
§
§

[I
W'
JU
IH
HW
HI
JW
W”
”H
M
 

b

v!’ .

.Q-

"

%

:

it;

. {

$

I

Q

n I

v ;

l

' ‘

h

_ .

o

i

3
.4.

”a

a

0’

.3

0

. .1‘3

3'

4

L.

K“

‘5

.xu;;u"

u.

b

I

t

I

J%}

o

‘1

1'

‘.

i

a

\A

u

A d “
-$

$

\xu.‘

\

\‘

E 3
j.\

.3
- c

«In

D
”
~

-
'
.

M
5

|
1
;
"

w
”

r
;

-
\
’

0
4
'
»
!

l
;
}
.
i

.
_

)
g
‘

‘\

h

i

to

aJA-o

u
‘
a
"

r
e

 



1H 5915-5

 

IIIIIIIIIIIIIIIIIIIIIIIIIIIII

Ml!”1|“Hull”11H”ll”WIIWIIIWIIHVII”ll
31293 00180 3851

MICHIGAN STATE UNWERSETY

UBRARV

-_

“

  

 

 

 

 



  

, M
wl ‘ JA/

C ‘ CAL-/é
(“/L

’L/L
4

MICHIGAN STATE

LIBRAR

 

UNIVERSITY
v

 

 
 



TRANSFORMATIONS 0F ELECTRIC NETWORKS BY MATRICES:

CASES OF INVARIANT POWER, NON—INVARIANT

POWER, AND INVARIANT INPUT-IMPEDANCE

By

SAKAE mmum

A Thesis

Submitted to the School of Graduate Studies of Michigan

State College of Agriculture and Applied Science

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Electrical Engineering

1951



 

Chapter I.

Chapter II.

Chapter III 0

Chapter IV 0

Chapter V.

Chapter VI.

Chapter VII.

Contents

Introduction

Derivation of Generalized Transformation

Equation

Receesary and Sufficient Conditions for

Invariance of Power

Two Kinds of Transformation Matrices

Invariant Transformations

{on-Invariant Transformations

Transformations of Invariant Input»

Impedance

Page

18

19



Chapter I. Introduction

(1) (2‘2)

Kron published many papers and books about

matrix treatments of electric networks. The core of

his works is congruent transformations, which are ex-

plained in mathematics hooks(4)and the books by Guil—

(5) (C)

lemin . Congruent transformations keep qualratic

forms, such as electric power in the case of electric

networks, invariant, when transformation matrix is non-

singular.

In this thesis the author deals with both invariant

and non-invariant transformations, and defines necessary

and sufficient conditions for each case and the valid

range of applications of each of them. Although almost

all examples are by mesh methods, the same discussions

hold for node methods.

In Chapter VII transformations of invariant input-

impedance are discussed. These are actually reduction

of electric networks to Foster's equivalent forms.

This process by usual methods(5)is very laborious and

tedious. By using the matrix treatments, which are axe



plained in Chapter VII, this process is made orderly

and less tedious.

This papaer is written by the author as the thesis

for Haster's Degree. Professor J. A. Strelzoff taught

the author matrix treatments of electric networks and

made it possible for the author to work on these subjects.

To Professor J. A. Strelzoff the author presents

his sincere thanks.



Chapter II. Derivation of the Generalized Transforma-

tion Equation

The equation of a electric network can be written

in the matrix form of

[9] = [Z] [1] 2.1

Now we change current [i] into new current [if] by the

transformation equation

[1] = [A] [1'] 2.2

Substituting 2.2 into 2.1, we get

[e] = [z] [A][i'] 2.3

Multiplying 2.3 by a matrix [B], we get

[31b] = [B] [2] [A] [1 '1 2 . I.

In the process of deriving equation 2.4 we change voltage

[e] into new voltage Esq 'hy the transformation equation'

[e'] = [Elm 2.5

From 2.4 and 2.5 we get i

[.q = [21mm [1'] . 2-6

Let new impedance matrix for new voltage [e'] and new cur-

rent [1'] be written [2'] , then

[a] = [20 [v] 2.7

From 2.6 and 2.7 we get

[2'] = [B] [Z] [A] 2.8



So we can conclude as following,

When current [i] and voltage fie] are transformed into

new current [1'] and new voltage [e'] by the transfor-

mation equations 2.2 and 2.5, the new impedance matrix

[Z{] for the new current and the new voltage is given

by 2.8.

This is the generalized transformation equation,

which contained congruent transformation [61.3] [C] as

one special case.



Chapter III Necessary and Sufficient Conditions

for Invariance of Power

To reach transformation equations, Kron started

from the assumntion that power is invariant, th:t is,

powers at each impedance branch of new system are equal

resoectively to those of old system. And he got the follow-

ing results.

When current [i] is transformed into new current

[it] by the transformation equation

[1] = [CM] 3.1

and voltage [e] is transformed by the equation

[e'] =8 [C1,[e] 3.2

, than ingeiance [Z] is transformed by the transformation

equation

[2'] : [C1[L][C] 3.3

* From his whole book it Seems that Kron thinks thet

3.1, 3.2 and 3.3 are the necessary and sufficient condi-

tions for invariance of power. But it is not correct as

explained later.

 

When we compare these equations with 2.2, 2.7 and

2.8, we see that

[A] = [0] [B] = [‘31: 3-4



 
.
3
.
-
.



From what Kron derived, we can see that the equations

3.4 are the necessary conditions for invariance of power.

But it is not yet clear whether these are the sufficient

conditions, too. Let us examine it.

Power for the old system is given by

P: [9}: [1] 3' 5

And power for the new system is niven by

P = [eatfl'] 3.6

From 3.1 we get

[v] _= [c]~l [1] 3.7

From 3.2 we set .

[6']. = ([0].; [9]), = [e]t[C] 3.8

By substituting 3.7 and 3.8 into 3.6 we get

in =[e1.n[c1"[11 =[e1tmr- P 3.9

50 power is invariant for this transformation. This tyne

of transformation is called congruent transformation.

It seems true that 3.4 is the sufficient condition for

invariance of power, too. But this is not sufficient.

In the process above we used[CI1 in the equation 3.7.

So[p] must be non-singular.

’ Then we can conclude that the condition 3.4 and

non—singularity of the transformation matrix EC] are the

necessary and sufficient conditions for invariance of power.



