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ABSTRACT

SIMULATION OF TEMPERATURE AND QUALITY PROFILES
IN FROZEN FOODS SUBJECT TO

STEP CHANGES IN STORAGE CONDITIONS

by

Elaine Patricia Scott

Frozen food products may be exposed to fluctuating ambient condi-
tions during storage. An increase in storage temperature may result in
an increase in the overall quality deterioration rate and/or a substan-
tial quality differential within the food product. The overall
objectives of this research were to develop a mathematical multi-
dimensional model to simulate transient temperature dependent quality
deterioration within a frozen food product subject to step changes in
storage conditions, and to estimate surface heat transfer coefficients
prevailing during step changes in storage conditions.

The temperature distribution history of the product, used in
simulating the quality deterioration rate, was found numerically using
finite differences. The transient surface heat transfer coefficients
were estimated using experimentally determined temperature measurements
in the sequential regularization method, developed for a class of
problems called inverse heat conduction problems. A highly concentrated
methyl-cellulose substance was used as an analog food substance in the
experimental procedures. A systematic procedure was developed to select

the optimal numerical parameters used in the finite difference and the



Elaine Patricia Scott

sequential regularization methods. The quality simulation model was
used to determine the effects of various parameters on the quality
deterioration rate. Parameters investigated included the magnitudes of
the kinetic parameters and the surface heat transfer coefficient, the
storage time and temperature, the magnitude of a step change in storage
temperature, the food product dimensions, and the product geometry.

The sequential regularization procedure was found to provide es-
timates of the surface heat transfer coefficients which included the
effects of the exterior packaging boundary and the accumulation and
diminution of frost on the outer surface. Internal packaging boundaries
were found to have a significant influence on the temperature differen-
tial within the food product. The magnitude of change in the quality
deterioration rate was highly dependent on the magnitude of the kinetic
parameters, and strongly influenced by product dimensions and the choice

of a one or two dimensional heat transfer model.
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CHAPTER 1
INTRODUCTION

Freezing is one of the most important methods of food preservation

used in the United States. The freezing process cannot improve the

quality of a food product; the reduction of temperature in a food
Product only results in the retardation of the processes which are
detrimental to product quality, such as enzyme activity, microbial
growth and chemical reactions. The overall quality of the food product
may be affected during pre-treatment (post harvest handling and

Preparation), freezing, and post-freezing handling (transportation,

Storage and distribution). However, with proper pre-treatment and

freezing, the majority of the quality reduction occurs during the post-

freezing handling phase of the overall freezing process.

The rate of quality loss dﬁring this phase is primarily temperature
dependent; changes in temperature during the post-freezing phase may

Tesult in a reduction in storage or shelf-life for the product (Singh

and Wang, 1977). Zaritzky (1982) cited two types of temperature changes

a frozen food product may be exposed to during the post-freezing phase:
(1) fluctuations in the temperature of the storage chamber, and (2)
Sudden increases in temperature during loading and unloading of the

Product during transportation and distribution. In both of these cases,

2 rise in temperature may lead to an undesirable loss of product

Quality. Additionally, since frozen food products are commonly stored

in large pallet loads, a sudden change in temperature may result in a




higher rate of quality loss at the surface of the pallet load than at
the center.

Since product quality is largely a result of the temperature history
of the product after freezing, accurate methods of predicting tempera-

ture distribution histories within the product as a result of

fluctuating storage temperatures are important in estimating final
Product quality.

Substantial research has been devoted to developing analytical and
numerical models for the simulation of freezing in foods and the estima-

tion of freezing times (Plank, 1913, Hayakawa and Bakal, 1972, Charm et.

al., 1972, and Cleland and Earle, 1977a). Only a limited amount of work

has focused on extending these studies, particularly the numerical
models, to simulating the food product during the post-freezing phase.
Although many similarities exist in the numerical analysis of the two
Problems, simulation of the post-freezing phase differs from the freez-
ing process in several ways: first, the heat transfer coefficients

Prevalent during the freezing phase are generally much higher than those

found in the post-freezing phase. Second, the size of the body con-

sidered also differs. During freezing, the individually packaged

Product is considered, while during the post-freezing phase the product

is often palletized, and consequently, the pallet load is the object of

consideration. In addition, the duration of the freezing process is

generally much shorter than the duration of the post-freezing phase.
These differences in the rate of heat transfer, size of body, and dura-
tion time, suggest that care must be taken in adapting numerical methods
developed for the freezing process to the post-freezing process.

