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ABSTRACT

SOME APPROXIMATIONS IN VIBRATIONS AND WAVE MOTION
OF ELASTIC MEDIA

By

Michel Yvon Rondeau

This paper is a study of wave propagation phenomena in
a linear, elastic, isotropic, homogeneous layer. A layer is
defined as an infinite plate bounded by a pair of parallel
planes at Xy = : b as referred to a rectangular coordinate
system Xi(i =1,2,3). The motion is described by the inte-
gral method of Kirchhoff [1ll], derived through Hamilton's
principle, which serves as the starting point for the various
approximations to be developed.

In chapter one, a series expansion procedure coupled with
a new truncation concept is used to construct two-dimensional
partial differential equations for motions in the layer.
Frequency spectra associated with traveling waves in a traction-
free layer are studied in detail and compared with the spectra
predictions of Medick [14], Nikodem [18], and that of the
three-dimensional theory [1].

These two-dimensional layer equations also enter into the
developments of chapters three and four. In chapter two,
wave propagation problems are approached from a different
viewpoint employing a symbolic technique. Applications are

made to one, two and three-dimensional problems. This
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technique will also be employed in chapter four where we
discuss transient waves due to non-homogeneous boundary
conditions.

In chapter three we subdivide a plate into (n) -
subdomains. In each subdomain Hamilton's principle and the
truncation procedure used in chapter one will be applied.
This will give us two non-homogeneous P.D.E. coupling the
uniform and linear amplitudes distributions. The non-
homogeneous terms are stated at the interface of each sub-
domain. To further simplify the analysis, a new technique
called Finite-point approximation is introduced. It gives a
discrete solution in the direction of the plate thickness
(i.e. x2-variable). The points are located at the top,
bottom and interface of each subdomain. This technique will
reduce the two non-homogeneous P.D.E. to a system of
Differential-Difference equation. Finally, a solution in the
form of a travelling wave with free traction at the top and
bottom of the plate will generate an approximate Frequency
Spectrum. The number of dispersion curves that we obtain
through the spectrum depends on N the number of subdomains
in the plate.

In chapter four, impact boundary conditions are applied
at the top of the plate and free stresses are applied at the
bottom of the plate. The Differential-Difference equations

obtained in chapter three are reduced to Difference
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equation using the Symbolic technique of chapter two. A

solution for the Difference equation is developed for

arbitrary N (the number of subdomains). Utilization of

this solution in the impact boundary conditions mentioned

above gives rise to a set of P.D.E. involving variables xl,t.
These equations may readily be solved by transform

techniques or numerical means.
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SYMBOLS

CHAPTER ONE

u, = displacements
€.. = strain tensor
1]
J.. = stress tensor
1]
o ()
(n) —-order amplitudes of the cosine distributions
c(n)
15
z(n)
\ij
(n) —order amplitudes of the sine distributions
5(n)
1]
= (n)
the (n)-order average thickness distributions
T(n)
ij
Fén) = (n)-order face traction
U = the plate strain energy density
K = the plate Kinetic energy density
U, = (n) —order strain energy density
Kn = (n) -order Kinetic energy density
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(n) _ ,(n) (n) _ ; :
e = ul,l + u3'3 = (n) -order dillatation
- n—/
Sn nT,/2b
C = X = shear velocity
T )
<L = (M+u)/p = pressure velocity
v = Poisson ratio
2 _ ~2,.2
x = CL/CT
2L = frequency
k = wavenumber
C = gt_). _“U_
T CT
z = Eé,k
T
cl,c2 = correction coefficients
22 _ A2 2 2
7C = ax + 62 + 53

1

CHAPTER TWO

($s.0.D.E.) = symbolic O.D.E.

(s.1.C.) = symbolic initial condition
—_ 2% 2

axx = 37/3x
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SECTION 2.2

2 -2 .2 2
2% = /
= CL d”/dt
~ =x/1
transformation
c
T—It
c
m = — 4/4T
<L
£ =b/4
SECTION 2.3
2 -2 .2 2 2
R = (C 3 - 9 - 37)
T t Xl x2
2 _ -2 .2 2
L = (CT o ~ Bx )
1
n =X1
transformation
s = xz/z
e =Db/1
2 2,2 _ r,c.2 42 2
m- = L4 = f(c ) BT + as]
T
SECTION 2.4
2 _ 2 -2 .2
Rg = V" - Ca at
Ca = CL and CT ’ for o =
Ul = 7t
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2=zt el e 282, =12
* 1 3

S, = sinh 2 b/Z

C_ =cosh 2 b , a=1,2

o} 2

CHAPTER III and IV

N = number of subdomain
N = the order of truncation
un(xl,xz,t) = displacement on the (n)-subdomain
u

n

(n) -displacement and (n)-stresses at the interface

- of each subdomain

n
u(o) and v(o) = uniform amplitude of displacements
u(l) and v(l) = linear amplitudes of displacements
F(O) ’ H(O) = uniform amplitude of stresses
F(l) , H(l) = linear amplitude of stresses
= 2,2 2
D, = 4b V4: Ch

Dj - 2p/-

1 = 2b/ ax

= _ 2,22 52
Dip = 40 /77Ch 2
z = 2b/T %k
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SERIES EXPANSION-METHOD WITH TRUNCATION
PROCEDURES FOR APPROXIMATION THEORY

1.1 Introduction

In this chapter we will use the general procedure for
deducing approximate two-dimensional equations for elastic
plates from the three-dimensional theory of elasticity which
was introduced by Mindlin (16) based on the series expansion
methods of Poisson (23) and Cauchy (3) and the integral
method of Kirchhoff (11).

Legendre orthogonal polynomials were first used by
Mindlin-Medick (18) as a basis in their series expansion.

They constructed a 2nd-order extensional plate theory that

for the first time exhibited and accounted for complex branches
in the frequently spectra. Later Lee-Nikodem (18) repeated

the development of Mindlin-Medick using the simple thickness
modes as orthogonal basis.

In this chapter, fepresenting the field variables by
fourier series, we briefly sketch the conversion of the
three-dimensional field equations to two-dimensional partial
differential equations. These results were previously obtained
by Lee-Nikodem (14). A new formulation is introduced based
upon a redefinition of the nth order stress-strain relations.

A new truncation procedure is then used to generate appropriate
plate theories.

Frequency spectra predictions of the new theories are
obtained and compared with those of previous theories and

with exact results where available.

1
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1.2 Series Expansion of the Displacement

We first need to define the coordinates system and
orthogonal basis to be used. Consider an infinite plate
bounded by a pair of parallel planes at Xy = + b as
referred to a rectangular coordinate system xi(i =1,2,3).
The thickness of the plate will be in the direction of Xy
and the displacement will be expanded using an orthogonal
base ¢n(x2). Thus, the finite domain [-b,b] restricts
our choice to Legendre or Fourier analysis. In this
chapter we let ¢n(x2) = cos %} <1 - %%). Hence, the

displacement becomes

-}

X
- (n) nm - 2 A
ui(xj,t) = E u, (xa,t) cos - <l -—b> i,3=1,2,3 (1.1)
=0 « =1,3.

Using the orthogonality of the base we can write the

amplitudes distributions as follows:

b
(n) =1 2m i
uy (xa,t> = b/ ui(xj,t) cos 5 (l 5 )dx, . (1.2)
-b
The ui(n) are the amplitudes of sinusoidal distribu-

tions of displacements across the thickness of the plates.

For convenience, however, they will be referred to as

n-order displacements. Since the plate is isotropic in

this analysis, motion symmetric (extensional) and antisymmetric
(flexural), with respect to the middle plane may be considered

separately. In the case of extensional motion, only those



components of displacement ui(n) are retained for which i + n

is odd. Similarly, i + n even give rise to flexural motion.
In-plane amplitudes distributions are called compres-

sional modes and the one norﬁal to the plane are called

face-shear modes. In the case of compressional modes we

(0) (0)

as extensional and transversal modes

have ul and u,

and ul(l) and uz(l) as thickness-shear and thickness-stretch
(0)

modes. For face-shear modes, we have ujy as shear mode

(1) as face shear modes. Further explanations of

and uj
their physical meanings can be found in Medick-Mindlin [18].

1.3 Derivation of the (n)-Order Equation of Motion

The motion is described by the integral method of
Kirchnorf [11] which is derived through Hamilton's principle

and becomes

//(_Oij,j-oui,tt) fu;dvdt = 0  ij
T V

k

(1.3)

"
H
~
N
~
w

"
| ot
-
()
-
w

Recall Equations (1.1)

ui<xj’ ) = Z ag (xy:t) cos &F <1 B );'72') (1.4)

which are the displacements equations. Substituting

Equation (l1.4) into Equation (1.3) yields



o=

©

(1.5)
(n) ~(n) 1 -(n) (n) -
/ /[Tij,j - SnTiZ + 5 Fi - pui,tt] Gudedt = 0
T A

n=0
where
b
X X
mm - 2 nm - 2 = (1.6)
cos = ( b) cos (l b> dx2 = ‘Snmb
-b
b X X
mTm 2 .. nw 2 -
/ sin - < - F) sin 5~ <l - —b—> dx2 = Gnmb
-b
b X X
mTm 2 nm 2 _
jf sin 5 < - 7;) cos é.- 1;) dx, = A b
-b

Sh = 72b C(1.7)

and

(n) b nm )
Tij =f O'ij cos = <l - -ﬁ—> dxz (1.8)

i 1,2,3

i = ciz<bixa,t) + (-1)n+lci2(-bixa,t) o

l’3

which are the (n)-order average thickness stresses and (n)-

order components of face-traction. Thus, (Vn) and Guén) = 0

Equation (1.17) gives us



wm

(n) _ = (n) _ 1 -(n) _ (n) _ (1.9
Tij,5 " Sn Ti2 *p Fy Puj e = O )
which represents the (n)-order stress equations of motion.

