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ABSTRACT

ITERATIVE SOLUTIONS OF PLANE ELASTOSTATIC PROBLEMS

by Chester L. Davis

Three objectives of this thesis are: to compare the efficiency of

three iterative methods of solving biharmonic-finite—difference equations,

to report on ISOPEP, a system of computer programs designed for the

numerical solution of biharmonic plane elastostatic problems, and to

demonstrate the utility of this system of programs and the advantages

and limitations of numerical solutions by examples.

Three matrix iterative methods considered are point successive

overrelaxation, the alternating direction implicit method, and the

cyclic Chebyshev semi-iterative method. These are compared in terms

of computer storage and time required for the solution of a model

problem. Numerical results indicate successive overrelaxation is best

unless the mesh is refined so the number of points exceeds 350. Then

the alternating direction implicit method is superior.

ISOPEP, a system of FORTRAN II subprograms for the iterative sol-

ution of plane elastostatic problems, is explained. Documentation of

ISOPEP, including listings of source decks, specifications for input

and the output from a sample problem, is provided.

Discrete values of the stress functions and stress components

for six ISOPEP problem solutions are provided. These problems include

three notched tensile specimens, an infinite plate with a square hole

and a semi-infinite plate with a uniformly distributed load along a
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portion of the edge. The numerical solutions of the six example

problems indicate that a high speed digital computer with a large

main memory provides an effective and economical means for the analysis

of plane elastostatic problems. Good agreement as shown in the com-

parison of the numerical and eXplicit stress solutions for some of these

problems. Use of numerical solutions for the investigation of stress

concentrations is shown in several of the examples.
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I. INTRODUCTION

Determination of the stresses in a plate under conditions of

either plane strain or plane stress is a fundamental problem for the

structural engineer. The literature of the classical theory of

elasticity includes exact solutions of numerous problems. For an

account of the mathematical theory see Timoshenko and Goodier (1951)

and Mbskhelishvili (1953). However, exact solutions are available

only for those problems which have rather simple geometric shapes

and boundary constraints. Finite-difference equations have been used

as an alternative for the analysis of more complex practical problems.

This dissertation compares several iterative finiteodifference

solution methods with respect to their efficiency in treating plane

elastostatic problems.

The finiteudifference solution of a boundary-value problem

is a two-step procedure. First the partial differential equation

and the associated boundary conditions are replaced by difference

equations which relate the discrete values of an approximating function

at a finite number of points. 1 regular mesh of lines is superimposed

on the domain of the given boundary-value problem. A finite system

of linear equations is formed by writing a difference equation for

each node of the mesh. The second step is the solution of this

system.of simultaneous equations. It is often necessary to solve

for values at a thousand or more points.

The relaxation technique was employed by Southwell (1946) for

the solution of the biharmonic difference equations. Though Southwell

and his colleagues solved a number of complex engineering problems,

1
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the relaxation method has not. been readily adapted for digital computer

solutions.

Iterative methods have been used extensively for computer solutions

of systems of equations. These methods make repeated use of simple

algorithms which at each application provide an imoved approximate

solution at one or more of the mesh points. The exact solution is the

limit of the sequence of the adjusted point values. Though there are

many iterative methods, the three which seemed to offer most promise

for the solution of the biharmonic finite-difference equations were:

the technique of point successive overrelaxation introduced by Frankel

(1950) and Young (1951.), the alternating-direction implicit method of

Cents and Dames (1958), and the cyclic Chebyshev semi-iterative method

proposed by (h-iffin and Yarga (1963). The comparison of these iterative

schemes is the first objective of this dissertation.

Using the computer time required to solve a given problem as the

measure of the efficiency of an iterative method, the numerical results

obtained indicate that for the biharmonic equation there is a critical

mesh spacing 11* such that the point successive overrelaxation iterative

method 1. the best of the three methods tested for h 2. 11* mm. for h< h“

the alternating-direction implicit method is best.

lach of these methods uses a parameter for accelerating the con-

vergence. Formulas for the bounds of optimum parameters are included for

rectangular regions. For the more general case of irregular boundaries

there are no convenient relationships for estimating the optimum para-

meters at the start of the iterative solution. The procedure for deter-

mining the accelerating parameter is different for each of the three meth-

ods. There existed the possibility that the choice of the most efficient

method might be more dependent on the method used for determining the
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acceleration parameter than on the performance of the iterative method.

To investigate this possibility the optimum parameter for the solution

of a model problem.was determined on an empirical basis for each method.

The results were consistent with the other comparisons of the three

methods. However, this study did reveal that the machine time required

could be reduced from 18% to 42% by starting the solution with an

optimum parameter.

Another objective is the preparation of a set of computer programs

for solution of plane elasticity problems. Six FORTRAN-II routines have

been written for the Control Data Corporation 3600,and slightly modified

versions have been run on an IBM 1620. The solution of a particular prob—

1em.requires the preparation of a pair of routines for the given boundary

conditions. The main program which provides linkage of these subroutines

is called ISOPEP. A full description is provided in Appendix B.

The third objective of this dissertation is the demonstration of

the utility of the ISOPEP program. Solutions in terms of stress funew

tions and stress components are provided for six problems: (1) A square

plate with uniformly distributed loads on portions of two edges, (2) A

semi-infinite plate with a uniformly distributed load applied on a saga

ment of one edge, (3) A flat-plate tensile specimen with two semim

circular notches, (A) A flat-plate tensile specimen with two V-notches.

(5) A flat-plate tensile specimen with two rectangular notches, (6) An

infinite plate with a square hole. Several of the problems were select-

ed as examples of the numerical calculation of stress concentrations.

Two of the problems are included for comparison of the exact and numerw

ical solutions. The numerical solutions obtained with sufficiently small

mesh intervals provide stress components which are in good agreement

with values from.the exact solutions.



II. THE DMD]. EQUATIONS

Plane stress is the state of stress approximated in a thin plate

which has loads applied only on the boundary and parallel to the plane

of the plate. In a three-dimensional Cartesian coordinate system a

state of planes stress exists if the stress components 03,7;2 ) 7}:

are sero at every point.

Consideration of static force equilibrium under conditions of plane

stress leads to the equilibrim equations.

3o? }
‘53—+—7-’;1+X-

(1)

L? + 11v +Y: .

where I and I m the components of body force per unit volume.

For plane stress the Hooke's law relationship between stress and

strain is,

E G): l’ d} '- VO' +- BK

5’ f (2)

56,8 0} *1/07 4- Eofi‘

E 33.9 I 2 ( H1073“; .

where 3 is foung's modulus, Vie Poisson's ration, §(x,y) is the differ-

ence bet-sen the local current temperature T, and the original tempera-

ture To, and (is the coefficient of thermal expansion.

it a point in the plate the strains are defined:

EX=§§r, 67:15,};y7-‘fi1-fi3f‘ (3)

where u and v, the components of the displacement, are continuous

functions. Since the three strain components are expressed in terms of

the two functions u and -'9 they cannot be taken arbitrarily. By

differentiating and combining Equations (3) it is possible to obtain the

compatibility equation,



z

.55....751+ my = a"! (h)

At each point in the plate Eq.'s (l) and ()4) must be satisfied.

0. B. 1117 derived a single differential equation in terms of a stress

function, ¢(x,y), which will satisfy both the compatibility conditions

and equilibrium equations. The stresses are determined by the follow-

ing: a
u.

=‘g—3d-V, W=§X£+V9 Wiv=-§—xg4‘; (5)

where Y(x,y) is the potential of the bow forces.

The Hoohe's law relationships (2) are substituted into the compati-

bility equation (h):

231%;-Vo-y + Each 3—1[o--;:-1/c; +E«€]=2(1+;/)§;y (6)

It is advutageous to introduce the equilibrium equations by forming the

st- of the derivative of the first with respect to x and the derivative

of the second with respect to y.

2—? ”Ere +43%-
£95.23 +£75.51.” 251+=0

°’ va=_[aax +95%%+%¥1T

In.“ (S) and (6) can be combined sothe term containingT:yis elimi-

(7)

mated.

51??” + E«£1 + 5715*; was.) - «leg—3gag—+3

Th1. IWMiesto

(«$14.+§?)[dx+d’+fqrd+(1+1/)[[3%(—+§QY =0,

In terms of the two-dimensional Laplacian operatorv2 this can be written

V‘[r+o-o—+o(E€]+(I+‘/)[%§- +93%, =

Substituting the expressions given in Equations 5 for the stresses and
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assuming body forces can beucxpressed in terms of a potential function

“1.1) the equation can be written

V’4>+Eacv1(‘+(z—V) V2V= o (a)

If the body force potential 1.: harmonic, the equation becomes

W+ Ear V‘é‘ . o (9)

and if‘i'iti‘additifdn"iteniperature changes are negligible, it becomes

V‘tb = o (10)

where in Cartesian coordinates, 9 +47

’46 a

Vl’d’ = $79 +2999y=~+ "a y ‘I-

The solution . of a plane stress problem, when the body forces can be

expressed in terms of apetential, thus consists of finding the stress

function fl which satisfies the appropriate one of lqfls (8), (9) or (10)

and the prescribed boundary conditions. _

As noted by Bakelnikeff (1956) , even in a thin plate the stresses

vary somewhat through the thickness . The two dimensional problem

formulated here, strictly speaking, applies to the averages through the

thickness and this is. often called a state of generalised plane stress.

For a state of plane strain instead of plane stress the governing

equatiens have a similar formulation . The appropriate equations are

obtained by replacing a! by V/(l-ll), s by l/(l-Vz) and 0( by (I (1+1!) 1.

has (2). (5). (7). (1) and (9).

Hi and? are the components
 

of external loads per unit area

acting on the boundary and (I and 5

are the direction angles which the

normal nabs withthe x and y-axes

respectively, then neglecting bow

forces

  ‘7X!
Figure 2.1 Boundu-y forces



X: 1032 + M Ky

“1‘72 mm} + )7 73.3 (11)

where

= cos 0:. 3 731 = coo-{3

In terms of the stress function the stresses on the boundary are given by

Xflfl,5.”ii—3%,}, Y=W~°§$ri§$£ (12)

Introducing coordinate axes s and n, tangent and normal respectively to

the boundary, the boundary conditions can be written

X= %:$1‘3§"* xlafifé z 3'J(§§)

7:.- egg? 37%;}: a -33“;5%)

These can be integrated along the boundary

é—f =- - IYou i (if).

3435-- W + at.

... sat- hes-e
. integrating along the boundary yields

4>Jasmin” whoIYests + (i?))(7-in (fines) + 49. (15)

where (our -g;3, 51M: -

substituting into the normal derivative of ¢,

#= §$+va

g9; :-— CosxfY4; +51» or]X45 +(@f’kosmfigg)33nd (i6)

Iqfls (15) and (16) determine ¢ ande~9- at every point of the boundary in

(13)

(1h)

terms of the boundary stresses 1, I and the constants of integration

(%%)a,(%3 )Oand ¢°. These constants of integration m be chosen arbi-

trarily since they do not appear in the expressions for the stresses.

If the constants of integration can be chosen so ¢ is symmetric

with respect to a line of physical synetry for the plate, then

Eggs) 2 o , a, (v‘dmgw : o (17)



for points (x,y) on the line of symmetry, where n is the normal to the

line of symmetry.

The problems herein considered will have boundary conditions as

given by Equation (17) on a line of symmetry of the body and of the

form

u”’ = 5am), 1%” = flow) (18“)

which follows from Equation (114) or

WW) 313 (Km) 9 1 #3212: F (m) _ (1810)

which follows from lqfls (15) and (16) on an outer bomdary. The func»

tions f1, f2, f3, and fh are valid only on the boundary and could be

expressed in terms of the single parameters 3 n is the outward normal.

For problems with displacements specified on the boundaries the

Iavier Equations should be used rather than the biharmonic equation.

This pair of coupled second order partial differential equations for

plane stress conditions, obtained by replacing the stresses in Equation

(1) with expressions in terms of strains and then substituting deriva—

tives of the displacements for the strains as given in lquation (3). can

be written:

171E37I7[Z%+(’V)
‘a_1ay +"*");§‘5‘9’]+X=0

W[<a-V)§:~g +21? +(;+V
)9_1]+W

(l9)



III. DERIVATION OF THE DIFFERENCE MMTIONS

Though analytical solutions have been obtained for certain special

cases of the biharmonic boundary value problem, the use of approximate

numerical methods is often necessary. Finite—difference methods are

readily adapted for solving the problems with high speed computers and

attention will be directed to these methods.

The governing partial differential equation is replaced by a

finite-difference approximation. 1 rectangular mesh is superimposed on

the region and the intersections M

of the horisontal and vertical

lines inside the region are /F

called nodes or mesh points. / 12 fl

Boundary points occur at the

intersection of the mesh lines \

 

 

 

 

            J

:x

 

with the boundary. It is

convenient to use a uniform mesh , Figure 3.1 Rectangular mesh

  
spacing, say h. it each interior point the function ¢(x,y) is replaced

by an approximating function U(P), where P is an interior mesh point

(prp) . The function U(P) is defined only at the mesh points. Discreti-

nation of the problem is accomplished by replacing the partial differen-

tial equation in term. of ¢(x,y) by a finite system of equations in terms

of U(P). The equation for_U(P) is given in terms. of the values of U at

neighboring points. Thus the problem is reduced to solving a set of

simultaneous finite-difference equations .

Three different derivations of the pertinent differencexequatione

will be considered. These are based on Tyler's series, integration

and a variational formulation. Each has distinct advantages and contri-

9
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butes to a better understanding of the problem.

Tiler Series
 

Let f(x,y) be a function of two variables, which is continuous in

the neighborhood of the point (a,b) and has continuous partial derive-a

tives up to order n in the neighborhood of (a,b). The Taylor's expansion

of f(x,y) about the point (a,b) is given by:

ht

fix,y)=f(a,s)+(fi (aw+fyeb))h+(&.(a,w + 21361b)+fyygb))27 + ' ‘ ‘ ‘ *7?»

 

 

   

 

'here K» = :7” ,X+,,)f(a+a,hb+e/1) 05902“

X=<3+h, J— 57‘" 4'7

and subscripts denote partial

derivatives . In the region of the 8 2 6

17 Plans where a solution of the c; 3 o (2):? I 3‘

biharnonic equation is sought, a

nesh point (raga) will be called ’0 4 ’2

a regular point if the neighboring +11

points shown in Fig. 3.2 are all Figure 3.2 A regular point

interior or boundary points of the region and each point is at a distance

h fron the adjacent points shown.

A Taylor's expansion can be written for each of the points in the

neighborhood of (x0970) and these expansions can be combined to find

difference quotients corresponding to an partial derivative with respect

to n or y.

Consider

U: = U.*MLB+(W‘.%1+(U£)03;+ (”1"")07I‘f;+ +(onF)JJT(+ (UX6)OIZhT

U3: uo—(W0h+(UX1)Q-h!-‘i(W90é; +(UX)0::(Ul‘llfi+ (UX‘)ee-£6!

Ufl‘U’: 'ZUo+(Ux‘)a%f +(UX:)o-2'7h; "A.

 



11

*

where (Ux6)0,1 a: Uxabc +9h,y ) O i 6 f 1, and M, f max (UX‘IIJ alurg

the line between points 1 and 3

a

5-:(UxéL‘5. "Z?“' (9917” (WEN)IT;

92% “e 6W"

U5: Uo+(U,)o(2A)+ (ux) igi} (maxi/1L (U

U1=Uoo)+‘(ux)(2(m)+(UX)021 (UP)322.““(U12’3“ «)5;er

U+U9=2U Hedi—1'iuxI)3:*”+ #Me

where M2 5|Ux‘(5,9' Subtracting (+(U1 + U3) from (115+ U9) we find

Uf+ U7-LI(UI I U3) +6Uo + [3“TMa :(aJfl).

Thus,

(Ux’),=i‘I[U5+ U7 +6U. - 9U, — ‘IU,] - légiflfi (20)

Similarly it can be shown

(uyI)=—I[u +u, +6U LfU-qu]'136—TILM3 (21)

where 113$ maxlUytb 11. For 9 X1; y, consider

U =u + (ugh (UIJHHKUX)+2(ny)p+(Ug)9%1]+ I—+2-.>’.§u

+I..377 Uo%{+Iex 91).er + In «tafwgogj:

u,.= U. - (U006 (Uy)L+[qu:)+2(UI>+ (:uy)]2, (+39: 3—,)U 3:7

”37‘+3?)+Uo‘éf; “)5U051+(39X + Dy)‘ U0Io Q!

U“? U’O‘ZIUO = [(Ux‘)‘, +2 (0+ij) (Uyl’a)i]%.hk+ [(UI‘ll”. 4(UX331)¢ +‘(UX(1)9

. he

+‘I(nys)o+(U90] if + gig—'7 M,

where Mhsmaxhlx”MO, 40 n + m = 6. Similarly,

Us* Um ZUD‘: [(Ux1)o+2(ny)e+(Uy‘lfifiHHUx") flux?)0‘01'6(sz7)

“WWW (oUII’IiJZ-fivf557”M5

where 145.< maxlanym'812, n + m = 6. Adding we find

Up U8+ U,O+ U,2- ‘IU :2[(me))022h!+ (UxI)2—-h:+(+(2)Uy57+“HUME

6

+(Uxay‘)ofi+ + 2'2"?—"'"M6

 

 

where M6 < mex|ux.y,.|, n + m = 6 along all lines through the mesh pomt.
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Substituting from above

(Uny‘L' ”I'I'IIUvUe +Um+Uu+ IUa~2ILI+IlgIIJj+L§g ~_- léfi‘M‘ I (22)

Hence '1‘ I 9.

-, ‘7’?) = eafi‘tzfgefifiro

ia approxinated by

(0x90 +2”1%),“U190 9"MUI+UI+U9+ Lin "' 21"”? Us" qe“ Um)

, . ~8(U, IUZW5 +U.,) +on,J+R,,—-—o (23)

Ihere R7, LS 'fijé-th‘ .

Kantorovioh and mm (1961:) give a, _<_ $9- 112)! where l in obtained by

replacing all the derivatives of higherarder in lode (20) 9 (21) and (22)

by their maximum absolute values on the meeh lines Joining point 0 and the

surrounding pointee , '

The remainder 95 providee ‘a bound for the di, ecretication error, that

ie, the difference between fixer) and the truncated eeriee approximation”

U(n,y) at the nodal pointee Thin indication of the order of the approxi-

nation in a major advantage of the Tyler" e eeriee nethod for deriving

the finite difference equation.

Inflation Techigue _

The use of integrals for the derivation of finite difference equa-

tions has not been need an extensively as the other methods. Verge (1962)

providee a general introduction to the method and indicate: it has been

need in nuclear reactor design computer. codes for several yeereo Use

of this method for the biharmonic equation is made by Griffin and Verge

(1963).

The aatiefaction of the partial differential equation (8) at every

point of a region R is equivalent to the satisfaction of the integral

equation

IVV1(V2¢+BV*C€)J‘4> :- 0 (21:)

'R
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where B = (1mV), C -CKE, for every arbitrarily chosen subregion Ai'

Hence, for any arbitrarily chosen subregion Ai bounded by 31, Green's

theorem gives

2 )de 3953- ‘ I Cfl'fi-o
f/v(v2~<p +BV+C§ JV “MWIBW Id - <25)
Hi I

Discretization is accomplished by substituting a set of discrete

quantities U1, (1!- 1,2,3,--—m) for the values of the continuous function

¢(x,y) at the mesh points corresponding to i - 1,2,3,--m. A major

advantage of this method is the eimpli city of the treatment of irregular

 

  

     

mesh spacings. In Fig. 3.3 3 1a

the mesh Spacing to a point P1 (ha r.§%&_nm1

I

adjacent to a general interior 3 hoa hm , :3 :33 lg»

o . 0 i v

point P0 is hoi. The subregion E '

hot/- “‘39:?"F1H

about point P0 has sides sci, °

if.

1 = 1:213:40 4 (

(a) (B)

501 = 503 z %( ho2 + hot) Figure 3.3

(a) Unequal mesh spacings

_ _ 1 (b) Subregion £0

Central difference quotients are used to approximate the line integral

in Equation (25) about the subregion A0 of Fig. 3. 3 (h)

I30:___. ‘59!

:(VZUI VUs )7;— :[BW - V0 ) + C(é‘,- $0 )] he! (26)

where V2 U1 is the value of V2 ¢ at point P1' Approximate values osz Ui

and V2 00 are obtained by using Green's theorem again.

ffsz, dx dy== ag’ds (27)

an

F

The discrete value of‘v'7-Uo is taken such that

2 =_L. aLbd _ J. . ’§“' 28

VU°H£BII‘130‘H%:(U U°)TT2' ( )

A0 = (801)(502_) = (he; + h09)(ho[+ h63)/1#
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At point Pi as given in Fig. 3.2

, .S‘.I;

V2U;=‘[(Q5-" U)?, +(U4‘-'U')-§M-+(U, U)??-5o +(U”! W6II2]H,

WhOrO H, = (155")(5'55)

For the general case

,Z—fV‘U V‘U>iii= if;iigu,Uy-MML] ifm-Mg] (29)

If the mesh spacing is constant, Equation (29) reduces to the form

of Equation (23).

‘The evaluation of the right side of Equation (23) requires 12 addi-

tions and 3 multiplications. (Ihen the mesh spacing is uniform.the

multiplication by h"2 is not-necessary.) The evaluation of the right side

of Equation (29) requires 29 additions and 25 multiplications if the

ratios giéa. are computed once and stored. For the IBM 1620 the time

required for 10 floating point additions is equivalent to that required

(for one multiplication. Thus on the 1620 Equation (23) could be evaluated

for approximately 7 mesh'points in the same time required to evaluate

the right W use of Equation '(29) for a single mesh point. Any

iterative method or solution of the finite-difference equations requires

the evaluation of one of these expressions at every interior node at

least once during each iteration. Several hundred iterations may be

required. The rate of convergence of an iterative scheme which uses

Equation (29) would have to be 7 times the rate of convergence of a

scheme which uses Equation (23) for the same number of mesh points before

Equation (29) would be preferred. In some problems it is possible to

reduce the number of mesh points significantly through the use of

arbitrary mesh spacing. Regardless of whether it is possible to

establish the superiority of Equation (29) over Equation (23) for use at
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every point, Equation (29) provides an excellent method of handling

irregular boundaries and the changing of mesh size from one subregion

to another within R.

Variational Formulation

Application of the variational method for deriving finite-differ-

ence equations can be found in Courant and Hilbert (1953) and Forsythe and

‘lasow (1960). Ehgeli, Ginsburg, Butishauser and Steifel (1959) show its

use in deriving biharmonic difference equations.

The variational formulation of difference equations for plane

elastostatic prdblems is especially convenient for prdblens given in

terms of two displacement functions. Griffin (1965) has shown the

advantages of this approach. The basis for this derivation is the

Principle of Stationary Potential Energy which states: Fran the set

of continuously differentiable displacement distributions which satisfy

the given‘boundsry conditions of an elastic body, the displacement

distribution which actually occurs is the one which makes the potential

energy stationary. n

For a plate subjected to plane stress, take 1,! as the body forces

per unit volume and if the surface forces per unit area. Then the

strain energy V, per unit volume is

V: fiféf+ £37 + 21’Exe'y + 11:12! ‘6};

The strain energy per unit volume can be expressed in terms of displace~

ments (u,v) if these are continuously differentiable functions of (x,y)

by substituting

5x2??? €y=§a§ra Ey=(%1+35%

v= m%a[ei->*+er+~2~—%i + "flee—Ir] ‘3”
‘1 change or variation of total strain energy will occur'with any arbi-
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trary variatiu of the displacements 8n, 8v,

“(7 = Sffdexdydz = f/ SVdXd)’

where for convenient?” the s-dineneio: is taken as one and it is assmd

that v does not vary with s.

The virtual work 6"“;" done by the external forces under the virtual

displaoauts Sn, {v is given by

5 We“ affix“ +Y5v)Jny+ {(5582: +YJrHJ

the potential energy 1. defined ‘

Gaffvdxdy - [fix-u +Yr))clxdy--f(Xu+YI})JS (31)

Applying theRprinciple of stationary potential energy and considering bow

forees ad surface forces constant SQ = 0

A m =1)” svelxdy - [{sz +Y§r)Jny ‘JKXéatY-Eflda’ (m

This states that the-Zion‘s in strain energywill be «mil to the mark

dementhebetbyentenalforoee for an arbitraryvirtnal dieplnoe-

meets (n.8v,.fh1swillbetrneonlyif w arethe actualelastie

displse-snte predued by the external forces. .

the usual procedure in the calculus of variations is to consider

the eonditions imposed on the integrand of Donation (3!) and thee

derive a lineu- partial differential equation of the form

W} = 0 __ (33)

there “(a,v). Ilse additional bondary conditions arise which are

called natural boundary conditions. Instead of finding the differug

and mum of the fern of lquation (33) and then act-emu. emu

differences the variational form of location (32) will be solved

snorioany. There are two major advantages of this approach. first

the nestles v which satisfies Iquation when: automatically «um

thenatu'alboudaryoeaditione sethat fin-thereonsueratieneffie
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natural boundary conditions is not necessary. Second, the discretization

of the problem leads to a linear system of‘equations that has a coeffi-

cient matrix which is symetric and positive definite. These relation»

ships are important because they are part of the criteria for the

convergence of iterative methods for solving linear systems of equations.

(See Appendix A.)

For a plate in the region R of the xy plane and unit thickness the

total potential energy is

Q- 2,,,4,—5—~[/M33‘ ”fa-351+“ V){(§%)+(%19,}+ "11W; #5?an

 

 

 

 

      

-[/(querMny - 2’3 (23, affine (3“)

The stationary value of potential energy is aSmininum for stable

equilibrium under specified boundary conditions.

a rectangular mesh and its dual

are imposed on the region B. The y

dual mesh lines (indicated nith ‘ i If

dash lines) are' parallel to and b—[w — T __ t .

spacedhalfwaybetween the lines —.%--.._§-- .:L ,__4:__

of the primary mesh. .L J. : :

_-l__._1_..‘.... '_...J_._+.....

The variational. problem : i : :

Equation (32) is given in tons L—E—.._-.E}.-i .é. “1r“

of a continuous displacement ' l ‘ 1 4-”

distribution u(x,y) and v(x,y). Figure 3.14 Dual meshes

This is replaced by a problem in which the displacements have discrete

values “1 and vi at the mesh points. The potential energy of each mesh

point is approximated,and the sum taken over all mesh points represents

the total potential energy 0(u1, v1) . The problem is reduced to finding

the unknown displacements “i and 7i at each node which will make Q(ui,vi)
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stationary. This requires

‘1’: =0, 3’-”233"-“~—”

“‘ . (35)
g 80’ Ja‘,2,3)..~——77)

'3

where n is the number of nodes at which “i is unknown and m the number

where vi is when. Equations (35) represents a system of n+m linear

difference equations. ,

hgeli, Stiefel et al (1959) show that a variety of quadratic

functions may be used to approximate the potential energy. The

polygons formed by mesh lines and dual lines will be called cells.

