H3:23;;gEg:g:52:22.2:=5; 285 (ac/8:3 5.59-1; U 199.5. . .5; IMICHIGAN 5W: " ’ L BRARY — PLACE IN RETURN "out from your record. TO AVOID FINES rat ore date duo. DATE DUE DATE DUE DATE DUE In my .13 ROE». .w v .gm “ MSU Is An Affirmative Action/Equal Opportunity Institution czmma-pd This is an authorized facsimile, made from the microfilm master copy of the original dissertation or masters thesis published by UMI. The bibliographic information for this thesis is contained in UMI’s Dissertation Abstracts database, the only central source for accessing almost every doctoral dissertation accepted in North America since 1861. l I'M Dissertation Information Service University MicroliIms International A Bell & Howell Information Company 300 N. Zeeb Road. Ann Arbor. Michigan 48106 800-521-0600 OR 313/761-4700 Printed in 1989 by xerographic process on acid-free paper Order Number 1888892 The application of an adaptive least squares lattice filter in the detection of heartbeat occurrences in measurements from a remote microwave vital life signs monitor Mahoney, Patricia Ann, M.S. Michigan State University. 1989 C3 a it E: 81% INFORMATION TO USERS The most advanced technology has been used to photo- graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re- produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" b11122]: and white photographic print for an additional c ge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in thids copy for an additional charge. Contact UMI directly to 0 er. U-M-I Unwerszty Microlilms International A Sen 6 Howell lnlormauon Company 300 North Zeeb Road. Ann Arbor. MI 48106-1346 USA 313/761-4700 soc/5210600 THE APPLICATION OF AN ADAPTIVE LEAST SQUARES LATTICE FILTER IN THE DETECTION OF HEARTREAT OCCURRENCES IN MEASUREMENTS FROM A REMOTE MICROWAVE VITAL LIFE SIGNS MONITOR By Patricia Ann Mahoney A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Elecm‘cal Engineering 1989 ABSTRACT THE APPLICATION OF AN ADAPTIVE LEAST SQUARES LATTICE Fn.TER IN THE DETECTION OF HEARTDEAT OCCURRENCES IN MEASUREMENTS FROM A REMOTE MICROWAVE VITAL LIFE SIGNS MONITOR By Patricia Ann Mahoney A portable remore microwave vital life signs monitor has been built. Heart rate is estimated by detecung Doppler shifts of a microwave signal that illuminates the chest wall of a human. A method of detecring heartbeats is based on modeling the microwave heartbeat signal as the output of an all-pole filter that has been excited by a pseudo-periodic impulse train. An adaptive least squares lattice filter is used. The use of this detection method for a modified version of the monitor is verified in this research Estimates of the coefficients of the all-pole filter are found. The detection method works well for only a limited set of operating conditions of the modified monitor. The results of the verification process suggest an alternative heartbeat detection method could be based on the detection of changes in the statistics of the microwave heartbeat signal. ACKNOWLEDGMENTS The author wishes to thmlt Betsy Mates-Needham and Michael Francois for all of their help. She is especially grateful to Betsy Mates-Nadham for her help in the development of the computer program in Appendix J. TABLE OF CONTENTS List of Tables List of Figures Introduction Research Objectives Verification Method and the Method Used to Estimate the All-Pole Filter Coefficients Results Heartbeat Detection with the Likelihood Variable Conclusions Recommendations Appendix A: Samples of Files form the Data Base Appendix 8: Prediction Error Variances Used to Determine All-Pole Filter Order ...... Appendix C: All-Pole Filter Coefficients Appendix D: The Results of Tluesholding the likelihood Variable Sequence as a Heartbeat Detecuon Method Appendix B: We Unnormalized Pie-Windowed Least Squares Lattice Filter Parame- ter Update Algorithm Appendix F: Computing the All-Pole Filter Coefficients from the Unnormalized Lat- tice Parameters Appendix G: A Fortran Implementation of the Unnormalized Pie-Windowed Least Squares Lattice Filter Appendix H: A Fortran Implementation of the All-Pole Filter Coefficient Update Algorithm Appendix I: The Normalized Pre-Windowed Least Squares Lattice Filter ...... ............ Appendix J: A Fortran Implementation of the Normalized Pie-Windowed Least Squares Lattice Filter Appendix K: Review of the Development of the Microwave Vital Life Signs Moni- tor Appendix L: Review of the Relationship Between Autoregressive Process Synthesis and Adaptive Linear Prediction Appendix M: Illustrating the Use of Adaptive Linear Prediction to Extract Impulse: from Processes Using Speech Processes as an Example Vii 21 81323 37 ' 42 46 4s 51 59 63 87 93 Appendix N: The Unnormaliaed Pre-Wutdowed Least Squares Lattice Filter ................... 98 References 106 LIST OF TABLES Table Bl. Prediction error variances used to determine all-pole film order. ................... 43 Table Cl. All-pole filter coefficients. , 45 TableDI. flierestmsofduesholdingmelikelihoodvariahlesequenceasamedtod ofdetectingheartheats. 47 LIST OF FIGURES Figure 1. AR model all-pole filter coefficient A, for a chest wall microwave signal. Figure2. ARmodelall-polefiltercoeffieientAgforachestwallmicrowavesignaL Figure 3. AR model all-pole filter coefficient A, for a chest wall microwave signal. Figure 4. AR model all-pole filter coefficient A. for a chest wall microwave signal. Figures. ‘I‘heeffectoflonthelikelihoodvariahle. Figure 6. ‘l'heeffectoflonths predictionerrorsequence.example l. -......................... Figure7. Wefi‘ectoflcnthepredictionenorsequencemxamplez. ........ ............ Flgure8. Pole-umplotsoftheARmodelan-polefiltersforthehtnnansuhjectfiles andtheinanimateohjectfiles. Figure 9. Amplitude frequency respome AR model all-pole filter forthe humm sub- jectfilesandtheinanimateohjeetfiles. Figure 10. Recoveredexcitationprocessforachestwallfilerecordedunderideal conditions. Figure 11. Recoveredexcitationproceasforachestwallfilerecordedundermore realisticconditions. Figure 12. A chestwall fileexample of thresholdingthe likelihoodvariahle. ................. FigureIB. Alegfileexampleofthresholdingthelikelihoodvariable. Figure AI. Chestwall filewithhumansubjectatrestandholdinghreath. ...................... FigureAZ. Chestwallfilewithhtunansubjectatrestandhreathing. Figure A3. Greetwallfilewithhumanmbjectexereisedandholdingbreath. ................. FigureA4. Orestwallfilewithlmmansuhjectexercisedandhreathing. .............. FigureAS. Legfileofahummsuhjeet. FigureAfi. Inanimateohjectfiles. Figure Kl. The first Michigan State University microwave vital life signs monitor. Figure K2. The modified Michigan State University microwave vital life signs moni- tor. - 12 13 14 15 16 18 19 23 883’ 38 38 39 41 74 85 Figure Ml. Block diagram of simplified model for speech production. ........................... Figure M2. Deconvolution of the impulse response of an all-pole filter by linear prediction. Figure N1. Direct realization of an order M lean squares linear predictor. ..................... Figure N2. Lattice realization of an order M least squares linear predictor. .................... Figure N3. Characteroftheleastsquareslauice filterexponentialwindowforvari- ous values of A. 99 1(1) 103 INTRODUCTION mummmdevebpmganmfinvasivevimlfifengmdeteaormawmbeusedby medicslpersonnelwortinginhanrdmsenvironmems. Onerequirementoftheimtrumentisthat itisahletomeanrreahtunsn’sheanrateatdimsupmfimchesfiomthehodyandthrough promedveelothing. Aportahlelowenergymierowsvedevicehasheendevelopedmmeasure heanratebydetecdngpermhadcnsofdiechestwanduemdtehesrtbestlng. ‘I'hedevice operamhyilluminadngthechestwaflwithapulndX-hsndmicrowsvesignal Relativemotion hetweendndevicemddzdteawanudemaedhybopflershifumdnmfieemdmiaowave signal. Under realistic operating conditions. breathing. body. and background movements ohscuretheheartheatsignal. Ibeamuuchanengeismdevelopareel-fimesignalprmirrg teehniquethatwinemactheanheatinformadonfiomthemiaowaverentms. Panefi‘ommmunuehemmefinmdnmiuowavesignalhaveusedvuiousdmemdfm- qrmcydomaindemcfionmedndsfiynn.fiym.2app.&$iegd.l986;Byme&SiegeL 1985; Byrne. Zapp,Flyrm.&Siegel. 1985:}loshalekovich. SiegeL&Zapp.l984:I-Icshal&8iegel. 1985;Hoshal.8iegel.&2app.1984;13n.Kiernicld.Kiemicki,&Wollschlaeger. 1979;Pcpovi<:. Chlm&Uml984).1hehemmesdmafimwchm®esesnhechsdfiedinmtwomups.wch- mqtesmmmlymepaiodicnmofmelnmmmchmquamnauemptmidmdfyuuivi- dualhearthestsinordertoestimatehesrtrate. Detecticnmclmiquesthatrelyonthepericdie nanueofdnheutheusignflhavehadfimiwdmhemseheumeaocmmam pseudo—periodic. Trmepetiodshetweenheartbeatsaremtalwaysconstam. Amoconelationisan example of such a technique. Averaging techniques such as autoconelation also perform poorly intrackinginstantsneouschangesmthcheertrsm. ummwummmmmmumywmmum hesnheatsignal. Amierowavelcuthestslgnallooksmewlntlikeanelectroardiogru (EKG).1heocamuneofaheume¢mdnmiaowavenpnlqrpesnmheimptufiveMnamre Peakdetecfioncsnhemedmbescindividualhembemsmmiaowavehembeadgnfls recordedtmderidealopetatingconditims. mmmmmmm cmrdifiombecmueuehemngnflisohscmedbydunerdmmhremhhgndbackmd mmmmrora'mm'mmmmmmmw unsuccessfiIlMSiegel,personalcommrun'cstion. 1988). 'I‘hesignanrreoftheheertbestchanas withonemadmmddistanceofthemiaowavedevicewimrespeamthechestwan. margin. mmcenvaryfiompersonmpmsonandfiomhesrtbemmheumeatmymeaflegele mexuacdmofmimpulsivengnalfiomaproeeaesisaboaprouemmgeophysiamd speeehanalysis. Adaptivelinesrpredictionisausefirltechniqueinrecoveriruimpulse mumbomseianicnacumdspeecthJfithleetMorfilm Makhoul.l97$). Beemseofmesimflantybetwemdrehnpulsivenauueofhesnbemocamences inthemicrowavesignalandpitchpflsuhspeedrprmBynreandSlegelOMadopeda micmwmheumeasigmlmoddmdheanhendaecdmwchmquemnmdmflflmdnspeech pmcessmoddmdpimhpukedewaorpresmdmleemdmfl(l980).1hedemcdonmemods arebasedonadaptivelinearprediction. TheparticularpredicmrusedhyByrneandSiegelwasan adaptive least squares lauice filter. a computationally efficient Implementation of an adaptive leastsquareslinearpredictor. BymesndSiegelshowedthattheadaptiveiesstsquareslattice mmwrkedwenmemaedngheanbeamfiommiaowavengnflsmeordedtmdaidalmd adverse operating conditions. Byme and Siegel (1985) worked with the Michigan State University Biomedical Signal Processing Laboratory vital life signs monitor. Other work related to this monitor was done by BynmflymlappJndSiegKlmxBymebpnFlymmdSiegel(1985).HoslnL1VkDVich. Siegel. andZIpp(1984).Hoshal and Siegel(l986)andiloshal.8iege1.and2app(l984). A mprehaniwhinoryofdndevdoprnauofahanumesdmadmmcmfiqumthemchigm vamvasityvinlnfenpumonhmlsgivenmAppmdixKAmherormodifianmhave becnmatbmthedesignofmevitfllifesigmmonimrsimednBymuflSiegel(l985):tudy. namedificsdmswuemademimpmveunufayofmedevicemhumiupowcmmpdon. hmasednmodmr'sdymmicrmgemdsmnfivity.mdmmrom§gmlcompmxmsreluedm breathing. Tumuupomonormmmimdmmmemmorummum changed. mmwmmfimrpodfionprovidesdanthatwmwstmehesnmeesfimaficntecho niquesunderdevelopmemmoreextensively. mmaowwefignahmcordedfiomdremodifiedmiaowaveuutappeumhevaydif- faunfiomflnmiaowmdmkmahymemdSiegdamwmmdndevmof www.1hewpocofmismkmvedfymnthe3ymmd8bgdmcdd mdmeuseofmeBymemdSlegdheanheudetecmruevdidfmdumiaowavehanheudg— nalsreeordedt‘romthemodifiedmcnimr. 'I'headaptlveiesstsquareslatticefilterusedinthe ByunmdSiegelhesnheudcmaorhapanmetersmamuabedefinedheforedndemcdon teelmiquecsnheused. BymeandSiegeldidnotgivessysmsdcmedrodofseiecdngvalnesfor dehmcemmrwdefimdpuammmdmbulkofdfismeheflonhmmm theseleetionofmerdefinedlmicefilmparametervalues. Abyprnductofthisverificstionpro— mamummemmmmumormmmmm ticsctthemlcrowaveheartheasignal. RESEARCHOIJECI'IVES mmomwwormmmunmnmmsmusmam modelsndleanbeaderedonmahodanvafidformlaomheumeangmhmdedfiom themodifiedvitallifesignsmonitor. BymeandSiegelmodelstlnmicrowavehesrtheusignalas theoutputofanall-pole filterthatisexcitedbyaproeesscomisdngcfapseudo—periodlcimpulse u'ainaddedmband-limitedwhitenoise. Equationlistheu'ansferfunctimofdnallpolefilter. Hui-phyao(z)- T . (1) 1+ An" whereMistheorderofthefilterandArisacoefficientofthefilter. Tlnlmpulsetralnrepreserus theoriginalheartbeatsignal. ‘lheall-polefilterrerxesentsthesystemthehesrtbemsignalpasses through. Adapdvelheupmdicfioncmheusedmdecmrvolvetheompmofman-polefihermat hasbeenexcitedbyawhiteprocessoranimpulsen-ainwriedlander.198I;Friedlander.l982b: Lee&Morf.l980:Malthoul.l975). Theexcitaticnpromssismoverahlefiomthsp'edicticn errorsequence. Adapdvelinearpredicdcnesnalsoheusedmidenfifythecoefficiennofthean- polefinu.Asmmmgdmadapnvefimupmdicnonwinmvasednopuadmofman-pdefilm onaprocessconsistingofanimpulsetrainaddedtowhitenoise.BynnandSiegelapplysadq>- uvefimarpmdicdonmmemicmwaveheanbemsignalmOMermmcovermehesrmea occurrences from the linear prediction residuals. ‘Ihe heartbeat signal should appear as a sequence of large predicrion errors. TheByrnemdSiegd(l985)moddisverysimilumdremrmregremlve(AR)prm model. Fordrehaufitofmemfsminureader.AppmdingivesarevlewoftheARmeddand «mammmmmwmdmwmmmoru BymemdSbgdmoddfwdnmlaowavelnmbemngnuwasmodvuedhyrlnspeeehproceu modelusedbyleemdMorf(l980)inthdrdevdopmauofapitdrprdsedetector. AppendixM gimashnplifiedihnfiafimofdnmeoflhearpedlcfimmdtmflysuofspeechmmr thehenefitofdretmfamiliarreader. BymmdSbgelflQBSMsumadapdvebstsquueslatficefiherudmflnesrpmdiaorin thelrhesrtheatdetectionteetmique. municefiherisanormalmdversionofmedreleast sqummmmusedbyleeandefllmmmdcemchupdneflMMk recursive. Alldcemmrpuametercdbddrelikehhoodvuiahlesidsmmeidauificsdmeflnge mmmmmmmmmmmmmumnu bg-likefllmodfmfimofflnmmukmmdnhniceflm.mukflmoodvuiahbhs memeofdnfikdihoodmunmsmedmmpleswincomefiommesmemdisui- mauaw.rm.mmuwmmuamawmmmcorueww edness'ofthemcstrecentinputdatapointsmiedlander. 1982a). Afimctionofthellkelihood mummmmmWWMmmmmmmm mablesurelatticefiltertoquicklyadapttounexpecteddataaeedtMorf. 