1.4 Derivation of the (n)-Order Strain-Displacements and
Stress-Strains Relations

The three-dimensional strain-displacements relations are

_1 . .
eij =5 [ui,j + uj,i] ' ij 1,2,3 (1.10)

Then if we substitute the displacements Equation (1.4),

Equation (1.9) becomes

bt X ( X
. (n) nw _ 2 —(n) . _ 2
Eij = .;_ el] cos ‘—2 ( —b > + el] sin ( '——b )
=0

where

i = 3 [u(“) + u(n)] (1.11)

—(n) _ °n (n) (n)
eij = =5 62iuj + §,.u, .
The above Equation (l.11l) represents the (n)-order strain-
displacement relations.

To obtain compatible n-order auxiliary stress-strain
relations we start with the stress-strain relations for

isotropic medium in the form:

oij = XGijekk + Zuei. . (1.12)

J



(o)

Y
where A,, are lame constants.

Combining Equation (1.11l) to above we obtain

© (1.13)

_ (n) nm - ) =(n) _._ nm %2

Oij = Z i cos 5 < -E-> + cij sin 5 (l - ?>

n=0
where
(n) _ (n) (n)
cij = Asijekk + 2ueij (1.14)
—(n) = A6 s(n) ZuE(n) .

%3 < ij kk ij

This represents the (n)-order auxiliary stress-strain relations.
At this point, if we substitute Equation (1.13) in the first

two equations of (1.8) we get

1 p(n) _ g ) —(m)

5 T ij — 944 + E An c’ij (1.15)
m=0

1 —-(n) _ -(n) (m)

b Ti2 = }E: Amn :

where A =0 forn+m= evenyknm = 4m/(m2-n2)n for n + m =
nm

odd. Then the (n)-order stress equations of motion can be

written in terms of the (n)-order auxiliary stress equations

of motion.

(n) —(n) —(m) (m)
91,5 ~ ®n %i2 *Z Aom|%i3,5 ~ Sn %2i (1.16)
m=0
+ an) pbufn)



1.5 Derivation of the (n)-Order Strain Density and Kinetic

Energy
The strain-density energy is defined as
b
= _ 1
U = 7/ oijeij dx2 . (1.17)
-b

By substituting Equations (1.4) and (1.8) in the above

equatioﬁ it leads to

= _ b 2
g = 72 U (1.18)
n=0
where
) (1.19)
_ _(n) (n) —(n)=(n) —=(m) _(n) (m)=(n)
I RN D /LI R ).
m=0

This represents the (n)-order strain-density energy equation.

The Kinetic energy is defined as

b
=2
K = 2./. ui,tui,t dx2 (1.20)
-b

then if we substitute Equation (1.1l) in the above equation,

we get
—_ﬁz:
K = > Kn (1.21)
n=0
where
_ ..(n) _(n)
Kn = u.'t ui,t . (1.22)



This represents the (n)-order Kinetic energy equation. At
this point we can use the (n)-order strain and Kinetic

energy Equations (1.19) and (1.22) to derive Equations (1.15):

U
pn) _ 1 n (n) —(n)
l] - 2 3¢ n Z Anm 0 (1.23)
ij
(o]
sm _1 % -,
12 2 aE—(n) i2 nm i2
ij =0
(n) _ 1 3
Uikt = 7 3¢ Kn -

1.6 Truncation Procedure

In this section we will first define our truncation
procedure and correction coefficients necessary in the
approximation theory. The coefficients will be added to
the (n)-order strain density and Kinetic energy equations.

Definition 1.1

The ([N, gl-order truncation procedure is defined as

follows:
a) ugn) =0 n>g (1.24)
(n) _ =(n) _
b) T, i3 = Tij =0 n>g
2 o 2 (n) _
c) axixj (ij = 1,2,3), Bt of uj =0, N<n<aqg.

where q is the order of the series truncation and N is the order

of higher elastics and inertia terms retained.



Conditionta) and b) have the same physical meanings
and explanations used by Poisson [2], Medick-Mindlin [18]
and Lee-Nikodem [14]. The addition condition c¢) will reduce
the system of P.D.E. in terms of the first g amplitudes
distributions of both compressional and face-shear modes.
Analytically it will reduce the waver-number k (in the Xq=
direction) and frequency w relationships (which can be
derived from the Partial Differential Equation by using
straight-crested waves propagating in the xl-direction) to
a polynomial of order q.

Definition 1.2

Correction coefficients ¢, and c, are going to be added
to the (n)-order strain-density and kinetic energy Equations

(1.19) and (1.22) as follows:

- (1.25)
_ +(2) _(n) _(n) —={(n)=(n) (1) | . (m)=(n) =(m) _(n)
Upn = %1n 935 €45 * 945 €35° * E Anm Sim ["ij €55 * 915 eij]
m=0
_ +(2) (n) (n)
Ky = Son’ Yi,tt Yi,tt (1.26)
where
1 , m#1l
s (1) (1.27)
1lm
cl , m=1
l1 , m#a
(2) _ 2(im
dan = , P = coOs <2 >
cg , W= o a=20,1
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Now, using the above Equations (1.25) and (1.26), Equation

(1.23) becomes

(n) _ ((2) (n) (1) =(m)
Tij - Gln lj :E: Anm 6lm 0ij (1.28)
=) _ —(n) (1) _(m)
Ti2' = ZA2m S1m %i2

a® _ 5(2) (n)

1 tt on 1 tt °

Next, if we substitute Equation (1.28) in the (n)-order

equation of motion Equation (1.16), we get

- (1.29)
(2) _(n) —=(n) (1) | =(m) (m) (n) _ (2) (n)
%ln %i3,3" Sn°12] M z : AmSim [Uij,j - snolz.] *F;T =0 Son U4, ¢
m=0
= 0T
h = 2b

which represents the (n)-order auxiliary equation of motion with
correction coefficients.

1.7 The Truncation Application for [qu] = [1,1], [2,1]
and Arbitrary

In this section we will truncate for N = 1,2 and g =1
which will be needed for future discussions. An arbitrary
truncation will also be generalized at the end of this
section.

Case I (N =1, g = 1)

Using definition 1.1 for [1,1] then Equation (1.29)

gives us



11

(0) (1) (0) _ , p ..(0)
oij,j + AOlcl oij,j + Fi = pbc2 ui,tt (1.30)
(1) -—(l) (1) (1)
E°13, =8y 955 tEF;T =ebuyty

From Equations (1.11) and (1.14), the (n)-order strain-
displacements and stress-strain equations, Equation (1.15)

becomes, in the case of the flexural motion (i + n = EVEN,

a=1,3)
2 _(0) 2u (1) (0) _ o . (0)
HVTu, T+ gmce b Fa T g Y2, (1.31)
2 (1) (1) m\2 (1) _ 2u (0) (1) _ (1)

WVTu T (A +wdey u(2b> Ya b “1Ys, b Fa©l = Py ¢t
and for the extensional motion (i + n=0DD 1 a = 1,3)

2.(0) (0) 2\ (1) 1 _(0) _ (0)

uv u + (A + u)ea + 5 °1“2,a + 5 Fa = pu a,tt (1.32)
2 (1) _ 2X (0) 1 (l) _ (1)

(n) _ . (n) (n)

where e = ul 1 + u3‘3.

These represent the zero and first orders displacement
equations of motion.

Case II (N =2, g = 1)

Using definition 1.1 for [2.1] then Equation (1.29) gives

us
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‘O.’(l) + F(O) - pr (0) (1.33)

5 (0)
* B01%1 955,35 295, tt

13 J 01€

p. (1) _ _ =(1) (2) _ (2) (1) _ (1)
€294, S1%2 ¥ AlZ[ ij, 3 $1%i2 ] + F; ° = ebu Ui, tt

(2) —(2) (1) (1) (2) _
Gij,j - 52 i2 + A2 [ ij,3 - 82012:] + F =0 .

From Equations (1.11l) and (1.14) the fluxural motion

(1 + n = EVEN, a = 1.3) becomes

a0 ¢ 2o oDy L pl0) —9; uf®l (1.34)
uv211‘21) + (A+u)e(1) - “(2b>2 a(1) - 21?“ cluz(?; + 2(4;\;11) “2(:,2;
+ R = ey
R (g)zuz(z) P2 (W 1@

and for the extensional motion (i + n = ODD, a = 1,3) we get

2 (0) (0) . 2A (1) (0 _ ,(0) (1.35)
u7hug? 4 One,? w3 epuy v R = eug Ty
2
2,1 L (1) 22 (0) 2(A+ap) (2)
cuviuyt) - 2w () uy) - B el ¢ 2L
+ 2 F(l) = puéllt

2
i (2) 2(A+4u) (1) _ 1 (2) _
* “(b) Ut 73 Y%,a"pFa =0



These represent the zero,

equations of motion.

Case III (N =

13

first and second orders displacement

EVEN, g = 1)

Using definition 1.1 for [EVEN, 1] Equation (1.29) then

gives us
(1.36)
(0) (1) —(2m+1) (0) _ (0)
13,3 :E: AO(2m+l)61(2m+1) cij,j + F pbc2 i, tt
(1) (1) S (2m) (2m) (
P _ - =(2m) _ m 1)
©29:i3,3 = S1%2 *Z Ay (2m) ["ij,j $1932 ] tFy
mn=0
(1)
= pbuiTie v
and for 1 < n < N = EVEN
(1.37)
(2n) (2n) . = (1) (2m+1) (2m+1
n - n -_— m m+
93,3 ~ S2n%i2 *Z A(2m+1) (2n)61(2m+1)[°ij,j - S2n%2
=0
+ F(Zn) 0
(2 +1) (2n+1) al (2m) (2m)
n -_ n m m
9i35,3 ~ S2n+1%i2 +'}E: A(2m)(2n+1)[ ij,3 ~ S2n+1%i2 ]
m=0
+ F§2n+l)
1

Similarly for N = ODD,

the displacements equation of motion

can be derived using Equations (1.11) and (1.14) in the same

fashion as the first and second orders.

In the above section we did not assign any numerical

values for the correction coefficients c and C2.

