ITERATIVE SOLUTIONS OF PLANE ELASTOSTATIC PROBLEMS

Thasis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
Chester L Davis
1965



R (T8
THESIS

LIBRARY

Michigan State
University

This is to certify that the {

thesis entitled
ITERATIVE SOLUTIONS OF

PLANE ELASTOSTATIC PROBLEMS

presented by N

Chester L, Davis

has been accepted towards fulfillment
of the requirements for

__Ph.D, degree in_Mechanics

J o Vi :
L 040 /o |
; ‘Q( /‘L/?/(:}:-‘L-’jj ( D bl LLI/,"" N J‘

Major grofessor
Lawrénce E, Malvern

Date__ November 18, 1965 |

0-169




MOV 27 S5 |




ABSTRACT

ITERATIVE SOLUTIONS OF PLANE ELASTOSTATIC PROBLEMS

by Chester L. Davis

Three objectives of this thesis are: to compare the efficiency of
three iterative methods of solving biharmonic-finite-difference equations,
to report on ISOPEP, a system of computer programs designed for the
numerical solution of biharmonic plane elastostatic problems, and to
demonstrate the utility of this system of programs and the advantages
and limitations of numerical solutions by examples.

Three matrix iterative methods considered are point successive
overrelaxation, the alternating direction implicit method, and the
cyclic Chebyshev semi-iterative method. These are compared in terms
of computer storage and time required for the solution of a model
problem. Numerical results indicate successive overrelaxation is best
unless the mesh is refined so the number of points exceeds 350. Then
the alternating direction implicit method is superior.

ISOPEP, a system of FORTRAN II subprograms for the iterative sol-
ution of plane elastostatic problems, is explained. Documentation of
ISOPEP, including listings of source decks, specifications for input
and the output from a sample problem, is provided.

Discrete values of the stress functions and stress components
for six ISOPEP problem solutions are provided. These problems include
three notched tensile specimens, an infinite plate with a square hole

and a semi-infinite plate with a uniformly distributed load along a



Chester L. Davis
portion of the edge. The numerical solutions of the six example
problems indicate that a high speed digital computer with a large
main memory provides an effective and economical means for the analysis
of plane elastostatic problems. Good agreement as shown in the com-
parison of the numerical and explicit stress solutions for some of these
problems. Use of numerical solutions for the investigation of stress

concentrations is shown in several of the examples.
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I. INTRODUCTION

Determination of the stresses in a plate under conditions of
either plane strain or plane stress is a fundamental problem for the
structural engineer. The literature of the classical theory of
elasticity includes exact solutions of numerous problems., For an
account of the mathematical theory see Timoshenko and Goodier (1951)
and Muskhelishvili (1953), However, exact solutions are available
only for those problems which have rather simple geometric shapes
and boundary constraints, Finite-difference equations have been used
as an alternative for the analysis of more complex practical problems,
This dissertation compares several iterative finite-difference
solution methods with respect to their efficiency in treating plane
elastostatic problems,

The finite-difference solution of a boundary-value problem
is a two-step procedure., First the partial differential equation
and the associated boundary conditions are replaced by difference
equations which relate the discrete values of an approximating function
at a finite number of points. A regular mesh of lines is superimposed
on the domain of the given boundary-value problem, A finite system
of linear equations is formed by writing a difference equation for
each node of the mesh. The second step is the solution of this
system of simultaneous equations., It is often necessary to solve
for values at a thousand or more points,

The relaxation technique was employed by Southwell (1946) for
the solution of the biharmonic difference equations. Though Southwell

and his colleagues solved a number of complex engineering problems,

1



2
the relaxation method has not been readily adapted for digital computer
solutions,

Iterative methods have been used extensively for computer solutions
of systems of equations. These methods make repeated use of simple
algorithms which at each application provide an improved approximate
solution at one or more of the mesh points. The exact solution is the
limit of the sequence of the adjusted point values. Though there are
many iterative methods, the three which seemed to offer most promise
for the solution of the biharmonic finite-difference equations were:
the technique of point successive overrelaxation introduced by Frankel
(1950) and Young (1954), the alternating-direction implicit method of
Conte and Dames (1958), and the cyclic Chebyshev semi-iterative method
proposed by Griffin and Varga (1963). The comparison of these iterative
schemes is the first objective of this dissertation,

Using the computer time required to solve a given problem as the
measure of the efficiency of an iterative method, the numerical results
obtained indicate that for the biharmonic equation there is a critical
mesh spacing h* such that the point successive overrelaxation iterative
method is the best of the three methods tested for h > h* while for heh”
the alternating-direction implicit method is best,

Each of these methods uses a parameter for accelerating the con-
vergence. Formulas for the bounds of optimum parameters are included for
rectangular regions. For the more general case of irregular boundaries
there are no convenient relationships for estimating the optimum para-
meters at the start of the iterative solution. The procedure for deter-
mining the accelerating parameter is different for each of the three meth-
ods., There existed the possibility that the choice of the most efficient
method might be more dependent on the method used for determining the



3
acceleration parameter than on the performance of the iterative method.
To investigate this possibility the optimum parameter for the solution
of a model problem was determined on an empirical basis for each method,
The results were consistent with the other comparisons of the three
methods. However, this study did reveal that the machine time required
could be reduced from 18% to 42% by starting the solution with an
optimum parameter,

Another objective is the preparation of a set of computer programs
for solution of plane elasticity problems. Six FORTRAN~-II routines have
been written for the Control Data Corporation 3600,and slightly modified
versions have been run on an IBM 1620, The solution of a particular prob-
lem requires the preparation of a pair of routines for the given boundary
conditions, The main program which provides linkage of these subroutines
is called ISOPEP, A full description is provided in Appendix B,

Tge third objective of this dissertation is the demonstration of
the utility of the ISOPEP program. Solutions in terms of stress fun:-
tions and stress components are provided for six problems: (1) A square
plate with uniformly distributed loads on portions of two edges, (2) A
semi-infinite plate with a uniformly distributed load applied on a seg-
ment of one edge, (3) A flat-plate tensile specimen with two semi-
circular notches, (4) A flat-plate tensile specimen with two V-notches,
(5) A flat-plate tensile specimen with two rectangular notches, (6) An
infinite plate with a square hole., Several of the problems were select-
ed as examples of the numerical calculation of stress concentrations,

Two of the problems are included for comparison of the exact and numer--
ical solutions. The numerical solutions obtained with sufficiently small
mesh intervals provide stress components which are in good agreement

with values from the exact solutions,



II. THE DIFFERENTIAL EQUATIONS

Plane stress is the state of stress approximated in a thin plate
which has loads applied only on the boundary and parallel to the plane
of the plate, Im a three-dimensional Cartesian coordinate system a
state of planes stress exists if the stress components T2y Tz, 7} z
are sero at every point,

Comsideration of static force equilibrium under conditions of plane
stress leads to the equilibrium equations,

dox >
-‘5X-+-EY+X

(1)
d- + -ﬁ‘l +Y = O .
where X and Y are tho comporents of body force per unit volume.
For plame stress the Hooke's law relationship betweem stress amd
strain is,
Eex= ox - Vo, + Ex
y s (2)

Eey= 0y ~Veor + Ex¢
E %y= 21+ Ty |
where B is Young's modulus, /is Poisson's ratiom, Q(x,y) is the differ-
ence between the local curremt temperature T, amd the origimal tempera-
ture T,, and W is the coefficieat of thermal expamsioa.
At a poiat in the plate the strains are defined:

“=Y, &=, my- R (3)
where u amd v, the componeats of the displacemeat; are comtinuous
functions, Simce the three strain components are expressed im terms of
the two fumctions u and v, they camnot be taken arbitrarily. By
differentiating snd combining Equations (3) it is possible to obtaim the
compatibility equation



%2% + _;_x_f_y = "! (L)
At each point im the plate Eq.'s (1) ard (L) must be satisfied,
Ges B, Airy derived a simgle differential equation in terms of a stress
functiomn, #(x,y), which will satisfy both the compatibility conditions
and equilibriwm equations, The stiresses are determimed by the follow-
ings
=§3;+V’ - 0_9=%}‘g+v, Tay =~ axad; (5)
where V(x,y) is the potemtial of the body forces,
The Hooke's law relatiomships (2) are substituted imto the compati-
bility oqution (L)s
L (x-voy +Eag] + 3n o) =Vor +E€]= 201t );;y (6)
It 10 udvntm to imtroduce the equilibrium equatioms by formimg the
sum of the derivative of the first with respect to x amd the derivetive
of the second with :npoct to y.
3 » ’r X
V" (7)
or 2 Vﬁ = -[ T + +%¥]

Eq.'s (5) and (6) can be combimed so tho tern contd.lhg xy is elimi-
nated,

-g;[&z-;/r + Eq{’] + g};[o:; -1/42+E«§] = -(:W)[;-:{ +5Y +%XF+%¥]
This simplifies to

(Fn+ ) toj+ Faglr 4] 3§(—+

In terms of the two-dimensional Laphcian -:»peu'c,ox'v2 this can be written

[+ o vl r el 35 + 3] =

Substituting the expressions given in Equations 5 for the stresses and



assuming body forces can be expressed in terms of a potential function
V(x,y) the equation can be written

v+ Fe v+ (1-1Y)Viv=0 (8)
If the body force potential is. harmonic, the equation becomes
Vi +Ex 9 = o (9)
and if in’ addition temperature changes are negligible, it becomes
v =0 (10)

where in Cartesian coordinates,
v = % "'2999 .t _?%

The aolutionlof & plane stress problem when the body forces can be
expressed in terms of a potential, thus consists of finding the stress
function @ which ntiafiu the appropriate one of Eq.'s (8), (9) or (10)
and the prescribed boundary conditions. ‘

As noted by Sokolnikoff (1956), even in a thin plate the stresses
vary somewhat through the thickness. The two dimemsional problem
formulated here, strittly speaking, applies to the aversges through the
thickness and this is oftem called a state of gemeralised plane stress,

For a state of plame strain instead of plame stress the governing
equatiens have a similar formulation. The appropriate equations are
ebtained by replacing v by V/(1-1), E by B/(12) amd 0 by « (1+7) in
Eq.'s (2), (5), (7), (8) amd (9).

If ¥ and ¥ are the components

of extermal loads per unit area

acting om the beundary amd « amd 3
sre the direction amgles which the
normal makes with the x amd y-axes
respectively, then neglecting body

forces

\ 4

X’ .
Figure 2.1 Boundary force



X=Aezx +mTay
- (11)
[=moy 4+ Ty
where
= COS® , m = cosi:‘s
In terms of the stress function the stresses on the boundary are given by
X X YR Mm Y=7ﬂ —/(373%' (12)

Introducing coordinate axes s and m, tangent and normal respectively to

the boumdary, the boundary conditions can be writtem

X= 3:731% xayde’ 'S"/?%)

—_d (13)
Y- %XTJ.? Anya'} = “HF( )
These camn be integrated along the boumdary
S
3¢ o~ ["Vds + (38), w

S
3** = [Xds +( %i)
8ince - 3 S - 37 + 3,
integrating along the boundn'y yields

¢ f [cos« ﬂ’ds * Sing f Ydslds + (i‘é )(9-4,)+ (§g(x-x,) +é.  (@s)
where cos 'i’;”, Slﬂﬂ-*#
Substituting into the mormal derivative of ¢,
5'4 %2' %ﬁ + y an
2 - - cosq(f “Tis +5m o(f Xds +| )cos«+(§§’) Sing (16)
Eq.'s (15) and (16) determine ff and 3¢ at every point of the boundary in
terms of the boundary stresses X, T amd the comstamts of integration
(32),,(3) amd #,. These constants of integration may be chosen arbi-
trarily since they do mot asppear in the expressions for the stresses,
If the constamts of imtegration cam be chosen so # is symmetric

with respect to a line of physical symmetry for the plate, them

uy) = o, 3 (Vidigy) = o )



for points (x,y) on the line of symmetry, where n is the normal to the
line of symmetry,

The problems herein considered will have boundary conditions as
givea by Equation (17) om a line of symmetiry cf the body and of the

form

2Bed = Figy), 2400 = f () (182)

which follows from Equatiom (1L) or
P00 =5 ) 5 W = flyy) 8w

which follows from Bq.'s (15) end (16) on an outer boumdary, The fumc-
tions fl, £as £3 s and fh are valid only om the boundary and could be
expressed in terms of the single parameterS; m is the outward normal,

For problems with displacements specified on the boundaries the
Navier Equations should be used rather tham the biharmonic equatiom,
This pair of coupled secomd order partial differential equatioms for
plane stress conditioms, obtaimed by replacinmg the stresses in Bquation
(1) with expressions in terms of strains and them substituting deriva-
tives of the displacements for the strains as given in Equation (3), can

be writteas

ﬂF-Wl)[ZTT"‘(I 1/) 'P(H-.I)WJ-}X:()
za-v*)' [““03;’{ 'fl-;? +(11Y) my]*Y“

(19)



ITI. DERIVATION OF THE DIFFERENCE EQUATIONS

Though amalytical solutioms have been obtaimed for certain special
cases of the biharmonic bourdary value problem, the use of approximate
aumerical methods is often mecessary., Finite-difference methods are
readily adapted for solvimg the problems with high speed computers and
attention will be directed to these methods,

The governing partial differemtial equation is replaced by a
finite-difference approximation. A rectangular mesh is superimposed om
the region and the intersections AY
of the horisomatal amd vertical

lines inside the region are /(

called nodes or mesh points. -~ R )

Boundary points ocour at the
intersection of the mesh lines

s

with the boundary, It is
convenient to use a uniform mesh Figure 3.1 Rectangular mesh

> X

spacing, say h. At each imterior point the fumctiom @(x,y) is replaced
by an spproximating functiom U(P), where P is an imterior mesh poimt
(xp,yp). The function U(P) is defimed omly at the mesh poimts, Discreti-
satioa of the problem is accomplished by replacimg the partial differem-
t1al equation in terms of @#(x,y) by a finite system of equations in terms
of U(P)e The equation foryU(P) is given in terms of the values of U at
neighboring poimts. Thus the problem is reduced to solving & set of
simultameous finite-differemce equations,

Three differemt derivations of the pertinent difference equations
will be comsidered. These are based on Taylor's series, imtegratiom

and & variational formulation. Each has distinct advantages and comtri-
9
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butes to a better understanding of the problem,
Taylor Series

Let f(x,y) be a function of two variables, which is continuous in
the neighborhood of the point (a,b) and has continuous partial deriva-
tives up to order m in the neighborhood of (a,b), The Taylor's expansion

of £(x,y) about the point (a,b) is given by:

fooy) =fas+(§ @p+fyab)h+ (f(@s) + 2546 b)+fyy b))2,+ 4R,
!

where Ry = 1(2+ %) Farah brah)s  0<86,62
X=I+ h ) y=bth 17

and subscripts demote partial

derivatives, Im the regiom of the & 2 é

xy plame where a solution of the 2 3 O&:&. )-*l -

biharmonic equation is sought, a

mesh point (xo,yo) will be called /0 m 12

a regular point if the neighboring b /1

points showmm in Fig, 3.2 are all Figure 3.2 A regular point

interior or boundary points of the regiom amd each poimt is at a distance
h from the adjacent points shown.

A Taylor's expansion can be writtem for each of the points in the
neighborhood of (x,,;y,) amd these expansions can be combined to find
difference quotients corresponding to amy partisl derivative with respect
to x or yo

Comnsider

U= u,m),m(w)o—ﬁ{ U+ (Uerlo s + (Ualody + (Uge), 3¢

Us = U= (U hHUpe )t (Ux3) 5»+(ux*),b; ~(Ush 4 (U, &

Utls =20, +(Ux*)a22h +(Ux'*) ""i'
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where (Ux6)0’1 = pr,(x +6h,y ) 0<6 <1, and M; £ max \chl,,B along
the line between points 1 and 3

\ 32 A

oh sy 46
Us= U(,f(U,)a(JA)+ (Ux) 42— (Uxa)o‘z? (‘J 9 _f’. \UA ) (Ux‘) i
U, = Up (U (2h) + (Ue)l BE- (Up) €84 (U '%i(uxs),:_sw( x9), w_*
9 ¢! /051
Us U =2U, + ()8~ (Ux)m” 1285w,
where M, §|le[5’9 Subtractmg A(U1 + Us ) from (U B U‘9) we find
Upt Up=#(U, + Uy)+ 6, + 22EM, =40,

Thus,

(U= p U+ Uy +6U, - #U, - #Us] - 20M, (20)
Similarly it can be shown

Uyt) =#[U; + U, F6U - .- 4 Uy - B4 My (21)
where M, < ma.xlUyth 11s Tor 3 x‘; 7 consider

U= U b+ bl #2 ] 4+ Gopluk

o WY+ G Ul (5 )u;g‘,
U.=U, - Uk - U,,)l.+[(UXz)+2(U,, Uv ]2/ ‘(3)7 35/) U 3'
37*?;)*Uo )SUQ 5 r (3 axt ai ‘U: P 5
U+ U,-2U, = [ (U, #2(Uxy), * Uy)]—3—+ U, + 4Uey) +€Uey).
+‘f(UX\_,s)p+(U9)}£’£ + éa',iM*
where M, < max U, y,,' n+m= b, Similarly,
Upt U= 2U, = [(le,,+2 Uxy)o + ] +[U,«\ ‘/(ng ) +6(Uy- 7)

- 4 (Uyyp), + Uy")]zw+ %‘ﬂz M,

where HS < ma.xl ”y’"lB 12 1 tm = 6 Adding we find

UL"’ Ug* Ulo+ U/a_ tU, 2[(UX20 2| + (Ux")ZH Uy 2I (UY‘Q ]

where Mg < maxIUx,y;.,I, n + m = 6 along all lines through the mesh point,



Substituting from above

(Uogs), = B[ U +Us + Ut U, + WU - 2000t ] - 228M, . co2)
Hemce

| v = Ftaid it -0

is spproximated by

(Ut +2(Una) #Urt), =gl Ut l# U+ ol g Yo U)

- =8l 40, tU +U) Y200) 4R =0 (2

vhere Ra S §£h*Me
Keatorovich and Erylov (196L) give B, < %9 h2M where N is cbtained by
replacing all the derivatives of higherorder in Eq.'s (20), (21) amd (22)
by their maximm absolute values on the mesh lines joinimg poiat O ard the
surrounding points,

The remainder n‘ provides a bourd for the discretization error;, that
is, the differemce betweea §(x;y) and the trumcated series approximatiom
U(x,y) at the modal poimts, This indicatiom of the order of the approxi-
mation is a major udvqtnco of the Taylor's series method for deriving
the finite differemce equatioms.

Integration Techmique _
The use of imtegrals for the derivatiom of finite difference equa-

tions has mot been used as oxtensiv'ély as the other methods., Varga (1962)
provides a general introductiom to the method and imdicates it has beem
used im muclear reactor desigm computer ccdes for several years, Use
of this method for the biharmonic equatiom is made by Griffim and Varga
(1963) .

The satisfaction of the partial differeatial equatiom (B8) at every
point of a region R is equivalent to the satisfactiom of the integral

equation
[,/‘7‘(?2¢5+BV +C€)JJ('J) = 0 (2k)
R
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where B = (1=7), C = XL, for every erbitrarily chosen subregion Ai‘
Hence, for any arbitrarily chosen subregion A, bounded by ¥, Creen's
theorem gives
ffvz(v’-cp +BV+CC)JX<‘Y ’955‘;,(?%18/% )ds=0 (25)
Discretization is accomplished by substituting a set of discrete
quantities U,, (L = 1,2,3,~—m) for the values of the continuous function
@#(x,y) at the mesh points corresponding to i = 1,2,3,~=—m, & major

advantage of this method is the simpli city of the treatment of irregular

mesh spacings. In Fig., 3.3 2 =
the mesh spacing to a point P4 hoa r:ﬁ?-.nm
[
adjacent to a general interior 3 hos hoy |1 q :Su |§”
—8 * t
. o | © |
point P is h, . The subregion ]
° ho‘/- L'z“"f"“"iﬂ
about point P, has sides S, e
L}.
i = 1,2,3,‘}. ‘+ [
(@) (b)
Sq1 = So3 = 2( hgp + hgy) Figure 3.3

(a) Unequal mesh spacings
Soz = Soi, = 3 hoy + h03) (b) Subregion K,
Central difference quotients are used to approximate the line integral
in Equation (25) about the subregion A  of Fig. 3.3 (v)
i (v*u; - V20, )5°'=-Z[B(v - V) +(§5 =&, )J,,—f’j (26)
where VZU‘;L is the value of V @ at point Pj. Approximate values of V* U

and Vz U, are obtained by using Green's thecrem again,

ffvzv,dx ay = 9 Tas (21)
n
7
The discrete value of VZU° is taken such that
2y =L doVese_ LY ¢ o £ol 28
VU, Hoé nds-Hoé(U( U) 52 (28)

Aa = (So, )(SOL) = (hoz + holf)(hop"' hos)ﬂ#
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At point P, as given in Fig. 3.2

VAU, ={fug- )5 + (U'p‘u,)-;-* +U=U) B2+ (Up - U) 2 |-
where R, = (%,0)(s,5)

For the general case

X;V‘U vAU,)$4 = if ii Ug=Up) 85— g -U) 5] (29)

If the mesh apacing ia constant, Equation (29) reduces to the form
of Equation (23).

The evaluation of the right side of Equation (23) requires 12 addi-
tions and 3 multiplications. (When the mesh spacing is uniform the
multiplication by h™2 is not necessary.) The evaluation of the right side
of Equation (29) requires 29 additions and 25 multiplications if the
ratios %%ﬁ; are computed once and stored, For the IBM 1620 the time
required for 10 floating point additions is equivalent to that required
‘for one multiplication. Thus on the 1620 Equation (23) could be evaluated
for approximately 7 mesh pdints in the same time required to evaluate
the right hand side of Bquation (29) for a single mesh point. Any
iterative method of solution of the finite-difference equations requires
the evaluation of one of these expressions at every interior node at
least once during each iteration. Several hundred iterations may be
required. The rgto of convergence of an iterative scheme which uses
Equation (29) would have to be 7 times the rate of convergence of a
scheme which uses Equation (23) for the same number of mesh points before
Equation (29) would be preferred. In some problems it is possible to
reduce the number of mesh points significantly through the use of
arbitrary mesh spacing. Regardless of whether it is possible to

establish the superiority of Equation (29) over Equation (23) for use at
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every point, Equation (29) provides an excellent mathod of handling
irregular boundaries and the changing of mesh size from one subregion
to another within R,

Variational Formulation

Application of the variational method for deriving finite-differ-
ence equations can be found in Couramt and Hilbert (1953) and Forsythe and
Wasow (1960). Engeli, Ginsburg, Rutishauser and Steifel (1959) show its
use in deriving biharmonic difference equations,

The variational formulatiomn of difference equations for plane
elastostatic problems is especially convenient for problems givea in
terms of two displacement functions, GCriffim (1965) has showm the
advantages of this approach. The basis for this derivation is the
Principle of Stationary Potemtial Emergy which states: From the set
of contimuously differentiable displacement distributioms which satisfy
the givea boundary comditions of an elastic body, the displacemeat
distribution which actually ocours is the onme which makes the potential
energy statiomary. -

For a plate subjected to plane stress, take X,Y as the body forces
per wnit volume and ¥,Y the surface forces per wnit area, Then the
strain energy V, per unit volume is

V= “ﬂE_—Ji)'[-é;'-r € +276 €yt -‘-'-E/-) \o;&
The strain emergy per unit volume can be expressed im terms of displace~
neats (u,v) if these are comtimuously differemtiable functioms of (x,y)
by substituting
&= K9 éy“';%; %y= (5% + 5%
V= o3 B0 0 5 3 + L + ] o
A change or variation of total straim emergy will occur with any arbi-
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trary variatiom of the displacemeats §u, §v,
Vg = S&[fVdeyh =f4 §Vidxdy
where for comveaience the s-dimemsion is takem as one and it is assumed
that V dees met vary with s.
The virtual work s'l“t done by the extermal forces wader the virtwal
displacements Su, v is given by
§ Wext =f£(X8u +Y§v)dxdy + f(f&u +Tir)ds

The pmatm energy is defined
= /f Vdxdy - fg(xu +¥Y7r) &xdy f (Xu+Yr)ds (31)

Applying tho principle of stationary potemtial emergy amd comsiderinmg body
forees mmd swrface ferces comstant JOQ =0

| §Q =] svdedy - [LO0su +Yar)dedy - {(Xsur%olis (am)
This states that tho-:ul‘o in strain emergy will be 01;1 to the work
done on the bedy by externmal forces for amy arbitrary virtwal displace-
ments fu,fv. . This will be trws oaly if u,v are the asctual elastic
displacements preduced by the externmal forces.,
The uwsual procedure in the calcoulus of variaticas is to coasider
the eonditions imposed oa the integrand of Bquation (32) amd thus
derive a limear partial differeatisl equatioa of the form
L{g}=e | (33)
where quq(u,v)s Alse additiomal bowmdary comditioas arise which are
called natural boundary ocoaditions, Instead of fiading the differem—
t1al equation of the form of Bquation (33) und then introdweing fimive
differences the variationmal fora of Bquation (32) will be solved
sumerically., There are two major advanteges of tﬁo eppreach, Pirst
the funetion V whick satisfies Equation (32), will awtomatically satiefy
the nstural bowndary cenditions se that further consideration of the
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natural boundary conditions is not necessary. Second, the discretization
of the problem leads to a linear system of equations that has a coeffi-
cient matrix which is symmetric and positive definite. These relation-
ships are important because they are part of the criteria for the
convergence of iterative methods for solving linear systems of equatioms,
(See Appendix A)

For a plate im the region R of the xy plane amd unit thickness the
total poteatial emergy is

Q= z7E5 [&Mgg 3P 1-IFHED }+ DG + 2yTdxdy

- g(xuva)JXJy ~£ (Xu +-}?zf)dd

The stationary value of potemtial emergy is a mimimum for stable

(34)

equilibrium under specified boumdary conditions,
A rectamgular mesh and its dual

are imposed on the regiom R, The y
A

dual mesh limes (indicated with

p

dash lines) are parallel to amd
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distribution u(x,y) and v(x,y). Figure 3.4 Dual meskes

This is replaced by a problem im which the displacememts have discrete
velues w; and vy at the mesh points, The potential emergy of each mesh
point is approximated,and the sum taken over all mesh points represents
the total potential emergy Q(us; vi). The problem is reduced to finding
the unlmown displacements wy amd v; at each node which will make Q(uy,v;)



18

statiomary. This requires

?.3 =0 I= 12,3« - ”
' o 12,3 (35)
= = ~————m

g% p) 1<,

where n is the number of nodes at which w; is unknown and m the number
where v, is wnkmnown., Equations (35) represents a system of nim linear
difference equatioms. _

Eageli, Stiefel et al (1959) show that a variety of quadratic
fumctions may be uwsed to approximate the potemtial emergy. The
polygons formed by mesh limes and dual limes will be called cells.

