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Chanter 1. Introduction
(1) (2

Kron puhlished many papers znd books about
metrix treetments of e¢lectric networks. The core of
kis works is congruent treceformetions, which are ex-

(2)
pleined in methemstics books  end the bosks by Guil-

(£) (O
lemin e Congruent trancsformetions keep gquairstiz
forms, such &s electiric power in tias case of electrilc
networks, invariant, when transformetion matrix is non-
singular.

In this thesis the suthor deals with both invariant
and non-invariant transformations, and defines necessary
end sufficient conditions for each case znd the wvalid
range of anplications of each of them. Althourh almost
all examples are by mesh methods, the same discussions
hold for node me'hods.

In Chapter VII trensformations of invariant inpute
impedance ere discussed. These are actuaslly reduction
of electric networks to Foster's equivalent forms,

This process by usunl methods(S)is very laborious and

tedious. By ucing the matrix treetments, which sre ex-



plained in Chapter VII, this process is made orderly
and less tedious.

This pepaser 18 written by the author aa the thecsis
for Master's Degree. Professor J. A. Strelzoff taucht
the author matrix treatments of electric networks and
made 1t possible for the author to work on these subjects.

To Professor J. A. Strelzoff the author presents

his sincere thankse.



Chapter II. Lerivation of the Generalized Transforma-
tion Equation
The equation of a electric retwork can be written

in the matrix form of

el = (21 (1) 2.1
Now we change current [i] into new current [1'] by the
transformetion equation

[1] = [4][1] 2.2
Substituting 2.2 into 2.1, we cet

(e1 = [Z)[A1[11] £.3
Multislying Z.3 by a matrix [B], we get

[£1 le] = [B] [2] (A1 [11] 2.4
In the procéss o! deriving equstion 2.4 we chenge voltege
[e] iato new voltage [91 by the transformation equestion

[e] = (B8] [e) 2.5
From 2.4 and <.5 we get |

o) = [5)(z) (o] (2 . 2.6
Let new impedance matrix for new voltage [éq and new cur-
rent [1q be written [zﬂ » then

e = [z [1] 2.7
From 2.6 and 2.7 we get

[z = (B){z] (a] 2.8



o we can conclude &8 following,
When current [i] snd voltsge [e]l are transformed into
new current [1'] and new voltage [e'] by the transfor-
metion equaticns .2 and 2.5 the new impedance metrix
[Zq for the new current znd the new voltage is given
by Z.8.

This 1s the generalized transformation equation,
whizh conteined conernent trensformation [€},[2] [C] ==

one speciel cese.



Chapter III Necessary &nd Sufficient Conditions
for Invariance of Pawer
To reach transformetion egquations, Kron sterted
from the gssumntion that power is invariant, thet is,
powers at each Impedance breanch of new gystem zre equal
res»ectively to those of o0ld system. And he got the follow-
ing results.
¥hen current [f] is transformed into new current
[ii] by the trznsformation equation
(1] = [c][s1] 3.1

and voltage [e] 1s transformed by the equetion
*

[e'] = [cle] 3,2

, then lmpelance [Z] 1e transfcrmed by the transformation

ecuation

[z1] = (c}a)[c] 3.3

#* From his whole book it s-ems that Kron thinks thrt
3.1, 2.2 sn1d 3.2 are the nacessary end sufficient condi-
tione for invarisnce of power. But it ie not correct as

explainel later.

When we compare these equations with 2.2, 2.7 and

2.8, we see that

(=1  []1=[c] 3.4






From what Kron derived, we cun sce thst the ecumtions
3.4 sre the necesszry conditions for invarience of power,
But it is not yet clecr whether thece &re the sufficient
concitions, too. Let ue excnmine it,
Power for the old cystem 1s oiven by
P=[e], {1] 3.5
knd power for the new syetcom Ie siven by
P = [e']t 11 3.6
From 3.1 ve get
[11] =[] (1] 3.7
From 2.2 we ret
[e']t = ([C]t [e])t = [e]t[b] 2.8
By subctituting 3.7 end 3.8 into 2.6 we cet
Pt = (6], 01 [c1" (1] =[e}1]= P 3.9
o power 1s inverient for this trzasforration. This tyme
of transformation i¢ culled congruent transformation.
It secems true that 3.4 is the sufficient condition for
invarience of power, tco. Put this is not gufficient,
In the process abcve we used[?}ﬂ in the eoustion 3.7,
£o[C] muct be non-ginsuler.
Then we cen conclufe that the condition 3.4 &ni
non-singulerity of the trsnsformetion metrix [b] ere the

neceesary end sufficient conditions for inverience of power,



Here there must be come comments about the statement
by Pipe7) thet the transformation metrix [C]( Pive vsee[R] )
ncecd not be non-sinsuler., But he insists that only the
ghane of the enercy ecuation (not the nmumericsl velue itcelf)
is vrecgerved under tie trenefeormation by 2.4 In order thet
not only the shenz of the encrey ecuation but also the

rumericul value ol tis erersy wre preserved, non-singulerity

of the trensformation metrix [C] kist be acded.



Chepter IV  Two Kinds of Transformation Matrices C .

To set uo eanonteal ecuations of electric networks,
Kron ctarted from their orimitive networks. For Exzmple,

Fig. 4.1 a) ic the pricitive network for Fig. 4.1 b) and c).

m

Fg. 4.1

(©
These are ail mesh. . networks, beczuse they heve as

many meches as number of impedcnces. In these networks all
emf!s in series with each impedances are short-circuited.

So each current in eech imnedance is not changed by changing
interconnections as a), b) and e¢). In this cace power is
invariant for thege trasfoemations, Tet's find the trencs-
formaetion metrix [C] bvetween Fig. &) end ¢) by ascumine

reference currents indicated in the fisures.



In imoedarce Z, 1i%= - %o §¢o i¢'

" Zw 1*=-1
n Zee 1= %4 1.1 4.1
n Zaa ¥=aif
" iy t=-1*

From these equations we get the trnasformation matrix C

g v e 4

fl
€l= a1 0 -1 -1 0]

blo 0 <1 0 o
Le2

c|lo0 -1 0o 1 1

ale o 0 o -1

£lo 0o 0 = 0

m

The matrix 4.2 im non-singfulsr.
Fouatibn 4.1 and metrix 4.2 eive the corresncndences
And their corres-

* ,
pondences &re not only ceometrical or positionzl but also

between o0ld currents £¢nd new currents,

numerigal.

