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ABSTRACT

SIMULATION OF TEMPERATURE AND QUALITY PROFILES

IN FROZEN FOODS SUBJECT TO

STEP CHANGES IN STORAGE CONDITIONS

by

Elaine Patricia Scott

Frozen food products may be exposed to fluctuating ambient condi-

tions during storage. An increase in storage temperature may result in

an increase in the overall quality deterioration rate and/or a substan-

tial quality differential within the food product. The overall

objectives of this research were to develop a mathematical multi-

dimensional model to simulate transient temperature dependent quality

deterioration within a frozen food product subject to step changes in

storage conditions, and to estimate surface heat transfer coefficients

prevailing during step changes in storage conditions.

The temperature distribution history of the product, used in

simulating the quality deterioration rate, was found numerically using

finite differences. The transient surface heat transfer coefficients

were estimated using experimentally determined temperature measurements

in the sequential regularization method, developed for a class of

problems called inverse heat conduction problems. A highly concentrated

methyl-cellulose substance was used as an analog food substance in the

experimental procedures. A systematic procedure was developed to select

the optimal numerical parameters used in the finite difference and the
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sequential regularization methods. The quality simulation model was

used to determine the effects of various parameters on the quality

deterioration rate. Parameters investigated included the magnitudes of

the kinetic parameters and the surface heat transfer coefficient, the

storage time and temperature, the magnitude of a step change in storage

temperature, the food product dimensions, and the product geometry.

The sequential regularization procedure was found to provide es-

timates of the surface heat transfer coefficients which included the

effects of the exterior packaging boundary and the accumulation and

diminution of frost on the outer surface. Internal packaging boundaries

‘were found to have a significant influence on the temperature differen-

tial within the food product. The magnitude of change in the quality

deterioration rate was highly dependent on the magnitude of the kinetic

parameters, and strongly influenced by product dimensions and the choice

of a one or two dimensional heat transfer model.
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CHAPTER 1

INTRODUCTION

Freezing is one of the most important methods of food preservation

used in the United States. The freezing process cannot improve the

quality of a food product; the reduction of temperature in a food

product only results in the retardation of the processes which are

detrimental to product quality, such as enzyme activity, microbial

growth and chemical reactions. The overall quality of the food product

“lay be affected during pre-treatment (post harvest handling and

Preparation), freezing, and post-freezing handling (transportation,

Storage and distribution). However, with proper pre-treatment and

freezing, the majority of the quality reduction occurs during the post-

freezing handling phase of the overall freezing process.

The rate of quality loss during this phase is primarily temperature

dependent; changes in temperature during the post-freezing phase may

result in a reduction in storage or shelf-life for the product (Singh

and Wang, 1977). Zaritzky (1982) cited two types of temperature changes

a frozen food product may be exposed to during the post-freezing phase:

(1) fluctuations in the temperature of the storage chamber, and (2)

Smdden increases in temperature during loading and unloading of the

Product during transportation and distribution. In both of these cases,

a rise in temperature may lead to an undesirable loss of product

quality. Additionally, since frozen food products are commonly stored

in large pallet loads, a sudden change in temperature may result in a

 



higher rate of quality loss at the surface of the pallet load than at

the center .

Since product quality is largely a result of the temperature history

of the product after freezing, accurate methods of predicting tempera-

ture distribution histories within the product as a result of

fluctuating storage temperatures are important in estimating final

product quality.

Substantial research has been devoted to developing analytical and

numerical models for the simulation of freezing in foods and the estima-

tion of freezing times (Plank, 1913, Hayakawa and Bakal, 1972, Charm et.

81. , 1972, and Cleland and Earle, 1977a). Only a limited amount of work

has focused on extending these studies, particularly the numerical

mOdels, to simulating the food product during the post-freezing phase.

Although many similarities exist in the numerical analysis of the two

problems, simulation of the post-freezing phase differs from the freez-

ing process in several ways: first, the heat transfer coefficients

prevalent during the freezing phase are generally much higher than those

found in the post-freezing phase. Second, the size of the body con-

Sidered also differs. During freezing, the individually packaged

Product is considered, while during the post-freezing phase the product  
is often palletized, and consequently, the pallet load is the object of

Consideration. In addition, the duration of the freezing process is

generally much shorter than the duration of the post-freezing phase.

These differences in the rate of heat transfer, size of body, and dura-

tion time, suggest that care must be taken in adapting numerical methods

deVeloped for the freezing process to the post-freezing process.

The heat transfer rate depends on the temperature differential

between the surrounding environment and the product, and the heat trans-

fer coefficient. Several researchers, including Bonacina and Comini
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(1972) and Chavarria and Heldman (1983) have investigated the measure-

ment of the heat transfer coefficient during the freezing stage, but

little data can be found on its value during the post-freezing stage.

Values were measured by Dagerskog (1974), but only for steady-state

To gain a full understanding of the post-freezing situa-conditions .

tion, it is desirable to estimate the heat transfer coefficient for both

transient and steady-state heat transfer.

Estimation of internal frozen food temperatures is essential in

estimating final product quality. If a first order quality deteriora-

tion mechanism is assumed, the product quality loss my be predicted from

internal temperatures and known kinetic parameters.

In this study, the problem of determining temperature and quality

distributions in food products subject to step changes in ambient tem-

peratures in the post-freezing phase was considered. A numerical method

was developed to simulate one or two dimensional heat transfer, and

accommodate regular geometric shapes; a rectangle, cylinder or sphere.

Additionally, a procedure is presented to estimate surface heat transfer

coefficients from internal product temperature measurements throughout

transient and steady state heat transfer. The predicted temperature

distribution histories are used to estimate product quality loss, assum-

ing a Single quality deterioration process exists which limits the

Overall quality degradation rate.

The uniqueness of this study lies in the coupling of temperature

history with quality loss estimation, in the development of a numerical

m°del to accommodate the conditions inherent to the post-freezing

r

p ocess s and in the estimation of the transient and steady-state heat

trans fer coefficients .



1.1 Objectives

The principal objectives of this study were:

To develop a generalized one dimensional mathematical model to

simulate transient temperature and quality distributions within

frozen food products subject to step changes in storage conditions,

using the implicit Crank-Nicolson finite difference scheme, and

assuming a single limiting quality reaction exists, which governs

the overall quality degradation rate.

2. To extend the one dimensional analysis to two dimensions using an

alternating direction implicit (ADI) finite difference scheme.

3. To estimate the surface heat transfer coefficient of a frozen food

product during step changes in storage conditions as a function of

time, from discrete ambient and internal product temperature

measurements .

4. To analyze the influence of the product boundary conditions on

quality loss during storage. Parameters affecting the product

boundary conditions include ambient temperature, the heat transfer

coefficient, and, for step changes in storage conditions, the

time interval at each storage temperature, and the magnitude of the

step change in storage temperature.

5- To analyze the effects of product dimensions and kinetic parameters

on the quality distribution. Specifically, it was desired to

determine under what conditions the temperature and quality

distributions are uniform throughout the body, and a lumped (uniform

temperature) model can be used.

6' To determine the influence that geometry and the choice of a one or

two dimensional model has on temperature and quality distributions.

This includes determining under what conditions a one dimensional



model can be used to approximate two dimensional heat flow, that is,

to determine when heat flow in an infinite cylinder can be used to

approximate two dimensional heat flow through an infinite

rectangular rod.



CHAPTER 2

LITERATURE REVIEW

2.1 Quality Loss in Frozen Foods during Storage

Freezing is an important method of preserving food products for

later consumption. This process reduces the rate of quality loss by

restricting enzyme action, reducing chemical reaction rates and inhibit-

ing microbial growth. The process does not completely preserve food

quality; detrimental changes continue at a reduced rate dependent upon

storage temperature and type of product.

Physical and chemical changes are the primary factors affecting the

overall quality of frozen foods. Important detrimental physical changes

cited by Singh and Wang (1977) are ice crystallization with volume

expansion, and desiccation at the surface of the frozen food product.

Fluctuations in storage temperature increase the rate of desiccation at

the surface of the product, especially in improperly packaged foods,

resulting in dry, brown spots, particularly in poultry products, com-

monly referred to as "freezer burn”.

Chemical changes occurring during frozen storage, as described by

Fennema et. a1. (1973), are lipid oxidation, enzymatic browning, flavor

deterioration, protein insolubilization and degradation of chlorophyll

and vitamins.

Most of the existing data on quality changes in frozen foods repre-

sent the allowable or tolerable time and temperature conditions for a



specified quality retention. These tests, initiated by Van Arsdel

(1957), are commonly known as the time-temperature-tolerance (TTT)

experiments. The Western Regional Research Center, Berkeley, California

continued these tests into the early sixties on a great many fruit,

vegetable, and poultry products (Jul (1984)).

Several mathematical models have been developed to predict the

quality change of frozen foods during storage based on this data.

Schwimmer et. a1. (1955) developed series relationships for quality

losses resulting from periodic storage temperature fluctuations. Van

Arsdel and Guadagni (1959) presented a procedure to predict quality

changes resulting from known irregular temperature fluctuations through

graphical integration of temperature history curves. In the case where

a limiting reaction affecting quality exits, kinetic theory may be used

to describe the change in quality at a constant temperature. The loss

of quality with storage time, at a given temperature may be found from:

-QQ- .9dt kr C

where C - concentration of quality index

t - time

kr - rate constant

n - order of the reaction

It was suggested by Charm (1971) that if a limiting quality factor

exists, the empirical equation developed by Arrhenius (1889) can be used

to describe the effect of temperature on the rate constant. Singh

(1976) also utilized the Arrhenius equation to describe the first order

reduction of a single component in a product. The kinetics of quality

change in frozen foods were analyzed by Lai and Heldman (1982) in an



effort to apply kinetic models to TTT data found in the literature. In

a related study, Heldman and Lai (1983) developed a model based on the

Arrhenius equation where the reaction order need not be considered.

Statistical methods for the computation of kinetic parameters used in

the Arrhenius equation from existing TTT data were developed by Chu

(1983), Haralampu et. a1. (1985), and Cohen and Saguy (1985). Ross et.

al. (1985) developed shelf-life prediction models based on nonlinear

regression and contingency-table methods. Singh and Heldman (1976)

modeled the diffusion of oxygen accompanied by a second order chemical

reaction with ascorbic acid to simulate food quality loss in liquids

during storage. Bhattacharya and Hanna (1986) estimated rate constants,

the order of reaction and the activation energy constant for texture

degradation of frozen beef during storage.

Jul (1984) warned against the use of mathematical models based on a

single quality factor in particular situations where the rate of quality

deterioration may be a result of several factors and no single limiting

reaction exists.

The effects of temperature fluctuations during storage on product

quality has been the subject of research for a number of years.

Hustrulid and Winter (1943) reported fluctuating storage temperatures

below -15°C had no great influence on the appearance and/or palatability

of the products studied. Gortner et. a1. (1948) compared quality loss

in frozen food products (pork, strawberries, snap beans, and peas)

subject to three different storage conditions. One storage compartment

was maintained at -17.8°C, the second was held at -12.2°C, and the third

fluctuated between -17.8°C and -6.7°C in a six day cycle. Quality

losses in the products held at -12.2°C and in the fluctuating compart-

ment were comparable, based on palatability, thamine, and perioxide

content in pork, and ascorbic acid loss in fruits and vegetables.



A number of the TTT studies, completed during the late fifties and

early sixties, investigated the effects of temperature fluctuations

during storage. Dietrich et. a1. (1960) found, in a study of frozen

snap beans, that when storage temperatures were varied in patterns,

deterioration was found to be a summation of constant temperature incre-

ments. In an investigation of ready-to-cook cut-up chicken, Klose et.

a1. (1959) conducted constant storage tests at -6.7°C, -12.2°C, ~17.8°C,

-27.8'C and -34.4°C, and periodic storage tests between -17.8°C and

-6.7’C, and between -27.8'C and -12.2°C, and found only slightly greater

deteriorative effects on quality in the fluctuating storage tests than

found at the equivalent arithmetic mean temperature. Comparable

results, using similar test conditions, were obtained by Boggs et. a1.

(1960) in a TTT study of frozen peas, and by Dietrich et. a1. (1962) in

an investigation of quality changes in cauliflower. Fennema and Powrie

(1964) discussed the lack of evidence to extend the conclusions found in

the TTT studies to the texture of fruits, and called for more investiga-

tions on the effects of fluctuating temperatures on fruit texture.

Ashby et. a1. (1979) studied energy savings resulting from periodic

fluctuating storage temperatures ranging from -23 to -15°C. For storage

periods greater than six months, it was determined that the product

temperature should not rise above —18°C, and should not fluctuate more

than 3°C. Moleeratanond et. a1. (1981) conducted similar studies on the

energy consumption of a fluctuating temperature storage regime and its

effects on quality changes in frozen boxed beef. Results indicated that

product quality was not seriously affected in peripheral pallet loca-

tions, provided the temperature was maintained at less than -18°C and

the maximum fluctuation did not exceed 3°C.
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Sastry and Kilara (1983) reflected the need for analysis of heat

transfer in frozen foods exposed to periodic storage conditions to

determine quality variations within a given pallet load.

2.2 Simulation of Transient Heat Conduction in Frozen Foods during

Storage

Considerable attention has been given to simulation of freezing in

food products within the last two decades. Only recently have research-

ers begun to investigate the thermal behavior of frozen foods during

distribution and storage. In many instances, the methods utilized in

freezing studies may also be utilized in storage studies. Freezing

simulation models may be categorized with regards to the results gener-

ated in two groups: (1) those producing freezing time estimations, and

(2) those producing temperature distribution histories within the

product. Only the latter group is of interest in storage simulation

studies and is included in this review.

2.2.1 One Dimensional Analysis

Most of the models developed to simulate freezing or frozen food

storage are based on one dimensional heat transfer analysis. Analytical

and numerical techniques have been proposed to estimate temperature

distribution histories in both the freezing and post-freezing stages.

An analytical solution to the freezing phenomenon involving a pure

liquid was presented by Carslaw and Jaeger (1959). Komori and Hirai

(1970) provided an analytical solution of the freezing problem in

cylindrical coordinates, with the single, unique temperature and only at

the solid-liquid interface. Tien and Geiger (1967) developed an
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analytical solution to the solidification of a binary eutectic system,

assuming three distinct regions: a solid, liquid, and a liquid-solid

region in which the solid fraction is linear with position. Grange et.

a1. (1976) obtained an approximate analytical solution for freezing of

salt solutions using an integral method, and assuming latent heat is

released at a constant temperature.

A food product is a solution or mixture, however, and freezing does

not occur at a single distinct temperature. Instead, the initial freez—

ing temperature of the mixture is depressed compared to that of the pure

substance, such as water (Heldman, 1982, and Chen, 1986). As the mix-

ture freezes, the liquid portion becomes more concentrated with solute,

and the freezing point is depressed further. As a result, latent heat

is produced over a range of temperatures, and thermal properties, which

vary according to the solid-liquid composition, are temperature depend-

ent.

Several researchers have used analytical methods in developing

solution techniques with modification to allow for temperature dependent

thermal properties. Sastry and Kilara (1983) approximated constant

thermal properties over small temperature ranges using an "apparent”

thermal diffusivity which includes latent heat terms. An analytical

solution of the linear one dimensional heat conduction problem with

designated sinusoidal temperatures at the boundaries was then obtained

to simulate the temperature response of frozen peas in fluctuating

temperature storage conditions. Zaritzky (1982) developed both analyti-

cal and numerical models to simulate the thermal behavior of frozen meat

during its storage and distribution. In the analytical model, average

values for the thermal properties, including the effects of latent heat,

‘were again used, but in this case, a boundary condition of the third

‘kind with sinusiodal ambient temperatures was imposed. One dimensional
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analytical solutions were multiplied together to generate two and three

dimensional models, and results were compared with experimental data.

In a related study using similar boundary conditions, Zuritz, et. al.

(1986) simulated temperature fluctuations within frozen foods stored in

cylindrical containers.

Zuritz and Sastry (1986) determined the effects of packaging

materials on temperature fluctuations in frozen foods using an analyti-

cal model to calculate the temperature distribution histories, resulting

from an imposed sinusiodal ambient temperature at the surface, and

assuming constant thermal properties.

Many different approaches have been used in developing mathematical

models of the freezing and post-freezing phases. De Michelis and

Calvelo (1982) used a simplified model which uses three distinct

precooling, freezing and tampering phases. An analytical solution with

constant coefficients is obtained for the precooling and tempering

phases, and the freezing phase is simulated assuming steady state heat

transfer and constant coefficients. Chen et. al. (1984) used a method

of lumping to incorporate diffusivity and latent heat terms into a

temperature dependent 'effective' diffusivity. The resulting equation

was solved using finite differences. Sanz, et. a1. (1986) applied the

z-transfer function method to predict temperature - time history of food

stuffs during chilling and cold storage. In this procedure, the

z-transfer coefficients are obtained be means of an experimental method.

A number of researchers used methods which assumed latent heat is

released at a fixed freezing point. Charm et. a1. (1972) assumed latent

heat was released at a constant temperature over a specified region.

Grange et. al. (1976) also assumed latent heat at a distinct tempera-

ture. An implicit finite difference solution was obtained assuming
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Variable thermal properties and compared with an approximate analytical

solution.

Dix and Cizek (1971) solved the heat conduction problem replacing

the usual dependent variable, temperature as a function of position and

time, with the isotherm.position as a function of temperature and time.

This tedhnique is termed the 'isotherm migration method' (IMM). The

solution was obtained explicitly using finite differences and variable

thermal properties. Chernous'ko (1970) also developed a similar

methodology using isotherms for the solution of the nonlinear heat

conduction problem with phase change. Talmon and Davis (1981) utilized

the previously developed IMM methods in developing a new technique

called the 'modified isotherm migration method' (MIMM). Unlike previous

IMM methods, the MIMM uses a moving front boundary condition in the

governing differential equation. Mastanaiah (1976) also incorporated a

moving front boundary condition, this time by use of the transformation

of coordinates. Temperature was maintained as the dependent variable,

and the solution was obtained using the Crank-Nicolson finite difference

method (Ozisik, 1980).

A significant number of researchers have incorporated the latent

heat into an 'apparent' specific heat. Freezing is assumed to take

place over a range of temperatures, consequently, all thermal properties

are assumed to be temperature dependent. Lescano (1973) used the

Crank-Nicolson finite difference technique to simulate freezing in

codfish. Heldman (1974a) also used the Crank-Nicolson finite difference

method to simulate the freezing process in spherical food products. The

Kopelman (1966) equation describing the relationship of thermal conduc-

tivity with the temperature dependent product composition was

implemented in this simulation model. Bonacina and Comini (1973a) used

a second order accurate three level time scheme originally proposed by
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Lees (1966) for the solution of the transient heat conduction equation

Vita: temperature dependent parameters. Bonacina et. a1. (1973) extended

this work to account for phase-change by including latent heat terms

into the specific heat. Cleland and Earle (1984) noted the advantages

of Lee's scheme, in that the thermal properties are evaluated at the

add-point time level instead of at the beginning time level as done in

other methods, such as the Crank-Nicolson method. Tarnawksi (1976)

developed finite difference equations for simultaneous heat and mass

transfer in frozen food products. Zaritzky (1982) used the Douglas-

Jones method of finite differences (Von Rosenberg, 1969) to simulate

frozen meat in storage, and compared results with an analytical method

discussed previously.

An alternate approach was presented by Joshi and Tao (1974). In

this procedure, the finite difference equations were written in term of

the enthalpy, and these were solved implicitly by assuming an exponen-

tial relationship between enthalpy and temperature.

2.2.2 Multi-Dimensional Analysis

Various methods have been proposed for the numerical solution of a

nonlinear two dimensional heat conduction problem. Most of the solution

methods may be categorized as finite element or finite difference solu-

tions. The finite element method was used to solve transient, nonlinear

heat transfer problems by De Baerdemaeker et. a1. (1977) in axi-

symmetric products, and by Zuritz and Singh (1985) in modeling

temperature fluctuations in stored frozen foods. Comini et. a1. (1974)

utilized finite elements in a three dimensional analysis of a brick

shaped body, including convective and radiative boundary conditions.

Two dimensional finite element techniques were also utilized by De
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““610 et. a1. (1985) in the analysis of ice cream brickettes and by

Rebellato et. a1. (1978) in the freezing of meat carcasses. Lewis et.

81. (1984) applied an alternating-direction finite element scheme to the

freezing problem with a substantial savings in computation time and

comparable accuracy to standard schemes.

Finite difference methods were used as an alternate approach. Most

of these methods may be classified as explicit, implicit or alternating-

direction techniques. Dagerskog (1974) used an explicit finite

difference method in three dimensions to simulate temperature distribu-

tions in foods during handling and storage. This method was severly

limited in its usefulness by the stability condition on the time step.

Implicit solutions to the two dimensional transient nonlinear heat

conduction problem require the inversion of large matrices at each time

step, requiring a substantial amount of computation time (Anderson et.

a1. (1984)). To overcome the difficulties of solving the two dimen-

sional problem using explicit or implicit techniques, an alternating-

direction implicit (ADI) scheme with second order accuracy was developed

by Peaceman and Rachford (1955).

The ADI method involves a two step scheme, where the temperature

field is determined in different directions for each time step. This

results in the inversion of two tridiagonal matrices at each time step,

for which efficient algorithms exist. Douglas and Gunn (1964) developed

a general ADI method for two and three dimensions utilizing a Crank-

lfiicolson scheme which is of second order accuracy and unconditionally

stable. Allada and Quon (1966) developed a stable explicit multidimen-

sional alternation direction solution for nonhomogeneous media. Fleming

(1973) utilized the Peaceman-Rachford method in simulating the freezing

process with temperature dependent thermal properties. Bonacina and

Comini (1973b) applied Lee's tri-level scheme in alternating directions
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to simulate food freezing with two dimensional heat transfer. Evans and

Gene (1978) solved the transient heat conduction problem for an annular

ring, using the Peaceman-Rachford ADI method.

Alternate approaches to the finite difference solution to the

transient heat conduction problem include the splitting or

fractional-step methods discussed by Yanenko (1971) and developed by

Soviet mathematicians about the same time ADI methods were developed in

the United States. The modified box method for the heat equation and

the hopscotch methods are two additional methods discussed by Anderson

et. al. (1984). The modified box method is second order accurate even

with variable grid spacing. The hopscotch method is a first order

accurate two step alternating explicit-implicit scheme.

2.3 Estimation of the Surface Heat Transfer Coefficient

The prediction of temperature profiles within a frozen food sub-

stance during storage requires knowledge of the resistance to heat

transfer between the product and the cooling medium. This resistance is

characterized by a surface heat transfer coefficient (h), which may be

dependent on time and/or position.

The importance of the surface heat transfer coefficient in estimat-

ing freezing times was discussed by Heldman (1974a), Hsieh et. a1.

(1977) and Tarnawski (1976), but little effort has been directed toward

investigating the effects of the heat transfer coefficients during

storage conditions.

Some simple steady state solutions for the heat transfer coeffi-

cient resulting from forced convection have been developed for regular

geometries. Rays and Crawford (1980) presented solutions for constant

free stream velocity flow over a constant-temperature or arbitrarily
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specified temperature semi-infinite flat plate, and for flow over a

semi-infinite plate with an arbitrarily specified surface heat flux.

Since the Reynolds numbers encountered in storage conditions are

typically low due to low air velocities, heat transfer due to natural or

free convection may also be a significant factor. Solutions for the

heat transfer coefficient resulting from natural convection of a hot or

cold horizontal surface facing up were given by McAdams (1954), and

modified by Goldstein, et. a1. (1973). In addition, solutions for the

heat transfer coefficient resulting from induced flow parallel to a

vertical wall were presented by Rays and Crawford, (1980).

In the situations where both free and forced convection effects are

comparable, correlating equations to include both forced and free con-

vection effects have been developed by Churchill (1977, 1983). The

free convection factor will tend to either enhance or decrease the

forced convection effect, depending on whether or not the bouyancy force

opposes or aids the forced convective motion (Rays and Crawford, 1980,

and Incropera and DeWitt, 1985).

Estimation of surface heat transfer coefficients using analytical

methods is very difficult, especially for other cases, such as, tran-

sient heat transfer, odd shaped geometries, and irregular flow patterns

(Lightfoot et. al., 1965). Consequently, researchers have resorted to

using experimental techniques in the estimation of surface heat transfer

coefficients, and many different methodologies have evolved.

Several researchers have used metal transducers to estimate heat

transfer coefficients during freezing. Due to the high thermal conduc-

tivity of the metal, the transducer is assumed to have negligible

immernal resistance to heat transfer. Therefore, the surface heat

transfer coefficient may be obtained from a logarithmic plot of dimen-

sionless time against dimensionless temperature. Lescano (1973)
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utilized geometric and kinematic similarity in using aluminum

transducers to simulate heat transfer through codfish fillets during

freezing. Creed and James (1985) used copper transducers in predicting

heat transfer coefficients associated with plate freezers. In their

study, estimations of the influence of packaging materials were made by

placing a layer of the material between the transducer and the cooling

medium.

Bonacina and Comini (1972) used nonlinear regression between calcu-

lated and measured temperatures to predict surface heat transfer

coefficients. In this method the surface heat transfer coefficient was

assumed to be constant, that is, not a function of time and/or position.

Comini (1972) extended this study to investigate the design of optimum

transient experiments for the determination of the surface heat transfer

coefficient. These studies were based on work by Beck (1967, 1969).

Beck utilized sensitivity coefficients in estimating thermal contact

conductance, and in determining optimum, transient experiments for

estimating conductance coefficients. Chavarria and Heldman (1983) also

used nonlinear regression in estimating a convective heat transfer

coefficient for ground beef during freezing. The coefficient was as-

sumed to be constant during the freezing process, and heat transfer was

assumed to be one dimensional. Succar and Hayakawa, (1986) used a

surface response method for the estimation of convective and radiative

heat transfer coefficients as a function of time during freezing and

thawing of frozen foods. In this method, experimental and predicted

temperatures were minimized using the method of least squares.

Cleland and Earle (1976) presented a new method of estimating heat

transfer coefficients from surface temperature measurements of a

transducer with a thermal conductivity closely resembling a food

product. Some of the restrictions of this method were that the
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pro-cooling part of the freezing curve be sufficiently long, and that

the center temperature of the body be unaltered for several minutes

after the onset of cooling. Different numbers of cardboard sheets

between Tylose samples and the cooling medium were used by Cleland and

Earle (1977b) to estimate the relationship between the heat transfer

coefficient and the number of sheets (thickness of packaging material).

The previous methods assume the heat transfer coefficient is con-

stant in the solution (with the exception of Succar and Hayakawa, 1986,

who investigated transient heat transfer coefficients during freezing

and thawing). Beck et. a1. (1985) presented method of estimating heat

transfer coefficients as a function of time using ambient temperatures

and temperature measurements from a sensor located inside the body. In

this solution, the problem is treated as part of a class of problems

called inverse heat conduction problems (IHCP). In the solution of the

IHCP, the boundary conditions are determined instead of the internal

temperature distribution which is found in the direct solution. Various

methods have been proposed to solve the inverse heat conduction problem

of determining a boundary condition at the surface of a body from dis-

crete temperature measurements. Exact analytical solutions were

developed by Burgraff (1964) and Langford (1976). These methods require

continuously differentiable data. Stolz (1960) provided one of the

earliest solutions to the IHCP, which was found to be unstable with

small time steps. A similar method involving the numerical inversion of

aiconvolution integral and utilizing future time steps was developed by

Beck (1968). This method provides a solution at each time step, and is

called the sequential function specification method. Osman and Beck

(1987) used the sequential function specification method in estimating

Imattxansfer coefficients as a function of position, using a spherical

coordinate system. Other integral methods using Laplace transforms have
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been demonstrated in one dimensional form by Imber and Khan (1972), and

in two dimensional form by Imber (1974). Weber (1981) replaced the

traditional heat conduction equation by a hyperbolic one to obtain a

well-posed problem with established solution techniques.

Regularization methods were proposed by Miller (1970), and Tikhonov

and Arsenin (1977). These methods provide stability by the addition of

smoothing factors and reduce the influence of measurement errors in the

data. The influence of the regularization component is determined by

the magnitude of a regularization parameter. Different criteria are

found in the literature for the selection of this parameter. Tikhonov

and Arsenin (1977) and Reinsch (1967) base their criteria on the errors

in the measurements, while Murio (1985) considers in addition a bound

based on the square of the L2 norm of the heat flux vector. Hills and

Mulholland (1979) applied the method of Backus and Gilbert (1970) to a

transient heat conduction problem. This method, adapted from

geophysics, also utilizes smoothing function to stabilize the solution.