A primary mesh point will occur at ome vertex of a cell. A regular
interior poimt will be the commom poimt of four adjacent cells as
shown in Fig, 3.5. The potential emergy imtegral (3L) is spproximated

for each cell under the assumptiom that

the fwnctions w and v and their 2
ho
derivatives are wniform over the P T 22 o
3 hal B lha 1
cell, The fumctioms take the ; 4 i
[}
I
discrete values at the mode P,. Lo ]_ ___4:
_ . o
The derivatives are approximated y
for cell 3 by Figure 3.5 Cell
Q_u - ul -uo au e -
oX F., * 37' = y‘hho%("

The spproximation for the potemtial emergy is
Q2o S P05 e
+_|.rv'-f)1]ho: her = (Y Yi;)bube -()'(u,+ng)hnz&v_t (36)
The last term is included only if P/ is a boundary point. At a boundary

point specifed derivatives of u and v are introduced in Eq. (36).
The potential emergy at the node P, is the sum of the potential

energy im the four cells adjaceamt to P,
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Q = Q21 + w23 + V3L + Wi
and the total potential energy is the sum of the potential energy in all

cells
Q=L Qi 3k
The difference equations are obtained from Equation (35),
Consider all the contributions é 2 5
to the potential energy Q which o L<\ Y.. \‘
AR S%k N

§\_A

regular interior mesh point, Figure 3.6 Twelve Cells for P,
32= {1 At (et 1 B (b, )42 +0728)
=~ L) (45 -] X A, = ©
where & = L [f, horthosbos +heshog theyhs |
39 = iy -V) bpther(ia- | o)t (p th, Yo Loy ezt 38)
-~ -y ]+ YA, 0

Note the relationship to the Navier Equation (19)., When the solution of

/)

N\
N

involve the displacements at a
N
single mesh point u,, v,. There ;&

are twelve cells as shown in Fig,

306 which would use u,,v, at a

(37)

the finite-difference equations (37) and (38) is obtained, stresses can
be approximated using an area weighted average of the stresses over all
cells which have one node as a common vertex, The stress components in
terms of displacements are

%= w5

Y= o7y [$% +7 ] (39)

Ty= 0wl o T %)

None of the problem solutions included in this dissertation use

Equations (37) and (38).



IV. ITERATIVE METHODS

A simple example . y

considered by Timoshenko 1 n Q >

end Goodier (1951) will 1= L
illustrate several . T
details of the solution, 0 '_'sa: X
Given a wnit square E
plate which is sub- § 4P EV
Jected to boundary . '%.gj

loads as shown in Figure L.l The model problem

Fig. L.1, £ind a numerical solution which approximates the stress fumc-

tion #(x,y) on the region of the x,y plane occupied by the plate.

The boundary r“"‘w-—;tz'— -ik—iﬁ——ral— TQ‘--—---.‘
. I ] |
| f { ) 1 : H
conditions are of | foo  lfa  lfan l&‘ lm s £, !
the form given in | :
Equation (12), but :@0- —the Ui Via i Wiy U fe _ :'5,1
! ]
sre readlly trans= e _.ffio Wo Ui Ui v lUis Ifie 8
formed into the | ;
form of Equation fg”-- fa0 Usy 'U3£ Uz Use  [Uss ﬁﬁ___%&'ﬂ_»x
! " X ' )
18) which leads i | ' N . - .
(18), : Ifeo. __;5‘/_ (T (S 8w s 6,
to the problem : i ! : , E |
) | ! | !
statement .. &y _18sa _8o_ g _ S _ |
V‘*‘p(x,!): (] (4o) Figure 4.2 Mesh for the model
problem
for o<Xx<a,,, -,ga<41<JéQ
subject to boundary conditiom
(L)

#(x,y) = £(x,y) for x,y on }

Q.%‘EAI)-'-’ n(x,y) the boundary
n
20
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A simple way to introduce the boundary derivative is to solve for a point
one mesh space outside of the boundary in terms of the derivative and the

point inside the boundary on the same mesh line, eg,
817011 %, (20),

where Uij is the approximation to the stress function §. If the constants

of integration are selected so Equations 17 are satisfied then, by symmetry,

B4y = UZi and 85y = Uli i=1,2,3,---5
The partial differential equation (40) is replaced by Equation (23) at

each interior node.
U11=1/2°[8(U12+U21+f1o"'f01)'2(Uzz+foz+foo+fzo)'(U31+U13+81+810)]’
U12=1/20 [8(U1 1+U1 3+U22+f02)-2(f0 3+f0 1+U21+U23)-(U32+U1|++82+f10)-‘ ’

etc.

The system of equations can be written in matrix form

AU=F (42)
where . 1
A(fgy + f19)- 1(fgotfgrtfag) - .05(g; + 810) U1z
.4 foz-.l(f03+f01)-.05 g, U12
N f03—.l (f02+f04)-'05 g3 U13
h £g,-e1 (£g4+E,0)-.05 g, Uy,
4 (f05+f16) - ’1(f04+f06+f26)—'05 (gs + 817) U15
£y = oL (F gHEg) =05 (g + £,) U,
-.05 fg, Uy,
-.05 fo3 U= Uz
E= [-.05 fo, Uy
4 fog-.1(f16+f3¢) -.05 (fos5t 827) Uss
[+4 (Eagtey )= L(E,g+Eygte,,) =05 (850 + 5y) U3y
-4 gua U3z
b ogyg Uss
b ogyy U3y
-4 (g5 +30)- 1(£ 0+, g +8yy) =205 (g55 + 837) | | Uss |

and
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1=-¢,h,oSooe=oh‘,1000,050000W
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[

"0 0 Q=i o1 ;0 .05« 1 =oi

0 0 0 05 O

0 0 0 0 .05 0 0 0 Jd-k ,0 0 .05-ck 1
The original boundary value problem, Eq.'s (LO) and (L1l), has been
replaced by the problem of solving a system of linear algebraic equations
as given in matrix form by Equation (42)., Direct methods have been
used for solving systems of linear equations, Becent__reviews of these
methods are found in Fox (1963) and Forsythe and Wasow (1960).
Faddeeva (1959) provides a detailed account of a variety of methods,
Direct methods for problems which require a large number of mesh points,
several hundred or even several thousand for example, are rarely used
for two reasons, First,if Gaussian elimination is used it is necessary
to storo_ all the elements of matrix A; For N mesh points this requires
the storage of )l2 elements, Iterative schemes require the storage of

only a small integer multiple of N such as 3N or SN, The second



23

complication arises from the round-off error in the direct solution of
some tni‘.eu of linear equations, Iterative solutions have the advant-
age of being self-correcting and round-off error is minimized.

If the non-zero elements in A are sparse and arranged in bands
parallel to the main diagonaf the storage requirements for a direct
solution may be substantially reduced. Cornock (195L) gives an
improved method for the dire_ct solution of the biharmonic equation,
Bquation (L2) can be plrtiﬁ‘:;ed into submatrices as indicated by the
dotted lines., The suhintrices have a more convenient form if a scalar

factor of 20 is introduced.

20AU=2F
¥BI |0 ]

0oy = |sas| (B =|r (13)
IBM| 1Ty F,

where I is the mxm unit submatrix, n is the number of interior mesh
points in each row, The Uy are the column submatrices composed of ele-

ments Uy 4 along one row of grid points. The F, are the corresponding
column submatrices of 20 F,

(20 8 1 0 0 8 2 o 0 0]
8 2 -8 1 0 2 -8 2 0 0
Me |1 -8 208 1 B= | 0O 2 -8 2 0
0 1 -8 20 -8 0 0 2 -8 2
6o 0 1 -8 20 |0 0 o 2 -8

For the general case of a rectangular region of n columns and p rows in
the mesh, the submatrices M, B, I are all nxn if the difference equations
are written for successive mesh points starting at U;; and sweeping across

the first row then from left to right across successive rows, Cornock

>
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shows how to determine the elements of a matrix E such that
EAU-EFa0

reduces to the form

TG o (w] e
Gy G2 O Uy G,
G S I |[L] = |4 (L)
- - \ - .
- - \ - -
- —— \ - -
B % I[L %
The system -
S G| (B &
(—:21 Ca2 U2 | G,
is solved by direct elimination., With U; and Up known, Us-- --.gp can

be found by back - substitution,

One alternative to direct elimination is the "relaxation® technique
of Southwell (1946)., An initial solution is assumed at the points of the
grid superimposed on the plate, Using difference equations a new value
is computed at each point and residuals are determined at each point.
The largest residual is identified and the initial guess is modified
systematically so all residuals are reduced to sero, This procedure
has not been used much for digital computer solutions, becauss it is
most effective when the succeeding modifications are judged by a
skilled practitioner. To date the logic of these decisions has not been
efficiently progremmed, However, some aspects of this type of decision
making have been incorporated in direct search methods as discussed by
Hooke and Jeevis (1961).

As a second alternative, better adapted to computer solution, consi-

der an iterative method. Equation (L42) can be written
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M-DU+I U=F
(L5)
or U=(I-4)U+F
An initial vector approximation U_(o) to the solution U is selected and
a sequence of successive vector iterates U(m) ere calculated using
g(ﬂl) = (1 _}&)H(ll) +F m>o (46)
This scheme is known as the Richardson iterative method (or method of
simultaneous displacements, point Jacobi, or point total-step method.)
See Varga (1960). It requires all elements of the vector iterate U(n)
for the computation of g(""'l). Other iterative methods introduce the
new values of the elements of the vector as they are determined,; and these
are used in the computation of successive elements. Methods of the
latter type use only half the storage required for Richardson's method.
Iterative methods are characterised by the repeated application of
a computational scheme which yields an approximation to the exact answer
as & limit of the sequence of successive vector iterates, A basic
question which must be answered affirmatively for any useful method is;
does the sequence of vector iterates converge? To answer this an error
for each vector iterate is defined
gm _ gl g n2 o
Sub tracting Equation (L45) from (L6) we f£ind
g(m-}l) = (I-1) E(l)
Repeated application of this relationship, starting with the initial
vector 9_(°) glives
_ E(.) = (I -2 E0) m> o (L7)
Considering a single element E; (™) of E(W), 1f the 1im v () . 1; 1t 1s
necessary that  Jim v, ®) ang %;‘-“xi(') exist and lim 31(‘) = 0.
This condition will hold for all elements only if
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%{-’lm(l - )" E(O) =0 (L8)
for any arbitrary vector E (°). O is the null vector of k elements,
Bquation (48) is valid then enly if

lia(I-0)%a0 (k9)
where 0 is a square null matrix,

Milne (1953) shows that Bquation (L9) is the necessary and sufficient
condition for convergence of an iterative method and this is assured if
all the eigenvalues of the matrix M = I - A are less than one in absolute
value, | )

Windsor (1957) has shown by derivation of the eigenvalues of M for
& rectangular plate that Richardson's method is not convergent for the
biharmonic equation, In the remainder of this section iterative methods
will be reviewed and those which are especially useful for solving the
biharmonic equation will be identified,

A. Point - Iterative Methods A
The general form of Equation (L3) for the biharmonic difference

equation on a rectangular region with n columns and p rows of interior
mesh points is of the form

AU=P ‘ (50)
where A is a lok sparse, non-singular matrix; U and F are column vectors
of k components and k = np,

The derivation of the matrix form of some iterative methods is

simplified if we taks

A=G+D+H 4 (51)
where G 1s a strictly lower triangular mairix with the elements
a4 (1 > J) velow the diagonal of A and all other elements zero. D is
formed of the diagonal elements a,, of A and H is a strictly upper
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triangular matrix with the elements 8, (1<3), G, D and H are kxk
matrices,

Richardson's Method

o

U=F-(2+HU
1

ropl(@4p o (52)

U(E&i‘l)

where D1 ig the inverse of D, a diagonal matrix with elements 1/ay;.

For the model problon, D=1, n=5, p=3 the point value is
() (‘ln) Lom) (m\ 1)
U "F)‘f“f[u +(J]j '+ +U J*I] ’ U(h) -f-U'IIH

My (= J~ 1+ K

+ UHI JH] 05[Uw i+ 2.+Uz(:4)1 ,;z)z], (53)

[£1sm, 1<jeP,

Though the introduction of exterior mesh points may not be the best way
to accommt for the normal derivative boundary condition one advantage of
this approach is that the term Fij will be automatically included when
the column subscript of any term is not within the range 1 to n and when
the row subscript of any term is not within the range 1 to p., Hence the

!'13 can be dropped from Equation (53).

Gauss-Se g 1 Method ‘

Varga (1962) identifies this also as the Liebmann method, point
single step method and the method of successive displacements, The main
difference between this and the Richardson method is the immediate intro-
duction of the adjusted point values into a single vector iterate. The
matrix form illustrates how this is accomplished.

(D+0) U=F-H U
I-I(lH»l) = (2_@)—1 !"(M).l H H(‘) (54)

For the example problem, the point values are computed with
‘(m41) (n +) ('nm) bn) (m) c»m) (m+1)
UU = zJ H[ J +Ul, *I iH J+ ‘ J*J- ,[UI—IJ-I U Y-l (55)
(‘m) (»m) (mu) (7-) (m)
+U) H+I+U2H It -5 [L; Uu-z U)+zJ Ue,l*a
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Here -too, the 1"13 will b§ automatically in~cluded. if point values have
been prt_ml.dadl on the boundary and on the firs’c exterior mesh 1ihe. .
Startingat Ull and sweeping along cclumns successively,.‘the required
(m+l) iterate values will be available as specified by Equation (55).
Bonndary values computed initislly remain fixed, XExterior point
values can be recomputed at the end of each iteration., |,

This method is convergent for the biharmonic difference equation
but the rate of convergence is so slow that it has limited usefulness.,
'For s problem with 66 interior mesh points 1098 Gauss-Seidel iterations
satisfied the same convergence oriteria as 22 iterations of the

successive overrelaxation method.

Successive Overrelaxation

This is &lso known as the extrapolated Liebmann method, Parter
(1959) , systematic overrelaxation and the extrapolated Gauss-Seidel.,
Young (195L) proposed an acceleration of the convergence of the Causs-
Seidel method based on an eminaiiion of the changes introduced in a
given vector iterate and then introducing a multiple of the change at
each point, The point valus obtained by the Gauss-Seidel method will
be designated T3(®*1) 1 < 1 <k,

Then
U}mu) - U’.(m‘)'_ w [ D':!m:)_ U;m)}__ (I =) U{('m) +w Ul_(mw) (56)
The quantity @ is the relaxation factor, For overrelaxation, 1< w<2,
When & = 1 the method is Gauss-Siedel. The matrix representation must
accownt for the prior application of Equation (56) at all preceding
points, Hence,
D Qmw)_'_ gu(m—l)= f _Hg(m) (57)
U(7n+l)=um}+w(gm+l_y(7n)) (58)
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Elininating T™*}) between Eq.'s (57) and (58) we find the matrix form
of the successive overrelation method

(D+wG) Y™ =[1-w)D - wH] U™+ wF (59)
The component Uij of the vector iterate at a point where 1< i< m,l g i<y

is given by
(w) - (m) on+) (m+1) i) (m) m+1) n4l)
Uu'U‘-J"NA}[Ej"'ﬂ'(kJi_IJJ + Ui,jq +U¢+,}j +UI:;J'H) ",'(U"_')j..j + h.')J-‘ +
(m) om (mel) (M) (m) L dm) oy g
Ui-,,jﬂ t Ui, it) =0 5(Uj2 5 + Uy j2.+ Ui+z,: +U),J+z) U (60)

The rate of convergence of Equation (59) depends on the value of W,
The optimum valus of & is given by the formula

2
w - ————————
b l +.‘/ | -— ez (61)
where e is the spectral radius of the point Jacobi- method,

Y = [E™I/IE™I

62
and P = LIM A | (¢2)
Any nora of the error vector E could be used. One readily computed is
== = iilﬁ(')l o (See Appendix )

=]

A common procedure for the doter-:hu'ticn of the relaxation factc_:: is
to set it initially to one; and, after a number of iterations, say 100,
use Eq.'s (62) and (61) for calculating a new U, Subsequently ) oan be
recomputed every ten or twenty iterations. Forsythe and Wasow (1961)
PP. 368-372 describe two alternative approaches and indicate that the
determination of a good estimate of W, early in the computation is an
investigation in which there is continuing interest.

The relationship between the estimated spectral radius and the
number of iterations required for convergence of the model problem of

Fig. 4.1, p.20 i=.given in Fig. 4.3.
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B. Methods of Block Iteration

The iterative methods considered thus far used an explicit formula
for the calculation of each component of the vector iterate, Is it
pos'siblo to use direct methods to find a block of components of the
vector iterate? Consider the model problem in terms of submatrices,
Equation (L3). Taking arbitrary values for the column submatrices U;

and U3, the components of U, can be determined by solving

uy, ®A).p, -py ) _p g (63)
where Up = {Up1, Upp, Up3, Up)ys Uzg). Since M is an (wm) matrix,
substantielly smaller than A which is (kxk) the direct solution of
Fquation (63) will not require unreasonable blocks of computer memory
and is an acceptable procedure, Using this method the point values of
the vector iterate are not determined explicitly one at a time; instead
n components are determined simultaneously. Hence, this procedure is

called the simultaneous displacement method and is classified as implicit.
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The matrix form of certain block methods assures faster average rates cf
convergence. See Appendix A, Section 5.

Arms, Gates and Zondek (1956) and Keller (1958) have investigated
block methods using the components of the solution vector on a line as
the basis for partitioning the matrix A. For the biharmonic difference
equation, "two line" schemes and the alternating-direction implicit
method have been studied and appear to have advantages over other block
methods. 8See Parter (19611)

The Alternating-Direction Implicit Method

Peaceman and Rachford (1955) found that the rate of convergence of
a "line" method could be substantially improved if after sweeping all
rows using the simultaneous displacement method and a relaxation factor,
the next sweep of all the mesh points was made by columns,

Conte and Dames (1958) derived a convergent, alternating-direction
iterative method for solving the biharmonic equation. This method is
similer to the alternating-direction method for solving Laplace's
equation proposed by Douglas and Rachford (1956). The derivatives in
the biharmonic equations are replaced using central difference approxima-

tions

?))‘(1')' = [gu-]ij = S)?uz'j = U&;J'-;L’lu{.f-l +6 Uf;f - Ll'uljf‘l" *UI}J'H-
y \ ’ '
'3-5% z[—HU]U: S;UU= Upa,s =4y i+ GUL = #Usn ) +Uia, )

pRS) , " "
Zaxléyx z[fQ]ﬁ: 25: 53 U,J'--Z%fU,;- 2[0p5 + Uﬂ,)j +Uy -1 U+ ]
+Uy, Wl t Ut'—l, et Umjm fU;_,) J'_,]

q
VI*¢ = SX U?'J' +2 éxLS«;Uz'J’ + 8; UZ'J'
As shown for the model problem, Equation (L2), introduction of the

difference equations reduces the problem to the solution of a linear
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system in k unknowns

| =
1=
]
13

which can be written
(H+G+P)U=F

where lli g}ij’ [Q g_’ij and [g g—Jij respectively represent the components
of HU, G U and P U at the mesh point (i,j).

For the alternating direction implicit method, Equation (L3) is
replaced by a pair of matrix equations

(*E+1) U= (L-10-1P) U+1F

(rg + 7P + 1) U= (I-xH) U+1F
where r 18 any positive scalar. The iterative scheme in the form pro-

posed by Peaceman and Rachford would appear

(rgy E+I) l’(”&) =(I-r,, G-r,. B E(-)+ Tat L (éh)
(g1 G+ Ty P+ D E(nﬂ) =T-rpy B 2‘”’9 +Tan k (65)

The first sweep of the mesh is by rows and only Equation (64) is solved
for the vector iterate Il('”}f). This is an implicit method since all the
components of g("%) in one row are determined by (64). It is necessary
to retain all the components of U™ while solving for U™*S, During
the second sweep Equation (65) is solved one column at a time for the
components of I_I('*l). The solution along one row or one column is
obtained by direct elimination. Conte and Dames use a factorization
technique, which is well adapted for the case of Fig.4.2, where there are,
at most, five unknowns along a mesh line,

The Douglas-Rachford method is a variant obtained by changing (65)
to a form which does not contain H, Substituting for H _t_I_("'/'é) from (6L)
we obtain

(r, @47, B+ D T®) _2 1u®A _(1-rppy a1y 1™
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Conte and Dames use a simplified form nct con'aining P
The use of Equation (66) for the column solution provides a simpler
computational procedure than the one associated with Equation (65).

The determination of optimum acceleration parameters requires
consideration of another form of the system of linear equations. This
is found by combining Eq. (6L) end (66) into a single equation,

) 2 pryy U™ e F (61)
where Rr = (Z+70)t [(rH+ D (Z-r0-1P) 4 xa |
sr=(L+r®)t (rH 4 D)2 |

The difference between the m'> vector iterste g_(‘) and the solution

vector U is the error vector E(‘). It can be shown (see Appendix A) that

g(ml) _ Rrp. x(®) (68)
i g(°) is the initial, arbitrarily selected vector iterate then
£(®) 2 y{®) _y end

E(‘) sRry *Rr, 3 cceeeBrp °Bry E(O)

For a oconvergent iterative scheme g‘”‘) 0 as m 900, and convergence of
this method can be accelerated by the cholee of ry for each iteration.
However, the relationship of this iterative method to others considsred
is less complicated for the specialcase when a single value is assigned
to the scalar r. Then

N E® apfg® (69)
and the eigenvalues of the Conte-Dames matrix Rr provide the basis for
determining the opt:!mui acceleration parameters. See Fig. L., which
shows the relationship between the acceleration pareameter r and the
number .of iterations required for convergence of the model problen.

Fig. 4.1, p. 20,
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Choice of optimum values of T for a square plate has been considered
by Conte and Dames (1958) and Fairweatherand Mitchell (196L)., For this

particular geometry the eigenfunctions of Equation (68) ean be expanded

If this is substituted into Equation (68) we find

(1 - 16 rga SE520%

o i 2 [
(6 r,,.) Ap,a = 1+16r, - (?,gn,?. ) ¥ 256 1E o SEsY (70)
where -
Sp = sin E%}E s Aq = sin Q%EE, h is the mesh interval.

The error associated with the initial vector iterate can be
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expanded in the form

Ero) - f'clo) ' h)si b
i = L Crg simiem )sin(gmih),

th

and the error vector at the m iteration can be written

m_ S e ,
E“- =;’£ﬂ, Sincpwih)sm (gush),

where
(m) —_ (2]
Cor _,t',—("”‘)x AraCrie
It follows from Equation (70) that O< (16r), A,,)Zsl for all p and
q if 1, is positive. Hence, after m iterations each compont of the error

decreases by a factor

E(/é?‘!,)\a‘?f

if r, is positive. The minimum value of (16r), ) found from
£ /4 Psq

Equation (70), is sero and occurs when
l6ér = S;"Sr"

This indicates that an appropriate choice of the T, can be made so all
components of the error vector will vanish and the exact solution can be
obtained, Rather than attempt to find this optimum 1y, a less complicated
procedure consists of choosing the Ty which optimize the rate of conver-
gence of the methed, _

Consider a slightly different expression for an amplification

factor

T = _(I-lersist)?
167 dpg = T l6Tsi0)

Since
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Bp 48 2 25557
we find from Equation (70)
|16r~7| 2 | ler Al
for all p and q. The analysis of the problem of finding an optimum set
of acceleration parameters is treated by Douglas and Rachford (1956).

The factor by which the error is decreased after m iterations is
- (1 — SZSZ 2
Z,(528% 167)) = Ap o (167, =ﬁ—['dﬂ"—’*?l
¢ f"s;') 1) 7:’: 2 4 »() f=) (V/é))-i- 6’}.5'; )
It is necessary to find the set of r, (f=1, 2,——t) giving a
maximun value of Z, which is as small as possible for (psq=1, 2, 3
—k=1). The Douglas-Rachford solution treats this as a Chebyshev
minimax problemywhile Conte & Dames recommend a set of acceleration

parameters of the form

16? -q(l-X)’ A=1, 2, —, ¢
where 0< ({ < 1. This permits the determination of an upper bound on

Zt
Z, (8255 16p) < B = [--—5 e- "L] (72)

The formal procedure, outlined by Conte and Dames, starts with a choice
of Py (L) which permits the determination of the number of cycles of t
double sweeps of the mesh required for the selected reduction factor.
However, the choice of Py (0t) is subject to the empirical observation
that best results are obtained for &< 0.2, The number of iterations, t,

per cycle is computed from

£ > + ‘l/oli’;s:‘y’) (72)

Then «(1=%)
n o= 79 A= 12,3...,¢ (73)
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gives the value of ry for the gth iteration in the cycle,

As an exsmple of the method consider a 20 x 20 grid on which it is
desirsble to reduce the initiel error by a factor 106, Selecting o = 0.2
makes Pt’»-’—" 0,01, The number of cycles required is determined from

(Py)? = 10~6 . _
Thus, n = 3 is the number of cycles. The number of iterations per cycle

is
- Jo & 1.2) ‘
or t =8 and
1-R
R S P

Factorisation Technique .

The difference equation (6h) can be written in the form

lm mm; 0 (*;+Vz) (m+%) mm)s ;
)-i,j -4U7 IJ 6+ 7;~-u) U?',J - L/U)}bj +Ui+2,) F;?J (7k)

where
(‘m) (m) ('m) (o
Tpy = (711,7 /'f) )""7‘( +JJ+UHJ)+ 8(” i+l Uz,.l{-))
n (m) (m) (m) (%) ™
-2 ( Um J+ +U; -I,J+4+ U)-: -1 U)'ﬂ,./-a) Uz, Jea U -2

. ]
Similarly, difference oqution (66) can be written in the form

(nel) _ (m;) (m+])_ (»ym (M+1) ,
U. J=2 +-)U [J+| +Ui,.’.+2= FE) (75)
where
l’""%) t'm) hn) (m)
?u:-’:':l— 1) eJ-?. , I7LUI 6U ‘-/'U”_H UI'.H-L

Using (7h) st all u.h points in a row leads to a ®"quidiagonal®
systen of linear equations of the form



38

(¢, =4 1 —U:,_:L | —1'3.1 ]
-k Co =4 1 Uy Fpo
1 -4 ¢ -4 1 Ui3 Pr3
1 <4 ¢ -4 1 Uy, Fr),

e N L FRa-1
1 b G| [Y,n | |Fra

-

where the C's all have the value (6 + ). A system of linear equa-

Tml
tions of the same general form is obtained when (75) is applied at all

mesh points in a single column. The factorization technique is an effi-

cient direct method of solving a quidiagonal system of equations., Take

w) =Cy, Wq = Cq - g2 = dq Bq-1
Bp = 0 Bl =- h/cly Bq = =(L +dq gq_1 )/"qy B,b=0"
=0, g =1/Cy; : € =14, En=th =0
G =b-Rye2

hy = 0, hy =Fp, /0, hg = [FR - hgp = dg o ] / Wg 24940
Starting with the specified initial values the n values of h are computed.