* Geometrical or positionsl correspondence mesns
that corresponding currents flows In the came impedar.ce of
the network. Nemericasl correspondence means that values

of these corresponding currents are equal numerically.

10



In snm> cuses correcnondence ic only ~cometricil, tutb nod

numerices1l, Luch erecer rro ovnluinci la-er,

A1l trong Torretion motriee: shold be peoucbtricelly

corrvesnoninnt, Lt Prev nee’ not b numericsally correshon-

Gente

et's eyemine eno'her gimale exemple,

Lt~

‘.T Bga 1 P IS Zice I_“I’T Rao. Zeb ZCCTLcI

(5

() (&

Firme Le2 ©) anl b) cre the rsrme natwork, vhich wzs two indie-
pendent meraee. In &) 1* :ni 1® are wicumed eg indenendent,
while in b) 1%:n? 1¢ cre mesumed lndedendent, Only differerce
in the dilferense o7 referenece currents, Correchon:lences of
tl.ece currente ere,

In impcoicnce Zo, 1% = 1%

1
L
P\
|
[V
0o

In imoedunce 2y, 1Y

11
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So the transformation matrix is

a ¢’
[cl= al 1 o
4.3
bl -1l =1
This is a non-singuler metrix. And the correspondence by
[1] = [c][1] hed
is not only geometrical but also numerical.

Ve have just examined two casses, where transformetion
matrices sre non-singular. It may seem too early to conclude
that all non-eingular transformation matrices are correspen-
dent geometrically znd numerically. But this is true. ¥e get
non-gingular transformation metrices, only when transformations
are not accomnenied by any change of interconnections of impe-
dances. For instance. the transformstion o" Fig. 2.2 does
not have any chenge of interconnections of imoelences. It has
only change of reference currents. So all currents at all
impedamce brenches ere inveriant 2t this fransformaticn.
Accordingly the transformation matrix for this csse ie corres-
pondent geometrically &ni numericslly.

Transformetion matrices for tensformetions between
different independent reference variables of the same circuit
are pgenerelly non-cingular ;nd correcnonding geometrically

and numerically,



It seems likely that the transformation of Fig. L.l
is eccompanied by changes of interconnrction of imnecences.
But all impedances remain short-circuited even after the
transformaetion, and the mumber of meshes remeins the sume.
All currents of imneds=nce branches remein the saﬁe. So thet
the transformation metrix[C]Jof 4.2 ls non-gingular and
corresponcent geometrically #nd numerically.

Here we can conclude that &ll transformetion matrices
for transformations, where the number of meches remains the
same, are non-singuler end correspondent geometrically end

numerically, so long as ell reference variables are indepen-

dent.
Let's exemine the trensformation of Fig. 4.3.
— ¥
| X
| €z e ] Bk Zw  Eo e
€ ey € ée» ée» €.
(2) (b

Ffa. 4 3

(a) 1s tresformed into (b) by opening one impedence branch Z,, .
bb

Peference currents sre sssumed as indicated in the figure.

13



Then the corresponcence between old snd new currents sre

1% - i',

] 4'5
1 - {
So the transformation matrix is
1= o3
Cl= =a 1
L6
c |=1

[c]lis singuler,

It is erzsily understood that power is not invariant
in this transformaticn. So it seems likely that céngruent
trasnformationﬂihﬂﬂ &ﬂ csn not be applied in this cece, because
Kron proved congruent transformations by essuming thet power
is invariant in trg?sfcrmations. Let's try to apply it to this
case, )

For Fig. 4.3 (a)

6= 0,= (Zaat 2,,)1"+ 2, 1%

4.7
e - ebz Z“ i* + (Z,,.,+ Zw)f
This is written in matrix form as below,. !
1=[z] [1]
swhere Glate, - o1 [2] = [Zo* Zuy  Zu
e -e Zu, 2554- Z,,
L.8

4 = [~
N

:

According to the congruent transformation, new matrices for
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the new network of Fiz. 4.3 (b) are riven &s following.
k=l )[za+z 2z =[2. - 2]
. ZHr+ Z,.

21=0dk (2 [) = [2a - ;}[1 = [Zue + 2]
1] | 4.9

[¢'] = [C]t [e] = [l -l] e. - e [e__ - e,J
€. - €,

€o fer the new nelwovk the ecvuation or network ('] =[2] (1] is

e, - e, = (Zoo + 2.)1" 4.10
This is velii es casily s~en from Fisz. 2.3 (b). Sol(Ck(z] [c]
method can be applied even for the transformations, where
power is not invariant. And this fact is already provea
by equation 2.8, becsuse we did not aesume invarience of
power to derive equation <.8. But some limitations ere
necessary for applying «.8 generally,as explained later.

Here we would like to call attention to the fact
that equation 4.5 does not hold numerically, but it does
hold only reometricelly. So "-—" ig used instead of "= ".there,
Transformation mstrix 4.6 indicates only cecmetricsl corres-
pondence between old zni new currents. &o it 1s not correct
to use(d] =[C] ('] to evalunte one currents sroup from

valueg of the otier currents croup, which are glresdy solved.



It is intregniine thet conorn-nt trencninetis
can e ¢rplial even to cucers where transformaiicn m lrix
is eorresnonlent conly -esmetrlcally but not numeoriccally.

Trengforretione, vhizh chiense mumber ~f {mnci-nce
broachie, ere eccomenied hy trensf rration mitriceg, wiich
ero eln—ulere In ‘hege ceecs, nower Is not Invariart o-d
trensfornetion mitrines ere ceorrec-cnlent ~nly ~enuctricclly,
but no' numericu.ily. Ae thowed chove, congrucnt t‘rorgermrti-n
con Lo ¢-onlins ta tlig ctves Put mumter of Amneorren
branatrs £ 10 b eclin=a dinte lers nunher, Ctherwice this
retiiod ernn bt o be g 1lien,

licre we con o eoncln e gg 1:1lowin o

1. Trevmsforwition nstrix for t‘rongfornetiong, wht-oh
are not uwecemonnied hy ehirn-e o f numbier of imoederce

branc.es, ere non-ginmuler,

. M
N ] L

on-cin nler transformaticon mitrices &re -~crreos-
oonient cecootrically eno numericslly.
2, Trapsirrmaiion metrices for transformetiong, vwhii-h

ere scceamenie ty ctwnre ol nunher of imheiivice

trencies ( into s eller nurter), are sinmler.