A primary mesh point will occur at one vertex of a cell. A regular

interior point will be the? canon point of four adjacent cells as

shown in Fig. 3.5. The potential energy integral (31.) is approximated

for each cell under the assumption that

 

 

the functions a and v and their 20

h.

derivatives are uniform over the f -----. -2- "I

l

3. “all 5 1 hol L

cell. The functions take the ‘ i i

l

w l

discrete values at thenode r0. L__-______j
. . . h...

The derivatives are approximated a;

J»

for cellB by Figure 3.5 Cell 6

. 9X 30’ 5 y - hoz ‘

Th0 approximation for the potential energy is

Q-OZIgflEW[V(‘kJ’*%)+<I-w{(
lfi);K-Z/sfi+__“‘4 .4164?

‘fiTflb-qr-“h” -(Xu,+YW'M“:(Xusdehath
(36)

The last term is included only if P0 is a boundary point. At a boundary

point specifed derivatives of u and v are introduced in Eq._ (36).

The potential energy at the node P0 is the sum of the potential

energy in the four cells adjacent to Po
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go - °o21 + Qo23 + 0.31. + Qohl

and the total potential energy is the sum of the potential energy in all

 

 

cells

Q s' ZQigk

The difference equations are obtained from Equation (35).

Consider all the contributions 5 2 5

to the potential energy q which Q» \\ \Vxx- --\ - —

3 M\\ K V!
involve the displacements at a \\ x

\ \

single mesh point no, v0. There Sh §_:

are twolve cells as shown in Fig. J \1

1-...-- .9
   

3.6 which would use “os'o at a

regular interior mesh point. Figure 3.6 Twelve Cells for P0

%%=nr%=r[“"”btfl”(-“fi‘+1f§?)i(b..+h.)(-‘%,%“45%) m,

we‘i’mflé-u-ufli-ACH,‘ 0

'hm 1. - BLBquz‘ffioz/ig +5.35... +I‘0'f1’01]

9%? 7%["'“’h’%m(%+%l+wwl%+rf§ o.)
_ f' “#WH “7"“. ‘".)]+Kfl.=0

set. the relationship to the Navier Equation (19). when the solution. of

the finite-difference equations (37) and (38) is obtained, stresses can

be approximated using an area weighted average of the stresses over all

cells which have one node as a common vertex. The stress components in

terms of displacements are

“)7 = 77-57%}; ”if

GP 175173 [-3-3; +1! as] (39)

-_E_. 9 2r
Ki‘zmvfl’alf -r 2x}

None of the problem solutions included in this dissertation use

Equations (37) and (38).



IV. ITERATIVE METHODS

_- 1 simple example _ 1V

 

 
 

 

 

 

 

    
 
 

considered by Timoshenko i - Q s:

aInd Goodier (1951) will 117—6: LIP P

illustrate several _ 1

details of the solution. 0 “5:”

Given a unit square E

plate which is sub- ._L ‘1‘!" ‘ . E1}

Jected to boundary . .5}E; f

loads as shown in Figure 11.1 The model problem

Fig. 11.1, find a numerical solution which approximates the stress func-

tion “1.7) on the region of the x,y plane occupied by the plate.

5“ l

.1 .9
!

I ‘F
‘

1Th. boundary r--- 41:1 - —-'le— .151... ..

l 1

‘ ' i I 1
Min 'fnL iii—#15:;—

. I

conditions are of :

I

I

1&0- __,_fl.* U11 U12. Uni UH U15 flL _ '53-,

6
"
o 

-
.
.
-

-
.
.
.
.

.
.
.
.
J

the form given in

Equation (12), but

are readily trans-

forud into the

form of Equation

(18) which leads

 

 

_ 31 _._ £30 U21 U11. U23 1.23.]- U25 {16""1627

     5:29-- {to U31 U32. UL L131- Us!: A
  

!

. ' . 1

1;“ 159/ 1%. i345. 61.44. _151;5_ .11‘.‘ E

I 3 I

 
to the problem "’i — _ .

statanant .. ......1&1_ €52. _'8'53_.1553._1§5.£ _._. .. ..

VWWQ): 0 (1:0) Figure 11.2 lesh for the model

problem

for o<x.<a.,. ~15a<41<J§Q

subject to boundary conditions

¢(s)=f<s) f 9
I, I! orxyon } (1‘1)

$251.1): n(n,y) the boundary

n

20
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A simple way to introduce the boundary derivative is to solve for a point

one mesh space outside of the boundary in terms of the derivative and the

point inside the boundary on the same mesh line, eg,

31=U11'+Vo1(2h)’

where Uij is the approximation to the stress function fl. If the constants

of integration are selected so Equations 17 are satisfied then, by symmetry,

= U i=l,2,3,—--5
341 21 and 351 = ”11

The partial differential equation (40) is replaced by Equation (23) at

each interior node.

”11:1/20[8(U12+U21+f1o+fo1)'2(U22+f02+foo+f20)'(U31+U13+81+810)1’

etc.

The system of equations can be written in matrix form

A E = E (42)

where W , 1

.4(f01 + £10)“ .l(f00+f02+f20) - .05(g1 + 310) U11

.4 f02-.1(f03+f01)-.05 g2 U12

.4 f03—.1 (f02+f04)-.05 33 U13

.4 fog-.1 (f03+f05)-.05 g4 Ulu

.4 (f05+f16) ~ “1(f04+foe+f26)'°05 (gS + 317) U15

.4 £20111 @0140; 1651;23505' ' ' - 31;;

-.05 £02 U22

-.05 £03 y_= U23

E_= -.05 f0“ U24

.4 f26-.1(f15+f35) -.05 (f05+ g27) U25

1'4 (f30+341)‘°1(f20+f40+842) "05 (330 + $51) U31

-4 842 U32

.4 gg3
U33

-4 8H4 - 03k

'4 (845 +f3e)"1(f26+f46+844) ‘°05 (355 + 337) . _Uas .    
and



(
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F
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1 a.h .05 o o =.b .1 o o 0 .CS 0 o o o.I

01 ”oh cl 0 0

I

I

I

I

0 01 “oh 9]. O I

I

O 0 01 .013 91 I

I

IO O 0 01 ”all

0 oOS‘oh 1 “oh

0

~.h 1 «oh .05 o

.05 -.h 1 «.1. .05

o .05 -.h 1 -.h

JD 0 _ o o .05! o o o .1 -.h o o .05 -.h 1_J

The original boundary value problem, Sq.“ (110) and (141) 9 has been

I

I

I

I

I

I

I

I

I

I

I

i I 0 01 ”oh 01 o : 005 “ch 1 ”oh 005

I

I

I

I

I

I

I

I

I

I

I

O

O 0 O 005 0 0 0 c1 ”all e].  
replaced by the problem of solving a system of. linear algebraic equations

as given in matrix form by Equation (112). Direct methods have been

used for solving systems of linear equations. Recentureviews of these

methods are found.in Fox (1963) and Forsythe andfflasow (1960).

Faddeeva (1959) provides a detailed account of a variety of methods.

birect methods for problems which require a large number of mesh points,

several hundred or even several thousand for example, are rarely used

for two reasons. First,if Gaussian elimination is used it is necessary

to store all the elements of matrix i. For N mesh points this requires

the storage of H2 elements. Iterative schemes require the storage of

only a small integer multiple of N such as 3N or SN. The second
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complication arises from the roundpoff error in the direct solution of

some systems of linear equations. Iterative solutions have the advantw

age of being self-correcting and round—off error is minimized.

If the non-zero elements in 5 are sparse and arranged in bands

parallel to the main diagonal” the storage requirements for a direct

solution may be substantially reduced. Comock (1951;) gives an

improved method for the direct solution of the biharmonic equation.

Equation (112) can be putibged into subnatrices as indicated by the

dotted lines. The subatrices have a more convenient form if a scalar

factor of 20 is introduced.

  

20;g.20§

I- 1 - - - —

!§3.[. 91 El

2052 = 2.!2. 92 = 1.12 (1‘3)

LIE! .313. _§3_    
where E is the m unit sub-atrir, n isthe number of interior mesh

points in each row. The 93 are the column subnatrices composed of ale»

ssnts U13 along one row of grid points. The E]: are the corresponding

eolmn subnatrices of 20 1.

30-8100- 182000—

-820-810 2-8200

gal-82041 a. 02-820

01-820-8 002-82

1.001.820 _0002—8    
For the general case of a rectangular region of n columns and p rows in

the mesh, the submatrices g, _B_, l are all nxn if the difference equations

are written for successive mesh points starting at U11 and sweeping across

the first row then from left to right across successive rows.

t

Cornock
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shows how to determine the elements of a matrix Q such that

EAEKEE-Q

reduces to the form

311912

      

0 U

921 9.22 0 9.2 9-2

931 23. r 9., - 9., (mo
.. _ \ ._ ._

.. _ \ .. -

.- _ \ .. ..

.991 992 in -99. -92.

The system

911. 9-12 2:L __ 9-1

921 922 E2 92

is solved by direct elimination. Iith g1 and 112 known, 113..- ”lip can

be found by back - substitution.

One alternative to direct elimination is the ”relaxation“ technique

of Southwell (191:6). An initial solution is assumedst the points of the

grid superimposed on the plate. Using difference equations a new value

is computed at each point and residuals are determined at each point.

The largest residual is identified and the initial guess is modified

systematically so all residuals are reduced to zero. This procedure

has not been used much for digital computer solutions, because it is

most effective when the succeeding modifications are Judged by a

skilled practitioner. To date the logic of these decisions has not been

efficiently programmed. However, some aspects of this type of decision

making have been incorporated in direct search methods as discussed by

Hooks and Joevis (1961).

As a second alternative, better adapted to computer solution, consis-

der an iterative method. Equation ([12) can be written
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(5-D 11+ 1 i=2.
(145)

01'. g=(;-_l_)y_+g

In initial vector approximation _U_(°) to the solution 31 is selected and

a sequence of successive vector iterates Uh“) are calculated using

Eh”) : ($- -Amfin) + .F. m > o . (1.16)

This scheme is known as the Richardson iterative method (or method of

simultaneous displacements, point Jacobi, or point total—step method.)

See Varga (1960). It requires all elements of the vector iterate U“)

for the computation of 9-01-11) . Other iterative methods introduce the

new values of the eluents of the vector as they are determined, and these

are used in the computation of successive elements. Methods of the

latter type use only half the storage required for Richardson’s method.

Iterative methods are characterised by the repeated application of

a computational scheme which yields an approximation to the exact answer

as a limit of the sequence of successive vector iterates. 1 basic

question which must be answered affirmatively for any useful method is 3

does the sequence of vector iterates converge? To answer this an error

for each vector iterate is defined

Eh) = Eh) _ P. n_>_ o

Subtracting Equation (I45) from (I46) we find

EIm-tl) . (1:. .. 5) 2(3)

Repeated application of this relationship, starting with the initial

vector 1.1“) gives

. ems-(14)" 155°) n> . (m

considering a single element 310') of 30-), if the H; 010!) . U,- it is

necessary that $111“) and 135031“) exist and 31.313031“) as 0.

This condition will hold for all elements only if
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$134; - i)‘ of” = 9 74 a _. (us)

for any arbitrary vector E (c). Q is the null vector of 1: elements.

Iquation (ha) is valid than only if

gig-we - i)‘ - .9. (1:9)

where 9 is a square null matrix. . '

hilne (1953) shows that Equation (19) is the necessary and sufficient

condition for convergence of an iterative method and this is assured if

all the eigenvalues of the matrix 2:, e _I_ - a are less than one in absolute

value. _ ..

Iindsor (1957) has shown by derivation of the eigenvalues of 21 for

a rectangular plate that Riehardson' s method is not convergent for the

biharmonic equation. In the remainder of this section iterative methods

will be reviewed and those’which are especially useful for solving the

biharmonic equation will be identified.

a. Log-:31 - Iterative lethods .

The general form of Equation (1:3) for the biharmonic difference

equation on a rectangula- region with n colums and p rows of interior

mesh points is of the form

ii-:_ , , so

where l is a m: sparse, non-singular matrix, Q and g are column vectors

of 1: components and k '. up.

The derivation of the matrix form of some iterative methods is

simplified if we tales

A a Q 'I' 2 + E . (51)

where g is a strictly lower triangular matrix with the elements

‘13 (i) 3) below the diagonal of _a_ and all other elements zero. ]_J_ is

formed of the diagonal elemmts ‘ii of _1_ and g is a strictly upper
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triangular matrix with the elements ‘13 (i < 3), Q, 2 and g are lock

matrices.

Richardson' 3 Method

U(m+l) - - - (52)

where 2‘1 is the inverse of Q, a diagonal matrix with elements l/an.

For the model problem, Dal, n25, ps3 the point value is

Inn)” on) m) UM) ( '27)

U33- =53 MU}?3+3?3+U +£33.31.UI .+-U ”"~ +U-,333m3} mH

+Ui+:}n]- .05[U”3 +Ubj;z+U,(;2j«/-IJMafia], (53)

1525.7), Isl—P.

Though the introduction of exterior mesh points may not be the best. way

to account for the normal derivative boundary condition one advantage of

this approach is that the term F13 will be automatically included when

the calm subscript of an term is not within the range 1 to n and when

the raw subscript of any term is not within the range 1 to p. Hence the

1'13 can be dropped from Equation (53).

Gauss-Seidel Ile___t___hod ‘

Varga (1962) identifies this also as the Liebmann method, point

single min method and the method of successive displacements. The main

difference between this and the Richardson method is the i-ediate intro-

duction of the adjusted point values into a single vector iterate. The

matrix form illustrates how this is accomplished.

(2+9) 2-21-11 9.

2“”) = (earl i—(aurl s i“) (51‘)

For the example problem, the point values are computed with

Us”:3 ru-+u33:;’+u3‘::,’311:33-33:23:(1.31:7:

33-3333;33 can-5.33:3" 333" L332;-U313; ‘5"
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Here too, the 1'13 will be automatically included if point. values have

been provided on the boundary and on the first exterior mesh line. ‘

Starting atUil and sweeping along columns successivelyche required

(n+1) iterate values will be available as specified by Equation (55).

Boundary values computed initially remain fixed. Exterior point

values can be recomputed at the end of each iteration.

This method is convergent for the biharmonic difference equation

but the rate of convergence is so slow that it has limited usefulness.

for a problem with 66 interior mesh points 1098 Gauss-Seidel iterations

satisfied the same convergence criteria as 22h iterations of the

successive overrelaxation method.

Successive Overrelaxation

This is also known as the extrapolated Liebmann method, Parter

(1959) . systematic overrelaxation and the extrapolated Gauss-Seidcl.

Young (1951:) proposed an acceleration of the convergence of the Gauss—

Seidel method based on an examination of the changes introduced in a

given vector iterate and then introducing a multiple of the change at

each point. The point value obtained by the Gauss-Seidel method will

be designated 31““ ),1 5 i 5 1:.

Then

Uimu) ___ Uilez'. ”{Uilan Ufm} : ‘ I _ 00) ugh»)+ w Uitm-a) (36)

The quantity 6) is the relaxation factor. For overrelaxation, l< “<2.

‘hen e a l the method is Gauss-Siedel. The matrix representation must

account for the prior application of Equation (56) at all preceding

points. Hence,

D Ulm0+ §LZ""”')= f _Hylm) (57)

U’”*” = UW-tML]""21!W) (58)
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Eliminating Em” between qu's ,(57) and (58) we find the matrix tom

of the successive overrelation aethod

(Q+w§)g‘”’*" =[u-w)p- tutu Um-t cuff (59)

The component U13 of the vector iterate at a point where 15 13 n,l g j g p

is given by

“a, b”) mu “fl its“) 3+1)

(mH), (m) Um(7n) (7») My) he)

FUH’jH:-bUl'flfltl).Q 5(U2-2J +U51-2+Ui+z,,+Uy+2UiJ (60)

The rate of convergence of Equation (59) depends on the value of a).

The optima value of w is given by the formula

2
w = —-—————

b [+1/ I .. 92. (61)

where f3 is the spectral radius of the point Jacobi. method.

a," =. IE‘"’II/||§“”"’ll
62

m «° = w A»: N. _ _‘ ’
Any nor. of the error vector 2 could be used. One readily cmpnted 1.

“Em H= 2:: himl a , i (see Appendix A)

a canon proc;dure for the deter-nation of the relaxation factor is

to set it initially to one; and, after a number of iterations, say 100,

use Dee's (62) and (61) for calculating a not w. Subsequently m can be

recoaputed every ten or weety iterations. Forsythe and Issue (1961)

pp. 368-372 describe two alternative approaches and indicate that the

determination of a good estimate of Us early in the computation is an

investigation in which there is continuing interest e

The relationship between the estimated spectral radius and the

nmer of iterations required for convergence of the model problen of

Fig. h.1, p.20 is given in Fig. ho3.
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B. lethods ofw Iteration

The iterative methods considered thus far used an explicit formula

for the calculation of each component of the vector iterate. Is it

possible to use direct methods to find s block of components of the

vector iterate? Consider the model problem in terms of submatrices,

Equation (13). Taking arbitrary values for the column submatrices Eh

and g3, the components of 32 can be determined by solving

E 92 (“1): .122 - .3. Hi ('0 - a 23‘" (63>

share 92 a. {U21, U22, 1123, Ugh, U25}. Since a is an (nxn) matrix,

substantially smaller than _1_ which is (Ink) the direct solution of

Equation (63) will not require unreasonable blocks of computer memory

and is an acceptable procedure. Using this method the point values of

the vector iterate are not determined explicitly one at a time; instead

11 components are determined simultaneously. Hence, this procedure is

called the simultaneous displacement method and is classified as implicit.



.
.

v
.
I
V
.

'
1
4

.
"
1
1
?
»
.

t
l
l
l
‘
l
v
r
'

v
i
.

I
l
l
-
I
l
l
s
!
!
!

I
!
I
‘
l
l



31

The matrix form of certain block methods assures faster average rates of

convergence. See Appendix A, Section 5.

lrms, Gates and.Zondek (1956) and Keller (1958) have investigated

block methods using the components of the solution vector on a line as

the basis for partitioning the matriximo For the biharmonic difference

equation, "two line“ schemes and the alternating—direction implicit

method have been studied and appear to have advantages over other block

methods. See Parter (1961A)

 

The AlternatingéDirection Implicit Method

Peaceman and.Rachford (1955) found that the rate of convergence of

a "line" method could.be substantially improved if after sweeping all

rows using the simultaneous displacement method and a relaxation factor,

the next sweep of all the mesh points‘was made by columns.

Coats and Dance (1958) derived a convergent, alternatingndirection

iterative method for solving the biharmonic equation. This method is

similar to the alternating-direction method for solving Laplace's

equation proposed‘by Douglas and Rachford (1956). The derivatives in

the biharmonic equations are replaced using central difference approximam

tions

    
  

9X? ~ ij = 8:Ul'j =Uz'J'-2RUUZJ-I +6U _LfUz J-H +UIJJ+l

93V~zLflU1U= 8;sz—Ui-)2J‘PUU-IJ+6U:J-4U?+l)
J+UZ+11J

.2142. u w ”1

2’3 L~IEU 2851 U "'2 L+U" 2[Uz’-I,J +UX+IJ+ 1,.J'l 1.1
X 9‘1 1'“: X J 2J g (J + UHIJ.“ + UH J'H +Ul+')JI”1-UI'U"J‘]

'4

WW) 2-. 5x U23 + 2 5x151; Uz'J' + 3‘} Uz'j

Is shown for the model prdblem, Equation (h2), introduction of the

difference equations reduces the problem.to the solution of a linear
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system in k unknowns—

5
3
>

I
d

l
l

l
’
z
j

which can be written

(5 + 9. + 2) u E

where l}: flij’ [g gjij and L gjij respectively represent the components

of g g, 911 and £11 at the mesh point (i,j).

For the alternating direction implicit method, Equation (1:3) is

replaced by a pair of matrix equations

'<r§+.I.) 9.: (yrs-r2) in:

<r9+r2+2>11=<£~ rs) E+r§

where r is any positive scalar. The iterative scheme in the form pro-

posed by Peaceuan and Rachford would appear

3 +1) 1.1““) = (_I_ - rll g) 31“)+ rlll 2 (6h)
(rm-H H ‘H

(rmi'l 9- + rn+1 .P- + D Elba) '-'-' (I " rn+1 fl) Ehfié) + r.+1 E. 565)

9- - rmH

The first sweep of the mesh is by rows and only Equation (614) is solved

for the vector iterate 9542'). This is an implicit method since all the

components of Eh'w) in one row are determined by_ (614). It is necessary

to retain all the components of pf.) while solving for 6‘99. During

the second sweep Equation (65) is solved one column at a time for the

components of 2“”). The solution along one row or one column is

obtained by direct elimination. Conte and Dames use a factorization

techniquemhich is well adapted for the case of Fig.4.2, where there are,

at most, five unknowns along a mesh line.

The Douglas-Rachford method is a variant obtained by changing (65)

to a form which does not contain E. Substituting for g _t_I_(‘+'/2) from (61;)

we obtain

(rm-l Q + I'mi-l 2- + -I-) E-(mfl) 1’ 2 ._ Haw/2) "° (1 " I.1114-1 9 " rm+1 2) 2(a)
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Coats and Dames use a simplified form not containing 3

use) = “(as ._ rm [9 Hum) .. Q Hm] . (6'6)

The use of Equation (66) for the column solution provides a. Simpler

computational procedure than the one associated with Equation (65).

The determination of optimum acceleration parameters requires

consideration of another form of the system of linear equations. This

is found by combining Eq. (6h) and (66) into a single equation.

2W1) = are; 11‘“) + an r; (67)

where gr c (_I_+ rg)'1[(r§+;_)’1'(;-rg- r2) + r51]

r = (l + marl '(ra + 9‘1 . A

The difference between the nth vector iterate 2(3) and the solution

vector 2 is the error vector 1!“). It can be shown (see Appendix A) that

gun) =_ 5,.“ 50-) (55)

If g“) is the initial, arbitrarily selected vector iterate then

3(0) 3 2(0) .. 1.] and

§(l) . firm 0 firm-l eoeeeefirz oar]. 2(0)

For a convergent iterative scheme Elm) 92 as m 960 , and convergenceof

this method can be accelerated by the choice of rm for each iteration.

However, the relationship of this iterative method to others considered

is less complicated for the Specialease when a single value is assigned

to the scalar r. Then i

g _ 15‘“) 4353‘?) f _ (69)

and the eigenvalues of the cents-Dames matrix gr provide the basis for

detemining the optimum acceleration parameters. See Fig. tub vhich

shows the relationship between the acceleration parameter r and the

amber of iterations required for convergence of the model problem.

Fig. 4.1, p. 20.
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Choice of optinnn values of rm for a square plate has been considered

by Conte and Dames (1958) and Faimatherand Mitchell (1961;). For this

particular geometry the eigenfunctions of Equation (68) can be expanded

in the form

E3) = a sin (pfiih) sin (qfljh), (p. q .. 19 2. °°°°. 104)

Consider an amplification facecr

) = if”

Ft ELI”

If this is substituted into Equation (68) we find

(1 a 16r +3 Se33)?
 

(16 rml))\p,qe1+16rm1r(t§;h,g;) + 256,mlg:3? (70)

where

Sp : sin P3212 , 5Q 2: sini192, h is the mesh interval.

The error associated with the initial vector iterate can be
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expanded in the for.

u—

(O) h-’ (0) ' n . '

E" 2%-97’1?‘ SMOOTH/05m (3/106),
, _

th
and the error vector at the n iteration can be written

(a) d (1») , , . ‘

E5] zg’C”, 5/”(f7NIIISIM (fly ’1’,

where

no = (a)

It follows fro- !quation (70) that Of (16r)! A3351 for all p and

q if r! is positive. Hence, after 11 iterations each compontlt of the error

decreases by a factor

m .

1U: (167')! A?) 3/

if r is positive. The minimum value of (16r) A found from
I X P"!

Equation (70), is zero and occurs when

I

lér = S’s-5;.

This indicates that an appropriate choice of the 1:? can be nade so all

components of the error vector will vanish and the exact solution can be

obtained. Rather than attempt to find this optimum I} , a less conplicated

procedure consists of choosing the r]? which optimise the rate of conver-

gence of the method. _

Consider a slightly different expression for an amplification

factor

 

- -__-_- (I—lérglf’sle 2-

’67'Afz "’ (Hursfiiflz

Since
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'6'; +33? 2. 25,2592.

we find from Equation (70)

fl I16r~7| 2 pl IérM

for all p and q. The analysis of the problem of finding an. optimum set

of acceleration parameters is treated by Doug Lea and Rachford (1956) .

The factor by which the error is decreased after I iterations is

2. a 2

2,0936?) ’67:?) = I:— jyy/MIQ) = l: [2%f:+ 5:?)1]

It is necessary to find the set oer( (=1, 2 ,-—-—-t) giving a

maximum value of 2t which is as 8.311 as possible for (p,q :3 l, 2, 3

---k-l) . The Douglas-Rachford solution treats this as aChebyshev

minimal: problnpwhilo- Conte. &1DCI08 reconend a set of acceleration

parameters of the fora

1611, “((14), X: l, 2, -f-, t

where 0< or < 1. This permits the determination of an upper bound on

2t

l-( -TL

Z. (5'3,, I671)< Titan): [W e 1 (71)

The formal procedure, outlined by Conte and Danes, starts with a choice

of Pt ((1) which permits the determination of the number of cycles of t

double sweeps of the mesh required for the selected reduction factor.

However, the choice of Pt ( or) is subject to the empirical observation

that best results are obtained for or< 0.2. The number of iterations, t,

per cycle is conputed from

t _>_ I + Wee/5:341) (72)

2; = T s X= 52,3,-~,t (73)



37

gives the value of rk for the gthiteration in the, cycle.

Is an example of the method consider a 20 x 20 grid on which it is

desirable to reduce the initial error by a fector 10-6. ”Selecting or a 0.2

makes Pt” 0.01. The ntmber of cycles required is determined from

(Pt)n == 10"6 _ .

Thus, 11 g 3 is the number of cycles. 'The number of iterations per cycle

is

> [05521919 ~

{I‘— l+ 087.2) ~ 7'35

ortg8and

Factcrisation Technilue .

Il’he difference equation (6h) can be written in the form

Mb“ (11+Vr)(*'+Vz) (we) I’M-Va): ,

Pg.) ‘6.)- 4U]-J6]+(6 +—7M) U5). L/Lj).§b/. + Ui+2)J Fé') (71‘)

where

Uh”) m) ('m)_‘_ (7»

’33''(?.,l,,—,"WI3-W(I+IJ+U5-I,J')+ )8(UI',1,13:+U1IJ:‘))

m (on) (M (7" 3") ’”

- 2 ( Ll“,J+I+U-I,J'H+ UHl-l“(limp/'1) U1) Iii-2-~ U61";

similarly, difference equation (66) can be written in the fore

(n+I)_ Um“) (”11‘") Uhs-II) I‘m-H) ‘

U,,_z +l66+%—IU,,, LILU,,,,.+U,,,,,= F2, (75)

where

l’”4%) Urm) (1n)+ (ML (7»;

re = —,— ,, .":‘wa.’ +6 Us 4-4113"; Use.

