ITERATIVE SOLUTIONS OF PLANE ELASTOSTATIC PROBLEMS

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY Chester L. Davis 1965 ENCR CTB.

This is to certify that the

thesis entitled

ITERATIVE SOLUTIONS OF

PLANE ELASTOSTATIC PROBLEMS

presented by

Chester L. Davis

has been accepted towards fulfillment of the requirements for

<u>Ph.D.</u> degree in <u>Mechanics</u>

Malukan

Major professor Lawrence E. Malvern

Date November 18, 1965

O-169

. .

ABSTRACT

ITERATIVE SOLUTIONS OF PLANE ELASTOSTATIC PROBLEMS

by Chester L. Davis

Three objectives of this thesis are: to compare the efficiency of three iterative methods of solving biharmonic-finite-difference equations, to report on ISOPEP, a system of computer programs designed for the numerical solution of biharmonic plane elastostatic problems, and to demonstrate the utility of this system of programs and the advantages and limitations of numerical solutions by examples.

Three matrix iterative methods considered are point successive overrelaxation, the alternating direction implicit method, and the cyclic Chebyshev semi-iterative method. These are compared in terms of computer storage and time required for the solution of a model problem. Numerical results indicate successive overrelaxation is best unless the mesh is refined so the number of points exceeds 350. Then the alternating direction implicit method is superior.

ISOPEP, a system of FORTRAN II subprograms for the iterative solution of plane elastostatic problems, is explained. Documentation of ISOPEP, including listings of source decks, specifications for input and the output from a sample problem, is provided.

Discrete values of the stress functions and stress components for six ISOPEP problem solutions are provided. These problems include three notched tensile specimens, an infinite plate with a square hole and a semi-infinite plate with a uniformly distributed load along a

Chester L. Davis

portion of the edge. The numerical solutions of the six example problems indicate that a high speed digital computer with a large main memory provides an effective and economical means for the analysis of plane elastostatic problems. Good agreement as shown in the comparison of the numerical and explicit stress solutions for some of these problems. Use of numerical solutions for the investigation of stress concentrations is shown in several of the examples.

ITERATIVE SOLUTIONS OF PLANE ELASTOSTATIC PROBLEMS

By

Chester L. Davis

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Metallurgy, Mechanics and Material Science

13-14⁴⁹ 66

ACKNOWLEDGMENTS

I wish to express my appreciation to Professor Lawrence E. Malvern for his suggestion of the problem and his significant contributions to the study. Also, I wish to thank Professors William A. Bradley, George E. Mase, Charles S. Duris and Robert H. Wasserman for their service on my graduate committee.

Financial support was provided by the National Science Foundation, the Consumers Power Company, the Ford Foundation and a Michigan State University Graduate Research Assistantship. The facilities of the Michigan State University Computer Laboratory and the University of Toledo Computation Center were used. The substantial support of these contributors is acknowledged with gratitude. I wish to thank Mr. John W. Hoffman, Director of the Engineering Research Division, for his assistance and support.

To my wife I wish to express my appreciation for her aid in typing and counsel throughout this endeavor.

ii

TABLE OF CONTENTS

•

Page

I.	INTRODUCTION	1
II.	THE DIFFERENTIAL EQUATIONS	4
III.	DERIVATION OF THE DIFFERENCE EQUATIONS	9
IV.	ITERATIVE METHODS	20
	A. POINT ITERATIVE METHODS	
	B. METHOLS OF BLOCK ITERATION	
۷.	COMPARISON OF THREE ITERATIVE METHODS	52
VI.	SOLUTIONS OF PLANE ELASTOSTATIC PROBLEMS	59
VII.	SUMMARY AND CONCLUSIONS	93
	BIBLIOGRAPHY	98
	APPENDICES	101

LIST OF TABLES

TABLE		Page
1.	Comparison of iterative subroutine characteristics	52
2.	Comparison of machine time and number of iterations required for convergence	54
3.	Summary of problems solved with ISOPEP program	56
4.	Comparison of the ISOPEP program for the IBM 1620 and CDC 3600 computers	58
5.	Stress function at points adjacent to the semi- circular mesh	74
6.	X-stress component at points adjacent to the semi- circular notch	74
7.	Y-stress component at points adjacent to the semi- circular notch	75
8.	XY-shear stress at points adjacent to the semi- circular notch	75
9.	Stress function at points adjacent to the V-notch	76
10.	X-stress component at points adjacent to the V-notch	77
11.	Y-stress component at points adjacent to the V-notch	77
12.	XY-shear stress component at points adjacent to the V-notch	78
13.	Stress concentrations factors for the V-notch tensile specimen	80
14.	Comparison of boundary values of \mathcal{O}_{Θ} obtained from the iterative solution with those from Savin's solution	91

LIST OF FIGURES

FIGURE		Page
2.1	Boundary forces	6
3.1	Rectangular mesh	9
3.2	A regular point	10
3.3	(a) Unequal mesh spacings (b) Subregion A	13
3.4	Dual meshes	17
3.5	Cell	18
3.6	Twelve cells for P ₀	19
4.1	The model problem	20
4.2	Mesh for the model problem	20
4.3	Successive overrelaxation - Number of iterations vs. ρ	30
4.4	Alternating direction-implicit method - Number of iterations vs.r	34
4.5	Two-line blocks	44
4.6	Cyclic Chebyshev semi-iterative method - Number of iterations vs. p	48
4.7	Comparison of iterative methods	
	(a) Iterations vs. number of interior points	50
	(b) Machine time vs. number of interior points	51
6.1	Boundaries of the model problem	60
6.2	Distributions of the stress function and $\mathcal{O}_{\mathbf{X}}$ for Problem 1	62
6.3	Problem 2 - Semi-infinite plate	63
6.4	Comparison of numerical and exact solutions for Problem 2	64

LIST OF FIGURES

IGURE	Page
6.5 Distributions of the stress function and σ_{y} for Problem 2	66
6.6 Solution domain for Problems 3, 4 and 5	67
6.7 Distributions of the stress function and $\sigma_{\mathbf{x}}$ for Problem 3	6 8
6.8 Distributions of the stress function and σ_x for Problem 4	69
6.9 Distributions of the stress function and $\sigma_{\mathbf{x}}$ for Problem 5	70
6.10 Stress concentration in a semi-circular notch	72
6.11 Stress concentration in a V-notch	73
6,12 Stress concentration in a rectangular notch	79
6.13 Stress concentration factor K_t for a notched flat bar	81
6.14 Boundary points for the semi-circular notch	83
6.15 Treatment of boundary points	83
6.16 Interior points near a boundary	84
6.17 Problem 6 - Infinite plate with a square hole	85
6.18 Approximation of the square hole	87
6.19 Domain of solution for Problem 6	88
6.20 Stress function and $\sigma_{\mathbf{x}}$ distributions for Problem 6	90

LIST OF APPENDICES

APPEND	IX
--------	----

Page

Α.	CONVERGENCE OF ITERATIVE METHODS	101
В.	ISOPEP - A FORTRAN PROGRAM FOR THE ITERATIVE	
	SOLUTION OF PLANE ELASTOSTATIC PROBLEMS	115

I. INTRODUCTION

Determination of the stresses in a plate under conditions of either plane strain or plane stress is a fundamental problem for the structural engineer. The literature of the classical theory of elasticity includes exact solutions of numerous problems. For an account of the mathematical theory see Timoshenko and Goodier (1951) and Muskhelishvili (1953). However, exact solutions are available only for those problems which have rather simple geometric shapes and boundary constraints. Finite-difference equations have been used as an alternative for the analysis of more complex practical problems. This dissertation compares several iterative finite-difference solution methods with respect to their efficiency in treating plane elastostatic problems.

The finite-difference solution of a boundary-value problem is a two-step procedure. First the partial differential equation and the associated boundary conditions are replaced by difference equations which relate the discrete values of an approximating function at a finite number of points. A regular mesh of lines is superimposed on the domain of the given boundary-value problem. A finite system of linear equations is formed by writing a difference equation for each node of the mesh. The second step is the solution of this system of simultaneous equations. It is often necessary to solve for values at a thousand or more points.

The relaxation technique was employed by Southwell (1946) for the solution of the biharmonic difference equations. Though Southwell and his colleagues solved a number of complex engineering problems,

the relaxation method has not been readily adapted for digital computer solutions.

Iterative methods have been used extensively for computer solutions of systems of equations. These methods make repeated use of simple algorithms which at each application provide an improved approximate solution at one or more of the mesh points. The exact solution is the limit of the sequence of the adjusted point values. Though there are many iterative methods, the three which seemed to offer most promise for the solution of the biharmonic finite-difference equations were; the technique of point successive overrelaxation introduced by Frankel (1950) and Toung (1954), the alternating-direction implicit method of Conte and Dames (1958), and the cyclic Chebyshev semi-iterative method proposed by Griffin and Varga (1963). The comparison of these iterative schemes is the first objective of this dissertation.

Using the computer time required to solve a given problem as the measure of the efficiency of an iterative method, the numerical results obtained indicate that for the biharmonic equation there is a critical mesh spacing $h^{\#}$ such that the point successive overrelaxation iterative method is the best of the three methods tested for $h \ge h^{\#}$ while for $h < h^{\#}$ the alternating-direction implicit method is best.

Each of these methods uses a parameter for accelerating the convergence. Formulas for the bounds of optimum parameters are included for rectangular regions. For the more general case of irregular boundaries there are no convenient relationships for estimating the optimum parameters at the start of the iterative solution. The procedure for determining the accelerating parameter is different for each of the three methods. There existed the possibility that the choice of the most efficient method might be more dependent on the method used for determining the

acceleration parameter than on the performance of the iterative method. To investigate this possibility the optimum parameter for the solution of a model problem was determined on an empirical basis for each method. The results were consistent with the other comparisons of the three methods. However, this study did reveal that the machine time required could be reduced from 18% to 42% by starting the solution with an optimum parameter.

Another objective is the preparation of a set of computer programs for solution of plane elasticity problems. Six FORTRAN-II routines have been written for the Control Data Corporation 3600, and slightly modified versions have been run on an IBM 1620. The solution of a particular problem requires the preparation of a pair of routines for the given boundary conditions. The main program which provides linkage of these subroutines is called ISOPEP. A full description is provided in Appendix B.

The third objective of this dissertation is the demonstration of the utility of the ISOPEP program. Solutions in terms of stress functions and stress components are provided for six problems: (1) A square plate with uniformly distributed loads on portions of two edges, (2) A semi-infinite plate with a uniformly distributed load applied on a segment of one edge, (3) A flat-plate tensile specimen with two semicircular notches, (4) A flat-plate tensile specimen with two V-notches. (5) A flat-plate tensile specimen with two V-notches, (6) An infinite plate with a square hole. Several of the problems were selected as examples of the numerical calculation of stress concentrations. Two of the problems are included for comparison of the exact and numerical solutions. The numerical solutions obtained with sufficiently small mesh intervals provide stress components which are in good agreement with values from the exact solutions.

II. THE DIFFERENTIAL EQUATIONS

Plane stress is the state of stress approximated in a thin plate which has loads applied only on the boundary and parallel to the plane of the plate. In a three-dimensional Cartesian coordinate system a state of planes stress exists if the stress components $\sigma_{\bar{z}}, \tau_{\chi \bar{z}}, \tau_{\gamma \bar{z}}$ are zero at every point.

Consideration of static force equilibrium under conditions of plane stress leads to the equilibrium equations.

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \gamma_{x}}{\partial y} + X = 0$$
(1)
$$\frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \gamma_{x}}{\partial x} + Y = 0$$

where X and Y are the components of body force per unit volume.

For plane stress the Hooke's law relationship between stress and strain is.

$$E \epsilon_{x} = \sigma_{x} - \nu \sigma_{y} + E \kappa_{s}^{c}$$

$$E \epsilon_{y} = \sigma_{y} - \nu \sigma_{x} + E \kappa_{s}^{c}$$

$$E \delta_{xy} = 2(1 + \nu) \gamma_{xy}$$
(2)

where E is Young's modulus, $\sqrt{15}$ Poisson's ration, $\xi(x,y)$ is the difference between the local current temperature T, and the original temperature T₀, and K is the coefficient of thermal expansion.

At a point in the plate the strains are defined:

$$f_{X} = \frac{\partial u}{\partial X}, \quad f_{Y} = \frac{\partial u}{\partial Y}, \quad \gamma_{XY} = \frac{\partial u}{\partial Y} + \frac{\partial v}{\partial X} \quad (3)$$

where u and v, the components of the displacement, are continuous functions. Since the three strain components are expressed in terms of the two functions u and v, they cannot be taken arbitrarily. By differentiating and combining Equations (3) it is possible to obtain the compatibility equation,

$$\frac{\partial^2 \epsilon_x}{\partial \mu^2} + \frac{\partial^2 \epsilon_y}{\partial x^2} = \frac{\partial^2 \lambda_y}{\partial x \partial y}$$
(4)

At each point in the plate Eq.'s (1) and (4) must be satisfied. G. B. Airy derived a single differential equation in terms of a stress function, $\mathcal{O}(\mathbf{x},\mathbf{y})$, which will satisfy both the compatibility conditions and equilibrium equations. The stresses are determined by the following:

$$\sigma_{\overline{x}} = \frac{\partial^{2} \phi}{\partial y^{2}} + V, \qquad \sigma_{\overline{y}} = \frac{\partial^{2} \phi}{\partial X^{2}} + V, \qquad T_{\overline{x} y} = -\frac{\partial^{2} \phi}{\partial x \partial y} \qquad (5)$$

where V(x,y) is the potential of the body forces.

The Hooke's law relationships (2) are substituted into the compatibility equation (4):

$$\frac{\partial^2}{\partial y^2} \left[\sigma_X - v \sigma_Y + E \alpha \varsigma \right] + \frac{\partial^2}{\partial X^2} \left[\sigma_Y - v \sigma_X + E \alpha \varsigma \right] = 2 \langle i + v \rangle \frac{\partial^2 \tau_{XY}}{\partial X \partial Y}$$
(6)

It is advantageous to introduce the equilibrium equations by forming the sum of the derivative of the first with respect to x and the derivative of the second with respect to y.

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

or

Eq.'s (5) and (6) can be combined so the term containing T_{XY} is eliminated.

$$\frac{\partial^{2}}{\partial y^{2}} \left[\sigma_{X} - v \sigma_{y} + E \propto \zeta^{2} \right] + \frac{\partial^{2}}{\partial x^{2}} \left[\sigma_{Y} - v \sigma_{X} + E \alpha \zeta^{2} \right] = -(1 + v) \left[\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial X} + \frac{\partial^{2}}{\partial y^{2}} \right]$$

This simplifies to

2

$$\left(\frac{\partial^{2}}{\partial X^{2}}+\frac{\partial^{2}}{\partial Y^{2}}\right)\left[\sigma_{X}+\sigma_{y}+E_{x}\varsigma\right]+(1+\nu)\left[\frac{\partial X}{\partial X}+\frac{\partial Y}{\partial Y}\right]=0,$$

In terms of the two-dimensional Laplacian operator ∇^2 this can be written

$$\nabla^{2} \left[\sigma_{\overline{x}} + \sigma_{\overline{y}} + \alpha E_{\zeta} \right] + \left(1 + \gamma \right) \left[\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial Y} \right] = 0$$

Substituting the expressions given in Equations 5 for the stresses and

assuming body forces can be expressed in terms of a potential function V(x,y) the equation can be written

$$\nabla^{*}\Phi + E \propto \nabla^{2} \varsigma + (1 - \nu) \nabla^{2} V = 0$$
⁽⁸⁾

If the body force potential is harmonic, the equation becomes

$$\nabla^{+} \phi + E \alpha \nabla^{2} \zeta = 0 \tag{9}$$

and if in addition temperature changes are negligible, it becomes

$$\nabla^{\mu}\phi = O \tag{10}$$

where in Cartesian coordinates,

$$\nabla^{4} \phi = \frac{\partial^{4} \phi}{\partial X^{4}} + 2 \frac{\partial^{4} \phi}{\partial X^{2} \partial y^{2}} + \frac{\partial^{4} \phi}{\partial y^{4}}$$

The solution of a plane stress problem, when the body forces can be expressed in terms of a potential, thus consists of finding the stress function \emptyset which satisfies the appropriate one of Eq.'s (8), (9) or (10) and the prescribed boundary conditions.

As noted by Sokolnikoff (1956), even in a thin plate the stresses vary somewhat through the thickness. The two dimensional problem formulated here, strictly speaking, applies to the averages through the thickness and this is often called a state of generalized plane stress.

For a state of plane strain instead of plane stress the governing equations have a similar formulation. The appropriate equations are obtained by replacing $\sqrt{by} \sqrt{(1-v)}$, E by E/(1- $\sqrt{2}$) and α by α (1+ $\sqrt{)}$ in Eq.'s (2), (5), (7), (8) and (9).

If $\overline{\mathbf{X}}$ and $\overline{\mathbf{Y}}$ are the components of external loads per unit area acting on the boundary and α and β are the direction angles which the normal makes with the x and y-axes respectively, then neglecting body forces

Figure 2.1 Boundary forces

$$\overline{X} = \lambda \sigma_{\overline{X}} + m T_{\overline{X} y}$$

$$\overline{Y} = m \sigma_{\overline{Y}} + \beta T_{\overline{X} y}$$
(11)

where

 $l = \cos \alpha$, $m = \cos \beta$

In terms of the stress function the stresses on the boundary are given by

$$\overline{X} = \left\{ \frac{\partial^2 \phi}{\partial y^2} - m \frac{\partial^2 \phi}{\partial X \partial y}, \qquad \overline{Y} = m \frac{\partial^2 \phi}{\partial X^2} - \left\{ \frac{\partial^2 \phi}{\partial X \partial y} \right\}$$
(12)

Introducing coordinate axes s and m, tangent and normal respectively to

the boundary, the boundary conditions can be written

$$\overline{X} = \frac{\partial^2 \phi}{\partial x^2} \frac{dy}{ds} + \frac{\partial^2 \phi}{\partial x^2} \frac{dx}{ds} = \frac{d}{\partial s} \left(\frac{\partial \phi}{\partial y} \right)$$

$$\overline{Y} = -\frac{\partial^2 \phi}{\partial x^2} \frac{dx}{ds} - \frac{\partial^2 \phi}{\partial x^2} \frac{dy}{ds} = -\frac{d}{\partial s} \left(\frac{\partial \phi}{\partial x} \right)$$
(13)

These can be integrated along the boundary

$$\frac{3a}{3\phi} = -\int_{a}^{\infty} \frac{3a}{3x} + \frac{3a}{3\phi} \frac{3a}{3x}$$

$$\frac{3a}{3\phi} = -\int_{a}^{\infty} \frac{3a}{3x} + \frac{3a}{3\phi} \frac{3a}{3x}$$
(17)

Since .

integrating along the boundary yields

$$\Phi = \int \left[\cos \alpha \int x ds + \sin \alpha \int x ds \right] ds + \left(\frac{\partial \phi}{\partial y} \right) (y - y_0) + \left(\frac{\partial \phi}{\partial x} \right) (x - x_0) + \phi_0 \qquad (15)$$

$$Cos \alpha = \frac{d}{ds}, \qquad SI \eta \alpha = -\frac{dx}{ds}$$

where

Substituting into the normal derivative of ϕ ,

$$\frac{\partial \phi}{\partial n} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial h} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial h}$$

$$\frac{\partial \phi}{\partial x} = -\cos \alpha \int_{0}^{x} \overline{Y} ds + \sin \alpha \int_{0}^{x} \overline{X} ds + (\frac{\partial \phi}{\partial x}) \cos \alpha + (\frac{\partial \phi}{\partial y}) \sin \alpha \qquad (16)$$

Eq.'s (15) and (16) determine \emptyset and $\frac{\partial \phi}{\partial h}$ at every point of the boundary in terms of the boundary stresses \overline{X} , \overline{X} and the constants of integration $(\frac{\partial \phi}{\partial X})_{0,1}(\frac{\partial \phi}{\partial y})_{0}$ and \emptyset_{0} . These constants of integration may be chosen arbitrarily since they do not appear in the expressions for the stresses.

If the constants of integration can be chosen so \emptyset is symmetric with respect to a line of physical symmetry for the plate, then

$$\frac{\partial \phi(x,y)}{\partial n} = 0, \qquad \frac{\partial}{\partial n} \left(\nabla^2 \phi(x,y) \right) = 0 \qquad (17)$$

for points (x,y) on the line of symmetry, where n is the normal to the line of symmetry.

The problems herein considered will have boundary conditions as given by Equation (17) on a line of symmetry of the body and of the form

$$\frac{\partial \phi(x,y)}{\partial x} = f_i(x,y), \qquad \frac{\partial \phi(x,y)}{\partial y} = f_i(x,y) \qquad (18_2)$$

which follows from Equation (14) or

$$\phi(x,y) = f_3(x,y), \qquad \frac{\partial \phi(x,y)}{\partial x} = f_4(x,y) \qquad (18b)$$

which follows from Eq.'s (15) and (16) on an outer boundary. The functions f_1 , f_2 , f_3 , and f_4 are valid only on the boundary and could be expressed in terms of the single parameter S; n is the outward normal.

For problems with displacements specified on the boundaries the Navier Equations should be used rather than the biharmonic equation. This pair of coupled second order partial differential equations for plane stress conditions, obtained by replacing the stresses in Equation (1) with expressions in terms of strains and then substituting derivatives of the displacements for the strains as given in Equation (3), can be written:

$$\frac{E}{2(1-\nu^{2})} \left[2 \frac{\partial^{2} u}{\partial x^{2}} + (1-\nu) \frac{\partial^{2} u}{\partial y^{2}} + (1+\nu) \frac{\partial^{2} \nu}{\partial x \partial y} \right] + X = 0$$

$$\frac{E}{2(1-\nu^{2})} \left[(1-\nu) \frac{\partial^{2} v}{\partial x^{2}} + 2 \frac{\partial^{2} \nu}{\partial y^{2}} + (1+\nu) \frac{\partial^{2} u}{\partial x \partial y} \right] + Y = 0$$
(19)

III. DERIVATION OF THE DIFFERENCE EQUATIONS

Though analytical solutions have been obtained for certain special cases of the biharmonic boundary value problem, the use of approximate numerical methods is often necessary. Finite-difference methods are readily adapted for solving the problems with high speed computers and attention will be directed to these methods.

The governing partial differential equation is replaced by a finite-difference approximation. A rectangular mesh is superimposed on

the region and the intersections of the horizontal and vertical lines inside the region are called modes or mesh points. Boundary points occur at the intersection of the mesh lines with the boundary. It is

convenient to use a uniform mesh Figure 3.1 Rectangular mesh spacing, say h. At each interior point the function $\mathscr{G}(x,y)$ is replaced by an approximating function U(P), where P is an interior mesh point (x_p,y_p) . The function U(P) is defined only at the mesh points. Discretisation of the problem is accomplished by replacing the partial differential equation in terms of $\mathscr{G}(x,y)$ by a finite system of equations in terms of U(P). The equation for U(P) is given in terms of the values of U at meighboring points. Thus the problem is reduced to solving a set of simultaneous finite-difference equations.

Three different derivations of the pertinent difference equations will be considered. These are based on Taylor's series, integration and a variational formulation. Each has distinct advantages and contri-

butes to a better understanding of the problem.

Taylor Series

Let f(x,y) be a function of two variables, which is continuous in the neighborhood of the point (a,b) and has continuous partial derivatives up to order a in the neighborhood of (a,b). The Taylor's expansion of f(x,y) about the point (a,b) is given by:

 $f(x,y) = f(a,b) + (f_x(a,b) + f_y(a,b))h + (f_{xx}(a,b) + 2f_{xy}(a,b) + f_{yy}(a,b))\frac{h^2}{2!} + \cdots + R_n$ where $R_n = \frac{h^n}{n!} (\frac{2}{\partial x} + \frac{2}{\partial y})^n f(a + a, h, b + a, h), \quad o \le a, a \le 1$ $X = a + h, \quad y = b + h$ $f(x,y) = f(a,b) + f_{yy}(a,b) + f_{yy}(a,$

and subscripts denote partial derivatives. In the region of the xy plane where a solution of the biharmonic equation is sought, a mesh point (x_0, y_0) will be called a regular point if the neighboring points shown in Fig. 3.2 are all interior or boundary points of the

Figure 3.2 A regular point

interior or boundary points of the region and each point is at a distance h from the adjacent points shown.

A Taylor's expansion can be written for each of the points in the neighborhood of (x_0,y_0) and these expansions can be combined to find difference quotients corresponding to any partial derivative with respect to x or y.

Consider

$$U_{i} = U_{o} + (U_{x})_{o}h + (U_{x}2)_{o}\frac{h^{2}}{2!} + (U_{x}3)_{o}\frac{h^{3}}{3!} + (U_{x}+)_{o}\frac{h^{4}}{4!} + (U_{x}s)_{o}\frac{h^{5}}{5!} + (U_{x}^{*}e)_{o,i}\frac{h^{6}}{6!}$$

$$U_{3} = U_{o} - (U_{x})_{o}h + (U_{x}2)_{o}\frac{h^{2}}{2!} - (U_{x}3)_{o}\frac{h^{3}}{3!} + (U_{x}+)_{o}\frac{h^{4}}{4!} - (U_{x}s)_{o}\frac{h^{5}}{5!} + (U_{x}^{*}e)_{o,s}\frac{h^{6}}{6!}$$

$$U_{i} + U_{3} = 2U_{o} + (U_{x}2)_{o}\frac{2h^{2}}{2!} + (U_{x}+)_{o}\frac{2h^{4}}{4!} + \frac{2h^{6}}{6!}\mu_{i}$$

where $(U_{\mathbf{x}}^{\#_{\delta}})_{0,1} = U_{\mathbf{x}^{\delta}}(\mathbf{x} + \Theta \mathbf{h}, \mathbf{y}) \quad 0 \le \theta \le 1$, and $M_1 \le \max |U_{\mathbf{x}}^{\delta}|_{1,3}$ along the line between points 1 and 3

$$\begin{split} U_{5} &= U_{o} + (U_{x})_{o}(2h) + (U_{x^{2}})_{o}\frac{4h^{2}}{2!} + (U_{x^{3}})_{o}\frac{8h^{3}}{3!} + (U_{x}^{4})_{o}\frac{4h^{4}}{4!} + (U_{x})_{o}\frac{32h^{5}}{5!} + (U_{x}^{*})_{o,5}\frac{64h^{6}}{6!} \\ U_{q} &= U_{o} - (U_{x})_{o}(2h) + (U_{x^{2}})_{o}\frac{4h^{2}}{2!} - (U_{x^{3}})_{o}\frac{8h^{3}}{3!} + (U_{x}^{4})_{o}\frac{16h^{4}}{4!} - (U_{x})_{o}\frac{32h^{5}}{5!} + (U_{x}^{*})_{o,9}\frac{64h^{6}}{6!} \\ U_{5} + U_{q} &= 2U_{o} + (U_{x^{2}})\frac{8h^{2}}{2!} + (U_{x}^{4})_{o}\frac{32h^{4}}{4!} + \frac{128h^{6}}{6!}M_{2} \\ \text{where } M_{2} \leq |U_{x}^{6}|_{5,9} \cdot \text{Subtracting } 4(U_{1} + U_{3}) \text{ from } (U_{5}^{+} + U_{9}) \text{ we find} \\ U_{5}^{+} + U_{q} - 4(U_{i} + U_{3}) + 6U_{o} + \frac{136h^{6}}{6!}M_{2} = h^{4}(U_{x}^{4})_{o} \end{split}$$

Thus,

$$(U_{x^{*}})_{g} = \frac{1}{h^{*}} [U_{g} + U_{q} + 6U_{g} - 4U_{q} - 4U_{3}] - \frac{136h^{2}}{6!} M_{2}$$

$$(20)$$

Similarly it can be shown

$$\left(\bigcup_{y} \#\right) = \frac{1}{h^{4}} \left[\bigcup_{7} + \bigcup_{11} + 6\bigcup_{9} - 4\bigcup_{2} - 4\bigcup_{4}\right] - \frac{136h}{6!} M_{3}$$

$$\text{ where } M_{3} \leq \max \left|\bigcup_{y} \#_{7,11}\right| \text{ For } \frac{\partial^{4} \phi}{\partial X^{2} \partial Y^{2}} \text{ consider}$$

$$(21)$$

$$U_{6} = U_{0} + (U_{x})_{0}h + (U_{y})_{0}h + [(U_{x^{2}})_{0} + 2(U_{xy})_{0} + (U_{y^{1}})_{0}]\frac{h^{2}}{2!} + (\frac{3}{2x} + \frac{3}{2y})^{3}U\frac{h^{3}}{3!} + (\frac{3}{2x} + \frac{3}{2y})^{4}U_{0}\frac{h^{4}}{4!} + (\frac{3}{2x} + \frac{3}{2y})^{5}U_{0}\frac{h^{5}}{5!} + (\frac{3}{2x} + \frac{3}{2y})^{6}U_{0,x}^{*}\frac{h^{6}}{6!} \\ U_{10} = U_{0} - (U_{x})_{0}h - (U_{y})_{0}h + [(U_{x^{2}})_{0} + 2(U_{xy})_{0} + (U_{y^{2}})_{0}]\frac{h^{2}}{2!} - (\frac{3}{2x} + \frac{3}{2y})^{3}U_{0}\frac{h^{3}}{3!} + (\frac{3}{2x} + \frac{3}{2y})^{4}U_{0}\frac{h^{5}}{4!} + (\frac{3}{2x} + \frac{3}{2y})^{4}U_{0,x}\frac{h^{6}}{5!} + (\frac{3}{2x} + \frac{3}{2y})^{6}U_{0,x}\frac{h^{6}}{5!} + (\frac{3}{2x} + \frac{3}{2y})^{4}U_{0,x}\frac{h^{6}}{5!} + (\frac{3}{2x} + \frac{3}{2y})^{5}U_{0,x}\frac{h^{6}}{5!} + (\frac{3}{2x} + \frac{3}{2y})^{5}U_{0,x}\frac{h^{6}}{5!} + (\frac{3}{2x} + \frac{3}{2y})^{4}U_{0,x}\frac{h^{6}}{5!} + (\frac{3}{2x} + \frac{3}{2y})^{5}U_{0,x}\frac{h^{6}}{5!} + (\frac{3}{2x} + \frac{3}{2y})^{5}U_{0,x}\frac{h^{7}}{5!} + (\frac{3}{2x} + \frac{3}{2y})^{5}U_{0,x}\frac{h^{7}}{5!$$

where
$$M_{4} \leq \max |U_{x}^{\eta}y_{y}|_{6,10}^{6,10} n + m = 6$$
. Similarly,
 $U_{8} + U_{12} - 2U_{0} = [(U_{x^{2}})_{0} + 2(U_{xy})_{0} + (U_{y^{2}})_{0}]\frac{2h^{2}}{2l} + [(U_{x}^{4}) - 4(U_{x^{3}y})_{0} + 6(U_{x^{2}y^{2}})_{0}^{2} - 4(U_{xy^{3}})_{0} + (U_{y}^{4})_{0}]\frac{2h^{4}}{4l} + \frac{44h^{6}}{6l}M_{5}$
where $M_{5} \leq \max |U_{x}^{\eta}y_{y}^{\eta}|_{8,12}^{9} n + m = 6$. Adding we find
 $U_{6} + U_{8} + U_{10} + U_{12}^{2} - 4U_{0} = 2[(U_{x^{2}})\frac{2h^{2}}{2l} + (U_{x^{4}})\frac{2h^{4}}{64l} + (U_{y^{2}})\frac{2h^{2}}{2l} + (U_{y^{4}})\frac{2h^{4}}{4l}] + (U_{x^{2}y^{2}})_{0}h^{4} + \frac{64h^{6}}{6l}M_{6}$

where $M_6 \leq \max |U_{\mathbf{x}'' \mathbf{y}''}|_{p}$ n + m = 6 along all lines through the mesh point.

Substituting from above

$$\left(U_{x^{2}y^{2}}\right)_{0} = \frac{1}{h^{4}} \left[U_{6} + U_{8} + U_{10} + U_{12} + 4U_{9} - 2(U_{1} + U_{2} + U_{3} + U_{4})\right] - \frac{72h^{2}}{6!}M_{6}$$
(22)

Hence

$$\nabla^{4}\phi = \frac{\partial^{4}\phi}{\partial x^{4}} + 2\frac{\partial^{4}\phi}{\partial x^{2}y^{2}} + \frac{\partial^{4}\phi}{\partial y^{4}} = 0$$

is approximated by

$$(U_{X^{*}})_{0} + 2(U_{x^{2}y^{2}})_{0} + (U_{y^{*}})_{0} = \frac{1}{h^{*}} [U_{5} + U_{7} + U_{q} + U_{1} + 2(U_{6} + U_{6} + U_{12}) - 8(U_{1} + U_{2} + U_{3} + U_{4}) + 20U_{0}] + R_{n} = 0 \quad (23)$$

where

Kantorovich and Krylov (1964) give $R_{\rm R} \leq \frac{10}{9} h^2 M$ where M is obtained by replacing all the derivatives of higher order in Eq.'s (20), (21) and (22) by their maximum absolute values on the mesh lines joining point 0 and the surrounding points.

 $R_n \leq \frac{26}{45}h^2 M_c$

The remainder R_n provides a bound for the discretization error, that is, the difference between $\mathcal{P}(x,y)$ and the truncated series approximation $U(x_yy)$ at the modal points. This indication of the order of the approximation is a major advantage of the Taylor's series method for deriving the finite difference equations.

Integration Technique

The use of integrals for the derivation of finite difference equations has not been used as extensively as the other methods. Varga (1962) provides a general introduction to the method and indicates it has been used in nuclear reactor design computer codes for several years. Use of this method for the biharmonic equation is made by Griffin and Varga (1963).

The satisfaction of the partial differential equation (8) at every point of a region R is equivalent to the satisfaction of the integral equation

$$\iint \nabla^2 (\nabla^2 \phi + B \vee + C \xi) dx dy = 0$$
(24)
R

where $B = (1-\gamma)_{p} C = \alpha E_{p}$ for every arbitrarily chosen subregion A_{i} . Hence, for any arbitrarily chosen subregion A_{i} bounded by γ_{1} , Green's theorem gives

$$\iint_{A_i} \nabla^2 (\nabla^2 \phi + BV + C\xi) dx dy = \oint_{\delta_i} \frac{2}{2\eta} (\nabla^2 \phi + BV + C\xi) d\xi = 0 \quad (25)$$

Discretization is accomplished by substituting a set of discrete quantities U_{i} , (i = 1,2,3,----m) for the values of the continuous function $\phi(x,y)$ at the mesh points corresponding to i = 1,2,3,----m. A major advantage of this method is the simplicity of the treatment of irregular

mesh spacings. In Fig. 3.3 the mesh spacing to a point P_i adjacent to a general interior point P_o is h_{oi} . The subregion about point P_o has sides S_{oi} , i = 1,2,3,4.

 $s_{01} = s_{03} = \frac{1}{2}(h_{02} + h_{0L})$

$$S_{02} = S_{0L} = \frac{1}{2}(h_{01} + h_{03})$$

Central difference quotients are used to approximate the line integral in Equation (25) about the subregion A_0 of Fig. 3.3 (b)

$$\sum_{i=1}^{4} (\nabla^2 U_i - \nabla^2 U_o) \frac{S_{oi}}{h_{o_i}} = -\sum_{i=1}^{4} \left[B(V_i - V_o) + C(\xi_i - \xi_o) \right] \frac{S_{oi}}{h_{o_i}}$$
(26)

where $\nabla^2 U_i$ is the value of $\nabla^2 \emptyset$ at point P_i . Approximate values of $\nabla^2 U_i$ and $\nabla^2 U_o$ are obtained by using Green's theorem again.

$$\iint_{A_i} \nabla^2 U_i \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{y} = \oint_{\sigma_i} \frac{\partial U_i}{\partial \eta} \mathrm{d}\mathbf{s} \tag{27}$$

The discrete value of $\nabla^2 U_{\alpha}$ is taken such that

$$\nabla^2 U_o = \frac{1}{H_o} \oint_{\mathcal{X}_o} \frac{\partial U_o}{\partial n} \, \mathrm{d}\mathbf{s} = \frac{1}{H_o} \sum_{l=1}^{\frac{1}{2}} (U_l - U_o) \frac{\mathcal{S}_{ol}}{h_{ol}}$$
(28)

$$A_{o} = (S_{o1})(S_{o2}) = (h_{o2} + h_{o4})(h_{o1} + h_{o3})/4$$

At point P, as given in Fig. 3.2

$$\nabla^{2} U_{i} = \left[(U_{5} - U_{i}) \frac{S_{i5}}{h_{i5}} + (U_{6} - U_{i}) \frac{S_{i6}}{h_{i6}} + (U_{0} - U_{i}) \frac{S_{i0}}{h_{i0}} + (U_{12} - U_{i}) \frac{S_{i12}}{h_{i12}} \right] \frac{1}{H_{i12}}$$

where $H_{1} = (S_{i1,6})(S_{i1,5})$

For the general case

$$\sum_{i=1}^{4} (\nabla^2 U_i - \nabla^2 U_o) \frac{S_{o,i}}{h_{o,i}} = \sum_{i=1}^{4} \left\{ \frac{1}{A_i} \sum_{j=1}^{4} (U_{ij} - U_i) \frac{S_{ij}}{h_{ij}} \right\} - \frac{4}{A_o} (U_i - U_o) \frac{S_{oj}}{h_{oj}} \right]$$
(29)

If the mesh spacing is constant, Equation (29) reduces to the form of Equation (23).

The evaluation of the right side of Equation (23) requires 12 additions and 3 multiplications. (When the mesh spacing is uniform the multiplication by h^{-2} is not necessary.) The evaluation of the right side of Equation (29) requires 29 additions and 25 multiplications if the ratios $\frac{s_{1,i}}{h_{1,i}}$ are computed once and stored. For the IBM 1620 the time required for 10 floating point additions is equivalent to that required for one multiplication. Thus on the 1620 Equation (23) could be evaluated for approximately 7 mesh points in the same time required to evaluate the right hand side of Equation (29) for a single mesh point. Any iterative method of solution of the finite-difference equations requires the evaluation of one of these expressions at every interior node at least once during each iteration. Several hundred iterations may be required. The rate of convergence of an iterative scheme which uses Equation (29) would have to be 7 times the rate of convergence of a scheme which uses Equation (23) for the same number of mesh points before Equation (29) would be preferred. In some problems it is possible to reduce the number of mesh points significantly through the use of arbitrary mesh spacing. Regardless of whether it is possible to establish the superiority of Equation (29) over Equation (23) for use at

every point, Equation (29) provides an excellent method of handling irregular boundaries and the changing of mesh size from one subregion to another within R.

Variational Formulation

Application of the variational method for deriving finite-difference equations can be found in Courant and Hilbert (1953) and Forsythe and Wasow (1960). Engeli, Ginsburg, Rutishauser and Steifel (1959) show its use in deriving biharmonic difference equations.

The variational formulation of difference equations for plane elastostatic problems is especially convenient for problems given in terms of two displacement functions. Griffin (1965) has shown the advantages of this approach. The basis for this derivation is the Principle of Stationary Potential Energy which states: From the set of continuously differentiable displacement distributions which satisfy the given boundary conditions of an elastic body, the displacement distribution which actually occurs is the one which makes the potential energy stationary.

For a plate subjected to plane stress, take X,Y as the body forces per unit volume and $\overline{X},\overline{Y}$ the surface forces per unit area. Then the strain energy V, per unit volume is

 $V = \frac{E}{2(1-\nu^2)} \left[\epsilon_x^2 + \epsilon_y^2 + 2\nu \epsilon_x \epsilon_y + \frac{(1-\nu^1)}{2} \chi_{xy}^2 \right]$

The strain energy per unit volume can be expressed in terms of displacements (u,v) if these are continuously differentiable functions of (x,y)by substituting

$$\epsilon_{x} = \frac{\partial u}{\partial X}, \qquad \epsilon_{y} = \frac{\partial v}{\partial y}, \qquad \forall_{xy} = \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)$$
$$\vee = \frac{E}{2(1-v^{2})} \left[\left(\frac{\partial u}{\partial X}\right)^{2} + \left(\frac{\partial v}{\partial y}\right)^{2} + 2v' \frac{\partial u}{\partial X} \frac{\partial v}{\partial y} + \frac{(1-v)}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^{2} \right] \qquad (30)$$

A change or variation of total strain energy will occur with any arbi-

trary variation of the displacements Su, Sv.

$$\delta V_T = \delta \iiint_V dx dy dz = \iint_R \delta V dx dy$$

where for convenience the s-dimension is taken as one and it is assumed that V does not vary with s.