Then the values of U, are computed by back substitution

Up = by
The alternating-direction method was initially applied to the

q

s 1

solution of parabolic and elliptic partial differential equations of the
second order, For Laplace's equation with sufficiently small mesh spac-
ing it provides a significant increase in the rate of convergence per

iteration over the point successive overrelaxation method. This advant-



39

age must be weighed against the requirement for the double computation
in a two sweep scheme and the need for storage of the (m+%) vector
iterate. Compared with recently developed block successive overrelaxa-
tion methods, superiority of the rate of convergence is not rigorously
established, Varga (1962) notes that the convergence of the Peaceman-
Rachford and similar alternating direction methods has been established
only for rectangular regions. Though there has been some success in
applying alternating direction implicit methods to more general regions,
the convergence in the general case is yet to be justified, There is
no general theory for the determination of optimum convergence para-
meters except for rectangular regions., These same limitations apply to
the solution of the biharmonic equation and in addition Keller (1961)
demonstrated for several block methods that corresponding biharmonic
schemes converge more slowly than Laplace schemes,

Semi-iterative Methods

A system of linear equations
AUs=F,

can be solved by an iterative method of the form

gl 2y ™, p n>0 (76)
ifA=I-Nis a positive-definite nxn matrix, See Appendix A. As
n - o, I_J_(“) converges to the unique solution of the system of eguations.
A semi-iterative method uses an algebraic combination of solution vector
iterates Il(n) as a means of increasing the rate of convergence.

Starting with an initial estimate g(°), the error vector associated

with the vector iterate g(“) is given by
g® L y@ _ygoym glo)
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A linear algebraic combination of the vector iterates g(m) is introduced
v(m f_L pjl(nﬂ y(d) m20 (1M
J=o
where the coefficients pj(m) are selected so that each !(m) is a weighted
average of the p_(J) and a better approximation to the solution vector
U than Q(m). For the special case g(°) = U it is necessary that
: f 8«{777):[ (78)
J=O

Then Y_(m) = U for all m > 0. The requirement of Equation (78) will be

imposed on the constants Pj (m) for any a.rbitrary choice of I_I_(°).
The error vector associated with E(m) is denoted ‘r_':_/(m)
'_E_{(m) = Y_(m) -U = ipj(m) E(j) -U (79)
J=o
Since the constants p j(m) must satisfy Equation (78)
Em)=£€; /"J(M)U_m _ (,i P (m))_U
y . =0
€= 7 fom[ U]
=3 pom) £V
Jy=o '
tem)_ J\pte
E"=(>_ pem ' )E (80)

If we introduce a polynomial in a component of U, defined by
P, (u) = i py(m) ul m> 0 (81)
J:O

then we can write (80) in the form

E’(m) =P (M) E(O)
where P, (M) is a polynonial in the matrix M. The condition imposed by
Equation (78) on ij(m) requires Pm(l) =1,

Using the definitions of matrix and vector norms given in Appendix
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A, ws can write

/ ’ (2 - {0 :
TE™N = lRM EIl =< IR A IE”] mz 0
For ”Pm(!)” < 1 the average rate of ccuvergence of the semi-iterative

method for m iterations is defined as

- - R(M)
R [r0]= =LalBbal
If the polynomial is selected so Pn(u) = u", the vector Y_(m) is

identically g(-) and the average rate of convergence can be readily

simplified,

2(pu]s LlBO _ bIHT - gly7]
and, as shown in Appendix A, it is equivalent to the convergence rate of
the basic iterative formulation of the problem, The average rate of
convergence of Y™ will be optimised by finding the minimum of | P )/
under the restriction .’:;(1) = 1. See Varga (1962) Chap. 5.

Chebyshev Semi-iterative Methods

Golub and Varga (1961) identified a polynomial which satisfies the
requirements for optimising the average rate of convergence, They used

o, | s

Pm(u) = ) m> o

AEICON )

-1

Cos (m Cos — 2), =1<z <1, m O

where C_(z) =
"( ) Cosh (m Cosh™t z), s> 1,

are the Chebyshev polynomials
The Chebyshev semi-iterative method for the problem specified in
Equation (76) has the form
(m+1) (m) (m-1) (m-1) N
LAGEEYINRE bR AT B A I 4 (€2)
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where (See Varga (1962) p.138) 7

W=, ‘Un-o-l-zc.l (3 ’ m>o
and ¢ is the spectral radius of M, Note should be made of the absence
of the veotor iterate U™, It is not used in the computation. The
vector iterate !('“'1) is formed directly from the preceding vector
sterates V) wma v®1), It 15 necessary to store both Y™ and
y(=1), Spectral radius is defined in Appendix A, Sec.2.
Method for a Cyclic Matrix

Consider a slightly different approach to the solution of Equation
(70)s Let

(1=
1]
|4
I~

- +
+
or equivalently

YaNV4+0 (83)

I«
1 3
a
g

where

If M is an nun eonvergent matrix, Equation (83) has a unique solution

W and the subvectors U and Y are equal to the solution of Bquation (76).

Since the solution of (83) would require the msnipulation of (2nx2n)

matrices, it is not recommended as a practical method, However, it does

provide the basis for an improvement of the semi-iterative method.
Assume that M in Equation (76) is an nxn, Hermitian, convergent

matrix with the special form

B

where the submatrices are square and He is the conjugate transpose of H.
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A nzstrix M which can be expressed in this form is said to be weakly cyclic
of index 2, A weakly cyclic matrix A of index k 1s such that A* has real
non-negative, eigenvelues, For the sssumed form of M the successive over-
relaxation method for Equation (76) can be written (Varga (1962) p. 149)
n® . o R® s pn ®] 5™,
Ez(n-l»l) - U[Ml(ﬂl) + T, ‘t.je(m)]*U-a(m)’ m>o
where U and F are partioned into Uy, U, and Fy1s Fp respectively.
The Oyclic Chebyshev Semi-iterative Method

The Chebyshev semi-iterative method corresponding to this special
matrix M can be written. (Varga (1962) p.150)
(md1) (m) 1 (m-1)
L™ gy [BR™ +n -] g0,

g (ml) =g [g*!l(n) 4T, - !2(»})} " t_:,2(111-1)" mz1

=
8ince the iteration parameter Wyl is a function of the number of
iterations m, the cyclic characteristic of M permits the folloyi.n; fora
21(2“") = Wymi [!!(azm) s?, - g1(211.-1) ] ’ El(ﬂn-w ,m> 1
52 Wamy2 EARENS A ] +5,® a2
This is known 8s the cyolic Chebyshev semi-iterative method. Due to skip-
ping half the vector iterates the rate of convergence of this method 1is
twice that of the Chevyshev semi-iterative method, Basically though, this
method is just a variation of the successive overrelaxation method. Varga
(1962) shows that the average rate of convergence of the cyclic Chebyshev
semi-iterative method is better than the average rate of convergence of
the successive overrelaxation method. The cyclic Chebyshev semi-itera-
tive method will be used to solve the model problem and the convergence
rates of successive overrelaxation, the alternating direction implicit

method and the cyclic Chebyshev semi-iterative methods will be compared.
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Cyclic chebyshov Semi-iterative Method for the Biharmonic Equation

Consider the solution of the biharmonic equation for a rectangular
region with a grid of n interior mesh points in the x direction and p
interior mesh points in the y direction.

The difference equation

con be written in the fora  t j T T TX
AU=F (8L) ;

where N = np, A is an Nx _3_"___— A e It

coefficient matrix, U-is o s o U P

the solution column vector

[
|
)|
|
|
|
1
|
!
1
]
{
[
Ll
|
|
]

and ?_lis a column vector

A

NS
™

/|
!
[]
|
T
|
I
|
]
|
L
]
[
]
1

which accounts for the

specified boundary

P

conditions,
The formulation of the Figure L.5 Two line blocks
model problem in terms of swb-matrices,Equation (L3), can be extended for

the general case

_ | - L
!BI.I.Q:QQ, ) U |Fy
Buinzloo o |%| (%

---‘---:--l-a--.d > o jw -

o
OI'BMIBI O Ul=|P
BT I N e
) : :
| .
00~===-= IB XM U F
| 117? |7P]

The M, B, I are nun matrices and U, and F, are n component column sub-

matrices corresponding to the solution vector components along one row,
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riffin end Vorga (1563) scloet & two row block of the conponents
of U and show thot the associated metxoy A is of the rovm required for
the cyclic Chebyshev scheme. The number c¢f rows of interior mesh pointsg
p, must be evene This permits the colecti-on ot t = ? twe row colurm sube-

matrices for the p. rtioning cof U,

1 NN .

L K 0 0 Ty Fyo

T . N

{ L K 0 T, S

o K L ol |t,|= |F

-— - — -— _3 —

(85}
0 kI L T !
- e I ] |t
where

M B 10 IB ¥

I_“ = 9 E - ’ ET = 9 2 = q‘.{.'
B M B I o 1| 9 Uy
- = - = = = Vo

The difference equations (84) can be expressed in the form
T
Elh=R-% 4 L] (86)
or since L is a 2nx2n symmetric positive-definite matrix, which assures

the existence of the inverse Lfl, it can be written:

T =Llp il -1tk

T
—q N = = =g-1 =3p1

which establishes the form required for use of the cyclic Chebyshev
semi-iterative method,

Assuming the solution is known at all mesh points except those in
the two-row block q, Equation (86) provides the basis for the determina-
tion of the remaining unknowns, The form of the matrix L is conveniently
simplified if the components of gq are selected alternately from the two

Trows,
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Take Ig = {Uw’) UysnsUp jalzyisie = == - = - sUn s U;,,jw] :
then| 20 -8 -8 2 1 0

-8 20 2 =8 0 1 0

-8 2 20 -8 -8 2 1 0

2 =8

e
10

/O
)—I

| O 0 ) |(2nx2n)
(1 0 0 T
-8 1l 2

0 (o] 1l 0 0

2 0 -8 1l 2

k=|o 0 0 0 1 0
o o 2 o ‘-8 1 2
.\\\\\ L . \\\ -
\ RN \\ C
\ N

i 2 S0 -8 1 |(2nx2n)

The matrix L is éymetric with non-zero elements appearing only in
the main diagonal and the eight adjacent bands. Hence, the linear system
of equations (86) can be solved by direct methods, The square-root method
can be used to advantage. See p. 48,

After obtaining a method for the solution of (86) for one block,

the full cyclic Chebyshev semi-iterative method is introduced
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' “:'.Mll) (l))}) W2 m) o { X
‘—“«I;I\'H _' K. T ﬁlzl\ 4729 z (87)

plembl) _ p(2m=n [¥em+)_ T(27-1 N

ok I2k+/ ""H‘-I 2R+1 dP-H ]’ 7 =0

and
¥(27n+2) - (2m+1) i {am+1)
- >
2m |1 )-;,) ;(2»142) {2m)
-‘[ I mn[T T ] iy

The Chebyshev method consists of solving the difference equations (87)
over the first two-row block, and all subsequent odd-numbered blocks,
then difference equations (88) are solved over all even-numbered blocks,

The iteration parameters tU2 m4l? Wop_p 8T® computed recursively

using

Wy :[1 _ E"Us] for 522
Where > is an approximation of the spectral radius of A, If A is the
coefficient matrix for a rectangular region, an epproximation to the
naximum eigenvalue, given by Griffin and Varga is
~
r [1+ 2%h*]
2.

where q 2,

2= (I [ sw4(1+ 53) + 30155 |

(89)

h is the uniform mesh spacing in both the x and y directions and a and
b are the dimensions of the plate. The relationship between the number

of iterations and the valus selected for ¢ is shown in Fig. L.6, from the

model problem of Fig. 4.1, p. 20,
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Model Problem
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rigur; be6 Cyclic Chebyshev semi-iterative method

Number of iterations vs, P

The Square Root Method

A direct-method algorithm for solving & system of linear equations,
the square-root uthod; which is suggested by Faddeeva (1959) as one of
the most efficient, is applicable only to symmetric systems. In Equa-
tion (86) which can be written

LT =B, |
the matrix L is nine-diagonal symmetric and positive definite, Hehce,
L can be expressed as the product of two triangular matrices, one of
which is the transpose of the other

L-8"3

-1
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T . T T

0 522 823 821 82g 826 = - - -

™. 0 \\\\\.\\.\
S = o ~o ~ %2n-k,2n
. \ ®2n-3,2n
N “ 82n-2,2n
\ \ 2n-1,2n
I'211,

According to the rules for matrix multiplication the following relation-

ships hold
Xij = 813 81j2+ 8y3 823 ¥ - - -~ ; - 455, sij’ i<j (50)
2 482 cmceem

The 84 aTe computed by recursive use of equations (90),

8ince 1_3’3 = l_e’J ] 3_1’3 28, 4m o,

81 =411 -, =1j=&;-11;, 2<3<h
®14 =/ My ‘g%’i ’ 1> 1
2=l
0y = Ay =g 5% , i4b23x1
Sii
8y =0, 1}

The solution of L T = P is obtained by solving two systems
SuP, STaM

The components of the vector ! &re computed with the recurrence

formulas
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V. COMPARISON OF THREE ITERATIVE METHQDS

A prime objective of this study is the identification of the rela-
tive merits of three iterative methods for the solution of the biharmonic
difference equations. Commenting on the problem of selecting the best
iterative method for solving engineering problems Verga {1962) p.2LS
makes several observations. (1) For the general case there are no
theoretical arguments which rigorously establish the supsriority of any
one method, (2) The present evaluation of these methods has been based
on the numerical experiments of many investigators. (3) The numerical
results indicate that for each two-dimensional second-order partial
differential equation boundary-value problem there is a critical mesh
spacing h# such that the two line cyclic Chebyshev semi-iterative method
is superior for all mesh spacings h » ¥, while for h < h* a multiple-
acceleration~-perancter Peaceman-Rachford method is better.

Table 1, Comparison of iterative subroutine chayacteristics

| i
Number of Storage of | Time gsec.“nratéon)
Subroutine FORTRAN arrays for
Name Statements LS50 points Mesh pts. | Mesh pts,
SOR 32 646 050 223
ADI 89 122) +098 585
CHEB 162 1126 «167 612

SOR -~ Successive overrelaxation method

ADI - Alternating direction implicit method
CHEB- Two line cyclic Chebyshev semi-iterative method

The evaluation of these iterative methods for biharmonic difference
equations is more complicated than for Laplace's difference equations.
For Laplace's equations, Golub and Varga (1961) indicate that the cyclic

Chebyshev semi-iterative method requires effectively no more additional
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arithmetic operations cr vector storage than other iterative methods,
This is not true for the biharmonic difference equations as shown by the
comperison in Table 1 of the three iterative subroutines included in the
ISOPEP program of Appendix B.

The overriding consideration for many is the actusl machine time
required for a solution which satisfies a specified convergence criterion,

Convqtnco criteria

The morm “ !_(-) “ 7 °f the error vector E(‘) is often used for

terminating the iterations; the norm is defined by
“ E(m) HII = i_||Ei(m)|
A value is assigned to a parameter §, and when
: A ”E(n) ”nﬁ &

the ‘solution vector iterate g(n) is accepted as the solution, Griffin
(1963) indicates that for the two-line cyclic Chebyshev semi-iterative
method, if the number of two-line blocks is large the average difference
between corresponding values of U; in successive iterations will be
approximately 2 §/k, where k is the number of mesh points at which the
stress function is wnimown,

The criterion used in the ISOPEP program of Appendix B, which includes
the subroutines SOR, ADI and CHEB, is

| (m) qu <3

with §= 205, For the modsd problem |Uy | = 3.6

The three iterative methods were used to solve the model problem
of Section VI - 1. Symmetry conditions were used for the stress function
at the plate centerline, There is a summary of the results in Table 2
and comparison of the methods in terms of number of iterations and machine
time required for different mesh intervals in Fig. L.7.
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Table 2, Comperison of machine time and nunbor of iterations required
for convergence

Number Number of &DC iﬁ

Mesh ) of Iterations | Execution time

sp;“ g::f I?Eﬁii’ SOR | ADI | CCSI_ ﬁi? mxlng‘%e" 1
1/10 5x11 50 138 | 93| 5 .070 |.108 | kS
112 6x13 72 L] 95| 99 161 | .156 | 283 ux
1/12 6x13 72 336 | 128 | 123 0280 | .205 | 342
1/20 | 10x20 190 636 317 | -= | 1,08 |1.35 -
1/20 | 10x2l 200 500 | 334 | 357 87 |1.u7 | 2,08
1/30 | 15x30 L35 1984 | 712 | - = | 7.25 |6.73 - »
1/30 | 15x31 L50 2Lk6 | Th7 1053 9410 | 7.29 |10,75

# There must be an even number of rows for the CCSI subroutine.
#% Optimum relaxation parameter used

Sumsary of numerical results

Numerical exp,r:l-.mntation can provide insight for the appraisal of
iterative methods and may provide a basis for theoretical investigations.
The results obtained are based on solutions of the model problem only
and conclusions should be qualified accordingly. A number of observa-
tions are presented fdr consideration,

For the model problem the cyclic Chebyshev semi-iterative method
is iteratively faster than point successive overrelaxation for all mesh
sizes considered. As shown in Fig. L.7(a) it is also iteratively faster
than the alternating direction implicit method for mesh spacing h>1/16 3
or for less than 125 points, In terms of machine time required, suc-
cessive overrelaxation is best for less than 350 mesh points or h > 1/26,
If h & 1/26 the alternating direction implicit method is best,

The relaxation factor or acceleration parameter was selected on the
basis of the trestment given in the discussion of each of the three



methods in Section IV-B. For successive overrelaxation an initizl value
wy = 1.5 was selected, and this was changed after every 10 iterationsg,
As shown by the second and third problems in Table 2 this will not
necessarily assure a good approximation of the optimum welue of Wy

When the cyclic change was used for the 6x13 mesh size problem approxi-
mately 70% more iterations were required than when the optimum relaxa-
tion factor was used. Another indicaticn of the wariation which can be
expected when using this procedure is shown by the scatter of points in
Figures L.7(a) and (b) for the SOR subroutine, This contrasts with the
curves fitted to the points for the other two methods., It should be
noted that a random selection of values for @ will produce greater charge
in the number of iterations required for convergence for the successive
overrelaxation method than for either of the other methods, Comparison
of Figures L.3, L.L and L.5 shows that the alternating-direction implicit
method and the cyclic Chebyshev semi-iterative method do not impose as
severe a penalty on overestimation of the appropriate parameter as does
point successive overrelaxation. For a considerable range of values
above the optimum, the number of iterations increases only slightly above
the minimum for these two methods; while the minimum in Fig. L,3 for
point successive overrelaxation is much sharper.

Another important consideration is the computer storage reguired by
each of the three subroutines, The data in Table 1 clearly identifies
the successive overrelaxation method as the one which requires least

" storage for both the arrays of data and the sequence of instructions,
Because of the relative simplicity and minimal storage requirements the
successive overrelaxation method was incorporated as the main iterative

method in the ISOPEP program,
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Since the number of iterations required for convergence appears to
increase significantly with the number of mesh points, attention was
directed toward the possibility of improving the rate of convergence by
first solving the problem with a relatively coarse mesh, then interpolating
between these values to generate a better initial solution vector for a
finer mesh, A subroutine CHANG was written for this interpolation and
some of the results are given in Table 3,

Table 3, of problems solved with the ISOPEP am
CDC Sm IBM rIEEU Tast

Prob, | Converg. Mesh Number of Time Time Estimate
No, criterion | sise Iterations [Min | Sec | (Hours) | of

101 1075 5x10 118 3.31 .9571
102 1075 10x20 521 51.9 .580L
103 1075 15x30 1548 5 [38.3 .99k2
201 10-5 3x6 39 .85 715k
2020 | 10 | e 8 2,62 .9556
203 105 { 1222l 86 6.31 <9906
205 10°5 7x1h 276 16,9 |- 9737
206 | 106 | wxes | 159 s |29.7] .9900
303 105 6x12 225 2,33 .9506
306 10~6 2kxi8 1038 L |k 9793
Lo1 105 6x12 179  2.30 9670
w2 | 10 12x2 126 5,67 <9648
408 106 2lxl8 166 1 |3kt | .8862
501 10-5 6x12 135  1.80 9L76
502 1075 12x2ly 295 12,89 9781
506 106 2Lix)i8 1157 5 |L7.6 .9858
601 10-5 15x15 176 1 |20 | .9802
sob | 1077 | sexs | 7072 | 57 | 1.2 .9998
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Problems 101, 102 and 103 in Table 3 were solved using the subroutine
CHANG. The final solution of Problem 103 required a total time of 6
minutes, 3l seconds and a total of 2187 iterations for the three problems.
The same problem solved with initial walues of the vector iterate set to
ol, required 7 minutes 15 seconds and 1948 iterations as listed in Table 2,
The other sets of problems listed in Table 3, such as 401, 402, LO8,
were solved using the iterpclation procedure as the mesh was refined,
For Problem LO8,only 166 iterations were required after the last refine-
ment of the mesh while for Problem 506, which has the same number of
interior points, 1157 iterations were needed, Both of these problems
have more than twice the number of mesh points used in Problem 103 yet
the solution time is approximately the same for 506 and substantially
less for LO08,
Mmths of the Computers used

~ Two computers have been used in this investigation., Ome, the
Control Data Corporation, 3&00 at Michigan State University Computing
Center, is very fast and has & large main memory of 32,000 words of 12
decimal digits each, The floating- point multiplication of two numbers
with 10-digit mantissas requires less than six microseconds, The other
ocomputer is the IBN 1620 at the University qf Toledo Computation Center.
The 1620 performs a floating-point multiplication of two numbers with
eight-digit mantissas in approximately 12 milliseconds. The main memory
provides for storage of 20,000 decimal digits which is about 1/19 of the
3600 memory., Hmnr,— the main memory is supplemented with an IBN 1311
Disk File which provides 2,000,000 decimal digits of secondary storage.
Several problems were solved on both computers and a comparison is
provided in Table L. The slighf difference in the number of iterations



58

required for convergence is possibly a consequence of the difference in
the mantissas of the floating point numbers used,

The difference in the speed of the two computers contrasts sharply.
In fact for problems with a hundred or more mesh points the CDC 3600 is
approximately 1200 times faster than the IBM 1620, At rates of $375.00
and $30,00 per hour for the 3600 and 1620 respectively, the cost of
solving problem 1,102 would be §8,82 on the 3600 and $572.10 on the 1620,
Two qualifications of the comparison should be noted. First, the time
roquj.rgd :or compiling a representative gonb:l.nntion of the ISOPEP FORTRAN
subroutines on the 3600 uses between 20 and 30 seconds, Compilation time
on the 1620 ranges between 10 and 15 minutes, For this purpose the 3600
is only about 30 times faster than the 1620, A second consideration is
the time saving possible on the 1620 through use of a machine language
successive overrelaxation subroutine, The introduction of such a sub-
routine for the iterative solution of Laplace's equation resulted in a
S50% reduction of machine time required,
Table li, Comparison of the ISOPEP program for the IBM 1620 and CDC 3600

COmguters
Number of CDC 3600 Time | IBM 1620 |

Prob. Mesh | TIterations Total Execul;ion Time

Noo Size 3600 |1620 Min, [Sec,|Min,| Sec, Hours Method
1,101 5x10 118 | 116 25 3.35 97 SOR
2,101 5x10 90 90 29 6.0 1,78 ADI
1,102 10x20 636 | 622 1 25 | 1 | 5.0 19,07 SOR
2,102 10x20 317 | 3Lk 2 2:1%. N, 27,20 ADI
1,103 15x30 | 198L4 (197h4 7 3% | 7 AS. 158,00 SOR




VI. SOLUTIONS OF PLANE ELASTOSTATIC FROBLEMS

The second oi" three objectives of this dissertation is a general
computer program for the iterative solution of plane elastostatic protlems,
The program ISOPEP includes six subroutines which coniribute to this
objective, The program is not completely general, however, since sub-
routines for the boundary conditions must be added for any specific problem,
A flow diagram, listings of FORTRAN source decks, description of input
prepa.ration, and the output of a sample problem are provided in Appendix
B. The analysis of physical phenomena with mathematical models, the
analytical or numerical solutions of the models and the subsequent test-
ing by comparison of the solutions with experimental observations, consti-
tute major pursuits of scientists and engineers, The creation of the
ISOPEP program contributes to the analysis of plane elastostatic problems
and this computer program is considered a major part of the dissertation.

Demonstration of the utility of iterative methods for the solution
of several problems is the third objective of this dissertation., Problems
number two and six are included because analytical solutions are available
for comparison with the numerical solutions, Problems three, four and
five are representative of the practical problems for which analytical
solutions are not availeble, The treatment of boundary conditions for
irregular regions is included in the discussion of problem three,

1, The model problem

The square plate and edge loads as shown in Fig. 6.1 are symmetrical
with respect to the x-axis, By proper choice of constants of integration
the stress function will also be symmetrical with respect to the x-axis,
Starting at the origin and proceding counter-olockwise the boundary
conditions are obtained from Equations (1L) and the requirements for

symmetry.
59
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Figure 6.1 Boundaries of the model problem

The constants of integratiocn Ay B; C; D, E; and F in the following
equations are determined so a® to produce the desired symmetry of @ and
consistent values of @ at each of the points b, ¢, d, e, £, g in the
functional expressions for @ along neighboring line segments, Two of
the constants are arbitrarily chosen to make ¢ = & and ix-? = 0 at b,
Along be

S 2¢0_ , .

5o, e
along cd |

2=-ry+ (3. =- ry, k= (3= 0;

Q= -PstR = ~PY% +ipat ]
alongaz

%:(gf)‘!: —"lfap,'i '3:/%30 ’
along ef

30 _ (29) = - | 39 _

oy = (3§)e= =P ox — ©,

¢ = ¢ = (Pe) = —o.02ap ;
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along g¥
3‘,?=-‘H°'1+D %(4’:0,
® = ~2PY*+Dy+E = -2P¥*+ l.eapy = 32a%p;
along gb
o %,?: (%g,)g‘--oa %—f: o,
¢=F= O.