16



he Singuler trensformetlcn matrices ere correenon-
dent only geormetricelly but not numericelly.
In tiils cese power is not inverient.

5. But eti1l [Ck[Z] [€] methcd cen be ueed for singn-
lar trensiormetion metrices.

€. PBut we cen not evaluste [I1 from(if] , ueing

1= 101 .

17



Chapter V. Invarient Trensformations.
/6 exnluinedi in Chenter 1IT, the necesenry and
sufficient coniitisne for invuriance of power gre

(4] = [c] (B] = [cLk 5.1
tnl [C] must be non-singul:r.

In this coce formules of trensformstion tetween
oli circuit ecustion

]l = (2111 £.2
and new circuit eguetion

=1 = [z [11 €.3
are plven es followins.

11 = [c1[27 £l

1= [Chie] 5.5

(2']= [Ck(z]k] 5.6
Becsuse [C] is non-siuruler,

(] = [T 5.7
¥e cen eveluate [1] from (17, using 5.4, becauce 5.4 is
corresponient numericelly.

Most of examoles in Kron's book(l)are invariant
transformstions, althouyh sowe non-invariint treneforma-
tione ere mixed, without exolanastisns. So it is not neces-

sary to present here more such exsmnles.

18



Chapter VI  Non-inveriant Transformetions

Then at leact cne of the nece. sery con?itione for
inverient tr-ngforzations is not satiefled, the transfor-
mation is non-invarisnt. Power ig not kept inverient at
this transformetion. <o the gufficisnt ccadition for non-
invarient trens ormaticn is ;

1. (8] = [c] en: [B] = [C)y are ncot ssrisfiel.
or Z. Trunsfarmetion metr-ix [C] 1s ela-ular.

Accoriin- to wiich nacessery coniition for inveriance
cf power 18 no* satisglied, there sre gever:1l kinis of non-

invarient transf~rmz'ions.
(1) Cases whore [A1 = [C] &n? [B] = [Cliare not satisfied.

A3 derived In Chapter II, when old ani new variahles
eras related by
(11 = [21(17 €.1
[ = [Bl[e] f.2
, the new imycience matrix [Z'] is given by
[z2]= [E] [z]1 (A €.2
So lon~ ss trensiorration eguations (.1 eni ¢,2 are nuceri-

celly corresnonie-nt, [A] ani[5] ean bta arvitrary. Numericsl

19
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coresponcences of €.l and €.2 mean thet matrices[A)and (B)

are non-ginsular, as exjlained in Chspter IV.

Let's show seversl examples of this case.

T z.‘- T Z|,|, z‘e¢ t ZA-A_ Des T Zee
.. 1 e/ i
() (®b)
Fg. 6.1

The network of

equation.

, where

(1]

2]

Fir. €.1 (a) gives the following mstrix

(21 (1)

f_eo. - &
[ ev - e

= Fi.'

6.5
ib

Tus + Ty Do

Zee 2o+ 2o,

Now if independent variables [i] are changed into [11),

which are indicated in fie., 6.1 (b), then the transformation

matrix [C] is



i



0

Here we choos2

(4]

s Where (0] 15 &

Then

(21

1]

1]

(o2
I |

)

|

[\

o %
o

e
6.6

(el &w [B] = (v] €.7

unit matrix.

(5 ) [a) = [7 [c)
7.+ %, Z. 1 o0
7. Z +2 |:.1 -1

6.8

| -7, ~(Z+ 2.)

[e'] = [.B] (el = [e] 6.9
So finally we get as [ef= [29[1Y]

8, = & |= B Lo = Zce *
e = 6. l-z“ -(be+ Z“) id

From 6.10 we get

/
LY

i=

6.10

e.,(Zu.'l' zu.) -0, - & Z,,

za.azu, + zbb Zec. + zu zu,

=

-6, 2, - 22, + e (Z,+ Z.,)

Z!uvzbb + z\'b z«. + zu_ ZM

2



Now let's use the usual € Z C method. Then

(] 2] k] 1 -1 z, -Z.
0 -1 |-z, -(z,+2.)

= [z, +2, 2,

| 2y 2y,t+ 12

(Cl[e] = M a e, - €

e-e
-e, + e,

S0 finally we pet as(e'] = [2') [1']

!

0 -1 e, — €

!
e. —e, = |Z,*2, Z, b bt
—8b+ e, ZH- Zw‘f &‘_ b ol
From 6.12 we get
' eb( zhb+ zcn.) - ebzcr_+ ec_zbb
i* =
2l Z,,2..4% 2..2,,
6.13

‘ea.zbb- ebzn.g.+ oc_( zaq_+ zbb)

I4
1 =

Zﬁd.zhb+ be zce. + ZC& znA_
Final results of both €.11 and €.13 coincide with each
other as exozcted. To reach the finel result 6.11, we

used [AJa[c] and (B] = [U] . To reach the final result

¢.13, we used(A] = [c] ana [B] = [C]t e £o0 in the latter

22
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we must handle more operations, such as [Cl (2] [C] and

[Ckkle]l « In the former method we can omit these coerations,

so 1t is much easier to reach the final answer. This is | -
8o simple case that difference of amount of work involved
in both methods is not so great, Let's show another more

complicated case.

| % '™
.; 2y, 7 Bdd ]
, ()— ,

8 @ Ry b2

In fig. 6.2 there are given circuits of Wheatstone's
bridge. At first indépenient currents are riven as indicated

in fig. (a), and then circuit equations are given as tclow.

&g (= Zyg + zkc + zu.. "ch : —Z“_ 19'
% 9% 6.14
0 “Zee Zoao¥ Zyt 7 -Z4 1~
0 “Zse ~Zy o+ Z,+ 2|1

To get the belance condition of Wheatstone's bridge, we nust
get current in impedance Z4 . So let's assume 1’ , 1% and 1

as new independent currents, as indicated in fig. (b).



24

Then we =t ths tronsformsti-a matrix (C)
£ =t al
(C1= s o 1 0
e |0 0 1 .15
b |-1 0 1

Assuming (A} = [C] ar3 [B] = [U] , we gt

(z1=[2) (€] =[ Zu Z,+2 +2, (2. +2Z,)

So we get new clrcuit equation as balow.