The virtual work SW_{ext} done by the external forces under the virtual displacements Su, Sv is given by

$$\delta W_{ext} = \iint_{R} (X \delta u + Y \delta v) dx dy + \oint_{S} (\overline{X} \delta u + \overline{Y} \delta v) dx$$

The potential energy is defined

$$Q = \iint_{R} \sqrt{dxdy} - \iint_{R} (Xu + Yr) dxdy - \oint_{K} (\overline{Xu} + \overline{Yr}) dx \qquad (31)$$

Applying the principle of stationary potential energy and considering body forces and surface forces constant SQ = 0

$$\mathbf{SQ} = \iint_{\mathcal{R}} \mathbf{SV} d\mathbf{x} d\mathbf{y} - \iint_{\mathcal{R}} (\mathbf{X} \mathbf{Su} + \mathbf{Y} \mathbf{sr}) d\mathbf{x} d\mathbf{y} - \oint_{\mathcal{S}} (\mathbf{\overline{X}} \mathbf{Su} + \mathbf{\overline{Y}} \mathbf{sv}) d\mathbf{s} \quad (32)$$

This states that the change in strain energy will be equal to the work done on the body by external forces for any arbitrary virtual displacements $\delta u, \delta v$. This will be true only if u, v are the actual elastic displacements produced by the external forces.

The usual procedure in the calculus of variations is to consider the conditions imposed on the integrand of Equation (32) and thus derive a linear partial differential equation of the form

where $q_mq(u,v)$. Also additional boundary conditions arise which are called natural boundary conditions. Instead of finding the differential equation of the form of Equation (33) and then introducing finite differences the variational form of Equation (32) will be solved numerically. There are two major advantages of this approach. First the function V which satisfies Equation (32), will automatically satisfy the natural boundary conditions so that further consideration of the natural boundary conditions is not necessary. Second, the discretization of the problem leads to a linear system of equations that has a coefficient matrix which is symmetric and positive definite. These relationships are important because they are part of the criteria for the convergence of iterative methods for solving linear systems of equations. (See Appendix A)

For a plate in the region R of the xy plane and unit thickness the total potential energy is

$$Q = \frac{E}{2(1-v^2)} \iint_{\mathbb{R}} \left[v \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)^2 + (1-v) \left\{ \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right\} + \frac{(1-v)}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^{\frac{1}{2}} dx dy$$

$$= \iint_{\mathbb{R}} \left(\mathbf{X}u + \mathbf{Y}v \right) dx dy - \oint_{\mathbb{R}} \left(\frac{\mathbf{X}u}{2} + \frac{\mathbf{Y}v}{2} \right) dx dy$$
(34)

The stationary value of potential energy is a minimum for stable equilibrium under specified boundary conditions.

A rectangular mesh and its dual are imposed on the region R. The dual mesh lines (indicated with dash lines) are parallel to and spaced halfway between the lines of the primary mesh.

The variational problem Equation (32) is given in terms of a continuous displacement

distribution u(x,y) and v(x,y).

This is replaced by a problem in which the displacements have discrete values u_i and v_i at the mesh points. The potential energy of each mesh point is approximated, and the sum taken over all mesh points represents the total potential energy $Q(u_i, v_i)$. The problem is reduced to finding the unknown displacements u_i and v_i at each node which will make $Q(u_i, v_i)$ stationary. This requires

$$\frac{\partial Q}{\partial u_i} = 0, \qquad i = 1, 2, 3, \dots - n$$

$$\frac{\partial Q}{\partial v_i} = 0, \qquad i = 1, 2, 3, \dots - m$$
(35)

where n is the number of nodes at which u_i is unknown and m the number where v_i is unknown. Equations(35) represents a system of n+m linear difference equations.

Engeli, Stiefel et al (1959) show that a variety of quadratic functions may be used to approximate the potential energy. The polygons formed by mesh lines and dual lines will be called cells. A primary mesh point will occur at one vertex of a cell. A regular interior point will be the common point of four adjacent cells as shown in Fig. 3.5. The potential energy integral (34) is approximated for each cell under the assumption that

the functions u and v and their derivatives are uniform over the cell. The functions take the discrete values at the mode P_0 . The derivatives are approximated for cell β by

Figure 3.5 Cell
$$\beta$$

 $\frac{\partial \mathcal{U}}{\partial X} = \frac{\mathcal{U}_1 - \mathcal{U}_0}{h_{o_1}}, \qquad \frac{\partial \mathcal{U}}{\partial y} = \frac{\mathcal{U}_2 - \mathcal{U}_0}{h_{o_2}}$

The approximation for the potential energy is

$$Q_{021} = \frac{E}{2(1-\sqrt{4})} \left[\frac{u_1 - u_0}{h_{01}} + \frac{v_2 - v_0}{h_{02}} \right]^2 + (1 - v) \left\{ \left(\frac{u_1 - u_0}{h_{01}} \right)^2 + \left(\frac{v_2 - v_0}{h_{02}} \right)^2 + \frac{(1 - v)}{2} \left(\frac{u_2 - u_0}{h_{01}} \right)^2 + \frac{v_1 - v_0}{2} \right)^2 \right] \frac{h_0 h_{02}}{4} - \left(\chi_0 + \overline{Y}_0 \right) \frac{h_0 h_{02}}{4} - \left(\chi_0 + \overline{Y}_0 \right) \frac{h_0 + h_{02}}{2}$$
(36)

The last term is included only if P_0 is a boundary point. At a boundary point specified derivatives of u and v are introduced in Eq. (36).

The potential energy at the node P_o is the sum of the potential energy in the four cells adjacent to P_o

 $Q_0 = Q_{021} + Q_{023} + Q_{034} + Q_{041}$ ad the total potential energy is the sum of the po

and the total potential energy is the sum of the potential energy in all cells

 $Q = \sum Q_{ijk}$

The difference equations are obtained from Equation (35).

Consider all the contributions to the potential energy Q which involve the displacements at a single mesh point u_0 , v_0 . There are twelve cells as shown in Fig. 3.6 which would use u_0, v_0 at a

regular interior mesh point.

Figure 3.6 Twelve Cells for Po

$$\frac{\partial Q}{\partial u_{o}} = \frac{E}{2(1-v^{2})} \left[\frac{(1-v)}{2} \frac{h_{o1} + h_{o3}}{2} \left(\frac{u_{o} - u_{2}}{h_{o2}} + \frac{u_{o} - v_{4}}{h_{o4}} \right) + \left(h_{o2} + h_{o1} \right) \left(\frac{u_{o} - u_{1}}{h_{o3}} + \frac{u_{o} - u_{3}}{h_{o3}} \right) - \frac{(1+v)}{4} \left(v_{5} + v_{7} - v_{8} - v_{6} \right) \right] + X_{o} A_{o} = 0$$
(37)

where
$$\mathbf{A}_{0} = \frac{1}{4} \begin{bmatrix} h_{0}, h_{02} + h_{02}h_{03} + h_{03}h_{04} + h_{04}h_{01} \end{bmatrix}$$

$$\frac{\partial Q}{\partial V_{0}} = \frac{E}{2(1-\gamma^{2})} \begin{bmatrix} (1-\gamma) \frac{h_{02} + h_{04}}{2} + \frac{V_{0} - V_{1}}{2} + \frac{V_{0} - V_{2}}{2} + \frac{V_{0} - V_{1}}{2} \end{bmatrix} + \begin{bmatrix} h_{01} + h_{03} \end{bmatrix} \begin{pmatrix} \overline{V_{0}} & \overline{V_{2}} + \frac{V_{0} - V_{1}}{2} \\ h_{04} \end{pmatrix} - \frac{(1+\gamma)!}{4} (\overline{U_{1}} + \overline{U_{2}} - \overline{U_{2}} - \overline{U_{2}}) \end{bmatrix} + Y_{0} H_{0} = 0$$
(38)

Note the relationship to the Navier Equation (19). When the solution of the finite-difference equations (37) and (38) is obtained, stresses can be approximated using an area weighted average of the stresses over all cells which have one node as a common vertex. The stress components in terms of displacements are

$$\sigma_{\overline{X}} = \frac{E}{(1-\gamma^{2})} \left[\frac{\partial u}{\partial \overline{X}} + \nu' \frac{\partial v}{\partial \overline{y}} \right]$$

$$\sigma_{\overline{y}} = \frac{E}{(1-\gamma^{2})} \left[\frac{\partial v}{\partial \overline{y}} + \nu' \frac{\partial u}{\partial \overline{x}} \right]$$

$$T_{\overline{x}y} = \frac{E}{2(1+\gamma)} \left[\frac{\partial u}{\partial \overline{y}} + \frac{\partial v}{\partial \overline{x}} \right]$$

(39)

None of the problem solutions included in this dissertation use Equations (37) and (38).

A simple example considered by Timoshenko and Goodier (1951) will illustrate several details of the solution. Given a unit square plate which is subjected to boundary loads as shown in

Figure 4.1 The model problem Fig. 4.1, find a numerical solution which approximates the stress function $\phi(x,y)$ on the region of the x,y plane occupied by the plate.

$$\psi(\mathbf{x},\mathbf{y}) = \mathbf{0}$$

Figure 4.2 Mesh for the model problem

0<x.<a., - ba< y < ba for

subject to boundary conditions

$$\begin{pmatrix}
\phi(\mathbf{x},\mathbf{y}) = f(\mathbf{x},\mathbf{y}) & \text{for } \mathbf{x},\mathbf{y} \text{ on} \\
\frac{\partial \phi(\mathbf{x},\mathbf{y})}{\partial n} = \eta(\mathbf{x},\mathbf{y}) & \text{the boundary}
\end{pmatrix}$$
(41)

A simple way to introduce the boundary derivative is to solve for a point one mesh space outside of the boundary in terms of the derivative and the point inside the boundary on the same mesh line, eg,

$$g_1 = U_{11} + \eta_{01}(2h)$$
,

and

where U is the approximation to the stress function Ø. If the constants of integration are selected so Equations 17 are satisfied then, by symmetry,

$$g_{4i} = U_{2i}$$
 and $g_{5i} = U_{1i}$ $i=1,2,3,--5$

The partial differential equation (40) is replaced by Equation (23) at each interior node.

$$\begin{split} & \mathbb{U}_{11} = 1/_{20} \left[8(\mathbb{U}_{12} + \mathbb{U}_{21} + \mathbb{f}_{10} + \mathbb{f}_{01}) - 2(\mathbb{U}_{22} + \mathbb{f}_{02} + \mathbb{f}_{00} + \mathbb{f}_{20}) - (\mathbb{U}_{31} + \mathbb{U}_{13} + \mathbb{B}_{1} + \mathbb{B}_{10}) \right], \\ & \mathbb{U}_{12} = 1/_{20} \left[8(\mathbb{U}_{11} + \mathbb{U}_{13} + \mathbb{U}_{22} + \mathbb{f}_{02}) - 2(\mathbb{f}_{03} + \mathbb{f}_{01} + \mathbb{U}_{21} + \mathbb{U}_{23}) - (\mathbb{U}_{32} + \mathbb{U}_{14} + \mathbb{B}_{2} + \mathbb{f}_{10}) \right], \\ & \text{etc.} \end{split}$$

The system of equations can be written in matrix form

$$\underline{A} \ \underline{U} = \underline{F} \tag{42}$$

where

$$\begin{bmatrix}
.4(f_{01} + f_{10}) - .1(f_{00} + f_{02} + f_{20}) - .05(g_1 + g_{10}) \\
.4 f_{02} - .1(f_{03} + f_{01}) - .05 g_2 \\
.4 f_{03} - .1 (f_{02} + f_{04}) - .05 g_3 \\
.4 f_{04} - .1 (f_{03} + f_{05}) - .05 g_4 \\
.4 (f_{05} + f_{16}) - .1(f_{04} + f_{06} + f_{26}) - .05 (g_5 + g_{17}) \\
.4 f_{20} - .1 (f_{10} + f_{30}) - .05 (g_{20} + f_{01}) \\
- .05 f_{02} \\
- .05 f_{03} \\
\underline{F} = -.05 f_{04} \\
.4 f_{26} - .1(f_{16} + f_{36}) - .05 (f_{05} + g_{27}) \\
.4 (f_{30} + g_{41}) - .1(f_{20} + f_{40} + g_{42}) - .05 (g_{30} + g_{51}) \\
.4 g_{42} \\
.4 g_{43} \\
.4 (g_{45} + f_{36}) - .1(f_{26} + f_{46} + g_{44}) - .05 (g_{55} + g_{37}) \\
\end{bmatrix} \begin{bmatrix}
\underline{U} = U_{23} \\
U_{23} \\
U_{24} \\
U_{25} \\
U_{33} \\
U_{33} \\
U_{34} \\
U_{34} \\
U_{35} \\
\end{bmatrix}$$

i fi i

 1
 1
 1
 1
 1
 1

 1
 1
 1
 1
 1
 1

 1
 1
 1
 1

 1
 1
 1
 1

 1
 1
 1
 1

 1
 1
 1
 1

1 17 1 1 17 1 1

ţ1

 ∇_{i}

.

	1	4	٥ <u>5</u>	0	0	4	. 1	0	0	0	¦.05	0	0	0	0
	4	1	4	• 05	0	1.1	4	.l	0	0	0	•05	0	0	0
	•05	4	1	4	. 05	0	.1	4	.l	0	0	0	•05	0	о
	0	。 05	4	1	4	0	0	.1	4	.1	0	0	0	•05	0
	0	0	.05	4	1	0	0	0	. 1.	4	10	0	0	0	.05
	-•4	.1	0	0	0	1	4	.05	0	0	4	.1	0	0	0
	•1	4	.1	0	0	4	1	4	۰05	0	¦.ı	4	.l	0	0
1 =	0	.1	4	.1	0	05	4	l	4	۰05	0	.1 -	4	.l	0
	0	0	.1	4	.1	i 0	05ء	4	1.	4	0	0	.1 -	4	.1
	0	0	0	. 1	4	0	0	.05	4	1	0	0	0	.1 -	4
	•05	0	0	0	0	4	.1	0	0	0	11	4	.05	0	0
	0	ୢ୰	0	0	0	.1	4	.l	0	0	¦=•4	1 -	4	.05	0
	0	0	.05	0	0	0	.l	4	°1	0	1.05	4	1	4	•C5
	0	0	0	°05	0	0	0	.1 -	-04	.l	0	05ء	4	1	4
	0	0	0	0	. 05	0	0	0	.1 -	4	0	0	.05	4	1

The original boundary value problem, Eq.'s (40) and (41), has been replaced by the problem of solving a system of linear algebraic equations as given in matrix form by Equation (42). Direct methods have been used for solving systems of linear equations. Recent reviews of these methods are found in Fox (1963) and Forsythe and Wasow (1960). Faddeeva (1959) provides a detailed account of a variety of methods. Direct methods for problems which require a large number of mesh points, several hundred or even several thousand for example, are rarely used for two reasons. First, if Gaussian elimination is used it is necessary to store all the elements of matrix <u>1</u>. For N mesh points this requires the storage of N² elements. Iterative schemes require the storage of only a small integer multiple of N such as 3N or 5N. The second

complication arises from the round-off error in the direct solution of some systems of linear equations. Iterative solutions have the advantage of being self-correcting and round-off error is minimized.

If the non-zero elements in <u>A</u> are sparse and arranged in bands parallel to the main diagonal the storage requirements for a direct solution may be substantially reduced. Cornock (1954) gives an improved method for the direct solution of the biharmonic equation. Equation (42) can be particulated into submatrices as indicated by the dotted lines. The submatrices have a more convenient form if a scalar factor of 20 is introduced.

$$20 \underline{A} \underline{U} = 20 \underline{F}$$

$$20 \underline{A} \underline{U} = 20 \underline{F}$$

$$\underline{I} \underline{B} \underline{U} = 1 \begin{bmatrix} \underline{U}_1 \\ \underline{U}_2 \\ \underline{U}_3 \end{bmatrix} = \begin{bmatrix} \underline{F}_1 \\ \underline{F}_2 \\ \underline{F}_3 \end{bmatrix}$$
(43)

where <u>I</u> is the num unit submatrix, n is the number of interior mesh points in each row. The <u>U_k</u> are the column submatrices composed of elements U_{ij} along one row of grid points. The <u>F_k</u> are the corresponding column submatrices of 20 <u>F</u>.

	20	-8	1	0	0		8	2	0	0	0
	8	20	8	1	0		2	-8	2	0	0
<u>M</u> =	· 1	8	20	8	1	<u>B</u> =	0	2	8	2	0
	0	1	8	20	8		0	0	2	8	2
	0	0	1	8	20		0	0	0	2	8

For the general case of a rectangular region of n columns and p rows in the mesh, the submatrices <u>M</u>, <u>B</u>, <u>I</u> are all nxn if the difference equations are written for successive mesh points starting at U_{11} and sweeping across the first row then from left to right across successive rows. Cornock
shows how to determine the elements of a matrix E such that

EAUEFEG

reduces to the form

$$\begin{bmatrix} \underline{C}_{11} & \underline{C}_{12} & 0 \\ \underline{C}_{21} & \underline{C}_{22} & 0 \\ \underline{C}_{31} & \underline{C}_{32} & \underline{I} \\ \underline{-} & - & \ddots \\ \underline{C}_{p1} & \underline{C}_{p2} & \underline{I} \end{bmatrix} \begin{bmatrix} \underline{U}_1 \\ \underline{U}_2 \\ \underline{U}_3 \\ - \\ \vdots \\ \underline{U}_2 \end{bmatrix} = \begin{bmatrix} \underline{G}_1 \\ \underline{G}_2 \\ \underline{G}_3 \\ - \\ \vdots \\ \underline{G}_p \end{bmatrix}$$
(44)
The system
$$\begin{bmatrix} \underline{C}_{12} & \underline{C}_{12} \\ \underline{C}_{21} & \underline{C}_{22} \end{bmatrix} \begin{bmatrix} \underline{U}_1 \\ \underline{U}_2 \\ \vdots \\ \underline{U}_2 \end{bmatrix} = \begin{bmatrix} \underline{G}_1 \\ \underline{G}_2 \\ \underline{G}_2 \end{bmatrix}$$

is solved by direct elimination. With \underline{U}_1 and \underline{U}_2 known, $\underline{U}_{3---}\underline{U}_p$ can be found by back - substitution.

One alternative to direct elimination is the "relaxation" technique of Southwell (1946). An initial solution is assumed at the points of the grid superimposed on the plate. Using difference equations a new value is computed at each point and residuals are determined at each point. The largest residual is identified and the initial guess is modified systematically so all residuals are reduced to zero. This procedure has not been used much for digital computer solutions, because it is most effective when the succeeding modifications are judged by a skilled practitioner. To date the logic of these decisions has not been efficiently programmed. However, some aspects of this type of decision making have been incorporated in direct search methods as discussed by Hooke and Jeevis (1961).

As a second alternative, better adapted to computer solution, consider an iterative method. Equation (42) can be written

$$(\underline{A} - \underline{I}) \underline{U} + \underline{I} \underline{U} = \underline{F}$$

$$\underline{U} = (\underline{I} - \underline{A}) \underline{U} + \underline{F}$$
(45)

An initial vector approximation $\underline{U}^{(o)}$ to the solution \underline{U} is selected and a sequence of successive vector iterates $\underline{U}^{(m)}$ are calculated using

$$\underline{U}^{(m+1)} = (\underline{I} - \underline{A})\underline{U}^{(m)} + \underline{F} \qquad m > 0$$
 (46)

This scheme is known as the Richardson iterative method (or method of simultaneous displacements, point Jacobi, or point total-step method.) See Varga (1960). It requires all elements of the vector iterate $U^{(m)}$ for the computation of $\underline{U}^{(m+1)}$. Other iterative methods introduce the new values of the elements of the vector as they are determined, and these are used in the computation of successive elements. Methods of the latter type use only half the storage required for Richardson's method.

Iterative methods are characterized by the repeated application of a computational scheme which yields an approximation to the exact answer as a limit of the sequence of successive vector iterates. A basic question which must be answered affirmatively for any useful method is; does the sequence of vector iterates converge? To answer this an error for each vector iterate is defined

$$\underline{\mathbf{E}}^{(\mathbf{m})} = \underline{\mathbf{U}}^{(\mathbf{m})} - \underline{\mathbf{U}} \qquad \mathbf{m} \ge \mathbf{0}$$

Sub tracting Equation (45) from (46) we find

or

$$\underline{\underline{\mathbf{E}}^{(m+1)}} = (\underline{\underline{\mathbf{I}}} - \underline{\underline{\mathbf{A}}}) \ \underline{\underline{\mathbf{E}}^{(m)}}$$

Repeated application of this relationship, starting with the initial vector $\underline{U}^{(o)}$ gives

$$\underline{\mathbf{B}}^{(\mathbf{m})} = (\underline{\mathbf{I}} - \underline{\mathbf{A}})^{\mathbf{m}} \underline{\mathbf{E}}^{(\mathbf{o})} \qquad \mathbf{m} > \mathbf{o} \qquad (47)$$

Considering a single element $\mathbb{E}_{i}^{(m)}$ of $\mathbb{E}^{(m)}$, if the $\lim_{m\to\infty} U_{i}^{(m)} = U_{i}$ it is necessary that $\lim_{m\to\infty} U_{i}^{(m)}$ and $\lim_{m\to\infty} \mathbb{E}_{i}^{(m)}$ exist and $\lim_{m\to\infty} \mathbb{E}_{i}^{(m)} = 0$. This condition will hold for all elements only if $\lim_{M \to \infty} (\underline{I} - \underline{A})^{\underline{m}} \underline{E}^{(0)} = \underline{0}$ (48) for any arbitrary vector $\underline{E}^{(0)}$. $\underline{0}$ is the null vector of k elements. Equation (48) is valid then only if

$$\lim_{\mathbf{R} \neq \infty} \left(\mathbf{I} - \mathbf{A} \right)^{\mathbf{R}} = \mathbf{0} \tag{49}$$

where 0 is a square null matrix.

Milne (1953) shows that Equation (49) is the necessary and sufficient condition for convergence of an iterative method and this is assured if all the eigenvalues of the matrix $\underline{M} = \underline{I} - \underline{A}$ are less than one in absolute value.

Windsor (1957) has shown by derivation of the eigenvalues of <u>M</u> for a rectangular plate that Richardson's method is not convergent for the biharmonic equation. In the remainder of this section iterative methods will be reviewed and those which are especially useful for solving the biharmonic equation will be identified.

A. Point - Iterative Methods

The general form of Equation (43) for the biharmonic difference equation on a rectangular region with n columns and p rows of interior mesh points is of the form

$$\underline{A} \underline{U} = \underline{F}$$
(50)

where A is a kxk sparse, non-singular matrix, U and F are column vectors of k components and k = np.

The derivation of the matrix form of some iterative methods is simplified if we take

$$\underline{\mathbf{A}} = \underline{\mathbf{G}} + \underline{\mathbf{D}} + \underline{\mathbf{H}} \tag{51}$$

where \underline{G} is a strictly lower triangular matrix with the elements a_{ij} (i > j) below the diagonal of $\underline{\underline{A}}$ and all other elements zero. $\underline{\underline{D}}$ is formed of the diagonal elements a_{ii} of $\underline{\underline{A}}$ and $\underline{\underline{H}}$ is a strictly upper

triangular matrix with the elements a_{ij} (i < j), G, D and H are kxk matrices.

Richardson's Method

$$\underline{\underline{D}} \ \underline{\underline{U}} = \underline{\underline{F}} - (\underline{\underline{G}} + \underline{\underline{H}}) \ \underline{\underline{U}}$$

$$\underline{\underline{U}}^{(m+1)} = \underline{\underline{D}}^{-1} \underline{\underline{F}} - \underline{\underline{D}}^{-1} (\underline{\underline{G}} + \underline{\underline{H}}) \ \underline{\underline{U}}^{(m)}$$
(52)

where \underline{D}^{-1} is the inverse of \underline{D} , a diagonal matrix with elements $1/a_{ii}$.

For the model problem,
$$\underline{D}=\underline{I}$$
, $n=5$, $p=3$ the point value is

$$U_{ij}^{(m+1)} = F_{ij}^{(m)} + 4[U_{i-1,j}^{(m)} + U_{i+1,j}^{(m)} + U_{i+1,j}^{(m)} + U_{i+1,j+1}^{(m)} + U_{i+1,$$

Though the introduction of exterior mesh points may not be the best way to account for the normal derivative boundary condition one advantage of this approach is that the term F_{ij} will be automatically included when the column subscript of any term is not within the range 1 to n and when the row subscript of any term is not within the range 1 to p. Hence the F_{ij} can be dropped from Equation (53).

Gauss-Seidel Method

Varga (1962) identifies this also as the Liebmann method, point single step method and the method of successive displacements. The main difference between this and the Richardson method is the immediate introduction of the adjusted point values into a single vector iterate. The matrix form illustrates how this is accomplished.

$$\begin{array}{ll} (\underline{\mathbf{D}} + \underline{\mathbf{G}}) & \underline{\mathbf{U}} = \underline{\mathbf{F}} - \underline{\mathbf{H}} & \underline{\mathbf{U}} \\ \\ \underline{\mathbf{U}}^{(\mathbf{m}+1)} &= (\underline{\mathbf{D}} + \underline{\mathbf{G}})^{-1} & \underline{\mathbf{F}} - (\underline{\mathbf{D}} + \underline{\mathbf{G}})^{-1} & \underline{\mathbf{H}} & \underline{\mathbf{U}}^{(\mathbf{m})} \end{array}$$

$$(54)$$

For the example problem, the point values are computed with

$$U_{ij}^{(m+1)} = F_{ij} + \mathcal{H}\left[U_{i-l_{j}j}^{(m+1)} + U_{j_{j}j-l}^{(m)} + U_{i+l_{j}j}^{(m)} + U_{i_{j}j+l}^{(m)}\right] - \mathcal{I}\left[U_{i-l_{j}j-l}^{(m+1)} + U_{i+l_{j}j-l}^{(m+1)} + U_{i+l_{j}j+l}^{(m)} + U_{i+l_{j}j+l}^{(m)} + U_{i+l_{j}j+l}^{(m+1)} + U_{i_{j}j-2}^{(m+1)} + U_{i_{j}j-2}^{(m)} + U_{i_{j}j+2}^{(m)}\right]$$
(55)

Here too, the F_{ij} will be automatically included if point values have been provided on the boundary and on the first exterior mesh line. Starting at U_{11} and sweeping along columns successively, the required (m+1) iterate values will be available as specified by Equation (55). Boundary values computed initially remain fixed. Exterior point values can be recomputed at the end of each iteration.

This method is convergent for the biharmonic difference equation but the rate of convergence is so slow that it has limited usefulness. For a problem with 66 interior mesh points 1098 Gauss-Seidel iterations satisfied the same convergence criteria as 22h iterations of the successive overrelaxation method.

Successive Overrelaxation

This is also known as the extrapolated Liebmann method, Parter (1959), systematic overrelaxation and the extrapolated Gauss-Seidel. Young (1954) proposed an acceleration of the convergence of the Gauss-Seidel method based on an examination of the changes introduced in a given vector iterate and then introducing a multiple of the change at each point. The point value obtained by the Gauss-Seidel method will be designated $\overline{U}_i^{(m+1)}, 1 \le i \le k$.

Then

$$U_{j}^{(m+1)} = U_{j}^{(m)} + \omega \{ \overline{U}_{i}^{(m+1)} - U_{j}^{(m)} \} = (1 - \omega) U_{i}^{(m)} + \omega \overline{U}_{i}^{(m+1)}$$
(56)

The quantity ω is the relaxation factor. For overrelaxation, $1 \le \omega \le 2$. When ω_{\pm} 1 the method is Gauss-Siedel. The matrix representation must account for the prior application of Equation (56) at all preceding points. Hence,

$$\mathcal{D}\overline{\mathcal{U}}^{(m+1)} + \underline{G}\underline{\mathcal{V}}^{(m+1)} = \underline{F} - \underline{H}\underline{\mathcal{U}}^{(m)}$$
(57)

$$U^{(m+i)} = U^{(m)} + \omega(\underline{U}^{(m+i)} - \underline{U}^{(m)})$$
(58)

Eliminating $\overline{U}^{(m+1)}$ between Eq.'s (57) and (58) we find the matrix form

of the successive overrelation method

$$(\underline{D} + \omega \underline{G}) \underline{U}^{(m+1)} = [(1 - \omega) \underline{D} - \omega \underline{H}] U^{(m)} + \omega \underline{F}$$
(59)

The component U_{ij} of the vector iterate at a point where $l \le i \le n, l \le j \le p$ is given by

$$U_{ij}^{(m+1)} = U_{ij}^{(m+1)} + \frac{U_{i,j-1}^{(m+1)} + U_{i,j-1}^{(m+1)} + U_{i,j+1}^{(m)} + U_{i,j+1}^{(m)}) - J(U_{j-1,j-1}^{(m+1)} + U_{j+1,j-1}^{(m+1)} + U_{i+1,j+1}^{(m)}) - J(U_{j-2,j-1}^{(m+1)} + U_{j+2,j}^{(m)} + U_{i+2,j}^{(m)} + U_{i+2,j}^{(m)}) - U_{j,j+2}^{(m)} - U_{j,j-2}^{(m)} + U_{i+2,j}^{(m)} + U_{i+2,j}^{(m)} + U_{j,j+2}^{(m)}) - U_{j,j}^{(m)}$$

$$(60)$$

The rate of convergence of Equation (59) depends on the value of ω . The optimum value of ω is given by the formula

$$\omega_{\rm b} = \frac{2}{1+\sqrt{1-\rho^2}} \tag{61}$$

where ρ is the spectral radius of the point Jacobi method.

$$\lambda^{2}_{\mathfrak{H}} = \|\underline{\mathbb{E}}^{(\mathfrak{m})}\| / \|\underline{\mathbb{E}}^{(\mathfrak{m}-1)}\|$$

$$(62)$$

and

and $\rho = \lim_{m \to \infty} \Lambda_m$ Any norm of the error vector **E** could be used. One readily computed is $\left\|\underline{\mathbf{E}}^{(\mathbf{m})}\right\| = \sum_{i=1}^{K} |\mathbf{E}_{i}^{(\mathbf{m})}|$ (See Appendix A)

A common procedure for the determination of the relaxation factor is to set it initially to one; and, after a number of iterations, say 100, use Eq.'s (62) and (61) for calculating a new ω . Subsequently ω can be recomputed every ten or twenty iterations. Forsythe and Wasow (1961) pp. 368-372 describe two alternative approaches and indicate that the determination of a good estimate of $\omega_{\rm p}$ early in the computation is an investigation in which there is continuing interest.

The relationship between the estimated spectral radius and the number of iterations required for convergence of the model problem of Fig. 4.1, p.20 is given in Fig. 4.3.

Figure 4.3 Successive overrelaxation

Number of iterations vs. ρ

B. Methods of Block Iteration

The iterative methods considered thus far used an explicit formula for the calculation of each component of the vector iterate. Is it possible to use direct methods to find a block of components of the vector iterate? Consider the model problem in terms of submatrices, Equation (43). Taking arbitrary values for the column submatrices U_1 and U_3 , the components of U_2 can be determined by solving

 $\underline{\mathbf{M}} \ \underline{\mathbf{U}}_2^{(\mathbf{m}+1)} = \underline{\mathbf{F}}_2 - \underline{\mathbf{B}} \ \underline{\mathbf{U}}_1^{(\mathbf{m})} - \underline{\mathbf{B}} \ \underline{\mathbf{U}}_3^{(\mathbf{m})}$ (63) where $\underline{\mathbf{U}}_2 = \{\underline{\mathbf{U}}_{21}, \underline{\mathbf{U}}_{22}, \underline{\mathbf{U}}_{23}, \underline{\mathbf{U}}_{24}, \underline{\mathbf{U}}_{25}\}$. Since $\underline{\mathbf{M}}$ is an (nxn) matrix, substantially smaller than $\underline{\mathbf{A}}$ which is (kxk) the direct solution of Equation (63) will not require unreasonable blocks of computer memory and is an acceptable procedure. Using this method the point values of the vector iterate are not determined explicitly one at a time; instead n components are determined simultaneously. Hence, this procedure is called the simultaneous displacement method and is classified as implicit.

The matrix form of certain block methods assures faster average rates of convergence. See Appendix A, Section 5.

Arms, Gates and Zondek (1956) and Keller (1958) have investigated block methods using the components of the solution vector on a line as the basis for partitioning the matrix \underline{A} . For the biharmonic difference equation, "two line" schemes and the alternating-direction implicit method have been studied and appear to have advantages over other block methods. See Parter (1961A)

The Alternating-Direction Implicit Method

Peaceman and Rachford (1955) found that the rate of convergence of a "line" method could be substantially improved if after sweeping all rows using the simultaneous displacement method and a relaxation factor, the next sweep of all the mesh points was made by columns.

Conte and Dames (1958) derived a convergent, alternating-direction iterative method for solving the biharmonic equation. This method is similar to the alternating-direction method for solving Laplace's equation proposed by Douglas and Rachford (1956). The derivatives in the biharmonic equations are replaced using central difference approximations

$$\begin{split} \frac{\partial^{4} \phi}{\partial x^{*}} &\approx \left[\underline{G} \underline{U} \right]_{ij} = \delta_{x}^{4} U_{ij} = U_{i,j-2} - 4 U_{i,j-1} + 6 U_{i,j} - 4 U_{i,j-1} + U_{i,j+2} \\ \frac{\partial^{4} \phi}{\partial x^{*}} &\approx \left[\underline{H} \underline{U} \right]_{ij} = \delta_{y}^{4} U_{ij} = U_{i-2,j} - 4 U_{i-j,j} + 6 U_{i,j} - 4 U_{i+1,j} + U_{i+2,j} \right] \\ 2 \frac{\partial^{4} \phi}{\partial x^{*} \partial y^{*}} &\approx \left[\underline{P} \underline{U} \right]_{ij} = 2 \delta_{x}^{*} \delta_{y}^{*} U_{ij} = 2 \left\{ 4 U_{ij}^{*} - 2 \left[U_{i-1,j} + U_{i+1,j} + U_{i',j-1} + U_{i',j+1} \right] \\ &+ U_{i+1,j+1} + U_{i'-1,j+1} + U_{i'+1,j-1} + U_{i'-1,j-1} \right\} \\ \nabla^{4} \phi &\approx \delta_{x}^{4} U_{i,j} + 2 \delta_{x}^{*} \delta_{y}^{*} U_{i,j} + \delta_{y}^{4} U_{i,j} \end{split}$$

As shown for the model problem, Equation (42), introduction of the difference equations reduces the problem to the solution of a linear

system in k unknowns

$$A U = F$$

which can be written

$$(H + G + P) U = F$$

where $[\underline{H} \ \underline{U}]_{\underline{i}\underline{j}}$, $[\underline{G} \ \underline{U}]_{\underline{i}\underline{j}}$ and $[\underline{P} \ \underline{U}]_{\underline{i}\underline{j}}$ respectively represent the components of $\underline{H} \ \underline{U}$, $\underline{G} \ \underline{U}$ and $\underline{P} \ \underline{U}$ at the mesh point $(\underline{i}, \underline{j})$.

For the alternating direction implicit method, Equation (43) is replaced by a pair of matrix equations

$$(\mathbf{r}\underline{H} + \underline{I}) \underline{U} = (\underline{I} - \mathbf{r}\underline{G} - \mathbf{r}\underline{P}) \underline{U} + \mathbf{r}\underline{F}$$

 $(\mathbf{r}\underline{G} + \mathbf{r}\underline{P} + \underline{I}) \underline{U} = (\underline{I} - \mathbf{r}\underline{H}) \underline{U} + \mathbf{r}\underline{F}$

where r is any positive scalar. The iterative scheme in the form proposed by Peaceman and Rachford would appear

$$(\mathbf{r}_{\mathbf{m}+1} \stackrel{\mathrm{H}}{=} + \underline{\mathbf{I}}) \underbrace{\mathbf{U}^{(\mathbf{m}+\underline{\lambda})}}_{(\mathbf{m}+1)} = (\underline{\mathbf{I}} - \mathbf{r}_{\mathbf{m}+1} \stackrel{\mathrm{P}}{=} \underline{\mathbf{U}^{(\mathbf{m})}}_{(\mathbf{m}+1)} + \mathbf{r}_{\mathbf{m}+1} \stackrel{\mathrm{F}}{=} (64)$$

$$(\mathbf{r}_{\mathbf{m}+1} \stackrel{\mathrm{Q}}{=} + \mathbf{r}_{\mathbf{m}+1} \stackrel{\mathrm{P}}{=} \underline{\mathbf{I}}) \underbrace{\mathbf{U}^{(\mathbf{m}+\underline{\lambda})}}_{(\mathbf{m}+1)} = (\mathbf{I} - \mathbf{r}_{\mathbf{m}+1} \stackrel{\mathrm{H}}{=} \underbrace{\mathbf{U}^{(\mathbf{m}+\underline{\lambda})}}_{(\mathbf{m}+\underline{\lambda})} + \mathbf{r}_{\mathbf{m}+1} \stackrel{\mathrm{F}}{=} (65)$$

The first sweep of the mesh is by rows and only Equation (64) is solved for the vector iterate $\underline{U}^{(m+\frac{1}{2})}$. This is an implicit method since all the components of $\underline{U}^{(m+\frac{1}{2})}$ in one row are determined by (64). It is necessary to retain all the components of $\underline{U}^{(m)}$ while solving for $\underline{U}^{(m+\frac{1}{2})}$. During the second sweep Equation (65) is solved one column at a time for the components of $\underline{U}^{(m+1)}$. The solution along one row or one column is obtained by direct elimination. Conte and Dames use a factorization technique, which is well adapted for the case of Fig.4.2, where there are, at most, five unknowns along a mesh line.

The Douglas-Rachford method is a variant obtained by changing (65) to a form which does not contain <u>H</u>. Substituting for <u>H</u> $\underline{U}^{(\underline{m}+\underline{b})}$ from (64) we obtain

$$(\mathbf{r}_{m+1} \underline{\mathbf{G}} + \mathbf{r}_{m+1} \underline{\mathbf{P}} + \underline{\mathbf{I}}) \underline{\underline{\mathbf{U}}}^{(m+1)} = 2 \underline{\mathbf{I}} \underline{\underline{\mathbf{U}}}^{(m+1)} - (\underline{\mathbf{I}} - \mathbf{r}_{m+1} \underline{\mathbf{G}} - \mathbf{r}_{m+1} \underline{\mathbf{P}}) \underline{\underline{\mathbf{U}}}^{(m)}$$

Conte and Dames use a simplified form not containing P

$$\mathbf{U}^{(\mathbf{m}+1)} = \mathbf{U}^{(\mathbf{m}+\frac{1}{2})} - \mathbf{r}_{\mathbf{m}+1} \left[\underline{\mathbf{G}} \ \underline{\mathbf{U}}^{(\mathbf{m}+1)} - \underline{\mathbf{G}} \ \underline{\mathbf{U}}^{(\mathbf{m})} \right]$$
(66)

The use of Equation (66) for the column solution provides a simpler computational procedure than the one associated with Equation (65).

