


w

urea/ama.

:ESM
hga‘i'-¢@5.; 31:15:

Unstrmity

           

    

   
3 1293 003838

2:" lnnnnwummululumum

MICHIGAN STATE UNNERSFW

LIBRARV

-

1-

 

This is to certify that the

thesis entitled

SOME APPROXIMATIONS IN VIBRATIONS AND WAVE MOTION

OF ELASTIC MEDIA

presented by

MICHEL YVON RONDEAU  

has been accepted towards fulfillment

of the requirements for

PH.D.Jegreein MECHANICAL ENG.

5 Major profgr

  

DateW

0-7639



 

MICHIGAN STATE UNIVERSITY

LIBRARY

OVERDUE FINES ARE 25¢ PER DAY

PER ITEM

Return to book drop to remove

this checkout from your record.

  

 

  



d
I
‘
I
Q
I
I



SOME APPROXIMATIONS IN VIBRATIONS AND WAVE MOTION

OF ELASTIC MEDIA

BY

Michel Yvon Rondeau

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Engineering

1979



ABSTRACT

SOME APPROXIMATIONS IN VIBRATIONS AND WAVE MOTION

OF ELASTIC MEDIA

BY

Michel Yvon Rondeau

This paper is a study of wave propagation phenomena in

a linear, elastic, isotropic, homogeneous layer. A layer is

defined as an infinite plate bounded by a pair of parallel

planes at x2 = t b as referred to a rectangular coordinate

system Xi(i = 1,2,3). The motion is described by the inte-

gral method of Kirchhoff [ll], derived through Hamilton's

principle, which serves as the starting point for the various

approximations to be developed.

In chapter one, a series expansion procedure coupled with

a new truncation concept is used to construct two-dimensional

partial differential equations for motions in the layer.

Frequency spectra associated with traveling waves in a traction-

free layer are studied in detail and compared with the spectra

predictions of Medick [l4], Nikodem [18], and that of the

three-dimensional theory [1].

These two-dimensional layer equations also enter into the

developments of chapters three and four. In chapter two,

wave propagation problems are approached from a different

viewpoint employing a symbolic technique. Applications are

made to one, two and three—dimensional problems. This
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technique will also be employed in chapter four where we

discuss transient waves due to non-homogeneous boundary

conditions.

In chapter three we subdivide a plate into (n) -

subdomains. In each subdomain Hamilton's principle and the

truncation procedure used in chapter one will be applied.

This will give us two non-homogeneous P.D.E. coupling the

uniform and linear amplitudes distributions. The non-

homogeneous terms are stated at the interface of each sub-

domain. To further simplify the analysis, a new technique

called Finite-point approximation is introduced. It gives a

discrete solution in the direction of the plate thickness

(i.e. x2-variable). The points are located at the tOp,

bottom and interface of each subdomain. This technique will

reduce the two non-homogeneous P.D.E. to a system of

Differential-Difference equation. Finally, a solution in the

form of a travelling wave with free traction at the top and

bottom of the plate will generate an approximate Frequency

Spectrum. The number of dispersion curves that we obtain

through the spectrum depends on N the number of subdomains

in the plate.

In chapter four, impact boundary conditions are applied

at the top of the plate and free stresses are applied at the

bottom of the plate. The Differential-Difference equations

obtained in chapter three are reduced to Difference
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equation using the Symbolic technique of chapter two. A

solution for the Difference equation is developed for

arbitrary M (the number of subdomains). Utilization of

this solution in the impact boundary conditions mentioned

above gives rise to a set of P.D.E. involving variables xl,t.

These equations may readily be solved by transform

techniques or numerical means.



A DEDICATION

This thesis is dedicated to my wife, Ah-ling, without

whose encouragement and confidence this work would not have

been completed.

ii



ACKNOWLEDGMENTS

I wish to thank Professor Mathew A. Medick whose

counsel and encouragement helped me establish a bridge

between my earlier education in mathematics and the exciting

and challenging problems abounding in physical phenomena.

He introduced me to the creative use of intuition in problem

solving. He first kindled my interest in elastic wave

guide theories in his lectures, and subsequent encounters,

he helped me to identify and shape the direction of my

dissertation research. I am grateful for his guidance and

encouragement, and most importantly, for his faith in me.

iii



TABLE OF CONTENTS

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . Vi

CHAPTER ONE . . . . . . . . . . . . . . . . . . . . . . 1

Introduction . . . . . . . . . . . . . . . . . . . 1

Series Expansion of the Displacement . . . . . . . 2

Derivation of the (N)-order Equation of Motion . . 3

Derivation of the (N)—order Strain-Displacements

and Stress-Strains Relations . . . . . . . . . . . 5

Derivation of the (N)-order Strain Density and

Kinetic Energy . . . . . . . . . . . . . . . . . . 7

Truncation Procedure . . . . . . . . . . . . . . . 8

The Truncation Application for [N,q] = [1,1],

[2,1] and Arbitrary . . . . . . . . . . . . . . . . 10

Frequency Spectrum . . . . . . . . . . . . . . . . 14

CHAPTER TWO . . . . . . . . . . . . . . . . . . . . . . 28

Introduction . . . . . . . . . . . . . . . . . . . 28

Symbolic Method to Solve the String Equation . . . 29

Symbolic Method to Solve the S.H. in an Elastic

Layer . . . . . . . . . . . . . . . . . . . . . . . 34

Symbolic Method Approximation to Solve Three-

Dimensional Wave Problem . . . . . . . . . . . . . 39

CHAPTER THREE 0 O O O O O O O O O O O O O O O O O O O O 4 7

Introduction . . . . . . . . . . . . . . . . . . . 47

Transformation and Partition of a Plate in

(N)-Subdomain . . . . . . . . . . . . . . . . . . . 48

Truncation and Finite-Point Method Application . . 49

iv



Dispersion Relationships of Harmonic Waves

Longitudinal Strain Problem .

CHAPTER FOUR

Introduction

Plane Strain Transient Wave Due to Impact

Longitudinal Strain Transient Wave Due to

BIBLIOGRAPHY

Impact

54

60

7O

70

70

78

83



SYMBOLS

CHAPTER ONE

u .

1

C
I

m

x m

U 5

II
I

displacements

strain tensor

stress tensor

(n)-order amplitudes of the cosine distributions

(n)-order amplitudes of the sine distributions

the (n)-order average thickness distributions

(n)-order face traction

the plate strain energy density

the plate Kinetic energy density

(n)-order strain energy density

(n)—order Kinetic energy density

vi



(n) _ In) (n) = .. .

e — 111’l + u3'3 ~ (n)-order cillatation

Sn = n'r/Zb

C = l E shear velocity

T 0

CL = (X+d)/o 5 pressure velocity

v = Poisson ratio

2 _ 2 2

x — CL/CT

x 5 frequency

k E wavenumber

T CT

2 = 32'k

T

c1,c2 E correction coefficients

,2 _ 2 ‘2 2

. — 5X + 02 + 53

CHAPTER TWO
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u
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SERIES EXPANSION-METHOD WITH TRUNCATION

PROCEDURES FOR APPROXIMATION THEORY

1.1 Introduction
 

In this chapter we will use the general procedure for

deducing approximate two-dimensional equations for elastic

plates from the three-dimensional theory of elasticity which

was introduced by Mindlin (16) based on the series expansion

methods of Poisson (23) and Cauchy (3) and the integral

method of Kirchhoff (11).

Legendre orthogonal polynomials were first used by

Mindlin-Medick (18) as a basis in their series expansion.

They constructed a 2nd-order extensional plate theory that

for the first time exhibited and accounted for complex branches

in the frequently spectra. Later Lee-Nikodem (18) repeated

the development of Mindlin-Medick using the simple thickness

modes as orthogonal basis.

In this chapter, representing the field variables by

fourier series, we briefly sketch the conversion of the

three-dimensional field equations to two-dimensional partial

differential equations. These results were previously obtained

by Lee-Nikodem (14). A new formulation is introduced based

upon a redefinition of the nth order stress—strain relations.

A new truncation procedure is then used to generate appropriate

plate theories.

Frequency spectra predictions of the new theories are

obtained and compared with those of previous theories and

with exact results where available.

1
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1.2 Series Expansion of the Displacement
 

We first need to define the coordinates system and

orthogonal basis to be used. Consider an infinite plate

bounded by a pair of parallel planes at x2 = i b as

referred to a rectangular coordinate system xi(i = 1,2,3).

The thickness of the plate will be in the direction of x2

and the displacement will be expanded using an orthogonal

base ¢n(x2). Thus, the finite domain [-b,b] restricts

our choice to Legendre or Fourier analysis. In this

chapter we let ¢n(x2) = cos £1 (1 - 52). Hence, the
2 b

displacement becomes

(D

x
_ (n) nn ._ 2 . =

ui(xj,t) - E ui (Xa’t) cos ——-2 <1 —-—-b> 1,) 1,2,3 (1.1)

=0 a = 1,3 }

Using the orthogonality of the base we can write the

amplitudes distributions as follows:

b

i(n) (xa’t> = %/ ui(xj,t) cos 321- (1 - f52->dx2 .

-b

u (1.2)

The ui(n) are the amplitudes of sinusoidal distribu-

tions of displacements across the thickness of the plates.

For convenience, however, they will be referred to as

n-order displacements. Since the plate is isotropic in

this analysis, motion symmetric (extensional) and antisymmetric

(flexural), with respect to the middle plane may be considered

separately. In the case of extensional motion, only those



components of displacement ui(n) are retained for which i + n

is odd. Similarly, i + n even give rise to flexural motion.

In-plane amplitudes distributions are called compres-

sional modes and the one normal to the plane are called

face-shear modes. In the case of compressional modes we

(0) (O)
as extensional and transversal modeshave ul and u2

and ul(l) and u2(l) as thickness-shear and thickness-stretch

(0)
modes. For face-shear modes, we have u3 as shear mode

(1) as face shear modes. Further explanations ofand u3

their physical meanings can be found in Medick-Mindlin [18].

1.3 Derivation of the (n)-Order Equation of Motion

The motion is described by the integral method of

Kirchnorf [11] which is derived through Hamilton's principle

and become:

jf }{(Oij,j-pui,tt) duidvdt = 0 AD

T V

(1.3)N

H s

N s D
)

Recall Equations (1.1)

m x

ui<xj,t) = Z uicn) (xa,t) cos 9:211 <1 - 172-) (1.4)

which are the displacements equations. Substituting

Equation (1.4) into Equation (1.3) yields
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(1.5)
(n) —(n) l (n) (n) _

f [[Tijd - SnTiZ + 5 Pi - pui,tt] (Sudedt — 0

T A
n=0

where

b
x x

mn _ _2 El _ _2 _ (1.6)
f cos 7— (1 b) cos 2 (1 b) dx2 - anmb

-b

b x x
mn 2 . nn 2 _

f 5.111 T (1 "' '15-) 8111 T (l " ‘6') dXz - (Snm

-b

b
X

x .