&= [ Zu g + T + 2y (2 + || ¥
0 Zﬁ ‘ZcL :.L+ :u. 1’1
o] |(zwt 2,+2,) -2, Zoo + Zag|| 1

From 6.17 we get
e,(Q& Zow - ZupZAA)

-1 = €.18
D
y Where
D=2, 20t ZZuZut Zululpt ZaZulut

BeluZy % Bluly + G Byt L2, %+
LoZ bg® BT B % BT 0 ¢ T,0,0 ¢+

2,2, %+ Loul b Tulylyt ZTulyl,

From .18 we get the well-known balance condition

2.2,,= 2. 2 6.19

bbb tC

€.16

6£.17



Now let's try the ususl[C], [2] (C] mehod.

(2 = [d (A [c]
=0 o -] z. Tyt .+ %, -(Z.+2,)
1 0o off z, “Zee Zaa* 2
[0 1 1] |(2,+2,+7,) - Zo ¥ 2
=[2,+2,+ Z, Zu -(z, +2,)
2ok Zoy ¥ 2.+ Ty -(2,  +2,) 6.20
-(z,+2,) -(z +2,) 2.t 2, +Z +2Zy

[er] =[C].e]J=[0 0 -1 e,]=[0
1 0 of}|o o 6.21
o 1 1]|o 0

Now we can sct up [efl = [2'] [1Y)

Of=| 2, + Z,+7% I, (2, +2,) ¥
e, 2 Bt T+ 2 (B Zu) 19| 6.22
0 (2, + Zu) (2. +Z,) Z.+ 2, +7 +72|1"

From 6.2z we get the same final results as (.13, which proves
validity of(2] [c] mehted. [Z] [C] method does not involve
operations 6.20 and €.21, so it is much easier to get final

results.

Sometimes circuit equations are set up, but some



terminals of emf's zre not accessible, so these emf's can
not be measured. In such a case we must change emf's, which
appear in circuit equations, into other emf!s, which are

accessible. Let's Present one example of such a case.

Fy. 6.3

For the network of fig. 6.3 circuit equations are given

as below.
2Te -el= [2.  -2][1°
% ° & ) 6.23
OM/ =16 + e, Zu,# Zu_ Zu 1

To use 6.23, no load voltages between terminals A-B and
A-A' must be measured. But it is possible to measure no
load voltages between A-A' and B-B'., Then voltages rust
be transformed into measuralle no load voltages between
A-A' and B-B'.
No lead voltage between A-A' e, = e, + e. -

" B-B' e, =e, + e

26



27

The relations between 0ld and new emf's are

env|=le. +e|=| O llle == 0 1lf|e,
6.25
Cpp’ e +e -1 li(e + ¢ -1 1f|e,

[

So transformetion matrix [B] is

B] = 0 1

6.26
-1 1l
Then if assuned (£] = (U],
29 = Bll7J=[0 1 2o ~Zu
(-1 1 Z,.+Z I,
= 2,.+2 Z,
6.27
.Zu be + Zu..

So we get new circuit equation form 6.25‘ end 6.27.

o, + ¢} 2. +272 I, 1"

6.28

e + eJ’ <Z Z,+ 2, 1
This equation contains only messurable emf's, so we can
evaluate currents ty solving 6.28.

Thie is the case where [A] ie & unit matrix and
[B] 48 trnasforzation matrix between old znd new emf's.

Sometimes we find that a given circuit equation 1is
not adequate, because soms of the emf's used in the egquation

is not eccessitle and cannot be measured, or tecause we want



o8

to use other independent currents than those used in the
given circuit equation. In such a case we must transform
both emf's and currents used into other independent emf's
and currents, which are suitable to our purposes. Then
o0ld and new variables must be related in some way. These
relations can be expressed by

(11 = [A1[1" 6429

[ = (8] [e] | 6.30
Generally [A] and [B] are not related by the relation [B]= [A],
a8 18 the case with congruent transformations. Let's show

one such example.

11 H%
/ —> «—

Zbb
2 ANN—0 5

2y

tl
3o &

(ay )
H}.A. e

For the network shown in fig. €.4 (a) a circuit equa-

tion is set up as below.



29

e - el= [Z., -2, o o [
ee. - €y O 0 Z“ -Z“ 1"
€.31
oo Z,+T,+% I,+% I I, 1
a4
oo | 2w Z o 7, Z,+%|1

But four currents, which are indicated in fig 6.4 (b), a;e
wanted. And four no loed voltases, which are used in 6.71,
cannot be measufed, but four no-load voltages between l-z,
4=5, 2=3, and 5-6 can be measured. These four currents,
which are wanted, and four measurable no-lcad voltapge are
assumed as new reference variables. Then relations between
old qu new currents ere,

1> = 1%

= g

1° = 45"

1 = g g
So the transformation matrix [A] for currents 1is,

m=[1 o o o]
0 1 0 0

6.32
-1 o -1 0

o =1 0 -;J



easur e four ~load voltuges
Measurable four no-load voltuges sre,

6. - el]=
Gb - e g
€.
€q

€, - €.

0 -1
-1 0
0 1
L__O 0

1l
1l
0

0

between new and old voltages is

-1] [e.
-1 e
1l e,
1l K

30

6.23
ey
[}
“1 6434

So the transformation metrix [B) for voltages is,

(Bl=1] o
-1

0

| o

<1 1 -]
0o 1 -1
1 o 1
o o0 1

6.35

Imp:dance matrix for new variables i1s siven by [B][Z] (4],

that is,

(21 (A1 =

Zao
0
T+ %, + T,

Z

| %

-2, 0
0 Z.
+
Zth o
Z z
» %

0 1 0 o0 O
“Zus o 1 00
Z, |- 0 -2 0
Za+ ][0 -1 041
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is given from €.34 end 6,30 &8 below.

2. Z., 0 O
-zcc Z‘“_ °z<r_ ZAL
Z.+2y Iy =I, =ly
[z _+32 + 3, Ty Z.. ) ]
Zy Z,+ 7, + 2” 0 Zaa
<2, 0 -(z, + Z” ) =2,
"
| 0 ~Zos = Zy (2., ¢+ “0 )
€.36
So the new circuit equetion, which is suitehle to our purposes,
T, v 2 47, Zy Zee 0 1~
Zy Z,+72,+2 0 Zus 1
- - -, P'
Z.. 0 (z. + Z” ) Z”’ b L
0 -Zu _23‘3' ’(ZQL+ zag._)_* Li”'
6+37

=

¥e can check eessily validity of €.37 by inspecting fie, 6.4

and 60 37.

