 Table E. Calculated resilient and tc FEM program SAMPLE AV N MR E SAMPLE AV NUMBER (psi) (psi) NUMBER 1000 310180 258053 5500 357595 291858 10900 388291 298628 30000 386803 313998 57000 380803 313998 22110812 0.98 l2310715 .078 100 250618 196728 500 292078 238855 1000 311108 266738 2000 329977 286552 5000 351607 282278 7000 358138 288211 9000 383825 295221 22110822 5.00 12310725 .125 100 268076 196918 500 289350 231551 1000 308380 251885 2000 328851 286809 5000 308200 285988 8000 358878 285988 9000 380733 293032 22110832 5.11 12310735 .991 100 253878 199258 500 298623 262286 1000 315700 208098 5000 350221 291307 8000 380279 290815 7000 380350 300859 22110811 .775 100 386893 302279 22110815 0.98 500 022980 380903 1000 008032 388815 5000 098887 010005 10000 518361 018857 30000 502975 000828 183000 502975 666828 22110621 .802 100 366893 292072 22110625 5.086 500 622986 309028 1000 668632 375788 5500 502171 012058 10200 518080 020897 27800 531795 651095 189885 531795 051095 22110831 .929 100 355933 293711 22110835 5.11 500 013080 300831 1000 037120 356088 N - number of load applications; AV - percent air voids; MR - calculated resilient modulus using P!" program; E - calculated total modulus using FEM program. Table E. Calculated resilient and total moduli 377 using FEM program SAMPLE 0v 8 an 8 SAMPLE 0v 8 MR 3 NUMBER (psi) (1381) mm (p91) (psi) 5000 688760 380588 5000 695999 602655 10000 686736 601008 10000 511079 633381 23200 500238 627302 26000 527828 633381 33000 507015 617782 181500 527828 633381 32110811 5.195 100 339271 279291 32110815 6.987 100 352063 286815 500 391338 327805 500 607315 328987 1000 615323 365589 1000 631779 350377 5000 682918 379938 5000 681809 388809 10000 685831 399086 10000 697570 608325 27000 699917 605838 25000 516396 619822 186700 099917 015809 30000 520897 020507 32110821 5.078 100 365382 271889 32110825 6.955 100 353759 292616 500 397350 323075 500 009233 300783 1000 022220 362863 1000 033993 359758 5000 672598 393380 5000 683916 390768 10305 090553 388088 13900 511282 628373 25000 507820 021172 30300 521188 037977 182000 507820 021172 32000 521188 037977 32110831 5.182 100 339271 278190 32110835 0.913 100 355893 291705 500 391338 321085 500 011795 303590 1000 015323 300183 1000 638963 352219 5000 082918 378030 5000 087001 391903 10850 080898 001055 10000 503309 011785 30000 097081 010905 20000 517255 022082 180300 097081 618883 35000 528238 001010 32110812 5 127 100 303305 277730 11120511 3.080 120 1588010 1108002 500 397337 321208 580 1880332 1183760 1000 020880 338739 1000 1700891 1279887 5100~‘ 071098 381002 5000 2000023 1588885 10000 080998 399119 13800 1887882 1313810 28000 502117 010852 20000 1989877 1052250 208700 502117 610852 27900 2110580 1887801 32110822 0.955 100 353789 281595 11120521 3.029 100 1557572 1057588 500 009833 327921 500 1827537 1393285 1000 033002 352811 1000 1770323 1288598 5000 082909 385813 5000 2008279 1500385 11300 507800 017290 10500 1915168 1308219 28000 518553 027587 155800 2108109 1502132 170200 518553 627587 187200 2073068 1673129 32110832 6.856 100 381357 292889 11120531 3.188 100 1557572 1075930 500 018018 301028 500 1800090 1379280 1000 000079 385820 1000 1728788 1221003 N I number of load applications; AV I percent air voids; MR I calculated resilient modulus using FEM program; 8 I calculated total modulus using FEM program. 