1980). Bymeand Siegelfmndmmdnnquencefomedbymbnacfingmevflueofunlikelflmdvadauefmdn previmsfimenepfiommeauruulikemmodvadabhvfluecmndbeusedmlsomdnluge mmmmwmmmmmummmm- encesequenceisusedmmukoutpmdicdmaromthaannotassodatedfimhesrmeu occurrences. mfimnepofmeBymcmdSlegeHwSfihemheadeteedmmismpsssme micmwwelwanheungnfldlmghmemcemm.mlfltefimvamhkdflermnqm isformed. mpredicdcnmrmquareemdthcllkemmodvuiahletfimaencesemsm muldpfiedmgemerJheremhhanquamsofhdnedlugepredicdmummeor sihleheartheats. mmmwormmuromrrymmmu micmwaveheanhestsimsfiomdnmodlfiedmcsnheexuaaedwlmmeBymmd Siegelproeedure. firefirstsrepofdreverificadonproeesswinbetoapplydrelauicefiherto mmmmnmmmumaawmwummummau predictionenornquenceandthelikelihoodvariablesequence. ByrnemdSiegd(l98$)didmtinvesdgamthebehsvimdflnmnfigmfiQOIGnan-pok mmmMerWQMmmWMMNm-pdemmm migmconnmmformadmdnthusefidmdndevdmofsheanmmm MWobjewwormmummmmormm-pbmu observehowthcyhehaveintime. VERIFICATION METHOD AND THE METHOD USED TO ESTIMATE THE ALL-POLE FILTER COEFFICIENTS The Lattice Filter Parameter Update Algorithm The Unnormalized Pre-Windowed Least Squares Lattice Filter from Friedlander (1982a. pp. 842-844) was used in the verification of the Byme and Siegel (1985) heartbeat detection method for the microwave heartbeat signals recorded from the modified monitor. The prediction error and theiikelihood variable aredirectly available from thelattice filterparameterupdate algo- rithm. The lattice filter par-meter update algorithm and a Font-an implementation of the lattice filter are given in Appendix B and Appendix G. respectively. For those who are unfamiliar with least squares linear prediction and the lattice form, we Appendix L and Appendix N. The all- pole filtercoefficientestimateswereohtainedfromthelattice filterparametersrhroughanalgo— rithm given by Friedlander (1982a. pp. 845). The algorithm used to estimate the albpole filter coefficients is given in Appendix F. Apperrdlx l-l gives a Fern-an implementation of the algoritlun used to estimate the all-pole filter coefficients. The Data Base of Files Recorded from the Modified Monitor The verification process was facilitated by the formation of a data base of microwave sig- nals recorded for various operating conditions of the modified microwave vital life signs monitor. SamplesoffilesfromthedatabasearegiveninAppendixA. Therearelo24datasamplesin eachdatafile. 'I'hesamplingratewasasamplespersecond. Microwavesignalswererecorded fortwoltindsofrellectivesurfaces.human subjectsmdinanimate objects. ‘Iheinanimare objects consistedofawoolsurface.ametalsurface.andanopenroom. muuexpenmemsmponedmuusreseamhtlrerewerefourhumanmbjeets. Foreach human subject five microwave signals were recorded. Four of the five signals resulted from reflecting a microwave signal off the chest wall of the subject. The fifth recorded signal resulted from reliecfing the microwave signal off one of the subject’s legs. Each subject was rested and holding hismerbreath forthe firstchestwall file. The subjects were restingarrd breathingnor- mally forthesecondchestwall file. Inthethird file.thesubjeetshadbeenexereisingandhcld their breath. The subjecrs were exercised and breathing forthe fourth chest wall file. Themmutorhaduresameponuonwimrespectmdrembjeaforeachcheuwanfile. The subjeCts were seated. The monitor was pointed just left of center of the chest wall. Studies previ- ousto this mseamhshowedmnunnmngestheanbeatsignalscanbefomrdinmicmwwesignfls recorded with the monitor positioned left of center of the chest wall (M. Siegel. personal com- munication. I988). The monitor was place about 6 inches from the subject. The subjecrs were wearing Street clothes. Heartbeat reference signals were obtained from an in-house designed unit that measures hodysurfacepotentialbetweenthehandsofahumansubject. Theoutputofthedeviceresemhles anEKGsignal. Ahandpotauialmfemnceheartbeusignalwassimulmreouflymcordedforeach chestwall file. A microwave signal reflected from the bare calf of a leg of each subject was recorded. The monitor was positioned 6 inches from the leg. A hand potential reference heartbeat signal was simultaneously recorded. Movement detected in the returns of the microwave signal from the leg due to the heart heating is expected to be insignificant. The data base includes three files where the microwave signals were reflected from the inert. imate objects. One microwave file was recorded for a microwave signal reflected from a wool surface placed 6 inches from the monitor. The second file resulted from microwave reflections fromafiatmetalsurfaceplacedoinchesfromthemonitor. ‘Drethird fileisarecordofreturrn from amicrowavesignalsentintoanopenroom. The Selection of Lattice Order 'I'heproperorderof the lattice filtermustbechosen beforetheverification of the Bymeand Siegel (1985)deandhcartbeatdetecticnmethodforthemodifiedmonitorcanproeeed. The orderoftheall-polefilterintheBymeandSiegelmodelwillbetheaameastheproperorderof thelatticefilter. firemeurodusedtodetermhrethepTOperorderofdrelauicefilterisbasedon tlnoptimizationcriterionofleastsquhreslinearprediction. lnlinearpredictionthecunentvalus ofaproceesisesfimatedbyafinearcombinationofpastvaluesofmepmcessThecoeffieients inthelirrearcombinationarechosensuchthatthesumofthesquaredpredictionerrorsisminim- ized. meperorderofthefinearpndiaoristhemtmberofpastdandemenumtheumu combination. lftheorderoftheleasrsquaresllnearpredictorisgreaterthantheorderofthepro— (mathslinearpredictorisusingpastdatainitspredicrionofthecurrentdatapointthatthe mnemdaupoimismtdependemmtmgwsspmpmcessdedmtmakeamm tributiontothepredictionofthecunentdataitem.Theweightthelinearpredictorassignstothe excessprocesselcmerusshouldheclosetozero. Iftheexcessproceeselemenrsmalteonlya smallconnihufionwunpredicfionofmemnuupocessdunnmmuremcfmesquamd error shouldnotsignificantly change withanincrease inlinear predicricnorderbeyond theorder of the process (Chandra 8: Lin. 1974). The order of the microwave heartbeat signals was 10 detenninedbyprocessingthesignalswithahighorderlattice filterandthencalculatingthcmean ofthesumofthesquaredpredictionenorsforeachlowerordersectlonofthelatticefilter. The orderoftheprocesswaschosentobetheorderatwhichthemeanofthesrsnofthcsquaredpred- ictionmordnvanmofunpredicfionmbegmmhvdofi'forinaeasinglauicefilter order. Apreliminarystudywasdorreinordertoestahlisharangefortheorderofthemicrowave signalsinthedatabase. Datafilesrecordedfromthemicrowavesignalbemgrellecmdfroma humanchestwall.ahumarrlegandtheinanimateobjectswereprocessedthroughslatticefilterof order 8. Theexponential weighting factor.aparameterof the latticetobeexplainedintlnnext section. was arbitrarily setto0.95. Thevariance ofthe predicrion error leveledoifatordeu for each data file. Inansumequaumalysesoffilesfiommedatabaseahuicefiherofader6wasuse¢ The exponential weighting factorwas setto 0.99 for reasons giveninthenextsection. ‘Ihevui- ance of the predicricn errors for order I through 6 were recorded foreach file inthe data base. 'I‘heresultsaretabulatedinAppendixB. TheresultsinAppendixBarethesameasthcresultsof thepreliminarystudy. ‘l'hcvarianceofthesumofthesquaredpredictionenorsforeschfilein the data base appears to level off at order 4. The Selection of a Value for the Exponential Weighting Factor, A A secondparameterofthe lattice filterthatneedstobedefinedbeforethelattice filtercan he used is the exponential weighting factor. L The exponential weighting factor determines the configuration of exponential window that weights the past data used in the estimation of the Statistics of the signal being processed by the lattice filter. As the value of A increased. the length ll of the exponential window increases. A study of 1's effect on the lattice filter’s processing of microwave heartbeat signals wasmade inorderto choseavalue for). Agroupofchestwallmicrowavesignalsfromthedatabasewereprocessedthroughthelat- ticefilterwithxsetatvariousvalues. lwassettovaluesrangingfiomo.99too.85. A4thorder latticewasused. Thehehavlorofdteoutputmdpanmetersofdelatficefilterwasobservedfor each file. Three consistent behavior patterns were observed. The behavior patterns occurred in the estimated coefficients of the all-pole filter. the likelihood variable. and the prediction error sequence. ‘I'hevalueoftheall-polefilterparameterswereupdatedforeverynewdatselementofthe file beingprocwed. Figure I through Figure4illustrate howthefour all-polefiltercoefficients varyintimeforl-O.99.1-0.95.and3.-O.90. Forl-O.99.theplotsoftheall-polefilter coefficients are srnoorh. As ideas... in value. the plots ofthe coefficients showlarge varia- tions. FiguresshowshowthelikelihoodvariablehehavesforA-0.99.1a0.95.and).-O.90. As Adecreasesinvalueuievariaticnofdrelikelihoodvariableirrcreases. Inmostofthechestwall filesstudied.ariseandfallofthelikelihoodvariablecanbeconelatedwithaheanbeat occurrencefromthehandpotentialheartbeatreferencesignal. Aldnughthehehavioroftheliltel- ihood variable reported in Byme and Siegel (1985) is similar. the rise and fall ofthe likelihood variable associated with theoccurrence of aheartbeatare fasterintheByme and Siegel study. The rise and fall of the likelihood variable in this research appears to be more like a hump. The behavior of the prediction error sequences for decreasing values of A was opposite the behavior of the all-pole filter coefficients and the likelihood variable. As 1. decreases. the ampli- tude of the largest prediction errors seem to decrease. The variation of the prediction error for decreasing values of A is m as pronounced as the variations observed in the all-pole filter coefficients and the likelihood variable. The variance in the prediction error for different values 12 4.0-1 (0 "'5‘ .10- 251 r r r l T 2 4 6 2 to 4.0-1 0» "5- 4.0-1 .ud r r r r r 2 4 6 8 lo 4.01 (c) 4.54 .10- .25.. f l r I r r 0 2 4 6 8 lo ‘. - i ' . (d)0.0- Hi” ’ t ‘. r; ‘ il l r r l r r 2 4 6 8 to Time (aeeurds) Figure l. ARmodel all-pole filtercoeflieientA, forachestwall microwave signal. (am. for 1:099. (b) A. for 1:0.95. (c) A; for 1.1-0.90. (d) chest wall microwave signal. l3 3.0- (a) 2.0- 1.0- I I I I I I 0 2 4 6 8 l0 3.0- (b) 2-0-' 1.0-1 I I I "l I I 0 4 6 8 10 3.0- (c) 2.0- 1.0 I I T F I I 0 2 4 6 8 10 (d) 0.0.. ‘7 ‘ ~ " -' . I I ’ '. I I T I I I 0 2 4 6 8 10 Timemccnds) Figure 2. ARmodel all-pole filtercoefficientA; forachest wallmicrowave signal. (am; for 1:40.99. (b) A 3 for 1:0.95. (c) A; for 150.90. (c) chest wall microwave signal. 16 1.0 0.8- ( ) M" a 00‘- 0.2- 0.0- I I I I I T 0 2 4 6 I 10 1.0-I 0.8d (b) 0.6-4 Me 0.2— 0.0- I I I I T j— 0 2 4 6 8 10 1.0- 0,3- ) 0.6- (c 0.4... 0,2- 0.0-1 I I I I I I 0 2 4 6 8 10 0.0 I I I I . . l I ' I . I I i 'J l (d) " . ' : ‘ r‘ . I ' I I I I I I 0 2 4 6 8 10 Time(seccnds) Figure 5. The effect of 1. on the likelihood variable. (a) likelihood variable with 11-099. (b) likelihood variable with 1x095. (c) likelihood variable with 1:090. (d) hand poterlial heart- beatsigml. l7 ofkisgreaterforsomefilesthanitisforcthers. Figure6andFlgure7shcwtheerrorsequence fortwodifferentfilesfromthedatabasefilteredwith1-099.1=0.95.and1-O90. Thevari- anceisgreaterforthepredictionerrorsequenceinFigurefithatitisinFlgure7. The behaviors of the allopole filter coefficients. the likelihood variable and the predictim errorsequencecanberelatedtoeachomerbycmrsidefingthelutgthofmeexpmentialweighfing windowofthelattice filter. Aslincreases.thelengthoftheexponentialwindowittcreases. For larger values of1. the lattice filter's memory of the process it istrying to predict is longer. More pastvaluesareusedbythelatticefiltertoestimatethestatisticsoftheprocess. Thefikelflioodvanablecmbeusedamhtdicamroftheevmudutthemostrecmndan pointsreceivedbythelatticefilterareoutliersfromtheoauasimdisuibuticnofthedatathatthe filterhasinitsmemorymeeokorfJQSO). Askdecreasesdhevariancecfthelikeliheodvari- ableincreasesforthemicrowaveheartbeatsignals. Gertenlly.theperiodsdufingwhichthelikel- ihoodvariablensesandfallscenelatewithcccunencesofheartbcats. Themicrowaveheartheat signalappeanwbedifferuumchamerforpenodsmatconelamwimuieocmmuweofhean- beats. lfthelengthofthememcryofthelatticefilterisshorterthanthetimebetweenheartbeats. urenuieoccunenceofamiacwaveheanbeatmayappeartobeafarouuierfrcmthedistribution ofthedatapointsthatjustprecededit. Undammcondtuommevarue ofthelikelihood vari- able should rise. If the memory of the lattice filtercovers the occunence of several heartbeats. theoccurrenceofanewheartbeatmaynotappeartobesuchadistantcutlier. Thevalueofthe likelihood variable would vary less for a lattice filter with a long memory than for a lattice filter withashortmemory. The behavior ofthe likelihood variable directly affeCts the estimation ofthe lattice filter parameters used to calculate the all-pole filter coefficients. A function of the likelihood variable isusedasagaininthcupdate algorithm forthelattice filterparameters. Thegain enablesthelat- tice filter to quickly adapt to changes in the process being predicted. If the likelihood variable is l8 0‘ l ‘ ['1 lI (a) . I .20- .40.. I I I I I I 0 2 4 6 8 10 m- l I 1 I I ’ 11 t I» i (b) 0' ‘ ‘ ‘ r I «l ' ‘ .20.. 40‘ T T I I I I 0 2 4 6 8 lo 20- 0.! 'l - 'i. g, 7.1 . . I} I l (e) -20 _. 4° - 0 2 4 6 8 to (d) 0— | T I I I I o 2 4 6 8 10 Time (seconds) Figure 6. The effect oflcn the prediction errorsequenee. example 1. (a)errorsequence with 1:099. (b) error sequence with 1:095. (c) error aeqrence with 1:090. (d) hand potential reference. 19 5:: WWW! r l I T I T O 4 6 8 10 50-4 I I I ‘. . I (b) o d ' . | 1 i 1 'I .' '3‘" 1 ",1 ‘ 1 i I . ' I f '1 I“! '1! I l . .50- T l l l l l 0 2 4 8 10 50.4 (c) 0_ . " t : ', .' if... 3 J; ‘ . .50- I l T fi l I 0 2 4 6 8 10 (d) 0.0 — ~ ' " ' l , : ‘ I ’1 ‘ ., l. l I I l I l 0 2 4 6 8 10 Time (seconds) Figure 7. The effect of 1. on the prediction errorsequence. example 2. (a) error sequence with 1:0.99. (b) error sequence with 1:095. (c) error sequence with 1:0.90. (d) hand potential reference. 