Here there must be some comments about the statement

7)

by Pipe that the transformation matrix [C]( Pipe usesfh] )

need not be non-sinaular. But he insists that only the

shape of the enerqy eouation (not the numerical value itself)

is preserved under the transformation by 3.4. In order that

not only the shaoe of the rncrgy equation but also the

numerical value of the enervy are nreserved, non-singularity

of the transformation matrix [C] hast be ended.



Chapter IV Two Kinds of Transformation Matrices C .

To set up sancaicai equations of electric networks,

Kron started from their nrimitive networks. For Example,

Fig. 4.1 a) is the prinitive network for Fig. 4.1 b) and c).

m

 

 

   

 

 

  
(c)

These are ailineshtu networks, because they have as

many meshes as number of impedances. In these networks all

emf's in series with each impedances are short-circuited.

So each current in each impedance is not changed by changing

interconnections as a), b) and c). In this case power is

invariant for these trasfoemations. Let's find the trans-

formation matrix [C] between Fig. a) and c) by assuming

reference currents indicated in the figures.
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In imoedance a“_ TL: - fg- id-14'

" z... 1" = - 1"

n z... 1‘: 1"+ 1’2. 1‘“ 4.1

2“ 1*: - i"

I "w- 1*- 1"

From these equations we get the trnasformation matrix C

a’ b’ c’ d' f'

[c]: a ”.1 o -1 -1 0‘}

'b O O -l 0 0.

4.2

  rLo o 0.10

The matrix 4.2 in non-singular.

Equatifin 4.1 and matrix 4.2 give the correspondences

between old currents and new currents. And their corres-

*

pondences are not only geometrical or positional but also

numerical.

 

* Geometrical or positional correspondence means

that corresponding currents flows in the same impedance of

the network. Nemerical correspondence means that values

of these corresponding currents are equal namerically.
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In 80m: cases correspondence is only fcomctricel, tut not

i
-
J
.

numerical. Luch case: 'rn crylt nri Eczer.

All tran:f:rratien matrice: should be qeemctriCLlly

corresOOuecnt. int {may nec‘ not b; numerically corresnon-

dent/o

Let's examine enother simnle example.

  

1 z... 1 2..., 2..., LA 25... z... wad

 

 

(a) (h)

Fig. 4.2 a) anl b) are the Lane network, rhich has two inde—

pendent mcrhes. In a) T‘ {n1 1b are assumed as indenendent,

while in b) fiend id are assumed inieoendent. Only difference

in the difference of reference currents. Cor905fiondences of

these currents are,

If} -? o; ‘ f‘ a - g

In impedance a,“ i a i

-r‘- r’HIn impedance Z», 1"
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So the transformation matrix is

/ I

c

[Cl = a l o

4.3

b -1 -1

This is a nonésingular matrix. And the correspondence by

[1] a [c] [1’] 4.4

is not only geometrical but also numerical.

We have Just examined two cases, where transformation

matrices are non-singular. It may seem too early to conclude

that all non-singular transformation matrices are correspon-

dent geometrically and numerically. But this is true. We get

non-singular transformation matrices, only when transformations

are not accompanied by any change of interconnections of impe-

dances. For instance. the transformation of Fig. 3.2 does

not have any change of interconnections of impedances. It has

only change of reference currents. So all currents at all

impedamce branches are invariant at this transformation.

Accordingly the transformation matrix for this case is corres-

pondent geometrically and numerically.

Transformation matrices for tansformations between

different independent reference variables of the same circuit

are generally non-singular and corresponding geometrically

and numerically.
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It seems likely that the transformation of Fig. 4.1

is accompanied by changes of interconnection of impedances.

But all impedances remain short-circuited even after the

transformation, and the mumber of meshes remains the same.

All currents of imnedance branches remain the Same. So that

the transformation matrixIC]of 4.2 is non-singular and

correspondent geometrically and numerically.

Here we can conclude that all transformation matrices

for transformations, where the number of meshes remains the

same, are non-singular and correspondent geometrically and

numerically, so long as all reference variables are indepen-

dent.

Let's examine the transformation of Fig. 4.3.

" l

T )<

a- 2“, z“, a: z“, 2-“ 2“,, 'z.cc

ea, eb ec. e4’ e5 an.

(L)
as

) F3}. #;3

 

 

(a) is trasformed into (b) by opening one impedance branch 25,.

Reference currents are assumed as indicated in the figure.
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Then the correspondence between old and new currents are

1" ---)~ 1”

. 4.5
1" -—-> 1/

So the transformation matrix is

1/

[p] = a 1

4.6

c -1

[C115 singular.

It is easily understood that power is not invariant

in this transformation. 50 it seems likely that cengruent

trasnformation [0142] [C] can not be applied in this case, because

Kron proved congruent transformations by assuming that power

is invariant in transformations. Let's try to apply it to this

For Fig. 4.3 (3)

ea_- eh: (Z...+ ‘2“)1‘4» z“ r-

4.7

6&- 8": z“ 1‘ + (255+ Z»)?

This is written in matrix fern as below. ’

[e142] [1]

when. [a]: at — eh [Z] = Z“)- be 2“

8e. - e 255 255+ ZG

4.8

[11 = 1‘

it

I

According to the congruent transformation, new matrices for
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the new network of Fig. 4.3 (b) are given as following.

[0M2] =[1 -1] z“ + 2“ z“ = [2“, - 2%]

2..., Z» + Z“

[2'] =[CJt [z] [c] = [2... - a} 1 = [2“, + 2“]

l . 4.9

a]: [alt [e] = [l 4] e.. - lie. - e4

80 for the new nctuork the equation of network(e1 =CZ][ij is

e - e = (:4M + z“)! 4.10
a. Ce

This is valid as easily seen from Fig. 4.3 (b). SOECIt[Z] [C]

method can be applied even for the transformations, where

power is not invariant. And this foot is already proved

[by equation 2.8, because we did not assume invariance of

'power to derive equation 2.8. But some limitations are

necessary for applying 2.8 generally,as explained later.

Here we would like to call attention to the fact

that equation 4.5 does not hold numerically, but it does

hold only geometrically. So "-—9" is used instead of "a ".there.

Transformation matrix 4.6 indicates only geometrical corres-

pondence between old and new currents. So it is not correct

to use[i] =[C] [i'] to evaluate one currents group from

values of the other currents group, which are already solved.
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It is ini*res%inr that consrucnt transformaflisn

can he cwpliofi even to casrs whore transformatihn Nitrix

is corresnonjont only *eametrically but not numerically.