The heat transfer rate depends on the temperature differential
between the surrounding environment and the product, and the heat trans-

fer coefficient. Several researchers, including Bonacina and Comini
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(1972) and Chavarria and Heldman (1983) have investigated the measure-
ment of the heat transfer coefficient during the freezing stage, but
little data can be found on its value during the post-freezing stage.
Values were measured by Dagerskog (1974), but only for steady-state
To gain a full understanding of the post-freezing situa-

conditions.
tion, it is desirable to estimate the heat transfer coefficient for both

transient and steady-state heat transfer.
Estimation of internal frozen food temperatures is essential in

estimating final product quality. If a first order quality deteriora-

tion mechanism is assumed, the product quality loss my be predicted from
internal temperatures and known kinetic parameters.

In this study, the problem of determining temperature and quality
distributions in food products subject to step changes in ambient tem-

Peratures in the post-freezing phase was considered. A numerical method

was developed to simulate one or two dimensional heat transfer, and
accommodate regular geometric shapes; a rectangle, cylinder or sphere.
Additionally, a procedure is presented to estimate surface heat transfer

coefficients from internal product temperature measurements throughout

transient and steady state heat transfer. The predicted temperature

distribution histories are used to estimate product quality loss, assum-

ing a single quality deterioration process exists which limits the

verall quality degradation rate.
The uniqueness of this study lies in the coupling of temperature

hIStor}’ with quality loss estimation, in the development of a numerical

"del to accommodate the conditions inherent to the post-freezing

Plocess, ang in the estimation of the transient and steady-state heat

trans fer coefficients.



1.1 Objectives

The principal objectives of this study were:

1. To develop a generalized one dimensional mathematical model to
simulate transient temperature and quality distributions within
frozen food products subject to step changes in storage conditions,
using the implicit Crank-Nicolson finite difference scheme, and
assuming a single limiting quality reaction exists, which governs
the overall quality degradation rate.

2. To extend the one dimensional analysis to two dimensions using an
alternating direction implicit (ADI) finite difference scheme.

3. To estimate the surface heat transfer coefficient of a frozen food
product during step changes in storage conditions as a function of
time, from discrete ambient and internal product temﬁerature
measurements.

4. To analyze the influence of the product boundary conditions on

quality loss during storage. Parameters affecting the product

boundary conditions include ambient temperature, the heat transfer
coefficient, and, for step changes in storage conditions, the
time interval at each storage temperature, and the magnitude of the
Step change in storage temperature.

5. To analyze the effects of product dimensions and kinetic parameters

on the quality distribution. Specifically, it was desired to

determine under what conditions the temperature and quality
distributions are uniform throughout the body, and a lumped (uniform
Cemperature) model can be used.

. To determine the influence that geometry and the choice of a one or
twWo dimensional model has on temperature and quality distributions.

This includes determining under what conditions a one dimensional



model can be used to approximate two dimensional heat flow, that is,
to determine when heat flow in an infinite cylinder can be used to
approximate two dimensional heat flow through an infinite

rectangular rod.



CHAPTER 2

LITERATURE REVIEW

2.1 Quality Loss in Frozen Foods during Storage

Freezing is an important method of preserving food products for
later consumption. This process reduces the rate of quality loss by
restricting enzyme action, reducing chemical reaction rates and inhibit-
ing microbial growth. The process does not completely preserve food
quality; detrimental changes continue at a reduced rate dependent upon
storage temperature and type of product.

Physical and chemical changes are the primary factors affecting the
overall quality of frozen foods. Important detrimental physical changes
cited by Singh and Wang (1977) are ice crystallization with volume
expansion, and desiccation at the surface of the frozen food product.
Fluctuations in storage temperature increase the rate of desiccation at
the surface of the product, especially in improperly packaged foods,
resulting in dry, brown spots, particularly in poultry products, com-
monly referred to as "freezer burn".