Values of the difference-equation approximation of the stress
tunctiqn ﬁi.‘l and nodal point values of the normal stress component 0;1,1
are given in Fig, 6.2, The point values of the stress function are

spproximated

, gu. =Ty .
where C = gg o The constants p and a have been assigned values of unity,

2, Semi-infinite plate with uniform load on the boundary

The exact solution of the problem of a gui-innnite plate with a
wiforaly distributed load of intensity P, acting on an interval of the
boumndary -6 < X < ¢, is given by Timoshenko and Goodier (1951). The
stress function has the for;

9 = A (r?0 - rle))

Numerical solutions of this problem have been reported by Veyo and
Hormbeck (MLVM used point successive ovorrohhtiop of the biharmonic
finite-difference equations, and Pisacane and Malvern (1963),who used a
numerical mapping technique for application of the Muskhelishvili complex
varisble method. For comparison with the other numerical solutions a
‘ square region, 2 units by 2 wnits, of the semi-infinte plate will be
considered. The intensity of the distributed load P, is chosen as one
and the vilue of o isf. For the assigned values of ¢ and P, the stress
funotion can be written
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FIGURE 6.2 Distributions of the Stress Function and oy for Problem 1
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b = g ({0 47 y2 tar(552) ~ {(xt )% ¥ tan™ (A5 ) - 2 [+ o

Values of the stress ----

Al o0

function on the bound-
aries of the square
region which are inside
of the semi-infiri‘e
plate can be determined
from the exact solution.
The values of @ at points
one mesh interval outside

the square region can be

similarly computed or < / >

obtained from the normal "1
' ' Figure 6.3
derivatives of the exact ~ Problem 2 - Semi-infirite piate
solution at the boundary., Due to symmetry it is possible to determine
the solution by considering one half the square region, Along the
y-axis which is the axis of symmetry, the normal derivative, f} =0,
is used to deteraine the values of J at points exterior to the solution
domain, _
Along o0& we use lqutiono (lh) and tind
%—4’; == =1, X3y = O
8- —x+B, &= A,
@ = -£X*+BXx+C.
Symmetry of # with respect to the y-axis requires BsO. Two of the

constants of integration may be arbitrarily selected. Let A = C = O,
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_ gRQ:-X’ 33—0, ¢=‘2LX2'
Along ab

= (3F),= -4 8= (5f)=0,
@ =-kgx +D=-4X +/52
The value of D = 1/32 1is determined by the requirement @, =-1/32 in the

expressicns for § along oa and ab, Note the last two terms of the stress
funotion - 3 x and 1/32 are necessary as a oconsequence of the arbitrary
selection of A and C. )

The values of the normal component of stress Oy and the stress
function are given in Fig. 6.5 for a lx28 mesh, The convergence
criterion used was 10'6, and an initial estimate of the solution vestor
for the lix28 mesh was obtained from interpolation between the solution
vestor slememts for a 7xli mesh, The total number of iterstions required.

feh
o

02'

y=1/1h, h=1/14
Exact Solution

V  Numerical Mapping

O Successive Overrelaxation of
Finite-difference Equations

Figure 6,4 Comparison of numerical and exast solution for Problem 2
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for both problems was 1830, A flat distribution of 0,1 at all interior
points was used for the initial estimate for the 7xll mesh, Veyo and
Hornbeck reported approx:lntoly 3000 iterations were required for the
1x28 mesh with an initial value of -,0625 assigned at all interior
points and a convergence criterion of .5x1077, Though point values of

the solution of the problem solved by Veyo and Hornbeck wers not available
for comparisen, it was not possible to discern any significant differ-
ence in the results shown in Pig. 6.4 and similar graphical results in
their report, _ :

The deviation of the iterative solution of the finite-difference
equations from the exast solution is greatest in those regions where
the stress gradients are greatest, The stress gradients are large at
the first row of interior points below the boundary subjected to the
distributed load, This distributicn of Oy for the exact and finite-
difference solutions at y= 1/1l is shown in Fig, 6.ie The numerical
mapping solutions of Pisacane and Malvern are also shown, It is apparent
that the numerical mapping techmique providu only slightly better
results in the regien directly wmder the applied load where stress
gradients are highest and much poorer results near the boundary x = 1.
Both numerical methods provide better spproximations to the exact
solutions at rows of mesh points corresponding to y > 2h,

Problems 3, 4 and § - Notched tensile specimens
The preblems of practical interest to the engineer frequently have

irregular \Smnrio_. and attention is often centered on stress concentra-
tiens, An investigation of stress concentrations has been condusted by
solving eash notched tensile specimen problem for different mesh spacings.
Three different types of notches have been gonsidered:
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FIGURE 6.5 Distributions of the Stress Function and o, for Problem 2
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Problem 3 - Semicircular notches, Problem L - V-notches and Problem 5 -
Rectangular notches, Syetches of the specimens are included in Figures
6.10’ 6011, 6.]-2.
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Figure 6,6 Solution domain for Problems 3, L4 and §

Boundary conditions for the three problems are identical., Intro-
ducing a Cartesian coordinate system as shown in Fig, 6.6 integration
constants will be chosen so the stress function is symmetrical with
respect to the x and y axes and it is necessary to solve each problem
for only one quarter of the whole plate, At the end bc a uniformly dis-
tributed tensile load of P, units intensity is applied, Using Equations

(14) we find
=A, §$=Ey+(%fb.

Xe

But (%—3),, = 0, if § 1s symmetric with respect to the x-axis; hence
P=RYy% +B = BY/z.
The constants A and B are arbitrarily selected as sero. Then along cd
%—$ =0, ?—f—': 2ap,
¢ = ¢c = 242 Pa Y
Along the two axes of symmetry the normal derivative conditions are used
to compute values of the stress function in two mesh rows exterior to
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FIGURE 6.7 Distributions of the Stress Function and o for Problem 3
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FIGURE 6.8 Distributions of the Stress Function and ox for Problem 4
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FIGURE 6.9 Distributions of the Stress Function and oy for Problem 5
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the solution domain, Along the x-axis, &Qf = O, while along the y-axis
%-? = 0, Along the notch edge &f or de and ef
%= o, 37 = (39),= 2a%
® = 2aky +C = 2aR(y-a)
The valus of C is determined by the velue of {f; in the equation used
along ed. The last expression for @ is valid for all 3 problems but
for Problem 5 it simplifies to § = O along of, |

The solutions given in Figures 5.7, 6.8 and 6.9 were obtained with
boundary eonditions for which P, = 1 and a n&. Though & 12x2) mesh is
used for listing the solution in all three figures, the results are
taken from the solution obtained for a 2ixh8 mesh,

Stress concentrations occur at the base of the notch at y = a.

For the 7V and semi-circular notches the eoncentration occurs along the
y-axis, For the rectangular notch the concentration occurs at x = 2,

Y = &, The comparisons of stress concentrations for different choices
of mesh sise are given in Figures 6,10, 6,11, 6,12, R. E. Peterson (1953)
gives an exact stress concentration of 3,08 at the base of the semi-
cireular notehes in a tensile specimen infinitely long, The stress eon-
centration tguld be slightly higher in a specimen of finite m.
Southwell (1956) determined a stress concentratiom factor of 3.0 using

& "relsxation® solution for a mesh of 116 points, .s.olnti_onc. obtained
with the ISOPEP program produce stress concentrations of 2,92 and 3.24
for meshes of 65 and 1038 points respestively.

At the base of the V-notch or the corner of the rectamgular notch
even slight strains induce stresses of high msgnitude and the stresses
determined from a solution of the biharmonic difference equatioms would
hardly represent an actual physical state of stress. However, stress
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Figure 6,10 Stress Concentration in a semi-circular notch

distributions obtained under the assumption of an ideally elastic body
are useful in the analysis of the plasticity problem. Exact solutions

of these problems would provide infinite stress concentrations for these
two problems. The numerical solution provides a set of discrete values
of the stress function. The value at each mesh point is an average value
associated with an area surrounding the point, The area in general is
proportional to h2. As the uniform mesh space h is decreased, the stress
function solution at a point of high stress concentration would provide
a better approximation of the high stress, Figures 6.11 and 6.12 illus-

trate this phenomenon for the V and rectangular notches,
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TABLE 5 STRESS FUNCTION AT POINTS ADJACENT TO
THE SEM{-CIRCULAR NOTCH

— _COLUMN
oW 12 13 14 15 ﬂ§ 17 18
3|-.02569|~,01823| -.00971|0,00000
41|-,02560|-,01816| -.00966|0.00C00
51-.02533|=-,01795| -.00953 -.00002
6 |-.02488|~.01757| -.00928| ,GOCGCO
g -,02423|-,01703| -. 00890 .00025 -
-,02340|-,01631 °00833 00056 |.01042
9[=.02239|-,01547| =,00759 ‘00&@7 201057 |-
10|-.02123|-,01435|-,00670| .C0173 |.01093 |.02085 |-
11]=-,01992|-.01316]| -.00566| 00256 |.01149 |.02107 |.03125
12|-,01851|-.01186| -.00450] .00353 |.01223 |.02155 |.03140
13|-.01700|-,01046| -.00324| .00463 |.01313 |.02221% .03180
14|-.01541 |-.00898| -, 00189| .00582 |.01415 |.02302 |.03239
15|=-.01378|-.00745| -, 00049 .007@8 .01523 |.02392 .03309
16|-.01212|-.00590| .00094| .00837 |.01637 |.02488 |.03386
17 -.0%0&5 -.00433 .00239 QOEsgu .01753 | 02588 .03#68
i 20 21 22 2 25 25
ROWT 9 . . 3 2
12] 04166|
13| 04180 .05209| - :
14] 04216] .05224] ,06253 .0729ﬂ . :
15| .04266| .05255| .06269| 07297 |.08334 |.09375 0416
16 .04324 .05296] .06294 .073%0 208339 |,09376 |.10416
171 .04389| .05344| .06326| .07330 |.08349 |.09379 | .10416
TABLE 6 X~-STRESS COMPONENT AT POINTS ADJACENT TO
_ THE SEM{-CIRCULAR NOTCH
— e —
_ COLUMN
oW 13 14 16 | 16 17 18 19 20 21 22
3{2.449(2.745(3.238
412.431]12.701 (2,952
512.369|2.629|2.576
612.275]2.506(2.111
g 2,154]|2,345|2,061
2,03112,130(2,193| -
9]1.917(1.9551.911| 1.386]| -
10]1.805]|1.801 [1.745] 1.664|1.417
11]1.708|1.678|1.611]| 1.506|1.367 ﬂ 106 |-
12]1.628|1.586|1.514] 1.404|1,243 .955 695 | -
13/1.563|1.504|1.440| 1.330|1.174] 944 | 653 | 439 | -
14]1.508|1.455(1.380| 1.274|1.131] 940 |-719 | - 460 | -238 |-
15(1.460|1.405|1.331] 1.229|1.099| 936 |.746 ;Ska <351 2612
16/1.417|1.362(1.288| 1,193 |1.074] .931 |.769 | .598 | 431 |.286
1711.37911.323|1.251] 1.762|1.053| .927 | .786 | .638 .k9l .358




TABLE 7 Y-STRESS COMPONENT AT POINTS ADJACENT TO
THE SEMI-CIRCULAR NOTCH

COLUMN -

=

O £~W N = Q\O O OV W

-l e o b ebd and b

_13 14 15 16 17 18 19 20 2] 22

2329 ,209|0.9000
.328 -199 0Lk
2361 .263)] 114
2395 .326 2220
425 J412| o345
400| 402] .LLL
%350 .343 .357| .u87
2312 ,326| .372| 451 -
2271 .295| .348| .438| .584| - -
2222 | J2L4] ,286 .350 443 590| 2323
2169| ,185| .214| .257| .318| 405| -.500
2116 L,126] 145 175 -216| .268| .321| .352| - :

068 | ,074] ,088| .108| .136| .170| .205| .226| ,219| ,i8C
.025| ,030| .040| .055| .076| .102| .927| V47| .152| .135

TABLE 8 XY-SHEAR STRESS AT POINTS ADJACENT TO
THE SEMI-C{RCULAR NOTCH

g

OV =W N == O \0 0O~ OV W

13 [ 158 T 95 12' J"ni i8 [ 39 [ 20 271 22

0,000 0,000
—3104 -.153

-:312\-i i3k 578
:635|-,628|-.578
170

-0258 -0298 -0338 -0375 -ou®3 -o"“7 -0“09 -0376 ‘03“7 -.2’-}2
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TABLE 9 STRESS FUNCTION AT POINTS ADJACENT TO THE

THE V-NOTCH

12

13

14

COLUMN
15

_16

17

18

e
(=)
=

N OV £ N = © 10 0O W W

=D cd cb b =D =D cxb =D

-.02187
e °2ﬂ 62
-,02095
-.01997
-,01876
-,01740
bt .Oﬂ 595
- Oﬂ 4"2
-,01286
o 0' ‘ 28
-,00969
-,00811
-,00656
-’e 00503
e 00353

-QOH 57@
-.01540
-,01466
-.01362
-,01240
-,01106
-, 00965
-,00818
-,00669
-,00518
-000367
-,00218
-,00071

.00072

.00213

-000853
-,00816
-.00737
-000631’
-OOOSﬂ 8
-,00392
-,00260
-.0©ﬂ23
.00015
00155
.00295
00434
00570
.00704
00834

0.00000
00035
.,00104
00191
00029ﬂ

- 00409
.005ﬂ7
.00638
.00763
.00890
01017
01143
.01268
.01390

. 01041
01060
201111
.01181
01266
01361
.01 464
01571
.01682

01794

.01906
.02017
.02127

.01509] .022

02083
202097
.02136
.02193
.02264%
.02345
.02433
202526
02621
.02718
02815
.02911

. 03004

.03125
203136
.03167
.03214
03273
03341

;OBhﬂS

-03575

203657

.03739

19

20

2]

22

23

25

3

SN OW W N = Q\0 00~ =

e cd D = =D b b =D

.04166
.Ohﬂ75
.04201

.04239
.04288
04345

- 04407
04472
04539
. 04607
04674

.05208
,05215
.05236
.05268
.05308
.05354
2055404
05457
.0551 1
.05565

.06250
06255
.06272
.06298
.06330
.06366
.06406
- 06447
. 06488

.07291
07296
.07309
.07329
.07353
.07381
07410
.07 440

.08333
° 08336L

.08346
08361
.08378
08397

.08417

10416
210417
210421
10426

10431



TASLE §7 X-STRESS COMPONENT AT PCENTS ADJACENT TO
THE V-NOTZH

13 14 1) 15 V7 18 i3 20 2] Z2
ROW

312.306;3.158(8.653
412.350{2.952|2.557| 1,621
5 2.288 2960“ 29633 ﬂo‘)}ﬁ' 98:“’1'*
612.149|2,269(2,139]9.540] .958| .64L2
7 30992 ZoOﬂﬂ 30353 ﬂolﬂ'?} ﬂ0053 0708 95\?
8(1.848[1.818]|1.67¢|1.4001,C86] 798| .559| .4!12
911.725/1.672|1.5L2|1.335{1.091| .852| .638| .L56| ,337
10(1.622(1,562|1.446}1.280|19.085] .884f .694| .525) .375| .273
11(1.539|1.475|V.372|1.235|1.072] .9G2| .736] .581: .438] ,338
1219.470[ 1,427 |1,21511.196|1.959] .913]| .767| .625| .492| .367
13(1.41311.352/1.268; 1,164 1,045| .919] .789| .661; .538| .L2
14{7.366[19.306|1.235;19.1371.032) .92%] .805| .690| .577| .L67
15/1.326/1.269(9.198{1.9i5|1.229| .92%| .817| .713] .610{ .509
'6 ‘0292 ﬂ0238 ion7210096 ﬂoi:'“ﬂ o92ﬂ 0826 0732 0637 eshs
'7 10263 ﬂ02ﬂ“ ioﬂse;ﬁo(y]g 30303 0920 0834 07‘:*8! 066‘ 0576

TABLE 11 Y-STRESS COMPONENT AT POiNTS ADJACENT TO
THE V-NOTCH

COLUMN

i3 14 i5 i6 17 18 i9 20 21 22

.l
(=]
x

NI W N = OOV OoOON NN W

b =0 e =D amd b oD

1.376/1.705(1.622
1.033] .983| .787| .874
.665| .529| .412| .725| .6L2
-h21| .318] .289| .468| .573| .507
.273| .212| .217| .325| .L26| L6k 412
79| .47 .163] .233| .313| .365| .380| .337
115 .098( .117| .167| .229| .278] .305| .311| .273

.066| .059| .076| .115| .164| .206] .236| .25Q| .25%1| .216
.028| ,026| .O43¥| .C72| .110| .146| .175| .192| .199] .196
—0002 -0003 00%0 0035 9066 0097 0“23 oilf]} oﬂl"g oﬂSQ
-.029(-.027|-.016] .003| .C28| .055| .C78| .094| .104} .1C&7
'-051] ‘0049 -0039 -’0023 -0002 0039 QOLO 0056 0067 0071\]

-.069|~.066|-,058|-.0L4L4|-.027!-.008] .c08| .024| .035' ,OLiI
-008"5 -0080 "’0073 -oo6ﬂ -90’47 _003‘6 -oOﬂs -OOC‘H 9009l ocfl]:"
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TABLE 12 XY-SHEAR STRESS COMPONENT AT POINTS ADJACENT
TO THE V-NOTCH

COLUMN

13 ik i | 16 17 i 19 | 20 21 22

x|
o
=

0.000{0.000|0.000
.143/0.000|-.672
096 .ﬂzll -065@ -09®2
0.0600(-,227|-,563|-.773|~.698
- oeo -0268 _o"98 -065@ -0653 -055"‘
".“3~ -0286 -oh“s —0560 -0586 -05"0 -'.’050 )
-.289|-.409|~-.495|-.525|~-.50k| -. k49 |-,369
-.191|~.286|~-.378|~. bS5 |- 475 |-.467| - 430|-.374|-.302
-.20“ "'.28‘ -0352 -o~06 -ohak -oh33 -.‘007 -036" -.3\]0 -.1'&3
-.200|-.274]|~-.330|~-.375|-.399|~. 402 -.385|~.352|-.307|-.25k
-02l6 -0267 -033“ -0350 "'.37“ -0376 -036“ -e3,8 -0300 -.255
-0289 -0260 -0299 -0329 -031’7 -0353 "63“5 -0325 -029“ -025‘.
--022@ -0255 -0287 -0302 -0328 -03’3 -0328 -.3“2 -.0286 -.252
-.12@ -.250 -0277 ‘0298 -oaﬂﬂ -03“& -0312 -0299 -0277 -.2~7

O\ 5°W I =2 O\D ON MW W
|
[ ]
s
O
O

-t end ed b @b b cd

The finest mesh used for the notched tensile specimen problems
was 2,X4,8, The corresponding mesh interval h is 1/48., The ISPOEP pro-
gram includes a subroutine STRESS for the calculation of any or all of
the stress components Oy’ d’; and Txy’ Values of all three stress compon-
ents and the stress function in a region surrounding the point of stress
concentration are provided in Tables 5 to 12 for the semi-circular and V-
notches, See Appendix B for the finite-difference equations used, These
equations are valid at interior points only. Calculation of stresses
at points on an irregular boundary are not included in the subroutine
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Figure 6,12 Stress concentration in a rectengular notch

Though a solution obtained with a coarse mesh does not provide a
good measure of the stress at a point of stress concentration, the resulis
shown in Figures 6,10, 6,11 and 6,12 indicate a decrease in mesh interval
h produces only slight changes in the stresses computed at all other points,

Use of an average value of the stress function over an area surround-
ing a mesh point depends more on the magnitude of the area than on the
geometry of the region, For exsmple at the base of the V-notch the
area surrounding the mesh point is taken as about half the area for an
interior mesh point, Does this not imply that the solution obtained at

this point is a better approximation for a tensile specimen with a
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rounded rather than a sharp cormer at the base of the netch? Some evi-
dence for this conjecture is provided by comparison ¢f the stress con-
centration factors found from the numerical solutions of Problems LO1,
1402 and LOB with the stress conceniration factors provided by Peterson
(1953) for notched flat bars in tension, Peterscn provides values of
the stress concentration factor Kt for tersile specimens with deep
notches with parallel sides and a8 zemicizcular base as shown in Figure

6.13, The stresas concentration is defined

Omax

norm

where Cnorn is the avergge stress across the minimum cross section of

Kt:."

the specimen, The curve plotted in Figure 6,13 shows the relationship
of K; to r/D where r is the notch radius and D is the width of the bar,
This curve is based on the Neuber-theory solutions tabulated by Peterson
(pp 26-27) for d/D = o5 where d is the minimm distance across the bar
at the base of the notch, The stress concentration factors for three
different numerical solutions ~f Problem L are listed in Table 13,

Table 13 Stress concentrations factors for the V-notch tensile specimen

Problem :;:2 h Oxax Onorn Ky r/p
Lo1 €x12 1/12 L.362 2 2,181 1/12
Lo2 12x2l 1/2k 6,083 2 3,042 1/2L
Lo8 24x)i8 1/u8 8,653 2 L.326 1/u8

Assuming the numerical solution approximates the

solution for a bar

with circular notch such that r = h, the stress concentration factors

K, for problems 401, 402, LO8 are plotted as three points labeled in

Fi‘ur. 6013 °

and the Neuber theory solutioens,

There is good agreement between the numerical solutions

Peterson reports that for notches

with inclined sides having an included angle X and a circular arc at
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the base, the noich angle has very littls effect if 0° ¢ v ¢ 5 90°,
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Neuber thecry solutions
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r/D
Figure 6,13 Stress Concentration fastor K, for a notched flat bar

Treatment of irregular boundaries

The semi-circular notch is typical of the irregular boundaries
often encountered in practical problems, Oriffin and Varga (1962) show
how different mesh intervals c¢an be used so that each horizonftl grid
line crossing the irregular boundary intersects a vertical grid line
on the boundary. There are several advantages to this approach, but
it does increase the number of arithmetic operations needed for the

calculation of each vector iterate, For this reason & uniform mesh
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interval is used in ISOPEP, eand the irregular boammdary is approximated
with straight line segments, introduced arbitrarily as shown in

Fig. 6.14, connecting nodes of the primary mesh. (The dual mesh is
formed by lines halfway between lines of the.primary mesh,) The points
labeled B are on the boundary and values of UBiJ_ are computed using
Equation (28) of Chapter III. The only complication is the evaluation
of VZUi for points on the boundary, A few mﬁiea will illustrate

the technigue,
!
ViU= R $ Sk
Iy
1‘9* B
18 4
171 A—
161 c
e
1 ¢ e A
tt.r—LA
13 :

J—™3 4L 5 6 7 8 9 10 11 12

_Fi(ﬂ’o 6.1k Boundary points for the semi-circular notch
At an interior point whers A, = h? the line integral is approximated
(see Fig. 3.3 and Bquation (27))

’gol [-]
VU= (U~ ) B2 +Up=U,) 22 + (Uy- U,) 52 + (U, U,) S22 ]

For the notch boundary
=/

2, =0

29
oY
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At a boundary point such as PlS,B (I =15, J = 3), Figures 6.1} and
6.15(a),

b

£ Lfd.s = (Uy = Ua), f
4

[~ @) h=b [ Bds=40,-u),

V2U, = 22 [U, +5(U+0,) - 2U,+£LJ.

Thus the approximation to the line integrals along be and da is made

Q.lleh

- U,)

mh

in terms of ceniral difference quotients at the ends o; the intervals
instead of at an interior ' point, This illustrates an ‘additiml complica-
tion of the irregular boundary, which appears at most of the boundary
points, '
At point Pig 4, Figures 6.1 and 6,15(b), (8) Py5,

3 o
) 7 e
[ A,S’ = (Uq O)q fb aanz(Ul o P 4/’ b

\I

, R=¢K
Q "’
[“88ds =[(8) coso +(32)sie ], = £ 7

= 135° X NOR
viU,= lu+u,-20+ 2],
AL the point Py ¢, Figwres 6.1k and 6.15(c)s

L ds =(U,-,), c§‘a’s==(U-U.,)

18,11

T 1 il
ot %@ﬁ

[u,+u,-zu,+§+<¢+i4g(ui-u)] 1 4 X

VU=

(% + W)h R
ry

Figure 6.15 Treatment of boundary points
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The evaluation of Va"(lS,é) {s used in Equation (28) for the finite-
difference equations at the point P1h,6' It is not possible to writc
finite-difference equations for point Pig ¢ using Equation (28)s Hence
the evaluation of 0(15,6) and the discrete nlw‘u of the stress function
at other points labeled with a C in Fig, 6.14 are obtained by interpola-
tion, Fox (1950) treats this problem with the Gregory-Newton forward
interpolation formula, A point O exterior to the boundary is introduced
as shomn in Fig, 6,16, With
the value of Uy mnd Uy = (S2-)

specified on the boundary, it is jesh c l—h -
possible to eliminate U, and le) 12 3 4
determine Ul at the first interior

point in terms of the boundary
conditions and one or more interior

Figure 6,16 Intérior points
points as follows near & boundary

Us U +at, 8550 o AL COX0CK) | 20 toxicx)oon) SUMUOYANR ¢ ..

Let s = (:1:B - xo)/h then

Ug = U, + (U, -Up)s+(Uz~2U,+ U,)‘ﬂ%",—’l +(Uy- 30y 30 - Uy LD

(Uy- ‘i*uﬂ-euz—*HJ,+u.,)ﬂ"—"1},{%21‘*’—'--"2 R

Un = (U Uh) + (U= 2U, +U)(S= )+ (Uy = 30, 43U, - Uy) =R T2
(Uy = $Us +60, = 40, +U,) 18188222826 o ... .

L

or
Ug = Don +]>2U; +Q Uz + D*U3 +D5Utr + H,
hU; = E,Uo + E2U| + E3U2 + E#U3 + E; U., +H,
where the D, and B, are fourth degree polynomials in s obtained by
retaining differences up to fourth order while H; and Hp involve fifth
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and higher differences of U as well as higher degree terms in s, Neglect-

ing H, and H, the external point value can be eliminated and the expres-

sion of Ul is

=[V : 2
U3~ e (B B+ (BB U - BU) (8- £,

'
Though it is preferable to retain differences of at least tho fouwrth

order, similar formulas can be written for higher or lower order differ-

ences,

Problem 6 - A rectangular hole in an infinite plate

The solution for an infinite plate subjected to wniform tensile
stress P, at x 2o and x = ~o0 is provided by S8avin (1961) for several
different approximations of the boundaries of a rectangular hole, The
stresses on the boundary of a square hole obtained from one of Savinis
solutions will be used for comparison with the stresses obtained fro;n
& numerical solution., The problem solved numerically is for a 2 unit
by 2 wnit region surrounding the hole, The hole dimensions are 2/3 by

2/3. Values of the siress y
: b

function and normal derivatives

on the outer boundary of the

W\

Lo

|su

selected region are determined

from 8S8avin's solution, The

numerical solution of the

biharmonic equation provides a

I

basis for the determination of 2=

the stresses on the boundary of

the hole,and these are compared
with stresses from Savin's

solution for a curvilinear Figure 6.17 Problem 6
Infinite plate with a square hole
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approximation to the square hole,

Savin's solution is obtained using Muskhelivshili's method., It is
known that the stress function @ (x,y) can be written

# (x,7) mRe [Zq(2) +B(2)]

where Re means the real part of the complex expression, ({(z) and 5(:)
are analytic functions of the complex varizble £ = x + iy. z = x-iy.

