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ABSTRACT
AN APPLICATION OF SYSTEM THEORY TO THE
OPTIMAL CONTROL OF VEHICULAR TRAFFIC NETWORKS

by Jeffrey L. Goodnuff

Vehicular traffic demands are increasing so rapidly that
merely increasing the physical size of freeway and street systems
is not, in itself, a solution. Present and future traffic networks
must be operated at or near their highest efficiency levels. This
can only be accomplished through control.

Recognizing the inevitable need for control, this thesis
investigates the problem of applying physical system theory to
the analysis and control of vehicular traffic systems.

Two complementary variable functions of time, traffic
density, x(t), and traffic flow rate, y(t), are defined and used to
characterize the dynamics of several traffic system components in
the form of mathematical state models. These state models are
combined, using the logically consistent procedures of system
theory, into state models of traffic systems. As an example of
the application of these state models to control, the special case of
vehicular traffic control in a high density mode is considered. A
state model of such a system is developed and a near time optimal

control strategy is derived for a surface street grid of arbitrary size.
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INTRODUCTION

Present day vehicular traffic demands are increasing so
rapidly that merely increasing the size of physical street and free-
way systems is not, in itself, sufficient. If new and existing traffic
networks are to operate at their highest efficiency they must be con-
trolled in the same technical sense that the operations of aircraft,
powerplants, and other physical systems are controlled. It is
this inevitable need for control which motivates the research des-
cribed in this dissertation.

Before any system can be controlled its dynamics must be
characterized by a mathematically tractable state model. Such a
model must do more than extrapolate the future from the past. It
must go beyond simulation. It must reflect both the mathematical
characteristics of each subsystem, or component part, and the
interconnection pattern of these subassemblies.

Many of the basic concepts used to characterize physical
phenomena can be applied to develop models of the dynamics of
vehicular traffic networks. However, quantitative aspects of

systems, such as these, in which man is involved are not easily



represented. There are a number of reasons for this difficulty.
® Systems involving man as a component part are not as
predictable as non-human systems. Certainly no general
model characterizing the dynamics of man as a system

caomponent exist.

® Systems with men as integral parts are, in general,
not easily subjected to experiment. For moral, legal,
and political reasonsg it is sometimes very difficult to

perform experiments on thege man-machine systems.

® There are no universally agreed upon methods of
quantitatively representing non-phygical phenomena.
For this reasomn communication between investigatore
in gimilar but distinct fields is often difficult and some-
times in'-xpossible. Investigators attempting to model
non-physical systems are, in a sense, in the same position
as the early physical scientists--their first task is to
define a set of standard measurements which will char-

acterize the phenomena of interest.

Even in the face of these difficulties congiderable progress,
at least in the form of qualitative or semiquantitative descriptions
and hypothetical models, has been made [GR 1, GR 2, HE 1].

This thesis does not claim to ha\‘re found an easy answer to

the problems of quantitatively describing and controlling non-physical
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systems. It does, however, offer a logically consistent formulation
procedure which, when properly applied to certain types of vehicular
traffic systems, results in state models useful in describing, simu-
lating, and controlling these systems.

In order that this thesis may serve as a basis for control, it
examines the vehicular traffic phenomena and defines two quantitative
measurements, traffic density and traffic flow rate, which are used
to characterize vehicular traffic systems. These complementary
measurements are used to model some of the basic components of
traffic systems. The resulting component models are combined,
using the logically consistent procedures of system theory, into a
state model of the system.

As an example of the application of mathematical models of
this form to the control of traffic systems, the special case of
optimal control of vehicular traffic in a high density mode is con-
sidered in Chapter III. A state model of such a system is developed
and a control scheme which results in a minimum number of control

intervals is derived.



I1

A CHARACTERIZATION OF VEHICULAR TRAFFIC

A complete analysis of any metropolitan traffic system in-
volves at least three major aspects.

First, there must be an identification or analysis of traffic
flow demands, as a function of time, between identified geographic
regions as generated by the business, industrial, and other socio-
logical activity of the populace. These flow demands depend on
such parameters as the general economic level of a region, the
distribution or mix of business and personal property in the region,
and many other socio-economic factors. Furthermore, the flow
demands are not independent of the traffic system, but are, at
least in part, generated by it. This problem of flow demand identi-
fication and prediction is generally classified under the heading of
origin-destination studies, and receives considerable attention in
the literature [CA 1].

The second major aspect of metropolitan traffic analysis is
that of determining the distribution of known inter-regional flow

demands over alternate paths and modes of transportation. This



so called "mode split'" problem is not only concerned with predicting
the distribution of flow demand over the various transportation modes,
but also with predicting the distribution of vehicular flow demand over
alternate routes.

The third aspect of vehicular traffic analysis is that of deter-
mining the dynamics of flow streams (i.e., the stream flow rates,
densities, and delays) from the known inter-regional demands.

While all three aspects of the problem are inter related, the
complexity of the problem and the present state of the art in traffic
network analysis almost precludes the inclusion of this interdependence
in a mathematical analysis or simulation of traffic systems. This
chapter, therefore somewhat arbitrarily, assumes that the traffic
flow rates over identified inter-regional paths of a traffic network
are known as a function of time. It considers the problem of
developing a state model characterizing the flow dynamics as an
explicit function of these flows, the network structure, and inter-
section controls.

The following postulates must be satisfied before the methods
of physical systems analysis may be applied [KO 1]. Therefore

vehicular traffic systems must also satisfy these postulates.

(1) The system must be an interconnection of identifiable sub-
systems, or components. If this identification is not physi-

cally possible, it must be at least conceptually possible.



(2)

(3)

(4)

(5)

(6)

2.1
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These subsystems, or components, must be discrete in the
sense that they must have a finite number of interfaces with
other components (called terminals), and measurements taken

at these terminals must completely characterize the component.

All components must be such that they may be characterized
by a pair of complementary variables, x satisfying postulate

(5), and y satisfying postulate (6) following.

All components with N terminals must be such that they may

be characterized with N-1 measurements made at the N terminals.

The variable x must be such that the algebraic sum of all x

measurements around a circuit vanish.

The variable y must be such that the algebraic sum of all y

measurements corresponding to a cutset vanish.

Fundamental Variables and Parameters

It is convenient to define a pair of complementary variable

functions of time, x(t) representing traffic density and y(t) repre-

senting the flow rate of the traffic system, which can be used to

characterize the traffic phenomena. The units of these variables

are chosen as:

x - total vehicle length/total lane length,

y - number of vehicles/ minute.
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In order to operationally define these variables, consider the
output of a standard loop or overhead sonic type detector, ¢(t), shown

in Figure 2.1.

$(t)

2.1 Typical traffic detector output

Let ¢(t) = 1 when a vehicle is on the detector and ¢(t) = 0 otherwise.