Usins (7h) at all mesh points in a row leads to a 'quidiagonal"

system of linear equations of the form
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" cl -h 1 "U11 l ”F111 7

~15 02 4| 1 U12 P32

1 --h 03 -h 1 U3 r33

1 -h 0,, at 1 111,, rm,

1 =21 6n -l ‘1‘ Ui,nol FBn-l

l -h on Uipn rfln      D .J l-

where the C's all have the value (6 + l ). 1 system of linear equa-

rn+1

tions of the same general form is obtained when (75) is applied at all

 

mesh points in a single column. The factorization technique is an effi-

cient direct method of solving a quidiagonal system of equations. Take

'1 = 01, 'q 8 Cq " gq_2 _. quQ"1

BO :09 Blg-h/Cls qu-(h-tdq gq_1)hq, Bn=o~

‘0 I 0’ 81 a: l/Cl, . {q : lhq , (n a ‘11-]. I O

t - “b - Bq-z

h0 =3. 0, h1 *Li'm/QI’ hq = [FR - no:2 - dq hq_1 1/ .WQ’ 2g q 5n

Starting with the specified initial values the n values of h are computed.

Then the values of U are computed by back substitution

Un=hn

q = ha " Bq ”w ~' " 8.9 ”q+2 ’ q = “‘1’ “‘2’

The alternating-direction method was initially applied to the

‘1

U ,1 

solution of parabolic and elliptic partial differential equations of the

second order. For Laplace“ 8 equation with sufficiently small mesh spac-

ing it provides a significant increase in the rate of convergence per

iteration over the point successive overrelaxation method. This advant-
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age must be weighed against the requirement for the double computation

in a two sweep scheme and the need for storage of the (n+2?) vector

iterate. Compared with recently developed block successive overrelaxau

tion methods, superiority of the rate of convergence is not rigorously

established. Varga (1962) notes that the convergence of the Peaceman-

Rachford and similar alternating direction methods has been established

only for rectangular regions. Though there has been some success in

applying alternating direction implicit methods to more general regions,

the convemence in the general case is yet to be Justified. There is

no general theory for the determination of optimum ‘ convergence para-

meters except for rectangular regions. These same limitations apply to

the solution of the biharmonic equation and in addition Keller (1961)

demonstrated for several block methods that corresponding biharmonic

schemes converge more slowly than Laplace schemes.

Semi-iterative Methods

A system of linear equations

5 y. " E:

can be solved by an iterative method of the form

31“”) g g E“)+ E m a o (76)

it a .-.-.- _I_ - g is a positive-definite nan matrix. See Appendix A. as

m as, 11(3) converges to the unique solution of the system of equations.

A semi-iterative method uses an algebraic combination of solution vector

iterates EU!) as a means of increasing the rate of convergence.

Starting with an initial estimate 9(0), the error vector associated

with the vector iterate 2(11) is given by

30“) . U0“) - U . m 1“ E(°)
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A linear algebraic combination of the vector iterates Eh“) is introduced

1““) :3 f: pjtml 2(3) 1:120 (77)

J=0

where the coefficients pj(m) are selected so that each [(13) is a weighted

average of the 2(3) and a better approximation to the solution vector

y than 2011). For the special case 2(0) 2:, g it is necessary that

X | »" f filmbl (78)

i=0

Then 10“) g g for all m _>_ 0. The requirement of Equation (78) will be .

imposed on the constants p.) (m) for any arbitrary choice of 11(0).

The error vector associated with 3:0“) is denoted iii/(m)

2"!“ g :6“) - y, = fpjon) 11(3) - g (79)

_ .. . i=0.

Since the Constants pj(m) must satisfy Equation (78)

’ I... '1

5"" — z: srwfl” ~ (i F} WW
I . -0

EW= z: firmIflw—g]

E/(m’= Z 8’ (M)_E_:(J)
‘

0m): j (a)

( gm M )E (80>

0
.

H 0

If we introduce a polynomial in a component of 115, defined by

Pm(u) s: 22: p3(m) u:3 m a O (81)

J=o

then we can write (80) in the form

1.35m) ___ Pm (E) 2(0)

where Pmogg) is a polynonial in the matrix 2°. The condition imposed by

Equation (78) on :ijm) requires Pm(l) g 1.

Using the definitions of matrix and vector norms given in Appendix
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A, we can write

IIE"’"’H =IIBfM)E°’ll i N am: HU’H ' m

For “I309” < l the average rate of ccnvergence of the semi~iterative

I
V :
3

method for m iterations is defined as

._ .— E MN11 [ 13(3)]: _XnJJFLi

If the polynomial is selected so Pn(u) e um, the vector Em) is

identically 11f.) Ind the average rate of convergence can be readily

simplified.

ghnqfl. ~121LEmlfllfl. W ._-_._ RPM”?
7n 3' --'m v" 4

and, as shown in Appendix I, it is equivalent to the convergence rate of

the basic iterative formulation of the problem. The average rate of

convergence of I“) will be optimised by finding the minimum of II Plum/l

under the restriction 241) = 1’. See Varga (1962) Chap. 5.

Chebyshev Semi-iterative lethods

Golub and Varga (1961) identified a polynomial which satisfies the

requirements for optimising the average rate of convergence. They used

 

 

 

[ 2ub- (b+a)

Pm(u)-:m[2-(b+a)'| 5 11112.0

m H J

Cos (m Basal 5), =1 5 3 5 1: m .. 0

where on“) : Cosh (m Cosh-’1 s), ‘ > 1,

are the Chebyshev polynomials

The Chebyshev semi-iterative method for the problem specified in

Equation (76) has the form

(n+1) (n) (maul) (zeal) tn
1 =wm1[!.1 +z-z 1+1 (6:)
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where (See Varga (1962) p.138)

2 Om l ‘

w,.1, “n+1- 1 p , m_>o

and p is the spectral radius of 1. lots should be madeof the absence

of the vector iterate E“). It is not usedim the computation. The

vector iterate [(#1) is formed directly from the preceding, vector

iterates 35') and 10"“. It is necessary to store both I“) and

10"“. Spectral radius is defined in Appendix A, Sec.2.

E2129. £22: 2 man 11:22

Consider a slightly different approach to the solution of lquation

(70). Let

I
d

I
I

[
N

[
’
1

I +

, t

or equivalently

I
N

I
S

I
d

'
1
"
.

!-!!+9 an

where

‘-" [fl 1'" [1! 2J' , 9' E]

If _I_ is an an convergent matrix, Equation (83) has a unique solution

I
O

I
I

E and the subvectors E and E are equal to the solution of Equation (76).

Since the solution of. (83) would require“ the manipulation of.(2n12n)

matrices, it is not reco-mnded as a practical method. However,' it does

provide the basis for an improvement of the suit-iterative method.

Issue that E in Equation (76) is m nxn, Hermitian, convergent

matrix with the special fen

4:. it]
where the sub-strides are square and gl- is the conjugate transpose of g.
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A matrix [which can be expressed in this form is said to be weaklycyclic

of index 2. l weakly cyclic matrix 5 of index k :is such that 51' has real“

non-negative, eigenvalues. For the assumed form of g the successive over-

relaxation method for Equation (76) can be written (Varga, (1962) p, 11,9)

21““) = w [a 22“) + :1- 91 m] + 21““).
gab-pl): “@(fll)+§_fi2(m)]+ge(m), mgo _

where g and g; are partioned- into 111, He and :1, 32 respectively.

1'_h_gm Chehz‘“ shev Sent-iterativeM

The Chebyshev semi-iterative method corresponding to this special

matrix ! can be written 1 (Verge (1962) p.150)

9.1"”) = am [3 22“) + £1 - 21““1’] + QM)»

22‘”1’=w.+ [s2“’+za-U“’9J +95“)? 1:1

Since the iteration parameter a)“1 is a function of the number of

iterations n, the cyclic characteristic of _l_ per-its the following fore

5‘2”” :-n+2“1L-am””1;-42‘2”] +952” --:°
IPhis is hows as-the cyclic Chebyshev semigiterative method. bus to skip-

ping half the vector iterates the rate of convergence otthis method is

twice tint of tin Chevyshev semi-iterative method. Basically though, this

method is Just a variation of the successive overrelaxation method. Varga

(1562) shows that the average rate of convergence of the cyclic Chebyshev

semi-iterative aethod is better than the average rate of convergence of

the successive overrelaxation method. The cyclic Chebyst semi-itera-

tive nethod will be used to solve the model problen and the convergence

rates of successive overrelaxation, the alternating direction implicit

method and the cyclic Chebyst seniaiterative methods will be compared.



hh

MChebyshev §eni-iterative Hethod for the Biharmonic Elation

Consider the solution of the biharmonic equation for a rectangular

region with a grid of n interior mesh points in the x direction and p

interior mesh points in the y» direction.

The difference equation

can be written in the form f J

   

§H:£ . ‘ (8h) '

where N a up, _A_ isan Hid!

+
~
=
w

lcoefficient matrix, .3111.

the solution column vector

and {is a colunn vector

N
\
°

A l
I

I
P
"
"
T
—
-

which accounts for the

specified boundary

conditions.

The for-ulation'of the Figure in; m line blocks _ .. _ __

model problem in terms of sub-utricesfiquation (113), can be extended for

the general case
.. .. ‘- - r' -

I l

emtgggg, 9. 21 Eli
I l

21.22.29. 9. 92 :2
---r-1--I-fi-e~d p- --

. I ,.

OI'BsusI! 0 U = r

::'..‘.."..:::;..-:. :5 :9

L. : : 4

99. -----_I. 2.! 2,, lip
L. _ _ _J _ J      

The l, g, 1; are nxn matrices and El: and El: are n conponent coluln sub-

natrices corresponding to the solution vector components along one row.
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Griffin and Verge (1963) select a two res block of the couponcnts

of g and show that the assoc1utod matrig Q is of the form required for

the cyclic Chebyshev scheme. The number of rows of interior mosh points;

p, must be cvono This permits the selwciifin ot t e E two row column suh~

matrices for the p rtioning of y,

      

{“ " , 7

E 5 Q 0 2; #i

T '1

- .1: 2S, .9 2‘2 Lé

T
0 K L o T e F‘
- - - ., —3 - -3

(85)

9. 2.2? I: T F'
L _. intJ _ht .

‘where

1!. 2 SF. 9. E. B. ,. /

E = D E = 9 ET 2 9 Q :3 (1‘2"

B n B I o I q , /
_,._ .. _ —. - q 2

 

The difference equations (8h) can be expressed in the form

T
L - ' - T - 6

~29’Eq E-q-l Elm-1 (8)

or since §.is a 2nx2n symmetric positivexdefinite matrix, which assures

the existence of the inverse Lfl, it can be written:

T g gfl F' - L“l KT T - Lfl g T

"q "q "" "‘ 'q-l ”gel

‘which establishes the fern required for use of the cyclic Chebyshev

semi-iterative method.

Assuming the solution is known at all mesh points except those in

the two-row'hlock q, Enuation (86) provides the basis for the determine:

tion of the remaining unknowns. The forn.of the matrix §_is conveniently

simplified if the components of Tq are selected alternately fron.the two

TOWBe
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Take I? = {Uh};Ua,5+|2Ua,j1U2,J-Hs “““ ”‘1 UmjiUmJ‘“; ’
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The matrix E is symmetric with nonmzero elements appearing only in
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the main diagonal and the eight adjacent bands. Hence 9 the linear system

of equations (86) can be solved by direct methods. The square—root method

can be used towadvantage. See p. 1.8.

After obtaining a method for the solution of (86) for_one block,

the full cyclic Chebyshev semiaiterative method is introduced
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The Chebyshev method consists of solving the difference equations (87)

over the first two-row block, and all subsequent odd-numbered blocks,

then difference equations (88) are solved over all even-numbered blocks.

The iteration parameters (02m+1’ (0sz are computed recursively

using
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share f’ is an approximation of the spectral radius of A. If _1_ is the

coefficient matrix for a rectangular region, _ an approximation to the

maximum eigenvalue, given by Griffin and Varga is

inwéfyi

where a?“ .

76: (it)? 5.1%“ + '5") + 3 will

(89) 

h is the uniform mesh spacing in both the x and y directions and a and

b are the dimensions of the plate. The relationship between the number

of iterations and the value selected for f is shown in Fig. h.6, from the

model problem of Fig. n.1, p. 20.



he

 

 
 

 

lodel Problem

2501, 8 : 000001

6 x 13 Mesh

m. Time = .16 SEC/IT.

Z 200,

9

E
o: 150.

Lu
._ #4,—

— lmw

La.

0 5O' 0..

Z    
.99. .96 . .9“; - .95

Estimate of Spectral Radius {9

Figure 13.6 Cyclic Chebyshev semi-iterative method

3 _ Number of iterations vs. ’0

zaageaeama

l direct-method algorithm for solving a system of linear equations,

the square-root method, which is suggested by Paddeeva (1959) as one of

the most efficient, is applicable only to symmetric systems. In Equa-

tion (36) which can be written

ag=a I

the matrix 9 is nine-diagonal symetric and positive definite. Hence,

1;. can be expressed .as the product of two triangular matrices, one of

which is the transpose of the other

a=¥s—9
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“cording to the rules for matrix multiplication the following relation-

ships hold

213-51; 8132* ‘21 ’23 + " ' ' ‘ ; " +811 313' 1‘3 (9o)

111"]2.i+§21""'f"“11’ 1‘3

The I“ are ooppnted by recursive use of equations (90).

Since L3,: . a4“ a s4”: . a",J . o,

'1131/111“, ”133%: ZSJSh

11 31/711 “:53 ' 1) 1'

'1J=MS"S“ , '1+h.>_dzi
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The solution of _I_.. 11: g g is obtained by solving two systems

fast . . éz-z

Il’he components of the vector 1! are computed with the recurrence

formulas
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V. COIPIRISON OF THREE ITERATIVE METHODS

A prime objective of this study is the identification of the rela-

tive merits of three iterative methods for the solution of the biharmonic

difference equations. Commenting on the problem.of selecting the best

iterative method for solving engineering probless Varga (1962) p.2h5

makes several observations. (1) For the general case there are no

theoretical arguments which rigorously establish the superiority of any

one method.

on the numerical experiments of many investigators.

(2) The present evaluation of these methods has been based

(3) The numerical

results indicate that for each two-dimensional second-order partial

differential equation boundary-value problem there is a critical mesh

spacing he such that the two line cyclic Chebyshev semi-iterative method

is superior for all mesh spacings h 2 he, while for h < he a.multip1e-

acceleration-parameter PeacemanéRachford method is better.

Table 1. Comparison of iterative subroutine characteristics

I

_.Y_

 

Number of Storage of 1 Time ‘sec.[itgratéon}

subroutine FORTRAN arrays for

Name Statements hSO points Mesh_pts. Mesh pts.

80R 32 one .050 .223

am 89 1221. .098 .585

CHEB 162 1126 .167 .612  
80R - Successive overrelaxation method

ADI - llterna'ting direction implicit method

 

6333- Two line cyclic Chebyshev semi-iterative method

 

The evaluation of these iterative methods for biharmonic difference

equations is more complicated.thsn for Laplace's difference equations.

For Laplace's equations, Golub and‘Varga (1961) indicate that the cyclic

Chebyshev semi-iterative method requires effectively no more additional

52
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arithmetic operations or vector storage than other iterative methods.

This is not true for the biharmonic difference equations as shown by the

comparison in Table l of the three iterative subroutines included in the

ISOPEP program of Appendix B.

The overriding consideration for many is the actual machine time

required for a solution which satisfies a specified convergence criterion.

Convggence criteria V _ _

The norm H E“) ll II of the error vector E“) is often used for

terminating the iterations; the norm is defined by

H Em) “II I ._ ‘Eémfl

A value is assigned to a parameter 52,- and when

. . Ila“) Hus a

the ‘solution vector iterate gun) is accepted as the solution. Griffin

(1963) indicates that for the two-line cyclic Chebyshev semi—iterative

method, if the nuber of two-line blocks is large the average difference

between corresponding values of U1 in successive iterations will be

approximately 2 8/1, where k is the number of mesh points at which the

stress function is unknown.

The criterion used in the 1801!? program of Appendix B , which includes

the subroutines 8G, ADI and cm, is

I‘ (I) la: 5 5

with 8. 105. for the model problem '01 |m s 3.6.

The three iterative methods were used to solve the model problem

of Section VI - 1. “try conditions were used for the stress function

at the plate centerline. rm. is a sunny of the results in Table 2

and comparison of the methods in terms-of number of iterations and machine

time required for different mesh intervals in Fig. h.7.
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Table 2. Comparison of machine time and number of iterations required

for convergence

P—r Number NEST-er of E 55

 

 

 

    

lesh " of ' Iterations _ .7 Execution time,

”It“ :3: 13663:? son I 0031 %m%‘ig’fii“

1/10 5:11 50 138 93 91 .070 .108 .116

1/12 6:13 72 19h 9s 99 .161 .156 .283 as

1/12 60:13 72 336 128 123 .280 .205 .31.2

1/20 10:20 190 636 317 - s- 1.08 1.35 - is

1/20 10:21 200 500 33h 357 .87 1.1.7 2.08

1/30 15:30 105 1981; 712 - s 7.25 6.73 - a

1/30 15:31 1.50 21.116 7M 1053 9.10 7.29 10.75    
e There must be' an even number of rows for the SCSI subroutine.

el- Optimum relaxation parameter used

32;: of numerical: results .

Numerical experimentation can provide insight for_the appraisal of

iterative methods and may provide a basis for theoretical investigations.

The results obtained are based on solutions of the model problem only

and conclusions should be qualified accordingly. 1 number of observa-

tions are presented for consideration.

For the model problem the cyclic Chebyst semi-iterative method

is iteratively faster than point successive overrelaxation for all mesh

sises considered. As shown in Fig. h.7(a) it is also iteratively faster

than the alternating direction implicit method for mesh spacing h>l/16 9

or for less than 125 points. In terms of machine time required, suc-

cessive overrelaxation is best for less than 350 mesh points or h'31/26.

If h <1/26 the alternating direction implicit method is best.

The rélaxation factor or acceleration parameter was selected on the

basis of the" treatment given in the discussion of each of the three



methods in Section IVmB. For successive overrelaxation an initial value

“)0 g 1.5 was selected, and this was changed after every 10 iterations.

As shown by the second and third problems in Table 2 this will not

necessarily assure a good approximation of the optimum value ofw-b.

When the cyclic change was used for the 6x13 mesh size problem approxia

mately 70% more iterations were required then when the optimum re] exam

tion factor was used. Another indication of the variation which can be

expected when using this procedure is shown by the scatter of points in

Figures ho7(a) and (b) for the 50R subroutine. This contrasts with the

curves fitted to the points for the other two methods. It should be

noted that a random selection of values for a) will produce greater charge

in the number of iterations required for convergence for the successive

cverrelaxation method than for either of the other methods. Comparison

of Figures 11.3, 11.11 and 11.5 shows that the alternatingmdirection implicit

method and the cyclic Chebyshev semiaiterative method do not impose as

severe a penalty on overestimation of the appropriate parameter as does

point successive overrelaxation. For a considerable range of values

above the optimum, the number of iterations increases only slightly above

the minimum for these two methods , while the minimum in Fig. 11.3 for

point successive overrelaxation is much sharper.

Another important consideration is the computer storage required by

each of the three subroutines. The data in Table 1 clearly identifies

the successive overrelaxation method as the one which requires least

'storage for both the arrays of data and the sequence of instructions.

Because of the relative simplicity and minimal storage requirements the

successive overrelaxation method was incorporated as the main iterative

method in the ISOPEP program.
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Since the number of iterations required for convergence appears to

increase significantly with the number of mesh points, attention was

directed toward the possibility of improving the rate of convergence by

first solving the problem with s relatively coarse mesh, then interpolating

between thee vslues to generate a better initial solution vector for s

finer mesh.

some of the results are given in Table 3.

 

mu 3.

 

' 01'.  
.. elvt ISOPEP

‘0'.

l subroutine CHANG was written for this interpolation and

    

 

' Estimate

 

Prob. Converg. Ilesh Number of Time Time

No. criterion sise Iterations ‘75-‘15?- LHours) of f

101 10'"5 5x10 118 3.31 .9571

102 10'5 10x20 521 51.9 .9801;

103 10"5 15x30 15h8 5 38.3 .99112

201 10‘5 3x6 39 .85 .719h

200 10-5 6x12 811 2.62 .9556

203 10-5 12x21. 86 6.31 .9906

205 10"5 7x18 276 16.9 ‘1 .9737

206 10-6 11x28 1551 5»- 29.7 ‘7 .9900

303 10"5 6x12 225 2.33 .9506

306 10-6 21:18 1038 h 1.9 .9793

801 10-5 6x12 179 2 .30 .9670

I102 10-5 12x21. 126 5.67 .96118

has 10"6 2141118 166 1 3h.7 : .8862

501 10-5 6x12 135 I 1.80 .9h76

502 10"5 121211 295 12.59 .9781

506 10"6 2111118 1157 5 117 .6 .9858

601 1:15 15x15 176 1 20 .9802

601 10'7 name 7072 57 _ 11.2 .9998       
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Problems 101, 102 and 103 in Table 3 were solved using the subroutine

CHANG. The final solution of Problem 103 required a total time oi” 6

minutes, 311 seconds and s. total of 2187 iterations for the three problems.

The same problem solved with initial values of the vector iterate set to

.1, required 7 minutes 15 seconds and 19118 iterations as listed in Table 2.

The other sets of problems listed in Table 3, such as 1101, 1102, hoe,

were solved using the iterpolation procedure as the mesh was refined.

For Problem 1108. only 166 iterations were required after the last refinem-

ment of the ash while for Problem 506, which has the same number of

interior points, 1157 iterstions were needed. Both of these problems

have more than twice the number of mesh points used in Problem 103 yet

the solution time is approximately the same for 506 and substantially

less for 1108.

mobilities g; the Computers used
 

- Two computers have been used in‘this investigation. One, the

Control nets Corporation, 3000 at llichigsn _State University Computing

Center, is very fast and has a large main memory of 32,000 words of 12

decimal digits eech. The floating. point multiplication of two numbers

with lO-digit mentissas requires less than six microseconds. The other

computer is the 18! 1620. at the University of, Toledo Computation Center.

The 1620 performs e. floating-point multiplication of two numbers with

eight-digit nentisses in approximately 12 milliseconds. The main wry

provides for storsge of 20,000 decimal digits which is about 1/19 of the

3600 memory. However. the min memory is supplemented with en 13! 1311

Disk Pile which-provides 2,000,000 decimal digits of secondary storage.

Several problems were solved on» both computers end e. comparison is

provided in Table 11. The slight difference in the number of iterations
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required for convergence is possibly a consequence of the difference in

the mantissas of the floating point numbers used.

The difference in the speed of the two computers contrasts sharply.

In fact for problems with a hundred or more mesh points the cm 3600 is

approximately 1200 times faster than the 13]! 1620. Lt rates of 3375.00

and 830.00 per hour for the 3600 and 1620 respectively, the cost of

solving problem 1.102 would be $8.82 on the 3600 and $572.10 on the 1620.

m qualifications of the comparison should be noted. First, the time

required for compiling a representative combination of the ISOPEPW

subroutines on the 3600 uses between 20 and 30 seconds. Compilation time

on the 1620 ranges between 10 and 15 minutes. Forthis purpose the 3600

is only about 30 times faster than the 1620. A second consideration is

the time saving possible on the 1620 through use of a machine language

successive overrelaxation subroutine. The introduction of such a sub-

routine for the iterative solution of Laplace' s equstion resulted in a

50$ reduction of machine time required.

mu. 1;. Comparison of the 130m program for the IE! 1620 and one 3600

 
 

 

 

 

Computers

Number of CDC 5635 Tfie IBM 1355 '—

Prob. flesh , Iterations Total beaution Time

No. Size 3600 1620 Min. Sec. Kin. Sec. Hours lethod

1.101 51:10 118 116 25 3.35 I .97 SOR

2 .101 5x10 90 9O 29 6.0 l . 78 ADI

1.102 10x20 636 622 l 25 1 5.0 19.07 son

2.102 10x20 317 311 2 2 1 21. 27.20 ADI

1.103 15:30 1981; 19714 7 36 7 15. 158.00 son         



VI. SOLUTIONS OF PLANE ELASTOSTATIC PROBLEMS

The second of three objectives of this dissertation is a general

computer program for the iterative solution of plane elastostatic problems.

The program ISOPEP includes six subroutines which contribute to this

objective. The program is not completely general, however, since sub~=

routines _for the boundary conditions must be added for any specific problem.

1 flow diagram, listings of FORTRAN source decks, description of input

preparation, and the output of a sample problem are provided in Appendix

B. The analysis of physical phenomena with mathematical models, the

analytical or numerical solutions of the models and the subsequent test»

ing by comparison of the solutions with experimental observations, consti-

tute major pursuits of scientists and engineers. The creation of the

ISOPEP program contributes to the analysis of plane elastostatic problems

and this computer program is considered a major part of the dissertation.

Duonstration of the utility of iterative methods for the solution

of several problems is the third objective of this dissertation. Problems

number two and six are included because analytical solutions are available

for comparison with the numerical solutions. Problems three, four and

five are representative of the practical problems for which analytical

solutions are not available. The treatment of boundary conditions for

irregular regions is included in the discussion of problem three.

1. T_h__e 29331 Eoblem .

The square plate and edge loads as shown in Fig. 6.1 are synetrical

with respect to the x—axis. By proper choice of constants of integration

the stress function will also be symmetrical with respect to the x-axis.

Starting at the origin and proceding counter-clockwise the boundary

conditions are obtained from Equations (11;) and the requirements for

37.91370

59
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The constants of integration 1, B, C, D. E, and F in the following

equations are determined so as to produce the desired symmetry of 0 and

consistent values of ¢ at each of the points b, c, d, e, f, g in the

functional expressions for 95 along neighboring line segments. Two of

the constants are arbitrarily chosen to make ¢ 3 0 and if: 0 at b.
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Values of the difference-fequation approximation of the stress

function 013 and nodal point values of thenormal stress component 0:11

are given in Fig. 6.2. The point values of the stress function are

approximated

2 3...... —
where C -'-’ 32 . The constants p and a have been assigned values of unity.