All exomoles in t:ls srticle are the case where the

condttion [A]=C] and [K]=[C), are nct sstisfied.




Here 1t should be emphasized that beth [A]l and ([B]
are non-singular and give numerical corresnonidences between
old and new variables. Somctimes [A] or [B] is a unit
matrix, which is enparently non-singular. Cases, where [A]

or [B] is singular, sre treated in the followinz article.

(2) Cases where transformation matrix [c] is singular.

In Chapter IV we explained that transformations,
which changes number of impedance branches, are generally
accompanied by singular transformation matrices. A4nd
8ingular matrices relate old and new variables only geo-
metrically but not numerically. In Chapter III we expalained
that power is not invariant even when [Cl,(Z] [6] transform-

ationis used, if [C]is singular. Let's show examples.

—

(< i ec €

I
X
18, N £ S I,_ Za e 1%
e
() b) |

32
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The circnii egustion far fimue 6.5 (&), which is the same

g fimire 4.3, is

€ |= |2, +*Z 2w L
6. 38
€ 2w Zy + Zof|™

In figure 6.5 (L) rench of Z,1is brcken, and one new cur-
rent 17 1s enci:h to describe the circuit behaviors. Then
the correspondence between old snd new currents is
1~ o 17
6.39
1 & =17
This is a eometricsl correshondence but not numericel.
S0 it 1s numerically wrong when we write [1)= [C] (49 as
below.
1 1] 1t
6.40
i -1 "
So 1t scems wrong to use the C Z C method for this
case, beczuse we use numerically vrong equntion (1) = [C1[(19 .

But it wae wlrealy chotm in Chanter IV that the [C).[Z] [C]

rethod is valid even for this cese. Let's *ry here cnce more.

) = [z.+2, 2, 1| =| 2w
6.1
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(27 = ELEIE) =2 -] z]=[z. + zu] ol
L.zct.
e'] = [Clle] = [1 -—1] ejz (e - e] 6443
e

So we get as the new circuit eguetion,
e, -, =(2,+127) 1 6.L4
This is eviiently correct for the circuit of figure (.5
(b).
Next let's try ti.e cace where (Al = [C) and (B] is

& unit metrix. TFrom (.41 we get the result &t once. That is,

o |=| z_][11]

6e45
e, ~Z,.
Expended we zet,
e = 2 17
6.46

= 2’
e -Z_ 4

. e
This is evidently incorrect for the circult of figure 6.5
(v).

Next let's try the cese where [B) = [C), and [A] is

a unit matrix.

i) = [1 -1[z,.+2 2z, =z, -12]
647
z, z, +2

[<S
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From €.42 &nd .47 ve zet,

[e._ = ec] = [Zu_ = Z‘,J[i.] 6.49
That is,
e, —e, =2 1 -2 1 6449

This resuli is not wrong, but it ie not adegvate to solve
the circuit oi figure €.5 (b), because it contained tio
currents for the one-mech circuit,

Let's examine the case where a 3-meshes circult is

traneforred into & 2-m.o’..8 cirenit as shown in figure 6.6.

|
X

e b
- %0a 52‘“’ =8 Zee ‘I‘%Zﬂ 18, Sz J$ae $%u

¢9A- ﬁ?)ec De. Ze

(@) Fig 6.4 {9

The circuit equation for fisure €.C¢ (a) is

e l= |2+ %b Zgy Zop i~

0 Z,, Zyy Zu+ 2,01t
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In figure 6.¢ (b) branch of Z,, 1s bro“=n &nd new currents
are assum-d as shown in the firure., Then geometrical
corresvoncences between old and new currents are given by
=1 O i‘]
{0 1 [1°’ €.51
¥ [-1 -1

Fquation (.51 coes not correepond numericzlly. From 6.51

we get & gingular transiormetion matrix (C] .

€1=C1 o
0o 1 6o5x
-1 -1
Then
21[c) = [z.+2, 2, Zps 1 O
Zw Zy+Z Iy 0 1l
| Zw, Z,, Zy+ Z,l-1 -1
= [2, O
0 Z.. 6.53
| <2 -Tu

(2921 ) = [Zo# Zu Zas

ZM z.& + zdd~

6054
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(e] = CLle]l ={1 O <=1]|| e |=|ea
'0 1 <1]]| e L

So we get a8 [V = (27 [1")

e Z.+ 2, Zu i~
' 6.56
e| (2w 7, + 2| &

This result is evidently correct for the eircuit of figure
€.6 (b).

Next let us examine the case where [A] = [C] and
(Bl 18 & unit matrix. From €.53 we at once as the new

circuit e-uation,

e o z||1¢ 6.5
0 -z, =2

This result is eviieally incorrect for the elrcuit of
figure 6.6 (b).
Let us examine the cave where [B] = [C], and [A] 18

g unit matrix.
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Chizl = 2 o [z, +z z. Zi

1z, % Z,. + Zu

6.58

From 6.55 and 6.58 we get as the new circuit equation,

e]1=[Z. 0 -ZJ[1
el |0 2z -2, /|89 6.59
Bl
That is,

ol !
e, = Qu_i' -2,1 6.60
o =2, 1% - Z,.1"
This result is not wrong, but 1s not adequate to solve
the circuit of figure 6.6 (b), because it contains more
numbers of reference currents than numbers of independent
meshes.
From two examples above we may conclude for the
case of gingular transformation matrix (C)] as following.
(1) The method of "([e'] = [CL[e] , (1] = [C1 (1Y)
and [2'1=[C}(Z] [C] * 18 velid.
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(11) The method of "[e") =[el, (11=[C][1'] end
[2]1 = (z1[c]* is wrong.

(111)  Tre method of "[e'] = [Cl[e]l , [1'] =[1] and
[z11= [cL[z] * 18 not wrong, but is not adeguate
for solving the protlems, because it contsins

more currents than numbers of in-ependent meches,

It Beems ratier stranie to resch the ri-t results
of (i) and (ii1), éven when we use the numerically wrare
relation [1] = [C]1(1'] . Let us consider the reason for it.