378 Table E. Calculated resilient and total moduli using FEM program SAMPLE 0v 8 HR 8 SAMPLE AV N MR 8 NUMBER (psi) (psi) NUMBER (psi) (psi) 5000 1819515 1302571 5100 1559890 1083018 10000 1873858 1338588 10500 1805528 1082800 188500 2097326 1561928 27000 1865528 1618982 352725 2072195 1673106 186100 1865528 1370800 11120512 3.116 100 1822896 1261783 11320511 3.182 100 1872388 1187286 510 1595283 1123573 550 1953758 1521555 1020 1820870 1107101 1000 1909700 1029508 5000 1886080 1632808 5000 2190766 1780301 10000 1935219 1508835 10200 2223903 1780301 31000 1935219 1035033 30975 2198098 1850307 181500 1988656 1618926 327888 2622687 1901272 11120522 3.185 100 1882151 1300501 11320521 3.302 100 1713132 1272897 500 1780386 1393586 500 1927911 1507228 1000 1726571 1299760 1000 1907026 1627780 5100 1886285 1691188 5500 1907026 1366000 10000 1788289 1229172 10000 2128598 1872711 20300 1793275 1250102 30100 2208883 1772398 178900 2189290 1732055 187820 2198800 1580780 11120532 3.125 130 1539038 1123250 11320531 2.980 180 1883020 1171033 500 1800007 1251033 500 1953822 1500088 1000 1822250 1088008 1000 1819010 1279889 5000 1793109 1335909 5000 2102380 1882035 10200 1850182 1008573 11500 2102380 1833800 20000 2000203 1835577 38300 2077758 1531018 177800 1957832 1018895 382000 2220098 1599177 11120515 3.150 100 1579839 1285083 11320512 3.277 100 1585202 1125190 500 1579839 1221059 500 1875390 1188585 1000 1730320 1008187 1000 1927389 1507708 5800 1880770 1235751 5000 2050373 1881328 10000 1880770 1235751 10200 1978585 1089857 19500 1705771 1280807 21900 1935800 1387801 170900 1800820 1288033 135800 2223398 1720001 11120525 3 137 100 1590021 1290330 11320522 3.297 100 1588701 1105099 500 1090203 1035320 500 1851897 1082300 1100 1802291 1210756 1000 1772888 1288152 5600 1872280 1232831 5000 1926668 1675108 10600 1768156 1309001 10000 1861297 1278225 23200 1959880 1802650 27800 2017991 1532382 123900 1959880 1099815 300800 2292853 1800389 11120535 3.193 110 1533827 1205987 11320532 3.202 100 1588701 1090503 500 1057970 1012811 500 1855509 1150701 1000 1079002 1028908 1000 1702798 1188738 N - number of load applications; AV - percent air voids: rm.- calculated resilient modulus using PIN program; E 0- calculated total modulus using FEM program. 379 Table E. Calculated resilient and total moduli using FEM program SAMPLE AV N MR 8 SAMPLE AV N MR 8 NUMBER (psi) (psi) NUMBER (psi) (psi) 5000 1859015 1375283 5000 1690973 1032963 11100 1922812 1610661 10000 1690973 1008868 31800 2176538 1735828 69600 1855522 1200728 171800 2208978 1869506 171800 1789352 1361503 11320515 2.631 100 1728380 1308066 22120812 6.831 100 1610276 1100093 500 1808835 1352988 500 1367322 928758 1000 1907729 1685980 1000 1619398 1038663 5000 1885660 1320668 5000 1825519 1288066 10150 2177108 1783950 10000 1803328 1200926 35900 2151127 1883128 138200 1877768 1200926 157900 2356758 1911982 322900 1853617 1619253 11320525 2.981 100 1898828 1303729 22120822 6.808 100 1311203 952120 500 1788813 