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ABSTRACT

AN APPLICATION OF SYSTEM THEORY TO THE

OPTIMAL CONTROL OF VEHICULAR TRAFFIC NETWORKS

by Jeffrey L. Goodnuff

Vehicular traffic demands are increasing so rapidly that

merely increasing the physical size of freeway and street systems

is not, in itself, a solution. Present and future traffic networks

must be operated at or near their highest efficiency levels. This

can only be accomplished through control.

Rec0gnizing the inevitable need for control, this thesis

investigates the problem of applying physical system theory to

the analysis and control of vehicular traffic systems.

Two complementary variable functions of time, traffic

density, x(t), and traffic flow rate, y(t), are defined and used to

characterize the dynamics of several traffic system components in

the form of mathematical state models. These state models are

combined, using the logically consistent procedures of system

theory, into state models of traffic systems. As an example of

the application of these state models to control, the special case of

vehicular traffic control in a high density mode is considered. A

state model of such a system is developed and a near time optimal

control strategy is derived for a surface street grid of arbitrary size.
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INTR ODUCTION

Present day vehicular traffic demands are increasing so

rapidly that merely increasing the size of physical street and free-

way systems is not, in itself, sufficient. If new and existing traffic

networks are to operate at their highest efficiency they must be con-

trolled in the same technical sense that the operations of aircraft,

powerplants, and other physical systems are controlled. It is

this inevitable need for control which motivates the research des—

cribed in this dissertation.

Before any system can be controlled its dynamics must be

characterized by a mathematically tractable state model. Such a

model must do more than extrapolate the future from the past. It

must go beyond simulation. It must reflect both the mathematical

characteristics of each subsystem, or component part, and the

interconnection pattern of these subassemblies.

Many of the basic concepts used to characterize physical

phenomena can be applied to develop models of the dynamics of

vehicular traffic networks. However, quantitative aspects of

systems, such as these, in which man is involved are not easily



represented. There are a number of reasons for this difficulty.

0 Systems involving man as a component part are not as

predictable as non-human systems. Certainly no general

model characterizing the dynamics of man as a system

component exist.

0 Systems with men as integral parts are, in general,

not easily subjected to experiment. For moral, legal,

and political reasons it is sometimes very difficult to

perform experiments on these man-machine systems.

0 There are no universally agreed upon methods of

quantitatively representing non-physical phenomena.

For this reason communication between investigators

in similar but distinct fields is often difficult and some...

times impossible. Investigators attempting to model

non- physical systems are. in a sense, in the same position

as the early physical scientistsutheir first task is to

define a set of standard measurements which will char-

acterize the phenomena of interest.

Even in the face of these difficulties considerable progress,

at least in the form of qualitative or semiquantitative descriptions

and hypothetical models, has been made [GR 1, GR 2, HE 1].

This thesis does not claim to have found an easy answer to

the problems of quantitatively describing and controlling non-physical
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systems. It does, however, offer a logically consistent formulation

procedure which, when properly applied to certain types of vehicular

traffic systems, results in state models useful in describing, simu-

lating, and controlling these systems.
 

In order that this thesis may serve as a basis for control, it

examines the vehicular traffic phenomena and defines two quantitative

measurements, traffic density and traffic flow rate, which are used

to characterize vehicular traffic systems. These complementary

measurements are used to model some of the basic components of

traffic systems. The resulting component models are combined,

using the logically consistent procedures of system theory, into a

state model of the system.

As an example of the application of mathematical models of

this form to the control of traffic systems, the special case of

optimal control of vehicular traffic in a high density mode is con-

sidered in Chapter III. A state model of such a system is developed

and a control scheme which results in a minimum number of control

intervals is derived.



II

A CHARACTERIZATION OF VEHICULAR TRAFFIC

A complete analysis of any metropolitan traffic system in-

volves at least three major aspects.

First, there must be an identification or analysis of traffic

flow demands, as a function of time, between identified geographic

regions as generated by the business, industrial, and other socio-

logical activity of the populace. These flow demands depend on

such parameters as the general economic level of a region, the

distribution or mix of business and personal property in the region,

and many other socio-economic factors. Furthermore, the flow

demands are not independent of the traffic system, but are, at

least in part, generated by it. This problem of flow demand identi-

fication and prediction is generally classified under the heading of

origin-destination studies, and receives considerable attention in

the literature [CA 1].

The second major aspect of metropolitan traffic analysis is

that of determining the distribution of known inter-regional flow

demands over alternate paths and modes of transportation. This



so called "mode split" problem is not only concerned with predicting

the distribution of flow demand over the various transportation modes,

but also with predicting the distribution of vehicular flow demand over

alternate routes.

The third aspect of vehicular traffic analysis is that of deter-.

mining the dynamics of flow streams (i.e. , the stream flow rates,

densities, and delays) from the known inter-regional demands.

While all three aspects of the problem are inter related, the

complexity of the problem and the present state of the art in traffic

network analysis almost precludes the inclusion of this interdependence

in a mathematical analysis or simulation of traffic systems. This

chapter, therefore somewhat arbitrarily, assumes that the traffic

flow rates over identified inter-regional paths of a traffic network

are known as a function of time. It considers the problem of

developing a state model characterizing the flow dynamics as an

explicit function of these flows, the network structure, and inter-

section controls.

The following postulates must be satisfied before the methods

of physical systems analysis may be applied [KO 1]. Therefore

vehicular traffic systems must also satisfy these postulates.

(l) The system must be an interconnection of identifiable sub-

systems, or components. If this identification is not physi-

cally possible, it must be at least conceptually possible.



(Z)

(3)

(4)

(5)

(6)

2.

These subsystems, or components, must be discrete in the

sense that they must have a finite number of interfaces with

other components (called terminals), and measurements taken

at these terminals must completely characterize the component.

All components must be such that they may be characterized

by a pair of complementary variables, x satisfying postulate

(5), and y satisfying postulate (6) following.

All components with N terminals must be such that they may

be characterized with N-l measurements made at the N terminals.

The variable x must be such that the algebraic sum of all x

measurements around a circuit vanish.

The variable y must be such that the algebraic sum of all y

measurements corresponding to a cutset vanish.

Fundamental Variables and Parameters

It is convenient to define a pair of complementary variable

functions of time, x(t) representing traffic density and y(t) repre-

senting the flow rate of the traffic system, which can be used to

characterize the traffic phenomena. The units of these variables

are chosen as:

x - total vehicle length/total lane length,

y - number of vehicles/minute.



-7-

In order to operationally define these variables, consider the

output of a standard loop or overhead sonic type detector, (Mt), shown

in Figure 2.1.

<1>(t)

   

          
  

2.1 Typical traffic detector output

Let (Ht) 2 1 when a vehicle is on the detector and <1)(t) : 0 otherwise.