Define the integer valued functional J($(t), t tZ) as

l’

) = total number of 0 to 1 changes of

T, £, ¢,

¢(t) for tl <t< tZ

The flow rate, y, is obtained as

L e
(tz-tl) (2.1)

while the traffic density, x, is

x = — 5 o(t) dt (2.2)



From (2.2) it is evident that x is the ratio of two lengths of time and
assumes values between zerp and one.

The above definition of traffic density is essentially the same
as lane occupancy. If the traffic mix (i.e., average vehicle length)
is known, other characteristics such as average stream speed may
be computed from these flow and density measurements.

Consider now a uniform sgection of street as shown in
Figure 2.2, and let Ya and Yy repregent the flow rates at the points

A and B respectively. Furthermore, let x1 represent the average

A

I
]
|
|
—
1
|
!

2.2 Uniform section of street
density in that street. In the special case when all densities and
flow rates are constant (i.e., y =Y, = constant, and X, = constant)
it is well established that a plot of flow rate vs density is of the

form shown in Figure 2.3 [GR 1]. It must be emphasized that the

b

2.3 Steady state flow density plot
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relation shown in Figure 2.3 is va.lid_o_x:z_l'._y under steady-state condi-
tions.

Actual measurements of density-flow rate relationships have,
in the past, been taken with very little attention given to the steady
state requirement. Such measurements typically result in a cluster-
ing of points similar to that shown in Figure 2.4 [JL 1].

y

2.4 Experimental data from the John C. Lodge freeway

In order to characterize the dynamics of a traffic stream it is
clearly necessary to obtain density-flow rate relationships under
known dynamic conditions. Until this is done there can be very
little correlation between the theoretical analysis of traffic systems
and their actual behavior.

For the purpose of applying system theory to traffic analysis,
assume that the flc;w density relationships for the short section of
street of Figure 2.2 may be approximated by the terminal equations

and graph (2.3). Itis important to note that the density, xz(t), is
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a 2 b
1 dxl(t) (2.3)
A Thr T
g

a differential density and not an absolute density. The densities xl(t)

and xz(t) are defined as

1]

xz(t) xa(t) - xb(t)

xl(t) xa(t) (2.4)

where xa(t) and xb(t) are the absolute densities at points a and b.

The exact form of the function f(xl,xz) can not be determined
until traffic stream data taken under known dynamic conditions is
available. Even though this information must be known before there
can be any correlation between the theoretical analysgis of traffic
systems and their actual behavior, the exact form of f(xl,xz) need
not be known to demonstrate the application of system theory to
vehicular traffic systems. To this end the next section identifies
the model of one of the basic subassemblies in vehicular traffic

systems.

2.2 A Single Origin-Destination

Consider an origin and destination connected by a single
expressway link with no intersections. Assuming the input flow rate,
yo(t), is known, and considering the expressway as a cascaded sys-
tem of two uniform sections, the system graph is as shown in

Figure 2.5.
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2.5 System graph for two cascaded sections

The terminal equations corresponding to the system graph are

Yo(t)

Yi(t)
Y; (t)

xg(t)

known

dx, (t)
i dt

(o}

f(x, .,x, j
J( -1 J) j

known

"

2,4

The vertices a and b correspond to the ends of the expressway

while the vertex c represents the center, If the expressway is

uniform throughout its length, the two sections are identical.

addition to Yo the terminal density, x

5 must be specified.

In

(2.5)

From the component equations (2.5) and the circuit and cut-

set equations of the system graph, the system model is easily

derived as [KO 1, WI 1]

-3
dt

xl(t)

x3(t)

l/c

0

1

0

1/c

3

yo(t) - fz(xl.x3-xl)

£, (% 23-%)) = £ (x5, x5-x,)

(2.6)
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In the event the expressway is uniform and fZ and £4 are given as

fz(ﬁ. y) = f4(£3,7) = (1 - ky) g(B) (2.7)

where the function g is similar in form to Figure 2.3, the state

model (2. 6) becomes

a | % ) l/e, O y (8 [ - k(xy-x,)] g(x,)

‘ 1
AN -
¢ X, (1) 0 e, || [1 - klxy-x))] glx)) = [1 - kixg-x,) glx,)]
(2.8)
Suppose xl(t) = x3(t) = 0. These steady state condijtions imply
y (t) = g(xl) - kg(xl)(x3-xl) = g(.x3) - kg(x3)(x5-x3) (2.9)

One solution to (2.9), provided the boundary condition y, = g(xs) is
satisfied, is xl(t) = x3(t) = xs(t). This particular steady state
solution corresponds to the situation where the flow rate throughout

the entire expressway is constant.

2.3 Multiple Destinations
The single origin, dual destination system shown in Figure

2.6 is composed of four components; three uniform expressway

2.6 Single origin, dual destination system
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links (characterized in section 2.2) and an exit ramp. The system graph
for such a configuration is shown in Figure 2.7. Furthermore, itis
assumed that the turn ratio for the exit is known (i.e., the ratio

k78 = y7/ yg is known).

2.7 Single origin, dual destination system graph

Let the exit ramp be modeled as a ""perfect coupler' with character-

istics of the form

= (2.10)

Edges 1 through 6 are used to characterize the three uniform express-

way links and have equations of the form

dxi(t)
y.(t) = c. i=1,3,5
i i dt (2.11)
At) = f(x, .,x, j=2,4,6
y;(t) 3¢ ie1 J) j
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The input flow rate, Yo and output densities, Xq and X o are

assumed known.

For a general application the system must be modeled as a

four-terminal component. Such a model is easily developed from

the component equations, (2.10) and (2.11), and the circuit and cut-

set equations of the system graph (Figure 2.7). The result is:

-

—xl(tﬂ —1/c1[yo - fz(xl,xl-xs-'y(xs-xs))]

d

T x3(t) = 1/c3[ -yfz(xl,xl -xs-y(x3-x5)) - f4(x3,x3-x10)]
xs(t)J llcs[ (l-y)fz(xl,xl-xs-'y(x3-x5)) - £6(x5,x5-x9)]

where y = 1/(1 + k7

system graph of Figure 2. 7) are

xo(t) - xl(t)
Yg(t) = - £6(x5. xs-x9)
¥10(t) - f4:‘"3”‘3”‘10)J

2.4 The Eight-Way Intersection

8) and the terminal variables (identified in the

(2.12a)

(2.12b)

When each of the four streets at an intersection carry traffic

in opposite directions, the dynamics of all eight streams are

"coupled' through interference patterns. Even in the case of

a

light controlled grade intersection, the oncoming stream interferes

with the left turning stream. If the intersection is in the form of a

clover leaf with grade separation then, of course, there are no inter-

stream interferences and the intersection can be modeled as a

combination of four double exit ramps of the form shown in Figure 2.8.
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This double exit ramp is a simple generalization of the single exit

2.8 Double exit r.mp\

ramp of section 2.3. It is modeled in the ""perfect coupler' form

v, 0 0 k|l x . c
vl =0 0 k|l x a - ob (2.13)
X3 -k1 -kz 0 Ya d

where constants kl and k2 represent the ratios of left turns to through

traffic, and right turns to through traffic respectively. These equa-
tions characterize the intersection in terms .:)f the traffic composition.
The cloverleaf model is formulated by simply joining four of these
double exits.

