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ABSTRACT

THE DESCRIPTION AND ANALYSIS OF SOCIO—ECONOMIC SYSTEMS

BY PHYSICAL SYSTEMS TECHNIQUES

By Jack B. Ellis

Techniques of systems analysis which were originally evolved

for electrical networks have previously been generalized to enable

their use in analyzing physical systems of other types, such as

mechanical, hydraulic and mixed types. This thesis shows that they

may be further generalized to include the analysis of systems containing

social and economic components. The advantage of physical systems

analysis in this application is that it provides a consistent and

rigorous procedure for formulating mathematical models of a wide range

of social and economic phenomena, both of the static and dynamic types,

as shown by the two selected examples in the text. These models can

be formulated and solved on a digital computer, giving the analyst a

wide range of experience with his model in a short time.

The requirements for successful application of systems

analysis are:

l. The phenomenon must be identifiable as a collection of

components with discrete interfaces with one another.

2. TWO complementary variables must be found which satisfy

the two generalized Kirchoff postulates.

3. Each component of the system must be modeled quanti-

tatively in terms of these two complementary variables.
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In the first example, the problem is to allocate the

attendances of campers at all state parks in Michigan in 1964. The

system is partitioned into three types of components; origin areas,

transportation links, and parks. Each component is modeled in terms

of the variable Y, the flow of campers, and the variable X, the

propensity to camp or the demand pressure for cauping. An algebraic

model was evolved which successfully described the operation of

the system for the year 1964, the only one for which complete data

was available.

The second model attempts to describe the dynamic growth of

a three-sector national economy by means of a discrete-time state-

space model. Each component is modeled in terms of the variable Y,

the flow of output, and the variable X, the stocks of accumulated

capital goods. Representative parameters are chosen from historical

United States data, and solutions are obtained for the growth of

investment in each productive sector over a five-year period. Appli—

cation of state-model theory in the field of economics enables a

complete analysis of an economy at one time, without having to cour

bine the many types of partial analysis usually employed. A new type

of production function results from cutset relationships, which

extends the Leontief inter-industry concepts to include the Marxian

linear labor-capital production function. This enables the model to

reflect all types of inputs to production processes.
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I. INTRODUCTION

For the last several decades, scientific workers in a wide

range of fields have addressed themselves to the problem of describing

and analyzing the phenomena of the natural universe, involving both

man and his environment. A comprehensive mathematical description

usually has been the most desired goal. Considerable progress has

been made in the mathematical analysis of man's physical environment,

and most physical phenomena are today amenable to same method or

other of physical systems analysis. However, when man enters a phe-

nomenon as an integral component, as is the case when social or econOmic

phenomena are considered, the analytical picture is still one of frag-

mentary quantitative results and a preponderance of qualitative theory,

supported in some cases by certain empirical observations. In the

most recent decade, several prominent workers in the social sciences

[1, 2, 3, 4, 5, 6, 7] have expressed their desire to overcome this

quantitative gap by employing the powerful conceptual tool of "system"

and the body of analytical procedures which flow forth from it. Their

goal, however, usually has been more than just a mathematical frame-

work for various phenomena; they desire also to establish a systems

analytical framework which is rigorous and consistent from discipline

to discipline and from phenomenon to phenomenon [1, 2, 3, 4, 6]. Need-

less to say, there has been as yet no unqualified success in achieving

this goal. This thesis does not purport to describe man's place in

the universe, or to have fully achieved the aforementioned aims and

desires. It does, however, present the foundations of a rigorous and

_1u
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consistent formulation procedure for modeling certain classes of

socio-economic systems, along with the first large scale results

of the application of such models. The systems model formulation

techniques are those recently generated for electrical network analysis

[8], and generalized to include the analysis of other discrete physical

systems [9,10]. Their application to systems containing social and

economic components, and the prerequisite component modeling procedures,

are developed in the body of the thesis.

The aim of the research leading to this thesis was to describe

and analyze in mathematical terms the behavior of selected non-physical

complexes by application of the theory of physical systems. New

methods were evolved to use existing and new data to obtain mathematical

component models. ffiuachoice of examples was such that the application

of physical systems analysis in both a static and a dynamic case

could be shown, and also to illustrate the diversity of phenomena which

are amenable to such analysis. The model discussed in the first

example, a recreational travel model, is not paralleled in the literature

of the field to date. The results of the second model, of the United

State national economy, can be equalled by conventional methods

existing in economics [6, 34, 36], but the contribution of this thesis

lies in the explicit demonstration of the applicability of the rigorous

and general methods of physical systems analysis in this field.

The following postulates must be satisfied by any complex

before the methods of physical systems analysis are applicable [10].

Thus, any socio—economic system studied on this basis must also be

amenable to these requirements:



The system must be identifiable as a collection of component

parts or sub-phenomena.

The components must be discrete in nature. This implies that

interactions between components must be considered as taking

place only at points of interaction, called terminals. If

in fact an interface is a line or surface boundary, it must

be considered as collapsed to a single point.

TWO complementary variables, X and.Y, must be selected as a

basis of modeling all the individual components. This pair

of variables must satisfy postulates 5 and 6 below. An

equation relating X and Y for a component is referred to as

a component modelingiequation.

Measurements of painsof the complementary variables are

referable to the edges of a linear graph, which has an edge

to indicate the terminals of the component to which the

measurements refer. An N-terminal component is completely

specified as to performance by an arbitrarily chosen terminal

graph of N-l edges and a set of N-l component modeling equations,

relating the 2(N-1) complementary variables X and Y
i 1’

1 = 1,2)...,N..1.

The algebraic sum of the variables Y corresponding to the

i

directed edges of a cutset of a system linear graph must

vanish.

The algebraic sum of the variables X corresponding to the

i

directed edges of a circuit of a system linear graph must vanish.
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When all of the above postulates are satisfied, a systems

analysis may be accomplished by the analytical and formulation

procedures presented in this thesis and in the literature [10].

The formulation procedure is consistent, irrespective of the social-

science field of study to which the components "belong". Only the

method of component modeling may vary from one field of study to

another, where phenomenological-specific component behavior theories

generally will be called upon. A schematic of the entire process

of a systems analysis for a non-physical system is shown in Figure 1-1,

which suggests that the systems model may finally be used as a basis

of stability, optimization and other analyses [11].
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Figure 1-1.
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II. AN ANALYSIS OF A STATEWIDE PARK SYSTEM

II-l. Background

In recent years there has been a great awakening of interest

in America regarding problems of outdoor recreation for all members of

society. Over a quarter billion acres of public land are used in

recreation, and perhaps as much additional private land. Over 90 per-

cent of the population participates in some manner, patronizing a $20

billion a year industry which receives an additional $1 billion of

government investment per year [16]. For decades, however, such

entities as the National and State Park systems have been established

and their growth planned under quite crude intuitive assumptions about

the needs and desires of the population for features which these park

systems offer. The origin of such parks historically was to protect

a unique or especially attractive natural site from being despoiled by

noxious commerical or industrial development. Later, in the 1930's,

extensions to these systems often were made on the basis of make-work

projects to alleviate conditions of severe unemployment. In these

cases, most emphasis was placed upon the availability of publicly-

owned land resources and a pool of unemployed workers in the locality,

rather than upon specific development to provide demonstrably needed

facilities.

In the latter part of the 1950’s, mass availability of

leisure time created the need for a much more rational pattern of develop-

ment of outdoor recreation facilities. No longer is such development

<Hn1fined to preservation of "priceless" scenic sites which are part of

- 6 -
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a "national natural heritage", although this is continuing, of course.

Rather, the creation of sites of acceptable scenic attractiveness which

are more accessible and therefore available to fill specific demands of

large population centers for leisure facilities is now receiving consider-

able emphasis [12,13,14].

While considerable progress has been made in the analysis of

demand and facility planning, there are still two broad questions which

remain to be answered before a completely satisfactory quantitative

analysis of outdoor recreation can be made. The first is; what is the

true measure of the demands of society for outdoor recreation activities .

of various kinds, and what economic value is placed upon them by society?

The second is; given a certain demand rate of the population, how do

people behave with respect to the particular sets of alternative facil-

ities open to them? In other words, given a demand rate and a set of

facilities, how can one determine the intensiveness of use of each?

Answers to the first broad question are still fairly far off.

Certain attempts have been made to measure demand [14,15,16], and an

analytic framework for the economic criteria to be evaluated has been

suggested [13]. However, there still has not been enough data gathered

to provide a reasonably accurate picture of the behavioral parameters

of society in this regard. For example, the main source of demand rates

and preferences is the report entitled "National Recreation Survey" by

the Outdoor Recreation Resources Review Commission [15], which is based

upon interviews with 3,647 persons out of approximately 180 million.

In a state the size of Muchigan, this consists of only about 120 persons.

While such a sample ordinarily is sufficient to overcome even the pro-
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found regional, racial, ethnic and economic differences of groups of

society for a simple determination such as the preference for Candidate

X or Candidate Y for President of the United States, or television

programs A, B, or C, the immense variety of possible outdoor recreation

activities causes the results of such a survey to have disappointingly

high standard deviations. For example, the participation rate for

camping by females in the North-Central region of the United States

during the summer season is given as 6 percent [15]. However, the

table of standard error of estimated participation percentages([15],

Table IV, pg. 106) shows that based on a sample of 213 persons (the

number of females surveyed in the North-Central region), the 68 per-

cent confidence interval for this percentage is the interval from 3

percent to 9 percent. Actual participation rates by subgroups of

this group which vary by a factor of up to 3 may thus not be inconsis-

tent with the estimation. Very little planning or future estimation may

be meaningfully based upon such data. In the face of such uncertainty,

then, this thesis can add little to the knowledge of the first question.

The second question, that of the distribution of use of

facilities, given a demand level, will be the subject of the remainder

of this chapter. In the literature so far, various calls have been

made for an analytical model which would consider a given demand level,

road system and park facilities and allocate usage on some rational

basis [16,17,18], but no comprehensive solution has as yet been offered.

This thesis proposes an analytical framework for just such a model,

which is developed in subsequent sections. The activity of camping in

the state park system of Michigan was selected for a full-scale demon-

stration of such a model due to the availability of the largest amount
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of data for any outdoor activity. For virtually all outdoor recreation

activities there is only fragmentary data, if it exists at all,

regarding the origin and destination of participants. For Michigan

State Park camping, a one year sample (for 1964 attendees) of a time

series of this data was available*, and the example choice was made on

this basis.

II-2. Definition and Modeling of Components

The system to be studied in this section consists of all

state parks in Michigan having campgrounds which issued more than 1000

camping permits in the 1964 calendar year, the road system of the State

of Michigan alongwith selected roads linking nearby states to Michigan,

and the population centers of Michigan counties plus selected population

centers in adjacent states. Three types of component are identified in

the system:

1. Origin areas of campers,

2. Highway links,

3. Destination areas, or state parks.

Each component is modeled by means of an oriented line segment

and an equation relating two variables, X and Y. The variable Y is taken

 

* A full determination of the origins and destinations of

Michigan State Park campers was made under supervision of the author

for the Michigan Outdoor Recreation Demand Study, Department of Resource

Development, Michigan State University.
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to be the flow or attendance of campers in each component, measured on

a full-season basis in units of camper-days*. It would be quite feasible

to consider the measure of the Y variable to be camper-days per month

or per week rather than per season, if more data were available to the

analyst. The data required would have to include, among other things,

the average weather conditions for each period considered, the exact

timing of certain events such as the shut-down period of large manu-

facturing plantsand schools, and the timing of such holidays as

Independence Day and Labor Day. All of these considerations would

cause certain of the component parameters to be time-varying. Since

the methodology is new and unproven, and the quantitative effects of

such influences remains largely unknown, a seasonal measure is used so

that such effects may more reasonably be neglected.

The variable X is taken to be the propensity to camp, or the

demand pressure for camping. Propensity to camp is considered to be

annihilated by the process of making a trip to a campground and sub-

sequently camping there.