Define the integer valued functional J(¢(t), t t2) as
l,

J(<l>(t), t1, t2) = total number of O to 1 changes of

 

 

<1>(t) for t1_<_ t 5 t2

The flow rate, y, is obtained as

y _ we), t1, t2)

' - 2.1(t2 t1) ( >

while the traffic density, x, is

1 t2
x = S ¢(t)dt (2.2)

t -t

2 l t



From (2. 2) it is evident that x is the ratio of two lengths of time and

assumes values between zero and one.

The above definition of traffic density is essentially the same

as lane occupancy. If the traffic mix (i.e. , average vehicle length)

is known, other characteristics such as average stream speed may

be computed from these flow and density measurements.

Consider now a uniform section of street as shown in

Figure 2. 2., and let Ya and yb represent the flow rates at the points

A and B respectively. Furthermore, let :1:l represent the average

i
>

 

—
—
-
_
b
—
—
1
_
_

2.2 Uniform section of street

density in that street. In the special case when all densities and

= constant, and x = constant)

1

flow rates are constant (1. e., ya = yb

it is well established that a plot of flow rate vs density is of the

form shown in Figure 2. 3 [GR 1] . It must be emphasized that the

Yb

X
1"— ‘ ‘ ' 1 l ' T'— 1
  

2. 3 Steady state. flow density plot
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relation ~shown in Figure 2. 3 is valid Billy under steady-state condi-

tions.

Actual measurements of density-flow rate relationships have,

in the past, been taken with very little attention given to the steady

state requirement. Such measurements typically result in a cluster-

ing of points similar to that shown in Figure 2.4 [JL 1].

Y

 
2.4 Experimental data from the John C. Lodge freeway

In order to characterize the dynamics of a traffic stream it is

clearly necessary to obtain density-flow rate relationships under

known dynamic conditions. Until this is done there can be very

little correlation between the theoretical analysis of traffic systems

and their actual behavior.

For the purpose of applying system theory to traffic analysis,

assume that the flow density relationships fpr the short section of

street' of Figure 2. 2 may be approximated by the terminal equations

and graph (2.. 3). It is important to note that the density, x2(t), is
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a 2 b _

Yzit) — f(x1.xz)

1 dxlit) (2.3)

yl(t) = CIT

8

a differential density and not an absolute density. The densities x1(t)

and xz(t) are defined as

x2(t) xa(t) - xb(t)

x1e) xam , (2.4)

where xa(t) and xb(t) are the absolute densities at points a and b.

The exact form of the function f(x ,xz) can not be determined

1

until traffic stream data taken under known dynamic conditions is

available. Even though this information must be known before there

can be any correlation between the theoretical analysis of traffic

systems and their actual behavior, the exact form of f(x1, x2) need

not be known to demonstrate the application of system theory to

vehicular traffic systems. To this end the next section identifies

the model of one of the basic subassemblies. in vehicular traffic

systems.

2. 2 A Single Origin-Destination

Consider an origin and destination connected by a single

expressway link with no intersections. Assuming the input flow rate,

yo(t), is known, and considering the expressway as a cascaded sys-

tem of two uniform sections, the system graph is as shown in

Figure 2. 5.
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2. 5 System graph for two cascaded sections

The terminal equations corresponding to the system graph are

yo(t) - known

dxlit)

yi(t) : ciT i = 1,3 (2.5)

. t ,= f.(x, ,x.) ' = 2,4YJ( ) J J_1 J J

x5(t) - known

The vertices a and b correspond to the ends of the expressway

while the vertex c represents the center. If the expressway is

uniform throughout its length, the two sections are identical. In

addition to yo, the terminal density, x , must be specified.

5

From the component equations (2. 5) and the circuit and cut-

set equations of the system graph, the system model is easily

derived as [KO 1, WI 1]

x(t) NC 0 ’ y(t)-f(x,x-x)

£1: 1 z 1 o 213 1 (2.6)

x3(t) O ' l/c3 f2(x1,x3-x1) - f4(x3,x5-x3)
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In the event the expressway is uniform and f2 and f4 are given as

gum) = f4(!3.7) = (1 - k7) 3(3) (2. 7)

where the function g is similar in form to Figure 2. 3, the state

model (2. 6) becomes

.53. x1(t) _ Hal 0 yo(t) [1 - k(x3~x1)] g(x1)

d . _ ..

t x3<t) o 1/c3 [1 - k(x3-x1)] g(x1) - [1 - k(x5-x3)g(x3)]

(Z- 8)

Suppose x1(t) = x3(t) = 0. These steady state conditions imply

y0(t) = g(x1) - kg(xl)(x3-xl) = g(.x3) - kg(x3)(x5-x3) (2.9)

One solution to (2. 9), provided the boundary condition yo = g(x5) is

satisfied, is x1(t) = x3(t) = x5(t). This particular steady state

solution corresponds to the situation where the flow rate throughout

the entire expressway is constant.

2. 3 Multiple Destinations

The single origin, dual destination system shown in Figure

2. 6 is composed of four components; three uniform expressway

 

  

 
2. 6 Single origin, dual destination system
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links (characterized in section 2. 2) and an exitlramp. The system graph

for such a configuration is shown in Figure 2. 7. Furthermore, it is

assumed that the turn ratio for the exit is known (1. e. , the ratio

k78 = y7/ y8 18 known).

 

 

 
2. 7 Single origin, dual destination system graph

Let the exit ramp be modeled as a ”perfect coupler" with character-.

istics of the form

= (2.10)

Edges 1 through 6 are used to characterize the three uniform express-

way links and have equations of the form

 

dxi(t)

y.(t) = c. 1 = 1,3,5
1 1 dt

(2.11)

.t : f.x. 3X.) .2294:6YJ() J( J_1 1
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The input flow rate, yo, and output densities, x9 and x10, are

assumed known.

For a general application the system must be modeled as a

four-terminal component. Such a model is easily developed from

the component equations, (2.10) and (2.11), and the circuit and cut-

set equations of the system graph (Figure 2. 7). The result is:

x1(t).1 rnl/c1[yo - f2(x1,xl-x5-'y(x3-x5))]

d

d? x3(t) = 1/c3[ yf2(xl,x1-x5-y(x3-x5)) - f4(x3.X3-Xlo)] (2. 12a)

x5(t)_j l/c5[ (l-y)fz(x1,xl-xs-y(x3-x5)) - f6(x5,x5-x9)]

    
where y = l/(l + k 8) and the terminal variables (identified in the7

system graph of Figure _2. 7) are

 

Rom-1 _ .. x1(t) ..