Beck and Murio (1986) presented a new method which combines the

sequential function specification procedure with the regularization

method. This method differs from the global regularizaton methods in

that the solution is found sequentially, greatly improving computational

efficiency. This method was shown to be very competitive with the

global regularization methods in terms of the heat flux estimates.

Difference methods have been used to solve the nonlinear IHCP,

whiCh cannot be solved using integral methods. Methods utilizing finite

(Hfferences were demonstrated by Blackwell (1981), Beck (1970), Beck et.

a1” (1982), and Williams and Curry (1984). In Beck's methods the same

concepts are used to develop the algorithms as were used for the con-

vohnflon based methods. A stabilizing matrix was utilized by Hensel and

IHllsIJBB4) in developing a space marching finite difference algorithm.
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Finite elements were incorporated in the solution by Krutz, et a1.

(1978), and Bass (1980). It is important to note that the solution of

the linear IHCP with the function specification and regularization

methods are independent of the method of solution of the heat conduction

equation because whether numerical convolution, finite differences or

finite elements are used, nearly identical solutions are obtained

(provided accurate approximations are used in each case).



CHAPTER 3

THEORETICAL CONSIDERATIONS

The three major problems analyzed in this study are: (1) the deter-

mination of temperature profiles of food products in storage, (2) the

estimation of the surface heat transfer coefficients encountered during

storage conditions, and (3) the prediction of quality profiles within

food products during storage. The determination of temperature profiles

from known boundary conditions is called a direct problem, and it is

considered to be mathematically well-posed. The surface heat transfer

coefficient was estimated from internal product temperature measure-

ments. This is called an indirect problem, and it is ill-posed. The

three problems are interrelated in that the surface heat transfer coef-

ficients are required as input for the direct problem; the temperature

profiles resulting from the solution of the direct problem are required

for the prediction of the quality profiles; and, the numerical solution

of the direct problem is inherent in the solution of the indirect

problem. In both the one and two dimensional solutions for the tempera-

ture profile, and the estimation of the surface heat transfer

coefficient, determination of thermal properties as a function of tem-

perature is required. Also, both the two dimensional direct problem and

fluzone dimensional indirect problem use the solution of the one dimen-

shnml direct problem as a fundamental building block in the numerical

analysis.

22



23

In the following sections, the evaluation procedure for the thermal

properties is presented first, followed by an analysis of the one dimen-

sional direct problem. The results in both of these sections are

important in the solution of the two dimensional direct problem and the

one dimensional indirect problem. The analyses and numerical procedures

for these two problems are presented in the succeeding sections.

Finally, the methods used to evaluate quality deterioration from calcu-

lated temperature distribution histories within the food product are

presented.

3.1 Thermal Properties

Food products are primarily composed of water which contains various

solutes. Due to the presence of solutes, the initial freezing point is

depressed, compared with that of pure water. Consequently freezing

occurs over a range of temperatures, and unbound liquid water can be

present at temperatures associated with storage and distribution. The

changing water fraction over a range of temperature results in tempera-

ture dependent thermal properties in frozen food products. Accurate

prediction of thermal properties is very important in estimating tem-

perature distributions within the product.

3.1.1 Unfrozen Water Fraction

The relationship between the unfrozen water fraction and temperature

hsbased on the equality of the chemical potentials in different phases

ifithin a system (Heldman, 1974b). The underlying assumptions of this
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derivation are (l) the solution is dilute, and (2) the conditions ap-

proach that of an ideal binary system. The derivation of this

relationship results in the following equation (Moore, 1962)

_ I 1 - 1
1n xW R [T T] (3.1)

where, Xw is the mole fraction at absolute temperature (T), which is

found from an experimentally determined initial freezing point (Tif)’

the latent heat of the solvent, (F), and the universal gas constant (R).

substituting this value into the definition of mole fraction, shown

below in Eq. (3.2), the effective molecular weight of the product solute

may be found (Heldman, 1974b)

 

Mwo/mw

xw - M /m + M /m (3'2)
wo w s s

where mW and Mwo refer to the molecular weight and mass of the unfrozen

water, respectively. In a food product, the product solute and solids

are assumed to be indistinguishable; therefore, the mass and effective

molecular weight, (Ms and ms), are of the combined solute and solids,

and are hereby referred to as the mass and molecular weight of the

solids. Furthermore, due to the binary solution assumption, the in-

dividual effects of the carbohydrate, lipid, protein and mineral

components of the food product are lumped together in the effective

molecular weight of the solids (ms).

By equating Eqs. (3.1) and (3.2) and substituting different values for

temperature, T, the mole fraction of unfrozen water may be found for

temperatures below the initial freezing temperature. Since thermal

[upperties aré dependent on the relative amount of each component in the
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food product, knowledge of the frozen and unfrozen water fractions as a

function of temperature allows for the estimation of thermal properties

during freezing and storage.

3.1.2 Density in Frozen Foods

The temperature dependence of density in frozen foods can be

predicted from the relative amounts of solids, liquid water, ice, and in

some cases, air present in the product. The following relationship,

including the air fraction contribution, is based on the density model

without air utilized by Heldman and Corby (1975a), Hsieh et. a1. (1977),

and Perez (1984)

1 gin/pp + (M1(T)/pi) + (MS/pg) + (Ma/pa)
_

——————————————- (3.3)

MD MP

 

where the subscripts w, i, s and a refer to the water, ice, solids and

air components, and Mp is the total mass of the food product.

Given the solids, unfrozen water and air mass fractions, and the

product density above freezing, the solids density may be found from

 
 

Eq. (3.3) as

l. _ (MD/pp) + (MW/9w) + (Ma/pa) T > T (3 4)

ps M8 if '

The relationship shown in Eq. (3.3) does not distinguish between the

Various components of the solid fraction. The influence of the car-

bohydrate, lipid, protein and mineral can be included as
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1 (Mwumw) + <Mi<T>/Pi> + (Me/PC) + (MID/p11)

MD MP

(“pr/Pvt) * ("Midlife/£2
M (3.5)

P

 +

Eq. (3.5) is difficult to utilize practically since the densities and

mass fractions of the solid components must be known. Furthermore,

Hsieh et. al. (1977) showed little variation in density as a function of

temperature, consequently, any variability due to the individual solids

components in Eq. (3.5) would generally be insignificant.

3.1.3 Thermal Conductivity in Frozen Foods

Due to the large difference between the thermal conductivity of ice

and water, the thermal conductivity of the unfrozen food product in-

creases suddenly during freezing. Consequently, thermal conductivity is

difficult to predict (Heldman, 1982).

Kopelman (1966) developed relationships for thermal conductivity in

two-component-homogeneous dispersed, fibrous and layered systems. These

models assume that two phases are present; a continuous phase and a

discontinuous phase. More than two phases are present in frozen food

products (water, ice, solids and, in some cases, air); therefore,

nmdifications of this model are required to include the additional

phases.

Heldman and Gorby (1975a) modified the Kopelman model to simulate a

dues phase (water, ice and solids) frozen food product. In this model,

Ufl>steps are required for the estimation of thermal conductivity.

Additional modification has resulted in a three step model to include
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air, if present. In the first step, the water fraction is considered to

be the continuous phase and the ice fraction to be the discontinuous

phase. For the second step, the combination of water and ice is assumed

to the continuous phase, and the solids fraction is assumed to be dis-

continuous. In the final step, the water-ice-solids combination is

considered continuous, and the air fraction is discontinuous. The three

step process is shown mathematically below.

Step 1. Continuous phase: water

Discontinuous phase: ice

M,(T)/pi<r>

1 ' Mw('r>/pw(r) + Him/pin)

 

2/3
Q1 - vi (1 - ki/kw)

 

kwi - kw (3.6a)

Step 2. Continuous phase: water-ice

Discontinuous phase: solids

_ 145/703

8 Mw(T)/pw(T) + M1(T)/pi(T) + AIS/pS

2/3

Q2 - VS (1 " kS/le)

k k 1 - Q2 (3 6b)
wis wi 1 _ Q2(1 - Vi/3)
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Step 3. Continuous phase: air/water/ice

Discontinuous phase: solids

Ma/pa

a ' MW<T)/pw('r) + Him/pin) + Ms/ps + Ma/pa
  

2/3

Q3 - Va (1 ' ka/kwis)

1 - Q3

k(T) - kwisa - kwis 1 _ Q (1 _ Vl/3) (3.6c)

3

 

a

The value for the thermal conductivity of the solids may be found

from the Kopelman model and the experimentally determined thermal con-

ductivity of the unfrozen food product.

In summary, estimation of thermal conductivity in frozen foods is a

multi-step procedure which first requires the determination of the

thermal conductivity of the solids, and the prediction of the unfrozen

water fraction and product density as functions of temperature.

3.1.4 Apparent Specific Heat

A food product releases both sensible and latent heat as it freezes.

Many researchers (Heldman and Corby, 1975b, Lescano, 1973, and Bonacina

and Comini, 1973a), have incorporated the sensible and latent heat

effects into an apparent specific heat. This apparent specific heat can

be estimated from the temperature differential of the enthalpy (H)

Cp<T> - 9%? (3.7)
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The enthalpy can be expressed in terms of the sensible heat removed

from the solid, unfrozen water, ice and, in some cases, air fractions,

and from the latent heat (F) as follows (Heldman and Singh, 1981)

T

H<T> - I [ (Mw(T)'CPW) t <Mi(T)-Cpi> + (MS‘CPS) + (Ma-ope)

de(T)

+ Po dT dT
 

(3.8)

Note that the mass fractions of the solids and air fractions are not

assumed to be functions of temperature. Substituting Eq. (3.8) into Eq.

(3.7), results in the following expression for the apparent specific

heat

Cp<T) - (“w<T)°°Pw> + (M1<T>~Cpi) + (MS-ops) + (Ms°CPa>

de(T)

dT (3.9)
 

+ r-

The specific heat of solids can be found from an experimental value for

the specific heat of the product above freezing

Cp _ (MD/CPD) + (Mwo/pr) + (Mg/Cpél

3 Ms T > Tif (3.10)

2L2 Practical Evaluation of Thermal Properties

The temperature dependence of thermal properties must be considered

(fining the simulation of frozen food storage. Thermal properties may be

(mmermined explicitly using Eqs. (3.3), (3.6a-c), and (3.9) for density,

thermal conductivity, and specific heat, respectively. However, use of
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explicit functions in a numerical solution is computationally ineffi-

cient. Alternately, a scheme was developed to determine constant

thermal property values over specified temperature intervals which were

selected to minimize errors in the solution.

The temperature intervals, over which thermal property values were

considered constant, were selected by limiting (1) the change in the

magnitude (that is, the first derivative) and (2) the change in the

slope (that is, the second derivative) of the thermal property function

over a given temperature interval. The derivative values were estimated

numerically from Eqs. (3.3), (3.6a-c), and (3.9). The constant property

values over each temperature interval were determined numerically using

a five point Gauss quadrature integration method (Hornbeck, 1975).

Constant thermal conductivity values and associated temperature ranges

are compared in Figure 3.1 with thermal conductivity values found using

Eq. (3.6a-c). (Note, in this case, kp - 0.94 W/m C, Mwo - 77%, Tif -

0.7°C.) These values were determined by limiting the increase in both

magnitude and slope of the density curve over each constant property

interval to 5% and 25%, respectively. Similar constant property tem-

perature intervals were determined for thermal conductivity and specific

heat.

3.3 Transient Heat Conduction during Frozen Food Storage

To predict quality loss in frozen food storage, the temperature

dhnxibution within the product as a function of time must be estimated

amnnately. This involves the solution of the transient heat conduction

Pnflflem. The complexity of the solution arises from the temperature

dependence of the thermal properties.
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The assumptions used in this study were:

1. Heat transfer between the surroundings and the food product occurs

by convection only, and heat transfer within the product proceeds by

conduction.

2. The frozen food product is isentropic and homogeneous.

3. The surface heat transfer coefficient associated with convective

heat transfer is a constant or a function of time, but not a

function of position.

4. Moisture loss from the product is negligible, and total product mass

remains constant.

5. Internal packaging boundaries within a large mass (such as a pallet

load) of product have negligible affect on the heat transfer rate.

3.3.1 One Dimensional Heat Transfer Analysis

In this analysis, it is assumed that heat transfer occurs in one

dimension only. The Fourier one dimensional transient heat conduction

equation describes one dimensional conductive heat transfer through an

isentropic medium (Carslaw and Jaeger, 1959). The governing partial

differential equation for regular geometries is given by

. J. 5’1 - . 11
x3 a [x 1<('1‘)ax p(T) Cp(T)at (3.11)

j - 0: infinite slab

j - 1: infinite cylinder

j - 2: sphere

An infinite slab is finite in the direction of heat transfer, and it is

infinite in the other two dimensions. An infinite cylinder is finite is
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the radial direction (direction of heat transfer) and has infinite

length. Heat transfer is assumed to occur only in the radial direction

in the sphere. The various geometries and indicated directions of heat

transfer are shown in Figure 3.2. Since the product properties are

functions of temperature, the problem is nonlinear.

An initial condition is required for the solution; the product is

assumed to be at a uniform temperature, or at a temperature distribution

that is a known function of position.

T-To ”05x51“

or

T - To(x) c - o (3.12)

Note, on - 0 for a slab, solid infinite cylinder and sphere, and

on # O for a hollow infinite cylinder.

Two boundary conditions at x - on and at x - Lx are required be-

cause of the second order differential with position in the governing

partial differential equation (Eq. (3.11)). Convective heat transfer is

assumed to be occurring at the surface of the product. For the case of

symmetrical boundary conditions on both sides of an infinite slab, or a

solid infinite cylinder, or a sphere, the boundary conditions are

 

 

fl
- o x - o (3.13s)

6x x-O t > O

k(T)flI - hx (t)-[T - T (t)] x - Lx (3 13b)

ax x-Lx Lx m,Lx t > 0 .

Ifiim.boundary conditions are asymmetrical, or if the geometric shape

is a hollow cylinder, the convective boundary condition at x - O is
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Q1
k(T)ax x-Lx - thxo(t)o[T - Tm’on(t)] x - on (3.13c)

0

3.3.2 Two Dimensional Analysis

Heat transfer in two dimensions is considered for rectangular and

cylindrical geometries. The governing partial differential equation is

11.3; [ xJ-k(T)%§ ] + g; [ k(T)%§ ] - p(T)°CP(T)%% (3 14)

x

j - O: infinite rectangle

j - 1: finite cylinder

An infinite rectangle is finite in two dimensions (directions of heat

transfer) and infinite in the other dimension; in this case, a finite

cylinder has a finite radius and length (directions of heat transfer),

with no angular heat flux. The geometries and assumed directions of

heat transfer are shown in Figure 3.3.

The initial condition is assumed to be constant, or a known function

of position

l
A
O

‘
<

I
A

I
A
x

l
"
M

K
4

or

T - To(x) t - O (3.15)

tumme on - O for an infinite rectangle or solid cylinder and on # 0

for a hollow cylinder.
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Four boundary conditions are needed in this case because of the

second order differential in both dimensions. The boundary conditions

for symmetrical heat transfer along the x-axis of an infinite rectangle,

or along the radial direction of a solid cylinder are given by Eqs.

(3.13a,b) for 0 s y s Ly. Equations (3.13a,c) describe the boundary

conditions for unsymmetrical heat transfer along the x-axis, or along

the radial axis of a hollow cylinder for 0 s y S Ly. The boundary

conditions along the y-axis are

k<T>§§| - hYo(t)'[T - Tm’o(t)] y - 0 (3.16a>

Y'O on _ x _<_ Lx

t > o

k(T)fl| h (t)-[T - T (c)] - L (3 16b)
63' _L yLy «nLy y y ‘

y y on S x S Lx

t > o

3.4 Numerical Time-Temperature Simulation Models

The one dimensional simulation model for frozen foods during storage

was based on the predictive models developed by Lescano (1973) and

Heldman and Corby (1975b) for estimating freezing times. The

Crank-Nicolson implicit finite difference scheme was used to numerically

solve the governing partial differential equation given in Eq. (3.11).

The two dimensional prediction model was based on the Douglas and Gunn

(1964) Alternating Direction Implicit (ADI) scheme. The scheme was

modified to allow temperature dependent thermal properties. In both

Inadels, thermal properties were assumed to be constant over specified

temperature ranges, using the procedure described in Section 3.2, while
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allowing for variation over the total temperature range in considera-

tion. In addition, both models permit a number of different storage

periods with different storage temperatures and convective heat transfer

coefficients during each period.

Input parameters required for the solution of both the one and two

dimensional problems are:

1. Initial freezing temperature.

2. Unfrozen water and air fractions.

3. Thermal properties of the unfrozen food product.

4. Temperature of the frozen product prior to storage.

5. Product thickness or radius, or length (for the two dimensional

model).

and for each storage period:

6. Length of storage period.

7. Ambient storage temperature.

8. Heat transfer coefficients (on all sides of product).

In addition, for the two dimensional model:

9. Product length.

3.4.1 One Dimensional Heat Transfer Finite Difference Scheme

The one dimensional heat transfer given by Eq. (3.11) was solved

nmmerically for an infinite slab, infinite cylinder and sphere using the

Crank-Nicolson finite difference scheme, and temperature dependent

thermal properties. The resulting implicit finite difference equation

for'an interior node is
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k-A- Tn+1 _ (k-A- + k+A+) + (( C ) + ( C ) )AX°A Tn+1 + k+A+ Tn+1

" Ax 2-1 " Ax P P - P P + 2-At 2 " Ax 2+1

k A (k A + k A ) Ax-A k A
- - n ,. - - + + n + + n

' ’ Ax T2-1 + [ P Ax ' ((pCp)-+ (pCP)+)2-At ] T2 ' 5 Ax I2+1

(3.17)

where 3 - n - 0.5 for the Crank-Nicolson method. The thermal properties

( p, k, and Cp ) are evaluated at the nth time step, and at the loca-

tions indicated in Figure 3.4. Equation (3.17) may be used for various

geometries by using the appropriate cross sectional areas as shown

below.

A - A - A - 1.0 } for infinite slabs

A - 2t-[on + Axo(£-3/2)]

A - 21-[on + Axo(£-1)] for infinite cylinders

A - 2x-[on + Ax-(2-1/2)]

+A - 4«-[on Ax-(2-3/2)]2 ‘

Ax-(2-1)]2> I

4“. [LXO + for spheres

+

 A - a«-[on Ax-(2-1/2)]2

‘where I - 1 at the location on. The finite difference representations

of the boundary conditions given in Eqs. (3.13a,b,c) are
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Figure 3.4 Evaluation of Thermal Properties in One Dimensional

Numerical Solution.
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At x - 0, (2 - l)
l

 

'7 Ax P P + 2-At 1 ’7 Ax 2

k A Ax-A k A

+ 1+ 1 n + 1+ n

- [#1:— - WWW—FM ]°T1 + (9T). T2

n n n+ n+1
.. (fio'rm,onethxo + ".TQ,LXo.th-XO)A1 (3.18a)

At x - Lx, (£ - L)

 

" Ax L-l Ax 2-At L

k k Ax-A k

-:£L: Tn+1 - [ n——5L; + <(pCp)_>- L ]-1“+1 - - a—;§L= T“

k Ax-

+ [ p-géL; - <<pCp>_)-§:;%L ]-T§ - (3'T2,Lx.hx2x + ”.TZTLx'hx:;1)ALX

(3.18b)

Note: in Eq. (3.18a), hxl is equal to zero for the insulated slab, solid

cylinder, and solid sphere, and in Eq. (3.18b), L is the total number of

nodes.

The set of finite difference equations may be expressed in matrix

form as

A-Tn+1 - nor“ + n (3.19)

‘The coefficient matrix, A, is tridiagonal. The set of equations is

solved by using the Thomas Algorithm (Thomas, 1949), which makes use of

the large numbers of zeros in the coefficient matrix to solve the equa-

tions efficiently.
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A flow chart for the one dimensional numerical temperature solution,

including the prediction of the quality profile, and the code for the

computer program, written in Fortran 77 on a Vax 11/750 computer, are

presented in Appendix B.

3.4.2 Two Dimensional Heat Transfer Analysis

The two dimensional Alternating Direction Implicit (ADI) method

proposed by Douglas and Gunn (1964) was modified to include temperature

dependent thermal properties. In this method, the Crank-Nicolson scheme

is utilized, and a two step procedure was employed. The modified dif-

ference equation for an interior node is shown below.

Step 1. Use Crank-Nicolson approximation in the x-direction

 

 

 

k A n+6 k A + k

"ac—'2?“ T1-1,m - [ "X -x «Ax +x +x + ((pCp)_x+ (pCp)+x+ ()o<lp)_y

A A n+5 k A n+6
+ (pCp) )- x y -T + q + + T

+y 4At 1, x-—§;—§ £+l,m

- -fi k-xA-x T$_1 m - k-yA-y T2 m-l + [ flxk-xA-x+ k+xA+x

Ax ’ Ay ’ Ax

k A + k A

+ sy -y +y +1 - ((pCp)_x+ (pCp)+x+ (pCp)-y+ (pCp)+y)

A)’

A A k A k A

- 45.1 “I? m - _+3L_ix T2 "1+1 - PxM T15;+1 m (3.20a)

4At ’ Ay ' Ax ’
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Step 2. Use results from above for x-direction in 2D Crank-

Nicolson finite difference equation.

 

 

 

 

n k- A- 123%,, - n k-yA--x k+v“+v + <(pCp)_x+ (pep)+x+ (pep)_
Ay : y A), y

+ (pCp)+ ) A A Tn+1 + 0 k+ A+ Tn+1

+y MAMT,2 m y—y—XT2 ,m+l

Tn+£ kx-A21+ 1: A n+5 _ Tn+5

- '"rJMT1.. 1 m ' "x- xAx +3 +X T2 "H'FXT+ 1+1”!!!

k A n k A n k_xA_3+ k A
- B - - T _ - fl - - T _ + fl +3 +x

x—fix—x 2 l,m y—fif 2,111 1 [ x 3M

k A + k A
+ + + - C x+ C + C + Cfly 7y ¥Ay V Y ((2 p) (p p)+x (p P)_y (p p)+y)

A A n k A n k A n
. 4331].”,111 - ,3 + + Tl’ml - ,3 +25 +2; T2+1’m (3.201»)

At Ay Ax

where fix - fly - "x - ny— 0.5 for the Crank-Nicolson approximation. The

thermal properties were evaluated at the nth time step, unless specified

otherwise, and all cross sectional areas, A, are defined at the loca-

tions about the node (£,m), as shown in Figure 3.5. The cross sectional

areas for the rectangular rod and solid cylinder are

A_x - Ax - A+x - Ay

for rectangular rod

A - A - A - Ax

‘Y Y +Y
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Figure 3.5 Evaluation of Thermal Properties in Two Dimensional

Numerical Solution.



45

A-x - 2n-[on + Axo(£-3/2)]Ay ‘

Ax - 2n-[on + Ax-(1-1)]Ay > for solid cylinder

A+x - 2onon + Ax-(2-1/2)]Ay

 JA - Ay - A+y - x-Aonon + Ax-(2-1)]

where 2 - l at the location on.

The Douglas-Gunn ADI method differs from the methods proposed by

Peaceman and Rachford (1955) and Douglas (1955), because, in the first

sweep, a full time step is used to provide an estimate of the tempera-

ture values at n+1; these values are used in the second equation and are

denoted as n+5. The traditional methods evaluate the first sweep at

n+1/2, the one-half time step.

Eight different expressions for the boundary nodes (four surfaces

and four edges) were derived in a similar manner as for the one dimen-

sional case. These difference equations are found in Appendix A.

A flow chart, describing the numerical solution of the two dimen-

sional heat conduction problem, and the corresponding computer code

(Fortran 77) are given in Appendix C. The two subroutines, 'PROPER',

and ‘CONSP', are identical to the same subroutines in the one dimen-

sional model, and are omitted in the code listing.

3.5 Estimation of the Surface Heat Transfer Coefficient

Analytical, numerical and experimental methods have been proposed

to determine the surface heat transfer coefficient. Traditional

analytical methods of determining the surface heat transfer coefficient

are presented first. This is followed by a investigation of a numerical

method which uses experimentally determined internal temperatures to

estimate the surface heat transfer coefficient. In this case, the
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problem of estimating the surface heat transfer coefficient is treated

as part of a group of problems called inverse heat conduction problems.

3.5.1 Analytical Methods

The surface heat transfer coefficient is a function of the air

stream velocity, the temperature difference between the surface being

heated or cooled and the surroundings, and the packaging layer between

the free air stream and the product. The Reynolds number (ReLx) is used

to characterize the free stream velocity, and the Grashof number (Ger)

is used to characterize the temperature gradient as

ReLx - —°5—-—° (3.21a)

g-fi,-<T§- Ts>°<Lxc>3
Ger - 2 (3.21b)

V

 

where Udo is the air free stream velocity, u is the kinematic viscosity

of the air, g is the acceleration due to gravity, Be is the expansion

coefficient of air, T8 is the temperature of the surface, and Lxc is the

characteristic length. The characteristic length is defined as the

ratio of the cross sectional area and the perimeter of the surface

(Goldstein, et. al., 1973).

Forced convection, resulting from forced air flow, and free convec-

tion, resulting from temperature induced density gradients, are both

important when the square of the Reynolds number and the Grashof number

are approximately equal. Forced convection effects dominate when

(Relx)2 is much greater than Ger, and free convection effects dominate

when.the opposite is true. These relationships are summarized below.
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Gr

-—%3—— >> 1 Free Convection only (3.22a)

ReLx

GrI

2 z 1 Both Free and Forced (3.22b)

ReLx Convection

Gr

-—%5- << 1 Forced Convection only (3.22c)

ReLx

3.5.1.1 Forced Convection over a Flat Plate

The steady state one dimensional for the determination of the mean

Nussult number (NEF) resulting from a constant free stream velocity flow

along a constant temperature semi-infinite plate, and along a semi-

infinite plate with an arbitrarily specified surface heat flux are (Rays

and Crawford, 1980)

Nu - 0.664-Pr1/3-Re11‘;2 Constant Temperature (3.23a)

Laminar Flow, Pr 2 0.6

NEF - 0.906-Pr1/3-ReL/c2 Constant Heat Flux (3.23b)

Laminar Flow

where

h—oLx
fig _ _EE__.

F ka

E - 2-hxF(x)

k - thermal conductivity of fluid (air)
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3.5.1.2 Free Convection

Free or natural convection is a result of temperature induced den-

sity gradients in the fluid. These temperature gradients cause free

convection currents as the denser fluid (cooler fluid) falls, and the

less dense fluid (warmer fluid) rises. The Nussult numbers resulting

from free convection (NuN) for the upper surface of a horizontal heated

or cooled plate, are given below (McAdams, 1954).

1. Upper surface of a heated plate (Ts > T ).
Q

- 1/4 4 7
NuN - 0.54-RaLx 10 s RaL S 10 (3.24a)

—- l/3 7 ll
NuN - 0.15-RaLx 10 S RaL s 10 (3.24b)

2. Upper surface of a cooled plate (T0° > T8).

-— _ . 1/4 5 10
NuN 0.27 RaLx 10 s RaL s 10 (3.25)

where the Rayleigh number, Ra is defined as
Lx

3

3% -(T - T )-(Lx)

Ra - Gr oPr - e g’ m C

Lx Lx V-n

 

3.5.1.3 Combined Forced and Free Convection

For the case where (Ger/Reix) z 1, a correlating equation has been

recommended as (Churchill, 1983)

-—n -n -—n
- +Nu NuF _ NuN (3.26)
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where n - 3 or 7/2 for parallel or perpendicular flows respectively.

The natural convection component may increase or reduce the influence of

forced convection depending on whether or not the free convection in-

duces motions in the same or opposite direction as the forced air flow.

The heat transfer coefficient resulting from free and forced convec-

tion is

hx - -——JP (3.27)

3.5.1.4 Packaging Layer

The thin packaging layer between the product surface and the sur-

rounding air may result in additional resistance to the flow of heat to

the product. This resistance may be characterized by an effective

packaging resistance, defined as

k
__pL

hpk L.Pk
(3.23)

where kpk and ka are the overall effective thermal conductivity and

length of the packaging layer, including the packaging material, air

interfaces, and frost build-up, if any.