Chemical changes occurring during frozen storage, as described by
Fennema et. al. (1973), are lipid oxidation, enzymatic browning, flavor
deterioration, protein insolubilization and degradation of chlorophyll
and vitamins.

Most of the existing data on quality changes in frozen foods repre-

sent the allowable or tolerable time and temperature conditions for a



specified quality retention. These tests, initiated by Van Arsdel
(1957), are commonly known as the time-temperature-tolerance (TTT)
experiments. The Western Regional Research Center, Berkeley, California
continued these tests into the early sixties on a great many fruit,
vegetable, and poultry products (Jul (1984)).

Several mathematical models have been developed to predict the
quality change of frozen foods during storage based on this data.
Schwimmer et. al. (1955) developed series relationships for quality
losses resulting from periodic storage temperature fluctuations. Van
Arsdel and Guadagni (1959) presented a procedure to predict quality
changes resulting from known irregular temperature fluctuations through
graphical integration of temperature history curves. In the case where
a limiting reaction affecting quality exits, kinetic theory may be used
to describe the change in quality at a constant temperature. The loss

of quality with storage time, at a given temperature may be found from:

-ﬂ- .n
dt kreC
where C = concentration of quality index
t = time
kr = rate constant

n = order of the reaction

It was suggested by Charm (1971) that if a limiting quality factor
exists, the empirical equation developed by Arrhenius (1889) can be used
to describe the effect of temperature on the rate constant. Singh
(1976) also utilized the Arrhenius equation to describe the first order
reduction of a single component in a product. The kinetics of quality

change in frozen foods were analyzed by Lai and Heldman (1982) in an



effort to apply kinetic models to TTT data found in the literature. 1In
a related study, Heldman and Lai (1983) developed a model based on the
Arrhenius equation where the reaction order need not be considered.
Statistical methods for the computation of kinetic parameters used in
the Arrhenius equation from existing TTT data were developed by Chu
(1983), Haralampu et. al. (1985), and Cohen and Saguy (1985). Ross et.
al. (1985) developed shelf-life prediction models based on nonlinear
regression and contingency-table methods. Singh and Heldman (1976)
modeled the diffusion of oxygen accompanied by a second order chemical
reaction with ascorbic acid to simulate food quality loss in liquids
during storage. Bhattacharya and Hanna (1986) estimated rate constants,
the order of reaction and the activation energy constant for texture
degradation of frozen beef during storage.

Jul (1984) warned against the use of mathematical models based on a
single quality factor in particular situations where the rate of quality
deterioration may be a result of several factors and no single limiting
reaction exists.

The effects of temperature fluctuations during storage on product
quality has been the subject of research for a number of years.
Hustrulid and Winter (1943) reported fluctuating storage temperatures
below -15°C had no great influence on the appearance and/or palatability
of the products studied. Gortner et. al. (1948) compared quality loss
in frozen food products (pork, strawberries, snap beans, and peas)
subject to three different storage conditions. One storage compartment
was maintained at -17.8°C, the second was held at -12.2°C, and the third
fluctuated between -17.8°C and -6.7°C in a six day cycle. Quality
losses in the products held at -12.2°C and in the fluctuating compart-
ment were comparable, based on palatability, thamine, and perioxide

content in pork, and ascorbic acid loss in fruits and vegetables.



A number of the TTT studies, completed during the late fifties and
early sixties, investigated the effects of temperature fluctuations
during storage. Dietrich et. al. (1960) found, in a study of frozen
snap beans, that when storage temperatures were varied in patterns,
deterioration was found to be a summation of constant temperature incre-
ments. In an investigation of ready-to-cook cut-up chicken, Klose et.
al. (1959) conducted constant storage tests at -6.7°C, -12.2°C, -17.8°C,
-27.8°C and -34.4°C, and periodic storage tests between -17.8°C and
-6.7°C, and between -27.8°C and -12.2°C, and found only slightly greater
deteriorative effects on quality in the fluctuating storage tests than
found at the equivalent arithmetic mean temperature. Comparable
results, using similar test conditions, were obtained by Boggs et. al.
(1960) in a TTT study of frozen peas, and by Dietrich et. al. (1962) in
an investigation of quality changes in cauliflower. Fennema and Powrie
(1964) discussed the lack of evidence to extend the conclusions found in
the TTIT studies to the texture of fruits, and called for more investiga-
tions on the effects of fluctuating temperatures on fruit texture.