Y9(t) = - f6(x5.x5-x9) (2. 12b)

3’10“) ' f4:"‘3”‘3""10)_J   

2.4 The Eight-Way Intersection

When each of the four streets at an intersection carry traffic

in opposite directions, the dynamics of all eight streams are

"coupled" through interference patterns. Even in the case of a

light controlled grade intersection, the oncoming stream interferes

with the left turning stream. If the intersection is in the form of a

clover leaf with grade separation then, of course, there are no inter-

stream interferences and the intersection can be modeled as a

combination of four double exit ramps of the form shown in Figure 2. 8.
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This double exit ramp is a simple generalization of the single exit

 
 

  

  
2. 8 Double exit ramp

ramp of section 2. 3. It is modeled in the "perfect coupler” form

 

 

     

(" "' " T 7'

yl 0 0 k1 KIT

: O 2.13yZ 0 k2 x2 ( )

x3 -k1 ~k2 0 y3

L. .4 — _ 1.... .1 
where constants kl and k2 represent the ratios of left turns to through

traffic, and right turns to through traffic respectively. These equa-

tions characterize the intersection in terms .of the traffic composition.

The Cloverleaf model is formulated by simply joining four of these

double exits.

Although complicated because of the number of equations,

the procedure for formulating a model of the intersection from the

component models and the constraint equations of the system graph

is straight—forward and yields a set of terminal equations for a

Cloverleaf of the form:



      

.. 7 a I _ _ s

l l

Y1 | x

l I

vi 0 I At x2

I l

B I x3

* I

' x' (2.14a)

M H___________I_ _______ _ 4

I

x1 I W

I

x2 A I 0 H

I

x3 I Y3

I

x4 J I Y4

where

F l ‘

O 0 -k -1 -k

1+k1+k2 O O 2 1

o 1 o o k 0 -k -1
1+k3 +k4 3 4

A :

1
-1 -k 0 -k

0 0 1+k5+k6 0 5 6

l

.. - o

0 0 0 l+k7+k8 k8 1 k7

_ _L J    

any»

The eight constants ki' i = 1, 2, . . . , 8 are the traffic composition

constants which must be known in order to characterize the inter-

section. It should be noted that the terminal equations retain the

skew symmetric form characteristic of "perfect coupler" type com-

ponentsr '

At this point it is useful to consider the problem of traffic

stream interference in more detail, in particular, concerning the
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interference to left turn traffic generated by the oncoming traffic

stream.

Even if traffic flow rates are known in advance, the particular

distribution'of vehicles (hence the Opportunity to cross a traffic stream)

is a random phenomenon. It is therefore necessary to employ statistics

to compute the interference characteristics of a traffic stream.

Consider the case where the traffic stream is a single lane

and the gaps between vehicles is a random variable, g. Let the

probability density function (p. d. f.) for g be denoted by fg(g). It

is known that there exists a gap acceptance probability associated

with each car-driver gap combination [HE 1]. Let this probability

be denoted by o.(t), where

o.(t) o t _<_ T

-Mt-T)

e

(2.15)

1-

The conditional probability, o(t), may be interpreted as the pro-

bability of turning left through the oncoming stream between t and

t + dt seconds (i. e. , a(t) = P(left turn [ t S g S t + dt).

Knowing the p.d.f. for the random variable g implies

, P(turning 1eft|t_<_ g _<_ t + dt) P(t_<_ g 5 t + dt)

all t

P(turning left)

00

S o.(t) fg(t) dt (2.16)

-(I)

1
|
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For the case of Poisson traffic

-O’t

 

= > 0fg(t) 0 e t (2. 17)

= 0 t _<_ O

and (2.16) becomes

00

P(turning left) = 5 0(1 - e‘Mt‘T))e'°tdt

-oo

~UT
k e

: —— 2. 18

)\ + 0' ( )

-l

where 0‘ is the average gap length between vehicles.

In a similar manner it is easily shown that the probability

of completing a left turn across N lanes of traffic is given by

N

)\ exp{- 2) Giff}

P(turning left) = NH (2.19)

x + E 0
. i
121

The four grade corner intersection differs from the clover-

leaf described above in that the left-turn traffic experiences

"interference" passing through the on-coming traffic in the adjacent

lane. The total out of the left turn exit of an intersection is, there-

fore, decreased by an amount that depends on the flow-rate in the

adjacent on-coming traffic stream. When the model of the grade

separation intersection given in (2.14) is altered to include this

interference function, the model takes the form



        

I

Y' y f (Y :Y )

Z = EA? 2 - z 1 3 (2.20a)

l

y3 y3 f3(Y2’Y4)

l

Y4 Y4 f4(y3,y1)

_ _l —- _I L. _ ._ .—

and

r- -1 r- ! y-' '1 “'h "l

x1 x1 1(Y3’x4)

x X' h (Y ,X')

2 z ‘A' Z + 3 4 1 (2.20b)

l l

I l

        
The functions f1 and hi are defined as

f1 : b1,1+1(1 ' 71+3) y1+1

and (2. 21)

1 = 1,2,3,4rh. = a. li(1-7'. )x

1 1- , 1+2 1+3

where bij and aij represent the entries of -At and A, respectively,

and all subscripts are modulo 4. The factor Tj is a function of the

flow yj, is called the "highway transparency'' and is a monotonic

decreasing function of yj having the following properties

0 = 1(1) Tj( )

(2) O E 'rj(yj) _<_1 for all yj (2. 22)

It is to be noted that when the cross-traffic flow is zero

(i.e. , 'r = l) or when there is no left-turn flow, (2. 20) reduces to

the interference-free case of the Cloverleaf given in (2.14). This
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is to be expected since there can be no "interference" in the case

when there is no cross traffic or in the case where there is no

traffic with which to interfere. The transparency function, 7', may

be taken as

 

'T = 1 - P(turning left) (2. 33)

or, from (2.19)

N N

M1 +exp[-— Z O'iT]) + 2 0’1

i=1 i=1
7' _ N - I (2.34

x + Z a.
. 1

1:1

This chapter does not claim that the component and state

models introduced above are in a complete or final form. As

pointed out in section 2. 1, considerable experimental research

must be completed before a high degree of correlation between

theoretical and actual results can be obtained. This chapter does,

however, point the direction for such research and illustrates the

potentials of a system theoretic approach.

Using the fundamental variables and methods defined in

this chapter, the particular problem of control of vehicular traffic

in a high density mode is discussed in Chapter III.



III

OPTIMAL CONTROL IN HIGH DENSITY MODES

It is the objective of this chapter to characterize the vehi-

cular traffic phenomenon with a mathematically tractable model to

which some of the procedures of optimal control theory may be applied.