20 large.menutelanicefilterrespondsbyaneringitspanmetentcminimiaethesumoftheaquared predictionenors. Theinfonnaficncomainedmuremcstrecuudanpoinnreceivedbythelanice filterwillbeconsideredtobettetargetmwhichthefilteradapts. lttheparametersofthelafice filterchange.theestimates of the all-pole filtercoefficientsmightslnwvariations. mvmadmninmepmdicuonarcrsequencescmbemhmdmthelmgmcfmemanwy ofthelatticefilter. Whendrememoryofmelanicefilterisahottmedaumelmicefilteristry- ingtoadapttcislocaliud. Thelikelihocdvariableismoreaaurtivetochangesinthedatathe latticefilterreceives. lfdrelikelflmodvaflableismomaaoifivemdrmrgeammelauicefiher isbeuerablemuacksmncrmdnngesmmemicmwavedgnalmchnmiaowavemfiecfim duringtheoccurrenceofaheartbeat. Ccruequently.thelatticefiltermaybebetterablemminim- izethesumofthesquaredpredicrionerrors. Thiswouldeaplainwhytleamplitudesofthelarg— est predicficn errors decrease for decreasing lattice filterexpcnential window length. ThevaluecfkchosenfortheverificationoftheBymeandSiegel(l985)modelandheart- beatdetectionmethodwasx-099. Longhnicefiltermemcrywaschcsenbeemaethelarge predictionenorsassociatedwithheartbeatsinthehandpotential referertcesigmlweremorepro- nounced. The all-pole coefficient sequences are smooth for 1. a 0.99. RESULTS The Byrne and Siegel Model All-Pole Filter Coefficients Bsdmflesofdteafl-polemtercoefficianswuefoundforeadtfileinflaedaubase. The afl-polefihercoefficieflestimateswereupdatedfcreachpoiminafile. Ameanvalueofeach coeffidemforeaehdambaefilewufmmdfiomamfleofconeearfiveesfimaescfde coefficients. EaehsampleconsimdofmpoimsstartingatpoimMor3nccndsimome coefficientfile. Thepurpoaeofdredehyinthestmofuresmnplewastomsurethatdrelauice filmsparameeershadcurverged. AppendixClsatabulaticnbfthe all-polefiltercoefficierrtsam- pleaveragesforeachfileinthedatabase. Than-polemwrcoeffidmoffilesformimowaves'mfieaedfimndnmmmbjeasam closelnvalue. Them-polefiIterccefficientsoffilesformicrowavesrefiectedfrminmumue objmarecloseinvalue. Themeanofthecoefficientsfcrthehtnnmsubjectfilesandthemean oftheinanimateobjeetcoefficientsaregiveninAppendixC. Theccefficientsfortheinanimate object files arelowerinvaluethanthe coefficients forthe human subject files. lnmdermdetermimlffindiffaencebetweendtehmnhnamobjectmean-polefiher configmfionmddtehtmutsubjeafilean-polefilmrconfigmaficnissigrfificam. pole-zero plots weremadeforthetramferfimcticnsoftheall-pole filters forbothfiletypes. Thepcle—aeroplots areinFigures. Thefourpolsaofeachall-polefilterappearastwoconjugatepairsinthepole- reroplot. Theplotshowsthatthepolesofthedifferentfiletypesareclose. Figure9aandthure 9b are plots of the amplitude responses of the different file type allopole filters. Although the HII ' (Z)= 2‘ “M “I“ z‘ - 1.93423 + 2.48522 - 1.6842 + .7273 m...- 05' (z)= 2‘ m" p“ z‘-I.35623+1.68022-1.013z+.s994 Figure 8. Pole-zero plots of the AR model all-pole filters for the human subject files and the inanimate object files. H - Human subject AR model all-pole filter poles. l - lnartimate object AR model all-pole filter poles. lS-I 10 - (a) H O—I O.- 5 8 [in 3 15- 10— (b) l l I F l 10 is 20 25 30 Frequency (Hz) o— LA Figure9. Amplitude frequencyresponseARmodelall-pole filterforthe humansubjectfilesand theinanimateobjectfiles. (a)frequeneyrespomeforthehtunanntbjectfiles. (b)frequency responsefotheinanimateobjectfilcs. 24 resonancepeaksfortheallopole filterforthehumansubjectfilearegreaerinmagm'nrdetlmthe mmncepeaksfordefll-pokfihercfdehrflmamobjeafileememcepeabueu approximately the same frequencies RecoveryofthafleartbeatSignalftomtheMlerowavefleartheatSlgml mmwmwdmmwummmunmmwamm «mamammmvwdmnmmmnmmmm modified monitor. lftheByrrnandSiegel modelisvalidfcrthetnodifiedmatitormicrowave heanbeungmhmdfinarprediaimwmmvmseunopaafimofman-pdemmmaprm consisfingofmimptdsemmaddedmwmmmisenhenthepredicfimenonofmelatfleefilter shouldcomistofanimpulsen-ainaddedtowhitemise. mimpulsetrainshouldcerrelatemthe occurrencesofheartbeatsinthehandpotential referencesignal. Onlyafewchenwaufileshadpmdicfimenorsequencesmaresunbledmhnpulaem addedtowhitenoise. 'l'hesefilesweremordedtmderidealccnditicns. Thehtnnansubjectwu atrestandholdingher/hisbreath. 'l'herewaslittlemovementofthechestwallduetou'eathing orthebodymoving. Figure lOshowstheorigmalmicrowaveheattbeatsignalandthepredictim errorsequenceforachestwallfilewherethemodeliswellfiued. Hembeatocmtmmcheawaufilesmcmdedmdermonmdisticcpemingccndificm arenoteasilydetectablefromthepredictionenormquences. Forfileswherethealbjectswere bumbing.dcpmdicfimenomubcafiomofhemtbenswmenmdisfingtfisheflefiomodnr prediction errors. Figure 11 showsanexampleofapredictionerrorsequenceforacl'testwallfile recorded while the ntbject was breathing and after the subject had exercised (0 o— w I I I ‘ I ., n _ I l I I I r T o 2 4 6 a lo I I .. o_ w I I III... ,' I I (b) ‘ ’ ' ’ ‘ I I' T— l T I r I o 2 4 s a to (d) 04 ' .' ' l l I I l T o 2 4 s . a to Tima(aeecnds) Figure l0. Recoveredexcimfionprocessforadrenwanfilerecmdedmderidealcondifim (a) chestwallmierowavesiml. (b) predictionenoraequuies. (c) handpotentialheanbeatsignal. (a) (b) (d) 26 0- I I V , I r T I I I 0 2 4 6 8 l0 l 0" ' I '11 1‘” i ,I I T I I I I I 0 2 4 6 8 10 0-1 I I I I T I I I 0 2 4 6 8 10 Trme(seccntk) Figurell. Recoveredexdufionpmceufcrachestwanmerecmdedtmdermoreredisficcmdi- tions. (a)chestwallmicrowavesignal. (b)predictionerrorsequence. (c)handpotentialheart- beat signal. 27 hmofhrppwabnmnmambemmmmm handpotcmiallcfmflleisnotcomismforflndwwanm mbehavioromewedthat mmfimhmomchmwflflemflnmhamhbehnfioroflhefikdflnodvaiaflc menofthechwwmmmuammpmmelikdihoodvmmmfwmof mmmmmmnfmfim HEARTBEAT DETECTION WITH THE LIKELIHOOD VARIABLE Tlfisseaionpmsunsmemnnuofminvesugauoohtmdnfeesibflltyofdevebpinga heartbeat detector using only the likelihood variable. Heartbeats were detecwd by applying an arbitrarythruholdot‘OJtomelikelihood variablesequenceeofallthechestwallmes. lithe value ofuteukefihmdvanablerunainedumaWOJfor4camrdvepoimafikemmod variable clusterwas formed. Note thattheliltelihood variablesequenceswerepmduoedbyalat— tice filterwith 1:0.90. Inordertoverifythata flle'sliltelihoodvariablectusteraequence representsthe file's heartbeat signal. eachliltelihood variable clusterwasclassifyedas abeartbeat cluster or a non-heartbeat cluster depending on the location of the cluster in relatiat to the heart- beats ofthehandetential referencesignalofthefile. Aclusterwaselassifyedasaheartbeat clusteriftheclusteroccurredduringtheperiodbetweenthereferenceheartbeattothehalfway pointtothenextreferenceheartbeat. lfaclusteroccurredduringtheperiodbetweenthehalfway poim andthenextheartbeaLtheclusterwasclassifyedasanon-heartbeat cluster. The number of heartbeat clusters. the number of non-heartbeat clusters. and the number of heartbeats in the reference signal were tabulated for each chest wall and leg file from the data base. Appendix D contains the tabulation of these results. The percentage of reference heartbeats associated with a likelihood variable cluster was calculated for each tile and was recorded as the percentage of hits. The percentage of likelihood variable clusters not associated with reference heartbeats was calculated for each file and was recorded as the percent of false alarms. Figure 12 shows an example of thresholding the likelihood variable sequence {or a chest wall file. Figure 13 shows the result of thresholding the likelihood variable sequence for a leg file. 28 ! (a) o- ’ . 'I I l I T W T I 8 10 12 14 16 0.5-4 , .1 (b) ' I I I I I a to 12 14 16 n 1 ' n r r . r (c) “7L [ f E L L L («11' V" " I r I I r 8 10 12 14 16 Time (seconds) Figure 12. Achestwalllileexampleofthresholdingthelikelihoodvariable. (a)chestwall microwave signal. (b) original likelihood variable sequence. (c) likelihood variable cluster sequence. (d) hand p0tential heartbeat signal. (I) o... I I r I I 8 10 12 l4 16 0.5.. (b) I I I I I 8 10 l2 l4 l6 1 l r H w (c) j I I I r 8 10 l2 l4 16 (d) 0.0-1 ' .. ' .' ' . I ‘ ' I" , I I I I I 8 10 l2 14 I6 ‘l'lme(seeonds) Figure 13. A leg tile example of thresholding the likelihood variable. (a) leg microwave signal. (b) original likelihood variable sequence. (c) likelihood variable cluster sequence. (d) hand potential heartbeat signal. 31 Fordneeofniedassificatiomofmedtenwanfileamteperwmgeofheanbeau detected isabout80%andtherateoffalsealarmsisleasthanZO%. ‘1'hresholdingthelikelihoodvariablc at0.5isfarfrombeinganoptimaldetector. Figure 12showsaectiomofthelikelihoodvariable sequareemuwemnmidaniaeduheanbanyabysightseunmbeobviousheartbeats occurrences. ‘l'lie0.5tluesholdmaybetoostringentofarequirement. Althoughsomeheartbeats werenotdctected.thepefiodicltyofthedeteetedheanbeaucouldbeuwdintheecdmatimof heart rate through a technique such as autocorrelation. The percentage of detected heartbeats forthe leg data was low. 50%. The rate of false alarms forthelegdata. 30%.washigherthenthefalsealarmrateforthechestwalldata. Thelow heartbeatdetectionrateandthehigherfalsealarmrate forthelegdataindicatesthatlikelihood variable cluster sequence resulting from thresholding a leg likelihood variable sequence at 0.5 doesnacorrelatewirhthehandpotential referenceheartbeatsignal. Eachlegfllehad 181020 likelihood vafiabledustenwhfledunumberofluanbeminthehandpotendflsignalsvafled from 35 t020. Theconstantnumber of likelihood variable clusters fortheleg files and the vary- ingnumbcrsot‘heartbeatsinthereferencet‘tleshelpsmppontheconclusionthatthelikelihood variableelustersofthelegtileadonotcorrelatetotheheartbeatsinthehandpotential reference signal CONCLUSIONS Theprimuyobjecfiveofdfismsearehwumvaifydmdnflymmdfiegdumw andlnmbeudewaimmeflmdueappmpdmetormiaomhembeudmflsrecmdedflcm themodiliedmonitor. TheBymeandSiegelmodelseemstoholdforonlyafewchectwallnlea hundredaubase.1befileswemrecomwmrderidedcondiuonsfiorhembeum The subjectswerestillandholdingtheirbreath. Distinctivelargepredictionerrusarecoincidentwith unmarmmmuemmnmnmmmm Former mcomedwithmaemovemauoftheeheawammeBymeuxlSlegelmodddoeanuaeunm holdaswell. htheeefimmepredicdonarouthatarenearheanbeulmuenotdisdn- guishablefrcmpredicdonencrsbetweenheartbeatoccurrarcee. ‘IheByrneamlSiegelmcdel maynmsuffidarflydtancmnaememiaomheutbeusignuwhenmemkcheawdlmove- mentduetoaourceaotherthantheheanbeating. Whenlinearpredictionisusedtodeconvolveapmitismedthatthegoceasistln resultofexcitinganallopole filterthathasallofitpolesandzemahsidethemtitcircle. This impliesthatthesystemslinearpredicuoncanhrverseareminimmn-flme. lfthesystemthe heanbeasigrdpassamroughkmtmunmum-plimadapdwnmrpmdicdmwmnmuawy deeonvolvethemicrcwave heartbeat signal. ‘1'hepredictionerroraequencewouldpsobablynot resemble the original excitation process. If the microwave heartbeat signal is the outptrt of a non-minimum-phase system. the prediction error sequences resulting from processing the microwaveheartbeatsignal files recorded whenthesubjectswerebreathing maybeexpected. 1‘) 33 Unearpmdicnmmaynuexacdydecomolvethemicmwaveheutbeusignalevenifdu minimum-phase all-polemtermodelheldforthemierowaveheartbeatsignal. lftheall-polefllter headtedbyawhitepmcecmasinglehnmmmmaacflydecmvomw otnputoftheall-polefllter. Awhlteproceasoraaingleimpulaeareunccnelatedprm Both proceaaeahavellatspectra. Anlmpulsetrainisconelmed. Thelhrearpredlctlonmaybeblased braprocmmnmnuhomucidngmmmfllwrwhhamnflaedmtmmm intonnadonofmeexdmicnprmmaybeabeorbedinmelinearpredlcdon. Thepredictlcn mmflbemflngoflurmmhprmmmman-polemmnmm icticnerrorwillbemorewhitethattheoriginalexcitationproceas. lfthemicrowaveheartbeat sipalcouldbemodeledastheoutputofanan-polefllterexcitedbyanhnptrlseumtheimpulse uainmaymtbemcovemblefiundnpmdicdonaronbeeuneofimwfladeconvoluflon man-polemmciamwueobtainmmehopeofgahflngnewmfmmadonnmtmigmlclp inthedevelopmeruot‘aheartrateestimaticnmclurique. ltwast‘omdthattheconngurationofthe m-poleflherwaumfmmfwmedanbuefilammbasefilauetherenmofmnecdng microwavesignalaotfverydifferentsurfacea. Onethingthatallthedatabaseflleahaveincom- monisthemcnitor. 111eall-polelllterintheByrneandSiegel(l985)modelmaybemodeling themonitor. Theflkdflmodvanamewuunmoacmsimsourceofinformadonabomdnlocadmof heartbeatsinthemicrowavesignalsol’thisdatabase.‘1'hefactthatthelsolationofpedicticn massodaedwimheartbeanmmenymemdSiegd(l98$)leanbeadeccfimwchuque mfiamthefikdihoodvafiablesequmcewppommewndusimummefikefilmodvamueisa goodsotnceofinformafionabomdreloafionofheartbeminunmicmwavesignfla ‘Iheinvee- tigationimodreuseofdrefikefilnodvafiaflealmeinmedaecdmofheutbeanslmweddmh maybefun’blewesfimamheanratehcmmelikdflmodvamblesequormedmbm chestwall tiles. Thelikelihoodvariable ofthelatticefilterisprobablynottheoptimal way or 34 detectingchangeainthestatisticsofastochasticprcwas. Othermethodaofdeaectlngchangeain drudsfiaofsmdusficprcmsbofldbeccnfidaedbefomamuhodudngmehficeflha lfltefihoodvanablewdeteaheanbeaninmemiaowaveheanbeudgnabbdevebped mmmammsmtrmmmmmmm nabeacceptedmnjecwdfmmeduiahmmedncmdnmdinedmbetuenunfidhy oftheassumpdonsofthemodelanddetectionteclmiquearehrveatlgamd. UMBymndSlegel modelisvalid forsigndsrecordedhcmdremodlfledmafimrJtappemsthuthecmfigurafionof theall-polelllterisunil'ormforthelllesinthedatabas. Theccnsiseubeluviorofthelikeli- boodvariable forurefileeofthedatabasenrggeaathmlnartbeanmmemmwaveheumeat slgndcmbeidufifiabhbymedewcnmofchmgummemofmemavehembem signals. RECOMMENDATIONS mnymeandSiegdumHmdymdddsrecuchcasidaedonlympimhpflsedaec- tor. Becauaeofmesimnantybetweaitheproblemsofflndingpitchptnseainspeech proceueamddaecdnghemtbeaninuumianwaveheumemdgnflgwnrpitchptflse mmmummammmormprmmdmamw mqueamigturevealmommformanmabmnmefimimdonsofusmgnnearpredicnonmd waystooverccmethoeelimitations. mthodsotherthanllnearpredicticnthmcanbeuaed todetectheartbeatsfrcmthemicrowavesignalsmaybeformd. mcuueqmofunnghneupredicuonmmversemeopuauonofanon-minhnum- plusesysmmshouldbeinvestigated. Naproblemhasbeerrreeearchedintheareaof speech analysis. mmmequanesofunnghneupmdicnmmdewnvolveaprocessmresmnfiomexdt- inganalbpole filterwithaconelamdprccessshouldbeinvestigamd. ‘l‘hisprcblemlus beenreeearchintheareaofpitchpulsedetectioninspeechpmcesses. 