Although complicated because of the number of equations,
the procedure for formulating a model of the intersection from the
component models and the constraint equations of the system graph

is straight-forward and yields a set of terminal equations for a

cloverleaf of the form:



¥ | *]
| '
y! X
2 0 |I -At 2
]
y3 | *3
- |
! x! 2.14a
) I _ 4 ( )
|
*) | "1
I
X y
2 A : 0 2
*3 | Y3
[
X4 | Y
L - L 4 o -
where
r—,—-—1 0 k 1 k-
0 0 0 - - -
1+k_+k 2 1
1 72
0 1 0 0 k 0 -k -1
1+k_+k 3 4
A = <3 4
1
0 0 0 -1 -k 0 -k
1+k5+k6 5 6
0 0 0 1 k -1 k 0
1+k_+k_|| 8 7
7 8 i

(2.14b)
The eight constants ki’ i=1,2,...,8 are the traffic composition
constants which must be known in order to characterize the inter-
section. It should be noted that the terminal equations retain the
skew symmetric form characteristic of "perfect coupler' type com-
ponents.. -
At this point it is useful to consider the problem of traffic

stream interference in more detail, in particular, concerning the
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interference to left turn traffic generated by the oncoming traffic
stream.

Even if traffic flow rates are known in advance, the particular
diatribution.of vehicles (hence the opportunity to cross a traffic stream)
is a random phenomenon. It is therefore necessary to employ statistics
to compute the interference characteristics of a traffic stream.

Consgider the case where the traffic stream is a single lane
and the gaps between vehicles is a random variable, g. Let the
probability density function (p.d.f.) for g be denoted by fg(g). It
is known that there exists a gap acceptance probability associated
with each car-driver gap combination [ HE 1]. Let this probability

be denoted by a(t), where

a(t) = O

(o
A

T (2.15)
e-)\(t-T) t T

\

= 1 -
The conditional probability, a(t), may be interpreted as the pro-
bability of turning left through the oncoming stream between t and
t + dt seconds (i.e., a(t) = P(left turn | t<g<t+ dt).

Knowing the p.d.f. for the random variable g implies

»

P(turning left) \ Plturning left|t< g<t+dt)P(t< g <t +dt)
all t

00
S‘ a(t) fg(t) dt (2.16)

- Q0

11
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For the case of Poisson traffic

-0t

= >0
fg(t) Oe t (2.17)
= 0 t _<_ 0
and (2.16) becomes
0o
P(turning left) = S a(l - e-)\(t-T))e—mdt
-
-0T
\e
= = (2.18)
-1
where 0  is the average gap length between vehicles.
In a similar manner it is easily shown that the probability
of completing a left turn across N lanes of traffic is given by
N
Nexp{- = oi.T]
P(turning left) = N)\:l (2.19)
AN+ Z O
. i
i=1

The four grade corner intersection differs from the clover-
leaf described above in that the left-turn traffic experiences
"interference' passing through the on-coming traffic in the adjacent
lane. The total out of the left turn exit of an intersection is, there-
fore, decreased by an amount that depends on the flow-rate in the
adjacent on-coming traffic stream. When the model of the grade
separation intersection given in (2.14) is altered to include this

interference function, the model takes the form



and

RIS

The functions fi and hi are defined as

f

i

and

h,

1

-A

b

i,i+l

a.

i

(1 -

1 -
i-1, i(

Vs f3(y?_. y4)
_ _ A
] 1
x5 hz(Y4.x1)
] ]
*3 hyly)»x3)
1]
Xy by, %3)
Ti+3) Yigl
T, ) X.
i+2" i+3

i=1,2,3,4

(2.20a)

(2. 20b)

(2.21)

. t .
where bij and aij represent the entries of -A and A, respectively,

and all subscripts are modulo 4.

flow yj, is called the '"highway transparency' and is a monotonic

decreasing function of y_ having the following properties
J

0
(1) 'rj( )

1

2) 0 1
(2) gTj(yj)ﬁ

for all Yj

It is to be noted that when the cross-traffic flow is zero

(i.e., T = 1) or when there is no left-turn flow, (2.20) reduces to

the interference-free case of the cloverleaf given in (2.14).

This

The factor 'rj is a function of the

(2.22)



- 20 -

is to be expected since there can be no 'interference' in the case
when there is no cross traffic or in the case where there is no
traffic with which to interfere. The transparency function, 7, may

be taken as

T = 1 - P(turning left) (2. 33)
or, from (2.19)
N N
Ml +exp[- = oiT]) + > o,
i=1 i=1
;o < (2. 34
Nt Z o0,
. i
i=1

This chapter does not claim that the component and state
models introduced above are in a complete or final form. As
pointed out in section 2.1, considerable experimental research
must be completed before a high degree of correlation between
theoretical and actual results can be obtained. This chapter does,
however, point the direction for such research and illustrates the
potentials of a system theoretic approach.

Using the fundamental variables and methods defined in
this chapter, the particular problem of control of vehicular traffic

in a high density mode is discussed in Chapter III.



III

OPTIMAL CONTROL IN HIGH DENSITY MODES

It is the objective of this chapter to characterize the vehi-
cular traffic phenomenon with a mathematically tractable model to
which some of the procedures of optimal control theory may be applied.
Congider the general character of vehicular traffic as characterized
by traffic density, x(t), and traffic flow rate, y(t), When one plots
traffic flow, y(t), vs traffic density, x(t), curves of the general

form shown in Figure 3.1 result [GR 1].

y(t)

sat b-—— - —— —— — — —

x(t)

sat

3.1 Flow~density characteristics

- 21 -
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It should be noted that the curve plotted in Figure 3.1 is a plot of
flow rate and absolute density, not differential density as previously
defined. Curves of this form are obtained under free flow steady-
state conditions, i.e., the time derivative of density is zero, and
there is no interruption of the traffic stream. Again referring to
Figure 3.1 observe that as the absolute density increases, the
steady-state flow rate also increases. This relationship is nearly
linear until y(t) reaches about 80% of the maximum possible flow
rate, Yeat’ At this point the flow rate, y(t), begins to levél off
until, at y(t) = y , the slope, d_y_ , is zero. At this point any
sat dx

further increase in traffic density clearly decreases the flow rate.
Furthermore, it is well known that without external control, re-
covery from a staurated condition takes a very long time [ MA 1].
It is therefore logical to try, by some means of control, to keep
the traffic density below this saturation level, xsat'

Many attempts have been made in the past to implement
control schemes with just this objective in mind [ GR 2, MA 2].
In general these control schemes have improved existing traffic
flow conditions during peak travel hours on the order of 20%. They
are very attractive for particular bottlenecks which cover a small
area, such as a tunnel or short section of limited access express -
way, as they are easy to implement, realize substantial improve-

ments in a short time, and are very inexpensive when compared

to the only other alternative--addition of more road surface.
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These volume=-control techniques, however, have been
limited to a few distinct locations, where conditions are unusually
bad. No attempt has been made to implement a general control
scheme which could be applied to an arbitrary area.