The origin areas are modeled as two-terminal flow drivers of

known magnitudes. Their component equations are taken as

YOi = known 1 = 1,2,...77 (II-l)

Their magnitude is taken to be the number of camper-days re-

corded for 1964 from that origin in the camper permit origin-destination

 

*One person camping over one night in a state park was considered

to equal one camper-day of use. The season length coincides with the

calendar year .
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tabulations mentioned previously. Each origin considered is either

the geographical center of population of a Michigan county, or a

selected center of pOpulation in a nearby state. In order to reduce

the final number of components and equations with as little sacrifice

in accuracy as possible, in cases of counties with less than 10,000

population, the center of population of two or three counties is

considered as one origin component. Appendix A gives a list, description

and values of the 77 origin components used in the model. The line

segment representing an origin area is considered to be connected in

the system linear graph of Figure 11-1 from an arbitrary reference

point (not shown in Figure 11-1, for clarity) and the appropriate

center of population. The orientation is taken as away from the

reference.

It is postulated that the highway links connecting the

population centers and parks components could be modeled as

th : ijhj
J = 1)2)000)208

(II-2.8)

The parameter Gj represents the reciprocal of "deterrence

to travel"; i.e., if l/Gj is large, the flow of campers for a given

propensity difference across the link is small. It is postulated

that for the purposes of making a trip to a campground two factors

of the route are influential; the time required to travel the route,

and the direct out-of-pocket expenses incurred in so doing. Note

that distance, as such, is considered to be a less representative

measure of trip deterrence than time. It has been discovered in many

studies that for many trip-making purposes people are willing to

choose: a longer route if they can save time by so doing. Cost of
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gasoline and toll expenses only was considered, since most families seem

not to consider incremental depreciation and repairs of their auto-

mobiles caused by relatively short recreational trips. The time-cost

value of each link was raised to a power greater than unity in order to

weight longer trips with proportionally more deterrence than shorter

ones, in line with most traffic engineering findings [19,20,21].

A total of 208 links chosen from the Michigan State Highways

Map represent the state highway system. All centers of population and

state parks are connected by the most important road links on the map.

The importance of road links is determined from a traffic-count map for

1963, provided through the courtesy of the Michigan Department of High-

ways. Roads showing estimated daily volumes of fewer than 300 vehicles

are omitted, unless they are the only applicable links. Average driving

times were estimated for each link with the assistance of Mr. Clifford

Tiedemann of the Michigan Outdoor Recreation Demand Study staff. Average

direct cost is arbitrarily estimated on the basis of 14 miles per gallon

of 35¢ fuel, plus the toll charge for an automobile, plus one-half of

the toll surcharge for a single-axle trailer, since roughly 50 percent

of campers use trailers.

The parameter G. is evaluated as

 

k

Gj = 1 k3 j = l,2,...,208 (II-2b)

(T. + K C.

J 2])

where

Tj = estimated average driving time in hours

Cj = estimated direct cost of gasoline plus tolls in

dollars

k k k = constants
l’ 2’ 3
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The presence of the constants k k2, and k above, and
1’ 3’

k4 in equation II-3a below is necessary to allow the model to be

scaled when in operation. With no firm data to go on, it cannot be

predicted in advance exactly how the propensity drop generated by

a flow of campers in a circuit from an origin back to the reference

point is distributed across the park and the highway link components.

The constants are inserted at this stage to allow them to be manipulated

for overall best fit of the model predictions at the solution stage.

A complete listing of the transportation links, with their

estimated time and cost parameters is given in Appendix A. Their

location is shown schematically in Figure 11-1, with arbitrary

orientations.

The parks are modeled as line segments connected from the

park location to the arbitrary reference point (omitted for clarity in

Figure 11-1), with their orientations taken as towards the reference.

It is postulated that the park components could be modeled as

ka = kaAkYk k = 1,2,...,55 (II-3a)

where k4 is a constant, and the parameter Ak is a measure of the

"attraction" or the "attractiveness" of park k. The measurement of this

parameter Ak in quantitative terms was the subject of considerable

deve10pment. Such concepts as "attractiveness" are usually considered

as being too subjective to be expressed in terms of hard numbers. There

is a certain amount of data available, however, with which the problem

of deriving a behaviorally-oriented attraction measure can be attacked.

0n the one hand, there is a certain amount of data on preferences of

people for the activities they engage in and thus the facilities they
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tend to demand when they go camping [15]. On the other, there is an

inventory of the particular attributes and facilities possessed by

*

each of the 55 state parks included in the study .

From a study of the desires of people, reported in [15], it

is postulated that there are three main motivational factors which

lead to any park being considered "attractive" to campers. These are:

1. Its endowment of water-oriented features,

2. Its scenic aspects,

3. Its provision of comfort and convenience facilities.

Preference data from the same source [15], further suggests

that, if the water-oriented factor is given a relative importance

weight unity, since nearly every camper wishes to participate in water-

related activities, appropriate weights for the scenic aspects and

the convenience aspects would be 1/3 and 2/3 respectively. The problem

then is reduced to the following;find the relative quality ratings for

each park for each of these three features, and establish the total

park attraction rating as

Ak = R4 Ck(Ql + l/3Q2 + 2/303) k = 1,2,...55

where

k4 = a constant

Ck = the ratio of campsites at park k to the average

number of campsites in 55 parks

 

* This information was obtained by Mr. Carlton Van Doren

of the Michigan Outdoor Recreation Demand Study staff from the

Michigan Department of Conservation. Thirty-eight facilities and

attributes were considered.
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Q1 = quality rating of water facilities

02 = quality rating of scenic attributes

Q3 2 quality rating of convenience facilities

For ready comparison of park attractiveness, it is desirable

to have an attraction value distributed such that an "average" park has

an attraction of unity. Thus we can let

61 = mean of Q1 for all parks

62 = mean of Q2 for all parks

O3 = mean of Q3 for all parks

and then write

Ak 2 k4 Ck(0.Sle/(%_ + 0.165xQz/Qg + 0.355xQ3/Q3)

k = l,2,...,55 (II-3b)

It still remains to be established that the 38 facilities and

attributes considered above actually do group into the three factors

postulated and also what quantitative contribution is made by each

particular attribute to the quality rating with which it is related.

At this stage, a factor analysis of the 38 facilities

considered for the 55 state parks is made using the FANOD 3 library

program on the CDC 3600 computer. The data is used in the analysis

in dichotomized form; i.e., a particular park is scored 1 if it

possessed facility i (i = l,2,...,38) and 0 if it does not,

yielding a 38 x 55 matrix, Z, of 0 or 1 scores. The program first

produces mean values and standard deviations for all of the 38

T

variables. It then produces a matrix R, 38 x 38, R = '%% , of
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intercorrelations between these variables. It then produces a

principal-axis factor-loading matrix, A, 38 x 38 in size, such that

R = AAT is a close approximation to R [22]. The program then examines

the eigenvalues of R, and selecting them in descending order, rotates

the 2,3,...,k largest eigenVectors according to the varimax criterion [22].

This yields successive factor loading matrices, or k-factor solutions,

Ak’ 38 x k in size, from which the correlation matrix can be reconstructed

as 'Rk = Ak(Ak)T’ and compared with the observed matrix, R. The pro-

portion of variance "explained" by each of the k varimax-rotated factors

at each stage is determined, and can be considered a measure of the

goodness of fit to R.

The number of varimax factors considered necessary to "reproduce"

R withRk is usually measured by the behavior of the eigenvalues of

R [22]. Usually, k varimax factors are considered sufficiently des-

criptive of the variables if the first k eigenvalues are large, and a

relative drop in magnitude occurs with the (k+l)th eigenvalue.

The eigenvalues of R (given in full in Appendix B) are as

follows:

7.53, 5.05, 3.84, 2.43, 2.35, 2.00, 1.84, ...

This shows that, indeed, there is a sharp drop after the

3rd eigenvalue, followed by a much slower decline. The hypothesis

of only three significant factors is thus tentatively confirmed.

Fuller confirmation comes from comparing the detailed structure of the

three-factor solution with that of the four-factor solution. The first

three of the four factors are virtually identiCal to the original factors,
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but the fourth is loaded by a subset of the variables loading the

second, or scenic, factor. Thus the three-factor solution is accepted,

and used to compute the three relevant quality indices.

The contribution of each facility to the makeup of the quality

score of the respective factors is taken as the factor loading coeff-

icient from the three-factor solution. For the first or water factor,

the highest value of loadings is obtained from the following ten facility

variables, after which there is .a noticeable gap before the remaining

loading values:

 

Variable Factor 1 loading

Great lakes shoreline ..8381

Inland lake shoreline -.7573

Great lakes swimming .8079

Inland lakes swimming -.9304

Sand beach on great lakes .6792

Sand beach on inland lake -.9102

Water skiing -.8448

Fishing -.5229

Boat rental -.5216

Lifeguard -.5569

The positive and negative loadings for great lakes and inland lake varie

ables’respectively, is considered to be the result of the special

situation of Michigan State Parks. The correlation between inland

lake and great lakes swimming, for example, is -.7600 since, for

geographical reasons a great lakes park does not usually have an in-

land lake shoreline as well. The exceptions, however, are some of the
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most popular parks in the system, partly for this reason. Thus, the

quality score is taken on absolute values of the loadings:

Qli = E |alk|zik 1 = l,2,...,55 (II-4a)

where zik = 0, l; the score of the park i for variable k

a1k = the factor loading of variable k on factor 1

k = 13, 14, 20—24, 25, 26, 33, 36 from the numbering

of variables in Appendix B.

For the second or scenic factor, 8 variables are found to

have significant loadings. They are:

 

Variable Factor 2 loading

Virgin timber .5155

Wilderness areas .6502

Waterfalls .6895

Springs .5799

River frontage .5299

Historical site .6707

Interpretive program .6579

Hiking trails .6229

The quality score is taken as:

Q21 = E aZkZik i = l,2,...,55 (II-4b)

Where k = 7, 8, 10, 11, 12, 15, 16, 18, 19.

The third factor, representing comfort and convenience
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facilities, is found to be highly loaded by the following 5 variables:

 

Variable Factor 3 loading

Store within 1 mile .5709

Shower facilities .8381

Flush toilets \ .8135

Laundry facilities .8301

Electricity service .7910

The quality score is taken as:

Q31 = Ea3kzik i = 1,2, 900,55 (II-4C)

Where k = 27, 28,..., 31.

The normalized scores are formed by dividing each Q

ji

(j = 1,2,3; 1 = 1,2,...,55) by

jS : Eajkzk J = 1.92:3 (11-46)

1 = l,2,...,55

where 2k = mean score of the 55 parks for variable k.

The Appendix B contains a full listing of the mean scores

of the variables, and the normalized factor scores of the parks, as

well as the final attraction indices calculated from relation II-3b.

Thus the entire system is now described by the system linear

graph of Figure 11-1 and the component equations II-l, II-2a, and II-3a,

with component values as given in the Appendices A and B. In the next

section, these are used to formulate a set of system equations which,
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when solved, establish the desired flows; i.e. the predicted attendances

at the parks as measured in camper-days per season.

II-3. Formulation of the System Model

The system represented by the linear graph of Figure II-l

consists of a total of 340 elements and 146 vertices. The 340 edges

in the graph identify 77 origins, 208 highway links and 55 parks.

The 140 vertices are associated with 77 origins, 55 parks,

13 highway intersections not at a park or origin and 1 reference point.

The number of branch equations required to solve for the

system variables is [9], 146 - l = 145, and the number of chord equations

340 - 146 + l - 77 = 118. In spite of the slightly fewer equations

involved in chord formulation, a branch equation model is chosen, for the

reason that the fundamental cutsets and circuits were formulated manually

from the system graph. Since there are 145 fundamental cutsets and 195

fundamental circuits, there is a saving in manual error-prone work by

using the branch equations. Further, formulation of the 118 chord

equations requires the inverse of a matrix of order 118 with subsequent

post-multiplication by a 118x77 matrix. Because of core memory limitations,

multiplication of two such large arrays on the CDC 3600 computer can

only be performed in steps, with intermediate tape read-out read-in. To

solve the branch equations for the 55 park through variables, requires

the inverse of a matrix of order 145 but the first 55 rows only are pre-

multiplied by a diagonal matrix of order 55. This Operation can be performed in
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the memory capability of the computer with only a few precautions.

For details of the compilation procedure, see Appendix C.

The nature of the graph is semi-Lagrangian, in the sense

that all of the flow drivers, and all of the edges corresponding to

parks share the reference point as a common vertex. Thus, all of the

flow drivers can be classified as chords of some tree, T, and the

edges corresponding to parks as branch elements. The tree thus

selected, is shown in heavy lines in Figure II-l and includes 90 high-

way links in addition to the parks.