. mm 2 nn 2 _
Sin 3— (1 - 15—) cos 7— (1 - 3-) dx2 — Anmb

-b

.. 21
Sn ‘ 2b ‘ (1.7)

and

b x

(n) - £171 .. .3.)Tij —f Oij cos 2 (l n dx2 (1.8)

-b

b x

-<n> .. - 9.1 - .2Ti2 -f Oi2 $111 2 (1 b) dx2

-b

i = 1,2,3

(n) _ _ n+1 __ =
Fi — 012(bixd't) + ( 1) Oi2( bixa't) a 1,3

which are the (n)-order average thickness stresses and (n)-

order components of face-traction. Thus, (Vn) and duén) # 0

Equation (1.17) gives us
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(n) _ - (.n) _l_ (n) _ (n) _ (1 9

Tij,j Sn 12 + b Pi pui,tt ’ 0 I

which represents the (nl-order stress equations of motion.

1.4 Derivation of the (n)-Order Strain-Displacements and

Stress-Strains Relations

The three-dimensional strain-displacements relations are

_1 ..__

eij - 2 [ui,j + uj,i] , 1] - 1,2,3 (1.10)

Then if we substitute the displacements Equation (1.4),

Equation (1.9) becomes

.- c” (n) nw _ x2 ~(n) . _ x2
Eij - Z Eij C03 ‘2— ( -b—'> + Eij Sln ( '8')

n=0

where

(n) _ l (n) (n)]
Eij - :— [ui’j "I' 11in (1.11)

—(n) 3n (n) (n)
.. = . . + . . .

81.3 T (521“) 623111 >

The above Equation (1.11) represents the (n)-order strain-

displacement relations.

To obtain compatible n-order auxiliary stress-strain

relations we start with the stress-strain relations for

isotropic medium in the form:

0.. = 151] ijekk + Zuei. . (1.12)

J
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where 1,; are lame constants.

Combining Equation (1.11) to above we obtain

m
(1.13)

_ 2:010m) £11 _ :2 -(n) . mt _ x2
Oij -1j cos 2 < b) + Gij Sln 3—- (1 I?)

n=0

where

(n) _ (n) (n)
Oij - Aaijekk + Zusij (1.14)

l—(n) _ i-(n) -(n)
Gij - Aéijekk + Zueij .

This represents the (n)-order auxiliary stress-strain relations.

At this point, if we substitute Equation (1.13) in the first

two equations of (1.8) we get

1 T(n) __ C,(n) —(n1)

ETij '- Oij + Z Amn 0ij (1°15)

m=0

1 -—(n) __ —(n) dim)

ETi2 - +:::AAnm

where Anm = 0 for n + m = even;Ann1= 4m/(m2-n2)n for n + m =

odd. Then the (n)-order stress equations of motion can be

written in terms of the (n)-order auxiliary stress equations

of motion.

(n) —(n) -(m) (m)

Gij,j " Sn 012 +2 Anm Oij,j ‘ Sn C21 (1.16)

m=0

(n) pbu (n)



:1g5 Derivation of the (nI-Order Strain Density and Kinetic

 

Energy

The strain-density energy is defined as

b

— _ 1
U - 7/ OijEij dXZ . (1.17)

-b

By substituting Equations (1.4) and (1.8) in the above

equation it leads to

_-b m

U—fz Un (1.18)

n=0

where

(1.19)

_ (n) (n) -(n)-(.n) -(m) (n) (m)-(n)
Un - Gij Eij + Oij 8ij + Z Anm[cij Eij + Uij eij ] .

m=0

This represents the (n)-order strain-density energy equation.

The Kinetic energy is defined as

b

‘ — E
K - 2./. ui,tui,t dx2 (1.20)

then if we substitute Equation (1.1) in the above equation,

we get

13:93er (1.21)
2 n

n=0

where

_ (n) (n)
Kn — ui,t ui,t . (1.22)



This represents the (n)-order Kinetic energy equation. At

this point we can use the (n)-order strain and Kinetic

energy Equations (1.19) and (1.22) to derive Equations(1.15):

00

EU

(n) _ l n _ (n) 2 : —(n)

Tij _ 2 asIn) — 0ij + Anm Gij (1.23)

ij =0

BU m

—(n) _, J; n __ —(n) (m)

T12 ‘28E-n) ‘012 +§:Anm 012

ii =0

(n) _ 1 3L

ui,tt ‘ 2 at Kn °

1.6 Truncation Procedure
 

In this section we will first define our truncation

procedure and correction coefficients necessary in the

approximation theory. The coefficients will be added to

the (n)-order strain density and Kinetic energy equations.

Definition 1.1
 

The [NJql-order truncation procedure is defined as

follows:

a) us“) = o n > q (1.24)

(n) _ —(n)
b) Tij — Tij 0 n > q

2 .. _ 2 (n) _
c) axixj (13 — 1,2,3), at of uj — 0, N < n S q .

where q is the order of the series truncation and N is the order

of higher elastics and inertia terms retained.



Conditionfa) and b) have the same physical meanings

and explanations used by Poisson [2], Medick-Mindlin [l8]

and Lee-Nikodem [14]. The addition condition c) will reduce

the system of P.D.E. in terms of the first q amplitudes

distributions of both compressional and face-shear modes.

Analytically it will reduce the wavernumber k (in the x1-

direction) and frequency w relationships (which can be

derived from the Partial Differential Equation by using

straight-crested waves propagating in the xl-direction) to

a polynomial of order q.

Definition 1.2
 

Correction coefficients c1 and c2 are going to be added

to the (n)-order strain-density and kinetic energy Equations

(1.19) and (1.22) as follows:

m (1.25)

_ (2) (n) (n) -(n)-(n) (1) (m)-(n) —(m) (n)
Un - Sln cij eij + Cij eij + Z Anm 61m [Uij Sij + Oij eij]

=0

.. (2) (n) (n)

Kn ‘ 50m ui,tt ui,tt (1°26)

where

l , m # 1

5(1) = (1.27)

1m

cl , m = 1

l , m # a

(2) _ _ 2 11‘

5an - , p — cos (2‘)

- 0,1

N
'
U

8 II Q Q

I
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Now, using the above Equations (1.25) and (1.26), Equation

(1.23) becomes

00

TI?) = (3(2) 05’.” +2 A a”) Sim) (1.28)
1] 1n 1] nm 1m 13

m=0

,-I.-(n) —(n) mzA 6(1) (m)
12 2m 1m 012

u(n) = 6(2)u (n)

ui,tt on ui, tt '

Next, if we substitute Equation (1.28) in the (n)-order

equation of motion Equation (1.16), we get

m (1.29)

(2) (.n) -(n) (1) -(m) (m) (n) _ (2)u (n)

[aln CIij,j-$nO012] +2 Anmélm [Gij,j . snOiZ] + F1 T 0b sonu1, ti

=0

.. 211
Sn ‘ 2b '

which represents the (n)-order auxiliary equation of motion with

correction coefficients.

1.7 The Truncation Application for [qu] = [1,1], [2,1]

and Arbitrary
 

In this section we will truncate for N = 1,2 and q = 1

which will be needed for future discussions. An arbitrary

truncation will also be generalized at the end of this

section.

Case I (N = 1, q = 1)

Using definition 1.1 for [1,1] then Equation (1.29)

gives us



ll

(0) (1) (0) _ p_ (0)
Oij,j + A01c1 Oij,j + Fi — pbc2 ui,tt (1.30)

(1) _ —(1) (1) _ (1)

Cgoij,j s1 012 + F1 ‘ Db ui,tt

From Equations (1.11) and (1.14), the (n)-order strain-

displacements and stress-strain equations, Equation (1.15)

becomes, in the case of the flexural motion (1 + n = EVEN,

a = 1,3)

2 (0) _2_1_J_ (1) A (0) _9_ (0)
uV u2 + l: cle + b F2 c2 u2,tt (1.31)

2 (1) (l)_ _T_T_ 2 (l) _ 23 (0) 3; (l) _ (l)

“V ua + (1 + u)ea u(2b) ua k) clus,a + b Fa " pua,tt

and for the extensional motion (1 + n = ODD 1 a = 1,3)

2 (0) (0) 21 (l) l (O) __ (0)
uV ua + (1 + u)ea + IT clu2,a + 5 Fa - pua,tt (1.32)

2 (.1) _ 21 (0) l (1) _ (l)

2 2 2b

(n) __ (n) (n)
where e — ul’1 + u3l3.

These represent the zero and first orders displacement

equations of motion.

1)Case II (N = 2, q

Using definition 1.1 for [2.1] then Equation (1.29) gives

us
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0(0) -v(l) (O) _ (0)

0ij, j + A0101 Oij,j + F1 T pbczui,tt (1'33)

p (l) _ -(l) (2) _ (2) (l) (l)

Czoij,j$1012 4” A12l:31j, j 51012] + F1= pbu1, tt

O(2) _ -—(2) (1) (l) (2) __
Oij j 52012 + A21|:Gij j - 52012] + 1:"i — 0 .

From Equations (1.11) and (1.14) the fluxural motion

(1 + n = EVEN, a = 1.3) becomes

2 (0) 2n (1) 1. (0) _. o (0)
LIV 112 + ‘5— C18 4" 13' F2 — a: uz'tt (1.34)

2 (1) (l) 2 (1) 2n u(0) 2(41+u) (2)

uV ua + (1+u)ea T u(Zlb>uua '- TI'Cl2, + TTT§E_T L12,

1 (l) __ (l)

+ 5 Fa T ona, tt

2
+ (1 + zu)(%) uéz) + Zlégggl e(l) - % F§ZI = o

and for the extensional motion (1 + n - ODD, a = 1,3) we get

2 (0) (O) 21 (l) 1. (0) __ (0) (1.35)
uV ua + (1+u)ea + I; c1112,a + 3 Fa - pua tt

2

HZUVZ£1) - (1+2U)(§%) u2(1) _ 21 a e(0) + 2(1+4u) e(2)

1 3b

1 (l) _ (l)

3 F2 ‘ pu2,tt

2

+ u<%> u(2) + 2(1+4u) u<1) 1 F(2)

a 3b 2,a b a T 0
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These represent the zero, first and second orders displacement

equations of motion.