2. gemi-infinite 23333 33333uniform 393.3 93 33:3 156mm"' ‘

The exact solution of the problem of a semi-infinite plate with a

uniformly distributed load of intensity 'Po acting on an interval of the

bemdary -e 5 x 5 c, is given by Timoshenlao and 00on (1951). The

stress function has the form

9 m l (r20 - r191)

lumerical solutions of this probl- have been reported by Veyo and

Hormbeck (1961:), who used point successive overrelaiation of the biharmonic

finite-difference equations, and Pisacane end lalvern (1963), who used _a_

numerical mapping technique for application of the luskhelishvili complex

variable method. For comparison with the other numerical solutions a

. square region, 2 units by 2 units, of the semi-infinte plate will be

considered. The intensity of the distributed load P0 is chosen as {one

and the value of c isfi. For the assigned values of c and Po the stress

{motion can be written



62

FIGURE 6.2 Dlstributlone of the Stress Function and 0. for Problem 1
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derivatives of the exact 3_ Problem 2 - Semi-infinite plate

obtained from the normal

solution at the boundary. Due to symmetry it is possible to determine

the solution by considering one half the square region. Along the

y-axis which 1. the .111. of sy-etry, 211. nor-.1 derivative, g} g o,

is used to determine the values of 0 at points exterior to the solution

0min.

Alon; 3310 use Equations (11:) and find

2. .- at
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_. ... 9 _.

'33?- X+B° 793412.39

(15 = -£X2+Bx+ C .

Sy-etry of ¢ with respect to the y-axis requires 3.0. Two of the

constants of integration may be arbitrarily selected. Let A u. c n 0.
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FIGURE 6.5 Distributions of the Stress Function and cry for Problem 2
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Problen 3 _- Seu1circular notches, Problem 11 - V-notches and Problem 5 =—

Rectsnguler notches. Sketches of the specimens are included in Figures

6.10, 6.11, 6.120

E
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Figure 6.6 Solution domain for Problem 3, h and 5

Boundary conditions for the three problems are identical. Intro-

ducing e Cartesian coordinste system as shown in Fig. 6.6 integration

constants will be chosen so the stress function is symetricel with

respect to the x and y axes end it is necessary to solve: each problem

for only one quarter of the whole plate. It theend '53 e uniformly dis.-

tributed tensile loed of Po units intensity is applied. Using Equations

(11;) we find

“>
46
1

94>...

'::FI, E“Ey+(%$l,’

But (6'35 3 0, if d is sy-etric with respect to the x-nds; hence

43= B‘f‘é + B = Elf/a.

The constants L and a are arbitrarily selected so sero. Then along 671’

93—)? = 0 5 ’3'? : 24 7; I

¢ Z ¢C : 2 a2 P0 ‘

Along the ho axes of sy-etry the nonel derivative conditions are used

to compute values of the stress function in two mesh ran exterior to
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FIGURE 6.7 Distributions of the Stress Function and o, for Problem 3
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FIGURE 6.8 Distributions of the Stress Function and 0‘; for Problem 4
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FIGURE 6.9 Distributions of the Stress Function and er, for Problem 5
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the solution domain. Along the xsaxis, .3? :3 0, while along the yaaxis

g? = 0. Along the notch edge if or To: and 3?

53%va %§= (%:,4’)4=2a73

(b = ZQBy +C = 2aE(y—a)

The value of c is determined by the value of ¢d in the squetion used

along 3'5. The lost expression for g! is valid for :11 3 problems but

for Problem 5_ it simp1ifies to g s 0 along 3?. . '

The oolutions given in Figures 6.7, 6.8 end 6.9 were obtained with

boundsry oonoitions for which Po 9.! 1 end It “3;. Though a 12:21; mesh is

used for listing the solution in all three figures, the results are

token fro: the solution obtained for e. 2MB Iesh.

Stress concentretions occur at the base of the notch st y a e.

For the V snd seni-oirculsr notches the concentration occurs elong the

y—sxis. For the rectangular notch the concentretion occurs st 1 u s,

y g s. The oonsrisons of stress ooncentrstions for different choices

of nesh sise ere given in Figures 6.10, 6.11, 6.12. B. I. Peterson (1953)

gives sn snot stress oonoentretion of 3.08 st the bees of thee-i-

oirsulsr netshes in e tensile specinsn infinitely long. The stress eon-

osntrstion vould be slightly higher in e specimen of finite length.

Bouthsell (1956) determined s stress oonoentretion footer of 3.0 using

s 'relsxsticn' solution for e neoh of 116 points. .Solutions' obtsined

vith the ISOPEP progre- produce stress concentretions of 2.92 and 3.211

for neshes of- 65 end 1038 points respectively.

It the bees of the V-notoh or the corner of the reotsngulsr notch

even slight strsins induce stresses of high-ugnitude end the- stresses

detersined from s solution of the bihsrsonic difference squeticns would

herdly represent sn sctusl ptvsiosl stste of stress. However, stress
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Figure 6.10 Stress Concentrationin a semi-circular notch

distributions obtained under the assumption of an ideally elastic body

are useful in the analysis of the plasticity problen. Exact solutions

of these problems would provide V infinite stress concentrations for these

two problems. The numerical solution provides a set of discrete values

of the stress function. The value at each nesh point is an average value

associated with an area surrounding the point. The area in general is

proportional to hz. As the uniform nesh space h is decreased, the stress

function solution at a point of high stress concentration would provide

a better approximation of the high stress. Figures 6.11 and 6.12 illus-

trate this phenomenon for the V and rectangular notches.
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TABLE 5 STRESS FUNCTHON A16801N15 ADJACENT TO

THE SEME-CflRCULAR NOTCH

 
 

 

   

 
 

 

n
e
-
e
—
e
—
e
-
s
j
g

N
O
‘
W
J
‘
W
N
.

 

———u———— eQQLUMN

WP]; 13 111 15 16 17 18

3 -302569 -301823 ~300971 03 00000

4 ~302560 ~301816 ~300966 83 88080

5 -302533 -301795 ~300953 . 300002

6 -302h88 ~301757 -380928 300009

a -3OZ#23 -301703 ~388890 380025 '

-302380 ~301631 ~300833 308056 301842

9 -302239 ~3015h1 -308759 300187 381857 '

10 -302123 -301h35 -388678 300173 301093 302085 ’

11 -301992 ~3©1316 -3@0566 300256 3011h9 302107 303125

12 ~301851 -301186 -308&50 308353 301223 302155 3031h0

13 -301700 -3010#6 -3®032h 300863 301313 302221 303180

18 -301Sh1 -300898 -300189 300582 301115 302302 303239

15 -301378 -3007&5 ~300889 300788 301523 302392 303309

16 -301212 -300590 388098 300837 301637 302888 303386

17 -.01o&§J-.0013§ 00239 .ooagafl .01153 .02588 .03168

19 go 21 V_22 23 21 25""

30h166

30h180 305209 ' ' .

30h216 30522h 386253 307291 ' ‘

308266 305255 306269 387297 308338 309375 310%

308328 305296 306298, 307310 308339 309376 310

.0h389 .OSth .06326 .07338 .083h9 .09379 .101 6      
TABLE 6 X-STRESS COMPONENT AT POHNTS ADJACENT TO

THE SEMB-CURCULAR NOTCH

M
 

 

 

 

 
 

 

        

h _ 6 CQLJJMNB 2

1 1 1 ‘ 1 17 1 19 20 21 2

3 23th 23785 33238

8 23831 23701 23952

5 23369 23629 23576

6 23275 23506 23111

3 23158 23345 23061

23031 23130 23193 '

9 13917 13955 13911 13386 '

18 13805 13801 137h5 13668 13817

11 13708 13678 13611 13586 13367 13186 '

12 13628 13586 13516 13188 13213 3955 3695

13 13563 13518 13118 13338 13178 39th 3653 3839 '

18 13508 13h55 13380 13278 13131 3980 3711 3860 3238 '

15 13860 13h©5 13331 13229 13999 3936 3786 3543 3351 3612

16 13h17 13362 13288 13193 13078 3931 3769 3598 3131 3286

17 1.379 1.323 1.251 1.162 1.853 .927 .786 .638 .891 .358



TABLE 7 Y-STRESS COMPONENT AT POBNTS ADJACENT TO

THE SEMI-CERCULAR NOTCH

 

 

 
 

 

          

 

 

 

 

        

 

  

CQLHMN

13 10 15 16 17 18 19 20 21 22

ROW ' ‘~ . . .H H .3

3 3329 3209 0. 000

0 3328 3199 3000

5 3361.263 3110

6 3395 .326 3220

7 3025 .012 .305

8 .000 3002 .000

9 3350 .303 .357 .087

10 .312 3326 .372 .051 ‘

11 32713295 .308 .038 .580 ' '

12 3222 3200 .286 3350 3003 3590 3323

13 3169 3185 3210 .257 .318 3005 3500

10 3116 3126 3105 .175 .216 3268 3321 .352 ‘

15 3068 3070 3088 .108 .136 .170 3205 3226 3219 .180

16 .025 .030 .000 .055 .076 .102 .127 .107 .152 .135

TABLE 8 XY-SHEAR STRESS AT POINTS ADJACENT TO

THE SEMI-CHRCULAR NOTCH

0 13 10 1S 1% 17 1§_‘ 19 29 21 22

3 03000 03000

0 -3100 -3153

6 -3266 -3391

g -;300 -0‘95

-3307 -306 '

9 -3312 -.051 -3605

10 -3312 -.030 -3578

11 -3302 -.399 -3S11 -.633

'12 -3287 -3365 -3008 -3 35 -.628 -.578

‘3 -;275 -0337 -01‘01‘ ..o 70 -;530 ’:562 -

10 -3266 -3319 -3370 -.026 -3070 -3091 -3069

15 -3261 -3307 -3353 -3396 -3031 -3007 -3035 -.385 -.303 '

16 -.258 .298 .338 -.375 -.003 -.017 - .009 -.376 -.317 -.202
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TABLE 9 STRESS FUNCTHON AT POENTS ADJACENT TO THE

THE V-NOTCH
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TABLE 89 XMSFRESS COMPONENT A8 POTNTS ADJACENT TO

THE VuNOTCH

_ _ _« COLUMN ‘__ ._

83 8h 85 86 87 88 89 20 28 22

Row

3 2.306 3.858 8.653

A 2.350 2.952 3.557 8.628

5 2.288 2.608 2.633 8.539 .874

6 2.809 2.269 2.839 8.55C .958 .642

7 8.992 2.088 8.853 8.573 8.05 .708 .567

8 8.898 8.888 8.670 8.900 8.086 .798 .559 A82

9 8.725 8.672 8.582 8.335 8.098 852 638 .956 .337

80 8.622 8.562 8.886 8.280 8.085 .880 .699 .525 .375 .273

88 8.539 8. 975 8.372 8.235 8.072 .902 .736 .588 .938 .308

12 8.070 8. #07 8.385 8.896 8.059 .983 .767 .625 .492 .367

13 8.483 8. 352 8.268 8.868 8.085 .989 .789 .668 .538 .02

Th 8.366 8.306 8.230 8.837 8.032 .928 .805 .690 .577 .h67

85 8.326 8. 269 8.898 8.885 8.028 .928 .887 .783 .680 .509

16 8.292 8.238 8.872 8.096 8.088 .928 .826 .732 .637 595

87 8.263 8.288 8.850 8.079 8.003 .920 .839 748! .668 .576

TABLE 88 Y-STRESS COMPONENT AT POTNTs ADJACENT TO

THE V-NOTCH

COLUMN

83. 8h 85 86 87 88 89 20 28 22

Row

3 8.376 8.705 8.622

A 8.033 .983 .787 .874

5.665 .529 .882 .725 .682

6 .h28 .388 .289 .868 .573 507

7 .273 .282 .287 .325 .h26 .969 .482

8 .879 .887 .863 .233 .383 .365 .380 .337

9 .885 .098 .887 .867 .229 .278 .305 .388 .273 _

80 .066 .059 .076 .885 .86h .206 .236 .250 .258 .286

88 028 .026 .088 .072 .880 .886 .875 .892 .899 .896

82 -.002 - .003 080 .035 .066 .097 .823 .848 .809 .850

83 -.029 - 027 -.086 .003 .028 .955 .078 .099 .808 .807

In -.058 -.049 -.O39 ~.023 -.002 .089 .080 .056 .067 .078

85 -.O69 -.066 -.058 -.Ohh -.027 - .008 .008 .028 .035 .088

I6 -.O8h -.080 -.073 -.O68 -.047 - .038 -.085 -.008 .0098 .08;          
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TABLE 82 XY-SHEAR STRESS COMPONENT AT POINTS ADJACENT

TO THE V-NOTCH

 

 

 

 

 
The finest mesh used for the notched tensile specimen problems

"a We

gram.includes a subroutine STRESS for the calculation of any or all of

the stress components a}, a; and

 

The corresponding mesh interval h is 1/L8.

   

T;y.

     

C08.UMN

ROW '3 8“ 852 _86 87 flak 89 2O 2 22

3 0.000 0.000 0.000

h 0‘“, 0.000 -0672

5 -0°96 -ofl2h _06S© ‘09®2

6 O. 000 -;228 -0563 ‘6773 “.698

- 7 "'.080 -0268 ‘0h98 -0650 -0653 -055h

8 ‘:‘]Jh -e286 "ekhe -056“ -0586 ’.5'00 -3160

9 -o“69 -0289 -0'O09 “.1895 -9525 -950“ ‘5‘th -0369

‘0 “.891 -0286 -0378 'ekhs -0u75 ‘0“67 -9h30 “037“ -0301

' In -020“ -028. -0352 -0“06 "oh3h -e"33 -e“07 -e36h “.380 -02“,

'2 “.28” ”027‘. -9330 -0375 -0399 -el§@2 -6385 -6352 -0307 -025“

‘3 -0236 -0267 -e3‘flk -0350 -9378 -0376 -036“ -03,8 -030“ ".255

I“ -.289 “.260 “e299 -9329 -03“? -0353 “63NS -0325 -029h -025“

‘5 '.22® -.255 '.287 -.301 -.328 -.333 “6328 -.381 -.286 -.251

‘6 -0120 -0250 -e277 -e298 -0301} “630$ ‘03“: "'e299 -0277 -02~7

The ISPOEP pro-

Values of all three stress coupon-

ents and the stress function in a region surrounding the point of stress

concentration are provided in Tables 5 to 12 for the semi-circular and V-

notches. See Appendix B for the finite-difference equations used. These

equations are valid at interior points only. Calculation of stresses

at points on an irregular boundary are not included in the subroutine
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Figure 6.12 Stress concentration in a rectangular notch

Though a solution obtained with a coarse mesh does not provide a

good.meesure of the stress at a point of stress concentration, the results

shown in Figures 6°10, 6011 and 6012 indicate a decrease in mesh interval

11 produces only slight changes in the stresses computed at all other pointso

Use of an average'value of the stress function over an area surround?

in; a mesh point depends more on the magnitude of the area than on the

geometry'of the region. For example at the'base of the Yanotoh the

area surrounding the mesh point is taken as (bout half the area for an

interior mesh pointo “Does this not imply that the solution obtained at

this point is a better approximation for s.tensile specimen'with a
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rounded rather than a sharp corner at the base of the notch? Some evim

dence for this conjecture is provided by comparison of the stress con»

centration factors fovmd from the numerical solations of Problems hOl‘9

1102 and [£8 with the stress concentration factors provided by Peterson

(1953) for notched flat bars in tensiono Peterson provides values of

the stress concentration factor Kt for tensile specimens with deep

notches with parallel sides and a semicircular base as sheen in Figure

6°13o The stress concentration is defined

653(3):

norm

where 0:0“ is the average stress across the minimum cross section of

Kt:

the specimen" The curve plotted in Figure 6013 shows the relationship

of xi to r/h where r isthe notch radius and D is the'width of the bars

This curve is based on the Neuberatheory solutions tabulated by Peterson

(pp 2647) for d/D s 05 where d is the minimum distance across the bar

at the base of the notch. The stress concentration factors for three

different numerical solutions of Problem )4 are listed in Table 133

Table 13 Stress concentrations factors for the V-notch tensile specimen
# w

 

 

 

 

     

Problem :32 h 0;: Ofnbrn Kt r/D

hol 6x12 1/12 h0362 2 2.181 1/12

1102 121211 I/Zh 60083 2 3 901:2 l/Zh

hoe 21am 1A3 80653 2 _ b.326 1/h8

Assuming the numerical solution approximates the

 
solution for a bar

with circular notch such that r g 119 the stress concentration factors

Kt for problems 401 934029 108 are plotted as three points labeled in

Figure 60139

and the Neuber theory solutionso

There is good agreement between the numerical solutions

Peterson reports that for notches

with inclined sides having an included angle (X and a circular are at
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the base, the notch angle has very little effect if 0° < (If 90°.
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Figure 6.13 Stress Concentration factor Kt for a notched flat bar

Treatment g§_1rrg‘g;ar boundaries

The uni-circular notch ie typical of the irregular boundaries

often encountered in practical problem. Griffin and Verge (1962) chow

how different mesh intervals can be used so that each horizontal. grid

line crossing the irregulnr boundary intersects a vertical grid line

on the boundary. There are several adventegee to this approach, but

it doee increase the number of arithmetic operatione needed for the

calculation of each vector iterate. For this reason e uniform neeh
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interval is usedin ISOPEP, andthe irregularhanndaryieamroxinated

with straight line segments, introduced arbitrarily, as shown in -

Fig. 6.1L, connecting nodes of the primarpmeah. , “(gmhe dual-mesh is

formed by lines halfway between lines [of theapttimary mesh.) The points

labeled B are on the boundary and valueeof "31.1. are conputeduein;

Equation (28) of Chapter III. The only complication is the evaluation

of VZUi for points on the boundary. A few nameless till illustrate

the technique.

- ..L 3 a

VZUO “ Ho 9g #45

‘
o
e
H

‘
4

d

 1e"

17" ' / L:

16» C x ‘

158—3.! /l/

Th

fie A

J;

 

 

 

 
 

         
13

f l ‘ J l I I. l -- _.

1+ 5 6 7 8 9 10 1.1 12

 

J-—y

figure 6.11: Boundary points for the semi-circular notch

It an interior point where no . h? the line integral is approxilated

(see Fig. .393 and Equation (27))

so a

Wfiiwwe: +‘Uz-Uo)'fff + wa- uni—3 +(u4-Uo)%—z]
For the notch bounduy

9.15- a _
ay"/a, 33—0.
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at a boundary point such as P153 (I a 15, J . 3), Figures 6.1!; and

6015<‘)a

[1st —-=—-<U.,~ua), Has a

M
;

C
O

v

vzu = pm%(u,+u3)-2Uo+-H.

Thus the appreciaation to the line‘intecrale along 53' and ii: is m.

in term of central difference quotients at the. ends of the intervals

instead of at ' an interior‘ point. This illustrates an additional couplin-

tion of the irregular boundary, which appears at host or the boundary

 

 

   

 

 

 

 
 

P0111“.
_ y

n ”1'“ P13’11. Hearse 6.1L and 6.150,), (a) p15“

3 d

[3»Jam"“' (Ug- U0)” [c3gals—gm U) f a

L a»MJWU§$>¢cose *(§-§L$M]3%, = g,

=I35° 2- ‘ (b)'P18,1
1 .

VZUO=F
[UI+Uq

-2U,+%
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At the point ’156’ Films 6.11; and 6.15“);
o I ‘ ,
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Figure 6.15 Treatment of boundary points
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The evaluation of V2U(15,6) is used in equation (28) for the finite-

difference equations at the point Pm’ée It is not possible to write

finite-difference equations for point ’15,,6 using Equation (28). .Hence

the evaluation of “(15,6) and the discrete values of the stress function

at other points labeled with a c in Fig. 6.11; are obtained by. interpola-

tion. Fox (1950) treats this problem with the Gregory-{Newton forward

interpolation forsula. A point 0 exterior to the boundary is introduced

as shosn in Pu. 6.16. Iith

the value of 03 and III; . (fig—)3

 

specified on the boundary, it is M g |~—h .4

possible to eliminate Uo and O 1 2 3 +
1
; V x

determine 01 at the first interior

point in terns of the boundary

conditions and one or more interior

Figure. 6.16 Interior points

points as follows near a boundary

- (x-xa QQJX-XJX-x A3U.(x-x. x- - A’LL - - -
U‘Uo'i-AUO h + 2! +4 +T—W4-WWW4' """‘ .

Let s - (XE - xo)/h then

U8 2 Ua + (U,-U,)S+(U2-2U,+U.)‘i%;!fl + (U3- 3U1+3U,"U.)""{SEEM-2) +

(Ut- ‘+U,+eu2-Lw,+u.)fl‘il}+§im +-— —-- ,

U2:(U'_U°)+‘UZ-2UI+U0)(S‘*)+(U3”3U3+3U,-Uo)
'1§'2;3§!£:—2 +

(Ut-‘+U3+suz-I+u,+u.)iL-fir’—-L€"'‘:’-=1 - +----
9

or

US = mu, +D2U, +1302 + D,U,+D5u., +H,

AU; = EnUO + EZUI + LUZ + Etua + E: U? + H2.

where the D1 and 81 are fourth degree polynomials in I obtained by

retaining differences up to fourth order while H1 and 32 involve fifth
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and higher differences of U as well as higher degree terms in s. Neglect:-

ing H1 and Hz the external point value can be eliminated and the expres«

sion of U1 is

u.=[%z— as + (gs — %)Ua + (%-§%)U,+(-Ef-Bf>ut]/(-§é- 15-2). 0

Though it is preferable to retain differences of at least the fourth '

order, similar formulas can be written for higher or lower order differ»

ences.

Hoblem ._6_ - grectfiular hole _in an infinite plate

The solution for an infinite plate subjected to uniform tensile

stress Po at x 2.00 and x a ~00 is provided by Bevin (1951) for several

different approximations of the boundaries of a rectangular hole. The

stresses on the boundary of a square hole obtained from one of Savin's

solutions will be used for comparison with the stresses obtained from

a numerical solution. The problem solved numerically is for a 2 unit

by 2 unit region surrounding the hole. The hole dimensions are 2/3 by

2/3. Values of the stress 11

' JL
 

function and normal derivatives  

on the outer boundary of the Pa 35 E

*- .

selected region are determined

 

from Savin's solution. The

 

nunerical solution of the

  
 

biharmonic equation provides a

basis for the determination of £9. lo
"

    the stresses on the boundary of  the hole,and these are compared

with stresses from Savin's

solution for a curvilinear Figure 6.3.? Problem 6

Infinite plate with a square hole
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approximation to the square hole.

Savin's solution is obtained using luskhelivshili's method. It is

known that the stress function 95 (x,y) can be written

¢ (m) - u. [‘z‘mz) + 5(a)]

where Re means the real part of the complex expression, (X (z) and 5 (a)

are analytic functions of the complex variable a = x + 1y. '2— a: x-iy.

Savin's solution is obtained by conformal mapping of the region

exterior to the hole onto the interior of the unit circle in the

complex ¢-plane by a mapping function 2 a w (g‘ ). The mapping function,

approximated by three terms of an infinite series, and the complex stress

functions a (fi‘) 5 (I: (1“? fl and the derivative of g (3‘) 5 @[OKS‘fl

are given by Savin (1961) pp 51-53 as

com) = RH? -— ZL¢3 +32% 3'71}

(fig) = BREW + o.426§'+0.046(’3+o.008$15+ 0.00‘I' V719

..~_.§_c/CS")..- _:_ 0.55%?-0.657i'3—o.026<’5-o.0299'7l
LP(S')_, d? "' BRLQS, + /+ 0.55“, —-O,/25878 ’

where 735:4- i)? .-_- (9e19, (f: ,7? ), ( E, 6) are rectangular and polar

coordinates respectively in the complex q plane. Points on the circum-

ference of the circle correspond to points on the boundary of the square

hole, but when the series for Ca) ( $’) is truncated, the correspondence is

not exact. The Cartesian coordinates of any point in the plate in terms

of the polar coordinates in the complex plme are given by

x = R (+C059-g-3C0539 +—§.—>g7-C0,S' 76) ,

, = .3 (fysine + game -— sumo.

The boundary of the hole defined by these equations when p g 1 is not

an exact square. The edges are slightly bowed and the corners are

approximated with circular arcs of radius r e 0.02hsa, where a is the

distance along the x-axis from one edge of the curvilinear square to
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the other. H is the length of one side of the square hole. The value of

_R a .39321508 is used in the problem solved numerically. This assures the

transformation of the hole “Y

—————--—~—~—

     

boundary at a distance of 1/3

from the origin onto the bounds-

arycfthe circle (Delinthe

 

   
 

l

1

g; I

complex plane. Thus a g 2/3, a l

’ l

and the corner radius of curva- E

I

ture for Savin's solution is :

' 1 l

r .— o.0163. 0 v"

. ' Figure 6.18 Approxima-

The equations given by tion of. the square hole

Savin do not permit the direct evaluation of the stress function along

the boundaries 1 g l and y ..-. 1. Derivatives can be found from

‘7'—

%¥2+‘2—§§ == «(3’) + tagger) + W?) ‘

See, for example, Savin (1961) p. 6 or Huskhelishvili (1953) Po 183.

Values of (3 which correspond to points on x a l and y a l, are deter:-

mined for 0° 5 9 5 90° at intervals A9 a 3°. For these values of

and 91% and .3; are calculated.“ The availability of a basic set of

complex variable subroutines and statements in 3600 ' roam simplify

these calculations. . The values of, the derivatives of ¢ thus determined

relate to points unequally spaced along x e l and y a 1. A five point

Lagrange interpolation formula is used to find values of the derivatives

at equally spaced points. Along the x—axis, quadrature of g—g provides

the point values of at up to an additive constant. The g; values specify

a normal derivative. 1. similar procedure is used to obtain values of ¢

and normal derivatives along the boundary y g l.
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The general problem of a multiplyeconnected region is discussed by

Griffin and Varga (1962). The constants of integration can be arbitrarily

chosen on an exterior closed boundary. However, for each interior closed

bomdaly it is necesealy to determine “wig-21“” one point P]: on
ax’

the boundary in such a w that the components:6of displacement u.v and

the rotation a), . J. (.._3' - 351;.) will be single-valued. The three

additional mlmowns for each interior boundary are related to the point

values of the stress function in the region surrounding the hole in a

manner which permits use of iterative methods.

 

    

Since the purpose of the “Y .

”sent nmerical solution was | d b B

only to test to. efficacy of the -'

finite-difference method in re- 33'

producing details of the rapidly- "

varying stress near a stress- &.L—F 3

concentration point by comparison ’

with Savin's solution, the proce- a, L, X

dure of Griffin md Verge for a '6 26 l

' ” Figure 6.19 nomain of solution

multiply-connected region was not 4 ., for Problem 6

followed. Instead the results of Gavin's solution were used to choose

the integration constants on the boundary x a lin such a m that {1 -,.°

at the point ( l/3,o ), and the assumption that d is sy-etric with respect

to the x and y axes will satisfy the required conditions of single-valued-

ness. The symmetry conditions then took care of the other constants on

the hole boundary, and it was possible to solve the problem Iith one

quarter of the. plate as. a simply-connected region, see Fig. 6.19. The

x-axis is a line ‘of. symmetry. Hence gg— - 0 along the x-axis. The
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ywaxis is also a line of symmetry. Hence éég— = 0 along the y-axis.