Transforrt?ions, which chance number of imncj"nce

breach ;, are acccm“znfed by transfernation wztricvs, which

are sinvular. In Rhese cases, pose is not invariant and'
1

transfornation matrices are ccrresncnient only rennetrical y,

‘Lbut no‘ numrrically. As showed shove, congruent *rsnsfernr‘i‘n

can to t filifif *o this 0:50. Put numlar n? imna‘1rcn

branches 53 ul? Fw chznrmV in'c lezs number. (thermise tkis-

riefigmi C'IXI ? la” a fixlinfi.

l. ?r{WSfC?HLt10n netrix for transformatirns, which

are not t-.CCv.:m 1.9-; tied by chat". 63 ff” number at" imnaziar‘ce

‘ , ' ‘ I g . ~‘

U “113;: .95, {ST‘C “On-5;” fl... LLI‘.

;. non-sin'riar transformat'cn matrices are corros-

O

J nnnnt fecnntrically ann numerically.

*rnation matrices fer transformations, which

are accem~anie by channe of number of imnejnnce

branCPQs ( into Smaller nutter), are sinrular.



5.

17

Singular transformation matrices are correspon-

dent only geometrically but not numericallv.

In this case newer is not invariant.

But still [0M2] [0] method can be used for singu—

lar transformation matrices.

But we can not evaluate [i] from [1'] , using

[1] = [c] [1'] ..
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Chapter V. Invariant Transformations.

is exnlained in Chester III, the necessary and

sufficient conditiots I‘or invariance o- Dower are

[A] = [c] [B] = [c],: 5.1

And [9] must be non-singular.

In this case formulas of transformation between

old circuit ecuation

[91“[2131 ‘5 . 2

and new circuit equation

[e'] = [2'] [1'] 5.3

are given as following.

[1] = [c] [1'] 5.1.

W [cit] 5.5

[Z'l= [CL [21E] 5.6

Because [C] is non-sin".Ult't,

[1'1= [CM] 5.7

he can evaluate [i] from [iq, using 5.A, beceuce 5.4 is

corresoondent numerically.

(1)

Host of examoles in Kron's book are invariant

transfonations, althoufin some non-invariant trans forma-

tions are mixed, without explanations. So it is not neces-

sary to present here more such examples.
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Chapter VI Ron~invariant Transformations

When at least one of the nece.sary conditions for

invariant transformations is not satisfied, the transfor—

mation is non—invariant. Power is not kept invariant at

this transformation. to the sufficient condition for non-

invariant transformation is ;

l. [A] = [c1 an; [B] a [ch are not satisfiei.

or 2. Transformation matrix [C] is sinwular.

Accordin? to which necessary condition for invariance

of power is not satisf'ed, there are several kinds of non-

invarinnt transformations.

(1) Cases where [A] 2 [C] and [B] = [Clt are not satisfied.

As derived in Chapter II, when old and new variables

are related hy

[i] = [A] [1'] 6.1

[eq 3 [B][bj] 6.2

, the new impedance matrix [Zflis given by

[2’] = [B] [z] [A] 6.3

So lens as transformation equations (.1 and (.2 are numeri—

cally correspongmnt, [A] an?[3] can be arhitrary. Numerical



2O

corespondences of 0.1 and 6.2 mean that matricesfiflland [S]

are non-singular, as explained in Chapter IV.

Let's show several examples of this case.

 

 

  

T Z“ T Z“, Z“. t 2A4. 25" T 2“

Lo- . Lb ie’ 25'

ea. eh ea, eh. Cg, cc

(1) ( 5)

Fag. A. 1

The network of Fir. 6.1 (a) gives the followina matrix

equation.

[e] = [Z] [1]

, where

E6] = at - eD

L. - .J
[1] : 1'~

6.5

is

[Z] = Z... + 2.. z“

2... 255+ 2“

Now if independent variables [1] are changed into [1d,

which are indicated in fig. 6.1 (b), then the transformation

ma trix [C] is



L
.
)



21

[c] O

6.6

N

0
‘

m

I
. p
.
.
.

I H

Here we choose

 

 

[a] = [c] and [B] = [U] 6.7

, where [U] is a unit matrix.

Then

[2'] = [51(2) [A1 = [Z] [c]

= ”2&4- z“ 2.. "'1 0

Am fi*‘+ an .1 -l

= " z» '2...

6.8

L‘Z.5 “(255+ zcc.)

[e'] = [B183] = [e] 6.9

So finally we get as [8']: [Z'Hi']

_ I

ea- - 8‘ 3 La. - Z“ 1“

, 6.10

eb -ec -2... -(z..,+ z“) 1‘

Fro. 6.10 we get

4 e.(z..+ 2..) - e.z.. - ex...
1 z

zaazbb + zbb zen. + Z“. zap

6.11

1 4‘2“; - ebzmi» e¢(ZM+ Z»)

r = 

z+zbz+zz
5b 5a cl. 0.0.
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Now let's use the usual C Z G method. Then

to]. [Z] [c] = 1 -1 2 -Z..
‘4—

0 -1 Jab-(2,32%)

= The 2.. 2..

 255 255+ Zc

[C]t[e] = . 1 -1 at - e,

= €.' eb

-e,+ s.

{.0 finally we get as [an = [z'] [1']

[e '1

 

1

ea, - ab = Zu‘i' Z.” Z” 1‘

6.12

-eb+ ec Z“, be+ L 1d

From 6.12 we get

' eav( zbb+ zen.) - glazes". 80..be

i‘ a

2.12.“? szufi’ sz‘b

6.13

1Q, .90.sz- ebzmm" oc.( za~+ 26b)

3 

ZuLZH;+ ZHDZR_+ Zu’fiub

Final results of both 6.11 and 6.13 coincide with each

other as exnected. To reach the final result 6.11, we

used [A]:[C] and [B] = [U] . To reach the final result

6.13, we used(}] = [C] and [B] = [Clt . So in the latter
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we must handle more operations, such as [CL [2] [C] and

[Gide] . In the former method we can omit these operations,

so it is much easier to reach the final answer. This is I ”

so simple case that difference of amount of work involved

in both methods is not so great. Let's show another more

complicated case.

 

4:3 .