Case III (N E EVEN, q = 1)

Using definition 1.1 for [EVEN, 1] Equation (1.29) then

gives us

(1.36)

or(0) (l) -(2m+l) (0) _ (0)

orij,j +:23AO(2m+1)6l(2m+1) Uij,j + F1 pbc2ui, tt

N

p (1) _ -(1) —(2m) _ (2m) (1)

C2"1j.j 31012 +2 A1(2m)[cij,j S1012 ] + F1

m=0

(1)

Tobui, tt '

and for l < n i N E EVEN

(1.37)

(2) (2) N-l (1) (2 1) (2 1)n — n - m+ m+

013,3' ’ 3211012 +2 A(2m+1) (2n)51(2m+1)[°1j,j ' 5211012 I

=0

+ F(2n) 0

l

N

U(2n+1) _ -(,2n+1) —(2m) _ (2m)

013', j 32114-1012 *2 A(2m) (2n+1)[cij,j s211+1‘712 ]

m=0

+ F(2n+l)

1

Similarly for N E ODD, the displacements equation of motion

can be derived using Equations (1.11) and (1.14) in the same

fashion as the first and second orders.

In the above section we did not assign any numerical

values for the correction coefficients c1 and C2. According

to Lee-Nikoden [14] it can be shown that in order to make
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the slope of the lowest flexural branch in the first order

theory coincide with that from the three-dimensional theory

when both the frequency and wave number approach zero, the

value of cl must be taken as c1 = n/4. In order to make

the phase velocities of the lowest extensional branches

approach that of the Rayleigh surface waves [1] as both the

values of the frequency and wave number get large, c2 must

be set equal to the real root of

3 2 2 2 _

c2 - 8c2 + 8(3-2/x )c2 - 16<l - l/x ) - 0 (1.38)

for Rayleigh surface waves, where x2 = 2(1-u)/(1-2u). The

values of c2 for different values of Poisson's ratio are

Table 1

 

u 0.00 0.100 0.200 0.250 0.300 0.350 0.400 0.500

 

c 0.764 0.798 0.830 0.845 0.860 0.874 0.888 0.963
2

1.8 Frequency Spectrum

In this section we are going to study the frequency

spectrum using the truncation procedure discussed earlier.

For N = 2 and q = 1 we will obtain a system of P.D.E.

coupling the zero and first amplitudes distributions. The

second amplitude can be computed by lower amplitudes.

Similarly for N = 3 and q = 2 we have a system of P.D.E.

coupling the zero, first and second terms. The third

amplitude can be solved through the lower amplitudes also.



Finally, we will consider N = 4, q 2 which will give us a

system of P.D.E. coupling the zero, first and second ampli-

tudes distributions. The third and fourth amplitudes can

be solved through the lower amplitudes.

[1,2]-Order Truncation
 

2Using Equations (1.29), (1.14) and (1.11) for N

and q = 2 we obtain the displacement equations as follows:

 

 

 

  

  

' 1 ' (1)]

B12 A13 u1

= 0 "extensional" (1'39)

(0)

A22 A23 u2 I

L d L c

- I (0N

A31 A14 u1

= 0 "flexural"

(1)

LAM B44 Luz _

where F(o) = Ftl) = FIG) = F‘l) = 0 (since the B.C. are
1 1 2 2

traction-free at x2 : b) and

F

2 4 < :2 > ( 7 - -
B = x - ——— 4x - 7 - —— D + 1 - D (1.40)
12 ‘ 9Tr2 x2) 11 tt

r

- _ 4 ( _ )2 2 _ —
B44 - 1 T9? 4X '7 Dll + X Dtt

- _ _4_ -

A13 ’ c1 w D1

_ 4 -

A22 ‘ C1 F D1

A - 6 - J; B
23 T 11 c2 tt
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31

34‘°1%<X2‘2>51

41

44‘C2

and

(1.41)

0
| I

Q
)

11 T 22 xx

0
|

n I

Q
)

 

1:th

The quadratic amplitude becomes

.12) I I

c
a
n b 2 1

:7: (4 - x)“1()1 (1.42)

.3) I I

c
u
m

which can be solved later. The approximate frequency Spectrum

for flexural motion can be derived by assuming a solution as

follows:
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nil) — uf1)ei[kxlTw€]

uéo) = Ué0)ei[kxl-wt].

Substituting the above in Equation (1.39) leads to

    

__ I "(1fI

B12 A13 U1

= 0

- — (0)

IA22 A23) U2
3 I. -

where

le=- x2--4-§(4x2-7)<4-J§> 22-11-102

9w x

_ _ , 2

A13 - 1 cl n z

- _ 4

A22 ' 1 c1 E z

— _ _ 2 1. 2
A23- Z+-c—2-Q

and

z = 32-k

n

_ 2b (n
0 — 77 C; .

Thus, the determinant of Equation (1.44) becomes

P
I

B12 A23 ‘ 13 A22 = 0

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)
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It represents the approximate frequency spectrum for

the flexural motion. The dispersion curves in Equation

(1.47) are computed and compared with those of Lee-Nikodem

and Rayleigh-Lamb [1] frequency equation as shown in

Figures (1.1)-

[gj31-Order Truncation (First Approximation)
 

Using Equations (1.29), (1.14) and (1.11) for N = 3 and

q = 2 the displacement equations for extensional motion

    

 

become:

P j - (0)1

R11 R12 R13 U1 (1-48)

(1) “

R21 R22 R23 U2 ‘ ° °

(2)

1R31 R32 R33.. L01 -

where

._ ‘_ 16 ( 2 _ > __ 2 2 — _ - (1.49
R11 - g? X 2 (.1 3) 'I' X 01]. Dtt )

.. 1(2- )-
R12 ‘ C1 n X 2 D1

8 < 2 > 2 .—
R = 9x - l4 1 - D

13 351T2 < 3') 11

_ 4 2 - —

R21 ‘ c1 E (I 2) D1

R = x2 + c D - D

22 2 11 tt

- _ JL_ 2 ‘
R23 - 3w (x + 2) D1



 

 

8 < 2 > 2 —
R = 9x - l4 1 - D

31 35Tr2 ( ;2) 11

_ - i (2 > —
R32 — 3” x + 2 D1

R33= - 162 <9x2-14)< -1; +x2 511+4-Dtt.

225w x

The extensional third amplitude becomes

(3) 8b 2 (0) 1 l4 (2) (1 50)
u = - -——- - —— u + — —1—— u -
2 9“"2 < x2) 1,1 5 ( x2) 1,1 .

which can be solved later.

The approximate frequency spectrum for extensional

motion can be found by assuming a solution as follows:

' kx -wt

(0) _ (0) 1[ 1 ] (1.51)
111 - Ul e

' kx -wt
(1) _ (1) 1[ 1 ‘]

u2 — U2 e

' kx -mt

(2) _ (2) 1[ 1 I
ul - U1 e .

Then Equation (1.48) becomes

'- - - " (0)“ (1.52)
R11 R12 R13I U1

— — — (1)

R21 R22 R23 U2

— - - (2)

-R31 R32 R331 LUl    
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The coefficients Rij are obtained by substituting the

followings in Equation (1.49):

Dll = - z (1.53)

D1 = 12

- _ _ 2

Dtt - 0

Thus, the determinant of Equation (1.52) becomes

+

R11R22R33 ' R11R23R32 ' R12R21R33 R12R23R31 (1.54)

R13R21R32 ‘ R13R22R31 T

and represents the approximate frequency spectrum for

extensional motion. The dispersion curves of Equation

(1.54) are computed and compared with those of Medick

and Rayleigh-Lamb [1] frequency equation as shown in

Figures (1.2). We can conclude that the first approxi-

mation technique improves the approximate frequency spectrum.

We can also find the cubic amplitude distribution by using

Equation (1.50) which will improve the solution for the

displacements.

[2,4l-Order Truncation (Second Approximation)
 

Using Equation (1.29), (1.14) and (1.11) for N = 4 and

q = 2 the displacement equations for extensional motion

become:



    

 

 

 

 

 

P '1

I T (0)

R11 R12 R13 U1

(1) _
R21 R22 R23 U2 - 0 (1.55)

(2)

R31 R32 R33 U1

1 J _ .1

where

_ 2 _ 19 2 _ _ 2
Rll — [x 9w2 (x 2)(l X2)Dll ott] (1.56)

_ 16 2 _

R12 "F‘ C1‘X 3) D1

- - 12 2 - - 11

R13 ’ [451“X X)(9 X2) D11J

_ _ i 2 -

R21 ‘ n Cl (X 2) D1

_ _ 4 2 2 _ — _ 2
R22 - [c2 2 (x + 14) D11 Dtt x ]

9001

_ __1 2 —
R23 ‘ 3n (X + 2) D1

16 2 14

R = I (x - 2) (9 - ——) D 1
31 451T2 X2 11

_ __i 2 —

R32 ‘ 31 (x + 2) D1

_ 2 _ 16 2 _ _ 14 — _ — _
R33 - [(x 2 (4x 14) (9 2))Dll Dtt 2]

255w x

The extensional third and fourth amplitudes are

(3) _ -4 _ 2__ (0) 1 _ 1_4_ (2)
Uz ‘ 9 2 (l 2) U1 , 1 + 5(9 2) U1 , 1

11' X X

(1.57)

(4) _ _ 1 2 (1)
U1 — 60w (x + 14) U2 I 1

which can be solved later.

The approximate frequency spectrum for extensional

motion can be found by assuming a solution as follows:



111(0) = Ulm) elIkxlthI (1.58)

(1) (1) i[kx -o)t:|
U2 — U2 e 1

U12) = U(2) ei[kxl-wt]

Then Equation (1.55) becomes

  

P— - — 1 - (0)~
R11 R12 R13 U1 (1-59)

- — r (l) _

R21 R22 R23 U2 ‘ °

— — — (2)

-R31 R32 R33. L91 ]  

The coefficients R15 are obtained by substituting the following

in Equation (1.55):

— _ _ 2

D11 - z (1.60)

D]. = 12

— _ _ 2

Dtt - 9

Thus, the determinant of Equation (1.39) becomes

R11R22R33 T R11R23R32 T R12R21R33 + R13R23R31 (1°61)

R13R21R32 T R13R22R31 T
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and represents the approximate frequency spectrum for

extensional motion. The dispersion curves of Equation

(1.61) are computed and compared with those of Medick, of

the first and second approximation and Rayleigh-Lamb [1]

frequency equation as shown in Figure (1.3). We can conclude

that the second approximation improves the approximate

frequency spectrum.
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CHAPTER II

SYMBOLIC METHOD IN WAVE PROPAGATION PROBLEMS

2.1 Introduction
 

In this chapter we are going to generate an approxima-

tion theory using symbolic technique [13] . The P.D.E. and B.C.

are reduced to an infinite differential equation. This is

done by letting all partial derivatives behave as constants,

except for one of them. Thus, this will reduce the P.D.E.

to a symbolic ordinary differential equation (S.O.D.E.)

with symbolic initial condition (S.I.C.). Then, to generate

the infinite differential equation, we substitute the sym-

bolic solution (8.8.) into the B.C.