Along Z? 2

_.JLQ ._ _ 312...
07""3y3-_o’ 7701“" QXAy—Os

22_ .21 - a _A _

ay ' (99):.‘0: x“(ax q— ,q

¢rB=o

The value of B is zero since it has been assumed that ¢a = 0.

Along 3?

y- 3X‘—0 5):“ jangyo-' 09

§$= (Hie-‘0’ 3.2-“ 53%):

¢=C=¢F=O

Hence i-O.

Along R and Ed boundary values of the stress function and its normal

derivatives are obtained from Savin's solution.

Iterative solutions were obtained for mesh intervals of 1/15,

1/30, and 1/h8. Values of the stress function and a; at the inter-

section of every fourth grid row and grid column of the M8 mesh are

given in Fig. 6.20.

A comparison of the stress concentrations found in the numerical

solution and those given on p. 53 of Savin (1961 ) is provided in Table

11.. Values of 6'; given by Savin are the values of 6} in a rectang-

ular coordinate system which has the origin at the point under investi-

gation and the y-axis tangent at the given point to the curve 6 - 1.

See Savin p. 8. The table includes comparable stresses, of, for the

iterative solution with a convergence criterion of ‘IO'6 and a second

set 65 for the solution obtained with a convergence criterion of 10-7.

Both are included because this appears to be an exception to the

general case in which stress concentrations increase as the convergence
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FIGURE 6.20 Stress Function and 6‘: Distributions for Problem 6
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Table 16. Comparison of boundary values of cr' obtained from.the

iterative solution with those from Savin's solution.

Savin's Solution ISOPEP Solutions

9' x; y' Cfis C51 (TE 1; y

0° .3367 o «.936 -1.005 -.902 .3333 w o

-.991 -.895 .3333 .0833

-.973 -.883 .3333 .1250

-.966 -.861 .3333 .1667

—.897 -.828 .3333 '.2083

-.801 -.786 .3333 .2500

-.152 -.118 .3333 .2917

35° .3361‘ .2952 -.566

.170 .185 .3333 .3125

60° .3352 .3166 .605

65° .3296 .3296 6.368 6.78 6.52 .3333 .3333

50° .3166 .3352 6.660 .3333

3.602 3.281 .3125 .3333

55° .2952 .3361 2.888

2.710 2.665 .2915 .3333

2.176 2.057 .2500 .3333

1.979 1.869 .2083 .3333

1.880 1.775 .1667 .3333

1.819 1.722 .1250 .3333

1.780 1.690 .0833 .3333

90° 0 .3367 1.760 1.718 1.668 0 .3333       
The stresses OE and 0" are compare 10 to 05 for iterative solutions

with the convergence cr teron of 10' and 10-7 reapectively.
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criterion is decreased. The values of cf; and ng along x = .3333

for y‘<.3333 are values of (j; computed from the point values of the

stress function. Along y = .3333 for x<.3333 the values of UK and

073 are the values of 5; computed from the stress function solution.

At x.= .3333, y = .3333 Which corresponds to 6 = 45°, the values of

CyELgiven by Savin would be along a line which makes an angle of 45°

‘with the xpaxis. Values of’cy;} C5; and ’1gy computed at the corner

of the square were used to compute values of (TR and C75 in the same

direction as 0'3. The values, 0‘6 - 4.368, a; = 4.78 and 53 = b.52

are the largest stress concentrations occuring at corresponding points

in the solutions considered. The fact that slightly different values are

found for the numerical solutions might be expected from the different

representation of the boundary at the corner in the numerical solution

and Savin's solution.



VII SUMMARY AND CONCLUSIONS

The objective of this study has been three-fold; (1) The identi-

fication of efficient iterative methods for the solution of plane

elastostatic problems; (2) The preparation of a system of computer

programs for solving this class of problems; and (3) A demonstration of

the use of iterative methods.

An investigation of the numerical solution of elliptic differential

equations resulted in the selection of three matrix iterative methods

as the alternatives which should be considered for inclusion in a

digital computer program for the solution of plane elastostatic problems.

Computer programs have been written for the point successive overrelax—

ation method, the alternating-direction implicit method and the cyclic

Chebyshev semi-iterative method. Solutions of a model problem for

various mesh intervals and convergence parameters are used for compara

ing the methods. The model problem.is a square plate with uniformly

distributed loads on portions of two edges. See Section VI-1.

The superiority of one iterative method over another may be judged

by comparing the number of iterations required to satisfy a given con~

vergence criterion. The results given in Fig. 4.7 (a) show the cyclic

Chebyshev semi-iterative method is iteratively faster than the other

methods when the number of mesh points is lessthan approximately 125.

This number of mesh points corresponds to a mesh interval h = 1/16. For

h <i1/16 the alternating-direction implicit method is iteratively faster.

Whether one method is iteratively faster than another may not be an

adequate basis for selecting the best method for a computer program.

93
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Cost,which is directly related to the computer time required,may be a

better measure of the superiority of a particular method. The results

given in Pig. h.7 (b) show the point successive overrelaxation method

is better than the other methods for a mesh interval h =r1/26. For

a finer mesh, say the number of interior mesh points is more then 350,

the alternating-direction implicit method is the best for the problems

examined.

The results given in Fig. L.7 were obtained using various methods

for approximating the optimum.relaxation factors. How do these three

schemes compare when the optimum.parameters for accelerating convergence

are used? 1 series of problems were run in an attempt to answer this

question. A plot of the number of iterations against the associated

parameter for accelerating convergence is given for each method. See

Figures n.3, L.h, h.6. In Table 2 the data for the second and third

problems provide a comparison of the number of iterations and machine

time for a problem with mesh interval h - 1/12. Optimum parameters were

used in the second problem.and the standard approximations given in

Section IV were used in problem.3. Use of the optimum.parameters pro-

duced substantial improvement in the machine time required; h2$ for

successive overrelaxation, 24% for the alternating-direction implicit

method and 18% for the cyclic Chebyshev semi-iterative method. These

results show the magnitude of the improvement which could be made in

iterative methods if better estimates of the optimum.parameters could

be found. This is a problem which warrants further investigation.

Another important consideration in the selection of an iterative

method for the solution of plans elastostatic problems is the storage

requirements of instruction and arrays. A summary of the storage
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requirements for each method is provided in Table 1. The successive

overrelaxation method requires less than 50% of the storage needed for

either of the other methods. Using_successive overrelaxation, problems

with up to 435 mesh points have been solved on an IBM 1620 with a core

memory of 20,000 decimal digits. Comparisons~of the times required to

solve problems on the CDC 3600 and the IBM 1620 are given in Table A.

A system of FORTRAN computer programs for the solution of plane

elastostatic problems has been written and tested. Flow diagrams, list-

ing of FORTRAN source decks, specification of input and the output for

a sample problem.are provided in Appendix B. A subroutine for each of

the iterative methods is included. In addition there are subroutines

for: calculation of stress components; calculation of initial values

when the mesh is refined; input and output. The main program ISOPEP

provides for the linkage of these subroutines and an additional pair of

subroutines which account for the boundary conditions of a particular

preblmm. The boundary condition subroutines for the six problems dis-

cussed in Section VI are also included in Appendix B.

A set of six.problems has been solved using the ISOPEP program.

gThe first problem.is a square plate with edge load on two sides as

shown in Fig. h.1. This is a model problem.used to compare the selected

iterative methods. Distributions of the stress function and.cr; for

Problem.1 are given in Fig. 6.2.

The second and sixth problems were selected because they provide a

basis for comparing analytic and numerical solutions. Problem.2 is a

semi-infinite plate with a uniformly distributed load along a segment of

the edge. The stress function and cr§,distributions from the numerical

solution are given in Fig. 6.5. A comparison of the distributions of
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c77}1at one mesh interval from.the plate edge is provided in Fig. 6.4;

values from.an exact solution, from the ISOPEP solution, and from.a

numerical mapping solution are compared. Problem.6 is an infinite plate

with a square hole. Comparison of the analytical solution of G.N. Savin

with the iterative solution is provided in Table 1A. Stresses on the

boundary of the square hole are used for this comparison. The numerical

solution shows a slightly higher stress concentration at the corner than

Savin's solution, but the agreement is fairly good, considering that the

effective rounding of the corner implicit in the finite-difference solu-

tion approximates the boundary in a way different from.Savin's truncated

series mapping.

The other three problems are notched tensile specimens.‘ Problem.3

has semi-circular notches, Problem.h has V-notches, and Problem.5 rect-

angular notches. These problems were selected for an investigation of

the numerical determination of stress concentrations. Stress function

and <77; distributions are given in Figures 6.7, 6.8 and 6.9 for Problems

3, h and 5 respectively. Additional details of solution values at the

base of the semi-circular and V-notches are given in Tables 5 through

13. Values of the shear stress "I3,y and a} are included.

Comparisons are made of the stress concentrations computed with

different choices of mesh intervals h. See Figures 6.10, 6.11, 6.12.

In addition, for the V-notch the stress concentrations for the ISOPEP

solutions are compared with the Neuber theory solutions provided by

R. E. Peterson (1953). Under the assumption that the numerical solution

at the base point of the V-notch represents a solution for a specimen

with a semi-circular notch of radius equal to the mesh interval, the

two solutions show good agreement. See Fig. 6.13. This agreement may
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be somewhat fortuitous, but it does lend support to the usefulness of

numerical analysis in the vicinity of a singularity. In any actual

body the notch would be somewhat rounded, and the numerical analysis for

a sharp notch approximates the actual state of stress in a rounded notch

with radius equal to the mesh interval of the analysis.

The numerical results for the six problems solved indicate that

high speed digital computers provide an effective means for the

analysis of plane elastostatic problems. The stress distributions

obtained from.numerical solutions compare very well with explicit solutions.

Though it is necessary to use a fine mesh in the neighborhood of a singul-

arity, the ISOPEP program.for the CDC 3600 permits the use of over

3600 mesh points. This should permit the analysis of quite complicated

problems. ISOPEP solutions on the CDC 3600 are reasonable in cost. At

an hourly rate of $375.00 per hour for computer time, the cost of solving

a problem with 200 mesh points would be $5.41. Th; cost for the solution

of a problem with approximately 1100 mesh points would be $36.23.

The possibility of augmenting the ISOPEP program.has been con-

sidered. Since ISOPEP is a set of linked subprograms, additions could

be easily'made.. The additions which have been considered include: (1) A

better treatment of boundaries formed with circular arcs, perhaps,

through use of polar coordinates; (2) Use of a refined mesh in a sub-

region of the solution domain; (3) Use of a different formulation of the

differential equations. The variational method for deriving difference

equations as used in Section III provides a finite-difference form of the

Navier equations, see Eq. (37). A study of the iterative solution of

these would be of value.
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APPENDIX A

CONVERGENCE OF ITERATIVE METHODS

The convergence characteristics of an iterative solution of a

system of linear equations of the form

AH=£ (so

can be judged by examination of the matrix.§, The system of linear

equations associated with the biharmonic difference equations can be

written so 5 is positive definite and of the form

a=2+§+a we)

where Q is a nonsingular block diagonal matrix and the form.of‘§‘+ g

associated with a particular iterative method establishes the convergence

of the method. The basic conditions for convergence are given in

Theorem.A.5 of Subsection 3 below3while estimates of the relative rates

of convergence of different methods are cited in Subsection 4. Theorems

A.8, A.9 and A.1O give some alternative convergence conditions for the

Richardson's, Gauss-Seidel and successive overrelaxation methods.

Subsection 5 is concerned with the selection of optimum relaxation

factors.

For fuller discussion, with proofs and bibliography,see Varga

~(1962) and Faddeeve (1959). Specific page references in these readily

available sources are cited. No attempt has been made to give a hist-

orical account here with credits‘bo the originator of each result. The

purpose of this appendix is a summary review of basic matrix properties

and the convergence of matrix iterative methods.
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1. Matrix and Vector Norms, the Spectral harm of 8. Matrix
 

Definition: If A is an n x n matrix, then A is convergent if the sequence

3
of matrices A, £2, 5 ....... converges to the n x n null matrix, _0_.

 

Otherwise A'is divergent.

In the investigation of iterative schemes it is important to

judge not only the convergence of the solution vector y, error vector

E, and associated matrices D, but also the rgtggflgf convergence. Norms

of vectors and matrices are of importance in the discussion of rates of

convergence. The norms have been defined in many different ways. Some

of these norms are discussed below. Except in this section IIXJI will

always denote the Euclidean vector norm defined as llel III below and

the matrix norm "All will mean the spectal £95! "All III' We will also

use the term spectral radius, denoted by 63(5) for the magnitude of the

largest eigenvalue of the matrix, defined in the next subsection.

designated ||§J| which satisfies

(a) Hall > o for an 9,... Hell - 0.

M Hall = lClll all where C is any ...m,

(c) ”2+1”: ”g H + “I“, the triangular inequality.

There are three norms of interest. For the vector

§g= {X1, X2, X3 ---- In; , we define

Io Ill HI = max lxil,

IL HEHII = |x1| + lle 1' -... +lxnl:

III. ”gunI =1/lx1l 2 +--- + |1rn|2 , Euclidean norm

 

Since norms are often used as bounds it should be noted that

urnI .<. ”sun .<. n “anI
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Fadeeva (1959) states that a necessary and sufficient condition

for a sequence ;(m) of vectors to converge to a vector §_is that

“_X-(m) =§H-—> O as m——>OO

for any norm satisfying conditions (a), (b) and (c); he gives a proof

for the three norms I, II, and III.

The norm of an n x.n matrix §,is a nononegative number [lg H

which satisfies

(a) IIAII> 0 1r Meandnai: =0.

(b) Hcall = ICIHaH

(c) Hysll Still! +1133.“

(a) Heal! .<. Hall Hail

The necessary and sufficient condition for convergence of a sequence

of nxnmatrices 5"“) is that Ham) - £||~+O as m—eOO. Any

norm which satisfies (a), (b), (c) and (d) can be used to establish

(m) all—*0 then I|g(m)|l->l1e!loconvergence. If ['5

As in the case of vectors it is possible to introduce matrix norms

in a variety of ways. But for the purpose at hand it is convenient to

introduce a matrix norm which satisfies some special requirements. One

of these is the requirement for the matrix norm to be compatible with a
 

given vector norm. This condition holds if

MAX.” 5 Hall H ..X.l! . Compatimutx condiiiaa

It is possible to determine a matrix norm which satisfies (a), (b),

(c), (d) and which is compatible with a specified vector norm. For

example, as a matrix norm compatible with the Euclidean vector norm

 

X we define the s ectral norm 3A” of a matrix A as the

H" “111’ p I’ "III ...

least upper bound of the norm of the vector 5,; as ; runs over all

vectors of norm unityg



 

1
1
1
1
1
1
1
1
1
1
1

1
.
1
1
:
1
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llélllll = max ”5. 39,111 With H E’HIII =1

2. Eigenvectors and eigenvalues

An eigenvector (also called proper vector, characteristic vector

or latent vector) of a linear transformation A is any non-zero vector

x such that

as= A;

where A may be a complex number and is known as an eigenvalue (or proper

number, latent root or characteristic number).

If a vector x is an eigenvector it must satisify

aux: +a12X2+ ‘ " ’ ’ “" amX”=;\x'

QZle +QZZXL+ - - -- - - -- aznxn=XX1

amx. + anaxa+ - - ‘ ' - - ' ‘1an ’2’“?

a system of homogeneous equations, which can have a non-trivial solution

only if

an ‘1 dig a,”

am an") 0211

0.7” an; dnn‘)‘  
The determinant is equivalent to an nt'h degree polynomial in A which

is called the characteristic polyomial of the matrix A. For a real

symmetric matrix all the eigenvalues are real.

Definition: If _A_ is an n x :1 complex matrix with eigenvalues )1,

1 g i 5 n, then

6 (£1) = max | A1 I

is the sEctral radius of _A_.
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3. Properties of Matrices

Theorem.A.1: If g'is any arbitrary matrix then

Hill 2. ed). [Varga (1962) p.10]

Theorem.A.2: If §.is an n x.n matrix then

M = we?)

where A? is the conjugate tranSpose of g, [Varga (1962) p.11]

 

Definition: An arbitrary n x.n complex.nonsingular matrix 5 and an n-

dimensional vector §_can be combined as g? g_; to form.a homogeneous

second degree expression in terms of the components of §_which is called

a quadratic form. If the value of the quadratic form is positive for all

non-trivial g then the form and the matrix glare said to be pgsitixg

definite.

Definition: If §,is a n x.n complex.matrix such that any two elements
 

situated symmetrically with respect to the principal diagonal are complex

conjugates, aji ==§ij, then §_is called a Hermitian matggx. Notable

characteristics are:

1. Diagonal elements must be real.

2. Any symmetric matrix with real elements is a Hermitian matrix.

3. The eigenvalues of a Hermitian matrix are real.

4. The eigenvalues of a positive-definite Hermitian matrix are

positive.

Definition: A square matrix.g_is diagonally dominant if

“15?) 3 filau‘l
J=l,

Jae:

If the strict inequality holdsfor all i, §,is said to be strictly

diagonally dominant.

Theorem.A.3: If §.is a Hermitian n x.n strictly diagonally dominant

matrix with positive real diagonal entries, then §_is positive definite.
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[Varga (1962) p. 23 1

Theorem Ll}: If A is an n x n Hermitian matrix, then

|| 5” = pg) [Varga (1962) p.11]

Theorem Lg: If A is an n x n complex matrix, then A is convergent

if and only if

(3(5) <1 [Verge (1962) p. 13]

Thus, we see that if the matrix A in Eq. (A-1) is symetric and

positive definite, then 5 is convergent if the spectral radius of A is

less than 1. In the next subsection the convergence rates of several

iterative methods will be considered.

A. Convergence Rates of Iterative Methods

The system of linear equations (A-1) can be written in the form

(1 - 1.4.) H. = E. (AL-3)

where g is an n x n complex matrix and I_[_ is the identity matrix. If

(:_L - g) is non-singular a unique solution vector 11 exists. Consider

an iterative method for the solution of Eq. (4-3)

 

2(”1)-!U(“)+£ Ian-1.2.3

For any vector iterate 9f“) the difference Um)

(A-h)

- Q - go“) is a measure

of the deviation of the vector iterate from the solution vector. The

(hit)
error vector _E_ can be written in terms of the preceding error vector

§(m) g g E-(m-1)

This is obtained by subtracting (A-B) from (A-h) and it can be readily

shown E(In) a E” §(0)

From Theorem A.5 we conclude that the error vectors g0“) will tend to

zero for an arbitrary E“) if and only if g has a spectral radius €(_Ig)< 1.

Theorem A.6: If A and g are n x n matrices, then

(1) l|£||>0 or i=9;
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(2) if k is a scalar, “kg“ = [k l [15,”;

<3) Hue” .<. Hell + Hall3

m Mean s “an Hill:

(5) Hi!“ _<_, ”A“ ll _qll for all vectors y_ of n components.

Also, there is one nonzero vector _v in the n-dimensional vector space

such that

“A!” - “A“ Hill [Varsa (1962) m9]

Since the solution vector iterates g0“) and the associated error

vector iterates g“) are n-dimensional, Theorem 11.6 can be used as

justification for

New” - ”ram“ <uru lli(°)ll

 

ll ("fill

Hence, “am H as an upper bound estimate of the ratio of HEW) H to

II 33(0)” provides a basis for the comparison of different iterative

methods. If g is a Hermitian matrix then

urn - the)“

Definition: Given two :1 x n complex matrices g and g. If for some 111 > 0,

° ||f||<1 then

R(.!m)' ~41! [llgmllk’ ]- Jbgbfi-IL- (A-S)

is defined as the average 22 _of convergence £9; :_n_ iterations of the

matrix 3. [Verge (1962) p.62.J The convergence of g is said to be

iteratively faster than the convergence of 5 when Mg") > R (f).

The significance of Rm") as a measure of the average rate of convergence

may be seen by consideration of the average error’ reduction factor per

iteration 0:
HEM)” k"

a” 113°)” J
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For the case when “gull <1

0' s H!“ 11"" = ““3” (.-.)

where e is the base of the natural logarithm. Thus this) is the

exponential decay rate for the upper bound of the average error re-

duction 0‘, per iteration in an m-step iterative process.

Let NIn - 1/R(_I~f‘). Substituting into (A-6) we find

O’Nm .<. 6

from which we conclude NIn is a measure of the number of iterations

required to reduce the norm of Q“) by a factor e.

Theorem A.7: R(Am), the average rate of convergence for m iterations

of an n x n convergent matrix A has a limiting value of -In E(A) as

m increases without bound. [Varga (1962) p.67 ]

Definition: The asmtotic 22L! 2;; convergence Rx (A) is

Rag (A) = -1n 9(5)

Corollgz: Let A be a convergent n x n matrix, then

Roe (A) .>_ ME“)

for any positive integer m.

For Hermitian matrices A and g, the spectral radii may be used

for comparison of rates of convergence, since by Theorem [1.6,

9(a) <9(1.3)<1 implies ”an” <ugmu<1 and hence

R (Am) > My?) , so that of two convergent Hermitian matrices, the one

with the smaller spectral radius will have a faster average rate of

convergence for any 111.

It should be noted that though H g“ ||—-> 0 as m—boo for two

iterative schemes with matrices A and _B_, it is possible in general that

for a selected value m1, matrix A may be iteratively faster than g but

for a second value m2, 3 may be iteratively faster than A.
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Identification of the convergent iterative methods for biharmonic

difference equations is aided by consideration of the following three

theorems. The form of matrix A'in Eq. (A-1) is the determining factor.

Theorem A.8: If A_is a strictly diagonally dominant n x n complex

matrix, then the associated Richardson‘s and Gauss~Seidel matrices are

convergent and the corresponding methods are convergent for an arbitrary

initial vector 11(0). [ Varga (1962) p. 73. ]

The matrix ADassociated with the biharmonic difference equations

is not strictly diagonally dominant and Windsor (1957) has shown that

Richardson's method is not convergent for the biharmonic equation.

Theorem A.9: If A_= Q +-g;+-gf is an n.x n Hermitian matrix where Q

is Hermitian and positive definite and (Q +'§) is nonsingular, then

the Gauss-Seidel iterative method is convergent if and only if A,is

positive definite. (g? is the conjugate transpose of'g). [Varga p.78.]

Theorem A.10: If i - p + _q + (2* is an n x n Hermitian matrix and g is

Hermitian and positive definite, then the successive overrelaxation

method is convergent for any arbitrary'gflo) if and only if‘A is

positive definite and (Q +609.) is nonsingular for 0< (.0 < 2.

[Varga (1962) p. 80.]

5. Optimum relaxation factors

Definition: An n x n matrix g'which has zeroes and ones for elements

and only one non-zero element in each row and each column is called a

permutation matrix.

Definition: Given A_an n x.n complex matrix with n >.1, if there exists

an n x,n permutation matrix 2 such that



[
*
0

l
b

'
1
1

ll

  L$2 £22 j

where A11 and A22 are square matrices of order k and (n-k) respectively,

then A is called reducible. Otherwise A is called irreducible.

Theorem A.11: If A is an irreducible n x n matrix, then: (1) A has a

positive real simple eigenvalue equal to €(A) the spectral radius;

(2) Increasing the value of any element of A will increase Q (A); (3)

Corresponding to the eigenvalue (MA) there is an eigenvector with all

its elements positive. [Theorem of Perron and Frobenius, Varga (1962) p.30]

Definition: If A is an n x n irreducible matrix with non-negative

elements which has a single eigenvalue of modulus €(A), it is said to

be primitive. If A has I: eigenvalues with modulus of e (A) then A is

gygl_:I._c 2f. _igggx A, k _>. 2. Each eigenvalue of modulus €(A) is a

simple eigenvalue. [Verge (1962) p.35 ]

Definition: A square matrix A of order n is said to beMEM

2A index A (k > 1) if an n x n permutation matrix A exists such that

  

2 9 2 5.,

A 0 O 0

'1' -2)1" ‘” "

252’s a .9 9 2

l 31' '

| \\1

| I

0 O A 0

L-' -' '-&ar- J

where the null diagonal submatrices are square. A may or may not be

reducible. A matrix can be simultaneously weekly cyclic of different

indices. [Varga (1962) p. 39 ]

Again consider the matrix equation
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i932".

where A is an n x n complex matrix which can be partitioned

A“. 51,2 —’ "’ "" ALN

52,1 52,9. - - " £2,”

.4. a
(A‘7)

_ AM! Am - - — Arm.  
where the square diagonal submatrices are nonsingular. Let Q be formed

of the submatrices Ai’i,

  

5.1" Q 9.

9 i2), 9.

Q-

o o A ‘

L" " ”M;

then A is also nonsingular, and the matrix equation can be written

(i-mi+22-£

or _1 (Au-8)

u-a2+2 F

1
where A - _I_ - _B_- A is the iteration matrix for the block Jacobi iterative

method

2(m-1-1) ... 2 £011) + D-1
.E

The matrix A is called the block Jacobi matrix of A.

Definition: If the block Jacobi matrix A is weakly cyclic of index p,
 

then A is Ecyclic in the partitioned form (A-7). [Varga (1962) p.99 J

Definition: The p-cyclic matrix A is consistently ordered if all the
 

eigenvalues of the matrix
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_B_(k) as kfl + R413") .3.

are independent of k for k 7‘ 0, where A is the block Jacobi matrix with

sero diagonal elements, A and A are respectively strictly lower and

upper triangular matrices such that A - A + A. [Varga (1962) p. 101]

If the partitioned form of A is block tri-diagonal, it is con-

sistently ordered and 2-cyclic. The optimum relaxation factor 60b

which maximises the asymptotic rate of convergence of the block successive

overrelaxation matrix for p = 2 is given by

(4)6:-__3___.

I + 1/1 - (”(5)

where A is the block Jacobi matrix. [Varga (1962) P. 110 1

For the cyclic Chebyshev semi-iterative method the acceleration

parameters are given 2 C.1 l/( ‘

(1),, = #12, ‘ A .

e (5) Cm(/é(5))

where A is the block Jacobi matrix. [Varga (1962) p. 138]

 

The alternating-direction implicit method for the case of a fixed

acceleration parameter r is a slight variation of Eq. (67) p.33

2(n+1) _ B:—U(n)+ 4!.

If there is a block Jacobi matrix AR associated with Ar, the asymptotic

rate of convergence will be a function of 62(h).

Thus we find that the optimum relaxation factors for successive

overrelaxation and the cyclic Chebyshev semi-iterative method as well

as the acceleration parameter for the alternating direction implicit

method are functions of the spectral norm of an associated block Jacobi

matrix. In fact Verge (1962) shows that the three iterative methods

considered have the same asymptotic rates of convergence for Laplace's

equation solved for a square.
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There appears to be a dearth of good approximations of (3 for

irregularly shaped regions. It is common practice to use approximations

based on the numerical results obtained in the iterative solution.