With this thought in mind let the vehicular traffic flow be
divided into three distinct modes; (1) high density mode, (2) low
density mode, and (3) transition or medium density mode. The
particular mode of a given street is determined by monitoring
queue lengths. When the length of the queue is such that each
vehicle must wait for one or more complete traffic signal cycles
before passing the intersection (i.e., the queue length does not
go to zero during any given cycle), that section of street is
assumed to be operating in the high density mode. When traffic
is free flowing (i.e., each vehicle must wait no longer than one
traffic signal cycle), the system will be controlled under the low
density mode. In any other situation the system is said to be in
the medium density or transition mode. Inasmuch as the greatest
cost-benefit returns are potentially realizable at high densities of
operation, this thesis places primary emphasis on the high density

mode of operation.

3.1 The System Model
Consider the problem of controlling an m by n grid of inter-
secting surface streets under these conditions. Such a grid is

shown schematically in Figure 3.2. The area under control is
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22 13 Y24
3.2 m by n rectangular grid

shown within the dotted boundary, all streets are assumed to be
one way, and the small circled numbers on the diagram serve to
identify each '"'stub.'" It is further assumed that the input flow
rates, Yli(t)’ are known as a function of time. Since the streets
are short (i.e., the street transit time is small with respect to
the rates of change of the traffic flow rate and density), and the
high density conditions exist (i.e., queues are always present),
the transit time for each street stub may be neglected and a control
scheme based only on queue lengths. Furthermore, since the
high density traffic control mode is designed to operate with
streets in a saturated condition, it is extremely useful in recover-

ing from catastrophic disturbances.
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For the m by n rectangular grid of Figure 3.2, the flow
rates at the ith grid input and output are designated as Y1i and
Yoi respectively. The density (or in this case, queue length) in
the ith street will be denoted as X,

Let the components, X of the state vector, 3(‘, represent
the densities at the respective streets in the grid. The state of

the grid, as a function of time, and the inputs to the grid can be

expressed as a vector difference equation of the form:
X(k) = F[X(k-1), Y(k-1)] (3.1)

where the vector X (k) represents the state vector at the kth con-
trol interval, which is of duration T (k).

If the grid is to be controlled, rather than just modeled and
simulated, a set of control variables must be identified. Suppose
ui(k) signifies the number of vehicles to be removed from street
section i during the kth control interval. Then the detailed form

of (3.1) is:
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where the output flows are given by:

yZl(k+1f [0 o
Yzz(kﬂ) 0 0
v,5ct)| = [0 0
v, (k1) 00
yz5(k+1)J 0 0

and the constants, b

turn.

B T
0 b4 0 o0 a, 0 0 O 0 0 ul(k)

0O 0 0 O 00 b, a 0 0 uz(k)

9 10
00 0 O 0
0O 0 O b6 all u3(k)
0O 00 0 O 0 k
0 0 b5 a ., u4()

u,, (k)

— -

(3.2b)

» are the percent of vehicles in street i which

a,i = 1 - b.L (3.2c)

When the grid of Figure 3.2 is extended to an arbitrary

m x n rectangular grid the state model is of order N = 2(m +n +

mn + 1) and of the form:

X(k+l) = X(k)

Indeed, for any com
are m(n+l) + n(m+1)
shown in Figure 3.2
m +1 +n +1 edges.
2(m +n + mn +1).

of the form of (3. 3)

+ U () + |-U O 'yl(k) (3.3)

0 A B 72(k)

plete m by n rectangular lattice there clearly

=m +n +2mn edges. For a grid of the form

there exist, in addition to the closed lattice,
Thus N=m +n+2mn+m+1 +n +1 =

The N dimensional state model will always be

if the stub numbering system is chosen so that
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the m + n + 2 external stubs are numbered first.
Consider now the general N dimensional discrete state
model

X(k+l) = CX(k) +Dy(k), k=0,1,2,... (3.4)

Under the assumption that the matrix D is N by N, recursive solution

of (3.4) gives

(k) = c®X0) +[H, D] I“’l : (3.5)
1P‘Z
where the submatrix, Hl’ and the subvectors, ?1’ and I:Z are
k-1 — [ — - — —
H =[c'D,....D]; T, = [0 |; T, =7k (3.6)
y(1)
Y(k-1)

Assuming D"l exists we can solve (3.5) for -l_:z and obtain
— — k—-o —_—
I'. =D "[X(k) - C X(0) - Hlf‘l] . (3.7)

Theorem 3.1: A discrete state model in the form shown in (3. 3)

is controllable if and only if B_l exists.

Proof: From the definition of controllability [ GO 1] it is clear that

any discrete state model of the form (3.4) is controllable if and only
if it can be solved for —1:2. Equation (3. 7) implies an explicit solution

exists for _1:2 if and only if D-l exists. Observe that the form of

D in (3. 3) is:
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Using the fact that the determinant of a product is equal to the

product of the determinant yields

|D| = -U o0 U O0f|l-U o0 -U 0

1}
1
|
—
1
—
~—

A B -A U 0 B 0 B
(3.8)

The strategy used as a basis of control, is to select the
control vectors, ?l(k) and ?Z(k), in (3.3) in such a manner that
the state is driven to the origin in minimum time subject to cer-
tain constraints imposed on the variables in the model by physical
considerations. These constraints are considered next.

First of all, since each section of street is of finite length,

the state variables must satisfy the contraint
O<xi(k)§Xiforallk, andi, i=1, 2, ..., N (3.9)

where the constants Xi represent the maximum storage capacity of
the ith section of street. Secondly, since more vehicles cannot be
removed from a street than exist in that section the controls must

be constrained such that
Oiui(k)ixi(k) for allkandi, i=1, 2, ..., N (3.10)

Finally, each intersection can transmit only a finite number of

vehicles in a given time, therefore
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Mif_ui(k)if‘ifor allkandi, i=1, 2, ..., N (3.11)

The constants Mi and Fi, are the minimum and maximum number

of vehicles which are permitted to cross through the ith intersection

in time T(k). Psychological factors will dictate the values of M and

I'" for each intersection. These values, together with such traffic
stream parameters as vehicular acceleration time, will in turn
determine the time, T(k), associated with the kth control interval.