3.5.1.5 Overall Surface Heat Transfer Coefficient

The overall surface heat transfer coefficient is a result of the com-

‘bined thermal resistance from forced and free conduction, and the
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packaging layer. The overall surface heat transfer coefficient is

defined as

hx h (3.29)

3.5.2 Inverse Heat Conduction Methods.

The estimation of the surface heat transfer coefficient as a func-

tion of time is based on the solution of the inverse heat conduction

problem (IHCP). In contrast to the direct problem of determining inter-

nal temperature distributions from known boundary conditions, the IHCP

involves the determination of a boundary condition from internal tem-

perature measurements.

In this study, one dimensional heat transfer in considered through a

regular geometrically shaped food product with variable thermal

properties. A temperature sensor is located at x - x0, where measure-

ments are taken at a discrete time interval, Atm. The boundary at x - O

is insulated, and an unknown heat flux is imposed at the opposite bound-

th
ary. The temperature distribution is assumed to be known up to the n

time step, tn, (tn - n-Atm). The problem is mathematically expressed as

13.3; [xj-kmfi] - p<T>-Cp<T)g,LE

X

0 S x S Lx

t a t (3.30a)

j - 0: infinite slab

j - 1: infinite cylinder

j - 2: sphere
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g: - 0 x - 0

x x-O

n

t a t (3.30b)

QT _ _
k(T)a q(t) (unknown) x Lx

x

x-Lx

t z tn (3.300)

t < tn (3.30d)

where the unknown heat flux is assumed to be the result of a convective

boundary condition at x - Lx

q(t) - thx(t)°(T(LX.t)- g Lx(t)) (3.306)

Also, the temperature at x0, Y(tn), is known for all time steps, tn

T(xo,tn) - Y(tn) x - xo

t > t (3.31)

Note this problem can be divided into two parts, the direct problem from

x - 0 to x - x0, and the inverse problem from x - x0 to x - L, as shown

in Figure 3.6.

The surface heat transfer coefficient was determined by first

estimating the surface heat flux at x - Lx. In this analysis, both the

heat flux and the surface heat transfer coefficient, were assumed to be

a function of time, but not position. The heat flux was first estimated

as aIfunction of time using the regularization method and finite dif-

ferences in the solution. The temperature at the boundary, T(Lx,t), was

calculated using the finite difference solution described for the direct
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Figure 3.6 Inverse Heat Conduction Problem.

\\s--_______,,.—””’/’

\

\

\

\

\

\

\ 7:.

\ x0

\

\——-—e-- X

\

\

\

\

\

Direct

Problem  
Problem

 

 

q(t)

unknown



53

problem in Section 3.4.1, and substituting the calculated surface heat

flux values for the convective boundary condition in Eq. (3.18b).

Finally, the surface heat transfer coefficient was calculated from Eq.

(3.30e) given the predicted surface heat flux and surface temperature,

and the known ambient temperature.

Two variations of the regularization method used to estimate the

surface heat flux are found: (1) the whole domain technique, and (2)

the sequential technique, proposed by Beck and Murio (1986), in which

the heat flux components are estimated sequentially. The sequential

procedure is more computationally efficient than the whole domain method

because, this procedure estimates only a few heat flux components at a

time instead of simultaneously estimating all of the components, as done

in the whole domain procedure. Due to its computational efficiency, the

sequential regularization method was used in this study.

3.5.2.1 The Sequential Regularization Method

The modified least squared function of the regularization method in

matrix form is

2

s - (Y-T)-(Y-T)+a-}Rj (3.32)

j-O

where'Y and T are the measured and estimated temperature vectors, and

the terms in the summation (R0,R1,R2) represent the zeroth, first and

second order regularization components. The scalar term, a, is the

regularization parameter which is adjusted to determine the degree of

the influence the regularization terms have on the least squares func-

tion.
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Tikhonov and Arsenin (1977) suggested the following expression for

the various regularization terms

t J
- . £14 _Rj WI I [ drj dr j o, 1, or 2 (3.33)

Each regularization term acts to minimize its corresponding derivative

of the estimated heat flux when the least squared function, 8, is mini-

miz ed. Therefore, the zeroth order regularization term tends to bias

the heat flux towards zero, the first order pushes the heat flux towards

a constant value, and the second order term forces the heat flux towards

a constant slope, Beck et. a1. (1985).

Forward differences were used to approximate the regularization

terms in Eq. (3.33). The expressions for j - O, l, 2 are shown below in

EqS - (3.34a,b,c), respectively.

_ 2

R0 ' wo'} (qn+i 1) (3.34a)

i-l

r

_ 2

R1 - w,- E (qn+1 - qn+1 1) r 2 1 (3.341))

i-l

r

° _ 2
R2 _ W2. E (qn+i+1 - qn+1 + qn+1 1)

i-l

r 2 2 (3.34C)

wh

Qre the W1 values are weighting factors. In the sequential procedure,

tlb)

e summation is carried out over r-future time steps, and qn+i+l, qn+1

ha -

hd an' 1 are evaluated at the (n+i+1)t , (n+i)th and (n+1-l)th time
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steps, respectively. The heat flux at qn'1 is assumed to be known.

Eqs - (3.34a,b,c) can be written in matrix form as:

T
R -W-H H -0,1,r2 3.35

where the estimated heat flux components are contained in the vector q,

the forward difference approximations for dq/dt are contained in the H

  

J

matrices, and the weighting factors, WJ, are scalar. Beck et. a1.

(19 85) proposed the following expressions for the H3 matrices

Ho - I (Identity matrix) (3.36a)

' -1 1 o o I

O -l l O 0

H1 - e . (3.36b)

O O -1 l

I o o o _

P l -2 l O . . . O I

O 1 -2 l O 0

H2 - ' ' (3.36b)

0 0 l -2 l

O 0 O

_ O O O _  
The

H matrices are r X r with j + 1 non-zero diagonals, and with all

J
z

Q1:09. in the last j row(s).

The regularization orders were analyzed individually by setting the

.th

3 weighting factor (Wj) equal to one, and the remaining weighting
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factors (W1, 1 I‘ j), equal to zero, and substituting Eq. (3.35) into

Eq - (3.32) to obtain

3 - (Y-T)2(Y-T) + a-W -(qu)T(qu) j - o, 1, or 2 (3.

.1

The unknown heat flux q is estimated by minimizing the least squares

37)

function in Eq. (3.37). The expression is differentiated with respect

to q and then set equal to zero.

T A T A

vqs - 2 [Vq(Y-T) ](Y-'1‘) + 2a-Vq(qu) (qu)

-o j-0,l,or2 (3.

The temperature matrix T may be expanded in a Taylor's series as

T - T* + VqT(q - q*) (3.

*

Whe re '1' is the resulting temperature vector from an assumed imposed

*

heat flux q . A sensitivity coefficient matrix, X, is defined as

x - VT (3
q

F
1301:: Eq. (3.40),

Vq(Y-T)T - -xT (3

vqmjafr - a? j - o, 1, or 2 (3.
J

38)

39)

.40)

.41)

42)
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Beck et. a1. (1985). Substituting Eqs. (3.39), (3.40), (3.41) and

(3 - 42) into Eq. (3.38) produces

XTX(q - q*) + a-HJTHJq - XT(Y-T*) - 0 j - 0, 1, or 2 (3.43)

No t ing that

con Tn q* - o (3.44)
J .1

allows Eq. (3.43) to be rearranged and solved for q:

q — q* + (xTx + a-H TH SloxTa-r") j - o, 1, or 2 (3.45)
J J

The temperature vector T? was found by solving the direct problem

“‘3ii:r1g the Crank-Nicolson finite difference method as discussed in

SeCdzion 3.4.2, and substituting an assumed imposed heat flux q* at

x “' 'Lx, in place of the convective boundary condition shown in Eq.

(3 - 18b). The sensitivity coefficient matrix X, is found by differen-

tii~£11:1ng Eqs. (3.30a-d) with respect to q(t), the unknown heat flux at x

:I—fic. The resulting equations are shown below.

-1-.-3— [flmcnfifi] - p(T)-Cp(T)g')t‘: (3.46a)

j - 0: infinite slab

l: infinite cylinder

(
.
1
.

I

j - 2: sphere

ax x-O

t a tn (3.46b)
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kmfi m-l x-m
x-

t 2 tn (3.466)

X-O OSXSLx

t<tn (3.46d)

The sensitivity coefficients were found using the same finite difference

algorithm used to calculate the T* values, only substituting the bound-

ary condition shown in Eq. (3.46c) in place of the assumed heat flux

(C1*) at the boundary at x - Lx, and noting that the sensitivity coeffi-

cients are equal to zero for t < tn, that is, X - O was used as the

initial condition.

3 - 5 - 2.2 Determination of the Temperature at the Surface

The temperature values at x - Lx are required to estimate the sur-

face heat transfer coefficient (Eq. (3.30a)). These values were found

by using the estimated heat flux values, q(tn), in place of the boundary

condition given in Eq. (3.18b), and solving Eq. (3.17) for the tempera-

ture at x - Lx, using the one dimensional finite difference algorithm.

The boundary condition at x - Lx is shown below.

kmfi -«n x-u
x-Lx

tn < t tn+r (3.47)I
A
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3. 5 -2.3 Estimation of the Surface Heat Transfer Coefficient

The surface heat transfer coefficient may be found from the es-

timated heat flux, calculated temperatures at x - Lx, and the measured

ambient temperatures, for discrete times tn, as, Beck et. al. (1985)

A

A n

*9 (3.48)hxn - n An A(n-1)

Tco - 0.5-(T - T )
x-O

Where Tu and T(n'1) are the estimated temperatures at x - O for times tn

and t(n'1).

A flow chart outlining the numerical solution of estimating the

s\J-I‘face heat transfer coefficient is given in Appendix D, along a list-

ing of the program written in Fortran 77, on a Vax ll/750 computer.

3 - 6 Quality Loss Prediction in Frozen Foods during Storage

The numerical solutions to the direct one and two dimensional heat

cotlduction problems described in Section 3.3 were used to determine the

rate. of quality loss in frozen foods. The quality loss model developed

by Heldman and Lai (1983), which assumes the rate of quality loss is a

function of time and temperature, was used in this study. In this

ngdel, the rate of quality deterioration is an explicit function of

: lute, temperature and the kinetic properties of the product. For the

S ituation where product temperature is position dependent, that is, in

pa:l—let loads, quality will also be a function of position. Quality is

Q

then expressed in terms of the products shelf-life, and consequently,

Q

he units are expressed in days or months. The model, including the
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spatial and temperal dependence of product quality or shelf-life is

shown below .

t

Q(x,t) - Qor - Io exp{ -% [W - 311-] }dr (3.49)

’ r

where Q(x,t) is the remaining quality or shelf-life of the food, if

stored at the reference temperature Tr’ given the temperature history of

the product at the spatial location x, Q°r is the initial quality or

shelf-life at a reference temperature Tr’ Ea is the activation energy

Constant for the given food product, and R is the gas constant. Note,

for two dimensional heat transfer, T - T(x,y,t), therefore,

Q — Q(x,y,t). The integral is determined numerically by assuming the

integrand is constant over each time step, and summing over the total

time interval as

N

Q(x,t) - Qor - E exp{ -§'§ [T—(iTE) - %—] }At (3.50)

n-l r

wil-I‘P—Jz‘e N is the total number of time steps.

The input parameters required in the solution are the product tem-

p.'=¢3':ature distribution history, T(x,t), and the kinetic parameters,

L7.:7‘Qluding the activation energy constant, Ea, and the initial product

q“"‘ality, Q°r’ at a reference temperature, Tr' The product temperatures

are obtained from the finite difference solution described previously.

bhé kinetic parameters are evaluated using a statistically based method,

slagh as, Chu (1983), from time-temperature data found in the literature,

and» are assumed to be known in this investigation. By using a statisti-

Qally based method, the variance of the predicted quality loss may be

Cl

etermined from the variance of the estimated input kinetic parameters
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2 2

V(Q) - [33%] °V(Qor) + [3%.] mm

+ 2[[‘g'gor]-[g'ga]ocov(Qor,Ea)] (3.51)

The initial product quality and the activation energy constant are

independent (Chu, 1983), therefore, the covariance term drops out and

2 2

V(Q) - [33%] 'V(Qor) + 3%,] oV<Ea> (3.52)

Substituting Eq. (3.50) into Eq. (3.52) and performing the indicated

d1 fferentiations yields

V(Q(x.t)) - 1°V(Qor) + {E [ exP{'%§[ T(x t) ' %_] }
’ r

. {% [fii—S - t] }0At]}2oV(Ea) (3.53)

In summary, this procedure allows the estimation of quality loss and

L ts associated variance in frozen foods as a function of time and posi-

tion, based on predicted internal temperature measurements and estimated

h:
ihetic parameters and associated variances.



CHAPTER 4.

EXPERIMENTAL PROCEDURES

Frozen foods in fluctuating temperature storage conditions were

simulated experimentally using the Karlsruhe Test substance (Gutschmidt,

1960), as a substitute food product. The test substance was alternately

placed in two adjacent storage chambers (A and B) with average ambient

temperatures of -6 and -30‘C, respectively. Temperature distributions

within the test substance were determined from thermocouple readings

recorded by a data aquisition computer. These measurements were used in

confirming the one and two dimensional finite difference models, dis-

cussed in Section 3.4, and in estimating the surface heat transfer

coefficients, discussed in Section 3.5.3.

4.1 Karlsruhe Test Substance

The Karlsruhe Test Substance, developed at the Federal Research

Institute, West Germany, is a highly concentrated methyl-cellulose

mixture, which has similar thermal properties and freezing characteris-

tics as common food products. Methyl-cellulose mixtures have been used

in studying the freezing process in foods by many researchers, such as,

Bonacina, et. a1. (1973), Cleland and Earle (1977b), and Succar and

Hayakawa (1986).
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One half gallon paperboard ice cream containers, measuring 0.170 m

long, 0.125 m across, and 0.90 m high, were used as the product con-

tainers. The test substance was shaped into brickettes to fit into the

boxes, wrapped twice with plastic film to prevent moisture loss, and the

placed in the paperboard containers. The thickness of then paperboard

boxes and the two layers of plastic film were measured with a

micrometer. The paperboard box thickness averaged 1.7 mm, and the

plastic film averaged 0.3 mm. The volume of the containers was 0.0019

m3. Assuming a density of 1040 kg/m3 for the Karlsruhe Test Substance

(Specht et. al., 1981), 1.98 kg of test substance were required for each

container.

The following procedure was followed to prepare the test substance

(Gutschmidt, 1960):

l. The water content of the supplied methyl-cellulose (MC) was

found from the manufacturers (Dow Chemical, U.S.A), and the

additional water required for a test substance with 77% moisture

content was determined. This amount of water was increased by

approximately 4% of the weight of the methyl-cellulose, since, as

Gutschmidt, (1960) has shown, this amount of water vaporizes in the

warming of the water, and in the stirring, kneading and forming of

the methyl—cellulose.

2. Salt (NaCl) was added to depress the freezing point of the

methyl-cellulose from -O.6°C to -l.0°C. The amount of salt added

was determined from Adballa and Singh (1984).

SALT (kg) - 0.0240(1 - 0.01-MC)

3. In addition, 1 gm parachorometacresol was added as a

Preservative for every 100 grams added water.



6h

4. The water was warmed in a large beaker to approximately 60-70°C,

and then the heating source was turned off.

5. The salt and parachorometacresol were added while stirring

continuously.

6. The methyl-cellulose powder, Methocel A4m Premium, supplied by

Dow Chemical, U.S.A., was slowly poured into the salt water mixture,

and was stirred continuously until the solution became homogeneous.

7. The test substance was allowed to cool to 35-40’C.

8. The substance was kneaded until it formed a bread-like dough.

9. Brickettes were formed by flattening the sides on a smooth

planar surface. They were then wrapped in plastic film, and placed

in the paperboard containers.

The following quantities were required for every 1 kg Karlsruhe Test

Substance:

0.772 kg water

0.237 kg methyl-cellulose (4500 cps, 2% moisture

content)

5.57 gm NaCl

0.76 gm parachlorometacresol

For better mixing, the test substance was prepared in 0.99 kg

batches, and two batches were combined just prior to kneading to form

each brickette.

There is some discrepancy between the various thermal properties

for the Karlsruhe Test Substance given in the literature. The initial

freezing point given by Cutschmidt (1960) has not been used by other

researchers (Specht, et. al., 1981). Values for Tif’ pp, kp, and Cpp
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are shown in Table 4.1. The properties given by Specht, et. a1. (1981)

were used in succeeding calculations for consistency, unless otherwise

noted.

4.2 Containers for the Karlsruhe Brickettes

The Karlsruhe Test Substance was used in the following three ways:

(1) in the determination of the surface heat transfer coefficients; (2)

for comparison with the one dimensional numerical model; and (3) for

comparison with the two dimensional model. This resulted in three

configurations for the containers to hold the Karlsruhe samples.

The first configuration was used in estimating the surface heat

transfer coefficient. A container was constructed to hold three ad-

jacent pairs of brickettes with an exposed top surface, and insulation

around the remaining three sides. An open topped box or trough, con-

sisting of 0.0125 m plywood, formed structural support for the

container. Foam insulation, 0.077 m in thickness, was glued to the

interior sides of the box. This insulation thickness was based on that

used by other researchers using the Karlsruhe Test Substance (Cleland

and Earle, 1977b, and Succar and Hayakawa, 1986). Values for the ther-

mal conductivity of the foam insulation found in the literature varied

around 0.28-0.31 W/m°C (Baumeister, et. al., 1978) and 0.35 W/m°C

(Cleland and Earle, 1977b).

The box was constructed in two parts, and clamped shut after fill-

ing, for better packing of the Karlsruhe Test Substance brickettes. The

container with brickettes in place is shown in Figure 4.1.

For the second configuration, a similar container was constructed,

but without a bottom, to hold six brickettes in a single layer. This

layer was secured to the top of the first configuration to form a double



66

Table 4.1 Thermal Properties of the Karlsruhe Test substance

 

Moisture Initial Densigy Thermal Specific Reference

Content Freezing (kg/m ) Conductivity Heat

(%) Temperature (W/m'C) (kJ/kg’C)

(°C)

77% -1.0 Gutschmidt

(1960)

77% -0.7 1040 0.944 3.8 Specht (1981)
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Figure 4.1 Single Layer, One Dimensional Container Configuration.
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layer slab with only the top side exposed. The configuration is shown

is Figure 4.2.

In the final case, two adjacent sides were exposed to allow two

dimensional heat conduction. An insulated plywood box was constructed

to hold twelve brickettes, in three layers. The container holding the

brickettes is shown in Figure 4.3.

4.3 Temperature Measurement

Internal product temperature measurements were obtained using 30

gage, Type T, thermocouples (Omega, 1985). The thermocouples were

placed at the geometric center of each brickette through 0.127 m long

18 ga hypodermic needles.

Prior to placement in the brickettes, the thermocouple wire was

threaded through the needles, and soldered at the point of the needle

(Figure 4.4). The end cavity of the needle was filled with epoxy to

keep the thermocouple in place. The hypodermic needle was placed

through a hole drilled through the plywood and the insulation at the

desired thermocouple location. This served as a guide for the hypoder-

mic needle to minimize the variability of the thermocouple location

within the brickette. The ends of the thermocouples were insulated with

foam to limit conduction down the thermocouple wire and hypodermic

needle. The placement of the thermocouples in the three configurations

are also shown in Figures 4.1, 4.2, and 4.3.

The ambient temperatures were measured using a thermocouple placed

above the Karlsruhe container, midway between the container and the

ceiling of the storage chamber.

All thermocouples measurements were recorded by a Hewlett Packard

3497A Data Aquisition/Control unit, coupled to a Hewlett Packard 8S desk
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Figure 4.2 Double Layer, One Dimensional Container Configuration.
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top computer. The capacity of the data aquisition device was limited to

a maximum of 16 simultaneous thermocouple measurements over a total of

216 time steps.

4.4 Velocity Measurements

The air free stream velocity was required for the analytical deter-

mination of the surface heat transfer coefficient. The two storage

chambers used in the study measured 2.20 m across by 6.90 m long by

2.53 m high for chamber A, and 1.81 m across by 6.90 m long by 2.53 m

high for chamber B. The forced air flow in both chambers resulted from

two 0.37 kW fans., placed in the upper end corners of both chambers.

The fans were at the same end in chamber A, and they were at opposite

ends in chamber B. Velocity measurements were taken at 0.045 m incre-

ments in a grid pattern about the region where the Karlsruhe containers

were placed, using a hot wire anemometer (Model 2440, Weathertronics,

Inc.). The measurements were taken in the middle of a defrost cycle.

The horizontal velocities in chamber A ranged from 0.1 - 0.6 m/s and

averaged 0.25 m/s, and ranged from 0.8 to 1.25 in chamber B, and

averaged 1.0 m/s. The airflow in chamber A was lower due to a large

obstruction in the storage room near the fans. Vertical velocity

measurements in chamber B varied from i 0.5 to i 1.0 m/s, indicating

mixed air flow conditions. Streamers were used as a visual conformation

of the flow conditions. The streamers, made of magnetic tape, were hung

from string placed at 0.45 m intervals, in a grid pattern, across each

chamber. Consistent with the velocity measurements, the streamers

fluttered up and down randomly in chamber B, and showed comparatively

streamline characteristics in chamber A.
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4.5 Experimental Storage Conditions

The Karlsruhe brickettes were prepared just prior to placement in

the plywood containers, and then immediately placed in chamber B until

equilibrium conditions were obtained (approximately four to five days).

One complete step change cycle in storage temperature was used for

all configurations. The Karlsruhe Test Substance, initially at equi-

librium in chamber B, was placed in chamber A for a given storage time

period, and then placed back in chamber B for an equivalent time period,

to complete the cycle. The storage period was limited by the capacity

of the data aquisition unit. Since the temperature measurements ob-

tained using the first configuration, shown in Figure 4.1, were required

in the sequential regularization solution for the surface heat transfer

coefficients, a smaller time interval for the temperature measurements

was used, than in the other two cases. The time steps and the storage

time periods for the three cases are shown in Table 4.2.

Each test was repeated three times, using the same Karlsruhe samples

for each configuration. The samples were allowed to equilibrate in

chamber B after the conclusion of each test. In subsequent sections,

the three repetitions using the single layer, double layer, and two

dimensional triple layer configurations will be referred to as

Tests 1a-c, Tests 2a-c, and Tests 3a-c, respectively.

The defrost cycle period was approximately 1.5 hours in storage

chamber A, and four hours in chamber B. Some frost accumulated on the

surface of each container after storage in chamber B. The average

storage temperature in chamber A was -6°C for all test cases. The

average storage temperature varied from ~33 to ~34°C for all three tests

using the first configuration (single layer), but due to a failing



Table 4.2 Storage Times and Measurement Intervals

74

for the Three

 

Configurations

Storage Period Measurement

Test in each Chamber Interval

(hours) (mins)

1 18 10

(single layer)

2 24 30

(double layer)

3 48 30

(two dimensional)    
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compressor, increased to -26°C by the end of the final test using the

third configuration (two dimensional case).

At the conclusion of the tests, the hypodermic needles were removed

from the Karlsruhe brickettes, and the brickettes were removed from the

containers. Due to the starchy nature of the Karlsruhe Test Substance,

the hole left by the hypodermic needle was left in tack. To determine

the exact location of the thermocouples, red food dye was placed in the

hole using a glass pipette, and each brickette was cut open to revel the

end point of the hole. This location was then measured and recorded.

Finally, the distance between the Karlsruhe brickette and the outer

surface of the paperboard carton was measured. The thickness of the

paperboard carton and the plastic film were subtracted from this value

to obtain the air interspace thickness between the carton and the

Karlsruhe test substance. The air interface was found to vary between

one and ten millimeters.



CHAPTER 5.

DETERMINATION OF NUMERICAL PARAMETERS

The numerical analysis in this investigation of frozen foods during

storage focuses on three major problems: (1) the development of a

numerical procedure to estimate heat transfer coefficients typical of

storage conditions (indirect problem); (2) the development of a multi-

dimensional model to simulate temperature changes within frozen foods

during storage (direct problem); and (3) The estimation of temperature

dependent quality deterioration. These models were described in detail

in Chapter 3. Application of these models require input of parameters

inherent to the problem being studied, that is, product properties and

geometry, and user specified parameters inherent to the numerical proce-

dure. Input parameters, determined by the user, intrinsic in the finite

difference solutions of both the direct and indirect problems, include

the number of nodes and the time step. In addition, the user must

select the magnitude of the regularization parameter, the order of

regularization, the time between temperature measurements, and the

number of future temperature measurements used in the solution for the

indirect problem.

An investigation of the influence of the user definable parameters

on the numerical models described above was completed to provide a

systematic procedure for optimal parameter selection. Since the

analytical solution of the nonlinear problem with temperature dependent

PIOduct properties is not readily obtainable, this investigation of user

76
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definable parameters focused on the constant property solution, for

which exact solutions exist. The resulting observations and conclusions

from the study of the linear problem was used as a basis for the selec-

tion of the parameters in the nonlinear case.

5.1 Selection of Parameters Inherent in the Finite Difference Solution

The one dimensional direct problem is an intrinsic part of the

solution of the inverse problem, and it provides a basis for the solu-

tion of the two dimensional problem. Because of its importance in both

problems, the influences of the user adjustable parameters; node spacing

and time steps, on the accuracy and numerical oscillatory tendencies of

the one dimensional solution, were studied in detail. Results from this

analysis were also used in the indirect problem, and expanded upon in

the analysis of the two dimensional problem.

The number of nodes and the time step, along with the product

properties and boundary conditions, are important factors determining

the numerical oscillatory tendencies and the accuracy of the numerical

solution. In both cases, the eigenvalues resulting from the set of

finite difference equations, Eq. (3.19), play an important role in the

analysis.

5.1.1 Numerical Oscillations

In evaluating the numerical oscillation criteria, the matrix equa-

tion shown in Eq. (3.19) is considered. Multiplying Eq. (3.19) by A61

results in:

'1'“+1 - {113-'1'" + A'ln (5.1)
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Numerical oscillations are related to the eigenvalues of the matrix

A713; oscillations will occur in a stable solution if some of the eigen-

values are negative, but greater than -1, (Meyers, 1971). Therefore, to

avoid oscillations, Ale must be positive definite. Segerlind (1984)

showed that the study of the eigenvalues of Ale may be reduced to a

study of A.and B where:

L

A - "Atc+x (5.2a)

.1.
B - fiAtc- x (5.2b)

The C and K.matrices contain the heat capacity (p-Cp) terms and the

thermal conductivity (k) terms, respectively. For the simplified case

of a one dimensional finite slab with constant product properties, and

insulated at the first boundary (x - 0), and with a convective boundary

condition at the second boundary (x - Lx), the C and K.matrices are

given below.

P egpr 0 . - - 0 q

2

0 pCpr

C - pCpr E (5.3a)

O O O O O 22%;  
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' i :3 . . . 1
Ax Ax 0 0

,1: 23 ,3 I
Ax Ax Ax .

.3 2E .3

K " O -Ax Ax -Ax o (5'3b)

.15 _k

_ 0 O . . -Ax Ax + thxJ  
For Ale to be positive definite, A.and B must both be positive

definite. The condition for A.is satisfied since from Eqs. (5.3a,b), C

is positive definite, and K is positive definite in this case because of

the thx term (Segerlind, 1984). The second matrix in question, B is

positive definite if (Fried, 1979)

 

det[ K - 11C ] - 0 2 - 1, 2,..., L

(total No. of nodes)

where

l

*2 ' MN
(5.4)

and

fl - the weighting coefficient

used in the numerical method

Therefore, considering the worst case where A2 - Amax’ the maximum

eigenvalue, numerical oscillations can be avoided if (6 - 0.5)
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At <osc (5.5)’
l
“

max

The following hypothetical problem, similar to the conditions used

during the experimental procedures for the single product layer

described in Section 4.5, with the exception of the use of constant

thermal properties, was considered in the determination of the oscil-

latory criteria

 

 

2

LE .. Ill-22.3% Osstx (5.6a)

8x O<t$t1

g: - 0 0 < t < t (5.6b)

x l

x-O

11‘ - -ax thx(Tm,Lx T(Lx,t)) O < t 5 t1 (5.6c)

x-Lx

T(x,0) - To 0 S x s Lx (5.6d)

where

Lx - 0.13 m

T - -5°C

To - '33°C

t - 18 hours

Experimental results from similar conditions indicated that the

temperature of the Karlsruhe Test Substance at the mid-section of the

layer changed from = -33°C to z -12°C after 18 hours. Therefore, in the
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numerical oscillatory analysis, the problem given by Eqs. (5.6a-d) was

considered using constant thermal properties of the Karlsruhe Test

Substance evaluated at the two extreme temperatures of -33°C and -l2°C.