1378208 500 1687570 1130687 1000 1807683 1605759 1000 1378838 951218 5000 1775882 1271298 5000 1598360 1227222 10700 1908860 1681986 10000 1552515 1123267 20750 1831399 1282089 33500 1517082 1025678 191200 1998902 1668858 163000 1875606 1201338 11320535 3.802 100 1000709 1030032 22120832 5.070 100 1338219 1030088 500 1699385 1057239 500 1605230 1080836 1000 1732970 1378518 1000 1352857 908210 5300 1899072 1239810 5000 1826172 1313379 10225 1882999 1188803 10800 1073133 1008709 30000 1790578 1328985 107150 1728053 1310303 153100 2089051 1888180 320100 1829880 1059579 22120811 6.888 100 1609797 1068327 22120815 5.115 100 1275099 1006538 500 1083301 1099758 500 1232028 870151 1000 1537500 1151777 1000 1208093 811935 7700 .1898892 1313383 5000 1638889 1103853 10500 1579399 1098058 10000 1307800 928130 130800 1782958 1298788 38600 1003531 1053101 309300 1890778 1628889 158700 1566812 1168882 22120821 6.966 100 1388189 988186 22120825 6.916 100 1173795 830663 500 1608937 1005992 500 1308258 989855 1000 1815183 1283889 1100 1387699 1085578 5000 1815183 1188539 5500 1363335 931292 10000 1815183 1158870 10900 1380908 931292 30500 1815183 1101702 22000 1395883 983235 185800 1852075 1380080 181700 1728975 1389601 22120631 5.076 100 1272897 878578 22120835 5.155 100 1103029 752229 500 1028105 1007890 500 1188208 817100 1260 1579657 1268068 1000 1611258 1161951 N - number of load applications; AV - percent air voids; MR - calculated resilient modulus using FEM program; E - calculated total modulus using FEM program. Table E. Calculated resilient and total moduli 353() using FEM program SAMPLE AV N MR 8 SAMPLE AV N MR E NUMBER (p81) (p81) NUMBER (psi) (psi) 5500 1351119 989008 1000 1029009 1053822 10000 1351119 989008 5000 1538128 1185835 128000 1837328 1292338 10000 1065620 1016838 337900 1709580 1370085 22700 1503350 1122505 32120811 5.228 100 1338855 998000 107950 1717295 1287078 500 1333555 925030 681800 1891836 1191785 1000 1008335 1015032 32120815 100 1388189 1030209 5500 1682591 1050720 500 1635679 1057393 12000 1800795 1213858 1000 1393050 971827 37000 1800795 1163835 5000 1666606 1009997 180500 1783299 1388988 12000 1550833 1127388 32120821 5 220 100 1285598 911308 32500 1550833 1080982 500 1659528 1090393 176350 1951825 1589339 1000 1509335 12251.1 32120825 100 1103029 752229 5000 1070083 1015553 500 1196978 828702 10000 1855221 1259188 1000 1216651 800505 29500 1590882 1133997 5000 1330863 953627 150700 1800832 1395580 10000 1667721 1107701 32120831 5.209 100 1388189 1030209 29800 1667721 1078075 500 1355159 979586 199500 1671786 1037163 1000 1395702 990951 690700 1859158 1286827 5100 1425570 972353 32120835 100 1086763 709661 10500 1815503 1222520 500 1189553 836029 28800 1815503 1180875 1000 1293887 970099 150700 1852080 1058985 5000 1650051 1156560 32120812 5.178 100 1285598 890392 10000 1319836 927626 500 1371913 9g1gog 33300 1568996 1236522 2000 1578353 1230817 150000 1050052 1010850 5100 1888000 1382329 353200 1678388 1025885 10200 1808820 1178850 27150 1700123 1398728 190700 1821378 1398728 32120822 5.010 100 1172822 807883 500 1230737 805128 1000 1081881 1190379 5000 1025010 1027211 10000 1510583 1189000 153800 1789900 1033208 322000 1805053 1183929 071900 1817128 1058555 32120832 5.052 100 1218002 830827 500 1510350 1228219 N - number of load applications; AV - percent air voids; MR - calculated resilient modulus using FEM program; 8 - calculated total modulus using FEM program. Table B. Parameters of the versus the number 321 cumulative plastic deformation of load application curves. 