First we will examine the string equation because the

simplicity of the Operator permits us to solve this problem

exactly. Then we non-dimensionalize the equation and use

the parameter to find an approximation solution. Similarly

a two-dimensional problem will be presented. At the end of~

this chapter the three-dimensional elastic plates problem

with free stresses at the tOp and bottom of plates will be

considered. The approximation will be compared to other

techniques used in the preceding chapter.

28



2.2 Symbolic Method to Solve the String Equation

The partial differential equation for the string

problem is

(2.1) uXX - c3211tt = o (P.D.E.)

with B.C.

(2.2a) ux(_._»_ b,t) = o (B.C.)

and I.C.

(2.216) u(x,0) = o (I.C)

ut(x,O) = f(x)

2
Let 5t behaves as a constant then equation (2.1) can

be written as follows:

 

II 2
2 d2

(2.3) u - £.u = O (S.O.D.E) where £ = 2 2

c dt

2

u(O,t) = H(t)

(2.4) (S.I.C.)

u’(o.t) = £F(t)

The solution for the (S.O.D.E) is

u(x,t) = a(t) cosh £3<+'b(t) sinh £31

and by using the (S.I.C.), the above equation becomes

(2.5) u(x,t) = H(t) cosh £3: + F(t) sinh £1:

Next, we substitute the above in the B.C. equation (2.2a)

which will give us an infinite O.D.E.
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(2.6 H(t) sinh £J3 i F(t) cosh £1: = O

or

[sinh £b]H(t) = O

(2.7)

II 0[cosh £b] F(t)

The above infinite operator on H(t) and F(t) can be

solved exactly by assuming a solution in the form of an

expotential such as

(2.8)

Expanding cosh {b and sinh ib in terms of power

series and Operating equation (2.8) term by term yields

[sinh %EJH(t) = O

(2.9) L

[cosh gE]F(t) = O .

L

If A and B are arbitraries, then the above equa—

tions are satisfied for

w = i n—TT- EVE

(2.10)

INT

JJ — 1 EC]; r 1’1 ODD.

Therefore, using the above result, the solution (2.8)

becomes



. n=EVEN n L

(2.11)

:1 . m
F(t) = x. 13m Sin 33 th.

n= ODD

Next, if we substitute equation (2.11) in equation (2.5),

operate and rearrange terms, we obtain a solution for our

problem as follows:

(2.12) u(x,t) = 2: Ancosgchtcosg-g-x + Z anin%%CLtsin%%x

n=EVEN n=ODD

with the time variable I.C. equation (2.2b).

u(x,O) ll 0

(2.13)

f(x) .ut(x,O)

Note that equation (2.12) is the exact solution of the

P.D.E. with boundaries. We are now going to non-

dimensionalize equation (2.14) given below.

II 0[sinh £b] H(t)

(2.14)

[cosh £b] F(t) II 0

Using these transformations given below

n = %- , 2 = max-wavelength

(2.15)

T =‘% t, c: is the velocity

then,

__9_._<i_ -13
(2 16) £ - 3- where m — CL dT , e _ z
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and equation (2.14) becomes

z

[sinh mE]h(T) = 0 H(E T) = h(T)

(2.17) where

{cosh mE]f(T) = o F(é T) = f(T)

and equation (2.5) becomes

(2.18) u(n,T) = h(T) cosh En1n + f(T) sinh en1n where

unmé'r) =E(n.T).

We can use the parameter E as a way to truncate

equation (2.17). The approximation will be of order

€2N(N = 0,1,2 ---). Hence, we will proceed to consider

two cases (N = 0,1).

Case I (N=0.€)

This reduces equation (2.17) to

h(T) = 0

(2.19)

n1f(T) = 0 ,

then, equation (2.18) gives us u’(x,t) = 0 (or)

(2.20) u(x,t) = constant.

Case II (N==1, 62)

This reduces equation (2.17) to

 

m2€2

(1 + 2 ) h(T) = 0 g(T) = mzfflm

(2.21) 2 2 where

m 6

(l + )g(T) = o G(t) = £F(t)
 



and equation (2.18) gives us

2 262 2 2 2

(2.22) fi(n.T) = h(T)[1+“-1—3-2-——]+g(T)[1+-E—fl6-3—]en .

Using equation (2.15), equations(2.21) and (2.22)

 

 

 

becomes

2 2

(12.10241) H(t) :0

(2.23) 102.22

(1+ 6 )G(t) = 0

2 2 3

u(x,t) = H(t) +G(t)bx+:€2H(t) b2" + 226(t)b3 53—.

Note the above solution is cubic in x (spatial) and the

operator is a second order in t (time). \Now assume a

solution in the form of

H(t) A cos wt

(2.24)

G(t) = iBsin wt,

then equation (2.23) gives us two quadratic equations in

m as follows

(2-b2w2) = o ROOTS
'”1 2

(2.25)

(6-b2w2) = 0 ROOTS E Q Q

1' 2

Therefore, equation (2.23) becomes

H(t) = A1 cos Ilt + A2 cos m2t

(2.26)

G(t) = Bl Sln ult + 32 cos “2t



Hence equations (2.26) and (2.23) are the approxima-

tion of order (N = 1,6 ).

2.3 Symbolic Method to Solve the S.H. in an Elastic Layer

The equations of motion (without body force) are

(2.27) 0.. . - p11. = 0 i,j = 1,2,3.

Now if the B.C. are

(2.28) 023(+b , xa,t) = 0 "FREE VIBRATION" ,

then the stresses are independent of x Therefore, we3.

consider a two-dimensional problem which decouples equation

(2.27) into antiplane shear and inplane motions. The anti-

plane shear motion is

03B.B- p u3,tt(X1’X2't) = 0 , 5 = 1,2

(2.29)

023(ib ,x1,t) = o.

The stress-displacement equations are

(2.30) o3B = 0 113,3 B = 1,2.

It follows that equation (2.29) becomes

2 2 2 2 _

(3X1 + 5x2 - cT at) u3(x1,x2,t) — 0

(2.31)

5 u(xl, + b,t) = 0

2

or

Rzu = 0

(2.32) a

x2u(X1 j; b,t) = o



(
_
-
)

U
I

where

2 _ -2 r2 .2 -2
(R — (CT ot - 3X1 - 3X2)

(2.33)

‘u3 = u(xl,x2,t)

-2 2 .

Let at and 8X behave as constants then equation

1

(2.32) can be written as follows:

, 2

(2.34) u - {u = o (S.O.D.E.)

u(xl,0,t) = H(t)

(2.35) (S.I.C.)

u’(x1.o.t) =2F<t>

where

(2.36) 2 = (c'

The solution for the (S.O.D.E) is

(2.37) u(xl,x2,t) = a(xl,t) cosh {x2 +b(xl,t)sinh ix
2

and by using the (S.I.C) equation (2.35) the above equation

becomes

(2.38) u(x1,x2,t) = H(xl,t)cosh ixz + F(xl,t)51nh £x2 .

Next, we substitute the above in the B.C. equation (2.32)

which gives us an infinite P.D.E.,

(2.39) H(xl,t) sinh £b ;: F(xl,t) cosh £b = 0

or



sinh £1) H(Xl't) I

O

X

(2.40) 1

cosh £1) F(xl,t) = 0.

These infinite operators can be solved exactly by

assuming an exponential solution

i[kx

t) = Aee

-5312]

H(Xl' l

(2.41) i[kx

t) = iIBe

-Tt]

F(Xl' 1

If we substitute (2.41) in (2.40), then for A and B

arbitrarieS. we are going to get

 

$2 2 nF

2-k =§EI nEVEN

CT
(2.42) 2

m 2 _ El

CT

Equation (2.42) are the SH-symmetrical and SH-

antisymmetrical modes of the Frequency Spectrum, which are

derived in Achenback [11]. Hence, if we substitute

equations (7.42) and (2.41) in equation (2.38) we get the

exact solution as follows:

21(x2)

(2.43) u(xl,x2,t) = exp i(kxl-ut)

zII(X2)

where



p
.
)

\
J

n? n7 2 m2 9

zI(x2) = A cos 2b'x2 , n E EVEN, (as) ==E;3-- k“

(2.44) 2 '2

zII(x2) = B sin %% x2, n E ODD, (%%- ==E:E-- k

We are now going to non-dimensionalize equation

(2.40) which. is

sinh £b H(x1,t) = 0

(2.45)

cosh £b F(xl,t) = 0 .

Using these transformations given below

x

U ='j% E =:%

x
2 c 2 2

= — = _ A
(2.46) e z then at (2 ST

_.S 2 _ .1 2.2
T — It 5X — (fl) 06

2

then

2

(2.47) m2 = 2212 = [(-9-) 52 - 5‘3]
C T t.

T

and equation (2.45) becomes

sinh Em h(n,T) — o H(hn, 3%) = h(n,T)

(2.48) where

cosh Em f(n,T) = o F(hn, fT) = f(mT)

and equation (2.38) becomes

(2.49) G(n,e,T) = h(n,T)cosh Ema + f(n,T)sinh Ema,

where



(2.50) fi(n.~:.T) = u(bmz . 5T)0
)

The parameter s can be used as a means to truncate

equation (2.48). The approximation will be of order

~ (N = 0,1,2-°-). Now, let us proceed by considering two

cases (N = 0,1)-

0

CaseI (N=o, 6 ED

This reduces equation (2.48) to

(2.51) h(T).“I‘) o

m g(n,T) 0 where g(n,T) = m f(n,T).

And equation (2.49) leads to

a - - _

(2-52) '33'u(n,e,T) - 0

or

(2.53) u(xl,x2,t) = constant.