Savin's solution is obtained by conformal mapping of the region
exterior to the hole onto the interior of the unit circle in the
complex ?-plane by a mapping function Z = w ($ ). The mapping function,
approximated by three terms of an infinite series, and the complex stress
functions () =« w(S )] and the derivative of @ (S) = p[(,)(g“)J
are given by Savin (1961) pp 51-53 as

W) = R[& - 203 +55 7],

«() = RR[Fe +0.426F +c046¢3+0.0085% 0.004 ¢ ,

_.dB®)_ _Pp[L 4 0.548F—0.457F3-0.02695-0.029¢]
vs) = Jd¢ - ER[E?’ + | + 0.59% —0,/25$¢ s

where 5"-5."4- 17] = f)eie, ({: ,72 ), ( e, ©) are rectangular and polar
coordinates respectively in the complex §' plane, Points on the circum-

ference of the circle correspond to points on the boundary of the square
hole, but when the series for (J (") is truncated,the correspondence is
not exact, The Cartesian coordinates of any point in the plate in terms
of the polar coordinates in the complex plane are given by

x=R (¢ COSQ‘-?COSJG +-§61cos 76) ,

Y = R (F5in6 + {fsina 6 — -%sin 76).
The boundary of the hole defined by these equations when e= 1l is not
an exact square, The edges are slightly bowed and the corners are
approximated with circular arcs of radius r = 0.,02L5a, where a is the

distance along the x-axis from one edge of the curvilinear square to
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the other, R is the length of one side of the square hole, Ths valus of
R = 039321508 is used in the problem solved numerically, This assures the

transformation of the hole Yy

b — e - - —————— -

boundary at a distance of 1/3
from the origin onto the bound-
ary of the circle P = 1 in the

3
I
Q '
complex plane, Thus a m 2/3, 2 [
’ I
and the corner radius of curva- E
]
ture for Savin's solution is :
|
r = 0,0163, 0 X
, ' Figure 6,18 Approxima-
The equations given by ticn of the square hole

Savin do not permit the direct evaluation of the stress function along
the boundaries x = 1 and y = 1. Derivatives can be fcund frem
204138 _ q(q) + %—&7@ + @(3)
See, for example, Savin (1961) p. 6 or Muskhelishvili (1953) p. 183,
Values of P which correspond to points on x = 1 and y = 1, are deter-
mined for 0° < @ < 90° at intervals 46 = 3°, For these values of
and O, %.g and %g are calculated.‘ The availability of a basic set of
complex variable subroutines and statements in 3600}'@‘1?”! simplify
these caloulstions. The values of the derivatives of § thus determined
relate to points unequally spaced along x = 1 and y =« 1, A five point
Lagrange interpolation formula is used to find values of the derivatives
at equally spaced points, Along the x-axis, quadrature of -g-g provides
the point values of @ up to an additive constant, The .%g values specify
& normal derivative. A similar procedure is used to cbtain values of

and normal derivatives along the boundary y = 1,
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The general problem of a multiply-connected region is discussed by
Griffin and Varga (1962). The constants of integration cen be arbitrarily
chosen on an exterior closed boundn'y._ However, for each interior closed
boundary it is necessary to determine #, %gk’ %gk for one point P, on
the boundary in such a way that the components of displacement u,v and
the rotation Wy = 4 (_g.‘i' - :g.;) will be single-valusd, The tiree
additional wninowns for easch interior boundary are related to the point
values of the stress functiom in the region surrounding the hole in a
mamer which permits use of iterative methods,

Since the purpose of the “Y

(g]

present numerical solution was | d e

{sv

only to test the efficacy of the
finite-difference method in re- %
producing details of the rapidly-

varying stress near a stress- ya.&.___f B
eoncentration point by comparison

‘with Savin's solution, the proce- hx

L

&
% % !
Figure 6,19 Domain of solution
multiply-connected regicn was not _ for Problem 6

due of Griffin and Varga for a

followed. Instead the results of Savin's solution were used to choose
the integration constants on the boundary x z 1 in such & way that § = 0
at the point ( 1/3,0 ), and the assumption that §f is symmetric with respect
40 the x and y axes will satisfy the required conditions of single-valued-
ness., The symmetry conditions then took care of the other constants on
the hole boundary, and it was possible to solve the problem with one
quarter of the plate as a silply-donnec‘tcd region, see Fig. 6.19. The
x-axis is a line of symmetry. Hence -g-g- = 0 along the x-axis, The



89

y-axis is also a line of symmetry. Hence é;§7-= 0 along the y-axis,
Along af 2
=20 _ — 3¢ _
Sx=3yr =9 Tey =~ "ax0y =9
29 _ (28 _ 2P _ 39\ —
oy ~ (é)’)a.—oi ?%‘(T,?)q—’q
CD: B=o
The value of B is gero since it has been assumed that ¢a =0,
Along ef .
y = T Ee hy =~ X3y =90
o9 _ - 3 -
Be(ifemo A= (3)-c,
Hence A =0,

Along bc and cd boundary values of the stress function and its normal
derivatives are obtained from Savin's solution.

Iterative solutions were obtained for mesh intervals of 1/15,
1/30, and 1/48. Values of the stress function and o3 at the inter-
section of every fourth grid row and grid column of the 48xA8 mesh are
given in Fié. 6.20,

A comparison of the stress concentrations found in the numerical
solution and those given on p. 53 of Savin (1961) is provided in Table
14. Values of cra given by Savin are the values of cr;,in a rectang-
ular coordinate system which has the origin at the point under investi-
gation and the y-axis tangent at the given point to the curve (9 =1,
See Savin p. 8. The table includes comparable stresses, ¢5z; for the
iterative solution with a convergence criterion of 10'6 and & second
set O for the solution obtained with a convergence criterion of 10'7.
Both are included because this appears to be an exception to the

general case in which stress concentrations increase as the convergence



90

FIGURE 6.20 Stress Function and &% Distributions for Problem 6
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Table 14, Comparison of boundary values of 3 obtained from the
iterative solution with those from Savin's solution,
Savin's Solution ISOPEP Solutions
e x y 5o oT O% x y
0° .3347 0 | -.936 | -1.005 -.902 .3333 0
-.991 ~-.895 .3333 | .0833
-.973 -.883 .3333 | .1250
-9k, -, 864 .3333 | 1667
-.897 -.828 .3333 | .2083
-.801 - Th .3333 | .2500
-.452 SWATA 23333 | .2917
35° | L3361 | 2952 -.5u4
.170 .185 03333 | .3125
40° 03352 | 3164 .605
k5% | 3294 | .3294| 4.368 | 4.78 ho52 .3333 | .3333
50° 3164 | 03352 L.46O .3333
3.402 3.281 03125 | .3333
55° 02952 | .3361| 2.888
2,710 2,645 .2915 | .3333
2,17 2,057 .2500 | .3333
1.979 1.869 .2083 | .3333
1.880 1,775 1667 | .3333
1.819 1,722 1250 | .3333
1,780 1,690 .0833 | .3333
90° 0 3347 1,760 1,748 1,668 0 .3333
The stresses Oy and Op are comparable to Jp for iterative solutions

with the convergence criteron of 10=° and 10-7 respectively.,
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criterion is decreased. The values of cfz and CTE along x = ,3333

for y<,3333 are values of (j;'computed from the point values of the
stress function. Along y = ,3333 for x <.3333 the values of a and
Op &re the values of Sx computed from the stress function solution,
At x = ,3333, y = .3333 which corresponds to 8 = 45°, the values of
crg_given by Savin would be along a line which makes an angle of 45°
with the x-axis, Values of Sx? CT; and 7;y computed at the corner
of the square were used to compute values of O, and ng in the same
direction as CTE- The values, Cg = 4,368, Cp = 4,78 and OB = L.52
are the largest stress concentrations occuring at corresponding points
in the solutions considered, The fact that slightly different values are
found for the numerical solutions might be expected from the different

representation of the boundary at the corner in the numerical solution

and Savin's solution,



VII SUMMARY AND CONCLUSIONS

The objective of this study has been three-fold: (1) The Identi-
fication of efficient iterative methods for the solution of plane
elastostatic problems; (2) The preparation of a system of computer
programs for solving this class of problems; and (3) A demonstration of
the use of iterative methods,

An investigation of the numerical solution of elliptic differential
equations resulted in the selection of three matrix iterative methods
as the alternatives which should be considered for inclusion in a
digital computer program for the solution of plane elastostatic problems,
Computer programs have been written for the point successive overrelax-
ation method, the alternating-direction implicit method and the cyclic
Chebyshev semi-iterative method, Solutions of a model problem for
various mesh intervals and convergence parameters are used for compar-
ing the methods, The model problem is a square plate with uniformly
distributed loads on portions of two edges, See Section VI-i,

The superiority of one iterative method over another may be judged
by comparing the number of iterations required to satisfy a given con-
vergence criterion. The results given in Fig. 4.7 (a) show the cyclic
Chebyshev semi-iterative method is iteratively faster than the other
methods when the number of mesh points is less than approximately 125,
This number of mesh points corresponds to a mesh interval h = 1/16, For
h < 1/16 the alternating-direction implicit method is iteratively faster,
Whether one method is iteratively faster than another may not be an

adequate basis for selecting the best method for a computer program,

93
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Cost,which is directly related to the computer time required,may be a
better measure of the superiority of a perticular method. The results
given in Fig. 4.7 (b) show the point successive overrelaxation method
is better than the other methods for a mesh interval h > /26, For

a finer mesh, say the number of interior mesh points is more then 350,
the alternating-direction implicit method is the best for the problems
examined,

The results given in Fig. 4.7 were obtained using various methods
for approximating the optimum relaxation factors. Hew do these three
schemes compare when the optimum parameters for accelerating convergence
are used? & series of problems were run in an attempt to answer this
quostion; & plot of the number of iterations against the associated
parameter for accelerating convergence is given for each method., See
Figures 4.3, 4.4, 4.6, In Table 2 the data for the second and third
problems provide a comparison of the number of iterations and machine
time for la problem with mesh interval h = 1/12, Optimum parameters were
used in the second problem and the standard appreximations given in
Section IV were used in problem 3, Use of the opt'imm parameters pro-
duced substantial improvement in the machine time required; 42% for
successive overrelaxation, 24% for the alternating-direction implicit
method and 18% for the cyclic Chebyshev semi-iterative method. These
results show the magnitude of the improvement which could be made in
iterative methods if better estimates of the optimum parameters could
be found. This is a problem which warrants further investigation.

Another important consideration in the selection of an iterative
method for the solution of plane elastostatic problems is the storage

requirements of instruction and arrays. A summary of the storage



95

requirements for each method is provided in Table 1, The successive
overrelaxation method requires less than 50% of the storage needed for
either of the other methods. Using successive overrelaxation; problems
with up to 435 mesh points have been solved on an IBM 1620 with a core
memory of 20,000 decimal digits, Comparisons-of the times required to
solve problems on the CDC 3600 and the IBM 1620 are given in Table 4,

A system of FORTRAN computer programs for the solution of plane
elastostatic problems has been written and tested. Flow diagrams, list-
ing of FORTRAN source decks, specification of input and the output for
a sample problem are provided in Appendix B. A subroutine for each of
the iterative methods is included. In addition there are subroutines
for: calculation of stress components; calculation of initial values
when the mesh is refined; input and output. The main program ISOPEP
provides for the linkage of these subroutines and an additional pair of
subroutines which account for the boundary conditions of a particular
preblem, The boundary condition subroutines for the six problems dis-
cussed in Section VI are élso included in Appendix B.

A set of six problems has been solved using the ISOPEP program,
‘The first problem is a square plate with edge load on two sides as
shown in Fig., 4.1, This is a model problem used to compare the selected
iterative methods, Distributions of the stress function and o for
Problem 1 are given in Fig. 6.2,

The second and sixth problems were selected because they provide a
basis for comparing analytic and numerical solutions. Problem 2 is a
semi-infinite plate with a uniformly distributed load along a segment of
the edge. The stress function and cr; distributions from the numerical

solution are given in Fig. 6.5. A comparison of the distributions of
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cj‘& at one mesh interval from the plate edge is provi@ed in Fig. 6.43
values from an exact solution, from the ISOPEP solution, and from a
numerical mapping solution are compared. Problem 6 is an infinite plate
with a square hole., Comparison of the analytical solution of G.N., Savin
with the iterative solution is provided in Table 14, Stresses on the
boundary of the square hole are used for this comparison. The numerical
solution shows a slightly higher stress concentration at the corner than
Savints solution, but the agreement is fairly good, considering that the
offective rounding of the corner implicit in the finite-difference solu-
tion approximates the boundary in a way different from Savin's truncated
series mapping.

The other three problems are notched tensile specimens., Problem 3
has semi-circular notches, Problem 4 has V-notches, and Problem 5 rect-
angular notches, These problems were selected for an investigation of
the numerical determination of stress concentrations, Stress function
and cij‘ distributions are given in Figures 6.7, 6.8 and 6.9 for Problems
3, 4 and 5 respectively. Additional details of solution values at the
base of the semi-circular and V-notches are given in Tables 5 through
13. Values of the shear stress TH and o} are included.

Comparisons are made of the stress concentrations computed with
different choices of mesh intervals h, See Figures 6,10, 6.11, 6.12,

In addition, for the V-notch the stress concentrations for the ISOPEP
solutions are compared with the Neuber theory solutions provided by

R. E. Peterson (1953). Under the assumption that the numerical solution
at the base point of the V-notch represents a solution for a specimen
with a semi-circular notch of radius equal to the mesh interval, the

two solutions show good agreement. See Fig, 6.13. This agreement may
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be somewhat fortuitous, but it does lend support to the usefulness of
numerical analysis in the vicinity of a singularity. In any actual
body the notch would be somewhat rounded, and the numerical analysis for
a sharp notch approximates the actual state of stress in a rounded notch
with radius equal to the mesh interval of the analysis.

The numerical results for the six problems solved indicate thzt
high speed digital computers provide an effective means for the
analysis of plane elastostatic problems, The stress distributions
obtained from numerical solutions compare very well with explicit solutions.
Though it is necessary to use a fine mesh in the neighborhood of a singul-
arity, the ISOPEP program for the CDC 3600 permits the use of over
3600 mesh points, This should permit the analysis of quite complicated
problems, ISOPEP solutions on the CDC 3600 are reasonable in cost. it
an hourly rate of $375.00 per hour for computer time, the cost of solving
a problem with 200 mesh points would be $5.h]° Th; cost for the solution
of a problem with approximately 1100 mesh points would be $36,23,

The possibility of augmenting the ISOPEP program has been con-
sidered, Since ISOPEP is a set of linked subprograms, additions could
be easily made.. The additions which have been considered include: (1) A
better treatment of boundaries formed with circular arcs; perhaps,
through use of polar coordinates; (2) Use of a refined mesh in a sub-
region of the solution domain; (3) Use of a different formulation of the
differential equations, The variational method for deriving difference
equations as used in Section III provides a finiﬁo-difforonce form of the
Navier equations, see Eq. (37). A study of the iterative solution of

these would be of value.
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APPENDIX A

CONVERGENCE OF ITERATIVE METHODS

The convergence characteristics of an iterative solution of a

system of linear equations of the form
AU=F (a-1)

can be judged by examination of the matrix A, The system of linear
equations associated with the biharmonic difference equations can be
written so A is positive definite and of the form

A=D+G+H (a-2)
vhere D is a nonsingular block diagonal matrix and the form of G + H
associated with a particular iterative method establishes the convergence
of the method. The basic conditions for convergence are given in
Theorem A,5 of Subsection 3 below,while estimates of the relative rates
of convergence of different methods are cited in Subsection 4, Theorems
k.8, A,9 and A,10 give some alternative convergence conditions for the
Richardson's, Gauss-Seidel and successive overrelaxation methods,
Subsection 5 is concerned with the selection of optimum relaxation
factors,

For fuller discussion, with proofs and bibliography,see Varga
(1962) and Faddeeva (1959). Specific page references in these readily
available sources are cited. No attempt has been made to give a hist-
orical account here with credits t2 the originator of each result. The
purpose of this appendix is a summary review of basic matrix properties

and the convergence of matrix iterative methods,
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1, Matrix and Vector Norms, the Spectral Norm of a Matrix

Definition: If A is an n x n natrix, then A is convergent 1if the sequence
of matrices A, A, A? escs00s converges to the n x n null matrix, O,
Otherwise A i1s divergent.

In the investigation of iterative schemes it is important to

judge not only the convergence of the solution vector U, error vector

E, and associated matrices B, but also the rates of convergence., Norms

of vectors and matrices are of importance in the discussion of rates of
convergence, The norms have been defined in many different ways. Some
of these norms are discussed below., Except in this section || X|| will
always denote the Euclidean vector norm defined as || X || 111 below and

the matrix norm [|A|l will mean the spectal norm |lAll 17e Ve will also

I.
use the term spectral radius, denoted by fD(g) for the magnitude of the

largest eigenvalue of the matrix, defined in the next subsection.
designated ||X]|| which satisfies
(a) ||X||> 0 for X# 0,and ||0]| =0,
(®) [|C X[l = [c]|| X|| where C is any scalar,
(c) I{g'+-zjl < ||x ||+ ]|L]l, the triangular inequality.
There are three norms of interest. For the vector
X={X,, X, Xy = xnz , we define
L. IIEIII = max |x1|’
I 2]l = 13+ [5] + — 4z,
III. ||g||IH=1/|x1| 2 |’&:|2 » Buclidean norm

Since norms are often used as bounds it should be noted that
NEll; < Xl < Xl

Nl <02l <~ X,
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Fadeeva (1959) states that a necessary and sufficient condition

(m)

for a sequence X of vectors to converge to a vector X is that
NE™ -xj> 0 asm— o0
for any norm satisfying conditions (a), (b} and (¢); he gives a proof
for the three norms I, II, and III,
The norm of an n x n matrix A is a non-negative number || A ||
which satisfies
(a) llall > o 1f A #0, and||Qj| =0,
(®) [lcall= lc||ai
(c) |IAa+EB|l <&l +[[B]
@ [[a8ll < |fall|l&ll
The necessary and sufficient condition for convergence of a seguence
of n x n matrices 5(m) is that ||A(m) -A||+0as m»00., Any
norm which satisfies (a), (b), (c) and (d) can be used to establish

™) _ k||~>0 then RIS

convergence, If l]é
As in the case of vectors it is possible to introduce matrix norms
in a variety of ways. But for the purpose at hand it is convenient to
introduce a matrix norm which satisfies some special requirements, One
of these is the requirement for the matrix norm to be compatible with a

given vector norm., This condition holds if

|AX|| < ||&]| | 2] o Compatibility condition

It is possible to determine a matrix norm which satisfies (a), (b),
(¢), (d) and which is compatible with a specified vector norm. For
example, as a matrix norm compatible with the Euclidean vector norm

of a matrix A as the

3 !
IIL'HIII’ we define the spectral norm ,]A!iIII

least upper bound of the norm of the vector A X as X runs over all

vectors of norm unity:
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”A”III = max ”5.5“111 with || '}S”III =1

2, Eigenvectors and eigenvalues

An eigenvector (also called proper vector, characteristic vector
or latent vector) of a linear transformation A is any non-zero vector
X such that
AX= XX
where A may be a complex number and is known as an eigenvalue (or proper
number, latent root or characteristic number).

If a vector X is an eigenvector it must satisify

Q“X' +Q’ZXZ+ - - === a‘-n Xn=AX'
Q21 X) + Qg Kot = === - = -- Qan kn = AXa
A X, + AneXo+ == = -~ - - Apy Xy = AXy

a system of homogeneous equations, which can have a non-trivial solution

only if

CLN = a,, a"l
@y Qyp-) Q2
: =0
QAn) Apa Ann=A

The determinant is equivalent to an nth

degree polynomial in A which
is called the characteristic polyomial of the matrix A. For a real
symmetric matrix all the eigenvalues are real.
Definition: If A is an n x n complex matrix with eigenvalues ) 12
1 £1<n, then

W =max | Ay |
is the spectral radius of A,
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3., Properties of Matrices

Theorem A,1: If A is any arbitrary matrix then

Al 2 PQ); [Varga (1962) p.10]
Theorem A.2: If A is an n x n matrix then

I8y = qewn
where A* is the conjugate transpose of A, [ varga (1962) p.11]
Definition: An arbitrary n x n complex nonsingular matrix A and an n-
dimensional vector X can be combined as g? A X to form a homogeneous
second degree expression in terms of the components of X which is called

a quadratic form, If the value of the quadratic form is positive for all

non-trivial X then the form and the matrix A are said to be positive
definite.
Definition: If A is a n x n complex matrix such that any two elements

situated symmetrically with respect to the principal diagonal are complex

conjugates, aji = Zij, then A is called a Hermitian matrix, Notable
characteristics are:
1. Diagonal elements must be real,
2, Any symmetric matrix with real elements is a Hermitian matrix,
3. The eigenvalues of a Hermitian matrix are real,

4, The eigenvalues of a positive-definite Hermitian matrix are
positive,

Definition: A square matrix A is diagonally dominant if

[Qi} | 2 Zf] a;; |

J=l,

JE?
If the strict inequality holds for all i, A is said to be strictly
diagonally dominant.
Theorem A.3: If A is a Hermitian n X n strictly diagonally dominant

matrix with positive real diagonal entries, then A is positive definite,
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[Varga (1962) p. 23 _]
Theorem A.4: If A is an n x n Hermitian matrix, then
[1&l] = F(ﬁ) [Varga (1962) p.i1]
Theorem A.5: If A is an n x n complex matrix, then A is convergent
if and only if
p(a) <1 [Varga (1962) p. 13]
Thus, we see that if the matrix A in Eq. (A-1) is symmetric and
positive definite, then A is convergent if the spectral radius of & is
less than 1. In the next subsection the convergence rates of several

jterative methods will be considered.,

L. Convergence Rates of Iterative Methods

The system of linear equations (A=1) can be written in the form
(I-¥)U=F (a-3)
where M is an n x n complex matrix and I is the identity matrix, If
(I - M) is non-singular a unique solution vector U exists, Consider
an iterative method for the solution of Eq. (A-3)
ylm) oy y(m 4 p m=1, 2, 3 (A=4)

For any vector iterate y_(m) the difference g(“) -U= _l;_(m) is a measure

of the deviation of the vector iterate from the solution vector. The
(m)

error vector E can be written in terms of the preceding error vector

g®) = y glu-1)
This is obtained by subtracting (A-3) from (A-4) and it can be readily
o 5@ - ya (o)
From Theorem A.5 we conclude that the error vectors E(m) will tend to
zero for an arbitrary E_(o) if and only if M has a spectral radius e(§)< 1,
Theorem A.6: If A and B are n x n matrices, then

(1) &[>0 or £=0;
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(2) if k is a scalar, ||k &l = |x | [l&a]l;

() |la+B| <|l&]l + &l s |

W) [|aBll < |Ia]l |IB]ls

(5) |AU|] £ ||&]| | U]l for all vectors U of n components,
Also, there is one nonzero vector V in the n-dimensional vector space
such that

Nagl =fla)llzil [vargs (1962) p.9 ]

Since the solution vector iterates U™ and the associated error
vector iterates g‘m) are n-dimensional, Theorem A.6 can be used as

Justification for
) = g < e 1l 15
(m) |
@y s s
” = ” 2 —“'m—”—‘

Hence, l']?ll as an upper bound estimate of the ratio of ||§(m)|] to

||§§°)]| provides a basis for the comparison of different iterative
methods, If M ie a Hermitian matrix then

m
e = [ew)]
Definitions Given two n x n complex matrices X and B. If for some m > O,

|| 2]| <1 then

o - -fa [t ] el )

is defined as the average rate of convergence for m iterations of the

matrix N, [Yarga (1962) p.62._] The convergence of B is said to be
iteratively faster than the convergence of M when R(g"‘) >R (f).

The significance of R(!“) as a measure of the average rate of convergence
may be seen by consideration of the average error reduction factor per

iteration T, ”E(m)” )ﬂ'
T E J
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For the case when ||M"|| <1
o 5 = R (4-6)
where e is the base of the natural logarithms, Thus R(M®) is the
exponential decay rate for the upper bound of the average error re-
duction O, per iteration in an m-step iterative process,
Let N_= 1/R(M®). Substituting into (A-6) we find

o <
from which we conclude N is a measure of the number of iterations
required to reduce the norm of §(°) by a factor e,
Theorem A.7: R(Am), the average rate of convergence for m iterations
of an n x n convergent matrix A has a limiting value of -fn F(A) as
m increases without bound. [Va.rga (1962) p.67]
Definition: The asymptotic rate of convergence R.o (4) is

Reo (A) ==fn p(8)
Corollary: Let A be a convergent n x n matrix, then

RBoo (4) > R(AM)

for any positive integer m,

For Hermitian matrices A and B, the spectral radii may be used
for comparison of rates of convergence, since by Theorem A.4,

P(A) < Q(E) < 1 implies “ AmH <] §m[|<1 and hence

R (A™) > R(B™) , so that of two convergent Hermitian matrices, the one
with the smaller spectral radius will have a faster average rate of
convergence for any m.

It should be noted that though || ¥" ||— O a8 m—>o0e for two
iterative schemes with matrices A and B, it is possible in general that
for a selected value m,, matrix A may be iteratively faster than B but

for a second value my, B may be iteratively faster than A,
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Identification of the convergent iterative methods for biharmonic
difference equations is aided by consideration of the following three
theorems, The form of matrix A in Eq, (A-1) is the determining factor,
Theorem A.8: If A is a strictly diagonally dominant n x n complex
matrix, then the associated Richardson's and Gauss-Seidel matrices are
convergent and the corresponding methods are convergent for an arbitrary
initial vector g(o). [Varga (1962) p., 73. ]

The matrix A associated with the biharmonic difference equations
is not strictly diagonally dominant and Windsor (1957) has shown that
Richardson's method is not convergent for the biharmonic equation,
Theorem A,9: If A=D+G + gf is an n x n Hermitian matrix where D
is Hermitian and positive definite and (D + G) is nonsingular, then
the Gauss-Seidel iterative method is convergent if and only if A is
positive definite, (g? is the conjugate transpose of G). [Varga p.78.]

Theorem A.10: If A=D + G+ G is an n x n Hermitian matrix and D is

Hermitian and positive definite, then the successive overrelaxation
method 1s convergent for any arbitrary Q(o) if and only if A is
positive definite and (D + G) is nonsingular for 0< W< 2,
[varga (1962) p. €0. ]

5. Optimum relaxation factors

Definition: An n x n matrix P which has zeroces and ones for elements
and only ;ne non-gero element in each row and each column is called a
permutation matrix,

Definition: Given A an n x n complex matrix with n > 1, if there exists

an n x n permutation matrix P such that
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|0
1>
~d
]

e 422
where A,, and A, are square matrices of order k and (n=k) respectively,
then A is called reducible, Otherwise A is called irreducible.
Theorem A.11: If A is an irreducible n x n matrix, then: (1) A has a
positive real simple eigenvalue equal to e(g) the spectral radius;
(2) Increasing the value of any element of A will increase e L); 3
Corresponding to the eigenvalue  (A) there is an eigenvector with all
its elements positive. [Thoorem of Perron and Frobenius, Varga (1962) p.BO]
Definition: If A is an n x n irreducible matrix with non-negative
elements which has a single eigenvalue of modulus e(A_) , it is said to
be primitive, If A has k eigenvalues with modulus of e (A) then A is
cyclic of index k, k > 2. Each eigenvalue of modulus e(A) is a
simple eigenvalue. [Varga (1962) p.35 ]

Definition: A square matrix A of order n is said to be weakly cyclic

of index k (k > 1) if an n x n permutation matrix P exists such that

0 0 o A,
A, 0 0 0
T /)

BAP =10 4, 0 ]
T '
N
\ L}
0O O A0
= = RS

where the null diagonal submatrices are square. A may or may not be
reducible., A matrix can be simultaneously weakly cyclic of different
indices. [Vl.rga (1962) p. 39 ]

Again consider the matrix equation
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AU=E

where A is an n x n complex matrix which can be partitioned

Ahl 'A-"z - - - =i,N
BpvBaa— = - Ay

.A- = (A‘?)
b £~)' ANJz - - - ANJ”t

where the square diagonal submatrices are nonsingular, Let D be formed
of the submatrices 51,1’

-

A, 0 0

0 4, 0
E -

2 9 A"I’Y.

then D is also nonsingular, and the matrix equation can be written
(A-D)U+DU=F

or (A-8)

I'3

where B =1 - Qf1 A is the iteration matrix for the block Jacobi iterative

method
(m+1) B g(m) + o ¥

The matrix B is called the block Jacobi matrix of A.