\‘Jbb (a) 133. 6.2

 

 

In fig. 6.2 there are given circuits of Wheatstone's

bridge. At first independent currents are riven as indicated

in fig. (a), and then circuit equations are given as holow.

r “t. ” - 91a .. z + 2m + z“ -2“ - -2“, F13* a 6.14

0 -2“ 2.2+ 2“ + Q. -2” 1"

_0_ L02“ .2” 2.. + Z... + 2,5 _1"4      
To get the balance condition of Wheatstone's bridge, we nust

get current in impedance Z” . So let's assume 1P , ifiland 1‘,

as new independent currents, as indicated in fig. (b).
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Then we get tTe transformatijn matrix [C]

f0 3' a!

[C] = g r-0 1 01

a O O 1 6.15

  bL—l o l
.1

Assuming [A3 = [C] and [B] = [U] , we get

  

I ’- . ‘1

[z] =[z] [c] = z“, zfi+ z“ + 23‘ -(z« + z“)

L-(ZH, + z“ + a) -2“, Zn. + Z“

80 we get new circuit equation as below.

'e,'= '2‘“L Z”+Z¢+Zu 42;,4-52111‘“

o z” -21 2.1+ z“, 13’ 6.17

1.0.. L‘(Z* + Z“ + Z# ) '2“ 2"" + 2‘4. 111      

From 6.17 we get

I e (a; Zn.” Zuvz,‘)

f = ’ 6.18

D

 

D = z 2W2“ + 2.12.... 2,3 2.12... 233+ zwzm zw+

zuz“ 2,, + z“ z“ z” + zwzuz”; 2,“,2fl 2” +

zzzu+2k2hzfi+zzz+z22+
ob as up u. 5’. W Mr.”-

2‘2 2 + z‘gzuz + 2. 2,7,2”; zuzfi z”

”19 33 “'

From 6.18 we get the well-known balance condition

Z Z Z Z 6.19
av ii- 55 (c,



Now let's try the usualUCL [Z][C] method.

[2'] = [01 [z] [:1
_

    

  

. o o -11 ’ z“ 2,, + zm + z“ 42.. + z-)

1 o 0 2+, -2“, zm+ zm

Lo 1 lj L-(Zu. + Z“ + Z” ) -Za 25.3" Zn 1.

=fi'2‘b+-zu_+ g” Z...L -(ZH,+ 2&1) 1r

Zn: 2.3, + zcc + 2-,, --(zcc + z“) 6.20

-(Zu.*' z“) 4ch + Z“) Zai’ Zn. * 3.. + Zak

[9'] = [(3]t [a] = —O O --l" To; 3 P0 '1

1 o o o a, 6.21

0 1 1 0 0
h— -L _ —1 L- -L

Now we can set up [6'] = [2'] [1']

      

      

0-1: 2H: + 241+ 2,1 Z“ —-(be+ z“) W ifl

8.} Z“
233-+ 22¢ + Z“ '(zcc + zit)

1" 6.22

L0 J L-(bef z“) -(zu + z“) z“. z» 1 Z... + Mir/l

From 6.22 we get the same final results as (.18, which proves

validity «[2] [c] mehtod. [z] [c] method does not involve

operations 6.20 and 6.21, so it is much easier to get final

results.

Sometimes circuit equations are set up, but some
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terlinals of emf‘s are not accessible, so these emf's can

not be measured. In such a case we must change enf's, which

appear in circuit equations, into other emf's, which are

accessible. Let's Present one example of such a case.

 

 

Pea: 6. .3

For the network of fig. 6.3 circuit equations are given

as below.

=3 at - e 3 Zn I -Z 1"

1’ " 5" b 6.23

3“, a o,L + a, Zu+ Zcc 2.. i

To use 6.23, no load voltages between terminals 1-8 and

A-A' must be measured. But it is possible to measure no

load voltages between A-A' and B—B'. Then voltages must

be transformed into measurable no load voltages between

14' and 843'.

No load voltage between A—A' 9M = a“. + co

6.21.

" B-B' ow: ob + ea



27

The relations between old and new emf's are

e~v = e + e = 0 1 e
a. a a.

-e,= O 1 cm3

shy e + e
b C a.

So transformation matrix [B] is

[B] a O l

6.26

-l 1

Then if assumed [A] = [U],

[2'] = mm = o 1 zu’ —z.,.,

-1 1 Z-“+ Zcc Zcc

= ZML+ %. Zn

6.27

-zct 256 + Zea.

So we get new circuit equation form 6.25 and 6.27.

A.

3.. + e: ZM + Z“ Z“ i

6.28

e. + e -Z.. Z». + 2.. 1"

This equation contains only measurable emf's, so we can

evaluate currents by solving 6.28.

This is the case where [A] is a unit matrix and

[B] is trnasforaation matrix between old and new emf's.

Sometimes we find that a given circuit equation is

not adequate, because some of the emf's used in the equation

is not accessible and cannot be measured, or because we want
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to use other independent currents than those used in the

given circuit equation. In such a case we must transform

both emf's and currents used into other independent emf‘s

and currents, which are suitable to our purposes. Then

old and new variables lust be related in some way. These

relations can be expressed by

[11 = [11 [M 6.29

[e']= [B3 [6] A 6.30

Generally [A] and [B] are not related by the relation [B]: [LJt

as is the case with congruent transfbrnations. Let's show

one such example-

 
 

 

For the network shown in fig. 6.4 (a) a circuit equa-

tion is set up as below.
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”a” - e: = ”z“, -255 o o 1 ’1“

ea - ed. 0 0 Z“ -2“ 1b

' 6.31

ea, z”) Z.” + z” 2“ + Z” Z” Z” i

d.

_3a. A _za% 23%- 223 24d- + 234‘ L1

But four currents, which are indicated in fig 6.4 (b), are

wanted. And four no load voltages, which are used in 6.31,

cannot be measured, but four no-load voltages between 1-2,

4-5, 2-3, and 5-6 can be measured. These four currents,

which are wanted, and four measurable no-lcad voltage are

assumed as new reference variables. Then relations between

old and new currents are,

i°' I i"

1" = 1‘"

1° a .1“ 4'”

1‘ a -1“ -16

So the transformation matrix [A] for currents is,

[A] a F 1 o o 0']

0 l O 0

6.32

-l O -l O

  o -l 0 -lJ
_



Measurable four no—load voltages are,

 

= 6a,...

.. eb -

2-. at

3 ed

Fem - e:]= -- 0

eb - e.i -l

ec_ 0

fat I. L0  

-1

O

.l

O

l

l

O

0

.fi

-1

  

l

l

6-33

- e

‘L 6.3!.