The cutsets can be established by a self-checking procedure.

The first 55 cutsets must contain each chord element exactly twice, and

with opposite sign, since the first 55 branches correspond to parks

and each defines a separate sub-tree.

The details of the constraint matrices and system model

equations cannot be shown here because of their size, but in block

form the branch equations describing the system are:

X

G --P- : F Y : Y r (II’S)

xhb

where G is a 145 x 145 matrix with entries:

145

ij = Aj +121 ajici j = l,2,...,55

145 2

= Z 6.. J = 56,57,...,145
J1 1

1:1

and éji = 1 if element 1 is in cutset j and has

positive orientation,

-1 if element 1 is in cutset j and has

negative orientation,
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= 0 otherwise.

145

G.. = 2 6 6 G 1;!3; j = 1,2,...,145
ji k=l 1k jk k

X is a 55x1 vector of park across

variables

th is a 90x1 vector of branch highway

link across variables

F is a 145x77 matrix with entries:

fij = 1 if origin area j is in cutset i

0 otherwise.

Y is a 77x1 vector of known origin through

variables

Y is a l45xl vector, the product of F and Y0.

It is a simple matter to perform the indicated matrix

multiplication on the right-hand side of II-S required to evaluate the

145xl vector of known quantities Y.

If G is partitioned in the form

.61 l 55xl45

""" 90x145

C
)

H

the park across variables are given by

XP 2 [GI 1] Y (II-6)
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The park through variables are then

X=AX =AGIlY II-7p p [ ] ( )

where A = diag(A1,A ,...,A ), a 55x55 diagonal matrix
2 55

of park attraction indices

The solutions indicated in equations II-7 and II-6 were

carried out on the CDC 3600 computer, using Program PRKSYS shown

in Appendix C. The results are given and compared with the actual

attendances for 1964 in the next section.

II-4. Results of Solutions

The initial sets of solutions of the model are used to

determine what values of the constants k1,k2,k3 and k4 yield the

closest approximation to the actual 1964 attendances at the parks.

\,

Four measures are used to compare one set of solutions with another.

These are:

l. The average percent error of the estimates, defined as:

55

Average error = 53,2 I percent error of park i

i=1

2. The root-mean-square error of the estimates, definedaun

55

R.m.s. error = -EE 2 (percent error of park i)2

i=1

 

3. The number of parks with percentage error equal or less

than 20.

4. The number of parks with percentage error equal or greater

than 50.
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Percent error was defined as follows:

predicted attendance at i - actual attendance

Percent error of = x100

park 1 attendance actual attendance

The latter two measures provide quick means of rejecting

obviously poor results. They are not nearly as discriminating when

the results are even moderately close. The r.m.s. error provides the

most acceptable test, since it is intolerant of large discrepancies.

Table II-l shows the error measures for a representative selection of

the solutions obtained with the indicated constants.

Table II-l
 

Error measures for selected systems model runs:

    

k1, k2, k3, k4 Avg. error R.m.s. error # errors 320% # errors 2 50%

‘7. ‘7.

1.0, 0.5,1.3, .01 28 33.7 26 10

1.0, 0.5,1 3, .02 29 36.5 24 11

1.0, 0.3,1.3, .01 32 34.5 23 10

1.0, 0.1,1.3, .01 33 35.3 22 10

1.0, 0.0,1.3, .01 34 36.1 22 11

1.0, 0.5,1.5, .01 32 34.3 22 11

1.0, 0.5,1.l, .01 30 34.1 24 10

The solution accuracy is found to be extremely dependent upon

the relative magnitudes of k1 and k4. These two constants determine

the relative magnitude of the propensity drop across the link and park

components, respectively, for a given flow. Subjectively, one would
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postulate that the parks should "dominate" the links in this respect.

The solution obtained when k1 and k4 both equal unity yields

interesting, but rather inaccurate results. Parks in portions of the

state near large population centers are over-predicted by large per-

centages, while those in more remote northern areas are under-predicted

by a factor of 5 to 10. Good prediction is obtained when k4 is in

the order of 0.01 when k1 is unity. This result shows that, with

*

respect to camping, a highway link with unit conductance develops

only one percent of the prepensity drop across it for a given flow as

an "average" park with unity attraction index.

The constant k2 has the effect of including cost in addition

to time in determining the link "resistance". This is very rarely done

in the traffic engineering literature, and to the author's knowledge,

has never been attempted for such a large-scale extra-urban system

**

as this one . Table II-l indicates clearly that solution accuracy is

improved by this cost addition.

The full set of predicted attendances is given in Table II-2

below, using constants as indicated. The errors and percent errors are

expressed with respect to the 1964 attendance figures provided by the

Department of Conservation:

 

*

For example, a link having unit conductance could be one

involving 0.6 hours of time and 0.8 dollars of direct cost, yielding

Gj = 1.0 from relation II-2b.

Cost has been included as a route determining factor in

urban traffic flows in a study by Mr. Wallace McLaughlin in a forthr

coming thesis for the Ph.D. degree at Purdue University, Department

of Civil Engineering (from private communication).
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Table II-2
 

Predicted Attendances and Error for 1964 Data:

(k = 1.0, k
1

Park

Baraga

Brimley

Fayette

Fort Wilkins

Gogebic Lake

Indian Lake

McLain

Muskallonge Lake

Porcupine Mts.

Straits

Tahquamenon Falls

Van Riper

Wells

Aloha

Bay City

Burt Lake

D.H. Day

East Tawas

Harrisville

Hartwick Pines

= 0.5, k

Predicted Attendance

3 _

 

(camper-days)

11,124

32,010

4,880

18,342

35,338

36,418

9,869

16,804

27,423

22,769

57,431

51,528

30,136

57,038

80,325

87,384

10,791

43,123

45,387

11,581

= 0.01)

Error

-3,002

-38,l77

-311

-6,479

5,797

-19,009

-12,604

5,557

-3,700

-28,214

5,372

11,093

-243

2,189

33,394

3,649

-18,144

-30,760

-13,906

-10,085

Percent Error

-21

-54

-26

20

-34

-56

49

-12

-55

10

27

71

-63

-42

-23

-47



21.

22.

23.

24.

25.

26.

27.

28.

29.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Higgins Lake

Hoefft

Interlochen

Ludington

Mears

Mitchell

Muskegon

Onaway

Orchard Beach

Silver Lake

Traverse City

Wilderness

Wilson

Young

Benzie

Gladwin

White Cloud

Algonac

Brighton

Grand Haven

Hayes

Highland

Holland

Holly

Island Lake
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174,924

30,586

143,111

136,159

21,718

50,806

86,942

24,840

30,090

60,543

79,365

59,793

33,619

38,577

10,287

7,834

6,393

32,122

67,850

68,545

75,076

9,724

110,096

51,172

29,758

-6,l8l

9,393

9,629

10,122

-3,119

2,959

7,787

4,574

-8,741

-25,666

-4,562

-14,236

-21,307

-14,497

-15,250

528

1,061

-6,378

30,347

-9,118

-4,748

-2,246

-22,192

10,266

"6,860

-13

10

23

-13

-30

-19

-39

-27

-60

20

-17

81

-12

-19

-17

25

30



47.

48.

49.

50.

51.

52.

53.

54.

55.

Lakeport

Metamora

Pinckney

Port Crescent

Proud Lake

Sleeper

Warren Dunes

Waterloo

Yankee Springs
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65,327

39,321

110,354

42,144

36,552

100,891

52,905

90,839

86,228

-15,598

-45,811

36,990

2,933

-34,918

34,320

-12,576

-33,693

-25,821

average error

r .m.s . error

The final results do not show any particular bias as

geographical area, such as the vicinity of metr0politan areas.

-19

-54.

50

-49

52

-19

-27

-23

 

28%

33.7%

to

The

positive and negative errors are reasonably uniformly distributed

over the geographical area of the state. We find that there is a much

greater propensity drop across the park components than the link com-

ponents which verifies subjective considerations. A measure of this

propensity drop, and some of its implications, can be found by solving

for X for typical components:

for link 692 (see Figure II-l), with a flow of 100,000 on

this 20 mile two-lane highway,

X

692 = Y692 G692
= 100,000/1.4535 = 68,799
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for link 542, the Mackinac Bridge, with a flow of 100,000,

X / = 100,000/.2756 = 362,840

542 = Y542 G542

for park 21, Higgins Lake - the most popular park in Michigan,

6
x21 = Y21/k1A21 = 174,924/.0391 = 4.47x10

for park 31, Silver Lake - a "typical" Lake Michigan family

park,

60,543/.0137 = 4.42x106IIx = YBl/klA

31 31

for park 37, Gladwin - a small out-of-the-way park,

6
Y = Y37/klA37 7,834/.0017 = 4.6lxlO

37

The two examples of links indicate that the 20 mile link of

two-lane State highway is less "deterrent" to camping trips by a factor

of 53 than the Straits of Mackinac Bridge, with its present toll structure.

Alternatively, one could say that the deterrence provided by a 106 mile

stretch of two-lane State highway and the Mackinac Bridge are equal.

Furthermore, it is at first astonishing, but upon reflection becomes

intuitively obvious, that the prOpensity drop across such diverse types

of parks is very nearly equal. Given that the camper has arrived at

their gate, the wide differences in attendances (flows) is due solely

to their attraction indices.

As a check on the sensitivity of the solution to the attraction

indices (which will be the subject of further comment below), the model

was solved with all of the attraction indices set equal to C ' i.e. all
k!

quality factors were set effectively to unity for all parks. The result
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showed an average error of 38 percent, an r.m.s. error of 56 percent,

with 17 parks having an error of s 20 percent, and 13 parks having

errors of 2 50 percent. These results are vastly inferior to those

obtained with the indices set at their computed values.

In comparison with other types of models which might be

constructed for such systems, the systems model as developed here shows

superior results. Gravity models have found almost universal use by

highway and traffic engineers for the study of many different types

of traffic flows [19,44]. A gravity model of the same park system

was made by Mr. Carlton Van Doren, a colleague of the author's,using the

same travel time values and the same links. Certain additional out-

of-state origins were included, since computer memory capacity was not

critical. The results of the best model run to date*, supplied by

Mr. Van Doren, showed an average error for the same 55 parks of 31 per-

cent, an r.m.s. error of 42.3 percent, with 24 parks having 3 20 percent

error and 11 parks 2 50 percent.

Those accustomed to the precision of modeling possible in

physical systems may find an r.m.s. error of 33.7 percent rather high

in an absolute sense. To provide an evaluation of the absolute per-

formance of the systems model, it is compared with a measure of the

effects of purely random or "happenstance" fluctuations in such a

phenomenon as camping. The r.m.s. value of the percentage attendance

fluctuations from 1963 to 1964 was considered, for the same 55 parks.

The total system camper-day increase was approximately 8 percent from

 

9:

April 28, 1965
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1963 to 1964. However, when one examines the figures for individual

parks, a vastly different picture appears. Some parks show an increase

of 158 percent (Aloha), 79.5 percent (McLain), and 74.5 percent (Van

Riper) others show a decrease of 47 percent (Island Lake) and 26.3

percent (Baraga). The average value of the percent changes from 1963

to 1964 was 18.2 percent, but the r.m.s. value is 33.4 percent. Thus,

it can be concluded that an overall r.m.s. error of 33.7 percent,as

obtained in this investigation, is not excessive, and may, in fact,

be extremely good.

Certain defects in the prediction of the systems model are

fairly easily traceable. Let us examine in detail some of the 10

"worst" predictions of the model to ascertain what, if any, effects not

accounted for in the component models used here could explain the large

discrepancies.

Benzie and D.H. Day parks were considerably under-predicted.

D.H. Day has a rather low attraction index, which undoubtedly does not

reflect the amenities immediately adjacent to the park, namely Glen

Lake and the Sleeping Bear Dunes area. Furthermore, both of these parks

are relatively exceptional in the Michigan state parks system in that

they do not require a vehicle permit for entry, almost certainly

adding to the "attraction".