According

to Lee-Nikoden [14] it can be shown that in order to make

’]
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the slope of the lowest flexural branch in the first order
theory coincide with that from the three-dimensional theory
when both the frequency and wave number approach zero, the
value of Sy must be taken as cy = m/4. In order to make
the phase velocities of the lowest extensional branches
approach that of the Rayleigh surface waves [l] as both the
values of the frequency and wave number get large, c, must

be set equal to the real root of
3 2 2 2\ _
c3 - 8¢5 + 8(3-2/x%)c, - 16(1 - 1/x%) =0 (1.38)

for Rayleigh surface waves, where x2 = 2(1-u)/(1-2u). The

values of c2 for different values of Poisson's ratio are

Table 1

u 0.00 0.100 0.200 0.250 0.300 0.350 0.400 0.500

<, 0.764 0.798 0.830 0.845 0.860 0.874 0.888 0.963

1.8 Frequency Spectrum

In this section we are going to study the frequency
spectrum using the truncation procedure discussed earlier.
For N= 2 and g = 1 we will obtain a system of P.D.E.
coupling the zero and first amplitudes distributions. The
second amplitude can be computed by lower amplitudes.
Similarly for N = 3 and g = 2 we have a system of P.D.E.
coupling the zero, first and second terms. The third

amplitude can be solved through the lower amplitudes also.
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Finally, we will consider N = 4, g = 2 which will give us a
system of P.D.E. coupling the zero, first and second ampli-
tudes distributions. The third and fourth amplitudes can
be solved through the lower amplitudes.

[1,2]-0Order Truncation

Using Equations (1.29), (1.14) and (1.11l) for N = 2

and g = 2 we obtain the displacement equations as follows:

R X r
(1)]
Biz B3| W
=0 "extensional" (1.39)
(0)
Ryy  Bazl |92
L J L J
_ - e
(0)T
Ayp Byl 1w
=0 "flexural"”
(1)
tA44 Bag 92

where F{O) = F{l) = Féo) = Fél) = 0 (since the B.C. are

traction-free at Xy + b) and

_
2 4 ( 2 > < 7\|= =
B,., = |x° - —=(4x° - 7) (4 - £\|D,, + 1 -D (1.40)
12 | ) xz) 11 tt
ST GRS
B44— 1 ?9?-4}{ 7 Dll+x Dtt
- _ 4=
M3=-c 7D
B 4
Arp= S 7D
Ay, =D, -—0D
23 ~ "1l c, tt
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- L2 = - =
A3p = X7 Dy; = Dy
3 4 2_)-
A34‘°1F<" 2) by
I | 2_)-
A4l = cl - (# 2 Dl
A, =c.D.. +x%x%-D
44 2 11 tt
and
2
5., =4b_ 4 (1.41)
11 2 XX
™
= _ 2b
b, =7 ax
5. = b2,
tt WZCZ tt
T
2 _ .2,.2
X CL/CT .
The quadratic amplitude becomes
(2) _ _ 2 b _ L2 (1)
a? =55 (4 x)ul'l (1.42)
(2) _2 b 2 (1)
U (x +2> U1

which can be solved later. The approximate frequency spectrum

for flexural motion can be derived by assuming a solution as

follows:
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il kx.-wt ‘

u{l) = Ufl)e [ 1 ] (1.43)
ilkx,-wt

W0 - o o]

Substituting the above in Equation (l1.39) leads to

= (1)
312 Al3 Ul (1.44)
=0
5= T (0)
Ayp  Ap3 Up
where
312 = - x2 -—4-—2(4x2 7) <4 - -;77> 22 + 1 + Qz (1.45)
om b4
—_— - _ 3 :4_
Al3 = 1 cl T z
= _ 4
Byp = 1c 7z
= - _ 2 1 2
A23- 2z +-c-2—Q
and
z = 22 (1.46)
T
= 2b uw
Q = - CT .

Thus, the determinant of Equation (1.44) becomes

|

Byy Ay3 = RAp3 Ay =0 (1.47)
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It represents the approximate frequency spectrum for
the flexural motion. The dispersion curves in Equation
(1.47) are computed and compared with those of Lee-Nikodem
and Rayleigh-Lamb [1] frequency equation as shown in
Figures (1.1).

[2,3]-Order Truncation (First Approximation)

Using Equations (1.29), (1.14) and (1.11) for N = 3 and

g = 2 the displacement equations for extensional motion

become:
(R); R, Ry il (1.48)
Ry1 Rap Ry3 02(1) =0 .
|R31 Rz R3z] u?)
where
Ri1 = |- ;lfz (Xz - 2> <l - fg) + x° Dy, - Dy (1.49)

13

o
1
[e 0]
N
O
]
N
|
—
Nl
/"_‘\
|
hJu
~ _~
(]l
[
'._.l

4 (2 -
21 - % 7 <x - 2> Dy
22

23 3w



8 (2 ) 2\ =
R = 9x~ - 14) (1 - D
31 3STr2 ( xf) 11
_-_4_(2 )"
R32- 3Trx+2 Dl
16 2 14 2| =
R = |- 9k~ - 14 - =\ + x D + 4 -
33 225n2 ( ) < x2> 11

The extensional third amplitude becomes

(3) 8b < 2\ ) .1 14\ (2)
u = - == - =] u + = - =] u

2 9TT2 x?') 1,1 5 < 2) 1,1
which can be solved later.

The approximate frequency spectrum for extensional

motion can be found by assuming a solution as follows:

ilkx,-wt
(0) _ ..(0) 1[ 17wt
ul = Ul e
i -kx -u)t-
(1) _ (1) *|FFTvY
ut = U, e
i Fkx -mt-l
2) _ .(2) [
ul = Ul e .
Then Equation (l1.48) becomes
= - = 7 [y
Ri1 Ryzp Ry Uy ]
= = = (1) _
Ryp Ryp  Ryy Uy =0
= = = (2)
L R3;  R3p  Ry3] YU '

Dtt.

(1.51)

(1.52)
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The coefficients ﬁij are obtained by substituting the

followings in Equation (1.49):

Dll = - 2 (1.53)
Dl = 1z

N - _ 2

Dtt - Q .

Thus, the determinant of Equation (1.52) becomes

+

Ry1R22R33 = RyjRy3R35 = RypRy1R33 + RipRy3Ry (1,54

Ry3Ry1Ry; = Ry3RypR3; = 0

and represents the approximate frequency spectrum for
extensional motion. The dispersion curves of Equation

(1.54) are computed and compared with those of Medick

and Rayleigh-Lamb (1] frequency equation as shown in

Figures (1.2). We can conclude that the first approxi-
mation technique improves the approximate frequency spectrum.
We can also find the cubic amplitude distribution by using
Equation (1.50) which will improve the solution for the
displacements.

[2,4])-0Order Truncation (Second Approximation)

Using Equation (1.29), (1.14) and (1.11]) for N = 4 and
g = 2 the displacement equations for extensional motion

become:



i 7 . (0)
Rip Ryp Rys Uy
(1) _
R,y Ry, Rog U, =0 (1.55)
(2)
R31 R3p R3j Uy
b J o .J
where
- 42 - 16 2 _ -2y _©
R, = [x 22 (x 2) (1 - 2B, - B, 1 (1.56)
_ 16 2 _
Rig =3 ¢ (%7 = s) Dy
_ 16 2 _ 14, =
Ry3 = = [g5,2(x7 - x) (9 xz) Dy,]
- _ 4 2 _
Ryp = -7 ¢ (xn=-2) Dy
_ 4 2 2 = = _ .2
Ry, = ey 5 (x° + 14)% Dpy = Dyy - x7]
900
_ 42
Ryy3 = 37 (x7 +2) Dy
. 16 2 _ 14, =
Ry = [225 (x 2) (9 %) 5,1
45T X
- __4 2
Ry, = =37 (x7 + 2) Dy
2 16 2 14, = —
R = [(x° - (4x° - 14) (9 - ==))D - D - 2]
33 2552 2P tt
The extensional third and fourth amplitudes are
(3) -4 2 (0) 1 14 (2)
U = (1l - =) U + =(9 - =) U
2 52 2,1t 2 1,1
(1.57)
(4) _ _ 1 2 (1)
U, = - g %+ 10 v,

which can be

solved later.

The approximate frequency spectrum for extensional

motion can be

found by assuming a solution as follows:



U{O) - U{O) el[kxl-wt_ (1.58)
(1) _ (1) i[kx -wt

U2 = 02 e 1 i
(2) _ .. (2) i[kx -wt:

Ul = Ul e 1 i

Then Equation (1.55) becomes

-— - = 1 r..(0)n

Rj1;  Ryp  Ryj Uy (1.59)
= = = (L) | _

Ry1 Ry Rp3| | U =0

— - - (2)

[R3p  R3z  Rzz]| |Yp

The coefficients ﬁii are obtained by substituting the following

in Equation (1.55):

B, =-2 (1.60)
51 = iz
Dy = = o?
Thus, the determinant of Equation (1l.39) becomes.
R11RpoR33 = RypRp3Ryy = RipRpiRyy + Ri3Ry 3Ry (1.6l
Ry3RyRyp = RygRppRy = 0
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and represents the approximate frequency spectrum for
extensional motion. The dispersion curves of Equation

(1.61) are computed and compared with those of Medick, of

the first and second approximation and Rayleigh-Lamb [1]
frequency equation as shown in Figure (1.3). We can conclude
that the second approximation improves the approximate

frequency spectrum.
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CHAPTER II

SYMBOLIC METHOD IN WAVE PROPAGATION PROBLEMS

2.1 1Introduction

In this chapter we are going to generate an approxima-
tion theory using Symbolic technique[13]. The P.D.E. and B.C.
are reduced to an infinite differential equation. This is
done by letting all partial derivatives behave as constants,
except for one of them. Thus, this will reduce the P.D.E.
to a symbolic ordinary differential equation (S.0.D.E.)

with symbolic initial condition (S.I.C.). Then, to generate
the infinite differential equation, we substitute the sym-

bolic solution (S.S.) into the B.C.

First we will examine the stfing equation because the
simplicity of the operator permits us to solve this problem
exactly. Then we non-dimensionalize the equation and use
the parameter to find an approximation solution. Similarly
a two-dimensional problem will be presented. At the end of:
this chapter the three-dimensional elastic plates problem
with free stresses at the top and bottom of plates will be
considered. The approximation will be compared to other

technigues used in the preceding chapter.