 
So the transformation matrix [B] for voltages is,

[a] =

 

1" o .1

-1 o

0 1

L_o o

l

1

0

0

.17

-l

1

l  —

6.35

Impedance matrix for new variables is given by [B][Z][KL

that is,

[z] [A] =

   

o 7 _1

-2... o

2,, -1

zu+ 231 L0

30

005]

100

0.10

.104  



[B] [Z] [A] =

fl

 

2.1 -25., 0

~an 24¢ -l.._

z“; z” z” -2”

Lo .z‘.‘L -2”

r 2.1 + z“ + 2;}

ZH

-Z..

__0 
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So the new circuit equation, which is suitable to our purposes,

is given from 6.34 and 6.36 as below.

 

3

  

" Z“; 2,“ + Z” 2,,

7m

.2cc o

o -2“

zbb+zd+gf o

Zcc O

z...

-(zcc + 23% ) -283,

.2 .(de+ 233.a?

6. 37

We can check easily validity of 6.37 by inspecting fie. 6.4

and 6.37.

All exanoles in this article are the case where the

condition [£043] and [B]=[C]t are not satisfied.

0 T

Z...

“23%

-(Zdu- Zeal

z” 2.. o

Zhb+ Zm+ Z” O 244.

o -(zu_ + z ) J”

‘2“. - z” -(ZM+ ..

6.36

 
]
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Here it should be emphasized that both [A] and [B]

are non-singular and give numerical correspondences between

old and new variables. Sometimes [A] or [B] is a unit

matrix, which is apparently non-singular. Cases, where [A]

or [B] is singular, are treated in the fellowing article.

(2) Cases where transformation matrix [C] is singular.

In Chapter IV we explained that transformations,

which changes number of impedance branches, are generally

accompanied by singular transformation matrices. And

singular matrices relate old and new variables only geo-

metrically but not numerically. In Chapter III we expalained

that power is not invariant even when [CLfZ] [O] transform-

ationis used, if'[C]is singular. Let's show examples.

._,Ly
 

I
F
—
e

F

e

9a..
ec ea-

 

 

l

)<

'23).» 1 Zoe. L2”. 2.5:, ,2 Zoe

ed

(a) (b) i
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The circuit equation for figure 6.5 (a), which is the same

as figure 4.3, is

e... =3 Z + Z 25', Le"

a bb (1.28

Lo

at 2H, be+ zcc

In figure 6.5 (b) branch of §~is broken, and one new cur-

rent if is enough to describe the circuit behaviors. Then

the correspondence between old and new currents is

lk-d’ it

6.39

1 4 ~31."

This is a geometrical corresuondence but not numerical.

Be it is numerically wrong when we write [i]: [CJIiflas

below.

I

i 1 i1

6.40

if -1 ‘

So it seems wrong to use the C Z 0 method for this

case, because we use numerically wrong equation [1] = [CJ[1q .

But it was already shown in Chapter IV that the [CLIZIIE]

method is valid even for this case. Let's try here once more.

2] [C] = z“; z z 1 = 2...

L "" b” ‘ 6.41
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[2'] = [chm m = [1 .1] _ z.“ = [hi 2“] 6.1.2

L.zct.

[e'] = [OLE-#1 = [l -1] 9J3 [9..." cc] 6.43

92‘ 
So we get as the new circuit equation,

e - 9., = (Zn-0’ Z“) 11’ 6.11;.
O.

This is evidently correct for the circuit of figure 6.5

(b)-

Next let's try the case where [A] = [C] and [B] is

a unit matrix. From 6.41 we get the result at once. That is,

eUL 3 thvgfij

6.45

ea ~Lm

Expanded we zet,

e 8 QM‘11’

I 6.46

e = -@m 1‘

This is evidently incorrect for the circuit of figure 6.5

(b).

Next let's try the case where [B] = [CLrand [A] is

a unit matrix.

[Olin] = [1 '1] Zao-+ zen, 2'56 3 [2a - Zea]

“ 6.47

z z + 2
H. H, cc
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From 6.43 and 6.47 we get,

_ L

(e... - g- [2.0. - or] W

That is,

at - eb = an 1L - ZULic 6.49

This result is not wrong, but it is not adequate to solve.

the circuit of figure 6.5 (b), because it contained two

currents for the one-mesh circuit.

Let's examine the case where a 3-meshes circuit is

transformed into a 2~mczice'circuit as shown in figure 6.6.

  

I

 

 

X

L am. is ca is da 85 “. 2%, 3; z“; 2“

at a; Eh. 2‘

. f m
(a) Fig, 6. l,

The circuit equation for figure 6.6 (a) is

“a: 3 [2“) z» 7‘5». 2% _ Vivi

ea 21* 255+ a 2H, 1" 6.53

_o _L 1 2“, 2,, 256+ 2,, 3*       
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In figure 6.6 (b) branch of Z is broten and new currents_ be

are assumed as shown in the figure. Then geoxctrical

corresponcences between old and new currents are given by

’fi='1 0'1 1"

I

1° 0 1 1‘ 6.51

1“ E1 .1
b -    

Equation (.51 woes not correspond numerically. From 6.51

we get a singular transformation matrix EC] .

[c]='1 07

  

   

o 1 6.52

_-1 —1_

Then

2] [C]_== '2”; z“, z“, z.,., l" 1 o“

z... 2.5+ z“ 7..., o 1

_z... z,,,, . 255+ 24$ _.1 -1_

2 F2“, 0 l

o z“ 6.53

.2“ .zu_  
[z']=[01t[z] [c] = z“; 2...; 2M

2M zc‘ + 2“
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[e'] = cue] = 1 o -1 ”9;: 1.,

- 6.55

O l -1 8L ea

—O-‘

80 we get as [e'] = [Z'] [1']

ea. z“_+ g, z“ 1“-

I I 6056

8c 244. ch + Z“ it

This result is evidently correct for the circuit of figure

6.6 (b).

Next let us examine the case where CK] = [C] and

[B] is a unit matrix. From 6.53 we at once as the new

circuit eduatiou,

"eja ' z“, 0T1“

e. 0 1a 1" 6.5

L9.. L‘ZEL “zed

This result is eviiently incorrect for the circuit of

    

figure 6.6 (b).