1fthedevelopmemofarnethodofidentifyingheartbeatsinthemicmwaveheartbeatsignal bydewcfingdnngesmdunafiniesofthemiaowavesignflismbepunued.mwmdsof detecfingchangesinmestadsdcsofstochasdcpmcessshouldbesmdied 36 ltispossiblethattheall-pole mteroftheBymemdSiegel (l985)nrodelismodelingtln monitor. hmaybeuseftntoseehowchmgingmeconfigumionofmemcnitoremctsme ccnligurationoftheall-pole lllter.’1heccnfigurarimofthemonlmrmaybeaffectinghow wefllhnupredlcfioncanperformmnndaecnonoflnutbemindnmmavengmla APPENDICES SAMPLES OI" FILES FROM THE DATA BASE 37 38 200 1004 (a) o- . t . j. ‘ 1 1" L ' f I I r j 0 2 4 6 8 100- (b) 0" g . . . ' I ‘ l, I -1m-4 I I . t 1 I 0 2 4 6 8 Time(aeccntb) thtI'eAl. Cheetwallfllewithhumanaubjeetatrestmdholdinglleuh. (a)microwavesignal. (b)hand poutialreferencesignal 200-1 100- 1 a u 1 ‘1 . . ‘v 1 M . I ; 1 Q) 0- it 1 ‘ q .f‘ ,i . :_ . .' l ; ‘il -lm-d I 4014 r 1 T r T 8 10 12 14 16 100- 0- l‘ I ' (b) ‘ ' ' ‘ “m T I I I 1 8 10 12 l4 l6 Tmre(seconds) FrgIIeAZ. Cheatwalllilewithhumannrbjectatrestandhreuhing. (a)rnierowavesigml. ('b)hand potentialsignal. 39 200.4 (a) o-I 4 ‘ -200- I j I T # 8 10 12 14 16 lm-I (b) °" '1 ‘ -100fi I I I I I 8 10 12 14 16 Time (seconds) F'rgureAB. Chestwallfilewithhmnsubjecteaereisedlrdholdmgbreuh. (a)microwavesignal. (1)) hard potential referurce signal 300 200- 100- (8) o- -100- -200« j I r I I 0 2 4 6 8 100-1 ”- (b) 0" i ‘ -50- -100— I I I I I 0 2 4 6 8 Time (seconds) Figure A4. Chest wall tile with human subject exercised and breathing. (a) microwave signal. (to) hand potential signal. 100— (I) o- W ' 4“)- I I 1 I I 0 2 4 6 8 10) ”'I o) °'* '1 1 ‘ : .50- am- I I I I T 0 2 4 6 8 Tin-amends) FigureAS. legfileofahumansubject. (a)micrwavesignd. (b)handpomtialreferencesignal 41 1m 50. (a) 0- , ‘ -50... I I I I I 0 2 4 6 8 100-1 (b) 0-1 ’ 3.1 3;. ' I ‘ I I. ,l" I I I F I 0 2 4 6 8 SO—I . . I II I (C) 0-1 . a I ‘ (11‘ ' I' ' J '1 -50- I I I I I 0 2 4 6 8 Time (seconds) FigureA6. lnanimaseobjectfilea. (a)microwavesignalforwoolsurface. (b)microwavesignal for metal surface. (c) microwave signal for open room. APPENDIXB PREDICTION ERROR VARIANCES USED TO DETERMINE ALLoPOLE FILTER ORDER 43 TableBl. mmvmuummmmw Prediction Error Variance File Type Order 1 I 2 I 3 [ 4 I s l 6 Human Subjects at rest and holding breath. Subject 1 1557 342 274 142 137 125 Subject 2 1129 454 349 167 152 144 Subject 3 4855 1217 886 474 421 376 Subject 4 2183 551 416 201 189 180 Human Subjects at rest and breathing. Subject 2 587 219 162 63 59 56 Subject 3 4195 1115 784 351 305 247 Subject 4 980 295 225 92 88 86 Human Subjects exercised and holding breath. Subject 1 3564 1098 781 325 272 248 Subject 2 2531 859 549 302 274 235 Subject 3 5833 1285 936 476 409 336 Subject 4 1965 563 388 152 136 119 Human SubjeCts exercised and breathing. Subject 1 2858 1006 687 359 319 252 Subject 2 1925 614 442 208 1% 166 Subject 3 3287 1029 718 342 308 253 Subject 4 2237 ' 725 501 203 170 135 Human Subjects' legs. Subject 1 2026 558 407 174 153 130 Subject 2 2028 624 408 194 176 153 Subject 3 985 289 208 110 105 101 Subject 4 1180 393 280 119 106 93 Inanimate Objects. Wool Surface 659 316 276 201 198 188 Metal Surface 1415 566 484 292 275 228 Open Room 775 333 289 184 181 161 APPENDIXC ALL-POLE FILTER COEFFICIENTS AA 45 TableCl. Afl-Polemcm All-Pole Elm Cocfficierls File Type A. 1 A2 [ As I A. Hurrran Subjects at rest and holdjrrgbreath. Subject 1 -1.864 2.397 -1.534 .7052 Subject 2 -1.898 2.298 -1.607 .7369 Subject 3 -2.055 2.562 -1.696 .7027 Subject 4 -1.984 2.512 -1.670 .7320 Human Subjects at rest and breathing. Subject 2 -1.631 2.140 4.467 .7745 Subject 3 -1.991 2.526 -1.716 .7363 Subject 4 -1.931 2.431 -1.651 .7550 Human Subjects exercised and holding breath. Subject 1 -2.117 2.548 -l.739 .6786 Subject 2 -1.980 2.426 -1.647 .6597 Subject 3 -2.081 2.576 -1.684 .6735 Subject 4 -2.047 2.630 -1 .806 .7732 Human Subjects exercised urd breathing. Subject 1 -1.775 2.360 -1.594 .7788 Subject 2 -2.116 2.589 -1.780 .7189 Subject 3 -2.11 1 2.604 o1.781 .7223 Subject 4 -1.899 2.438 -1.687 .7792 Human Subjects' legs. Subject 1 -2.025 2.551 -1.730 .7449 Subject 2 -2.049 2.561 4.739 .7129 Subject 3 -2.143 2.575 -1.734 .6786 Subject 4 - 1.991 2.482 -1.730 .7555 Human Subject Means -1.984 2.485 -1.684 .7273 Inanimate Objects. Wool Surface -1.301 1.497 -0.831 .5089 Metal Surface -1.480 1.861 -1.220 .6830 Open Room -1.286 1.683 -0.989 .6064 Inanimate Objects Means -1.356 1.680 -1.013 .5994 APPENDIX D THE RESULTS OF THRESHOme THE LIKELIIIOOD VARIABLE SEQUENCE AS A HEARTBEA‘I' DETECTION METHOD 47 TableDl. TheResultsofThl'edloldlngtheWVaflablcSeqm as a Method of Detecting Heartbeats Actual Number Number i Number '5 File Heartbeat of of Hits of False Alarms Coum Clusters Hits False Alarms Human Su ' at rest and holdggbreath. Subject 1 20 19 17 85 2 10 Subject 2 l7 17 19 1m 0 0 Subject 3 23 24 19 83 5 21 Subject 4 24 23 19 79 4 18 Means 85 12 Human Sub' at rest and breathing. Subject 2 14 20 14 1m 6 30 Subject 3 23 20 18 78 2 10 Subject 4 25 21 17 68 4 19 Means 82 19 Human Sub'ects exercised and holding breath. Subjecr l 37 28 25 68 3 10 Subject 2 14 23 13 92 10 43 Subject 3 27 23 22 81 l 4 Subject 4 24 23 21 87 2 9 Means 81 17 Human Sub' cts exercised and breathin . Subject 1 30 22 15 50 7 31 Subject 2 26 21 19 73 2 9 Subject 3 31 25 22 70 3 12 Subject 4 32 23 21 66 2 9 Means . 64 15 Human Sub'ects' legs. Subject 1 23 20 14 60 6 30 Subject 2 21 18 15 71 3 16 Subject 3 29 18 12 41 6 33 Subject 4 35 18 11 31 7 38 Means 50 30 APPENDIXE THE UNNORMALIZED PRE-WINDOWED LEAST SQUARES LATTICE FILTER PARAMETER UPDATE ALGORITHM This appendix gives the parameter update algorithm used for the Unnonnalized Pre- Wlndowed Least Squares Lanice Filter. The algorithm came from Friedlander (1982a. p. 844). The algoritlun found inFriedlanderisforthemulti-channel case. Thismeansthatall ofthevari- ables in the algorithm presented in Friedlander are either vectors or matrices. The scalar case was usedinthisthesisresearch. ‘l'hismeansthatallofthevariablesinthelattice filterupdate algo- rithm were scalars. The scalar version of the algorithm is given in this appendix. Input parameters: M a maximum order of lattice y-r - data sequence at time ’1‘ l an exponential weighting factor Variables: R's; :- sample covariance of forward errors 49 R534 a: sample covariance of backward errors AP; 3 sample partial correlation coefficient 7;; a 1 - 79.1- : 1 - likelihood variable apn- . forward prediction enors rpg.‘ - backward prediction errors Kg; - forward reflection coefficients Kg; a backward reflection coefficients The following computations will be performed once for every time step (Tao. . . . Initialize: Eo.r ‘ 1'o.'1' ' Yr R63 " R6: ' 3363-1 + YrYr 751:1' 3 1 Do forp - 0 to minIMJ‘) .1 Ayn: ' MIMI-1 4' 5p.Trp.T-1N§-l.T-l " 731' 3 Vii-13' ' rp.Trp.T/R6.T " KIM: " AMI/Rim " Spot: = 59.1 - KpolJ'er-l er-HJ' 3 R8,? ' K$+1.TA;»1.T Kéorr = 159.131jo ‘ fpotfr = rp.T-1 ' K§+LT€pJ . TMAX). 50 R843 ' 353-1 - ApHIKjgthT Nore: Only thevariablesA.R‘.R'.f.rrreedtobestoredfrom onetimesteptotheother. They are all set initially to zero. The quantities R'. 1‘. rrreed to be stored twice to avoid ”overwriting". When the divisorx - 1‘. R'. R‘ is very small. set llx :- 0 in the equations marked with ‘. ~—_- I III III m COMPUTING THE ALL-POLE FILTER COEFFICIENTS FROM THE UNNORMALIZED LATTICE PARAMETERS nusappendixgivesurealgonuunmawuusedtocompucdnan-polemmrcoemam ficmmeUmrormalizedPre-W'mdowedleastSquuesutticefilmrm Thealgoritlln camefromFriedlander(l982a.p. 845). ‘l'hetrarrsferftmctimroftheall-polsfilterhasbeen rewfinenmmnsoumdremufionconespondsmunalgonumptuuledmddsappendix Hall-pole [ma(1)- —-‘—-— . [El] 1 + 1:1“ is” wherep is the order ofthe all-pole filter. The following algoritlln was and to update tin estima- tion of the all-pole filter coefficients from the lattice parameters for each time step. Recall that for the lattice filter of order M all lower order lattice filters are available in its structure. This means that the parameters oflattice filters oforders lowerthanMare svailable huntheparame- ter update algorithm of a lattice filter of order M. The following algorlttmr computes the coefficients of the all-pole filter corresponding with the lattice filter of order M ltd the coefficients of the allopole filters of all lower orders. The all-pole coefficiems are designated by A“ where p is the order of the allopole filter. 51 52 NonthafirealgontlmmFfiedlander(l982ap.845)isfornnmulfi-chmmelcase. This meansdrattheparametersofthealgoriuunareeithervectorsormatrices 'l‘hescalarcasewas usedirrthisresesrelr. Thereforethefollowingalgoritlunisforthesealarcsse. 'l'hismsuthat theparametersoftlrefollowingalgorithmarescalars. Inputs: M-maximumorderofthelatticc r,- backwarderrorforthecurrenttlmestep ygslikelihoodvariableforcurrenttimestep Kgcfonvardrefiectioncoefficlentforthecurrenttimestep Kgsbackwardrefiectioncoefficientforthetarrrenttimescp R's-samplecovarianceforbackwardenorsforthearrrerrttimestep Variables: A,” all-pole filtercocfficients Banach Thaccomptnadomwfllbeperfumedesdrfimehisdesimdmupdaetheafl-polefilter coefficients. Initialize: 3,1480 for p80.....M-1 Con-0 Fori-O.....M 53 Aoj-Boj-l fori-O Aoj-Boj-O forl>0 Doforp-O.....M-1 BFJ'Bu’prpJfi-t amen-rm MIJ'M‘WIBSH 3pm" Bar-1 ‘KéotApr-P‘ ll APPENDIX G A FORTRAN IMPLEMENTATION OF THE UNNORMALIZED PRE-WINDOWED LEAST SQUARES LATTICE FILTER TheUnnormalizede-WhrdowedlesaSquueslecefilterwasimplemmdmtwo madmasuuctumholdhtgthelatficepamaasmrdflmpuamaerupdueflgonm. Micro- softFortranwasusedfortheimplementaticn. Thehtficedamrmrcmreiscontainedinalabebd commonblock. mlatficepmmnewrupdatealgoritlunisccmainedinasubmutine. Tlreparam- eterupdatealgorithmistobecalledforeaehnewtimescp. TheFortrancodeforthelatticedata structureandparameterupdatealgoritlunis giverrbelow. AAAA‘JAA‘AJJAAAAAALAAAAAAAA‘AAAAAAAA AAAAJA ALLA—AAAAA‘AA‘AAAAAAA‘AAA‘A vvv Viv vvv v v- v- va va LATTICEDST THIS FILE DEFINES TI-IE UNNORMALIZED PRE-WINDOWED LEAST SQUARES LAT- TICE A1..GORITHM DATA STRUCTURE THE ALGORITHM WAS TAKEN FROM: FRIEDLANDER. a. LATTICE mans FOR mm PROCESSING. PROCEEDINGS OF rue rear-2. v01. 70. No.8. AUGUST 1982. pp. 342-344. DEFINITIONS: COMMON/LATTICE! . LABELED COMMON THAT CONTAINS THE LATTICE DATA STRUCTURE RE . ARRAY CONTAINING SAMPLE COVARIANCES OF FORWARD ERRORS. EACH ELEMENT OF THE ARRAY CORRESPONDS TO THE COVARIANCE OF THE 54 55 FORWARD ERROR FOR A PARTICULAR ORDER. NOTE THAT THEE IS AN OFFSETBETWEENTHEARRAYINDEXANDORDEL ARRAYINDEXI CORRESPONDSTOORDERO. RR . ARRAY CONTAINING SAMPLE COVARIANCES OF DACKWARD ERRORS. EACH ELEMENTOFTHEARRAY CORRESPONDSTOTHE COVARIANCE OFTHEmR- WARD ERROR FOR A PARTICULAR ORDER. NOTE THAT THERE IS AN OFFSET BETWEENTHEARRAYINDEXANDORDER. ARRAYINDEX1CORRESPONIB TO ORDER 0. RRCOP‘Y - ARRAY CONTAINING SAMPLE COVARIANGS OF BACKWARD MRS FORTHEPREVIOUSTIMES’IEP. EAO'IELEMENTOFTHEARRAY CORRESPONDS TO THE COVARLANCE OF THE FORWARD ERROR FOR A PAR~ TICULAR ORDER. NOTE THATTHERE IS ANOFFSETBETWEENTHE ARRAY INDEX AND ORDER. ARRAY INDEX 1 CORRESPONDS TO ORDER 0. PARCORR -ARRAY CONTAINING SAMPLE PARTIAL CORREATION COEFFICIENTS. EACH ELEMENT OF THE ARRAY CORRESPONDS TO THE COVARIANCE OF'IHE FORWARD ERROR FOR A PARTICULAR ORDER. NOTE THAT THERE IS AN OFFSETBETWEEN'IHEARRAYINDEXANDORDER. ARRAYINDEXI CORRESPONDS TO ORDER 0. LHOOD - ARRAY CONTAINING THE LIKEJHOOD VARIABLE. EACH HEMENT OF THE ARRAY CORRESPONDS TO THE COVARIANCE OF THE FORWARD ERROR FOR A PARTICULAR ORDER. NOTE THAT THERE IS AN OFFSET BETWEEN THE ARRAY INDEX AND ORDER. ARRAY INDEX 1 CORRESPONDSTO ORDER o1. LHOODCOPY - ARRAY CONTAINING THE LIKELIHOOD VARIABLE FOR THE PREVI- OUSTIMESTEP. EACHEIEMENTOFTHEARRAY CORRESPONDSTOTHE COVARIANCE OF THE FORWARD ERROR FOR A PARTICULAR ORDER. NOTE THATTHEREISANOFFSET BEIWEENTHEARRAYINDEXANDORDER. ARRAY INDEX 1 CORRESPONDS TO ORDER -1. EERR . ARRAY CONTAINING FORWARD PREDICTION ERRORS. EACH ELEMENT OF THE ARRAY CORRESPONDS TO THE COVARIANCE OF THE FORWARD ERROR FOR A PARTICULAR ORDER. NOTE THATTHERE IS AN OFFSET BETWEEN THE ARRAY INDEX AND ORDER. ARRAY INDEX 1 CORRESPONDS TO ORDER 0. RERR - ARRAY CONTAINING BACKWARD PREDICTION RRORS. EACH ELEMENT OF THE ARRAY CORRESPONDS TO THE COVARIANCE OF THE FORWARD ERROR FOR A PARTICULAR ORDER. NOTE THAT THERE IS AN OFFSET BETWEENTHEARRAYINDEXANDORDER. ARRAYNDEXlCORRESPONDS TO ORDER 0. RERRCOPY - ARRAY CONTAINING BACKWARD PREDICTION ERRORS FOR THE PREVIOUS TIME STEP. EACH ELEMENT OF THE ARRAY CORRESPONDS TO THE COVARIANCE OF THE FORWARD ERROR FOR A PARTICULAR ORDEL NOTETHATTHERE IS ANOFFSETBETWEENTHEARRAYINDEXANDORDER. ARRAY INDEX 1 CORRESPONDS “IO ORDER 0. RE - ARRAY CONTAINING FORWARD REFLECTION COEFFICIENTS. EACH ELE- MENT OF THE ARRAY CORRESPONDS TO THE COVARIANCE OF THE FOR- WARD ERROR FOR A PARTICULAR ORDER. NOTE THAT THERE IS AN OFFSET BETWEENTHEARRAY INDEXANDORDER. ARRAYINDEX 1 CDRRESPONDS TO ORDER 0. KR - ARRAY CONTAINING BACKWARD REFLECTION COEFFICIENTS. EACH ELE- MENT OF THE ARRAY CORRESPONDS TO THE COVARIANCE OF THE 56 FORWARD ERROR FOR A PARTICULAR ORDER. NOTE THAT THERE IS AN OFFSETBETWEENTHEARRAYINDEXANDORDHL ARRAYINDEXI CORRESPONDS TO ORDER 0. MAXORDER - MAXIMUM ORDER OF TIE LATTICE FILTER. (NOTE: INDEX 1 CORRESPONDS TO TIE ZEROTH ORDER. EXCEPT FOR TIE LIKELI- HOOD VARIABLE WIERE INDEX 1 CORRESPONDS TO ORDER -1. THIS INCON- VENENT INDEXING METHOD IS DUE TO LIMITATION OF TIE FORTRAN COMPILER BEING USED.) AAAAAAAAAAAAAAA- ALA; .AAAAAAAAAAAAAAAA‘AAAAA;‘AAAEAA‘AAA‘AAAAAA‘A‘A vvvaV—f v vv v1 v - vvv vv— REAL RE(10). RR(10). RRCOPYOO). PARCORROO) REAL LIIOODOO). EERROO). RERRGO). RERRCOPYOO) REAL KEUO). KR(10). LHOODCOPY (10) INTEGER MAXORDER COMMON/LATTICE] RE. RR. RRCOPY. PARCORR. LIIOOD. LHOODCOPY. EERR.RERR.RERRCOPY.KE. KR.MAXORDER A..4-A..