Consider the general character of vehicular traffic as characterized

by traffic density, x(t), and traffic flow rate, y(t). When one plots

traffic flow, y(t), vs traffic density, x(t), curves of the general

form shown in Figure 3.1 result [GR 1].

y(t)

sat ———————————

 x(t) 

sat 
3.1 Flow-density characteristics

-21-
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It should be noted that the curve plotted in Figure 3.1 is a plot of

flow rate and absolute density, not differential density as previously

defined. Curves of this form are obtained under free flow steady-

state conditions, i. e., the time derivative of density is zero, and

there is no interruption of the traffic stream. Again referring to

Figure 3.1 observe that as the absolute density increases, the

steady-state flow rate also increases. This relationship is nearly

linear until y(t) reaches about 80% of the maximum possible flow

rate, ysat' At this point the flow rate, y(t), begins to level off

until, at y(t) = y , the slope, EX , is zero. At this point any

sat dx

further increase in traffic density clearly decreases the flow rate.

Furthermore, it is well known that without external control, re-

covery from a staurated condition takes a very long time [MA 1].

It is therefore 10gical to try, by some means of control, to keep

the traffic density below this saturation level, xsat'

Many attempts have been made in the past to implement

control schemes with just this objective in mind [GR 2, MA 2].

In general these control schemes have improved existing traffic

flow conditions during peak travel hours on the order of 20%. They

are very attractive for particular bottlenecks which cover a small

area, such as a tunnel or short section of limited access eXpress -

way, as they are easy to implement, realize substantial improve-

ments in a short time, and are very inexpensive when compared

to the only other alternative--addition of more road surface.



-23-

These volume-control techniques, however, have been

limited to a few distinct locations, where conditions are unusually

bad. No attempt has been made to implement a general control

scheme which could be applied to an arbitrary area.

With this thought in mind let the vehicular traffic flow be

divided into three distinct modes; (1) high density mode, (2) low

density mode, and (3) transition or medium density mode. The

particular mode of a given street is determined by monitoring

queue lengths. When the length of the queue is such that each

vehicle must wait for one or more complete traffic signal cycles

before passing the intersection (i. e. , the queue length does not

go to zero during any given cycle), that section of street is

assumed to be operating in the high density mode. When traffic

is free flowing (i. e. , each vehicle must wait no longer than one

traffic signal cycle), the system will be controlled under the low

density mode. In any other situation the system is said to be in

the medium density or transition mode. Inasmuch as the greatest

cost-benefit returns are potentially realizable at high densities of

operation, this thesis places primary emphasis on the high density

mode of operation.

3.1 The System Model

Consider the problem of controlling an m by n grid of inter-

secting surface streets under these conditions. Such a grid is

shown schematically in Figure 3. 2. The area under control is
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3. 2 m by n rectangular grid

shown within the dotted boundary, all streets are assumed to be

one way, and the small circled numbers on the diagram serve to

identify each "stub. ” It is further assumed that the input flow

rates, y1i(t)' are known as a function of time. Since the streets

are short (i. e. , the street transit time is small with respect to

the rates of change of the traffic flow rate and density), and the

high density conditions exist (i. e. , queues are always present),

the transit time for each street stub may be neglected and a control

scheme based only on queue lengths. Furthermore, since the

high density traffic control mode is designed to operate with

streets in a saturated condition, it is extremely useful in recover-

ing from catastrophic disturbances.
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For the m by n rectangular grid of Figure 3. 2, the flow

rates at the ith grid input and output are designated as yli and

3'21 respectively. The density (or in this case, queue length) in

the ith street will be denoted as xi.

Let the components, Xi' of the state vector, 3?, represent

the densities at the respective streets in the grid. The state of

the grid, as a function of time, and the inputs to the grid can be

expressed as a vector difference equation of the form:

R'Ik) = F[3<'(k-1), Y(k-l)] (3.1)

where the vector—DER) represents the state vector at the kth con-

trol interval, which is of duration T(k).

If the grid is to be controlled, rather than just modeled and

simulated, a set of control variables must be identified. Suppose

ui(k) signifies the number of vehicles to be removed from street

section i during the kth control interval. Then the detailed form

of (3.1) is:
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where the output flows are given by:

   

k l1 _O O O 0 0 O '1’? k 7
+

Y21( ) 0 b4 0 a7 0 0 ul( )

k+l b O Oy22( ) 0 0 o 0 0 0 0 0 9 2‘10 112(k)

k+l = 0 0 0 O O ky23( ) O O 0 O 0 b6 a11 u3( )

k+l 0 O O O O O ky24( ) O O 0 0 b5 3.12 u4( )

y25(k+l) O O 0 0 0 0 O O O O 0 0

_I __ _ .

ku12( )

L. ._J  
(3. 2b)

and the constants, bi’ are the percent of vehicles in street i which

turn.

ai 2 l- bi (3.2c)

When the grid of Figure 3. 2 is extended to an arbitrary

m x n rectangular grid the state model is of order N = 2(m + n +

mn + 1) and of the form:

Sim-+1) =x(k)+ U ?(1.:I+ -U o 371(k) (3.3)

0 A B 372(k)

Indeed, for any complete m by n rectangular lattice there clearly

are m(n+l) +- n(m+l) = m + n + Zmn edges. For a grid of the form

shown in Figure 3. 2 there exist, in addition to the closed lattice,

m+1+n+1edges. Thussz+n+2mn+m+1+n+l=

2(m + n + mn + 1). The N dimensional state model will always be

of the form of (3. 3) if the stub numbering system is chosen so that
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the m + n + 2 external stubs are numbered first.

Consider now the general N dimensional discrete state

model

3?(k+1) = ciak) +D-;(k), k:0,1,2,... (3.4)

Under the assumption that the matrix D is N by N, recursive solution

of (3.4) gives

35“.) = ck§(0)+[Hl, D] F1 . (3.5)

F2

where the submatrix, H1, and the subvectors, 1:1, and F2 are

k_1 —> ”—u "‘ —> -—>

Hl=[c D....,D]; r1: y(O) ; F2=y(k) (3.6)

31(1)

L-flk-l)
_J  

. -1 . -’ .
Assuming D ex15ts we can solve (3. 5) for F2 and obtain

E: = D'1[3’<(k) .. 635(0) .. Hl'fl] . (3.7)

Theorem 3.1: A discrete state model in the form shown in (3. 3)
 

is controllable if and only if B-1 exists.

Proof: From the definition of controllability [GO 1] it is clear that
 

any discrete state model of the form (3.4) is controllable if and only

if it can be solved for T2. Equation (3. 7) implies an explicit solution

exists for $1.2 if and only if D.1 exists. Observe that the form of

D in (3. 3) is:
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Using the fact that the determinant of a product is equal to the

product of the determinant yields

|D|= -UO UO-UO -UO

      
(3. 8)

The strategy used as a basis of control, is to select the

control vectors, ?1(k) and 372(k), in (3. 3) in such a manner that

the state is driven to the origin in minimum time subject to cer-

tain constraints imposed on the variables in the model by physical

considerations. These constraints are considered next.