Let us examine the case where [B] = [Ck and [A] is

a unit matrix.
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[0M2]: 1 o .1 _zu+z» 2.. 2.. ‘1

o 1 .1 2., zm+zbb z“,

 Us 2., z“, + 24

= z“ o .2413

6.58

O Zu_ —Z&L

_ 
From 6.55 and 6.58 we get as the new circuit equation,

  

eL = Zap O - Did]

a. o z“ .2“ r’ 6.59

1" ‘

That is,

a z 1" z 10”

e” ”’ ,- ”L 6.60

qL=3 Z“ i‘ - Zagr“

This result is not wrong, but is not adequate to solve

the circuit of figure 6.6 (b), because it contains more

numbers of reference currents than numbers of independent

meshes.

From two examples above we lay conclude for the

case of singular transformation matrix DC] as following.

(i) The method of '[e'] 8 [01b] , [i] = [C] [1']

and [z']=[c1.[Z] [c] . is valid.
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(ii) The method of '[e']=[e'l, [i]=[C] [i'} and

EZf] = [Z][C]' is wrong.

(iii) The method of '[e'] 2 [C1,[e] , [1'] =[i] and

[2f]: [CL[Z] ' is not wrong, but is not adequate

for solving the problems, because it contains

more currents than numbers of independent meshes.

It seems rather stranse to reach the right results

of (i) and. (iii), even when we use the numerically wrong

relation [1] = [C] [i'] . Let us consider the reason. for it.

In the method (iii) we use [o']=[C]t[e], but do not use

[i] = [C] [1'] . And it is easily understood from the two

examples above that [e'1=[C]¢[e] is numerically correct,

while [i]: [C] [i'l is numerically wrong. In figure 6.5

(b) the new mesh emf' e' is

e' a eL- eL 6.61

, while

[Clerc] =8 [1 ~12] e = [9... — ea] 6.62

a .

From 6.61 and 6.62 we see that [e'] = [Ck [e] is numerically

correct. finother thing, which should be emphasized, is the

fact that all emf's, which appear in matrix equations, are
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mesh—emf's. Hesh-emf's mean that they are emf's which

act around closed meshes. Then we choose new emf's for

transformed circuits, we must choose mssh—emf's. The

transformation [e']=[C]t[e] gives automatically mesh-emf's,

as new emf‘s [e’] , because [B] = [Ch is a transformation

*

matrix between old and new mesh—currents . And even when

 

‘* Here it should be stated that branch—currents can

be considered as mesh-currents, so long as these branch-

(8)

currents are independent.

 

[11 = [C] [i'] is correspondent only geometrically, Le') =[Clt [e]

is correspondent geometrically and numerically. This is‘

the reason why method (iii) gives correct results, while

method (ii) gives wrong results.

When we applied method (ii) to figure 6.5, we got

6.45, which is wrong. In 6.45 emf's are not mesh-emf's,

but branch-emf's or open emf's. So it is impossible for

them to give correct circuit equations, which are actually

the Second Kirchhoff's law.



Pre-multiplication of [231:0] by [Clt is equivalent

to transforming of open emf's into mesh-emfs, and it sets

up the Second Kirchhoff's Law correctly. So method (1)

gives correct results.

It is not necessary that [A] = [C] and [B];[Clt

are satisfied, to reach correct results. For instance,

in method (iii) [Blsfclt and [A] is a unit matrix. fie can

use any transfbrmation matrices [A] and [B] , so long as

[i] = [A][iT] gives geometrical correspondences between

old and new independent currents and [eTl=[B][e] gives

geometrical and numerical correspondences between new and

old independent mesh-emf's. Let us apply the case where

[B] 75 ”[A]{ to figure 6.6. We assume that new currents are

the same as shown in figure 6.6 (b), but new emf's are

those acting meshes of 2...," Z“ and Z“: d, . Then

[9'] =[B] [e] is

ev-ecz 1 -1 0 To:

em - O

l O -_ eg 6.63

l—no-J  

[Zlfl] = [Z][C] is given by 6.53. Then



[z']=[31[21m= 1 -1 o z”, 07'

1 o .1 o zcc

 

3 zeal. .ZCL

6 0 6'4

ZW+ 24¢ de

From 6.63 and 6.64 we get as the new circuit equation,

I

3., " e. 3 Zea. .2“; 1L

, 6. 65

ea, Zola—‘- zdd. Zr“. 1‘.

It is easily seen from figure 6.6 (b) that 6.65 is correct.

Here it shall be mentioned that we must be carerl in setting

up [e'] = [B][e] as shown in 6.63. That is, when there is

no emf in some branches, some simbol (here we use 0) must

be substituted to get the right [3),'Ve

Now we can conclude about transformations by singu—

lar matrices es felling.

(i) The method of n [e'] = [c149] ,[i] = [01(1']

and [2']: [C]J2][Dl “ can be used correctly.

(ii) The method of ' [cf] = [Blfe] , [i] = [A][ii]

and [2C] 2 [B][Z][A] " can be used correctly, so

lonfi as all emf's and currents assumed are indecen-
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*

dent mesh—emf‘s and infependont mesh-currents.

(iii) The method of " [1] = [C][1€l and [2f] = [Z][C]”

is not correct.

(1v) In all cases powers :r: not invariant.

 

* Breech-currents can he considerei as mosh—cur—

(8)

rents, so long as these branch—currents are indenenflent.

 



Chapter VII Transformations of Invariant Input-

Impedance.

So far "Invariance of Power" has meant that not

only input-power at terminals but aISo all powers consumed

or stored in all imoedances are invariant. But at some

practically very important aoplications of circuit trans-

formations only input-nower at terminals and consequently

input-impedance are kept invariant. Transformations between

equivalent circuits are the case. So far transformation

matrices contain only integers as their elements, mostlyizl

or 0. But transformation matrices of invariant input—impe-

dance can have non-integer elements as shown later.

Here it is not attempted to discuss whole asnects

of transformations of invariant input-impedance, but one

interesting example is to be explained; that is a new method

of reduction of networks to their Foster's Forms by means of

matrices.

As Guillemin explained very nicely in his book, any

dissipationless network can be reduced to four equivalent

canonic forms, which have least number of elements. Two of
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them are Foster's forms and other two are Cauer's forms.

Reductions to Cauer's forms are easier than to Foster's

forms, because amdular determinant (or its minor) must

be solved, to reduce to Foster's forms, but it is not

necessary for Cauer's forms.

Here let us try other approach to Foster's forms.

69%:fl
Ts” T

¢ -“n

Fia.‘1 1

 

 

 

Figre 7.1 shows one of Foster's forms. Independent

currents are aSSumed as shown in the figure. Then the

circuit equation is,

"'
' '1

«fl: L.A+S——J o .o W 1"

e’ o LzA-‘I'LSXz' - -. - o 11’

7.1

I 5.. u,

Led L o o - - IAN-71E      
.4. ..L..