2 2 SAMPLE NUMBER LVDT O S I R S! SAMPLE NUMBER LVDT O 3 I R 32 11110511 1 0.8363 -.5367 0.9991 0.02227 11110535 1 0.8278 0.3792 0.9988 0.02130 2 0.5909 -.7728 0 9989 0.02280 2 0.5861 0.0965 0.9988 0.02115 3 0.5325 ‘.7883 0.9990 0.01916 3 0.5186 0.0558 0 9982 0.02168 6 0.6088 '.8185 0.9987 0.02888 6 0.3803 0.1607 0.9939 0.02888 11110521 1 0.8362 '.5300 0.9989 0.02555 11210511 1 0.8587 -.6973 0.9993 0.02368 2 0.8036 -.9063 0.9991 0.02310 2 0.8127 -.7691 0.9993 0.02270 3 0.5659 -.8977 0.9992 0.01980 3 0.5675 -.7350 0.9993 0.02027 6 0.6183 -.7152 0.9985 0.03110 6 0.3990 '.5266 0.9915 0.05166 11110531 1 0.8372 -.5330 0 9987 0.02707 11210521 1 0.8518 -.5063 0.9993 0.02128 2 0.8212 “.9625 0.9988 0.02805 2 0.8071 -.7658 0.9992 0.02109 3 0.5812 '.9297 0.9989 0.02309 3 0.5688 -.7651 0.9987 0.02627 6 0.6311 °.7656 0.9955 0.03503 6 0.6133 '.5752 0.9905 0.05068 11110512 1 0.8368 -.1755 0.9993 0.01998 11210531 1 0.8582 -.5260 0.9988 0.02889 2 0.5909 °.6255 0.9992 0.01932 2 0.8153 °.7729 0.9987 0.02569 3 0.5288 -.6272 0.9992 0.01880 3 0.5566 °.7892 0.9986 0.02511 6 0.3966 ‘.2858 0.9983 0.02700 6 0.6252 -.8007 0.9905 0.02886 11110522 1 0.8287 °.1310 0.9991 0.02600 11210512 1 0.8520 -.1619 0.9993 0.02033 2 0.5026 -.3851 0.9989 0.02625 2 0.8088 -.6012 0.9992 0.02032 3 0.5183 °.3828 0.9903 0.02718 3 0.5660 '.6018 0.9989 0.02088 6 0.3889 '.2635 0.9890 0.05110 6 ' ‘ ‘ ‘ 11110532 1 0.8331 '.1887 0.9993 0.02090 11210522 1 0.8555 -.1689 0.9992 0.02300 2 0.5906 -.6220 0.9992 0.02052 2 0.8115 '.6072 0.9991 0.02318 3 0.5200 °.6100 0.9991 0.01872 3 0.5675 “.6123 0.9991 0.02050 6 0.3980 “.2777 0.9901 0.03012 6 - - - - 11110515 1 0.8361 0.3826 0.9991 0.02270 11210532 1 0.8523 '.1303 0.9992 0.02238 2 0.5896 0.0811 0.9990 0.02253 2 0.8090 -.3939 0.9991 0.02239 3 0.5171 0.0555 0.9989 0.02080 3 0.5662 '.3988 0.9987 0.02351 6 0.3575 0.2085 0.9937 0.03399 6 0.6080 -.2620 0.9919 0.06382 11113525 1 0.8365 0.3555 0.9992 0.02130 11210515 1 0.8501 0.3777 0.9990 0.02233 2 0.5898 0.0758 0.9991 0.02107 2 0.8056 0.0938 0.9989 0.02233 3 0.5180 0.0501 0.9989 0.02068 3 0.5325 0.0836 0.9986 0.02361 6 0.3592 0.2005 0.9928 0.03888 6 0.3896 0.2198 0.9890 0.06331 ( fl 2 R SE 0 8 - regression coefficients equation 5.1); - coeffic1ent of determination; and - standard error. (slope and intercept of Table E. Calculated resilient and FEM program 377 3 - SAMPLE AV N MR E SAMPLE NUMBER (psi) (psi) NUMBER 5000 668760 380568 10000 686736 601008 23200 500238 627302 33000 507015 617782 32110511 5.195 100 339271 279291 32110615 500 391336 327805 1000 615323 365569 5000 662916 379938 10000 685831 399086 27000 699917 605838 186700 699917 615869 32110621 5.078 100 365362 271669 32110625 500 397356 323075 1000 622220 362663 5000 672596 393380 10365 696553 386068 25000 507626 621172 162000 507626 621172 32110631 5.182 100 339271 276190 32110635 500 391336 321085 1000 615323 360163 5000 662916 376030 10850 686898 601055 30000 697681 610905 166300 697681 616883 32110612 5.127 100 363365 277736 11120511 . 