28



2.2 Symbolic Method to Solve the String Equation

The partial differential equation for the string

problem is

-2 _
(2.1) Upe = Co Uiy = 0 (P.D.E.)
with B.C.
(2.2a) ux(t_b,t) =0 (B.C.)
and I.C.
(2.2b) u(x,0) =0 (I.c)
ut(x,o) = f(x)
Let 52 behaves as a constant then equation (2.1) can

t

be written as follows:

, 2 2 a2
(2.3) u - Lu=0 (S.0.D.E) where £ = 5>
c.dt
2
u(o,t) = H(t)
(2.4) (s.I.C.)
u’(o,t) = ZF(t)
The solution for the (S.0.D.E) is
u(x,t) = a(t) cosh £x+ b(t) sinh £Zx
and by using the (S.I.C.), the above equation becomes
(2.5) u(x,t) = H(t) cosh £Zx + F(t) sinh Zx

Next, we substitute the above in the B.C. egquation (2.2a)

which will give us an infinite O.D.E.



30

(2.6 H(t) sinh Zb #+ F(t) cosh Zb =0
or

[sinh Zb]H(t)

|
©)

(2.7)

i
(@)

[cosh Zb] F(t)

The above infinite operator on H(t) and F(t) can be
solved exactly by assuming a solution in the form of an

expotential such as

H(t) = Aewt

(2.8)

wt

F(t) iBe

Expanding cosh #£Zb and sinh Zb in terms of power

series and operating equation (2.8) term by term yields

[sinh CE]H(t) =0
(2.9) L
[cosh -é—)hi-]F(t) =0.

L
If A and B are arbitraries, then the above equa-

tions are satisfied for

_ . nr
w =1 ES'CL , N EVEN
(2.10)
_ . nr

Therefore, using the above result, the solution (2.8)

becomes



nr
H(t) = > A  cos 7 Co t

n=EVEN " L
(2.11)
F(t) = T B, sin 52‘—;- c, t.
n= O0DD

Next, if we substitute equation (2.1l1l) in equation (2.5),
operate and rearrange terms, we obtain a solution for our

problem as follows:

(=]

(2.12) u(x,t) = <~ Ancos%chtcos %x + 2 aning—gCLtsin%%x
n=EVEN n=0DD

with the time variable I.C. equation (2.2b).

u(x,0)

]
(®)

(2.13)

(x,0) £(x) .

e
Note that equation (2.12) is the exact solution of the

P.D.E. with boundaries. We are now going to non-

dimensionalize equation (2.14) given below.

[sinh #£b] H(t)

0
®)

(2.14)

il
o

[cosh £b] F(t)

Using these transformations given below

n = % , 4 = max-wavelength
(2.15)

T = % t, ¢ is the velocity
then,

- = & g = b
(2.16) £ = 7 where m = o ar ¢ € = 7

L
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and equation (2.14) becomes

sinh m € Jh(T) = O BHE 1) = h(D)
(2.17) where
fcosh m€]1£(T) = 0 FitT = £(
and equation (2.5) becomes
(2.18) u(n,T) = h(T) cosh €mn + £(T) sinh €émn where
u(en, 21 = am,m.

We can use the parameter € as a way to truncate
equation (2.17). The approximation will be of order

€2N(N =0,1,2 --.). Hence, we will pr'oceed to consider

two cases (N = 0,1).

Case 1 (N=0, €°)

This reduces equation (2.17) to
h(T) =0
(2.19)
mf(T) =0,

then, equation (2.18) gives us u’(x,t) = 0 (or)

(2.20) u(x,t) = constant.

Case II (N=1, 62)

This reduces equation (2.17) to

m262
(L + > ) h(T) =0 g(T) =m£(T)
(2.21) 2 2 where
m- €
(1 + ) g(T) =0 G(t) = £LF(t)

6



and equation (2.18) gives us

2 2.2 2 2.2
(2.22) G(mT) = h(M1+20 €y gm1+SR 1 qeq.
2 6

Using equation (2.15), equations (2.21) and (2.22)

becomes
2 2
(1+225) H(t) =0
(2.23) b2£2
(1+2%) 6(e) = 0
2 2 3
u(x,t) = H(t) + G(t)bx + L2H (t) b—z’-‘-— + 22G(t)b3 X

Note the above solution is cubic in x (spatial) and the
operator is a second order in t (time). _Now assume a

solution in the form of

H(t)

A cos wt
(2.24)
G(t) = iBsin ut,

then equation (2.23) gives us two quadratic equations in

w as follows

(2-b%3%) =0 ROOTS = vy,

(2.25)
(6 -b%2%) =0 ROOTS = Q.,0
12

Therefore, equation (2.23) becomes

H(t) = Al cos wlt + A2 cos wzt

(2.206)
G(t) = Bl sin wlt + 82 cos ‘jt



Hence equations (2.26) and (2.23) are the approxima-

tion of order (N = 1,52

) .

2.3 Symbolic Method to Solve the S.H. in an Elastic Layer

The equations of motion (without body force) are
(2.27) J.. . = fu, =0 i,j =1,2,3.

Now if the B.C. are
(2.28) 623(+b ’ xq,t) =0 "FREE VIBRATION" ,

then the stresses are independent of x Therefore, we

3
consider a two-dimensional problem which decouples equation
(2.27) into antiplane shear and inplane motions. The anti-
plane shear motion is

o -p u3'tt(x1,x2,t) =0, B=1,2

38,8
(2.29)

953 (+Db ,xl,t) = 0.
The stress-displacement equations are
(2.30) o = U u

B =1,2.

It follows that equation (2.29) becomes

2 2 2 .2 _
(axl + sz - Cn at) u3(x1,x2,t) =0
(2.31)
I u(xl, + b,t) =0
2
or
Rzu =0
(2.32)
3



[&9)
[@]]

where

2 _ -2 .2 .2
R = (CT 5% - axl
(2.33)
uy = u(xl,xz,t)
Let 52 and 52

(2.32) can be written as follows:

behave as constants then eguation

(2.34) (S.0.D.E.)
u(xl,o,t) = H(t)

(2.35) (s.1.C.)
u’(xl.o,t) =£F(t)

where

(2.36) 22 = (cazai Y

The solution for the (S.0.D.E)

(2.37) u(xl,xz,t)

is

= a(xl,t) cosh =£x2 +b(xl,t)51nh ;£x2

and by using the (S.I.C) equation (2.35) the above equation

becomes

(2.38)

u(xl,xz,t) = H(xl,t)cosh;z’ix2 + F(xl,t)51nh £x2.

Next, we substitute the above in the B.C. equation (2.32)

which gives us an infinite P.D.E.,

(2.39)

or

H(xy,t) sinh £b + F(x;,t) cosh £b =0



sinh £b H(xl.t) =0

X
(2.40) 1
cosh £b F(xl,t)

1
o

These infinite operators can be solved exactly by

assuming an exponential solution

il kx
t) = Ae

—.'Lt]

H(xl, 1

(2.41) i [kx -t ]
F(xl,t) = iBe

If we substitute (2.41) in (2.40), then for A and B

arbitraries, we are going to get

2
woo_ k2 _ nr

3 ES' n EVEN
Cr
(2.42) 5
v 2 _nmr
2-k“2bo nODD‘
Cr

Equation (2.42) are the SH-symmetrical and SH-
antisymmetrical modes of the Frequency Spectrum, which are
derived in Achenback [11]. Hence, if we substitute
equations (7.42) and (2.41) in equation (2.38) we get the

exact solution as follows:

zI(xz)
(2.43) u(xl,xz,t) = exp i(kxl-ut)

zpy (%))

where
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= n- = nry2 _ _w
zI(xz) = A COSs 5 x2 , n = EVEN, (Zb) -CT2 -k
(2.44)
(x.) = B sin BT x - opp, (RLZo 20y
Zrr'¥2) < 2b 2 B F © ' Tt T
We are now going to non-dimensionalize equation
(2.40) which 1is
sinh £b H(xl,t) =0
(2.45)
cosh #Zb F(xl,t) =0.
Using these transformations given below
X
n= g €= 3
X
= 2 _ ,c, 2.2
(2.46) g = then Bt = (L) BT
_c 2 _ 1,22
T = zt Bx = (l) S
2
then
(2.47) m? = 2242 = [ (92 32 - 3%
e; T >
T
and equation (2.45) becomes
sinh €m h(n,T) = O H(hn, £1) = h(n, )
(2.48) where
cosh €m £(n,T) = 0 F(hn, £1) = £(n,m)
and equation (2.38) becomes
(2.49) u(m,2,T) = h(n,T)cosh <m = + f(n,T)sinh €m =,

where

2



(2.50) i(n, 2T = ufn, 45, 1)

The parameter ¢ can be used as a means to truncate
equation (2.48). The approximation will be of order
€2N (N =0,1,2:-+-+). Now, let us proceed by considering two

cases (N =0,1).

o

Case I (N=0, € =1)

This reduces equation (2.48) to

(2.51) h(n,T) 0

m g(n,T) 0 where g(n,T) =m £(n,T).

And equation (2.49) leads to

y -
(2.52) gzu(n,e,T) =0

or

(2.53) u(xl,xz,t) = constant.

Case II (N =1 ,62)

This reduces equation (2.48) to

(2 +m%€%) h(n,T)
(2.54) where g(n,t) =m £(T)
(6+m2€2) g(n,T)

I
@)

Il
o

G(xl,t) =Z F(xl,t)

and equation (2.49) gives us

2 2.2 2 22
_ -

(2.55) G(",T) = h(n,T) (1+25) +g(n,T) (1+5J-6;;) £
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By using equation (2.46), equation (2.54) and (2.55) become

2
(2.56) (2+ b2 H(x,.t) =0
2 -
where Z = c2 = c 282-82

(6+b"2L) G(Xl,t) =0
2 b2x2
(2.57) u(xl,xz,t)==H(x1,t)4-G(xl,t)bx2+-£ H(xl,t%—ir—
3 3

2 b x
+ £ G(Xl,t)T .