Definition: If the block Jacobi matrix B is weakly cyclic of index p;

then A is p-cyclic in the partitioned form (A-7). [Varga (1962) p.99 ]

Definition: The p-cyclic matrix A is consistently ordered if all the

eigenvalues of the matrix
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_B_(k) = ki + k"(P'1) G
are independent of k for k # 0, where B is the block Jacobi matrix with
sero diagonal elements, H and G are respectively strictly lower and
upper triangular matrices such that B = H + G, [Vl.rga (1962) p. 101]
If the partitioned form of A is block tri-diagonal, it is con-
sistently ordered and 2-cyclic. The optimum relaxation factor (.db
which maximiges the asymptotic rate of convergence of the block successive
overrelaxation matrix for p = 2 is given by
Wy = —_—
I ++/1=p*p)
where B is the block Jacobi matrix, [Va.rga (1962) p, 110 ]
For the cyclic Chebyshev semi-iterative method the acceleration

parameters are given 2 C N(,/ (
W, = __Te.ﬁll :
e(B) Cm(ﬁ(a))

where B is the block Jacobi matrix, [Varga (1962) p. 138]

The alternating-direction implicit method for the case of a fixed
acceleration parameter r is a slight variation of Eq. (67) p.33

yl=+) - B g(‘) +8.F

If there is a block Jacobi matrix Bp associated with R, the asymptotic
rate of convergence will be a function of ez(l_sa).

Thus we find that the optimum relaxation factors for successive
overrelaxation and the cyclic Chebyshev semi-iterative method as well
as the acceleration parameter for the alternating direction implicit
method are functions of the spectral norm of an associated block Jacobi
matrix, In fact Varga (1962) shows that the three iterative methods

considered have the same asymptotic rates of convergence for Laplace's

equation solved for a square,
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There appears to be a dearth of good approximations of (’ for
irregularly shaped regions, It is common practice to use approximations
based on the numerical results obtained in the iterative solution,

Consider point successive overrelaxation., Forsythe and Wasow
(1960) p. 250 show that the eigenvalues Ay of the matrix of the simplest
iterative scheme, the point Jacobi method; are related to the eigen-
values 711 of the matrix of the successive overrelaxation method by
(N )\: o This is applicable to the eigenvalue )\1 of maximum
modulus and hence to the spectral radius of the successive over-
relaxation matrix, The optimum relaxation factor as derived by Forsythe

and Wasow p, 253 1s

wbx —i—-— 2 A-9
l++/T= e 1+9/1— 7, -9)
The error vectors from one iteration to the next are related
-1
1E™) < el 1=

where M is the appropriate matrix for the iterative scheme being

considered, The dominant eigenvalue 7, is the limit of || Q(m)"//ﬂgﬁ”'1)“
as m increases without bound, Any vector norm of E may be used. One
computational procedure for estimating ), coneists of starting the
"problem solution with W= 1, then after a number of iterations approxi-
mate 7,
M= E(m') N/ II_E_(m'” I (A-10)

and solve (A-9) for an approximate value of J,.

Another approach to approximating Wy consists of selecting
various values of (W, running through several iterations for each
and then by comparison of results, select the best,

The procedure used in the ISOPEP code consists of computing a set



114
of values for W obtained by applying Equations (A-9) and (A-10) every
10 or 20 iterations. This has the advantege of being an automatic
procedure, and reasonably good results have beea obtained for a number
of probim. Approximating (J,, numerically as the solution proceeds is
more computing art than acienco; Better methods for determining optimum
relaxation factors would contribute much to the usefulness of iterative

methods,



APPENDIX B

ISOPEP-A FORTRAN PROGRAM FOR THE ITERATIVE SOLUTION

OF PLANE ELASTOSTATIC PROBLEMS

The system of computer programs named ISOPEP was written as a
general system for the analysis of plane elastostatic problems, It
includes a set of FORTRAN=II subroutine subprograms and a main program
which provides linkage of a selected subset of these six subroutines
and additional boundary-value subroutines which must be provided for
each problem,

This appendix includes a brief description of the general sub-
routines, six examples of boundary-value subroutines, instructions for
preparing input data for the program, a sample of the output; a flow
diagram and listings of the FORTRAN Source decks,

ISOPEP

This name is used for the system of programs and also for the
main program which provides linkage between the subroutines., The
system was designed for use on an IBM 1620 with a 20 K main memory
and a CDC 3600, The number of subroutines linked by ISOPEP may be
reduced to increase the storage available for arrays. Only the Call
statements in ISOPEP and all Dimension statements need to be changed.
Only one of the three iterative method subroutines SORLX, ADI or CHEB
is normally used.

QUTIN
OUTIN is the input and output subroutine, It provides for the

initialisation of arrays. When problems using a relatively coarse mesh
115
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spacing have converged, the point values are stored for later use in
calculating an initial stress-function distribution for a finer mesh.
CHANG

The initial stress function distribution for the second or sub-
sequent mesh refinements of a problem can be computed by interpolating
between the values obtained from an earlier coarse-mesh solution. The
problems may be solved consecutively, with the earlier solution saved
in memory, or the preceding solution may be read from punched cards,
Execution of this option is controlled by the input of an appropriate
value of the control number MESH.
STRESS

The stress components c?;, CT; and ’T;y will be computed and
punched out on cards if specified by one of the options determined by
the input of a control number NSTRS. The difference equations used to

calculate the stress components at each interior point are

@” = [ Ul;J'H-ZU?',J +Ui,4'-|]/hl ’
O\Yij — [ U)'.H‘J'_ZUI:’J' + Ui-,’jl/hl s

,T;YH z —[U;'HJHT U}'H,J'-T Ui-l,J'~H-1-'ul'-l,-"-ll/;hL ‘
SORLX
SORLX is the subroutine for the point successive overrelaxation
iterative method., This has been adopted for general problems with
irregular boundaries., As written, it is limited to simply-connected
regions for which all mesh lines,parallel to one of the Cartesian
coordinate axes, are continuous segments connecting two boundary points,

ADI
The alternating-direction implicit method has been written as twe
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subroutines ADI1 and ADI2, The second is executed immediately after
the first., The specification of two subroutines makes more storage
available for arrays when the programs are run on the disk-oriented
IBM 1620, The solution domain is limited to rectangular regions,
CHEB

The cyclic-Chebyshev semi-iterative method subroutine has been
run only on the CDC 3600, It is written in FORTRAN II and could be
divided into two or more subroutines for a computer with a limited
main memory., Only rectangular regions can be treated with this program,
It is necessary to specify an even number of interior mesh rows for
this subroutine.
PB(N)BD

The values of the stress function at points on the boundary must
be computed only at the beginning of the problem solution, This is
part of the initialization of the solution array. A subroutine of
this type must be provided for each problem, Examples are included
for 1 <N <6,
PB(N)EX

Derivative boundary conditions must also be provided for each
problem. These may be treated by the introduction of exterior points
or with special finite-difference equations for each point on the
boundary. Both approaches are illustrated in the examples included
for 1 < N <6, This subroutine must be executed during each iteration.
Input Preparation

The input te the problem can be provided on a single 80 column

card unless point values of the stress function Ui are provided. The

J
deck.of stress function values would be placed immediately after the
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ITERATIVE SOLUTION OF PLANE ELASTOSTATIC PROBLEMS
FLOW DIAGRAM OF ISOPEP

- INITIALIZATION
START > KPE=!  INOT=1
I
OUTIN ‘ PRINT Title of
Read CALL OUTIN )}<1 Solution Method
Toput Date \/\/
Qmsn 227
g CALL CHANG
No, - \
PBNBD ’
Calculation
of Boundary CALL PBNBD CHANG
Values Ug v Interpolation
Y Routine for
> Initial Uj 4
N = N+
A [ .
PBNEX
Calculation
< CALL PBNEX ﬁ: of Exterier A
Values Ugkxt
| | STRESS
CHEB Routine for — g;l;:i::ion
Cyclic Chebyshev ) Components
Semi-iterative Meth, [\ P

SORLX Successive
Overrelaxation
Jterative Routine

ADI Alternating
Direction Implicit
| ITterative Routine

INOT = 2 ( NSTRS

\ 4
Yas

!
W
OUTIN : Has Solution
Print (or Punch) | § CALL OUTIN >_'-C Converged?
[ Output [
. Jro
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control card which includes identification, dimensions and control

numbers for input and output options. The stress function values must

be provided in agreement with the FORMAT (I5,7F10.7/(5X;7F10.7) ).

Output is punched in this form in order to simplify restart procedures,

The FORMAT specification (F10,3,F10.8,2F10,4,10I4), is used for

the first card.

The following list gives the use and symbolic name

of each of the 1, numeric entries on the card.

Column | Symbolic
Numbers Name Function
1=-10 PRNO Problem number for users identification,
11=20 DE Convergence criterion; usually in the range 1O®5m10°7.
21=30 |RFA Relaxation factor
31=40 SPY1J lll%llll Norm of the error vector in the preceding
iteration when restarting., Set to 1,0 initially,
INETNA MX Number of mesh intervals along the x-axis,
4L5-48 MY Number of mesh intervals along the y-axis,
49=52 IF (2) If y = 0 is an exterior boundary
(3) If y = 0 is a line of symmetry
53-56 JF (2) If x = 0 is an exterior boundary
(3) If x = 0 is a line of symmetry
Note: Two mesh lines exterior to the domain are reserved
for derivative conditions if the boundary is a line
of symmetry otherwise only one line is reserved.
57=-60 N N=Q: Only one card of input is required. The initial
value of the stress function at all interior points
is set to 0.1,
N>O: Count of number of iterations completed. A deck of
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Column |Symbolic
Numbers Names | Function

point values of the stress function must be provided
immediately following the first data card.

N<O: This is the control number which terminates the
processing of a sequence of data sets, A final
data card should always be provided with this entry.

61-64 NT Maximum number of iterations permitted. This is the

choice of the user and provides for punched output fer

restarting,

65=-68 NOUT Ouiput will be printed after NOUT iterations and

every subsequent set of NOUT iterations,

69-72 |ND ND > NT: The initial value of RFA will be used for all

iterations,

- ND < NT: The relaxation factor will be computed and

changed at the end of every ND iterations.

73=76 MESH (1) No mesh refinement calculations

(2) Read in values of the stress function from a prior

problem and interpolate to find an initial stress
function distribution for the current problem,

Another control card must follow the first card,

(3) Use the stress function stered in memery from the
preceding problem as the basis for interpolating te
find an initial stress function distribution for
the current problem., The user must be sure there is
at least one problem specified on input cards pre-
ceding this one.




N ————— N ||| ———
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Column | Symbolic
Numbers | Names Function e N o
77-80 NSTRS < O Punch specified stress compcnents
INSTRS| = 1 Print (ard punch) G
|NsTRS| = 2 Print (and punch) o3, and Oy
InsTRS| = 3 Print (and punch) Tiys Oy and O
The second control card is used only if MESH = 2 on the first
card, The four integers read in with a (4I5) FORMAT specification pro-

vide the dimensions of the problem solution provided on the cards

following this control card and the number ¢f mesh spaces along the y-axis

of the problem to be solved,

Column |Symbolic

Number | Name ction

1=5 IP Number of mesh columms of input data
6~10 JP Number of mesh rows of input data
11=15 M1 MY for the input solution

16-20 M2 MY of the problem to be solved,

Example of Input Data

First half of the first card

Card columms

Second half of the first card

0 1 2 3 L
1231,56789012315678901234567890123L567697]
1,190 . 00001 1.5 1,0

Card columns
5 6 7 8

1231,567890123L557890123455789012 34567890

5

10 3 2 1 200200 10 1 =3
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IBM 1620 OUTPUT OF SAMPLE PROBLEM

$3J0B 5
$$FORX53 1
00784 CORES USED

SUCCESS IVE OVERRELAXATION

ISOPEP

C L DAVIS

15207 NEXT COMMON

0 SOLUTION OF THE BIHARMONIC EQUATION C.L. DAVIS
PROBLEM CONVERG, MESH SPACES MESH
NUMBER CRITERION MX MY |IF JF STRESS
1.190 .0000100 s 10 3 2 1 -3
RELAX. SUM OF ITERATIONS POINTS NOT
FACTOR ERRORS COUNT MAX.NO. CONVERGED
1.5000 1.0000 0 200 50
1.6352 7275 10 200 LS
1.6324 L1020 200 bS
1.5618 .7068 30 200 LS
1.4707 .1865 kO 200 LS
1.476% .0372 50 200 )
1.558 .0136 60 200 bl
1.598 .0082 70 200 &3
1.5832 .0045 80 200 Lo
1.5579 0019 90 200 30
1.5258 .0006 100 200 2k
1.4878 .0002 110 200 -9
1.190 .00001000 1.4878 .0001 5 10 3 2 116 200
200 10 | - S .
STRESS FUNCTION
2 3.6000000 3.4200000 2.8800000 1.9800000 .7200000 -.7200000
3 3.5072542 3.3295735 2.7961993 1.9099653 .69640k4 -.7200000
b 3.3027094 3.1353795 2.6327760 1.7980644k .6555203 -.7200000
6 2.6981876 2.5725967 2.1885523 1.5266087 5626013 -.7200000
. 2.3065274 2.2096326 1.9063169 '.3587928 .50680“7 -.7200000
1.8437695 1.7788512 1.5669582 1.1528863 .4365079 -.7200000
9 1.312175k 1.2792279 1.1621542 ..8963012 .3““355' -.7200000
10 7482642 .7410047 ..7057714 .5860360 +2259561 -.7200000
11 .2501268 .25L2441 ,2625820 .2490407 .0918619 -.7200000
12 0.0000000 0.0000000 0.0000000 0.0000000 0.06000000 ~.7200000
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STRESS DISTRIBUTION
PROBLEM NUMBER 1.190

~36,0C00
-35.5362
-33.4664
-29.8952
-ZSoﬁaeg
-19.3796
-32098h2
-605898
-l.hszo
.8234
0.0000

N=0QWVWO~NONTILWN

b =B cmd

-38.5493
_nﬂoﬂ799
-60959h
-5.6243
-600277
-7.1097
-608836
-302317
6.5773
24,8010
50.0252

N =0O\O NV WK

ot =B b

0.0000
.000%
.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

N = O\W ON O\ SWN

oD b and

NOTE TITLES ENCLOSED IN PARENTHES[S ARE

-360000g
-3505693
-33.5273
-30.1843
-2508h53
-20.6420
-iuo697u
-8.47126
-207973
.4220
0.0000

-ﬂeoossu
-ﬂ093767
—602@87
-5.0219
-5.6L463
-6078ﬂ7
-6.88&3
-3.8599
5.1462
23.2516
50.8487

(THE

0.0000
1.2516
2.7566
L.0074
5.0144
5.8206
6025&7
5.8579
400639
1.0623

123

DIMENSION = § X 10
(THE X COMFONENTS OF STRESS)
-36.0000 -36.00080 -18.0000
-35,2859 -~32,7326 -20,2843
-33.2108 -3U,7832 -23.2976
-30.6556 -30.1374 =27.1415
-27.7899 -30,2¢63 -39.8593
-24,4208 -30, 4464 -37.L816
-20,2178 =313,2306 ~-44.,07129
14,8779 -28.6033 -51.2408
-8.L500 -:L.0348 -58.5874
-20“879 -ﬂu03637 '650&683
06.C0CO0 . 6,0830 -72.0C00
(THE Y COMPONENTS OF STRESS)

~16.76%2 ~14.00693 -L,7191
-709622 _“93866 ‘ﬂ07288
'hoﬂS?@ “ﬂ.6253 -03973
-30&235 -H;SU46 -03203
-4,3%05 -2,4515 -.7735
-5,7123 =~3.8090 -1.4500
_605hh5 -500678 -2-ﬂ856
-£.1578 -5.3678 -2.6246
1.3193 -2.5734 -1.5695
18.0607 8.7956 L.,2232
52.5163 49,8081 18.3723
XY SHEAR STRESS COMPONENTS)
0.8000 0.G200 0.C000
205673 L.5686 4.54L83
5,250 y.0668 6.0C13
7°L83“ 8./826 6.78¢3
8.9587 10,4409 7.7719
10,5235 12,3875 9.3430
11.6938 14,5428  171.5622
11.7749 1€.2658 Th.1712
- 9.L430 16,1769 16,1815
3.87 4 17.9953 14,6509
0.0000 ..G.0000 0.0000

0.0000

0.060C0
-ho7ﬂ9ﬂ
-“208959
-21.8675%
-3“0&?98
-42,6391
-56.6584
-75.1290
-96,.81088
-n2506276
-1 44,0000

0.0003
00,0420
¢.C0C0
0.0060
0 OMU

0.0GCT
0.00G0
¢.0020
0.C0CC0
0.02CC
0.0800

-57.0898
. 0200
0.0302
0.G3C0
0.CG422
C.0Cx0
0.0G00
0.0C0G
0.0000
N,05C0

9L.7034

NOT FART OF OQUTPUT
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LISTING OF ISOPEP FORTRAN SOURCE DECKS

PROGRAM
ISOPEP FOR THE IBM 1620
OUTIN o
STRESS

CHANG

SORLX

ISOPEP FOR THE CDC 3600
AD11 ’
ADI2

CHEB

PB1BD

PB1EX

PB2BD

PB2EX

PB3BD

PB3EX

PBL4BD

PBLEX

PBSBD

PBSEX

PB6BD

PB6EX

SOR3

SORL

SORS

TABLE OF SYMBOLS

PAGE
125
125
126
129
130
131
135
136
137
128
128
140
141
142
143
144
145
145
146
132
135
146
148
148
149



c ISOPEP FOR THE IBM 1620
c THE DECKS LISTED HAVE BEEN RUN UNDER THE MONITOR |
c SYSTEM ON AN IBM 1620 WITH 20K MEMORY AND A 1311 DISK FILE.
c DECKS ARE LISTED IN APPROPIATE ORDER WITH MAIN DECK LAST,
340003200701360003200702490245251 1963511382102
$3JOB 5 OUTIN 13717765
$1FOR 53
*LDISK
SUBROUTINE OUTIN
c INPUT AND OUTPUT SUBROUT INE
DIMENSION U(04,24),1K(24),1L(2%),0(5),P(13,7 ),ui(13)
COMMON U, IK,D,MX, IF, 1A,M1.MY,JF,JA,MJ.N,NOOT ,ND,NT ,NDL ,RFA,RF1,
1 SPY1J,PRNO,DE,DI,KPE, INOT ,MESH. NSTRS.NINC, 1P, JP,AMI, IL,P,U}
10 FORMAT' (F10.3,F10.8, ano.u o014}
11 FORMAT (F. 8.3,F11,7,15,5! u/) .
12 FORMAT soHo SOLUTION OF THE BIHARMON!C EQUATION
119H C.L.DAVIS/)
lh FORMAT (4SH RELAX.,  SUM OF ITERATIONS  POINTS NOT/
W2HFACTOR  ERRORS COUNT MAX.NO. CONVERGED/)
15 FoﬁnAT (4iH PROBLEM CONVERG.,  MESH SPACES  MESH/
usununeea CRITERION MX MY IF JF STRESS/)
16 FoﬁnAT(zFu 4,15,218)
17 FORMAT (17H STRESS FUNCTION/)
20 FORMAT(15,7F10.7/(5X,7F10. 7;3
22 FORMAT(I5.7F10. 7/ sx 7F10.7
IF(1-INOT133,80,8
80 READ 10,PRNO,DE, RFA SPYJ,MX MY, IF,JF,N,NT ,NOUT,ND ,MESH,NSTRS
PRINT 12’
" PRINT 15
PRINT 11,PRNO,DE,MX,MY, IF,JF ,MESH,NSTRS
PRINT 1k
KmMX*MY
PRINT 16,RFA,SPYIJ,N, NT, K
| AmMX+ | F
JA=MY+JF
MlmlA+]
MJ=JA+1
NDL=ND._
NINC=NOUT
IF(MESH-3) 91,94, 9#
91 DO 92 J=i,13 .
DO 92 |=f} 7
92 P(J 1)=0.0 .
9k DO 101 J=i ,MJ
oo uoo Il Ml
100 U(l, J);O.
101 |K§J =lA
IF(N) 200,103,102
102 DO 104 JwJF,JA
104 READ 20, K,(U(1,J),l=1F,A)
NDL =N+ND
103 RETURN

125
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IF( KPE ) 90,90,119
IF (SENSE SWITCH 1§ 90,121
IF(N-NOUT) 123,126,127
IF(N-NT) 115,89,89
NOUT=NOUT+NTNC
GO TO 121
89 INOT=1
GO TO 90
126 INOT=3
90 ;g::} }9,PRNO,DE,RFA,SPYIJ,MX,MY.IF,JF,N,NT,NOUT,ND,MESH,NSTRS
DO 105 J=JF,JA
105 PRINT
IF(SENSE SWITCH 1) 1
111 IF(INOT-2) 112,110,1
110 IF(KPE) 115,116,11
200 STOP . ..
MX MUST BE LESS THA
SOLUTION IS TO B
116 IF(MX-6 ) 117,117,
117 DO 118 JmJF,JA . .
Kad=JF+1
DO 118 I=IF,IA
Lul=1F+1
118 P(K,L)=U(1,J)
| PuMX+1
JP=MY+1
AM1=1 /D1
114 IF(NSTRS) 112,115,115 .
112 PUNCH 10,PRNO,DE,RFA,SPYIJ,MX,MY, IF,JF,N,NT,NOUT,ND,MESH,NSTRS
PUNCH 17
DO 113 JmJF,JA
113 PUNCH 22,J,(U(I,J;,;-IF,IA)

-t ot o et b
NN =W
SNW = \O W

u(1,J), I =IF,I1A)

S P

| IN THE DIMENSION OF P(J,1) IF THE
SAVED FOR THE NEXT PROB.

-t
&

" IF(SENSE SWITCH 00,115
115 RETURN )
"~ END N ‘
$3J0B 5 STRESS 10/17/65 CLD
$3FOR 53 |
*LDISK

SUBROUT INE STRESS
STRESS CALCULATION SUBROUTINE 'y, .
DIMENS 10N (14,21 IK(ZA),ILLZ#),D(S).F(13.7 ),U1(13)
DIMENSION S{145,sx{14),TXY(14) . |
COMMON U, IK,D,MX, IF, IA.MI MY, JF,JA,MJ,N,NOUT,ND,NT,NDL ,RFA,RF1,
1 SPYIJ,PRNO.DE,D1,KPE, INOT ,MESH.NSTRS.NINC, 1P, JP,AM1, IL,P,U1
14 FORMAT }§? PROBLEM NUMBER,F&.3,5X,12H DIMENSION =,13,2H x,13/
27 FORMA | o
30 FORMAT (21HO STRESS DISTRIBUTION/)
40 FORMAT (15, 7Fuo.u/isx. 7F10.h;;
42 FORMAT (15, grlo.u/ 5X, 7F10.4
805 Al=1./(Di*D1 | o
PRINT 30
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PRINT 14,PRNO,MX MY
DO 814 JaJF JA
820 Kis=s!K(J )
. K2=IL(J)
IF(J-1L(3)) 822 821,822
821 K2=3
822 DO 812 l=IF,Ki
. IF (1-K2) 8ﬂﬂ 8ﬂ0,8ﬂ0
811 s(1)=0.0 . .
GO TO 812
810 S(1)=(U(1+1,J)+U(1~- ,J) -2, *u(u J))*Al
812 CONTINUE .
813 K=K1
IF(NSTRS) 815,814,814
815 PUNCH 42,J,(S{L) , ,L-nr K)
814 PRINT J,(S(L),L=lF,K)
* PRINT 27
- IF( ABSF(NSTRS)-2) 832, 833 833
833 DO 844 J=JF,JA
Ki=miK(J
. K2=IL(J
IF(J-iIL(3)) 835,834,835
834 K2=
835 no 41 I=lF,K1
1-K2) 839 84@,840
839 sx 1)=0,0
GO TO 841
840 SX(1)=(U(!,J+1)+U(I, J-ﬂ) 2.%U(1,J))*Al
841 go:rlnue
IF(NSTRS) 842,844,844
842 PUNCH 42,J, sng L-HF K
844 PRINT ho J sx(L L-ﬂF K
.. PRINT 27
IF(ABSF(NSTRS)-3) 832,845,845
845 DO 854 J=JF,JA
Ki=iK J)
K2=(L(J)
IF(J-IL(3)) 847,846,847
846 K2=3
847 DO 850 Is=IF K
IF(1-K2) 848 aus 849
848 TXY(1)=0.0
GO TO 850
849 TXY(I)-(U(I+I J+n)-u(u 1,d+#1)=U(1+1, J-u)+u(|-n J-1))*Al /4,
850 §o§}|NUE
IF(NSTRS) 852,854,854
852 PUNCH 42,J, éTXY(L ,L=lF,K)
854 PRINT uo,J TXY(L) ,L=IF K)
832 EE;URN



$$+J0B
$+FOR

*LDISK

C CALCULATION OF BOUNGARY VALUES
1K(24),1L(24),0(5), P(13 7),u1(13)

1 SPYIJ, PRNO DE Di

—t ad
00O
o oN N

ol amb
-l amb
+O

115

$+J0B
$$FOR
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5 PBIBD 10/17/65

53
SUBROUTINE PBYBD

DIMENSION U(14

24)
DIMENSION PH(1k,2

4

PROBLEM 1

CLD

COMMON U, IK,D MX, IF, 1A, M1 MY, JF,JA,MJ,N,NCUT ,ND,NT ,NDL ,RFA,RF1,

EQUIVALENCE (U.PH}
A=MY

D1=10/A

X=0.0

DO 103 1=3,I1A

PH( 1,JA)=0.0
IF(X=.4) 103,103, 1ou

3 X=X+D1

K=l
DO 105 I=K,IA

PH( I, JA)-(Z *X*kX-1.6%X+. 32)*(-36 )
X=X+Dl ‘

DO 108 J=2,JA

PH(IA,J)= -.72

X=0,0
DO 110

IF X- L
X=X+D1
K=|

DO 115 1=K, IA

PH(I1,2 )=(. h*x- 18)*(-36.)
X=X+D1

RETURN

END

5*X*X—.1)*(-36 )

1=3, 1A
2 )=(.
) 110,110, 114

5 PBIEX 10/17/65

53

*LDISK

c

117

116

1 SPYIJ, PRNO DE D1

SUBROUTINE PB1EX

CALCULATION OF EXTERIOR VALUES ‘
DIMENSION U(14 zu)slx(zu) ,IL(24),D(5),P(13,7 ),U1(13)

DIMENSION PH(I

KPE, INOT ,MESH, NSTRS NINC, 1P, JP,AM1,

PROBLEM 1

IL,P,U1

CLD

COMMON U, IK,D,MX,IF,l1A Ml MY, JF JA, MJ N,NOUT,ND, NT NDL,RFA,RF1,

EQUIVALENCE (U, PHS

DO 117 J=2,JA

PH 2 J) PH$4 J;
J)=PH(5.J

PH Ml J)—PH(IA-I J)-0.8*D1*36.