The value of the surface heat transfer coefficient was set at 7.85

W/m2C, which is consistent with Dagerskog (1974), who reported surface

heat transfer coefficients ranging from 4 to 13 W/mzC, using

transducers, for free air over a frozen food pallet in storage.

The heat capacity and conductivity matrices shown in Eqs. (5.3a,b),

respectively, were evaluated using 5, 9, 13, and 17 nodes, and with the

thermal properties evaluated at -33 and -12°C, using Eqs. (3.3), (3.6a-

c), and (3.9) for p, k and Cp, respectively. Table 5.1 shows the values

of Ax, p, k, and Cp used for the eight cases considered.

Equation (5.4) was solved for A1 using the Jacobi Method (Bathe and

Wilson, 1976), for each hypothetical condition. The largest eigenvalue

(A ax) was used to determine Atosc according to Eq. (5.5), for each case

m

considered. The values for A! and Ato are shown in Table 5.2a,b.

sc

The results indicate that as the number of nodes increase, the time

step to prevent numerical oscillations decreases. In addition, the time

step limitation was much more severe for the cases where the thermal

properties were evaluated at -33°C, rather than -5°C; for all values of

Ax investigated, the critical time steps found using thermal properties

at -33°C were a 60% of those values found using the thermal properties

at -12°C. This coincides with the inverse ratio of the thermal dif-

fusivities (5) evaluated at the respective temperatures. Thus

n(-12) At (-33)

____oag___

~(-33) ‘ At (-12)
(5.7)

OSC

s
fl
m
n
‘

.
,
.
a
.

.

 

 



Table 5.1 Values

(hx

for Ax, p, k, and Cp Used in Evaluating Ama
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- 7.85 W/m°C).

X

 

 

Lx

No. of Ax p 3 . k Cp

Case No. Nodes (m) (kg/m ) (W/m°C) (kJ/kg’C) comments

1 5 0.03250 972.2 2.24 2.47

Properties

2 9 0.01625 972.2 2.24 2.47

evaluated

3 13 0.01083 972.2 2.24 2.47

at -33°C

4 17 0.00813 972.2 2.24 2.47

5 5 0.03250 974.6 1.98 3.66

Properties

6 9 0.01625 974.6 1.98 3.66

. evaluated

7 13 0.01083 974.6 1.98 3.66

at -12°C

8 17 0.00813 974.6 1.98 3.66  
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Table 5.2a Eigenvalues and Resulting Critical no Oscillations Time

Step (sec) for Properties Evaluated at -33°C.

 

 

 

 

 

Case No.

(No. of Nodes)

Eigenvalues

-1 1 2 3 4

(58¢ ) (5) (9) (13) (17)

1, 2.1358-10’5 2.1736-10'5 2.1732-10'S 2.2235o10‘5

1, 5.6591-10‘“ 5.8627-10'4 5.9016-10’“ 5.9197-10'4

13 1.8149-10'3 2.117so1o‘3 2.1781-10'3 2.1999-10'3

1, 3.0637-10'3 4.4023240‘3 4.7028-10’3 4.8096010°3 3%

1s 3.5591o10‘3 7.1100-10'3 7.9929-10'3 33214.10’3

16 9.3117-10'3 1.1824-10‘2 1.2601-10'2 J

17 1.2102-10‘2 1.5935-10'2 1.7433-10‘2 E

1, 1.3633-10'2 2.0047-10'2 2.2730-10‘2 “

1, 1.4149-10'2 2.3878-10'2 2.8289-10'2 '

1,o 2.7169-10'2 3.3798-10‘2

1,, 2.9693-10'2 3.9095-10’2

1,2 3.1281.1o'2 4.3977olo'2

1,3 3.1800-10'2 4.8256-10'2

1,, 5.1768~1o'2

1,6 5.4373o1o'2

1,6 5.5985-10‘2

1,, 5.6506o10’2

Atosc 562 141 63 35  
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Table 5.2b Eigenvalues and Resulting Critical no Oscillations

 

 

 

OSC  

Time Step (sec) for Properties Evaluated at ~12°C.

Case No.

(No. of Nodes)

Eigenvalues

_, 5 5 7 8

(sec ) (5) (9) (13) (17)

1, 1.4405-10'5 1.4390-10'5 1.4146-10‘S 1.4383-10'S

1, 3.4016-10'4 3.5241.1o'4 3.5438o10'“ 3.5537-10’4

13 1.0829-10'3 1.2633o1o'3 1.2986-10'3 1.3114-10'3

1, 1.8254-10'3 2.6256-10'3 2.7995-10'3 2.8629-10'3

15 2.1186-10-3 4.2324.1o'3 4.7554olo'3 4.9507-10'3

16 5.3391-10‘3 7.0331-10'3 7.4946-10'3

1, 7.2013o1o'3 9.4773-10'3 1.0397-10‘2

1, 8.1121-10‘3 1.1922-10'2 1.3546-10‘2

1, 3.4158-10'3 1.4199-10'2 1.6821-10'2

1,o 1.6155-10‘2 2.0096-10'2

1,, 1.7656-10‘2 2.3245-10‘2

1,, 1.8600-10‘2 2.6143-10'2

1,3 1.8907-10'2 2.8692-10‘2

1,, 3.0779-10'2

1,5 3.2331olo‘2

1,6 3.3287-10'2

1,, 3.3595-10'2

At 944 233 106 60

 

 

 

 



85

In the application to the nonlinear problem, given Atosc for a specific

value of the thermal diffusivity evaluated at T1, the critical time step

using thermal properties evaluated at T, can be determined by multiply—

ing Atosc evaluated at T1 by the inverse ratio of the respective thermal

diffusivities. This provides a basis for using a variable step in the

solution of the nonlinear problem.

An alternate method of estimating Amax was presented by Fried

(1979). He found that the maximum eigenvalue for a global finite ele-

ment matrix is less than or equal to the maximum eigenvalue for all of

its elemental matrices, that is

 

A 5 max { 1(8) (5-3)
max e max ,

h 1
'where Aézi is the maximum eigenvalue of the et element matrix. The 5 S

f '4

heat capacity and thermal conductivity matrices for a one dimensional k‘% F

‘element' using finite differences is found from the contributions from :r i

two adjacent nodes. These matrices are given below. 3

4

c(e) - p-Cp-Ax.[ 3 2 ] (5.9a) I'yt

2 if

k(e) - _E.[ _i "i ] (5.9b)

‘Ehe maximum eigenvalue was found from Eq. (5.4) by replacing the global

matrices by the element matrices as

det [ k(e)- 1§e)-c(e)] - o (5.10)

(e) . .

Solving for Amax from the determinant yielded
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1é§i - -——343L——; (5.11)

p-Cp°(AX)

(6))
The maximum eigenvalues calculated from the elemental matrix (Amax

for 5, 9, 13, and 17 nodes and thermal properties evaluated at -33 and

«12°C. Upon comparison with Amax calculated from the global matrices

(Table 5.2a,b), it was found that

1 z 1(9) (5.12)
max max

for the finite difference grid. The maximum eigenvalues calculated from

P

the elemental matrices and the global matrices are compared in Table “1k

5.3.

5.1.2 Accuracy t“

The accuracy of the numerical solution of the non-linear problem i

described by Eqs. (3.11), (3.12), and (3.13a,b) is difficult to deter-

mine, because the analytical solution is impractical to obtain. Insight ‘

into the accuracy of the nonlinear problem was achieved, however, by «if!

considering the linear problem with constant properties.

The analytical solution to the simplified one dimensional problem

described by Eqs. (5.6a-d) is given by Carslaw and Jaeger (1959) as

8

T(x,t) - To + (Tco - To)- 1 - R e (5.133)

where
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Table 5.3 Comparison of A ~102 and A(e)-102.
max max

Temperature

(No. of Nodes)

 

 

 

-1 -33°c -12°c

(sec ) (5) (9) (13) (17) (5) (9) (13) (17)

1max 0.356 1.415 3.180 5.651 0.212 0.842 1.891 3.359

1;:; 0.353 1.412 3.177 5.648 0.210 0.839 1.889 3.357

% 99.2 99.8 99.9 99.9 99.0 99.7 99.9 99.9  
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2-hkocos(§£x)

 R _

k
:

[(hk2+ (3)-Lx + hk]-cos(§£Lx)

- (k/pCp> «,2

hk - thx/k
R
a
h

h
and (2 is the it root of the transcendental equation

g,-tan(g,-Lx) - Lx-hk (5.13b)

The eigenvalues found in the numerical solution, A1, are approxima- M

tions to the exponential term, Ac, of the analytical solution. Since

there are a finite number of eigenvalues in the numerical solution, it 1

is important to determine how many of the terms in the summation shown

in Eq. (5.13a) are significant for any given time. Considering terms <

0.01'C to be insignificant, the time for any given term in the summation

to be insignificant can be calculated for a specific location of x.

Values for R£,x were calculated, with thermal properties evaluated at

-33 and -12°C, for the first nine values of {l (Abramowitz and Stegun,

 1965), at the insulated boundary (x - 0), the mid-section (x - Lx/2),

and at the convective boundary (x - Lx). Due to the insulated boundary

condition and resulting damping effects, the values for R1, at x - 0,

(R£,0)’ were greater in magnitude than those at the other locations.

Consequently, the values of R£,O were the most crucial values in deter-

mining the times (t?) for each term in the summation to be

insignificant. The values for t” were calculated for each term such

1

that

-(A;.t:)

R2 O-e < 0.01 (5.14)
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e m

Values for A2, R1,0’ R£,Lx/2’ R£,Lx and t!

first nine terms in the summation are found in Tables 5.4a,b for thermal

evaluated using R£ 0 for the

properties evaluated at -33 and -l2°C, respectively. The values for t:

monotonically decreased to less than one after only four eigenvalues;

therefore, the the damping effects of the exponential factors were more

influential on the behavior of C: than the sinusiodal effects of the R2

terms. Since only the first three eigenvalues were significant after

100 seconds, these terms were considered the most the important when

comparing the eigenvalues of the numerical solution (A2) to the exponen-

tial factors of the analytical solution (A2). In addition, due to the

differences in thermal properties, the to; values evaluated at -12°C were 8“

greater than those values evaluated at -33°C (Eq. (5.7)), and conse- I. ’

quently, there were more significant terms using the thermal properties 1

evaluated at -12°C than at -33°C. 1‘

Since the first three exponential terms were the most significant in

'
4
'

‘
2
7

'
"
1

'
—

"
“
I

the analytical solution, it was decided that the first three eigenvalues

of the numerical solution be within 5% of the corresponding analytical  

I
_
.
.

.
.

.
«

.
.
-
.

terms. The eigenvalues were calculated as percentages of the associated

A; terms for the eight conditions shown in Tables 5.2a,b with 2 s 9 in

 

Figure 5.1. From these results, three eigenvalues were found within 5%

of A; using nine or more nodes, for the thermal properties evaluated at

both -33 and -12°C. Therefore, Ax - 0.01625 meters (Table 5.1) was the

maximum spatial increment considered, given the 5% accuracy criteria.

Segerlind (1986) has proposed that the limiting time step with

regards to accuracy be based on the time for the solution to reach

steady state (tss). The first eigenvalue controls the time required to

reach steady state. Considering the exponential term as the dominant

factor at tss’ he has suggested the following criteria for determining

the maximum time step for accuracy (Atac)
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Table 5.4a Summation Terms in Series Solution and Resulting Time

for Terms to Vanish (Properties Evaluated at ~33°C).

 

*; R2,0 R2,Lx/2 R£,Lx t:

2 (sec'l) (°C) (°C) (°C) (sec)

1 2.173-10’5 1.065 1.01 0.86 214,818

2 5.932-10'“ -8.05.10'2 5.55-10'2 7.98-10'2 3,517

3 2.227-10'3 2.22-10'2 222-10'2 2.21.10‘2 358

4 4.949-10‘3 .1.01o10'2 -2.74-10'“ 1.01.10‘2 2

5 8.760-10'3 5.71-10'3 -5.71-10‘3 5.71-10‘3 <1

6 1.369-10‘2 -3.66o10'3 6.00.10'“ 3.67-10'3 <1

7 1.965-10'2 2.55-10‘3 255-10'3 2.55-10'3 <1

8 2.672-10’2 -1.88-10'3 -1.94-10‘5 1.88-10'3 <1

=====__. 9 3.492-10'2 1.44.10’3 1.44.10‘3 1.44-10‘3 <1
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Table 5.4b Summation Terms in Series Solution and Resulting Time

for Terms to Vanish (Properties Evaluated at -12°C).

 

*2 R2,0 R2,Lx/2 R£,Lx t:

2 (sec'1> (°C) (°C) (°C) (sec)

1 1.435-10'S 1.07 1.01 0.85 325,782

2 3.563.10'“ -8.97-10'2 6.95-10‘3 8.86-10'3 6,158

3 1.328-10'3 2.51-10'2 -2.51-10‘2 2.50-10'2 698

4 2.946-10'3 -1.14-10'2 -3.10-10'4 1.14.10'2 45

5 5.210-10'3 6.47-10'3 6.47.10“3 6.47-10'3 <1

6 8.124-10‘3 -4.16.10'3 6.80-10'5 4.16-10'3 <1

7 1.168.10'2 2.89-10'3 .2.89-10'3 2.89-10'3 <1

8 1.589-10’2 -2.13-10‘3 -2.50.10'5 2.13-10'3 <1

9 2.074.10‘2 1.63-10'3 1.61.10'3 1.61-10'3 <1  
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At - —§§ (5.15)

where,

The values for the time step based on accuracy are shown in Table 5.5.

From comparison of these values (tss) with the times steps resulting

from the oscillation criteria (Tables 5.2a,b), the oscillation criteria

was far more limiting than the accuracy criteria, in this particular

problem.

5.1.3 Selection of the Optimal Time Step and Spatial Step

To ensure an efficient and accurate solution without oscillations,

maximum spatial and time steps were chosen to satisfy both the oscillac

tion and accuracy criteria discussed in the two previous sections. From

the analysis of accuracy, the maximum spatial step was found using a

minimum of nine nodes, and the limiting time step, based on the oscilla-  
tion criteria for nine nodes, was 141 seconds, using thermal properties

evaluated at -33°C, and 238 seconds, using thermal properties evaluated

at -12°C. A time step of 120 seconds, which satisfies the oscillation

criteria for both sets of properties was used.

Segerlind (1986) has suggested a procedure for analyzing the long

time solution using the values of Ax and At chosen above. In this

analysis, the first exponential term of the analytical solution after N

(tmax/At) time steps with the numerical approximation. In this case the

maximum time is 18 hours or 64,800 seconds, which is greater than t:

using thermal properties evaluated at both -33 and -12°C; therefore,
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Table 5.5 Limiting Time Step Based on Accuracy.

 

At

ac

(sec)

Temperature

(No. of Nodes)

 

(5)

-33°C -12°C

(9) (13) (17) (5) (9) (13) (17)

 

 
2288 2300 2301 2249 3471 3475 3535 3476
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only one eigenvalue of the numerical solution is significant. The

numerical approximation to exp[ -A:-t ] was found using the Padre expan-

sion of the Crank Nicolson finite difference method with N time steps.

The Padre expansion for the first exponential term was found by

considering both the analytical and numerical solutions to the time

dependent differential equation is the separation of variables solution

of the linear heat conduction problem, Ozisik (1980)

$199..at + A1 0 0 (5.16)

The analytical solution is

(5.17)

where,

a '- constant

From Figure 5.2, the Crank-Nicolson approximations to the time deriva-

tive, and O are determined as  
1 0

¢ 2 - e
g; - “—33—'— (5.18)

1 O

2 - 2;_§_2_ (5.19)

Substituting Eqs. (5.18), and (5.19) into Eq. (5.16) and replacing A: by

the Crank-Nicolson approximation (A1), and solving for 2, yields

1 (1 ' AlAt/Z) o

( 1 + AlAt/2 )‘8

 

(5.20)
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O

A ¢(t)

Crank-Nicolson

{’0 __ ___ __ Approximation

M
of at  

 
I l

i .
l l

l I

At 2At

Figure 5.2 Crank-Nicolson Approximation for the Time Derivative.
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After n time steps, the Crank-Nicolson approximation is

n [ ( 1 - 1,88/2 ) ]“ 0

¢ _ .8 (5.21)
( 1 + 1,At/2 )

0

Evaluating Eq. (5.17), at t - 0, gives 0 - a, and therefore, 0 - a, and

the Crank-Nicolson approximation to the exponential term is

 

e (5.22)

-1§t ( 1 - 1,36/2 ) n

z ( 1 + 1,At/2 )

where t - n-At.

The exponential term of the analytical solution after t1 - 64,800

seconds, and the approximate numerical term after n - 540 time steps (At

- 120 seconds) for properties evaluated at -33 and -12°C are

1. Thermal properties at -33°C:

 

 

-A:°tl
\

e - 0.2446

1 - AI-At/Z
> 99.9% Accuracy

- 0.2444

1 + AI-At/Z J

where: 15 - 2.173-10‘S

1, - 2.174.10‘5

2. Thermal properties at -12°C:
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-A:0tl ‘

e - 0.3946

1 A At/2 > 99.7% Accuracy
. 1.

- 0.3936

1 + A,oAt/2 ,

5
where: 1: - 2.173-10‘

1, - 2.174-10‘S

5.1.4 Analysis of Time and Spatial Steps for Other Geometries

Cylindrical and spherical geometries were considered using nine

nodes and compared with results from the previous sections. The eigen-

values from the numerical solution were found by modifying the

conductivity and heat capacity matrices, Eqs. (5.3a,b), to account for

the different geometries, and solving Eq. (5.4) as described in Section

5.1.1. The limiting time steps for the numerical oscillation criteria

and for the accuracy criteria proposed by Segerlind (1986) were found

using Eq. (5.5) and Eq. (5.15), respectively, for the thermal properties

evaluated at -33 and -12°C.

Results are shown in Table 5.6 for both cylindrical and spherical

geometries using nine nodes. Again, the oscillatory criteria was more

restrictive on the time step than the accuracy criteria of Eq. (5.15).

Comparing Table 5.6 with Table 5.2 a,b revealed that Atosc for the

sphere was significantly less than that for the cylinder, and that the

Atosc for the infinite slab was least restrictive of all. For the

thermal properties evaluated at both -30 and -12°C, the critical time

steps for no oscillations using spherical and cylindrical geometries

were 63 and 83%, respectively, of those for an infinite slab.
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Table 5.6 Limiting Time Steps for Cylindrical and Spherical Geo-

 

metries.

Cylindrical Spherical

Geometry Geometry

-33°C -12°C -33°C ~12°C

H.
At (sec) 117 197 89 150

osc

Atac (sec) 1072 1674 706 1089 1
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The eigenvalues of the numerical solution were compared with the

exponential terms (A2) of the analytical solution; the analytical solu-

tions for an infinite solid cylinder and a solid sphere with a

convective boundary condition at r - 0.13 m are given below (Carslaw and

Jaeger, 1959).

1. For an infinite solid cylinder

T(r,t) - I, + (Tco Lx- To)-[ 1 - E Cloexp(-A2-te)] (5.23a)

where

 

2(hk)-Jo(§£r)

02 ' 2 2
Lx-(g + bk >-Jo<§,Lx>

1‘ - (k/p0p>-:2
2 2

hk - thx/k

th root of the transcendental equationand, (1 is the 2

c,°Jo(:,-Lx) - (hk)-Jo(c,Lx) (5.23b>

2. For a solid sphere

T(r,t) - To + (Tdo Lx- To)-[ 1 - E S,-exp(-A£ote)] (5.24a)

where
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2-Lx-hkogi + (Lx-hk-1)2

s -

)22

 

~sin(Lx-§£)-sin(ro§£)

+ Lx-hk-(Lx-hk-1)]
r°§i [(Lx'§£

e

1, - (mom-cf,

hk - thx/k

and, {1 is the 2th root of the transcendental equation

Lx-(lcot(§£-Lx) - 1 - Lx-hk (5.24b)

The time for each term in the summation to be insignificant (t?) was

also determined for the cylinder and the sphere, using the criteria

presented in Eq. (5.14), giving

a. Cylinder:

 
S 0.01 (5.25a)

b. Sphere:

I
A

0.01 (5.25b)

 

The times for each summation term to become insignificant were

calculated and compared for the solid sphere and the infinite solid

cylinder. Results for the first six eigenvalues are shown in Table

5.7a,b for thermal properties evaluated at -33 and -12°C, respectively.
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Geometries (Properties Evaluated at ~33°C).

Table 5.7a Comparison of t: Values for Cylindrical and Spherical

 

 

 

Cylindrical Spherical

Geometry Geometry

‘;_1 C2,0 5: *;_1 82,0 ‘7

(sec ) (°C) (sec) (sec ) (°C) (sec)

4.48-10'5 1.106 105,066 .80-10'5 1.131 69,550

8.58-10’4 0.144 3,111 .16-10'3 0.202 2,582

2.76-10'3 6.04.10'2 651 .34-10'3 0.118 738

5.76.10’3 3.49-10'2 217 .61o10'3 8.35-10'2 321

9.84-10‘3 2.34-10‘2 86 .10-10'2 6.48-10'2 170

1.50-10'2 1.70-10'2 35 .64.10'2 5.29-10'2 102     
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(D

2

Geometries (PrOperties Evaluated at -12°C).

Table 5.7b Comparison of t Values for Cylindrical and Spherical

 

 

Cylindrical Spherical

Geometry Geometry

*;_1 C2,0 5: *2_1 S2,0 5:

(sec ) ('C) (sec) (sec ) (°C) (sec)

2.98-10'5 1.120 158,543 4.61-10'5 1.149 102,945 inL

5.15-10’“ -0.162 5,410 7.00-10'4 -0.228 44,670 ,

1.65-10'3 6.83-10'2 1,167 2.00-10'3 0.133 1,294 ’

3.43-10'3 3.96.10'2 401 3.95.10'3 .9.46-10'2 568

5.85-10'3 2.65-10'2 167 6.57-10'3 7.34-10'2 304

8.93-10'3 1.93-10'2 74 9.81-10‘3 5.99-10‘2 183      
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The first two terms in the summation approach zero faster for the sphere

compared with the cylinder, and for the cylinder compared with the

infinite slab (Table 5.4a,b), as would be expected due to the increased

surface area to volume ratio of the sphere and cylinder, compared with

the slab. However, the time for the remaining terms in the summation to

become insignificant is longer for the sphere compared with the

cylinder, and longer for the cylinder compared with the slab, indicating

that more eigenvalues are significant when evaluating the accuracy

criteria for the sphere and cylinder. From Table 5.7a, with thermal

Properties evaluated at -33°C, there are four and six significant eigen-

values after 100 seconds for the cylinder and the sphere, respectively,

99mpared with three for the infinite slab (Table 5.4a). For properties

eva'-‘-‘--1a.ted at ~12°C, the number of significant terms increases to 5 terms

for the cylinder, and at least six terms for the sphere (Table 5.7b),

compared with three for the infinite slab (Table 5.4b).

The numerical eigenvalues, expressed as percentages of the analyti-

cal BXponential factors (A2) for the infinite solid cylinder and the

solid sphere are shown in Figure 5.3, using nine nodes and thermal

properties evaluated at -33 and -12°C. Only the first two eigenvalues

for bOth the cylindrical and spherical cases satisfy the 5% accuracy

criteria set for the infinite slab, indicating that a smaller position

Step (Ar) is required for the cylinder and the sphere, than for the

infinite slab to satisfy the given accuracy criteria.

In summary, using observations from the infinite solid cylinder and

the Solid sphere: (1) the limiting time step for the oscillation

criteria (Atosc) decreased as the surface area to volume of the geometry

increased; (2) the accuracy of the eigenvalues expressed as Ai/AZ-IOOSB

decreased with increased surface area to volume ratio; and (3) the time

be

quired for each exponential term to be insignificant decreased with
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increased surface area to volume ratio for the first two terms, but

increased for the remaining terms.

5.1.5 Analysis of Time and Spatial Steps for the Two Dimensional

Model

The analysis of the oscillation criteria and accuracy of the one

dimensional problem required the determination of the numerical eigen-

values as shown in Eq. (5.4) for an L by M matrix (L, M - number of

nodes in x and y directions). The matrices associated with the two

dimensional problem are considerably larger: for equal number of nodes

in two dimensions, the coefficient matrices will be L2 by M2, for which

it is generally impractical to solve for the eigenvalues, except for

small values of L and M. Therefore, a simplified analysis was sought

which would give insight into oscillation criteria and the accuracy of

the solution.

In the previous discussion of the oscillation criteria, it was found

that the maximum eigenvalue of the elemental matrices (AéiL) provided an

excellent estimate of Amax of the global matrix. For the two dimen-

sional element, the elemental matrices are shown below (Belytschko and

Hughes, 1983)

a + b -b 0 -a

(e) -a a + b -b 0

k _
(5.26a)

0 -a a + b —b
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where a - BA! and b - EA;

c - g-gp-(Ax-Ayzol (5.26b)

where I is the identity matrix. Assuming Ax - Ay, and substituting

these matrices in to Eq. (5.10), resulted in the following expression

for A(e).

max

35.23. - 464L2- (5.27)
p°Cp(AX)

This expression for 28:; is four times the value of 28:; for the one

dimensional element, Eq. (5.11); therefore, the no oscillation time step

is four times as restrictive for the two dimensional case, as for the

one dimensional case with equal position increments.

The values for Amax calculated from the global matrix are compared

with Aéi; for both a 3x3 and a 4x4 two dimensional grid with Ax - Ay,

using thermal properties evaluated at -33°C. Again, results indicate

that for a finite difference grid, A(e) provides a good estimation of
max

A x within 5%, as shown in Table 5.8.

ma

5.1.6 Summary of Observations in the Determination of Finite Difference

Parameters

Two criteria were used in the selection of the time step and posi-

tion increment used in the finite difference solution. The position

increment (Ax) was selected to satisfy the accuracy criteria, and the

time step was determined according to the oscillation criteria. The

oscillation and accuracy analysis is summarized below.

1. The no oscillation time step is determined using the largest
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Table 5.8 Comparison of A(e) and A for a Two Dimensional Grid
max max

(Ax - Ay, Properties Evaluated at -33°C).

Grid Size

(position increment)

3x3 4x4

(Ax - 0.065m) (Ax - 0.0433m)

 

1 1.822-10'3 3.873-10'3
max

1(°) 1.765.10‘3 3.972-10'3
max

 

(%) 96.9% 102.5%   
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eigenvalue (Amax) of the set of finite difference equations.

2. The elemental eigenvalue (A(e)) is approximately the value of A
max max

within 99% accuracy for the one dimensional case and 95% accuracy

for the two dimensional case.

3. The no oscillation time step decreases as the surface area to volume

ratio of the geometric shape increases:

Atosc(slab) > Atosc(cylinder) > AtO c(sphere).
s

4. The no oscillation time step of a two dimensional grid with equal

position increments in the x and y directions is half the value for

the one dimensional grid, using the same position increment.

5. The oscillation time step at one temperature, given Atosc at a sec- “‘

ond temperature, is proportional to the inverse ratio of their res-

pective thermal diffusivities. *7

6. The position step was determined according to the accuracy of the .3

significant eigenvalues in the series solution.

7. The time for each term in the series solution to be insignificant

increased with decreasing thermal diffusivity.

8. The number of significant eigenvalues increased with increasing sur-

face to volume ratio.

 9. The limiting time step for accuracy, proposed as 1% of the total

time to steady state conditions, was not as restrictive as the time

step for the no oscillation criteria.

5.2 Parameters Used in the Solution of the Inverse Heat

Conduction Problem

The sequential regularization method, using finite differences, was

used to estimate surface heat transfer coefficients. This method re-

quires input values for: (l) the regularization parameter, a; (2) the
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order of regularization, W0, W,, or W2; (3) the number of future time

steps, r, used the sequential procedure; (4) and the time increment

between temperature measurements, Atm, in addition to the user adjus-

table parameters inherent in the finite difference technique discussed

in Section 5.1. The values selected for the spatial and times steps (Ax

and At) in the one dimensional direct problem were also used in the one

dimensional indirect problem. The time increment between temperature

measurements, Atm, was limited by the data aquisition unit used in the

experimental procedures, to a minimum value of 600 seconds.