The determination of optimum acceleration parameters requires consideration of another form of the system of linear equations. This is found by combining Eq. (64) and (66) into a single equation.

$$\underline{U}^{(m+1)} = \underline{R} \mathbf{r}_{m+1} \underline{U}^{(m)} + \underline{S} \mathbf{r}_{m+1} \underline{F}$$
(67)
where $\underline{R} \mathbf{r} = (\underline{I} + \mathbf{r}\underline{G})^{-1} \left[(\mathbf{r}\underline{H} + \underline{I})^{-1} (\underline{I} - \mathbf{r}\underline{G} - \mathbf{r}\underline{P}) + \mathbf{r}\underline{G} \right]$

$$\underline{S} \mathbf{r} = (\underline{I} + \mathbf{r}\underline{G})^{-1} (\mathbf{r}\underline{H} + \underline{I})^{-1}$$

The difference between the mth vector iterate $\underline{U}^{(m)}$ and the solution vector \underline{U} is the error vector $\underline{E}^{(m)}$. It can be shown (see Appendix A) that $\underline{\underline{E}}^{(m+1)} = \underline{\underline{R}}\underline{\underline{r}}_{m+1} \underline{\underline{E}}^{(m)}$ (68)

If $\underline{U}^{(o)}$ is the initial, arbitrarily selected vector iterate then $\underline{E}^{(o)} = \underline{U}^{(o)} - \underline{U}$ and

$$\underline{\mathbf{E}}^{(\mathbf{m})} = \underline{\mathbf{R}}\mathbf{r}_{\mathbf{m}} \cdot \underline{\mathbf{R}}\mathbf{r}_{\mathbf{m}-1} \cdot \cdots \cdot \underline{\mathbf{R}}\mathbf{r}_{2} \cdot \underline{\mathbf{R}}\mathbf{r}_{1} \underline{\mathbf{E}}^{(\mathbf{0})}$$

For a convergent iterative scheme $\underline{E}^{(m)} \rightarrow \underline{0}$ as $m \rightarrow \infty$, and convergence of this method can be accelerated by the choice of r_m for each iteration. However, the relationship of this iterative method to others considered is less complicated for the special case when a single value is assigned to the scalar r. Then

$$\underline{\mathbf{E}}^{(\mathbf{m})} = (\underline{\mathbf{R}}_r)^n \underline{\mathbf{E}}^{(\mathbf{o})}$$
(69)

and the eigenvalues of the Conte-Dames matrix Er provide the basis for determining the optimum acceleration parameters. See Fig. 4.4 which shows the relationship between the acceleration parameter r and the number of iterations required for convergence of the model problem, Fig. 4.1, p. 20.

Choice of optimum values of r_m for a square plate has been considered by Conte and Dames (1958) and Fairweather and Mitchell (1964). For this particular geometry the eigenfunctions of Equation (68) can be expanded in the form

 $E_{ij}^{(m)} = A \sin (p\pi ih) \sin (q\pi jh), (p, q = 1, 2, \cdots, k-1)$

Consider an amplification fector

$$\lambda_{PF} = \frac{E_{iJ}^{(m+1)}}{E_{iJ}^{(m)}}$$

If this is substituted into Equation (68) we find

$$(16 r_{m+1}) \lambda p, q = \frac{(1 - 16 r_{m+1} S_p^2 S_q^2)^2}{1 + 16r_{m+1} (S_p^4 + S_q^4) + 256 r_{m+1}^2 S_p^4 S_q^4}$$
(70)

where $\tilde{S}p = \sin \frac{p \pi h}{2}$, $\mathcal{S}_{\mathbf{q}} = \sin \frac{\mathbf{q} \pi \mathbf{h}}{2}$, h is the mesh interval. The error associated with the initial vector iterate can be

expanded in the form

$$E_{ij}^{(0)} = \sum_{P,g=1}^{k-1} C_{P,g}^{(0)} \sin(p\pi ih) \sin(q\pi jh),$$

and the error vector at the mth iteration can be written

$$E_{jj}^{(m)} = \sum_{RS=1}^{h-1} C_{P,S}^{(m)} \sin(p\pi jh) \sin(g\pi j'h),$$

where

$$C_{p,p}^{(m)} = \prod_{l=1}^{m} (16r)_{l} \lambda_{p,p} C_{p,p}^{(\omega)}$$

It follows from Equation (70) that $0 \le (16r)_{g} \lambda_{P,g} \le 1$ for all p and q if r is positive. Hence, after m iterations each component of the error decreases by a factor

$$\prod_{l=1}^{m} (16r)_{l} \lambda_{p, \mathcal{Y}}$$

if r_{ℓ} is positive. The minimum value of $(16r)_{\ell} \lambda_{p,q}$ found from Equation (70), is zero and occurs when

$$16r = \frac{1}{S_p^2 S_p^2}$$

This indicates that an appropriate choice of the r_{χ} can be made so all components of the error vector will vanish and the exact solution can be obtained. Rather than attempt to find this optimum r_{χ} , a less complicated procedure consists of choosing the r_{χ} which optimize the rate of convergence of the method.

Consider a slightly different expression for an amplification factor

$$|6\tau \bar{\lambda}_{pg} \equiv \frac{(1 - |6\tau S_p^2 S_q^2)^2}{(1 + 16\tau S_p^2 S_q^2)^2}$$

Since

$$S_p^4 + S_q^4 \ge 2S_p^2 S_q^2$$

we find from Equation (70)

|16rλ ≥ |16rλ

for all p and q. The analysis of the problem of finding an optimum set of acceleration parameters is treated by Douglas and Rachford (1956). The factor by which the error is decreased after m iterations is

$$Z_{e}(S_{p}^{2}S_{q}^{2}, 16r_{q}) = \prod_{g=1}^{t} \overline{\lambda}_{p,g}(16r_{d}) = \prod_{g=1}^{t} \left[\frac{(1/16r_{p} - S_{p}^{2}S_{q}^{2})}{(1/16r_{q} + S_{p}^{2}S_{q}^{2})} \right]^{2}$$

It is necessary to find the set of r_{χ} ($\chi = 1, 2_{9}$ -----t) giving a maximum value of Ξ_{t} which is as small as possible for ($p_{9}q = 1, 2_{9}$ 3 -----k-1). The Douglas-Rachford solution treats this as a Chebyshev minimax problem, while Conte & Dames recommend a set of acceleration parameters of the form

$$lor_{k} = \alpha^{(1-k)}, \quad k = 1, 2, ---, t$$

where 0 < 0 < 1. This permits the determination of an upper bound on Z_{t} .

$$Z_{t}(S_{p}^{2}S_{q}^{2}, |6\eta_{p}) \leq P_{t}(\alpha) \equiv \left[\frac{1-\alpha^{1/2}}{1+\alpha^{1/2}} e^{-\frac{\alpha^{3/2}}{1-\alpha}}\right]^{4}$$
(71)

The formal procedure, outlined by Conte and Dames, starts with a choice of $P_t(\alpha)$ which permits the determination of the number of cycles of t double sweeps of the mesh required for the selected reduction factor. However, the choice of $P_t(\alpha)$ is subject to the empirical observation that best results are obtained for $\alpha < 0.2$. The number of iterations, t, per cycle is computed from

$$t \ge 1 + \frac{4\log(\sin\frac{\pi h}{2})}{\log\alpha} \tag{72}$$

Then

$$r_{l} = \frac{\alpha^{(l-k)}}{l_{6}}, \qquad k = l_{1} 2, 3, \dots, t$$
 (73)

gives the value of r, for the gth iteration in the cycle.

As an example of the method consider a 20 x 20 grid on which it is desirable to reduce the initial error by a factor 10^{-6} . Selecting $\alpha = 0.2$ makes $P_t \approx 0.01$. The number of cycles required is determined from

$$(P_t)^n = 10^{-6}$$

Thus, n = 3 is the number of cycles. The number of iterations per cycle is

$$t \ge 1 + \frac{4 \log \sin \frac{\pi}{100}}{\log 1.2} \approx 7.35$$

or t = 8 and

$$T_{R} = \frac{(0.2)^{1-R}}{16}$$
, $k = 1, 2, \dots, 8$.

Factorisation Technique

The difference equation (64) can be written in the form
$$U_{i-2,j}^{(m+1/2)} - 4 U_{i-1,j}^{(m+1/2)} + (6 + \frac{1}{7_{m+1}}) U_{i,j}^{(m+1/2)} - 4 U_{i+1,j}^{(m+1/2)} + U_{i+2,j}^{(m+1/2)} = F_{Rj}$$
(74)

where

$$\mathbf{F_{Rj}} = \left(\frac{1}{T_{m+1}} - 14\right)U_{jj}^{(m)} + 4\left(U_{j+1,j}^{(m)} + U_{j-1,j}^{(m)}\right) + 8\left(U_{j,j+1}^{(m)} + U_{j,j-1}^{(m)}\right) \\ - 2\left(U_{j+1,j+1}^{(m)} + U_{j-1,j+1}^{(m)} + U_{j-1,j-1}^{(m)} + U_{j+1,j-1}^{(m)}\right) - U_{i,j+2}^{(m)} - U_{i,j+2}^{(m)} + U_{i,j-2}^{(m)}$$

Similarly, difference equation (66) can be written in the form

$$\bigcup_{i,j-2}^{(m+1)} - 4\bigcup_{i,j-1}^{(m+1)} + (6 + \frac{1}{T_{m+1}}) \bigcup_{i,j}^{(m+1)} - 4\bigcup_{i,j+1}^{(m+1)} + \bigcup_{i,j+2}^{(m+1)} = F_{2}$$
(75)

where

$$\mathbf{F_{ci}} = \frac{1}{T_{m+1}} \bigcup_{i,j}^{(m+1/2)} + \bigcup_{i,j-2}^{(m)} - 4 \bigcup_{i,j-1}^{(m)} + 6 \bigcup_{i,j}^{(m)} - 4 \bigcup_{i,j+1}^{(m)} \bigcup_{i,j+2}^{(m)}$$

Using (74) at all mesh points in a row leads to a "quidiagonal" system of linear equations of the form

cı	-4	1								U ₁₁		FRI
-4	c ₂	-4	1							U ₁₂		F _{R2}
1	-4	c3	-4	1						U _{i3}		F _{R3}
	1	-4	c _{j4}	-4	l					U _{il}		F _{R4}
		-	-	-		-			•	-	11	
			-	-	-	-	6 23			-		
				-	-	-		-		æ		
					l	-4	C _{n-1}	-4		U i,n-l		F _{Rn-1}
				· .		1	-4	C _n		U _{i,n}		F _{Rn}

where the C's all have the value $(6 + \frac{1}{r_{m+1}})$. A system of linear equations of the same general form is obtained when (75) is applied at all mesh points in a single column. The factorization technique is an efficient direct method of solving a quidiagonal system of equations. Take

$$w_{1} = c_{1}, \qquad w_{q} = c_{q} - g_{q-2} - d_{q} B_{q-1}$$

$$B_{0} = 0, \quad B_{1} = -4/c_{1}, \qquad Bq = -(4 + d_{q} g_{q-1})/w_{q}, \quad B_{n} = 0$$

$$g_{0} = 0, \quad g_{1} = 1/c_{1}, \qquad g_{q} = 1/w_{q}, \quad g_{n} = g_{n-1} = 0$$

$$d_{q} = -4 - E_{q-2}$$

 $h_{o} = 0$, $h_{1} = F_{R1}/C_{1}$, $h_{q} = [F_{Rq} - h_{q-2} - d_{q} h_{q-1}] / w_{q}$, $2 \le q \le n$ Starting with the specified initial values the n values of h are computed. Then the values of U_{q} are computed by back substitution

$$U_n = h_n$$

 $U_q = h_q - B_q U_{q+1} - g_q U_{q+2}$, $q = n-1$, $n-2$, -----, 1

The alternating-direction method was initially applied to the solution of parabolic and elliptic partial differential equations of the second order. For Laplace's equation with sufficiently small mesh spacing it provides a significant increase in the rate of convergence per iteration over the point successive overrelaxation method. This advant-

age must be weighed against the requirement for the double computation in a two sweep scheme and the need for storage of the (m+½) vector iterate. Compared with recently developed block successive overrelaxation methods, superiority of the rate of convergence is not rigorously established. Varga (1962) notes that the convergence of the Peaceman-Rachford and similar alternating direction methods has been established only for rectangular regions. Though there has been some success in applying alternating direction implicit methods to more general regions, the convergence in the general case is yet to be justified. There is no general theory for the determination of optimum convergence parameters except for rectangular regions. These same limitations apply to the solution of the biharmonic equation and in addition Keller (1961) demonstrated for several block methods that corresponding biharmonic schemes converge more slowly than Laplace schemes.

Semi-iterative Methods

A system of linear equations

 $\underline{A} \underline{U} = \underline{F},$

can be solved by an iterative method of the form

$$\underline{\underline{U}^{(m+1)}} = \underline{\underline{W}} \, \underline{\underline{U}^{(m)}} + \underline{\underline{F}} \qquad m \ge 0 \tag{76}$$

if $\underline{A} = \underline{I} - \underline{M}$ is a positive-definite nxn matrix. See Appendix A. As $\underline{m} \rightarrow \infty$, $\underline{U}^{(\underline{m})}$ converges to the unique solution of the system of equations. A semi-iterative method uses an algebraic combination of solution vector iterates $\underline{U}^{(\underline{m})}$ as a means of increasing the rate of convergence.

Starting with an initial estimate $\underline{U}^{(o)}$, the error vector associated with the vector iterate $\underline{U}^{(m)}$ is given by $\underline{E}^{(m)} = \underline{U}^{(m)} - \underline{U} = \underline{M}^{m} \underline{E}^{(o)}$ A linear algebraic combination of the vector iterates $\underline{U}^{(m)}$ is introduced

$$\underline{\underline{v}}^{(m)} = \sum_{j=\sigma}^{m} p_{j}^{(m)} \underline{\underline{v}}^{(j)} \qquad m \ge 0$$
(77)

where the coefficients $p_j(m)$ are selected so that each $\underline{v}^{(m)}$ is a weighted average of the $\underline{U}^{(j)}$ and a better approximation to the solution vector \underline{U} than $\underline{v}^{(m)}$. For the special case $\underline{U}^{(o)} = \underline{U}$ it is necessary that

$$\sum_{j=0}^{m} P_{j}(m) = 1$$
 (78)

Then $\underline{\mathbf{v}}^{(m)} = \underline{\mathbf{U}}$ for all $m \ge 0$. The requirement of Equation (78) will be imposed on the constants $p_j(m)$ for any arbitrary choice of $\underline{\mathbf{u}}^{(o)}$.

The error vector associated with $\underline{v}^{(m)}$ is denoted $\underline{E}^{(m)}$

$$\underline{\underline{P}}^{(m)} = \underline{\underline{V}}^{(m)} - \underline{\underline{U}} = \sum_{j=0}^{\frac{27}{j}} p_j(m) \underline{\underline{U}}^{(j)} - \underline{\underline{U}}$$
(79)

Since the constants $p_i(m)$ must satisfy Equation (78)

$$E^{(m)} = \sum_{j=0}^{m} P_{j}(m) \underbrace{\bigcup}_{j=0}^{(j)} - \left(\sum_{j=0}^{m} P_{j}(m)\right) \underbrace{\bigcup}_{j=0}^{(m)} P_{j}(m) \underbrace{\bigcup}_{j=0}^{(j)} P_{j}(m) \underbrace{\bigcup}_{j=0}^{(j)} P_{j}(m) \underbrace{\bigsqcup}_{j=0}^{(j)} P_$$

If we introduce a polynomial in a component of U_{p} defined by

$$P_{m}(u) = \sum_{j=0}^{M} p_{j}(m) u^{j} \qquad m \ge 0$$
 (81)

then we can write (80) in the form

$$\underline{\mathbf{E}}^{(m)} = \mathbf{P}_{\underline{\mathbf{m}}} (\underline{\mathbf{M}}) \underline{\mathbf{E}}^{(o)}$$

where $P_m(\underline{M})$ is a polynomial in the matrix \underline{M} . The condition imposed by Equation (78) on $\sum p_i(m)$ requires $P_m(1) = 1$.

Using the definitions of matrix and vector norms given in Appendix

A, we can write

$$||\mathbf{E}^{(m)}|| = ||\mathbf{P}_{m}(\mathbf{M})\mathbf{E}^{(0)}|| \le ||\mathbf{P}_{m}(\mathbf{M})|| ||\mathbf{E}^{(0)}|| \qquad m \ge 0$$

For $\|P_m(\underline{M})\| < 1$ the average rate of convergence of the semi-iterative method for m iterations is defined as

$$\mathbb{R}\left[P_{\mathbf{m}}(\underline{\mathbf{M}})\right] \equiv \frac{-\ln \left\|F_{\mathbf{m}}(\underline{\mathbf{M}})\right\|}{m}$$

If the polynomial is selected so $P_m(u) = u^m$, the vector $\underline{V}^{(m)}$ is identically $\underline{U}^{(m)}$ and the average rate of convergence can be readily simplified.

$$\mathbf{R}\left[\mathbf{P}_{\mathbf{m}}(\underline{\mathbf{M}})\right] = -\frac{f_{\mathbf{m}}[||\mathbf{P}_{\mathbf{m}}(\underline{M})||}{m} = -\frac{f_{\mathbf{m}}[||\mathbf{M}^{\mathbf{m}}||]}{m} = \mathbf{R}[\underline{M}^{\mathbf{m}}]$$

and, as shown in Appendix A, it is equivalent to the convergence rate of the basic iterative formulation of the problem. The average rate of convergence of $\underline{\nabla}^{(m)}$ will be optimized by finding the minimum of $\|P_{\underline{m}}(\underline{M})\|$ under the restriction $\underline{P}_{\underline{m}}(1) = 1$. See Varga (1962) Chap. 5.

Chebyshev Semi-iterative Methods

Golub and Varga (1961) identified a polynomial which satisfies the requirements for optimizing the average rate of convergence. They used

$$P_{m}(u) = \frac{C_{m}\left[\frac{2u - (b+a)}{b-a}\right]}{C_{m}\left[\frac{2 - (b+a)}{b-a}\right]}, \qquad m \ge 0$$

where $C_m(z) = \begin{bmatrix} \cos (m \cos^{-1} z), & -1 \le z \le 1, & m_0 \\ \cosh (m \cosh^{-1} z), & z \ge 1, & m_0 \end{bmatrix}$

are the Chebyshev polynomials

The Chebyshev semi-iterative method for the problem specified in Equation (76) has the form

$$\underline{\mathbf{v}^{(m+1)}} = \omega_{m+1} \left[\underline{\mathbf{H}} \quad \underline{\mathbf{v}^{(m)}} + \underline{\mathbf{F}} - \underline{\mathbf{v}^{(m-1)}} \right] + \underline{\mathbf{v}^{(m-1)}}$$
(82)

where (See Varga (1962) p.138) $\omega_{1} \equiv 1$, $\omega_{m} + 1 \equiv \frac{2 \operatorname{Cm} (1/\rho)}{C_{m+1}(1/\rho)}$, **m** > o

and ρ is the spectral radius of N. Note should be made of the absence of the vector iterate U^(m). It is not used in the computation. The vector iterate $\underline{V}^{(m+1)}$ is formed directly from the preceding vector iterates $\underline{V}^{(m)}$ and $\underline{V}^{(m-1)}$. It is necessary to store both $\underline{V}^{(m)}$ and v(m-1). Spectral radius is defined in Appendix A, Sec.2.

Method for a Cyclic Matrix

Consider a slightly different approach to the solution of Equation (70). Let

U = M T + F

Y = M U + F

or equivalently

$$\mathbf{\underline{W}} = \mathbf{\underline{N}} \mathbf{\underline{W}} + \mathbf{\underline{G}}$$
(83)

where

$$\underline{\mathbf{A}} = \begin{bmatrix} \overline{\mathbf{x}} \\ \overline{\mathbf{n}} \end{bmatrix}, \qquad \overline{\mathbf{y}} = \begin{bmatrix} \overline{\mathbf{x}} & \overline{\mathbf{0}} \\ \overline{\mathbf{n}} & \overline{\mathbf{0}} \end{bmatrix}, \qquad \overline{\mathbf{G}} = \begin{bmatrix} \overline{\mathbf{x}} \\ \overline{\mathbf{k}} \end{bmatrix},$$

If M is an num convergent matrix, Equation (83) has a unique solution W and the subvectors U and Y are equal to the solution of Equation (76). Since the solution of (83) would require the manipulation of (2nx2n) matrices, it is not recommended as a practical method. However, it does provide the basis for an improvement of the semi-iterative method.

Assume that N in Equation (76) is an num, Hermitian, convergent matrix with the special form

$$\underline{\mathbf{H}} = \begin{bmatrix} \underline{\mathbf{O}} & \underline{\mathbf{H}} \\ \underline{\mathbf{H}} & \underline{\mathbf{O}} \end{bmatrix}$$

where the submatrices are square and H# is the conjugate transpose of H.

A matrix M which can be expressed in this form is said to be weakly cyclic of index 2. A weakly cyclic matrix <u>A</u> of index k is such that <u>A</u>^k has real non-negative, eigenvalues. For the assumed form of <u>M</u> the successive overrelaxation method for Equation (76) can be written (Varga (1962) p. 149)

$$\underline{\underline{U}}_{1}^{(m+1)} = \omega \left[\underline{\underline{H}} \ \underline{\underline{U}}_{2}^{(m)} + \underline{\underline{F}}_{1} - \underline{\underline{U}}_{1}^{(m)} \right] + \underline{\underline{U}}_{1}^{(m)},$$

$$\underline{\underline{U}}_{2}^{(m+1)} = \omega \left[\underline{\underline{H}} \times \underline{\underline{U}}_{1}^{(m+1)} + \underline{\underline{F}}_{2} - \underline{\underline{U}}_{2}^{(m)} \right] + \underline{\underline{U}}_{2}^{(m)}, \quad \underline{\underline{m}} \ge 0$$

where U and F are particulation into \underline{U}_1 , \underline{U}_2 and \underline{F}_1 , \underline{F}_2 respectively. The Cyclic Chebyshev Semi-iterative Method

The Chebyshev semi-iterative method corresponding to this special matrix M can be written. (Varga (1962) p.150)

$$\underbrace{\underline{U}}_{2}^{(m+1)} = \omega_{m+1} \left[\underbrace{\underline{H}}_{2} \underbrace{\underline{U}}_{2}^{(m)} + \underbrace{\underline{F}}_{1} - \underbrace{\underline{U}}_{1}^{(m-1)} \right] + \underbrace{\underline{U}}_{1}^{(m-1)},$$

$$\underbrace{\underline{U}}_{2}^{(m+1)} = \omega_{m+1} \left[\underbrace{\underline{H}}_{2} \underbrace{\underline{U}}_{1}^{(m)} + \underbrace{\underline{F}}_{2} - \underbrace{\underline{U}}_{2}^{(m-1)} \right] + \underbrace{\underline{U}}_{2}^{(m-1)}, \quad m \ge 1$$

Since the iteration parameter ω_{m+1} is a function of the number of iterations m, the cyclic characteristic of <u>M</u> permits the following form

$$\underbrace{\underline{\underline{U}}_{1}^{(2m-1)}}_{\underline{\underline{U}}_{2}^{(2m-1)}} = \omega_{2m+1} \left[\underbrace{\underline{\underline{H}}}_{\underline{\underline{U}}_{2}^{(2m)}} + \underbrace{\underline{\underline{F}}}_{1} - \underbrace{\underline{\underline{U}}}_{1}^{(2m-1)} \right] + \underbrace{\underline{\underline{U}}}_{1}^{(2m-1)}, \underline{\underline{u}} \ge 1$$

$$\underbrace{\underline{\underline{U}}_{2}^{(2m-2)}}_{\underline{\underline{U}}_{2}^{(2m+2)}} = \omega_{2m+2} \left[\underbrace{\underline{\underline{H}}}_{\underline{\underline{H}}} \underbrace{\underline{\underline{U}}}_{1}^{(2m+1)} + \underbrace{\underline{\underline{F}}}_{2} - \underbrace{\underline{\underline{U}}}_{2}^{(2m)} \right] + \underbrace{\underline{\underline{U}}}_{2}^{(2m)}, \underline{\underline{u}} \ge 0$$

This is known as the cyclic Chebyshev semi-iterative method. Due to skipping half the vector iterates the rate of convergence of this method is twice that of the Chevyshev semi-iterative method. Basically though, this method is just a variation of the successive overrelaxation method. Varga (1962) shows that the average rate of convergence of the cyclic Chebyshev semi-iterative method is better than the average rate of convergence of the successive overrelaxation method. The cyclic Chebyshev semi-iterative method will be used to solve the model problem and the convergence rates of successive overrelaxation, the alternating direction implicit method and the cyclic Chebyshev semi-iterative methods will be compared. Cyclic Chebyshev Semi-iterative Method for the Biharmonic Equation

Consider the solution of the biharmonic equation for a rectangular region with a grid of n interior mesh points in the x direction and p interior mesh points in the y direction.

The difference equation can be written in the form

$$\underline{A} \ \underline{U} = \underline{F}$$
(84)
where N = np, A is an NxN
coefficient matrix, U is
the solution column vector
and F is a column vector
which accounts for the
specified boundary
conditions.

The formulation of the

Figure 4.5 Two line blocks

model problem in terms of sub-matrices, Equation (43), can be extended for

the general case

<u>N</u> B BN	<u>IO</u> BI		<u>o</u>			F1 F2
	<u>N</u> B BN	<u>I</u> <u>O</u> <u>B</u> <u>I</u> 	<u>0</u> _0_	<u>5</u> 3	=	F., F., F.,
<u>0</u> 0		<u>I</u> <u>B</u>	<u>N</u>	<u>u</u> p		F_p

The <u>M</u>, <u>B</u>, <u>I</u> are non matrices and <u>U</u>_k and <u>F</u>_k are n component column submatrices corresponding to the solution vector components along one row.

Griffin and Verga (1963) select a two row block of the components of \underline{U} and show that the associated matrix A is of the form required for the cyclic Chebyshev scheme. The number of rows of interior mesh points, p, must be even. This permits the selection of $t \in \underline{P}$ two row column submatrices for the particular of U.

where

$$\underline{\mathbf{L}} = \begin{bmatrix} \underline{\mathbf{M}} & \underline{\mathbf{B}} \\ \underline{\mathbf{B}} & \underline{\mathbf{M}} \end{bmatrix}, \quad \underline{\mathbf{K}} = \begin{bmatrix} \underline{\mathbf{I}} & \underline{\mathbf{0}} \\ \underline{\mathbf{B}} & \underline{\mathbf{I}} \end{bmatrix}, \quad \underline{\mathbf{K}}^{\mathrm{T}} = \begin{bmatrix} \underline{\mathbf{I}} & \underline{\mathbf{B}} \\ \underline{\mathbf{0}} & \underline{\mathbf{I}} \end{bmatrix}, \quad \underline{\mathbf{T}}_{\mathrm{q}} = \begin{bmatrix} \underline{\mathbf{U}}_{q/2^{-1}} \\ \underline{\mathbf{U}}_{q/2} \end{bmatrix}$$

The difference equations (84) can be expressed in the form $\underline{L} \underline{T}_q = \underline{F}_q^i - \underline{K}^T \underline{T}_{q-1} - \underline{K} \underline{T}_{q+1}$ (86) or since \underline{L} is a 2nx2n symmetric positive-definite matrix, which assures the existence of the inverse \underline{L}^{-1} , it can be writtens

$$\underline{\mathbf{T}}_{\mathbf{q}} = \underline{\mathbf{L}}^{-1} \underline{\mathbf{F}}_{\mathbf{q}}^{*} - \underline{\mathbf{L}}^{-1} \underline{\mathbf{K}}^{\mathrm{T}} \underline{\mathbf{T}}_{\mathbf{q}-1} - \underline{\mathbf{L}}^{-1} \underline{\mathbf{K}} \underline{\mathbf{T}}_{\mathbf{q}+1}$$

which establishes the form required for use of the cyclic Chebyshev semi-iterative method.

Assuming the solution is known at all mesh points except those in the two-row block q, Equation (86) provides the basis for the determination of the remaining unknowns. The form of the matrix <u>L</u> is conveniently simplified if the components of \underline{T}_q are selected alternately from the two rows.

The matrix \underline{L} is symmetric with non-zero elements appearing only in the main diagonal and the eight adjacent bands. Hence, the linear system of equations (86) can be solved by direct methods. The square-root method can be used to advantage. See p. 48.

After obtaining a method for the solution of (86) for one block, the full cyclic Chebyshev semi-iterative method is introduced

$$LT_{2k+1}^{*(2m+1)} = \underline{\Gamma}_{2k+1}^{(2m)} - \underline{K}T_{2k}^{(2m)} - \underline{K}T_{2k+1}^{(2m)} \qquad o \leq k \leq \frac{t-1}{2}$$

$$T_{2k+1}^{(2m+1)} = T_{2k+1}^{(2m-1)} + \omega_{2m+1} \left[T_{2k+1}^{*(2m+1)} - T_{2k+1}^{(2m-1)} \right], \qquad m \geq 0$$

$$(87)$$

and

$$L T_{2k}^{*(2m+2)} = F_{2k} - K^{T} T_{2k-1}^{(2m+1)} - K T_{2k+1}^{(2m+1)}; \qquad m \ge 0; \qquad (88)$$

$$T_{2k}^{*(2m+2)} = T_{2k}^{(2m)} + \omega_{2m+2} \left[T_{2k}^{*(2m+2)} - T_{2k}^{(2m)} \right], \quad 1 \le k \le \frac{t}{2}.$$

The Chebyshev method consists of solving the difference equations (87) over the first two-row block, and all subsequent odd-numbered blocks, then difference equations (88) are solved over all even-numbered blocks.

The iteration parameters ω_{2m+1} , ω_{2m-2} are computed recursively using

$$\omega_{1} = 1 \quad \gamma \qquad \omega_{2} = \frac{2}{2 - \rho^{2}}$$
$$\omega_{3+1} = \frac{1}{\left[1 - \frac{\rho^{2} \omega_{5}}{4}\right]} \qquad \text{for } s \ge 2$$

where ρ is an approximation of the spectral radius of <u>A</u>. If <u>A</u> is the coefficient matrix for a rectangular region, an approximation to the maximum eigenvalue, given by Griffin and Varga is

$$\rho \approx \frac{1}{\left[1 + \frac{\lambda^2 h^4}{2}\right]} \tag{89}$$

where

$$\chi^{2} = \left(\frac{\pi}{a}\right)^{4} \left[5.144\left(1 + \frac{a^{4}}{b^{4}}\right) + 3.115 \frac{a^{2}}{b^{2}} \right]$$

h is the uniform mesh spacing in both the x and y directions and a and b are the dimensions of the plate. The relationship between the number of iterations and the value selected for ρ is shown in Fig. 4.6, from the model problem of Fig. 4.1, p. 20.

Figure 4.6 Cyclic Chebyshev semi-iterative method

Number of iterations vs. ρ

The Square Root Method

A direct-method algorithm for solving a system of linear equations, the square-root method, which is suggested by Faddeeva (1959) as one of the most efficient, is applicable only to symmetric systems. In Equation (86) which can be written

$$\underline{\mathbf{L}} \underline{\mathbf{T}}_{\mathbf{a}} = \underline{\mathbf{P}}_{\mathbf{a}}$$

the matrix \underline{L} is nine-diagonal symmetric and positive definite. Hence, \underline{L} can be expressed as the product of two triangular matrices, one of which is the transpose of the other

$$\underline{\mathbf{L}} = \underline{\mathbf{S}}^{\mathrm{T}} \underline{\mathbf{S}},$$

According to the rules for matrix multiplication the following relationships hold

$$\begin{aligned}
\mathcal{L}_{ij} &= s_{1i} s_{1j} + s_{2i} s_{2j} + - - - - - + s_{1i} s_{1j}, i < j \\
\mathcal{L}_{ii} &= s_{1i}^2 + s_{2i}^2 - - - - - - + s_{1i}^2, i = j
\end{aligned}$$
(90)

The sij are computed by recursive use of equations (90).

$$s_{11} = \sqrt{\lambda_{11}}, \qquad s_{1j} = \frac{\lambda_{1,j}}{s_{11}}, \quad 2 \le j \le 4$$

$$s_{ii} = \sqrt{k_{ii} - \sum_{z=i}^{j-1} s_{zi}^2} , \quad i > 1,$$

$$s_{ij} = \frac{k_{ij} - \sum_{z=i}^{j-1} s_{zi} s_{zj}}{s_{ii}} , \quad i + u \ge j \ge i$$

 $s_{ij} = 0, i>j$

The solution of $\underline{L} \underline{T} = \underline{P}$ is obtained by solving two systems

$$\underline{\mathbf{S}^{\mathrm{T}}}\,\underline{\mathbf{H}}\,=\,\underline{\mathbf{P}}\,,\qquad \underline{\mathbf{S}}\,\underline{\mathbf{T}}\,=\,\underline{\mathbf{H}}$$

The components of the vector M are computed with the recurrence formulas

Number of Iterations

V. COMPARISON OF THREE ITERATIVE METHODS

A prime objective of this study is the identification of the relative merits of three iterative methods for the solution of the biharmonic difference equations. Commenting on the problem of selecting the best iterative method for solving engineering problems Varga (1962) p.245 makes several observations. (1) For the general case there are no theoretical arguments which rigorously establish the superiority of any one method. (2) The present evaluation of these methods has been based on the numerical experiments of many investigators. (3) The numerical results indicate that for each two-dimensional second-order partial differential equation boundary-value problem there is a critical mesh spacing h* such that the two line cyclic Chebyshev semi-iterative method is superior for all mesh spacings $h \ge h*$, while for h < h* a multipleacceleration-parameter Peaceman-Rachford method is better.

	Number of	Storage of	Time (sec./iteration)					
Subroutine Name	FORTRAN Statements	arrays for 450 points	72 Mesh pts.	450 Mesh pts.				
SOR	32	646	.050	.223				
ADI	89	1224	.098	.585				
CHEB	162	1126	.167	.612				

Ľ٤	ab.	Le .	Lo (Comp	ari	Lson	01	1	ter	at:	ive	8 5	ubi	COI	ut:	ine	C	nai	ac	:t	er:	is	ιí	Ct

SOR - Successive overrelaxation method ADI - Alternating direction implicit method CHEB- Two line cyclic Chebyshev semi-iterative method

The evaluation of these iterative methods for biharmonic difference equations is more complicated than for Laplace's difference equations. For Laplace's equations, Golub and Varga (1961) indicate that the cyclic Chebyshev semi-iterative method requires effectively no more additional

arithmetic operations or vector storage than other iterative methods. This is not true for the biharmonic difference equations as shown by the comparison in Table 1 of the three iterative subroutines included in the ISOPEP program of Appendix B.

The overriding consideration for many is the actual machine time required for a solution which satisfies a specified convergence criterion. <u>Convergence criteria</u>

The norm $\|\underline{E}^{(m)}\|_{II}$ of the error vector $\underline{E}^{(m)}$ is often used for terminating the iterations; the norm is defined by

 $\left\|\underline{\mathbf{E}}^{(\mathbf{m})}\right\|_{\mathbf{II}} = \sum_{i=1}^{R} |\mathbf{E}_{i}^{(\mathbf{m})}|$

A value is assigned to a parameter δ , and when

 $\left\|\underline{\mathbf{E}}^{(\mathbf{m})}\right\|_{\mathbf{II}} \leq \delta$

the solution vector iterate $\underline{U}^{(m)}$ is accepted as the solution. Griffin (1963) indicates that for the two-line cyclic Chebyshev semi-iterative method, if the number of two-line blocks is large the average difference between corresponding values of U_i in successive iterations will be approximately 2 δ/k , where k is the number of mesh points at which the stress function is unknown.

The criterion used in the ISOPRP program of Appendix B, which includes the subroutines SOR, ADI and CHEB, is

 $|\mathbf{z}^{(\mathbf{n})}|_{\mathbf{n}\mathbf{n}\mathbf{r}} < \delta$

with $\delta = 10^{-5}$. For the model problem $|U_1|_{max} = 3.6$.

The three iterative methods were used to solve the model problem of Section VI - 1. Symmetry conditions were used for the stress function at the plate centerline. There is a summary of the results in Table 2 and comparison of the methods in terms of number of iterations and machine time required for different mesh intervals in Fig. 4.7.

Mesh Space	Nesh	Nu Ite	mber o ration	f s	CDC 3600 Execution time in minutes								
<u>h</u>	Sise	Points	SOR	ADI	CCSI	SOR	ADI	CCSI					
1/10	5x11	50	138	93	91	.070	.108	.145					
1/12	6x13	72	194	95	99	.161	.156	.283 **					
1/12	6x13	72	336	128	123	.280	.205	.342					
1/20	10x20	190	636	317	- *	1.08	1.35	- ;*					
1/20	10x21	200	500	334	357	.87	1.47	2.08					
1/30	15 x3 0	435	1984	712	-*	7.25	6.73	- *					
1/30	15 x3 1	450	21116	747	1053	9.10	7.29	10.75					

Table 2. Comparison of machine time and number of iterations required for convergence

There must be an even number of rows for the CCSI subroutine. ## Optimum relaxation parameter used

Summary of numerical results

Numerical experimentation can provide insight for the appraisal of iterative methods and may provide a basis for theoretical investigations. The results obtained are based on solutions of the model problem only and conclusions should be qualified accordingly. A number of observations are presented for consideration.

For the model problem the cyclic Chebyshev semi-iterative method is iteratively faster than point successive overrelaxation for all mesh sizes considered. As shown in Fig. 4.7(a) it is also iteratively faster than the alternating direction implicit method for mesh spacing h > 1/16, or for less than 125 points. In terms of machine time required, successive overrelaxation is best for less than 350 mesh points or $h \ge 1/26$. If h < 1/26 the alternating direction implicit method is best.

The relaxation factor or acceleration parameter was selected on the basis of the treatment given in the discussion of each of the three

methods in Section IV-B. For successive overrelaxation an initial value $\omega_{0} = 1.5$ was selected, and this was changed after every 10 iterations. As shown by the second and third problems in Table 2 this will not necessarily assure a good approximation of the optimum value of $\omega_{\rm b}$. When the cyclic change was used for the 6x13 mesh size problem approximately 70% more iterations were required than when the optimum relaxation factor was used. Another indication of the variation which can be expected when using this procedure is shown by the scatter of points in Figures 4.7(a) and (b) for the SOR subroutine. This contrasts with the curves fitted to the points for the other two methods. It should be noted that a random selection of values for ω will produce greater change in the number of iterations required for convergence for the successive overrelaxation method than for either of the other methods. Comparison of Figures 4.3, 4.4 and 4.5 shows that the alternating-direction implicit method and the cyclic Chebyshev semi-iterative method do not impose as severe a penalty on overestimation of the appropriate parameter as does point successive overrelaxation. For a considerable range of values above the optimum, the number of iterations increases only slightly above the minimum for these two methods, while the minimum in Fig. 4.3 for point successive overrelaxation is much sharper.

Another important consideration is the computer storage required by each of the three subroutines. The data in Table 1 clearly identifies the successive overrelaxation method as the one which requires least storage for both the arrays of data and the sequence of instructions. Because of the relative simplicity and minimal storage requirements the successive overrelaxation method was incorporated as the main iterative method in the ISOPEP program.

Since the number of iterations required for convergence appears to increase significantly with the number of mesh points, attention was directed toward the possibility of improving the rate of convergence by first solving the problem with a relatively coarse mesh, then interpolating between these values to generate a better initial solution vector for a finer mesh. A subroutine CHANG was written for this interpolation and some of the results are given in Table 3.

Prob. Converg.		Mesh	Number of	CDC Ti	3600 ne	IBM 1620 Time	Last Estimate
No.	criterion	size	Iterations	Min	Sec	(Hours)	ofe
101	10 ⁻⁵	5x10	118		3.31		.9571
102	10 -5	10x20	521		51.9		.9804
103	10 ⁻⁵	15x3 0	1548	5	38.3		.9942
201	10-5	3x 6	39			•85	.7194
202	10-5	6x12	84			2.62	•9556
203	5-10	12 x2 4	86			6.31	•9906
205	10 ⁻⁵	7 x1 4	276		16.9		•9737
206	10-6	1)ب x 28	1554	5	29.7		•9900
303	10-5	6x12	225			2.33	•9506
306	10-6	24248	1038	4	49		•9793
401	10-5	6x12	179			2.30	•9670
402	10-5	12 x2l 4	126			5.67	.9648
408	10-6	211 3 118	166	1	34.7		.8862
501	10-5	6x12	135			1.80	.9476
502	10-5	12 x2 4	295			12.59	.9781
506	10-6	24 x 48	1157	5	47.6		.9858
601	10-5	15 x15	176	1	20		.9802
604	10 ⁻⁷	48x48	7072	57	14.2		•9998

Table 3. Summary of problems solved with the ISOPEP program

Problems 101, 102 and 103 in Table 3 were solved using the subroutine CHANG. The final solution of Problem 103 required a total time of 6 minutes, 34 seconds and a total of 2187 iterations for the three problems. The same problem solved with initial values of the vector iterate set to .1, required 7 minutes 15 seconds and 1948 iterations as listed in Table 2.