D0 116 I=1

PH(I, 1)=PH(|

PH( I MJ)_PH(E JA-u)

RETURN

END

KPE INOT MESH NSTRS NINC IP JP AMI

IL,P,UI
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$$+JOB § CHANG {0/17/65 CcLD
$$FOR 53
*LDISK
SUBROUT INE CHANG
C CHANGE MESH SPACING
DIMENSION U(1k,24),1K(24), L(ZL),8(5),P(ﬂ%a7 ),U1(53)
COMMON U, [K,D,MX, 1€, LA M] MY, JE, 8 MJI.N,NGUT,ND,NT,NDL, RFA RF1,

1 SPYI[J PRNO DE ol KFE,ﬁNO MESH NSTRS NﬁNC uﬁ JP AMi,IL uu
100 FORMAT(h 15)
101 FORMAT(15,7F10.8)
102 FORMAT( 5,7Fﬂ© 7/{5X,7F10
103 FORMAT(I15,7F10.7/(5X,7F10
iF(MESH=-2" 22,20, %2
20 READ 100, 1P,JP,M] M2
AM{ =M1
AM2=M2
DO 18 J=1,JP
READ 152
18 PRINT 9
GO TO 24
22 M2=MY
M1 =AM]+,000001
AM2=M2 .
24 D2=1,/AM2
D3=1] . /AMI
JA2=M2+1
N
L=0 -
YZ@.
6 =]
X“EOO
X2==D2
12=0
DY=Y2
JY=L+3
5 12=02+1
| Xm] 242
IF(12-JP )7, 7 10
7 X2=X2+4D2 .
DX=X2-X1
IF(ABSF(DX-D3)- G00001) 9,9,11
11 IF(Dx-D3) 8,9
8 Uj(12)=P(J, ﬂ)+DX*&(P(J 141)=P(J, 1)) /D3)+DY*((F(J+1,1)=P(J,1))/D3)
u(ix, JY)=U%(02) .
1F(12-JP) 5,5,70
9 l=i+1
. X1=X1+4D3
DX=X2-X1
IF(1-1P) 8 8,3@
10 L=l+i
PRINT 103,L,(uUt{02),02=1,JP)
IF(L-JAZ) 15,14,14
15 Y2=Y2+D2 .
IF(ABSF(Y2-03)~. @J@“@ﬂ) 12,12,16



N E— | S — S —
—— T — S— ——



130

16 IF(Y2-D3) 6,12,12
12 JuJ+1

Y2=Y2-D3

IF(J -M1-1) 6,6,14
14 RETURN

END

$3J0OB 5 SORLX 10/17/65 CLD
$3FOR 53

*DISK
SUBROUTINE SORLX
c POINT SUCCESSIVE OVERRELAXATION SORLX
DIMENSION U(14,24),1K(24),1L(24),D0(5),P(13,7 ),u1(13)
COMMON U, IK,D,MX, iF,1A,MI MY, JF,JA,MJ,N,NOUT,ND,NT,NDL ,RFA,RF1,
1 SPYIJ,PRNO,DE,DT ,KPE, INOT ,MESH.NSTRS.NINC, IP, JP,AM1, IL,P,01
10 FORMAT{2F10.4,15,218)
SYiJ=0.0
KPE=Q
KT=0
JB=JA-1
130 DO 140 J= 3,JB
IB=IK(J)~1
IC=1L(J)
DO 133 I=IC,IB
IM=1=1
IMM=[-=2
131 YiJ =,05%RFA*(8.%( U(14+1,J)+ U(IM,J)+ U(1,d-1)+ U(1,J+1))
-2.%( U(l+l J+1)+ U(IM J+15+ u( 141 J-I)+ U(IM J-1))
z = 0(142,J)="UCIMM, J)~ O(1,J+2)- u(l, - 2))-RFA* u(1,J)
Y2=ABSF(Y1J)
SY1JmSY | J+Y2
U (1,9)= U(1,J)+Y1J
IF (Y2-DE) 133, 132 132
132 KPE=KPE+1 .
133 CONT INUE .
C . ADD CARDS FOR SOR3, soau OR SORS BETWEEN STATEMENTS 133 AND 140
140 CONTINUE
~ RF1=SYI1J/SPYIJ

SPY1J=SY1J
134 IF (N-NDL) 137,136,136
136 NDL=NDL+ND .~

RFA=2./(1.+SQRTF(ABSF(1.-RF1)))

PRINT 10,RFA,SPYIJ,N,NT,KPE
137 RETURN .
END
$3J0OB 5 ISOPEP C L DAVIS 10/17/6
$3+FORX53 1
C PROGRAM ISOPEP
c ITERATIVE SOLUTION OF PLANE ELASTOSTATIC PROBLEMS

DIMENSION U(14,24),1K(24),1L(24),D(5),P(13,7 ),u1(13)
COMMON U, IK,D,MX, IF 1A, Ml MY JF, JA MJ,N, NOUT ND NT, NDL RFA RF1,
1 SPYIJ, PRNO DE on KPE INOT MESH NSTRS NINC |§ JP, AMI u1

5 FORMAT (28HI SUCCESSIVE OVERRELAXAT10ON/)
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50 INOT=1
RF“ -1 .
PRINT 5
KPE=1
CALL OUTIN
IF(MESH-2) 55,52,52
52 CALL CHANG

c NEXT INSTRUCTION ASSURES COMPATIBILITY OF SUBROUTINES ON IBM 1620
55 U(MI,MJ)=ABSF (S@RTF(1.0))
CALL’PB1BD 5
60 N=N+1
CALL PBIEX
CALL SORLX
INOT = 2
CALL OUTIN
IF( INOT-2) 50,68,60
68 ngKPE) 80,80,60 . .
80 IF(ABSF(NSTRS}-1) 50,82,82
82 CALL STRESS . .. .= .".
GO TO 50
END
*LOCAL, OUT IN, SORLX,, CHANG, STRESS ,PB1BD, PB1EX
12190 00001 1.5 . 1.0. § 10 3 2 0200 200 10
1.198. .00001 1.5 1.0 10 20 3 2 0 200 200 10
1.190 .00001 1.67 0000 .5 10 3 2 -1 200 200 10
c LAST THREE CARDS ARE EXAMPLES OF INPUT DATA
c ISOPEP FOR THE CDC 3600
¢ THE DECKS LISTED HAVE BEEN RUN UNDER THE SCOPE SYSTEM
C THE MAIN DECK IS PLACED FIRST. THIS IS FOLLOWED BY THE
c SUBROUT INE SUBPROGRAMS OUTIN, CHANGE, STRESS, SORLX,
¢ THE DATA.THE SAME SUBROUTINES AS LISTED FOR THE IBM 1620 ARE
C PBNBD, PBNEX AND THEN AFTER NECESSARY SCOPE CONTROL CARDS
¢ USED EXCEPT ARRAY DIMENSIONS ARE CHANGED AND THE FIRST THREE
c CARDS(%$JOB 5), ($#FOR 5), (*LDISK) ARE OMITTED. THE
c SUBROUT INES PBEBD AND PB6EX ARE LISTED. NOTE PB6BD USES
c COMPLEX TYPE VARIABLES WHICH ARE NOT AVAILABLE IN
c FORTRAN 11 BUT ARE AVAILABLE IN 3600 FORTRAN.
3#?5'2315"7"S°PEP6' 20.DAViS,C,L. 9/21/65 GROUP C
. .
PROGRAM ISOPEP6
c ITERATIVE SOLUTION OF PLANE ELASTOSTATIC PROBLEMS ..

DIMENSION U(64 64),!K$6h;,lL(6h),D(S).P(31.31).Ul(6k)
g&:ﬁgalgulgxg(sg)'gY?Asg' MY, JF,JA,MJ,N,NOUT,ND, NT ,NDL ,R
,D,MX, M, ,JA,MJ U NT NDL ,RFA,RF1

1 SPY1J,PRNO,DE,D1 ,KPE, INOT ,MESH NSTRS NINC, 1P, P, AN, IL,P,01 '
'COMMON"uxD, UYD’ . |

5 FORMAT (28H1 SUCCESSIVE OVERRELAXATION)

50 INOT=1 .
RF“ -I .
PRINT 5
KPE=1
CALL OUTIN
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LF(MESH=-2) 55,¢2,52
52 CALL CHANG
55 CALL PB63D
60 N=N+1

CALL PB6EX

CALL SORLX

INOT = 2

CALL OUTIN

IF( INOT-2) 50,68,60
68 IF(KPE) 82,8060
80 IF(ABSF(NSTRS)-1) 57,82,82
82 CALL STRESS

GO TO 50

END

INSERT SUBROUTINE OUTIN - CHECK ARRAY DIMENSIONS
INSERT SUBROUTINE CHANGE - CHECK ARRAY DIMENSIONS
INSERT SUBROUTINE STRESS - CHECK ARRAY DIMENSIONS
INSERT SUBROUTINE SORLX - CHECK ARRAY DIMENSIONS

SUBROUT INE PB6BD
BOUNDARY VALUES FOR REGION OF INFINITE PLATE WiTH A SQUARE HOLE
TYPE COMPLEX PHI,PSI,PDU,OMEG,DOMG,DOMGE,DPHI ,DPHIB,PS 1B, ZET
DIMENSION U(64,6k), IK(64S,1L(64),0(5),P(31,315,u1(6k)

DIMENSION UXD(6L4),0YD(64

DIMENSION DUX(62).DUY(62),X(62),Y(62),UBX(31),UBY(31)

COMMON U, IK,D,MX, IF, IA,M1 MY, JF . JA,MJ.N,NOUT,ND,NT,NDL ,RFA,RF1,
1 SPY1J,PRNO.DE,Di ,KPE, INOT ,MESH.NSTRS,NINC, 1P, JP,AM1, IL,P, U1
COMMON’ UXD, UYD

LAGRANGE [NTERPOLATION FORMULA FOR UNEQUAL INTERVALS

GRANF (XA) =UA* (
;(ﬁg;¥2)*(XA-xs)*(XA-xu)*(XA-xs))/((x1-x2)*(xu-x3)*(xv-xu)*(xa-xs))
<+

zi%e;%%)*(XA—XB)*(XA-X&)*(XA-XS))/((XZ-XI)*(X2-X3)*(X2—Xh)*(XZ-XS))
g(XA;fu)*(xA-XZ)*(XA-xu)*(XA-XS))/((x3-x1)*(x3-xz)*(XB-Xh)*(XB-XS))
+UD
g(xe;¥ﬂ)*(XA-XZ)*(XA—X})*(XA-XS))/((Xh-Xﬂ)*(Xh—XZ)*(Xh—XB)*(Xh-XS))
+U
9( XA=-X1)*(XA=X2)*(XA=-X3)*(XA-XL)) /((X5-X1)*(X5-X2)*(X5-X3)*(X5-X4))
C%R?F(RH,TH):(COSF(TH)/RH-RH**B*COSF(B.*TH)/6.+RH**7*COSF(7.*TH)/
156.)*R
ch{FgRH TH) =(SINF(TH) /RH+RH**3*S INF(3,*TH) /6 ,~RH**7*SINF(7.*TH) /
156.)*(~R
22 FORMAT (2014)
50 FORMAT (L48HO INFINITE FLATE WITH A SQUARE HOLE C L DAVIS//)
60 FORMAT (11HO THETA = ,F10.5,6HRHO = ,F8.2,15H NO BOUNDRY PT./)
PRINT 50 -
A=MX
Di=1,/A
R=1.17964523/3.
Pi=3,14159265
THETA=2 ,*Pi
LIM=37
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DANG=L (M-
DANG==P [ /(2,*DANG)
XMAX=1,0
YMAX=1 ,0
DLRO=-,05
DO 640 i=],LIM
RHO=1,0
IF(THETA-7.*P1/4,) 620,610,610
610 RﬂDXaXMAX-ABSF(CORXF(RHO THETA))
iF(RIDX) 616,630,612
612 RHO=RHO+DLRO
'F(.10-RHO) 610,610,614
614 PRINT 60,THETA, RHO |
GO TO 630
616 DO 618 K=1,50
DRO=((CORXF(RHO THETA) /XMAX-1, )*RHO) / (R* (RHO** 7*COSF (7 .*THETA) /7 . -
12, *RHO**3%COSF (3 . *THETA) /3. ) /XMAX=1.)
nF(ABsr(oRo)-.oooooou) 63@ 630,618
618 RHO=RHO-DRO . o
GO TO 614
620 RIDY=YMAX-ABSF(CORYF(RHO,THETA))
IF(RIDY) 624,630,622
622 RHO =RHO+DLRO .
IF(0.1-RHO) 620,620,614
624 DO 626 K=1,50
DRO-((CORYF(RHO THETA) /YMAX-1.)*RHO) /(R* (RHO**7*S INF(7 . *THETA) /7 . -
12, *RHO**B*SHNF(B *THETA) /3. )/YMAx-u )
IF(ABSF(DRO)-.OOOOOOH) 630,630,626
626 RHO=RHO-DRO
GO TO 614
630 X(!)=CORXF(RHO,THETA)
Y(!)=CORYF(RHO,THETA)
ZET-CMPLX(RHO*COSF(THETA) RHO*S INF(THETA))
OMEG=R* (1 . /ZET-ZET**3/6 . +ZET**7/56.)
DOMG=R*( . | 25%ZET**6~, G*ZET*%2-] , /zsr**z)
DOMGB= CMPLX(REAL(DOMG), -Al IMAG( DOMG) ) .
PHI=R*( . 25/ZET+,426%ZET+ ., OL6*ZET** 34, ooe*zer**5+ O0L*ZET**7)
DPHB=R*( 028*ZET** 6+, 04*ZET** It , | 3B*ZETH% 2+, 426~ ,25/ZET**2)
DPHIiB= CMPLX(REAL(DPH!)D -AIMAG( DPHI))
PSi==R*( ,5/ZET+( 5LB8*ZET~ 45 7*ZET**3~,026*ZET**5~ ,029%ZET**7) /
1 (1.+. s*zsr**h-.ﬂzs*st**s))
PSiB= CMPLX(REAL( PS1), -AIMAG(PS!))
PDU=PHI+(OMEG*DPH [B) /DOMGB+PS iB
DUX (1 )=REAL(PDU)
DUY(1)=AIMAG(PDU)
640 THETA =THETA + DANG
c BOUNDARY POINTS REGION OF AN [NFINITE PLATE
READ 22,(1L(J),J=3,JA)
UBYg =-.05&5259
UBX(1)=.3232002
LUM=LIM/2 _
DO 650 [=1,LUM
K=L IM-1
UBX( §+1)=UBX(1)-. 5*(DUX(K)+DUX(K+H))*(X(K+ﬂ)-X(K))
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650 UBY(1+1)=UBY{1)+.5%(DUY{§)+DUY(1+1))*(Y(1+1)=Y(1))
BOUNDARY POINTS ON THE SQUARE
K=1L(3)
DO 652 1=3,K
U K,|;=o.o
652 U(1,K)=0.0
YVAR=0.,0
K=3
DO 662 J=JF,JA
654 IF(YVAR-Y(K}) 660,660,656
656 IF(K-LUM+2) 658,658,660
658 K=K+1
GO TO 654
660 Xi=Y(K=-2)
X2=Y(K-1)
X3=Y(K )
Xh4=Y(K+1)
XS:Y(K+2)
UA=UBY(K=-2)
UB=UBY(K-1)
UC=UBY(K )
uo=UBY§K+1;
UE=UBY (K+2
U( 1A, J)=GRANF(YVAR)
UA=DUX(K=-2)
UB-DUX(K-l;
UC=DUX(K
UD=DUX(K+1)
UE=DUX(K+2)
UXD(J) =GRANF( YVAR)
662 YVAR=YVAR+D1
XVAR=0.0
K=14
D0. 672 I=IF,IA
664 KB=LUM+K
.. KC=LUM+2-K
IF(XVAR=-X(KB)) 670
666 IF(4-K ) 668,66
668 K=K-1 L
GO TO 664
670 X1=X(KB+2)
X2=X(KB+1)
X3=X(KB )
X4=X(KB-1)
X5=X(KB-2)
UA=UBX(KC=2)
UB=UBX(KC-1)
UC=UBX(KC )
UD=UBX(KC+1)
UE=UBX(KC+2)
U(1,JA) = GRANF(XVAR)
UA=DUY (KB+2)
UBaDUYéKB+1)
UC=DUY(KB )

670,666
8,670 ..



UD=DUY$KB-H)
UE=DUY(KB-2)

UYD(1) = GRANF(XVAR)
XVAR=XVAR+D]

RETURN

END

SUBROUTINE FB6EX

672

DIMENSION U(6i,6k), 1K
DIMENS[ON UXD(6é%) UYD
COMMON U, IK,D MX, ¢

§

VALUES OF STRESS FUNCTION AT EXTERIOR POINTS WHICH SATISFY
BOUNDARY DERIVATIVE CONDITIONS

gzg,ﬂm(sh) ,0(5),P(31,31),U1(64)
Ml MY, JF,JA ,MJ,N,NOUT ND,NT ,NDL,RFA,RF1,

1 SPY1J,PRNO,DE ou,KﬁE ﬁNOT MESH,NSTRSNINC, 1B, JP,AMT, IL,P,U1

COMMONUXD, UYD

K=iL(3)-1

DO 685 J=JF, JA

IF(J=K) 682
683 U(2*J)-U(K+5 J

682 U(K, J)-U(K+2 J)
GO TO 685

684 U{MFJ;-Ué

685 U J) =U(
DO 690 ImIF,IA"
IF(1-K) 686,686,688

686 U(I K)-u(u,x+25
GO TO 690 |

688 U gn 01) 5)

; ,684

=U( 0

1,2)=U(]
MJ) u(
ORN

END

SCOPE
9LOAD .
9RUN, 20 3000
.7@# .00001
19 19. 19 19 19
3 3 3 3 3 .
3 '3 3 3 3 3
1.701 .00007

T0 USE AD!,

: 1.5
LAST FIVE CARDS ARE EXAMPLES 0D..

REPLACE THE CALL SORLX CARD IN THE ISOPEP

EA-n ,J)+UXD(J)*2,%D1

9
ﬂ A—ﬂ)+UYD(H)*2.*Dﬂ

025002500
19 19 19

o5 1 3
9
3 3 3 3
3
3

19 19 1
.3 3
3 3

1

3
9 1
3
3
3

WwWil o

3 3 3
-1 200 200

Vwwo &
Swwo &

1.0 1
INPUT DATA

CALL ADI2

CHECK FOR AGREEMENT OF D!MENSION AND COMMON STATEMENTS

SUBROUTINE ADI{

C

C

C  MAIN DECK WITH TWO CARDS, CALL ADI1,
C

C

ALTERNATING DIRECTION [(MPLICIT METHOD ROW SOLUTION

DIMENSION U(28, ?2
DIMENSION §K(52

%L?g§2&048)oF(5@) »H(50) ,G(50) ,B(50)
COMMON U, IK,D,MX, iF,14,MI,MY,JF,JA,MJ,N,NOUT,ND,NT ,NDL ,RFA,RF1,

1 SPYiJ, PRNO DE Dﬂ KPE NQT MESH NSTRS NHNC HP JP AMﬂ,lL P Ui
COMMON UH Fo G B (i o X,K

1
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EQUIVALENCE (F,h),(Fi7},RNR),(B(1),CJ ),(G(1),RFA)
JB=JA-1
DO 166 J=3, .3
IB=tA=1
SY1J=0.0
K=1B-~1
L=J=2
DO 160 [=3
F(l =8.*(u(| J+“)+U” o d=1))+h4 X (U141 ,0)+U(1=1,J))=U(1,J+2)~
*(u(|+1,J+15+u +u)+u(|-n,J-1)+u(|+1 1) 5=u(r,3-2)+
(RNR-nu.)*u(l J)
IE(1-4) 150,151,152
150 Gzl)-ﬂ.O/CJ
H(1)=(F(1)-0(1-2,3)+5,%0(1=1,3))*G(1)
GO TO 169
F(1)=F(1)-U(1-2,J)
DELN=4,+B(1-2)
WJ=CJ-G( 1=2)+DELN*B( 1-1)
Gil)cl.O/WJ
B(1)=(~L4,+DELN*G(1-1))*G(1)
IF(K-1) 153,154,155

-l b
v
N e

153 F(1)=F(1)+4, *U(I+l J)
154 F(1)=F(1)-U(1+2,J)

G(1)=0.0
155 H(1)=(F(1)-H(1=2)4CELN*H( 1~ I))/WJ
160 CONTINUE

IB=|B-2

DO 166 12=1,18B

lmlA=-12

Kml=2

YIJaH(I;

IF(12-2) 166,162,161

1 Y1J=Y1J=G(1)*UH(K+2,L)

162 YIJ-YIJ-B(I)*UH(K+I,L)
166 UH(K,L)=YIJ

RETURN

END

SUBROUT INE ADI2

C  ALTERNATING DIRECTION im
DIMENSION U(28,52) ,UH{
DIMENSION IK(52),1L(52
COMMON U, IK,D MX, IF,1
1 SPY1J,PRNO,DE,D1,K
COMMON’UH,F.G,B,1.J
EQUIVALENCE ' (F,8) . (
SY1J=0.0
KPE=0
IB=lA-1
D0 181 1=3,1B
Kal-2
JB=JA-1
D0 176 J=3,43

T METHOD COLUMN SOLUTION
h8;.F(50).H(so).G(so).B(SO)
Y
M

JF,JA,MJ,N,NOUT ,ND,NT,NDL,RFA,RF1,
SH,NSTRS,NINC, IP,JP,AM1, IL,P,U1

»RNR), (B(1),CJ ),(G(1),RFA)

Me
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LuJ=2
F(J)=RNRAUH(K,L)+6.*U(1,J) =k *(U(1,d+1)+U(1,J=-1))+U(1,J+2)+U(1,L)
IF(J-#) 170,171, 172

-"o*G Jz
-(F(J)-U 1,J=2)+4,%U( ! J-ﬁ))*G(J)
GO 10 1 A
1 F(J)-F(J)-U(l J-2)
2 DELN=b.+B(J-2
WJ=CJ=G(J=-2)+DELN*B( J-1)

G(J ;-n.o /WJ

B(J)=(~4,+DELN *G(J-I))/WJ

IF (JB=1=J) ﬂ73 ﬁ7h gs

wF(J)+4.x0{ 1 J+ﬂ
9= -F(J)-u(u,J+z$
J -(F(J)-H(J-2)+DELN*H(J-I))/WJ

ONT I NUE
JBmJB-2
DO 181 J2=1,JB
JaJA=J2 . ..

Y1JuH(J
IF(J2-2) 179,178,177

17; YiJuY1J=-G(J &y 5 J+2

178 Yi1JuY1J-B(J)*U(1,J+1

179 Y2=ABSF(Y1J=U(1,J))
SY1JuSY | J+Y2
IF(Y2-DE) 181.180.180

180 KPE=KPE+1 .

181 U(1,J)=YIJ
sPYlJasSYIJ
RETURN
END

TO USE CHEB INSERT THE FOLLOWING CARD AFTER THE
:éng C?LL OUTIN STATEMENT IN THE MAIN ISOPEP DECK.
REPLACE. THE CALL SORLX CARD IN THE MAIN ISOPEP DECK WITH
THE FOLLOWING TWO CARDS
CALL CHEB(NCHB)

i NCHB = 2

* CHECK DIMENSION AND COMMON STATEMENTS

SUBROUT INE CHEB(NCHB)
CYCLIC CHEBYSHEV SEMI-ITERATIVE METHOD
DIMENS ION u(zaiga) , 1K(52),D(5) ,AK(36),AL(30,30), SA(3o.3o).uz(3o)

DIMENSION 1L(5

COMMON U, IK,D,MX, IF, 1A Ml MY, JF,JA,MJ,N,NOUT,ND,NT NDL ,RFA,RF1,

1_SPY1J,PRNO,DE,D? ‘Kot fNoT ,MESH.NSTRS NINC, 1P J#.Ani iL,P,01

COMMON’ AK,SA AL ,u2, RHO
300 |r(ucua-1$ 302 302.345
302 NQ=(JA-3)/2

La(JA-2)/2

IF(L-NQ) 310,310,304

F(J
F
G
H
c
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304 PRINT 305
305 FORMAT (26H ERROR DO NUMBER OF ROWS)

STOP 1010
310 Ni=IA-3
NI l=NI+NI|
DO 312 K=l ,Ni!

;-0 .0.

K)=0,0
DO 312 L=1,NII

sK oL -0 0

312 A
DO 31# K-I NII
314 AL(K, K)-ZO 0
AL(1,2)=-8.0
AL(1 3 =—8.0
AL(2, 4)=-8.0
A h -—8.0
A 8 0

0
0
0
0

SISLL]

-tifle o o

vvvwv

L
L
L
AL
AL
L

x\»N-'-PN-‘WW

| =t © o »w o o
+IO

NI
Kot ima
AL =2 K+1)=A
AL(K~1,K+1)=A
315 AL(K K+1)-A
DO 316 Lal,NI
DO 316 KaL.NII
316 AL(K,L)=AL{L,K)
SA(1 1)-SQRTF(AL(I 1))
DO 320 La2
320 iA(l L)-AL(: L)/SA(I 1)

324 DO 340 K=2,NI|
. K1=K+1
KLR=K=-4
IF(KLR) 325, 325 326
325 KLR=1 |
326 KUP=aK-1
TEMP=0.0
DO 328 L=KLR,KUP
328 TEMP=TEMP+SA{L,K)*SA(L,K)
SA(K,K)=SQRTF (AL(K,K)-TEMP)
IF(K=N11) 329,340, 340
329 LUP=K+k
IF(LUP-NI1) 332,332, 330
330 LUP=NI |
332 DO 336 L=K1,LUP
TEMP=0.0
DO 334 L1=KLR,KUP
334 TEMP=TEMP + SA(L! K)*SA(L1,L)
336 SA(K,L)=(AL(K, L)—TEMP)/SA(K K)

N WUIVIVIUTW £\ o
°

F o

|
L(K=4 K-1
% K-4,K=3)
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282

284
285

345

347

' P2-8 *y( ), J+2)=2,%

352

354
355
356
357

358

359
360 |
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CONT INUE

IF (RFA) 282,282,284

A=MY

A=A*D1

B=MX

B=B*D1

Bum(A/B)**2

Pi=3,714159265 )
RLAM=(5,94i*(1,0+B*B)+3, 15658+ (Pl /A)**L
RHO=1.0/(1.0+RLAM*D{1**L/2,%)

GO TO 285

RHO=SQRTF(- 2.-2./RFA)

RF2=2, 0/(2 0-RHO*RHC)

RF =],

JC-JA-I

KPE=0

SYI1J=0,0

RFA=RF1

JB=3

oo 390 J=JB,JC,2

oo 360 Kal,NII,
P1=B.*U( 1, J-1 -z. 2 § -u,J-ug+u§a+n J-n;; 1,J9-2 -u 1,042
1+9,J+2)+U J+2 l, J- | J+3
f“; 3&8.354.35
350,352
Pn-Pl+8 *ugi-u.J)-z HU(I-1 ,J+ng~u‘ 2,J)
P2=P248 . %U( -1, J+1)=2.%U( | U(1=2,J41)
AK ;-PH/SA(% ) ,
=(P2-AK(1)*SA(1,2))/SA(2,2)
GO T0 360
PI-Pﬁ-Us -2,J)
P2aP2-U( I-21J+1)
AK(B)-(Pi-AK(I)*SA(ﬂ,3)-AK(2)*5A(2.3 )/SA(3,3)
AK(&)-(Pz-AK(ﬂ)*SA(n,A)-Ak(z)*SA(‘,u -AK(3)*SA(3 L)) /SA(L, L)
GO TO 360
IF(K+3=-N11) 357 355.356
Pi=P1-U(14+2,J)
P2uP2-U{ 1+2.J+1)
GO TO 357
Pla=P14B.%U( 141,J)=2.%U{ 141, J+1)-U( 142,J)
P2=P2+8.*U I+ﬁ,J+ﬂ)—2 *u<n+n J)-Ui 142, J+ﬂ)
KUP=K~1
KLR=K-4
TEMP=0.0
DO 358 Ki=KLR,KUP
TEMPaTEMP +AK{K1)*SA(K1,K)
AK(K )=(P{-TEMP)/SA{X, k)
KLR=KLR+1
TEMP=0.0
DO 359 KiwKLR,K
TEMP=TEMP+AK (K1 )*SA(K{ ,K+1)
AK%K{I)-(PZ-TEMP)/SA(K+U JK+1)
=4
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K=Ni |
U2(K) =AK(K)/SA(K,K)
g%(sT})T(AK(K-t) ~SA(K~I K)*UZ(K))/SA(K-I K-1)
DO 380 L=2,K1,2
K=NT1-L
KUP=K+4
IF (KUP-NI1) 368,268,367
KUP=N1 1
TEMP=0.0
KLR=K+1
DO 370 L1=KLR,KUP
370 TEMP=TEMP +SA{K,L1)*U2(L1
U2(K)=(AK(K)-TEMP) /SA(K,K
KLR=KLR~1
IF(KUP=NI1) 372 37# 37u
372 KUP=KUP-1
374 TEMP =0.0
DO 376 L1=KLR,KUP
376 TEMP-TEMP+SA(K-| L1)*u2(Lt)
U2(K-l)-(AK(K-I)-TEMP)/SA(K-I K-l)
380 fongNUE
DO 390 K=1,NII,2
Y1J1=RFA*(02(K§-U(1,4))
Y1J2=RFA*(U2(K+1)=U1,J+1))
Y1=ABSF(YIJ1) 4
Y2=ABSF(Y1J2)
SYIJ-SYIJ+YI+Y2
Uﬁ =U(1,J )+YIJ1
1,J+1)=U( 1 ,J+1)+Y1J2
IF(Y1-DE) 38k,382,382.
382 KPE=KPE+1
384 IF(Y2-DE) 390, 386 386
386 KPE=KPE+1
390 I=l+1 .
IF (JB=3) 392 392 394
392 JB=5
~ RFA=RF2
GO TO 347
394 RF1=1,0/(1.0-RHO*RHO*RFA/4,0)
RF2=1. 0/(I.O-RHO*RHO*RFI/k. )
SPY | JmSYIJ
RETURN
END

TO RUN PROBLEM 2 REPLACE THE CORRESPONDING CARDS IN THE
MAIN ISOPEP DECK WITH THE FOLLOWING TWO CARDS

CALL PB2EX

CALL PB2BD

CHECK DIMENSION AND COMMON STATEMENTS

SUBROUTINE PB2BD

ww
(2]
o~
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CALCULATION OF BOUNDARY VALUES OF PROBLEM 2

DIMENSION U(28,52),1K(52),1L(52),0(5),P(25,13),U1(25)

COMMON U, IK,D,MX, IF, 1A,MI,MY,JF,JA,MJ N, NOUT,ND, NT,NDL ,RFA,RF1,

1 SPY1J,PRNO,DE,D1,KPE, INOT ,MESH.NSTRS.NINC, 1P, Jb ,AM1,IL,P,01
100 RTPl=.5/3. 1Ln5927

AmMX oo

Di=i./A

X=0,0

DO 105 1=3,IA

U(1,2)m =,5%X*X

IF {x-.25) 105,105,106
XeX+D1

Km|

DO 107 la=K,IA
u(1,2)=0. oinzs-.zs*x
107 X=X+D1 . ..