Thus, the above equation gives us the approximation of

order (N=1, €2)-

2.4 Symbolic Method Approximation to Solve Three-Dimensional
Wave Problem

Consider the free stresses condition at x2 =+b, then

we have Navier equation and B.C. as follows:

: - 2 = ,= = oo
(2.58) Co V(7 °u) -CT IX(VxXu) - i o

2
L

(2.58a) o,.(x

23 + b,x3,t) =0

1'
and for solutions, Fredholm vector decomposition is used in
(2.59) =75+ x4y, voub=0

where G(xj,t), j =1,2,3. From equation (2.59) the

divergence and curl of the displacement vector are

(2.60) Vou=7%, scalar potential

- 2= '
u ==vi, vector potential

11
<

and by substituting the above equation in (2.58) we get
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2 = - -
Rl Ul =0 and 97 x Ul =0
(2.61)
2 = = = _
R2U2—O and /°U2—-O
where
2
2 _ .2 _ 12 _ _
R, = 77 - =2 — . Ca = &, and T for o« = 1.2
< ot
, V2 = 52 + 52 + 52
(2.62) X1 X X3
U1 = vV
U2 = 9V xy

The displacement vector (2.59) becomes
(2.63) u(xj,t) = Ul(xj’t) + Uz(xj,t) , j =1,2,3.

2 2 2 .

Let 93, , 9 , O behave as constants, then egquation

t Xy x3
(2.61) can be written as follows:
-11 2 = 2 1 2 12
0,- < 0,=0 (5.0.D.E) , £ = [ s 22 - X1—°X34
Ca
Ua(xl,o,x3,t) = Fa(xl,x3,t)
(2.65) (s.r1.c.) , a=1,2
-1 -
Ua(xl'o’XB't) = =£a Ga(xl.x3,t)

The solution for the (S.0.D.E.) with (S.I.C.) is
(2.66) Ul(q) Fi(a)cosh i% x2-+G2(a) sin {&xz ' a=1,2
where G(Z) (Ul(m) , Uz(q) , U3(q)) are the components
of vector U(a) , a=1,2
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We also have two additional conditions which are the diver-

gence of 52 and the curl of ﬁl to be satisfied. Hence,

we let

(2.67) T o U. =

2% @2, "

+

Ua(2),2 ¥ Y3(2),3

=T

Pyt

+ £, G

Fi(2).3 2 %2(2)

+ [Gl(z),l + G3(2)'3 + £2 Fz(z)]sinh £2x2

= 0.
Thus, (V’xz) the above equation gives us
Fi2),1 * F3(2y,3 * % G202 =0©
(2.68)
S1(20,1 ¥ %3(2),3t % Faqzy =O°

similarly, the curl of 51 is

- - A
(2.69) v xUp = [eijk Uj(l),k]ei =0.

So for (Vi) we must have

(2.70) eijk Uj(l),k =0
or
(2.71) Fay,e = 4 %s3(1)

, B =1lor 3

€2(1),8 =% Fa M)
Fany,1 = Finy,3

S3(1),1 = C1(1),3
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Next let us consider the stresses equation at the plane

(x2 =
(2.72)

or

(2.73)

and substitute equations (2.63)

b)

equation and

have

(2.74)

(2.75)

(2.76)

where

21

23

o = r . 1
"5 52]XLu1’1-+u2'2-+u3’3] + 2M[u2, -+uj’2,
Ty = uluy gty ]
J22 = X[ul'l-+u3'3] + (X+-2u)u2'2
Oy3 = MUz H+uy 5]

and (2.66) in the above

use the B.C. (2.58a) (at x, = + b) we then

2

2 -
= a§1 [u(FZ(a),l + Hl(CL)) Ca
2 -
*ulHy 4y 1ty Fyg) £8,1 =0
2 -
- r
= ;fl Py gy ,3 * B3 C
2 py —
t Uy gy 3+ L Fygy) £5,] =0
2 . i
— ai‘j L[“Fl(a),l * Fyqy,3t (X+2H)H2(a)]ca
2
+ [“Hl(a),l + H3(a)'3) + (x+2u)£aF2(a)]
+35. =0



sinh 2D
(2.77) S, = —
* a=1,2
C_ = cosh £b
a o
Bi () = % Ci(a)

At this point the extensional motion and the flexural motion

are going to be considered separately in two cases.

Case I Extensional Motion

In the case of extensional motion, the following condi-

tions must hold:

(2.78) a) ul,u3 EVEN WITH XZ—VARIABLE
b) u, ODD WITH XZ—VARIABLE

d) 0.

Farr)y = Faq2)

Then the displacement (2.66) becomes

Fa (1) cosh £1x2

cosh =£2x2 , a=1,3

(2.79) ua(xi,t) + F,

(2)
uz(xi,t) = Hz(l)cosh £1x2 + Hz(z)cosh =£2x2

and equations (2.68)and (2.71) are reduced to

(2.79a) F1(2),1 + F3(2)'3 + H2(2) =0
2
Hy(1),a = HFa(1)

Fay,1 = Fu),s

The B.C. (2.74-76) takes the following forms:



2 5
-~ - 7 < =
2 2
-~ -— r =
23 7 E a3t By m] 52 =0
2 _
= ; 2 7
%22 = 2 Fry,1 * Faqey,3) F O W0 16 o,
From equation (2.62) we have
51 = 5~® ’ Pressure waves
(2.81)
52 = Vxe, Shear waves.
Therefore, if we let 61 =0 (i.e. Fa(l) = Gz(l) = 0),

equation (2.79) can be written as
ua(xi,t) = Fa(2) cosh £2x2, a=1,3

(2.82)
¢ - 3 3 -—
u2(xi,t) = H2(2) sinh £2x2, i=1,2,3

and the infinite P.D.E. (2.80 ) are reduced to

coe o= [ 22 S
(2.83) S,y = _H2(2)'1 + ) Fl(z)] S, o}

5.. = [H + 22 F.(2)] 5. =0

23 - H2(2),3 5 Fil l's, =

Chp = [)\(Fl(z)'1+F3(2)'3) + (A + 2u)H2(2) ]c2 =0
or

r.2 4u (A + 2) 2 2.1 == _
(2.84) 3¢ - SO0 (axl+ °x3)_i §1€1 Uy (¥p.%5.8) =0

= 1130

For the theory of order O (§l==El:=1) equation (2.84) is

identical to the results of Poisson-Cauchy [3] and

Hegemier-Bache [6 ],
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Case II Flexural motion

In the case of flexural motion, the following condi-

tions must hold:

(2.85) a) UqsUg ODD WITH x.,-VARIABLE

2
b) u, EVEN WITH X,-VARIABLE
c) Fa(l) = Fa(z) =0, a=1,3
d) =0.

Sa(1) = C2(2)

Then the displacement (2.66) becomes

(2.86) uz(xi,t) = F2(l) cosh £1x + F2(2) cosh £§x2

2
ua(xi,t) = Ga(l) sinh £1x2 + Ga(2) sinh £2x2
a=1,3
and
l —
(2.87) uq(xi,t) = Ha(l) cosh £1x2 + Ha(2) cosh £2x2
o =1,
If we let Ul = 0, then F2(1) = Ga(l) =0 (a=1,3)
and equation (2.86) becomes
' —-—
ua(xi,t) = Ha(Z) cosh £lx2, a=1,3
(2.88)
uz(xi,t) = F2(2) cosh i%xz

and the stresses (2.74-76) take the forms



0yy = [F2(2),l +H(2)]C, =0
9,3 = [Fy(p),3 * H3 ()1 Cy =0
0y, = [A(Fl(z),l + F3(2)'3) + (A + zmnz(z)] C, = 0.

The above equation can be reduced to equation (2.84).



CHAPTER III

REDUCTION OF SERIES-EXPANSION TO A
FINITE-POINTS APPROXIMATION

3.1 1Introduction

In this chapter an elastic plate with thickness 2bN
is being analyzed. N-subdomain thickness 2b with local
coordinates xj(j =1,2,3) will be related to a global
coordinates ﬁj(j =1,2,3) by a transformation. Hamilton's
principle and the truncation procedure used in Chapter one
will be applied in each subdomain. Continuity of the
stresses and displacements is required at each interface
dividing subdomains. Hamilton's principle gives us two
non-homogeneous P.D.E. coupling the zero and first
amplitudes distributions. The non-homogeneous terms are
stated at the interface of each subdomain. The finite
points approximation gives a discrete solution in the direc-
tion of the plate thickness (i.e. xz-variable). The points
are located at the top, bottom and interface of each sub-
domain. This technique will reduce the two non-homogeneous
P.D.E. to a system of Differential-Difference equation.
Dispersion Relationships of Harmonic Wave will be studies

for various values of ﬁ, the number of subdomain.
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3.2 Transformation and Partition of a Plate in (n)-
Subdomain

Recall Hamilton's principle and displacements obtained

in the first chapter:

(3.1) I (Gij,j-pui,tt) Sukdvdt=o, i,j5,k=1,2,3.
TV
- *® }—<
(3.2) u,(x.,t) = 2 ugm)(i ,t) cos ar (1-—£5, a=1,3.
i3 m—o a 2 b

We define a transformation

(3.3) X) = %X
X, =X, + P, where P_ = 2nb
2 2 n n
X3 = X3

which relate the global coordinate to the local description.
The figure below will show the plate is partitioned in

(n) -=subdomain.

TOP OF PLATE
// 2b
X
2 m j%ﬂr<; 2b
——Uppg———— == —- B . 4
X3/ F}\.n// 2b
7, s
—=-Uppp-————— == — - 4 —
R 2Nb
/
——Uy ——— e —_— /
Xz

BOTTOM OF PLATE



We shall proceed to analyze a plate of thickness

2bN. In each subdomain we have:
a. Hamilton's principle (3.1l) describing the motion.

b. The truncation procedure of Chapter I applied to
Hamilton's principle.
c. The truncation displacements u(m) =0, m> 1.

Therefore equation (3.2) becomes

(1)

_..(0) - LT
(3.4) ui(xj,t,n)-u (xa,t) + cosnTu (Xa,t)Sln X

2b T2

where the transformation (3.3) is used and n

describes the displacements in the n -subdomain.

d. The displacements at the interface which are con-

continuous (i.e.)