First of all, since each section of street is of finite length,

the state variables must satisfy the contraint

Oixi(k)£Xiforallk, andi, i=1, 2, ...,N (3.9)

where the constants Xi represent the maximum storage capacity of

the ith section of street. Secondly, since more vehicles cannot be

removed from a street than exist in that section the controls must

be constrained such that

O-<-ui(k)—<-Xi(k) for allkand i, i: l, 2, ..., N (3.10)

Finally, each intersection can transmit only a finite number of

vehicles in a given time, therefore
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Mi_<_ui(k):1—‘i for allkand i, i: 1, 2, ..., N (3.11)

The constants Mi and Fi’ are the minimum and maximum number

of vehicles which are permitted to cross through the ith intersection

in time T(k). Psychological factors will dictate the values of M and

P for each intersection. These values, together with such traffic

stream parameters as vehicular acceleration time, will in turn

determine the time, T(k), associated with the kth control interval.

It is very important to note that each control interval is not necessarily

of the same duration as the other intervals. As is shown later, each

control interval is complete when Pi vehicles have been counted

through the ith intersection, i = l, 2, . . ., N.

3. 2. The Control Problem

Stated as an Optimal control problem, the high density

vehicular traffic control problem becomes:

For the system in (3. 3) find the control, u(k), from the

admis sable set 9,

s2 = {ui(k))05ui(k)5x1(k): forizl, N; k=1,2,...,£}fl

H

H 2 w

I
I

.
—
a

N h

L
-
J

{u,(k)l M. < u,(k) < F.2 forj

J J'— J _ J

such that:

—.

(l) X(£) = Ofor minimum I, and

(Z) O<Xi(k)-<-Xi for all k, and i, i: 1,2,...,N.
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At this point it will be useful to examine the Pontryagin

maximum principle for discrete systems [PO 1, HA 1, HA 2, HO 1].

Consider systems characterized by difference equations of the follow-

ing form

x(ku) - 35“.) = flak), Tim], k = 1,2,...,i

. -* . N
where the state vector is an element X of a Euclidean space E ,

. -’ . r

and the control vector is an element u of a Euclidean space E .

r . . . .
A subset 52 C E , called the admissable set, is speCified and all

control vectors are required to be members of S2. For every k,

—F _.

k = 1, Z, . . . ,f the vector valued function F[SE, u] is assumed to

satisfy the following conditions:

-.

(i) fix, ] is defined for all (3?, TI) 6 EN x9,

(2) for every u 652, F[SE, u] is twice continuously

differentiable with respect to SE,

(3) F[X, u] and all its first and second partial derivatives

with respect to}? are uniformly bounded over A x Q

N

for any bounded set A, A C E ,

—> -—> —o- -+ N

(4) the matrix U + a F[X, u]/ BX is non-singular on E x9,

(5) the set {F[X, u] l u 69} is convex for all X 6E .

 

=:<

In general condition (5) may be considerably relaxed, but in this

context it is not restrictive [HO 1].
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It is also necessary to define an initial set

{Xlai(X) : 0, 121,2, .5, s<_N},

a terminal set

{Meg—x.) = 0, 1: 1,2, ..,t, tiN},

-->

And an object function fO(X). The scalar functions (1,165), Bid?) must

be twice continuously differentiable.

—->

The sequences 3(1), 3(2), . . . , 2(2) and 2(1), 23(2), . . . ,

KM) are said to be optimal controls and trajectories respectively

if they satisfy the conditions:

(1) ai(‘}£(l)) = O for i = 1,2,...,s,

-.

(2) X(k+i) .. 33k.) = P(Xuc), TI(k)) for all k = i,2,...,i,

(3) Qk)€§2f0ra11k:1,2,...,l,

(4) (5153(2)) = 0 for i = l,2,...,t,

and if the functional

2

J = )3 f (X(k'))

k=l 0

attains its minimum value, for X(i<) : _}_((k), subject to these constraints.

If the function fO is unity, the control which minimizes the func-

tional J is that which satisfies constraint (4) with minimum 2 .

In order to state the Pontryagin maximum principle it is

necessary to augment the N state equations with the scalar equation
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x (k+l) - x (k) : f (35m), k: i,2,...,i
O O O

which results in the NH equations

xi(k+1) - xi(k) = fi(3<’(k).3'<k)) k =1,2.....2. i: 0.1.....N

The Pontryagin maximum principle for discrete systems states:

If the sequences 3(1), 2(2), . . . ,3“) and 2(_(l), 25(2), . . . ,_}$_(1)

are optimal then there exists a sequence of non zero vectors P71),

P(Z), . . . ,PU) such that:

N _. N

(1) >3 f.[§(k). 3110] p.(k+l)> Z f.[_3£(k). U(k)] P.(k+1).

for allk= 1,2,...,2 andalluESZ,

-D —b a —->-—b

_

(2) P(k+1) - P(k) : -

for allkz l,2,...,£.

Condition (1) is, of course, the maximization of Hamiltonian, while

the adjoint equations are represented by (2). For a proof of the

Maximum Principle in this form see [HA 2].

3. 3 Solution of the Optimal Control Problem

The traffic control problem as formulated in Section 3. 2

is in a form to which the discrete maximum principle may be

applied. Let the state model for the traffic control system of (3. 3)

be augmented to include the object function f0. Further, let f0 be
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unity, then the state model for the minimum interval case becomes:

      

_xo(k+l)— flxo(k)— - i _ F o 0— _yo(k)-

351(k+1) - 351(k) = “('3' + -U o 371(k) (3.12)

322(k+i) 322(k) 0 A B 720.:

    

IfthegridisnbymletN=2(m+n+mn+l)and0=m+n+2, then

the state model in (3.12) is N + 1 dimensional. The vectors 3:1, (3’, and

.371 have 0 components while x2 and yz have N - 0 components. The

Hamiltonian is

—. -. —o N -—>—o- —-> -—> —-> —-> —>

: f = + 0P - P + A + B 0P .1PUP. X. u) E p. . PO (3 1 71' l ( Y1 Y2) 2 (3 3)

i=0 J

where the vector Pl has 0‘ components and P2 has N - 0 components.

The adjoint equations are

 I
I

0 p
-
a

Z

N .

pgk+i)- pgk) = - z --i- pgk+it i (3.14.)

j=0 i

k: l,2,...,£ .

Clearly, since 5.65,?) is independent of the state variable 35, (3. 14a)

becomes

 

Po(k+1) (3 (k)
0

”131(k+1) - 331(k) = o . (3.14b)

P2(k+l) P2(k)

   
The co-state variables, pi, corresponding to time optimal control are

all constants.



It follows that (3.13) can be written as

—> —‘> —-v ——>—* —.-t—.§ -'> —->

H(P, x, u): p +(3op +Dy +Ety (3.15)
O 1 1 2

where D = (P.2 A - Plt) and Et : PZtB. H(P, X, ) is a maximum

when the ith components “—771 and—)7Z are max[ sign(d,l)‘y,l] and

max[sign(e.l)y.l], respectively. This is simply the familiar result

that all time Optimal controls for linear systems are on the boundary

of the admissable set 9[ PO 1]. This fact allows Optimal trajectories

for a number Of traffic systems to be sketched.