Consider point successive overrelaxation. Forsythe and'Wasow

(1960) p. 250 Show that the eigenvalues }d_of the matrix of the simplest

iterative scheme, the point Jacobi method, are related to the eigenu

values 721 of the matrix of the successive overrelaxation method by

71. A: . This is applicable to the eigenvalue )(1 of maximum

modulus and hence to the spectral radius of the successive over-

relaxation matrix. The Optimum relaxation factor as derived by Forsythe

and wasow p. 253 is

2 2
L05 8 m : [fl (Aw-9)

The error vectors from one iteration to the next are related

Hamil 5. He II ll§(m")ll

where A,is the appropriate matrix for the iterative scheme being

considered. The dominant eigenvalue Th is the limit of II Am)" /[[§(m"1)“

as m increases without bound. Any vector norm of A,may be usede One

computational procedure for estimating Cub consists of starting the

fprcblem solution with w- 1, then after a number of iterations approxi—

mate ‘fi;

7(1 ” ”Em ll / “Em-1)“ (A-10)

and solve (A-9) for an approximate value of 00b.

Another approach to approximating cub consists of selecting

various values of Ce), running through several iterations for each

and then by comparison of results, select the best.

The procedure used in the ISOPEP code consists of computing a set
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of values for 6.) obtained by applying Equations (A—9) and (1-10) every

10 or 20 iterations. This has the advantage of being an automatic

procedure, and reasonably good results have been obtained for a number

of problems. Approximating (db numerically as the solution proceeds is

more computing art than science... Better methods for determining optimum

relaxation factors would contribute much, to the usefulness of iterative

‘thOd'e



APPENDIX B

ISOPEPBA FORTRAN PROGRAM FOR THE ITERATIVE SOLUTION

OF PLANE ELASTOSTATIC PROBLEMS

The system of computer programs named ISOPEP was written as a

general system for the analysis of plane elastostatic problems. It

includes a set of FORTRANwII subroutine subprograms and a main program

which provides linkage of a selected subset of these six subroutines

and additional boundary-value subroutines which must be provided for

each problem.

Thislappendix includes a brief description of the general sub-

routines, six examples of boundary-value subroutines, instructions for

preparing input data for the program, a sample of the output, a flow

diagram.and listings of the FORTRAN Source decks. I

lasts

This name is used for the system.of programs and also for the

main program which provides linkage between the subroutines. The

system was designed for use on an IBM 1620 with a‘20 K'main memory

and a CDC 3600. The number of subroutines linked by ISOPEP may be

reduced to increase the storage available for arrays. Only the Call

statements in ISOPEP and all Dimension statements need to be changed.

Only one of the three iterative method subroutines SORLX, ADI or CHEB

is normally used.

9.92m

OUTIN is the input and output subroutine. It provides for the

initialisation of arrays. When problems using a relatively coarse mesh

115
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spacing have converged, the point values are stored for later use in

calculating an initial stress-function distribution for a finer mesh.

212119.

The initial stress function distribution for the second or sub-

sequent mesh refinements of a problem.can be computed by interpolating

between the values obtained from an earlier coarseemesh solution. The

problems may be solved consecutively, with the earlier solution saved

in memory, or the preceding solution may be read from.punched cards.

Execution of this option is controlled by the input of an appropriate

value of the control number MESH.

mass

The stress components 0;, 0'; and TV will be computed and

punched out on cards if specified by one of the options determined by

the input of a control number NSTRS. The difference equations used to

calculate the stress components at each interior point are

0;” —“'-'-’- [ U2;J'+1"2Ui,l +Ui,J-11/;.f- '

0}“. =5 [ U}+hj"'2Ui,J' + Ui¢bJ1/hl 3

”Km 5“ "'[-U2‘+1,J‘+T U2'+1,J-T Ui-1,J'+I+Ui‘bj"/Ih‘ '

£031.!

AQAAA is the subroutine for the point successive overrelaxation

iterative method. This has been adopted for general problems with

irregular boundaries. As written, it is limited to simplybconnected

regions for which all mesh lines,parallel to one of the Cartesian

coordinate axes, are continuous segments connecting two boundary points.

ADI

The alternating-direction implicit method has been written as two
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subroutines ADI1 and ADIZ. The second is executed immediately after

the first. The specification of two subroutines makes more storage

available for arrays when the programs are run on the disk-oriented

IBM 1620. The solution domain is limited to rectangular regions.

gggg

The cyclic-Chebyshev semi-iterative method subroutine has been

run only on the CDC 3600. It is written in FORTRAN II and could be

divided into two or more subroutines for a computer with a limited

main memory. Only rectangular regions can be treated with this program.

It is necessary to specify an even number of interior mesh rows for

this subroutine.

PB N BD

The values of the stress function at points on the boundary must

be computed only at the beginning of the problem.aolution. This is

part of the initialization of the solution array. A subroutine of

this type must be provided for each problem. Examples are included

for 1 5 N 56.

PB N EX

Derivative boundary conditions must also be provided for each

problem. These may be treated by the introduction of exterior points

or with special finite-difference equations for each point on the

boundary. Both approaches are illustrated in the examples included

for 1 g N _f 6. This subroutine must be executed during each iteration.

lgpgt’Preparation

The input to the problem can be provided on a single 80 column

card unless point values of the stress function U13 are provided. The

deckeof stress function values would be placed immediately after the
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ITERATIVE SOLUTION OF PLANE ELASTOSTATIC PROBLEMS

FLOW DIAGRAM 0F ISOPEP
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control card which includes identification, dimensions and control

numbers for input and output options. The stress function values must

be provided in agreement with the FORMAT (I5,7F10.7/(5X,7F10.7) ).

Output is punched in this form in order to simplify restart procedures.

The FORMAT specification (F10.3,F10.8,2F10.4,101A), is used for

the first card. The following list gives the use and symbolic name

of each of the 1A numeric entries on the card.

 
 

 

Column Symbolic

Numbers Name Function

1-10 PRNO Problem.number for users identification.

11,20 DE Convergence criterion, usually in the range 1Om5=10°7.

21-30 REA Relaxation factor

314.0 SPYIJ H _E ”II Norm of the error vector in the preceding

iteration when restarting. Set to 1.0 initially.

h1-Lh HZ Number of mesh intervals along the xeaxis.

AS-AB MY Number of mesh intervals along the yaaxis.

49-52 IF (2) If y = 0 is an exterior boundary

(3) If y‘= 0 is a line of symmetry

53-56 JP (2) If x.= 0 is an exterior boundary

(3) If x - 0 is a line of symmetry

Note: Two mesh lines exterior to the domain are reserved

for derivative conditions if the boundary is a line

of symmetry otherwise only one line is reserved.

57-60 N N-so: Only one card of input is required. The initial

value of the stress function at all interior points

is set to 0.1.

N>0: Count of number of iterations completed. A deck of 



Column

Numbers

Symbolic

Names
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Function
 

 

61-61.

65-68

69-72

73-76

N<02

NOUT

ND ND

point values of the stress function must be provided

immediately following the first data card.

This is the control number which terminates the

processing of a sequence of data sets. A final

data card should always be provided with this entry.

Hhximmm.number of iterations permitted. This is the

choice of the user and provides for punched output for

restarting.

Output will be printed after NOUT iterations and

every subsequent set of NOUT iterations.

3,NT: The initial value of EPA will be used for all

iterations.

. ND'< NTz‘ The relaxation factor will be computed and

DESK (1)

(2)

(3)

 

changed at the end of every ND iterations.

No mesh refinement calculations

Read in values of the stress function from.a prior

problem and interpolate to find an initial stress

function distribution for the current problem.

Use the stress function stored in.memery from the

preceding problem.as the basis for interpolating te

find an initial stress function distribution for

the current problem. The user must be sure there is

at least one problem.apecified on input cards pre-

ceding this one.
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Column Symbolic

Numbers, Names Function
A 'Am. i'.‘ -.,L-,_...i.- 14ae.-‘.uu .u‘.‘ “‘9‘ lL-~.—“n:—‘|’_u ‘Ammn 4.. “.-.-.. v I“.— Lr.W
 

 _ _. ‘_.._" --.-‘_..-‘__.. ..— 
 

77—80 NSTRS '< 0 Punch Specified stress components

INSTRsl = 1 Print. (and punch) 0.3.,

INSTRSI = 2 Print (and punch)O-Sf and o;

 INSTRSI .. 3 Print (and punch) Txy9 o; and 0;

The second control card is used only if MESH = 2 on the first

card. The four integers read in with a (L15) FORMAT Specification pr0w

vide the dimensions of the problem solution prOVided on the cards

following this control card and the number cf mesh spaces along the yaaxis

of the problem to be solved.

 

 

  

Column Symbolic

Number Name Function ___

1-5 IP Number of mesh columns of input data

6~1O JP Number of mesh rows of input data

11-15 M1 MY for the input solution

16-20 M2 MY of the problem to be solved.

Example gf_Input Data

First half of the first card

Card columns
 

 

   

O 1 2 3 A

123456789012345678901234292829M267§20

1.190 .00001 1.5 1.0

Second half of the first card

Card columns

5 6* 7 8

12345678291234567890123h56j8©01234567830

5 1O 3 2 1 200 200 10 1 -3
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IBM 1620 OUTPUT OF SAMPLE PROBLEM

¢¢JOB 5

##FORXSB 1

0078“ CORES USED

SUCCESSIVE OVERRELAXATION

0 SOLUTION OF THE BIHARMONIC EQUATION C.L. DAVIS

PROBLEM CONVERG. MESH SPACES MESH

NUMBER CRITERION MX MY IF JF STRESS

1.190 .0000100 5 10 3 2 1 -3

RELAX. SUM OF ITERATIONS POINTS NOT

FACTOR ERRORS COUNT MAX.N0. CONVERGED

1.5000 1.0000 0 200 50

1.6352 1.7275 10 200 “5

1.6325 1.h1ko 20 zoo #5

1.5618 “.7068 30 200 “S

1.u7o7 .1865 #0 zoo #5

1.8761 .0372 50 200 #1

1.558 .0136 60 zoo ht

1.598 .0082 70 zoo #3

1.5832 .0085 80 200 #0

1.5579 .0019 90 zoo so

1.5258 .0006 100 200 28

1.8878 .0002 110 200 .9

1.190 .0000100 1.h878 .0001 5 10 3 2 116 200

200 10 1 -3.. - . ..

STRESS FUNCTION

2 3.6000000 3.0200000 2.8800000 1.9800000 .7200000 -.7200000

3 3.5072552 3.3395735 2.7961993 1.9099653 .696h0hh -.7200000

5 3.302709“ 3.1353795 2.6327760 1.798069“ .6555203 -.7200000

5 3.0285702 2.8790977 2. #277819 1.6699096 .6106627 -.7200000

6 2.6981876 2.5725967 2.1885523 1.5266087 .5626013--.7200000

. 2.3065270 2.2096326 1.9063169 1.3587928 .5068087 -.7200000

1.8h37695 1.7788512 1. 5669582 1.1528863 .h365079-.7zooooo

9 1.3121758 1.2792279 1.1621542 .8963012 .3hk3551 -.7200000

10 .7h826h2 ..7h100h7 .705771h .5860380 .2259561 -.7zooooo

11 .2501268 .25h2h91 .2625820 .2h90h07 .0918619 -.7200000

12 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 -.7200000

ISOPEP

15207 NEXT COMMON

C L DAVIS
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“36.0000

'35.5362

'33.h66h

-2908952

"'25 0111189

-19e3796

-12 o98‘1‘2

-6e5898

-1eh520

.823h

0.0000

'118 o5‘1'93

-11.1799

-6.959h

‘5.62#3

-60 u 277

-7.1097

'3.2317

6.5773

20.8010

50.0252

0.0000

1.0001

.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

STRESS DISTRIBUTION

PROBLEM NUMBER 1.190

123

D1MENS10N a 5 X 10

(THE X COMPONENTS OF STRESS)

-36.0000

_.35 05693

“33.5273

‘30.1843

"25 08,453

-200 6‘02G

-1ho697h

-8.4126

-2 o7973

1.9220

0.0000

'36.0000

“35.2859

“33.2108

“30.6556

'27.7899

~24.12©8

-20.2178

-0 “o8779

-8.9500

“2011879

0.0000

-36.0000 “18.0000

-20.2893

-23 o2976

“27.1915

‘31.8593

'37o11r816

-tt.0129

”51.2908

-58.587h

(THE Y COMPONENTS OF STRESS)

‘18.085’+

“10.3767

96.2087

-500219

‘5.6863

-6o78117

-6118811’“

“3.8599

5.1062

23.2516

50.8487

(THE

0.0000

1.2516

2.7566

1.007%

5.01h#

5.8206

6.2547

5.8579

h.0619

I] o 0623

0.0000

~16.7602 ~1h.0069 -h.7191

—7.9622 -h.1866 «1.7288

~h.1570 ~1.6253 ~.3973

-3011235 ‘1.51% _o3203

“QOS'DJOS -20115115 -07735

-5.7123 "3.8090 -1.hSOD

-6.5145 -5.0678 ~2.1856

-S.1578 -S.3678 -2.62h6

1.3193 «2.6731 ~1.569S

18.0607 8.7956 h.2232

52.5163 h9.8081 18.3723

XY SHEAR STRESS COMPONENTS)

0.0000 0.0000 0.0000

205571 b.5686 8.5h83

5.2605 7.0668 6.0013

7.2831 8.7826 6.7863

8.9587 18.8801 7.7779

10.5005 12.3875 9.3130

11.6978 11.5828 11.5622

11.7719 16.2658 18.1712

.9.LL30 16.1769 16.1815

3.87t1 11.9953 1h.6509

0.0000 “0.0000 0.0000

NOTE TITLES ENCLOSED IN PARENTHESHS ARE

-125

“72.0000 -1hh.

0.0000

-19071191

-12.8959

-21.8675

'31.h798

~h2.6391

*56.698&

‘75.1290

‘98.8088

.6276

0000

.0000

o OC‘C'D

.0000

.0000

.000

.0000

.0000

.0000

.0000

. 000

.0000C
J
Q
H
D
G
D
G
H
Q
C
D
C
D
C
H
Q
G
D

.0898

.0000

.0000

.0000

.0033

.0000

.0000

.0000

.0000

..0660

9h.7634

I

U
1 a

s
p
e
e
c
u
m
c
e
c
u
a
c
s
c
w
v

NOT PART OF OUTPUT
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LBSTING 0F ISOPEP EORTRAN SOURCE DECKS

PROGRAM PAGE

ISOPEP FOR THE 18M 1620 125

OUTIN ” " 125

STRESS 126

CHANG 129

SORLX 13o

ISOPEP FOR THE one 3600 131

A011 ‘ 135

A012 136

CHEB 137

PBIBD 128

PBTEX 128

PBZBD 110‘

PBZEX 111

PBBBD 112

PBBEX 113

93130 111

P31Ex 115

PBSBD 11s

PBSEX 116

PB6BD 132

PB6EX 135

soR3 116

SOR1 118

SORs 118

TABLE OF SYMBOLS 119
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c ISOPEP FOR THE IBM I62O

C THE DECKS LISTED HAVE BEEN RUN UNDER THE MONITOR I

c SYSTEM ON AN IBM I62O NITH 2®K MEMORY AND A I3II DISK FILE.

c DECKS ARE LISTED IN APPROPIATE ORDER NITH MAIN DECK LAST.

shoooszoO7OI3600O32OO7O2R9O24O25II9636II3OIOz

##JOB 5 .I OUTIN IOIII/65

##FOR 53

*LDISK

SUBROUTINE OUTIN

c INPUT AND OUTPUT SUBROUTINE

DIMENSION u(Ih,2h),IM(2O),IL(2OI,DIs) PII3.7 I.UI(I3)

COMMON U, IK, D ,Mx, IF IAMI HMY JFJAMJ N,NOUT,ND NT, NOL RFADRFIO

I SPYIJ, PRNO, DE ,DI,KPE INOT, MESH' NSTRS,NINC,IP,JP ,AMI, IL,P,UI

IO FORMAT 'gFIO.3..EIO.8, 2EIO.AIOIAI

II FORMAT F 8.3 FII. 7,I5.5I u/) .

I2 FORMAT sOHO SOLUTION OF THE BIHARMONIC EQUATION

II9H c. L. DAVIS/)

Ih FORMAT (45H RELAX. SUM OF ITERATIONS * POINTS NOT/

thFACTOR ERRORS COUNT MAx.NO. CONVEROED/)

IsFORMAT (uIH PROBLEM CONVERG. MESH SPACES MESH/

usHNUMBER CRITERION Mx MY IF JF STRESS/I

I6FMEMAT(2FIM05 2I8)

I7 FORMAT (I7H STRESS FUNCTION/)

:0 FORMAT I5, 7FIO.7/ 5x,7FIO..I;;

22 FORMAT I5 7FIO. 7/85x, 7FIO. 7

IFII-INOT5I33,8O8

so READ IO, PRNO, DE,RFA SPYIJMxMY IF JF,N,NT, NOUT, NDMESH, NSTRS

PRINT Iz'

. PRINT IS

PRINT II,PRNO,DE,Mx,MY,IF,JF,MESH,NSTRS

PRINT In

K-MX*MY

PRINT 16,RFA,SPY|J9N,NI,K

lA-MX-I-l F

JA-MY-I-JF

M|IlA+E

MJ-JA+I

NDL-NDH

NINc.NOUT

lF(MESH-3) 9I,9R.9R

91 DO 92 J-I ,I3 .

DO 92 III :7

92 P(J |)30. 0.

9H)OOH J-I MJ

DO IOO I-I ZMI

100

101

102

105

103

”(I "DI-9.1

IL J =3

IK J IIA

|F(N) 200 ,303,fl02

DO “0h JaJF, JA

READ

NDL-N+ND

RETURN

20, K,(U(fl J),I mfiFF,IA)
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IF( KPE ) 90,90 119

IF (SENSE SWITCH 1 { 90,121

IF(N-NOUT) 123,126,127

IF(N-NT) 115,89,89

NOUT=NOUT+NINC

GO TO 121

lNOT-I .

GO TO 90

INOT-3 ‘

PRINT IO,PRNO,DE,RFA,SPY|J,MX,MY,IF,JF,N,NT,NOUT,ND,MESH,NSTRS

- PRINT 17

105

III

110

200

c Mx MUST BE LESS'

116

117

118

11h

112

113

115

##JOB

##FOR

00 105 J-JF,JA

PRINT

IF SENSE SWITCH I) 1

IF INOT-z) 112,110 1

IF KPE) 115,116,11

STOP

J,(U(l,J),l-IF,IA)

1 1

THA I IN THE DIMENSION OF P(J,I) IF THE

SOLUTION IS TO B SAVED FOR THE NEXT PROB.

lF(MX-6 ) 117,1I7, 1h

DO 118 J-JF,JAHM. NH,

K-JGJF+1

DO 118 l-IF,IA

LII~|F+I

P(K.L)-U(I.J)

IPhMX+1

JP-MY+I

AMI-I./DI

IF(NSTRS) 112,11

PUNCH IO,PRNO,OE

PUNCH 17

DO 113.J-JF JA ‘

PUNCH 22,J,(U(I,J;,l-IF,IA)

IF(SENSE SWITCH 200,115

RETURN .. .

END

3

N
E
1

5 115 I

,RFA,SPYIJ,Mx,MY,IF,JF,N,NT,NOUT,NO,MESH,NSTRS

'.‘2 I
.I I.

23 ' STRESS IO/17/65 CLD

*LDISK

C

27

#0

#2

805

1 SPYIJ,PRNO,D .

1h FORMAT 18H PROBLEM NUMBER,F6.3.5X.12H 5|MENS|0N -.|3.5H X.|3’I

SUBROUTINE STRESS

STRESS CALCULATION SUBROUTINE.3'I- .

DIMENSION Uélh 2A) IRI2AI,IL£241,O£s),FIIa.7 ).u1(13)
DIMENSION s IAI,Sx(Iu),Txv( ). .

COMMON U,IK,D MX,IF,IA,MI,MY,JF,JA,MJ,N,NOUT NO NT,NOL,RFA,RFI,

E,OI KPE,INOT,MESH NSTRS,NINC 1P JR AM1,IL,P U1

FORMAT ll)

30 FORMAT 21HO STRESS DISTRIBUTIONI)

FORMAT l5, 7FIO.h/E5X, 7FIO.4;;

FORMAT I5, ;F10.#/ 5X, 7FIO.#

IAI-I./(DI*DI . . . ”I .

PRINT 30
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PRINT IA, PRNO ,MX,MY

DO 81A .JaJF, JA

820 KI=IK(J )

- K2=IL(J)

IF(J-IL(3)) 822,821, 822

821 K2=3

822 DO 812 I-IF, KI

_ IF (I-Kz) 811,81O,81O

811 S(l)=0.0 .,

w. GO TO 812 -

810 S(l)a(U(l+I,J)+U(I-I,J)-2.*U(fl,J))*AI

812 CONTINUE .. .. .

833 K-Kl

IF(NSTRS) 815 81A,81A

815 PUNCH A2, J, (SIL),L-IF, K)

81A PRINT M(S(L)LaIF ,K)

.1 PRINT 27

, IF( ABSF(NSTRS)-2) 832,833, 833

833 no 8AA J-JF, JA

KI-IK J

KZ-IL J

IF(J-IL(3)) 835. 83h9835

83A K2-

835 DO A1 l-IF, KI

IF I-KZ) 839,BAO,BAO

839 sx l)-O. O

60 To 8A1

8A0 SX(|)-(U(I ,J+1)+U(I,J—I)—2.*U(I, J))*Afl

8A1 EOEIINUE

IF(NSTRS) 8A2, 8AA,8AA

8A2 PUNCH A2, J, mi IL-IF, K

8AA PRINT AO, J, HL=IF K

.. PRINT 27

IF(ABSF(NSTRs)-3) 832, 8A5,8A5

8A5 DO 85A J-JF, JA

KIaIK J

K2-ILJ

IF(J-IL(3)) 8A7, 8A6 ,8A7

8A6 K2-3

8A7 DO 850 I-IF K1

IF(I-KZ) 8A8 ,8A9, 8A9

8A8 TXY(I)=O.0

GO TO 850

8A9 Txv(I)-(U(I+I, J+1)-U(I-1 ,J+1)-U(I+1, J-I)+U(I-1, J-1))*AI/A.

850 CONTINUE

, KaKI

IF(NSTRS) 852,85A

852 PUNCH A2, J, TXY(L§,L

85A PRINT AO,J, TXY(L

832 EEEURN

85:” ,K)

L:IF k)
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##JOB S PBIBD IO/I7/65 CLD

##FOR 53

*LDISK

SUBROUTINE PBIBD

C CALCULATION OF BOUNDARY VALUES PROBLEM I

DIMENSION u(IA 2A) IK(2A),IL(2A), D(5), P(13, 7 ) ,UI(13)

DIMENSION PH(1A,2AI

COMMON U, IK, O ,Mx, IF, IA,HI,MY,JF,JA,MJ,N,NOUT,ND,NT,NDL,RFA,RFI,

1 SPYIJ, PRNO, DE ,DI KPE,INOT,MESH,NSTRS,NINC,IP,JP,AMI,IL,P,UI

EQUIVALENCE (U,'PHI

A=MY

DI=1./A

x=0.0

DO 103 1:53, IA

PH I ,JA)=O. O

IF x-. A) 103,103.1OA

XBX+DI

KBI

DO 105 lax, IA

PH(I,JA)=(2.*x*x—1.6*x+.32)*(-36. )

d
d

C
H
3

:
4
»

I05 X=X+DI .

106 DO I08 J82, JA

108 PH(IA, J): -.72

X80. 0

DO 110 I =3.”

2) =(.s*x*x-.1)*(-36. )

IF X-. h) IIO,IIO, II“

IIO X=X+DI . ,.

IIR Kal

DO IIS I=K, IA

PH(I,2 )=(.h*X-.I8)*(-36 )

IIS X=X+DI

RETURN

END

##JOB 5 PBIEX IO/I7/65 CLD

tiFOR 53

*LDISK

SUBROUTINE PBIEX

C CALCULATION OF EXTERIOR VALUES PROBLEM I

DIMENSION U(IlIL2A) II<(2A), IL(2A), 0(5), P(13, 7 ), U1(13)

DIMENSION PHIIA 2A5

COMMON U, IK, D ,sz IF, IA,MI ,MY, JF, JA,MJ ,N, NOUT, ND ,NT,NDL, RFA, RFI,

1 SPYIJ, PRNO,DE, DI KPE, INOT,MESH, NSTRS ,NINC, IP, JP, AMI, IL,P,UI

EQUIVALENCE '(U,PHI

DO 117 J=2 JA

PH 2 ,J):PH$h,,J;

PHI J)-PH 5 J

117 PH MI ,J)=PH(IA-I, J)-0. 8*DI*36.

DO 116 I=1 IA _

PH I, 1)=PH I 3)

116 PH fiMJ)=PH(I, JA-I)

RETURN

END
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*1JOB

*tFOR

E29

53 CHANG EG/E7I65 CLD
S .

*LDESK

C

EGG

EOE

E02

E03

20

E8

22

2h

10

ES

E SPWY J PRNO,DE, 0E9 KE

SUBROUTENE CHANG

CHANGE MESH SPACENG

DEMENSEON UEEE9 2EE9E K( E(2LE95(5)9P(E397 )9 UECEB)

COMMON U9 flK9 n 9Mx99EE9£A

24E9'E

9ME9MM'Y9 EE 9EE MJ9 N NOUT ND 9NT HNDL RFA9 RFE,

9EM9E9ME2M: MSERs9”NENC, IE 9JP,AME, EL, P, UE

FORMAEKEEs)

FORMAT E59 7FE®98)

FORMAT flS§7FE© 72E5X97FE®97E)

FORMAE Es 7FE0997E929/E @9EEE

EE(ME$H—225 229 2E9 22 .

READ . EEE9EP9EP9ME9M2

AMEaME .. 9

AM2=EM2

DO E8 J=E9JP

READ M729 K,,( P

PRENT 9 E@39J9(

GO TO 2h _

MzaMY

MEBAME+900000E

AME-E42 .

ozaE./AM2

DSmE./AME

JA2wM2+E.

JmE

L=® '

Y2.@o

flmE ’

X“ BOO

XZB-DZ

E2=o

ovavz

JYBL+3

EzaEZ+E

flXaEZ+2

EF(E2—JP E79 79EE

xzaxz+02 A 9

oxgxz-XE

EE(AB$F(Dx-03)-. EEEOEEE 99 99EE

EF(DX-03) 899

uE(E 2)-P(J9 E)+DX*((P(J9 E+EE-PEJ9EEEID3)+0Y*((P(J+E,E)-P(J9I))/o3)

u(Ex9 JYE=UE(E 2E .

EF(Ez-JP) 59 59E©

flefl+E

XEBXE+DB

DXaXZ-XE

flF(fl-EP) 89 89 E0

LwL+E

PRENE EE39E9EUEEE2E9E2EE9JP)

BF(L-JA2) E59 EE9 EE

Y2wY2+DZ .