Case II (N = l ,E )

This reduces equation (2.48) to

(2 +m262) h(n,T)

(2.54) where 9(fi.t) = m f(T)

(6+ m262) g(n.T)

H

0

II

C

G(xl,t)==£ F(xl,t)

and equation (2.49) gives us

222 2222

(2.55) G(mrr) = h(n,T) (1+m—i—) +9(T‘.,T) (1+1n—3—) t5.
2

(
T
\



By using equation (2.46), equation (2.54) and (2.55) become

 

a

(2.56) (2+b2£) H(x ,t) = o

l where J - c2 - c-282-82

22 ‘” 7 T‘ T t x

(6+b.—£) G(x1,t) =0

2 b2x2
(2.57) u(xl,x2,t)==H(xl,t)+-G(xl,t)bx2+-£1H(xl,t) 2

3 3

2 b x
+ i G(Xl,t)T—- .

Thus, the above equation gives us the approximation of

order (N==1, 62).

2.4 gymbolic Method Approximation to Solve Three-Dimensional

Wave Problem
 

Consider the free stresses condition at x2: 1b , then

we have Navier equation and B.C. as follows:

2 —- — — 2 - - - I“! _

(2.58) CL v(v°u) “CT Vx(qu) - u - 0

(2.58a) 02j(x1, :_b,x3,t) = 0

and for solutions, Fredholm vector decomposition is used in

e
—
l

<
1
!

0

E
- ll

0(2.59) E = Em + 5 x

where u(xj,t), j = 1,2,3. From equation (2.59) the

divergence and curl of the displacement vector are

<
)
|

o

(2.60) E = V 3, scalar potential

’
H

A C II I <
1

(
:
1
—

s vector potential

and by substituting the above equation in (2.58) we get



4O

2 - -

Rl Ul - 0 and 7 x Ul — 0

(2.61)

2 ' _ : o _ _

R2 U2 - O and 2 U2 — 0

where

RZ—vz 4.32 c-c ndcf —12
a _ ’ ' C2 T—2" a 7 L a T or a ‘

ot

a

, v2 = a: + 32 + 32

(2.62) 1 X2 X3

U1=23

U2 = V x)

The displacement vector (2.59) becomes

2.63 Ex.,t =6 x.,t +6 x.,t , '=1,2,3.( ) (j ) l( 3 ) 2( j > 3

2 2 2 .

Let a , 5 , a behave as constants, then equation
t X1 X3

(2.61) can be written as follows:

-11 2 - _ 2 _ 1- ‘2 2 .2 1
Ua - 23 Ua — o (S.O.D.E), 2a - [7 cat-5X -6X .;

c 1 3
a

Ua(x1,0,x3,t) = Fa(x1,x3,t)

(2.65) (S.I.C.) , d=l,2

-1 _

Ua(X1'O'X3't) - £6 Ga(x1.x3.t)

The solution for the (S.O.D.E.) with (S.I.C.) is

(2.66) U = F. a = 1,2
1(a

)cosh £52< +~G sin {fix

i(q) 2 2(C0 v2 2 '

where U(m) = (U

of vector U(a)' a = 1,2.

are the components
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We also have two additional conditions which are the diver—

gence of U and the curl of U to be satisfied. Hence,
2 1

we let

(2.67) T 0 U2 = Ul(2),1 + U2(2)'2 + U3(2)'3

= [F1(2),1 + F3(2),3 + £2 Guam”h =£2 X2

+ [31(2),1 + G3”),3 + £2 F2(2)]51nh £2x2

= 0.

Thus, (V x2) the above equation gives us

F1(2).1 + F3(2).3 + £2 G2(2) = O
(2.68)

G1(2).1 + G3<2>.3 + £2 F2(2) ' 0

Similarly, the curl of 61 is

269 " ‘ -( A —( . ) V x Ul — -eijk Uj(l),k]ei - 0.

So for (Vi) we must have

(2.70) eijk Uj(1),k = 0

0]:

(2°71) F2(1).a = *1 Gs<1>

I 3:10.173

62(1),a = 2 65(1)

F3(1),1 = F1(1),3

G3(1),1 =G1(1),3
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Next let us consider the stresses equation at the plane

(x2 = i.b)

(2'72) :23 = azjiru1.1‘*“2,2‘*u3,3) + 2#[u2, *‘u ,2)

or

.321 = ufuz'l + 111,2]

(2.73) 022 = l[ul'l+-u3'3] + (1+-20)u2'2

O23 = “[u3,2*'u2,3]

and substitute equations (2.63) and (2.66) in the above

equation and use the B.C. (2.58a) (at x = :_b) we then

2

have

2 -

(2'74) 021 = GE; [”(F2(a).1 + H1(a)) C6

+ ”(H2(d),1 + :2 F1(a)):§d]= o

3—1 -
- F

(2'75) 023 7 3:1 LMF2(6),3 + H3(a)) Ca

22 F ) 5 - o
+ Ll(H2301)r3+ on 3(a) - a] -

2 F -

(2'76) 022 = aEiL[X(F1(Q).1 + F3(a).3)*'(*4'2“)H203)]Ca

2

+WH1(6).1 + 11360.3)+ (“Z“maF-Zwfl

:61 = o

where



 

sinh 1Wb

(2.77) 56 = 2

3 a = 1,2

E = cosh £b
a

Him) ._. £0. Gi(o.)

At this point the extensional motion and the flexural motion

are going to be considered separately in two cases.

Case I Extensional Motion

In the case of extensional motion, the following condi-

tions must hold:

(2.78) a) ul,u3 EVEN WITH x2-VARIABLE

b) u2 ODD WITH X2—VARIABLE

c) 63(1) = Ga(2) E 0 , q = 1,3

(1) =F O .

52(1) 2(2)

Then the displacement (2.66) becomes

(2.79) ua(xi’t) = Fa(l)cosh £1X2 + Fa(2)cosh £2x2 , a==1,3

u2(xi,t) = H2(1)cosh iixz + H2(2)cosh £2x2

and equations (2.68)and (2.71) are reduced to

(2.79a) Fl(2),l + F3(2)'3 + H2(2) = 0

H = £2F
2(1),d 1 a(l)

F3(1),1 = I’“1(1),3

The B.C. (2.74-76) takes the following forms:



2 9

:2: _

'7 = {H4 +£F4134=023 a=1 2(-),3 , 3(1) 1

2 -

O22 — CEJXWMQ) ,1 + F3(0¢) ,3) + (7” 2L“)Hzm) JCoc=o

From equation (2.62) we have

U = Vco , Pressure waves

(2.81)

U = 5><B, Shear waves.

Ther for , ‘ - E ', , = =e e if we let U1 0 (i e Fa(l) G2(1) 0).

equation (2.79) can be written as

ua(xi,t) = F cosh £2x2 ,

a(2)

(2.82)

I _ . . _
u2(xi,t) — H2(2) Sinh £2x2, 1 — 1,2,3

and the infinite P.D.E. (2.80 ) are reduced to

 

, 2
(2.83) 921 = [112(2),1 + £2 Fl(2)] 32 o

J - (H + £2 F 2) S - 0

23 ‘ ~ 2(2),3 2 3( 1 2 ‘

C"22 = [4(F1(2),1*'F3(2),3)*'()1'2“)H2(2)]C2 = O

or

r 2 4p(1+—2p) 2 -2 1 - -
. 4 ' - .

(2 8 ) Latt p(1+2u) (axll'dx3)1 Slcl Ua(X1'X3't) O

7 = 1,3

For the theory of order 0 (Sl==Cl==1) equation (2.84) is

identical to the results of Poisson-Cauchy [3] and

Hegemier-Bache [6 L
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Case II Flexural motion

In the case of flexural motion,the following condi-

tions must hold:

(2.85) a) ulru3 ODD WITH X2-VARIABLE

b) u2 EVEN WITH XZ-VARIABLE

d) 62(1) = G2(2) = 0.

Then the displacement (2.66) becomes

(2.86) u2(xi,t) = F2(1) cosh {iXZ + F2(2) cosh £2x2

ua(xi,t) = Gd(1) Sinh {ixz + Ga(2) Sinh £2x2

a = 1,3

and

I —

(2.87) ua(xi,t) — Ha(l) cosh iaXZ + Ha(2) cosh £2x2

a = ,

If we let U1 5 0, then F2(l) = Ga(1) = 0 (a==l,3)

and equation (2.86) becomes

’ —

ua(xi,t) — Ha(2) cosh £1x2, a = 1,3

(2.88)

u2(xi,t) = F2(2) cosh £2x2

and the stresses (2.74-76) take the forms



021 = [F2(2),1 + H1(2)] E2 = 0

023 = [F2(2),3 + H3(2)] C2 = 0

022 = [A(Fl(2),l + F3(2)’3) + (A + 2u)H2(2)] C2 = o.

The above equation can be reduced to equation (2.84).



CHAPTER III

REDUCTION OF SERIES-EXPANSION TO A

FINITE-POINTS APPROXIMATION

3.1 Introduction

In this chapter an elastic plate with thickness ZbN

is being analyzed. N—subdomain thickness 2b with local

coordinates xj(j = 1,2,3) will be related to a global

coordinates xj(j = 1,2,3) by a transformation. Hamilton's

principle and the truncation procedure used in Chapter one

will be applied in each subdomain. Continuity of the

stresses and displacements is required at each interface

dividing subdomains. Hamilton's principle gives us two

non-homogeneous P.D.E. coupling the zero and first

amplitudes distributions. The non-homogeneous terms are

stated at the interface of each subdomain. The finite

points approximation gives a discrete solution in the direc-

tion of the plate thickness (i.e. xz-variable). The points

are located at the t0p, bottom and interface of each sub-

domain. This technique will reduce the two non-homogeneous

P.D.E. to a system of Differential-Difference equation.

Dispersion Relationships of Harmonic Wave will be studies

for various values of N, the number of subdomain.
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.
.

0
‘
)

3.2 Transformation and Partition of a Plate in (n)-

Subdomain

 

 

Recall Hamilton's principle and displacements obtained

in the first chapter:

(5

(3.1) ) (Gij,j-pui,tt) 5ukdvdt=0, 1,3,k=1,2,3.

T V

on X

(3.2) u.(x.,t) = Z u(mH; ,t) cos 5‘11 (1———2-), (1:1,3.
1 j m=0 1 a 2 b

We define a transformation

X
I

II X(3.3) 1 1

2 = x + P , where P = 2nb

2 2 n

x3"“3

which relate the global coordinate to the local description.

The figure below will show the plate is partitioned in

(n)-subdomain.

 

 

 

 

  
 

TOP OF PLATE

‘// 2b

‘2 BH2/; 2b

x /

"' " Un+2-------}‘1' "’ / / r
X3 /l?,+// 2b

/

— - Un+1 ---------- V —

F3. 2Nb
/

_ .. un ___________/
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We shall proceed to analyze a plate of thickness

ZbN. In each subdomain we have:

a. Hamilton's principle (3.1) describing the motion.

b. The truncation procedure of Chapter I applied to

Hamilton's principle.