(3.5) u,

1(Xa’b't'n) = ui(xa,-b,t,n+-1), i<1,2,3

(3.6) u.(x_ ,b,t,n+1) =nu,(x_,-b,t,n+ 2), a=1,3.
i'7a 1 7a

Similar results can be obtained for the stresses.

3.3 Truncation and Finite-Point Method Application

From definition 1.1 in Chapter I, the general trunca-

tion procedure for the [N,l]-order is

(3.7) a) ujfn) =0 n>N
-(n) _ =(n)_ N
b) ul:] = vlj =0 n >N
2 Co 2 (n) _
c) ax_x_(l,j =1,2,3), at of u. =0

1]

(=]
In -
o
I
2
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Plain Strain will also be added to further reducing

the complexity of our problem, (i.e.) uz = O and

ax3( ) = 0. A new notation is now introduced,
(3.8) a0 _ ul(O) ) £ O _ F{o)

oD = u{l) , (1) _ F1(1)

(C) uéo) , g0 _ Féo)

¢ - uél) , g - Fél)

for the displacements and stress components. Hence,

equation (3.4) becomes

_ ..(0) (1) in
un(xl,xz,t) = u (xl,t)-bu (xl,t)cosrnr sin B x2
(3.9)
_ <, (0) (1) LT
Vn(xl'xz’t) =v (xl,t)-bv (xl,t)cosrur sin B x2
and
un+l(x1,x2,t)==u(o)(x1,t)-u(l)(xl,t)cosnv sin é%-x
(3.10)
_ .. (0) (1) ) T
vn+1(xl,x2,t) =v (xl,t) -v (xl,t)cos nT sin o X..
The Finite-point method at (x2 = b) reduces the above
equation to
a = u(O) + u(l)
n
_ .. (0) (1)
Ynep T U +u
(3.11)
v = (O v 1)
n
v = v(o) + V(l)

n+1l
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which represents points in the plates. The approximation
depends on the number of subdomains. If N increases, then
better results can be obtained from the above theory. Next,

the inversion of equation (3.11) yields

u(O) = % [un+l + un]
(1) _ 1

u =3 [un+l + un]

(3.12)

(0) _ 1

v -2 [Vn+l + Vn]
(1) _ 1

v -2 [Vn+l + Vn:I

which are the uniform and linear terms of the series

expansion. Similarly, the stresses can be obtained as

follows:
(0) _ -
F = %nh+1 °n
(1) _
F = 9h+1 Y 9
(3.13)
(0) _ _
H = Tn+l Tn
(1) _
H = Thel T T

Next, we are going to consider a truncation for N = 1,2
and q = 1 (which was derived in section 1.7, Chapter I) for
each subdomain then the finite-point method defined above
will give rise to a set of Differential-Difference equation:
Case 1 (N=1,g+l)/the zero and first order displacement
equations of motion for [1,1]-order truncation are given
in equations 1.31 and 1.32. Thus, if we substitute equation
3.12 in these equations, we are generating a Differential-

Difference operation as follows:



(3.14)

where

(3.15)

and

12

13

22

23

31

34

41

44

13 n+1l
B3 O | [0
|
© A34 .(Vn+l
O Py L
0] o) | :(on+l
o © %( n+1l
P3 © ;(On+l
o Py (Tn+l

x Bll +1-D
= ¢, B

2c D

511 - CEl Deg
x* Byy - Det
% (x2--2)Cl D1
%é(xz-2)cl Dl
c, 511 + x2 -




b; =
T
= 4b?
11 ° 2
T
(3.16)
5. = 2B
T
_ 4p?
tt T 202
CASE II (N=2,q=1) T

3

tt

Wl

i=1,2,3,4

Similarly, the zero and first order displacement equations

for N =2 were given in equations (1.34) and (1.3s).
if we substitute equation (3.12)

we get

(3.17)

where

(3.18)

12

44

Thus,

in the first two equations,

ar -
By, A3 O (Wppp + 9p)
Ayy Ry3 O Wy - 9y .
0 O Ayg| | oy *+ V)
O N Bag (Vo1 - Vn)
0 0 0 (5,1 + )
Py o o ( n+l Tn) 0
o Pj °© (Op41 ~ )
o 0 Py | | Oner * ™)
2 4 2 7. . = -
x° - =5 (4x"-7)(4-—)1 D, + 1 - Dy
Shia X
4 2 2, = 2 =
M - — (4x° = 7) 7] Dy + X7 - Diy -
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The Aij can be computed from equation (3.15) and
- 8b 1 7, =
Py =—3 [1+35 (4 - D]
1 uTZ 3 x2 1
(3.19)

- _ 8b 2 -
Py = =3 i + (4x° - 7) D,

w|=

The last equation of each of the equations (1.34) and
(L.35) are used in the decoupling of higher modes contained

in the first two equations of each of the equations (1. 34)

and (1.35). These modes can be written as
(2) _ b, 2 1 2(4x+w) (1) 1 _(0)
L I = pwr vyl 3b w1t Fyo
(3.20) ,
(2) _ by2 1 _2(0+4u) (1) _ 1 _(0)
unwt o=@ gl 3% Y2,1t b F1
where
(2) (0)
Fs F)
(3.21)
(2) _ L(O)
Fhoo=F

3.4 Dispersion Relationships of Harmonic Waves

Now, we investigate the dispersion relations of
harmonic waves in a plate divided in N subdomains and
governed by the approximate equation of motion in last
section. Equations (3.14) and (3.17) correspond to a
truncation [(1,1] and [2,1] respectively and can be

written in the form:



_ , L
12 P2 13 Pi3 i | Yn |
Ay B Aoz B3 ' Unel
(3.22) ’
B31 P31 B3y B3y Vu
P41 Bq1 0 TRag o Bgg  Vpyad
- - |
- o~
[— Py Py © © Gn‘|
. © © “P) P, | “h+l |
+ : ¢ =0
- 7P P3 © © ™
i |
. !
0 © Py Pa | | "n+l |
—_ B I -
and
_ - F -
B2 Bia B3 Bp3 Un
' "Ry Bxp By3 Ags Ynel
(3.23) |
B31 B3r A3y Byg 0 Yy
Bg1 Pa1 "Baa Bag! Vi
pl Pl (0] 0 O'n 1
(o] (o} -p P o] :
+ 2 2 n+1l ; =0
-p3 p3 o) 0 Tn %
| ° ° Pa Py n+l |

First, let us consider the case where N = 1 (one
domain) . Then for harmonic waves propagating along the

X axis, we assume

1



_ i{kxl-wt}
(3.24) (un,vn,: s T) = (Un,Vn,;n,Tn)e
Substituting this into the approximate equations of motions
(3.22) we obtain a set of algebraic difference equations

with constant coefficients in terms of Un'vn'zn' and Tn
where n takes the values between zero and N for a plate
made of N subdomain. Boundary conditions for the dis-

persion relationships require both surfaces of the plate be

traction free. For the case of N =1

(3.25) r. =T, =0

and the Differential-Difference equation (3.22) becomes

- — -~

= = = = -
Ao By Ayzr Bq3 Y [0 "

A.., A.., A.., A U 0

22 22 23 23 1
(3.26) [ _ _ _ _ =

Azpr B3yr A3y Agy Yo 0

Bgrr By “Rggr Byy V1 0
~ JL L

The determinant represents the approximate frequency spectrum
for N =1 and [1,1] (the general truncation procedure); the
coefficients in the above matrix are functions of Kij(k,m),
the wavenumber and frequency. Now let us consider the cut-off
frequency modes which can be shown as

lim A..(k, 1) .
k-0 )
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It reduces the coefficients of equation (3.15) to

el
|
]
I
|l
!
il
|
(@)

13 = Bop T B34 T Ay T
Byy = Ay = O
Ay, = Q% -1
Ayyg = 32 - x2

Therefore, we can write equation (3.26) in the form:

—~ -
2%-1 0 0 o]l [ v
0
o 0 a2 202 U,
(3.27) = 0.
2 2
Q 20 0 0 Vg
0 0 q2-x? 0 v,
- - L -

The determinant for the above matrix leads to
2
ctra?-1raf-x%1 = o

which is an equation of order eight. Thus the roots will
correspond to the lowest cut-off modes of uniform and

linear amplitudes distributions. These are

Ql 2 =0 = u(o) SYM = EXTENSIONAL

03 4 =0 = v(o) AN-SYM = TRANSVERSAL
(3.28) !

Q = + 1l = u(l) AN-SYM = THICK-SHEAR

5,6

~ - (1)
'h7'8

|
|+
X
m
<
(é)
il

= THICK-STRETCH.



Next using equation (3.23) as the approximate eguation

of motion, then equation (3.24) for N =1 leads to

~ B B A a -] (v )
12’ 12’ 13’ 13 Yo
-Z—\ ’ i ’ K ’ Z‘=\ U
(3.29) 22 22 23 23 1 -6
Ajqr Bypr —Bgy A3y V1
Agye BAgrr “Byyr Bsg Vs
. et - _J

and represents the approximate Frequency Spectrum for N=1
and [2,1] (the general truncation procedure). The cut-off

frequency modes (wavenumber —> 0) which can be shown as

(3.30) lim A,. and lim B.. and B, .
k+o 13 k=0 12 44

But we have

o By, = Ap5!
(3.31)

lim [g = E ] ’

Hm IBay = Bgq

therefore equations (3.26) and (3.29) become identical and
the same cut-off modes carn be generated.

Consequently, for a general truncation of order [N,1] and
N = 1, the exact cut-off frequency can also be derived. 1If
N (the number of subdomain) is increased, then higher
modes will be generated by this process.

Next, we consider N = 2 (two subdomain), then

ecuation (3.23) becomes



(B, By, O Ay A O B O-i i Y |

'-Ryp By O Ay By 0O Pzé !
Ryp B31 O B3y A3y O Py O vy

S A4 By O By, By, 0 0 By v,

(3.32) ) % -0 .