The other sets of problems listed in Table 3, such as 401, 402, 408, were solved using the iterpolation procedure as the mesh was refined. For Problem 408, only 166 iterations were required after the last refinement of the mesh while for Problem 506, which has the same number of interior points, 1157 iterations were needed. Both of these problems have more than twice the number of mesh points used in Problem 103 yet the solution time is approximately the same for 506 and substantially less for 408.

Capabilities of the Computers used

:

Two computers have been used in this investigation. One, the Control Data Corporation, 3600 at Michigan State University Computing Center, is very fast and has a large main memory of 32,000 words of 12 decimal digits each. The floating-point multiplication of two numbers with 10-digit mantissas requires less than six microseconds. The other computer is the IEM 1620 at the University of Toledo Computation Center. The 1620 performs a floating-point multiplication of two numbers with eight-digit mantissas in approximately 12 milliseconds. The main memory provides for storage of 20,000 decimal digits which is about 1/19 of the 3600 memory. However, the main memory is supplemented with an IEM 1311 Disk File which provides 2,000,000 decimal digits of secondary storage. Several problems were solved on both computers and a comparison is provided in Table 4. The slight difference in the number of iterations
required for convergence is possibly a consequence of the difference in the mantissas of the floating point numbers used.

The difference in the speed of the two computers contrasts sharply. In fact for problems with a hundred or more mesh points the CDC 3600 is approximately 1200 times faster than the IBM 1620. At rates of \$375.00 and \$30.00 per hour for the 3600 and 1620 respectively, the cost of solving problem 1.102 would be \$8.82 on the 3600 and \$572.10 on the 1620. Two qualifications of the comparison should be noted. First, the time required for compiling a representative combination of the ISOPEP FORTRAN subroutines on the 3600 uses between 20 and 30 seconds. Compilation time on the 1620 ranges between 10 and 15 minutes. For this purpose the 3600 is only about 30 times faster than the 1620. A second consideration is the time saving possible on the 1620 through use of a machine language successive overrelaxation subroutine. The introduction of such a subroutine for the iterative solution of Laplace's equation resulted in a 50% reduction of machine time required.

Table 4. Comparison of the ISOPEP program for the IBM 1620 and CDC 3600 Computers

Cito and a second		Numb	er of	CD	c 360	0 Tim	le	IBM 1620	
Prob.	Mesh	Itera	tions	To	tal	Exec	ution	Time	
Noo	Size	3600	1620	Min.	Sec.	Mina	Sec.	Hours	Method
1,101	5x10	118	116		25		3.35	.97	SOR
2.101	5x10	90	90		29		6.0	1.78	ADI
1.102	10x20	636	622	1	25	1	5.0	19.07	SOR
2.102	10x20	317	344	2	2	1	21.	27.20	ADI
1.103	15x30	1984	1974	7	36	7	15.	158.00	SOR

VI. SOLUTIONS OF PLANE ELASTOSTATIC PROBLEMS

The second of three objectives of this dissertation is a general computer program for the iterative solution of plane elastostatic problems. The program ISOPEP includes six subroutines which contribute to this objective. The program is not completely general, however, since subroutines for the boundary conditions must be added for any specific problem. A flow diagram, listings of FORTRAN source decks, description of input preparation, and the output of a sample problem are provided in Appendix B. The analysis of physical phenomena with mathematical models, the analytical or numerical solutions of the models and the subsequent testing by comparison of the solutions with experimental observations, constitute major pursuits of scientists and engineers. The creation of the ISOPEP program contributes to the analysis of plane elastostatic problems and this computer program is considered a major part of the dissertation.

Demonstration of the utility of iterative methods for the solution of several problems is the third objective of this dissertation. Problems number two and six are included because analytical solutions are available for comparison with the numerical solutions. Problems three, four and five are representative of the practical problems for which analytical solutions are not available. The treatment of boundary conditions for irregular regions is included in the discussion of problem three.

1. The model problem

The square plate and edge loads as shown in Fig. 6.1 are symmetrical with respect to the x-axis. By proper choice of constants of integration the stress function will also be symmetrical with respect to the x-axis. Starting at the origin and proceeding counter-clockwise the boundary conditions are obtained from Equations (14) and the requirements for symmetry.

Figure 6.1 Boundaries of the model problem

The constants of integration \mathbb{A}_{g} B, C, D, E, and F in the following equations are determined so as to produce the desired symmetry of \emptyset and consistent values of \emptyset at each of the points b, c, d, e, f, g in the functional expressions for \emptyset along neighboring line segments. Two of the constants are arbitrarily chosen to make $\emptyset \oplus \emptyset$ and $\frac{\partial \phi}{\partial X} = 0$ at b.

Along bc

$$\frac{\partial^2 \phi}{\partial x \partial y} = 0, \qquad \frac{\partial \phi}{\partial y} = 0;$$

along cd

$$\frac{\partial \phi}{\partial y} = -py + \left(\frac{\partial \phi}{\partial y}\right)_{c} = -py, \qquad \frac{\partial \phi}{\partial x} = \left(\frac{\partial \phi}{\partial x}\right)_{c} = 0,$$

$$\phi = -py^{2}_{2} + A = -py^{2}_{2} + Ipa^{2};$$

along de

$$\frac{\partial \phi}{\partial y} = \left(\frac{\partial \phi}{\partial y}\right)_{J} = -.4ap, \qquad \frac{\partial \phi}{\partial x} = 0,$$

$$\phi = -.4apy + B = -.4apy + .18a^{2}p;$$

along of

$$\frac{\partial \phi}{\partial y} = \left(\frac{\partial \phi}{\partial y}\right)_{e} = -.4aP; \qquad \frac{\partial \phi}{\partial x} = 0;$$
$$\phi = c = (\phi_{e}) = -0.02a^{2}P;$$

along gf

$$\frac{\partial \phi}{\partial y} = -4\rho y + D \qquad \qquad \frac{\partial \phi}{\partial x} = 0,$$

$$\phi = -2\rho y^2 + Dy + E = -2\rho y^2 + 1.6a\rho y - .32a^2\rho;$$

along gb

$$\frac{\partial \phi}{\partial y} = \left(\frac{\partial \phi}{\partial y}\right)_g = 0, \qquad \frac{\partial \phi}{\partial x} = 0,$$
$$\phi = F = 0.$$

Values of the difference-equation approximation of the stress function U_{ij} and nodel point values of the normal stress component σ_{xij} are given in Fig. 6.2. The point values of the stress function are approximated

where $C = \frac{p_1^2}{36}$. The constants p and a have been assigned values of unity. 2. Semi-infinite plate with uniform load on the boundary

The exact solution of the problem of a semi-infinite plate with a uniformly distributed load of intensity P_0 acting on an interval of the boundary $-c \le x \le c$, is given by Timoshenko and Goodier (1951). The stress function has the form

Numerical solutions of this problem have been reported by Veyo and Hormbeck (1964), whe used point successive overrelaxation of the biharmonic finite-difference equations, and Pisacane and Malvern (1963), who used a numerical mapping technique for application of the Muskhelishvili complex variable method. For comparison with the other numerical solutions a square region, 2 units by 2 units, of the semi-infinte plate will be considered. The intensity of the distributed load P_0 is chosen as one and the value of c is $\frac{1}{4}$. For the assigned values of c and P_0 the stress function can be written FIGURE 6.2 Distributions of the Stress Function and σ_x for Problem 1

COLUMN . . . 4 7 11 1 . . 10 12 13 ROY.4000 3.3550 3.4200 3.1950 2.8800 3.5765 3.5917 3.3970 3.1724 2.8977 2.4529 1.9980 1.3791 7.124 0025 7.200 --22493 --22494 --24697 --22501 --2503 --22498 --22449 --22219 --21808 --20552 --0143 3:3140 3:2720 3:1460 2:0955 2:6405 2:2614 1:0000 1:2610 :6525 -:0128 :7200 --2332 -:2335 -:2343 -:2344 -:2354 -:2344 -:2158 -:1158 -:1159 -:1159 -:0715 \$10912 116714 11760 16084 -10299 17200 -12882--12889--12188--12181--2184--12182--2889--12888--11888--11889--1889 2:8780 2:8434 8:7394 2:3648 2:3182 1:9979 1:6026 1:1519 :5862 -:0322 :7200 -:1820 -:1830 -:1859 -:2000 -:2005 -:2082 -:2088 -:2088 -:2088 -:2082 -:2082 -:1925 :1925 2:7032 2:6720 2:5777 2:4189 2:1933 1:8979 1:5296 1:0854 :5630 -:0387 :7200 10-:[785 -:1786 -:1782 -:1886 -:1987 -:2028 -:2107 -:2172 -:2207 -:2206 -:2155 2:5125 2:4849 2:4015 2:2601 2:0575 1:7894 1:4506 1:0354 :5382 -:0457 :7200 11-:1552 -:1552 -:1668 -:1668 -:1668 -:1668 -:2121 -:2274 -:22611 -:2566 ::2541 2:3044 2:2808 2:2090 2:0865 1:9090 1:6706 1:3639 :9804 :5109 -:0534 :7200 12-:1815 -:1857 -:1408 -:1527 -:1661 -:1866 -:2154 -:2568 -:2568 -:2568 -:2568 -:2568 2:0776 2:0581 1:9987 1:8962 1:7455 1:5392 1:2476 :9189 :4802 -:0621 :7200 13-:1082 -:1110 -:1189 -:1538 -:1548 -:1818 -:2158 -:2255 -:22878 -:2878 -:3210 :3450 1:0314 1:0162 1:7695 1:6070 1:5653 1:3932 1:1595 :8493 :4450 -:0721 :7200 14-:0844 -:0845 -:0870 -:1154 -:1378 -:1708 -:22124 -:2214 -:3135 -::3428 -::4009 12875 12805 12583 12177 11523 10520 9014 6790 3567 -0092 7200 14-63880 -06428 -08518 -08687 -08780 -11888 -11888 -18888 -04885 5858 21 0631 10639 10650 10673 10714 10765 10810 10769 10303 -11895 17200 21 8022 10021 10021 10021 10055 10052 -10015 -10241 -11178 -14816 -14825 110530

$$\phi = \frac{1}{2\pi} \left[\left\{ (x - \frac{1}{4})^2 + y^2 \right\} t_{ay}^{-1} \left(\frac{x - \frac{1}{4}}{y} \right) - \left\{ (x + \frac{1}{4})^2 + \frac{1}{2}y^2 \right\} t_{ay}^{-1} \left(\frac{x + \frac{1}{4}}{y} \right) - \frac{1}{2} \right] + \frac{1}{32}$$

Values of the stress function on the boundaries of the square region which are inside of the semi-infirite plate can be determined from the exact solution. The values of \emptyset at points one mesh interval outside the square region can be similarly computed or obtained from the normal derivatives of the exact

Figure 6.3 Problem 2 - Semi-infinite plate

solution at the boundary. Due to symmetry it is possible to determine the solution by considering one half the square region. Along the y-axis which is the axis of symmetry, the normal derivative, $\frac{\partial \phi}{\partial X} = 0$, is used to determine the values of \emptyset at points exterior to the solution domain.

Along \overline{oa} we use Equations (1h) and find $\frac{\partial^2 \phi}{\partial x^2} = -\mathcal{P}_{e} = -1$, $\frac{\partial^2 \phi}{\partial x \partial y} = 0$, $\frac{\partial \phi}{\partial x} = -x + B$, $\frac{\partial \phi}{\partial y} = A$, $\phi = -\frac{1}{2}X^2 + BX + C$.

Symmetry of \emptyset with respect to the y-axis requires B=0. Two of the constants of integration may be arbitrarily selected. Let A = C = 0.

Then along oa

$$\frac{\partial \phi}{\partial x} = -X, \quad \frac{\partial \phi}{\partial y} = 0, \quad \phi = -\frac{1}{2}X^{2},$$

Along \overline{ab}

$$\frac{\partial \phi}{\partial x} = \left(\frac{\partial \phi}{\partial x}\right)_{a} = -\frac{1}{4}, \quad \frac{\partial \phi}{\partial y} = \left(\frac{\partial \phi}{\partial y}\right)_{a} = 0,$$

$$\phi = -\frac{1}{4}X + D = -\frac{1}{4}X + \frac{1}{32}$$

The value of D = 1/32 is determined by the requirement $\mathscr{G}_{a} = -1/32$ in the expressions for \mathscr{G} along on and \overline{ab} . Note the last two terms of the stress function $-\frac{1}{4} \times$ and 1/32 are necessary as a consequence of the arbitrary selection of A and C.

The values of the normal component of stress $\sigma \overline{y}$ and the stress function are given in Fig. 6.5 for a lin28 mesh. The convergence criterion used was 10^{-6} , and an initial estimate of the solution vector for the lin28 mesh was obtained from interpolation between the solution vector elements for a 7x14 mesh. The total number of iterations required

Figure 6.4 Comparison of numerical and exact solution for Problem 2

for both problems was 1830. A flat distribution of 0.1 at all interior points was used for the initial estimate for the 7xlk mesh. Veyo and Hornbeck reported approximately 3000 iterations were required for the lkx28 mesh with an initial value of -.0625 assigned at all interior points and a convergence criterion of $.5x10^{-7}$. Though point values of the solution of the problem solved by Veyo and Hornbeck were not available for comparison, it was not possible to discorn any significant difference in the results shown in Fig. 6.4 and similar graphical results in their report.

The deviation of the iterative solution of the finite-difference equations from the exact solution is greatest in those regions where the stress gradients are greatest. The stress gradients are large at the first row of interior points below the boundary subjected to the distributed load. This distribution of \sqrt{y} for the exact and finitedifference solutions at y = 1/l4 is shown in Fig. 6.4. The numerical mapping solutions of Pisacane and Malvern are also shown. It is apparent that the numerical mapping technique provides only slightly better results in the region directly under the applied load where stress gradients are highest and much poorer results near the boundary x = 1. Both numerical methods provide better approximations to the exact solutions at rows of mesh points corresponding to $y \ge 2h$.

Problems 3, 4 and 5 - Notched tensile specimens

The problems of practical interest to the engineer frequently have irregular boundaries and attention is often centered on stress concentrations. An investigation of stress concentrations has been conducted by solving each notched tensile specimen problem for different mesh spacings. Three different types of notches have been considered:

					5		4		,				COLUN	4N				12		14				
ROW	00000		00255		01020		0/295		.04017		05803		07589		09375		11160 -	.12946	.14732 -	.16517 -	.18303 -	- 98005	21875	Ä
-		:				_		-	12500			-	0000	-	0000		0000 -		.0000 -	- 0000 -		- 0000	.0000	υÿ
3	00251 9 1 999		00504 97978		0129 92892		02482 73578		26412		05821		07593 01895		09376 00309	-	11161 - 80141°-	.12946	.14732 - .00023 -	.16518 -	18304 -	20090 -	21877	
-	00822	-	01060	, -	0176		02890	_	04344	:	05977	-	07690	, . :	09440	-	11206 -	12980	14759 -	.16540 -	: :18323 -	20107 -	21891	
-	933 3 5		91124		8295	1 '	11311		34797		15942	-	0 7081)" <u>-</u>	03243°		<u>61583°-</u>		:0049 3 -2	.00315 -	:001 99'-	00045**	00289	
;	01580	-	01809		0244	-	03458		04773		06284	-	07910		09600		11327 -	13074	14834 -	16602 -	18375 -	20191 -	21928	
-	• > • • •		• • • • •		/-00		30047		30721	-	2233	-	120-4		07075		04067 -	• • • •	.01528 -	• • • •	.00648 -	.00343	00011	
	02472 94291		7382		0323 1112		04148 34370		05334 39733		26738		17212		09867 10917		11538 - 06963'-	.13244 .04517	.14972 -	.16717 -	.18471 - .01407 -	20233 -	21999	
_	03430		03601		04114		04931		06006		07281		08709	, _:	10239	_	11842 -	13494	15182 -	16893 -	18621 -	20362 -	22112	
	11110		11030	5 -	3999	•·	30638		39590	;;	29078		20324)'	14200		69772°-	:06762** :	: 84733*=	: 83371°:	:02414**	61724°-	01103	
ī	04434	-	04590		0504		05783		06760		07934	-	09262		10706		12236 -	13628	19465 -	17135	18830 -	20544 -	22271	
_				_						_	3010-			_	10/22		14220 -	•	•	•	•		•	
2	31733		3345		4972	,	44084		37338		3041		2403		11259		12713 -	.14240 10783	.15822 -	06270	•19101 -	·20781 -	02949	
	06529		06656		0703		07637	_	08451		0945		1060	, _	11884	_	13264 -	14725	16248 -	17821 -	.19433 -	21076 -	22743	
10	49380		4852	! - :	4334	s	41158		33783	5	3011)" <u>-</u> '	2469	·	19839		15717-1	:12359"" :	.09705 -	.07640	.06052 -	:04829"- :	03904	
11	07604		07719		0806	o	08616		09368	-	10294	-	11370		12573		13682 -	15276	16740 -	18260 -	19825 -	21426 -	23058	
																			•	•	•	•	•	
12	41343		40701		3884		36011		32498		2864		24731		20979	-	17561	.13667	12040	.09947 -		.21832 -	05729	
	09785	_	09883		1017	2 -	10645	_	11290		12094	-	13034		14107	-:	15283 -	16551	17847 -	19309 -	20776 -	22290 -	23843	
	38141		37541		3408		33778		30897		27696	- (24364		21087		10016 -	:15260	:12869'- :	10842 -	109135-2	.0771 8'-	06547	
1	10888		10978		3364	•	11686 31733		12287		13039		13927	;	14936		16053 - 16316**	17262	.18552 -	19911 -	21329 -	22797 -	24309	
	11995		12079		1232		12740		18303		14008		1484		15800		14840 -	18015	1926)	20568				
15	32884		32308		3148	j	29913	•-	27931		25672	-	2324		20746		18302 -	16021	13963	12144	10538 -		07930	
1	13108		13184	-	1342(13804		14333	:	14997	-	15787	!	16692		17702 -	18804	19989 -	21246 -	22568 -	23946 -	25374	
	30736		30413	- (29564	-	24243	-	26583		24668		22585		20397		18226 -	16166	14278 -	12577	11054 -	09690 -	08493	
17	14224 28833	-	14297		14517 2784	<u>, -</u>	14878 26730		15376 25323		16003	-	16750 21893		17610 19984	÷	18571 - 18647°-	.19625 .18197	20761 - 14470 -	21971 -	23247 -	24582 - 10141 -	25968	
_	15343		15412		15618		15959	_	16429		17022	_	17732		18549		19467 -	20475	21565 -	22730	23961 -	26263 -	24598	
10	27138		26912	-	2629		25350		24158		22763		2120		19521		17804*-	16132**	14566	13100-	11754-2	10501 -	09364	
19	16464		16529		16724	<u>}</u>	17046		17491		18054		18729		19508		20384 -	21350	• • 22397 -	23518 -	24707 -	25958 -	27263	
-	23623	:	23429	- '	2490:	, :	24094	-	23071		21875	-	20519	, -: :	19033		17506 -	16005	•14574 -	-13230 -	.11963 -	10781 -	09687	
20	17587 14939		17549 13294		17831		18139		18561		19097 21032		19739 19843		20483 18537		21321 - 17175°-	22247 15625	23252 - 14909 -	.24334 - .13088 -	25482 - 12104 -	26493 - 10989 -	27959	
_	18711	_	18770	, -	18944	!	19236	_	19638	:	20148		20761	_	21472		22275 -	23164	24132 -	25174 -	26284 -	27455 -	20684	
	23030		22886	-	22498		21891		21130		20233		19193		18037		14919	13397**	:14415°-	:13277°-	:121 63' -	11134	10139	
22	19837 31474		19893	-	20060	-	20337		20720		21207	-	21793	_	22474		23244 -	24098	25031 -	26036 -	27109 -	28244 -	29436	
				-		_			20202	_			10303		1/330		10444 -	• 19940		• • • •	.12210 -		10207	
22	20444	÷	20793		2049	ŀĒ	20033		21807 19456		22273		22834 17963		23487 17644		24226 - 16088'-	.25048 13074	.25947 - .14094 -	.26918 - .13135 -	.27955 - .12191 -	29055 - 11273 -	30212	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22092	_	22143	-	22291		22548	_	22898		23344		23882	-	24509		25221 -	26012	26879 -	27817 -	28822 -	29888 -	31012	
	19924		19878	- 1	19614		iýžii		18706	-	išióž		17384	:	16565		13485*-	14796°°	:13896"- :	:13010'- :	:13145°- :	11341'-	10444	
25	23221 19113	÷	23269 19039		23419	}-=	23657 18451		23993 18008		24421 17474		24938 14432		25541	-	26226 -		27826 -		29706 -	30740 -	31831	
	34914		24.944		34444		34344		3800		28884							· · · · · · · · · · · · · · · · · · ·	•	•	•	• • • • • •	10411	
26:			*****						23071				*****		40380		e/241 -	• « 1 ¥ 7 7 • • • • • • • • •	• 28/96 -		.30007 -	• J1010 -	92071	

.

.

Problem 3 - Semicircular notches, Problem 4 - V-notches and Problem 5 - Rectangular notches. Sketches of the specimens are included in Figures 6.10, 6.11, 6.12.

Figure 6.6 Solution domain for Problems 3, 4 and 5

Boundary conditions for the three problems are identical. Introducing a Cartesian coordinate system as shown in Fig. 6.6 integration constants will be chosen so the stress function is symmetrical with respect to the x and y axes and it is necessary to solve each problem for only one quarter of the whole plate. At the end \overline{bc} a uniformly distributed tensile load of P₀ units intensity is applied. Using Equations (14) we find

$$\frac{\partial \phi}{\partial x} = H , \qquad \qquad \frac{\partial \phi}{\partial y} = \mathcal{B} y + \left(\frac{\partial \phi}{\partial y}\right)_{b} .$$

But $(\frac{\partial \phi}{\partial y})_{b} = 0$, if ϕ is symmetric with respect to the x-axis; hence $\phi = \mathcal{B}y^{2}/2 + \mathcal{B} = \mathcal{B}y^{2}/2$.

The constants A and B are arbitrarily selected as zero. Then along cd

$$\frac{\partial \phi}{\partial x} = 0, \qquad \qquad \frac{\partial \phi}{\partial y} = 2aB, \\ \phi = \phi_c = 2a^2 P_o.$$

Along the two axes of symmetry the normal derivative conditions are used to compute values of the stress function in two mesh rows exterior to FIGURE 6.7 Distributions of the Stress Function and σ_x for Problem 3

										COLUMN							
ROW	3		5	7		9	11		13	15	17	19	21	23	25	27	11
3	•0553		.0539	.0497	. <u>.</u> :	0425	.0321		0182 0	.0000							Ř
•			02// 1	.0764		0215 2	0574		4493 3	.2300							υx
	0548	-	J534 -	0492	-:	0420 -	0317	-	0179 0	0000							
7 1		•1:	6252 1	6897	·::	8100 2	0173	2:	3694 2	\$755							
	:	:	:	:	:		:	:		:							
,-	0534		0520 -	0478		0407 -	0305		0170	0002							
' 1	6012	1	6187 1	6715	1	7669 1	9180	2	1544 2	0606							
	:			•	:			:									
۶,	*****		.0498 - 1.158**1	.0436 •1141•		4148***	•0285		31:1	.0010	• 0012						
-		-	00/9 1	• • • / >		/139 1	• 80 / 9		91/9 1	•	:						
-	0482	_	0468 -	0427	_	0357 -	0259	_	0131	0025	0210	.0416					
11	.5637	•i:	5927 1	6183		6570 1	6980	1:	7086 1	:6111**1	. 3679						
	:	:		•				:				•					
	0447	-	0433 -	0393	-:	0324 -	0228	-:	0104	0046	0222	0418	•0214				
1,1	5637	ï	5710 1	5844	'i:	5996 1	6019	'i:	5634 1	4402 1	1743	6538					
					:					:							
15	*****	.,:	.0395 -	.0355 •1:::*		2732***	-0194 -13111		0074	.0070	0239	.0426 • 1 • 7 1 • • •	.0626	.0833	.1041	1250	
4		-	3429 1	• 242/	1	5429 1	. 2413		4607 1		• • • •	• /469	• • • • • • •	.0891	.0018 -	• 0001	
-	0368	_	0355 -	0316	_	0250 -	0159	_	0043	.0096	0258	0438		0834	104)	1260	
171	.5086	•1	5084 1	5035	·::	4879 1	4515	1	3794 1	2517 1	.0536	7863	4916	2442	.0916 -	0337	
	:	:		•	:			:		:							
	0327	-:	0315 -	0276	-:	0213 -	0124	-:	0012	0123	0278	0452	0640	0838	1042	1250	
1,1	4715	•i	4689 1	4581	·i:	4341 1	3888	1:	3121 1	:1924**1	0235	8109	5806	3703	1989	0236	
	:							:		:	:						
21	0287		0275 -	0238		0176 -	0091		0017	0148	0298	0466	0648	0841	1043	1250	
1	• 4296	1.	4256 1	.4110	1.	3819 1	3326	1:	2566 1	1473 1	0031	8302	6449	4667	3038	1404	
-	0249	_	0237 -	0201		0161 -			0045		0316	0479			•		
23	. 3848	•;;	3800 1	. 3635	•::	3322 1	2825	::	2104		4444			5457	4044	2721	
								:									
	0213	-:	J202 -	0167	-:	0109 -	0029	:	0071	0193	0333	0491	0664	0849	1045	1250	
29	. 3 3 9 2	'i:	3341 1	3170	'i:	2856 1	2379	i:	1718 1	.0853	9808	8621	7377	6142	4984	3983	
	:	-			:			:		:	:	:			:	:	
27	0180		0169 -	0135	:	0080 -	0002		0095	0213	0349	0502	0670	0852	1046	1250	
- 1	• 2942	1.	2891 1	2725	1.	2425 1	1985	1.	1393 1	0639	9754	8769	7752	6754	5841	5115	
_		_	0130 -	•	:	0.05.2		:		•							
29		•••	2462	2309	•••	2032	1637	;:	1114	.0230	.0302	- U 7 1 2	.00/6 .8091	7301	.1047	6100	
-	:							:									
-	0123	-:	0112 -	0081	-:	0029	0043	:	0135	0246	0374	0520	0682	0858	1047	1250	
31	2107	•i:	2062 1	1924	·i:	1677 1	1331	1:	0885 1	.0336	9719	9056	8403	7789	7274	6944	
	:				:			:		•							
33	0099		0089 -	0058	:	0008	6062	.:	0151	0259	0385	0527	0686	0860	1048	1250	
1	•1736	1.	1695 1	1576	1.	1360 1	1064	1.	0689 1	.0231	9726	9194	8683	8219	7853	7660	
_	:				:			:									
35		•;:	1363 1	1243		1010	.00/8	.:		.02/1	0394	.0534	.0690	0862	.1048	1250	
-					:		0054	:			,,,,,	,,,,,			0,,,,	0205	
	0060	-:	0050 -	0021	:	0026	0092		0178	0281	0402	0539	0693	0863	1049	1250	
3/1	1098	'i.	1068 1	0986	·i:	0836 1	0637	i:	0389 1	.0089	9771	9446	9157	8919	8770	8767	
	:	:			:			-									
39	.0044		0035 -	0006		0039	0105	.:	0188	0289	0408	0544	0696	0865	1049	1250	
1	• 0833	1.	0808 1	0744	1.	0626 1.	0470	1:	0277 1	.0045	9802	9558	9352	9194	9120	9182	
-	.0031		0022	0005		0051	0115		0197	•	0413	04.7	0400				
41 ₁	.0603	• i :	0582 1	0535		0446 1	0330	::	0188 1	.0015	9837	9662	9521	9424	9405	9514	
-		:			:			:									
	0020	-:	0011	0015	:	0060	0123	:	0204	0302	0418	0550	0700	0866	1050	1250	
**	0406	· i :	0390 1	0360	'i :	0296 1	0216	i:	0120	.9997	9876	9757	9666	9613	9630	9767	
	:				:			:		•							
45	.0011		0002	0023	.,:	0068	0130		0209	.0306	0421	0553	0701	0867	1050	1250	
1	•0244	1.	0232 1	0216	1.	0174 1	0127	1.	0068	9991	9916	9843	9790	9764	9797	9940	
-	-	:	0003	0020	:	0073	0134	:	0213		0433		0703		107-		
47,	.0112.	••••	8111.11	8141	••••	0073		;:	10213	.0510	6642	.0224 .0813***	0/02 ·	0867	10>0	1250	
•	•							:		• • • •	,,,,,	7711		,631		0029	
	:0001		0007	0033	:	0076	0137	:	0216	0311	0424	0555	0703	0868	1050	1250	
*91	.0031	•i:	0030 1	0029	•i:	0021 · 1	0017	i:	0008	.9997	9986	9974	9967	9963	9976 1	0034	
	:				•	:				:		:		: :	:	:	
51	0000		0008	0034		0078	0138		0217	0312	0425	0555	0703	0868	1050	1250	
1	.0000	ĩ:	0000 1	0000	Ĩ.	0000 i	0000	i:	0000 i	0000 1	.0000 i	0000 1	0000 1	0000 1	0000 1	0000	

FIGURE 6.8 Distributions of the Stress Function and σ_x for Problem 4

COLUMN 7 9 11 3 5 13 15 17 19 21 23 25 27 U Row 1:3025 1:3203 1:3766 1:4983 1:7391 2:3064 8:6532 ō, -.0408 -.0349 -:0263 -:0146 :00100208 5 1.3188 1.3377 1.3985 1.5314 1.7934 2.2881 2.6331 .8749 .0416 -: 0439 -: 0427 -: 0392 -: 0331 -: 0243 -: 0124 : 0029 : 0213 71: 3581 : 1: 3774 : 1: 4408 : 1: 5678 : 1: 7729 : 1: 6929 : 1: 8533 : 1: 0533 : 5076 -10415 -10403 -10366 -10304 -10215 -10096 10051 10226 10420 114006 114168 114699 115626 116757 117248 115419 110919 16385 .0625 1.4006 -0386 -0373 -0336 -0273 -0183 -0066 0076 0243 0428 0627 0833 -0352 -0339 -0302 -0239 -0150 -0036 00101 0262 0440 0633 0834 1041 131.4556 1.4555 1.4575 1.4774 1.4737 1.4134 1.2684 1.0455 7856 5362 3078 1105 -0316 -0304 -0266 -0204 -0118 -0007 0126 0281 0453 0640 0837 1042 15 1.4292 1.4291 1.4307 1.4259 1.3979 1.3263 1.1987 1.0214 .8177 .8102 .4082 .2040 1042 .1250 2040 .0101 -:0280 -:0268 -:0231 -:0171 -:0086 :0021 :0150 :0300 :0467 :0648 :0841 :1043 :1250 1:4040 1:4015 1:3943 1:3761 1:3562 1:2628 1:1802 1:0029 :8846 :6621 :4695 :3113 :1280 17 -0245 -0233 -0197 -0138 -0056 0048 0173 0318 0480 0656 0655 1044 1250 -10211 -10199 -10165 -10107 -10028 10072 10194 10334 10492 10664 10849 11045 11250 21132244 1132357 113124 113835 112418 113660 19791 18603 17386 1610 15039 1005 -0179 -0168 -0135 -0079 -0002 0095 0213 0349 0502 0671 0852 1046 1250 2912881 1.2846 1.2714 1.2437 1.2637 1.1427 1.0638 .9718 .8725 .7719 .4757 .5884 .5196 -:0150 -:0140 -:0107 -:0053 :0020 :0115 :0230 :0362 :0512 :0677 :0655 :1047 :1250 -0124 -0114 -0082 -0030 0041 0134 0245 0374 0520 0662 0858 1047 2712095 12067 111952 111944 111410 10051 10051 0654 8971 8326 7755 7295 1250 -0101 -:0091 -:0061 -:0010 :0060 :0150 :0258 :0384 :0527 :0686 :0860 :1048 :1250 291:1754 ::1720 ::1615 ::1456 ::1152 ::0741 ::0221 :9651 :9651 :9651 :8592 :8178 :7662 :7702 -0081 -0071 -0041 .0007 0076 0163 0269 0393 0534 0690 0862 1048 1250 -:0064 -:0054 -:0025 :0022 :0089 :0175 :0279 :0401 :0539 :0663 :0663 :1049 :1250 331:1161 :11124 :1:1048 :1:0936 :1:0746 :1:0453 :1:0075 :9673 :9507 :9037 :8662 :8765 :8793 -:0048 -:0039 -:0011 :0035 :0101 :0185 :0287 :0407 :0543 :0696 :0865 :1049 :1250 35 1:0908 :1:0877 :1:0820 :1:0738 :1:0591 :1:0344 :1:0022 :9688 :9402 :9218 :0131 :0113 :9213 -:0036 -:0026 0:0000 :0047 :0111 :0194 :0294 :0412 :0547 :0698 :0866 :1049 :1250 371:06884 1:0663 1:0628 1:0575 1:0461 1:0252 :9979 :5707 :9461 :9378 :0357 :0599 :9552 -:0025 -:0016 :0010 :0056 :0119 :0201 :0300 :0417 :0550 :0700 :0866 :1050 :1250 391:04489 1:04482 1:04469 1:0439 1:0350 1:0175 :5947 :9732 :9577 :9519 :9546 :9425 :9808 -uso 1250 9793 -:0008 :0018 :0063 :0126 :0206 :0304 :0420 :0552 :0701 :0867 1:0333 1:0337 1:0324 1:0254 1:0112 :0929 :0768 :0665 :0665 :09645 :0702 41_{1.0326} -:0010 -:0001 :0024 :0069 :0131 :0210 :0308 :0422 :0554 :0702 :0867 :1050 :1250 --0005 10002 10029 10073 10134 10213 10310 10424 10555 10703 10868 *9110102 110119 110137 110140 110107 110030 19940 19870 19829 19854 19915 :1250 :1050 9970 1.0080 --0002 0006 0032 0076 0137 0215 0311 0424 0555 0703 0666 1050 1250 0000 0008 0034 0078 0138 0217 0312 0425 0555 0703 0868 1050 1250 51 00000 1.0000 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

FIGURE 6.9 Distributions of the Stress Function and σ_{x} for Problem 5

				,		•	.,						••				
ROW	.0620		0603 -	.0552		0467	.0367 -		19 0.	.0000	11	19	« 1	23	23	~ 1	U
3	9369	•1:	9935**1	9878**	3:	0255 ** 2	0510 3	2	100	9503							5
-																	- #
-	0618	_	0602 -	0551	.:	0466 -	0346 -	:,	191 0	0000							
5	9257	•::	9427 1	9792	;:	0227 2				9452							
-								÷									
-	0613	_	0596 -	0547		0463 -	.0365 -	:	0190 0								
7,		•••	4044***		;:			-		0140							
•	•			•	••		•	•	0702 2	•							
_		_			_:		• • • • • • •	:		•							
ୢ୶ୄ୕	••••••			•••••						•••••							
1	• • • • •	-	8764 1	• 9047	1:	9829 2	•0905 2	;	1749 2	• 1219							
		. :		•	:		•	:		•							
11	.058/			.0525	7:	0447 -	.0335 -	•••	0187 0	.0000							
1	• / 6 5 6		7874 1	.8347	1:	9225 2	.0789 Z	:	2973 2	.3626							
	•	:			:			:		:							
13	•0363		0551 -	.0506	7:	0431 -	.0324 -	•	0183 0	.0000							
1	•6993	1	7152 1	.7530	1.	8272 1	.9867 2	:	3626 3	.0896							
	:	:		:	:			:									
15	•0537		0523 -	.0480	::	0407 -	0305 -	•	0170 0	.0000	0208	0416	0625	.0833 .	1041	1250	
1	.6420	1	6554 1	.6841	1.	7362 1	.8388 2	•	0627 6	2813 0	0000 0	0000 0	0000	0000 0	0000 0	0000	
								÷									
17	0502		0488 -	.0446		0376 -	0276 -	•	0145	.0018	0212	0416	0624	0832	1041	1250	
1	6019	1	6150 1	6424	1.	6906 1	7809 1	-	9310 1	.8464	5568	1538	0556	0234 -	0047 -	0503	
								:									
	0462		0448 -	0407	-:	0338 -	0240 -	•	0112	0043	0225	0421	0625	0832	1041	1250	
1,1	. 5730	· i.	5862 i	6125	i:	6520 1	7026 I	:	7080 1	4509	8328	4035	2000	0986	0146 -	1130	
		:		•	:			:		:							
· · -	0418	-:	6405 -	0364	-:	0296 -	0201 -	:(0078	0071	0243	0431	0629	0833	1041	1250	
**1	5445	·i:	5563 1	5758	i:	5954 1	5972 1		5268 1	2967	9210	5804	3510	2006	6673	1117	
		:			:		•	:								•	
	0372	-:	0359 -	0320	-:	0254 -	0161 -	:.	0043	0099	0263	0443	0635	0835	1041	1250	
* 1	5087	· i:	51 81 1	5279	1:	5275 12		;;		:2143***	9522	6887	4731	3049	1444****	0441	
		:			:		•	:		:							
	0326	-:	0313 -	0275	-:	0211 -	0122 -	:,	0009	0127	0283	0456	0643	0839	1042	1250	
25	4639	•1:	4713 1	4724	i :	4577 1	4117 1	:		1627	9646	7561	5657	4016	3415	0661	
								:									
-	0281	-	0269 -	0232	-	0171 -	0085	:,	023	0153	0303	0470	0651	0843	1043	1250	
27		•••			÷	1018 1										1063	
-								÷		•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		63/0		3423		
_		_:	A227 -	•	_:			:									
29	1231	•••	3131.1	• \$ \$ \$ \$ \$ * *	;:	5112****	• 1211••1	:;	1121 • • t	• • • • • • • • • • • • • • • • • • • •	1111		1111		1044	1250	
•	•	-:	1014 1	• • • • •	•••	JJ14 10	•	:	2034 1	• • •				2084	4421	3266	
					:			:									
31					<u>;</u> :	1111-1	.0019 • 1 : 1 : • • •	•		•0401	0340	•0496	.0667	0850	1045	1250	
1	. 3028	1:	3000 1		1:	2109 10	• 2325 1	;	1660 1	••••	9735	.8594	7438	6403	5379	4510	
	•	_;			:			:									
33	••••••		11:1-1	• • • • • • • • •	7:	1111**!	•0009	•		• • • • • • • • • •	.0356	.050/	0674	0874	1046	1250	
	• 2 3 0 3		2203 1	• 2 4 7 3	1:	22/8 1	• 1892 1	:	1330 1	•0591	9746	8813	7867	7053	6255	5642	
	:	:		•	:		•	:		:							
35	• • • • • • •			.0089	::	0036	•0035 •••••	::	0128	.0240	.0370	.0517	.0680	0857	1047	1250	
1	2022	1.	2077 1	.2021	1:	1839 1.	1513 1	:	1049 1	.0441	9760	9006	8249	7637	7042	6648	
		:		•	:		:	:		:							
37	0102		0092 -	.0061	::	0011	•0058	::	0148	.0256	0383	.0526	0685	0859	1048	1250	
1	1585	1:	1636 1	.1594	1:	1448 1	1182 1	:"	0808 1	0317	9777	9181	8591	8154	1737	7525	
		:			:			:		:							
39	0076	:	0066 -	.0037	.:	0011	0079	•	0165	0271	0394	0534	0690	0862	1048	1250	
1	1198	1:	1243 1	1215	1:	1101 1	0893 1	:'	0601 1	0215	9801	9342	8895	8606	8338	8279	
	:							÷									
A1 .	0054		0045 -	0016		0030	0096	•	0180	0283	0403	0540	0694	0864	1049	1250	
-1	0862	1.	0899 1	0881	1.	0798 1	0642 1	•	0427 1	.0136	9832	9489	9166	8992	8847	8910	
								•									
A1-	0036		0026 0	0000	÷	0046	0110	•	0193	0293	0411	0546	0697	0865	1049	1250	
1	0575	1.	0603 1	.0593	i.	0539 1	.0433 1	•	0286 1	0076	9867	9629	9403	9318	9262	9413	
				:	:	:	:	:		:	:	:		: :		:	
	0021	-	0012	0014	:	0059	0122	:(0203	0301	0417	0550	0700	0866	1050	1250	
"1	0338	· i	0358 1	0358	i:	0328 1	0259 1	:;	0167 1	.0037	9908	9758	9611	9587	9582	9778	
		:	:	:	:	:	:	:		:	:	:					
	0009	-:	0001	0025	:	0069	0131	:(0210	0307	0421	0553	0701	0867	1050	1250	
* 7	0160	• i:	0172 · · I	.0173**	::	0136 ··· 1	.0124°'1	::	00 84 * 1		9954		9793		9804	9997	
	:	:		•	:			:	-								
	0002		0006	0032		0075	0136	:	0215	0311	0424	0555	0702	0867	1050	1250	
*9 1	0043	•1:	0043 1		::	0047 1	i	:	0026		9989	9961	9934	9939	9942	0052	
						-		:									
	0000		0008	0034		0078	0138	:,	0217	0312	0425	0555	0703	0868	1050	1250	
51	0000	•1:	0000 ··· 1		::	0000 ··· 1	0000 1	:	0000 ***	0000	0000	0000	0000	0000		0000	
				-													

the solution domain. Along the x-axis, $\frac{\partial \phi}{\partial y} = 0$, while along the y-axis $\frac{\partial \phi}{\partial x} = 0$. Along the notch edge \overline{df} or \overline{de} and \overline{ef} $\frac{\partial \phi}{\partial x} = 0$, $\frac{\partial \phi}{\partial y} = (\frac{\partial \phi}{\partial y})_d = 2aF_0$ $\phi = 2aF_0y + C = 2aF_0(y-a)$

The value of C is determined by the value of ϕ_d in the equation used along \overline{cd} . The last expression for ϕ is valid for all 3 problems but for Problem 5 it simplifies to $\phi = 0$ along \overline{cf} .