Straits parks was also considerably under-predicted. This

park lies immediately at the northern end of the Mackinac Bridge, thus

providing perhaps a unique viewpoint from which to view the bridge

itself and the considerable shipping traffic in the Straits,and is

near the historic Mackinac Island. These features are perhaps inadequately
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reflected in its relatively low attraction index of 0.740.

Two parks, Metamora and Sleeper, may have been influenced

by the choice of links in the system. Metamora is not served by a

road joining county centers of p0pu1ation, and since few other links

were added to conserve computer space, this may introduce an accessibility

barrier to this park which is not present in the real world. Sleeper

park is very close to Port Crescent, and arbitrarily was chosen as the

terminus of a road link. The over-prediction of Sleeper (52%) and

Port Crescent(6%) represents a 26 percent over-prediction for the parks

taken together as one unit, which they are functionally.

The over-prediction of Brighton (81%) and Pinckney (52%), may

well be due to the effects of the dichotomized facility data. The

fact that both parks have as high an overall quality index as some

very "attractive" northern Michigan parks may be due to the fact that

they possess many of the facilities loading the three quality factors -

but that these facilities individually are not really equivalent in

quality to those in some other parks. The dichotomized data cannot

discriminate between an "inland lake" and a"beautiful inland lake",

or between "fishing" and "good fishing".

While we cannot include exceptions such as those cited above

in the index structure, it appears that further refinement of the park

attraction indices would repay the effort - in particular, the gathering

of data in other than 0,1 form and a more careful inclusion of nearby

facilities commonly utilized by park users, even though technically they

may be outside the park.



III. AN ANALYSIS OF A NATIONAL ECONOMY

III-l. Background

Economics as a separate discipline has been studied by

various scholars over the last two centuries. The first studies

were mainly of a deductive or social-philosophic nature, where postu-

lates derived from common sense are set up as laws and the behavior

of economic systems is inferred from them. Such studies were carried

on by David Ricardo, Adam Smith, Thomas Malthus, Karl Marx, and many

others. Their impact upon later thinking and even upon real events

up until the present day attests to the widespread acceptance of their

studies, at least among certain segments of mankind 96], However

deeply convincing these philosophical structures may have been, they do

not embody the normal scientific precepts of hypothesis, test, veri-

fication or rejection, and re-hypothesis.

The truly scientific approach to economic analysis has

probably come about only in the last half-century. In 1899, Karl

Pearson published his Grammar of Science which introduced the discipline

of statistics and statistical inference to a wide group of scientific

fields. A few years earlier, Hollerith had introduced punched cards

into the record keeping system of the U.S. census, and thus for the

first time there existed both a large body of factual data regarding the

actual functioning of an economy, plus a rigorous method for drawing

inferences from it. Thus the stage was set for the economic philosophies

to be tested against the cold facts.

Various workers proceeded to do just this. For instance,

-34-
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Edward Chamberlin [23] observed the behavior of supply, demand and

prices in actual marketplaces. He found that for a wide range of

goods, there was not a "perfectly competitive" supply or demand side

as had been postulated by the earlier social philosophers, and under

such realistic conditions, prices do_ggt always fall when demand drops.

Thus the Ricardo-Smith "Law of Supply and Demand" was shown to hold

only for a very limited range of economic goods. In the 1920‘s and

1930's the work of John Maynard Keynes [24,25] showed that the spending

of income by consumers does not take place automatically in such a

fashion as to tend constantly towards providing full employment, as had

been postulated by the "laissez-faire" school of economists. He

showed that a market economy often may balance itself by fluctuations

in employment, rather than in prices, wages and interest rates. He

introduced the hypothesis of an "investment multiplier", which states

that an investment of X dollars in productive capacity causes a flow,

mX dollars, of extra income, and that this effect obtains even when

the investment is made by a government operating with a budgetary deficit.

The scientific analysis of the growth of an economy was

attempted first by workers such as Colin Clark [26], Sir Roy Harrod [27]

and Wassily Leontief [28,29]. Professor Clark made two important dis-

coveries; firstly, that as of 1935 only seven countries in the world

enjoyed a truly high real standard of living, and secondly; that a

high percapita real income is almost always associated with an economy

having a high proportion of workers in tertiary employment, or service

industries, and a lower prOportion in primary employment such as agri-

culture, forestry and fishing. Clark offered no system-theoretic
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explanation for these observations, but they are arrived at in a

scientifically sound manner.

Shortly thereafter, Harrod suggested a dynamic growth model

s

using empirically observed parameters in an equation which yields the

growth-path or development of an economy over time. Harrod used the

following variables:

Y1(t) = output or production at time t

new investment at time tY2(t)

X(t) stock of capital goodsat time t

The relationships he postulated, and tested for several nations,

are:

Y1(t) 2121— X(t) (III-1)

Y2(t) = o Y1(t) (III-2)

dX .

dtt = 12(t) (III-3)

In the above, k is the "capital-output" ratio; i.e., the

amount of total capital investment required to produce one unit of

output, and o is the "savings ratio"; i.e., the preportion of income

which is saved. Equation III-2 states that investment equals savings.

Equation III-3 states that the growth rate of total investment equals

the amount of new investment.

The above equations are combined into a growth model as shown:

 

*

Usually termed the "Harrod-Domar growth model" [36,39] due

UDttle concurrent work of Domar.



fl“) _ -dt _ Y2(t) (III 4a)

de (t)
1 = 0 Y (t) -

'7fir' 1 (III 4b)

dY (t) 'g

dtl = k Y1(t) (III-4c)

The latter equation, III-4c, when solved for Y1(t), gives

the time-path of output of the economy:

0'

Y1(t) = 9.1521(0) (III-4d)

Harrod estimated values of k betweei 2.5 and 3.5 for developed

economies, and o values of between 0.1 and 0.2, both on a per-year

basis. Values of ks3 and 0:0.15 yield a -% value of 0.05, implying

that such an economy would enjoy a growth rate of 5 percent per year,

which agrees quite well with the results for many industrialized nations.

However, such a model is useful only up to a certain point.

It aggregates the entire production of an economy into a single "sector".

It further assumes that only capital is required for production, and

labor does not appear in his relationship. Many industrialized nations

have shortages of labor, or of certain kinds of labor, thus making this

model unrealistic. Also, no depreciation of capital goods is allowed

for. This can be a serious omission in the case of a long-developed

economy which has considerable investment in obsolete production

facilities, or one in which technological obsolescence occurs rapidly.

The much more difficult problem of a structural analysis of

economic growth was first attacked by Wassily Leontief before World
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War II [28]. He considered a large number of industries as separate

production sectors, and undertook the formidable job of estimating the

amount of each industry's deliveries to consumers(as final end-products)

.ggg to other industries as intermediate inputs to their own productive

processes. For instance, the amount and prOportion of the output of

the coal mining industry delivered to householdsfor final consumption

was shown separately from the amount delivered to the steel industry,

electric power industry, railroads, etc., for use in producing their

respective products.

Model construction of this type has been termed input-output

or inter-industry analysis, and in recent years has led to a considerable

sub-discipline of its own within economics. It has assumed such use-

fulness and importance for business and government purposes that the

U.S. Department of Commerce is now charged with the responsibility

of producing and up-dating just such an input-output table for the

entire U.S. economy. An early effort, for the year 1947, based on

the work of Leontief and colleagues was published in 1952, by the Bureau

of Labor Statistics [30]. Unfortunately, this version was not based

upon the same data as were the regular National Income Accounts for

the year in question, and some direct comparisons with other government

figures are not valid. The most recent work has been recently reported

on and published [31]. It consists of a full input-output table plus

supplementary data, evaluated for the year 1958 from the same data from

which the industry total production figures, to be found in the National

Income Accounts published by the U.S. Department of Commerce [32] are

computed.



-39-

A brief look at the results of Leontief's analytical endeavors

should now serve to clarify both what can and cannot be done with the

input-output matrix alone, and also what some of the underlying

assumptions implicit in its use are. Leontief allowed n different

industries to each produce a unique economic good, or output. He

traced the inputs of other goods needed to produce each output, as

well as the amount of each output which is consumed in its final

state. This latter amount was termed the final demand for a good.

He postulated that a fixed amount, yij’ of each good j would be

needed to produce one unit of output, yi. Thus, he wrote

n

where y1.- = output of good i

yij = input of good j required to produce y1 of i

yfi 2 final demand for i

As a further assumption, he considered that the quantity of

input yij demanded would be a function only of the volume of output

yj of good j; i.e. no internal scale economies are considered. Thus,

he wrote:

.. = a.. . III-6le 13y] ( )

where

a a "technical" or'iechnological" coefficient

13

I]

which gives us the relationship

H
M
S

yi' =
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or, in matrix form,

Y = AY + Yf (III-7b)

The above relationship can now be used to solve what economists

term an open static model. The term "open" implies that the model is

driven by some externally-given quantity, usually called "exogenous

variables". In this case, the variables required to be given exogenously

are the entries of the vector of final demands. The relation III-7b

can be used to solve for the production vector Y, the level of all

industries' production, which is required to satisfy some given final

demand vector, or "bill of goods", Y The solution isf.

Y s (I - A)’1 Y (III-8)
f

There are two chief criticisms one can make of this simple

model [36,39]. Firstly the assumption that the aij entries are

constants is not valid if rapid technological change takes place,

enabling one input to be substituted for another. For example, an

extensive changeover from the use of steel to the use of aluminum for

automobile engines would cause a noticeable distortion in the present

input-output relations of the nationfis economy. Leontief studied

precisely this effect, the change of the matrix A over time, in one of

his earliest works [33]. His conclusion was that the A matrix is largely

stable over time periods shorter than a decade, during which time

significant changes are likely to occur only in a few technologically-

advancing industries.

Secondly, the model requires a forecast or estimate of final
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demand levels, which may be difficult to make. It would be preferable

to "close" the model by making this exogenous variable a part of the

model itself, i.e. to have demand endogenously derived from some other

exogenous variable which is easier to predict, such as population.

Various efforts have been made to close the basic input-output model,

and all of them require theory in addition to the bare interéinduatry

matrix concept [34,35]. Generally speaking, concepts of a production

function, a capital accumulation function, and an investment generating

function are required. These concepts are clarified in the next section,

which will use a rigorous systems analysis formulation to construct a

closed model of economic growth. The latter two concepts will be seen

to be equivalent to the behavioral relations governing component

behavior; i.e., the component equations. The concepts of a production

function in the classic labor-capital value-added sense is a component

equation as well. knunlcutset conditions are applied in the formulation

procedure, inter-industry deliveries of intermediate inputs become a

part of the production function as well.

III-2. A National Economic System

Consider a national economy wherein production of three kinds

of goods takes place in three productive sectors. These sectors,

respectively, represent agriculture, mining and manufacturing, and ser-

vices, construction and government activities. Each sector component

is represented as a line segment in the system linear graph of Figure III-l.
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Figure III-l. The Linear Graph of the United States

National Economic System

13

ll
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These sectors are considered to be joined together by linking components,

which are also shown as line segments in the system linear graph.

Each component is modeled in terms of an X and a Y variable,

satisfying the postulates given in chapter I. The Y variable is

considered to be a dollar-valued flow of income (or output, as will be

seen in certain cases) on a per-year basis. The X variable is taken

as the total dollar value of fixed capital investment.

The modeling equations for the production sector components

are:

Xk(n+l) = (l-dk) Xk(n) + YH§(n) (III-9a)

Yik(n) = okYk(n) (III-9b)

Yk(n) = kak(n) + AkLk(n) (111-96)

' k = 1,2,3

where xk = accumulated dollar value of fixed investment

in capital goods in production sector k; k = 1,2,3

n = time period (year)

d = depreciation rate per year of capital goods in

sector k; k = 1,2,3

Yi = dollar amount of new investment per year in

sector k; k = 1,2,3

= coefficient of investment in sector k; k = 1,2,3

Y = dollar value of annual net income of sector k;

k = 1,2,3*

 

*At this point, Y represents the net income to sector k, taken

as equal to the value added by sector k to its total output. When the

cutset relations of the system graph are considered (see below), Y be-

comes the gross income of sector k, telmm as equal to the total va~ue of
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k : capital-output ratio for investment in

sector k; k = 1,2,3

L = number of workers employed in sector k in

a year; k = 1,2,3

1 = labor-output ratio for labor employed in

sector k; k = 1,2,3

The significance of the relationship III-9a is in its

description of the growth of investment in a productive sector. The

relation states that the accumulated investment at the end of some

time period n+1 is equal to the amount of investment accumulated at

the end of the previous period n, less the amount of depreciation

suffered during the period n, plus the amount of new investment received

during the time period n (considering depreciation and new investment

to occur in lumps at the end of period n). Such a function is quite

Widely used in the literature on economic growth [35,36], and is known

as a capital accumulation function. Thus, capital accumulation is

considered to be part of the behavioral process modeled by the comr

ponent equations for a production sector.