(m)
c. The truncation displacements u = 0, m > 1.

Therefore equation (3.2) becomes

u(1)(_ (0) .. ~ .1.
(3.4) ui(xj,t,n)-u (xa,t) + cosri. xa,t)31n x

2b 2

where the transformation (3.3) is used and n

describes the displacements in the n -subdomain.

d. The displacements at the interface which are con-

continuous (i.e.)

(3.5) ui(xa,b,t,n) = ui(xa, -b,t,n+l), 1 3 1,2,3

(I6) qu,bfign+1)=1L(x,4mtfir+m, a: L3.

1 a 1 a

Similar results can be obtained for the stresses.

3.3 Truncation and Finite-Point Method Application

From definition 1.1 in Chapter I, the general trunca-

tion procedure for the [N,l]-order iS

(3.7) a) uni“) = o n > N

b) 3):?) =E.(r.‘)=o n>N

1] 13

. . _ 2 (n) _
c) a ixj(1,j — 1,2,3), at of uj -O



SO

Plain Strain will also be added to further reducing
 

the complexity of our problem, (i.e.) u3 E 0 and

3X3( ) E 0. A new notation is now introduced,

(3..) u<o> = ugo> , F(O> = F{o>

u(l) = u1(1) ' F(1) = F1(1)

V(O) = u£0) ' H(O) ___ F£0)

V(1) ___, uél) ' H(l) ___, Fél)

for the displacements and stress components. Hence,

equation (3.4) becomes

_ (O) (l) . .1;
un(xl,x2,t) - u (x1,t) +u (xl,t)cos nrr Sin 2b x2

(3.9)

.. (0) (l) . _7r__
vn(xl,x2,t) — v (x1,t)-+v (xl,t)cosrnr Sln 2b x2

and

un+1(x1,x2,t) =u(O) (x1,t) -u(l) (xl,t)cos nrr sin {13- x2

(3.10)

_ (0) (1) . .I.

Vn+1(X1'X2’t) —v (xl,t) -v (xl,t)cos nrr Sin 2b x2

The Finite-point method at (x2 = b) reduces the above

equation to

u = u(0) +_ u(l)

n

_ (O) (l)

un+1 _ u '+ u

(3.11)

V = V(0) + V(l)

n

V _ V(0) + v(l)

n+1 _
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which represents points in the plates. The approximation

depends on the number of subdomains. If N increases, then

better results can be obtained from the above theory. Next,

the inversion of equation (3.11) yields

[un+l + un:I

:
3 ll

(
0
|
(
-

C
. II

N
H
A

[un+1 n

(3.12)

[vn+1 + VnJN
H
‘

<
1 II

m
l
H

[vn+l n

which are the uniform and linear terms of the series

expansion. Similarly, the stresses can be obtained as

follows:

(0) _ _

F - On+1 0n

(l) _

F _ On+1 + 0n

(3.13)

(0) _ _
H - Tn+1 In

(1) _
H - Tn+l + In

Next, we are going to consider a truncation for N = 1,2

and q = l (which was derived in section 1.7, Chapter I) for

each subdomain then the finite-point method defined above

will give rise to a set of Differential-Difference equation:

Case 1 (N=l,q+1)/the zero and first order displacement

equations of motion for [1,1]-order truncation are given

in equations 1.31 and 1.32. Thus, if we substitute equation

3.12 in these equations, we are generating a Differential-

Difference operation as follows:



(3.14)

where

(3.15)

and

 

 

12

13

22

31

41

23 _

34 -

44 ‘

 

  

13 n+1

A23 0 i(un+1

0 A34 ((vn+1

0 A44“) 5Vn+1

O O . {(Un+1

O O :(¢n+l

p3 O (Gn+1

O p4dlw(Tn-+1

x2 D + 1 — D
11 tt

7% Cl i51

'% C1 131

B11 ‘ C21 fitt

X2 IS11 ’ I31:1:

%'(X2"2)C1 Dl

;§(x2.-2)c1 Dl

C D + x2 - D

2 11 tt

 

 



U
I

L
»
)

pi = 8132 I i 7" 1,2,3,4

um

5 _ 4b2 52

11 -'.T2 xx

(3.16)

' — 22 A

D1 - 7T “x

- 4b2 2

Dtt ‘ 2C2 att
7T

CASE II (N=2,q=1) T

Similarly, the zero and first order displacement equations

for N==2 were given in equations (1.34) and (1.35)- Thus,

if we substitute equation (3.12) in the first two equations,

   

    

we get

_ .1 F n

0 B12 A13 0 (un+1 + un)!

I
o A A o (u - u )

(3.17) 22 23 n+1 n I +

A31 0 0 A14 (Vn+1 + Vn)

L_A4l O 0 B44 (Vn+1 - Vn)

-pl 0 0 0 - _(Gn+l + On)-

(

0 p2 O O (n+1 - Tn) = O

0 0 p3 0 (On+1." on)

-0 0 0 p4—J _(Un+l + Tn)-

where

_ 2 .41. 2 _7_ - _ '-
BlZ—[x -972 (4x -7)(4—X2))Dll+1 Dtt

(3.18) '

_ 4 2 21 - 2 -
1344—[1 - 2 (4x -7) J1311+x -Dtt.
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The Aij can be computed from equation (3.15) and

- -219. 1 L -

UT x

(3.19)

p4 - ——§-[1 + 3 (4x -7) Dlj

uv

The last equation of each of the equations (1.34) and

(1.35) are used in the decoupling of higher modes contained

in the first two equations of each of the equations (1.34)

 

 

and (1.35). These modes can be written as

(2) _ 92___1____ 2(41+p> (1) _1._ (0)

u2 ' (7r) (1+2u) r‘ 3b u1,1J'bFz ]

(3.20) 2

(2) _ 2 _l_ _ 2().+4u) (l) L (0)

U1 ‘ (w) u [ 3b u2,1 + b F1 ]

where

(2) _ (0)
F2 — F2

(3.21)

(2) _ (O)
F1 — P1

3.4 Dispersion Relationships of Harmonic Waves

Now, we investigate the dispersion relations of

harmonic waves in a plate divided in N subdomains and

governed by the approximate equation of motion in last

section. Equations €3.14)and (3.17) correspond to a

truncation [1,1] and [2,1] respectively and can be

written in the form:



 

 

 

 
 

  

.1 , ’ 3
A12 A12 A13 A13 i; un

'A22 A22 A23 A23 !un+1

(3.22) f ‘

A31 A31 'A34 A34 ;§ Vn ;

3 A41 A41 'A44 A44 § IVn+1f
L. .4 1.. _J

. O 0 -p2 p2 n+1;

+ § = 0

—p3 p3 O O 1 Tn i

; 3
g

0 0 p4 p4 , i n+1}

'—. __J L. .3

and

[“312 B12 A13 A13 un ’

I "A22 A22 A23 A23 n+1
(3.23) 1

A31 A31 ‘A34 A34' E Vn

A41 A41 ’344 B44i ' vn+1

51 pl 0 O on

O O -p p z

+ , 2 2 n+1 ; = 0

: l 1

( —p3 p3 O O Tn i

' O 0 p4 p4 n+1;

First, let us consider the case where fi = 1 (one

domain). Then for harmonic waves prOpagating along the

x axis, we assume

1



ikal-u J

(3.24) (un,vn,3 (Un,Vn,Ln,Tn)e

Substituting this into the approximate equations of motions

(3.22) we obtain a set of algebraic difference equations

with constant coefficients in terms of Un'vn’zn' and Tn

where n takes the values between zero and g for a plate

made of E subdomain. Boundary conditions for the dis-

persion relationships require both surfaces of the plate be

 

traction free. For the case of fi = l

(3.25) :0 = To = o

4.0 = T1 = O

and the Differential—Difference equation (3.22) becomes

r Z Z Z Z 3 ' U ‘ o 3
‘ 12' 12' 13' 13 o F ‘

-5: p i p Z , E U 0

22 22 23 23 1

(3.26) _ _ _ _ =

A31' A31' ‘A34' A34 V0 0

A41' A41' ‘A44' A44 V1 0

J L .J .. J     
The determinant represents the approximate frequency spectrum

for fi = 1 and [1,1] (the general truncation procedure); the

coefficients in the above matrix are functions of :ij(k’w)’

the wavenumber and frequency. Now let us consider the cut-off

frequency modes which can be shown as

lim E..(k,m).

k4O 13
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It reduces the coefficients of equation (3.15) to

3
’

II

ll 3
’

II

II 'J
>'
||

I

P
I
!

|

O

13 22 34 ' ‘41 ‘

:23 = :31 = 52

:12 = 02 - 1

A44 = 32 - x2

Therefore, we can write equation (3.26) in the form:

 

(- m

02-1 0 o o r U 3
o

o 0 OZ 202 U1

(3.27) = o.

,2 2
o 20 o 0 v0

0 O QZ-XZ 0 Vl

\— _J L .4   
The determinant for the above matrix leads to

2
Q4[02-l][G2-x 1 = 0

which is an equation of order eight. Thus the roots will

correspond to the lowest cut-off modes of uniform and

linear amplitudes distributions. These are

01 2 = o a u(O) SYM a EXTENSIONAL

o = o a v(0) AN-SYM a TRANSVERSAL
3.4

(3.28)

05 6 = :_1 a u(l) AN-SYM s THICK-SHEAR

“ = :.x a v(l) SYM s THICK—STRETCH.



Next using

 

equation (3. 23) as the approximate equation

   

of motion, then equation (3.24) for ’ = 1 leads to

P -= = = = _1 r 1

B12' B12' A13' A13

“'3 , i p A; p K

(3.29) 22 22 23 23

A31' A31' ‘A34' A34

A41' A41' ‘344' B44
L. a L J

and represents the approximate Frequency Spectrum for N==l

and [2,1] (the general truncation procedure). The cut-off

frequency modes (wavenumber -—> O) which can be shown as

(3.30) lim :.. and lim § and E .

k+0 l] kao 12 44

But we have

ii?) rB12 = A12]

(3.31)

lim [IE = Z 1 I

k-+O 44 44

therefore equations (3.26) and (3.29) become identical and

the same cut-off modes can be generated.

Consequently, for a general truncation of order'[N,1] and

N = l, the exact cut-off frequency can also be derived. If

is increased, then higherZ
l

(the number of subdomain)

modes will be generated by this process.