In the method (111) we use ['] =[CJ[e], tut co not use
(11 = [CI[A"]. And it {5 eecily understood from the two
exsmples ebove thet [e'l=[Clfe]l is numerically correct,
while [1)= [C] [1'j is numericelly wrong. In figzure €.%

(b) the new mesh emf' e' is

e' se-o 6.€1
» While
CClle] = [2 -1:] el=[e_- o] €of2
)

From 6.€1 and 6.62 we see thet [e'] = [Ck[e] is numericslly
correct. ZAnother thing, which should be emphasized, 1g the

fact thaet all emf's, which appear in mutrix equations, are
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mesh-emf's, Mesh-emf's mean that they are emf's which
act afound closed meshes. Then we choose new emf's for
transformed circuits, we must choose mesh-emf's. The
transformation [e'] =(Cli[e] gives automatically mesh-emf's,
as new emf's [e’] , because [B] = [Cl; 18 a transformation

»
matrix between old ani new mesh-currents . And even when

* Here 1t should be stated that branch-currents can

be considered as mesh—currents, so long as these branch-

(8)

cureents are independent.

(41 = [C1[4"] 18 correspondent only geometrically, [e']=(Cl;[e]
is correspondent geometrically and numerically. This 1s
the reason why method (iii) gives correct results, while
method (11) gives wrong results.

When we applied method (ii) to figure 6.5, we got
6.45, which is wrong. In 6.45 emf's are not mesh-emf's,
but branch-emf's or open emf's. So it i1s impossible for
them to give correct circuit equations, which are actually

the Second Kirchhoff*s law,



Pre-multiplication of [Z][C] by [Clt is equivalent
to transforming of open emf's into mesh-emfs, snd it sets
up tiie Second Kirchhoff's Law correctly. o method (i)
glves correct results.

It 18 not necessary that (Al = [C] end (Bls[Clt
are satisfied, to reach correct results. For instance,
in method (11i) (Bl=([Cl¢and (A) is a unit matrix. Fe can
use any transformation matrices [A) and [B) , so long as
(1) = (Al [4'] gives geometrical correspondences between
old and new independent currents and (e'] =[B) [e] gives
geometrical snd numerical correspondences between new snd
old independent mesh-emf's. Let us apply the case where
(B] # [Al; to figure 6.6, We assume that new currents are
the same &8s shomn in figure 6.6 (b), but new emf's are
those acting meshes of Z, -7, end Z,, - Z, 6 « Then

[e")=[B) (e] is8

e, -¢e|= |1 =1 Ol | ea
e - 0
1 0 =l]]|e. 6.63

0

(21(A) = (2]1[C) 18 given by 6.53. Then



{(z] =[RI2YAY =1 -1 o] z,. ©
1 0 <1

= za.a_ -zcc_
za.n—+ Zd& Zdi

From €.€2 end G.6L we get as the new circiit equation,

- a!
eg. - &= z&n— °ch 1

6.65

e, z,+2, 2Z,||1¢
It is easily seen from figure 6.4 (b) that 6.€5 1s correcct.
Here 1t 1011 be mentiones thet we mist be careful in setting
un [e'] = (Bl (e] &s shown in é.f/3, That is, when there is
no emf in scme branches, sorme simbol (here we uvse 0) must
be subtstituted to get the right (B},
Now we can conclude about transformations by sinfu-
lar matrices es folling.
(1) The method of " (e'] = [clle] , (11 = (C] i
ani (2'1= [C},{ZJ[C] " can be used correctly.
(11) The method of " [eM = [Bl(el , (1] = [AI[i"N
and (2] = [B1(ZI (A1 " can be used correctly, so

lon~ as all emf's and currents acsnmed &re indevon-
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»
dent mech-erf's gnd in’ependent mech-currcnts.

(111) Tre motred of " (1] = [C1[19 ena (24] = (Z)([C]"
is not corract.

(iv) In ¢ll caces powers :r: nat inveriant,

s

* French-curreats cen be c-nsiierel as nmesh-cur-

(8)

rents, §0 long &8 thesa branch-eurrents sre independent.




Chapter VII Transformations of Invariant Input-

Impedance.

So far "Invarience cf Power" has meant that not
only input-power et ierminels but also all powers consumed
or stored in ell imnedeances é}e invariant. But at some
practicelly very importent anplicetions of circuit trans-
formations only input-nower &t terminsls and consequently
input-impedance eare kert invariant. Transformations batween
equivalent circuits are the cege. S0 fer transformation
matrices contzin only intepers ss their elements, mostlyt1l
or 0. Buf trernaformetion matrices of inveriant input-imne-
dance can have non-integer elements as shown later.

Here it 1s not attempted to discuss whole asnects
of trensformations of invaeriant input-impedance, but one
interesting examnle is to be explained; that is a new method
of reduction of networks to their Fosier's Forme by means of
matrices.

As Guillemin explained very nicely in his book, any
dissipationless n=twork can be reduced to four equivalent

canonic forms, which have least number of elements. Two of
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them are Foster's forms and other two are Casuer'e forms.
Reductions to Cauer's forms are easier then to Foster's
forms, bectuse amedular Ceterminant (or its minor) muct
be solved, to reduce to Foster's forms, but it ie not
neceseery for Cauer's forms.

Here let us try other sporoach to Foster's forms,

Figre 7.1 chows one of Foster's forms. Indevendent
currernts are assuted as shown in the firure. Then the

circuit ecuation is,

U, 1 A
e = Lr.h+§-' 0 ¢e¢++0 i
4 0 t-zk+-'s-' e .- i’

7.1
Lel- i 0 o e e LnA S“' 11!.'




This ecuation has e diazonrl or normsl fecrms. £&o the

inductence metrix (L] is,

=L, o o0°*=--0
0 L, o0°**°*°*0
7.2
o O Ls....o
L—0 0 o....L’}—‘
The suscentance matrix (S] is,
s1=[s o0 o0°°*=*°*0]
0 SZ, Oooooo
7.3

0 0 5" %o

0O 0 0°°"°8,

Fka. 7.2

Fisure 7.2 shows the other form of Foster's equivalent

circuits. Independent junction volteges are assumed a8
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shown in the figure. Then the circuit equation is,