It is very important to note that each control interval is not necessarily
of the same duration as the other intervals. As is shown later, each
control interval is complete when Fi vehicles have been counted

through the ith intersection, i =1, 2, ..., N.

3.2 The Control Problem
Stated as an optimal control problem, the high density

vehicular traffic control problem becomes:

For the system in (3. 3) find the control, u(k), from the

admissable set 2,

Q = {ui(k)loiui(k)ixl(k): fori=1, ..., N; k=1,2,...,2}N

1,2,...,21}.

1
—
Z
A

i

{u,(k)l M, <u/(k)<TI.: forj
J J— ) - )
such that:

(1) X(¢) = O for minimum £, and

(2) Oixi(k)f_X,L for allk, andi, i=1,2,...,N.
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At this point it will be useful to examine the Pontryagin
maximum principle for discrete systems [PO1, HA 1, HA 2, HO 1].
Consider systems characterized by difference equations of the follow-
ing form

X(k+l) - X(k) = F[X(K), a(k)], k=1,2,...,1

where the state vector is an element X of a Euclidean space E ,
. — . r
and the control vector is an element u of a Euclidean space E .
r . . o
A subset 2 C E", called the admissable set, is specified and all

control vectors are required to be members of 2. For every k,

k=1,2,...,4 the vector valued function F[ X, u] is assumed to

satisfy the following conditions:

-—

(1) F[X, ] is defined for all (X, u) € E™ x @,

(2) for every u €Q, F[S(., u] is twice continuously
differentiable with respect to 3(’,

(3) —F:[ X, u] and all its first and second partial derivatives

with respect to_X. are uniformly bounded over A xQ
N
for any bounded set A, ACE |,
— —. - — N
(4) the matrix U + 3 F[ X, u]/ 3X is non-singular on E x ,

— — N*

(5) the set {F[—}E, u] |—u.€Q} is convex for all X €E .

In general condition (5) may be considerably relaxed, but in this
context it is not restrictive [ HO 1].
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It is also necessary to define an initial set

{Xlai(X) = 0,i=1,2,...s, s< N},
a terminal set
{Xlﬁi(g) = 0,i=1,2,...,t t< N},

—

And an object function fO(X). The scalar functions ai(f), [31(3(.) must
be twice continuously differentiable.
The sequences u(l), u(2), ..., E(E) and :_}E(l), 2(—:(2), ceey

X(£) are said to be optimal controls and trajectories respectively

if they satisfy the conditions:

(1) ai('i(l)) =0fori=1,2,...,s,

— — —

(2) X(k+l) - X(k) = F(X(k), U(k)) for allk = 1,2,...,£,
(3) ulk) €Qforallk =1,2,...,4,
(4) ci(z(z)) =0fori=1,2,...,t,

and if the functional

k=1

attains its minimum value, for X(k) = X(k), subject to these constraints,

If the function fo is unity, the control which mirimizes the func-
tional J is that which satisfies constraint (4) with minimum £ .
In order to state the Pontryagin maximum principle it is

necessary to augment the N state equations with the scalar equation
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x (k1) - x (k) = f (X(K), k=1,2,...,4
which results in the N+l equations
x,(k+1) = x (k) = £ (X(K), u(k) k=1,2,...,2, i=0,1,...,N

The Pontryagin maximum principle for discrete systems states:
If the sequences u(l), u(2),...,u() and X(1), X(2),... » X(2)
are optimal then there exists a sequence of non zero vectors P—;(l),

—15(2), .o ,_Fs(l) such that:

N N

(1) = £[X(k), ulk)] p.(k+1) > = £[X(k), (k)] p.(k+),
o:O J J - .:0 J J
] j
forallk=1,2,...,2 andallu €Q,

(2) P(k+l) - P(k) = - | 3= F[X, u P(k+1),

X=X (k)
forallk=1,2,...,4%.

Condition (1) is, of course, the maximization of Hamiltonian, while
the adjoint equations are represented by (2). For a proof of the

Maximum Principle in this form see [ HA 2].

3.3 Solution of the Optimal Control Problem

The traffic control problem as formulated in Section 3.2
is in a form to which the discrete maximum principle may be
applied. Let the state model for the traffic control system of (3. 3)

be augmented to include the object function fo. Further, let fo be
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unity, then the state model for the minimum interval case becomes:

_ _ . _ - - -
x_(k+1) x_(k) 1 0 0|y (k)
}’l(k+1) - ‘;Zl(k) = Bl +|-u o 7l(k) (3.12)
%, (k+1) x, (k) 0 A B Lyz(k)

If the grid isnbymlet N =2(m +n+mn +1)and 0=m +n + 2, then

the state model in (3.12) is N + 1 dimensional. The vectors ;1’ 73., and
Y have 0 components while X, and 183 have N - 0 components. The
Hamiltonian is
— . — N — —_—  — —_— — —
, X, u) = f =p +pBeP. - P+ (Ay, + By,)eP .1
H(P, X, u)= Z p f =p_ +PeP -y P +(Ay 7,)*F, (3.13)

j=0 7

where the vector -ﬁl has 0 components and 352 has N - 0 components.

The adjoint equations are

N ij(x, v)
+ - = - et 1 = e .
p,(k+1) - p, (k) J?o o p.(k+1), i=0,1,...,N; (3.14a)

k=1,2,...,¢ .

Clearly, since fJ_(S(’,G') is independent of the state variable X, (3.14a)

becomes
p_(k+1) p_(K)
o
31(k+1) - Ts’l(k) -0. (3.14b)
P, (k+1) P, (k)

The co-state variables, P, corresponding to time optimal control are

all constants.



It follows that (3.13) can be written as

H(P, X, u)= p +peP + Dy +E'y (3.15)
o ] 1 2
where D' = (PZtA - plt) and E¢ = FZtB. H(P, X, u) is a maximum

when the ith components of-';l and—}jz are max [ sign(di)yi] and
max[sign(e.l)'y,l], respectively. This is simply the familiar result
that all time optimal controls for linear systems are on the boundary
of the admissable set Q[ PO 1]. This fact allows optimal trajectories

for a number of traffic systems to be sketched.

3.4 Cascaded Signals
Let 0=1and N = 2. Equation (3. 3) then reduces to the

two scalar equations

x. (k+1) % (k) 10 P (k) v
1 ) 1 _ | 1 11 (3.16)
]
xz(k+l) xz(k) a b L'yz(k) 0
where a is the percent of Y which enters street 2, while b = -1.