Relation III-9b states that new investment in a sector will

be a linear function of the income of that sector. This assumption

is found in the Harrod-Domar type of rudimentary economic growth

models [27,35], in which is ok the "savings ratio" of sector k.

In the balance sheet of a company, this figure would be termed the

proportion of retained earnings. Thus, the assumption in III-9b is

twofold: firstly, that all earnings retained by industries in a
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sector are invested entirely within that same sector; and secondly,

that a find proportion of income is retained for investment by each

sector, no other investment occurring. The work of Clark and

Harrod [26,27] suggests that a constant 0 value may be quite

k

apprOpriate for a model which is highly aggregated, as a three-sector

model is. When detailed investment patterns are considered, such as

by each of 100 industries, or say by each of 500,000 firms and private

investors, the picture is much more complex. In such a case, invest-

ment may be generated by expected rate of return, which is an extremely

difficult quantity to predict with any great degree of reliability [37].

Thus, the Harrod-Domar investment function is used here to model the

component.

The relationship III-9c is known as the production function

of a sector. The equation states that income to sector k is generated

because capital is invested and labor employed in the sector. Further,

it states that amounts are attributable to labor and captial separately.

The amount attributable to labor in a sector is taken as equal to the

amount of wages and salaries paid to workers in that sector. The

coefficient "k thus can be interpreted as the amount of output value

added per worker employed in sector k. The amount attributable to

capital invested in sector k is taken as the net sector income less

wages and salaries paid. In the accounting world, this would appear

83 initerest, dividends, and retained earnings. The coefficient kk

thuEB can be considered to represent the amount of net income per

dolléir invested in sector k - roughly, a gross rate of return to

capital invested in k.
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Other forms of production function also occur in the economics

literature [24,26,27,29,30]. A common one is the so-called Cobb-Douglas

production function [24], which states

1: =1“)?

where A,B are constants

This function is non-linear and, if used, would introduce

serious difficulties into the solution of state equations. The production

function III-9c is referred to as the linear labor-capital function, and

was first proposed by Marx [39]. It is still used in economics today,

although the Cobb-Douglas function is more prevalent for the following

reason.

When differentiated with respect to X, the Cobb-Douglas function

yields B, which can be interpreted in economic theory as a measure of the

substitutability of capital for labor. Similarly, A is a measure of

the substitutability of labor for capital. Since any production function

can be regarded as a "recipe" for combining labor and capital, and a

wide range of allowable choices of ingredient combinations will yield

the same output, depending on technology, the degree of substitutability

of capital for labor is of great interest to social scientists studying

automation, for example. However, this feature of substitution of in-

puts is not allowed here, since it is not allowed in the Leontief input-

output framework of inuzrindustry deliveries.

The linkage components in the system graph are modeled using

Leontief's assumption of linear dependence of linkage flows upon out-

put levels of the sectors. Thus, the component models are written as



ij(n) (l + a j = 1, 2,3 (III-10a)

11’5""

j,k = 1,2,3; j¢k (III-10b)ij(n) a kYk(n)

3

with the restriction that Y Jk 2 o; j,k = 1’2’30

In electrical systems terminology, the linkage components are

dependent through drivers, whose value is dependent upon the value of

some other through variable. By making use of Leontief's linearity

assumption, we effectively cause subsequent models to be valid only

For the case of anabout some actual given value of the Y vector.

economy undergoing profound development, the coefficients a. will be
jk

subject to change.

The state vector for the system is selected as the vector

Applying the outset postulate at vertices a, m, andof Xk; k = 1,2,3.

3 respectively, we see that after the interconnection links are joined

   

0r, in matrix form,

Y(n)

 

 

   

  

= KX(n) +-flLL(n) + AY(n)

   

 

to the sectors, the flows Yk become

r - - - - 3 ’ l r l

Y1(n) R1 0 X1(n) "1 0 L1(n)

Y2(n) = 0 k2 X2(n) 0 2 0 L2(n)

-Y3(n) O O LX3(n)‘ 0 A3 .L3(nl

all a12 a13 ‘ -Yl(""

a21 a22 a23 Y2(n) (III-11a)

a31 a32 a33.] Y3(“)

(III-11b)
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The relation III-ll can be considered to be the set of

"complete" production functions of the sectors. They are complete in

the sense that III-ll specifies all inputs to each sector, i.e. labor,

capital, and intermediate goods, required for the total make-up of the

gross value of its output. This notion of a complete production function

is still very underdeveloped in the economics literature [36,39]. This

may be due to the fact that most economists view the value-added portion

(labor and capital) as more interesting and worthy of study, or to

the magnitude of thetask of estimating the inter-industry portion in

great detail. A private discussion by the author* with Dr. Jan Kmenta

of the Institute for Social Science Research, University of Wisconsin,

revealed that some economists regard such functions as an ultimate

ideal, not yet realized in a practical sense.

When equation III-11b is solved for Y, we obtain

Y(n) = (I-A)-1[KX(n) +/\L(n)] (III-11c)

which is needed for the derivation of the state model, shown below.

In deriving the state equation model of the system, we

start with the equations

          

[x1(n+l)] P(l-d1) 0 0 ' 'xl(n)] ‘61 0 0 ' 'Y1(n)‘

X2(n+l) = 0 (l-dz) 0 X2(n) + O 02 0 Y2(n)

X3(n+l)‘ L 0 0 (l-dl)‘ L.X3(n)‘ LO 0 03.. LY3(n)-

(III-12a)

 

*

At Michigan State University, Economic WorkshOp, February 19,

1965.
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or, in matrix form,

X(n+l) = DX(n) + SY(n) (III-12b)

and eliminate the Y vector by substituting in equation III-11c. The

system state model is then:

X(n+l) _ DX(n) + S(I-A)-1[KX(n) +_/\_L(n)]

[D + S(I-A)-1K] X(n) + S(I—A)-1./\.L(n) (III-13)

The solution of this equation set is

X(n) = [n + S(I—A)-1K]nX(0)

“'1 -l n-1-' -l
+ 2 [D + S(I-A) K] JS(I-A) AL(j)

i=0
(III-14)

The relations III-l4 are thus a set of time paths of fixed

capital investment in the productive sectors, driven by a vector of

labor-force numbers, L(n), which must be known over time. It is

acceptable in such an aggregated model as this to assume that the

proportion of the total labor force employed in each sector is constant.

This assumption is valid over perhaps even a slightly longer time span

than the Leontief assumptions about constant interindustry delivery

proportions [32]. Thus we may write

 

DL1(n)" Pwlfi

L2(n) = w2 L(n) = WL(n) (III-15)

3‘3“) "3.   
where w pr0portion of the total labor force employed in

sector k, k = 1,2,3

total labor force.I
.
"

ll



..50-

Further, we can take the total labor force to be a fixed

proportion of the total population of the country [32]; i.e., that

L(n) = 2 P(n) (III-l6)

where L proportion of the total population in labor force

"
U

[I total population

When these relations are used in III-14, we have an expression

for the growth paths of sector investment which depends upon our knowh

ledge in addition to the parameters of the system, only of the initial

investment levels, and a time series of population. The deduction of

suitable parameters for such a model of the United States economy, as

obtained from literature which is widely available, and its solution

for the period 1947-1952 will be shown in the next section.

IIIr3. An Example: The U.S. Economy from 1947-1952

To provide a numerical example of the modeling concepts

discussed in the preceeding section, data from the United States

economy is used to provide the required parameters and to afford a

check on the results produced by the model. It was decided to choose

the period 1947-1952 for the analysis, since there was a 50-industry

input-output table showing all transactions in dollar amounts for

a

1947 [30].

 

*A similar study [31] gives an 82-industry input-output table

for the year 1958. However, the data is given only in A-matrix coefficient

form, making it impossible to determine the dollar value of the trans-

actions, which is necessary for re-aggregation of the matrix.
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It 'is assumed that a five-year period would be short enough to val-

idate the previously-stated linearity of parameters assumptions,

yet would be long enough to provide an adequate test of the model.

An aggregation of the transactions between industries in

1947 is made from table 4 of [30], on the following basis:

Sector 1: Industries 1 and 2 (Agriculture)

Sector 2: Industries 3 through 29 (Mining and Manufacturing)

Sector 3: Industries 30 through 45, and 48

(Services, Construction and Government)

The rows and columns giving inventory changes, imports, and

exports are neglected in the aggregation. The following table shows the

results of this aggregation:

Table III - l

Aggregated Inter-Industry Transactions for 1947

(Amounts in millions of 1947 dollars [30])

 

 

 

 

 

Aggiculture Manufacturing, Services, etc. Final Demand

Agriculture 33,192 5,635 5,408 33,149

Manufacturing 5,127 63,381 36,662 49,689

Services, etc. 12,399 37,944 73,422 150,187

Value Added 25,428 56,327 105,470

Totals Y1: 76,146 Y2=162,287 Y3: 220,992

 

The above table yields the following Leontief-type input-

output matrix:



0.436 0.035 0.024

0.067 0.391 0.166

0.163 0.234 0.332  

The entries in each column represent the ratio of the

corresponding entry in the columns of Table III-l divided by the total

at the foot of the same column in the table.

The system state model of equation III-13 requires a matrix

A which is the transpose of the above matrix. Thus, we can write

0.436 0.067 0.1631

A = 0.035 0.391 0.234

  
0.024 0.166 0.332

L 4

To determine the value of the 0 parameters, data on investment

in new capital equipment and structures purchased is taken from the

data in [32] for manufacturing and services, and from [42] for agri-

cultural investment. The figures are:

Investment in sector 1 3,203 (millionscf 1947 dollars)

Investment in sector 2 = 9,394

Investment in sector 3 11,218

These yield 0 values of

3,203/76,146 0.042G

H

l

9,394/162,287 0.058

11,218/220,992 0.051
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Values of the labor-output coefficients and the labor-force

vector are obtained by the use of the figures on the number of equivalent

full-time employees by industry, from [32]. The data for the agricultural

sector is supplemented by data from [42] on the number of family members

"employed" on farms as proprietors or workers, but who are not reported

in [32]. Their annual wage rate is estimated to be 1.33 times the

average for the employees reported, to allow for managerial and entre-

preneurial premiums. The values of k are obtained by dividing the

total sector wage bill (supplemented as described for agriculture) by

the total number of employees in the sector. The L vector is taken as

the number of reported employees and farm proprietors in the sectors.

    

 

Thus

'Ll‘ "10,382‘

L2 = 16,153 (thousand workers)

LLB. L28,9O3J

6 3 3 3
1 _ .13097x10 /2392x10 )2392x10 + 1.33 x 1290 x 7.285 x 10 _ 1 725

..