EE(ABSF(Y2-83E-. EEEEEEE E29 E29 E6
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I6 IF(YZ03) 6,112,‘J2

12 JmJ+I

Y2=Y2~DB

IF(J -MI-I) 6969I4

Ih RETURN

END

$¢JOB 5 SORLx IO/I7/65 CLO

##FOR 53 A

*LDISK

SUBROUTINE SORLx

c POINT SUCCESSIVE OVERRELAXATION SORLx

DIMENSION u(Ih, 2A),IK(24), IL(2A), 0(5), P(13. 7 ). UI(I3)

COMMON U, IK, O ,Mx, IP, IA, MI ,MY, JF, JA,MJ, N, NOUT ,N6,NT,NOL,RPA,REI,

I SPYIJ PRNO, DE DI, KPE, INOT,MESH,'NSTRS,'NINC, IP ,JP,AMI,IL,P,UI

IO FORMATI2FIO. 4, is, 2I8)

SYIJ-O. O

KPE-O

KTBO

JBBJA-I

I3O DO IAO J- 3, JB

IBBIK J)'I

lC-IL J)

‘ DO 133 l-IC,IB

IMBI-I

IMMII—Z

13I YIJ a.05*RFA*(8. * U(l+l SJ)+ U(IM, J)+ u(I, J-I)+ U(I,J+1))

-2.*( u(I+I, J+I)+ U 1M, J+IS+ U((I+I J-I)+ U(IM, J-I ))

2 - U(l+2, J)-' U(IMM, J)- u(I, J+2)- U(I, J-2))-REA* u(I, J)

Y2=ABSF(Y|J)

SYlJ-SYIJ+Y2

, U (I, J): U(I, J)+YIJ

IF (Y2-DE) 133,132,132

132 KPE=KPE+I H.

133 CONTINUE

C A ADO CARDS FOR SOR3, SORh OR SOR5 BETWEEN STATEMENTS 133 AND 160

tho CONTINUE _

. ‘ RFI=SYlJ/SPYIJ

SPYIJ=SYIJ

134 IF (N-NDL) I37. I36, I36

.136 NDL=NDL+ND . .

RPA=2. /(1.+SORTE(ADSF(I.-RF1)))

PRINT IORFA, SPYIJ ,N,NT,KPE

137 RETURN A,

T 1 END ,

¢¢JOB 5 ISOPEP C L DAVIS IO/I7/6

##FORXSB 1

C PROGRAM ISOPEP

C ITERATIVE SOLUTION 0F PLANE ELASTOSTATIC PROBLEMS

DIMENSION U(1h,2h),lK(24),lL(2h),D(5),P(13,7 ). UI(I3 )

COMMON U, IK, D ,Mx,IF,IA,MI,MY, JF, JA,MJ, N, NOUT NO, NT, NDL, RFA, RFI,

I SPYIJ, PRNO' OE ,OI,KPE,INOT,MESH, NSTRS,NINC, 16, JP,AMI, IL, P ,U1

5 FORMAT '(28HI SUCCESSIVE OVERRELAXATIONl)
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IBI

50 INOT-I

RFI.I0

PRINT 5

KPE-II

CALL OUTIN

IF(MESH-z) 55.52.52

52 CALL CHANG

C NEXT INSTRUCTION ASSURES COMPATIBILITY 0F SUBROUTINES 0N IBM 1620

55 U(MI,MJ)-ABSF(SQRTF(I.O))

CALL PBIBD A

60 N-N+l

CALL PBIEX

CALL SORLX

INOT - 2

CALL OUTIN

IF(INOT-Z)‘50,68,60

68 :EEKPE) 80,80’60 .

80 ABSFINSTRS -I) 50.82.82

82 CALL STRESS A .- . .

ggDTO so

*LOCAL,OUTIN,SORLx CHANC,STRESS,PBIBD,PBIEx

1.190 .OOOéI 1.5 - . 1.0” 5 IO 3 2 O zoo zoo 10

1.198, .OOOOI 1.5 1.0 IO 20 3 2 O zoo zoo Io

. I.I90 .OOOOI I.67 .OOOI ”5 IO 3 2 -1 zoo zoo 1o

(LAST THREE CARDS ARE EXAMPLES OF INPUT DATA

, ISOPEP FOR THE CDC 3600

THE DECKS LISTED HAVE BEEN RUN UNDER THE SCOPE SYSTEM

THE MAIN DECK IS PLACED FIRST. THIS IS FOLLONED BY THE

SUBROUTINE SUBPROGRAMS OUTIN CHANCE, STRESS SORLx,

THE DATA.THE SAME SUBROUTINES AS LISTED FOR IHE IBM I6zo ARE

PBNBD PBNEx AND THEN AFTER NECESSARY SCOPE CONTROL CARDS

I USED EXCEPT ARRAY DIMENSIONS ARE CHANGED AND THE FIRST THREE

CARDSIIIJOB 5) (IIFOR 5) (*LDISK) ARE OMITTED. THE

SUBROUTINES PBéBD AND PBGEX ARE LISTED. NOTE PBBBD USES

COMPLEX TYPE VARIABLES NHICH ARE NOT AVAILABLE IN

FORTRAN II BUT ARE AVAILABLE IN 36oo FORTRAN.

ggog,331547,ISOPEP6, zo.DAVIS,C,L. 9/zI/65 GROUP C

' .

IROCRAM ISOPEP6

C ITERATIVE SOLUTION OF PLANE ELASTOSTATIC PROBLEMS.. .

DIMENSION u(6u 6A),IK 6h;,IL(6h),D(5).P(31.31),Ul(6h)

DIMENSION UXD(€A) UYD 6# w L .

COMMON U IK,D Mx,IF IA,HI,MY JF,JA MJ,N NOUT ND,NT,NDL,RFA,RFI,

1 SPYIJ,PRNO,DE,DI,KRE,INOT,MESH,NSIRS,N NC,IP,JP,AM1,IL,P,UI
ACOMMON uxo,UYD A

5 FORMAT (zBHI SUCCESSIVE OVERRELAXATION)

so INOT.I I

PRINT 5

KPE-l

CALLAOUTIN

0
0
0
0
0
0
0
0
0
0
0

0



0
0
0
0

I32

IF(MESH~2) 55,92,52

52 CALL CHANG

55 CALL PBBBD

60 NmN+I

CALL PB6EX

CALL SORLX

INOT a 2

CALL OUTIN

IF(INOT-z) 50,68,6O

68 IF(KPE) 8O,8O 60

80 IF(ABSF(NSTRSI~I> 53,82,82

82 CALL STRESS

GO TO 50

END

INSERT SUBROUTINE OUTIN - CHECK ARRAY DIMENSIONS

INSERT SUBROUTINE CHANGE - CHECK ARRAY DIMENSIONS

INSERT SUBROUTINE STRESS - CHECK ARRAY DIMENSIONS

INSERT SUBROUTINE SORLX - CHECK ARRAY DIMENSIONS

SUBROUTINE PB6BD

BOUNDARY VALUES FOR REGION OF INFINITE PLATE WITH A SoUARE HOLE

TYPE COMPLEX PHI PSI,PDU OMEC,DOMG DOMGB,DPHI OPHIB PSIB,zET

DIMENSION U(64,6A),IK(6H ,lL(6h),DI5).P(31,BII,UI(6A)

DIMENSION UXD(6A),UYD(6A ,

DIMENSION DUX(62),DUY(62),X(6z),Y(62),UBx(3I),UBY(3I)

COMMON U,IK,D,MX,IF,IA,M|,MY,JF,JA,MJ,N,NOUT ND,NT,NDL,RFA,RF1,

I SPYIJ,PRNO,DE,DI,KPE,INOT,MESH,NSTRS,MINC,IP,JP,AMI,IL,P,UI

COMMON UXD,UYD

LAGRANGE INTERPOLATION FORMULA FOR UNEOUAL INTERVALS

GRANF (XA) =UA*(

5(fi§;¥2)*(XA-X3)*(XA-Xh)*(XA-X5)I/((X1-X2)*(XI-X3)*(XI-Xh)*(XI-X5))

+

iifié;XI)*(XA-x3)*(XA—xu)*IXA-x5))/((X2-XI)*(x2-x3)*(x2-XA)*(xz-xs))

2(XA;¥I)*(XA-XZ)*(XA~X4)*(XA-XS))/((X3-X1)*(X3-X2)*(X3-Xh)*(X3-X5))

+UD , '

g(Xé;XI)*(XA—X2)*IXA-X3I*IXA-xs))/((x4-XI)*(xu-x2)*(XA~X3)*(x4-x5))

+U _

9IXA-XI)*(XA-Xz)*(XA~X3)*(XA-X4))/((xs-XI)*(x5-x2)*(X5-x3)*(xs-XR))

chXF(RH,TH)A(COSF(TH)/RH-RH**3*COSF(3.*TH)/6.+RH**7*COSF(7.*TH)/

I5 . *R

chYFERHSTH)a(SINF(TH)/RH+RH**3*SINF(3.*TH)/6.-RH**7*SINF(7.*TH)/

15 . * -R

22 FORMAT (zOIA) -

50 FORMAT (ABHO INFINITE PLATE WITH A SQUARE HOLE C L OAVIS//)

6O FORMAT (IIHO THETA = ,FIO.5,6HRHO a ,F8.2,IsH NO BOUNORY PT./)

PRINT 5O 2

A=MX

DIaI./A

RaI.I796h523/3.

PEEBOBLI'E59265

THETA=2.*PI

LIM=37



I33

DANGaLIM-I

DANGauPI/(2.*DANGI

XMAXaI.0

YMAXfiII o O

DLROa-.05

DO 6hU lafloLIM

RHOaI.0

IF(THETA-7.*PI/h I 62D, 6IO, 6IO

6IO RIDX:XMAX-ABSF(CORXF(RHO,THETA))

IF(RIDX) 6I6, 63D, 6I2

6I2 RHO=RHO+DLRO

IF(.IO—RHO) 6IO,6IO,6IA

6Ih PRINT 6O,THETA, RHO .

GO TO 630

6I6 Do 6I8 K=I 50

DRO=((CORXF(RHO, THETA)/XMAX-I )*RHO)/(R*(RHO**7*CO$F(7.*THETA)/7 -

Iz.*RHO**3*COSF(3.*THETA)/3. )IXMAx-I. )

IF(ABSF(DRO)-. OOOOOOI) 63D, 630,6I8

6I8 RHO=RHO-DRO . - VA

GO TO 6Ih

62D RIDYaYMAX—ABSF(CORYF(RHO, THETA))

IF(RIDY) 624,630,622

622 RHO .RHO+DLRO _

IF(O. I-RHo) 620, 62D, 6Ih

62h DO 626 K-I ,50

DRO=((CORYF(RHO,THETA)/YMAx-I )*RHO)/(R*(RHO**7*SINF(7.*THETA)/7. -

I2.*RHO**3*SINF(3*THETA)/3. )/YMAX-I. )

IF(ABSF(DRO)-.OOOOOOI) 630,630,626

626 RHOsRHO-DRO .

GO TO 6Ih

630x I)=CORXF(RHO, THETA)

Yl)=CORYF(RHO, THETA)

ZET=CMPLX(RHO*COSF(THETAL RHO*SINF(THETA))

OMEGuR* I° /ZET-ZET**3/6+ZET**7/56. )

DOMGaR* .I25*ZET**6-5*zET**2-I IzET**2)

DOMGBa CMRLX(REAL(DOMG),'-AI MAGIDOMG)).

PH1=R*(. 25/2ET+ 426*2ET+.Oh6*zET**3+. OO8*2ET**5+. 00h*ZET**7)

DPHI=R*(. 028*ZET**6+. 0h*ZET**h+ U38*ZET**2+. h26-. zs/zET**2)

OPHIB: CMPLX(REAL(DPHI), -AI MAG( DPHI)) .

PSla-R*( 5/2ET+(.5&8*2ET- A57*ZET**3-. 026*ZET**5-. 029*ZET**7)/

I (I.+. 5*2ET**A-. IZS*ZET**8))

PSlBa CMPLX(REAL( PSI), -AI MAG(PSI ))

PDUaPHI+(0MEG*DPHfl B)/DOMGB+PSIB

DUX(I)aREAL(PDU)

DUY(I)=AIMAG(PDU)

640 THETA aTHETA + DANG

C BOUNDARY POINTS REGION OF AN INFINITE PLATE

READ 22, (IL(J), J33, JA)

UBYEI ;:—.Osh5259

UBX .323200z

LUMaLlM/Z A,

DO 650 Rafi, LUM

KaLIM-I

UBX(I+I)=UBX(I)-. S*(DUX(K)+DUX(K+I))*(X(K+I)-X(K))



USA

65D UBY(B+I)2UBY(E)+.5*(DUY(I)+DUY(fl+I))*(Y(I+I)-Y(l))

' BOUNDARY POINTS ON THE SQUARE

K=IL(3)

DO 652 l=3,K

UEK,I;=0.0

652 U I,K =0.0

YVAR=0.0

K=3

DO 662 J=JF JA

654 IF(YVAR-Y(K5) 66D,66O,656

656 lF(K-LUM+2) 658,658,660

658 K=K+fi

GO TO 65A

660 XI=Y(K-2)

x2=Y(K-I)

X3=Y(K )

Xh=Y(K+I)

XS=Y(K+2)

UA=UBY(K-2)

UB=UBY(K-l)

UC=UBY(K )

UD=UBYEK+I§

UEBUBY K+2

U(lA,J)-GRANF(YVAR)

UA-DUX(K-2)

UBaDUX(K-l

UC=DUX(K ‘

UD=DUX(K+I)

UEHDUX<K+2)

UXD(J)-GRANF(YVAR)

662 YVAR=YVAR+DI

XVAR=0.0

K=Ih

DO .672 I=IF,IA

66h KB=LUM+K

... KC=LUM+2~K

lF(XVAR—X(KB)) 670 670,666

666 IF(h-K ) 668,66 .670...

668 K=K-I .. .. ..W

. GO TO 664

670 XI=X(KB+2)

x2=x(KB+I)

X3.X(KB _)

XA=X(KO-I)

X5=X(KB-2)

UA=U8X(KC-2)

UB=UBX<Kc-I)

UC=UBX(KC )

UD=UBX(KC+3)

UE=UBX(KC+2)

U(I,JA) . GRANF(XVAR)

UA=DUY(KB+2)

UBaDUYéKB+i)

UC=DUY KB )
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UDaDUYéKB—I)

UEaDUY KB-z)

UYD(I) . ORANF(XYAR)

XVAR=XVAR+DI

RETURN

END

SUBROUTINE PBGEX

672

C BOUNDARY DERIVATIVE CONDITIONS

VALUES OF STRESS FUNCTION AT EXTERIOR POINTS WHICH SATISFY

DIMENSION U(61I, 610,1] K(61I),II.(6PI), 0(5), P(3I, BI) ,UI(61I)

DIMENSION UXDC6A) UYD(6hI

COMMON U, IK, D ,Mx, IF IA,MI ,MY, JF, JA MJ, N ,NOUT NO NT NDL, RFA, RFI,

I SPYIJ, PRNO,”DE, DI, KPE,INOT,MESH,NSIRs, NINC, IP, JP,AMI, IL, P, UI

COMMON "UXD, UYD

KHIL(3)‘I

DO 685 JaJF, JA

IF(J-K) 682 68

683 U(2 J)-U((K+2, J

oIo 685

682 U(K, J)aU(K+2, J)

GO TO 685 -.

68h ”£60,J -U 5, J

MI

O J -UA

685 U ,J)-U(IA-I, J)+UXD(J)*2.*DI

DO 690 I-IF

IF( I-K) 686686 688

686 U(l ,K)-U(I ,R+2I

GO TO '69O I

6880U§|m,I)-U 5)Io

I I

,MJ)-U(I3

ETURN

END

SCOPE

9LOAD

9RUN, 20,3080

I.7Ol+Ti

,68h

A-I)+UYD(I)*2.*DI

.OOOOI

I9 I9 I19 I9 I9

3 M3 '3 .3 ”3 .

3 ’3 3 3 3 3

I. 7OI .OOOOI . Io5

.LAST FIVE CARDS ARE EXAMPLES 00.

65 I.

,I9 I9 “I

3 3“3 .3

m
m
m
g
.

m
u
u
$
5

E
m
m
$
5

I.O I

INPUTTDATA

TO USE ADI,

3 3 025002500

I9 I9 I92 I9 I9

.3 v3 3 3 3

3 3

3 3

3 3 3

-I 200 200

REPLACE THE CALL SORLX CARD IN THE ISOPEP

CALL ADIZ

CHECK FOR AGREEMENT OF DIMENSION AND COMMON STATEMENTS

SUBROUTINE ADII

C

C

C , MAIN DECK WITH TWO CARDS, CALL ADII,

C

C ALTERNATING DIRECTION IMPLICIT METHOD ROW SOLUTION

DIMENSION U(28,,g2),,UH(ZPI~,PEELHSOI,HCSO) ,G(50),8(50)

DIMENSION IK(52

COMMON U,

I SPYIJ, PRNO,DE, DI,

COMMON oUH, F,G ,6,I,J, x,K

IL(52),

KPE, INOT,MESH: NSTRS ,NINC, IP, JP ,AMI,

IK, D,MX, IF, IA,MI ,MY, JF, JA,MJ, N, NOUT,ND, NT,NDL, RFA, RFI,

IL, P ,UI

I
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EQUIVALENCE (I ,HI,III‘ II ,RNR), (8(I), CJ ), (GII), RFA)

JB—JA-I

DO I66 J23,J8

IDAIA-I

SYIJa0.0

KaIB-I

LaA2

Do I66 I23

F(I )38.*IUII J+II+UIILJ-I))+A*(U(I+I J)+U(I- I J))-U(I,J+2)-

2.*(U(I+I,J+II+UII ,J+I)+U(lwI,J-I)+UII+1,J-I)I-U(I,J-2)+

2(RNR-Iu. )*U(I, J)32

F(l—A) 150,15I,

EI)=I.0/CJ

I =-u.*C(I) I

(I =(F(l)u(I2, JIIA,ID(I-I,J))*C(I)

I F(l)aF(l)-U(I2, J)

2 DELN=4.+8(I-2)

WJaCJ-C(I-2)+DELN*8(I~I)

G l)=I.O/WJ

B l)=(-u. +DELN*G(I I))*G(l)

IF(K-I) I53, 15h, I55

F I)=F(I +h. *U(I+I, J)

F I)-F(I -U(I+2, J)

G I)=0. D

H I)-(F(l)-H(I-2)+DELN*H(I-I))/WJ

CONTINUE

IB-IB-2

DO I66 l2-I,lB

l-IA-IZ

K-l-Z

YIJ=H(I

IF(I2-2 I66,I62, I6I

I6I YIJaYIJ--GEI)*UH(K+2,,L)

I62 YIJ-YIJ-B I)*UH(K+I L)

I66 UH(K, L)=YIJ .

H RETURN

END

SUBROUTINE ADI2

c ALTERNATING DIRECTION IMPLICIT METHOD COLUMN SOLUTION

DIMENSION U(28,52),,UHI2A.6h8;,,F(50), H(SO), C(50) ,B(50)

DIMENSION IK(52), IL(52)D

COMMON U, IK ,D,Mx,IF, IA ,MI ,MY, JF, JA,MJ, N, NOUT,ND, NT, NDL, RFA ,RFI,

I SPYIJ,PRNO,DE,DI,KPE, INOT,MESH, NSTRS,'NINC, IP, JP,AMI, IL,P,UI

COMMON UH,F,G,B, ,J,x, K

EQUIVALENCE (F,H ,(F(I )IRNR), (8(I), CJ ), (6(1), RFA)

SYIJ=0.0

KPEaO

I8=IA-I

DO I81 Ia3,I8

KaI-Z

JBHJA-I

DD I76 J=3,J8

ISO

a
n
d

m
m

_
.
_
.

O
U
'
I
#
W

q
u
a
—
o

0
“
.
"

“
U
1

V
-



C
5
C
’

r
u
n

I37

L-J-2

F(J)-RNR*UH(K L)+6.*U(I,J)-h.*(U(I,J+I)+U(l,J-1))+U(I,J+2)+U(I,L)

IF(J-u) I70, III,I72

‘70 SJ .300/CJ .MH ..

J-#.*G(J

J-(F(J)-U I .J-2)+#.*UII,J-I))*G(J)

GOTO I76 .

I7I F(J)-F(J)-U(I J-z)

I72 DELN-hJ+B(J-2

NJ-CJ-G(J-2)+DELN*B(J-I)

:53 1.3 00/IWJ

.(-u.+D£LN *G(J-I))/NJ

IFJ (JB-I -J) I73! I7h,IZS

:J -F(J)+II...*.UI.lsJ-I-I

G J

H u(F(J)-H(J-2)+DELN*H(J-I))/WJ

CONTINUE

JB-JB-I

DO I8I J2-I,JB

J-JA-J2 . H

YIJ-H(J

IF(J2-2 I7 ‘1 8.177
g YIJ-YIJ-GJ U I, J+2

TIJ-YIJ-BJ *U I :J+I

9 Y2-ABSF(YIJ-U(I, J))

SYIJ-SYIJ+Y2

IF(YZ-DE) IBI.I80,I8O

I8. KPE-KPE+I .

I81 U(I J)-YIJ

SPYIJ-SYIJ

RETURN

END

TO USE CHEB INSERT THE FOLLOWING CARD AFTER THE

:éng CALL OUTIN STATEMENT IN THE MAIN ISOPEP DECK

REPLACE THE CALL SORLX CARD IN THE MAIN ISOPEP DECK WITH

THE FOLLOWING TWO CARDS

. CALL CHEB(NCHD)

;& NCHB I 2

‘ CHECK DIMENSION AND COMMON STATEMENTS

SUBROUTINE CHEB(NCHB)

CYCLIC CHEBYSHEV SEMI- ITERATIVE METHOD

DIMENSION u(ze g2),,IK(52),0(5) ,AKI3D).AL(3D,3D),5A(3o.3o),uz(3o)

DIMENSION IL(55

DDNNDN u IK, D Nx IF IA NI ,MY JF.JA NJ,N NOUT ND NT,NDLRFA ,RFI.

I SPYIJ,PNND’DE, DI K5: INor,Nésu'NsIRs'NINC, II ,JN,ANI. IL, P .01

CONNDN 'AK 5A,ALui,RHO

3o. IF(NcND-II 302.3D:ans

302 NQ-(JA-3)/2 ..

L- JA-z /2

IF L-NQ 3Io,3Io.3Du
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304 PRINT 3053

305 FORMAT (26H ERROR 000 NUMBER OF ROWS)

STOP IOIO

BIO NI-IA-3

NII-N|+NI

DO 312 K-I, NII

mg-O0

K-0 0

DO 3I2 L-I, NII

fiéKh,L :000o

3I2A

Do 3II K-I,NII

BIN AL K ,K)-20: 0

AL I ,2)-8. 0

AL I .3 -8. 0

AL 2,'u -8. 0

AL 3,h)-—8. o

£5)-8.0

AI: 1:“ .200

AL 2,3 =2.0

AL #,5 -2.0

AL 1,5 B‘00

AL 2,5):0. 0

DO 3‘5 K85 NII

AL K-3.K+I -AL(K-A,K I

AL K—ZK+I -AL(K-h,K-1

AL K-I,K+I -AL N-A,K-2)

315 AL(K 'K+I)-AL K-u,K-3)

DO 316 L-I, NII

DO 316 KaL NII

3I6 AL(KL)=ALIL, K)

SA(I I)-$QRTF(AL(I I))

DO 320 L-25

320 EA$1,,L)-ALII,L)/SA(I,I)

32h DO 340 K=2,NII

. KI=K+I

KLRaK-h

IF(KLR) 325.325326

325 KLR=I .

326 KUPaK-I

- TEMP=0.0

Do 328 L-KLR KUP

328 TENP-IENP+$AIL K)*SA(L, K)

SA(K, K)-sIRTF(AL(K, K)-IENP)

IF(K-Nll) 329, 3&0, 340

329 LUP=K+N

IF(LUP-Nll) 33233233D

33D LUPaNII

332 Do 336 L-K1,LUP

TEMPao. o U

DO 33h L1=KLR KUP

334 TEMP-TEMP + SA(LI. K)*SA(LI ,L)

336 SA(K, L)-(AL(K, L)—IENP)/SA(K, K)



380

282

28k

285

385

337

' P2-8.*U I J+2 -2. *

3&8

350

352

. AK(h)-(P2-AK(I)*SA(I,h)-AK(2)*SA(2,Q -AK(3

35h

355

356

357

358

359

3609

I39

CONTINUE

IF (RFA) 282,282,288

A=MY

A-A*DI

B-MX

B-B*DI

B-(A/B)**2

RLAM-(5.Ihh*(I.0+B*B)+3.I5*B‘WID /A)**h

RHO-I. 0/(I. 0+RLAM*DI**A/2.Q)

GO TO 285 .

RHO-SQRTF( 2.-2. /RFA)

RFZ-Z. 0/(2. 0-RHO*RHO)

RFIHI.

JC-JA-I

KPE-O ’

SYIJ-0.0

RFA-RFI

JB-3 I

?0 390 J-JB, JC, 2

3

Do 360 K-I, NII,

PI-8.*u I ,J-I -2.* EU él-I, J-I;+UEI+I,J-I;;$ I, J-2 -u I,J+2

I+I J+2 +U I,J+2 I,J-I -U I,J+3

IF K-u 3L8.3su.3suu 2

IF K-Z 350.3509352

PI-PI+8.*u I-I.J)-2.*U(III,J+I;:U(l-2,J)

Pz.Pz+8.*u I-I J+I)-2.*U(I- U(l~2,J+I)

AKIIgnPI/SAII I)
.(pz-AKIII*sA(I. 2))/SA(2, 2)

GO TO 360 .

PI-PI-U I-2, J)

P2-P2-U I-2,'J+I)

AK(3)-(PI-AK(I)*$A(I.3)-AK(2)*SA(2.3 )ISA(3. 3)

)*SA(3.4))/SA(#.#)

GO TO 360 .

IF(K+3-Nll) 357. 355.355

PI=PI-U I+2,JJ)

P2-P2-U n+2.J+I)

GO TO 357

PI:PI+8.*U I+I,J)-2 .*U(I+I, J+I)—UII+2 ,J)

P2-P2+8.*U I+I:J+I)-2. *U(I+I, J) ~UII+2,J+I)

KUPaK-I

KLR-K—A

TEMP-0.0

DO 358 KI-KLR KUP

TEMP-TEMP +AKIKI)*$A(KIK

AK(K ).(PI-TENP)/SA(KKim

KLRaKLR+I

TEMPao. o

Do 359 KIuKLR,K

TEMP-TEMP+AK(KI)*SA(KI K+I)

AK€K+I)a(P2-TEMP)/SA(K+I,,K+I)

II +fl



IhO

K=NII

U2(K) =AK(K)/SA(K K)

32(KTII7IAKIK-I) ~SA(K~I ,K)*u2(K))/SA(K-I, K-1)

00 380 La2KI 2

K=NII -L

KUP=K+h .