Two criteria, the deterministic bias and the variance, were used in

determining optimal values for the parameters inherent to the inverse f3,

problem. The deterministic bias is defined as a measure of the bias or ly!‘

error in the estimator when input temperature measurement errors are

equal to zero. The variance is a measure of the estimators sensitivity

to random measurement errors (Beck et. al., 1985). The deterministic

bias and variance of the estimated heat flux for the nth time step, D?

and Vn, are defined by Scott and Beck (1985) as  
D? - E(q3) - q“ (5.283)

 
Vn

- 81133 - 12433)]2} (5.281»)

where qn is the true heat flux, 8(83) is the expected value of the

estimated heat flux with no errors in the temperature input values, and

E(83) is the expected value of am with random temperature measurement

errors.

It was desired to find parameter values which minimized both types

of errors. The mean square error, S, was defined as the sum of the

variance and the square of the deterministic bias



(sN)2 - vN + (01:)2 (5.29)

where N is the total number of time steps.

The problem used to evaluate the spatial and time steps (Equations

5.6a-d), assuming constant thermal properties and a surface heat trans-

fer coefficient of 7.85 W/m°C, was also used in the determining of the

sequential regularization parameters, with the exception that, in this

case, two 18 hour storage periods were used. The first storage period

was -30°C, and the ambient temperature for the second storage period was

-5°C. The initial temperature was set at -30°C. The analytical solu-

tion of this problem was solved to obtain temperature values at

x - Lx/2, corresponding to the location of the thermocouple in the

experimental procedures for the single layer slab described in Section

I

. i

f

I

i

4.3. These temperature values were used as input data for the sequen-

tial regularization solution of the IHCP.

The surface heat flux was first estimated using exact temperatures

from the analytical solution as input, and the deterministic error was  
calculated for various values of a and r, and for the zeroth, first and

second regularization order. The process was repeated using imposed

 random measurement errors in the temperature input values to estimate

the mean squared error.

5.2.1 The Deterministic Bias

The deterministic bias was estimated by Scott and Beck (1985)

N .51 0

n 2

De - [ E (thx - thx) ] (5.30)

n-l
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where hxzx is the estimated heat flux at the nth time step, and thx is

the constant heat flux value used in generating the input temperature

values for the IHCP.

The regularization parameter (a) regulates the degree the regular-

ization terms, shown in Equation (3.34a-c), influence the solution. The

number of future time steps, r, influences the stability of the solution

and computation time. As r becomes large, the solution approaches the

whole domain solution, and computation time increases significantly

(Beck, et. al., 1985). To determine the critical values for both of

these parameters on the solution, the surface heat flux values were

estimated using various values of a and r, for the zeroth, first and

second order regularization orders, with the time step for temperature

measurements, Atm, equal to 600 seconds. Thermal properties were

evaluated at ~33°C, since from Tables 5.2a,b, the time step for no

oscillations was most restrictive at that temperature.

The range of values for r were conservatively chosen from two to

fifteen, based on observations by Scott and Beck (1985), who noted that

the sequential regularization solution of the IHCP is independent of r

for r z 8. In determining the range of values considered for the

regularization parameter, a, it was noted that the regularization term

is added to the sensitivity coefficient matrix product, XIX, in the

regularization method. Therefore, the magnitude of the coefficients in

the X?X.matrix, with a equal zero and r equal fifteen, were used to

determine the range of values for a. The magnitudes of the XIX.matrix

9 3
product ranged from a 10' to a 10'

T

1 “1'

are of order one; therefore, values of a ranging from 10'

The regularization parameter, a,

is multiplied by H i - 0, l, or 2, which, from Equations (3.36a-c)

9
to 10.3 were

used to determine its influence on the solution.

an

 



113

The deterministic error was calculated and compared for discrete

values of a and r. Results are shown in Tables 5.9 a-g, for r equal 2,

4, 6, 8, 10, 12, and 15; for the zeroth, first and second regularization

orders; and for a - 10'9, 10'8, 10'7, '6, '5, 10'“, and 10‘3,10 10

respectively. The time step between temperature measurements, Atm,

was equal to 600 seconds and thermal properties were evaluated at -33°C

in all cases.

The results for exact temperature input values support the observa-

tions by Scott and Beck, (1985), in that the deterministic bias shows

little dependence on r, for r greater than eight. The critical values

for the regularization parameter, a, ranged from 2 10-4 to z 10.7 for I“

all regularization orders. For a 2 10-5, the deterministic bias, De,

6’ D
increased with increasing order of regularization, and for a s 10- e

decreased with increasing a.

5.2.2 Mean Squared Error

The hypothetical problem used to determine the deterministic bias

was also used to estimate the mean squared error. Input ambient and

 internal temperatures were modified by the addition of normally dis-

tributed random numbers.

The standard deviation used for the random numbers was determined

from the error limits of the thermocouples used in the experimental

procedures. The error limits of the T-type thermocouples were given as

the greatest value between (Omega, 1985)

i 1 °C or i 1.5 % of maximum |°CI
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9
Table 5.9a. Deterministic Bias for a - 10- (Atm - 600 seconds;

thermal properties evaluated at -33°C).

 
 

2 4 6 8 10 12 15

W0 ------ 75.44 78.26 78.24 78.24 78.24 78.24

W, ------ 54.72 69.09 68.88 68.91 68.91 68.91

W, ------ 102.44 28.16 28.78 28.99 27.62 28.14

       
 

 

 
Table 5.9b. Deterministic Bias for a - 10-8 (Atm - 600 seconds; #1? 3'

thermal properties evaluated at -33°C).

 

2 4 6 8 10 12 15

W0 22.02 55.73 54.86 54.88 54.89 54.89 54.89

W, ------ 45.13 37.48 37.52 37.55 37.55 37.55

W, ------ 22.21 23.78 26.22 26.66 26.70 26.71
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Table 5.9c. Deterministic Bias for a - 10.7 (Atm - 600 seconds;

thermal properties evaluated at -33°C).

 

2 4 8 10 12 15

W0 25.02 24.98 24.96 24.94 24.93 24.93 24.93

111 29.40 13.57 18.06 19.16 19.29 19.29 19.29 15‘

W2 ------ 18.30 15.57 15.25 15.49 15.64 15.67 A?»

 

       
 

Table 5.9d. Deterministic Bias for a - 10'6 (Atm -

 

thermal properties evaluated at ~33°C).

600 seconds;

 

2 4 6 8 10 12 15

W0 12.33 11.77 14.78 14.81 14.84 14.84 14.84

W1 24.12 9.92 12.36 12.63 13.13 13.13 13.14

W, ------ 7.90 9.41 11.82 11.77 11.90 11.96
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Table 5.9e. Deterministic Bias for a - 10.S (Atm - 600 seconds;

thermal properties evaluated at -33°C).

2 4 6 8 10 12 15

W0 16.88 12.37 13.17 14.06 14.09 14.42 14.43

W1 81.51 10.39 13.42 13.49 13.88 13.90 13.95 ._

W2 ------ 31.64 14.53 15.66 15.62 15.66 15.71 3%.»

        

Table 5.9f. Deterministic Bias for a - 10'4 (Atm -

 

thermal properties evaluated at -33°C).

600 seconds;
 

 

 

2 4 6 8 10 12 15

W0 64.51 22.52 19.05 20.05 20.05 19.93 20.02

W1 129.51 35.43 21.46 24.05 23.01 22.67 22.83

W2 ------ 102.44 28.16 28.78 28.99 27.62 28.14
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Table 5.9g. Deterministic Bias for a - 10'3 (AtIn - 600 seconds;

thermal properties evaluated at -33°C).

  

       

r

2 4 6 8 10 12 15 ;*
. 4

W0 125.83 113.61 51.72 39.38 36.78 37.07 37.64

w1 137.32 107.44 56.38 42.82 46.31 47.29 44.81 j

w2 ------ 133.23 144.48 51.26 55.81 58.32 53.87 3
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The experimental data ranged from a —33°C to -5°C, therefore, the first

criteria (i 1°C) was the greatest. The standard deviation was calcu-

lated assuming that i 1 “C represented the 99.5% confidence interval of

the thermocouple temperature measurements. The standard deviation was

calculated from the ta v probability distribution, with a - 99.5%, and

/2.

the number of degrees of freedom, u, equal to five, corresponding to the

six thermocouples used in the experimental procedures. Therefore, the

standard deviation was estimated from the confidence interval (CI),

where (Walpole and Myers, 1978)

t 00

CI - i" 1°c - 1 £&”—5- (5.31) w.-

01,)

where the number of thermocouples, Nt’ equaled six, and ta/Z u - 3.365. .1

From Equation (5.31), a was estimated to be 0.73°C. This was considered it I

to be a conservative estimate, since the largest variation between _h3’

thermocouples located within the Karlsruhe test substance from the

 
experimental results was only 0.7°C.

Beck, et. a1. (1985) recommended using a single temperature measure-

 

ment error as an estimation of the variance. An alternate approach,

used by Scott and Beck, (1985) is sometimes referred to as the Monte

Carlo Method. In this case, the heat transfer coefficient is estimated

from input values with added random temperature measurement values. The

mean square error was estimated from the estimated heat transfer coeffi-

cient using random errors in the input temperature values as follows

. N . 2 0.5

n

- [g [..Lx - mm] ] (5.32.
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A

Since the value of S1 depends on the set of random numbers added to the

input temperatures, different sets of random numbers (i) were added to

A

the input temperature values to calculate different values for 81' The

mean squared error, 8, was determined from the average of the Si values

from twelve different sets of random numbers

N
r

S - E (Si/i) (5.33)

n-l

where twelve different sets of random numbers (Nr) were used.

From Tables 5.9a-g, the range of a for which the deterministic error

was less 25, was selected as the range over which the mean squared error

7
was determined. The critical values of a ranged from a 10- to - 10-4.

Values of S were calculated for a - 10-4, 10-5, and 10-6, r - 4, 6, 8,

A

10, and 12, and for W0, W1, and W2. Results for the average mean

squared error S, and the standard deviation of S are shown in Tables

4 -5
5.10a-c, for a - 10' , 10 , and 10-6, respectively. Since the results

for S using a - 10.6 were much greater the those using a - 10-5, the

mean squared error using a - 10'7 was not considered.

The results indicate that S calculated using a - 10'4 provided the

lowest mean squared error 8, and that the solution is independent of r,

for r 2 10. The zeroth order regularizer provided a slightly better

estimator than the first or second order estimators.

5.2.3 Time Increment between Temperature Measurements

Since the time increment between temperature measurements was

limited to 600 seconds by the data aquisition device used in the ex-

perimental procedures, the values of Atm were limited to 600 seconds or
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A

 

 

 

Table 5.10a. Average Mean Squared Error (S) and Standard Deviation

of s (as) for a - 10'6 (Atm - 600 seconds; thermal

properties evaluated at ~33°C).

4 6 8 10 12

W0 S 231.08 205.57 200.42 197.60 194.18

as 38.06 45.12 43.45 43.77 44.18

W1 S 167.32 158.89 131.57 125.26 123.85

as 17.53 18.54 15.44 14.94 14.35

W2 5 254.36 100.32 108.39 106.21 99.74

as 23.72 6.52 7.94 8.38 8.67
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A

 

 

 

Table 5.10b. Average Mean Squared Error (S) and Standard Deviation

of s (as) for a - 10'5 (Atm - 600 seconds; thermal

properties evaluated at -33°C).

4 6 8 10 12

W0 8 92.52 72.87 72.32 64.70 62.92

a 7.51 5.96 6.94 8.85 8.70

W1 8 100.91 49.51 55.08 48.02 48.10

a 7.61 4.66 4.19 4.09 4.47

W2 S 44.20 55.86 44.94 42.15 41.41

a 2.36 5.17 3.97 4.36 4.15
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A

 

 

 

Table 5.10c. Average Mean Squared Error (S) and Standard Deviation

of s (as) for o - 10'“ (Atm - 600 seconds; thermal

properties evaluated at -33°C).

4 6 8 10 12

W0 S 36.37 30.89 27.25 26.99 26.90

aS 1.77 1.88 1.56 1.58 1.60

W, S 40.34 32.84 28.84 29.19 28.34

aS 1.09 1.70 1.22 1.33 1.31

W2 S 102.50 34.72 31.72 31.46 30.22

aS 0.32 0.93 0.58 0.52 0.48
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a multiple of 600 seconds. To determine the influence of Atm on the

mean squared error, the solution was determined for the zeroth, first

and second regularization orders using a Atm of 1200 seconds, with ten

future time steps and a - 10-4. Random errors were again added to the

input temperature values, and the average mean squared error was calcu-

lated from Equation (5.33) using twelve sets of random numbers (Nr -

12). Since the mean squared error is dependent on the total number of

time steps, N, as shown in Equation (5.32), to compare these results

with those found using AtIn - 600 seconds, the resulting average mean

squared values were divided by the total number of time steps used in

each case to obtain an average mean squared error per time step, S

These values for 8* are shown in Table 5.11, along with the respective

standard deviations, a3, (aS divided by the total number of time steps),

for Atm - 600 seconds and Atm - 1200 seconds, with a - 10-4 and ten

future time steps. The results show that the average mean squared error

per time step is significantly higher using Atm - 1200 seconds than that

found using Atm - 600 seconds, for all regularization orders.

5.2.4 Selection of Optimal Parameters used in the Inverse Heat Conduc-

 tion Problem of Estimating the Surface Transfer Coefficient

The values for the regularization parameter, a, the number of future

time steps, r, the order of regularization, W1, 1 - 0, l, or 2, and the

time increment between temperature increments, Atm, were selected to

minimize the average mean squared error (S) in the solution. From the

results shown in Tables 5.9a-g, 5.10a-c, and 5.11, the following values

were selected for the parameters inherent in the sequential regulariza-

tion IHCP solution:

a - 10-4,
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A

*

Table 5.11. Average Mean Squared Error per Time Step (S ) and

*

Standard Deviation (as) for Atm - 600 and 1200 seconds

4

 

 

(0 - 10- , r - 10).

W0 w1 w2

Atm- 600 8* 0.129 0.139 0.150

a; 0.008 0.006 0.002

Atm- 1200 3* 0.188 0.203 0.238

a: 0.012 0.014 0.007
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r - 10,

W0 - 1, (W1 - W2 - 0), and

Atm - 600 seconds.

A

Surface heat transfer coefficients (hx estimated using bothLx)’

exact input temperatures and input temperatures with added random er-

rors, and the above values for the input parameters, are shown as a

function of time in Figure 5.4. The mean squared error for this par-

ticular set of random numbers (Si) was 23.7 W/m2°C. (From Table 5.10c, S

- 26.99 W/m2°C).

Several observations may be noted from the results shown in Figure

5.4. (1) At time, t - 0, the simulated product was exposed suddenly to

a change in ambient temperature from -30°C to -5°C. During this time,

the damping effect of the sequential regularization procedure on thx

A

was evident in the gradual increase of the predicted value of thx’

using exact data, to a constant value at t z 3 hours. (2) At t - 18

hours, when the simulated ambient temperature changed suddenly from -5°C

to -30°C, thx suddenly decreased, and then increased gradually to a

A

constant value as before with t - 0. (3) The sinusiodal nature of thK

using input temperatures with added random errors was a result of the

estimators tendency to smooth out variations in the input temperature

values. (4) The high variability of the estimated heat flux was a

result of the large standard deviation used in the random errors added

to the input temperature values.

The input temperatures (ambient temperatures and internal

temperatures) using exact data and using added random errors are shown

in Figure 5.5. Since the maximum variation in the input temperatures

with random errors was higher than that observed from the actual tem-

perature measurements, it is expected that the resulting variability in

the estimated surface heat transfer coefficient using temperature
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measurements as input will be less than that shown in Figure 5.4. The

surface heat transfer coefficient was estimated using a standard devia-

tion one half of that used previously (a(new) - 0.5-a(old) - 0.500.73 -

0.365°C). Results are shown in Figure 5.6; the maximum variation in

thx for this case was z 2 W/m2°C, corresponding to a maximum variation

in input temperatures of z 0.5°C.
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CHAPTER 6.

RESULTS AND DISCUSSION

Both analytical and inverse heat conduction methods were used in

estimating the surface heat transfer coefficient; results are discussed

in Section 6.1. The one and two dimensional direct numerical solutions

were verified by comparison with analytical solutions, assuming constant

product properties, and experimental results, assuming variable thermal

properties. These comparisons are described in Sections 6.2 and 6.3.

Some of the parameters affecting the temperature and quality dis-

tribution histories of a simulated food product were also investigated.

This study concentrated on two areas: (1) the effects of boundary condi-

tions (Section 6.4), and (2) the effects of size and geometry (Section

6.5). The primary objectives in this analysis were to determine how the

parameters associated with these areas affected the overall rate of

quality deterioration, and the variation of quality deterioration within

the product.

6.1 Estimation of the Surface Heat Transfer Coefficient

The surface heat transfer coefficient was estimated using both

analytical and inverse heat conduction methods. Both methods required

ambient and product temperatures, and in addition, the analytical solu-

tion required knowledge of the velocity profile over the surface of the
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product. The ambient and average product temperature measurements,

obtained in the first repetition for the single layer slab with one

exposed surface (Test la, Section 4.5), are shown in Figure 6.1.

(Measurements obtained in the second two repetitions are shown in

Figures E.1a,b.) These values were used in both analytical and inverse

solutions, and the velocity measurements for the analytical case were

determined experimentally, as discussed in Section 4.4..

6.1.1 Analytical Estimation of the Surface Heat Transfer Coefficient

The surface heat transfer coefficient was estimated using the

analytical methods described in Section 3.5.1. For both forced and free

convection to be significant, Eq. (3.22b) must be satisfied. The

Reynolds number in Eq. (3.22b) was determined using average velocity

measurements. The average air velocities over the product during the

first and second storage intervals, 01” and D from 0 to 18 hours and
2G’

from 18 to 36 hours, respectively, were estimated from the velocity

measurements, found using a hot wire anemometer, in each storage chamber

as described in Section 4.4. The kinematic viscosity was calculated

using the average ambient temperature values shown in Figure 6.1

(Incropera and Dewitt, 1985). For the first storage interval, the

average ambient temperature, T1co equaled -6°C, and for the second

storage interval, the average ambient temperature, T2co equaled -33°C.

(Similar values were found for the second two test cases, shown in

Figures E.1a,b.) The Reynolds number was calculated for both 18 hour

storage intervals from Eq. (3.21a). Results are shown below.
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U oLx

Re - ~23————9 - 2.74.103 0 2 r > 18 hours
Lx,1 v1

6 oLx ,

Re - -—&3————9 - 1.10.104 18 2 c a 36 hours
Lx,2 v2

where: Lxc - 0.118 m

film - 0.25 m/s 62m - 1.0 m/s

V1 - 1.296-10'5 m2/s v2 - 1.067-10"S mz/s

The Grashof number was calculated from Eq. (3.21b) by approximating

average internal product temperature measurements for the surface tem-

perature measurements. The expansion coefficient, fie, was determined

assuming an ideal gas, and using the average ambient storage temperature

values. Using the extreme average product temperature values at the

beginning and ending of both storage intervals, (T at 0, 18', 18+, and

36 hours) the maximum and minimum Grashof numbers were found at these

times, as

First storage interval:

S'Be,1°(§(0) - Tlm>oLx2
 

 

Ger - Vi - 9.35-10 t - 0 hrs

8-fi -<?<18) - T >-Lx3
e,l 1w c

- 2 - 2.16-106 t - 18‘ hrs

”1

Second storage interval:
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8-fi¢,2-(Y(18) - 52,,»sz
 

 

Gr - 2 - 1.24-107 t - 18+ hrs
Lx y2

g-fi -(?(36) - T )-Lx3
e,2 2m c

- 2 - 2.95.106 t - 36 hrs

”2

The criterion for both forced and free convection was calculated

from Eq. (3.22b) at 0, 18',l8+, and 36 hours. Results are shown below.

 

 

 

Ger

2 - 1.25 t - 0 hrs ‘

Re 0

Lx * Tlm - -6 C

- 0.29 t - 18'hrs J

Ger +

2 - 0.10 t — 18 hrs ‘

ReLx T - -33°c
r 200

- 0.02 t - 36 hrs

J 

The upper and lower limits of the criterion shown in Eqs. (3.22a-c)

were arbitrarily set from 0.1 to 10.0. Both forced and free convection

were found to be significant in all but one case; therefore, both forced

and free convection were considered in the analysis.

6.1.1.1 Forced Convection

Steady state analytical solutions are available for simple boundary

conditions such as a constant temperature or a constant heat flux at the

surface of a specified geometry. The actual conditions prevailing

r
‘
M
n
»
1
"

)
7
:

h
.
-
-
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during the experimental procedures were not bound to steady state condi-

tions or either of the two boundary criteria; however, the solutions to

these simplified conditions were used to provide order of magnitude

estimates of the surface heat transfer coefficients.

The Nussult numbers resulting from forced convection were calculated

from Eqs. (3.23a,b), for both the constant temperature and constant heat

flux boundary conditions, and for both 18 hour storage interval.

Prandlt numbers were found from the properties of air at T1”, and T2co

(Incropera and Dewitt, 1985). Results are shown in Table 6.1.

6.1.1.2 Free Convection

Nussult numbers resulting from free convection were calculated using

Eq. (3.25) for the first storage interval (Tlco > T), and Eq. (3.24a or

b) for the second storage interval (sz < T), depending on the magnitude

of the Rayleigh number. Since the maximum Rayleigh number for the

second storage interval was found to be < 107, Eq. (3.24a) was used.

Nussult numbers were calculated using average ambient and internal

product temperature measurements from the results shown in Figure 6.1.

Both Rayleigh and Nussult numbers are shown in Table 6.2.

6.1.1.3 Combined Free and Forced Convection.

Equation (3.26) with n equal 7/2 was used to calculate Nussult

numbers from combined free and forced convection for both aiding and

abating free convection. Heat transfer coefficients were determined

from the Nussult numbers using Eq. (3.27). Nussult numbers and result-

ing heat transfer coefficients for both aiding and abating flows are
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Table 6.1 Average Nussult Numbers Resulting from Forced Convection over

a Flat Plate.

 

 

 

 

Boundary Average Reynolds Prandlt Average

Conditions Ambient Number Number Nussult

Temperature

Tdo ReLx Pr NuF

Constant Temperature 31.09

-6°C 2.74-103 0.716

Constant Heat Flux 42.42

Constant Temperature 62.52

-33°c 1.10-104 0.723

Constant Heat Flux 85.30    
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Table 6.2 Average Nussult Numbers Resulting from Free Convection.

 

 

Time Rayleigh Average

(hours) Number Nussult

Number

RaLx(-106) KEN

0 6.67 13.72

Storage 3 5.13 12.85

Interval 6 3.85 11.96

No. 1 9 2.89 11.13

(-6°C) 12 2.44 10.67

15 2.05 10.22

18' 1.80 9.88

18+ 8.34 29.02

Storage 21 7.51 28.27

Interval 24 6.26 27.01

No. 2 27 4.59 24.99

(-33°C) 30 3.75 23.77

33 2.50 21.48

36 2.09 20.52   
E
.
_
_
_
.
_
_
_
1
:
n
‘
-
"
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shown in Table 6.3a for the constant temperature assumption, and in

Table 6.3b for the constant heat flux assumption.

6.1.1.4 Packaging Layer.

The effective packaging resistance was found using Eq. (3.28), from

the thickness and thermal properties of the packaging material. Since

the packaging layer was actually composed of three substances; the

paperboard box, the plastic film wrapping, and air trapped between the

two materials, (Section 4.5) Eq. (3.28) was modified as follows to

account for all three substances

k k k

h - -29 + —§ + —2i (6 1)
k L L L '

p pb a pf

where Lpb’ La and Lpf are the thicknesses of the paperboard, air inter-

face and plastic film, respectively. The thickness of the paperboard,

Lpb' was found to be 2 1.7 mm, and the plastic film was z 0.3 mm. The

air interface varied from 1 to 10 mm. Thermal conductivities were found

to be 0.18 W/m°C for the paperboard, and 0.2256 W/m°C for air at the

average temperature between -6 and -33°C (Incropera and Dewitt, 1985).

The thermal conductivity of the plastic film was 0.20 W/m°C (Modern

Plastics Encyclopedia 1984-85). This resulted in an effective packaging

coefficient, hpk’ ranging from 2.20 W/m°C to 18.10 W/m°C, and averaging

4.75 W/m°C.
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Table 6.3a Combined Free and Forced Nussult Numbers, RE, and Convective

Heat Transfer Coefficients, hxcv, assuming a Constant

Temperature Boundary Condition.

 

 

Time Aiding Flow1 Abating Flow2

(hours) RE hxcv RE hxcv

0 31.59 6.33 30.57 6.13

3 31.49 6.31 30.68 6.15

6 31.40 6.30 30.77 6.17

9 31.33 6.28 30.84 6.18

12 31.30 6.28 30.88 6.19

15 31.27 6.27 30.91 6.20

18' 31.25 6.27 30.93 6.20

18+ 63.71 11.61 61.27 11.16

21 63.61 11.59 61.38 11.18

24 63.45 11.56 61.55 11.22

27 63.23 11.52 61.79 11.26

30 63.12 11.50 61.91 11.28

33 62.94 11.47 62.09 11.31

36 62.88 11.46 62.16 11.32     
1. Free convection aiding forced convection.

2. Free convection opposing forced convection.
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Table 6.3b Combined Free and Forced Nussult Numbers, RE, and Convective

Heat Transfer Coefficients, hxcv, assuming a Constant Heat

Flux Boundary Condition.

 

 

Time Aiding Flow1 Abating Flow2

(hours) FE hxcv EH hxcv

0 42.65 8.55 42.19 8.46

3 42.60 8.54 42.23 8.47

6 42.56 8.53 42.28 8.48

9 42.53 8.53 42.31 8.48

12 42.52 8.52 42.32 8.49

15 42.50 8.52 42.34 8.49

18‘ 42.49 8.52 42.35 8.49

18+ 85.86 15.64 84.74 15.44

21 85.81 15.63 84.79 15.45

24 85.73 15 62 84.86 15.46

27 85.63 15.60 84.97 15.48

30 85.58 15.59 85.02 15.49

33 85.49 15.58 85.10 15.51

36 85.47 15.57 85.13 15.51     
1. Free convection aiding forced convection.

2. Free convection opposing forced convection.
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6.1.1.5 Overall Surface Heat transfer Coefficient.

Overall surface heat transfer coefficients, including the effects of

free and forced convection and the packaging layer, were found from Eq.

(3.29), using the results shown in Tables 6.3a,b, and in Section

6.1.1.4. Results for both aiding and abating flow conditions are shown

in Figures 6.2a,b, for constant temperature and constant heat flux

boundary conditions, respectively. There were insignificant differences

in both the constant temperature and constant heat flux solutions for

aiding and abating flow conditions, indicating that the free convection

term had very little influence on the solution.

6.1.2 Estimation of Surface Heat Transfer Coefficients using Inverse

Heat Transfer Estimation Techniques.

Surface heat transfer coefficients were estimated using the inverse

heat conduction (IHCP) techniques described in Section 3.5.2 from the

three test results using the single layer slab of Karlsruhe Test

Substance with one exposed surface (Tests la-c), described in Section

4.5. The experimental ambient and internal temperature values, shown in

Figure 6.1, for the first repetition of Test 1, and in Figures E.1a,b

for the second two repetitions of Test 1, and the optimum parameters

determined in Section 5.2.4 were used as input to the solution algorithm

outlined in Appendix D. Results for the surface heat flux and surface

heat transfer coefficients are shown in Figure 6.3, for the first

repetition, and in Figures E.2a,b for the second two repetitions.

Estimation of the surface heat flux, q, and the surface heat trans-

fer coefficient, thx’ produced similar results in all three

A

repetitions. In all cases, there is a sudden increase in both q and
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thx at t — 0 hours, and a sudden decrease followed by a sharp increase

in thx at t - 18 hours. These observations corresponded to the sudden

increase in the estimated surface heat transfer coefficient at t - 0

hours, and sharp drop followed by an increase in hx at t - 18 hours,
Lx

in the solution using exact data from a constant heat transfer coeffi-

cient as input (Figure 5.4). Therefore, the sudden changes in the

estimated surface heat flux, as shown in Figure 6.3, are assumed to be a

direct consequence of the solution method, and not characteristic of the

actual boundary conditions.

The estimation procedure provided relatively smooth curves for the

surface heat flux compared with those for the estimated surface heat

transfer coefficient. The algorithm to estimate q was designed to

dampen the effects of irregularities in the solution, by including

regularization terms and by incorporating several future time steps in

the procedure. The surface heat transfer coefficient, however, is a

direct function of g, which is a smoothed function, and the ambient

temperature, which fluctuates with the defrost cycle, as shown in Figure

6.1. To dampen the irregularities in the solution resulting from the

defrost cycles, the ambient temperatures for each storage interval were

A

averaged in the estimation of hx Results for the three repetitions,Lx’

using averaged ambient temperatures from Figures 6.1 and E.1a,b, are

shown in Figures 6.4a-c. The estimation of the surface heat flux was

unchanged; however, the irregularities in the estimation of hx were

Lx

damped using the average ambient temperatures.