Ashby et. al. (1979) studied energy savings resulting from periodic
fluctuating storage temperatures ranging from -23 to -15°C. For storage
periods greater than six months, it was determined that the product
temperature should not rise above -18°C, and should not fluctuate more
than 3°C. Moleeratanond et. al. (1981) conducted similar studies on the
energy consumption of a fluctuating temperature storage regime and its
effects on quality changes in frozen boxed beef. Results indicated that
product quality was not seriously affected in peripheral pallet loca-
tions, provided the temperature was maintained at less than -18°C and

the maximum fluctuation did not exceed 3°C.
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Sastry and Kilara (1983) reflected the need for analysis of heat
transfer in frozen foods exposed to periodic storage conditions to

determine quality variations within a given pallet load.

2.2 Simulation of Transient Heat Conduction in Frozen Foods during

Storage

Considerable attention has been given to simulation of freezing in
food products within the last two decades. Only recently have research-
ers begun to investigate the thermal behavior of frozen foods during
distribution and storage. In many instances, the methods utilized in
freezing studies may also be utilized in storage studies. Freezing
simulation models may be categorized with regards to the results gener-
ated in two groups: (1) those producing freezing time estimations, and
(2) those producing temperature distribution histories within the
product. Only the latter group is of interest in storage simulation

studies and is included in this review.

2.2.1 One Dimensional Analysis

Most of the models developed to simulate freezing or frozen food
storage are based on one dimensional heat transfer analysis. Analytical
and numerical techniques have been proposed to estimate temperature
distribution histories in both the freezing and post-freezing stages.

An analytical solution to the freezing phenomenon involving a pure
liquid was presented by Carslaw and Jaeger (1959). Komori and Hirai
(1970) provided an analytical solution of the freezing problem in
cylindrical coordinates, with the single, unique temperature and only at

the solid-1liquid interface. Tien and Geiger (1967) developed an
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analytical solution to the solidification of a binary eutectic system,
assuming three distinct regions: a solid, liquid, and a liquid-solid
region in which the solid fraction is linear with position. Grange et.
al. (1976) obtained an approximate analytical solution for freezing of
salt solutions using an integral method, and assuming latent heat is
released at a constant temperature.

A food product is a solution or mixture, however, and freezing does
not occur at a single distinct temperature. Instead, the initial freez-
ing temperature of the mixture is depressed compared to that of the pure
substance, such as water (Heldman, 1982, and Chen, 1986). As the mix-
ture freezes, the liquid portion becomes more concentrated with solute,
and the freezing point is depressed further. As a result, latent heat
is produced over a range of temperatures, and thermal properties, which
vary according to the solid-liquid composition, are temperature depend-
ent.

Several researchers have used analytical methods in developing
solution techniques with modification to allow for temperature dependent
thermal properties. Sastry and Kilara (1983) approximated constant
thermal properties over small temperature ranges using an "apparent”
thermal diffusivity which includes latent heat terms. An analytical
solution of the linear one dimensional heat conduction problem with
designated sinusoidal temperatures at the boundaries was then obtained
to simulate the temperature response of frozen peas in fluctuating
temperature storage conditions. Zaritzky (1982) developed both analyti-
cal and numerical models to simulate the thermal behavior of frozen meat
during its storage and distribution. In the analytical model, average
values for the thermal properties, including the effects of latent heat,
were again used, but in this case, a boundary condition of the third

kind with sinusiodal ambient temperatures was imposed. One dimensional
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analytical solutions were multiplied together to generate two and three
dimensional models, and results were compared with experimental data.
In a related study using similar boundary conditions, Zuritz, et. al.
(1986) simulated temperature fluctuations within frozen foods stored in
cylindrical containers.