The solutions given in Figures 6.7, 6.8 and 6.9 were obtained with boundary conditions for which $P_0 \equiv 1$ and a $\pm \frac{1}{4}$. Though a 12x24 mesh is used for listing the solution in all three figures, the results are taken from the solution obtained for a 24x48 mesh.

Stress concentrations occur at the base of the notch at y = a. For the V and semi-circular notches the concentration occurs along the y-axis. For the rectangular notch the concentration occurs at x = a, y = a. The comparisons of stress concentrations for different choices of mesh size are given in Figures 6.10, 6.11, 6.12. R. E. Peterson (1953) gives an exact stress concentration of 3.08 at the base of the semicircular notches in a tensile specimen infinitely long. The stress concentration would be slightly higher in a specimen of finite length. Southwell (1956) determined a stress concentration factor of 3.0 using a "relexation" solution for a mesh of 116 points. Solutions obtained with the ISOPEP program produce stress concentrations of 2.92 and 3.24 for meshes of 65 and 1038 points respectively.

At the base of the V-motch or the corner of the rectangular motch even slight strains induce stresses of high magnitude and the stresses determined from a solution of the biharmonic difference equations would hardly represent an actual physical state of stress. However, stress

Figure 6.10 Stress Concentration in a semi-circular notch distributions obtained under the assumption of an ideally elastic body are useful in the analysis of the plasticity problem. Exact solutions of these problems would provide infinite stress concentrations for these two problems. The numerical solution provides a set of discrete values of the stress function. The value at each mesh point is an average value associated with an area surrounding the point. The area in general is proportional to h^2 . As the uniform mesh space h is decreased, the stress function solution at a point of high stress concentration would provide a better approximation of the high stress. Figures 6.11 and 6.12 illustrate this phenomenon for the V and rectangular notches.

Figure 6.11 Stress concentration in the V-notch

TABLE 5STRESS FUNCTION AT POINTS ADJACENT TO
THE SEMI-CIRCULAR NOTCH

				COLUMN			
	12	13	14	15	16	17	18
ROW 34567890111213415	02569 02560 02533 02488 02423 02423 02340 02239 02123 01992 01851 01700 01541 01378	01823 01816 01795 01757 01757 01631 01541 01541 01316 01316 01986 010898 00745	00971 00966 00953 00928 00890 00833 00759 00759 00566 00450 00324 00189 00049	0:00000 0:00000 0:00002 000025 00056 00107 00107 00173 00256 00353 00463 00582 00708	.01042 .01057 .01057 .01093 .01149 .01223 .01313 .01415 .01523	.02085 .02107 .02155 .02221 .02302 .02392	.03125 .03140 .03180 .03239 .03309
16	01212	00590	.00094	.00837	1.01637	02488	.03386
<u> </u>	01045	00433	.00239		.01/53	.02500	.03400
-	10	20	21		1 1 2	1 21.	25
ROW 12 13 14 15 16 17	.04166 .04180 .04216 .04266 .04324 .04389	.05209 .05224 .05255 .05296 .05344	.06253 .06269 .06294 .06326	.07291 .07297 .07310 .07330	- - - - - - - - - - - - - - - - - - -	.09375 .09376 .09379	- - 10416 - 10416 - 10416

TABLE 6X-STRESS COMPONENT AT POINTS ADJACENT TO
THE SEMI-CIRCULAR NOTCH

		_			COLU	JMN				
	13	14	15	16	17	18	19	20	21	22
ROW	•									
3	2.449	2.745	3.238							
4	2.431	2.701	2.952			1				
5	2.369	2.629	2.576			ļ				
6	2.275	2.506	2.111							
7	2.154	2.345	2.061							
8	2.031	2.130	2.193	-	1					
9	1:917	1.955	1.911	1.386	-					
10	1.805	1.801	1.745	1.664	1:417	-				
11	1.708	1.678	1.611	1.506	1:367	1.106	-			
12	1.628	1.586	1.514	1.404	1.243	- 955	.695	-		
13	1.563	1.514	1.440	1.330	1.174	.944	.653	:439	•	
14	1.508	1.455	1.380	1:274	1.131	.940	-711	.460	.238	
15	1.460	1:405	1.331	1.229	1.099	-936	-746	-543	-351	1:612
16	1.417	1.362	1.288	1.193	1:074	.931	:769	598	:431	.286
17	1.379	1.323	1.251	1.162	1.053	.927	.786	.638	.491	.358
• 1										

.

	COLUMN														
	13	84	15	16	17	18	19	20	21	22					
ROW 3 4 5 6 7 8 9 10 11 12 13 14 15 16	.329 .328 .361 .395 .425 .400 .350 .312 .271 .222 .169 .116 .068 .025	209 199 263 326 412 .402 .343 .326 .295 .244 .185 .126 .074 .030	0.000 .044 .114 .220 .345 .444 .357 .372 .348 .286 .214 .145 .088 .040	. 487 . 451 . 438 . 350 . 257 . 175 . 108 . 055	.584 .443 .318 .216 .136 .076	.590 .405 .268 .170 .102	- 323 - 500 - 321 - 205 - 127	.352 .226 .147	.219 .152	• 180 • 135					

TABLE 7Y-STRESS COMPONENT AT POINTS ADJACENT TO
THE SEMI-CIRCULAR NOTCH

TABLE 8XY-SHEAR STRESS AT POINTS ADJACENT TO
THE SEMI-CIRCULAR NOTCH

	COLUMN													
	13	14	15	16	17	18	19	20	21	22				
ROW 34 56 78 90 11 12 134 156 16	0.000 -104 -198 -266 -300 -307 -312 -312 -312 -287 -275 -266 -261 -258	0.000 153 285 391 455 464 451 439 365 337 319 307 298	645 578 511 448 404 374 353 338	633 535 470 426 396 375	628 530 470 431 403	578 562 491 447 417	469 435 409	385 376	303 317	242				

				COLUMN			
	12	13	14	15	16	17	18
ROW			-				
345678901123456 10123456	02187 02162 02095 01997 01876 01740 01595 01442 01286 01128 001286 001286 001286 001286 001056 00503	01570 01540 01362 01240 01240 01106 00965 00818 00669 00518 00518 00367 00218 00071	00853 00816 00737 00634 00518 00392 00260 00123 .000155 .00155 .00155 .00295 .00434 .00570 .00704	0.00000 .00035 .00104 .00191 .00291 .00401 .00517 .00638 .00763 .00890 .01017 .01143 .01268 .01390	.01041 .01060 .01111 .01181 .01266 .01361 .01464 .01571 .01682 .01794 .01906 .02017 .02127	.02083 .02097 .02136 .02193 .02264 .02345 .02433 .02526 .02621 .02718 .02815 .02911	.03125 .03136 .03167 .03214 .03273 .03341 .03415 .03494 .03575 .03657 .03739
17	00353	.00213	.00834	.01509	.02233	.03004	.03819
	1			COLUMN			
	19	20	21	22	23	24	25
ROW 7890 10112 112134 15617	.04166 .04175 .04201 .04239 .04288 .04345 .04407 .04472 .04539 .04607 .04674	.05208 .05215 .05236 .05268 .05308 .05354 .05457 .05511 .05565	.06250 .06255 .06272 .06298 .06330 .06366 .06406 .06447 .06488	.07291 .07296 .07309 .07329 .07353 .07381 .07410 .07440	.08333 .08336 .08346 .08361 .08378 .08397 .08417	.09375 .09377 .09383 .09393 .09404 .09416	.10416 .10417 .10421 .10426 .10431

TABLE 9 STRESS FUNCTION AT POINTS ADJACENT TO THE THE V-NOTCH

2	COLUMN														
	13	14	15	15	17	18	13	20	21	22					
ROW															
3	2.306	3.158	8.653												
4	2.350	2.952	3.557	1.621											
5	2.288	2.601	2.633	1.534	.874										
6	2.149	2.269	2.139	1.540	.958	.642									
7	1.992	2.011	1.353	1.473	1.053	.708	.507								
8	1.848	1.818	1.670	1.400	1.086	.798	.559	.412							
9	1.725	1.672	1.542	1.335	1.091	.852	.638	.456	.337						
10	1.622	1.562	1.446	1.280	1.085	.884	.694	.525	.375	.273					
11	1.539	1.475	1.372	1.235	1.072	.902	.736	.581	.438	.3 ⊡8					
12	1.470	1.407	1.315	1.196	1.059	.913	.767	.625	.492	.367					
13	1.413	1.352	1.268	1.164	1.045	.919	.789	.661	.538	.42)					
14	1.366	1.306	1.230	1.137	1.032	.921	.805	.690	.577	.467					
15	1.326	1.269	1.198	1.115	1.021	.921	.817	.713	.610	.509					
16	1.292	1.238	1.172	1.096	1.011	.921	.826	.732	.637	.545					
17	1.263	1.211	1.150	1.079	1.003	.920	.834	.748	.661	.576					

TABLE 10 X-STRESS COMPONENT AT POINTS ADJACENT TO THE V-NOTCH

TABLE 11 Y-STRESS COMPONENT AT POINTS ADJACENT TO THE V-NOTCH

	COLUMN														
	13	14	15	16	17	18	19	20	21	22					
ROW															
3	1.376	1.705	1.622												
4	1.033	.983	.787	.874					1						
5	.665	.529	.412	.725	.642										
6	.421	.318	.289	.468	.573	.507									
7	.273	.212	.217	.325	.426	.464	.412								
8	.179	. 147	.163	.233	.313	.365	.380	.337							
9	.115	.098	.117	.167	.229	.278	.305	.311	.273						
10	.066	.059	.076	.115	.164	.206	.236	.250	.251	.216					
11	.028	.026	.041	.072	.110	.146	.175	.192	.199	.196					
12	002	003	.010	.035	.066	.097	.123	.141	.149	.150					
13	029	027	016	.003	.028	.055	.078	.094	.104	.107					
14	051	049	039	023	002	.019	.040	.056	.067	.071					
15	069	066	058	044	027	008	.008	.024	.035	.041					
16	084	080	073	061	047	031	015	001	.0091	.017					

				CO	LUMN					
	13	14	15	16	17	18	19	20	21	22
ROW					• •				T	
3	0.000	0.000	0.000]		
- 4	.143	0.000	672							
5	.096	124	650	902						
6	0.000	221	563	773	698					
. 7	080	268	498	650	653	554				
8	134	286	- 448	561	586	540	-: 450			
9	169	289	409	- 495	525	504	- 449	369		
10	191	286	378	- 445	- 475	- 467	430	374	302	
. 11	204	281	352	406	- 434	433	407	364	310	243
12	211	274	331	375	- 399	- 402	- 385	- 352	307	254
13	- 216	- 267	- 314	- 350	- 371	- 376	- 364	- 318	301	255
14	- 219	- 261	- 299	- 329	- 347	- 353	- 345	125	- 294	254
15	-: 220	- 255	- 287	- 312	- 328	- 311	- 328	- 312	- 286	252
16	- 220	- 250	277	- 298	- 311	- 316	- 312	- 299	277	- 247
	,									

TABLE 12XY-SHEAR STRESS COMPONENT AT POINTS ADJACENTTOTHEV-NOTCH

The finest mesh used for the notched tensile specimen problems was 24X48. The corresponding mesh interval h is 1/48. The ISPOEP program includes a subroutine STRESS for the calculation of any or all of the stress components $\sigma_{\overline{x}}$, $\sigma_{\overline{y}}$ and $T_{\overline{xy}}$. Values of all three stress components and the stress function in a region surrounding the point of stress concentration are provided in Tables 5 to 12 for the semi-circular and Vnotches. See Appendix B for the finite-difference equations used. These equations are valid at interior points only. Calculation of stresses at points on an irregular boundary are not included in the subroutine STRESS.

Figure 6.12 Stress concentration in a rectangular notch

Though a solution obtained with a coarse mesh does not provide a good measure of the stress at a point of stress concentration, the results shown in Figures 6_010 , 6_011 and 6_012 indicate a decrease in mesh interval h produces only slight changes in the stresses computed at all other points.

Use of an average value of the stress function over an area surrounding a mesh point depends more on the magnitude of the area than on the geometry of the region. For example at the base of the V-notch the area surrounding the mesh point is taken as about half the area for an interior mesh point. Does this not imply that the solution obtained at this point is a better approximation for a tensile specimen with a

rounded rather than a sharp corner at the base of the notch? Some evidence for this conjecture is provided by comparison of the stress concentration factors found from the numerical solutions of Problems 401, 402 and 408 with the stress concentration factors provided by Peterson (1953) for notched flat bars in tension. Peterson provides values of the stress concentration factor K_t for tensile specimens with deep notches with parallel sides and a semicircular base as shown in Figure 6.13. The stress concentration is defined

$$K_t = \frac{\sigma_{max}}{\sigma_{norm}}$$

where O_{norm} is the average stress across the minimum cross section of the specimen. The curve plotted in Figure 6.13 shows the relationship of K_t to r/D where r is the notch radius and D is the width of the bar. This curve is based on the Neuber-theory solutions tabulated by Peterson (pp 26-27) for d/D \approx .5 where d is the minimum distance across the bar at the base of the notch. The stress concentration factors for three different numerical solutions of Problem 4 are listed in Table 13.

Problem	Nesh Size	h	Omax	Onorm	Kt	r/D	
401	6x12	1/12	4.362	2	2.181	1/12	
402	12x24	1/24	6.083	2	3.042	1/24	
408	211248	1/48	8.653	2	4.326	1/48	

Table 13 Stress concentrations factors for the V-notch tensile specimen

Assuming the numerical solution approximates the solution for a bar with circular notch such that $r \equiv h_0$ the stress concentration factors K_t for problems 401,402,408 are plotted as three points labeled in Figure 6.13. There is good agreement between the numerical solutions and the Neuber theory solutions. Peterson reports that for notches with inclined sides having an included angle α and a circular arc at

Figure 6.13 Stress Concentration factor Kt for a notched flat bar Treatment of irregular boundaries

The semi-circular notch is typical of the irregular boundaries often encountered in practical problems. Griffin and Varga (1962) show how different mesh intervals can be used so that each horizontal grid line crossing the irregular boundary intersects a vertical grid line on the boundary. There are several advantages to this approach, but it does increase the number of arithmetic operations needed for the calculation of each vector iterate. For this reason a uniform mesh interval is used in ISOPEP, and the irregular boundary is approximated with straight line segments, introduced arbitrarily as shown in Fig. 6.14, connecting nodes of the primary mesh. (The dual mesh is formed by lines halfway between lines of the primary mesh.) The points labeled B are on the boundary and values of $U_{\rm Bij}$ are computed using Equation (28) of Chapter III. The only complication is the evaluation of $\nabla^2 U_i$ for points on the boundary. A few examples will illustrate the technique.

$$\nabla^2 \bigcup_o = \frac{1}{H_o} \oint \frac{\partial \bigcup_o}{\partial \eta} ds$$

Figure 6.14 Boundary points for the semi-circular notch At an interior point where $\mathbf{A}_0 = \mathbf{h}^2$ the line integral is approximated (see Fig. 3.3 and Equation (27))

$$\nabla_{-}^{2} U_{o} = \frac{1}{H_{o}} \left[(U_{i} - U_{o}) \frac{S_{o1}}{h_{o1}} + (U_{2} - U_{o}) \frac{S_{o2}}{h_{o2}} + (U_{3} - U_{o}) \frac{S_{o3}}{h_{o3}} + (U_{4} - U_{o}) \frac{S_{o4}}{h_{o4}} \right]$$

the notch boundary

$$\frac{\partial \phi}{\partial y} = 1/2$$
, $\frac{\partial \phi}{\partial x} = 0$.

For

At a boundary point such as $P_{15,3}$ (I = 15, J = 3), Figures 6.14 and 6.15(a),

$$\begin{split} \int_{a}^{b} \frac{\partial \phi}{\partial h} ds &\approx (U_{4} - U_{0}), \qquad \qquad \int_{b}^{c} \frac{\partial \phi}{\partial h} ds \approx \frac{1}{2} (U_{1} - U_{0}), \\ \int_{c}^{d} \frac{\partial \phi}{\partial h} ds &\approx (\frac{\partial \phi}{\partial y})_{o} h = \frac{h}{2}, \qquad \qquad \int_{d}^{a} \frac{\partial \phi}{\partial h} ds \approx \frac{1}{2} (U_{3} - U_{0}), \\ \nabla^{2} U_{o} &= \frac{2}{h^{2}} \left[U_{4} + \frac{1}{2} (U_{1} + U_{3}) - 2U_{o} + \frac{h}{2} \right]. \end{split}$$

Thus the approximation to the line integrals along be and da is made in terms of central difference quotients at the ends of the intervals instead of at an interior point. This illustrates an additional complication of the irregular boundary, which appears at most of the boundary points.

$$\int_{a}^{b} \frac{\partial \phi}{\partial \eta} ds \approx (U_{4} - U_{0}), \qquad \int_{b}^{c} \frac{\partial \phi}{\partial \eta} ds \approx (U_{1} - U_{0}),$$

$$\int_{c}^{a} \frac{\partial \phi}{\partial \eta} ds \approx \left[\left(\frac{\partial \phi}{\partial x} \right)_{o} \cos \theta + \left(\frac{\partial \phi}{\partial y} \right)_{o} \sin \theta \right] \frac{h}{\sin \theta} = \frac{h}{2},$$

$$\theta = 135^{\circ}$$

$$\nabla^{2} U_{0} = \frac{2}{h^{2}} \left[U_{1} + U_{4} - 2U_{0} + \frac{h}{2} \right].$$

At the point P15,6, Figures 6.14 and 6.15(c),

$$\begin{split} \int_{a}^{b} \frac{\partial \phi}{\partial \eta} ds &\approx (U_{4} - U_{0}), \quad \int_{b}^{c} \frac{\partial \phi}{\partial \eta} ds \approx (U_{1} - U_{0}) \\ \int_{c}^{d} \frac{\partial \phi}{\partial \eta} ds &\approx \left[\left(\frac{\partial \phi}{\partial x} \right)_{o} \cos \theta + \left(\frac{\partial \phi}{\partial y} \right)_{o} \sin \theta \right] \frac{h}{\sin \theta} = \frac{h}{2}, \\ \int_{J}^{a} \frac{\partial \phi}{\partial \eta} ds &\approx \left[\frac{h}{2} + \frac{d_{a}}{h} \right] (U_{3} - U_{0}) \\ \nabla^{2} U_{0} &= \left[\frac{U_{4} + U_{1} - 2U_{0} + \frac{h}{2} + \left(\frac{h}{2} + \frac{d_{a}}{h}\right) (U_{3} - U_{0}) \\ \left(\frac{h}{2} + \frac{d_{a}}{h} \right) h^{2} \end{split}$$

Figure 6.15 Treatment of boundary points

i

The evaluation of $\nabla^{2}U_{(15,6)}$ is used in Equation (28) for the finitedifference equations at the point $P_{11,6}$. It is not possible to write finite-difference equations for point $P_{15,6}$ using Equation (28). Hence the evaluation of $U_{(15,6)}$ and the discrete values of the stress function at other points labeled with a C in Fig. 6.14 are obtained by interpolation. Fox (1950) treats this problem with the Gregory-Newton forward interpolation formula. A point 0 exterior to the boundary is introduced as shown in Fig. 6.16. With

the value of U_B and $U'_B = (\frac{\partial U}{\partial X})_B$ specified on the boundary, it is possible to eliminate U_0 and determine U_1 at the first interior point in terms of the boundary conditions and one or more interior

points as follows

Figure 6.16 Intérior points near & boundary

$$U = U_{o} + \Delta U_{o} \frac{(x - x_{o})}{h} + \frac{\Delta^{2} U_{o}}{2!} \frac{(x - x_{o})(x - x_{i})}{h^{2}} + \frac{\Delta^{3} U_{o}}{3!} \frac{(x - x_{o})(x - x_{i})(x - x_{o})}{h^{3}} + \frac{\Delta^{4} U_{o} (x - x_{i})(x - x_{o})}{4!} + \frac{\Delta^{4} U_{o} (x - x_{i})(x - x_{o})}{h^{4}} + \frac{\Delta^{4} U_{o} (x - x_{o})(x - x_{o})}{h^{4}} + \frac{\Delta^{4} U_{o} (x - x_{o})}{h^{4}} + \frac{\Delta^{4} U_{o} (x -$$

Let
$$s = (x_B - x_0)/h$$
 then

$$U_B = U_0 + (U_1 - U_0)s + (U_2 - 2U_1 + U_0)\frac{S(S-1)}{2!} + (U_3 - 3U_2 + 3U_1 - U_0)\frac{S(S-1)(S-2)}{3!} + (U_4 - 4U_3 + 6U_2 - 4U_1 + U_0)\frac{S(S-1)(S-2)(S-3)}{4!} + \cdots ,$$

$$U_B' = (U_1 - U_0) + (U_2 - 2U_1 + U_0)(S - \frac{1}{2}) + (U_3 - 3U_2 + 3U_1 - U_0)\frac{3S^2 - 6S + 2}{3!} + (U_4 - 4U_3 + 6U_2 - 4U_1 + U_0)\frac{4S^3 - 18S^2 - 22S - 6}{4!} + \cdots ,$$

or

$$U_{B} = D_{1}U_{0} + D_{2}U_{1} + B_{3}U_{2} + D_{4}U_{3} + D_{5}U_{4} + H_{1}$$

$$hU'_{B} = E_{1}U_{0} + E_{2}U_{1} + E_{3}U_{2} + E_{4}U_{3} + E_{5}U_{4} + H_{2}$$

where the D_1 and E_1 are fourth degree polynomials in s obtained by retaining differences up to fourth order while H_1 and H_2 involve fifth

l

and higher differences of U as well as higher degree terms in s. Neglecting H_1 and H_2 the external point value can be eliminated and the expression of U_1 is

$$U_{i} = \left[\frac{U_{B}}{D_{i}} - \frac{hU_{B}}{E_{i}} + \left(\frac{E_{3}}{E_{i}} - \frac{D_{3}}{D_{i}}\right)U_{2} + \left(\frac{E_{4}}{E_{i}} - \frac{D_{4}}{D_{i}}\right)U_{3} + \left(\frac{E_{5}}{E_{i}} - \frac{D_{5}}{D_{i}}\right)U_{4}\right] / \left(\frac{D_{1}}{D_{i}} - \frac{E_{2}}{E_{i}}\right).$$
Though it is preferable to retain differences of at least the fourth order, similar formulas can be written for higher or lower order differences.

Problem 6 - A rectangular hole in an infinite plate

The solution for an infinite plate subjected to uniform tensile stress P_0 at $x \equiv \infty$ and $x \equiv -\infty$ is provided by Savin (1961) for several different approximations of the boundaries of a rectangular hole. The stresses on the boundary of a square hole obtained from one of Savin's solutions will be used for comparison with the stresses obtained from a numerical solution. The problem solved numerically is for a 2 unit by 2 unit region surrounding the hole. The hole dimensions are 2/3 by

2/3. Values of the stress function and normal derivatives on the outer boundary of the selected region are determined from Savin's solution. The numerical solution of the biharmonic equation provides a basis for the determination of the stresses on the boundary of the hole, and these are compared with stresses from Savin's solution for a curvilinear

Figure 6.17 Problem 6 Infinite plate with a square hole

approximation to the square hole.

Savin's solution is obtained using Muskhelivshili's method. It is known that the stress function \emptyset (x,y) can be written

$$\phi$$
 (x,y) = Re $\left[\overline{Z} \alpha(z) + \beta(z) \right]$

where Re means the real part of the complex expression, $\mathcal{J}(z)$ and $\beta(z)$ are analytic functions of the complex variable z = x + iy. $\overline{z} = x - iy$.

Savin's solution is obtained by conformal mapping of the region exterior to the hole onto the interior of the unit circle in the complex ς -plane by a mapping function $\Xi \equiv \omega(\varsigma)$. The mapping function, approximated by three terms of an infinite series, and the complex stress functions $\alpha(\varsigma) \equiv \alpha[\omega(\varsigma)]$ and the derivative of $\beta(\varsigma) \equiv \beta[\omega(\varsigma)]$ are given by Savin (1961) pp 51-53 as

 $\omega(\varsigma) = \mathcal{R}\left[\frac{1}{\varsigma} - \frac{1}{6}\varsigma^3 + \frac{1}{56}\varsigma^7\right],$

$$\alpha(\varsigma) = \mathcal{P}R\left[\frac{1}{4\varsigma} + 0.426\varsigma + 0.046\varsigma^{3} + 0.008\varsigma^{5} + 0.004\varsigma^{7}\right],$$

$$\Psi(\varsigma) = \frac{d\beta(\varsigma)}{d\varsigma} = -\mathcal{P}R\left[\frac{1}{2\varsigma} + \frac{0.548\varsigma - 0.457\varsigma^{3} - 0.026\varsigma^{5} - 0.029\varsigma^{7}}{1 + 0.5\varsigma^{4} - 0.125\varsigma^{8}}\right],$$

where $\gamma = \xi + i\eta = \rho e^{i\theta}$, (ξ, η) , (ρ, θ) are rectangular and polar coordinates respectively in the complex γ plane. Points on the circumference of the circle correspond to points on the boundary of the square hole, but when the series for $\omega(\gamma)$ is truncated, the correspondence is not exact. The Cartesian coordinates of any point in the plate in terms of the polar coordinates in the complex plane are given by

$$\mathbf{x} = \mathbf{R} \left(\frac{1}{P} \cos\theta - \frac{P^3}{6} \cos 3\theta + \frac{P^7}{56} \cos 7\theta \right),$$

$$\mathbf{y} = -\mathbf{R} \left(\frac{1}{P} \sin\theta + \frac{P^3}{6} \sin 3\theta - \frac{P^7}{56} \sin 7\theta \right).$$

The boundary of the hole defined by these equations when $\rho = 1$ is not an exact square. The edges are slightly bowed and the corners are approximated with circular arcs of radius r = 0.0245a, where a is the distance along the x-axis from one edge of the curvilinear square to the other. R is the length of one side of the square hole. The value of R = .39321508 is used in the problem solved numerically. This assures the

transformation of the hole boundary at a distance of 1/3from the origin onto the boundary of the circle $\rho \equiv 1$ in the complex plane. Thus a $\equiv 2/3_{\rho}$ and the corner radius of curvature for Savin's solution is $r \equiv 0.0163$.

The equations given by

Figure 6.18 Approximation of the square hole

Savin do not permit the direct evaluation of the stress function along the boundaries x = 1 and y = 1. Derivatives can be found from

$$\frac{\partial \phi}{\partial x} + i \frac{\partial \phi}{\partial y} = \alpha(\varsigma) + \frac{\omega(\varsigma)}{\omega(\varsigma)} \overline{\alpha'(\varsigma)} + \psi(\varsigma)$$

See, for example, Savin (1961) p. 6 or Muskhelishvili (1953) p. 183. Values of ρ which correspond to points on x = 1 and y = 1, are determined for $0^{\circ} \leq \theta \leq 90^{\circ}$ at intervals $\Delta \theta = 3^{\circ}$. For these values of and θ , $\frac{\partial \theta}{\partial x}$ and $\frac{\partial \theta}{\partial y}$ are calculated. The availability of a basic set of complex variable subroutines and statements in 3600 FORTRAN simplify these calculations. The values of the derivatives of θ thus determined relate to points unequally spaced along x = 1 and y = 1. A five point Lagrange interpolation formula is used to find values of the derivatives at equally spaced points. Along the x-axis, quadrature of $\frac{\partial \theta}{\partial x}$ provides the point values of θ up to an additive constant. The $\frac{\partial \theta}{\partial y}$ values specify a normal derivatives along the boundary y = 1. The general problem of a multiply-connected region is discussed by Griffin and Varga (1962). The constants of integration can be arbitrarily chosen on an exterior closed boundary. However, for each interior closed boundary it is necessary to determine ϕ_k , $\frac{\partial \phi}{\partial x_k}$, $\frac{\partial \phi}{\partial y_k}$ for one point P_k on the boundary in such a way that the components of displacement u,v and the rotation $\omega_s = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$ will be single-valued. The three additional unknowns for each interior boundary are related to the point values of the stress function in the region surrounding the hole in a manner which permits use of iterative methods.

Since the purpose of the present numerical solution was only to test the efficacy of the finite-difference method in reproducing details of the rapidlyvarying stress near a stresssoncentration point by comparison with Savin's solution, the procedure of Griffin and Varga for a multiply-connected region was not

Figure 6.19 Domain of solution for Problem 6

followed. Instead the results of Savin's solution were used to choose the integration constants on the boundary $x \equiv 1$ in such a way that $\mathcal{G} \equiv 0$ at the point (1/3,0), and the assumption that \mathcal{G} is symmetric with respect to the x and y axes will satisfy the required conditions of single-valuedness. The symmetry conditions then took care of the other constants on the hole boundary, and it was possible to solve the problem with one quarter of the plate as a simply-connected region, see Fig. 6.19. The x-axis is a line of symmetry. Hence $\frac{\partial \mathcal{G}}{\partial y} = 0$ along the x-axis. The y-axis is also a line of symmetry. Hence $\frac{\partial \phi}{\partial x} = 0$ along the y-axis. Along \overline{af}

$$\sigma_{x} = \frac{\partial^{2} \phi}{\partial y^{2}} = 0, \qquad T_{xy} = -\frac{\partial^{2} \phi}{\partial x \partial y} = 0,$$

$$\frac{\partial \phi}{\partial y} = \left(\frac{\partial \phi}{\partial y}\right)_{a} = 0, \qquad \frac{\partial \phi}{\partial x} = \left(\frac{\partial \phi}{\partial x}\right)_{a} = \mathcal{A}$$

$$\phi = \mathcal{B} = 0$$

The value of B is zero since it has been assumed that $\phi_{a} = 0$. Along ef

$$\begin{aligned} \mathbf{\hat{o}_y} &= \frac{\partial^2 \phi}{\partial x^2} = 0, & \mathcal{T}_{xy} = -\frac{\partial^2 \phi}{\partial x \partial y} = 0, \\ \frac{\partial \phi}{\partial x} &= \left(\frac{\partial \phi}{\partial x}\right)_e = 0, & \frac{\partial \phi}{\partial y} = \left(\frac{\partial \phi}{\partial y}\right)_f = 0, \\ \phi &= \mathbf{\hat{o}_f} = 0 \end{aligned}$$

Hence $\mathbf{A} = 0$.

Along bc and cd boundary values of the stress function and its normal derivatives are obtained from Savin's solution.

Iterative solutions were obtained for mesh intervals of 1/15, 1/30, and 1/48. Values of the stress function and $\sigma_{\rm X}$ at the intersection of every fourth grid row and grid column of the 48x48 mesh are given in Fig. 6.20.

A comparison of the stress concentrations found in the numerical solution and those given on p. 53 of Savin (1961) is provided in Table 14. Values of \mathcal{O}_{Θ} given by Savin are the values of $\mathcal{O}_{\mathbf{y}}$ in a rectangular coordinate system which has the origin at the point under investigation and the y-axis tangent at the given point to the curve $\mathcal{O} = 1$. See Savin p. 8. The table includes comparable stresses, $\mathcal{O}_{\mathbf{A}}$, for the iterative solution with a convergence criterion of 10^{-6} and a second set $\mathcal{O}_{\mathbf{B}}$ for the solution obtained with a convergence criterion of 10^{-7} . Both are included because this appears to be an exception to the general case in which stress concentrations increase as the convergence

FIGURE 6.2) Stress	Function	and or	Distributions	for	Problem	6
------------	----------	----------	--------	----------------------	-----	----------------	---

							COLUMN							
	3	7	11	15	19	23	27	31	35	39	43	47	51	
KUW					.00000	00266	00886	01661 -	.02480 -	.03287 -	-04057 -	.04779 -	.05452	<u>v</u>
3					.0000	.0170		.2013	.3216	.4308	.5230	:5971 ***	•	- Ox
					:		:	:		:	:		:	
7									.02300 -	********			.07223	
					.0000	.0244	.1145	.2366	.3557	.4589	.5446	.6135		
					:	•	•	•	•	•	:	•	:	
					:00000	00235	- 00737	-:01349 -	.02002 -	02663 -	.03311 -	.03935 -	04528	
11					.0000	.0640	2170	.3532	4580	.5395	.6054	.6594	•	
					•		•	•	•	•	•	•	•	
					•					•		•	:	
15						00159 .						.02040 -	• • • • • • •	
					.0000	\$2723	.4817	.5704	.6213	.6614	.6955	.7273		
					:	:\	:	:	•	•	:	:	:	
.0	00000 0	.00000 0	.00000	0.00000	0.00000	00145	00158	:00033 -	00197 -	:00503 -	:00857 -	:01239 -	01633	
19,14				34 6444 ***		1.1675.**							•	
			•	T	10,200				•	•	•			
:		•	:	/:	:/	: \	.:	:	•	:	:	:	:	
21 .0	0575	.00582	.00609	.00678	.00861	.01167	01406	.01507	.01483	.01361	.01066 8	.00900 8	00640	
1.6	174 1	.6298 1	.6609	1.6598	1.5065	1.3863	1.1916	1.0554	.9734	.9245	.0967	. 8822	•	
:		:	: '	:	: \	:	:\	:	:	:	:	:	:	
:0	2271	02294	:02370	02525	:02790	.03139	103470	03708	03837	03865	03811	03492	03525	
27,												•••••	•	
1.3	120 1				1.3591			1.1250 1	•0/36 1	.0120	• • • •		•	
•		•	•	•	: \	•	: \	\:	•	•	:	:	:	
	5018	05053	05166	05369	05667	06030	06395	06706	06934	07073	.07132	.07121	07054	
311:4	012**1	: 3927 ** 1	:3648**	1:3229***	1:2001.1	1:2672***	1:2328**	1:1798**1	:1222**1	:8784**1	:0294***	: 9948 ***	•	
:			:	:	: \	:	:	:\	: .	:	:	:	:	
	8730	08781	08917	.091 14	1004 201	09801	10174	10522	10808	11024	11147	11242	112~0	
35.02	******	• • • • • • • • • • • • • • • • • • • •			******		******	*******	*******	• • • • • • • • • • •	******		•	
1.3	100 1	• • •				1:""		······	•1977 l	•0776 l	.005/ 1	• • • • • • • • • • • • • • • • • • • •		
:		:	:	:	:	1:	:	: \	:	:	:	:	:	
1	3370	13415	13551	13775	14074	.14426	14797	15155	15473	15737	15939	.16081	16167	
371.2	423 1	.2301 1	2273	1.2139	1.2033	111953	1.1840	1.1653 1	1393 1	.1107 1	:0824 i	.0563	•	
:		:	:	1:	:	:\	:	:	:\	:	:	•	•	
		1.0010	10041	10760	10444	10000	20260	-	20020		21443	21442		
43		•••••		*******	******				******	*******	******	******	•	
1.1	934 1	.1909 1	.1851	1.1/87	1.1/31	1.1683	1.1612	1.1494 1	1324 \ 1	.1121 1	.0400 1	.0690		
:		•	•	•	•	: \	•	•	• \	•	•	•	•	
	5190	25233	25359	25562	25831	26147	26490	26838	27172 `	27477	27744	27967	28144	
*′ı:i	377 1	1566 1	1338**	1.1506	1.1478	1.1455	1.1414**	1.1340 1	1229 1	1082 1	.0916 1	:0745***	•	
:		:	:	11	•	: \	•	•	•	: \	•	•	:	
								•				•••••	:	
51		• • • • • • • • •				• • • • • • • • • •	• • • • • • • • •			• 3 4 7 0 5	.34/82			
				1		1				· \				
						1				``				
						1					、			
						`					\			
							1				•			
				t			1				\			<u> </u>
				1			1	COLUMN					1	, G x
				j 15	16	17	18	19	20	21	22 \	23	/ _ /	ā.
			RO				1	.00000 -	.00016 -	.00052 -	.00100	00139/	~_/	
			14	1			1	.0000	•0241	.0974	.1875	2723		- T
							1	.7437 -	.4578 -	- 2949 -	-2149 -	1783	- + -	
				I .			•	• • • • • •		• • • • • •	• • • • • • •	• • • • • •		
				1			1	.00000 -	•0640	.1910	.00076 -	•00118		
			16	1			1	:	. 1091 ***	. 1 4 24 ***	144	1667		
				1			1	.0000	·1ŏó3 -	.214ź -	3000	3532		
							1	:00000 -	.00008 -	:00022 -	:00038 -	00060		
			17	1			1	.0000	•1774	.3621	.4640	.4944		
			- ·						.0976 -	.0762 -	-1110 -	1416		
				1			1	*****	• • • • • • •	• • • • • •	* 2718	*****		
				1			1	.00000	•00004 •5780	.00013	•00021 •9600 1	•00024 •0642		
			18					*******	******		*****	1,707		
				1				\:00000 -	.3173 -	4639	.5651	5042		
				100000	.00000	.00000	.00000	1:00000	00041	00083	00119	00145		
			10	2.0565	2.2422	2.5804	3.2546	4 6338 1	.7535 1	.4024 1	.2158 1	.1075		
			.,	0000		0000		1.9100	.0163 -	11424	-290	2150		
				•••••		.0000		1.3093		.0101		• > > > 1		
				+00044 1+9987	.00048 2.0987	2.1980	.00070 2.2088	1.0770 1	.00155	.00214	.00268	.00315		
			20		•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • •		
				:0000	:0686	:0000	: 3762	: 2697	:5756 -	:5533 -	:5138 -	4986		
				00176	.00188	00207	00237	00282	00344	00413	00479	00540		
				1.8805	1.9063	1.8966	1.8210	1.6874 1	.6411 1	.5607 1	4591 1	3598		
			£1	.0910	1510	2474	. 3624	3024	1469 -	· • • • • • • •	-1472 -	1988		
				. 3419		. 3/85		• 3770	• 3463			• • • • • • • • • • • • • • • • • • • •		
				00389	00410	00441	00482	100537	.00605	00679	.00753	00823		
			22	11124.	11114**		•••••••	******		• * * * * * * *		1412		
				3272	:::::	: 3346	: 5326	3263	3228	:3123 -	3681	:2399		
				00678	00709	00749	00799	00861	00933	01011	01091	01167		
			2 *	1.6598	1.6339	1.5929	1.5450	1.5065 1	.4865 1	.4651 1	4314 1	3863		
				1598	2050	2474		2313	1370	.0299 ···	- 9599 -	1244		
				.2044	• 4 / 77		44742	***>1		. 4740		46623		

Table 14. Comparison of boundary values of σ_{Θ} obtained from the iterative solution with those from Savin's solution.