"' )

1 10,382 x 103

6 3
12 = 47,607x10 /l6,153x10 = 2,947

6/2 3
13 = 78,036x10 8,903x10 = 2,700

The total labor force, L, is seen to be

3
L = L + L + L = 47,448x10

l 2 3

The using the population figure

p(1947) = 143,136x103

we see that
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and we can write

    

PL 1 F ' 70 187]
1 w1 '

L2 = W2 2? = 0.291 0.388x143,136x103

L34 w3 £0.521‘

  

The nexttask is to determine the initial amounts of capital

invested by sector, i.e. the X(l947) vector. There are estimates of

the value of real net capital (structures, equipment, and inventory)

invested in manufacturing [32], which show

X2(l947) = 88.3 (billion 1947 dollars)

However, the other sectors are not explicitly covered in

standard data sources. An estimate of the total investment in agriculture

is made from data in [42], taking X1 to be the sum of value of land and

buildings on farms, value of machinery and equipment on farms, and

value of livestock owned by farmers. This yields a valuation giving

X1(l947) = 87.4 (billion.l947 dollars)

The total investment in the service sector is the most

difficult to determine. No estimate of it exists in the U.S. Government

literature cited, and none could be found elsewhere. There is also

no compatible time-series of new investment and depreciation charges

which would allow an explicit determination to be made. Thus a very

rough assumption is made that the total investment in service industries
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is approximately the same proportion of the total investment in manu-

facturing that new construction plus new equipment expenditures in

service industries is of new construction plus new equipment expenditures

in manufacturing in 1946. This ratio is obtained from Table V-3 and

V-7, pg. 190 and 193 of [32], which uses classifications not entirely

compatible with the desired sector breakdowns, another caution to apply

to the following estimate of X2:

X2(1947) = 88.3 x 0.6 = 53.0 (billion 1947 dollars)

We can now determine the depreciation coefficients by

making use of the depreciation charged to the sectors in the National

Income Accounts [32]. These are as follows:

Depreciation charged to agriculture = 40 (million 1947 dollars)

Depreciation charged to manufacturing = 2,573

Depreciation charged to services, etc. = 2,667

whence

d1 = 40/87,400 = 0.005

d2 = 2,573/88,300 = 0.029

d3 = 2,667/50,000 = 0.053

The only remaining parameters to be determined are the capital-

output coefficients, k. These are determined by dividing the value

added attributable to capital by the total invested capital, for each

sector. The value added attributable to capital is taken to be the

total value added per sector less the amounts attributable to labor

in that sector, i.e. wages and salaries. For each sector, the wages

paid to employees are determined from [32]. To the agricultural wage
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bill an amount equivalent to wages of proprietors and their families is

added, as explained previously. To the wages of the employees of

the service sector is added the remuneration received by self-employed

persons, such as professionals, which does not appear in the wage bill.

The amounts of value added attributable to capital, per

sector, are:

attributable to agriculture = 6,800 (million 1947 dollars)

attributable to manufacturing = 8,720

attributable to services, etc. = 7,500

which yields k coefficients of

k1 _ 6,800/87,400 = 0.078

k2 _ 8,720/88,300 = 0.099

k3 _ 7,500/50,000 = 0.150

The parameters determined above are all substituted into

the state equation model, III-l3, and the solution obtained for five

cycles; i.e., until 1952 figures are obtained. At each stage, the

appropriate yearly population figure is used for P. Also, in order that

all of the results can be expressed in "constant 1947 dollars", an

adjustment for dollar inflation is made to convert all values to 1947

dollars. The adjustment ratios used are the Gross National Product

Deflators series from [32].

The results are as follows:
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- l - 1

X1(l952) 97.48

X2(l952) = 107.98 (billion 1947 dollars)

X3(1952)J 73.52  

The complete series of results are plotted in Figure III-2,

which shows the changes in X over time.

In evaluating the results, the most soundly based comparison

of the model with reality is in the X2 variable, since [32] contains

exactly this variable, plotted as a time-series. The actual value

of X2 obtained from [32], is

X2(l952) = 104.1 (billion 1947 dollars)

The discrepancy here is 107.98 - 104.1 = 3.9 billion dollars,

or about 3.75 percent. The fact that the model prediction is on the

high side may be the reflection of the fact that 1947 tended to be a

somewhat singular year, with the immediate postwar industrial pressures

yielding higher than normal returns to capital, for example. However,

the fact that the error is not higher than it is, given that this was

the case, may well be a result of the further impetus to the economy

of the early 1950's given by the Korean war. The other values of X

l

and X2 cannot be compared to any convenient data, as previously stated,

but again a good estimate of X1 can be made from the Agricultural

Statistics [42]. The value of X1 for 1952 from 20 is

X1(1952) = 99.6 (billion 1947 dollars)

The X1 value was deflated to 1947 dollars by applying the

price-per-acre indices given in [42] to the farm land and buildings
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portion and the G.N.P. deflators of [30] to the remainder. The

error of the model is small in this case, being 99.6 - 97.5 = 2.1

billion low, or approximately 2 percent. This may well be due to

the underestimation of the a21 or the 02 coefficients from 1947 data.

At that early prewar stage, it is likely that farm machinery and

equipment investment was at an artificially low level, due to its short

supply so soon after the war. The 1952 total investment in farm

machinery and equipment was more than 2.5 times the 1947 total invest-

ment [42], a very rapid rise which suggests that the 02 coefficient,

in particular, may not have been constant over the period studied.

In any case, the solution results of the model confirm its

reasonable accuracy in describing the workings of the economy. Un-

doubtedly, more work in this area is needed, in particular with more

detailed models and for more recent time periods. The fact that a

situation as complex as the national economy of the United States

'can be conceived of in systems terms, the components modeled with

existing data, and that the dynamic model derived from rigorous

application of physical systems modeling procedures yields good

results when compared to actual figures, is considered to be one

of the major contributions of this thesis.



IV. CONCLUSIONS

IV-l. Regarding the Park Systems Model

There now exists a logical, consistent quantitative

framework for the analysis of spatial allocation of traffic flows,

given a facilities configuration and specified origin flows. The

requirements for component modeling make clear the sort of data which

must be gathered in order to model the attendance patterns for other

activities. Foremost, the origins of participants must be known.

Facilities of the destination areas must be carefully considered as

they pertain to the particular activity. The characteristics of the

links may be considered fixed, but the model scaling constants, will,

in general, assume new values. In all cases, the r.m.s. error criterion

provides a suitable measure for evaluating the sensitivity of the

solution to any parameter change which an analyst might wish to consider.

The existence of such a model for the Michigan state parks

system will allow a considerable amount of experimenting with possible

future configurations and parameters of the system. For instance, the

Department of Conservation might wish to estimate the demand for and

likely intensity of use of its state park camping facilities at some

future date. They could use demographically determined p0pu1ation

increases, with appropriate assumptions regarding leisure behavior,

to scale up the present day origin flow drivers, and make estimates

of the future highway link parameters based upon projected highway

improvement programs.

The solutions found under these conditions could be examined

- 60-
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for "critical" areas; i.e., those in which the projected attendances

were considerably above present capacity. They could thus select some

criterion [45] for expansion of their facilities based upon indicated

over-capacities. Presently used methods for determining expansion of

facilities usually rely upon such things as population trends alone,

and do not reflect the behavioral functioning of the system as a

collection of three quite different components, of which population

affects only one.

Future research might well apply the methods to some other

geographical region to see if the model which works so well for the

case of Michigan will also predict well in other circumstances. It

must be remembered that the bi-peninsula landform of Michigan is unique

in the United States, and this may have had some effect upon the model

accuracy and consistency. However, the singular nature of the

extensive water boundaries of Michigan can be considered to provide

a more stringent test of a model of recreational travel [44], as

opposed to a relatively homogeneous area with largely land boundaries,

such as Iowa or Indiana.

Another area for future investigation is undoubtedly the

extension of this modeling concept into other tpes of travel. The

analysis of urban journey-to—work patterns is an obvious example. The

modeling methods presented in this thesis can easily be used to solve

for the flows on the highway links, in the same way that the flows in

destination components are solved for. This would provide a one-

step solution of two of the most important classical problems in traffic
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analysis; that of distribution, the construction by a model of the

destination flow values, given the origin flows, usually done by

means of a gravity model; and that of assignment, the allocation of

specific origin-destination flows to actual road links, usually done

by a linear programing technique. In view of the many billions of

dollars which our society expends on transportation facilities and

the increasing pressures upon urban land space, this problem area

is one of the most promising for new and advanced analytical techniques.

IV-2. Regarding the National Economic Model

It is fair to say that the model presented in this thesis is

only the first very small step of many which must be taken before a

comprehensive analytical model of the United States national economy

is perfected. Certain progress is offered to the application of systems-

type models in this area by the success of the relatively crude model

discussed.

A logical extension of the immediate model framework would

be to construct a detailed model which does not aggregate the data

(in particular, the input-output matrix) so grossly. If validated on

such a scale as a 50x50 economic model, this would surely provide a great

impetus to further behavioral studies of components and to the more

frequent gathering of basic input-output data.

A further, and most necessary step, is to include the effect

of prices in the model. On the scale of aggregation of a three-sector



- 63 -

model, prices are probably meaningless in view of the great discrep-

ancies in unit output values. However, on a truly inter-industry

basis, price changes could be considered to cause substitution of

one input for another, such as motor transport for rail transport,

aluminum for steel, capital investment for labor input, etc. Since

the possibility of substitution of inputs is not allowed by the

fixed-coefficient concept of the Leontief input-output analysis,

a new behaviorally-oriented framework of analysis may have to be

developed.



APPENDIX A

VALUES OF THE ORIGIN AND LINK COMPONENTS

OF THE MICHIGAN STATE PARK SYSTEM

A-l. The Origin Components

In connection with the Michigan Outdoor Recreation Demand

Study, a set of approximately 296,000 I.B.M. data cards were prepared,

one for each camper permit issued by Michigan State parks in 1964.

These were used for many other analyses besides the origin and destination

tabulations, such as length of stay studies, boat use by campers, type

of camping equipment used, size of camping party, etc. For input to the

park systems model, a listing was prepared showing the number of camper-

days recorded for each origin considered in the study. These origin areas

are described in the listing which follows. Counties in Michigan with

less than 10,000 p0pu1ation were combined with neighboring counties to

provide a reduction in the number of components in the system (to stay

within the bounds of computer memory space) with a small sacrifice in

accuracy. Nearby out-of-state origins were grouped as indicated in

the listing.

There is a certain error introduced by the exclusion of out-

of~state origins other than those given in the listing. The measure of

this error can be judged from the fact that total camper-days recorded

for the 55 parks considered was 3,050,000, whereas the total camper-

days for the 77 origin areas considered was 2,840,000 - a difference

of less than 6.9%. The areas not represented are:
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North-eastern U.S.A.

Southern U.S.A.

Far West U.S.A.

Plains and Mountains U.S.A.

Iowa, Missouri, Kentucky, West Virginia

Canada, other than Ontario

Minnesota

Ontario

All of these origins with the exception of the latter two can

be considered as causing a constant error of under-prediction, since

their effect was nearly constant over the state. The latter two origins

tend to become appreciable proportions of attendance (over 3%) at only

a small number of parks in the Upper Peninsula, and are relatively con-

stant and small elsewhere. The effect of these attendances is not

included in the model results in Chapter II.

There was a consistent proportion of "unknown origin" cards

in the whole number of approximately 17%, caused by omission or in-

adequacy of information on the original camper permit. To allow for this

omission, it was postulated that the "unknown" campers were distributed

with respect to origin in the same way as "known" campers, and the figures

for each known origin were raised by 17% in each case.

The following is a description of the origin through driver com-

ponents, with their values (the element and node numbers correspond to the

numbering of Figure II-l):



Origin Area i

(country in Michigan,

if not otherwise.

specified)

1. Alcona and

Oscoda

2. Alger

3. Allegan

4. Alpena and

Montmorency

5. Antrim and

Otsego

6. Arenac

7. Baraga

8. Barry

9. Bay

10. Benzie and

Leelanau

ll. Berrien

12. Branch

13. Calhoun

14. Cass

15. Cheboygan

l6. Chippewa,

Luce and

Mackinac

l7. Clare

18. Clinton

19. Crawford and

Roscommon

20. Delta
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Node #

(geographical

center of pop-

ulation)

001

002

003

004

005

006

007

008

009

010

011

012

013

014

016

017

018

019

020

021

Element #

(reference

point to node

i)

.401

402

403

404

405

406

407

408

409

410

411

412

413

414

416

417

418

419

420

421

Yoi

(camper-days

in 1964 cal-

endar year)

4,121

420

17,383

4,072

2,369

911

475

8,703

33,998

2,066

21,264

5,223

39,758

5,996

1,719

3,331

3,153

11,699

2,364

4,443



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Dickinson

Eaton

Emmet and

Charlevoix

Genesee

Gladwin

Gogebic

Grand Traverse

and Kalkaska

Gratiot

Hillsdale

Houghton and

Keweenaw

Huron

Ingham

Ionia

Iosco and

Ogemaw

Iron

Isabella

Jackson

Kalamazoo

Kent

Lapeer

Lenawee

Livingston

Macomb

Manistee

lMarquette
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022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

041

044

046

047

050

051

052

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

441

444

446

447

450

451

452

1,932

18,060

2,517

157,352

4,008

795

8,108

10,966

4,947

1,901

3,382

80,934

11,513

4,599

811

9,116

39,502

53,605

241,626

12,802

14,192

10,737

150,233

2,283

6,964



46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Mason

Mecosta

Menominee

Midland

Monroe

Montcalm

Muskegon

Newaygo

Oakland

Oceana

Ontonagon

Osceola and

Lake

Ottawa

Presque Isle

Saginaw

St. Clair

St. Joseph

Sanilac

Schoolcraft

Shiawassee

Tuscola

Van Buren

Washtenaw

Wayne

Wexford and

Missaukee

Chicago Illinois and

Hammond-Gary Indiana
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053

054

055

056

058

059

061

062

063

064

066

067

070

071

073

074

075

076

077

078

079

080

081

082

083

301

453

454

455

456

458

459

461

462

463

464

466

467

470

471

473

474

475

476

477

478

479

480

481

482

483

301

3,337

2,514

2,010

36,140

26,159

8,149

41,729

6,206

249,868

2,762

768

2,971

67,123

1,669

65,363

30,485

5,996

4,896

739

21,545

9,862

5,794

44,195

512,035

3,955

41,609
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72. Rest of 301 306 149,526

Illinois

73. South Bend, 302 302 13,565

Indiana

74. Rest of Indiana 303 303 146,663

75. Toledo, Ohio 304 304 42,661

76. Rest of Ohio 305 305 228,770

77. Wisconsin 307 307 57,810

A-2. The Highway Links

The following list shows the values of estimated driving time

and estimated direct cost of gasoline plus tolls for the highway links

selected for the system study. The link numbers refer to the element

numbers on the graph of Figure II-l.