- 1 — r- -
= forasl  0cvvv 0 v
’ M ’
I A4=e ¢ o o 0

0 cﬁ, A Va 7.4
1] 0 0" - Qk+% Va

This circuit equation has diagonal or normal admittance

matrix. Then the capacitance matrix [C] is,

fcl=[c, o o0°*+°* 0]
0 C Qe+ 0
* 7.5
0 0 C'° « ¢ 0
O 0 0---cC
The reciprocal inductance matrix [I] 1is,
1= o o- - <0
0 r'z Oo . oo
7.6

0 0 [3 +..0

|0 o o- - -ﬁu

7.5 and 7.6 have diagonal or normal forms, too.
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Yhen ¢ dissivetionless network is riven, we cen
eesily write down its metrices of [L] snd [£) by mesns
of mesh method, and its matrices of [Cl 2nd [I') by mesns
of ncde method. And if we can diagonelize these matrices
in such & wey &s transformed circuit ecustions have the
forms of 7.1 or 7.4, then we cen write down its Foster's
equivalent circuit as shown above.

Let us assume thet a given two-terminal network
has followinz (L] end [S] .
(L] = —L,, Ly *°° ,J

Ly, Lt * * * Lan

7.7

LLN' ; e o o L":

[S] = —S" SIZ. e o @ S"_
Sy ng’ o o0 S 7.8

Sm Snz. tte Svm._j

Then the next step is to find such & transformutiion
matrix [C] as
[CLIL) [C] gives & diaponsl form.

(€l [S1 [C]1 e¢ives & diegonsl form.
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Now we can sce thet the problem is simultaneous reduc-—
tion of two metrices [L] end [S) to their diaconel forms.
Guillemin treats very niecely siwmulteneous dlsronalize-
tion of two metrices in kis boek.(m) But we cen not
a»ply to this case directly whet i8 exnlzined in his * ck.
Let us explain necessary procedures.
Using (L] and [€] of 7.7 end 7.8,

Al + (81 =0 7.9
has generelly n roots of A.
7.9 can be exnanded as below,
AL, +S, AL+ S,s ¢+ «AL . +S5.| =0
ALa  + Sg AL+ S5° ° ¢ * ALy + Son 7.10

KL'“+ S,“ ALRL* S,‘; e o .AL'“L‘F S,"‘

And 7.10 18 tie determinent of n set of homogeneous
equations below.
(XL, + )x + (AL, + 8)x,+ + - + AL+ 5)x,=0
(XL, + 2)x,+ (AL, + S )x,+ - - + (AL,.+ §)x.=0

. hd . . L4 . . - . - - - . . o ° ° -

(KLM + §‘)x’ + (AL..,} Snz)xzi- - - + (\L,. .+ Sa")x‘—: 0

7.11
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7.11 has solutions when 7.9 and 7.10 sre setisfied.

So 7.11 has n sets of solutions for n roots of A , which
setisfy 7.9 snd 7.10. But these n ssts of solutions

for 7.11 are not unique, but only oproportionelities
among eaéh comoonents X, , X;, X;eeee are determined.

If cofectors of the determinent 7.10 feor the sth root
of N's are denoted by ﬁu_, then one set of solution is

given by i
il

S P =
T TR (Kl b v - o+ (Ko
(for k=1,2, n)

7.12

» wWhere the index 1 js erbitrary but must, of course,
be tre same for ell sete of 2's,
Then

is:,& =g B (for k=1, 2, n) 7.13
satisfy 7.11, where ps is & erbitrary constant. 7.11
can be expressed by using metrix es below.

(AL] +(8])[x)= 0 7.14
y Where [x] ='i,'ﬁ

Xo

®
[ ]
[ Xn
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Substituting 7.13 into 7.1L, we get
AL {e )= - 61 {(p, 4,)) 7.15
There are n ecuations of this fcrm for nNs. And thece
cen be comhined into one matrix ecustion by defining
a new astrix, which is called a modal matrix. The modal
matrix for this cese is,
R1=[2 Lo« - 2n

z, 2210 e o o ZJK
7.16

L4 . L] L] L L] L] .

Ly B o oo EMJ

-

,where the first colurmn elements ere given by 7.1z for
8 = 1. Then n equations ¢f the form of 7.15 cen be
combined into

(L) (£1rp1[A) = - [s1[X][p) 7.17
, where [A] is the diagonel matrix with n latent roots
of Aas diagonel elemcnts, and [p) is the diagonal matrix
with erbitrary constnat o, p,...p a8 diagonzl elements,
7.17 18 pre-multiplied on both sides by trensnose of
[£)P] , then

(LKL (L] 2] [(P)IA) = [, [X)[E] (] [P) 7.18
In 7.18 [p]t[x]t[lo][f.][p] and [p]t[Z]t[S][:C] (p] are symmetri-

cal, because [L] end [S] sre symmetrical. But the lelt-
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hand side of 7.18 is not symmetricel cdue to post-mul-
tinlicstion by [A], which is a dieronsl metrix, if
L] [L1[X](P] is not & dimzonal matrix. So only one
possibility is that both [p)], [L1[x](p] and
(p)e[£L[ET[£][p] must be diagonal umtrix(l],.) in order for

7.18 to be correct. That is

xR €1 [p] = [U)]) 7.19
(onl) [£1[X] [p] = [L2) 7.50

, where [D,] and (T,] ere diagonal matrices.
From 7.19 &nd 7.<0 we know that

(c1 = (£ [p] 7.21
1s the matrix whicn diasgonalizes both [L] snd [S] simul-
teneously. Fut [C1 is not unique, because it conteins
tiie dlagonal matrix [p] , «hich hee arvitrary dis-onal
el:ments.

So te next problem is to choose from 7.21 the
proper xmatrix [c] , which keceps the input-imnedancs
inverieble. This proper dieconalizing metrix be decsig-
nated by [Fl. Then the relz*ion between old cu-rent [1)
end new currert (i'] is given by

(11 = (Fl 11 .22
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It is 2esily seea from flcure 7.1 taat tie following
reletion must exist betwren old end new currents for
iaveriance of inout-imnedznce. Thet is

1 =1+ 4. . .+ v 7.23
s¥here 1 is the input-current of the originel network,
which is counted gs the first mesh-current.
From 7.22 &nd 7.23 we cen see that [F] must have the
form &s below.