Comparing hx for the two storage intervals indicated that dif-
Lx

ferent boundary conditions prevailed in each storage room. The two fans

in the first room were at the same end, and operated continuously during

each defrost cycle. This resulted in estimated surface heat transfer

coefficients which decreased smoothly, indicating that free convection
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was a significant factor, and that it abated the influence of forced

convection. The two fans in the second storage room were at opposite

ends, providing a mixed flow, and they cycled on and off in synchroniza-

A

tion with the defrost cycle. This resulted in a cyclic curve for thx

which followed the defrost cycle. Free convection appeared to have less

influence during this storage interval as shown by the small overall

change in magnitude in thx with time. This was assume to be a result

of the mixed flow conditions prevailing in the storage room.

6.1.3 Comparison of Results using Analytical and Inverse Heat Conduc-

tion Methods

In comparing the analytical and inverse heat conduction solutions

for the surface heat transfer coefficient, the assumptions used in

generating the solutions were first examined.

The assumptions made in generating the analytical solution are given

below.

1. Steady state conditions,

2. Constant temperature or constant heat flux boundary conditions,

3. Laminar, unidirectional air flow over surface of product,

4. Known temperature at surface of product,

5. Negligible changes at packaging interface, such as the build up

of frost,

6. One dimensional heat transfer,

7. Negligible moisture loss, and

8. Constant ambient temperature..

The assumptions used in the inverse heat conduction solution are as

follows.

1. One dimensional heat transfer,
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2. The surface heat transfer coefficient is a constant, or a

function of time only,

3. Homogeneous, isentropic thermal properties,

4. Temperature measurements are made at a known position within

product, and

5. Negligible moisture loss.

The assumptions used in the IHCP solution are consistent with the

conditions prevailing during the experimental procedures; however, many

of the assumptions used in the analytical solution conflict with these

conditions. Examples of conditions which conflict the assumptions used

in the analytical case are transient heat transfer, mixed flow condi-

tions, and known internal product temperatures (not at surface). The

assumptions used in the analytical solution were very restrictive,

compared to those used in the IHCP solution, which was designed to

accommodate a wide variety of boundary conditions and variable thermal

properties.

Both methods yielded surface heat transfer coefficients ranging from

2 to 18 W/m°C, as shown in Figures 6.2a,b and 6.4a-c. In the first

storage interval, the IHCP solution indicated that either free convec-

tion or the diminution of frost was the limiting factor influencing the

magnitude of the surface heat transfer coefficient, while in the

analytical solution, forced convection dominated. The four primary

factors influencing the magnitude and influence of free convection in

the analytical solution were: (1) the magnitude of the coefficients in

Eqs. (3.24a,b) and (3.25); (2) the magnitude of the difference between

the ambient and product temperatures, used in determining the Rayleigh

number; (3) the value of n used in Eq. (3.26); and, (4) the magnitude of

the air free stream velocity used in calculating the Reynolds number for

forced convection. The magnitudes of the coefficients in Eqs. (3.24a,b)
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and (3.25) were given for very specified flow conditions, and the op-

timum coefficients for the flow conditions used in this study may have

actually been greater or less than those presented in these equations.

Futhermore, since internal product temperatures were used instead of

A

surface temperatures, these estimated values of thx are assumed to

higher than those that might have been obtained using surface tempera-

tures. The value of n in Eq. (3.26) was also very influential: as n

increases, the influence of the higher Nussult number (free or forced)

increases exponentially; therefore, if n - 3 had been used, free convec-

tion would have been more influential. Finally, the variability of the

velocity measurements was high, and the velocity was assumed to be

constant over each storage interval, disregarding the defrost cycles.

In summary, small changes in the analytical determination of the surface

heat transfer coefficients may have resulted in more or less influence

from free convection.

Both solutions yielded little overall change in the surface heat

transfer coefficient with time during the second storage interval;

however, the IHCP solution responded to the defrost cycle, with

decreases and increases in the estimated surface heat transfer coeffi-

cient as the fans turned off and on. To detect similar variations in

air velocities using the analytical method, velocity measurements would

have been required throughout the storage interval.

Since the conductivity of air is very low, especially at low tem-

peratures, the air interface thickness, La’ provided the highest

resistance to heat transfer, and it was most influential in the deter-

mination of the overall surface coefficient. Therefore, using different

values for La changed the solution significantly, as seen in Figures

6.2a,b. The air interface thickness was very difficult to measure

accurately, and the measurements varied significantly, within a given
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package. The inverse heat conduction solution does not require

knowledge of the surface conditions in the estimation procedure; there-

fore it is not subject to the high variation in the analytical solution

resulting from the interface measurements. Furthermore, the analytical

solution does not account for the accumulation and diminution of frost

as the product is cooled and heated, both in the package interface and

on the surface of the product. The heat transfer coefficients of snow

and ice are 10 to 100 times greater than that of air; therefore, as the

frost layer accumulates or diminishes, the resistance to heat transfer

decreases or increases accordingly. This results in an increasing or

decreasing heat transfer coefficient.

The analytical solution provided a continuous, smooth estimation of

the surface heat transfer coefficients during each storage interval,

with a step change in the estimation of hx between storage intervals.

A

Lx

The IHCP method predicted, however, a sharp increase in thx at the

beginning of the first storage interval, a sudden dip in thx between

storage intervals, and a sharp drop in thx at the end of the second

A

storage interval. As discussed previously, these sudden changes in thx

are all assumed to be characteristic of the estimation method, and not

the actual boundary conditions. This indicates that this method does

not respond well to step changes in surface conditions.

In summary, although use of the analytical and IHCP methods yielded

surface heat transfer coefficients within similar ranges, (from 2 to 8

W/m°C for the analytical solution, and from z 5 to 17 W/m°C for the

inverse solution), several differences in the solution methods must be

noted. Unlike the analytical method, the IHCP method provided a solu-

tion valid for time dependent boundary conditions, without any

restrictions on the airflow pattern, or changes at the product surface,

such as frost accumulation. In addition, the analytical solution was
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highly dependent on experimental measurements of air velocity and air

interface thickness, which were both extremely variable and difficult to

measure accurately. In comparing the results for the three test cases,

A

shown in Figures 6.4a—c, almost identical estimations for thx were

obtained, indicating that the inverse method produces repeatable

results. The primary drawback of the inverse heat conduction method was

its poor response to step changes in surface conditions. Poor response

to step changes at the beginning and end of the overall experimental

test time can be avoided, however, by taking temperature measurements

before, and continuing measurements after the designated testing time

(Beck et. al., 1985).

6.2 Simulation of One Dimensional Heat Conduction Through a Food

Product

The one dimensional heat conduction program (Appendix B) was

verified by comparison with analytical and experimental results.

Analytical solutions obtained using constant thermal properties, and

experimental data (Section 4.5) from the single layer slab with one

exposed surface (Tests la-c), and the double layer slab with one exposed

surface (Tests 2a-c) were used in the evaluations.

6.2.1 Comparison with Analytical Solutions

The analytical solution, assuming constant thermal properties, was

determined for a step change in ambient temperature. The temperature

distribution within a body, initially at a uniform temperature, To, then

eXposed to constant ambient conditions, T160 and thx, at x — Lx, and

then subject to a step change in ambient conditions (T100 and hx atLx)
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time t is given below (Carslaw and Jaeger, 1959). (The boundary at x
1!

- 0 is insulated throughout.)

 

-A t

2

T(x,t) - To + (Tlm- To)-[ 1 - Rg-e ] 0 < t 5 t1 (6 2a)

, -A£t

T(x,t) - T2co - RI-To-e t1 < t s (tl+t2) (6.2b)

where

A - (k/ c )-c2
2 p P 2

7!.

2-hk-cos(§£x) .EIL

R3 - '

[((hk)2 + (3)-Lx + hk]-cos(§£Lx) ,

 
I -A£tl 1

To - T10 " To ‘1" ( T2” ..- T1”).e '1

hk - thx/k  

 

The times t1 and t2 were both set at 18 hours, and the thickness, Lx, ,

was set equal to 0.13 meters; all of these values were consistent with if

the values used in the experimental procedures for the single layer slab

with one exposed surface (Tests 1a-c). The ambient temperatures, T100

and T2”, and the heat transfer coefficient, hx were based on the
1x,

overall average values found from Tests la-c. The initial temperature

was set at -33°C, and the ambient temperatures, Tloo and T were set at

2w’

-6°C and -33°C, respectively. The average overall heat transfer coeffi-

cient, was found from Figures 6.4a-c to be 8.5 W/m2°C, and was used for

thx in the analytical solution. The thermal properties were calculated
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using the average values between -33 and -12°C. This range was deter-

mined from the minimum and maximum product temperature values shown in

Figures 6.1 and E.1a,b.

The numerical one dimensional solution was found using identical

initial and boundary conditions, and using both constant and temperature

dependent thermal properties. A time step of 120 seconds and a position

increment of 0.016 m were used in the numerical solution. These are the

same values proposed for use in Section 5.1.3.

The temperature histories at the mid-section of the slab (x -

0.065 m), from the analytical solution, using constant thermal

properties, and from the numerical solution, using both constant and

temperature dependent thermal properties, are shown in Figure 6.5. The

numerical solution with constant thermal properties provided an excel-

lent approximation to the analytical solution (using constant

properties). The effect of the temperature dependent thermal properties

was found to be very significant: at the end of the first storage inter-

val, the solution using variable thermal properties was 27% higher than

both analytical and numerical solutions using constant thermal

properties. This indicates the importance of accurate estimation of

thermal properties of foods during the freezing and post-freezing

processes.

Similar solutions were obtained using the same conditions, described

in the experimental procedures, for the double layer slab, with a thick-

ness (Lx) of 0.25 m, and only one exposed surface (Tests 2a-c). In

these tests, the methyl-cellulose boxes were layered two high, and both

storage intervals were increased to 24 hours. The same initial and

boundary conditions, average thermal property values, time step, and

Spatial increment used for the comparison with the single layer slab

CFigure 6.5), were also used in this comparison. Solutions for the
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temperature histories at Lx/4 (x - 0.0625 m), and 3-Lx/4 (x - 0.1875 m)

are shown in Figure 6.6. Again, the analytical and numerical solutions

using constant thermal properties were almost identical, while the

numerical solution using variables thermal properties yielded tempera-

ture values significantly higher.

6.2.2 Comparison with Experimental Results.

Results obtained using the numerical one dimensional heat conduction

program were compared to the experimental results obtained for the

single layer slab, with one exposed surface, (Tests 1a-c), and for the

double layer slab, with one exposed surface, (Tests 2a-c). In simulat-

ing the conditions in the experimental procedures, the predicted heat

transfer coefficients, shown in Figures 6.4a-c, were averaged over

specified time increments for each storage interval. These values were

used as input to the numerical model and compared with the experimental

results.

In using the numerical model to compare with the experimental

results, the surface heat transfer coefficient was determined in two

ways. First, the surface heat transfer coefficients were averaged over

the total storage interval, and second, the surface heat transfer coef-

ficients were averaged over two to four hourly increments over the total

storage interval. In each case, variable thermal properties, and iden-

tical product thicknesses (Lx - 0.13 m) were used. The thermal

properties were calculated using the initial freezing temperature, Tif’

given by Gutschmidt (1960), and the thermal properties of the unfrozen

methyl-cellulose, p, k, and Cp, given by Specht et. al. (1981), shown in

Table 4.1. The initial and ambient temperatures were obtained from

average initial product temperature and overall ambient temperature



0
.
0
 

-
5
.
0
-
;

—
1
0
,
0
-
4

—
i
5
.
0
'
1 I

O

O

‘7'

(3°) eJnlDJedLUSi

  0
A
n
a
l
y
t
i
c
a
l

S
o
l
u
t
i
o
n

(
x
=

L
x
/
4
)

0
A
n
a
l
y
t
i
c
a
l

S
o
l
u
t
i
o
n

(
x
=

3
*
L
x
/
4
)

—
-
—

N
u
m
e
r
i
c
a
l

S
o
l
u
t
i
o
n

(
L
o
w
e
r

C
u
r
v
e
:

—
—

N
u
m
e
r
i
c
a
l

S
o
l
u
t
i
o
n

(
U
p
p
e
r

C
u
r
v
e
:

—
-

N
u
m
e
r
i
c
a
l

S
o
l
u
t
i
o
n

(
L
o
w
e
r

C
u
r
v
e
:

—
-

N
u
m
e
r
i
c
a
l

S
o
l
u
t
i
o
n

(
U
p
p
e
r

C
u
r
v
e
:

L
X
/
4
)

3
v
a
/
4
)

L
X
/
4
)

3
¢
L
X
/
4
)

XXXX

 
 
 
 

S
l
a
b

T
h
i
c
k
n
e
s
s
,

L
x
,
=

0
.
2
5
m

I
n
i
t
i
a
l
T
e
m
p
.
=

—
3
3
°
C

H
e
a
t

T
r
a
n
s
.

C
o
e
f
.
=

8
.
5
W
/
m
’
°
C
,

a
t

x

=
0
.
0
W
/
m
°
°
C

a
t

x
=

O

L
x

C
o
n
s
t
a
n
t

P
r
0
p
e
r
t
i
e
s

}
V
a
r
i
a
b
l
e

P
r
o
p
e
r
t
i
e
s

A
m
b
.

T
e
m
p
.
=

-
6
°
C
,
0
—
2
4

h
o
u
r
s
;

—
3
3
°
C
,
2
4
—
4
8

h
o
u
r
s

 

 

 
 

r
’

I
r
t

8
1
6

2
4

T
i
m
e

(
h
o
u
r
s
)

F
i
g
u
r
e

6
.
6

O
n
e

D
i
m
e
n
s
i
o
n
a
l

N
u
m
e
r
i
c
a
l

S
o
l
u
t
i
o
n

C
o
m
p
a
r
e
d

w
i
t
h

A
n
a
l
y
t
i
c
a
l

S
o
l
u
t
i
o
n
w
i
t
h

C
o
n
s
t
a
n
t

T
h
e
r
m
a
l

P
r
o
p
e
r
t
i
e
s

o
f

K
a
r
l
s
r
u
h
e

T
e
s
t

S
u
b
s
t
a
n
c
e

a
t

x
-

L
x
/
4

a
n
d

x
-

3
-
L
x
/
4
.

 

r

3
2

4
0

4
8

158



159

measurements over each storage interval. Again, an insulated boundary

condition was imposed at x - 0. The initial and boundary conditions

used in the numerical solution are shown in Table 6.4.

Results are shown in Figure 6.7 for the first repetition using the

single layer slab with one exposed surface, (Tests la), and in

Figure E.3a,b for the second two repetitions (Tests lb,c). In all cases

the solution obtained using incrementally averaged surface heat transfer

coefficients yielded very similar values as the experimental results.

This was expected, since the one dimensional solution was used directly

in estimating the surface heat transfer coefficients.' The temperature

solutions obtained using overall averaged surface heat transfer coeffi-

cients yielded slightly lower values than the experimental data.

To compare the numerical solution with the results of the two layer

slab with one exposed surface (Tests 2a-c), the surface heat transfer

coefficients shown in Table 6.4, calculated using the experimental

results for the single layer slab, were used. The time increments for

the surface heat transfer coefficients were adjusted to account for the

longer storage intervals (24 hours) used in the experimental procedures

for the double layer slab, compared with the intervals (18 hours) used

for the single layer slab. The initial and ambient temperatures used in

the numerical solution were based on the average initial and ambient

temperatures for the experimental results of the double layer slab.

These values are shown in Table 6.5.

Numerical solutions were found at Lx/4 (x - 0.63 m) and at 3-Lx/4

(x - 0.188 m), and compared with temperatures measurement at ap-

proximately the same locations in the double layer slab configuration,

described in Section 4.2. These comparisons are shown in Figure 6.8,

for the first repetition of the experimental test using the double layer

slab, and in Figures E.4a,b, for the second two repetitions of the test.
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Table 6.4. Surface Heat Transfer Coefficients used in the Numerical

Solution in the Comparison with Experimental Results of the

Single Layer Slab with One Exposed Surface (Tests la-c).

 

 

  
   
 

Surface Heat

Transfer Coefficient

(W/m2°C)

Time Test la Test lb Test lc Average

Storage Interval l:

0 - 2 hr 12.31 11.90 12.00 12.07

2 - 4 hr 12.16 11.81 11.99 11.99

4 - 6 hr 11.18 11.09 10.78 11.01

6 - 8 hr 9.11 9.48 9.10 9.23

8 -10 hr 7.81 7.85 .55 7.74

10 -12 hr 6.44 6.63 6.47 6.51

12 -14 hr 5.65 5.93 5.88 5.82

l4 -16 hr 5.56 5.66 5.71 5.65

16 -18 hr 5.49 5.45 5.58 5.51

Storage Interval 2:

18 -20 hr 5.37 6.62 6.65 6.21

10 -12 hr 7.34 9.20 9.46 7.44

12 -14 hr 9.24 10.86 11.10 10.40

14 -16 hr 9.56 10.86 10.91 10.38

Average for Storage

Interval 1: 8.41 8.42 8.34 8.39

Average for Storage

Interval 2: 8.37 9.73 9.93 9.34

Initial and Storage Temperatures (°C)

To -33.0 -31.2 ~31.5 -31.9

T -6.0 -6.0 -5.9 -6.0
«7,1

T ~33.6 -33.5 -33.0 -33.4
00,2     
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Table 6.5. Initial and Ambient Temperatures used in Numerical Solution

for Comparison with Experimental Results using the Double

Layer Slab with One Exposed Surface (Test 2a-c).

Initial and Storage

Temperatures (°C)

Test 2a Test 2b Test 2c

 

To -25.9 -27.7 -24.0

T - 6.0 - 6.1 - 6.1
00,1

T -29.2 -26.9 -26.0
«3,2     
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In all cases, the predicted values from the numerical solution using

variable thermal properties were significantly lower than those obtained

experimentally. In addition, the predicted values nearer the surface at

x - 0.188 were less accurate than those obtained near the insulated

surface at x - 0.063 m. (After 24 hours, results yielded a 37% error at

x - 0.188 m, while the error at x - 0.063 m was 9%.)

The following explanations for these results were proposed: (1) the

initial freezing point of the methyl-cellulose was actually -0.7°C

(Specht et. al., 1981), and not -1.0°C, as given by the original source,

Gutschmidt (1960); (2) the assumption of negligible resistance to heat

transfer due to the packaging interface within the total product mass

was invalid; and, (3) the assumption of perfect insulation along the

first boundary (at x - 0), used in the experimental procedures, was

invalid.

To test these hypothesis, the numerical simulation was first

repeated using Tif - -0.7°C, instead of Tif - -1.0°C, as given by

 Gutschmidt (1960), to determine the temperature dependent thermal

properties. All other input values for the numerical model remained

unchanged from those used for the solution shown in Figure 6.8. The I

numerical solutions at x - Lx/4 and x - 3-Lx/4 are compared with the

experimental results in Figure 6.9. Comparing the numerical solutions

in Figure 6.8, using Tif - -l.0°C, and in Figure 6.9, using Tif -

-0.7°C, there was very little difference in the numerical solutions,

indicating that the difference in the numerical and experimental values

was not primarily a result of the differences in the magnitude of Tif

found in the literature.

The second explanation, proposed to explain the differences between

the numerical and experimental results, was that the assumption of
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negligible resistance to heat transfer due the internal packaging be-

tween the containers was invalid. To test this hypothesis, the extreme

case of infinite resistance to heat transfer at the packaging boundary

was considered. The numerical simulation shown in Figure 6.8 was

repeated using an insulated boundary condition at the location of the

internal packaging boundary (Lx/2). This problem was similar to the

case of the single layer box with one exposed surface (Test la-c). The

numerical solution at 3-Lx/4 (x - 0.188 m) for this hypothesis was

compared to the experimental and previous numerical results, given in

Figure 6.8 at the same location. Results are shown in Figure 6.10. The

experimental results fall between the two extreme cases of no resistance

to heat transfer and infinite resistance to heat transfer at the packag-

ing interface, supporting the hypothesis that the assumption of

negligible resistance to heat transfer at the packaging interface was

invalid.

The third hypothesis was that the assumption used in the experimen-

tal procedures, of a perfectly insulated boundary condition at the inner

container surface (x - 0), was invalid. The container which held the

methyl-cellulose paperboard boxes was designed to limit the heat flow at

the unexposed surfaces to less than 1% of the expected heat transfer

rate at the exposed surface, assuming equal surface heat transfer coef-

ficients on all sides of the container. However, the bottom of the

container rested on a stainless steel cart (high conductivity), so that

in the extreme case of perfect conductance between the container and the

cart, the bottom of the container may have been at the ambient tempera-

ture. Based on the thicknesses of the insulation board and plywood in

the container (Section 4.2), a conservative estimate of the effective

heat transfer coefficient, defined as (insulation thickness)/(thermal

conductivity), through the insulation materials was 1 W/m2°C. The
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simulation shown in Figure 6.8 was repeated using a heat transfer coef-

ficient (thx ) of 1.0 W/m2°C at x - 0. Results are shown in Figure

0

6.11. The temperatures at Lx/4 from 0 to 24 hours were over-estimated,

while the temperature values from 24 to 48 hours were under-estimated,

supporting the third hypothesis.

Comparing Figure 6.10 and Figure 6.11, suggests that both assump-

tions of negligible internal packaging resistance to heat transfer, and

a perfectly insulated boundary at x - 0 were invalid.

These results indicate that there is a need for further study in

estimating the resistance to heat transfer due to the packaging inter-

face. The packaging interface can be thought of as a contact

resistance, with a contact resistance coefficient associated with it.

This coefficient may be estimated using the same methods used for es-

timating the surface heat transfer coefficients. In this case, there

are two unknowns, the surface heat transfer coefficient and the contact

resistance, requiring additional internal temperature measurements. At

least one thermocouple would be required on each side of the packaging

interface. The existing computer program developed to estimate the

surface heat transfer coefficient (Appendix D) could be used with minor

modification to also estimate the contact resistance coefficient.

6.3 Simulation of Two Dimensional Heat Conduction Through a Food

Product.

The two dimensional heat conduction program (Appendix C) was

verified by comparison with the one dimensional model and experimental

results. The one dimensional model, discussed in Section 6.2, was used

to demonstrate that the two dimensional solution can be reduced to the

one dimensional solution. Consistant with the comparisons described in
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Section 6.2.1, the two dimensional solution was compared with the one

dimensional solution using constant thermal properties. The experimen-

tal data (Section 4.5, Tests 3a-c) was compared with two dimensional

numerical solution using variable thermal properties.

6.3.1 Verification of Two Dimensional Model.

The one dimenisonal numerical model, used in verifying the two

dimensional numerical model, was shown to approximate the analytical

solution excellently, using constant thermal properties, in Section

6.2.1. The two dimensional model was compared with the one dimensional

numerical model for two reasons: (1) to verify the accuracy of the two

dimensional model; and (2) to show that the two dimensional model may be

reduced to the one dimensional model.

The geometry of the problem considered here was based on the

geometry used in the experimental procedures for Tests 3a-c. A rectan-

gular rod, measuring 0.25 m by 0.27 m, with perfectly insulated surfaces

along the third dimension was considered in the two dimensional model.

A surface heat transfer coefficient of 8.5 W/m2°C was alternately im-

posed along two of the remaining parallel surfaces, and an insulated

boundary condition was imposed along the other two surfaces. The

initial temperature was -33°C, and the simulated ambient conditions were

taken to be ~6°C from 0 - 48 hours, and -33°C from 48 to 96 hours.

These were the same storage time intervals used in Tests 3a-c. First,

the surface heat transfer coefficient was imposed at x - 0.25 m, and the

surface at y - 0.27 m was taken to be insulated. This solution was

compared with the one dimensional solution using a slab, 0.25 m in

2
thickness, with a surface heat transfer coefficient of 8.5 W/m °C at x -

0.25 m, and an insulated condition at x - 0.0 m. Results are shown in
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Figure 6.12a. A similar comparison was made using a surface heat trans-

fer coefficient of 8.51 W/m2°C along the surface at y - 0.27 m, and an

insulated condition on all other surfaces, as the boundary conditions

for the two dimensional model, and similar boundary conditions (hy - O,

at y - 0; hy - 8.5 W/m2°C, at y - 0.27 m), with y - 0.27 m, for the one

dimensional model, as shown in Figure 6.12b. in both instances, the

solutions proved to be identical, which demonstrates that the two dimen-

sional numerical solution may by reduced to the one dimensional

solution, and that, since the one dimensional solution accuracy was

previously verified (Section 6.2.1), the two dimensional numerical

solution is accurate.

6.3.2 Comparison with Experimental Results.

The two dimensional numerical heat conduction program was compared

with the experimental results using the triple layer, two dimensional

configuration (Tests 3a-c), shown in Figure 4.3. Numerical solutions

were found using the same geometry for the configuration used in Tests

3a-c (Lx - 0.25 m, Ly - 0.22 m), with insulated boundary conditions

imposed along the surfaces at x - O, and y - 0. The heat transfer

coefficients shown in Table 6.4 were used as input for hx and hyLy in
Lx

the numerical model, (hx and hyLy were considered to be equal). Since

Lx

the storage interval used for the experimental tests was longer than

either of the one dimensional tests (Test la-c and Test 2a-c), the time

increment for the last heat transfer coefficient of each storage inter-

val, shown in Table 6.4, was adjusted to account for the longer storage

time of the two dimension tests. This was done on the assumption that

the surface heat transfer coefficients, shown in Figures 6.4a-c, ap-

proach a constant value at the end of each storage period. (The sudden
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changes in the surface heat transfer coefficients at 18 and 36 hours, as

in Figures 6.4a-c, discussed previously as being characteristic of the

solution method, were not included in the determination of the incremen-

tally averaged values shown in Table 6.4.)

Numerical solutions were determined at the locations x - 0.063 m, y

- 0.035 m, and x - 0.225 m, y - 0.19 m, which were the average ther-

mocouple locations of the experimental measurements in Tests 3a-c. A

time step of 60 seconds was used, with a spatial increment of 0.016 m,

for Ax, and 0.017 m for Ay, based on the analysis given in Section

5.1.5. Thermal properties, given by Gutschmidt (1960) and Specht et.

a1. (1981) were again used to determine the thermal properties below the

initial freezing point.

Results are shown in Figure 6.13 for the first repetition using the

triple layer configuration with two exposed surfaces (Test 3a), and in

Figures E.5a,b, for the second two repetitions of the test. Similar

results were found in all repetitions. These results have the same

characteristics as the results found for the double layer slab con-

figuration with one exposed surface (Test 2a-c), shown in Figures 6.8,

and E.4a,b. The temperatures at the location nearest the surface

(x - 0.19 m, y - 0.225 m) were under-estimated during the first storage

interval, and over-estimated during the second storage interval. At the

end of 48 simulated storage hours, the numerical solution gave tempera-

tures 1.5 C° lower than the experimental results at the same time and

location. The numerical solution varied less than 1 C° from the ex-

perimental values at the location x - 0.063 m, y - 0.035 m. As was

found in the comparisons shown in Figures 6.8 and E.4a,b, the numerical

solution predicted a smaller variation in temperature between the loca-

tions shown, than the experimental results. The latter two hypothesis
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presented in Section 6.2.2 were proposed as explanations for the

results.

In the first case, the assumption of negligible influence due to the

packaging interface was hypothesized to be invalid. This hypothesis was

tested in the same manner as was done in Section 6.2.2. An insulated

boundary condition was imposed at the packaging interface around the

corner methyl-cellulose box (x - 0.13, y - 0.18 m), and the numerical

simulation was repeated using all other input values as before. Results

are shown in Figure 6.14. As was found in the one dimensional com-

parison (Figure 6.10), the experimental results fell between the two

numerical solutions with and without the insulated condition at the

packaging interface. This indicated that the resistance due to the

packaging interface was greater than zero, but less than infinity, again

supporting the hypothesis that the assumption of no resistance to heat

flow by the packaging material was invalid.