Link Number Time Direct Cost

(from Figure II-l) (estimated, in hours) (estimated, in dollars)

501 0.533 0.600

502 0.711 0.800

503 0.925 0.925

504 0.844 0.950

505 1.075 1.075

506 0.225 0.225

507 1.263 1.200

508 0.825 0.825

509 0.120 0.075

510 0.711 0.800



511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

531

532

533

534

535

536

537
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1.524

0.267

1.260

0.938

0.575

0.578

0.750

0.666

0.625

0.657

0.500

1.375

0.600

0.553

1.400

1.119

1.100

0.225

0.750

0.820

1.160

0.300

0.750

1.000

0.800

0.480

0.875

1.600

0.300

1.575

1.125

0.575

1.650

0.900

0.750

0.625

0.625

0.625

1.375

0.750

0.525

1.575

1.175

1.100

0.225

0.750

1.025

1.450

0.375

0.750

0.750

0.800

0.600

1.000



538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563
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0.889

0.200

0.700

0.067

0.120

0.400

0.417

0.300

0.356

0.250

0.167

0.600

0.571

0.450

0.533

0.889

0.100

0.560

0.428

0.778

1.750

0.500

0.800

0.143

0,700

0.450

0.750

0.250

1.050

1.200

5.150

0.300

0.625

0.375

0.400

0.250

0.250

0.900

0.500

0.450

0.600

1.000

0.075

0.700

0.375

0.875

1.750

0.500

0.900

0.125

0.700

0.450

(Mackinac

Bridge)



564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

-72-

0.300

0.450

0.250

0.933

0.200

0.920

0.167

0.933

0.200

0.200

0.277

0.375

0.369

0.143

0.300

0.060

0.800

0.800

0.250

0.711

0.440

0.900

0.500

0.200

0.367

0.533

0.300

0.450

0.250

1.050

0.175

1.150

0.125

1.050

0.300

0.300

0.450

0.375

0.600

0.125

0.375

0.050

0.900

0.900

0.250

0.800

0.550

1.125

0.625

0.200

0.550

0.800



590

591

595

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615
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0.183

0.940

0.600

0.325

0.550

0.800

0.400

0.250

0.600

0.809

0.250

0.620

0.250

0.300

0.320

0.175

0.600

0.333

0.333

0.333

0.720

0.333

0.850

0.327

0.450

0.383

0.275

1.175

0.675

0.325

0.550

0.900

0.450

0.250

0.600

0.850

0.250

0.775

0.250

0.375

0.400

0.175

0.750

0.375

0.375

0.375

0.900

0.375

1.275

0.450

0.675

0.575



616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642
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0.750

0.500

0.460

0.250

0.222

0.488

0.333

0.416

0.667

0.644

0.538

0.578

0.300

0.650

0.500

0.400

0.633

0.400

0.581

0.880

0.750

0.500

0.575

0.375

0.250

0.550

0.500

0.625

0.750

0.725

0.875

0.650

0.300

0.650

0.625

0.550

0.525

0.825

0.550

0.800

0.875

0.750

0.500

0.950

0.500

0.800

1.100



643

644

645

646

647

648

649

650

651

652

653

654

V 655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670
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0.333

0.217

0.755

0.267

0.400

1.125

0.200

0.444

0.778

0.952

0.250

1.000

1.444

0.500

0.636

0.440

0.489

0.450

0.517

0.625

0.300

0.375

0.330

0.625

0.857

0.375

0.675

0.350

0.500

0.325

0.850

0.300

0.500

1.125

0.200

0.500

0.875

1.000

0.250

1.125

1.625

0.500

0.875

0.550

0.550

0.675

0.775

0.625

0.300

0.375

0.500

0.625

0.900

0.375

0.675

0.525



671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697
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0.375

0.200

0.375

0.400

0.109

0.100

0.240

0.133

0.433

0.333

0.291

0.440

0.222

0.625

0.727

0.750

0.675

0.580

0.625

0.667

0.133

0.500

0.375

0.260

0.667

0.720

0.760

0.375

0.200

0.375

0.600

0.150

0.150

0.300

0.200

0.625

0.500

0.400

0.550

0.250

0.625

1.000

0.750

0.675

0.500

0.625

0.750

0.200

0.500

0.375

0.325

0.750

0.900

0.950



698

699

801

802

803

804

805

806

807

808

809
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0.622

0.428

3.000

0.400

0.818

3.777

1.000

1.778

1.454

1.833

4.889

0.700

0.375

3.750

0.500

1.125

4.250

1.125

2.000

3.350

2.750

5.550



APPENDIX B

RESULTS OF THE FACTOR ANALYSIS AND

ATTRACTION INDEX CONSTRUCTION FOR THE PARKS

The descriptions of the 38 variables representing facilities

and attributes of each of the 55 parks, along with their mean values

(with 55 observations of each) were as follows:

Variable Mean Score

1. Rolling terrain .5636

2. Mountainous or hilly terrain .4545

3. Evergreen vegetation .0909

4. Deciduous vegetation .4364

5. Mixed vegetation .4182

6. Barren terrain .0727

7. Virgin timber stand .0364

8. Wilderness areas .0727

9. Shade for over 50% of campsites .7636

10. Cliffs and overlooks .2545

11 Waterfalls .0909

12. Springs .1636

13. Great lakes shoreline .5455

14. Inland lake shoreline .6182

15. River frontage .4365

16. Historical site .1636

-78-



- 79

17. Contemporary interest site .0909

18. Interpretive program .4727

19. Hiking trails .4545

20. Swimming, great lakes .4545

21. Swimming, inland lakes .4545

22. Sand beach, great lakes .3818

23. Sand beach, inland lakes .4364

24. Boat launching facility .7636

25. Water skiing area .4545

26. Fishing .8000

27. Store within 1 mile .4545

28. Showers .7273

29. Flush toilets .8364

30. Laundry facilities .7091

31. Electricity service .8545

32. Pier .0727

33. Boat rental within 1 mile .2727

34. Horse rental within 1 mile .0364

35. Bathhouse .5273

36. Lifeguard .5091

37. Sports playground area .6909

38. Sand dunes .0909

The eigenvalues of the matrix of intercorrelations observed

between these 38 variables in the 55 cases were as follows (listed in

order of size):
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7.5276, 5.0503, 3.8350, 2.4281,

2.3485, 1.9994, 1.8394, 1.3594,

1.2372, 1.1232, 1.0836, 0.9453,

0.8689, 0.8479, 0.6842, 0.6676,

0.5462, 0.4774, 0.4216, 0.3484,

0.3213, 0.3179, 0.2957, 0.2253,

0.2136, 0.1932, 0.1509, 0.1459,

0.1127, 0.0979, 0.0755, 0.0666,

0.0483, 0.0320 0.0279, 0.0205,

0.0085, 0.0069

The factor analysis solution containing three varimax

rotated factors was accepted for computation of the park attraction

indices, Ak' The rotated factor loadings are given below for the 38

variables. The proportions of variance of the observed correlation

matrix, R, were for factor 1, .1768; for factor 2, .1319; for factor 3,

.1232; making a total of .4319, which is considered to be reasonably

high for studies of this type with such diversified data observations*.

The underlined values were the loadings used in the computation of the

   

indices:

Variable Factor 1 Loading Factor 2 Loading Factor 3 Loading

1. Rolling terrain -.2662 .3540 -.1566

2. Mountainous terrain -.1819 .3728 -.l497

3. Evergreens .1738 .1156 .2147

4. Deciduous -.2960 -.l688 -.3831

5. Mixed vegetation .0767 .2841 .4108

6. Barren .2942 -.3591 .1582

 

*Private discussion of the author with Mr. Thomas Danbury,

Department of Communications, Michigan State University, Dec. 4, 1964



10.

ll.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Virgin timber

Wilderness

Shaded camps

Cliffs, overlooks

Waterfalls

Springs

Great lakes shoreline

Inland lake shoreline

River frontage

Historical site

Contemporary interest

Interpretive program

Hiking trails

Swimming, great lake

. Swimming, inland lake

Beach, great lake

BeaCh, inland lake

Boat launching

Water skiing

Fishing

Store

Showers

Flush toilets

Laundry

Electricity

Pier

.1228

.2538

.1354

.0688

.1031

.2947

.0253

.1258

.1852

.1203

.1522

.0669

.0454

.1186

.0843

.2416

-.0345

-.1362

-.0340

.4728

.1380

.1987

.0150

-.2354

-.0976

-.2272

-.0901

-2741

.0744

.1602

.1818

-.0184

.3183

.1601

.1517

.0711

.1644

.0378

.0592

.1077

.2146

.2572

.1762

.3259

.1934

.1293



33. Boat rental -.§21§ .0310 .2510

34. Horse rental -.l933 .0870 -.3371

35. Bath house -.3938 -.3351 .3021

36. Lifeguard -2§§62 -.3148 .2712

37. Sports grounds -.l365 -.2709 .2295

38. Sand dunes .0237 .2145 .2091

The four-factor solution was not as satisfactory. The

fourth factor was loaded highly only by the variables for mixed

vegetation, sand dunes, and rolling terrain; a set which amounts to

perhaps a "mild scenery" factor. However, the increase in total

variance of R represented by the four factors was only .0639 over

the three-factor solution. Thus, the fourth factor contributes

barely half as much to the "explanation" of the variances as did the

third.

The following are the normalized factor scores of the parks,

computed from relations II-4a, II-4b, II-4c, and II-4d. The attraction

indices computed using relation II-3b are also given. In each column

a value of unity represents an "average" park, in the sense that unity

is the score computed using the mean values of the variables for the

  

55 parks.

Park Ql/Ql Q2/Q2 Q3,63 f:_

l. Baraga .796 .483 1.206 0.48

2. Brimley .796 .643 1.206 1.03

3. Fayette .796 1.535 0.0 0.14

4. Fort Wilkins .828 2.537 1.272 0.56



10.

ll.

12.

l3.

14.