	Savin	's Soluti	lon	ISOPEP Solutions				
0	x	У	σ _θ	OA	σB	x	У	
0 °	•3347	0	936	-1.005	902	.3333	0	
				991	895	•3333	.0833	
				973	883	•3333	.1250	
				944	864	•3333	.1667	
				897	828	•3333	.2083	
				801	744	•3333	.2500	
		;		452	414	•333 3	.2917	
35° [′]	.3361	.2952	544					
				.170	.185	•3333	•3125	
40 ⁰	•3352	.3164	.605					
45 [°]	•3294	.3294	4.368	4.78	4.52	•3333	•3333	
50 ⁰	.3164	•3352	4.460				•3333	
				3.402	3.281	.3125	•3333	
55°	.2952	•3361	2.888					
				2.710	2.645	.2915	•3333	
				2.174	2.057	.2500	•3333	
				1.979	1.869	.2083	• 3 333	
				1.880	1.775	.1667	•3333	
				1.819	1.722	.1250	•3333	
				1.780	1.690	.0833	•3333	
90 °	0	•3347	1.760	1.748	1.668	0	•3333	

The stresses $\sigma_{\overline{A}}$ and $\sigma_{\overline{B}}$ are comparable to $\sigma_{\overline{\Theta}}$ for iterative solutions with the convergence criteron of 10⁻⁶ and 10⁻⁷ respectively.
criterion is decreased. The values of $\mathcal{O}_{\overline{A}}$ and $\mathcal{O}_{\overline{B}}$ along x = .3333for y < .3333 are values of $\mathcal{O}_{\overline{y}}$ computed from the point values of the stress function. Along y = .3333 for x < .3333 the values of $\mathcal{O}_{\overline{A}}$ and $\mathcal{O}_{\overline{B}}$ are the values of $\mathcal{O}_{\overline{x}}$ computed from the stress function solution. At x = .3333, y = .3333 which corresponds to $\theta = 45^{\circ}$, the values of $\mathcal{O}_{\overline{\Theta}}$ given by Savin would be along a line which makes an angle of 45° with the x-axis. Values of $\mathcal{O}_{\overline{x}}$, $\mathcal{O}_{\overline{y}}$ and $\mathcal{O}_{\overline{x}y}$ computed at the corner of the square were used to compute values of $\mathcal{O}_{\overline{A}}$ and $\mathcal{O}_{\overline{B}}$ in the same direction as $\mathcal{O}_{\overline{\Theta}}$. The values, $\mathcal{O}_{\overline{\Theta}} = 4.368$, $\mathcal{O}_{\overline{A}} = 4.78$ and $\mathcal{O}_{\overline{B}} = 4.52$ are the largest stress concentrations occuring at corresponding points in the solutions considered. The fact that slightly different values are found for the numerical solutions might be expected from the different representation of the boundary at the corner in the numerical solution and Savin's solution.

VII SUMMARY AND CONCLUSIONS

The objective of this study has been three-fold: (1) The identification of efficient iterative methods for the solution of plane elastostatic problems; (2) The preparation of a system of computer programs for solving this class of problems; and (3) A demonstration of the use of iterative methods.

An investigation of the numerical solution of elliptic differential equations resulted in the selection of three matrix iterative methods as the alternatives which should be considered for inclusion in a digital computer program for the solution of plane elastostatic problems. Computer programs have been written for the point successive overrelaxation method, the alternating-direction implicit method and the cyclic Chebyshev semi-iterative method. Solutions of a model problem for various mesh intervals and convergence parameters are used for comparing the methods. The model problem is a square plate with uniformly distributed loads on portions of two edges. See Section VI-1.

The superiority of one iterative method over another may be judged by comparing the number of iterations required to satisfy a given convergence criterion. The results given in Fig. 4.7 (a) show the cyclic Chebyshev semi-iterative method is iteratively faster than the other methods when the number of mesh points is less than approximately 125. This number of mesh points corresponds to a mesh interval h = 1/16. For h < 1/16 the alternating-direction implicit method is iteratively faster. Whether one method is iteratively faster than another may not be an adequate basis for selecting the best method for a computer program.

Cost, which is directly related to the computer time required, may be a better measure of the superiority of a particular method. The results given in Fig. 4.7 (b) show the point successive overrelaxation method is better than the other methods for a mesh interval h > 1/26. For a finer mesh, say the number of interior mesh points is more then 350, the alternating-direction implicit method is the best for the problems examined.

The results given in Fig. 4.7 were obtained using various methods for approximating the optimum relaxation factors. How do these three schemes compare when the optimum parameters for accelerating convergence are used? A series of problems were run in an attempt to answer this question. A plot of the number of iterations against the associated parameter for accelerating convergence is given for each method. See Figures 4.3, 4.4, 4.6. In Table 2 the data for the second and third problems provide a comparison of the number of iterations and machine time for a problem with mesh interval h = 1/12. Optimum parameters were used in the second problem and the standard approximations given in Section IV were used in problem 3. Use of the optimum parameters produced substantial improvement in the machine time required; 42% for successive overrelaxation, 24% for the alternating-direction implicit method and 18% for the cyclic Chebyshev semi-iterative method. These results show the magnitude of the improvement which could be made in iterative methods if better estimates of the optimum parameters could be found. This is a problem which warrants further investigation.

Another important consideration in the selection of an iterative method for the solution of plane elastostatic problems is the storage requirements of instruction and arrays. A summary of the storage

requirements for each method is provided in Table 1. The successive overrelaxation method requires less than 50% of the storage needed for either of the other methods. Using successive overrelaxation, problems with up to 435 mesh points have been solved on an IBM 1620 with a core memory of 20,000 decimal digits. Comparisons of the times required to solve problems on the CDC 3600 and the IBM 1620 are given in Table 4.

A system of FORTRAN computer programs for the solution of plane elastostatic problems has been written and tested. Flow diagrams, listing of FORTRAN source decks, specification of input and the output for a sample problem are provided in Appendix B. A subroutine for each of the iterative methods is included. In addition there are subroutines for: calculation of stress components; calculation of initial values when the mesh is refined; input and output. The main program ISOPEP provides for the linkage of these subroutines and an additional pair of subroutines which account for the boundary conditions of a particular preblem. The boundary condition subroutines for the six problems discussed in Section VI are also included in Appendix B.

A set of six problems has been solved using the ISOPEP program. The first problem is a square plate with edge load on two sides as shown in Fig. 4.1. This is a model problem used to compare the selected iterative methods. Distributions of the stress function and σ_x for Problem 1 are given in Fig. 6.2.

The second and sixth problems were selected because they provide a basis for comparing analytic and numerical solutions. Problem 2 is a semi-infinite plate with a uniformly distributed load along a segment of the edge. The stress function and σ_y distributions from the numerical solution are given in Fig. 6.5. A comparison of the distributions of

y at one mesh interval from the plate edge is provided in Fig. 6.4; values from an exact solution, from the ISOPEP solution, and from a numerical mapping solution are compared. Problem 6 is an infinite plate with a square hole. Comparison of the analytical solution of G.N. Savin with the iterative solution is provided in Table 14. Stresses on the boundary of the square hole are used for this comparison. The numerical solution shows a slightly higher stress concentration at the corner than Savin's solution, but the agreement is fairly good, considering that the effective rounding of the corner implicit in the finite-difference solution approximates the boundary in a way different from Savin's truncated series mapping.

The other three problems are notched tensile specimens. Problem 3 has semi-circular notches, Problem 4 has V-notches, and Problem 5 rectangular notches. These problems were selected for an investigation of the numerical determination of stress concentrations. Stress function and σ_x distributions are given in Figures 6.7, 6.8 and 6.9 for Problems 3, 4 and 5 respectively. Additional details of solution values at the base of the semi-circular and V-notches are given in Tables 5 through 13. Values of the shear stress T_{xy} and σ_y are included.

Comparisons are made of the stress concentrations computed with different choices of mesh intervals h. See Figures 6.10, 6.11, 6.12. In addition, for the V-notch the stress concentrations for the ISOPEP solutions are compared with the Neuber theory solutions provided by R. E. Peterson (1953). Under the assumption that the numerical solution at the base point of the V-notch represents a solution for a specimen with a semi-circular notch of radius equal to the mesh interval, the two solutions show good agreement. See Fig. 6.13. This agreement may

be somewhat fortuitous, but it does lend support to the usefulness of numerical analysis in the vicinity of a singularity. In any actual body the notch would be somewhat rounded, and the numerical analysis for a sharp notch approximates the actual state of stress in a rounded notch with radius equal to the mesh interval of the analysis.

The numerical results for the six problems solved indicate that high speed digital computers provide an effective means for the analysis of plane elastostatic problems. The stress distributions obtained from numerical solutions compare very well with explicit solutions. Though it is necessary to use a fine mesh in the neighborhood of a singularity, the ISOPEP program for the CDC 3600 permits the use of over 3600 mesh points. This should permit the analysis of quite complicated problems. ISOPEP solutions on the CDC 3600 are reasonable in cost. At an hourly rate of \$375.00 per hour for computer time, the cost of solving a problem with 200 mesh points would be \$5.41. The cost for the solution of a problem with approximately 1100 mesh points would be \$36.23.

The possibility of augmenting the ISOPEP program has been considered. Since ISOPEP is a set of linked subprograms, additions could be easily made. The additions which have been considered include: (1) A better treatment of boundaries formed with circular arcs, perhaps, through use of polar coordinates; (2) Use of a refined mesh in a subregion of the solution domain; (3) Use of a different formulation of the differential equations. The variational method for deriving difference equations as used in Section III provides a finite-difference form of the Navier equations, see Eq. (37). A study of the iterative solution of these would be of value.

- Arms, R. J., Gates, L. D., and Zondek, B. (1956), "A Method of Block Iteration," J. Soc. Indust. Appl. Math. 4, 220-229
- Birkhoff, Garrett; Varga, Richard S.; and Young, David M., Jr. (1962), "Alternating Direction Implicit Methods," Advances in Computers, Vol. 3, Academic Press, New York.
- Cayless, M. A. (1961), "Solution of Systems of Ordinary and Partial Differential Equations by Quasi-Diagonal Matrices," Computing Journal 4, 54-61
- Conte, Samuel D. and Dames, Ralph T. (1958), "An Alternating Direction Method for Solving the Biharmonic Equation," Math. Tables Aids Comput. 12, 198-205.
- Conte, Samuel D. and Dames, Ralph T. (1960), "On An Alternating Direction Nethod for Solving the Flate Problem with Mixed Boundary Conditions," J. Assoc. Comput. Mach. 7, 264-273.
- Cornock, A. F. (1954), "The Numerical Solution of Poisson's and the Biharmonic Equations by Matrices," Proc. Cambridge Philos. Soc. 50, 514-535.
- Cowrant, R. and Hilbert, D. (1953), Methods of Mathematical Physics, Interscience Publishers, Inc., New York and London, 561 pp.
- Cuthill, Elisabeth H. and Varga, Richard S. (1959), "A Method of Normalized Block Iteration," J. Assoc. Comput. Mach. 6, 236-244.
- Douglas, Jin, Jr. and Rachford H. H., Jr. (1956), "On the Numerical Solution of Heat Conduction Problems in Two or Three Space Variables," Trans. Amer. Math. Soc. 82, 421-439.
- Engeli, M.; Ginsburg, T.; Ruthishauser, H.; and Stiefel, E. (1959), Refined Iterative Methods for Computation of the Solution and the Rigenvalues of Self-Adjoint Boundary Value Problems, Mitteilungen Aus Dem Institut Fur Angewandte Mathematik Nr. 8, Birkhauser Verlag Basel/Stuttgart, 107 pp.
- Faddeeva, V. N. (1959), Computational Methods of Linear Algebra, Translated by Curtis D. Benster, Dover Publications, Inc., New York, 252 pp.
- Fairweather, G. and Mitchell, A. R. (1964), "A Generalized Alternating Direction Method of Douglas-Rachford Type for Solving the Biharmonic Equation," The Computer Journal 3, 242-245.
- Forsythe, G. E. and Wasow, W. R. (1960), Finite Difference Methods for Partial Differential Equations, John Wiley and Sons, Inc., New York, London, 444 pp.

- Fox, L. (1950), "The Numerical Solution of Elliptic Differential Equations When the Boundary Conditions Involve a Derivative," Philos. Trans. Roy. Soc. London, Ser. A 242, 345 - 378
- Fox, L. (1963), Numerical Solution of Ordinary and Partial Differential Equations, Addison-Wesley Publishing Company, Inc., Reading, Mass.
- Frankel, S. P. (1950), "Convergence Rates of Iterative Treatments of Partial Differential Equations," Math. Tables Aids Comput. 4, 65-67.
- Griffin, D. S. (1963), <u>A Numerical Solution for Plate Bending</u> Problems, WAPD-230 AEC Research and Development Report, 49 pp.
- Griffin, D. S. (1965), Private Communication
- Griffin, D. S. and Varga, R. S. (1962), <u>A Numerical Solution for Plane</u> <u>Elasticity</u> <u>Problems</u>, WAPD-256, AEC Research and Development Report, 44 pp.
- Griffin, D. S. and Varga, R. S. (1963), "Numerical Solution of Plane Elasticity Problems," J. of Soc. Indust. Appl. Math. 4, 1046-1062.
- Golub, Gene H. and Varga, Richard S. (19611), "Chebyshev Semi-Iterative Methods, Successive Overrelaxation Iterative Methods, and Second Order Richardson Iterative Methods, Part I", Numerische Math. 3, 147-156.
- Golub, Gene H. and Varga, Richard S. (1961B), "Chebyshev Semi-Iterative Methods, Successive Overrelaxation Iterative Methods, and Second Order Richardson Iterative Methods, Part II", Numerische Math. 3, 157-168.
- Heller, J. (1960), "Simultaneous, Successive, Alternating Direction Iteration Schemes," J. Soc. Indust. Appl. Math. 8, 150-173.
- Hooke, R. and Jeeves, T. A. (1961), "Direct Search Solution of Numerical and Statistical Problems," J. Assoc. Comput. Mach. 8, 212-229.
- Householder, A. S. (1953), Principles of Numerical Analysis, McGraw-Hill Book Co., Inc., New York, 274 pp.
- Householder, A. S. (1958), "The Approximate Solution of Matrix Problems," J. Assoc. Comput. Mach. 5, 204-243.
- Kanterovich, L. V. and Krylov, V. I. (1964), <u>Approximate Methods of</u> <u>Higher Analysis</u>, Translated from the Russian by Curtis D. Benster, John Wiley and Sons Inc., New York, 681 pp.
- Keller, Herbert B. (1960), "Special Block Iterations With Applications to Laplace and Biharmonic Difference Equations," SIAM Rev. 2, 277-287
- Milne, William Edmund (1953), Numerical Solution of Differential Equations, John Wiley and Sons, Inc., New York, 175 pp.
- Muskhelishvili, N. I. (1953), Some Basic Problems of the Mathematical Theory of Elasticity, P. Noordhoff, Groningen, 704 pp.

- Nat. Phys. Lab. (1961), Modern Computing Methods, Philosophical Library, New York.
- Parter, Seymour V. (1959), "On Two-Line Iterative Methods for the Laplace and Biharmonic Difference Equations," Numerische Math.1, 240-252.
- Parter, Seymour V. (1961A), "Multi-Line Iterative Methods for Elliptic Difference Equations and Fundamental Frequencies," Numerische Math. 3, 305-319.
- Parter, Seymour V. (1961B), "Some Computational Results on Two-Line Iterative Methods for the Biharmonic Difference Equation," J. Assoc. Comput. Mach. 8, 359-365.
- Peaceman, D. W. and Rachford, H. H., Jr. (1955), "The Numerical Solution of Parabolic and Elliptic Differential Equations," J. of Soc. Indust. Appl. Math. 3, 28-41.
- Peterson, R. E. (1953), Stress Concentration Design Factors, John Wiley and Sons, Inc., New York, 155 pp.
- Pisacane, V. L. and Malvern, L. E. (1963), "Application of Numerical Mapping to the Muskhelishvili Method in Plane Elasticity," Journal of Applied Mechanics, 30, 410-414.
- Savin, G. N. (1961), <u>Stress Concentration on the Boundary of Holes</u>, Government Publication, <u>Moscow-Leningrad</u>, 1951 (in Russian), English Translation, Pergamon Press, New York, 430 pp.
- Sokolnikoff, I. S. (1956), Mathematical Theory of Elasticity, McGram-Hill Book Company, Inc., New York, 476 pp.
- Southwell, R. V. (1946), Relaxation Methods in Theoretical Physics, Clarendon Press, Oxford, 248 pp.
- Todd, John, Editor (1962), <u>Survey of Numerical Analysis</u>, McGraw-Hill Book Company, Inc., New York.
- Timoshenko, S. and Goodier, J. N. (1951), Theory of Elasticity, McGraw-Hill Book Company, Inc., New York, 506 pp.
- Varga, R. S. (1960), "Factorization and Normalized Iterative Methods," <u>Boundary Problems in Differential Equations</u>, R. E. Langer (Editor), The University of Wisconsin Press, Madison, Wisconsin.
- Varga, Richard S. (1952), <u>Matrix Iterative Analysis</u>, Prentice-Hall, Inc., 322 pp.
- Veyo, S. E. and Hornbeck, R. W. (1964), "Numerical Solution of the Biharmonic Equation Using an Automatic Iterative Procedure," Journal of Applied Mechanics 4, 704-705.
- Windsor, Edith S. (1957), Iterative Solution of Biharmonic Difference Equations, M. S. Dissertation - Dept. of Mathematics, NYU Libraries, University Heights, 39 pp.
- Young, David M. (1954), "Iterative Methods for Solving Partial Difference Equations of Elliptic Type," Trans. Amer. Math. Soc. <u>76</u>, 92-111.

APPENDIX A

CONVERGENCE OF ITERATIVE METHODS

The convergence characteristics of an iterative solution of a system of linear equations of the form

$$\underline{A} \ \underline{U} = \underline{F} \tag{A-1}$$

can be judged by examination of the matrix <u>A</u>. The system of linear equations associated with the biharmonic difference equations can be written so <u>A</u> is positive definite and of the form

$$\underline{\mathbf{A}} = \underline{\mathbf{D}} + \underline{\mathbf{G}} + \underline{\mathbf{H}} \tag{A-2}$$

where <u>D</u> is a nonsingular block diagonal matrix and the form of $\underline{G} + \underline{H}$ associated with a particular iterative method establishes the convergence of the method. The basic conditions for convergence are given in Theorem A.5 of Subsection 3 below, while estimates of the relative rates of convergence of different methods are cited in Subsection 4. Theorems A.8, A.9 and A.10 give some alternative convergence conditions for the Richardson's, Gauss-Seidel and successive overrelaxation methods. Subsection 5 is concerned with the selection of optimum relaxation factors.

For fuller discussion, with proofs and bibliography, see Varga (1962) and Faddeeva (1959). Specific page references in these readily available sources are cited. No attempt has been made to give a historical account here with credits to the originator of each result. The purpose of this appendix is a summary review of basic matrix properties and the convergence of matrix iterative methods.

1. Matrix and Vector Norms, the Spectral Norm of a Matrix

<u>Definition</u>: If <u>A</u> is an n x n matrix, then <u>A</u> is convergent if the sequence of matrices <u>A</u>, \underline{A}^2 , \underline{A}^3 converges to the n x n null matrix, <u>O</u>. Otherwise <u>A</u> is divergent.

In the investigation of iterative schemes it is important to judge not only the convergence of the solution vector <u>U</u>, error vector <u>E</u>, and associated matrices <u>B</u>, but also the <u>rates of convergence</u>. Norms of vectors and matrices are of importance in the discussion of rates of convergence. The norms have been defined in many different ways. Some of these norms are discussed below. Except in this section ||X|| will always denote the Euclidean vector norm defined as ||X|| _{III} below and the matrix norm ||A|| will mean the <u>spectal norm</u> ||A|| _{III}. We will also use the term <u>spectral radius</u>, denoted by $\rho(\underline{A})$ for the magnitude of the largest eigenvalue of the matrix, defined in the next subsection.

The <u>norm of a vector X</u> is an associated non-negative number designated ||X|| which satisfies

(a) $||\underline{X}|| > 0$ for $\underline{X} \neq \underline{0}$, and $||\underline{0}|| = 0$,

- (b) $||\underline{C}\underline{X}|| = |C|||\underline{X}||$ where C is any scalar,
- (c) $||\underline{X} + \underline{Y}|| \leq ||\underline{X}|| + ||\underline{Y}||$, the triangular inequality.

There are three norms of interest. For the vector

$$\underline{\mathbf{X}} = \{ \mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3} - \cdots - \mathbf{X}_{n} \}, \text{ we define}$$

$$\mathbf{I}, \| \underline{\mathbf{X}} \|_{\mathbf{I}} = \max_{i} | \mathbf{X}_{i} |,$$

$$\mathbf{II}, \| \underline{\mathbf{X}} \|_{\mathbf{II}} = | \mathbf{X}_{1} | + | \mathbf{X}_{2} | + \cdots + | \mathbf{X}_{n} |,$$

$$\mathbf{III}, \| \underline{\mathbf{X}} \|_{\mathbf{III}} = -\sqrt{| \mathbf{X}_{1} |^{2} + \cdots + | \mathbf{X}_{n} |^{2}}, \underline{\mathbf{Euclidean norm}}$$
Since norms are often used as bounds it should be noted that

$$\left\| \underline{\mathbf{X}} \right\|_{\mathbf{I}} \leq \left\| \underline{\mathbf{X}} \right\|_{\mathbf{II}} \leq \mathbf{n} \left\| \underline{\mathbf{X}} \right\|_{\mathbf{I}}$$
$$\left\| \underline{\mathbf{X}} \right\|_{\mathbf{II}} \leq \left\| \underline{\mathbf{X}} \right\|_{\mathbf{III}} \leq \sqrt{\mathbf{n}} \left\| \underline{\mathbf{X}} \right\|_{\mathbf{I}}$$

Fadeeva (1959) states that a necessary and sufficient condition for a sequence $\underline{x}^{(m)}$ of vectors to converge to a vector \underline{x} is that

 $||\underline{\mathbf{X}}^{(m)} - \underline{\mathbf{X}}|| \rightarrow 0 \quad \text{as } m \rightarrow \infty$

for any norm satisfying conditions (a), (b) and (c); he gives a proof for the three norms I, II, and III.

The norm of an n x n matrix \underline{A} is a non-negative number $|| \underline{A} ||$ which satisfies

- (a) ||A|| > 0 if $A \neq 0$, and ||0|| = 0,
- (b) $|| C \underline{A} || = |C| || \underline{A} ||$
- (c) $||A + B|| \leq ||A|| + ||B||$
- (d) $||AB|| \le ||A|| ||B||$

The necessary and sufficient condition for convergence of a sequence of n x n matrices $\underline{A}^{(m)}$ is that $||\underline{A}^{(m)} - \underline{A}|| \rightarrow 0$ as $m \rightarrow \infty$. Any norm which satisfies (a), (b), (c) and (d) can be used to establish convergence. If $||\underline{A}^{(m)} - \underline{A}|| \rightarrow 0$ then $||\underline{A}^{(m)}|| \rightarrow ||\underline{A}||_{\circ}$

As in the case of vectors it is possible to introduce matrix norms in a variety of ways. But for the purpose at hand it is convenient to introduce a matrix norm which satisfies some special requirements. One of these is the requirement for the matrix norm to be <u>compatible</u> with a given vector norm. This condition holds if

 $|| \underline{A} \underline{X} || \leq || \underline{A} || || \underline{X} ||$. Compatibility condition

It is possible to determine a matrix norm which satisfies (a), (b), (c), (d) and which is compatible with a specified vector norm. For example, as a matrix norm compatible with the Euclidean vector norm $||\underline{X}||_{III}$, we define the <u>spectral norm</u> $||\underline{A}||_{III}$ of a matrix <u>A</u> as the least upper bound of the norm of the vector <u>A</u> <u>X</u> as <u>X</u> runs over all vectors of norm unity: .

$$\|\underline{A}\|_{\text{III}} = \max \|\underline{A} \underline{X}\|_{\text{III}}$$
 with $\|\underline{X}\|_{\text{III}} = 1$

2. Eigenvectors and eigenvalues

An eigenvector (also called proper vector, characteristic vector or latent vector) of a linear transformation <u>A</u> is any non-zero vector <u>X</u> such that

$$\underline{\mathbf{x}} = \mathbf{\lambda} \underline{\mathbf{x}}$$

where λ may be a complex number and is known as an eigenvalue (or proper number, latent root or characteristic number).

If a vector \underline{X} is an eigenvector it must satisify

$$a_{11} X_{1} + a_{12} X_{2} + - - - - a_{1n} X_{n} = \lambda X_{1}$$

$$a_{21} X_{1} + a_{22} X_{2} + - - - - a_{2n} X_{n} = \lambda X_{2}$$

$$a_{21} X_{1} + a_{n2} X_{2} + - - - - a_{nn} X_{n} = \lambda X_{n}$$

a system of homogeneous equations, which can have a non-trivial solution only if

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & a_{1n} \\ a_{21} & a_{22} - \lambda & a_{2n} \\ \vdots & & & \\ a_{n1} & a_{n2} & a_{nn} - \lambda \end{vmatrix} = 0$$

The determinant is equivalent to an n^{th} degree polynomial in λ which is called the characteristic polynomial of the matrix <u>A</u>. For a real symmetric matrix all the eigenvalues are real.

Definition: If <u>A</u> is an n x n complex matrix with eigenvalues λ_i , 1 $\leq i \leq n$, then

$$o(\underline{\mathbf{A}}) = \max |\lambda_{\mathbf{i}}|$$

is the spectral radius of \underline{A} .

3. Properties of Matrices

Theorem A.1: If <u>A</u> is any arbitrary matrix then

 $||\underline{A}|| \geq \rho(\underline{A}), \quad [Varga (1962) p.10]$

Theorem A.2: If A is an n x n matrix then

$$\|\underline{A}\| = \sqrt{\rho(\underline{A}^*\underline{A})}$$

where \underline{A}^* is the conjugate transpose of \underline{A} . [Varga (1962) p.11] <u>Definition</u>: An arbitrary n x n complex nonsingular matrix \underline{A} and an ndimensional vector \underline{X} can be combined as $\underline{X}^T \underline{A} \underline{X}$ to form a homogeneous second degree expression in terms of the components of \underline{X} which is called a <u>quadratic form</u>. If the value of the quadratic form is positive for all non-trivial \underline{X} then the form and the matrix \underline{A} are said to be <u>positive</u> definite.

<u>Definition</u>: If <u>A</u> is a n x n complex matrix such that any two elements situated symmetrically with respect to the principal diagonal are complex conjugates, $a_{ji} = \overline{a_{ij}}$, then <u>A</u> is called a <u>Hermitian matrix</u>. Notable characteristics are:

1. Diagonal elements must be real.

2. Any symmetric matrix with real elements is a Hermitian matrix.

3. The eigenvalues of a Hermitian matrix are real.

4. The eigenvalues of a positive-definite Hermitian matrix are positive.

Definition: A square matrix A is diagonally dominant if

$$|a_{ij}| \geq \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}|$$

If the strict inequality holds for all i, \underline{A} is said to be strictly diagonally dominant.

<u>Theorem A.3</u>: If <u>A</u> is a Hermitian n x n strictly diagonally dominant matrix with positive real diagonal entries, then <u>A</u> is <u>positive</u> <u>definite</u>. [Varga (1962) p. 23]

Theorem A.4: If <u>A</u> is an n x n Hermitian matrix, then

$$||\underline{A}|| = \rho(\underline{A}) \qquad [Varga (1962) p.11]$$
Theorem A.5: If A is an n x n complex matrix, then A is convergent
if and only if

$$\rho(\underline{A}) < 1$$
 [Varga (1962) p. 13]

Thus, we see that if the matrix <u>A</u> in Eq. (A-1) is symmetric and positive definite, then <u>A</u> is convergent if the spectral radius of <u>A</u> is less than 1. In the next subsection the convergence rates of several iterative methods will be considered.

4. Convergence Rates of Iterative Methods

The system of linear equations (A-1) can be written in the form

$$(\underline{I} - \underline{M}) \underline{U} = \underline{F}$$
 (A-3)

where <u>M</u> is an n x n complex matrix and <u>I</u> is the identity matrix. If $(\underline{I} - \underline{M})$ is non-singular a unique solution vector <u>U</u> exists. Consider an iterative method for the solution of Eq. (A-3)

 $\underline{U}^{(m+1)} = \underline{H} U^{(m)} + \underline{F} \qquad m = 1, 2, 3 - \dots$ (A-4)

For any vector iterate $\underline{U}^{(m)}$ the difference $\underline{U}^{(m)} - \underline{U} = \underline{E}^{(m)}$ is a measure of the deviation of the vector iterate from the solution vector. The error vector $\underline{E}^{(m)}$ can be written in terms of the preceding error vector $\underline{E}^{(m)} = \underline{M} \ \underline{E}^{(m-1)}$

This is obtained by subtracting (A-3) from (A-4) and it can be readily shown $\underline{E}^{(m)} = \underline{M}^m \underline{E}^{(o)}$

From Theorem A.5 we conclude that the error vectors $\underline{E}^{(m)}$ will tend to zero for an arbitrary $\underline{E}^{(o)}$ if and only if <u>M</u> has a spectral radius $\rho(\underline{M}) < 1$. <u>Theorem A.6</u>: If <u>A</u> and <u>B</u> are n x n matrices, then

(1) $||\underline{A}|| > 0$ or $\underline{A} = 0$;

(2) if k is a scalar, $||k \underline{A}|| = |k| ||\underline{A}||_{3}$ (3) $||\underline{A} + \underline{B}|| \le ||\underline{A}|| + ||\underline{B}||_{3}$ (4) $||\underline{A}\underline{B}|| \le ||\underline{A}|| ||\underline{B}||_{3}$

(5) $||\underline{A} \underline{U}|| \leq ||\underline{A}|| ||\underline{U}||$ for all vectors \underline{U} of n components.

Also, there is one nonzero vector \underline{V} in the n-dimensional vector space such that

$$||\underline{A} \underline{V}|| = ||\underline{A}|| ||\underline{V}|| \qquad [Varga (1962) p.9]$$

Since the solution vector iterates $\underline{U}^{(m)}$ and the associated error vector iterates $\underline{E}^{(m)}$ are n-dimensional, Theorem A.6 can be used as justification for

$$|\underline{\mathbf{E}}^{(m)}|| - ||\underline{\mathbf{M}}^{m} \underline{\mathbf{E}}^{(\circ)}|| \leq ||\underline{\mathbf{M}}^{m}|| ||\underline{\mathbf{E}}^{(\circ)}||$$
$$||\underline{\mathbf{M}}^{m}|| \geq \frac{||\underline{\mathbf{E}}^{(m)}||}{||\underline{\mathbf{E}}^{(\circ)}||}$$

Hence, $||\underline{\mathbf{M}}^{\mathbf{m}}||$ as an upper bound estimate of the ratio of $||\underline{\mathbf{E}}^{(\mathbf{m})}||$ to $||\underline{\mathbf{E}}^{(\mathbf{o})}||$ provides a basis for the comparison of different iterative methods. If <u>M</u> is a Hermitian matrix then

$$\|\underline{\mathbf{M}}_{\mathbf{m}}\| = \left[\rho(\underline{\mathbf{M}})\right]_{\mathbf{m}}$$

<u>Definition</u>: Given two n x n complex matrices <u>M</u> and <u>B</u>. If for some m > 0, $||\underline{M}^{\underline{m}}|| < 1$ then

$$\mathbf{R}(\underline{\mathbf{M}}^{\mathbf{m}}) = - \mathcal{I}\mathbf{n} \left[\left| \left| \underline{\mathbf{M}}^{\mathbf{m}} \right| \right|^{\frac{1}{m}} \right] = \frac{-\mathcal{I}\mathbf{n}}{\mathbf{m}} \left[\left| \underline{\mathbf{M}}^{\mathbf{m}} \right| \right]$$
(A-5)

is defined as the <u>average rate of convergence for m iterations</u> of the matrix <u>M</u>. [Varga (1962) p.62.] The convergence of <u>B</u> is said to be iteratively faster than the convergence of <u>M</u> when $\mathbb{R}(\underline{B}^{\underline{m}}) > \mathbb{R}(\underline{M}^{\underline{m}})$. The significance of $\mathbb{R}(\underline{M}^{\underline{m}})$ as a measure of the average rate of convergence may be seen by consideration of the average error reduction factor per iteration \mathcal{O}_{\bullet} $\mathcal{O} = \left[\frac{||\underline{E}^{(\underline{m})}||}{||\underline{E}^{(\mathbf{0})}||}\right]^{\frac{1}{m}}$

For the case when $||\underline{M}^{m}|| < 1$

$$\sigma \leq \|\underline{\mathbf{M}}^{\mathbf{m}}\|^{\frac{1}{2m}} = \mathbf{e}^{-\mathbf{R}}(\underline{\mathbf{M}}^{\mathbf{m}}) \tag{A-6}$$

where \bullet is the base of the natural logarithms. Thus $\mathbb{R}(\underline{M}^{m})$ is the exponential decay rate for the upper bound of the average error reduction σ , per iteration in an m-step iterative process.

Let
$$N_m = 1/R(\underline{M}^m)$$
. Substituting into (A-6) we find

$$\sigma^{N_m} \leq \frac{1}{\bullet}$$

from which we conclude N_m is a measure of the number of iterations required to reduce the norm of $\underline{E}^{(0)}$ by a factor e. <u>Theorem A.7</u>: $R(\underline{A}^m)$, the average rate of convergence for m iterations of an n x n convergent matrix \underline{A} has a limiting value of $-\ln \rho(\underline{A})$ as m increases without bound. [Varga (1962) p.67]

<u>Definition</u>: The <u>asymptotic</u> rate of <u>convergence</u> $\mathbb{R}_{\infty}(\underline{A})$ is

 $R_{\infty}(A) = - n \rho(\underline{A})$

Corollary: Let A be a convergent n x n matrix, then

 \mathbb{R}_{∞} (<u>A</u>) $\geq \mathbb{R}(\underline{A}^{m})$

for any positive integer m.

For Hermitian matrices <u>A</u> and <u>B</u>, the spectral radii may be used for comparison of rates of convergence, since by Theorem A.4,

 $\rho(\underline{A}) < \rho(\underline{B}) < 1$ implies $||\underline{A}^{\underline{m}}|| < ||\underline{B}^{\underline{m}}|| < 1$ and hence R $(\underline{A}^{\underline{m}}) > R(\underline{B}^{\underline{m}})$, so that of two convergent Hermitian matrices, the one with the smaller spectral radius will have a faster average rate of convergence for any m.

It should be noted that though $|| \underline{M}^{\mathbf{m}} || \rightarrow 0$ as $\mathbf{m} \rightarrow \infty$ for two iterative schemes with matrices <u>A</u> and <u>B</u>, it is possible in general that for a selected value \mathbf{m}_1 , matrix <u>A</u> may be iteratively faster than <u>B</u> but for a second value \mathbf{m}_2 , <u>B</u> may be iteratively faster than <u>A</u>.

Identification of the convergent iterative methods for biharmonic difference equations is aided by consideration of the following three theorems. The form of matrix <u>A</u> in Eq. (A-1) is the determining factor. <u>Theorem A.8</u>: If <u>A</u> is a strictly diagonally dominant n x n complex matrix, then the associated Richardson's and Gauss-Seidel matrices are convergent and the corresponding methods are convergent for an arbitrary initial vector $\underline{U}^{(0)}$. [Varga (1962) p. 73.]

The matrix <u>A</u> associated with the biharmonic difference equations is not strictly diagonally dominant and Windsor (1957) has shown that Richardson's method is not convergent for the biharmonic equation. <u>Theorem A.9</u>: If <u>A</u> = <u>D</u> + <u>G</u> + <u>G</u>^{*} is an n x n Hermitian matrix where <u>D</u> is Hermitian and positive definite and (<u>D</u> + <u>G</u>) is nonsingular, then the Gauss-Seidel iterative method is convergent if and only if <u>A</u> is positive definite. (<u>G</u>^{*} is the conjugate transpose of <u>G</u>). [Varga p.78.] <u>Theorem A.10</u>: If <u>A</u> = <u>D</u> + <u>G</u> + G^{*} is an n x n Hermitian matrix and <u>D</u> is Hermitian and positive definite, then the successive overrelaxation method is convergent for any arbitrary <u>U</u>^(o) if and only if <u>A</u> is positive definite and (<u>D</u> + ω <u>G</u>) is nonsingular for 0 < ω < 2. [Varga (1962) p. 80.]

5. Optimum relaxation factors

<u>Definition</u>: An n x n matrix <u>P</u> which has zeroes and ones for elements and only one non-zero element in each row and each column is called a permutation matrix.

<u>Definition</u>: Given <u>A</u> an n x n complex matrix with n > 1, if there exists an n x n permutation matrix <u>P</u> such that

$$\underline{\mathbf{P}} \underline{\mathbf{A}} \underline{\mathbf{P}}^{\mathrm{T}} = \begin{bmatrix} \underline{\mathbf{A}}_{11} & \underline{\mathbf{A}}_{12} \\ \\ \underline{\mathbf{O}} & \underline{\mathbf{A}}_{22} \end{bmatrix}$$

where \underline{A}_{11} and \underline{A}_{22} are square matrices of order k and (n-k) respectively, then <u>A</u> is called <u>reducible</u>. Otherwise <u>A</u> is called <u>irreducible</u>. <u>Theorem A.11</u>: If <u>A</u> is an irreducible n x n matrix, then: (1) <u>A</u> has a positive real simple eigenvalue equal to $\rho(\underline{A})$ the spectral radius; (2) Increasing the value of any element of <u>A</u> will increase $\rho(\underline{A})$; (3) Corresponding to the eigenvalue $\rho(\underline{A})$ there is an eigenvector with all its elements positive. [Theorem of Perron and Frobenius, Varga (1962) p.30] <u>Definition</u>: If <u>A</u> is an n x n irreducible matrix with non-negative elements which has a single eigenvalue of modulus $\rho(\underline{A})$, it is said to be <u>primitive</u>. If <u>A</u> has k eigenvalues with modulus of $\rho(\underline{A})$ then <u>A</u> is <u>cyclic of index k</u>, $k \ge 2$. Each eigenvalue of modulus $\rho(\underline{A})$ is a simple eigenvalue. [Varga (1962) p.35]

<u>Definition</u>: A square matrix <u>A</u> of order n is said to be <u>weakly cyclic</u> of <u>index k</u> (k > 1) if an n x n permutation matrix <u>P</u> exists such that

$$\underline{\mathbf{P}} \triangleq \underline{\mathbf{P}}^{\mathrm{T}} = \begin{bmatrix} \underline{\mathbf{0}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} & \underline{\mathbf{A}}_{\mathbf{i},\mathbf{k}} \\ \underline{\mathbf{A}}_{2,\mathbf{i}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{A}}_{3,\mathbf{i}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{A}}_{3,\mathbf{i}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{0}} & \underline{\mathbf{A}}_{\mathbf{R},\mathbf{k},\mathbf{i}} \\ \underline{\mathbf{0}} & \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}} \\ \underline{\mathbf{0}} & \underline{\mathbf{0}} \\ \underline{\mathbf{0}}$$

where the null diagonal submatrices are square. <u>A</u> may or may not be reducible. A matrix can be simultaneously weakly cyclic of different indices. [Varga (1962) p. 39]

Again consider the matrix equation

$$A U = F$$

where A is an n x n complex matrix which can be partitioned

where the square diagonal submatrices are nonsingular. Let \underline{D} be formed of the submatrices $\underline{A}_{i,i}$,

then \underline{D} is also nonsingular, and the matrix equation can be written

$$(\underline{A} - \underline{D}) \underline{U} + \underline{D} \underline{U} = \underline{F}$$

or

 $\underline{U} = \underline{B} \ \underline{U} + \underline{D}^{-1} \ \underline{F}$ (A-8)

where $\underline{B} = \underline{I} - \underline{D}^{-1} \underline{A}$ is the iteration matrix for the block Jacobi iterative method (m) = 1

$$\underline{\mathbf{U}}^{(m+1)} = \underline{\mathbf{B}} \underline{\mathbf{U}}^{(m)} + \underline{\mathbf{D}}^{-1} \underline{\mathbf{F}}$$

The matrix <u>B</u> is called the <u>block Jacobi matrix</u> of <u>A</u>. <u>Definition</u>: If the block Jacobi matrix <u>B</u> is <u>weakly cyclic of index p</u>, then <u>A</u> is <u>p-cyclic</u> in the partitioned form (A-7). [Varga (1962) p.99] <u>Definition</u>: The p-cyclic matrix <u>A</u> is <u>consistently ordered</u> if all the eigenvalues of the matrix

$$\underline{B}(\mathbf{k}) = \mathbf{k}\underline{\mathbf{H}} + \mathbf{k}^{-(p-1)} \underline{\mathbf{G}}$$

are independent of k for $k \neq 0$, where <u>B</u> is the block Jacobi matrix with sero diagonal elements, <u>H</u> and <u>G</u> are respectively strictly lower and upper triangular matrices such that <u>B</u> = <u>H</u> + <u>G</u>. [Varga (1962) p. 101]

If the partitioned form of <u>A</u> is block tri-diagonal, it is consistently ordered and 2-cyclic. The optimum relaxation factor ω_b which maximizes the asymptotic rate of convergence of the block successive overrelaxation matrix for p = 2 is given by

$$\omega_b = \frac{2}{1 + \sqrt{1 - \rho^*(\underline{B})}}$$

where <u>B</u> is the block Jacobi matrix. [Varga (1962) p. 110]

For the cyclic Chebyshev semi-iterative method the acceleration parameters are given

$$\omega_{m} = \frac{2 C_{m} (\frac{1}{\rho(\underline{B})})}{\rho(\underline{B}) C_{m} (\frac{1}{\rho(\underline{B})})}$$

where <u>B</u> is the block Jacobi matrix. [Varga (1962) p. 138]

The alternating-direction implicit method for the case of a fixed acceleration parameter r is a slight variation of Eq. (67) p.33

$$\underline{\underline{U}}^{(m+1)} = \underline{\underline{R}}_{\underline{r}} \underline{\underline{U}}^{(m)} + \underline{\underline{S}}_{\underline{r}} \underline{\underline{F}}$$

If there is a block Jacobi matrix \underline{B}_{R} associated with \underline{R}_{r} , the asymptotic rate of convergence will be a function of $\rho^{2}(\underline{B}_{R})$.