[Fl=T1 1+¢-«« 17
T 7.24

L] L L ] L ] * L] L J L L 4

fM f'lt. ¢ s .fim

For [C]l given by 7.21 to be identicel to [F] given by
7.24, {p)] must be the diegonsl matrix s below,

(p1 = T4, Q¢ « o« +0
0 gy + -0
e e e e e e e 7.25
0 O 1/¢,,,

h—



Then
(r)

=[x] [»]

=

’_1,, Ew' ’ Em.—
L, L,e oo Un
| Ew ﬂ.z. L 2 L] Ld [":

1 e ¢ o o ] T

[zi/fn j’ﬂ’:z °

ﬁ.;/[” jﬂrz *

-‘é"ﬂ’z ”

'zﬂlu._

1/,

00..0

0 1&1 L L] L] o

0
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'o...1/£mJ

7.26

From 7.12 wa get the following relation.
5 5
As/'e"s = }S,._/ Kin-

S
» ¥here K. is cofactor of the determinant 7.10 for the

sth root of n\Ns.

[F]

1 1

K/ K K/K,

! Ji 2 2 " n
x-u/ Ki/ Ka,/ K.:; ©oT x,:,/ K,

7.27

So [F] can be exnressed as below.

.1 ]

7.<8

K/ Ky

7.26 or 7.22 gives the transformation metrix (F] , which

reduces [L] end [E) of a given network to their diagonsal

forms and keens the input-imnedamce invarient.
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Here it should be explained that the new voltege
metrix obteined after the transformation by [F] has the
form of the lett-hand side of 7.1. The riven network
1s & two-teruin:1l pussive network, ro its voltese matrix
has the form &s below.

[ely= [= O 0=+ 0] 7.29
Then t:~ new voltare [e'] is
[e'] = [_F]t[e-]‘—‘ (e |

7.30

e

So we c=n csee thet the transformed circuit ecnation

heg the form of 7.1,vhich ie the circuit ecustion of
cne of Foster'!s ecuivelent circuits. Now we cen say
that ve hove reduced the given network to one of its
Foster's enuivslent circuits. 7.28 is the hetter formula
of the transformation metrix then 7.26, because celcu-
letion of 7.12 18 not necessary for 7.z8.

Let us derive here some very usaful reletions.

Putting 7.13 ¢nd 7.29 into 7.18, we get

(01N = - [.) 7,31
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Thres =mririces conteine? in 7,71 sre dieronzl,. Co we
get from 7.71,

A Ng = ~ dig 7.7
, Where d;ssni d:sere dinsonnl elensnts of 2] an2 ELJ
end A 18 c*h latent root of ecuation 7.10.
Usins 7.71 or 7.32 we cen “erive [D,] or [[:] from esch
other,

It i& casily geon from 7.32 that A must be nes-tive
or zero, becnuse dg end d; mst bhe both positiv;i for
tihe eculvelent retwork Lo be physicelly reelizatrle,
Thet Asare nerutive or zer§ we8 antlcivated from the
fact thet [L] &nd [S] are both nositive definite.(l‘)

Fe started from eguation 7.7, where A is atte-
ched to (L1 . If [L] is siniular, some of N8 sre
infinity. But Ns must be finite., In this case A must
be attacted to [S] insteed of [L] § tzat e

‘[L] +A[s]] =0 7.73
At lesst either of [L] or €] 1s non-sinsular, becruse
these ere nctrices for sclvin=s electric netwarke.
kccoriing to which of [L] or [€] is non-eingular, we

choose 7.9 or 7.”?2. Otherwise the procedures remain

X
Including zero.
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the gene e85 shrve,

All vrocedures o reducins a given netwerk Lo
its Yogter's ejuivelent form shown in flasure 7.2 sre
the szme &8 exnleined go far in this chooter. PBut in
thic cute the originel metrix equation of a riven net-
work must be written by tre ncde method, using capeci-
tences und recirrocal inductances. And capacitance
nmatrix [C]) snd reciorocel inductince matrix D‘]are
dieponelized simulteneously. That 15 7.9 &nd 7.33 is
substituted by

M@ + (1] =0 or |[C) +AlMT|= o 7.3
, according to whizn of [C] or (] is non-ein-uler.
Tre form of 7.1% rexeing the saze. 7.4 remgins tr
gzne, tecsuse in this cate 7.ic 1s replsced bty

V =V + W he o« + V) 7.35
o we cun uss the seae Tl or T.28 Yor this cese, using

n roots of A for 7e34.

Exanple.
o—
o L =1 & =1
=2 § =2

Ly
B n
S Sy

-
W




Let us reduce the network of fisure 7.3 into the form

cf recona:it comvonents in rarallel.

() =fr_+1_ -1, ol=| 2 - o0
-L, L, +L 0 -2 5 0| 7.3
0 0 L c 0 4
(l1=[58 - ol=[1 -1 o
S, 5 +¢&, 5| |-1 3 -z 7.37
|0 =, 8, 0 -2 2
|AL] + (€)= 3 +1 == -1 o =0
-2 -1 5 +3 2 7.38
0 =2 L +2
Colvinz 7.°8 we get
AN=0, A= -1.068, Az -0.2/1 7.29
Cof.ctsrs of 7.28 for these As are
T
221032 K, =2.595 K, = -2.272 7440
X, = -3.176 K, = 0.202 K= 0.636
Sutstituting these values into 7.28, we get
(Fl ={1 1 1
1 1.96 -0.0627 7.41

1 -1.72 -0.20

This is the trsnsformation matrix.
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[P]t[L] [Fl=[8.0 o 0
0 6.1 0 742
0 0 3.435

3T

(o]

FLEIF]= [0 o o
0 “«£.0 0 Ted3
0 0 1.149

From 7..4 wnd 7443 ve cen write st once the Foeter's

e;uivelent form &5 shewn in figure 7.4.

° i , =70 g
L Lz iLs ’
g g LTl 8 =180
I

L! = 3.435 &' = 1,169

1]
2

F“-s. 7. I+

Usins ecustions 7.21 or 7.22, 7.43 can be derived from

7.3 and T7./< 86 belom.

6} = -[8.0 O 0 0 9 0
0 Z6.21 O 0 <1.,0h2 O
0 0 3.435 0O o0 ~0.241 |

0O 28,0 © Telh
0 O 1 01("9

This is the sama es 7.4
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