-‘- SUBROUTINE UPDATELAT‘TICB( DATA. ORDER. WEIGHT. TIME. LIMLHOOD. PARMLIM) AAAAAAA‘AAA‘A‘AA‘AJA EAAAAAAAA AAA‘AAAA‘AAAAA‘J AAAAAAAA AAA SUBROUTINE UPDATELATTICE THIS SUBROUTINE UPDATES THE UNNORMALIZED LEAST SQUARES LATTICE DATA STRUCTURE FOR A TIME STEP. THE UPDATE ALGORTTIN WAS TAKEN FROM: IREDLANDER. 3.. LATTICE FILTERS FOR ADAPTIVE PROCESSING. PROCEEDINGS OF TIE EEE. VOL. 70. NO.8 AUGUST 1982. pp 842.844. INPUT: COWONMTTICEJ - LATTICE DATA STRUCTURE (SEE LATTICEDS'I') ORDER - MAXIMUM ORDER OFTHE LATTICE FILTER. WEIGHT - EXPONENTIAL WEIGHTING FACTOR FOR PAST DATA. 57 LIMLHOOD . IF THE ABSOLU'IB VALUE OF LHOOD OR LHOODCOPY IS LESS THAN LIMLHOOD. LHOOD OR LHOODCOPY WILL BE CONSIDERED TO BE ZERO. PARMLIM - IF ANYVARIABLES OFTHELATI'KE ELTER EXCEPT FOR LHOOD AND LHOODCOPY HAS ABSOLUTE VALUE LESS THAN PARMLIM. THE VARIABLES WILL BE CONSIDERED TO BE ZERO. DATA . A DATA POINT FROM A DATA SEQUENCE. TIME - CURRENT TIME STEP OUTPUT: COWONMTTICE/ - LATTICE DATA STRUCTURE A‘A‘..A;AAAAAAA4AAA.¢AAAAA‘AAAAAAAAAAAAAA ‘A‘AAAA‘A;-AA “--‘--A“A_-AA SINCLUDE: ’LATTICEDST' REAL DATAWEIGHTJJMU-IOODPARMUM INTEGER TIMEORDERJ’ " INTI'IALIZATION HERRU) :- DATA RERRO) 8 DATA 1250) I WEIGHT’REU) + DATA‘DATA RRU) 8 R50) LHOOD(1)- 1 “' LATTICE STAGE UPDATES DO 100 P I l.(MIN(ORDER.11ME)) IF (LHOODCOPY(P) .LT. LIMLHOOD) THEN PARCORR(P+1) a WEIGHT‘PARCORRG’H) ELSE PARCORR(P+1) . WEIGHFPARCORR(P+1)+ mm . RERRCOPYG’H wooncowcp) ENDIF IF (RR(P) .LT. PARMLIM) THEN LHOOD(P+1) 8 LHOODCP) ELSE LHOOD(P+1) a LHOOD(P) - RERR(P)‘R.ERR(P)/RR(P) 100 200 58 ENDIP IF (RRCOPY (P) .LT. PARMLIM) THEN KR('P+1) I PARCORR(P+1)‘ 0.0 EISE 7 KRCP+ l) I PARCORR(P+1)IRR(I)PY(P) ENDIF EERRCP-I-l) I EERR(P) - KR(P+1)‘RERRCOPY(P) RE(P+1)I RE(P) - KR(P+1)‘PARCORR(P+1) IF (RE(P) .LT. PARMLIM) THEN KE(P+1) I PARCORR(P+1)‘ 0.0 ELSE KECP-o-l) I PARCORR(P+l)/RE(P) ENDIF RERR(P+1) I RERRCOPYG’) - KE(P+1)‘EERR(P) RRCP-H) :- RRCOPYO’) - PARCORR(P+I)‘KE(P+1) CONTINUE DO 2C!) P I IMAXORDER RRCOPY(P) I RRG’) RERRCOPYCP) I RERRG’) LHOODCDPY (P) I LHOOD(P) CONTINUE RETURN END A FORTRAN IMPLEMENTATION OF THE ALL-POLE FILTER COEFFICIENT UPDATE ALGORITHM mul-polemtereoeffidanupdmdgofimmwhnplanmedinmmadum mmmm-mmmmmammmmmm mafia» mwasusedformeimplememadou. mmmmeominedinahheledmmuoch ‘mecoefficiemupdnealgofithmisconnimdham TheFormcodefwlhe coefficient dam mature and the coefficient update 3130mm: is given below. LATCOEFDST THIS FILE DEFINES THE ALL-POLE FILTER COEFFICIENT DATA STRUCTURE. THE ALGORITHM USED TO UPDATE THE ALL-POLE FILTER COEFFICIENTS WAS TAKEN FROM: FRIEDlANDER. 8.. LATI'ICE FILTERS FOR ADAPTIVE PROCESSING. PROCEEDINGS OF THE IEEE. VOL. 70. NO. 8. AUGUST 1982. pp. 844-845. NOTE THAT THE VARIABLES IN THIS DATA STRUCTURE SHOULD BE INITIALIZED TO ZERO BEFORE THEY ARE USED. DEFINITIONS: 59 60 A03.” - MATRIX CONTAINING TIE - ALL-POLE FILTER COEFFICIENTS. p CORRESPONDSTOTIEORDEROFTIEFIIJTER. imRRESPONDSTOTIE spscmccommmmpommmmmmm le CORRESPONDS TO TIE ZERUTH ORDER. 303.5) - MATRIX CONTAINING PARAMETERS USED IN TIE ALL-POLE FILTER COEFo FICIEN'T UPDATE ALGORITHM. p CORRESPONDS TO THE ORDER OF TIE FILTER. i CORRESPONDS TO TIE SPECIFIC COEFFICIENT IN TIE p ORDER ALL-POLE FILTER. p I l CORRESPONDS TO TIE ZERUTH ORDER. BSTARQDJ) - MATRIX CONTAINING PARAMETERS USED IN TIE ALL-POLE FILTER COEFFICIENT UPDATE ALGORITHM. p CORRESPONDS TO TIE ORDER OF TIE FILTER. i CORRESPONDSTO‘TIESPECIFIC COEFFICIENTINTIEpORDER ALL-POLE FILTER. p I1 CORRESPONDS TO TIE -1TH ORDER C(pfi) - MATRIX CONTAINING PARAMETERS USED IN TIE ALL-POLE FILTER COEF- FICIENT UPDATE ALGORITHM. p CORRESPONDS TO TIE ORDER OF TIE FILTER. i CORRESPONDS TO TIE SPECIFIC COEFFICIENT IN TIE p ORDER AUaPOLEFlTER. p- I CORRESPONDSTOTIEZEROTHORDER. A‘AA‘A—LAAJA‘AA‘AA‘AAAAAA A4444A44AAAAA4AA‘A;AAAAAA‘AALAAJ -- AA A‘A‘JAA REAL A(10.10). 300,10). BSTAROOJO). C(10.10) COWONLA'TCOEF/ A. B. BSTAR. C SUBROUTINE COEFCALCUIATION(ORDER.PARmm.LIMIJ-IOOD) AAA—AAAAJAAAAAAAAAAAAAAAA‘AAAAAAAJ A AAAAAAA AJAAAA‘AAAAAAAAAAAAAAAALAA‘ TIIIS SUBROU'TINE UPDATES TIE ALL-POLE FILTER COEFHCIENTS WITH TIE UNNORMALIZED PREoWINDOWED LEAST SQUARES LATTICE FILTER PARAME- TERS. TIE COEFFICIENT UPDATE ALGORITHM WAS TAKEN FROM: FRIEDLANDER. 3.. LATTKE FILTERS FOR ADAPTIVE PROCESSING. PROCEEDINGS OF TIE EEE. VOL. 70. NO. 8. AUGUST 1982.. pp. 844-845. INPUTS: COMMON/LATTICE! - LATTICE DATA STRUCTURE (SEE LATTICEDST IN APPENDD( C). 6] COMMON/LATCOEF/ - ALL-POLE FILTER COEFFICIENT DATA STRUCTURE (SEE LATCOEEDST). ORDER-MAXIMUMORDEROFTIELATTICEFILTEL PARMLIM . IFANY VARIABLES OFTHELATTICE FIIJTEREXCEPTFORU'IOODAND LHOODCOPY HAS AN ABSOLUTE VALUE LESS THAT PARMLIM. TIE VARI- ABLES WIIJ. BE CONSIDERED TO BE ERO. LIMLHOOD - IF LHOOD OR LHOODCOPY FROM TIE LATTICE DATA STRUCTURE HAS AN ABSOLUTE VALUE LESS THAN LIMLHOOD. LI'IOOD OR LHOODCOPY WILL BE CONSIDERED TO BE ZERO. OUTPUTS: COMMON/LATCOEF/ - ALL-POLE FILTER COEFFICIENT DATA STRUCTURE (SEE I..ATCOEF.DST). AAAAA AAAAAAAAAAAALAAAAAAAAAAAAA AAAAAAAAAAA‘A SINCLUDE: 'LATTICE.DS'T' SINCLUDE: 'LATCOEFDST‘ REAL PARMLIMJJMLHOOD INTEGER ORDERJP DO 1000 I I I. ORDER+I IFCI .EQ. I)TIEN A(1.I)I 1.0 30.0- 1.0 ESE A(1.I)-0.0 BUD-0. ENDIF DO 100 PI LORDER IF (LIIOOD(P) .LT. LIMLHOOD) THEN BSTAR(P,I+I) I B(P.I) ELSE BSTAR(P.I+I) I B(P.I) - RERRCP)‘C(PJ)/LHOOD(P) ENDIF 62 E (ABS(RR(P)) .LT. PARMLIM) T'IEN C(P+1.I) . C(PJ) ELSE C(P+l.l) - C(PJ) - WWBCPWCP) ENDIF A(P+I.I) I A(P.I) - KR(P+I)‘BSTAR(P.I) WU) '- BSTARO’J) - KEG”) " A01) 100 CONTINUE NIX) CONTINUE RETURN END THE NORMALIZED PRE-WINDOWED LEAST SQUARES LATTICE mm mmpauixgivesuupanmemupdmmuudfahmbedfie- thoweduanSquuuLaniceFfltet.TbflgoritMcamemma9flLp.m. Inthenormalizedversionofthelatticefilter.thelatticepametenmlimainmmvflueof lwthanunity. firealgontlunfomidinFnedlanderisformmuld-CBIIIIMMW thatallofthevariableeinthealgonrlunpruemedinFriedlanrlerareeitlumormmim -mmdvcasewuusedmmhmmmmemmmofmmmmem filterupdatealgorithmwerescalammscalarversionofthealgoritllnsgimmflsappendix. PleasenoueumwhenFnedlanderusenTinampmenptcnpm-naeuinmemafindlat- tice filterparameter update algorithm theT means transpose“ nattime. Input parameters: M I maximum order of lattice y;- I data sequence at time T I. I exponential weighting factor Variables: 63 ST-eetimatedeovu-lmeeofyr QT-mrmalizedforwardpredietionerrm l‘fl.;-normalizedbaekwardpredictimerrm K” - reflection coefficient: KfiSaresetmzero mmwingeompumwinbepedmmedoneeforeverydmeaepCP-O.....mm. S1- - 151-: + m. E0.1- - To: = Sf“h Forp- 0, . . . . min{M.T) -1 $1.? ' P'CKprJ-t. fps-r. 3px) prlfl' . HE’S. 5.1-1. valJ‘) ‘ rpolJ' ' F fps-r. 3px. Rpm) ‘ Rama-[1 -ccl‘”la-cbl[l -be"‘ P1(l.b.6) II [1 - ec]*a[l - bb]"‘ + ab ThenutctionF(a.b.c)involvesdivision. lntlnsealarcaee.whenthedifisorxissrnafl.set l/xsl intheequationsmarkedby‘. 65 Amormumgmtmmmwumuwwm beenfoldedinmthealgorithm. Thelikelihoodvariabledoeemtqpelrhtbnormalindupdn algorithm. ManfiamwmmemMmm- erableformthepamemoftlnnormalizedhttlcealgofltln. Tamman- malizeduflmwmafizedhmcepumemhefmmWOMpm 11: ammupmmmmmmumwmaurm wardpredletionerrorfortlreumormalizedlattieepameteufollom. YS-rJ-t ' (1 - Yp-rJ-r) " flu - rLT-lfLT-l) Ol’ (1 " 7311-1) ‘ (1 " Yp-lJ-lxl " riii-“9.131) - R5,? - 81* 130 - KnK-q)” £93 3 (1 - Yp—tJ-r)” RH" 3px APPENDIX J A FORTRAN IMPLEMENTATION OF THE NORMALIZED PREoWINDOWED LEAST SQUARES LATTICE FILTER mNomaflndPn-Wmdowedlquummeefiltamimplmdmtwopms. adatasuucuneholdingthelatfieepammetersmdthepmameterupdatealgoflm Microsoft Fom'anwasuedfonheimplunemation. NWMWBminedinahbeledoom- monbloelt. mhtfieepameterupdatealgoriumiseominedirtambroutine. ‘l‘heparameter updatealgorithmistobecalledforeaehnewtimemp. TheFortrmeodeforthelattieedata mandpanmeterupdatealgorithmisgivenbelow. ('I'hisisaFortanversionofaprogram thatwasdevelopedbyBetsyMatee-Needham.) NLA‘I'TIQDS’T THIS FILE DEFINES THE NORMALIZED PRE-WINDOWED LEAST SQUARES LATTICE AWORTTHM DATA STRUCTURE. THE ALGORITHM WAS TAKEN FROM: FRIEDLANDER. 3.. LATTICE FILTERS FOR ADAPTIVE PROCESSING. PROCEEDINGS OFTHE [555. VOL. 70. No.8. AUGUST 1982, pp. 845-846. 66 67 DEFINITIONS: COMMON/NLATI'ICE/ - LABELED COMMON TIIAT CONTAINS TIE LATTICE DATA STRUCTURE NEERR . ARRAY CONTAINING NORMALIZED FORWARD PREDICTION ERRORS. EACHELEMENTOFTIEARRAYLURRESPONDSTOTIECOVARIANCEOFTIE FORWARD ERROR FOR A PARTICULAR ORDEL NOTE THAT TIERE IS AN OFFSETBE’I'WEENTIEARRAYINDEXANDORDER. ARRAYINDEXI CORRESPONDS TO ORDER 0. NRERR - ARRAY CONTAINING NORMALIZED BACKWARD PREDICTION mans. EACH ELEMENT 0F TIE ARRAY CORRESPONDS TO TIE COVARIANCE OFTIE FORWARD ERROR FOR A PARTICULAR ORDER. NOTE THAT ‘I'IERE IS AN OFFSETBEI'WEENTIEARRAYWDEXANDORDER. ARRAYINDEXI CORRESPONDS TO ORDER 0. NRERRCOPY - ARRAY CONTAINING NORMALIZED BAGWARD PREDICTION ERRORS FOR TIE PREVIOUS TIME STEP. EACH ELEMENT OF TIE ARRAY CORRESPONDS TO TIE COVARIANCE OF TIE FORWARD ERROR NR A PAR- TICULAR ORDER. NOTE THATTIIEREIS ANOI'FSET BETWEENTIEARRAY INDEX AND ORDER. ARRAY INDEX 1 CORRESPONDS TO ORDER 0. K . ARRAY CONTAINING NORMALIZED REFLECTION COEFFICIENTS. EACH ELEo MENT OF TIE ARRAY CORRESPONDS TO TIE COVARIANCE OF TIE FOR- WARD ERROR FOR A PARTICULAR ORDEL NOTE THAT TIERE IS AN OFFSET BETWEENTIEARRAY INDEXANDORDER. ARRAYINDEX I CORRESPONDS TO ORDER 0. S - ES'INATED COVARIANCE OF TIE DATA SEQUENCE. (NOTE: INDEX 1 CORRESPONDS TO TIE ZEROTII ORDHL THIS INCONVENIENT INDEXING METHOD IS DUE TO LIMITATION OF TIE FORTRAN COMPILER BEING USED.) REAL NEERR(10).NRERR(10). NRERRCOPYOO). K00). S COMMON/NLATTICEJ NEERRNRERRNRERRCOPYJLS JAAAAAAAJAAAAAA‘A‘JJAAAAAAA AAAAAAAA‘AAAAA‘AAAAAAAAAA‘AJAA‘A‘AAAAA AAAA w—vavv—v vv vv rvvvv vvvw—vv-r vvvvvvv vvvvv vvf vvv 68 SUBROUTINE NUPDATELATTIE(DATA.ORDER.WEIGITT.TIME) AJAJAJ—‘AAAAAA‘AAA‘AJ‘A‘JAAJ t; EAAAEJJA-AAEJAA‘AEAAAAAAA‘AAA‘A"AA.AA. SUBROUTINE NUPDATELATHCE THIS SUBROU'TINE UPDATES TIE NORMALIZED LEAST SQUARES LATHE DATA STRUCTURE FOR A NEW DATA POINT IN A INPUT DATA SEQUENCE. TIE UPDATE ALGORITHM WAS TAKEN FROM: FREDIANDER. 3.. LATHE FILTERS FOR ADAPTIVE PROESSING. PROCEEDINGS OF TIE IEEE. VOL. 70. No.8 AUGUST 1982. pp 845.846. INPUT: COMMON/LATHE! - UNNORMALIZED LATHE DATA STRUCTURE (SEE LATTICEDST IN APPENDIX C) COMMON/NLATHCE/ - NORMALIZED LATHE DATA STRUCTURE (SEE NLAT'I'IEDST) ORDER - MAXIMUM ORDER OFTIE LATHE FILTER. WEIGHT - EXPONEN'TIAL WEIGHTING FACTOR FOR PAST DATA. DATA - A DATA POINT FROM A DATA SEQUENCE. TIME - CURRENT TIME STEP. OUTPUT: COMMON/LATTICE] - UNNORMALIZED LATHE DATA STRUCTURE (SEE LATTICEDST FROM APPENDIX C) COMMON/NIATI'ICEI - NORMALIZED LATHE DATA STRUCTURE (SEE NLATHCEDST) AAAEJEEAAJEAAAJAn-A-nAAEAAAJEAJA-JJA .A‘AAA‘AAAAA‘A‘AAAA‘AJJ‘AEAJA AAEAA v—v— vfrv vvvvvvv—v vvv if v v vvvv v—vvv SINCLUDE: ’LATHCEDS'T' SINCLUDE: 'NLATHEDST’ REAL DATA.WEIGI'TT.SQRRE.PRODUCT.F.INVF INTEGER TIME.ORDER.P 1(1) ‘ INH'IALIZATION IF ((ABS(S) .LT. .ml).AND.(ABS(DATA).LT. 000001)) THEN NEERR( l) I 0.0 NRERRO) I 0.0 ELSE S I WEIGHT'S + DATA‘DATA NEERRU) I DATA / SQRT(S) NRERRU) I NEERR( 1) ENDIF EERRU) I DATA PRODUCT I 1.0 LHOOD(1)I 1.0 DO 100 P I 1.MIN(ORDER.TIME) K(P+I) I INVF(K(P+1). NRERRCOPY(P). NEERRCP» NEERRCPH) I FNEERRMNRERRCOPYCHKG-rl» NRERR(P+1) I F(NRERRCOPY(P'). NEERRG’). K(P+l)) ‘ CALCULATING LIKELIHOOD VARIABLE AND UNNORMALIZED FOR- WARD PREDICTION ERROR ’ NOTE THAT THE FOLLOWING CALCULATIONS ARE NOT PART OF THE NORMALIZED LATTICE FILTER UPDATE ALGORITHM. LHOOD(P+1) I LHOODCP)‘(I - NRERRM‘NRERRG» IF ('U'IOOD(P+1) .LT. 0.0) THEN ‘ LHOOD(P+1) - 0.0 ENDIF PRODUCT I PRODUCT‘SQRTO - K(P+1)‘K(P+l)) SQRRE I SQRT(S)‘PRODUCT EERRCP+1) I SQRT(LHOODCOPY(P+1))‘SQRRE‘NEERR(P+I) CONTINUE DO 200 P I IMAXORDER NRERRCOPYG’) I NRERRO’) 200 .- A4A‘ AA AAA‘AAAAAAAAAAAAAJAAAAAA.‘ L‘AAAAA-4AAAAA;A v' Tf‘f'fvvvv 70 LIIOODCOPY (P) I LI-IOODG’) CONTINUE RETURN END REAL FUNCTION P(A.B.C) [F (C .GT. 1.0) THEN CI 1.0 ELSE II: (C .LT. -1.0) THEN CI 4.0 ENDIP IF (3 .GT. 1.0) THEN B I 1.0 ELSE IF (B .LT. 4.0) THEN B I -1.0 ENDIF X1 I SQRT(1.0 - C‘C) IF (XI .LT. .(XXXXJI) THE‘I INVXI I 1.0 ELSE INVXI I 1.0/X1 ENDIF X2 I SQRT(1.0 - B‘B) IF (X2 .LT. .ml) THEN INVXZ I 1.0 ELSE INVX2 I 1.0/X2 ENDIF -A.--..-.._.,A 71 F I INVXI‘(A - C‘B)‘INVX2 RETURN END AAAA A AAA AAA AA AAAAA AAAAA AA AA A REAL FUNCTION INVF(A.B.C) REAL A.B.C IF (C .GT. 1.0) THEN CIID ESE IF (C .LT. 4.0) THEN C I 01.0 ENDIF IF(B .GT. 1.0)THEN BI 1.0 ELSE IF (3 .LT. 4.0) THEN B I-1.0 ENDIF RETURN END AAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAA APPENDIX K REVIEW OF THE DEVELOPMENT OF THE MICROWAVE VITAL LIFE SIGNS MONITOR museofamictowavedeviceinthemeasuremofhmnanheanmeunbefoundin Byme, Hynn. Zapp. and Siegel (1986). Byme and Siegel (1985). Byme. Zapp. Flynn. and Siegel (1985). Hoshal, Ivkovich. Siegel. and Zapp (1984). Hoshal and Siegel (1986). Hoshal. Siegel. and Zapp (1984). Lin. Kiemich'. Kiemicld. and Wollschlneger (1979). and Popovic. 01811. and Lin (1984). mmmmmmmmuumdonofmeworkmmdevdofinga bean rate ectimation method for the Michigan State University Biomedical Signal Ptocecsing Laboratory’s microwave vital life signs monitor (Byme et al.. 1986; Byme & Siegel. 1985; Byme et aL. 1985; Hoshal. lvkovich. et 11.. 1984; Hoshal & Siegel. 