500 397337 321208 1000 620666 336739 5100 671096 381002 10000 686996 399119 28000 502117 610652 206700 502117 610652 32110622 6 955 100 353769 281595 11120521 500 609833 327921 1000 633602 352811 5000 682909 385613 11300 507600 617290 26000 518553 627587 170200 518553 627587 32110632 6.856 100 361357 292889 11120531 3 500 618018 361028 1000 666679 365626 N - number of load applications; AV - percent air voids; MR I calculated resilient modulus using FEM program; E - calculated total modulus using FEM program. ', - 7 J - - ‘ I -‘ I ._ 2.;__, 378 Table E. Calculated resilient and total moduli using FEM program SAMPLE AV N MR 6 SAMPLE AV N MR 3 NUMBER (psi) (psi) NUMBER (psi) (psi) 5000 1819515 1302571 5100 1559890 1083018 10000 1873858 1338566 10500 1865528 1682800 166500 2097326 1561928 27000 1865526 1616962 352725 2072195 1673106 186100 1865528 1370600 11120512 3 116 100 1622896 1261783 11320511 3.182 100 1672388 1167286 510 1595263 1123573 550 1953756 1521555 1020 1626676 1167101 1000 1909700 1629508 5000 1866080 1632606 5000 2190766 1780301 10000 1935219 1508635 10200 2223903 1760301 31000 1935219 1635033 30975 2196696 1656307 161500 1966656 1618926 327866 2622667 1901272 11120522 3.165 100 1662151 1306561 11320521 3 302 100 1713132 1272697 500 1760386 1393586 50°, 1927911 1507226 1000 1726571 1299760 1000 1907026 1627760 5100 1866285 1691166 5500 1907026 1366000 10600 1766289 1229172 10000 2126596 1672711 20300 1793275 1250162 30160 2266863 1772398 176900 2189290 1732055 167820 2198606 1586760 11120532 3.125 130 1539036 1123250 11320531 2.986 160 1663626 1171633 500 1666067 1251033 500 1953622 1566688 1000 1822256 1688006 1000 1619010 1279669 5000 1793169 1335909 5000 2102360 1662635 10200 1856182 1608573 11500 2102360 1633600 20000 2006263 1635577 36300 2077756 1531616 177600 1957632 1616695 362000 2226096 1599177 11120515 3.156 100 1579639 1265063 11320512 3 277 100 1565262 1125190 500 1579639 1221059 500 1675390 1166565 1000 1736320 1606167 1000 1927369 1567706 5600 1666770 1235751 5000 2056373 1661326 10000 1666770 1235751 10200 1978565 1689657 19500 1765771 1280667 21900 1935606 1387661 170900 1800820 1266033 135600 2223398 1726601 11120525 3.137 100 1596621 1290330 11320522 3.297 100 1566701 1105099 500 1690203 1035320 500 1851697 1662306 1100 1602291 1210756 1000 1772886 1286152 5600 1672280 1232631 5000 1926668 1675106 10600 1766156 1309001 10000 1861297 1276225 23200 1959660 1602650 27600 2017991 1532362 123900 1959660 1699615 366800 2292853 1606389 11120535 3.193 110 1533827 1205967 11320532 3.202 100 1566701 1090503 500 1657970 1012611 500 1655509 1156701 1000 1679062 1026966 1000 1702798 1166736 N - number of load applications; AV - percent air voids; MR - calculated resilient modulus using FD! program: E - calculated total modulus using FEM program. 379 Table E. Calculated resilient and t1 FEM program SAMPLE AV N MR E SAMPLE i NUMBER (psi) (psi) NUMBER 5000 1859015 1375283 11100 1922812 1610661 31800 2176536 1735628 171600 2206978 1669506 11320515 2.631 100 1726380 1306066 22120612 6. 