The third hypothesis, presented in Section 6.2.2, that the assump-

tion of perfect insulation at the interior boundaries (x - 0, y - 0) was

invalid, was tested by imposing a surface heat transfer coefficient of l

W/m2°C along the these boundaries. Again, similar results were obtained

as was found in Section 6.2.2. The estimated temperatures are compared

with the experimental results in Figure 6.15. The solution nearest the

interior boundary (x - 0.63 m, y - 0.35 m) over-estimated the experimen-

tal results during the first storage period and over estimated the

results during the second storage period. Comparing Figures 6.13 and

6.15, the experimental values at x - 0.63 m, y - 0.35 m, were bounded by

the numerical solutions using an insulated condition and a surface heat

transfer coefficient of l W/m2°C at the boundary at x - 0, y - 0. This

again supports the hypothesis that the heat transfer coefficient at the

interior boundaries was somewhat greater than zero.
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Therefore, the results shown in Figures 6.14 and 6.15 suggest that

both assumptions of negligible internal packaging resistance to heat

transfer, and perfectly insulated interior boundaries were invalid,

supporting the results found in Section 6.2.2. This again indicates

that there is an need for further study in estimating the resistance to

heat transfer due to the packaging interface.
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6.4 Effects of the Magnitude of the Activation Energy Constant on the

Mass Average Quality History

The degree of temperature dependence of quality degradation is

dependent on the magnitude of the activation energy constant (Ea);

typical values for food products range from 40 to 200 kJ/mole (Bonner,

et. al., 1984). Two quality criteria are commonly used to determine the

activation energy constant: (1) High Quality Life (HQL), and (2)

Practical Storage Life (PSL). High Quality Life is defined as the

length of product storage time until a detectable change in frozen food

quality exists when compared to the same product stored at conditions

where quality change is limited. Practical Storage Life is defined as

the length of product storage time until the frozen food has unaccep-

table quality (Scott, et. al., 1984). Activation energy constants

reported for HQL are generally higher than those reported for PSL

(Bonner, et. al.,1984).

The effects of the magnitude of the activation energy constant (Ea)

on the mass average rate of quality deterioration was demonstrated by

comparing the predicted mass average quality histories for a range of

values of Ea. One dimensional heat transfer was considered through a

rectangularly shaped product mass, measuring two meters in the direction

of heat transfer, and initially at a uniform temperature of -30°C. A

surface heat transfer coefficient of 8.5 W/m2°C was imposed on the

boundaries perpendicular to the direction of heat flow, and all other

boundaries were considered to be perfectly insulated. The hypothetical

food product was subject to storage conditions of 100 days at -5°C. The

thermal properties of strawberries were used in generating the tempera-

ture distribution histories. These values are shown in Table 6.6. Note

the thermal properties given for strawberries are very similar to those



181

Table 6.6 Thermal Properties of Unfrozen Strawberries.

 

Density Thermal Specific

3 Conductivity Heat

(kg/m ) (W/m°C) (kJ/kg°C)

1040 0.54 3.93

   
(Heldman, 1982)
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given for the Karlsruhe Test Substance. Quality distribution histories

were determined using a hypothetical reference shelf-life of 500 days,

and activation energy constants ranging from 20 to 200 kJ/mole.

The resulting quality was expressed as a percent of the initial

shelf-life at the reference temperature, in this example, 50% quality

would mean the product would have 50% of 500 days, or 250 days remaining

storage life at -l8°C (reference temperature). Results are shown in

Figure 6.16 for activation energy constants of 0, 20, 40, 60, 100, 120,

140, 160, 180, and 200 kJ/mole. An activation energy constant of zero

indicates no temperature dependence for the rate constant, and was used

as the base line for comparison. From Figure 6.16, products with ac-

tivation energy constants of sixty or less have little temperature

dependence, products with activation energy constants from 60-100

kJ/mole have moderate temperature dependence, and products with Ea

greater than 100 kJ/mole have high temperature dependence.

Strawberries were chosen as the food product considered in all of

the subsequent quality analysis, since the activation energy constants

found in the literature for the HQL and PSL criteria cover both ex-

tremities of the range for typical food products. Guadagni (1969)

reported an activation energy constant (Ea) of 182.37 kJ/mole, with a

reference shelf life of 630 days at —18°C for HQL of bulk frozen straw-

berries. Tressler, et. a1. (1957), reported an activation energy

constant of 49.13 kJ/mole, and a reference shelf life of 540 days at

-18°C for the PSL of sliced frozen strawberries. The kinetic properties

for strawberries are shown in Table 6.7.
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Table 6.7 Kinetic Properties of Frozen Strawberries.

 

 

Activation Reference Reference Shelf

Energy Constant Shelf Life Life Temperature

(kJ/mole) (days) (°C)

1

HQL Criterion 182.37 630.0 ~18

2

PSL Criterion 49.13 540.0 -18

   
 

l. Guadagui, 1969.

2. Tressler, 1957.
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6.5 Effects of Boundary Conditions on Temperature and Quality Histories

of Frozen Foods during Storage.

Variations in boundary conditions, such as step changes in storage

temperatures, or a change in the surface heat transfer coefficient, can

change the rate of heat transfer, which consequently, change the tem-

perature history of the food product. Since quality degradation was

assumed to be temperature dependent (Eq. 3.49), variations in boundary

conditions will also affect the quality profile within the product. It

was desired to determine under what conditions the quality distribution

history was affected the most. Several different parameters affecting

the boundary conditions were investigated: (1) the magnitude of the

surface heat transfer coefficient; (2) the storage time interval for

step changes in the ambient storage temperature; and, (3) the magnitude

of the storage temperature, and the amplitude of step changes in the

storage temperature.

One dimensional heat transfer through a rectangularly shaped food

product of thickness, Lx, equal to 2.0 m, was considered. The initial

temperature was uniform and equal to -30°C in all cases. This might

correspond to a pallet load of frozen foods with two non-adjacent ex-

posed outer surfaces, and perfectly insulated on all other sides.

The total simulated storage time was set at 100 days. From

Tables 5.4a,b, only one eigenvalue was found to be significant after

approximately two hours, and the numerical approximation for the first

eigenvalue was very accurate, even for large Ax (Figure 5.1).

Therefore, only 25 nodes (Ax - 0.042 m) were used for the long storage

time solutions. A time step of 3600 seconds was used; this value is

near the upper end of the accuracy criterion, shown in Table (5.5), for

thermal properties evaluated at -12°C, and it is much higher than the
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time step criterion requirement for no oscillations (Tables 5.2a,b).

Use of this time step and spatial increment was justified by comparison

with results using 32 nodes and a time step of 600 seconds. No dif-

ference in the temperature distribution history was found after 50 hours

of simulated storage time at -5°C, with the surface heat transfer coef-

ficient, hx, equal to 8.5 W/m2°C.

The influence of the magnitude of the surface heat transfer coeffi-

cient was demonstrated using a single storage interval at -5°C for 100

days. The effects of step changes in storage temperatures were inves-

tigated using nine different combinations of storage temperatures and

storage time intervals. These nine cases are defined in Table 6.8, and

will be referred to by their respective case number, for example, Case 1

refers to fluctuating storage conditions between one day storage periods

at -5°C, and ten day storage periods at -30°C, for a total of 14 storage

periods over 100 days.

6.5.1 Influence of the Surface Heat Transfer Coefficient on Temperature

and Quality Distribution Histories.

The effects of the surface heat transfer coefficient (hx) on the

temperature and quality distributions within a frozen food product were

demonstrated by simulating storage conditions by using the extreme range

of values for hx found in the literature (Dagerskog, 1974, and Zaritzky,

1982). For the upper limit of the range, hx - 20 W/m2°C was selected,

and for the lower limit, hx - l W/m2°C was used. One dimensional heat

transfer was simulated in a product, initially at -30°C, and subject to

storage for 100 days at -5°C.

Results obtained using hx - 20 W/m2°C and hx = 1 W/m2°C were com-

pared with the results found with hx a 8.5 W/m2°C. (This is the overall
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Table 6.8 Definition of Boundary Condition Cases, with Step Changes

in Storage Temperatures over Given Storage Interval.

 

High Storage Low Storage

Temperature Period Temperature Interval

(°C) (daYS) (°C) (daYS)

Case 1 ~5 1 ~30 10

Case 2 -5 5 ~30 10

Case 3 ~5 10 ~30 10

Case 4 ~5 1 ~18 10

Case 5 ~5 5 ~18 10

Case 6 ~5 10 ~18 10

Case 7 ~13 1 ~18 10

Case 8 ~13 5 ~18 10

Case 9 ~13 10 ~18 10       
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average surface heat transfer coefficient determined from the experimen-

tal results, described in Section 6.1.2.) The effects of the surface

heat transfer coefficient on the temperature history at the exposed

surface and at the geometric center are shown in Figure 6.17.

The temperature differential between the two surfaces was very small

for hx - 1.0 W/m2°C, compared with the results shown for hx -

8.5 W/m2°C, and hx - 20.0 W/m2°C, during the first 20 days of the simu-

lated storage period. However, as the magnitude of the surface heat

transfer coefficients increased, the solution approached lumped steady

state conditions (constant temperature with time and position) faster.

In addition, the shape of the curves changed dramatically by in-

creasing the surface heat transfer coefficient from hx - 1.0 W/m2°C, to

hx - 8.5 W/m2°C, compared with the change in the shape of the curves

shown by increasing hx from 8.5 to 20.0 W/m2°C. This indicates that a

change in magnitude of the surface heat transfer coefficient has a

greater influence on the solution at lower values of hx than at higher

values of hx.

The effects of the magnitude of the surface heat transfer coeffi-

cient on the quality distribution histories, determined for strawberries

from Eq. (3.49), are shown in Figure 6.18 for the criterion with Ea -

182 kJ/mole, and reference shelf-life of 630 days at ~18°C, and in

Figure 6.19, for the criterion with Ea - 49 kJ/mole, and reference

shelf-life of 540 days at ~18°C. The high activation energy constant

resulted in a high temperature dependence of the quality deterioration

rate. All of the simulations using the high activation energy constant

resulted in zero shelf life by the end of the 100 day storage period.

The shelf life was completely diminished by the end of 79 days storage

time for the case where the surface heat transfer coefficient equaled
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1.0 W/m2°C, while for the cases where the surface heat transfer coeffi-

cient equaled 8.5 W/m2°C and 20.0 W/m2°C, shelf-life was diminished by

the end of 35 and 21 days, respectively.

The difference in quality of the product at the outer surface com~

pared to the quality at the geometric center increased as the surface

heat transfer coefficient was increased. When the high activation

energy constant was considered, the differences in quality between the

two surfaces were substantial: ninety percent of the quality at the

center of the product mass was retained at the time when the quality at

the surface was diminished, using hx - 20.0 W/m2°C, while 77% of the

initial quality was retained using hx - 8.5 W/m2°C, and 33% of the

quality remained at the center using hx - 8.5 W/m2°C.

Due to the lower temperature dependence on the quality deterioration

rate for the criterion with the low activation energy constant, there

was very little difference between each of the solutions using hx - 1,

8.5, and 20 W/m°C, and even smaller variations in the product quality

between the center and the exposed outer surfaces, as shown in

Figure 6.19. In none of the cases was the product shelf life exceeded,

and the difference in quality between the center and the outer boundary

at the end of 100 days storage was less than 5% of the initial quality,

for all cases.

In summary, changes in the surface heat transfer coefficient at low

values (5 8.5 W/m2°C) had more influence on the temperature distribution

than equivalent changes at higher magnitudes (2 8.5 W/m2°C). High

values for the heat transfer coefficient yielded solutions which had a

greater temperature differential between the two boundaries initially,

but approached the steady state solution rapidly. The effects of the

magnitude of the surface heat transfer coefficient were strongly depend-

ent on the magnitude of the activation energy constant. For low values
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of Ea (s 50 kJ/mole), increasing the surface heat transfer coefficient

increased the quality degradation rate moderately, but with only small

variations in quality within the product (Lx s 2.0 m). On the other

hand, for high activation energy constants (2 180 kJ/mole), increasing

the surface heat transfer coefficient decreased product shelf life

substantially, and resulted in high quality variations within the

product.

6.5.2 Effects of the Frequency of Step Changes in Storage Temperatures

on Temperature and Quality Distribution Histories.

The effects of the fluctuation frequencies of step changes in the

storage conditions were investigated using three different intervals for

the step changes: (1) one day at ~5°C, and ten days at ~30°C (Case 1);

(2) five days at ~5°C, and ten days at ~30°C (Case 2); and, (3) ten days

at ~5°C, and ten days at ~30°C (Case 3). Each of these cycles were

repeated for a total storage time of 100 days. Again, one dimensional

heat transfer was considered through a 2.0 m product, with an initial

temperature of ~30°C, and with a constant heat transfer coefficient of

8.5 W/m2°C on the exposed boundaries.

The resulting temperature histories are shown in Figure 6.20a, at

the geometric center, and in Figure 6.20b, at the outer surface. For

the boundary conditions described in Case 1, the temperature at the

geometric center changed only slightly, while the temperature at the

outer surface changed significantly (14°C), but only for a very short

period of time, compared to the overall product shelf life. Using the

boundary conditions described in Case 2 resulted in temperature fluctua-

tions at the center of 6°C, and fluctuations of 19°C at the outer
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surface, for a slightly longer period of time. When the storage inter-

vals were equal for each storage temperature (Case 3), fluctuations of

10°C were found at the center, and fluctuations of 20°C were found at

the exposed surface. The mass average product temperature increased

from 29°C for Case 1, and 23°C for Case 2, to 18°C for Case 3.

The effects of these step changes in storage conditions on the

quality histories at the geometric center and at the outer surface are

shown for the criterion with an activation energy constant of 182°C in

Figure 6.21, and for the criterion with an activation energy constant of

49°C in Figure 6.22. In the cases where the storage intervals were less

than or equal to five days at -5°C (Cases 1 and 2) the step changes in

the storage conditions had very little effect on the quality history at

the center for both high and low activation energy constants. The

effect of the short high temperature interval (Case 1) on the quality at

the exposed surface was also very small, with very little variation in

quality within the product mass. The steeper slope of the curves

resulting from storage conditions of one day at -S°C (Case 1) in Figure

6.22, compared to the corresponding curves in Figure 6.21, were a result

of the shorter reference shelf life for the PSL criterion (540 days),

compared with the HQL criterion (630 days).

Increasing the storage time interval at the higher storage tempera-

ture to five days (Case 2) resulted in a substantial loss of quality at

the outer surface (50%), with very little change in quality at the

geometric center, using the quality criterion with the higher activation

energy constant. For the quality criterion with an activation energy

constant of 49 kJ/mole, there was a slight drop (8%) in overall quality,

compared to the results using one day at ~5°C (Case 1), and only a 4%

change in quality between the geometric center and the outer surface.
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In Case 3, where the storage interval at -5°C was equal to the

interval at -30°C, there was significant quality loss for the higher

activation energy constant at both the geometric center and the outer

surface, and a substantial difference in quality between the two loca-

tions. The product quality was diminished at the surface after 67 days

of storage, while the product quality at the center was only reduced to

84% of its initial value.

When the lower activation energy constant was used (Figure 6.22),

there was also a decrease in overall product quality and an increase in

the quality differential within the product, but the degree of change

was much smaller in both cases. Product quality at the surface dropped

to 75% of its initial value, compared with 93% remaining quality after

100 days in storage, using step change intervals of only one day at -5°C

(Case 1). Again, the quality differential within the product was less

than 5% of its initial quality.

To summarize, increases in ambient temperature for short time inter-

vals, compared with the overall storage time at the lower temperature (5

10% overall storage time), had negligible effects on overall product

quality. Step changes in storage conditions with equivalent storage

time intervals at high and low storage temperatures had much greater

influence on quality reduction, especially when using high activation

energy constants. Step changes in the storage temperatures with the

storage interval at -5°C equal to one half the interval at -30°C,

resulted in substantial reductions in quality at the surface, with high

quality variations within the product, when using high activation

energy constants.' However, when using low activation energy constants

under the same conditions, only small changes in both the overall

quality and the internal quality variation were observed.
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6.5.3 Effects of Ambient Temperature during Step Changes in Storage

Conditions on Temperature and Quality Distribution Histories.,

The effect of the magnitude of the ambient storage temperature in

fluctuating storage conditions was demonstrated using the same three

repeating step change intervals described by Cases 1, 2 and 3 (Table

6.8), but with different magnitudes for the ambient temperatures. Three

different sets of high and low ambient temperature were considered for

these three step change cycles (for a total of nine cases): (1) low

storage temperature - -30°C, high storage temperature - -S°C, (same

temperatures used in Cases 1, 2, and 3); (2) low storage temperature - -

18°C, high storage temperature - ~5°C, (Cases 4, 5, and 6); and, (3) low

storage temperature - -18°C, high storage temperature - -13°C, (Cases 7,

8, and 9). These cases are also defined in Table 6.8. The same product

geometry, initial temperature, and surface heat transfer coefficients

described in Section 6.4.2 were also used in this analysis.

The temperature histories at the geometric center and at the outer

surface for the step change intervals of one day at -S°C and ten days at

~30°C (Case 1), one day at -S°C and ten days at -18°C (Case 4), and one

day at -13°C and ten days at -18°C (Case 7), are shown in Figures

6.23a,b. The mean temperatures were higher for both Cases 4 and 7 due

to the increase in the minimum storage temperature. The temperature at

the geometric center fluctuated slightly (1°C) using Case 4 boundary

conditions, and negligibly using Case 7. The outer surface temperature

fluctuated only 2°C.

The effects of the changes in ambient temperature on the quality

deterioration rate for the HQL and PSL criteria are shown in Figures

6.24 and 6.25, respectively. Note that the scale for % Quality ranges

form 60 to 100%, instead of 0 to 100%. The solid boxes represent the
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results of using step changes in the boundary conditions of one day at

«5°C and ten days at -30°C (Case 1) in both figures, and are identical

to the corresponding curves shown in Figures 6.21 and 6.22. Both condi-

tions of step changes of one day at —5°C and ten days at ~18°C (Case 4),

and one day at -13°C and ten days at -l8°C (Case 7) resulted in a lower

quality retention at the end of 100 days, compared to the results using

Case 1 (one day at -S°C and ten days at -30°C) results, because of the

overall higher mean storage temperature.

Step changes in storage temperatures between -5°C and -l8°C (Case 4)

resulted in a 10% quality differential across the two surfaces using the

activation energy constant of 182 kJ/mole, and 1.5% using the lower

activation energy constant. The results from using temperatures fluc-

tuating between -18°C and ~13°C (Case 7) indicated very little influence

on the quality distribution history in all cases. The quality differen-

tial between the center and the surface was 2% using the high activation

energy constant, and 1% using the low activation energy constant.

The same sets of ambient temperatures (-5°C and -30°C, -S°C and

-18°C, and -13°C and -18°C) were used in Cases 2, 5, and 8, but with

storage periods alternating between five days at the higher storage

temperature, and ten days at the lower storage temperature. The solu-

tions for the temperature histories at the geometric center and at the

outer surface are shown in Figures 6.26a,b. The solutions for Case 2

(five days at -5°C and ten days at -30°C) in both figures are the same

as the corresponding curves in Figures 6.20a,b. The temperatures at the

geometric center fluctuated approximately 3°C for the conditions where

the high storage temperature equaled -5°C, and the low storage

temperature equaled ~18°C, (Case 5) and only 1°C using -13°C for the

high storage temperature, and -18°C for the low storage temperature.

The temperature fluctuation at the outer surface was substantial in all
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cases, as shown in Figure 6.26b. The surface temperature fluctuated

10°C for Case 5, and 4°C for Case 8, compared to 19°C for Case 2.

The quality distribution histories for the step changes in boundary

condition alternating five days at the higher storage temperature ten

days at the lower storage temperature, with storage temperatures of ~S°C

and -30°C (Case 2), -5°C and -18°C (Case 5), and -13°C and ~18°C

(Case 8), are shown in Figure 6.27, using the high activation energy

constant, and in Figure 6.28, using the low activation energy constant.

The higher minimum storage temperature used in Case 5, compared with

that used in Case 2, had a very significant effect on the quality

deterioration rate using the high activation energy constant. The shelf

life at the outer surface was diminished after 78 storage days, while at

the same time, 60% of the initial quality was retained at the geometric

center. Moderate differences (6%) in quality were determined between

the center and the surface using step changes in the storage temperature

between -13°C and ~18°C (Case 8), and the high activation energy con—

stant.

For the quality criterion with the lower activation energy constant,

little variation in quality within the product mass was found for both

step changes between -5°C and -18°C (Case 5), and between -13°C and

-18°C (Case 8).

In Cases 3, 6, and 9, the step change intervals were ten days for

both high and low storage temperatures, and again, the magnitudes of

storage temperatures were -30 and ~5°C, -18 and -5°C, and ~18 and -13°C,

for Cases 3, 6, and 9, respectively. The solutions for the temperature

histories at the geometric center and the outer surface are shown in

Figures 6.29a,b. The longer storage period at the high storage tempera-

ture resulted in a greater fluctuation in temperatures at both

locations. Fluctuations of 9°C, 5°C, and 3°C were observed at the
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geometric center, for storage temperatures alternating between -5°C and

~30°C (Case 3), -5°C and -18°C (Case 6), and -13°C and -18°C (Case 9),

respectively. At the outer surface, temperatures varied 15°C for Case

3, 10°C for Case 6, and 3.5°C for Case 9.

In all cases, the retention time near the higher storage temperature

was longer than that found for the previous step change cycles. This

resulted in a substantial increase in the rate of quality deterioration

using the high activation energy constant, as shown in Figure 6.30. The

shelf-life at the surface, using storage temperatures between -5°C and

~30°C, was predicted to be exhausted after 67 storage days. However,

using storage temperatures between -18 and -5°C resulted in the total

lost of quality throughout the entire product after 88 days. The

outer surface exceeded it recommended shelf life in 45 days, while the

product at the geometric center still retained 64% of its initial shelf

life.

When using the low activation energy constant, as shown in Figure

6.31, the slope of the curves was slightly greater than those shown in

Figure 6.28 for the five day step change interval time at the high

storage temperature. Again, the step changes in storage conditions had

very little effect on the quality distribution history compared to that

shown in Figure 6.30 for the activation energy constant of 182 kJ/mole.

In all cases, the variation in quality within the product was less than

5%.

In comparing the results from Figures 6.24, 6.25, 6.27, 6.28, 6.30,

and 6.31, several observations were noted. Step changes with short

storage intervals (one day or less) at high storage temperatures had

very little effect on the quality distribution for most cases using both

high and low activation energy constants. The exception to this obser-

vation occurred when temperatures were allowed to fluctuate between -18
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and -5°C, and the high activation energy constant was used; in this

case, a 10% variation in quality within the product was found. There

was very little change in the quality deterioration rate using the low

activation energy constant, in all cases. In contrast, use of the high

activation energy constant resulted in substantial quality changes,

expecially for the situations where the storage interval at the higher

temperature was greater than or equal to five days, and the storage

temperature fluctuation was greater than or equal to 13°C. Step changes

in storage temperatures between -18°C and -13°C (Cases 4, 5, and 6) had

very little affect on the overall quality deterioration rate of the

product. This observation supports the work by Moleerantanond, et. a1.

(1982), who found very little change in the quality of frozen beef

resulting from 3°C fluctuations in storage temperatures, and who

proposed use of cyclic storage temperatures as a means of energy conser-

vation.

6.6 Effects of Size, Two Dimensional Geometry, and Geometric Shape on

Temperature and Quality Histories of Frozen Foods During Storage

Size and geometry are important factors in determining the rate of

heat transfer though a mass of food product. Three aspects were con-

sidered here: (1) the product size or thickness; (2) the ratio of

thickness versus length; and, (3) the geometric shape. In the first

case one dimensional heat transfer was assumed. The objectives for this

case were to determine under what conditions a product with a low ac-

tivation energy constant will have a significant quality variation

between the two sides perpendicular to heat flow, and to determine when

a high activation energy product will have insignificant quality varia-

tion between these two boundaries. In the second case, two dimensional
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heat transfer was assumed, and the influence of the length versus thick-

ness ratio was investigated.

Finally, the influence of geometric shape was studied. In this

case, it was desired to determine if and under what circumstances a one

dimensional geometry could be used to approximate a two dimensional

shape. For example, one dimensional heat transfer through a cylindrical

mass, with insulated ends, might be used to simulate two dimensional

heat transfer through cube shaped mass, insulated on two opposite sides.

6.6.1 Influence of Product Thickness

The influence of product thickness was first considered using the

criterion with the low activation energy constant (49 kJ/mole). In

Sections 6.5.2, and 6.5.3, a one dimensional slab of thickness 2.0 m was

considered. The quality differential between the center and outer

surfaces never exceeded 6% in all of the nine cases (Table 6.8) con-

sidered in these sections. A very large product mass was simulated to

determine if the quality distribution within the product increased

significantly. One dimensional heat transfer through a product 6.0 m in

thickness, using step changes in boundary conditions of one day at -S°C

and ten days at ~18°C (Case 4), five days at -5°C and ten days at -18°C

(Case 6), and ten days at -5°C and ten days at -18°C (Case 8), was

considered.

The resulting temperature histories at the geometric center and at

the outer surface are shown in Figures 6.32a,b. The temperature at the

inner surface gradually increased with negligible fluctuations (Figure

6.32a), while the temperature at the outer surface approached the

storage temperature in less than three days, and fluctuated continuously

in synchronization with the step changes in storage temperatures.
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During the initial phase of the total storage time, the temperature

differential within the product was as much as 28°C; at the end of the

total storage time, the temperature differential reduced to about 8°C.

The effects of the temperature differential on the quality histories

at the two locations are shown in Figure 6.33. Even with high tempera-

ture variations, the quality variations within the product were very

moderate, especially when compared to those shown for the 2.0 m product

mass, using the high activation energy constant (Figure 6.27, and 6.30).

In the situation where the step change interval for the storage tempera-

ture at -5°C was one day, ten days for the storage temperature at -18°C

(Case 4), a 9% variation in quality was found after 100 storage days.

Increasing the storage period at -5°C to five days increased the quality

differential to 14%, and for equal storage periods at -5 and ~18°C, the

quality differential increased to almost 18%. Therefore, for low ac-

tivation energy constants, significant (< 10%) quality variations within

the product mass were only found using very large product thicknesses (>

6.0 m).

Next, the product using the high activation energy constant was

considered, with the objective of determining if and under what condit-

ions, the quality variability within the product was negligible. Again,

Cases 4, 6, and 8 (step changes of: one day at -5°C and ten days at

~18°C, five days at -5°C and ten days at ~18°C, and ten days at -5°C and

ten days at -l8°C), were used for the simulated boundary conditions.

The quality variation between the geometric center and the outer surface

was significant (> 10%) using these cases, and a product mass of 2.0 m,

as shown in Figures 6.24, 6.27, and 6.30; therefore, the product thick-

ness was reduced to 1.0 m, and the simulation processes were repeated.

The temperature histories at the geometric center and the outer

surface are shown in Figures 6.34a,b. With the exception of the curve
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for resulting from one day at -5°C and ten days at -l8°C (Case 4), the

temperature fluctuations increased significantly, compared to those

found using a thickness of 2.0 m. Comparing Figures 6.34a and 6.34b,

the resonance time near the high storage temperature at the outer sur-

face was about twice that at the geometric center.

The resulting quality histories, using the criterion with an activa-

tion energy constant of 182 kJ/mole, at the geometric center and at the

outer surface, are shown in Figure 6.35 for the three cases considered.

The quality variation within the product was small (8%) using Case 4

boundary conditions (one day at -5°C, ten days at -18°C), while the

quality variations using the other two cases were high. For step

changes of five days at -5°C and ten days at ~18°C in the storage condi-

tions (Case 6), the shelf-life at the geometric center was exhausted

after 65 days, at which time 35% of the initial quality was retained at

the outer surface. When the boundary conditions described by Case 8 (10

days at both -5°C and ~18°C) were used, the quality at the surface was

diminished after 29 days, while 32% of the initial quality remained in

the product at the geometric center.

Although the quality variation between the two locations was less

than that found using Lx - 2.0 m, there was still a high variation in

quality within the product using Lx - 1.0 m using the boundary condit-

ions defined by Cases 6 and 8. The same simulations were repeated using

Lx - 0.2 m. The quality variation between the center and the outer

surfaces was about 6.5% of the initial quality, for the Case 4 boundary

condition; this value changed only slightly, compared to the results

using Lx - 2.0 m, due to the short storage interval at -5°C. The tem-

perature variations between the surfaces, using Cases 6 and 8, were

found to be very small (<0.5°C), resulting in very little variation in

quality between the surfaces for these cases, as shown in Figure 6.36.
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To summarize, for low activation energy products, quality variations

within the product were found to be significant only for very large

product masses (2 6.0 m), considering one dimensional heat transfer, and

a surface heat transfer coefficient of 8.5 W/m2°C on two parallel sur-

faces, with insulated conditions on all other boundaries. For high

activation energy products, the quality variation was insignificant only

for very small product masses (5 0.2 m), using the step changes in

boundary conditions of at least five days at -5°C, and ten days at

-18°C. In addition, the overall rate of quality deterioration increased

substantially as the product size considered decreased.