3. 4 Cascaded Signals

Let 0 : 1 and N = 2. Equation (3. 3) then reduces to the

two scalar equations

x (k+l) x (k) -l O [y (k) y

l _ 1 : -. l 11 (3.16)

+ I

x2(k l) x2(k) a b Ly2(k) O

_J

where a is the percent Of 7'1 which enters street 2, while b = -1.

This corresponds to an array of streets of the form shown in

Figure 3. 3, that is, a series connection Of two streets.

 

3. 3 Series connection of two streets
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The admissable set 82 is

:2: {in Oiyiimin(Fi, xi), fori: 1, 2} (3.17)

Consider now the Optimal trajectories resulting from the control

7’1 = F1 and 72 = F . Equation (3.16) becomes

  

2

xl(k) = xl(O) - k(I"l - yll) (3.18a)

x2(k) = xz(0) - kaI‘1 - kFZ (3.18b)

Substitution of (3.18a) into (3. 18b) yields (provided F1 - y11 )5 O):

(FZ-aFI) (Fz-aI‘I)

x (k) = x (k) - x (O) - x (O) (3.19)

2 (Fz-Yn) 1 2 (F1 'Yii) 1

Under the assumption that yll is constant, the phase plane plot is

as shown in Figures 3.4a and 3.4b.

\

  

 

3.4a Phase plane for F2 > afl
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3.4b Phase plane for F = a1"

When yll = F (3.18a) reduces to:
l

x (k) = x (O) = const. (3.20)

Therefore, for this case the phase plane plot takes the form shown

in Figure 3. 4c.

X

      
  

Z

I

l

‘ ii (V v v 1) 1)

r'_________ ..
l

a]? ___-.|.--.-(t.-__..---_..__.-.i-___-_i-___i ______

1 i

131 X1

3.4c Phase plane for F1 2 yll



The arrows on the Optimal trajectories indicate the direction of

increasing k (time).

Clearly when the input demand to the system is so great that

y” > Fl there exists no control, 'yl, in the admissable set Sbwhich

will reduce the initial value of XI. For this reason, and because

queue lengths are not restricted outside of the control region, yll

will always be selected so that (1" )3 0. Similarly, if

1 " y11

F2 < aFl there exists no admissable control, yz, which will reduce

the initial value of x2. Furthermore, in the event F2 < aFl the

maximum capacity of the system is determined by F2. Therefore,

in the event P2 < a? the value of F1 will be decreased so that1’

F2 3 aFl. Under these assumptions an Optimal control may always

be selected which will monotonically decrease any initial state

toward the origin.

Referring to Figures 3. 4 note that as the optimal trajectories

cross the lines x (k) = F or x2(k) : F their slope is no longer

1 1 2'

constant. This is a consequence Of the fact that the admissable

set, 9, is a function of the state of the system. Furthermore, if

the state of the system is such that, for at least some 1, xi 5 Fi’

the ith queue may be dissipated in one light cycle. If this is the

case the density obviously is not high enough for transit time to

be neglected (a basic assumption for the high density mode Of

operation). Notice, however, that application of the prOper Optimal
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control monotonically decreases any initial state to the point

(F1, F2), at which time the control mode will be transferred to

one Of low or medium density.

3. 5 The Single Intersection

Consider the case of the single intersection as shown in

Figure 3.5. y

21

*2

.
.
.
a

  

3.5 Single intersection

The state model for this arrangement of streets is:

x (k+1) x (k)

1 - 1 = + (3.21)

I-

x2(k+1) x21) y12

Solving (3. 21) recursively yields:

x1(k)= k(y11- yl) +xl(0) (3.22a)

x2(k) = k( )+ x7(0) (3.22b)

y12 ‘ 7’2

In the event that, for some i, yl.l _>_ F1, it is clear that no admis-

sable control exists which will decrease the initial state of xi.
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For this reason yli is restricted so that

y“ < Pi for all i (3.23)

Substituting (3. 22a) into (3. 22b) yields, under the control

(yliyz) : (F1! F2)!

x2(k) = 0.x1(k) + x2(0) - 0.x1(0) (3.24)

where 0., the Optimal trajectory slope, is given as:

(T -y )

a z 1‘2 17-) (3.25)

( 1 ‘ y11

 

The phase plane plot of the Optimal trajectories is shown in

figure 3.6.

x2

   
3. 6 Single intersection optimal trajectories

In this case, as in the case of two series connected streets,

the optimal trajectories are straight lines only for X1 > F1 and

x2 : 1‘2. Notice that as the phase plane point, (x1, x2) approaches
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the point (yll, ) the optimal trajectories asymtotically approach

y12

the lines x and x These trajectories are clearly all

lzyll 2=Y12’

monotonic decreasing, and all pass through the point (yll, ylz).

Furthermore, note that the point (yll, ) is always ”inside the

Y12

pOint (F1, F2), that is y11< F1 and y12 < I‘Z. This assures that

an admissable optimal control always exists which will drive the

system, in a monotonic decreasing manner, to a point where the

control may be changed to a low or medium density mode.

3. 6 Arterials of Arbitrary Length

Consider now the case of a long arterial. That is, assume

that the area to be put under control consists of a series connection

of N one way street sections, as shown in figure 3. 7. Let y11 be

the input to the end of the arterial, and assume that there is no

input to the arterial except at that end. All of the results of the

following develOpment can easily be extended to the case where

known inputs are allowed at points other than at the end, however,

for notational convenience only the single input case will be con-

sidered.

 @1 ®( @1— ———®(—

3. 7 Single arterial

Equation (3. 3) for this street arrangement becomes



”

 —
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xl(k+1) X1(k) yll -l 0 O O O 'y1(k)

- O Ox2(k+l) x2(k) 0 a2 1 O y2(k)

_ : + _.x3(k+l) x3(k) O 0 a3 1 0 O 'y3(k)

xN(k+l) xN(k) 0 o 0 . aN -i yN(k)

_ _J — _ |-— _i b _J

(3. 26)

Notice that the control matrix is triangular (in fact bidiagonal) with

. N

determinant (-1) .

Recall from the previous analysis of two series connected

streets that, although the optimal trajectory is a function of the in-
 

put, the Optimal control is independent of any input. Input

y11’

levels are only bounded by the requirement that the Optimal tra-

jectory be monotonic decreasing. With this in mind, consider the

N section series connected street.