1986; Hoshal. Siegel. et aL. 1984). Thisappendixwillmiewdnhismryofmedevelopmemofheanratemeammnemwdufiques for the Michigan State University unit. The First Michigan State University Microwave Vital Life Sign: Monitor The first version of the Michigan State University microwave vital life signs monitor was used by Byme. Flynn. Zapp. and Siegel (1986). Byme and Siegel (1985). Byme. Zapp. Flynn. and Siegel (1985). Hoshal. lvkovich. Siegel. and Zapp (1984). Hoshal and Siegel (1986) and 73 Hoshal. Siegel. and Zapp (1984). Figure K1 is a block diagram of the device. A description of the device's operation was found in Hoshal. lvkovich. not. (1984) and l-loshal. Siegel. eral. (1984). in the monitor. a portable hornodyne transceiversystem is responsible {unwitting a low-level microwave signal “detecting Dopplershiftsintheremmedsigml. ‘l'hemicrowave transceiver emits a 10.5 CH: continuous waveatalevel ofa fewmilliwatts (more recetavetsions ofthe instrument use pulsed transmitters). The returns ofthe microwave signal simply an analog signal of only a few microvolts to the Doppler shin detector. After Dopplershia detection. the low-level analog signal is sent through an amplifier that provides GOdB to 80dB of signal amplification. After signal amplification. the analog signal is filtered with a bandpass filter. The bandofthe filterwasplacedat 1-30l-lz. ‘l'heaelectionoftheaol-lzcumfl‘wasbaaedonthespee- tral analysis of signals resulting from reflections of microwave signals of! the chest walls of human subjects. There were no significant spectral components ofthe microwave heartbeat sig- nalspaStBOlleioshal.Siegel. & Zapp. 1984). ‘lhelowendcutoflofl l-lzisuaedtoeliminate any DC component in the signal and minimize breathing effects (M. Siegel. perms! communica- tion. 1988). The amplified and filtered analog signal is sampled by an eight-bit analog to digital con- vener. The sampling rate varied from 96 to 128 samples per second in the above studies. The final destination of the digitized microwave signal is a microprocessor. The final heart rate esti- mation algorithms will reside in the microprocessor unit. In order to evaluate the success of any heart rate measurement method. a reference of the actual heartbeat activity is traded. A heartbeat reference signal was successfully chained from an in-house designed unit that measures body surface potential between the hands of a human subject The output of the device closely resembles an EKG signaL Hand potential signals were simultaneously recorded when microwave heartbeat measurements were taken. 74 .3535 Eu.“ 0:. 3? 25393.... 5333:: 2.6 3.5.: E: 9:. .8. 83E 3:350 335 9 3.52 A 58823222 SEREQ 5.— On-— ..ozw— Run— Elm 56 a. 8.8 cease 3.52 3282.2... 3.38 2639.32 8.3m 5883. 75 Review ofthe Development ofa Heart Rate Ertlntation Method for the Michigan State University Microwave Vital Life Signs Monitor Peakdetection. Pakdetecdonwuthefirnmethodcaflduedindndevewwahemnteafimfion technique. lnanuncluttered signaLthemicrowavemeastnementsofaheartbeatresembiesa heartbeatoccurrenceinaan. Largepenksinthemicrowavesignalcorrelatewithtln occunutcesofheanbeatsfitelargepeakscanbelocatedafithpeakdetecfim Peakdetectioniseffectivefororflyaresuicmdsetofoperatingcondidona Thesubjeet mushemwduflbmadfingmwhflydufingdnremrdingofdumkrommm uansceivermustbeplacedamuyslnndimawayhommdtenwaflofdnmbjea. There mustbelittle interferencefiombreaufingorbackgrotmdmovememinthebopplershimd encoded heartbeat signal. Under realistic operating conditions. the heutbeat signal may be obscured by background noise and clutter. Peakdetection tedtrtiques applied to themicrowave heartbeat signal are unreliable for realistic operating conditions (Hoshal. Ivkovich. Siegel. a Zapp, 1984; Hoshal. Siegel. 8t Zapp, 1984; Byme a Siegel. 1985). Correlation Techniques. The next stageofthedevelopment ofaheartrate estimationteclmiquewasbasedonutiliz. ing the periodic nature of heartbeat occurrences in the microwave signal. Peak detection failed because ofthe high level ofclutter in the microwave signal. Hoshal. lvkovieh. Siegel. and Zapp (1984) and Hoshal. Siegel and Zapp (1984) posed the following argument: lfcorreiation tech- niques are useful in detecting periodic signals that are completely obscured by random misc. tier: correlation techniques may be useful in extracting the heartbeat signal from the microwave meas- urements. Autocorrelation was performed on the Michigan State University monitor microwave 76 heartbeat signal by Hoshal, lvkovich. eta]. (1984) and Hoshal. Siegel. etal. (1984). Lin. Kier- niciti. Kierrticki.ar1dWollschlaeger (1M)mhwfiqmwm(1984)alsouwdauto- conelafionmaflmateieanmsefiomamiaowuehartbeatsignal. Boshahlvkovidaeral. (l984)andHoshal.Siegel.eral.(l984)showedthatautocoflelationcouldbeuaedtoacctnately meammhemmebtndusetofopemfingcondifimundmmmemmcondafimmm was limited. Anumber of problemswereencounteredwhenheartmteestimation methods using autocorrelation were more rigorously tested. nuabifityofmmconeudonmahodsmsepameasignalfiomomnngmiseisdepah deruondtesignalbeingpenodieflummheartbeatsuepaeudopenodicevenn. ‘l'hetimeperiod betweenheartbeatsmaynotbeconstantmymeafiegel. 1985; Hoshal &Siegel. 1986). The leesuteheanbeatsueperiodicmemorethemtocorreladonpeaksbroaden. Anaccm'ateestima- fionofdreheatratecammbeobtainedfiommebroadatedanoconeiafionpeaks. mlmgthofmepaiodsbaweenheanbemsanchmgeabmpdy.nImmcondafiondme mmwimmmmmmmmmaarwmmmmmm changesin heartrate (Byme a Siegel. 1985; Hoshal& Siegel. 1986). Whentheperiodsbetween luaubeauuemgrdualonguamoeondafimfimewhdowisdedmflednceitwofldrewhm moreaccurateestimatesofautocorrelationpealtlocatiom (BymedrSiegel. 1985). Atradeoff munbemadeindnsingafimewhdowlwflifaumcomhfimkwbeusedinesimadngm ratefromthemicrowavesignaL ‘l'hisisaclassicaltime-frequencyresolutionproblem. ltwasalsofounddmumsigmmreofalnutbeatoccunenceinutemiaowavesignalcan changenotodyfiompmsonmpersonbmfiomheanbeatmheanbeatmyme&Siegel. 1985). Autoconelationtechniquesdependonrepeatedbehavior. lfthesamepattemisnotrepeatedin themicrowavesignuforuchocamenceofaheanbeanmeefi‘ecfivmessofamoconehfionasa heanbeatsignal detectorwill belilniied. 77 Theabnityofauwconehfionwexnamdtemdgmlhunmemiaowavemeanne- mermisfinunrmidennmdedbydnpresuweofpenodicbaekpomdcompmnmynut Siegel.1985).‘l'hemostdominantperiodiceomponeraishreathing. ltisdiffiatlttofilterout bmuhhtgbecwsedwmhmpfiorhnwledgeofanmjem'smgrmdnnngdemiuowan measurementofthesubjeet'sheartrate. Becausethebreathingratemayhecloaetotheheartrase andmanytimeslargerinamplinrde.u1eproblanofremovh1gd1ehreathingcomponaliscmno pounded. Vanafiominmeheanbeasigmliuvefimheddnnmofushtgamconehfionmesfi- mateheartratefromthemicrowave signal. HoshalandSiegel (l986)ohservedthatvariatiatsin thelevel of the microwave signal clutteralsoeffectedtheperformance of mtocotrelation. Auto- correlationwastmreliableincasesoflowsignal-to-noinratioam)orhighciutterlevel environments (Hoshal a Siegel. 1986). Experimental measurements showed that obtaining a sufficiently highSNRcannothedone consistently. ‘lheSNRwasstrongly aflectedbytheposi- tioning of the microwave transceiver overthe body. The unpedictable rate and strength of the breathing motion alsoaffected their abilitytoobtainaconsistentSNR. l-loshalandSiegel (1986) posmlatethatsignalandcluttervariationswillbecorneaneven bigger problem when the microwave monitoristoheusedinthefield. Theheartramestitnation technique mustbe able to contend with uncontrollable background clutterandpathoiogicalheart conditions. Hoshal and Siegel call for a robust signal processing methodology. A methodology thatcanmakeareasonableestimateoftheheartratefromthemicrowavesignaldespitethepossi- ble variations in the heartbeat signal and background noise that might be encountered. The Hoshal and Siegel Stochastic Model of the Microwave Heartbeat Signal. The approach Hoshal and Siegel (1986) took to develop a robust heart rate estimation method was to formulate a stochastic model of the microwave heartbeat signal in order to gain 78 knowledge about the statistics of the microwave signal. The knowledge gained was then used to aid in the development of an optimal processing technique. Hoshal and Siegel model the microwave heartbeat signal as y(t)-x(t) ‘ ho). (K1) where ‘ denotes convolution. y(t) is the microwave heartbeat signal. 3(1) is a pseudo periodic irnpulsetraindefined by x(r) :- 6(r-To) + 8(r-To-T1) + + 50- $119+ . . . . (K2) wherenisatimeseriesformedfromsucceafivebeat-to-beatperiods. 5(r)isthehasavalueof onion-0. Otherwise.5(r)isaero. lt(r)representsthetimedomainresponsecharacteristicsof asingleheartbeatcycle. ‘lheheat-to—beatperiodsequence.T.-.ismodeledasa4thorderautoregressiveprocesa. The panmmemofuwnmoddwembasedonnmeinmwakhetweenheutheatocamencesinue handpotentialrefercncesignals. Asixpole.sixzeropole-aeromodelisusedforlr(t). The parameter estimation for Mr) wasbasedonmicrowavesignalstakenfrom 10 subjects. Back- groundnoisewasmirfimaldunngurerecordingofdresigrtals'l‘hesubjectswerelyingontheir backswhilethemeasurementsweretaken. HoshalandSiegelO986)donotstatewhetherthe monitorwasplawddirecdyonthechestwalloratsomedistancefromthechestwallofthesuh- jects. ThemoddwasdnnusedmesfimatemepowerspecualdensityofthemimowavedgmL Mcmwwengnflswemsimmamdforvanmmeansmdvuianoesofmemoddpammaera Thepowerspecnaldensityoftlnsimulatedmiaowavesignalswereobtained Distinctharmonic peakswereseeninthepowerspectrumofeachsimulatedmicrowaveheanheatsignaLevenfor thesignalswiththeworstcasesoftheparametersvariances. 79 mumevaryingmmmofamman'sheutmeanddnhmmficpeaksinmepowermee- ualdanityofmenmulaedmicmwavedmakmggesedmfiomuandSiegdmaadapfive comb filteringmaybeanappropriateteciatiquemestimaeheartrate. Asdescribedinl-loshal andSiegel (1986).u1eadapfivecombfilwrsemdresdncomponunsofdnhipmdgnflspeeuum forabestfittoaspecifiedmnnberofhannonicanyreiatedsignalcomponm Nonhmonic componentsareattenuated. mbestfitfirndameraalfrequencyisdnestimneoftheheanrac. Resultsofpmfimmarytestsonduadapdvemmbfilmfsabflitymesfimatehemmem givenini-loshalandSiegei. (1986). Theadaptive comb filterwasappliedtosimulmedmdactual microwave data. The simulated data consisted ofaseries ofmicrowave heartbeats generudby theHoshalandSiegelmodeladdedtoband-litnitedwhitemiae. Threaltnicrowavedatawas mkutmrderdwsamecmrdifiomumemicmwavedauuedmudmatednllodmmdfiegd modelparameters. madaptivecombfiltergaveacetnaseestimmsofthelzartraesforbmh simulated and real data. Although adaptive comb filtering shows promiseasamethodforeatimatinghearttatefrom themicrowavesignaqur-therinvestigationismded. ‘l'lul-loshalandSiegelmodelisbasedon datarecordedunderidealconditions. ‘l‘hemodelneedsmheexpandedmincludepathoiogical heartbeat behavior and the affects of breathing and background clutter (Hoshal a Siegel. 1986). Theabilityofthecombfiltertoadapttoabmptchangesinheartratencedstobeinvestigated. It must be determine that the adaptive comb filter technique can give accurate heart rate esfimates for microwave heartbeat signals cluttered by breathing and backgroundtnovements. The robust- tress of the adaptive comb filter has yet to be provcrt The Byme and Siegel Stochastic Model of the Microwave Ileartbut Signal. The approach that Byme and Siegel (1985) took to find a robust heart rate estimator is simi- lar to approach taken by Hoshal and Siegel (1986). Byme and Siegel postulated a model for the 8O microwaveheartbeatsignalandthenusedthemodeltoappiyanadaptivefilterintheestimation ofheartrate. 111eBymeandSiegelmodelissimilartotheHoshalandSiegelmodelbutdre choice of adaptive filtering is different. ByrneandSiegel (l985)modebdthemicrowaveheartheatsignalastheoutputofanall— polefilterdiatisexcitedbyatrainofimpulsesaddedtowhitenoise. 'IheByrneandSiegel model is shown in Equation K3. y(t)-[x(t)+W(t)l " Mt). (K3) where" denotes convolution. y(t)isthemicrowaveheartbeatsignal. x(r)isthepseudoperiodic trainofimpulses.EquationK20fthel-loshaland$iegel(l986)modelcanbeusedtodefinex(r) ofthe Byrne and Siegel model. 190) is a band-limited white process. an) is the impulse respomeoftheall—polefilter.1'herespomeofthean-polefilterexcitedbyoneimpulseshould resembleamicrowavesignalheattbeat. ThistnodeldiffcredfromthefioshalandSiegeimodelin twoways. ‘l‘hel-loshalandSiegelmodelusedapole-zerofilterwherethefiyrneandSiegel mowuseaanall-polefilter. Seoondly.theByrneandSiegelmodelincludeswhitenoiseasa componentintheexcitationprowssofthemodel. ‘l'heprimary motivation behindusingthe Byrne and Siegel (1985) model forthemicrowave Inanbemngmlwauusueceaofapplyingasimflumoddmmeprohlemofdemmgphch pulsesinvoicedspeech. TheparficularpitchdetcctionteciuuquethatpromptedfiymeandSiegel toadoptthemodelinEquatioan wasdevelopedbyleeandMorf(l980). Voicedsoundssuch asvowelsoundscanbemodeledastheoutputofanall-polefilterexcitedbyapseudoperiodic trainofimpulses. ‘I'heimpulsetrainmodelsthepitchpulses. Theall-polefilterofthespeech modelrepresentsthevocaltract. lnspecdrmalysiaitisofimeresttodemrminetheperiod bemeendnpimhwlsesLhnupndiefioncmbeusedmhvemefleaH-polefihu'smspome and recover the pseudo impulse train that excited the all-pole filter. The recovered impulses appear as large prediction errors at the output of the linear predictor. (Appendix 1. reviews the 8i relationslupbetweenureBymeandSiegelmodelandlinearprediction.) Fordiffererasounds.the vocaltractwilltakeondifferentconfigurations. lnordertoinversetheefi'ectsofthevocdtract ondupimhpflsesbyfimuprediaimmcmfigmadmofdnvocflmmbedmined. ‘l'heproperconfigurationoftheall-polefiltermodelmightrmtheknowrrormigiadnngewidtin aspecchprocessAdapfivelheupredlcfimkumdmdemrminednmtnowncmfigmafimof thevoealtractmodel. BymeandSiegel(1985)modeleddteoccunenceofheanheatsasapaeudoperiodiehnpulse train. Thednstwan.micmwave.mimowavedmmelmdmafimrhtgmfituemoddedwim:r all-pole filter. lftheByrneandSiegel modelisvalid forthemicrowaveheartheatsignalsJineu pmdicfimunbeusedmmmverdnlemheuimpflsemmednspeechmusym dreheanbeatimpulseuainexcitesmightnotbeknownormiglndrmgeinfime Assumingtheir modelivaBymemdSiegdusedadapfiveflmarpredicdonmdaeminethecmfigmof thesystemmodel. Onceureheanbeatimpulsesarerecoveredduoughadapdvehnearptedicdon. BymeandSiegdhopedmeaimamdwhtstanmmouslnanmebymeamringthepedodbaweat consecutiveimpulses. lnLceandMorf(l980).therecoveryofpitchimpulseswasenhancedbytheuaeofa parameteroftheparticularadaptivelinearpredictortheyused. T'heparameterisrelamdndte log-likelihood function ofthespeechprocessinputto the adaptivelinearpredictor. T'heparameo terisameasureoftheunexpectednessofdremostrecemdatapointsofthespeechptocessCFried- lander. 