O -Byp Bjp O 213 A3 P O vy

. O TRyy By O By By 0 -Ry LY

' O RA3p B3 O A3y A3y Py O %

i- O By Py O By By O 541 __Tl_

Using a harmonic wave propagating along the Xy axis
(equation 3.24) and considering the cut-off frequency
modes (k -+ 0), then the determinant of equation (3.32)

can be written in the form

’-1 o o o 0 0 p, O
l !
; 0 o o o 20° o o p,
b2 202 o0 o 0 0 p, O

2
0 0O o O°-x 0 0 o p;
(3.33) 2 ! =0 .

o 0°-1 o 0 0 0 p, O |
o) o) 0 0 ® 202 0 -p; i

0 a? 20° o 0 o -p, O

0 0 0 0 ?-x® o o p
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This generates six cut-off fregquency modes. Hence, a plate
divided into two subdomains will give rise to two addi-
tional modes corresponding to extensional and flexural
motions respectively.

Finally, we are going to study the Frequency Spesctrum
derived by the technique of this chapter. The approximate
Frequency Spectrum for N = 1 is obtained by taking the

determinant of egquation (3.26) which 1is

12223834

>

A

(3.34) det.= A

41 A41 13822834 + BygaP31R128)3

- A44A31A13A22 =0.

The above coefficients are defined in .equation (3.15).
The dispersion curves of equation (3.34) are computed and
shown in Figures (3.1). Hence, for N = 1, we generate
the first and second dispersion curves of extensional and

flexural motion.

3.5 Longitudinal Strain Problem

Due to the symmetry in the Xq s Xy coordinates, the
displacements U =uy = 0 and u, =u, (x2,t). Thus,

the stresses become

(0)

|
>
+
N
t
o]

22

|
Q
1
o
o

911 <

and Hamilton's principle in section (3.2) becomes
b

L)

(3.35) (o
b

22,2 P Uy pg)buydldt =0
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to

and the displacements of egquation (3.2) are reduced to

X

(3.36) u2(§2,t) = Zgu(n)(t) cos %;(1 - T%)'

Next, the substitution of equation (3.30) in equation

(3.35) gives (¥n)

(3.37) M () 4222 M) + FPg) 0, o =2
) e = A+ 2u
’ 2 - p
where
(n) I n+1
(3038) F (t) - b [‘vx(bot) + ('l) Ux(—b,t)]

which represents the (n)-order displacements equation of

motion.

The transformation of coordinates (3.3) takes the

form
(3.39) Xy = x2 + Pn R Pn = 2nb.
GRAPH
ToP
Fn |P
l n_|™n > TYPICAL DOMAIN

¢

BOTTOM




Again, we shall proceed to analyze a plate of thick-

ness 2bN with spacial variable X and time. In each

subdomain we have

a) Hamilton's principle (3.35) describing the motion.

b) The truncation procedure of Chapter I as

v™ ) =0, n>1

(

where vzn)(t) = v(n)(t).
Setting the condition v(n) =0 n>1 1in equation

(3.37) and equation (3.38), we get

3.40) v ey + pO () = 0o

v ey + cgafv(l) ) + FB ¢y =0
where
F(O) (¢) %- [0 (b,t) - 0 _(-b,t)]
F o) =L o bt) + 0 (-b,0)].

Similarly, equation (3.36) becomes

_ ., (0) n (1) LT
(3.41) vn(x,t) = v (t) + (<1) v (t) sin 55 ¥

where the transformation in equation (3.39) is used and
n describes the displacements in the (n)-subdomain.

The finite-point method at Xy = b reduces eqguation

(3.41) to



{(3.42) V.=V + Vv

v = v + V
n+1

and the inversion of above equation is

(3.43) v =1y s v_]
(1) _ 1
v - 2 [Vn+l - Vn]

Similarly, the stress can be derived as follows:

(1) 1
(3.44) F (t) = ) (Jn+l + O'n)
(0) [y o .2t
F (v) = 5 (In+1 ~ %)

Substituting equations (3.43) and (3.44) in zero and
first order displacement equations of motion (3.40) yields

a set of differential-difference equations:

2 2
(3.45) AP SN + 5 [Oh41-%]1 =0
2 2
- 1 =T - =
L [Vn+1 Vn! + b - n+1 On] ©
where
2
2 d T
(3.46) 25 = ==, C = =—— C
L2 = £2 + c2

Next, we investigate this dispersion relationship of

harmonic waves governed by the Differential-Difference

equation (3.45) by assuming a harmonic wave in time.



(3.47) vl = TV T e i,

then (3.45) becomes a Difference equation as follows:

2, - n 2
. X ! - =T - =
(3.48) ‘vn+l * an + (=D b Tn+l Tnl O
2 1 n 2
atfv +1 Vpl v (=17 g [Tn+l Tn} =0
where Qz = (12-c2)

The Boundary conditions for the dispersion relationship
require that both surfaces of the plate be traction free,

i.e.,

3 =
(3.49) To 0

T =0.
N

Three cases are going to be considered, a) N =1

which corresponds to one region. b) N = 2 and

c) N = 3.

Case 1 (N = 1)

The Boundary condition (3.49) 1is reduced to

(3.50) T, =0

T. =0 "FREE VIBRATION"
and substituting the above in the Difference equation

(3.46) vyields



2 -
(3.51) STV, o+ v

1 o! = 0O
2 2 2 2
0 - 1 = = 4 -
Q [vl Vo ! o, 0 (& c) ,
c == c
- 2b L
or
- - Al
‘&'2 '1."2 VO O
(3.52) =
-QZ 02 v1 o)

The determinant of the above matrix 1is
2
(3.53) det.= »° (»° -c?) = 0.

The roots will correspond to the first and second modes of

vibrations. These are

(3.54) n

il
(o]

=
Il
H.
N
&
=3
0
2]
o
0
|
0

Case II (ﬁ = 2

The Boundary condition (3.49) is reduced to

(3.55) T. =0

and substituting the ecuation (3.47) in the Difference

equation (3.45) vyields



[e)
~lJ

(3.56) bx®fv, + vyl -2 T, =0
b?lV, + vV ]+ 2 T, =0
R 1 1
e[V, —v.] -2 T, =0
=01 0 1
bazrv -v,l1 -2 T. =0
) 1- 1
or
-
2 2 N n
L 3% (0] -1 I)Vo
(0] W mz 1 bVl
(3.57) =0.
-0 02 0 -1 bv,
0 _q? o2 -1 21,
- - - -

The determinant of the above matrix is
det. = w2 (x?-c?) (202 -c?) = 0.

The roots:

(3.58) 2y, =0

W34 T L€

correspond to the first and second modes of vibrations

and

s - S
(3.59) vog = £ 5

is a damping frequency due to the non-homogeneous term of

ecquation (3.48).
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Case III (N = 3)

The B.C. (3.49) is reduced to

(3.60) T, =0

and substituting equation (3.56) in equation (3.46) gives

r 1 r -
" 22 0 0 -1 0 bv
0
(0] '12 nz (0] 1 -1 b Vl
(0] 0 wz wz (0] -1 b v2
(3.61) =
e o2 o o -1 o bv,
0 -q2 2 o -1 -1 21,
0 o IR o -1 2T,
L J L |

The determinant of the above is a polynomial of order
eight and its roots represent the naturals and damping

frequency of our system. Hence, the determinant is
det. = w2(4w2-—c2)(4w2-3c2)(m2-c2) = 0.
The lowest and highest roots are

(3.61.1) Wy, =

“jp=tce. c=3p

and correspond to the first and second modes of vibra-

tions.



The remaining roots are

(2.61.2) tge = £ ¢/2

X v .
28 +/3c/?2

They are the damping frequency modes.



CHAPTER 1V

TRANSIENT WAVES DUE TO IMPACT

In this chapter impact boundary conditions are applied
at the top of a plate. Free stresses are applied at the
bottom of the plate. Similar conditions had been used by
Kim-Moon [10] but in composite plates. The Differential-
Difference equations obtained in Chapter III are reduced to
difference equation using symbolic technique. A solution
for this difference equation for wvarious N (the number of
subdomain) will be developed under plain strain and longi-
tudinal strain conditions. Then, application of this
solution to the impact boundary conditions mentioned above
all give rise to a set of P.D.E. involving the 3 and t
variables. Various numerical technigues can be employed to
solve these ,P.D.E. such as transform technicgues and

computer application.

4.2 Plane Strain Transient Wave Due to Impact

In section 1.7 of Chapter 1, we found the six P.D.E.
needed for [1,1] and [2,1]. 1In Chapter III
we reduced these six P.D.E. to a Differential-Difference
equation. These two cases will be studied under impact
conditions. 1In the case of [1l,1] the Differential-

Difference equations (3.14) are:
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where

(4.2)

and

(4.3)

31

41

D

11

A13 © b(un+].
Rpz O 0 Plugy,
O A3y Plvpy
o A44f |b(vn+l
22 2
Sy 7 Dtt = att and
= (\+20Dy; - ulzp)
_ =2U
=% 1P
- 24
5 S1P13
_ -1
= WDy = PGy Diy
= (A + zu)Dll—pDtt
_2
=% ©1P1
-2
=5 <121

o
n+1

c
n+1l

.
n+1l

Tn+l

+u ) 2(cn+1
-u) . 2( n+l
+v ) 2(0n+l
Vn) 2('rn+l
B L
P Dy
2 -1
- P Sy Dey
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Let Et and EX behave as constants (Symbolic

technique) then the Differential-Difference equation (4.1)

becomes a Difference equation. Assume a solution in the

form

in6
(4.4) [un,vn,cn,Tn] = [A,B,C,D]le .