Zuritz and Sastry (1986) determined the effects of packaging
materials on temperature fluctuations in frozen foods using an analyti-
cal model to calculate the temperature distribution histories, resulting
from an imposed sinusiodal ambient temperature at the surface, and
assuming constant thermal properties.

Many different approaches have been used in developing mathematical
models of the freezing and post-freezing phases. De Michelis and
Calvelo (1982) used a simplified model which uses three distinct
precooling, freezing and tempering phases. An analytical solution with
constant coefficients is obtained for the precooling and tempering
phases, and the freezing phase is simulated assuming steady state heat
transfer and constant coefficients. Chen et. al. (1984) used a method
of lumping to incorporate diffusivity and latent heat terms into a
temperature dependent 'effective’ diffusivity. The resulting equation
was solved using finite differences. Sanz, et. al. (1986) applied the
z-transfer function method to predict temperature - time history of food
stuffs during chilling and cold storage. In this procedure, the
z-transfer coefficients are obtained be means of an experimental method.

A number of researchers used methods which assumed latent heat is
released at a fixed freezing point. Charm et. al. (1972) assumed latent
heat was released at a constant temperature over a specified region.
Grange et. al. (1976) also assumed latent heat at a distinct tempera-

ture. An implicit finite difference solution was obtained assuming
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Variable thermal properties and compared with an approximate analytical
solution.

Dix and Cizek (1971) solved the heat conduction problem replacing
the usual dependent variable, temperature as a function of position and
time, with the isotherm position as a function of temperature and time.
This technique is termed the 'isotherm migration method’ (IMM). The
solution was obtained explicitly using finite differences and variable
thermal properties. Chernous’ko (1970) also developed a similar
methodology using isotherms for the solution of the nonlinear heat
conduction problem with phase change. Talmon and Davis (1981) utilized
the previously developed IMM methods in developing a new technique
called the 'modified isotherm migration method’ (MIMM). Unlike previous
IMM methods, the MIMM uses a moving front boundary condition in the
governing differential equation. Mastanaiah (1976) also incorporated a
moving front boundary condition, this time by use of the transformation
of coordinates. Temperature was maintained as the dependent variable,
and the solution was obtained using the Crank-Nicolson finite difference
method (Ozisik, 1980).

A significant number of researchers have incorporated the latent
heat into an ’'apparent’ specific heat. Freezing is assumed to take
place over a range of temperatures, consequently, all thermal properties
are assumed to be temperature dependent. Lescano (1973) used the
Crank-Nicolson finite difference technique to simulate freezing in
codfish. Heldman (1974a) also used the Crank-Nicolson finite difference
method to simulate the freezing process in spherical food products. The
Kopelman (1966) equation describing the relationship of thermal conduc-
tivity with the temperature dependent product composition was
implemented in this simulation model. Bonacina and Comini (1973a) used

a second order accurate three level time scheme originally proposed by
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lees (1966) for the solution of the transient heat conduction equation
vith temperature dependent parameters. Bonacina et. al. (1973) extended
this work to account for phase-change by including latent heat terms
into the specific heat. Cleland and Earle (1984) noted the advantages
of Lee’s scheme, in that the thermal properties are evaluated at the
mid-point time level instead of at the beginning time level as done in
other methods, such as the Crank-Nicolson method. Tarnawksi (1976)
developed finite difference equations for simultaneous heat and mass
transfer in frozen food products. Zaritzky (1982) used the Douglas-
Jones method of finite differences (Von Rosenberg, 1969) to simulate
frozen meat in storage, and compared results with an analytical method
discussed previously.

An alternate approach was presented by Joshi and Tao (1974). 1In

this procedure, the finite difference equations were written in term of
the enthalpy, and these were solved implicitly by assuming an exponen-

tial relationship between enthalpy and temperature.

2.2.2 Multi-Dimensional Analysis

Various methods have been proposed for the numerical solution of a
nonlinear two dimensional heat conduction problem. Most of the solution
methods may be categorized as finite element or finite difference solu-
tions. The finite element method was used to solve transient, nonlinear
heat transfer problems by De Baerdemaeker et. al. (1977) in axi-
symmetric products, and by Zuritz and Singh (1985) in modeling
temperature fluctuations in stored frozen foods. Comini et. al. (1974)
utilized finite elements in a three dimensional analysis of a brick
shaped body, including convective and radiative boundary conditions.