15.

l6.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Gogebic Lake

Indian Lake

McLain

Muskallonge Lake

Porcupine Mountains

Straits

Tahquamenon Falls

Van Riper

Wells

Aloha

Bay City

Burt Lake

D.H. Day

East Tawas

Harrisville

Hartwick Pines

Higgins Lake

Hoefft

Interlochen

Ludington

Mears

Mitchell

Muskegon

Onaway

Orchard Beach

Otsego Lake
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1.250

1.106

.668

1.104

.817

.608

..940

1.398

.796

1.254

1.005

1.398

.668

1.088

.647

.359

1.398

.796

1.398

2.045

.944

1.254

1.348

.853

.647

1.348

.834

1.658

0.0

.662

3.362

1.041

2.569

1.642

1.658

.285

1.007

.965

.197

0.0

.475

2.460

.285

1.304

.475

2.380

0.0

.285

2.441

1.012

..190

.285

1.206

1.396

.719

0.0

.530

1.272

1.272

.843

1.396

1.083

1.396

1.396

0.0

1.206

1.083

1.272

1.396

1.206

1.396

1.272

1.396

1.206

1.396

1.206

1.083

1.396

1.16

1.18

0.30

0.54

0.82

0.74

1.65

1.54

0.95

1.75

1.90

1.70

0.25

0.97

0.96

0.25

3.91

0.67

3.35

3.04

0.47

1.08

1.82

0.50

0.72

1.26



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Silver Lake

Traverse City

Wilderness

Wilson

Young

Benzie

Gladwin

White Cloud

Algonac

Brighton

Grand Haven

Hayes

Highland

Holland

Holly

Island Lake

Lakeport

Metamora

Pinckney

Port Crescent

Proud Lake

Sleeper

Warren Dunes

Waterloo

Yankee Springs

1.631

1.032

.796

1.018

1.162

.382

.149

.149

.382

1.348

.944

1.348

1.106

1.015

1.254

1.348

.795

.869

1.348

.647

1.106

1.149

1.005

1.254

1.348

84-

.285

.285

2.392

0.0

.475

.936

.293

.490

.936

1.495

.190

1.041

1.399

0.0

1.495

1.519

.285

.475

1.692

.578

1.692

.727

.858

1.692

1.012

1.083

1.083

1.083

1.396

1.396

0.0

1.083

1.083

.530

.313

1.396

1.396

.109

1.396

.124

.124

1.272

1.083

.763

1.083

0.0

1.396

1.396

.530

.932

1.37

1.67

1.35

0.81

0.79

0.24

0.17

0.13

0.63

1.24

1.27

1.47

0.18

2.03

0.99

0.55

1.21

0.70

2.01

0.78

0.57

1.87

0.85

1.72

1.60



APPENDIX C

PROGRAM PRKSYS

The computer program given at the end of this appendix was

used to construct the branch equation matrix for the system of parks

and then to solve for the park through variables. In addition to

the program, the following data cards were used:

k1 card, constants k k R3, 4
1’ 2’

55 cards, park attraction indices

208 cards, time and cost values for highway links

145 cards, a list of passive elements in each fundamental cutset,

with signs; first entry number of elements in cutset

for control of DO loops.

145 cards, a list of origin camper-day entries in Y vector

55 cards, a list of 1964 park attendances in camper-days

The routine to construct the G matrix was prepared with the

assistance of Mr. C. Hart. At first, a simple Gauss-Seidel method [43]

was used to solve for G"1 Y. This was found to introduce considerable

numerical error in the last 35 parks, and a more accurate matrix

inversion routine SUBROUTINE MATINV, was adopted from the Computer

Center Library. This routine was more accurate since it searched in

each case for the maximum diagonal entry as pivot element, and trans-

posed rows and columns accordingly.

Two measures of numerical accuracy were used, both rule-

- 35 -
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of-thumb, since it was not feasible to compute GG-1 and compare it

to the unit matrix of order 145 due to the size of the matrices

involved. The first check was the size of the determinant of G.

This was typically in the order of 1060 for the constants chosen, a

large value which precludes the likelihood of calling for a division

by a small number. The second check was the application of the cut-

set postulate at the reference point of the graph. Here, all origins

"leave" and all parks "enter", and thus the attendances predicted

should equal the total of the origins entered. The total origins

entered was 2,863,227. The total attendance predicted varied between

2,806,000 and 2,820,000 approximately, giving a possible error of

from 1.5 to 2.0 percent. While it is not possible to state cons

clusively that the numerical error of any particular entry of the

inverse or in any particular attendance computation is this low, it

seems reasonable to expect any such error to be within, say, 3 to

4 percent.

The arrays and routines called in the program could not be

accommodated in the 32,768 word memory of the CDC 3600 computer in the

presence of either the SCOPE control unit programs or the normalfull

FORTRAN compiler. Thus, at the suggestion of Mr. P. Bintner of the Com-

puter Center Staff, the FORTRAN compilation was called by program cards

(*0 job card) to be done to tape and then from tape to core storage.

This enabled the use of more of the memory for the PRKSYS arrays and

routines than is normally available with an * job card, which compiles

FORTBIN to core. Average running time on the CDC 3600 computer was

five minutes and forty-eight seconds.
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*C550098 ELLIS

FORTBIN,C,L,4,P,P,P.

PROGRAM PRKSYS

DIMENSION G (145,146),KUTSET(145,l6),E(263),CONS(4),ATT(55),DIF(55)

1,PCT(55)

COMMON G,KUTSET

1000 FORMAT (11X,F4.l,2X,F3.2)

1001 FORMAT(15x,2F4.3)

1003 FORMAT(11x,1614)

1004 F0RMAT(15x,F8.0)

2000 FORMAT(6H PARK,12,14H ATTRACTION = ,F7.4,14H ATTENDANCE = ,F10.O,

110H ERROR IS ,F10.0,11H PCT OUT = ,F5.O/)

1005 F0RMAT(15x,4F5.O)

READ 1005, (CONS(I) ,I=1,4)

PRINT 3000,(CONS(I),I=1,4)

3000 F0RMAT(15H CONSTANTS ARE ,4F7.3///)

9001 FORMAT(15H1ERROR 0N CARD ,I3,27H OF CUTSET. ELEMENT INDEX =,12,

1 9H IS ZERO.///)

9002 FORMAT(16H1ERROR ON CARDS ,I3,5H AND ,I3,31H OF CUTSET. SIGNS DO N

lOT AGREE.///)

C READ MATRIX E FROM CARDS

Do 10 I = 1,55

READ 1000,ATTR,CSR

10 E(I)=CONS(1)*ATTR*CSR

PRINT 3001,(I,E(I),I=1,55)

3001 FORMAT (20H ATTRACTION OF PARK ,I2,4H IS ,F7.4/)

Do 11 I = 56,263

READ 1001, T, C

11 E(I) = CONS(2)/((T+CONS(3)*C)**CONS(4))

PRINT 4000,(I,E(I),I=56,263)

4000 FORMAT(6H LINK ,I3,10H VALUE IS ,F7.4/)

c READ IN CUTSETS

READ 1003,((KUTSET(I,J),J=1,16),I=1,145)

c BUILD DIAGONAL ELEMENT OF MATRIX G FROM ARRAY E

Do 40 I = 1,145

Do 20 J = 1,145

20 G(I,J) = O.

NI: KUTSET(I,1)+1

D0 23 J = 2, N1

M = KUTSET(I,J)

IF(M)21,991,22

21 G(I,I) = G(I,I)+E(-M)

GO TO 23

22 G(I,I) = G(I,I) + E(M)

23 CONTINUE

C BUILT OFF-DIAGDNAL ELEMENTS OF MATRIX - UPPER TRIANGLE ONLY

JJ = I+1

D0 40 J = JJ, 145

N2 = KUTSET(J,1)+1

sz = 0

DO 40 K = 2, N1

D0 40 L = 2, N2

IF(KUTSET(I,K)-KUTSET(J,L))30,32,30



30

32

33

34

35

36

37

38

39

40

41

2001

70

6000

60

5000

7000

2002

991

992

999
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IF(KUTSET(I,K)+KUTSET(J,L))40,32,40

KPRODl = KUTSET(I,K)*KUTSET(J,L)

IF(KSW)33,34,33

IF(KPROD1*KPROD)992,992,35

sz = 1

KPRODzKPRODl

M = KUTSET(I,K)

IF(M)36,37,37

M = -M

IF(KPROD)38,39,39

G(I,J) = G(I,J) - E(M)

GO TO 40

G(I,J) = G(I,J)+E(M)

CONTINUE

FILL IN LOWER TRIANGLE OF MATRIX G

DO 41 I = 1, 145

N1: I+1

DO 41 J = N1,145

G(J,I) = G(I,J)

PRINT 2001,((G(I,J),J=1,5),I=1,5)

FORMAT (5(5E17.10/))

READ 1004, (G(I,146),I=l,145)

CALL MATINV (G,145,G(1,146),1,DETERM)

PRINT 2001,((G(I,J),J=1,5),I=1,5)

PREMULTIPLY BY MATRIX D

SUM = 0.

DISC = 0.

PCTO = 0.

D0 70 I=1,55

DIF(I)=0.

D0 60 I = 1,55

READ 6000, ATT(I)

FORMAT(15X,F8.0)

G(I,146)=G(I,146)*E(I)

SUM = SUM+G(I,146)

DIF(I)=G(I,146)-ATT(I)

PCT(I) = 100.*DIF(I)/ATT(I)

DISC = DISC + DIF(I)

PCTO = PCTO + PCT(I)

PRINT 2000, I , E(I), G(I,146), DIF(I) ,PCT(I)

PRINT 5000, SUM , DISC

FORMAT(7H SUM = ,2(E20.10)///)

PRINT 7000, PCTO

FORMAT(8H PCTO = ,F8.0//)

PRINT 2002,DETERM

FORMAT (12HODETERMINANT,,E20.10)

GO TO 999

ERROR ROUTINES

PRINT 9001, I, J

T0 T0 999

PRINT 9002, I, J

CONTINUE

END
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SUBROUTINE MATINV(A,N,B,M,DETERM)

DIMENSION A(145,145),B(145,1),IPIVOT(145),INDEX(145,2),PIV0T(145)

INITIALIZATION

10 DETERM=1.0

15 DO 20 J=1,N

20 IPIVOT(J)=0

30 D0 550 I=1,N

SEARCH FOR PIVOT ELEMENT

4O AMAX=0.0

45 DO 105 J=1,N

50 IF (IPIVOT(J)-l) 60, 105, 60

60 D0 100 K=1,N

70 IF (IPIVOT(K)-l) 80, 100, 740

80 IF (ABSF(AMAX)-ABSF(A(J,K))) 85, 100, 100

85 IROW=J

90 ICOLUM=K

95 AMAX=A(J,K)

100 CONTINUE

105 CONTINUE

110 IPIVOT(ICOLUM)=IPIVOT(ICOLUM)+1

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

130 IF (IROW-ICOLUM) 140, 260, 140

140 DETERM=-DETERM

150 Do 200 L=1,N

160 SWAP=A(IROW,L)

170 A(IR0w,L)=A(IGOLUM,L)

200 A(ICOLUM,L)=SWAP

205 IF(M) 260, 260, 210

210 D0 250 L=1, M

220 SWAP=B(IROW,L)

230 B(IROW,L)=B(ICOLUM,L)

250 B(ICOLUM,L)=SWAP

260 INDEX(I,1)=IROW

270 INDEX(I,2)=ICOLUM

310 PIVOT(I)=A(ICOLUM,ICOLUM)

320 DETERM=DETERM*PIVOT(I)

DIVIDE PIVOT ROW BY PIVOT ELEMENT

330 A(ICOLUM,ICOLUM)=1.0

340 D0 350 L=1,N

350 A(ICOLUM,L)=A(ICOLUM,L)/PIVOT(I)

355 IF(M) 380, 380, 360

360 D0 370 L=1,M

370 B(IGOLUM,L)=8(ICOLUM,L)/PIVOT(I)

REDUCE NON-PIVOT ROWS

380 D0 550 L1=1,N

390 IF(LI-ICOLUM) 400, 550, 400

400 T=A(L1,ICOLUM)

420 A(L1,ICOLUM)=0.0

430 Do 450 L=1,N

450 A(Ll,L)=A(L1,L)-A(ICOLUM,L)*T

455 IF(M) 550, 550, 460

460‘DO 500 L=1,M

500iB(Ll,L)=B(L1,L)-B(ICOLUM,L)*T



550

600

610

620

630

640

650

660

670

700

705

710

740

750

CONTINUE

INTERCHANGE COLUMNS

D0 710 I=1,N

L=N+l-I

IF (INDEX(L,l)-INDEX(L,2)) 630, 710, 630

JROW=INDEX(L,1)

JCOLUM=INDEX(L,2)

DO 705 K=1,N

SWAP=A(K,JROW)

A(K,JROW)=A(K,JCOLUM)

A(K,JCOLUM)=SWAP

CONTINUE

CONTINUE

RETURN

END

END

(BLANK)

CALL,4.

RUN.
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