1982a). Sudden large changesinthis variableweregood indicators of theoccunenceof a pitch pulse. Byme and Siegel used this parameterinthesame waytoenhmcetherecoveryof heartbeatoccurrences. lftheByrneandSiegel (l985)method ofestimatingheartrateisvalidformicrowavemeat- urcments. the primary advantage ofthemethod over autocorrelation isthatthedctectionofthe heartbeats is not dependent on the periodicity of the heartbeat. With the Byrne and Siegel 82 meMdnoecunenceofahembeuwuldbemmgnizedbydnmofaspedflevauu theoutputofanadaptivelinearpredictor: drepresenceofalargepredictionerrorandanabnrpt largechangeintheliltelihoodparameter. 11:3ymemdSiegel(l985)leutbeudeccdontecimiqtnwuudhaveacompuufimul advantage overautoconelation. Byme andSiegel (l985)experimented withamrmber of dif. ferentadaptivelinearpredictorsandfomtdthehestresultstocomefromanonnalindleast- squareslatticefinenamrmaliaedversionofureadapdvefineupredimorusedbyleemdMorf (1980). The filter is a recursive algorithm. The parameters of the adaptive lattice filter are updated foreverynewdatasampleinputtothefilter. Autocon'elationprowssingrequiresblocks ofdmuraeforeureteisafimedelaybetweenestimatesoftheheanrate. ‘lhelatticefilterstruc- uneanowsforupdamsofheanrateesfimadonwimeverynewinptndatasunple ThepafmmanceofmenymmdSiengMheumeadmecfionmchueisimprep sive. Microwave signals obtained from subjects lying fiat with the microwave monitor mourned directlyonthetheirchestswereprocessed.ByrneandSiegelobtainedlargepredictionenorsand lugedrmgesmmefikefihmdparmaerdmguumnencesofheanbeamnuexmdming ofheartbeatoccunenceswasdeterminedbyhandmtitreferencesignals. Aftertheerrorswere mukedbydrdefivadveofdulikefihoodpammmermeakdaecfionwuusedmdmhndu locationoftheheartbeats. ‘l'lreheartbeatsignalwassuccessfirllyrecoveredfromdrese micmwavedgnals.NowdmtamoconelafionmuMhavebeenusedwesfimamdeheannte becauseoftheregularityofthedataandthelackofclutter. lnortlertomorerigorouslytesttheBymeandSiegelheartbeatdetectionmethod.adaptive linearpredictionwasappliedtomicrowaveheanbeatsignalstakenfrom subjects placedthreefeet from the microwave monitor. The subjects were seated and had exercised. Having the subjects sitting is considered to be a more hostile condition for heartbeat detection compared to lying down. in the sitting position. it is felt that the heart impinges the chest wall to a lesser degree 83 thantheifthesubjectislying downMSiegeLperaonalcommurficatiat. l988).‘l'heheartbeat signalwasobscuredinthesemeasurements. Unlikethesignalsrecortiedforsubjectalyingdown. autocorrelationfailedtogiveaccurateheartrateestimates. T'heuseofthenormalizedadaptive lancemtumedicdonenmandhkefihoodpanmwmconnsmlymesimamsofdn instaraaneousheartrateofthesubjects. CurrentlnterestinthebevelopmentofafieartkateEstlmation Technique Thecunuuintereainuredevelopmemofateeiufiquemesdmateheutmefordte microwave vital life signs monitor is to formulate a real-time implementations of the most promisingheartrateestimationtecimiques. Thereal-fimeimplernentationswouldbeusedon boardtheheartratemonitor. 'l'heheartrateestimationteclmiqueadevelopedbylloshalurd Siegel (1986) and Byrne and Siegel (1985) were implemented and mated independent of the mon- itor. Recordeddata fileswereused. Theinitialpurposeofthisthesisreaearehwastodeveiopa real-time implementation of Byme and Siegel adaptive least squares lattice filter estimation method. Although Byrne and Siegel (1985) showed an: the adaptive lattice filter tedmique worked well under adverse conditions. the technique had not been fttlly tested. The teclmique was tested withorrlyafewdata filesandtheresultsshowninByrneandSiegel(1985)wereofcasesin which the technique worked very well (M. Siegel. personal communication. 1988). Before a great deal of effort was expended irt developing a real-time implementation of the Byrm and Siegel technique. more extensive off-line testing of the algorithm was performed. A number of problems were encountered in the attempt to repeat the results of Byrne and Siegel (1985). The source of these problems was trawd to differences iii the character of current microwave heartbeat signals and the data used in Byrne and Siegel (1985). The differences might be the result of two actions. First. a number of modifications have been made to the microwave 84 unit sirroe the Byme and Siegel study. Second. the standard testing position of the microwave monitor and subject has changed. The Modified Michigan State University Microwave Vital Life Sign Monitor. FigumKZshowsablockdiagmnoffirearnufimiaowavevitalfifesigmmmfitor. Four majormodificationsweremade. Allthechangesweremadetotheanalogsignalprocessingaec- tionofthemonitor. mummifiedmicrowavesignalwaschangedfromacontinuouswavetoa pulsedmierowave. Thismodificationwasmadetoimprovethesafetyofsubjectsdurhtgexpo- motdnmiaowavehannnisfionmdmmmimizepowuconmmpSMMSiegel.pumnfl communication. 1988). Alogarithmic amplificrwasaddedtoincreasethedymmicrangeand sensitivity ofthe microwave transceiver. Thelogarithmie amplifierincreasesthesystems sensi- fivitytonnansignalswhflelargesigmhamnotallowedmsamratedresysm. Anautomatic gaincumolmfitwuaddedwmamemptummedamwocesnngsecdonofmemommrwmud haveanevenlevel. Theband-passfilterwaschangedtoaswitchedcapacitorfilter. This modification allows the microprocessor unit of the monitorto control the characterof the band of the switched capacitor filter during operation of the monitor. Theanoflfiequendesofmesudmlmdcapuhormterrunainedmtmdunngdfismesis reaeuchThelowfiequuicyctu-oflwu4ilzanddtehighfiequencymn-offwulsflz The4 Hzart-offwaschosenmfiltermnsignflcomponurtsrelatedmbreathingandsuflallowharmon- icsoftheheartbeatsignaltopass. ltisbelievedthatmosthreathingcomponentsarefomrdator below4 l-lz(M. Siegel. personal communication. 1988). The 15 Hzcut-off wasused to reduce noise. mamaspecnummalysisofthemicmwaveheanbeungmlsmwthadumwerem significant heartbeat signal components above 15 H: (M. Siegel. personal communication. 1988). The current standard positioning of the monitor and the subject are different titan the posi- tioning used in Byrne and Siegel (1985). errent mic1owave data are recorded with the subject .38... she o... a... 2.3.5.... 9.5.2: as... 5.20.2 3.3... an. .9. 2...... .2180 — 56 9.3.8.3. d 3:95 f _ .25 5.3.2... o: n.-. 3...". 5.896 3.2.3 _ 352.8 8.25.3.3 _1 ——‘ 33829222 8...... .o 3.... 1.. 2%.... 3.2a 1— ans-.2 50> 53 2.8 t .MMMMM—e... ) _ 35:32-9... 25393.2 08:3 9:30: um 86 sitting. ‘l'hemonitorisplacedsixinchesfromthesubjectsehestwall. Themonitorisplaced slightlytotl'releftofthecenterofthechestwall. Thesubjectsaresittingratherthanlyingdown. APPENDIXL REVIEW OF THE RELATIONSHIP BETWEEN AUTOREGRESSIVE PROCESS SYNTHESIS AND ADAPTIVE LINEAR PREDICTION An autoregreesive (AR) process is modeled as ytnr-gmtn-nwtnr. (1.11 wherey(n)isdreARpmcesthcag’suemeARmoddpameternmeaawifiteM andM istheorderofthemodel. AsampleofanARfime-aeriescarbeertpresaedasalineu combination ofpastsamplesplusasample fromawhiteprocess. Themrmberofpastsampies‘m thelinearcombinationistheorderoftheARprocess. Thetimeinmrvalbetweensampieshcon- stant. EquationllshowsthattheARprocesscanbemodeledastheoutputofanall-polefilter excited by a band-limited white process. rm- ‘ 4 We). (12) 9“! 88 Themodelin(l.2)wasfonnedbytaltingthea-transformofa.1)andueatingW(z)astheinputto asystemandY(z)astheoutputofthesamesystem. AftmdamentalgoalofARmodelanalysisis todeterminetheparametersoftheall-pole filter. Linearpedictioniscanusedtoestimatedre coefficierusoftheARmodel all-pole filter. UnearpredicnonesumnesurenmndamsampleofmARprocesbyafineucombmaficn of past data samples. rtn) - gluon-t). (ts) w11erey(rt)estimaaesy(n)andb. isalinearpredictioncoeffieieru. Theraedictionerroris definedinCIA). ¢(fl)')'(fl)'gba3(fl‘k)o (IA) wheree(n)isthepredictiorrerror. Bytakingthez-transformoftheerrorequationandtreating dnpmdicdonmmrumeouqanofasysmmmdtheARpoceuuumhmtnofdnsamesysmm. MshomdmfinarpmdicfionmnbeviewedudninvemeoperafimofARprmsymheds (l-layltin.l984). £(z)- [1 -‘gb.z'*] m) (1.5) 89 linearpredlctiondeconvolvestheARraocesa. lfthepredictionenoraequemeisviewedasthe mormmmwmmmmmmmummnm ingtheARproaeasthroughman-zerofilter. lfthepredictiorrcoefficierasarethes-neastheAR modelpuameeramuepmdicuonenorisdnsuneuunwlfimmhwdmen modelall-polefilter. ThelinearpredictioncoefficierascanbeucdmesdmatetheARmodel parameters. l-lowarethelinearpredictioncoefficientsfound? lfthepastvahresofanARproceasand dnmlafiomhipbetweendmsepastvaheaammmemlydungdnmcammwediam drenextvalueoftheprocessisthesamplefiomthewhiteprm Tlnpredictionerrnrwillcmr— tainthewhiteproaesssample. lfthelinearpredictorcmheuaedtoertnacttheputoftheprooess umpiematisconehwdwimdtepaapmceusmplesmupredicnonmwmbemal lfdiestafisucsofmeARpmcessbcingmalyaedueknownawaymopfimiaemedre sdecfionoffineupmdicfioncoeffidamisbymminfidngfinma-dfinammedpediaim amr.£{e1(n)}.1heparmemrsofunpredlcmrueumqudydewrufimdbymemwnd-mdu statisticsoftheprocess. TheYule-Walkerequafionsgivealinearrelatiatshipbetweentheped- ictor parameters and the autocorrelation coefficients. {Raj-OJ) where R; IE{y(tt)y(a-i)}. mopfimumemsqumedemrpmdicmrmdeleaaaquarupredicmrcaheobtdmdbyauw ingtheYule-Walkerequations. lnmostapplications.thestatistiesoftheprocessarenothrownandmustheeatimatedfiom data. OMtheprocessstatisticsaretime—varying. lnordertotrackthechanglngsutisticsofa non-stationaryprocess.estimates ofthesecond-orderstatisticsandcomputationsofthepredictor coefficientsneedtnbecontinuallyupdated. ‘l'heptoblemofpredictmgatime-acrieswlthout prior knowledge of its statistics is called adaptive prediction (Friedlander. 1982a). 90 Whenmesecondcordersnusfiaofdeproceubdngpredimedamhnwnesfimanonofdn leastaquarespredictorisawelldefinedproblem. Awelldefinedproblemisalsopoasibioforthe enimadonofbansquaresprediedmpammecrswhmandnmfmmadonmmishmwnabom theprocesaisafinitammberofdatapoiras.(y(n)}wherea-l.2....N.‘l‘hepob1emaadefinedin W(l981)hwfitfluobnrveddmmammbymm coefficients.é;.thatminimiaethesumofthesquaredpredictionenors. SSE I “$901 ). etn)-y(n)+‘géry(n-i). (L7) finenhnnesofmecoefficiennuegivenbyunhomogenemummmmUeequafiommM). p e(l) eth) q )‘(1) rd!) 31(0) 0 yto) y(1~i-1) . . yeti-M) J 9'. (L8) 91 (L8) can bemove compactly written as c I) +Yé. (L9) when P s q :0) )0) c . . y I- . e(}V) 3W) . . L a P 7 N0) 0 . . Gt Y- I ' y(0) . and 6- I . I I 6. y(N-l) . . y(N-M) ‘ The solution of (L8) is given by 9 - K'Wry. (L10) where YT isthe transpose on and A‘ isthc sample oovuimoenmrix. R‘srTr (L1!) The equations that provide the solution to the problem of estimating the predictor coefficients of apmocss withunlmown statisficshasthcsamc form astlnYule-Wflkoteqnafimwhidtwae dcn'vcd for process with known statistic: (Friedlander. 19823). 92 There are a number of efficient computational pmoedmes for solving these equations. The adaptive least square: lattice filter used by Byme and Siegel (1985) is an example. The useful- mssofannlafiondfipbemeenARmoddhmmadepdvelhwpmdicfimwinbeiWin Appendibeyshowinghowthisrelationshiphnbeenundintheanalysisofspeeehpmwesee. ILLUSTRATING THE USE OF ADAPTIVE LINEAR PREDICTION TO EXTRACT IMPULSES FROM PROCESSES USING SPEECH PROCESSES AS AN EXAMPLE Asimplifiedmodelforwdtptoductionismownlnfimul. Wmdelccnsistsofan all-polemwrmatisexdwdbyeimersquasi-paiodicminofimptlsesonwlfitembem (Malthoul. 1975). Voiced sounds such as vowels are generated flout nearly periodic impulse sources. meirnpulsetrainrepresentsaseriesofpitdtpulses. Theimpulsesuewdtsfun- damentalperiodhtownssthepitchperiod. mwltiteprowssproducesthemvoicedsottnds suchasthefinfish. Tupmbabifitydisuibufimofthewhiteprocessdoesmuppeutobecnti- calCHaykin. 1984. chap. 1). Them-pole filterrnodelsthevocsltnct. Theidentity ofdnumd produced by both sourcesis determined bythepameters of the all-pole mteerhoul. 197$). Inspecchrecognitionandsynthesis.itisofintetcsttodetetminethednnctcroftheindivi- dualsoundsthatmalteupaSpeechprocess. Ifdnabovcmodelithhetypeofinputsource that produces the sound must be known. For voiced sound. the pitch period ofthe impulse tnin must be determined. The parameters of the all-pole filter no needed for both voiced md unvoiced sounds. Therefore. the objecrives in analyzing a speech process is to estimate the model parameters and recover the input process. 93 .8858... 58... 3. .82.. 3.32.. .o 5...... .8... .2 8.5.”. 6.38 332:: 8. 8.39 .5... .9288 as» 8...: 223 .95. 38> 82.. a8> 58.. till, 9.. ”5.252 tlllll 38: m 8...". 22.-.... 65.8 32.5 E .6. 8.39 3.8980 5:... 8.2.5. v3.0.— ..85 fl 95 Linearpredictionisusedinthe analysis ofspeechprocesses. Pameterestimationper- formed through least squares linearpredictionworkswell providedtheirputntheall-polesys- tern isazeromeanwhiteprocess. lirearpredictioncatbeusedmdeccnvolveaplmtlmis thcoutputotanall-pole filterthathasbeenexcitedbyawhieproceas. Thewhiteexcitationpro- cess is recoverable from thepredicticnerror. Fortheamlysisofmdsproducedbyawln'te input. the constraints on the useofleastsquareelinearpedicticnpleseunoprohlem. Bathe pcriodicirnpulse sourcethatgeneratesvoicedsoundsisnotwhite. Estimacsofmodelparame- ters may be biased and deconvolution may be imperfect for non-white inpm prom For example. ifan input is coherent. the input may not be recoverable from the prediction error. The model parameters would absorbtheconelarion informationofthsinputprocess. ‘l'heleast squareslinearpredictorwould produceasnearlyaspossibleawhitepredicticnenorsequence. lfutemn-whitehtptuishmmmenitispossiblemmmeesdmaeofdnmodd parameters (Friedlander. 