Next, we consider N = 2 (two subdomain), then

ecuation (3.23) becomes



12 12 13 13 0 pl 0 i i uo

‘ "A22 A22 0 A23 A23 0 0 P2, u1

A31 A31 0 “A34 A34 0 93 O 3 u2

I

- A41 A41 0 '344 B44 0 O ID4 .. V0

(3.32) g _ ; =C).

O ‘312 B12 0 A13 A13 Pl 0 L V1

0 "A22 A22 0 A23 A23 0 ‘92 V2

‘ 0 A31 A31 0 'A34 A34 ‘93 0 C51

1 0 A41 A41 0 ‘B44 B44 O 1?’4 T1 
Using a harmonic wave propagating along the x1 axis

(equation 3.24) and considering the cut-off frequency

modes (k 4 0), then the determinant of equation (3.32)

can be written in the form

92—1 0 o o o 0 pl 0

! 2 r

i o o o O" 20 o 0 pl;

* o2 292 o o o 0 pl 0 '

2
o o o C. -x o o 0 p1 .

(3.33) 2 i =0.

0 Q -1 o o o 0 p1 o :

o o o o 02 202 0 -p1 .

O (12 202 O O 0 -pl 0
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This generates six cut-off frequency modes. Hence, a plate

divided into two subdomains will give rise to two addi-

tional modes corresponding to extensional and flexural

motions respectively.

Finally, we are going to study the Frequency Spectrum

derived by the technique of this chapter. The approximate

Frequency Spectrum for N = l is obtained by taking the

determinant of equation (3.26) which is

41A12A23A34 41A13 22 34 + 44 31 12 23
- 5 {

I
’
l
l

(3.34) det.E Z

‘ A44A31A13A22 = 0 '

The above coefficients are defined in equation (3.15).

The dispersion curves of equation (3.34) are computed and

shown in Figures (3.1). Hence, for N = 1, we generate

the first and second dispersion curves of extensional and

flexural motion.

3.5 Longitudinal Strain Problem
 

Due to the symmetry in the xl,x3 coordinates, the

displacements u1 = u3 = O and 112 = u (x2,t). Thus,
2

the stresses become

022
(l + 21301.12!2

G = G = 111

ll 33 2,2

and Hamilton's principle in section (3.2) becomes

b

)1 a

(3.35) 1 .

T‘b

)513<i£dt = O

(022,2"p‘12,tt 2
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and the displacements of equation (3.2) are reduced to

o:
X

.. _ S“ (n) nTT' _ 2

(3.36) u2(x2,t) — ;Ou2 (t) cos 75(1 7;).

Next, the substitution of equation (3.30) in equation

(3.35) gives (Vn)

 

(3.37) G(n)(t)-+d§c§v(n)(t) + F(n)(t) = O, on =-%%

C _ l4-2u

I 2 - p

where

(3.38) Emu) = 1% [cx(b.t) + (-1)n+1 oX(-b.t)1

which represents the (n)-order displacements equation of

motion.

The transformation of coordinates (3.3) takes the

 

 

 
 

 

form

(3.39) x2 = x2 + Pn , Pn = 2n13
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Again, we shall proceed to analyze a plate of thick—

ness ZbN with spacial variable x2 and time. In each

subdomain we have

a) Hamilton's principle (3.35) describing the motion.

b) The truncation procedure of Chapter I as

(n)
v (t) = O, n > 1

where vén)(t) = v(n)(t).

Setting the condition v(n) = O n > 1 in equation

(3.37) and equation (3.38), we get

(3.40) 6“” (t) + F(O)(t) = o

G(l)(t) + cgdiv(l)(t) + F(l)(t) = o

where

F“) (t) %[ox(b.t) - oX(-b.t)1

F”) (t) %[ox(b,t) + UX(—b,t)].

Similarly, equation (3.36) becomes

__ (O) n (1) . L
(3.41) vn(x,t) — v (t) + (-1) v (t) 8111 2b x

where the transformation in equation (3.39) is used and

n describes the displacements in the (n)-subdomain.

The finite-point method at x2 = b reduces equation

(3.41) to



(3.42) v = v(O) + v

v = v + v

n+1

and the inversion of above equation is

(O) _.L r
(3.43) v — 2 Lvn+1 + vn]

(1) _ 1

Similarly, the stress can be derived as follows:

(3.44) F(l) (t) ll

U
h
d

Substituting equations (3.43) and (3.44) in zero and

first order displacement equations of motion (3.40) yields

a set of differential-difference equations:

2 2

(3.45) 2 [vn+l+vn] + b' [Gn+l-Cn] - 0

2 7

.. 1 :-r ._ =-

where

2

2 d v

(3.46) i =-——— , c =‘—— c

L2 = £2 + c2

Next, we investigate this dispersion relationship of

harmonic waves governed by the Differential—Difference

equation (3.45) by assuming a harmonic wave in time.



(3.47) rv ,- j = :Vn’T 3e “ ,

then (3.45) becomes a Difference equation as follows:

2‘- 4 2
0 J1. i ' - _ r - .1 =

(3 48) ‘ n+1 + an + ( l) b ’Tn+l Tn” O

.2 1 n.2 _ _

Q [Vn+1 an + (-1) b [Tn+l Tn] _ 0

where 02 = (12-C2)

The Boundary conditions for the dispersion relationship

require that both surfaces of the plate be traction free,

i.e.,

‘3 =(3.49) To 0

T_=O.

N

Three cases are going to be considered, a) N = l

which corresponds to one region. b) N = 2 and

c) N = 3.

Case 1 (N = 1)

The Boundary condition (3.49) is reduced to

(3.50) T = O

T = 0 "FREE VIBRATION"

and substituting the above in the Difference equation

(3.46) yields



(3 31) V1 + V0] = O

2 2 2 2
o .. 1 = = -.. [v1 VOJ o , n (. c ) ,

c—Lc
_ 2b L

or

fi 5

3:2 (1)2 V0 0

(3.52) =

422 (‘2 v1 0

The determinant of the above matrix is

2

(3.53) det.= m (m2-c2) = O.

The roots will correspond to the first and second modes of

vibrations. These are

(3.54) '1) = O

y
. ll H
-

O 2 {
3
‘

(
D

'
1

(
D

O

I

N U
‘ 0

Case II (N = 2

The Boundary condition (3.49) is reduced to

(3.55) T = O

and substituting the equation (3.47) in the Difference

equation (3.45) yields



O
\

\
)

mzr * _(3.56) b- 5V1 + v0) - 2 T1 — o

.2 . _
b1 [V2 + V1) + 2 T1 — O

bCZFV - v ] - 2 T = o
L l O l

bazrv - v 1 - 2 T = 0

'~ 2 1-‘ 1

or

F" r-

12 .12 o -17 bV 3
o

O 42 m2 1 IJVl

(3.57) = O .

412 :22 o -1 bv2

o 4:2 <12 -1 2T1
-

d b .4

    
The determinant of the above matrix is

det. = (1)2(1132-C2)(2’1)2-C2) = o.

The roots:

(3.58) w 0
12

U"34 =ic

correspond to the first and second modes of vibrations

and

fl = (E
(3.59) $56 :_2

is a damping frequency due to the non-homogeneous term of

equation (3.48).
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Case III (N = 3)
 

The B.C. (3.49) is reduced to

(3.60) T = O

and substituting equation (3.56) in equation (3.46) gives

    

F 7

(«.2 .2 o o -1 o 7 b v
o

o 4.2 1:2 o 1 —1 b v1

0 0 <1)2 3:2 O —l b v2

(3.61)
=

—C.2 (12 O O -1 O b v3

0 -92 :12 o -1 —1 2 T1

0 o .42 <22 0 -1 2 T2

L.
4 L. .J

The determinant of the above is a polynomial of order

eight and its roots represent the naturals and damping

frequency of our system. Hence, the determinant is

det. E w2(4w2-c2)(4w2-3c2)(m2-c2) = O.

The lowest and highest roots are

(3.61.1) w12 —

m = + c c ='——
34—'

and correspond to the first and second modes of vibra-

tions.



The remaining roots are

(3.61.2) 456 = i c/2

u /
4.78 i'v EC/Z 0

They are the damping frequency modes.



CHAPTER IV

TRANSIENT WAVES DUE TO IMPACT

In this chapter impact boundary conditions are applied

at the tOp of a plate. Free stresses are applied at the

bottom of the plate. Similar conditions had been used by

Kim-Moon [10] but in composite plates. The Differential-

Difference equations obtained in Chapter III are reduced to

difference equation using symbolic technique. A solution

for this difference equation for various N (the number of

subdomain) will be develOped under plain strain and longi-

tudinal strain conditions. Then, application of this

solution to the impact boundary conditions mentioned above

all give rise to a set of P.D.E. involving the x1 and t

variables. Various numerical techniques can be employed to

solve these(P.D.E. such as transform techniques and

computer application.

4.2 Plane Strain Transient Wave Due to Impact

In section 1.7 of Chapter 1, we found the six P.D.E.

needed for [1,1] and [2,1]. In Chapter III

we reduced these six P.D.E. to a Differential—Difference

equation. These two cases will be studied under impact

conditions. In the case of [1,1] the Differential-

Difference equations (3.14) are:

70



31

 41

where

(4.2)

and

(4.3)

D

11

12

13

22

23

31

34

41

44

(O)

(1)

(O)

(1)

A13 Q 10(“n+1

A23 0 . b(un+1

0 A34:. b<vn+1

0 A44.2 ;b(vn+l

_ 2

. Dtt - att and

n+1

Gn+1

Tn+1

T

n+1

   



Let

technique)

becomes a Difference equation.