500 1806835 1352966 1000 1907729 1685960 5000 1865660 1320666 10150 2177106 1763950 35900 2151127 1663126 157900 2356756 1911962 11320525 2.961 100 1696626 1363729 22120622 6. 500 1766813 1378208 1000 1807663 1605759 5000 1775682 1271296 10700 1908660 1661986 20750 1831399 1282089 191200 1996902 1666656 11320535 3.662 100 1660709 1030632 22120632 5. 500 1699385 1057239 1000 1732970 1378516 5300 1699072 1239810 10225 1662999 1168603 30000 1790578 1326985 153100 2089651 1888186 22120611 6.886 100 1609797 1068327 22120615 5. 500 1683301 1099758 1000 1537566 1151777 7700 1696892 1313383 10500 1579399 1096656 136600 1782958 1298788 309300 1890778 1628689 22120621 6.966 100 1366169 988186 22120625 6. 500 1608937 1005992 1000 1615163 1283869 5000 1615163 1186539 10000 1615163 1156870 30500 1615163 1101702 185800 1852675 1380066 22120631 5.076 100 1272697 876578 22120635 5. 500 1628105 1067690 1260 1579657 1268066 N - number of load applications; AV - percent air voids; MR . calculated resilient modulus using FEM program; E - calculated total modulus using FEM program. 238(3 Table E. Calculated resilient and total moduli using FEM program SAMPLE Av N MR 6 SAMPLE AV N MR E NUMBER (p91) (p81) NUMBER (p81) (p61) 5500 1351119 969606 1000 1629069 1053622 10000 1351119 969608 5000 1538128 1185835 126000 1637326 1292336 10000 1665620 1016638 337900 1709560 1370665 22700 1563350 1122505 32120611 5.226 100 1338655 996060 167950 1717295 1287078 500 1335555 925934 681600 1691636 1191765 1000 1504995 1015532 32120615 5.138 100 1366169 1030209 5500 1682591 1056720 500 1635679 1057393 12000 1600795 1213656 1000 1393656 971627 37000 1600795 1163635 5000 1666606 1009997 166500 1783299 1366968 12000 1550833 1127386 32120621 5 220 100 1285598 911366 32500 1550833 1080982 500 1659528 1096693 176350 1951625 1569339 1000 1519335 1225114 32120625 5.236 100 1103029 752229 5000 1676063 1015553 500 1196978 626762 10000 1655221 1259186 1000 1216651 860565 29500 1590682 1133997 5000 1330863 953627 156700 1806632 1395560 10000 1667721 1107781 32120631 5 209 100 1366169 1030209 29800 1667721 1078075 500 1355159 979554 199500 1671766 1037163 1000 1396762 990951 690700 1659156 1266827 5100 1425570 972883 32120635 5.618 100 1086763 709661 10500 1615503 1222520 500 1189553 836029 26600 1615503 1180675 1000 1293887 970099 156700 1652680 1656965 5000 1650051 1156560 32120612 5.176 100 1285596 690392 10000 1319836 927626 500 1371918 991599 33300 1568996 1236522 2000 1576353 1236617 150600 1656652 1010650 5100 ' 1666000 1362329 353200 1676366 1025665 16200 1606620 1176650 27150 1766123 1396726 196700 1621376 1396726 32120622 5.616 100 1172622 607663 500 1230737 665126 1000 1661661 1196379 5000 1625016 1027211 10000 1516563 1169000 153600 1769900 1633206 322600 1665053 1183929 671900 1617126 1656555 32120632 5 052 100 1216062 636627 500 1516356 1226219 N - number of load applications; AV - percent air voids; MR - calculated resilient modulus using FEM program; E - calculated total modulus using FEM program. HICHIGQN STQTE UNIV. LIBRQRIES Hill! I |||| lllllll UlllllHllHHl ll 31293001359466