IF (KUP-NII) 368,368,367

367 KUP=NII

368 TEMP=0.0

KLR=K+1

no 370 Ll-KLR KUP

37o TEMPaTEMP +5AIK, LI)*U2(LI

u2(K).(AK(K)-TEMP)/SA(K, K

KLR-KLR-I

IF(KUP-Nll) 372, 37h, 37k

372 KUPaKUP-I

37h TEMP .o. o

no 376 LI-KLR KUP

376 TEMP-TEMP+SA(K-I, LI)*uz(LI)

U2(K-II-(AK(K-l)-TEMP)/SA( K-l, K-I)

380 CONTINUE .

-3

no 390 K-I, NII 2

YlJl-RFA* 02 K -U(l (JII

YIJ2aRFA* U2 K+I)-uI I ,J+I))

Yl-ABSF(YIJI) I H

Y2=ABSF(YIJ2)

SYlJ-SYIJ+YI+Y2

WE =U(I, J +YIJI

I ,J+I -U(| J+I +YIJ2

IF(YI-DE) 38A, 382,382

382 KPEBKPE+I

383 IF(YZ-DE) 390, 386, 386

386 KPE=KPE+I .

390 IBI+1 H

IF (JB-B) 392. 392, 39A

392 JB=5

. RFA=RF2

GO TO 3A7

39h RFI-I. 0/(I.o-RHO*RHO*RFA/h. 0)

RF2=I. 0/(I.o-RH0*RH0*RFI/h.o)

I SPYlJ-SYIJ

RETURN

END

TO RUN PROBLEM 2 REPLACE THE CORRESPONDING CARDS IN THE

MAIN ISOPEP DECK WITH THE FOLLOWING TWO CARDS

CALL PBZEX

CALL PBZBD

CHECK DIMENSION AND COMMON STATEMENTS

SUBROUTINE PBZBD



C

IAI

CALCULATION OF BOUNDARY VALUES OF PROBLEM 2

DIMENSION U(28, 52), IK(52), IL(52), D(s) ,P(25, I3) UI(25)

COMMON U, IK, O ,Mx, IP, IA MI :MY, JP, 3A,MJ,'N, NOUT N6 NT, NDL,RFA ,RPI,

I SPYIJ, PRNOOEDI,KPE, INOI ,MESH, NsIRS,'NINC, IP, JP ,AMI, IL, P ,UI

IOO RTPI-.5/3. III5927

A-Mx _ ..

DI.“ o/A

X-O. 0

DO I I93, IA

U(I 2 - - .S*X*X

IF X-. 25) IO5,IOS,I06

X-X+DI .

K-I

DO IO I-K, IA

U(I, 2 IO. 03I25-.25*X

107 X-X+DI - H

Y-I. E-IO

DO I08 J-2,JA

U(IA J;-((9../16.+Y*Y)*ATANF(.75/Y)-(25. /I6.+Y*Y)*ATANF(I. 25/Y)

I - .547 *RTPI+.03I25

108 Y-Y+DI

X-O. 0

00109 I-3 IA

U(I JA)-RTPI*((( u.+(x-.25)**2)*ATANP((x-.25)/2. )-((X+. 25)**2+A. )*

I ATANF((X+. 25 )lH.)I.)+. 03I2s

109 XIX+DI .

RETURN

END

SUBROUTINE PBZEX

DIMENSION u(za, 52}F IK(52), IL(52),DIS) ,P(25 I3) UI(25)

COMMON U IK, D Mx, IA MI 'MY JE, JA MJ,'N NOUT N6 NT, NDL, RFA ,RFI,

I SPYIJ PRNO, DE, DI KPE INOI ,MESH, NSIRS' NINC,IP Jfi,AMI, IL, P, UI

"CALCULATION,OF ExIERIéR VALUES

POINTS OUSIDE OP RANGE x-O 0R GREATER AND x.I OR LESS

RTPI-.5/3. IAI5927

IIO Y-I. E-IO

w DO II2 J-2, JA

U2,J)-U(A, J

I'J)-U(5, J .

YUMIéJ)-U(IA-I, J)+2.*DI*RTPI*(I. 5*ATANF( .75/Y)-2.5*ATANF(I.25/Y))

I12 - +

. POINTS OUTSIDE OF RANGE YaO OR GREATER AND Y92 OR LESS

X-O.O . , ‘ .

DO IIA I-3, IA

Oil oI)-U(I3 '

U I MMJ)-U(IJA-I)+2.*DI*RTPI*( A.*(ATANF((x-.25)/2.)-

I ATANF((X+. 25)/2. ))> . A

IIh X-X+DI

RETURN

END

ALONG Y=O

.
.
.
-
g

O
0

0
“
”

ALONG X-I

ALONG Y-2



C

SUBROUTINE Iasza

BOUNDARY CONDITIC-N: I

DIMENSION U(28 52), II

DIMENSION ARI7I

COMMON U, IK, D Mx,

1 SPYIJ, PRNo,DI, DII

EQUIVALENCE '(AR(II,

I)

I2

22 FORMAT (2014)

A-MX

DI-I./A

lB-lA-l

READ 22, I

PRINT 22,

JBuIK(3)+I

DO ZIO J-JB, JA

U(IA J)-. 125

Y-O. 6

DO 211 1-3, IB

U(I, JA)-. S*Y*Y

fi2)-Y

2IO

KrE,

U(I

EQUIVALENCE(D$3,U( I59)

EQUIVALENCE (DHI, UI I6

IhZ

IHE NOTCHED PLATE

I:EZI.D(5) ILISZ)

II MI ,MY, JF, JA MJ, N NOUT N

INOI MESH,'NSIRS, NINC, IP,

29 )5. (D51,,U(Ié7)) IIDS
3”(054,,U( I60) (055 ,U(

IK J), J23, JA)

IK J), J=3,JA)

THE VALUE OF U ON THE CIRCULAR ARC

U(|03)-05*(Y-0 25)

Y=Y+DI

I U22, I#)-U 22 ,3 )

U 26,15)-U 26, 3 )

x-O. 6

JB-JB-I

DO 216 J-3, JB

THE VALUE OF Y CM TH

U(Ml, J)=,

211

E CIRCULAR ARC

5-SQRTF(. O625-X*X)

THE VALUE OF U ON THE CIRCULAR ARC

U(IA, J)=. S*(U(MI, J)-. 25)

0:

JPM

2.

I

PROB. NO. 3

NT, NDL ,RFA,RFI,

,m1 IL P,UI

U(

61

(156 )

)), (DS6,U( 162))

THE VALUE OF DELY/H FROM THE MESH POINT TO THE CIRCULAR ARC

212, 212

.25)/D1

IF(J-3) 216

DEL=(U(MI J

IF(DEL- 1. I

DELBDEL’i0

GO TO 213

U(IA-I, J)-DEL

X=X+DI

“4 ,h

UI6:8 78

UI8,II =U I8; 3

U 19.12)=U 19.3

DO 2I7 K=2,11

KK-IA-K .

U(KK ,h)=U(lA-I, K+3

DSI-OS*UE'A-I'5)

I—2I2

213

21h

215

216

)

)

)

)

2I7

DSZ-

053.2.*U(1A-I,7)-I..

Dsu-. S*U(IA-I.9) I

Dss.I. 5*U(IA~I.9)~.S

ZIS. ZIA, ZIh

)



lhB

DS6I.S+DSh

DHI=5.*DSS/3.

AR l)=;5+DSl ,

AR u =.25* 053+656+I.O)

AR S)-.5*DSS*DHI A

AR 6 .;5+u IA-I,9)-AR(5)

AR 7 -.5+O IA-I,IO) .

RETURN - ‘ n H-

END. , ‘

' SUBROUTINE PBBEX {

C EXTERIOR POINTS FOR NOTCNEO PLATE

DIMENSION U(28,52),IK(52),O(5).IL(52)

COMMON UIK,D NX,IF IA M|,MY JF,JA MJ,N,NOUT NO NT,NDL,RFA,RFI,

1lgPIAJiPfiNO,Dé,DI,K‘E,‘NOT,M§SH,NS§RS,NINC,I5,J5,AMI,IL,P,U1

220 no 223 l-3 IB '

U(I-MJ)-U(i,JA-I)«~

IF(i-IK(3)—I 222,222,223

222 u I,I;-uiI,5 ,. .,. ..

. u I,2 -u I,A
223 CONTINUE

c INTERIOR POINT ADJACENT TO CIRCULAR ARC ON HORIZONTAL LINE

- 7

JQI‘O

60 T0 22A

218 IQZO -.-

2| Jul-I if - '

22 .CA-I.-u(l.h) .

... CB-CA* CA-I. I2.

CC—CB* CA-2. I3.

CD-CC* CA-3. In.

. BB-CA-25 . ,

BC-i 3.*CA-6.)*CA+2.)/6. .

DAl-l.-CA+CBeCC+CD .. . ..

DAB-CB-3.*CC+6.*CD .

DAh-CC-h.*CD

DBI-BB+BD-BC-l; '

oaz-I.-2.*OB+3.*OC-A.*BO

O33-aB-3.*BC+6.*BO .

OBN-aC-4.*OO ‘

a .1./(DA2/DA1-DBZ/DBI)

u I J)-BE*(U(1 3)/DAI+(DBBIIBI-DA3/DAI)* U(I,J+I)

IT ?é?/DBl-DAh/6Al)*U(l,J+2)+(BD/DBI-CD/DA1)*U(I,J+3))

a + H . H . H H

IF (J-I ) 2I8,2I9 221 ,

221 IF(l-2h 225.22A,226H

225 [-23 _. .. .. ....



INA

J=I5

GO TO 222

226 IF(I-ZS) 221+, 2213, 227

227 OD 229 J=1,JA .

”.‘z'é ikfii'fi'i
IF(fi—IN(3)5229, 229, 228

228 u(MI J)-U(IA-1, 3I+DI

229 CONTINUE

C INTERIOR POINT ADJACENT TO CIRCULAR ARC ON VERTICAL LINE

DUB. 5

l-IS

CC-CB* CA-2. ls;

CD‘BCC* CA-Bo ll}.

DB-CA-.s

BC.{§3..*CA-6. g*CA+2. )/6.

BD- (h.*CA-12 .)*CA+22. )*CA-6. )/2u.

DA1-1.-CA+CB-CC+CD 1.

DAz-CA-z.*CB+3,*CC-A.*CD

DA3-CB-3.*CC+6.*CD

DAA—CC-h.*CD

, DBI-BB+DO-BC-I,

DBZ-I.-2.*BB+3.*BC~#.*BD

033-33-3.*BC+6.*BD .

DDAaDC-A.*BD

BE-I./(DA2/DA1-DBZ/DBI)

U I ,J)-BE*(U(IA, J)/DAI+DUD*DI/DBI+(D33/DBI-DA3/DAI)*U(I-I, J)

13 gé?/DBl-DAh/DAI)*U(I--2 ,J)+(BD/DDI-CD/DAI)*U(I-3 )

II -|- .

IF(J-7) 230, 230, 232

2321I.-I6

- IF(J-9) 230,230, 233

233 Ui'S'Iw-U 15.5 .-.

fig

2AA RETUfiN .

. END_

SUBROUTINE PBABD —

c BOUNDARY CONDITIONS FOR THE v-NDTCNED PLATE PROD. NO. 3

DIMENSION U(28, 52), IK(52), 0(5), P(25, 13) ,UI(25) IL(52)

COMMON U, IK, D ,Mx, IF, IA ,MI ,MY JF, JA MJ, N 'NOUT N6 ,NT,NDL,RPA,RPI,

I SPYIJ, PRNo' DE, DI, KPE, INOT,MESH, NS*RS, NINC, Ifi, JP ,AMI,IL,P,UI

22 FORMAT'(2OI&)' H

. A-Mx .-

Dl-1./A

lB-lA-l

READ I 22,,(IKEJ),,J-3, JA)

PRINT 22,(IN J), JuB,JA)

JB.IK(3)+1

DO 210 JaJD JA

210 U(IA,J)-.12§

J-s.

230 CA-l.-U(lA-‘ J)

CB-CA*§CA-1.;/2.

 



C

IRS

Y=~O. 0

DO 215 |=3, IB

U(I JA)=. 5*Y*Y

IF(I-IK(3)) 215,215,212

BOUNDARY VALUES 0N NOTCH EDGE

212 KBI-M/N'

U(IoK)=os*(Y‘025)

215 Y=Y+DI

RETURN

END

SUBROUTINE PBAEX

EXTERIOR POINTS FOR THE V-NOTCHED PLATE

DIMENSION U(28, 52), IK(52), 0(5), P(25, 13) ,UI(25), IL(52)

COMMON U, IK, 0,MX, IF, IA, MI :MY, JF, JA,MJ, N ,NOUT, N0 NT, NDL, RFA, RFI,

PROB. NO. #

I SPYIJ ,PRNO,DE,0I, KPE, INOT,MESH, NSTRS,NINC, IP, JP, AMI,

220 OD 223' I=3,IA .

U(I MJ)=U(I,JA-I)

IF(I-IK(3)-I) 222,222,223

222U I,WI)=UEI

I ,2)=U I

22A CONTINUE

DO 228 J=1,JA

U(1,,J;=U 5,J)

U(Z, J 3U “JJ)

IF(J-IK(3)I 228,228,226

226 U(MI J)-U(IA-I,J)+01...

228 CONTINUE .

. RETURN

END

SUBROUTINE PBSBD

BOUNDARY CONDITIONS FOR A PLATE WITH A SQUARE NOTCH PROB. NO.

DIMENSION U(28, 52), IK(52), 0(5), IL(52)

COMMON U IK, D MX, IF, IA, MI ,MY JF, JA,MJ, N ,NOUT N0 NT ,NDL, RFA ,RFI,

I SPYIJ, PPNO' DP, DI, KPE, INOT,MESH, NSTRS,'NINC, IP, JP,m

22 FORMAT '(2OIL)'

IB-IA-I .-

A-Mx ,

DI-I./A

READ

JB=|K(3)+I

DO 205 Ja3, JD

205 U(JB, J)-O. O

00 210 J-JB, JA

210U(IA,J)-.I25

Y:O. O

DO 215 I=3, IB

U(I JA)=. 5*Y*Y

IF(I-JB) 215,215,212

212 U(I, JB)-. 5*(Y-. 25)

215 Y=Y+DI .

. RETURN

END

2. (|K(J), J=3, JA)

PRINT 2, (IK(J), J=3,'JA)

IL, P, U1

,IL,P,UI

C

d



Ih6

SUBROUTINE PBsEx

C EXTERIOR POINTS FOR A PLATE NITH A SQUARE NOTCH

DIMENSION U(28,52)§IK(52), 0(5), IL(52)

COMMON U IK, D Mx, IA MI 'MY JP, JA NJ,N,NOUT ND NT,NDL,RFA ,RFI,

I SPYIJ PRNO,DE ,DI,KPE, INOI ,MPSH, NsIRs',NINC,IP, JP ,AMI, IL, P ,UI

JB-IK(§)+l

IB.IA-

220 DO 225

_, U(I‘NJ

IF(

2220UI'

(I, JA-I )

K )-I 222,222,223

,1 -U I,5

2 -U I ,h

GO ID 225

223 U(I JB—I)-U(| ,JB+I)

225 CONIINUE

. DO 228 J-I,JA

UEI ,Jg-UsfiJ;

2 Jw

IF(J -JB) 22 226,226

226 U(MI J)-U(IA-I ,J)+DI.

228 CONTINUE H

RETURN

END

BOUNDRY CONDITIONS CAN BE INTRODUCED USING EQUATION (28)

AS INDICATED IN SECTION 6 - TREATMENT OF IRREGULAR

BOUNDARIES. THE ADDITIONAL INSTRUCTIONS REQUIRED

FOR SORLx FOR PROBLEMS 3 A AND 5 ARE LISTED UNDER

THE HEADINGS SOR3 SORh AND SOR5. RESPECTIVELY,

THE CARDS ARE INSPRTED.BETNEEN THE SUBROUTINE SORLx

STATEMENT NUMBERS 133 AND Inc.

1

IL?”
(3

0
0

0
0
0
0
0
0
0

. SOR3

IAI'IgITION TO SORLx FOR SEMI-CIRCULAR NOTCH

II 4.

IF(J-lK(3)-2) 230,230,130

230 OD 23I LI-I 5 . A

-LI/3-I5**(-I)**Li . .

L-J- (Ll-l) /3)*(-I)**( LII-12

231 2(5I.2.(U(K+I,L)+U( K-I,,L).+U K,L+I)+U(K,L-l)-h».*U(K,L))

GO TO (233,235,236, 237,238 ,239.2AO,2AB, 25O,2sO,252,252,256, 260), K

233 Ifichoéo

23A D(2)-(TEMP+U(I,J)+.5*(U(|+I,J+I)+U(I+I,J-I)+DI)-2.*U(I+1,J))*ANV

GO TO 232

235 ANV-l../AR§12

TEMP-DSI* U I+I,J+I)-U(I+I,J))

GO TO 233 H H H

236 ANY-I. /AR(2)

TEMPI-DSZ*(U(I+I,J+1)-U(I+I,J))

TEMPu-TEMP-I-‘I'EMPI. ..

GO TO 233

237 ANV-I./AR(3)



I47

EEMIE-2§2Pn+'.S*(U(I+I, J+I)-U(I+I, J))

2380(2g- U(IJ)+U(I+I, J-I)+U(I+I, J+I)-3.*U(I+I. J)+(U(IA. J)-U(I+1,J))

0530(2)
GO TO 2A2

239 022);(U(IJ)+. 8*U(II+IJ+I)-I. 8*U(I+I,J)+. 5*DI)/AR(4)

35-.(2§

GO TO 2&2

ZhO D(2)-U(I, J)+U(U+I, J+fl)+U(9+fl, J—fl)-3. *U(I+I, J)+(U(IA, J)-U(I+I, J))

1 /U(lA-I. J)

DS-D(2)

GO TO 2h2

E52)?§§(I+i, J+I)+U(B, J)-2.*U(I+I, J)+DI /2. )/AR(7)

63.0T0 2h2

DéZ):2.*(U(I+I, J+I)+U(I, J)-2.*U(I+I, J))+DI

os-D(2)

IF(J-13)21I2AZSI ZSI

25I 0(2)-. *oslfla05.

I M 05.0(2

GO TO 2&2

252 D(2)-(U(I+I J+I)+U(I, J +056*U(I+2 J) -(2.+056)*U(l+1 Jg+

lg?g;(U(I+I,,§)-U(I+I,J) /U(I+I, h)+zI.-DSG)*DI* 5)/AR{6

GO TO221:225

256 IF(I2

257 D E)

l

2h8D

250

(U I 2J +(U I—I J-I)+U(I+I J-I)-2.*U(l, J-I))*DSé+(U(I. 3)-

S/U(I,u u(I,J-I))/Dsé.I'J-I/I

Io 2&2

258 D 5;-(UU(-l, J)+D$6*U(l-ULJ-fl)-(l.+056)*u(|
J-fi)+. *DI*DS6)/AR(h)

l/Uglw 'IJ’*"("*“J+“’*"(“*2J)‘3*U<'+1
J)+( U |+I.3)-U(I+1 J))

05.0(25-U(I, J)

KT.0 .

60 T0 252

260 IF(I-zh) 262 .263. 265

262 o(s)-os+u(I-I, J-I ) .

A KT-I .

GO 10 2A2

263 TEMPI-(U(I+I,J-I)-U(I J-I))*DSZ

TEMP-TEMPI+§U(I-I,J--I5-u(I,J-I))*. 5+. 5*( .5-052)*DI

so T0268 - '

26h IF(l-26) 265,266, 252

265 TEMP-TEMPI .

. TEMPI-(U( I+IJJ-I)-u(I J-II)*DSI

IBIP.-IEMP+IEMPI.+ 5*(652—0511 )*DI

ANV-I./AR(2)

so T0268

(
1K0

G0

2

 



266

268

2&2

24h

2h3

245

230

231

232

234

235

£22

1&8

KT-O

TEMP--TEMPI+. 5*DSI*DI

ANV-1. lAR(1) .

D(5)-(TEMP+U(I J)-2.*U(l J-I)+.5*(U(I-I,J-I)+U(I+I, J-I)))*ANV

YlJ-(h.*o(3 -o(I)-o(2)-o(h)-o(s))*.05*RFA .

Y2-ABSF(Y|J . .

SYIJ-SYIJ+Y2

U(I ,J)=U(I,J)+Y|J

IF(YZ-DE) 2h3, 244, 2K4

KPEBKPE+1

IF (KT) 1h0,1h0, 2h5

I-|+1 _

GO TO 230

SORh********(SEE COMENTS on PAGE lhé)

Ao?érlou TO SORLX FOR A v NOTCH H

I +1

IF(J-IK(3)-I) 230 230,140

no 231 LI-I n..

l-éL1/3-15*(-1)**Li

L-J- (LI 1)/3)*(-l)**(L1-l

D(Ll)-(U(K+1,L)+U(K-1,L)+U(K,L+1)+U(K,L-I)-h.*U(K,L))

IF(J-h) 232 234, 234 .

g§2%?2)*(u(‘+1'J+1)+U(I'J)+U(|+I ,J-I)-3.*U(I+I.J)+Dl*.5)/3.

50 T0 2A2

0(5 )-05

IF(J-IK(3)-I) 235. 236 236

D(2)-2.*(U(| +1,J+1)+U(|, J)-2.*U(I+I,J))+DI

DS-D(2)

32128322. w.)5.“ I, WO +1+O O

YIJ-(h.*D(3§--D(I)-0(2)-D(h#5 -D(5);* 05*RFA

Y2-ABSF(YIJ .

'. SYIJ.SYIJ+Y2

2%

230

231

232

2k2

U(I ,J)-U(I,J)+YIJ

KPE-KPE+1 u.. .

SOR5********(SEE COMENTS ON PAGE 1&6)

?D?éT'°N T0 SORLX FOR A SQUARE NOTCH ..

I +1

IF(J-IK(3)-I) 230.230.1uo

no 231 Ll-155 2.-

K-l—-éL1/3-15*(-l)**Li

L-J- (L1-l)/3)*(-l)**(Ll--Iz

D(L1)-(U(K+l L)+U(K-I,'leu K, L+l)+U(K.L-l)-h.*U(K, L))

lF((J-lKE3)-15 232 2A2, 22

D(2)-(U I J *2 .+U(l+l J-I-I +U(l+l J-I)-lI.*U(l+l ,J))+DI

YIJ-(h.*o(3 -o(I)-o(25-o( )-o(5)$*. 05*RFA .

Y2-ABSF(YIJ . . .

SY'J-SYIJ+Y2

IF(YZ-DE) Iuo Zhh, zuu

u(I, J)-U(I, J)+YIJ' .

Zhh KPE-KPE+I
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TABLE OF SYMBOLS

PRNO, DE, RFA, SPYIJ, Mx, MY, IF, JP, N, NT, NOUT, NO, MESH,

NSTRS, IP, JP, Mu. M2. SEE INPUT PREPARATION FOR DEFINITION.

U(I,J)

I

J

MI

IA

- MJ

JA

P(J.I)

UI(J)

D1

KPE

INOT

IK(J)

IL(J)

DISCRETE VALUES 0F STRESS FUNCTIONS.

Row INDEX. '

COLUMN INDEX.

MAXIMUM l a MX+|F+I '

Ml-I'- LAST BOUNDARY RON INDEX 2

MAXIMUM J - MY+JE+I

MJ-I -LAST BOUNDARY COLUMN INDEX

STRESS FUNCTION DISTRIBUTION SAVED EOR GENERATION OF

INITIAL ESTIMATE OE U(I.J) IN NEXT PROBLEM (SEE

CHANG P. 129).

A COLUMN ARRAY USED IN CHANG EOR TEMPORARY STORAGE.

MESH INTERVAL H COMPUTED IN PBNBD; D1 DEPENDS ON

PHYSICAL DIMENSIONS OF THE SOLUTION DOMAIN. '

COUNT OF POINTS AT WHICH CONVERGENCE CRITERION WAS

NOT SATISFIED IN THE LAST ITERATION.

CONTROL SWITCH EOR SUBROUTINE OUTIN. INOT - I

SIGNALS INPUT OF NEXT DATA SET. INOT - 2 SIGNALS

USE OF THE OUTPUT PORTION OF THE SUBROUTINE.

LAST INTERIOR POINT ROW INDEX IN COLUMN J.

EIRST INTERIOR POINT Row INDEX IN COLUMN J.‘ _

IK(J) AND IL(J) ARE INTRODUCED IN PBNBD FOR SPECI-

FICATION 0F IRREGULAR BOUNDARIES.
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SPECIFICATION 0F COLUMN TERMINAL POINTS FOR SORLX

A RECTANGULAR MESH WITH THE SPECIFIED DIMENSIONS OF THE

ARRAY U ENCOMPASSES THE PROBLEM SOLUTION DOMAIN. FOR A REC-

TANGULAR REGION THE ITERATIVE METHOD SUBROUTINE SORLX SNEEPS

THE MESH BY COLUMNS STARTING NITH J - 3, USING 35;I<IIA AND

CONTINUING UNTIL J - JA-I. IF SYMMETRY CONDITIONS ARE NOT

USED THE BOUNDARIES CORRESPOND TO THE RONS I - 2 AND I - IA

AND THE COLUMNS J - 2 AND J - JA. THE RONS I -'1, I'- Kl

AND THE COLUMNS J - 1 AND J - MJ ARE EXTERIOR TO THE SOL-

UTION DOMAIN AND CAN BE USED BY THE NRITER OF THE PBNEX‘.

SUBROUTINE TO SATISIFY BOUNDARY DERIVATIVE CONDITIONS. IF

I a 3 (OR J - 3) IS A LINE OF SYMMETRY THE VALUES IN THE

MESH LINE I - 2 (OR J - 2) ALSO MUST BE PROVIDED IN PBNEX

USINGDERIVATIVE CONDITIONS ALONG A LINE OF SYMMETRY."

A PROBLEM NITH IRREGULAR BOUNDARIES MAY SPECIFY A DIFF-

ERENT FIRST INTERIOR POINT, IL(J), AND LAST INTERIOR POINT,

IK(J), FOR EACH COLUMN. THESE VALUES MAY BE READ FROM CARDS

OR GENERATED IN THE SUBROUTINE PBNBD. IF THIS IS NOT DONE

ALL IL(J) ARE SET TO 3 AND ALL IK(J) TO IA-I BEFORE TRANSFER

TO PBNBD AND THE DOMAIN IS TREATED AS A RECTANGLE. THOUGH

-IL(J) AND IK(J) LIMIT THE SNEEP ALONG THE COLUMNS NITHIN

SORLX THEIR SPECIFICATION DEPENDS ON THE CHOICE OF THE NRITER

OF THE BOUNDARY CONDITION SUBROUTINES. IF HE ELECTS TO.COM-

PUTE SOME INTERIOR POINTS BY INTERPOLATION IN PBNEx THEN

HE CAN SET THE INTERIOR POINT RON INDEX RANGES ACCORDINGLY.

(SEE PB3EX P. 1A3)
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