Two dimensional finite element techniques were also utilized by De



15

Cindio et. al. (1985) in the analysis of ice cream brickettes and by
Rebellato et. al. (1978) in the freezing of meat carcasses. Lewis et.
al. (1984) applied an alternating-direction finite element scheme to the
freezing problem with a substantial savings in computation time and
comparable accuracy to standard schemes.

Finite difference methods were used as an alternate approach. Most
of these methods may be classified as explicit, implicit or alternating-
direction techniques. Dagerskog (1974) used an explicit finite
difference method in three dimensions to simulate temperature distribu-
tions in foods during handling and storage. This method was severly
limited in its usefulness by the stability condition on the time step.
Implicit solutions to the two dimensional transient nonlinear heat
conduction problem require the inversion of large matrices at each time
step, requiring a substantial amount of computation time (Anderson et.
al. (1984)). To overcome the difficulties of solving the two dimen-
sional problem using explicit or implicit techniques, an alternating-
direction implicit (ADI) scheme with second order accuracy was developed
by Peaceman and Rachford (1955).

The ADI method involves a two step scheme, where the temperature
field is determined in different directions for each time step. This
results in the inversion of two tridiagonal matrices at each time step,
for which efficient algorithms exist. Douglas and Gunn (1964) developed
a general ADI method for two and three dimensions utilizing a Crank-
Nicolson scheme which is of second order accuracy and unconditionally
stable. Allada and Quon (1966) developed a stable explicit multidimen-

sional alternation direction solution for nonhomogeneous media. Fleming

(1973) utilized the Peaceman-Rachford method in simulating the freezing

process with temperature dependent thermal properties. Bonacina and

Comini (1973b) applied Lee’s tri-level scheme in alternating directions
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to simulate food freezing with two dimensional heat transfer. Evans and
Gane (1978) solved the transient heat conduction problem for an annular
ring, using the Peaceman-Rachford ADI method.

Alternate approaches to the finite difference solution to the
transient heat conduction problem include the splitting or
fractional-step methods discussed by Yanenko (1971) and developed by
Soviet mathematicians about the same time ADI methods were developed in
the United States. The modified box method for the heat equation and
the hopscotch methods are two additional methods discussed by Anderson
et. al. (1984). The modified box method is second order accurate even
with variable grid spacing. The hopscotch method is a first order

accurate two step alternating explicit-implicit scheme.

2.3 Estimation of the Surface Heat Transfer Coefficient

The prediction of temperature profiles within a frozen food sub-
stance during storage requires knowledge of the resistance to heat
transfer between the product and the cooling medium. This resistance is
characterized by a surface heat transfer coefficient (h), which may be
dependent on time and/or position.

The importance of the surface heat transfer coefficient in estimat-
ing freezing times was discussed by Heldman (1974a), Hsieh et. al.
(1977) and Tarnawski (1976), but little effort has been directed toward
investigating the effects of the heat transfer coefficients during
storage conditions.

Some simple steady state solutions for the heat transfer coeffi-
cient resulting from forced convection have been developed for regular

geometries. Kays and Crawford (1980) presented solutions for constant

free stream velocity flow over a constant-temperature or arbitrarily
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specified temperature semi-infinite flat plate, and for flow over a
semi-infinite plate with an arbitrarily specified surface heat flux.

Since the Reynolds numbers encountered in storage conditions are
typically low due to low air velocities, heat transfer due to natural or
free convection may also be a significant factor. Solutions for the
heat transfer coefficient resulting from natural convection of a hot or
cold horizontal surface facing up were given by McAdams (1954), and
modified by Goldstein, et. al. (1973). In addition, solutions for the
heat transfer coefficient resulting from induced flow parallel to a
vertical wall were presented by Kays and Crawford, (1980).

In the situations where both free and forced convection effects are
comparable, correlating equations to include both forced and free con-
vection effects have been developed by Churchill (19<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>