This corresponds to an array of streets of the form shown in

Figure 3.3, that is, a series connection of two streets.

3.3 Series connection of two streets
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The admissable setQ is
Q={y,|0<y, <min (T}, x), fori=1, 2] (3.17)

Consider now the optimal trajectories resulting from the control

Yy = Fl and Y, = I"_. Equation (3.16) becomes

2
xl(k) = xl(O) - k(Fl - yll) (3.18a)
xz(k) = xZ(O) - kaFl - kl"z (3.18Db)
Substitution of (3.18a) into (3.18b) yields (provided I"l - Y11 # 0):
(Fz-afl) (I"Z-al"l)
x_(k) = =—4————— x (k) - x_(0) = ———— x_(0) (3.19)
2 (1"2-}'11) 1 2 (I"1 -Yll) 1

Under the assumption that Y11 is constant, the phase plane plot is

as shown in Figures 3.4a and 3.4b.

\

3.4a Phase plane for 1"2 > a.Fl
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3.4b Phase plane for ]__‘2 = aFl

When Vi1 © I"l (3.18a) reduces to:

xl(k) = xl(O) = const.

(3.20)

Therefore, for this case the phase plane plot takes the form shown

in Figure 3. 4c.

SRS N
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E Y Y Y Y Y
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[
I
Pl

3.4c Phase plane for l"l =Y,



The arrows on the optimal trajectories indicate the direction of
increasing k (time).
Clearly when the input demand to the system is so great that

Y11 > l"l there exists no control, 'yl, in the admissable set Q,which

will reduce the initial value of xl. For this reason, and because

queue lengths are not restricted outside of the control region, Y11

will always be selected so that (I‘l -Y¥,,)>0. Similarly, if

11
l_'z < aI“l there exists no admissable control, 'yZ, which will reduce
the initial value of xz. Furthermore, in the event FZ < al_'l the

maximum capacity of the system is determined by FZ. Therefore,

in the event FZ < al'., the value of I"l will be decreased so that

1
FZ > aFl. Under these assumptions an optimal control may always
be selected which will monotonically decrease any initial state
toward the origin.

Referring to Figures 3.4 rote that as the optimal trajectories

cross the lines xl(k) =TI or xz(k) = FZ, their slope is no longer

1
constant. This is a consequence of the fact that the admissable
set, 2, is a function of the state of the system. Furthermore, if
the state of the system is such that, for at least some i, x, < I‘i,
the ith queue may be dissipated in one light cycle. If this is the
case the density obviously is not high enough for transit time to

be neglected (a basic assumption for the high density mode of

operation). Notice, however, that application of the proper optimal
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control monotonically decreases any initial state to the point

(Fl, l_'z), at which time the control mode will be transferred to

one of low or medium density.

3.5 The Single Intersection

Consider the case of the single intersection as shown in

Figure 3.5.
Y21

V2

—

3.5 Single intersection

The state model for this arrangement of streets is:

x, (k+1) x, (k) -1

(
xz(k+l) XZ‘k) Y1

Solving (3.21) recursively yields:

x (k) = kly | - 7)) +x(0)

x, (k) = ki ) +x,(0)

Y12~ 72

0] v,k
(3.21)

-1 yz(k)
(3.22a)
(3.22b)

In the event that, for some i, Y1i > Fi’ it is clear that no admis-

sable control exists which will decrease the initial state of xi.
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For this reason Y1i is restricted so that

Yii < I“.l for all i (3.23)

Substituting (3. 22a) into (3.22b) yields, under the control
(‘yl’ yZ) = (Fll FZ)’
xz(k) = a.xl(k) + XZ(O) - o.xl(O) (3.24)

where a, the optimal trajectory slope, is given as:

(I, -vy,,)
0 = F?-..___lz) (3.25)
(') =y,

The phase plane plot of the optimal trajectories is shown in

figure 3.6.

*2

3.6 Single intersection optimal trajectories

In this case, as in the case of two series connected streets,
the optimal trajectories are straight lines only for x) 2 I"l and

X, > I‘z. Notice that as the phase plane point, (xl, xz) approaches
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the point (y11 ) the optimal trajectories asymtotically approach

' Y12

the lines x These trajectories are clearly all

1~ 711 2~ N1z
monotonic decreasing, and all pass through the point (y“, ylz).

Furthermore, note that the point (y11 ) is always "inside the

Y12
point (I"l, FZ), that is 11 < Fl and Y12 < I‘Z. This assures that
an admissable optimal control always exists which will drive the

system, in a monotonic decreasing manner, to a point where the

control may be changed to a low or medium density mode,

3.6 Arterials of Arbitrary Length

Consider now the case of a long arterial. That is, assume
that the area to be put under control consists of a series connection
of N one way street sections, as shown in figure 3.7. Let Y11 be
the input to the end of the arterial, and assume that there is no
input to the arterial except at that end. All of the results of the
following development can easily be extended to the case where
known inputs are allowed at points other than at the end, however,
for notational convenience only the single input case will be con-

sidered.

O @ @ ... — &

3.7 Single arterial

Equation (3. 3) for this street arrangement becomes
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— r - ~ - — —r -
xl(k+l) xl(k) Y11 -1 0 o ... 0 0 'yl(k)
- ce 0
xz(k+1) xz(k) 0 aZ 1 0 0 'yz(k)
- = + -

x3(k+1) x3(k) 0 0 a, 1 ... 0 0 'y3(k)
xN(k+1) xN(k) 0 0 o ... ay -1 'yN(k)
— — b = X L — e -

(3.26)

Notice that the control matrix is triangular (in fact bidiagonal) with
determinant (-l)N.

Recall from the previous analysis of two series connected
streets that, although the optimal trajectory is a function of the in-

put, the optimal control is independent of any input. Input

Y117

levels are only bounded by the requirement that the optimal tra-
jectory be monotonic decreasing. With this in mind, consider the
N section series connected street.

Using a technique very similar to dynamic programming
[DR 1] each subsection of the arterial will be independently opti-
mized starting at the "output' end (i.e., at i = N) and working back

until bounds on the input, are obtained.

Y11

Since, by the definition of the control region, there is

assumed to be an infinite sink at the end of the arterial

= min[T_, x (3.27)

YN N AN

Furthermore, the state variable, x , is monotonically de-

N-1

creasing when YN-1 satisfies
N-
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N - 2nYNo1' 2 O (3.28)

Equation (3.28) together with the fact that YN-1 must come from the

admissable set, 2, requires

= min[ min(

), yN/aN] (3.29)

YN-1 IN-1 *Nal

Applying the above argument to the ith section of street yields
Y, = min[ min(l"i,xi), yi+l/ai+l] fori=1,2,...,N-1 (3. 30)

where YN is specified by (3.27). An optimal control recursively
derived by (3.27) and (3. 30) is clearly one which results in mono-
tonically decreasing optimal trajectories and satisfies the necessary

conditions of the Pontryagin Maximum Principle.