1981). In speech analysis. the input to tie all-pole model may not be known apricri. In certain situatiom. it may be possible to estimau a non-white input from the prediction error sequence. In particular. this may be true for the case where the input is an impulse train as in men processes (Friedlander. 1981). lrnaginethatanall-pole filtercflmownparameterswasexcitedbyasingleimpulse. A linear predicror with a configuration that inverses the operation of the all-pole filterwwld be able to perfectly predict the impulse response of the all-pole filter except forthe first non-zero value of the response (see FigureMZ). This initial maerovalue wouldshowupinthepredictionerror (Makhoul, 1975). Similarly, a large prediction error is a good indicator of the occunence of at impulse exciting the all-pole speechmodel. Imagine that the configuration ofthe above all-pole filter was not known. The parameters of the all-pole filter may be obtained from the impulse reSponse of the filter. The parameters of an unknown all-pole filter can be estimated when the autoconelation coefficients are known for 96 .3323...— 305 3 8.... 0.2— :a 5 he 8:88.. 8.3.5 on. no 5.332.300 d2 2.3...— Eo-oga boa—P..— 0—£-_—< eem 8.3.3... All] 33.8... as... 3:83: 339:— ..8=...— 88.: .3... 8.2.5. ‘l on. 97 theoutputofanallpolcfilterexcitcdbyawtdteproceu. mtmsmmunuu- quMpfinkingdeamocmrdadmcoefficiandmemofnan-pdemuuemamebr boththeinputofasingleimpulsecrawhitepocesa. Thisresultisexpectedbecausebotha determirusdcimpulaeandawhitenoisepmcesshaveidanicallyfiaapecu-a. mm “mnemomnamummamaamctmmmmmmn showninthemodelingthespeechprm Itmigluappeumlfinpitchpuhesofaspeechmcufldbebcandbympedicfim enors.butthereatesomeproblemswiththismethod. Asignalimpulaelsancnconelatedpro- cesswemumimpulnuainhmmmfinearwedicfimafimmofnuspeechprm maybebiased. mumpmdiaormaynctperfecuydeconvolvethespeechprmmpmb- lemhasbeensnidiedintheateaofspeechanalysis. Friedlander(l981)showshowapanicular fimupndiaoraleansquaruhnicefiltmcanbemodifiednnhfimiapediaimmnm biasedwlmthelinearpredictorisusedtodecmvclvedeompmofanafl—polefilterthathasbeen excitedbyanimpulsetrain. Anouerpmblemmmlyingonuepresmceofhrgepredicficnmmindicaemelocr donofpimhpulsemaspeechpmmismmuesymmmmspachpmcenmbe minimumphase. man-mummoranspeecumoddmmoriuporamemmm unitcircle. Iflinearpredictionisusedtoinversetheoperationofasystemthatisnotminimum phase. the prediction error will probably not resemble the process that excited the system. APPENDIXN THE UNNORMALIZED PRE-WINDOWED LEAST SQUARES LATTICE FILTER 1heUmrormalizedPre-W‘mdowed1east8quaresuttice Filteristhesame adaptiveleast squueshnicefilterusedbyLeemdMorf(l980)inmeirpitchpulsedetector. Theleastsquares laniceflgondmkbasedonuelevuuonobummmcurfiwmedmdofcmnpufingdewlufimm the Yule-Walker equations. The Yule-Walker equations provide a solution to the problem'of estimating linear prediction coefficients for processes with known statistics. I-Iayitin (1984). Friedlander (1982a). and Lee. Mort. and Friedlander (1981) show how the least squares lattice filter is derived by applying the WW method to the problem of estimating linear prediction coefficients for processes with unknown statistics. Pre-windowed implies that it was asnunedthattheinputprowssestothelatticefilterisaempriortot-O. Theprocedureof esfimafinghmpmdicfimweffidausforpmcessaldmmumwnmfisficshmaflydmeby minimizingthesumofthesquaredpredicficnenorsmdiscanedleestsquareslimarpredicdcn Operating on a process with linear prediction can be viewed a being the same as passing urepmcessUuoughanfiruteimpulseresponsem)filteroran-aerofilter. ‘l‘hecutputot'the filteristhepredicuonerror. ltisusuallyassurnedthatalinearpredictorisirnplemeruedinthe direct (or tapped-delay-line) form (Friedlander. 1982a). Figure Ni shows a direct realization of a least squares linear predictor. The direct realization coefficients. A.- 's. are estimated by the é's of In; 2...."— .—z a .8. :8. he... 5 3 ea...» .89. 2 8.3.8 has. .3662.— TN a< TN u< .< i 1m c333 88: 33...! a8. 2 .38 5 B .8318. 831. .«z 23E .59 . #6.“! IN e37 101 (L8). Theé'samfinsolufiomwfiteleansquuesfimupredicfionprobianforprmwim unitnownstatistics. ThestrucnneoftheUmormalizedPre-windowedleastSquaresLattice Friterisshowninl-‘rgureNZ 1hexr'softhelatticeimplementationarscanedmerefiecn'on coefficients. Appendingivesdteaigcddlndtatisusedmupdatefiaepuamemrscfunlafice filter. mdimamafizadonofdeieansqumfinarpredicmrmdmeleansqtmeslamcefim aremathernatically equivalent. Values fordredirectrealintiatcoefficientscmthederivedfiom thelattice parameters. Appendingivesmalgoritllnthatcanbeusedtocalculatethedirect form coefficients from the lattice parameters. Althoughthedirectformandthelattice formoftheleastsquareslinearpredicmrare mathematicallyequivalent.tledifferencesintheirstructuresmaygiveoneformaclearadvan- tageovertheorherinaspecificuse. AusefulpropertyofthelatticeformisthattheMthorder leastsquareslattice filtercontainswithinitsstructurealllowerorderpedictors. Thepthcrder lattieefiltercanbeobtainedfromthefirstpsectionsofathhorderlatticestrucmre. Whena process is filtered with an Mth order lattice filter. the prediction errors and lattice paramemrs of alllowerorderlatticefiltersareavailable. 'I'hispropettyismtsharedhythedirectrealizaticnof deleasrsquareslinearpredictor. Separatedirectformsareneededifitisdesiredmsimultane- ously perform linear predictiononaprocesswithdifferent orders of linearpredictors. Simultane— ous access to different order linear predictor results may beusefitl inthereal-time analysisof AR processes with unknown order. When compared with ether adaptive linear predicrors. the lattice form gives the Pre- Windowed Least Squares Lattice Filter computational advantages. Friedlander (l982a) divides adaptive processing methods into to categories: block processing and reclusive teclmiques. The Pre-Windowed Least Squares Lattice filter has a recursive parameter update algorithm. In block processing. incoming data are divided into blocks which are then umd to estimate the prediction parameters. Block processing techniques update parameter estimation only once during a block 102 period. mmcunivetedmiquempredicmrpamnaeresdmamsueupdawdwimeverynewdaa Therecursivealgorithmmaybemuchmoresensifivetoehangeshtthehrpmprowssmatitneeds toadaptto. ApardcuhrfeammofduPre-WlndowedleanSquruuniceFfitermmemancainabiL itywadaptmchangesinmmpmpmcessismeexponumalweighfingfactorJ. Inmostappli. cation. the statistics of a process are slowly time-varying (Friedlander. 1982a). Because the hwprediaorpamnemdeperflmmofflemfisficsofdehnommgmhis necessaryforthelinearpredictortobeabletotracktimevariationsinthestatisticsofincoming proceses. ldewrmmesuecharaaerofmexponumalwindowmatdefinesunsaofpastmpm datausedtoestimatethestatisticsoftheinputprocems. 'Ihevalueofldeterminestheshape andlcngthoftheexponential window. Olderdatasampleshavelessweightthannewerdatasam- plesintheestimationofprocessstatistics. ‘l'heexponentialweightingfactoraidsthelatticefilter inadaptingtonewtrendsintheinputprocessbyallowingittoforgetpatdatavalues. FigureN3 fliusnatesmechamcterofmeexponenfialwhadowforvariousvaluesofk Anotherimportant feature ofthePre-W'urdowedleastSquaresLattice Filteristhelilteli- hoodvariablh‘h-I wherenrepresentstheorderofmesecfionmelikelihoodvariabieisbeing caiculatedforandTrepresemstime. ‘I'helilteiihoodvariabieenablesthelatticefiltertoadapt quickiytosuddenchangesintheinputprocess. ‘I'heliltelihoodvariableiscimeiyrelatedtothe log-likelihood function of the lattice filterinputprocess. LeeandMorf (1980) definedthisrela- tionship in the following way. Asstnnethat{y,}isazeromean6aussianprocess. 'l'hejcintdistributionfor pm. . . . 'yT-l). Ian. l-“cl‘”bf. ”' 57-01304”. H. JG-carl (N1) where 103 A be 8...: 33...... 8.. 33...; 32.2.83 .2... 8...: ge.! 83. 9.. Co 88835 .mz 2.6...— 91585.82..ng a can 8... 9.... 8m: . in...» I n... 8.5 unan— 104 R. '5b‘r. Jr-al'b‘r. J‘r-al. (N2) 111elog~likelihoodfimctionassociatedwith€hl2)isptoportionalto L-ian.|+Lyr, Walk-"Ur. Jr-ar- (N3) hehkefiimodvanaNecanbemMpraedasdempleesfimaeofdesecautummfielog- likelihood expression of (N3)(Leedc Morf. 1980). ’I'heliltelihoodvariable.'f.: isameasureof dunkefihoodmusuccessivedauumpleswmcomefiommeameGaussiandimihmmaee a Morf. 1980). The likelihood variable is a gooddmction statistic ofthe 'unexpectedneas' of themostrecentinputdatapointsGriedlanderJ982a). ’I'hevalueofy.;rangesfrom0tol.Lee mdModmponedthatwhuevernm—Gausdmtypecompmmuepresaumdndmnx tendstolargevalues(closetol). fl‘hefactor(l-7.;)ishrdiederrontinatorofagainusedintlte. updaterecursionsforcertainlatticeparameters(seeAppendixE). Asy.;approachesl.thegain goesto-o. ThegainutablesmehfiicefiltermqinckiyadaptmmtexpecteddauaeeaMorf. 1980). unlikefihoodVMddeduemdMod(1980)mmdemcfimofpimhptnmsmspeedi processes. WrbasicasmmpfimdeespaechdfiMgpmwssconsimofanappmxi- mately Gaussian pan (for unvoiced spwch) and a jump component (for voiced speech). Large firespmdicdmemsangoodmdiafionsofthepresenceofafimpwmporemmpimhpulse locationintheexcitationprocesses. LeeandMorffoundthatthelocatingpitchpulsesfiompred~ icfimerrorscmldbedonemomaccmatelyifdefikelihoodvanablewasused. Largechmgesin thelikelihoodvariable correspondedtotheoccunenwsofpitchpulsesinthemchprocess. Lee andMorfsinwedhowdedmivafiveoffiefikdfinodvanablecwldbeusednamaskmde extractionofthepitchpuisesfromthepredictionenorsequence.1'helikelihoodvariablewas usedtosepuammeGaussimcomponamfiomdeiugmymn-Gaussianjumpcompmuusofde speech driving processes. Byme and Siegel (1985) directly applied the Lee and Morf technique 105 murepmblemofrecovedngheutbeatimpulsesfiommemiaowavemeamremems AmrmuizedversionofdePre-WindowedLeaaSquuesIatucechrcnbefioundm Friedlander (1982a). The normalizadon oftheleastsquareslattice algoritlln assuresthatdae absolutevaluesofthelatticefilm'soutputandparametersareleammorequaitotmity. One advantageofusingthenonnalizedleastsquareslatticefilteristhatitiseaiertohuildarobust lmplementationofthefilterwhenflaermgeofthefilter'sparameserauekmwnforeverypusible operatingcondition. Ammeradvmuagehthatfitenormalizedversionofmelatficefilterisless complexthantheurmormaiizedversion. Ahernonnalization.thereareonlytlueevariablesinthe lattice filter parameter update equations. The unnormalized lattice filter has six variables (Fried- lander.l982a). Aposdbkdkadvmgehusingdemafizedlaficefilmrkmndepredicfimmam normalized. Mmaybeapmblemumewuuymgmrecoverdteenctexcimionpmceasthat wasusedtosynthesistheprocessunderanaiysis. Friedlander(l982a)sbwshowtlmunnormal~ izedhtdceflmrpammemnmdoutpmcanbecalcflamdfiomdepanmemofmemahnd lattice filter. REFERENCES REFERENCES Byme. W.. Flynn. P.. Zapp, R. a Siegel. M. (1986). Adaptive filter processing in microwave remote heart monitors. lEEE Transaction on Biomedical Engineering. BME-33 . 717-722. Byme. W. 1.. a Siegel. M. (1985). Adaptive Filter Signal Processing in Microwave Heart Mon- itors (Tech. Rep. MSU-ENGR-85-Ol7). East Lansing. MI: Michigan State University. Department of Electrical Engineering. Byme. W.. Zapp, R.. Flynn. R. & Siegel. M. (1985). Adaptive filtering in microwave remore heart monitors. IEEE Seventh Annual Codercncc of the Engineering in Medicine and Biol- ogy Society. 1196-1199. Chandra. 8.. and Lin. “LC. (1974). Experimental comparison between stationary and non- stationary formulations of linear prediction applied to speech. IEEE Transactions on Acous- tics. Speech and Signal Processing. ASSP-22. 403-415. Friedlander. B. (1981). A modified lattice algorithm for deconvolving filmred impulsive processes. Proceedings of the IEEE International Conference on Acoustics. Speech. and Signal Processing. 865-868. Friedlander. B. (1982a). Lattice filters for adaptive processing. Proceedings of the IEEE. 70. 829-867. Friedlander, B. (1982b). System identification tecimiques for adaptive signal processing. IEEE Transacn’on on Acoustics. Speech. and Signal Processing. ASSP-30. 240-246. Haykin. S. (1984). Introduction to Adaptive Filters. New York: Macmillan. Hoshal. G.. lvkovich. S.. Siegel. M.. at Zapp. R. (1984). Remote noncontacting heart rate meas- urement using microwave signals and digital processing. Computers in Cardiology. 409- 412. Hoshal. G.. a Siegel. M. (1986). Advances on Identification of Microwave Cordiogronts for Remore Heart Rate Estimation (Tech. Rept. MSU-ENGR-86—003). East Latsing. MI: Michigan State University. Department of Electrical Engineering. Hoshal. 0.. Siegel. M.. 8: Zapp, R. ( 1984). A microwave heart monitor and life detection system. IEEE Frontiers of Engineering and Computing in Health Care 1984 , 331-333. 106 107 Lee. D. ‘1'. L.. & Mort. M. (1980). A novel inmvations based time-domain pitch detector. Proceedings of the IEEE International Corference on Acoustics. Speech. and Signal Pro- cessing. 40-44. Lee. D. ‘1'. 1... Morf. M.. St Friedlander. B. (1981). Recursive least squares ladder estimation algorithms. IEEE Transaction on Acoustics. Speech. and Signal Processing. ASSP-29. 627-641. Lin. J. C.. Kiemicki. 1.. Kiernicki. M.. a Wollschlaeger. P. B. (1979). Microwave apexcardiog- raphy. IEEE Transactions on Microwave Theory and Techniques. MIT-27. 618-620. Makhoul. l. (1975). Linear prediction: a tutorial review. Proceedings of the IEEE. 63. 561- 580. Popovic. M. A.. Chan. K 11.. & Lin. J. C. (1984). Microprocessor-bad noncontact heart rate/respiration monitor. IEEE Frontiers of Engineering and Computing in Health Care 1984. 754-755. llulmhl\“illllhhllllflllllnullhmilllullmlunl 3129300405238