Using a technique very similar to dynamic programming

[DR 1] each subsection of the arterial will be independently Opti-

mized starting at the ”output" end (i. e. , at i = N) and working back

until bounds on the input, are obtained.

y11’

Since, by the definition of the control region, there is

assumed to be an infinite sink at the end Of the arterial

x (3.27)YN min[ TN, N].

Furthermore, the state variable, x , is monotonically de-

N-l

creasing when YN satisfies

1
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('yN - aN'yN_l) 3 0. (3.28)

Equation (3. 28) together with the fact that yN 1 must come from the

admissable set, S2, requires

yN-l = min[ min(1_‘N_1, XN~1)' yN/aN] (3.29)

Applying the above argument to the ith section of street yields

31.1: min[min(1",l,xi), yi+l/ai+1] for i =1, 2,. . . , N-l (3. 30)

where yN is specified by (3.27). An optimal control recursively

derived by (3. 27) and (3. 30) is clearly one which results in mono-

tonically decreasing optimal trajectories and satisfies the necessary

conditions of the Pontryagin Maximum Principle.

3. 7 Rectangular Grids

Consider now the most interesting, and probably most use-

ful, grid configuration, a simple grid of intersecting arterials.

An example of such a grid is shown schematically in Figure 3. 8.
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3. 8 Schematic diagram of arbitrary grid

The detailed form of the state model for the system of figure 3. 7 is
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3. 8 Schematic diagram Of arbitrary grid

The detailed form of the state model for the system of figure 3. 7 is
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0 0 0 311(k)

8 72( k)

0 O 0 'y3(k)

o o o y4(k)

o o o 915(k)

O 0 O y6(k)

o o o 317(k)

10 O 7’8“).

-1 o 719(k)
8

o o -1 'y10(k)

__ —J  
(3.31)



-45-

An argument very similar to the one used on the long

arterial implie s

73 = min(F3, x3) (3.32)

In this case the condition that x be monotonic decreasing is shown

2

as

- — >

(73 £1272 I0133,13)— 0

The inequality (3. 33) forces 7’2 to be

Y2 : min[min(I_‘2,x2), ('y

In a similar manner

711 = min[min(F1,x1), (y

The equations for Y4: 715, Y6 are:

‘
<

O
\

l- min(F6, X6)

'y5 = min[min(F5,x5), (y6 -

‘
i

..
p.

H

4 4

3-

2-

min[min(f ,x ),Q(‘y5 -

b213yi3)/a ]

b 78ml]

14Y14Va5 ]

b7Y7')/a4]

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

Equations (3. 32) through (3. 38) present. no problem until attempting

to solve for 71 and 74- Ln order to solve (3. 35) and (3. 38) know-

ledge Of y8 and y? is needed. Therefore consider the remaining

two arterials.

Immediately we see

2 min(F , x

V9 9 9)

78 = min[min(F8, x8), (y - b Y117a8]

(3.39)

(3.40)
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and

=min(]_" ,x ) (3.41)

710 10 10

77 min[min(f‘7, x7), ('ylo - b4y4)/a7] (3.42)

As would be expected, it is necessary to solve (3. 35) and (3.40)

as a pair of simultaneous inequalities in order to obtain 71 and

y8. Similarly (3. 38) and (3. 42) must be solved simultaneously

tO Obtain 'y4 and 717. Therefore examine (3. 35) and (3.40).

Recall the inequalities which resulted in the right hand

terms of (3. 35) and (3.40). Written as a matrix inequality they

become

‘5 9 (3.43)

The assumption that the square matrix in (3.43) is nonsingular

(i.e., a +a8 -1# 0) yields

 

1

7 a -b 7
8 < i 1 1 9 (3.44)

-(a+a-l)

i 8 _b a

V1 8 8 Yzi      

The above inequality together with the left hand terms in (3. 35)

and (3. 40) implies

78 min[min<r8.x8). (aly - b172)/(a1 + a8 - 1)] (3.45)
9

Y1 min[min(F1,xl), (38)/2 - b ‘y9)/(a1 + a8 - 1)] (3.46)

8



In an exactly similar manner 77 and y4 are given by

7’7 : niin[ min(F7,X7), (a4y10 - b4‘y5) (a4 + a7 .. 1)] (3,

Y4 : min[ min(F4,x4), (a77/5 - b7'y10) (a4: + a7 — 1)] (3,

If (a1 +3.8 - 1))E 0 and if (a4 + a7 — 1) )9 0 then (3.32),

(3.34% (3.36% (3.37% (3.39% (3.41% (3.45% (3.46L (3.47%

and (3.48) yield the required solutions for 'yl through le' In the

event that (a + a - 1) : 0 the inequality constraints (3.43) on

1 8

Y8 and y1 are no longer independent, and (3.45) and (3. 46) are

replaced by (3. 49).

Y8: min(f‘8,x8)
(3.

Y1: mln(F1.xl) (3.

78 +7q_grnwn[y9/(l-alh yé/al] (3.

That is, the values Of y8 and 'y1 are no longer unique, but may be

chosen arbitrarily provided (3. 49) is satisfied.

In a similar manner y? and y4 must satisfy (3.50).

77§JnuMI-.xfi (a

' ,. 3.Y4 i min(F4 x4) (

77 + 74 _<_ mm[7/10/(1-a4).)/5/a4] (3.

Therefore the general control strategy for an arbitrary

rectangular interconnection of street stubs will be quite simple.

Optimal controls for all arterials are independently solved re-

cursively, starting at the boundary of the control area and working

47)

48)

49a)

49b)

4%)

50a)

50b)

50c)
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back toward the traffic source (on another boundary). At each point

where the arterials intersect, a system of two simultaneous equa-

tions results. Once the Optimal controls for this intersection have

been determined the controls for the remainder Of the arterials

may again be independently determined.

The only information needed to control an arbitrary grid

is: (1) the input demands, yli’ (2) the turn coefficients, at, and

(3) the present state of the system, i. e. , the queue lengths. The

control scheme is very simple to implement, requiring a minimum

of IOgic for each control area.

Since any controller must keep a record of the densities of

all internal grid streets, it would be a relatively simple procedure

to program the controller to continuously compute the turn coef-

ficients, ai. In this sense the system may be made self adaptive.



IV

OBSER VATIONS AND CONC LUSIONS

4.1 Summary

Modern mathematics and control theory are rich with techniques

and results which are useful in the analysis and control of complex

systems. In order to take advantage of this situation one must be able

to characterize the dynamics of the particular phenomenon of interest

in the form of a state model to which these techniques may be applied.

Furthermore, operational procedures, which are independent of the

particular characteristics of the system, exist which generate state

models from the component models and their interconnection pattern

[KO 1]. These Operational procedures require only that the com-

ponents be characterized by two complementary variables satisfying

the postulates of system theory as given in Chapter II.

In Chapter II a pair of complementary variables, traffic

density, x, and traffic flow rate, y, which can be used to quantita-

tively characterize the vehicular traffic phenomenon are defined.