, where k‘dt’ A-j alt.
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This equation has a diagonal or normal forms. So the

inductance matrix [L] is,

  

[L]="L, o o-H-o

0 L1 0.00.0

7.2
O O L300000

L-—O O OOOOOL’L

The susceptance matrix [S] is,

[51:75. 0 o-°--o1

o s, o----o

7.3
o o 83 O O O O o

  o o 0°°°°s
I.— "z...

7.2 and 7.3 have diagonal or normal forms.

VJ 171_

' I I '

I I ''I

 

Fka.‘7.2,

Figure 7.2 shows the other form of Foster's equivalent

circuits. Independent junction voltages are assumed.as
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shown in the figure. Then the circuit equation is,

  

rI": rogue-r} o - ~ - - o T W,"

I 0 qu+§é . . - 0 V; 7.4

_I: _ o o ' ° ' QA-i'ffi VJJ    
This circuit equation has diagonal or normal admittance

matrix. Then the capacitance matrix [C] is,

  

[c]=’c, o o-°-ol

0 C 0 ° ° ' O

" 7.5

0 O C;"° ° 0

o o 0... on

The reciprocal inductance matrix fl_] is,

[HAVE 0 0- - 'ol

0 r2 0. o .0

7.6

O 0 ,30000

_0 o 0' - Tn,  
7.5 and 7.6 have diagonal or normal ferms, too.
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?hen a dissinetionless network is aiven, we Can

easily write down its matrices of [L] and [S] by means

of mesh method, and its matrices of [C] and U") by means

of node method. And if we can diagonelize these matrices

in such a way as transformed circuit equations have the

forms of 7.1 or 7.4, then we can write down its Foster's

equivalent circuit as shown above.

Let us assume that a given two-terminal network

has following [L] and [S] .

[L] 2 FL” er' . . . L’J'

Luv in ' ° ° Lzu

  

7.7

LL“. I'M; o o 0 LI":

[8) = ’5” sn- - - - s":

82' S21. 0 o 0 82m 7.8

  H1 tum—j

Then the next step is to find such a transformation

matrix [C] as

[CLIL] [C] gives a diagonal form.

flfltEflID] gives a diagonal form.



49

Now we can see that the problem is simultaneous reduc-

tion of two matrices [L] and [S] to their diesenal forms.

Guillemin treats very nicely simultaneous diaconali7a-

tion of two matrices in his book.(10) But we can not

apply to this case directly what is exnlained in his ‘ ck.

Let us explain necessary procedures.

Using [L] and [S] of 7.7 and 7.8,

\XU-l + [s] I = o 7.9

has generally n roots of7\.

7.9 can be exoanded as below.

AL” + S" AL,1+ 8,1. 0 0 0 KLmi- 8,,L = O

KL1,+ St, AL,,_+ S2,: ' ° ' ALm-O- Sm: 7.10

5

O O I O O O O O O C O O O O O O

KLM + SM KL)..." 81:; . . . Aland" Sun   
And 7.10 is the determinant of n set of homogeneous

equations below.

(RLH + §)x'+ (Mu-Ir 8,1)11‘0- . . + (ALmi- SJ)“: 0

(KI.fl + g')x,+ (AL,,+ 5,933+ . . + 0ng 5.,ng 0 7 11

(M... + ax.“ N.» sax» - . +01...» sex: 0
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7.11 has solutions when 7.? and 7.10 are satisfied.

So 7.11 has n sets of solutions for n roots ofik., which

satisfy 7.9 and 7.10. But these n sets of solutions

for 7.11 are not unique, but only proportionalities

among each components 1,, x1, 33.... are determined.

If cofactors of the determinant 7.10 for the sth root

of K's are denoted by gig , then one set of solution is

given by s

Keg

£5: ,_

4 fl.) + (Huh - - -+ (no?

(for k=l,2, n)

7.12 

, where the index i is arbitrary but must, of course,

be the same for all sets of.l's.

Then

55:4; = a!“ (for k = l, 2, n) 7.13

satisfy 7.11, where 95 is a arbitrary constant. 7.11

can be expressed by using matrix as below.

(MI-l +[S] )-[x]= 0 7.14

, where [x] =‘i,”h

x1

J;E.  
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Substituting 7.13 into 7.14, we get

Amfips g]: —[.81[(p5125)] 7.15

There are n equations 0? this form for nlis. And these

can be combined into one matrix ecuation by defining

a new matrix, which is called a modal matrix. The modal

matrix for this case is,

(«$1, 2,; - - mi

El 211. . . . [In

7.16

  1;, 2h} . . . ILnJ

L

,where the first column elements are given by 7.12 for

s = 1. Then n equations of the form of 7.15 can be

combined into

[L1 [men/d = - [81(26le 7.17

, where [A] is the diagonal matrix with n latent roots

of}\ls diagonal elements, and [p] is the diagonal matrix

with arbitrary constnat g, g,....ntas diagonal elements.

7.17 is pre—multiplied on both sides by transpose of

[£1th . then

[DELHI-l [£1 [pH/U: _[flt[z1t[5][£][p] 7,13

In 7.18 [flt[x]t[L][£][p] and [p],[£]t[S][:f/] [p] are symmetri-

cal, because [L].and [S] are symmetrical. But the left-
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hand side of 7.18 is not symmetrical due to post-mul-

tiplication by DA], which is a diagonal matrix, if

[fikECLIL][Kfl[fi] is not a diagonal matrix. So only one

possibility is that both [ply]. [1.105103] and

[pltmltlbj [IHp] must be diagonal matrix(li) in order for

7.18 to be correct. That is

EPMJCML] [1:] [p] = [In] 7.19

[pltfiltEE-Hflm = [Dz] 7,20

, where [DJ and [D2] are diagonal matrices.

From 7.19 and 7.20 we know that

[c] = [:6] [p] 7.21

is the matrix which diagonalizes both [L1 and [S] simul-

aneously. But [C] is not unique, because it contains

the diagonal matrix [Q] , which has arbitrary diagonal

elements.

So the next problem is to choose from 7.21 the

proper matrix [I] , which keeps the input—impedance

invariable. This proper diagonalizing matrix be desig-

nated by [F]. Then the relation between old current [1]

and new current [1'] is given by

[11 = [F1 [1'] 7.22
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It is easily seen from figure 7.1 that the following

relation must exist between old and new currents for

invariance of inout-imoedcnce. That is

i =i"+1”+- . - +1"! 7.23

,where i is the input-current of the original network,

which is counted as the first mesh—current.