Thus we find that the optimum relaxation factors for successive overrelaxation and the cyclic Chebyshev semi-iterative method as well as the acceleration parameter for the alternating direction implicit method are functions of the spectral norm of an associated block Jacobi matrix. In fact Varga (1962) shows that the three iterative methods considered have the same asymptotic rates of convergence for Laplace's equation solved for a square. There appears to be a dearth of good approximations of ρ for irregularly shaped regions. It is common practice to use approximations based on the numerical results obtained in the iterative solution.

Consider point successive overrelaxation. Forsythe and Wasow (1960) p. 250 show that the eigenvalues λ_i of the matrix of the simplest iterative scheme, the point Jacobi method, are related to the eigenvalues η_i of the matrix of the successive overrelaxation method by $\eta_i = \lambda_i^2$. This is applicable to the eigenvalue λ_1 of maximum modulus and hence to the spectral radius of the successive over-relaxation matrix. The optimum relaxation factor as derived by Forsythe and Wasow p. 253 is

$$\omega_{b} = \frac{2}{1 + \sqrt{1 - \lambda_{i}^{2}}} = \frac{2}{1 + \sqrt{1 - \eta_{i}}}$$
(A-9)

The error vectors from one iteration to the next are related $\left|\left|\underline{\mathbf{E}}^{(m)}\right|\right| \leq \left|\left|\underline{\mathbf{M}}\right|\right| = \left|\left|\underline{\mathbf{E}}^{(m-1)}\right|\right|$

where <u>M</u> is the appropriate matrix for the iterative scheme being considered. The dominant eigenvalue γ_1 is the limit of $\|\underline{E}^{(m)}\|/\|\underline{E}^{(m-1)}\|$ as m increases without bound. Any vector norm of <u>E</u> may be used. One computational procedure for estimating ω_b consists of starting the problem solution with $\omega = 1$, then after a number of iterations approximate γ_i

$$\mathcal{N}_{1} \sim ||\underline{\mathbf{E}}^{(\mathbf{m})}|| / ||\underline{\mathbf{E}}^{(\mathbf{m}-1)}|| \qquad (A-10)$$

and solve (A-9) for an approximate value of $\omega_{\rm b}$.

Another approach to approximating ω_b consists of selecting various values of ω , running through several iterations for each and then by comparison of results, select the best.

The procedure used in the ISOPEP code consists of computing a set

of values for ω obtained by applying Equations (A-9) and (A-10) every 10 or 20 iterations. This has the advantage of being an automatic procedure, and reasonably good results have been obtained for a number of problems. Approximating ω_b numerically as the solution proceeds is more computing art than science. Better methods for determining optimum relaxation factors would contribute much to the usefulness of iterative methods.

APPENDIX B

ISOPEP-A FORTRAN PROGRAM FOR THE ITERATIVE SOLUTION OF PLANE ELASTOSTATIC PROBLEMS

The system of computer programs named ISOPEP was written as a general system for the analysis of plane elastostatic problems. It includes a set of FORTRAN-II subroutine subprograms and a main program which provides linkage of a selected subset of these six subroutines and additional boundary-value subroutines which must be provided for each problem.

This appendix includes a brief description of the general subroutines, six examples of boundary-value subroutines, instructions for preparing input data for the program, a sample of the output, a flow diagram and listings of the FORTRAN Source decks.

ISOPEP

This name is used for the system of programs and also for the main program which provides linkage between the subroutines. The system was designed for use on an IBM 1620 with a 20 K main memory and a CDC 3600. The number of subroutines linked by ISOPEP may be reduced to increase the storage available for arrays. Only the Call statements in ISOPEP and all Dimension statements need to be changed. Only one of the three iterative method subroutines SORLX, ADI or CHEB is normally used.

OUTIN

OUTIN is the input and output subroutine. It provides for the initialisation of arrays. When problems using a relatively coarse mesh

spacing have converged, the point values are stored for later use in calculating an initial stress-function distribution for a finer mesh. CHANG

The initial stress function distribution for the second or subsequent mesh refinements of a problem can be computed by interpolating between the values obtained from an earlier coarse-mesh solution. The problems may be solved consecutively, with the earlier solution saved in memory, or the preceding solution may be read from punched cards. Execution of this option is controlled by the input of an appropriate value of the control number MESH.

STRESS

The stress components σ_x , σ_y and T_{xy} will be computed and punched out on cards if specified by one of the options determined by the input of a control number NSTRS. The difference equations used to calculate the stress components at each interior point are

$$\begin{split} \sigma_{\mathbf{x}_{ij}} &= \left[U_{i,j+1} - 2 U_{i,j} + U_{i,j-1} \right]_{h^2}, \\ \sigma_{\mathbf{Y}_{ij}} &= \left[U_{i+1,j} - 2 U_{i,j} + U_{i-1,j} \right]_{h^2}, \\ \tau_{\mathbf{x}\mathbf{Y}_{ij}} &\approx - \left[U_{i+1,j+1} - U_{i+1,j-1} - U_{i-1,j+1} + U_{i-1,j-1} \right]_{4h^2}. \end{split}$$

SORLX

SORLX is the subroutine for the point successive overrelaxation iterative method. This has been adopted for general problems with irregular boundaries. As written, it is limited to simply-connected regions for which all mesh lines, parallel to one of the Cartesian coordinate axes, are continuous segments connecting two boundary points. ADI

The alternating-direction implicit method has been written as two

subroutines ADI1 and ADI2. The second is executed immediately after the first. The specification of two subroutines makes more storage available for arrays when the programs are run on the disk-oriented IBM 1620. The solution domain is limited to rectangular regions. CHEB

The cyclic-Chebyshev semi-iterative method subroutine has been run only on the CDC 3600. It is written in FORTRAN II and could be divided into two or more subroutines for a computer with a limited main memory. Only rectangular regions can be treated with this program. It is necessary to specify an even number of interior mesh rows for this subroutine.

PB(N)BD

The values of the stress function at points on the boundary must be computed only at the beginning of the problem solution. This is part of the initialization of the solution array. A subroutine of this type must be provided for each problem. Examples are included for $1 \le N \le 6$.

PB(N)EX

Derivative boundary conditions must also be provided for each problem. These may be treated by the introduction of exterior points or with special finite-difference equations for each point on the boundary. Both approaches are illustrated in the examples included for $1 \le N \le 6$. This subroutine must be executed during each iteration. Input Preparation

The input to the problem can be provided on a single 80 column card unless point values of the stress function U_{ij} are provided. The deck of stress function values would be placed immediately after the

FLOW DIAGRAM OF ISOPEP

,

control card which includes identification, dimensions and control numbers for input and output options. The stress function values must be provided in agreement with the FORMAT (15,7F10.7/(5X,7F10.7)). Output is punched in this form in order to simplify restart procedures.

The FORMAT specification (F10.3,F10.8,2F10.4,10I4), is used for the first card. The following list gives the use and symbolic name of each of the 14 numeric entries on the card.

Column Numbers	Symbolic Name	Function
1-10	PRNO	Problem number for users identification.
11-20	DE	Convergence criterion, usually in the range 10^{-5} - 10^{-7} .
21-30	RFA	Relaxation factor
31-40	SPYIJ	$\ \underline{E}\ _{II}$ Norm of the error vector in the preceding
		iteration when restarting. Set to 1.0 initially.
41-44	MX	Number of mesh intervals along the x-axis.
45-48	MY	Number of mesh intervals along the y-axis.
49-52	IF (2)	If $y = 0$ is an exterior boundary
	(3)	If y = 0 is a line of symmetry
53-56	JF (2)	If $x = 0$ is an exterior boundary
	(3)	If $x = 0$ is a line of symmetry
	Note:	Two mesh lines exterior to the domain are reserved
		for derivative conditions if the boundary is a line
		of symmetry otherwise only one line is reserved.
57-60	N N=0:	Only one card of input is required. The initial
		value of the stress function at all interior points
		is set to 0.1.
	N>0:	Count of number of iterations completed. A deck of

Column	Symbolic	
Numbers	Name	F

Numbers	Names	Function
		point values of the stress function must be provided
		immediately following the first data card.
	N < 0:	This is the control number which terminates the
		processing of a sequence of data sets. A final
		data card should always be provided with this entry.
61-64	NT	Maximum number of iterations permitted. This is the
		choice of the user and provides for punched output fer
		restarting.
65 -68	NOUT	Output will be printed after NOUT iterations and
		every subsequent set of NOUT iterations.
69-72	ND ND	\geq NT: The initial value of RFA will be used for all
		iterations.
	. ND	< NT: The relaxation factor will be computed and
		changed at the end of every ND iterations.
73-76	MESH (1) No mesh refinement calculations
	(2) Read in values of the stress function from a prior
		problem and interpolate to find an initial stress
		function distribution for the current problem.
		Another control card must follow the first card.
	(3) Use the stress function stored in memory from the
		preceding problem as the basis for interpolating to
		find an initial stress function distribution for
		the current problem. The user must be sure there is
		at least one problem specified on input cards pre-
		ceding this one.

_

Column Numbers	Symbolic Names	Function
77-80	NSTRS <	C O Punch specified stress components
		$ NSTRS = 1$ Print (and punch) $\mathcal{O}_{\mathbf{y}}^{*}$
		$ NSTRS = 2$ Print (and punch) $\sigma_{\overline{y}}$ and $\sigma_{\overline{x}}$
		$ NSTRS = 3$ Print (and punch) T_{xy} , σ_y and σ_x

The second control card is used only if MESH = 2 on the first card. The four integers read in with a (415) FORMAT specification provide the dimensions of the problem solution provided on the cards following this control card and the number of mesh spaces along the y-axis of the problem to be solved.

Column Number	Symbolic Name	Function
1-5	IP	Number of mesh columns of input data
6-10	JP	Number of mesh rows of input data
11-15	M1	MY for the input solution
16-20	M2	MY of the problem to be solved.

Example of Input Data

First half of the first card

Card columns						
0	1	2	3	4		
123	3456789012	34567890123	45678901231	+567890]		
	1.190	.00001	1.5	1.0		

Second half of the first card

Card columns									
		5		6		7	7		8
1234	56789	0123	45678	3901	23450	67 <u>89</u> 0	0123	4567	890
5	10	3	2	1	200	200	10	1	-3

	IBM 1620 OUTPUT OF SAMPLE PROBLEM							
‡ :	JOB 5	···· •	-	ISC	PEP	CLD	AVIS	
0 (0784 CORES	S USED		1	5207 NE	XT COMM	ON	
1	SUCCESS	IVE OVERRE	LAXATIO	ON .				
0	SOLUTIO	N OF THE B	I HARMOI		ION	C.	L. DAV	IS
	PROBLEM NUMBER	CONVERG. CRITERION	MESI MX I	H SPACES My IF 、	MESH IF S	TRESS		
	1.190	.0000100	5	10 3	2 1	-3		
	RELAX. Factor	SUM OF Errors	ITERA COUNT	TIONS MAX.NO.	POINTS CONVERG	NOT ED		
	1.5000 1.6352 1.6324 1.5618 1.4707 1.4761 1.5587 1.5988 1.5832 1.5579 1.5258 1.4878	1.0000 1.7275 1.4140 .7068 .1865 .0372 .0136 .0082 .0082 .0045 .0019 .0006	0 10 20 30 40 50 60 70 80 90 100 110	200 200 200 200 200 200 200 200 200 200	505 455 445 443 400 40 20 9			
	1.190 200 10	.00001000) 1.4	4878	.0001	5 10	3	2 116 200
	STRESS FI	UNCTION						
	$\begin{array}{c} 2 & 3 & .600 \\ 3 & 3 & .507 \\ 4 & 3 & .307 \\ 5 & 3 & .026 \\ 6 & 2 & .697 \\ 7 & 2 & .300 \\ 8 & 1 & .847 \\ 7 & 2 & .300 \\ 8 & 1 & .847 \\ 10 & .746 \\ 11 & .256 \\ 12 & 0 & .006 \end{array}$	00000 3.42 72542 3.32 27094 3.13 85702 2.87 81876 2.57 65274 2.20 37695 1.77 21754 1.27 82642 .74 01268 .25	00000 95735 90977 25967 96326 88512 92279 10047 42441 00000	2.8800000 2.7961993 2.6327760 2.4277819 2.1885523 1.9063169 1.5669582 1.1621542 .7057714 .2625820 0.0000000	1.9800 1.9099 1.7980 1.6699 1.5266 1.3587 1.1528 8963 5860 2490	000 .7 653 .6 096 .6 087 .5 928 .5 863 .4 012 .3 380 .2 407 .0 000 0.0	200000 964044 555203 106627 626013 068047 365079 443551 259561 918619 000000	7200000 7200000 7200000 7200000 7200000 7200000 7200000 7200000 7200000 7200000 7200000

PROBLEM NUMBER 1.190 DIMENSION = 5 X 10

(THE X COMPONENTS OF STRESS)

2	-36.0000	-36.0000	-36.0000	-36.0000	-18.0000	0.0000
3	-35.5362	-35.5693	-35.2859	-32.7326	-20.2843	-4.7191
4	-33.4664	-33.5273	-33.2108	-30.7832	-23.2976	-12.8959
5	-29.8952	-30.1843	-30.6556	-30.1374	-27.1415	-21.8675
6	-25.1189	-25.8453	-27.7899	-30.2063	-31.8593	-31.4798
7	-19.3796	-20.6420	-24.4208	-30.4464	-37.4816	-42.6391
8	-12.9842	-14.6974	-20.2178	-30.2306	-44.0129	-56.6984
9	-6.5898	-8.4126	-14.8779	-28.6093	-51.2408	-75.1290
10	-1.4520	-2.797 3	-8.4500	-24.0348	-58.5874	-98.8088
81	.8234	.4220	-2.1879	-14.3637	-65.4683	-125.6276
12	0.0000	0.0000	0.000	0.0000	-72.0000	-144.0000

(THE Y COMPONENTS OF STRESS)

2	-18.5493	-18.0854	-16.7602	-14.0069	-4.7191	0.0000
3	-11.1799	-10.3767	-7.9622	-4.1866	-1.7288	0.0000
4	-6.9594	-6.2087	-4.1570	-1.6253	3973	0.0000
5	-5.6243	-5.0219	-3.4235	-1.5146	3203	0. 0 000
6	-6.1277	-5.6463	-4.3005	-2.4515	7735	0.0000
7	-7.1097	-6.7817	-5.7123	-3.8090	-1.4500	0.0000
8	-6.883 6	-6.8841	-6.5445	-5.0678	-2.1856	0.0000
9	-3.2317	-3. 8599	-5 .1578	-5.3678	-2.6246	0.0 000
10	6.5773	5.1462	1.3193	-2.6734	-1.5695	0.0000
11	24.8010	23.2516	18.0607	8.7956	4.2232	0.0000
12	50.025 2	50.8487	52.5163	49.8081	18.3723	0.0000

(THE XY SHEAR STRESS COMPONENTS)

2	0.0000	0.0000	0.0000	0.0000	0.0000	-57.0898
3	.0001	1.2516	2.5671	4.5686	4.5483	0.0000
4	.0001	2.7566	5.2605	7.0668	6.0013	0.0000
5	0.0000	4.0074	7.2831	8.7826	6.7863	0.0000
6	0.0000	5.0144	8.9587	10.4401	7.7779	0.0000
7	0.0000	5.8206	10.5005	12.3875	9.3430	0.0000
8	0.0000	6.2547	11.6978	14.5428	11.5622	0.000
9	0. 0000	5.8579	11.7749	16.2658	14.1712	0.0 000
10	0.0000	4.0619	9.4430	16.1769	16.1815	0.0000
11	0.0000	1.0623	3.87.41	11 .9953	14.6509	0.0000
12	0.0000	0.0000	0.0000	.0.000	0.0000	94.7034

NOTE TITLES ENCLOSED IN PARENTHESIS ARE NOT PART OF OUTPUT
С	LISTING OF ISOPEP FORTRAN SOURCE DECKS	
С	PROGRAM	PAGE
С	ISOPEP FOR THE IBM 1620	125
C	OUTIN	125
С	STRESS	126
С	CHANG	129
С	SORLX	130
С	ISOPEP FOR THE CDC 3600	131
С	ADI1	135
С	ADI2	136
С	CHEB	137
С	PB1BD	128
С	PBIEX	128
С	PB2BD	140
С	PB2EX	141
С	PB3BD	142
С	PB3EX	143
С	PB4BD	144
С	PB4EX	145
С	PB5BD	1 45
С	PB5EX	146
Ċ	PB6BD	132
С	PB6EX	135
C	SOR3	146
С	SOR4	1 48
С	SOR5	148
С	TABLE OF SYMBOLS	149

С **ISOPEP FOR THE IBM 1620** С THE DECKS LISTED HAVE BEEN RUN UNDER THE MONITOR I С SYSTEM ON AN IBM 1620 WITH 20K MEMORY AND A 1311 DISK FILE. DECKS ARE LISTED IN APPROPIATE ORDER WITH MAIN DECK LAST, С **3400032007013600032007024902402511963611300102 #‡JOB 5** OUTIN 10/17/65 **##FOR 53** *LDISK SUBROUTINE OUTIN С INPUT AND OUTPUT SUBROUTINE DIMENSION U(14,24), IK(24), IL(24), D(5), P(13,7), U1(13)COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PŘNO, DĚ, DÍ, KPĚ, ÍNOŤ, MĚSH, NSŤRS, NÍNC, IP, JP, AMI, IĽ, P, ÚI 10 FORMAT (F10.3, F10.8, 2F10.4, 1014) 11 FORMAT (F 8.3, F11.7, 15, 514/) 50HO SOLUTION OF THE BIHARMONIC EQUATION 12 FORMAT 119H C.L.DAVIS/) 14 FORMAT (45H RELAX. SUM OF ITERATIONS POINTS NOT/ 42HFACTOR ERRORS COUNT MAX.NO. CONVERGED/) 12X, 15 FORMAT (41H PROBLEM MESH SPACES MESH/ CONVERG. 12X. 45HNUMBER CRITERION MX MY IF JF STRESS/) 16 FORMAT(2F10.4, 15, 218) 17 FORMAT (17H STRESS FUNCTION/) 20 FORMAT(15,7F10.7/(5X,7F10.7) 22 FORMAT(15,7F10.7/(5X,7F10.7)) IF(1-INOT)133,80,80 80 READ **10,PRNO,DE,RFA,SPY**IJ,MX,MY,IF,JF,N,NT,NOUT,ND,MESH,NSTRS PRINT 12 PRINT 15 PRINT 11, PRNO, DE, MX, MY, IF, JF, MESH, NSTRS PRINT 14 K=MX*MY PRINT 16, RFA, SPYIJ, N, NT, K JA=MY+JF MI = |A+1|MJ=JA+1 NDL=ND NINC=NOUT IF(MESH-3) 91,94,94 91 DO 92 J=1,13 DO 92 | = 1, 792 P(J .l)=0.0 94 DO 101 J=1.MJ DO 100 I=1.MI 100 U(1, J) = 0.1IL(J)=3 101 IK(J) = IAIF(N) 200,103,102 **102** DO 104 J=JF,JA **194** READ 20, K, (U(1, J), I=IF, IA)NDL=N+ND **103 RETURN**

ø

```
133 IF( KPE ) 90,90,119
  119 IF (SENSE SWITCH 1) 90.121
  121 IF(N-NOUT) 123,126,127
  123 IF(N-NT) 115.89.89
  127 NOUT=NOUT+NINC
       GO TO 121
   89 INOT=1
       GO TO 90
  126 INOT=3
   90 PRINT 10, PRNO, DE, RFA, SPYIJ, MX, MY, IF, JF, N, NT, NOUT, ND, MESH, NSTRS
       PRINT 17
       DO 105 J=JF.JA
  105 PRINT
                               20, J, (U(I, J), I=IF, IA)
       IF(SENSE SWITCH 1) 112.111
  111 IF(INOT-2) 112,110,115
  110 IF(KPE) 115.116.115
  200 STOP
              BE LESS THAN I IN THE DIMENSION OF P(J.I) IF THE
    MX MUST
С
         SOLUTION IS TO BE SAVED FOR THE NEXT PROB.
С
  116 IF(MX-6) 117.117.114
  117 DO 118 J=JF, JA
       K=J-JF+1
       DO 118 |=|F.|A
       L = I - IF + 1
  118 P(K.L)=U(I.J)
       IP=MX+1
       JP=MY+1
       AM1=1./D1
  114 IF(NSTRS) 112,115,115
  112 PUNCH 10, PRNO, DE, RFA, SPYIJ, MX, MY, IF, JF, N, NT, NOUT, ND, MESH, NSTRS
       PUNCH 17
  DO 113 J=JF, JA
113 PUNCH 22, J, (U(1, J), I=IF, IA)
       IF(SENSE SWITCH 1) 200,115
  115 RETURN
       END
                                               STRESS 10/17/65
                                                                        CLD
##JOB 5
##FOR 53
*LDISK
       SUBROUTINE STRESS
С
        STRESS CALCULATION SUBROUTINE
      DIMENSION U(14, 24), IK(24), IL(24), D(5), P(13, 7), U1(13)
DIMENSION S(14), SX(14), TXY(14)
       COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1,
      1 SPYIJ, PŘNO, DĚ, DÍ, KPE, ÍNOŤ, MÉSH, NSŤRS, NÍNC, IP, JP, AM1, IL, P, Ú1
FORMAT (18H PROBLEM NUMBER, F6.3, 5X, 12H DIMENSION =, 13, 2H X, 13 /
   14 FORMAT (18H
   27 FORMAT
                //)
   30 FORMAT (21HO STRESS DISTRIBUTION/)
   40 FORMAT (15, 7F10.4/(5X, 7F10.4))
  42 FORMAT (15, 7F10.4/(5X, 7F10.4))
805 Al=1./(D1*D1)
       PRINT 30
```

```
126
```

• •

```
PRINT 14, PRNO, MX, MY
    DO 814 J=JF_JA
820 K1=1K(J
    K2=IL(J)
     IF(J-IL(3)) 822,821,822
821 K2=3
822 DO 812 I=IF.K1
     IF (I-K2) 811,810,810
811 S(1)=0.0
     GO TO 812
810 S(I) = (U(I+1,J)+U(I-1,J)-2.*U(I,J))*AI
812 CONTINUE
813 K=K1
    IF(NSTRS) 815.814.814
815 PUNCH 42, J, (S(L), L=IF, K)
                          40, J,(S(L),L=|F,K)
814 PRINT
    PRINT 27
    IF( ABSF(NSTRS)-2) 832.833.833
833 DO 844 J=JF, JA
    K1 = K(J)
    K2=IL(J)
    IF(J-IL(3)) 835,834,835
834 K2=3
835 DO 841 I=IF.K1
    IF(I-K2) 839.840.840
839 SX(1)=0.0
    GO TO 841
840 SX(1)=(U(1,J+1)+U(1,J-1)-2.*U(1,J))*A
841 CONTINUE
    K=K1
    IF(NSTRS) 842,844,844
842 PUNCH 42, J, (SX(L), L= IF, K)
844 PRINT 40, J, (SX(L), L=IF, K)
    PRINT 27
    IF(ABSF(NSTRS)-3) 832,845,845
845 DO 854 J=JF,JA
    K1=1K(J)
    K2=IL(J)
    IF(J-IL(3)) 847.846.847
846 K2=3
847 DO 850 I=IF,K1
    IF(I-K2) 848,849,849
848 TXY(1)=0.0
    GO TO 850
849 TXY(I) = (U(I+1,J+1) - U(I-1,J+1) - U(I+1,J-1) + U(I-1,J-1)) * AI/4.
850 CONTINUE
    K = K1
    IF(NSTRS) 852,854,854
852 PUNCH 42, J, (TXY(L), L=1F,K)
854 PRINT 40, J. (TXY(L), L=1F,K)
832 RETURN
    END
```

128 CLD PB1BD 10/17/65 **#‡JOB 5 ##FOR 53** *LDISK SUBROUTINE PB1BD CALCULATION OF BOUNDARY VALUES PROBLEM 1 DIMENSION U(14, 24), IK(24), IL(24), D(5), P(13, 7), U1(13)DIMENSION PH(14.24) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PRNO, DE, D1, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1 EQUIVALENCE (U.PH) A=MY D1 = 1./AX = 0.0DO 103 |=3, |A PH(I,JA)=0.0IF(X-.4) 103,103,104 103 X = X + D1104 K≡l DO 105 I=K,IA PH(I,JA) = (2.*X*X-1.6*X+.32)*(-36.)105 X = X + D1106 D0 108 J=2, JA108 PH(IA,J) = -.72X=0.0 DO 110 1=3, IA $PH(1,2) = (.5 \times X \times X - .1) \times (-36.)$ IF(X-.4) 110,110,114 110 X=X+D1 114 K = 1

```
DO 115 I=K, IA
      PH(1,2) = (.4 \times X - .18) \times (-36.)
115 X = X + D1
```

```
RETURN
END
```

CLD PB1EX 10/17/65

‡‡FOR 53 *LDISK SUBROUTINE PB1EX

END

##JOB 5

С

```
CALCULATION OF EXTERIOR VALUES
                                                     PROBLEM 1
С
       DIMENSION U(14,24), IK(24), IL(24), D(5), P(13,7), U1(13)
       DIMENSION PH(14.24)
       COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1,
      1 SPYIJ, PŘNO, DĚ, DÍ, KPE, ÍNOŤ, MĚSH, NSŤRS, NÍNC, IP, JP, AMI, IL, P. ÚI
       EQUIVALENCE (U.PH)
       DO 117 J=2, JA
       PH(2,J) = PH(4,J)
  PH(1, J) = PH(5, J)
117 PH(MI, J) = PH(IA-1, J) - 0.8 \times D1 \times 36.
       DO 116 |=1.IA
       PH(1,1)=PH(1,3)
  116 PH(I,MJ) = PH(I,JA-1)
       RETURN
```

‡‡ ‡‡ ★L	JOB FOR DISI	5 53 K	CHANG 10/17/65	CLD
c		SUBROUTINE CHANG CHANGE MESH SPACING DIMENSION U(14,24), COMMON U,IK,D,MX,IF	IK(24), IL(24), D(5), P(13,7) IA, MI, MY, JF, JA, MJ, N, NOUT, NI	,U1(13) D,NT,NDL,RFA,RF1,
	1 00 1 01 1 02	FORMAT(415) FORMAT(15,7F10.8) FORMAT(15,7F10.7/(5)	(,7F10.7))	J: pArti pil pr pU i
	103 20	FORMAT(15,7F10.7/(5) IF(MESH-2) 22,20,22 READ AM1=M1	(,7F10.7)) D0,1P,JP,M1,M2	
	۹ 0	AM2=M2 DO 18 J=1, JP READ 1	$D_{2,K}(P(J,I),I=1,IP)$	
	10 22	GO TO 24 M2=MY M1=AM1+.000001		
	24	AM2≔M2 D2≕1./AM2 D3≕1./AM1 JA2≔M2+1		
	6	J=1 L=0 Y2=0. J=1 X1=0.		
	_	X2==-D2 12=0 DY==Y2 JY==L+3		
	5	2= 2+ X= 2+2 F(2-JP)7,7,10 X2=X2+D2		
	11 8	DX=X2-X1 IF(ABSF(DX-D3)0000 IF(DX-D3) 8,9,9 U1(12)=P(J,1)+DX*((1	01) 9,9,11 °(J,I+1)-P(J,I))/D3)+DY*((P	(J+1,I)-P(J,I))/D3)
	9	U(1X,JY)=01(12) IF(12-JP) 5,5,10 I=I+1 X1=X1+D3 DY=Y2-Y1		
	10	IF(I-IP) 8,8,10 L=L+1 PRINT	1@3,L,(U](I2),I2=1,JP)	
	15	IF(L-JA2) 15,14,14 Y2=Y2+D2 IF(ABSF(Y2-D3)0004	001) 12,12,16	

16 IF(Y2-D3) 6.12,1212 J≊J+1 Y2=Y2-D3 IF(J - M1 - 1) 6.6.1414 RETURN END SORLX 10/17/65 CLD **‡**‡JOB 5 **‡‡FOR 53** *LDISK SUBROUTINE SORLX POINT SUCCESSIVE OVERRELAXATION С SORLX DIMENSION U(14,24), IK(24), IL(24), D(5), P(13,7), U1(13) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PRNO, DE, DI, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1 10 FORMAT(2F10.4.15.218) SYIJ=0.0 KPE=0 KT = 0JB=JA-1 130 DO 140 J= 3, JBIB=1K(J)-1 IC=IL(J)DO 133 I=IC, IB |M = | - 11MM = 1 - 2131 YIJ = $.05 \times RFA \times (8. \times (U(I+1,J) + U(IM,J) + U(I,J-1) + U(I,J+1)))$ 1 - 2.*(U(I+1,J+1)+U(IM,J+1)+U(I+1,J-1)+U(IM,J-1))2 - U(1+2,J) - U(1MM,J) - U(1,J+2) - U(1,J-2)) - RFA* U(1,J)Y2=ABSF(YIJ) SYIJ=SYIJ+Y2 U(I,J) = U(I,J) + YIJIF (Y2-DE) 133,132,132 132 KPE=KPE+1 133 CONTINUE ADD CARDS FOR SOR3, SOR4 OR SOR5 BETWEEN STATEMENTS 133 AND 140 С ... 140 CONTINUE RF1=SYIJ/SPYIJ **SPYIJ=SYIJ** 134 IF (N-NDL) 137.136.136 136 NDL=NDL+ND RFA=2./(1.+SQRTF(ABSF(1.-RF1))) PRINT 10.RFA.SPYIJ.N.NT.KPE **137 RETURN** END ISOPEP C L DAVIS 10/17/6 **##JOB 5 ##FORX53 1** PROGRAM ISOPEP С ITERATIVE SOLUTION OF PLANE ELASTOSTATIC PROBLEMS С DIMENSION U(14,24), IK(24), IL(24), D(5), P(13,7), U1(13) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PRNO, DE, DI, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1 5 FORMAT (28H1 SUCCESSIVE OVERRELAXATION/)

50 INOT=1 **RF1=1**. PRINT 5 KPE=1CALL OUTIN IF(MESH-2) 55,52,52 52 CALL CHANG С NEXT INSTRUCTION ASSURES COMPATIBILITY OF SUBROUTINES ON IBM 1620 55 U(MI,MJ)=ABSF(SQRTF(1.0)) CALL PB1BD 60 N=N+1 CALL PB1EX CALL SORLX INOT = 2CALL OUTIN IF(INOT-2) 50,68,60 68 IF(KPE) 80.80.60 80 IF(ABSF(NSTRS)-1) 50,82,82 82 CALL STRESS GO TO 50 END *LOCAL,OUTIN,SORLX,CHANG,STRESS,PB1BD,PB1EX 1.5 33 2 1:190 :00001 1.0. 5 10 0 200 200 10 .00001 1.198 1.5 10 20 2 0 200 200 10 1.0 3 .00001 1.678 .0001 2 1.190 ..5 10 -1 200 200 10 LAST THREE CARDS ARE EXAMPLES OF INPUT С DATA С ISOPEP FOR THE CDC 3600 Ć THE DECKS LISTED HAVE BEEN RUN UNDER THE SCOPE SYSTEM Ć THE MAIN DECK IS PLACED FIRST. THIS IS FOLLOWED BY THE SUBROUTINE SUBPROGRAMS OUTIN, CHANGE, STRESS, SORLX, THE DATA.THE SAME SUBROUTINES AS LISTED FOR THE IBM 1620 ARE C C C C C C C C C PBNBD. PBNEX AND THEN AFTER NECESSARY SCOPE CONTROL CARDS USED EXCEPT ARRAY DIMENSIONS ARE CHANGED AND THE FIRST THREE CARDS(##JOB 5), (##FOR 5), (*LDISK) ARE OMITTED. THE SUBROUTINES PB6BD AND PB6EX ARE LISTED. NOTE PB6BD USES C COMPLEX TYPE VARIABLES WHICH ARE NOT AVAILABLE IN С FORTRAN II BUT ARE AVAILABLE IN 3600 FORTRAN. 5 1 9J0B,031547, ISOPEP6, 20. DAVIS, C, L. 9/21/65 GROUP C 9FTN,X,* PROGRAM ISOPEP6 C ITERATIVE SOLUTION OF PLANE ELASTOSTATIC PROBLEMS DIMENSION U(64, 64), IK(64), IL(64), D(5), P(31, 31), U1(64)DIMENSION UXD(64), UYD(64) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PŔNO, DÉ, DÍ, KPE, ÍNOT, MÉSH, NSTRS, NÍNC, IP, JP, AM1, IL, P, Ú1 COMMON UXD, ÚYD 5 FORMAT (28H1 SUCCESSIVE OVERRELAXATION) 50 INOT=1 RF1=1. PRINT 5 KPE=1CALL.OUTIN

IF(MESH-2) 55,82,82 52 CALL CHANG 55 CALL PB68D 60 N = N + 1CALL PB6EX CALL SORLX INOT = 2CALL OUTIN IF(INOT-2) 50,68,60 68 IF(KPE) 80,80,60 80 IF(ABSF(NSTRS)-1) 50,82,82 82 CALL STRESS GO TO 50 END INSERT SUBROUTINE OUTIN - CHECK ARRAY DIMENSIONS INSERT SUBROUTINE CHANGE - CHECK ARRAY DIMENSIONS INSERT SUBROUTINE STRESS - CHECK ARRAY DIMENSIONS INSERT SUBROUTINE SORLX - CHECK ARRAY DIMENSIONS SUBROUTINE PB6BD BOUNDARY VALUES FOR REGION OF INFINITE PLATE WITH A SOUARE HOLE TYPE COMPLEX PHI, PSI, PDU, OMEG, DOMG, DOMGB, DPHI, DPHIB, PSIB, ZET DIMENSION U(64, 64), IK(64), IL(64), D(5), P(31, 31), U1(64) DIMENSION UXD(64), UYD(64) DIMENSION DUX(62), DUY(62), X(62), Y(62), UBX(31), UBY(31)COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PŘNO, DĚ, DÍ, KPĚ, ÍNOŤ, MĚSH, NSŤRS, NÍNC, IP, JP, AM1, IL, P, Ú1 COMMON UXD.UYD LAGRANGE INTERPOLATION FORMULA FOR UNEQUAL INTERVALS =UA*(GRANF (XA) 1(XA-X2)*(XA-X3)*(XA-X4)*(XA-X5))/((X1-X2)*(X1-X3)*(X1-X4)*(X1-X5)) 2+UB*(3(XA-X1)*(XA-X3)*(XA-X4)*(XA-X5))/((X2-X1)*(X2-X3)*(X2-X4)*(X2-X5)) 4+UC*(5(XA-X1)*(XA-X2)*(XA-X4)*(XA-X5))/((X3-X1)*(X3-X2)*(X3-X4)*(X3-X5)) 6+UD*(7(XA-X1)*(XA-X2)*(XA-X3)*(XA-X5))/((X4-X1)*(X4-X2)*(X4-X3)*(X4-X5)) 8+UE*(9(XA-X1)*(XA-X2)*(XA-X3)*(XA-X4))/((X5-X1)*(X5-X2)*(X5-X3)*(X5-X4)) CORXF(RH.TH)=(COSF(TH)/RH-RH**3*COSF(3.*TH)/6.+RH**7*COSF(7.*TH)/ 156.)*R CORYF(RH,TH)=(SINF(TH)/RH+RH**3*SINF(3.*TH)/6.-RH**7*SINF(7.*TH)/ 156.)*(-R) 22 FORMAT (2014) 50 FORMAT (48H0 INFINITE PLATE WITH A SQUARE HOLE C L DAVIS//) 60 FORMAT (11HO THETA = .F10.5.6HRHO = .F8.2.15H NO BOUNDRY PT./)PRINT 50 A=MX D1 = 1./AR=1.17964523/3. PI=3.14159265 THETA=2.*PI LIM=37

132

С С

Ċ

С

С

С

```
DANG=LIM-1
    DANG = -P I / (2.*DANG)
    XMAX=1.0
    YMAX=1.0
    DLR0=-.05
    DO 640 I=1,LIM
    RH0≈1.0
    IF(THETA-7.*PI/4.) 620,610,610
610 RIDX=XMAX-ABSF(CORXF(RHO,THETA))
    IF(RIDX) 616,630,612
612 RHO=RHO+DLRO
    IF(.10-RHO) 610,610,614
614 PRINT 60, THETA, RHO
    GO TO 630
616 D0 618 K=1,50
DRO=((CORXF(RHO,THETA)/XMAX-1.)*RHO)/(R*(RHO**7*COSF(7.*THETA)/7.-
12.*RHO**3*COSF(3.*THETA)/3.)/XMAX-1.)
    IF(ABSF(DRO) - .0000001) 630,630,618
618 RHO=RHO-DRO
    GO TO 614
620 RIDY=YMAX-ABSF(CORYF(RHO,THETA))
     IF(RIDY) 624,630,622
622 RHO = RHO + DLRO
    IF(0.1-RH0) 620,620,614
624 D0 626 K≈1.50
   DRO=((CORYF(RHO,THETA)/YMAX-1.)*RHO)/(R*(RHO**7*SINF(7.*THETA)/7.-
12.*RHO**3*SINF(3.*THETA)/3.)/YMAX-1.)
    IF(ABSF(DR0)-.0000001) 630,630,626
626 RHO=RHO-DRO
    GO TO 614
630 X(I)=CORXF(RHO,THETA)
    Y(I)=CORYF(RHO,THETA)
ZET=CMPLX(RHO*COSF(THETA),RHO*SINF(THETA))
    OMEG=R*(1./ZET-ZET**3/6.+ŽET**7/56.)
DOMG=R*(.125*ZET**6-.5*ZET**2-1./ZET**2)
    DOMGB= CMPLX(REAL(DOMG), -AIMAG(DOMG)).
    PHI=R*( .25/ZET+.426*ZET+.046*ZET**3+.008*ZET**5+.004*ZET**7)
    DPH1=R*(.028*ZET**6+.04*ZET**4+.138*ZET**2+.426-.25/ZET**2)
    DPHIB= CMPLX(REAL(DPHI), -AIMAG( DPHI))
    PS1=-R*(.5/ZET+(.548*ZET-.457*ZET**3-.026*ZET**5-.029*ZET**7)/
   1 (1.+.5*ZET**4-.125*ZET**8))
    PSIB= CMPLX(REAL( PSI), -AIMAG(PSI))
    PDU=PHI+(OMEG*DPHIB)/DOMGB+PSIB
    DUX(1) = REAL(PDU)
    DUY(1) = AIMAG(PDU)
640 THETA =THETA + DANG
   BOUNDARY POINTS
                      REGION OF AN INFINITE
                                                  PLATE
    READ 22,(IL(J),J=3,JA)
    UBY(1)=-.0545259
    UBX(1)=.3232002
    LUM = LIM/2
    DO 650 I≈1,LUM
    K=L |M-|
    UBX([+1]) = UBX([]) - .5*(DUX(K) + DUX(K+1))*(X(K+1) - X(K))
```