Then equation (4.1) becomes

o a, a, o |[ba+el?®a]
0O Ay, Ay O b(1-e-2% a
Ay, O 0 Ay, | |Pa+el?d s
Ay, O o Ay, | |pa-e%s
(4.5) o1+ ei28 ¢
2(1-e%2% p
¥ 2(1-eize)c =0
2(1+-eize)n
or N
(az-kbzz), (a3-+b3z), o ., 0 b A
(4.6) (a, +byz), (a; +b;2z), o, O DB _ .
0 ’ o) , =(1-2), 0 2 C
|0 , o) , o ., (1+2)] | 2D
where
(4.7) z = 128

and



= s- e - _»’,1'— 2 z‘_ ~
ap =Ag ~Rgg 772Dy - (20 () TH  egDy -7
= - = T2 . 2u
az—Al2 A13 [(\+2u)Dll-u(2b) + 5 chl—p
(4.8) 2X
= - - r 1! — — -
a3 =R3y ~A34 = L(x+20)Dy) - 1Dy - P Dy ]
2U -1
- - = - r‘l - ————— -
Ay =hyp ~By3 (D1 =% Py - PC, Dy
_ - - g (= 2 2} -
by =24y +2,, = [uDy; - (2w (55 B ©1P1 - P
- - U 24 -
by=A1,*A15 = [(x+20)Dyy ~ulzH) " - 5 Py =P
(4.9) i 22
by=Aj) +A5, = [(M2u)Dy ) +5- €Dy =P Dy, |
= = 24 —oclL
by=Ryy+Ayy = [ubyy +57 Dy - P S, Deel.
The determinant of equation (4.6) becomes
_ 2 2
(4.10) det. = (1 -27)(az” +dz+c) =0
where
a = [byb, - bb,]
(4.11) d = [alb2 + a2b1 - a3b4-a4b3]
c = [ala2 - a3a4]
The roots of equation (4.10) give us
zl = =1
22 = 1
(4.12) .
2y = Ret Y
- Re—lt

tt]

tt!



where
R = w/a2-+52 and 2 = -d
(4.13) A
tan | = 5 2 = (4ac-—d2)1/2.
Recall equation (4.7) which is z = e128 , then equation

(4.17) leads to

i26
e

=.t]_
(4.14)
: +3 0
e129 = Re—1Y¥
or 91 =0 where
9, = /2 o+ 8% =1
(4.15)
93=‘11/2 tanxi;:g
64 = -y/2 a =cos {.

At this point we can observe that ei(i:=1,2,3,4) are
the four independent roots necessary for solution (4.4).

Hence, we can write this solution in the form

- ] inT
[un'vn'gn'Tn] [Al,Bl,Cl,Dl] + [A2B2C2D2Je

(4.16)

iny -iny
+ [A3B3C3D3]e + [A4B4C4D4]e

where a = cos §y 1is an infinite cperator resulting from
the Symbolic technique.

Now, by substituting equation (4.16) in eguation
(4.4) we will have a relationship between the arbitrary

constants as follows:



(iflT)

Ma

where

(4.18)

fa,+b,z

+b. 2z

4

l]'

1y

-1y

4)

’

(1+2

4)

inm
e

iny

+

-in:
e L.
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Next, we will examine the impact problem where a load

is going to be applied at the top of the plate in the

following manner:
I (Xyet) = qlxy.t) lxl| <xy0 0<t <ty
(4.19)

g =0 ; I, | > X, or t >ty

which is a transversal loading. The other stresses are

(4.20) o_ = TO = T_ = 0.
N+1 N+1
q( X“t)
GRAPH:
TOP
Pn
2b TYPIC A SUBDOMAIN (F.41)
IMPACT LOADING

%

BOTTOM %,

—
I/// X4

X3
Using solution (4.16) which is

_ inmT
(4.21) [un'vn'gn'Tn] = [Alalclnl] + [A2B2C2D2]e

inv 4 ra,s,c,p,le" Y

,
+ 'a_B,C,D,]e 4B4C4P, !

3737373-

and apply the B.C. egquation (4.19) to it, we get



+
N
+
N
|

= a(xq,t)

1 2 3 4
Dy + D, + Dy + D, =0
(4.22) -
.r— b . - . _. .
C. 4+ CeiiN+L]m el[N+1]h + C.e ilN+1]y _ o
1 2 3 4
SN | s EAT -1 N K
D, + Dzel._N+lJW + D3e1[N+1]\lt + Do ifN+1]9 _ o .

Therefore, from equations (4.17) and (4.22) we have

eight P.D.E. of infinite order with 8 unknown Ci(xl’t)'
Di(xl’t) where i=1,2,3,4 which can be solved
numerically. The coefficients of the displacements
Ai(xl't)'Bi(xl't) where 1=1,2,3,4 can be found by
using equation (4.17).

Next, in the case of N=2, the Differential

Difference equations (3.17) are

_ < _
O By, By o (ppq +uy)
O Ay, By o . | (upqy-uy)
Ayp O o A1g (Vhe1 ¥ V)
Ay O 0 Baa (Voe1 = Vn)
- AL _
(4.23) - _
Py 0 o 0 p (1)
(0)
N o} 1/b o} 0 H =0
o) o} 1/b o F(O)
(1)
0 (@] 0] P4 H

where



Cl + c2 + C3 + C4 = q(xl,t)
Dl + D2 + D3 + D4 =0
(4.22) -
irN iMN 1 —i :
c. 4+ ¢ el_N+l]r + C el{N+l]v + Ce i[N+174 =0
1 2 3 4
.'-— 1 -r- -. =t K
D, + DzelLN+1JF + D3elLN+l]w + D,e iIN+11y _ 0.

Therefore, from eguations (4.17) and (4.22) we have

eight P.D.E. of infinite order with 8 unknown Ci(xl't)’
Di(xl't) where 1=1,2,3,4 which can be solved
numerically. The coefficients of the displacements
Ai(xl't)'Bi(xl't) where 1=1,2,3,4 can be found by
using equation (4.17).

Next, in the case of N=2, the Differential

Difference eguations (3.17) are

_ - _
O By, Ay O (Wppp +uy)
0 YY) Ass 0 (un+l"un)
A31 o 0o A14 (Vn+l-Fvn)
Agy O © Baa (Vo1 = V)
- AL _
(4.23) _ -
P, 0 0 0 p(1)
(0)
. 0 1/b o} 0 H -5
0 0 1/b o p (O)
(1)
0 0 0 Py H

where



2 2-
_Mom(O +20)=4 (4 +u) 7 T, 2
B, T T30 i3 T 2 Dyy tHizp) —P Dy
(4.24) : , , ,
_Tprcgi24(4) + ) 2 N2
Bag | Sur Dy m(i+ 200 (5p) =P Dyy

and the Ai can be computed from

1/‘b+.2_._(i)£ELD

P < 3 (N +2wT °1
(4.25)
_ 2 (4)+y)
Py = 1/b + 3 T Dl

If we replace Auy and A12 by Baa and B12 in
equations (4.8) and (4.9), the solution (4.16) can be
applied to the above problem. Therefore, Case I (N=1)

an Case II (N =2) are identical except for the coefficients

B44 and 312‘

4.3 Longitudinal Strain Transient Wave due to Impact

In Chapter 3, section 3.5 we set the symmetrical con-
ditions with variables Xq 0 Xy which reduced the three-
dimensional problem to one spacial variable X, and t,
the time variable. The Differential-Difference equations

(3.46) are

e g [N)
[aa |
Q

un+l'-un] +
(4.26)

o'In
[ §
Q
o]
+
'—l
1
3

L [un+l-un] + =

where



2 e
T dt
(4.27)
2 _ 2 2 _ T
L™ =+£ +C ’ C 5 CL

Let Bt behaves as a constant (Symbolic technique),

then equation (4.26) becomes a Difference equation. We

assume a solution in the form of

_ i2n8
(4.28) [u,.0.] = [A,B]e ,
then egquation (4.26) becomes
22 1+er?0 |, _(1-o1i28 || pa
(4.29) . , = 0.
L2 (1-e%2% (14 e)t28 2B

For A and B arbitraries the determinant must be

set to zero, which yields

(4.30) det = (e72% _ o1P) (120 _ -iBy) _ 4
where
2
(4.31) cos B = (J% i15 +1).
c dt

The roots of equation (4.30) are

@
i

Q
1 r-‘/2

0, = -B/2.

Therefore, equation (4.28) has two independent solutions

and by superposition, we get

_ inf ,.-in8
(4.32) [un,cn] = [Al,Bl]e + [A2,623e :
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Now, we let the Boundary conditions be

&
]

-p(t) t >0

(4.33) c. =0 t <O

o)

N

o,

The figure below will have a better representation of the

B.C. which give rise to a transient wave.

FIGURE:

p(t)

TOP § V¥ 4|
=z
(F a2) Pn TYPICAL SUBDOMAI 2\b
BOTTOM
Recall solution (4.32) which is
(4.34) [u_,0 ] = [A,,B.]e®® 4 [a_,B.le"irn?
n’ ' n 1'71- =202

1 a2
where cos B = (E_ —s + 1) . Thus, if we apply the B.C.

2 dt

(4.33) to the above equation yields



Bl + B2 = -p(t)
(4.35) _
ifN ]2 -ifN ]8
Ble + B2e = 0
or
By = -[B,+p(t)]
(4.36)
[1-cos 2(N )21B,(£) = -p(t) .

The above equation gives us two infinite O0.D.E. depend-

ing on N, the number of subdomain. Next, we will consider

two cases 1-\-I= 1,2.

Case I (ﬁ: 1)

Using this condition, equation (4.36) becomes

B, = -[B,+p(t)]
(4.37)
(1 - cos 25)B2(t) = -p(t) .

Thus, substituting equation (4.31l) in the above result,

yields
By (t) = - [B,(t) +p(t)]
(4.38)
———dzz(l + L %;2:-) B,(t) = % p(t)
dt c

which is the 0.D.E. needed to solve Bz(t). From B2(t)

we get Bl(t). Hence, the stress becomes

(4.39) o, = Bl(t)einB + Bz(t)e'inB



[¢)
[\)

and the displacements can be obtained using ecuation

(4.29).

Case I1 (IE =1)
Using this condition, equation (4.36) becomes

Bl = -[B2-+p(t)]

(4.40)
(1-2 cos?2)B,(t) = - = p(t)

and by substituting equation (4.31) in the above result,

yields
4 2
[2c—4 ilz-+ 4C-2 £L§ + 1] B2(t) = p(t)
dt dt
(4.41)
By = -[B,+p(t)]
which is the 0.D.E. needed to solve Bz(t). From Bz(t)
we get Bl(t). Hence, the stress and displacement can

be found using equations (4.29) and (4.36).
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