From 7.22 and 7.23 we can see that [F] must have the

form as below.

[F]: "1 1.... 1'7

z” sh: . . . 13‘

7.24

  f“ f“. . . . 'fimJ

_

For [C] given by 7.21 to be identical to [F] given by

7.24, [p] must be the diagonal matrix as below.

[p1="'1/z.,o-----o ‘

O 1/4212. o o o o O

ooooooooo 7.25

  



[F] =[x] [P]

= r12., 2,; ' - 2,:

[1, 21‘. o 0 an

 

 

P

_

 LE,” (12,. o o ’[nu-J

‘&%Zr'éyzz° ° 66%62

EH/III [flu '

1 1. . . . 1 T

MIL-d

 

 

h

r-llg

.‘ II

o 1/,g,z...o

0.00-01/fimJ

From 7.12 we get the following relation.

As/«Exs 3

5

t/ x-(fl—

0 . . . 0

54

 

7.26

7.27

s

, where Kiais cofactor of the determinant 7.10 for the

8th root of

[F] =

I I 2. z n. n-

K-u/ Kit KQ/ Kc; . ' xiz/ Kt/

nK's. So [F] can be expressed as below.

1 l

 {1&1 ii, Ew/ ii,

1

it"! i},

1'

 db

7.28

7.26 or 7.28 gives the transformation matrix [F] , which

reduces [L] and [B] of a given network to their diagonal

forms and keeos the inputcimoedemce invariant.
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Here it should be explained that the new voltage

matrix obtained after the transformation by [F] has the

form of the left—hand side of 7.1. The given network

is a two-terminal passive network, so its voltage matrix

has the form as below.

[e]t= [e o o - - - 0] 7.2.9

Then the new voltage [e'] is

[e'] -.-. [rue]: F. l

O
u

7.30

  M
So we can see that the transformed circuit equation

has the form of 7.1,whioh is the circuit equation of

one of Foster's equivalent circuits. Now we can say

that we have reduced the given network to one of its

Foster's equivalent circuits. .28 is the better formula

of the transformation matrix than 7.26, because calcu-

lation of 7.12 is not necessary for 7.28.

Let us derive here some very useful relations.

Putting 7.19 and 7.20 into 7.18, we get

[DJ [A] = - [Dz] 7.31
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Three matrices containtd in 7.71 are diaeonal. So we

get from 7.31,

1.

J
J

I -,2 .-. .

where c,sano assere diagonal elements 0? [JJ_nnf [Li]

.I sth latent root of ecnation 7.10.(
‘
0

.
3

L
L

u
?

I
J
.

.31 or 7.32: we can derive [73,] or [£32] from each.

It is easily seen from 7.32 that A‘must be neevtive

or zero, because dgsand d; must be both positivgt for

the equivalent network to be physically realizable.

That Atare negative or zero was anticipated from the

(12‘)

fact that [L] and [S] are both positive definite.

We started from equation 7.9, where A.is atta-

ched to [L] . If [L] is singular, some of K’s are

infinity. But.Ns must be finite. In this case A~must

be attached to [5] instead of [L] ; that is

“Ll +A[s]} a o 7.73

At least either of [L] or [S] is non-singular, because

these are matrices for solvine electric networks.

According to whic. of [L] or [S] is non-singular, we

choose 7.9 or 7.93. Otherwise the procedures remain

*

Including zero.
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the same as shove.

All procedures 0? reducing a given network to

its Foster's equivalent form shown in figure 7.2 are

the same as exuleined so far in this chapter. But in

this case the original matrix equation of a riven net-

work must be written by the node method, using capaci-

tances and reciprocal inductances. And capacitance

matrix [C] and reciprocal inductance matrix [Tflare

diefionelized simultaneously. That is 7.9 and 7.33 is

substituted by

me] + [r1‘ = 0 or Ho] +Mr1|= o 7.31.

, according to which 0? [C] or Uilis non-singular.

n3 tnc Same. 7.24 remains t3?

*
1
.

The form oi 7.12 rams

same, because in this case 7.22 3 replaced by

,I r I

V ==V,+V2+~--+V,,
7.35

h 4‘

So we can use the same 7.;6 or 7..8 ,or this case, using

n roots of A.for 7.34.

 

 

Example.

Wt LL21 SLr-l

Lb Li Lb=2 sb=2

fiL 55 Ln = 3

o—e -I- LL 3 4



Let us reduce the network of figure 7.3 into the form

cf resonant components in parallel.

[Z] = L&_+ Ls --L‘,

[s] ’sM

 
|>\[L] + [3| =

 

Solving 7.38 we get

}\= 0, A2: ..

Cofoctors of 7.38 for

K" =£

2,

K s 1.32

1

KIZ

.2

o“ : _ 3 -2

Lb + LC 0 -2 5

0 LJ L_o o

0']: ' 1 -1 0—1

+ s, '5. -1 3 -2

ss_ _0 -2 2

3 + 1 -2 — 1 o

-2 - 1 5 + 3 -2

o -3: 4 +

1.068, A3: -0341

  

  

these his are

8
.
)

3

ii, = -3175 Km: 0.232

= 2

’3 - -Z’O272

is: 0.636

Substituting these values into 7.28, we get

[1’]: 1

1

L1 

l

-1

1

-0.0637

-0020  ‘
This is the transformation matrix.

 

 

07'

O

 

7.36

7.38

7.39

7.40

7.41
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Then

[u] = [runs] = ’m 0 0 l

0 26.21 0 7.42

_0 0 3.432]

Lni

[5 '1 = [Flt] B‘] = "o o o 7

0 .9.3 0 7.43

_P O 1.149d 
From 7.42 and 7.43 we can write at

 
once the Foster's

equivalent form es shown in figure

L' =

a: s; z

c ‘ T _T L.
J

 

I
I

 

Fig.7.“-

7.4.

7.0 s; = 0

26.21 s; = 23.0

3.435 s; = 1.169

Using equations 7.31 or 7.32, 7.43 can be derived from

7.39 and 7.42 as below.

  

[s'] a - "9.0 0 0 _i

0 26.21 0

L0 0 3.435]

= "o 0 o "

o 28.0 o

L o 0 1 .161  

This is the same as 7.43.

T—o

 

O

O  

O

O

-O.341
AL

7.44



(1)

(3)

(A)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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