 

 

'\_

A

v
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”K

and 3x behave as constants (Symbolic

then the Differential-Difference equation (4.1)

Assume a solution in the

  

  

   

form

(4.4) [u .v .c .T 1 = [A,B,c,n)e1n9.
n n n n

Then equation (4.1) becomes

’- T "' i263 "
0 A12 A13 0 b(l+e )A

i28

0 A22 A23 0 b(l—e )A

i29
A31 0 0 A34 b(l+e )B

i29

A41 0 0 A44 b(l-e )B

(4.5) 2(1..129)c

2(l—e129) D

+ - = O

2(l-e126) C

2(l+e129) D

or

(a2+b2z), (a3+b32), 0 , 0 b A

(4.6) (a4+b4z), (a1+blz), 0 , 0 ,bB =0

0 t O I —(l_z)l O 2 C

O I O I O 3 (1+2) 2 D

_ .2 L. -

where

(4.7) 2 = e129

and



- T 2 23
:: _. “- C 1' _ —— _‘.; "

5‘1 A41 A44 [ 2“1311 “+2U)(2b) + b c1131”

- .. = .71. 2 .212.

a2‘A12 A13 r(\+2U)Dll-u(2b) + b chi‘p

(4.8)

a =A A = l'(x+2u)D -2’—2‘- c D -"D ]
3 31 34 11 b 1 1 t tt

211 -l
= — =— r! _-——— _"‘~

a4 A22 A23 “D11 b C21131 ”:2 Dtt]

b =A +A - iuD -(l+211)(—:- -2LCD -p

l 41 44 -' 11 2b b l 1

_ _ _ .1. 2 213. -

b2‘A12+A13 ‘ HX+2WD11 “(216) ‘ b c1131 9

(4.9)

b =A +A =r(l+2u)D +QCD pD 1
3 31 34 L 11 b l l tt -

= = 214 '-
b4 A22+A23 “”311” b c21131 Pcz Dtt]

The determinant of equation (4.6) becomes

_ 2 2

(4.10) det. = (1-z)(az +dz+c) = 0

where

a = [blb2 — b3b4]

(4.11) d = [alb2 + azbl — a3b4—a4b3]

c = [ala2 - a3a4]

The roots of equation (4.10) give us

21 = -l

22 = l

(4.12) ,

23 = Rel)

= Re-13



where

R=\,/C12+32 and 2'. = -d

(4.13) Q

tan 4 = g- 3 - (4ac-d2)l/2.

Recall equation (4.7) which is z = e126 , then equation

(4.17) leads to

€128 =.i l

(4.14)

' +'.!
e129 = Re-IJ

or 91 = o where

82 = w/Z d2 + 62 = l

(4.15) (E

93 = ‘3/2 tan (I = O.

84 = -$/2 d = cos W .

At this point we can observe that Bi(i==l,2,3,4) are

the four independent roots necessary for solution (4.4).

Hence, we can write this solution in the form

= 7 inv

[un'vn'gn'Tn] [A1,Bl,C1,Dl] + [A2B2C2D2Je

(4.16)

int -inw
+ [A3B3C3D3]e + [A4B4C4D4]e

where d = cos 3 is an infinite operator resulting from

the Symbolic technique .

Now, by substituting equation (4.16) in equation

(4.4) we will have a relationship between the arbitrary

constants as follows:



  

   

 

   

    

1a2+b22l , [a3+b3zl], 0 , 0 3 rAl‘

{a4+b4zl], [al+blzl], o , 0 Bl +

o . o . —(l-zl). 0 cl'

- o , o . o "+(1+21[ _DlJ

-Ea2+b2221, [a3+b3221. o , o " 11.21

[a4+b422:!, [al+b122], O , o 32 ein” "’

0 : 0 . —(l-z2). 0 c2

._ 0 , 0 . 0 , (1+22)_( _DZ-

[a2+b223], [a3+b3z3], o , o - -AB.)

[a4+b4z3], [a1+blz3], Q , 0 B3 einx) +

o . o . -(l-z3), o 1 c3 ,

._ O , O , O , (LI-Z31) “D3“

_ [a2+b224], [a3+b3z4], 0 , 0 -A4-

[a4+b4z41. [a1+blz41. o . 0 B4 e-in) =

0 , 0 , -(l-z4), 0 c4

5 0 . 0 , 0 , (l+z4) LD4 .-

where

21 = 1

z2 = -l

(4.18) 14

23 = e

-11),



\
J

0
\

Next, we will examine the impact problem where a load

is going to be applied at the top of the plate in the

following manner:

00(x1.t) = q(xl.t) 7 1X1) < x0. 0 < t < to

(4.19)

o = o ; )xll > X0 or t > to

which is a transversal loading. The other stresses are

 

 

 

(4.20)
O- = TO = T- = O.

N+l N+1

q (X11t)

GRAPH:
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Using solution (4.16) which is

_ inn
(4.21) [un,vn.on,¢n] _ [A131C1D1] + [A232C2D2]e

+ LA3B3C3D3]e + [A4B4C4D4Je

and apply the B.C. equation (4.19) to it, we get



+ 0 + O I

— C:‘(X1.t)
l 2 3 4

D]. + D2 + D3 + D4 =0

(4.22) _

'F- 1 ' - '. _' ‘.C + C ei~N+lJTr + C ei[N+l]b + C e 1[N+l]y = O

l 2 3 4

.r- 1 cr- _- - ‘

D1 + DzeiLN+lJV + DBeilN+l]w + D4e i[N+l]) = O .

Therefore, from equations (4.17) and (4.22) we have

eight P.D.E. of infinite order with 8 unknown Ci(x1,t),

Di(xl't) where i==l,2,3,4 which can be solved

numerically. The coefficients of the displacements

Ai(xl't)'Bi(xl't) where i==l,2,3,4 can be found by

using equation (4.17).

Next, in the case of N==2, the Differential

Difference equations (3.17) are

    

 

O 312 A13 0 ] (un+l+un)

0 A22 A23 0 ' (”n+1 ” un)

A31 0 0 A14 (Vn+l + Vn)

A41 0 0 B44 (Vn+l ‘ Vn)

(4.23)
- —- .— -

pl’ 0 O O F(l)

(o)
+ 0 IA) 0 o H = o

o o l/b o F (O)

(1)
o o 0 p4 H   

where



C1 + C2 + C3 + C4 = q(xl,t)

D1 + D2 + D3 + D4 = O

(4.22) _
.r_ . '- '.| -. ‘.

C + C ei_N+l]Tr + C ei[N+l]) + C e i[N+l]y = O

l 2 3 4

.r— 1 .r- -. - .'

D1 + DzeiLN+lJv + D3eiLN+l]w + D4e i[N+l]y = O .

Therefore, from equations (4.17) and (4.22) we have

eight P.D.E. of infinite order with 8 unknown Ci(x1,t),

Di(x1,t) where '==l,2,3,4 which can be solved

numerically. The coefficients of the displacements

Ai(xl,t),Bi(xl,t) where i==l,2,3,4 can be found by

using equation (4.17).

Next, in the case of N==2, the Differential

Difference equations (3.17) are

    

0 B12 A13 0 ‘1 (un+l+un)

0 A22 A23 0 ’ (”n+1 " un)

A31 0 0 A14 (Vn+l + Vn)

A41 0 0 B44 (Vn+l ' V )

._ _ L -

(4.23) __ _ __

pl 0 O O F(l)

(o)
+ o l/b o 0 H ___ o

o o l/b o F (O)

(l)

o o 0 p4 H     
where



 

 

2 2-
_ r9v(>.+ 2u)-4(4L+ u) g L 2

B12 " f_ 9().+ zuwz _D11+“(2b) ’PDtt

(4.24) r 2 2 2

_ pficou 4(4L4' ll) 1 , I. ..

B44 ‘L ' 9m? _,D11'”+2L‘)(2b p Dtt

and the A. can be computed from

 

= 2; (4X+u)

P1 Vb + 3 (l+2u)rr D1

(4.25)

l/b+£.flfi-L)D

F4 3 pr 1

If we replace A44 and A12 by B44 and B12 in

equations (4.8) and (4.9), the solution (4.16) can be

applied to the above problem. Therefore, Case I (N==l)

an Case II (N==2) are identical except for the coefficients

B44 and B12.

4.3 Longitudinal Strain Transient Wave due to Impact

In Chapter 3, section 3.5 we set the symmetrical con-

ditions with variables xl,x3 which reduced the three-

dimensional problem to one spacial variable x2 and t,

the time variable. The Differential—Difference equations

(3.46) are

£2[u

U
M
u

o

:
3
+ I
.
.
—
I

sn+l"un] +

(4.26)

2

L[fimfl-un]+

G
n
u

where



£2-23
- dt

(4.27)

2 _ 2 2 _ ;L.

L — £. + C , C 2b CL

Let at behaves as a constant(Symbolic technique),

then equation (4.26) becomes a Difference equation. We

assume a solution in the form of

i2n6

   

(4.28) [un,on] = [A,B]e ,

then equation (4.26) becomes

F q ._ -

£2 (l+-ei26) , -(l-e)i28) bA

(4°29) -L2 (l-eize) , (l+e)i29) 213 =0.
 

For A and B arbitraries the determinant must be

set to zero, which yields

(4.30) det E (e126 - eIBHe129 - e-ia) = 0

where

2

(4.31) cos a = ("'12‘ 33+ 1).

c dt

The roots of equation (4.30) are

9 = 8/2

-B/2.C
D ll

Therefore, equation (4.28) has two independent solutions

and by superposition, we get

__ in6 1 “i116

(4.32) [un.0n] — [A1.Bl]e + [A2.lee .
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Now, we let the Boundary conditions be

3' -p(t) t 2 O

(4.33) c = O t < O

The figure below will have a better representation of the

B.C. which give rise to a transient wave.

 

 

 

 

   

FIGURE:
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Recall solution (4.32) which is

(4 34) [u o ] = [A B leinB + (A B ]e‘inB
' n' n l' 14 - 2’ 2

1 d2
where cos B = (E—- -§-+ 1). Thus, if we apply the B.C.

2 (it

(4.33) to the above equation yields



Bl + B2 = -p(t)

(4.35) _

i'fi )3 -i[N ls _
Ble + Bze — O

or

B1 = “[32+P(t)]

(4.36)

[l-cos 2(fi )B]Bz(t) = -p(t)

The above equation gives us two infinite O.D E. depend-

ing on E, the number of subdomain. Next, we will consider

two cases 1:1: 1.2.

Case I (SI: 1)

Using this condition, equation (4.36) becomes

B]. = -[Bz +p(t)]

(4.37)

(l-cos 25)B2(t) = -p(t) .

Thus, substituting equation (4.31) in the above result,

yields

Elm = - [32w +p(t)]

(4.38)

2 2
d 1. d 1

----(l + ----) B (t) =-p(t)
dtz C2 dt 2 2

which is the O.D.E. needed to solve B2(t). From 82(t)

we get Bl(t). Hence, the stress becomes

(4.39) o = Bl(t)einB inBn + B2(t)e



L
0

N

and the displacements can be obtained using equation

(4.29).

Case II (N = 1)

Using this condition, equation(4436) becomes

81 = ~[BZ4-p(t))

(4.40)

(1- 2 cos23)132(t) = — -12- p(t)

and by substituting equation (4.31) in the above result,

yields

4 2

[26‘4 137+ 462 43—2-4» 1132(t) = p(t)
dt dt

(4.41)

B]. = '[Bz+p(t)]

which is the O.D.E. needed to solve Bz(t). From B2(t)

we get Bl(t)' Hence, the stress and displacement can

be found using equations (4.29) and (4.36).
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