Y=i.E-10
DO 108 Jm2,JA
U(1A ;-((9 o/16.+Y*Y)*ATANF ( 75/Y) (25. /16 +Y*Y)*ATANF(1.25/Y)
1 =.5%Y)*RTPI+. 03125
108 Y=Y+D1

X=0.0
DO 109 1=3,] '
u(l JA)-Rrﬁl* ((Lo+(X= .25)**2)*ATANF((X-.25)/2 )=((X+.25)**24L, ) *
1 ATANF((X+.25 )/ .) 1.)+.o3nzs
109 X=X+D1 _
RETURN
END

SUBROUT INE PB2EX
DIMENSION U(28, 52) 'k(52),1L(52),0(5),P(25,13),U1(25)
COMMON U, IK,D,MX, IF, 1A MI MY, JF,JA,MJ N NOOT,ND ,NT,NDL ,RFA,RF1,
1 sPY1J,PRNO,DE,D1 KB fnot ,MEsH NsTRSINENC, 18, J8,AM1, IL,P, U1
"CALCULATION OF EXTERIOR VALUES
POINTS OUSIDE OF RANGE X=0 OR GREATER AND X=1 OR LESS
RTPi=,5/3,1A4i 5927 .
110 Y=1.E-10 ...
DO 112 Jm2,JA
z ,J)=U(L)J
1.)=U(5,J
g U ¢i6J)-u(|A-n,J)+2 J*DI*RTPI*(1,5%ATANF( .75/Y)=2.5%ATANF(1.25/Y))
=Y+

0.0  POINTS OUTSIDE OF RANGE Y=0 OR GREATER AND Y=2 OR LESS
X=0, co

no 114 =3, |A
1,1)=U(1,3 .
i MJ)-u(f JA-u)+z *D{*RTPI*( 4, *(ATANF((X-.25)/2.)-
1 ATANF((X+ 25)/2.)))
114 X=X+D1
RETURN
END

ALONG Y=0

-t -t
(=X}
o

ALONG X=1

ALONG Y=2
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SUBROUTINE FE3ILD ‘
C BOUNDARY COND!TICNS fFU- THE NOTCHED PLATE  PROB. NO, 3
DIMENSICN b(zos‘iz),n {-2),0(5),1L(52)

DIMENS ION AR{7
COMON U, 1K,D X, 1F £, M1 MY, JF ,JAMI,N NOUT N, NT,NDL ,RFA RF,
1 SPY1J,PRNO.DE,DY  xEc, [nOT MESH.NSTRS| anc 18, JP,AM1, IL,P,01
EQUIVALENCE (AR(1],u(i29 )§, (D1, u(1§7 *(0s2, u(tsé )§ !
EQU I VALENCE(DS3,u( 159)),(DS4,u( 160)),(DS5,u( 161)),(DS6,U( 162))
EQUIVALENCE (DH{,U{ 163)}
22 FORMAT (2014)
AmMX:
Di=t,/A
|BulA-1
READ 22, élK J),J=3,JA)
PRINT 22,(1K(J),J=3,JA)
JB=1K(3)+1
DO 210 Jm=JB,JA
210 U(1A,J)=.125
Y=0, 6
DO 211 I=3,IB
U(1,JA) =, 5*Y*Y
u(l,2)=y
C  THE VALUE OF U ON THE CIRCULAR ARC
U(l1,3)=,5%(Y~.25)
211 Y-Y+DI
u(22,14)=U(22,3 )
26 15)-u 26,3 )

JB-JB 1
DO 216 J=3,JB
C  THE VALUE OF Y ON THE CIRCULAR ARC
U(MI,J)=.5-SQRTF( .0625-X*X)
¢ THE VALDE SR U ON"THE CIRCULAR ARC
U(1A,Jd)=.5%(U(MI,J)=-.25)
C  THE VALUE OF DELY/H FROM THE MESH POINT TO THE CIRCULAR ARC
IF(J-3) 216,212,212
212 DEL=(U(MI,J5-.25) /D1
213 IF(DEL~-1.} 215,214,214
214 DEL=DEL-1. e
GO TO 213
215 U(1A-1,J)=DEL
216 X=X+D1

k2
U
!
(

217 U(KK ,4)=U(lI
DS1=.5*%U( 1A-1,
DS2=  U(1A-1,5)+DS1
DS3=2,*U(1A-1,7)-1.
DS 4=, 5*u(|A-1.9)
DS5=1.5*U( 1A=1,9)-.5

W)
~—
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DS6=,54+DS4
DH1=5,.*DS5/3.
AR(1)=,5+DS1
AR(3)=,5+U( 1A-1,6
AR(L)=. 25%(DS3+0S6+1.0)
AR(5)=,5*DS5*DH1 .
AR(6)=,5+U( 1A-1,9)-AR(5)
AR(7)=.5+U( 1A-1,10)
RETURN L
END

SUBROUT INE PB3EX
EXTERIOR POINTS FOR NOTCHED PLATE
DIMENSION U(28,52),1K(52),D(5),I1L(52)
COMMON U, IK,D,MX, IF, 1A Ml MY, JF,JA,MJ,N,NOUT,ND,NT ,NDL,RFA,RF1,
1lgp}AJipﬁuo,oE,ot,xﬁe,INOT,MEsu,NSTRs,N|Nc,|§,JP,AM1,lL,P,Ut
220 DO 223 I=3,IB
u(1 M) =u(l,0a-1) .-
1F(f-1k(3)-1) 222,222,223
222 U |.|;-u R R
ul122)=u( 1.k
223 CONTINUE
I?TE;IOR POINT ADJACENT TO CIRCULAR ARC ON HORIZONTAL LINE
J=10
60 TO 224
218 I=20 . .

219 Jell

224 CA=1.-U(1,4)

.. CB=CA*(CA-1.)/2.
CC=CB*(CA-2.)/3.
CD-CC* CA"3 ° /"o

BB=CA~.5 .

BD=(({L4.*CA-18.)*CA+22.)*CA-6.) /24,

DA1=1.-CA+CB~-CC+CD .. . o

DAZ‘CA'Z.*CB"’a .*CC-‘I-.*CD

DA3=CB-3 ., *CC+6.*CD .

DAL=CC-4 ,*CD

DB{=BB+BD-BC-1. -

DB2=1.-2.*BB+3 ., *BC~4,*BD

DB3=BB-3 ,*BC+6.*BD

DBL4=BC~L4,*BD

BE=1./(DA2/DA1-DB2/DB1)

u(1,J)=BE*(U(1,3)/DA1+(DB3/DB1-DA3/DA1)* U(1,J+1)

17 ?6?/DBI-DA#/5AI)*U(I,J+2)+(BD/DBI-CD/DA1)*U(I,J+3))

=4 . . .. . . ..
IF (J-13) 218,219,221

221 IF(1-24) 225,224,226 .

225 =23 . .. ... ...
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J=15
GO TO 224
226 IF(1-25) 224, zzL 447
227 DO 229 J=1, JA -
0 ] A
|F(J-|K(3)5 229,229,228
228 U(MI,J)=U( 1A-1,3)+D1
229 CONTINUE
c INT&RIOR POINT ADJACENT TO CIRCULAR ARC ON VERTICAL LINE
DU -05
I=15
Ju5 "
230 CA=1.-U(1A-1,J)
CB-CA* CA"‘ Py /20
CC=CB*(CA-2.)/3.
CD=CC*{ CA-3.) /L.
BB=CA-.5
Bc-igs *CA-6 *CA+2 )/6.
BD=({ (4. *CA- .)*CA+22, )*CA-6 )/zu.
DAl=1.-CA+CB=CC+CD - .
DA2=CA-2,*CB+3 ,*CC~k,*CD
DAL=CC~L,*CD
DB1=BB+BD-BC-1.
082-‘ .-2.*BB+3 .*chl‘.*BD
DB3=BB~3.*BC+6.*BD .
DBL=BC-14,*BD
35-1 /(DA2/DA1-DB2/DB1)
J)=BE*(U( 1A, J) /DA1+DUB*D1 /DB1+(DB3/DB1-DA3/DA1)*U(1-1,J)
13 36?/DBI-DAA/DAI)*U(| -2 J)+(BD/DBI-CD/DAI)*U(I-3 J))
aJ$ .
IF(J=7) 230,230,232
232 I=16 .
" IF(J-9) 230, 230 233
233 U IS I;-U 15 .-

2)=U(15,4
244 RETORN 2"
END-

SUBROUT INE PBLBD :
C  BOUNDARY CONDITIONS FOR THE V-NOTCHED PLATE PROB. NO. &4
DIMENSION U(28,52),1K(52),0(5),P(25,13),U1(25),IL(52)
COMMON U, IK,D,MX, IF, 1A MI JMY, JF , JA,MJ, N NOUT,ND ,NT,NDL ,RFA ,RF1,
1 SPY1J,PRNO.DE,D1,KPE, INOT ,MESH,NSTRS .NINC, 1P, 0P, AM1,IL,P,01
22 FORMAT (zolh
T OA=MX
Dim1,/A
IB=lA-1
READ .. 22, (1K(J) ,J=3,JA)
PRINT 22,( J) 2 J=3,JA)
JB=IK(3)+1
DO 210 J=JB,JA
210 U(IA,J)-.12§
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Y=0.0
DO 215 1=3,1IB
u(l,JA)=, S*Y*Y

IF(I-1K(3)) 215,215,212
C  BOUNDARY VALUES ON NOTCH EDGE
212 K=l-M/L
215 Y=Y4Di
RETURN
END

SUBROUT INE PBLEX
C  EXTERIOR POINTS FOR THE V-NOTCHED PLATE  PROB. NO. &
DIMENSION U(28,52),1K(52),0(5),P(25,13),U1(25),IL(52)
COMMON U, 1K, D, MX, 1F, 1A M1 MY, JF, JA,MJ,N.NOUT, ND ,NT, NDL ,RFA,RF1,
1 SPY1J,PRNO.DE,DT ,KPE, INOT,MESH.NSTRS.NINC, 1P,JP,AMY, IL,P,U1
220 D0 224 1=3,1A =
" u(1,Md)=U(1,JA-1)
IF(‘-IK(B)-I) 222,222, 224
222 1,1)=U(1,5) .
224 CONTINUE
oo 228 J=1,JA
1,J)=U 5 J)
u 2.3)=u(k
|F(J-|K(3)5 228 228,226
226 U(MI J)=U(lA-l J)+01 .
228 CONTINUE |
" RETURN
END

SUBROUT INE PBSBD
c BOUNDARY CONDITIONS FOR A PLATE WITH A SQUARE NOTCH PROB. NO. ¢
DIMENSION U(28,52),1K(52),D(5),I1L(52)
COMMON U, IK,D,MX, IF, 1A, M1.MY, JF,JA,MJ,N,NOUT,ND,NT, NDL RFA,RF1,
1 SPY1J,PRNO,DE,D1,KPE, INOT,MESH,NSTRS.NINC, 1P, JP,AM IL,P,U1
22 FORMAT (20|L)
IB=lA-1 . _
AmMX
Di=1./A
READ 22, (1K(J),J=3,JA)
PRINT 22 (1K(J), 33, ' JA)
JB=1K(3)+1 C
DO 205 J=3,JB
205 U(JB,J)=0,0
DO 210 J=JB,JA
210 U(1A,J)=.125
Y=0.0
D0 215 I=3,I1B
U(1,JA) =, GrY*Y
1F(f-J8) 215, 215,212
212 U(1,JB)=, 5*(Y-.25)
215 Y=Y4D1
RETURN
END
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SUBROUT INE PB5EX
EXTERIOR POINTS FOR A PLATE WITH A SQUARE NOTCH
D IMENSION u(ze,sz) IK(52),D(5),1L(52)
COMMON U, IK,D,MX, I1F, 1A MI MY, JF,JA,MJ,N,NOUT,ND,NT ,NDL ,RFA RF1,
1 SPY1J,PRNO,DE oa,xﬁs iNoT ,MEsH NsTRS NiNC, 1B, 0b,AM1,IL,P, U1
JB=IK(3)+1
IBmlA-1 ..
220 DO 225 1=3,I18B
u( M) =l JA-1)
|F(I lK(3)-1 zzz 222,223
222 U(1,1=UT,5)
2)=U( 10k
80 't3 225
223 U(1,J8-1)=U(1 JB+I)
225 CONTINUE
"~ DO 228 Ja=t,JA
A A g
IF(J -JB) 228,226,226
226 U(M1,J)=U( 1A-1, J)+Dl
228 CONT INUE )
RETURN
END

BOUNDRY CONDITIONS CAN BE INTRODUCED USING EQUATION (28)
AS INDICATED IN SECTION 6 - TREATMENT OF IRREGULAR
BOUNDARIES, THE ADDITIONAL INSTRUCTIONS REQUIRED

FOR SORLX FOR PROBLEMS 3, 4 AND 5 ARE LISTED UNDER

THE HEADINGS SOR3, SORL AND SOR5. RESPECTIVELY,

THE CARDS ARE INSERTED BETWEEN THE SUBROUTINE SORLX
STATEMENT NUMBERS 133 AND 1k4e,

, SOR3

IA?gIIION TO SORLX FOR SEMI-CIRCULAR NOTCH

siBd+

IF(J-1K(3)-2) 230,230, 1uo
230 oo 231 Li=1,5 N

L1/3=15%(=1)%*L1 ‘

L-J- (L1=1)/3)%(=1)**(L1- z
231 2(512-(U(K*1.L)+u(x-1 JL)+U(K,L+1)+U(K, L-l)-u *U(K,L))
GO TO (233, 235 236 237 238 zss.zuo.zua zso,zso zso.zsz 256,260) ,K
234 o(z)-(rs;r+u(| J)+ 5*(u(|+1 J+l)+U(l+1,J-I)+D1)-2 *U(1+1,J) ) *ANV

235 ANV=i, /AR{ z
TEMP=DS 1*(U( 141 ,J+1)=U(1+1,J))
GO TO 234 L 3

236 ANV=1./AR(2)
TEMP1=DS 2% (U( 1+1 oJ+1)=U( I+‘ﬂ oJ))
TEMP=~TEMP+TEMP1 ..
GO TO 234

237 ANVst{,/AR(3)
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Egn¢;-zngn+ SE(U(1+1,3+1)=U(1+1,J))

238 o(z;. UCE,d)+U(1+1,3=-1)+U(1+1,J+1)=3.%U(i+1,J)+(U(I1A,J)-U(1+1,J))
oslo(z)
GO TO 242

239 oiz)-(u(l yI)+.8xU 141, J+1)=1.8%U(1+1,4)+.5%D1) /AR(4)

052002}
GO TO 242
2“01055272(% J)+U(ﬂ+ﬂ J+ﬂ)+U(l+ﬂ J-1)-3. *U(|+I J)+(U(|A J)-U(|+l J))
DS-D(Z)
GO TO 242

DiZ)-(U(l+ﬂ J+ﬂ)+U(ﬂ J)-2, *U(|+ﬂ J)+01/2 )/AR(7)
DS=D(2) .
GO TO 242

Diz).z *(U(1+1,J+1)+U(1,J)-2, *u(s+n J))+01
DS-D(Z)

IF(J-13)242 Sﬂ ZSﬂ

251 D(2)=.5*D5/AR (75

. D5=D(2

248 D

250

GO TO 242
262 D(2)=(U( 1+1 J+ﬂ)+u(l J;+DS6*U(I+2 J)=(2.4DS6)*U( 141 J;+
‘ |o?g;(u(|+n 3)=UC1+1,3)) 7u(1+1,4)+{1.-DS6)*D1*.5) /AR 6
GO TO zuz
256 IF(1-21) ;.zsz 258
257 o(%).(u 1, ) 4(0(§=1,0-1)+U( 141 ,J=1)=2.%U(1,J-1) ) *DS6+(U(1,3)~
1V I,J niua, -ulr,u-1))/0s8
258 Do'ro ? ,J)+DS6*U( 1-1 J.ﬂ) (1.+DS6)*U(1,J=1)+.5%D1*DS6) /AR(4)
= + - [ - +.
25 i 2-? I J)+U(U+ﬂ,J+ﬂ)+U(l+2,J)tB *u(|+1 * ) +( U?I+I,3)—U(I+I,J))
+ ..
5.0(25-0(1 J)
KT=0 .

GO TO 242

260 IF(1-24) 262,263, 264

262 D(5)=D5+U( I~ ,J-ﬂ)
KT={ .
GO TO 242

263 TEMP1=(U(141,J-1)-U(l,J-1))*DS2
TEMP-TEMP%+§U(Beﬂ,J-ﬂs-U(I,J-ﬂ))* 5+, 5*( 5-052)*01
ANV=1 . /AR(3 5
GO 10268 .

26k IF(1-26) 265,266,242

265 TEMP=TEMP1. .

T TEMP1m(U( 841,J-1)=U(1,J-1))*DST
TEMPw=TEMP+TEMP1+. 5*(osz-osu)*oi
ANV={ , /AR(2) .
GO T0268 .




266
268
242

244
243
245

230

231
232

234
235

Zia
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KT=0
TEMP=-TEMP1+4,5*DS1*D1
ANV=1,/AR(1)
D(5)m{ TEMP+U( 1 ,J)=2,%U( 1 ,J=1)+.5%(U( 1=1,J=1)+U( 14+1,J=1)) ) *ANV
YiJ=(4.*0(3)-D{1)- 0(2) (4)-0(5))*.05*RFA
Y2=ABSF(Y!J _
SY|JuSY1J+Y2
U(1,J)=U(1,J)+Y1J

IF(Y2-DE) 243,24k,244
KPE=KPE+1

:F (ft) 140, 1#0 245

=4

GO TO 230

SORLpkk#kk#kx(SEE COMENTS ON PAGE lh6)
Ao?érlon TO SORLX FOR A V NOTCH )
-+]
IF(J=1K(3)- I) 230,230,140
DO 23' L=l .
L1/3 -15* (=1)%*L1
L-J- (Ll-l)/B)*(-l)**(Ll- 1)

D(L1)=(U(K+1,L)+U(K=-1,L)+U(K,L+1)+U(K,L=-1)-L . *U(K,L))
IF(J-4) 232,234,234
ggzgzgs*(u(i+1 J+1)+U(1, J)+U(I+| J-l)-3 *U(141,J)+D1*.5) /3,
GO TO 242
D(5)=D5
IF(J-IK(B)-I) 235,236,236
D(2)-2.*(U(I+1,J+1)+U(I J)-2. *u(|+1 J))+D1
D5=D(2)
322}2822% *(U(1,J)-U(1+1,J))+.75*D1) /S
® [ ] + . [ ]
vlJ-(u.*o(ai -0(1)2D(2)-D(k4 S D(5))*.05*RFA
Y2=ABSF(YIJ g

T SY1JmSYIJ+Y2

244

230

231

232
242

u(1,Jd)=u(1,J)+Y1J
IF(YZ-DE) 40. ## 244
KPE=KPE+1 .. =

SORG¥***k¥x*(SEE COMENTS ON PAGE 146)

?o?érlon TO SORLX FOR A SQUARE NOTCH ...
=|B+1
IF(J-1K(3)~-1) 230,230,140
oo 231 L=t 5 o

2LI/3-1 fe(=1)%*L1
L-J- (L1-1)/3)*(=1)**(L1-1 2
D(L1)=(U(K+1 L)+U(K-l Lz+u K,L+1)+U(K,L=1)=4.*U(K,L))
1F( J-|K§3)-15 232,242,242
D(2) m(U(T,d)*2,+Ul 141 J+1)4U( 141, J=1) =4, *U( 1+1,J))+D1
YiJ=(h,*D{3)-D(1)-D(25-D(L4)-D(5)}*.05*RFA
Y2=ABSF(YIJ) |
SY1JmSY | J+Y2
IF(Y2-DE) 140,244,244
u(l,d)=u(1,d)+Y1d"

244 KPE-KPE+I
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TABLE OF SYMBOLS

PRNO, DE, RFA, SPYIJ, MX, MY, IF, JF, N, NT, NOUT, ND, MESH,
NSTRS, IP, JP, M4, M2. SEE INPUT PREPARATION FOR DEFINITION.
U(1,J) - DISCRETE VALUES OF STRESS FUNCTIONS,

| - ROW INDEX.

J - COLUMN INDEX,

MI = MAXIMUM | = MX+IF+1 _
1A = MI-1 = LAST BOUNDARY ROW INDEX
MJ = MAXIMUM J = MY+JF+1

JA = MJ-1 = LAST BOUNDARY COLUMN INDEX

P(J,1) - STRESS FUNCTION DISTRIBUTION SAVED FOR GENERATION OF
INITIAL ESTIMATE OF U(I,J) IN NEXT PROBLEM (SEE

CHANG P, 129),

U1(J) =~ A COLUMN ARRAY USED IN CHANG FOR TEMPORARY STORAGE.

D1 - MESH INTERVAL H COMPUTED IN PBNBD; D1 DEPENDS UN
PHYS ICAL DIMENSIONS OF THE SOLUTION DOMAIN,

KPE -~ COUNT OF POINTS AT WHICH CONVERGENCE'CRITE§ION WAS
NOT SATISFIED IN THE LAST ITERATION,

INOT - CONTROL SWITCH FOR SUBROUTINE OUTIN, INOT.- 1
SIGNALS INPUT OF NEXT DATA SET. INOT = 2 SIGNALS
USE OF THE OUTPUT PORTION OF THE SUBROUTINE.

IK(J) = LAST INTERIOR POINT ROW INDEX IN COLUMN J.

IL(J) = fIRST INTERIOR POINT ROW INDEX IN COLUMN J.

IK(J) AND IL(J) ARE INTRODUCED IN PBNBD FOR SPECI-
FICATION OF IRREGULAR BOUNDARIES,



— e —— —
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SPECIFICATION OF COLUMN TERMINAL POINTS FOR SORLX

A RECTANGULAR MESH WITH THE SPECIFIED DIMENS IONS OF THE
ARRAY U ENCOMPASSES THE PROBLEM SOLUTION DOMAIN. FOR A REC-
TANGULAR REGION THE ITERATIVE METHOD SUBROUTINE SORLX SWEEPS
THE MESH BY COLUMNS STARTING WITH J = 3, USING 3<1< 1A AND
CONTINUING UNTIL J = JA-1. IF SYMMETRY CONDITIONS ARE NOT
USED THE BOUNDARIES CORRESPOND TO THE ROWS | = 2 AND | = IA
AND THE COLUMNS J = 2 AND J = JA, THE ROWS | = 1, | = MI
AND THE COLUMNS J = 1 AND J = MJ ARE EXTERIOR TO THE SOL-
UTION DOMAIN AND CAN BE USED BY THE WRITER OF THE PBNEX
SUBROUTINE TO SATISIFY BOUNDARY DERIVATIVE CONDITIONS. |IF
| =3 (OR J = 3) IS A LINE OF SYMMETRY THE VALUES IN THE
MESH LINE | = 2 (OR J = 2) ALSO MUST BE PROVIDED IN PBNEX
USING DERIVATIVE CONDITIONS ALONG A LINE OF SYMMETRY.

A PROBLEM WITH IRREGULAR BOUNDARIES MAY SPECIFY A DIFF-
ERENT FIRST INTERIOR POINT, IL(J), AND LAST INTERIOR POINT,
IK(J), FOR EACH COLUMN, THESE VALUES MAY BE READ FROM CARDS
OR GENERATED IN THE SUBROUTINE PBNBD. IF THIS IS NOT DONE
ALL IL(J) ARE SET TO 3 AND ALL IK(J) TO IA-1 BEFORE TRANSFER
TO PBNBD AND THE DOMAIN IS TREATED AS A RECTANGLE, THOUGH
1L(J) AND IK(J) LIMIT THE SWEEP ALONG THE COLUMNS WITHIN
SORLX THEIR SPECIFICATION DEPENDS ON THE CHOICE OF THE WRITER
OF THE BOUNDARY CONDITION SUBROUTINES. IF HE ELECTS TO. COM-
PUTE SOME INTERIOR POINTS BY INTERPOLATION IN PBNEX THEN
HE CAN SET THE INTERIOR POINT ROW INDEX RANGES ACCORDINGLY.
(SEE PB3EX P. 143)
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