3.7 Rectangular Grids
Consider now the most interesting, and probably most use-
ful, grid configuration, a simple grid of intersecting arterials.

An example of such a grid is shown schematically in Figure 3. 8.
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3.8 Schematic diagram of arbitrary grid

The detailed form of the state model for the system of figure 3.

xl(k+1)7
xz(k+l)

x3(k+l)
x4(k+l)
x5(k+1)
x6(k+1)
x7(k+1)
x8(k+1)
x9(k+l)

olkH)

-

x, (k)
xz(k)

x5(k)

-1

a

b

l-l

0 0 0 0 Ob

0 00 00 0 0O

8

0&2-1000000

0 0 O0-

0 0 Oa

0 0 0 Oa

Ob2

0 0 0 Ob

0 0 0 0 0 Oa

1
0 0 Ob

1
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4

0 0 O
-10b7
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0 0 0 0-1

5

0 Oa
7

0 0

0 O

0 0
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0 0-1 O

8-1

0 O

7is

—

off (k)
ofl ¥, (k)
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o
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o

7 (K)
0f ¥, (k)
0 vg(k)
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-1 (k)
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(3.31)
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The detailed form of the state model for the system of figure 3.

x, (k+1)
x, (k1)
x4 (k+1)
x, (k+1)
xg(k+1)
x, (k+1)
X, (k+1)
xg(k+1)

xg(k+l)

Y12

3.8 Schematic diagram of arbitrary grid
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0

1
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0 0 0 0 Ob, O

8
0 0 0 0 O
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An argument very similar to the one used on the long

arterial implies

y X)) (3.32)

vy = min(ly, x,

In this case the condition that x, be monotonic decreasing is shown
as

(v3 =27, - by3y;30 20 (3.33)

The inequality (3.33) forces 7, to be

Y, = min[rflin(l“z,xz), (4 = b 5¥,5)/a,] (3.34)
In a similar manner

¥, = min[min(I', x,), (7, - bgyg)/a ] (3.35)
The equations for Vg Vg Vg 2Te:

vy = min(T, x,) (3. 36)

Vg = min[min(T'g, x.), (v, = b, v, ,)/ 2] (3.37)

V4 = min[min(T,, x,), (v - by ) a,] (3.38)

Equations (3. 32) through (3. 38) preseni; no problem until attempting
to solve for @) and */4. In order to solve (3.35) and (3. 38) know-
ledge of g and Yo .is needeci. Therefore consider the remaining
two arterials.
Immediately we see
¥g = min(Ig, x,) . (3.39)

9
Vg = min[min(F8, x8), ('y9 - bl'yl)7a8] (3.40)
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and

1 min[min(l"7, x7), (710 - b4‘y4)/a7] (3.42)
As would be expected, it is necessary to solve (3.35) and (3. 40)
as a pair of simultaneous inequalities in order to obtain 14! and
y8. Similarly (3.38) and (3.42) must be solved simultaneously
to obtain Y4 and '}/7. Therefore examine (3.35) and (3. 40).
Recall the inequalities which resulted in the right hand

terms of (3.35) and (3.40). Written as a matrix inequality they

become

< 9 (3.43)

The assumption that the square matrix in (3.43) is nonsingular

. N _ .
(i.e., a, *ag 1 £ 0) yields

g 1 ! 1| 79
C —

- (a,ta_=1)

17 %87 .

"1 8 gll 72

(3.44)

The above inequality together with the left hand terms in (3. 35)

and (3.40) implies

g min[min(l"s,xs), (a.l)/9 - bl‘}’z)/(a.1 + ag - 1)] (3.45)

12} min[min(Fl,xl), (a8‘y - b8‘y9)/(a1 + ag - 1)] (3.46)

2



In an exactly similar munner Yo and Y4 4Te given by

Yo = mm[mln(I“,Z,x?), (a4y10 - b4‘y5) (a4 + a - 1)] (3.

Y4 mm[mln(l"4,x4), (a775 - b7'y10) (a4 + a, - 1)] (3.
If (al +a‘8 - 1) £ 0 and if (a4 + a, - 1) £ 0 then (3. 32),

(3.34), (3.36), (3.37), (3.39), (3.41), (3.45), (3.46), (3.47),

and (3.48) yield the required solutions for Y through Y10 In the

event that (a.l +a_, - 1) = 0 the inequality constraints (3.43) on

8

Vg and yl are no longer independent, and (3.45) and (3. 46) are

replaced by (3.49).

vg S min(Tg, xg) (3.
'yl < min(Tl,xl) (3.
Yg T7 < min|[ 'yg/(l-al), yz/al] (3.

That is, the values of Yy and Y, are no longer unique, but may be
chosen arbitrarily provided (3.49) is satisfied.

In a similar manner 'y7 and y4 must satisfy (3.50).

Y, S min(l', x.) (3.
‘)/4 i mln(r4’ X4) (3.
'}"7 + 'Y4: __<__ ml[’l[ ylo/(l'a4)’ 7’5/&4] (3’

Therefore the general control strategy for an arbitrary
rectangular interconnection of street stubs will be quite simple.
Optimal controls for all arterials are independently solved re-

cursively, starting at the boundary of the control area and working

47)

48)

49a)
49b)

49c)
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back toward the traffic source (on another boundary). At each point
where the arterials intersect, a system of two simultaneous equa-
tions results. Once the optimal controls for this intersection have
been determined the controls for the remainder of the arterials
may again be independently determined.

The only information needed to control an arbitrary grid
is: (1) the input demands Y1 (2) the turn coefficients, a. and
(3) the present state of the system, i.e., the queue lengths. The
control scheme is very simple to implement, requiring a minimum
of logic for each control area.

Since any controller must keep a record of the densities of
all internal grid streets, it would be a relatively simple procedure
to program the controller to continuously compute the turn coef-

ficients, a. In this sense the system may be made self adaptive.



Iv

OBSERVATIONS AND CONCLUSIONS

4.1 Summary

Modern mathematics and control theory are rich with techniques
and results which are useful in the analysis and control of complex
systems. In order to take advantage of this situation one must be able
to characterize the dynamics of the particular phenomenon of interest
in the form of a state model to which these techniques may be applied.
Furthermore, operational procedures, which are independent of the
particular characteristics of the system, exist which generate state
models from the component models and their interconnection pattern
[KO 1]. These operational procedures require only that the com-
ponents be characterized by two complementary variables satisfying
the postulates of system theory as given in Chapter II.