С

```
650 UBY(I+1)=UBY(I)+.5*(DUY(I)+DUY(I+1))*(Y(I+1)-Y(I))
C
      BOUNDARY POINTS ON THE SOUARE
      K=IL(3)
      DO 652 1=3,K
      U(K, 1) = 0.0
  652 U(1,K) = 0.0
      YVAR=0.0
      K=3
  D0^{-}662 J=JF, JA
654 IF(YVAR-Y(K)) 660,660,656
  656 IF(K-LUM+2) 658,658,660
  658 K=K+1
      GO TO 654
  660 X1=Y(K-2)
X2=Y(K-1)
      X3=Y(K
      X_{4=Y(K+1)}
      X5=Y(K+2)
      UA=UBY(K-2)
      UB=UBY(K-1)
      UC=UBY(K
      UD=UBY(K+1)
      UE=UBY(K+2)
      U(IA, J) = GRANF(YVAR)
      UA=DUX(K-2)
      UB=DUX(K-1)
      UC=DUX(K)
      UD=DUX(K+1)
      UE=DUX(K+2)
      UXD(J)=GRANF(YVAR)
  662 YVAR=YVAR+D1
      XVAR=0.0
      K = 14
      DO_{672} = 1 = 1 F_{14}
  664 \text{ KB} = \text{LUM} + \text{K}
      KC=LUM+2-K
       IF(XVAR-X(KB)) 670,670,666
                 ) 668,668,670
  666 IF(4-K
  668 K=K-1
      GO TO 664
  670 X1 = X(KB+2)
      X2=X(KB+1)
      X3=X(KB)
      X4=X(KB-1)
      X5=X(KB-2)
      UA=UBX(KC-2)
      UB=UBX(KC-1)
      UC=UBX(KC)
      UD=UBX(KC+1)
      UE=UBX(KC+2)
      U(I,JA) = GRANF(XVAR)
      UA=DUY(KB+2)
      UB=DUY(KB+1)
      UC=DUY(KB)
```

UD=DUY(KB-1) UE=DUY(KB-2) GRANF(XVAR) UYD(1) 672 XVAR=XVAR+D1 RETURN END SUBROUTINE PB6EX VALUES OF STRESS FUNCTION AT EXTERIOR POINTS WHICH SATISFY С С CONDITIONS BOUNDARY DERIVATIVE DIMENSION U(64, 64), IK(64), IL(64), D(5), P(31, 31), U1(64)DIMENSION UXD(64),UYD(64) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RFI, 1 SPY IJ, PRNO, DE, DI, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AMI, IL, P, UI COMMON UXD UYD K = |L(3) - 1DO 685 J=JF, JA IF(J-K) 682,683,684 683 U(2,J)=U(K+2,J) GO TO 685 682 U(K,J)=U(K+2,J)GO TO 685 684 U(1,J)=U(5,J) U(2,J)=U(4,J) 685 U(M1,J)=U(1A-1,J)+UXD(J)*2.*D1 DO 690 I=IF,IA IF(I-K)686,686,688 U(1 ,K)=U(1,K+2) GO TO 690 686 U(I 688 U(1,1)=U(1,5) U(1,2) = U(1,4)690 U(I,MJ)=U(I,JA-1)+UYD(I)*2.*D1 RETÚRN END SCOPE 9LOAD 9RUN, 20, 3000 .00001 48 1.704... 1.5 1.0 48 3 3 025002500 1 ī 19 19 19 3 3 19 19 19 . 19 19 19 19 19 19.19 19 19 19 19 33 333 33 3 3 . 3 333 333 33 33 .3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 .00001 .5 3 1.701 1 1.0 3 200 200 15 15 1 -1 С LAST FIVE CARDS ARE EXAMPLES OD INPUT DATA С TO USE ADI, REPLACE THE CALL SORLX CARD IN THE ISOPEP С MAIN DECK WITH TWO CARDS, CALL ADI1, CALL ADI2 С CHECK FOR AGREEMENT OF DIMENSION AND COMMON STATEMENTS SUBROUTINE ADI С ALTERNATING DIRECTION IMPLICIT METHOD ROW SOLUTION DIMENSION U(28,52),UH(24,48),F(50),H(50),G(50),B(50) DIMENSION IK(52), IL(52), D(5)COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PRNO, DE, DI, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1 COMMON UH, F, G, B, L, J, X, K

```
EQUIVALENCE (F,H), (F(1),RNR), (B(1),CJ), (G(1),RFA)
       JB=JA-1
       DO 166 J=3.JB
       IB=1A-1
       SYIJ=0.0
       K \approx 1B - 1
       L=J-2
       DO 160 1=3.18
      F(I) = 8.*(U(I, J+1)+U(I, J-1))+4.*(U(I+1, J)+U(I-1, J))-U(I, J+2)-1 2.*(U(I+1, J+1)+U(I-1, J+1)+U(I-1, J-1))-U(I, J-2)+
      2 (RNR-14.)*U(1.J)
       IF(1-4) 150.151.152
  150 G(I)=1.0/CJ
       B(1) = -4.*G(1)
       H(1) = (F(1) - U(1 - 2, J) + 4, \times U(1 - 1, J)) \times G(1)
       GO TO 160
  151 F(I) = F(I) - U(I - 2, J)
  152 \text{ DELN}=4.+B(1-2)
       WJ = CJ - G(1 - 2) + DELN \times B(1 - 1)
       G(I) = 1.0/WJ
       B(1) = (-4 + DELN \times G(1 - 1)) \times G(1)
  IF(K-1) 153,154,155
153 F(1)=F(1)+4.*U(1+1,J)
  154 F(1) = F(1) - U(1+2,J)
       G(1) = 0.0
  155 H(I)=(F(I)-H(I-2)+DELN*H(I-1))/WJ
  160 CONTINUE
       |B=|B-2|
       DO 166 12=1,18
       1=1A-12
       K = 1 - 2
       Y|J=H(|)
       IF(12-2) 166.162.161
  161 YIJ=YIJ-G(1)*UH(K+2,L)
  162 Y | J=Y | J-B(1) * UH(K+1.L)
  166 UH(K.L)=YIJ
       RETURN
       END
       SUBROUTINE ADI2
С
     ALTERNATING DIRECTION IMPLICIT METHOD COLUMN SOLUTION
       DIMENSION U(28,52), UH(24,48), F(50), H(50), G(50), B(50)
       DIMENSION IK(52), IL(52), D(5)
       COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1,
      1 SPYIJ, PRNO, DE, D1, KPE, INOT, MĚSH, NSTRS, NÍNC, IP, JP, AM1, IL, P, Ú1
       COMMON UH, F, G, B, I, J, X, K
       EQUIVALENCE (F,H) (F(1),RNR) (B(1),CJ ) (G(1),RFA)
       SYIJ=0.0
       KPE=0
       IB = IA - 1
       DO 181 I=3, IB
       K = 1 - 2
       JB = JA - 1
       DO 176 J=3, JB
```

```
L=J-2
       F(J) = RNR*UH(K_L)+6.*U(I_J)-4.*(U(I_J+1)+U(I_J-1))+U(I_J+2)+U(I_L)
       IF(J-4) 170,171,172
  170 G(J)=1.0/CJ
       B(J)=-4.*G(J)
H(J)=(F(J)−U(I,J−2)+4.*U(I,J−1))*G(J)
       GO TO 176
  171 F(J) = F(J) - U(I, J-2)
  172 DELN=4.+B(J-2)
       WJ=CJ-G(J-2)+DELN*B(J-1)
       G(J) = 1.0/WJ
       B(J)=(-4.+DELN *G(J-1))/WJ
  IF (JB-1-J) 173, 174, 175
173 F(J) =F(J)+4.*U(1, J+1)
174 F(J)=F(J)-U(1, J+2)
       G(J) = 0.0
  175 H(J)=(F(J)-H(J-2)+DELN*H(J-1))/WJ
  176 CONTINUE
       JB=JB-2
       DO 181 J2-1, JB
       J=JA-J2
       YIJ=H(J)
  IF(J2-2) 179,178,177
177 YIJ=YIJ-G(J)*U(1,J+2)
  178 YIJ=YIJ-B(J)*U(I, J+1)
  179 Y2=ABSF(YIJ-U(I,J))
       SYIJ=SYIJ+Y2
       IF(Y2-DE) 181.180.180
  180 KPĚ=KPE+1
  181 U(I,J)=YIJ
SPYIJ=SYIJ
       RETURN
       END
       TO USE CHEB INSERT THE FOLLOWING CARD AFTER THE
C
C
       FIRST CALL OUTIN STATEMENT IN THE MAIN ISOPEP DECK
       NCHB = 1
       REPLACE THE CALL SORLX CARD IN THE MAIN ISOPEP DECK WITH
С
C
       THE FOLLOWING TWO CARDS
       CALL CHEB(NCHB)
    NCHB = 2
С
       CHECK DIMENSION AND COMMON STATEMENTS
       SUBROUTINE CHEB(NCHB)
       CYCLIC CHEBYSHEV SEMI-ITERATIVE METHOD
С
       DIMENSION U(28,52), IK(52), D(5), AK(30), AL(30,30), SA(30,30), U2(30)
       DIMENSION IL(52)
      COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1,
1 SPYIJ, PRNO, DE, DI, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1
       COMMON AK, SÅ, AL, UŽ, RHÖ
  300 IF(NCHB-1) 302,302,345
  302 NQ=(JA-3)/2
       L=(JA-2)/2
       IF(L-NQ) 310,310,304
```

304 PRINT 305 305 FORMAT (26H ERROR ODD NUMBER OF ROWS) STOP 1010 310 NI=IA-3 N | | = N | + N |DO 312 K=1,NII U2(K)=0.0 AK(K)=0.0 DO 312 L=1.NII SA(K,L)=0.0 312 AL(K,L) = 0.0DO 314 K=1,NII 314 AL(K,K)=20.0 AL(1,2) = -8.0AL(1,3)=-8.0 AL(2,4)=-8.0 AL(3,4)-8.0 AL(3,5)=-8.0 AL(1,4)=2.0AL(2,3)=2.0AL(4,5)=2.0AL(1,5)=1.0AL(2,5)=0.0 DO 315 K=5,NII AL(K-3,K+1) = AL(K-4,K)AL(K-2,K+1) = AL(K-4,K-1)AL(K-1,K+1)=AL(K-4,K-2) 315 AL(K ,K+1)=AL(K-4,K-3) DO 316 L=1,NII DO 316 K=L,NII 316 AL(K,L)=AL(L,K)SA(1,1)=SQRTF(AL(1,1)) DO 320 L=2,5 320 SA(1,L)=AL(1,L)/SA(1,1) K=1 324 DO 340 K=2,NII K1 = K+1KLR = K - 4IF(KLR) 325,325,326 325 KLR=1 326 KUP=K-1 TEMP=0.0 DO 328 L=KLR,KUP 328 TEMP=TEMP+SA(L,K)*SA(L,K) SA(K,K)=SQRTF(ÅL(K,K)-ŤEMP) IF(K-NII) 329,340,340 329 LUP=K+4IF(LUP-NII) 332,332,330 330 LUP=NII 332 DO 336 L=K1,LUP **TEMP=0.0** DO 334 L1=KLR,KUP 334 TEMP=TEMP + SA(L1,K)*SA(L1,L)336 SA(K,L)=(AL(K,L)-TEMP)/SA(K,K)

```
340 CONTINUE
    IF (RFA) 282,282,284
282 A=MY
    A=A*D1
    B = B \times D1
    B=(A/B)**2
    PI=3.14159265
    RLAM=(5.144*(1.0+B*B)+3.155*B)*(P1/A)**4
    RHO=1.0/(1.0+RLAM*D1**4/2.0)
    GO TO 285
284 RHO=SORTF( 2.-2./RFA)
285 RF2=2.0/(2.0-RH0*RH0)
    RF1=1.0
345 JC=JA-1
    KPE=0
    SYIJ=0.0
    RFA=RF1
    JB=3
347 DO 390 J=JB,JC,2
    1=3
    DO 360 K=1,NII,2
    P1=8.*U(I, J-1)-2.*(U(I-1, J-1)+U(I+1, J-1))-U(I, J-2)-U(I, J+2)
    P2=8.*U(I,J+2)-2.*(U(I+1,J+2)+U(I-1,J+2))-U(I,J-1)-U(I,J+3)
    IF(K-4) 348,354,354
348 IF(K-2) 350,350,352
350 P1=P1+8.*U(1-1,J)-2.*U(1-1,J+1)-U(1-2,J)
    P2=P2+8.*U(1-1, J+1)-2.*U(1-1, J)-U(1-2, J+1)
    AK(1)=P1/SA(1.1)
    AK(2)=(P2-AK(1)*SA(1,2))/SA(2.2)
    GO TO 360
352 P1=P1-U(1-2,J)
P2=P2-U(1-2,J+1)
    AK(3) = (P1 - AK(1) + SA(1,3) - AK(2) + SA(2,3)) / SA(3,3)
    AK(4)=(P2-AK(1)*SA(1,4)-AK(2)*SA(2,4)-AK(3)*SA(3,4))/SA(4,4)
    GO TO 360
354 IF(K+3-NII) 357,355,356
355 P1 = P1 - U(1 + 2, J)
    P2=P2-U(1+2,J+1)
    GO TO 357
356 P1=P1+8.*U(1+1,J)-2.*U(1+1,J+1)-U(1+2,J)
    P2=P2+8.*U(1+1,J+1)-2.*U(1+1,J)-U(1+2,J+1)
357 KUP=K-1
    KLR=K-4
    TEMP=0.0
    DO 358 K1=KLR,KUP
358 TEMP=TEMP +AK(K1) + SA(K1,K)
    AK(K) = (P1 - TEMP) / SA(K, K)
    KLR=KLR+1
    TEMP=0.0
    DO 359 K1=KLR,K
359 TEMP=TEMP+AK(K1)*SA(K1,K+1)
    AK(K+1)=(P2-TEMP)/SA(K+1,K+1)
360 = +1
```

K=NII U2(K) =AK(K)/SA(K,K)U2(K-1)=(AK(K-1) - SA(K-1,K) + U2(K))/SA(K-1,K-1)K1 = N11 - 1DO 380 L=2,K1,2 K=NII-L KUP = K + 4IF (KUP-NII) 368,368,367 367 KUP=NII 368 TEMP=0.0KLR=K+1 DO 370 L1=KLR.KUP 370 TEMP=TEMP +SA(K,L1)*U2(L1) U2(K) = (AK(K) - TEMP) / SA(K,K)KLR=KLR-1 IF(KUP-NII) 372.374.374 372 KUP=KUP-1 374 TEMP =0.0 DO 376 L1=KLR.KUP 376 TEMP=TEMP+SA(K-1,L1)*U2(L1) $U_{2}(K-1) = (AK(K-1) - TEMP) / SA(K-1,K-1)$ 380 CONTINUE 1=3 DO 390 K=1,NII,2 YIJI = RFA * (U2(K) - U(I,J))YIJ2=RFA*(U2(K+1)-U(I,J+1))Y1 = ABSF(Y|J1)Y2 = ABSF(YIJ2)SYIJ=SYIJ+Y1+Y2 U(I,J)=U(I,J)+YIJ1 U(I, J+1) = U(I, J+1) + Y | J2IF(Y1-DE) 384,382,382 382 KPE=KPE+1 384 IF(Y2-DE) 390,386,386 386 KPE=KPE+1 390 |=|+1 IF (JB-3) 392,392,394 392 JB=5 RFA=RF2 GO TO 347 394 RF1=1.0/(1.0-RH0*RH0*RFA/4.0) RF2=1.0/(1.0-RH0*RH0*RF1/4.0) SPYIJ=SYIJ RETURN END TO RUN PROBLEM 2 REPLACE THE CORRESPONDING CARDS IN THE С MAIN ISOPEP DECK WITH THE FOLLOWING TWO CARDS С CALL PB2EX CALL PB2BD С CHECK DIMENSION AND COMMON STATEMENTS SUBROUTINE PB2BD

C	(1 00	ALCULATION OF BOUNDARY VALUES OF PROBLEM 2 DIMENSION U(28,52), IK(52), IL(52), D(5), P(25,13), U1(25) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, SPYIJ, PRNO, DE, D1, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1 RTPI=.5/3.1415927				
С		D1=1./A	·····		ALONG Y=0	
	105	DO 105 U(1,2)= IF (X2 X=X+D1 K=1	=3, A 5*X*X 25) 105,105,	,106	-	
	107	DO 107 U(1,2)=0 X=X+D1	=K, A).0312525*	۲X		
C	107					ALONG X-1
	1.69	Y=1.E-1(DO 108 U(1A,J)= I5*Y)*) J=2,JA •((9./16.+Y* •RTPI+.03125	Y)*ATANF(.75	/Y)-(25./16	+Y*Y)*ATANF(1.25/Y)
C	100		••			ALONG Y=2
	1 0 9	DO 109 U(1,JA)= ATANF((X=X+D1 RETURN END	=3, A =RTP * ((4.4 (X+.25)/2.)	(X25)**2)*/ -1.)+.03125	ATANF((X25))/2.)-((X+.25)**2+4.)*
CC	1 110	SUBROUTI DIMENSIC COMMON U SPYIJ,F CALCULAT POINTS RTP1=.5/ Y=1.E-10 DO 112	INE PB2EX DN U(28,52) J, IK, D, MX, IF PRNO, DE, D1, K ION OF EXTE OUSIDE OF /3.1415927	IK(52),IL(52) ,IA,MI,MY,JF (PE,INOT,MESH) ERIOR VALUES RANGE X=0 OI),D(5),P(25, ,JA,MJ,N,NOU ,NSTRS,NINC, R GREATER ANI	13),U1(25) T,ND,NT,NDL,RFA,RF1, IP,JP,AM1,IL,P,U1 D X=1 OR LESS
С	112	U(2,J)=L U(1,J)=L U(MI,J)= Y=Y+D1 F	J(4,J) J(5,J) U(1A-1,J)+2 POINTS OUTSI	2.*D1*RTPI*(1) DE OF RANGE	.5*ATANF(.7! Y=0 or great	5/Y)-2.5*ATANF(1.25/Y)) Er and y=2 or less
	114	X=0.0 DO 114 U(!,1)=L U(!,MJ)= I ATANF((X=X+D1 RETURN END	=3, A J(,3) U(,JA-1)+2 (X+.25)/2.))	2.*D1*RTPI*()	4.*(ATANF((X25)/2.)-

```
SUBROUTINE PRESD
C
      BOUNDARY CONDITIONS FUR THE NOTCHED PLATE
                                                                     PROB. NO. 3
        DIMENSION U(28,52), 18(32), D(5), IL(52)
        DIMENSION AR(7)
      COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1,

1 SPYIJ, PRNO, DE, DI, KFE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1

EQUIVALENCE (AR(1), U(129)), (DS1, U(157)), (DS2, U(158))

EQUIVALENCE(DS3, U(159)), (DS4, U(160)), (DS5, U(161)), (DS6, U(162))

EQUIVALENCE (DH1, U(163))
    22 FORMAT (2014)
        D1 = 1./A
        |B=|A-1|
        READ 22, (IK(J), J=3, JA)
PRINT 22, (IK(J), J=3, JA)
        JB=1K(3)+1
        DO 210 J=JB, JA
  210 U(IA,J)=.125
        Y=0.0
        DO 211 1=3, IB
        U(1, JA) = .5 + Y + Y
        U(1,2) = Y
С
       THE VALUE OF U ON THE CIRCULAR ARC
        U(1.3) = .5*(Y - .25)
  211 Y=Y+D1
        U(22,14)=U(22,3
        U(26,15)=U(26,3)
        X=0.0
        JB=JB-1
        DO 216 J=3, JB
       THE VALUE OF Y ON THE CIRCULAR ARC
С
        U(MI, J) = .5 - SQRTF(.0625 - X + X)
С
       THE VALUE OF U ON THE CIRCULAR ARC
        U(IA,J) = .5*(U(MI,J) - .25)
С
       THE VALUE OF DELY/H FROM THE MESH POINT TO THE CIRCULAR ARC
  IF(J-3) 216,212,212
212 DEL=(U(MI,J)-.25)/D1
  213 IF(DEL-1.) 215,214,214
  214 DEL=DEL-1.
        GO TO 213
  215 U(IA-1,J)=DEL
  216 X=X+D1
        U(15,4)=U(27,4)
        U(16,8)=U(27,8
                               )
        U(18,11) = U(18,3)
        U(19,12)=U(19,3)
        DO 217 K=2,11
        KK=IA-K
  217 U(KK
                 ,4) =U(IA-1,K+3)
        DS1=.5*U(IA-1,5)
        DS2= U(IA-1,5)+DS1
DS3=2.*U(IA-1,7)-1.
        DS4=.5*U(1A-1,9)
        DS5=1.5*U(IA-1,9)-.5
```

DS6=.5+DS4DH1=5.*DS5/3. AR(1)=.5+DS1 AR(2) = .5 + U(1A - 1, 5)AR(3) = .5 + U(1A - 1, 6)AR(4)=.25*(DS3+DS6+1.0) AR(5)=.5*D\$5*DH1 AR(6)=.5+U(1A-1,9)-AR(5) AR(7) = .5 + U(1A - 1, 10)RETURN END SUBROUTINE PB3EX С EXTERIOR POINTS FOR NOTCHED PLATE DIMENSION U(28,52), IK(52), D(5), IL(52) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PŘNO, DĚ, DÍ, KPE, INOŤ, MĚSH, NSŤRS, NÍNC, IP, JP, AM1, IĽ, P, Ú1 IB=IA-1 220 DO 223 1=3, IB U(1,MJ)=U(1,JA-1) IF(1-IK(3)-1) 222,222,223 $222 \ U(1,1) = U(1,5)$ U(1,2) = U(1,4)223 CONTINUE С INTERIOR POINT ADJACENT TO CIRCULAR ARC ON HORIZONTAL LINE 1=17 J=10 GO TO 224 218 1=20 J=13 GO TO 224 219 J=14 224 CA=1.-U(1,4)CB=CA*(CA-1.)/2. CC=CB*(CA-2.)/3. CD=CC*(CA-3.)/4. BB=CA-.5 BC=((3.*CA-6.)*CA+2.)/6. BD=(((4.*CA-18.)*CA+22.)*CA-6.)/24. DA1=1.-CA+CB-CC+CD DA2=CA-2.*CB+3.*CC-4.*CD DA3=CB-3.*CC+6.*CD DA4=CC-4.*CD DB1=BB+BD-BC-1. DB2=1.-2.*BB+3.*BC-4.*BD DB3=BB-3.*BC+6.*BD DB4=BC-4.*BD BE=1./(DA2/DA1-DB2/DB1) $U(I_J) = BE + (U(I_3)/DA1 + (DB3/DB1 - DA3/DA1) + U(I_J+1)$ 1+(DB4/DB1-DA4/DA1)*U(I,J+2)+(BD/DB1-CD/DA1)*U(I,J+3)) 1=1+1 IF (J-13) 218,219,221 221 IF(1-24) 225,224,226 225 1=23

J=15 GO TO 224 226 IF(1-25) 224,224,227 227 DO 229 J=1, JA U(1,J)=U(5,J)U(2,J)=U(4,J) IF(J-IK(3)) 229,229,228 228 U(MI,J)=U(IA-1,J)+D1 229 CONTINUE INTERIOR POINT ADJACENT TO CIRCULAR ARC ON VERTICAL LINE С DUB = .51=15 J=5 230 CA=1.-U(IA-1,J) CB=CA*(CA-1.)/2. CC=CB*(CA-2.)/3. CD=CC*(CA-3.)/4. BB=CA-.5 BC=((3.*CA-6.)*CA+2.)/6. BD=((((4.*CA-18.)*CA+22.)*CA-6.)/24. DA1=1.-CA+CB-CC+CD DA2=CA-2.*CB+3.*CC-4.*CD DA3=CB-3.*CC+6.*CD DA4=CC-4.*CD DB1=BB+BD-BC-1. DB2=1.-2.*BB+3.*BC-4.*BD DB3=BB-3.*BC+6.*BD DB4=BC-4.*BD BE=1./(DA2/DA1-DB2/DB1)U(I,J)=BE*(U(IA,J)/DA1+DUB*D1/DB1+(DB3/DB1-DA3/DA1)*U(I-1,J) 1+(DB4/DB1-DA4/DA1)*U(1-2,J)+(BD/DB1-CD/DA1)*U(1-3,J)) J=J+1 IF(J-7) 230,230,232 232 1=16 IF(J-9) 230,230,233 233 U(15,1)=U(15,5) U(15,2)=U(15,4) 244 RETURN END SUBROUTINE PB4BD BOUNDARY CONDITIONS FOR THE V-NOTCHED PLATE С PROB. NO. 4 DIMENSION U(28,52), IK(52), D(5), P(25,13), U1(25), IL(52) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PRNO, DE, D1, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1 22 FORMAT (2014) D1 = 1./A|B=|A-1|READ 22,(IK(J),J=3,JA)22,(IK(J),J=3,JA) PRINT JB = IK(3) + 1DO 210 J=JB, JA 210 U(IA,J) = .125

Y=0.0 DO 215 |=3, |B|U(1, JA) = .5 * Y * YIF(I-IK(3)) 215,215,212 BOUNDARY VALUES ON NOTCH EDGE С 212 K=I-M/4U(1,K) = .5*(Y - .25)215 Y=Y+D1 RETURN END SUBROUTINE PB4EX С EXTERIOR POINTS FOR THE V-NOTCHED PLATE PROB. NO. 4 DIMENSION U(28,52), IK(52), D(5), P(25,13), U1(25), IL(52) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PRNO, DE, D1, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1 220 D0 224 I=3, IA U(I,MJ)=U(I,JA-1)IF(I-IK(3)-I) 222,222,224 222 U(1,1)=U(1,5)U(1,2)=U(1,4)224 CONTINUE DO 228 J=1, JA U(1,J)=U(5,J) U(2,J)=U(4,J) IF(J-IK(3)) 228,228,226 226 U(MI,J)=U(IA-1,J)+D1 228 CONTINUE RETURN END SUBROUTINE PB5BD С BOUNDARY CONDITIONS FOR A PLATE WITH A SQUARE NOTCH PROB. NO. 5 DIMENSION U(28,52), IK(52), D(5), IL(52) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PRNO, DE, D1, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1 22 FORMAT (2014) IB=IA-1 D1 = 1./A22, (IK(J), J=3, JA)READ 22, (IK(J), J=3, JA)PRINT JB = IK(3) + 1. . DO 205 J=3, JB 205 U(JB,J)=0.Ŏ DO 210 J=JB,JA 210 U(IA,J) = .125Y=0.0 D0 215 |=3, |B|U(I,JĀ)=.5*Y*Y IF(I-JB) 215,215,212 212 U(I,JB)=.5*(Y-.25)215 Y=Y+D1RETURN END

SUBROUTINE PB5EX С EXTERIOR POINTS FOR A PLATE WITH A SQUARE NOTCH DIMENSION U(28,52), IK(52), D(5), IL(52) COMMON U, IK, D, MX, IF, IA, MI, MY, JF, JA, MJ, N, NOUT, ND, NT, NDL, RFA, RF1, 1 SPYIJ, PRNO, DE, DI, KPE, INOT, MESH, NSTRS, NINC, IP, JP, AM1, IL, P, U1 JB=1K(3)+1 **IB=IA-1** 220 DO 225 1=3, IB U(1,MJ)=U(1,JA-1) IF(1-IK(3)-1)222,222,223 222 U(I,1)=U(I,5) U(1,2)=U(1,4) GO TO 225 223 U(I,JB-1)=U(I,JB+1) 225 CONTINUE DO 228 J=1, JA U(1, J) = U(5, J)U(2,J)=U(4,J) IF(J -JB) 228,226,226 226 U(MI,J)=U(IA-1,J)+D1. 228 CONTINUE RETURN END C C BOUNDRY CONDITIONS CAN BE INTRODUCED USING EQUATION (28) AS INDICATED IN SECTION 6 - TREATMENT OF IRREGULAR C C BOUNDARIES. THE ADDITIONAL INSTRUCTIONS REQUIRED FOR SORLX FOR PROBLEMS 3, 4 AND 5 ARE LISTED UNDER С THE HEADINGS SOR3, SOR4 AND SOR5 RESPECTIVELY, С THE CARDS ARE INSERTED BETWEEN THE SUBROUTINE SORLX Č STATEMENT NUMBERS 133 AND 140. C C SOR3 ADDITION TO SORLX FOR SEMI-CIRCULAR NOTCH I=18+1 IF(J-1K(3)-2) 230,230,140 230 D0 231 L1=1,5 K=1-(L1/3-1)*(-1)**L1 L=J-((L1-1)/3)*(-1)**(L1-1) 231 D(L1)=(U(K+1,L)+U(K-1,L)+U(K,L+1)+U(K,L-1)-4,*U(K,L))K=J-2 GO TO (233,235,236,237,238,239,240,248,250,250,250,252,256,260),K 233 TEMP=0.0 ANV=2.0 234 D(2)=(TEMP+U(1,J)+.5*(U(1+1,J+1)+U(1+1,J-1)+D1)-2.*U(1+1,J))*ANV GO TO 242 235 ANV=1./AR(1) TEMP=DS1*(U(I+1,J+1)-U(I+1,J)) GO TO 234 236 ANV = 1./AR(2)TEMP1 = DS2*(U(I+1,J+1)-U(I+1,J))TEMP=-TEMP+TEMP1 GO TO 234 237 ANV=1./AR(3)

TEMP = -TEMP1 + .5 * (U(1+1.J+1) - U(1+1.J))GO TO 234 $238 D(2) = U(I_J) + U(I_1, J_1) + U(I_1, J_1) - 3 + U(I_1, J_1) + (U(IA_J) - U(I_1, J))$ 1*1.5 D5=D(2) GO TO 242 239 $D(2) = (U(1, J) + .8 \times U(1 + 1, J + 1) - 1.8 \times U(1 + 1, J) + .5 \times D1) / AR(4)$ D(5)=D5 D5=D(2)GO TO 242 240 D(2)=U(1,J)+U(1+1,J+1)+U(1+1,J-1)-3.*U(1+1,J)+(U(1A,J)-U(1+1,J))1 / U(IA - 1, J)D5=D(2)GO TO 242 248 D(5) = D5D(2) = (U(I+1,J+1)+U(I,J)-2.*U(I+1,J)+D1/2.)/AR(7)D5=D(2)GO TO 242 250 D(5)=D5 D(2)=2.*(U(1+1,J+1)+U(1,J)-2.*U(1+1,J))+D1 D5=D(2) IF(J-13)242,251,251 251 D(2)=.5*D5/AR(7) D5=D(2) GO TO 242 252 D(2) = (U(1+1, J+1)+U(1, J)+DS6*U(1+2, J)-(2, +DS6)*U(1+1, J)+ $1DH_1*(U(1+1,3)-U(1+1,J))/U(1+1,4)+(1.-DS6)*D1*.5)/AR(6)$ D(5) = D5GO TO 242 256 IF(1-21) 257,257,258 257 D(5)=(U(1,J)+(U(1-1,J-1)+U(1+1,J-1)-2.*U(1,J-1))*DS6+(U(1,3)-1,U(1,J-1))/U(1,4)-U(1,J-1))/DS6 KT=1 GO TO 242 258 D(5)=(U(1,J)+DS6*U(1-1,J-1)-(1.+DS6)*U(1,J-1)+.5*D1*DS6)/AR(4) D(2) = U(1, J) + U(1+1, J+1) + U(1+2, J) - 3 + U(1+1, J) + (U(1+1, 3) - U(1+1, J))1/U(1+1,4) D5=D(2)-U(1,J) KT=O GO TO 242 260 IF(1-24) 262,263,264 262 D(5)=D5+U(1-1,J-1) KT=1 GO TO 242 **263** TEMP1=(U(I+1,J-1)-U(I,J-1))*DS2TEMP=TEMP1+(Ŭ(I-1,J-1)-U(I,J-1))*.5+.5*(.5-DS2)*D1 ANV=1./AR(3)GO T0268 264 IF(1-26) 265,266,242 265 TEMP=TEMP1. TEMP1=(U(1+1,J-1)-U(1,J-1))*DS1 TEMP=-TEMP+TEMP1+.5*(DS2-DS1)*D1 ANV=1./AR(2) GO T0268

```
266 KT=0
       TEMP=-TEMP1+.5*DS1*D1
       ANV=1./AR(1)
  268 D(5)=(TEMP+U(I,J)-2.*U(I,J-1)+.5*(U(I-1,J-1)+U(I+1,J-1)))*ANV
  242 YIJ=(4.*D(3)-D(1)-D(2)-D(4)-D(5))*.05*RFA
       Y2=ABSF(YIJ)
       SYIJ=SYIJ+Y2
       U(1,J)=U(1,J)+YIJ
IF(Y2-DE) 243,244,244
  244 \text{ KPE}=\text{KPE}+1
  243 IF (KT) 140.140.245
  245 |=|+1
       GO TO 230
          SOR4*******(SEE COMENTS ON PAGE 146)
С
Ĉ
       ADDITION TO SORLY FOR A V NOTCH
       | = | B + 1
       IF(J-IK(3)-1) 230,230,140
  230 D0 231 L1=1,5
K=I-(L1/3-1)*(-1)**L1
       L=J-((L1-1)/3)*(-1)**(L1-1)
  231 D(L1)=(U(K+1,L)+U(K-1,L)+U(K,L+1)+U(K,L-1)-4.*U(K,L))
       IF(J-4) 232,234,234
  232 D(2)=4.*(U(1+1.J+1)+U(1.J)+U(1+1.J-1)-3.*U(1+1.J)+D1*.5)/3.
       D5=D(2)
       GO TO 242
  234 D(5)=D5
       IF(J-IK(3)-1) 235,236,236
  235 D(2)=2.*(U(1+1,J+1)+U(1,J)-2.*U(1+1,J))+D1
       D5=D(2)
       GO TO 242
  236 D(2)=8.*(1.5*(U(I,J)-U(I+1,J))+.75*D1)/5.
242 YIJ=(4.*D(3)-D(1)-D(2)-D(4)-D(5))*.05*RFA
      Y2=ABSF(YIJ)
       SYIJ=SYIJ+Y2
       U(I,J)=U(I,J)+YIJ
       IF(Y2-DE) 140,244,244
  244 KPÉ=KPE+1
          SOR5******(SEE COMENTS ON PAGE 146)
С
C
       ADDITION TO SORLX FOR A SQUARE NOTCH....
       |=|B+1
       IF(J-IK(3)-1) 230,230,140
  230 D0 231 L1=1,5
K=I-(L1/3-1)*(-1)**L1
       L=J-((L1-1)/3)*(-1)**(L1-1)
  231 D(L1)=(U(K+1,L)+U(K-1,L)+U(K,L+1)+U(K,L-1)-4.*U(K,L))
       IF(J-IK(3)-1) 232,242,242
  232 D(2) = (U(1, J) \times 2.+U(1+1, J+1)+U(1+1, J-1)-4.\times U(1+1, J))+D1
242 YIJ = (4.\times D(3)-D(1)-D(2)-D(4)-D(5))\times.05\times RFA
       Y2=ABSF(YIJ)
       SYIJ=SYIJ+Y2
       IF(Y2-DE) 140,244,244
       U(I,J)=U(I,J)+YIJ
  244 KPE=KPE+1
```

TABLE OF SYMBOLS

PRNO, DE, RFA, SPYIJ, MX, MY, IF, JF, N, NT, NOUT, ND, MESH, NSTRS, IP, JP, M4, M2. SEE INPUT PREPARATION FOR DEFINITION. U(1,J) - DISCRETE VALUES OF STRESS FUNCTIONS.

- I ROW INDEX.
- J COLUMN INDEX.
- MI = MAXIMUM I = MX+IF+1
- IA = MI-1 = LAST BOUNDARY ROW INDEX
- MJ = MAXIMUM J = MY+JF+1
- JA = MJ-1 = LAST BOUNDARY COLUMN INDEX
- P(J,I) STRESS FUNCTION DISTRIBUTION SAVED FOR GENERATION OF INITIAL ESTIMATE OF U(I,J) IN NEXT PROBLEM (SEE CHANG P. 129).
- U1(J) A COLUMN ARRAY USED IN CHANG FOR TEMPORARY STORAGE.
- D1 MESH INTERVAL H COMPUTED IN PBNBD, D1 DEPENDS UN PHYSICAL DIMENSIONS OF THE SOLUTION DOMAIN.
- KPE COUNT OF POINTS AT WHICH CONVERGENCE CRITERION WAS NOT SATISFIED IN THE LAST ITERATION.
- INOT CONTROL SWITCH FOR SUBROUTINE OUTIN. INOT = 1 SIGNALS INPUT OF NEXT DATA SET. INOT = 2 SIGNALS USE OF THE OUTPUT PORTION OF THE SUBROUTINE.
- ik(j) = LAST INTERIOR POINT ROW INDEX IN COLUMN J.
- IL(J) = FIRST INTERIOR POINT ROW INDEX IN COLUMN J. IK(J) AND IL(J) ARE INTRODUCED IN PBNBD FOR SPECI-FICATION OF IRREGULAR BOUNDARIES.

SPECIFICATION OF COLUMN TERMINAL POINTS FOR SORLX

A RECTANGULAR MESH WITH THE SPECIFIED DIMENSIONS OF THE ARRAY U ENCOMPASSES THE PROBLEM SOLUTION DOMAIN. FOR A REC-TANGULAR REGION THE ITERATIVE METHOD SUBROUTINE SORLX SWEEPS THE MESH BY COLUMNS STARTING WITH J = 3, USING $3 \le 1 <$ 1A AND CONTINUING UNTIL J = JA-1. IF SYMMETRY CONDITIONS ARE NOT USED THE BOUNDARIES CORRESPOND TO THE ROWS I = 2 AND I = 1A AND THE COLUMNS J = 2 AND J = JA. THE ROWS I = 1, I = MI AND THE COLUMNS J = 1 AND J = MJ ARE EXTERIOR TO THE SOL-UTION DOMAIN AND CAN BE USED BY THE WRITER OF THE PBNEX SUBROUTINE TO SATISIFY BOUNDARY DERIVATIVE CONDITIONS. IF I = 3 (OR J = 3) IS A LINE OF SYMMETRY THE VALUES IN THÈ MESH LINE I = 2 (OR J = 2) ALSO MUST BE PROVIDED IN PBNÈX USING DERIVATIVE CONDITIONS ALONG A LINE OF SYMMETRY.

A PROBLEM WITH IRREGULAR BOUNDARIES MAY SPECIFY A DIFF-ERENT FIRST INTERIOR POINT, IL(J), AND LAST INTERIOR POINT, IK(J), FOR EACH COLUMN. THESE VALUES MAY BE READ FROM CARDS OR GENERATED IN THE SUBROUTINE PBNBD. IF THIS IS NOT DONE ALL IL(J) ARE SET TO 3 AND ALL IK(J) TO IA-1 BEFORE TRANSFER TO PBNBD AND THE DOMAIN IS TREATED AS A RECTANGLE. THOUGH IL(J) AND IK(J) LIMIT THE SWEEP ALONG THE COLUMNS WITHIN SORLX THEIR SPECIFICATION DEPENDS ON THE CHOICE OF THE WRITER OF THE BOUNDARY CONDITION SUBROUTINES. IF HE ELECTS TO COM-PUTE SOME INTERIOR POINTS BY INTERPOLATION IN PBNEX THEN HE CAN SET THE INTERIOR POINT ROW INDEX RANGES ACCORDINGLY. (SEE PB3EX P. 143)