Using these complementary variables some useful subsystems, or

”components" of traffic systems are, conceptually at least, identified

and mathematically characterized. The well defined, Operational

-49-
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procedures of system theory are used to combine these component

models and the mathematical expression of their interconnection

pattern into a state model. The resulting state model is in exactly

the form required to apply modern control theory.

A specific problem in traffic control is considered in

Chapter III--that Of surface street control under a high density mode

of operation. A state model, based on traffic queue lengths, is

derived and its special properties is studied. It is found that the

problem can always be formulated in such a way that the state model,

for an arbitary m by n rectangular grid, is in the form of a system

of 2(m+n+mn+1) linear, first order, difference equations. An Optimal

control strategy is derived, using the Pontryagin Maximum Principle,

which, for an arbitrary set of initial conditions, reduces the state

(queue lengths) to zero in a minimum number of control intervals.

4. 2 Some Observations

It is appropriate, at this time, to look at the complete pro-

blem of traffic control. “In Chapter III a control scheme, useful

when queue lengths are so long that they cannot be dissipated in one

complete traffic signal cycle, is outlined. The assumptions that

allow the vehicular traffic system to be characterized with a set

of simultaneous difference equations also provides a natural method

Of mode control. Whenever queue lengths are reduced to the point
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that they may be dissipated in one traffic signal cycle, a transition

out of the high density mode is in order.

Although a specific low density mode of traffic control is not

outlined in this thesis, a few of its properties are clear. It will

operate when traffic conditions are such that queues at traffic

signals do not accumulate from one cycle to the next. As in the

high density mode, the accumulation Of queues provides a natural

criterion for determining when to enter the low density mode.

Since mode determination is based only on queue length the

boundary between low density and high density control may be

defined in a dynamic manner. Suppose, for example, a long

arterial is to be controlled. It is quite likely that there will be

portions Of the arterial (near the traffic source) which will remain

in the high density mode for quite some time, while other portions

(near the traffic sink)may remain in the low density mode. As

time progresses (and the vehicular traffic demand lessens) the

boundary between the high and low density control modes will

move from sink to source.

It must be observed that the possibility of instability of

mode selection (hunting) exists. Depending upon the specific nature

of the low density control mode, it may be necessary to base mode

transition decisions on factors other than queue length alone.

Clearly, if a low density control scheme can be developed which will



result, as in the hi vh density case, in monotonic decreasing queuesby

there will be no mode selection instability. In such a case the

entire traffic control system will remain in the low density mode

at nearly all times. The high density mode will be used only for

recovery from catastrOphic occurrences.

Consider briefly the control philosophy implied by the pre-

viously described control schemes. A typical example of a vehicular

traffic control 53 stem would be a relatively small, highly congested

area (probably the central business district), together with a few

key arterials feeding that area. The control philosophy described

in Chapter III allows the possibility of unlimited queues accumulating

outside the control area. If these queues cause undesirable congestion,

the boundary of the control area must be extended until the demand is

no longer great enough to produce excessively long queues. The

control philosmiihy essentially says "don't use streets as vehicle

storage areas as that reduces their efficiency. ” By carrying this

philosophy to its logical conclusion it is clear that inputs to the

traffic system must be controlled at the source--parking lots, ramps,

and residential areas.

There are some other important features of this control

philosophy. Notice that in the strict sense the Optimal control

scheme Of Chapter III is not time optimal, but interval optimal.

That is, the state is reduced in a rnininiuz’n nun’iber of control
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intervals, not necessarily in a minimum time. The control interval

length is the amount of time required to count the maximum number

of vehicles allowed through the intersection. However, for a given

set of pavement conditions, and driver-vehicle traffic mixes (this

essentially fixes acceleration time) the control interval lengths are

constant and the control is time optimal.

This time independence feature is desirable in that it makes

the control strategy self-adaptive to changes in pavement conditions.

As would be expected under wet and slippery pavement conditions

vehicle acceleration time is increased, resulting in a corresponding

increase in control interval length over the dry pavement conditions.

Even though the total time to reduce an initial state to an acceptable

density level will be lengthened, for these conditions the control is

still time optimal. Note that no adjustment in system parameters

need be performed to achieve this result.

4. 3 Implementation Features

The information needed as input data to the control scheme

of Chapter III is restricted to the queue length and turn coefficient

values. Queue lengths may be measured by a simple, readily

available, presence detector of the loop or overhead sonic type,

while values for turn coefficients may be obtained (for various

periods of the day) from origin-de stination type surveys. In an



alternate I’i’)"‘:‘t" * mi (fitterrninizzg turf“. Coefficients the behavior of the

traffic could t3 continuously monitored and these coefficients updated.

Although this method is more complicated, it has some outstanding

advantages in that unforeseen traffic patterns can be handled with a

minimum of delay.

Computation requirements for such a system are not extensive.

The only aritlmrietic operation required is addition, as the controllers'

function is to keep a continuous count of queue lengths. Computation

speed requirements are sufficiently low that a sizeable system could

be handled by a small desk size digital computer in a time sharing

mode, or by the relatively low bandwidth available with present fluid

logic modules.

This high density I‘node control scheme has some very useful

features. They are: (l) Essentially identical hardware modules can

be used to control a traffic area of arbitrary size; (2) since control

functions arr; computed on the basis of local information, only a

minimum of information need be transferred between local control-

lers; and (3) c<.‘*~:r:trc.)l can be installe‘ed on an ”as needed" basis, i.e. ,

particularly corgested areas of a city may be controlled without the

necessity of controlling the entire city.

4.4 Future Research

The research leading to this thesis has created many more

questions than it has provided answers. The original objective of
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this research was to characterize the traffic phenomena in the form of

an optimal control problem so that the results of modern control theory

could be applied to it. Although this was accomplished, it did create

some new and unique optimal control problems.

For example, the optimal control problem associated with

the vehicular traffic state model of Chapter III is one where the

admissable set of controls, S2, is a function of the state vector 55.

Furthermore, this function is such that the area of $2 is directly pro-

portional of the norm of 3;; S2 vanishes when 3?: 0. Under these

conditions the time optimal control scheme, in the linear continuous

state model case, is clearly no longer bang bang. The author is

unaware of any treatment of the problem of non-constant admissable

sets in the literature.

A second-~forever unsolved--problem is that of effective

methods of computation of optimal controls in the bounded phase

plane case. The physical constraints associated with a general

vehicular traffic control problem imply a bounded phase plane. How-

ever, in the specific instance of high density control, Optimal controls

may be chosen in such a way that each state variable is monotonic

decreasing.

This author feels that this thesis has merely scratched the

surface of a problem which is most interesting and very fruitful

for future research efforts. It is hoped that the guidelines and
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basic results presented in this thesis will stimulate further much

needed research in this most rewarding area.
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