In Chapter 11 a pair of complementary variables, traffic
density, x, and traffic flow rate, y, which can be used to quantita-
tively characterize the vehicular traffic phenomenon are defined.
Using these complementary variables some useful subsystems, or
"components' of traffic systems are, conceptually at least, identified

and mathematically characterized. The well defined, operational

- 49 .
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procedures of system theory are used to combine these component
models and the mathematical expression of their interconnection
pattern into a state model. The resulting state model is in exactly
the form required to apply modern control theory.

A specific problem in traffic control is considered in
Chapter III--that of surface street control under a high density mode
of operation. A state model, based on traffic queue lengths, is
derived and its special properties is studied. It is found that the
problem can always be formulated in such a way that the state model,
for an arbitary m by n rectangular grid, is in the form of a system
of 2(m+n+mn+l) linear, first order, difference equations. An optimal
control strategy is derived, using the Pontryagin Maximum Principle,
which, for an arbitrary set of initial conditions, reduces the state

(queue lengths) to zero in a minimum number of control intervals.

4.2 Some Observations

It is appropriate, at this time, to look at the complete pro-
blem of traffic control. In Chapter III a control scheme, useful
when queue lengths are so long that they cannot be dissipated in one
complete traffic signal cycle, is outlined. The assumptions that
allow the vehicular traffic system to be characterized with a set
of simultaneous difference equations also provides a natural method

of mode control. Whenever queue lengths are reduced to the point
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that they may be dissipated in one traffic signal cycle, a transition
out of the high density mode is in order.

Although a specific low density mode of traffic control is not
outlined in this thesis, a few of its properties are clear. It will
operate when traffic conditions are such that queues at traffic
signals do not accumulate from one cycle to the next. As in the
high density mode, the accumulation of queues provides a natural
criterion for determining when to enter the low density mode.

Since mode determination is based only on queue length the
boundary between low density and high density control may be
defined in a dynamic manner. Suppose, for example, a long
arterial is to be controlled. It is quite likely that there will be
portions of the arterial (near the traffic source) which will remain
in the high density mode for quite some time, while other portions
(near the traffic sink)may remain in the low density mode. As
time progresses (and the vehicular traffic demand lessens) the
boundary between the high and low density control modes will
move from sink to source.

It must be observed that the possibility of instability of
mode selection (hunting) exists. Depending upon the specific nature
of the low density control mode, it may be necessary to base mode
transition decisions on factors other than queue length alone.

Clearly, if a low density control scheme can be developed which will



result, as in the high Aensity caze, in monotonic decreasing queues
there will be ro mode aselection instability. In such a case the
entire traffic control system will remain in the low density mode
at nearly all times. The high density mode will be used only for
recovery from catastrophic occurrences.

Consider briefly the control philosophy imrplied by the pre-
viously described conrtrol schemes. A typical example of a vehicular
traffic control sy stem would be a relatively small, highly congested
area (probably the cerntral business district), together with a few
key arterials feeding that area. The control philosophy described
in Chapter III allows the possibility of unlimited queues accumulating
outside the control arez., If these queues cause undesirable congestion,
the boundary of the control area must be extended until the demand is
no longer great enough to produce excessively long queues. The
control philosophy egsentially says "don't use streets as vehicle
storage arcas 25 that reduces their efficiency.!" By carrying this
philosophy to its logical conclusion it is clear that inputs to the
traffic system must be controlled at the source--parking lots, ramps,
and residential arcas.

There are some other important features of this control
philosophy. Notice that in the strict sense the optimal control
scheme of Chapter I is not time optimal, but interval optimal.

That 1s, the state iz reduced in a minimum number of control
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intervals, not necessarily in a minimum time. The control interval
length is the amount of time required to count the maximum number
of vehicles allowed through the intersection. However, for a given
set of pavement conditions, and driver-vehicle traffic mixes (this
essentially fixes acceleration time) the control interval lengths are
constant and the control is time optimal.

This time independence feature is desirable in that it makes
the control strategy self-adaptive to changes in pavement conditions.
As would be expected under wet and slippery pavement conditions
vehicle acceleration time is increased, resulting in a corresponding
increase in control interval length over the dry pavement conditions.
Even though the total time to reduce an initial state to an acceptable
density level will be lengthened, for these conditions the control is
still time optimal. Note that no adjustment in system parameters

need be performed to achieve this result.

4.3 Implementation Features

The information needed as input data to the control scheme
of Chapter IIl is restricted to the queue length and turn coefficient
values. Queue lengths may be measured by a simple, readily
available, presence detector of the loop or overhead sonic type,
while values for turn coefficients may be obtained (for various

periods of the day) from origin-destination type surveys. In an



alternate m-* .t o0 Cotermining tarrn coeflicients the behavior of the
traffic could he cortinuonsly monitored and these coefficients updated.
Although this mcthod is more complicated, it has some outstanding
advantages in that unforeseen traffic patterns can be handled with a
minimum of delay,

Computation requirements for such a system are not extensive.
The only arithmetic operation required is addition, as the controllers'
function is to kcep a continuous count of queue lengths. Computation
speed requirements are sufficiently low that a sizeable system could
be handled by a small desk size digital computer in a time sharing
mode, or by the relatively low bandwidth available with present fluid
logic modules.

This high density mode control scheme has some very useful
features. Thoy are: (1) Essentially identical hardware modules can
be used to control a traffic area of arbitrary size; (2) since control
functions ars compnuted on the basis of local information, only a
minimum of irformstion need be transferred between local control-
lers; and (3) control eza be installed on an "as needed' basis, i.e.,
particularly corgested areas of a city may be controlled without the

necessity of controlling the entire city.

4.4 Future Resezrch
The research learding to this thesis has created many more

questions than it has proviided answers. The original objective of
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this research was to characterize the traffic phenomena in the form of
an optimal control problem so that the results of modern control theory
could be applied to it. Although this was accomplished, it did create
some new and unique optimal control problems.

For example, the optimal control problem associated with
the vehicular traffic state model of Chapter IIl is one where the
admissable set of controls, 2, is a function of the state vector —}E
Furthermore, this function is such that the area of Q is directly pro-
portional of the norm of SE; 2 vanishes when 5(’: 0. Under these
conditions the tirne optimal control scheme, in the linear continuous
state model case, is clearly no longer bang bang. The author is
unaware of any treatment of the problem of non-constant admissable
sets in the literature.

A second--forever unsolved--problem is that of effective
methods of computation of optimal controls in the bounded phase
plane case. The physical constraints associated with a general
vehicular traffic control problem imply a bounded phase plane. How-
ever, in the specific instance of high density control, optimal controls
may be chosen in such a way that each state variable is monotonic
decreasing.

This author feels that this thesis has merely scratched the

surface of a problem which is most interesting and very fruitful

for future rescarch efforts. It is hoped that the guidelines and
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basic results presented in this thesis will stimulate further much

needed research in this most rewarding area.
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