6.6.2 Effects of Two Dimensional Heat Transfer on Temperature and

Quality Histories.

Two dimensional heat transfer was simulated in a rectangularly

shaped product mass, using step changes in the boundary conditions of

five days at -5°C and ten days at -18°C (Case 6). A constant heat

transfer coefficient of 8.5 W/m2°C was considered on the surfaces per-

pendicular to the directions of heat transfer, and the surfaces parallel

to the heat flow were considered to be insulated. Various width versus

height ratios were considered for the exposed boundaries.

Temperature histories, assuming two dimensional heat transfer in the

x and y directions, were first determined using equal lengths of 2.0 m

for both the width, Lx, and height, Ly. A constant heat transfer coef-

ficient of 8.5 W/m2°C was imposed along all boundaries perpendicular to

the direction of heat flow. The two dimensional temperature history was

determined at the geometric center (x - 0, y - 0), the midpoint of the

exposed sides (x - 0, y - Ly/2; and x - Lx/2, y - 0), and at the exposed
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corner, (x - Lx/2, y - Ly/2) for all cases considered in this section.

These locations are shown in Figure 6.37.

The resulting temperature histories were compared to the one dimen-

sional solution of a 2.0 m product mass subject to the same initial and

boundary conditions, shown in Figure 6.26a,b. The temperature histories

are shown in Figure 6.38, for the two dimensional simulation at the

locations shown in Figure 6.37, and for the one dimensional simulation

at the geometric center and exposed surface. Comparing the one and two

dimensional solutions, the temperature at the geometric center using the

one dimensional solution was slightly higher than that found with the

two dimensional solution. The temperature at the surface, using the one

dimensional solution was bounded by the temperatures at the midpoint of

the sides and the corners. Note that the temperatures around the

perimeter of the two dimensional case were bounded by the temperatures

at the corners and the midpoint of the sides, and due to symmetry, the

temperature histories at (0,Ly/2) and (Lx/2,0) are identical.

The quality histories, using the activation energy constant of

182 kJ/mole, at these locations are shown in Figure 6.39. In all cases,

the rate of quality deterioration increased, compared with the one

dimensional simulation. The one dimensional solution predicted quality

8% higher than the two dimensional solution after 100 storage days. The

predicted quality at the exposed surface, using the one dimensional

solution, was similar to that predicted at the side midpoints in the two

dimensional solution. The quality at the most extreme point (Lx/2,Ly/2)

deteriorated after only 47 days. Although the difference in temperature

around the perimeter of the product mass was small (two dimensional

case), the difference in predicted quality around the outer surface was

high, due to the high temperature dependence of the rate constant.
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Figure 6.37 Locations of Solutions for Two Dimensional Geometry.
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The two dimensional simulations were repeated using Lx - 2.0 m and

Ly - 1.0 m; results are shown in Figure 6.40. The temperature varia-

tions at the geometric center, using the two dimensional solution, were

higher than that shown for the previous case. Due to lack of symmetry,

the temperature histories at (0,Ly/2) and (Lx/2,0) were not the same.

The two dimensional solution was compared to the one dimensional solu-

tion for an infinite slab 1.0 m in thickness. Again, the one

dimensional temperature solution was bounded by the two dimensional

solution. The predicted quality histories resulting from these tempera-

ture histories are shown in Figure 6.41, using the activation energy

constant of 182 kJ/mole. The quality deterioration at the geometric

center of the two dimensional case was greater compared to that found

for the 2.0 m by 2.0 m rod; however, little change was found in the

quality profile at the exposed corner, compared to the 2.0 m by 2.0 m

solution. The one dimensional solution for a 1.0 m slab over-estimated

the quality at the geometric center, and closely approximated the

quality along the sides, while greatly over—estimating the quality at

the corners.

Finally a 2 m by 0.2 m rod was considered. Due to the small height

versus width ratio, the temperature distribution was very similar at all

points in the rod, with high temperature fluctuations in all cases, as

shown in Figure 6.42. The resulting one dimensional solution (not shown

here) for an infinite slab, 0.2 m thick, was bounded by the solution for

the two dimensional case. The resulting quality histories were very

similar for all locations (Figure 6.43). Due to the high temperature

fluctuations, the quality deterioration rate was very rapid, and little

variation in quality within the product (< 10%) was found. The one

dimensional temperature solution produced very similar quality results,
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indicating that for the limiting case where Lx >> Ly, the one dimen-

sional solution for an infinite slab may be used to approximate two

dimensional heat transfer through a rectangular rod.

The same three cases (Lx - Ly - 2.0 m; Lx - 2.0 m, Ly - 1.0 m; and,

Lx - 2.0 m, Ly - 0.2 m) were repeated using the activation energy con-

stant of 49 kJ/mole. Results are shown in Figures 6.44-6.46. In all

cases, the slope of the curves were very similar, and very little varia-

tion in quality was found within the product. Since the temperature

solution for the one dimensional case was bounded by the solution for

the two dimensional case, the resulting one dimensional quality profiles

would be bounded by the two dimensional solutions shown in Figures 6.44-

6.46. The implications from these results are that for products with

low activation energy constants (> 60 kJ/mole), the one dimensional

solution may be used to approximate quality deterioration rates result-

ing from two dimensional heat transfer with little error.

In conclusion, quality variations within the product, using the high

activation energy constant, were significant for width versus height

ratios greater than or equal to 50%, and insignificant for ratios less

than or equal to 10%. However, for low activation energy products, the

quality distribution was relatively independent of the width vs height

ratio, indicating that a one dimensional model, or a model using the

mass average temperature (lumped capacitance model) might provide an

excellent estimation of the product quality. When comparing the two

dimensional solution, using equal width and height, to the one dimen-

sional solution of equivalent geometry, the quality at the geometric

center and the corners of the two dimensional case were over estimated

by the one dimensional solution. The one dimensional solution closely

approximated at the outer surface closely approximated the two dimen-

sional solution at the midpoint of the sides.
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6.6.3 Effects of Geometrical Shape

Different geometrical shapes were compared to determine if a two

dimensional model might be better approximated by a one dimensional

model of a different geometric shape, than that found for the one dimen-

sional model using the same geometry in Section 6.6.2. Heat transfer

through a two dimensional square rod and a one dimensional cylinder were

used in the comparison. Two criteria were used to determine the radius

(R) of the cylinder: (1) shapes of equal surface area; and, (2) shapes

of equal volume. In both cases, no heat transfer was assumed along the

axis of the rod and the cylinder, and the surface area and volume were

calculated using unit length along this axis. Two dimensional heat

transfer through a square rod with dimensions 2 m by 2 m (Figure 6.37).

Uniform boundary conditions, of five days at -5°C, and ten days at ~18°C

(Case 6), were imposed on all surfaces perpendicular to the direction of

heat transfer, and an insulated boundary was imposed in the axial direc-

tion. This was the same problem solved for first in Section 6.5.2, and

shown in Figure 6.38. The radius of a cylinder with equal surface area

was found to be 1.273 m. The solution for one dimensional heat transfer

through the cylinder is compared to the solution of the two dimensional

rod in Figure 6.47. The solutions at the geometric centers for both

geometries were very similar; and the solution at the outer surface of

the cylinder was approximately the average of the solutions at the

midpoint of the sides and the corners for the square rod.

The quality histories were determined using the activation energy

constant of 182 kJ/mole, and compared at the same locations. Results

are shown in Figure 6.48. The difference between the quality histories

predicted for the rod and the cylinder at the geometric center, was less

than 2% at the end of 100 days in simulated storage. The solution at
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the outer surface of the cylinder, was between the two solutions at the

side midpoints and the corners of the rod. This solution provided an

estimate of the average quality at the surface, by under estimating the

quality along the sides, and over estimating the quality at the corners.

This comparison was repeated using the equivalent volume criterion.

The radius satisfying this criterion was found to be 1.128 m. The

resulting temperature histories are shown in Figure 6.49. The smaller

radius resulted in a poorer estimate of the temperature at the geometric

center, than that found using the equal surface area criterion. On the

other hand, the temperature at the surface of the cylinder was almost

the same as that found using R - 1.273 m. The predicted quality

profiles at the geometric center and the outer surface are compared with

the solution for the rod in Figure 6.50. (The solution for the rod is

the same as that shown in Figure 6.48.) Comparing Figures 6.48 and

6.49, the equal surface area criterion resulted in a better estimation

of the quality history of the two dimensional rod, than either the equal.

volume criterion or the one dimensional solution using the same geometry

(Section 6.6.2), due to the better estimation of the temperature at the

geometric center, and the outer surface for the solution using the same

geometry. A 10% difference in quality at the geometric center was

estimated using the volume criterion, compared to only a 2% error using

the equal surface area criterion.

Therefore, using one dimensional heat transfer through a cylinder

provided a good model for the estimation of the quality at the geometric

center and the average quality around the perimeter of a square rod,

with uniform boundary conditions on four adjacent sides, and insulated

on the other sides. The equivalent surface area criterion provided a

better estimate of the quality at the geometric center than either the

equivalent volume criterion or using the same geometry. Extending this
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application to a low activation energy product would result in a better

estimate of the surface quality, since, as shown in Figure 6.44, there

was very little difference in the quality around the surface of the rod

using the PSL criterion. This leads to a means of quickly estimating

the quality profile of a large mass of product. Running the one dimen-

sional heat transfer program for the cylindrical geometry, required

approximately eight minutes of CPU time on a VAX 11/750 computer, while

running the two dimensional program on the same computer took over six

hours of CPU time. This concept could be extended to approximate three

dimensional heat transfer through a rectangular cube by using a two

dimensional finite cylinder. This method, however, should only used for

uniform boundary conditions around the outer surfaces of a square rod,

and may not provide accurate results if extended to other situations,

such as, non-uniform boundary conditions and unequal sides.



CHAPTER 7.

SUMMARY AND CONCLUSIONS

A finite difference model, including temperature dependent thermal

properties, was developed to simulate one dimensional heat transfer

through frozen foods exposed to step changes in temperature storage

conditions. The resulting temperature distribution histories were used

to predict quality retention at different locations within the product,

based on a temperature dependent quality deterioration rate constant,

and a reference shelf-life. The one dimensional finite difference model

was modified to simulate two dimensional heat flow, by utilizing the

Crank-Nicolson approximation in an Alternating Direction Implicit finite

difference model. Two dimensional quality profiles were estimated using

this model.

The temperature simulation models were verified by comparison with

analytical solutions using constant thermal properties, and with ex-

perimental temperature measurements, obtained in controlled storage

conditions, using the Karlsruhe Test Substance, a highly concentrated

methyl-cellulose mixture (Gutschmidt, 1960), as an analog for the food

product. The interface between two interior product packages was found

to increase the resistance to heat transfer within the product mass,

resulting in a higher temperature differential between interior and

exterior parts of the product, than found with the solution with no

interface. Therefore, the packaging interface reduces the quality
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deterioration rate at the interior of the product, and increases in

quality deterioration rate in the exterior portions of the product.

The surface heat transfer coefficients prevailing during step

changes in temperature storage conditions were estimated as a function

of time using the sequential regularization method of estimating the

surface heat flux from internal product temperature measurements, again

using the Karlsruhe Test Substance. The one dimensional direct finite

difference program was utilized in the solution.

The effects of the boundary conditions, size, geometrical shape, and

the activation energy constant on the temperature and quality distribu-

tion histories were studied. The following conclusions were drawn from

this investigation.

1. The sequential regularization method provided estimates of the

transient surface heat transfer coefficients which included the effects

of the exterior packaging layer, and the accumulation and diminution of

frost on the outer surface.

2. The interior product packaging interface increased the resistance to

heat flow within the product. This resulted in a higher temperature

differential, and a potentially higher quality differential within the

total product mass, than predicted for by using the assumption of negli-

gible internal packaging resistance to heat transfer.

3. Variations in storage conditions affected the retention of quality

within the product. Higher surface heat transfer coefficients resulted

in a lower quality retention; changes at lower magnitudes of the surface

heat transfer coefficient (1.0 - 8.5 W/m2°C) had greater influence on

the results than changes at higher magnitudes (8.5 - 2O W/m2°C). Step
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changes in storage temperature from -18°C to -5°C for one day or less,

and temperature fluctuations between -18°C and -l3°C had very little

effect on the retention of product quality.

4. The magnitude of change in quality retention was highly dependent on

the magnitude of of the activation energy constant. In most situations

of step changes in ambient conditions, small internal variations in

quality can be expected for products with low activation energy con-

stants (< 60 kJ/mole), suggesting that average product temperatures

(lumped capacitance solution) could be used to estimate quality his-

tories. Products with activation energies above 60 kJ/mole are

considered to be sensitive to temperature variations within the product,

such that the lumped capacitance solution should not be used. Products

with high activation energy constants (> 120 kJ/mole) are very sensitive

to variations in storage conditions, such that variations in storage

conditions would result in large quality differentials within the

product mass.

5. Quality differences within the product mass for low activation

energy constant products (< 60 kJ/mole), assuming one dimensional heat

transfer and step changes in storage conditions, were significant (> 10%

variation) for very large product masses (2 6.0 m), using a surface heat

transfer coefficient of 8.5 W/m2°C, and ambient temperature < ~5°C.

Products with high activation energy constants had insignificant quality

differences within the product only when the product thickness was very

small (5 0.2 m), using identical boundary conditions. For two dimen-

sional heat transfer in low activation energy constant products, the

quality differences within the product have limited dependence on the

width versus height ratio, assuming identical boundary conditions in
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both directions of heat flow. For high activation energy products under

the same conditions, the quality differences are insignificant only for

small width versus height ratios (5 10%).

6. The quality distribution history resulting from two dimensional heat

transfer through a rectangular rod can be approximated within 5% ac-

curacy by the one dimensional model heat transfer and quality retention,

for an infinite slab of equal width, only if the height versus width

ratio for the rectangular slab is greater than or equal to 10:1.

7. The quality retention resulting from two dimensional heat transfer

through a square rod can be approximated by the one dimensional heat

transfer and quality retention model, for an infinite cylinder of equal

surface area, with over 90% reduction in computation time. The equal

surface area criterion provided a better estimate of the two dimensional

model than either a cylindrical geometry with equal volume, or the

equivalent one dimensional rectangular geometry. The cylindrical model

provided an excellent estimation of the quality at the geometric center,

and the average quality around the perimeter of the square rod,

however, the model greatly over-estimated the quality at the corners of

the rod, given a product with a high activation energy constant (<120

kJ/mole).
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APPENDIX A

EQUATIONS FOR BOUNDARY NODES IN

TWO DIMENSIONAL FINITE DIFFERENCE SOLUTION

The following equations were derived for the corresponding boundary

nodes shown in Figure A.1 for an infinite rod and a solid cylinder,

using the Douglas-Gunn alternating direction implicit finite difference

scheme (Douglas and Gunn, 1964). Eight unique equations were required

to determine all of the temperature values at the boundaries.

1. l - 1, I.- 1

Step 1. Sweep in x-direction.

 

n k A A A

- —3 n+6. _:x_:x . 3 y n+5

[ 2 [ thxo Ax + Ax J + ((PCP)+x+ (PCP)+y) 8At ] T1,1

k A
+x +3 n+6

+ "x 2Ax T2,1

5 k A A k A
_ .3 n . +3 +3 n._y +1 +1 -

i 2 [ thxo Ax + Ax ] + byo 2 + 2Ay ((PCP)+x

+ ( C ) ).£XAJ Tn _ Efix Tn _ ELLA—fl Tn

P P +y 8At 1,1 2Ay 1,2 fix 2Ax 2,1

A hynA
. n . n . n+6. n+6 _x _ O x. n

- (13x thxo Tm + "x thxo Too )2 2 Too (A.la)
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Step 2. Sweep in the y-direction.

- 1! h n°A + EilAix + (( C ) + ( C ) ).é§§l Tn+1

2 yo y Ay P P +x P P +y 8At 1,1

+ k+1A+y Tn+1

"y 2Ay 1,2

k A k A
_ 25 hxn+€oA + +3 +3 Tn+£ _ 0 +3 +3 Tn+5

2 on x Ax 1,1 x 2Ax 2,1

- (( C ) + ( C ) ),232x Tn - fl EiXEix Tn ’ 3 k+ A+x TnP P +X P P +y 8At 1’1 )7 2A)! 1,2 X ZAX 2,1

A
. n . n . n+6. n+5 _x

(fix thx0 To + "x on Tan )2

A

n n n+1 n+1 _y

- (fly-hyoo Tco + ny-hyo 0T” )2 (A-lb)

2. 1 - 1, 1 <‘I < H

Step 1. Sweep in x-direction.

k

- [ ax [MKE'AX + 41‘5“] + <(pCp>+x+ <<pCp>_y+ (pep)+y>>/2>
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Step 2. Sweep in the y-direction.

21 h “-A + 511211 + <( c > + < c > >-5351 TP*1
' 2 yo y Ay P P +x P P +y 8At 1,1

+ k+xA+y Tn+1

"y 2Ay 1,2

_ Zr. hxn+E,A + Eirfix Tn+5 _ Eisfir Tn+€
2 on x Ax 1,1 "x 2Ax 2,1

5 k A ,6 k A
.3 n , _:xr:x .x n, .11.:1

+ [ 2 thx0 Ax + Ax + 2 hy0 Ay + Ay

- (( C ) + ( C ) ),éxé¥ Tn _ fl k-l-xA-i-x n _ fl k-i-xA-i-x Tn

p p +x p p +y 8At 1,1 y 2Ay 1.2 X ZAX 2.1

A

o n o n Q n+5. n+6 ‘25- (Bx thXo Tco + "x o Tco )2

n n n+1 n+1 £1
- (flyohyoo T“, + "yohyo 0T” )2 (A.1b)

2. 1 - 1, 1 <‘l < M

Step 1. Sweep in x-direction.

- hx“*5-A + 5135:; + << c > + <( c > + < c > >)/2)
"x on x Ax p p +x p p -y p p +y



 

 

 

k_ A- n n k+ A+ k Y Y k+vA+Y

2Ay T1,m-1 + fix thxo.A + Ax + 2Ay iv

A A n k+ A+ n

' ((PCP)+X+ ((PCP)_y+ (pCP)+y))/2).4At T1,!!! ' 2Ay Tl,m+1

- 19 —-’5——3k+1“” TP - (19x - T: + oh “5 TWP)».x
x Ax 2,m thx0 "x xon

(A.2a)

Step 2. Sweep in the y-direction.

k A k A + k A
-y -y n+1 - 5y 1y +y +y

"y 2Ay Tl,m-1 [ "y 2Ay + ((PCP)+X+ ((PCP)-y

+ < C ) )/2)oéx-Al Tn+1 4. "him n+1

p p 4At 1,m "y 2Ay l,m+l

_ fl hxn+€oA + k+3A+x Tn+5 _ k+xA+x Tn+§ - fl k-yA-y Tn

x on x Ax 1,m "x Ax 2,m y 2Ay 1,m-1

k A k_vA +k A
n . +3 +3 -y +y,+y

+ [ fix [ thxo Ax+ Ax ] + fly 2Ay

A A k

_K_l n _i¥_il n
<<pCp>+x+<(pCp>_y+ (pop)+y)/2>-Mt ] T1,m - fly 2Ay T1,m,1

A
_ _¢x_ix n _ . n . n . n+5. n+5

fix Ax T2,m (fix thxo Tm + "x thxo To )Ax

(A.2b)
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3. l - 1, Im-.M

Step 1. Sweep in x-direction.

 

n k A A A

, .2: ME, _+x__tx ,_2Lx n+6

+ £13121 Tn+€

"x 2Ax 2,M

- 51$): Tn + 83 th ,A + 12333 + k-vA-v + hyLy°Ax
2Ay l,M-l 2 on x Ax 2Ay 2

AxAy n k+xA+3 n

' ((PCP)+x+ (PCP)-y)'8Ac T1,M ' Px 2Ax T2,M

hy 0A
_ . n . n . n+5. n+£ _ __Ly__y. n

(Bx thxo T,o + "x o T” )AK 2 Too (A.3a)

Step 2. Sweep in the y-direction.

k- A- n+1 0 k- A- n+1

'44 T J —u + by Ay + ((pCp>+x+ (pCp>_y>
"y 2Ay 1,M-1- 2 Ay Ly.

.AxAx Tn+1

8At 1,M

_ 25 hxn+§ A + k+xA+x Tn+£ - n k+xA+x Tn+5 _ fl k-yA-y Tn

2 o x Ax 1,M x 2Ax 2,M y 2Ay 1 M-1
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A

_ . n . Tn n+5 n+5 3

(fix thxoTw + "xthxoTm ) 2

 

A

. . n+1Tn+1 _y

- (19yhyhy T: + "y hyLyTm )2 (A.3b)

4. 1 < l'< L, l,- 1

Step 1. Sweep in x-direction.

k A k_xA + k A
-x -x n+6 _ x. +3 +x

"X 2Ax 2_1,1 [ "x 2Ax + (((PCP)_X+ (PCP)+x)/2

A A A
3 y %+ k++ n+5

+ (PCP)+y .4At ] T21,1+ ”xM2Ax T2+1,1

k A k_ A + k A k A

-x- ++x . +1 +1

Aflx2Ax +H[fix + hy‘ Ay + Ay

A A n k+ A+ n

' (((PCP)-X+ (PCP)+x)/2 + (PCP)+y)'Z§Ex T£,1' __IZ;¥ T£,2

Eixfii‘ T“ h PA I“ A 4
' fix 2Ax £+l,l - yO y. m ( ' a)

Step 2. Sweep in the y—direction.

n+1 k+ A+
- "y hyo .Ay+ —L1Ay + <(<pCp>_x+ (pop>+x>/2 + <pCp>+y>

 

.5351 Tn+1+ Hk+y+1 Tn+1

4At 2,1"y Ay 1, 2

_ _ k-gA-g Tn+5 + k-xA-x+ k+xA+x.Tn+§ _ k+xA+x Tn+5

”x 2Ax 2-1,1 "x 2Ax 2,1 "x 2Ax £+1,1



 

 

 

k_ _ n k_xA_X+ k+xA+x n k+ A+

fix 2Ax T[-1.1 + fix 2Ax + fly hyO.A + Ay

AxAx n k+1A+x n

' (((PCP)_x+ (Pcp)+x)/2 + (PCP)+y)'4At T2’1 ' fly Ay T£,2

_ fl Eigfix Tn _ (Byh Tn + h n+1Tn+l)A

x 2Ax 2+1,1 yo "y yo m y

(A.4b)

5. 1‘< 1 < L, -.-.H

Step 1. Sweep in x-direction.

k A k A x+ k
15 1; n+5 _ ~1L-x +2LA+x

nx 2Ax T£_1 M [ nx 2Ax + (((pCP)_x+ (pCP)+x)/2

A A k A

,_x_! n+6 M n+5

+ (pCP)-y) At ] T1,H + "x 2Ax T£+1,M

k A k A k_x-Ax+k A k A
_ _ 5 -x -x Tn _ -1 -1 Tn + 3 +xr+x + -x -x

x 2Ax £-1,M Ay 1,M-1 x 2Ax Ay

n fixfx n
+ hyLyAy - <<<pCp)_x+ (pop)+x>/2 + (pep)_y>-4At .T£,M

k A
+x +x n

- fix 2Ax T£+1,M hyLyAy Too (A.5a)

Step 2. Sweep in the y-direction.

E¢££=1 Tn+1 - E=15=¥ + h “+1A J + (<( c > + < c > >/2
ny Ay £,M-1 "y Ay yLy y p p -x p p +x

).A3A1 ] Tn+1
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_ _ k-zA-x Tn+5 + B k-xA-x+ k+2343; Tn+6 _ k+ggA+35 Tn+§

"x 2Ax £-1,M x 2Ax £,M "x 2Ax £-1,M

k A k A k A + k A

_ B -x -3 Tu _ fl -1 -1 Tn + fl -x 23 +3 +x

x 2Ax 2-1,M y Ay £,M-1 x 2Ax

k A

+ :3 [ 4m + hyfiy-Ay] - <<<pCp)_x+ (pCp)+x>/2 +<pCp>_y>
Y AV

0% Tn _ fl Egg Tn _ (fl 'h n . Tn

4At £,M x 2Ax 1-1,M y yLy w

+ n h n+1-T“"1)A (A.Sb)
y' yLy w y

6. l - L, -.- 1

Step 1. Sweep in x-direction.

k_ A-“ Tn+5 _ 23 k_ A_“ + h n+E.A + (( C > + ( C ) )

"x 2Ax L-1,1 2 Ax xLx x P P -x P P +y

A A
.J4 Tn+£

8At L,1

k_xA_ n 53 k_ A_ n hyO-A k+ A+

- 'flx 2Ax TL-1,1 + 2 Ax + thx.Ax + 2 + 2Ay

AKA! n k+xA+y n

' ((PCP)-x+(PCP)+y)'8Ac TL,1 ’ 2Ay TL,2

A hynA

- . n . n+ . “+5. —£ - ——Q—£. n(fix thx Ico i "x hx, Tm) 2 2 Tco

(A.6a)
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Step 2. Sweep in the y-direction.

n k A A A
_ _1 n+1. +1 +1 . x 1 n+1

[ 2 [hyO Ay+ A), ] + ((PCP)_X+ (PCP)+y) 8At ] TL,1

+ k+xA+1 Tn+1

"y 2Ay L,2

_ _ fl EL§fLX Tn+€ + 23 E;xf;g + hxn+€oA Tn+§

x 2Ax L-1,1 2 Ax x L,1

k_ A_ n 53 k_ A n

‘5x 2Ax TL-1,1+ 2 Ax + thx'A

& n k+xA+1 AKA! n

+ 2 hyo'Ay + 2Ay - ((pCP),x+ (pCp)+y)-8At TL,1

A A

_ _i!_i1 n _ . n . n . n+5. n+5 _g

5y 2Ay TL,2 (5x thx Tm + "x thx Tm )2

_ (fl 1'! 11.1.11 + h n+1..rn+1)fx (A 6b)

Y Yo a, "y Yo o 2 °

7. 1 - L, 1 < lm< H

Step 1. Sweep in x-direction.

k A k A
-x -3 n+5 _ -3 -x n+5.

"x Ax TL-1,m [ "x [ Ax + thx Ax J + ((pCP)-x

5:551 n+5
+ ((pCp)_y+ (pCp)+y))/2)'4At T +

k_ A_ n k_ A_ n k-xA-x n

- - fix Ax TL+1,m - 2Ay T + fix + bx .Ax
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k’yA'v+ k+yA+¥ C + C + C 2+ - ((p p)_x ((p p)_y (p p)+y))/ )
 

2Ay

A A k A
. x x n _ +1 +x n _ . n . n . n+§ n+5

4At ] TL,n 2Ay TL,n+1 (fix thx Tm + "x Lx Tm )Ax

(A.7a)

Step 2. Sweep in the y-direction.

+Y +y + ((pCp)_x+ <<p0p)_y
v

k A + k A
-v -y

"y 2Ay

 

A A k A
. x y n+1 +y +1 n+1

+ (pCP)+y)/2) 4At ] TL,n.+ "y 2Ay TL,m+1

- - n ELBE;K Tn+£ - n E;xé;x + hxn+€0A Tn+€
x Ax L—1,m x Ax Lx L,m

k_ A_ n k_ A_ n k_ A_ n

' fix Ax TL-1,m- fly 2Ay TL,m-1 fix Ax + thx°Ax

k_yA_Y+ k+YA+y A A

+ fly 4' 2Ay' *' - ((pCp)_x+((pCp)_y + (pCp)+y)/2)°;§Ex

-T“ - p Eixéil T“ - (3 -hx“ - T“ + n ohx“*5-Tn+€)A
L,m y 2Ay L,m+1 x Lx w x Lx w x

(A.7b)

8. l‘- L, -.-.H

Step 1. Sweep in x-direction.

"x 2Ax L-1,M 2 AX LX x p p -x p p -y
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ixfi Tn+€
8At L,M

k_ A_ n k- A_ n 83 k—xA- n

' ' 5x 2Ax TL-1,M ' 2Ay TL,M-1+ 2 Ax + thx'Ax

k A by -A A A

_;1_;x, __La__x _ ,_x;1 n

hYz'A

- (3x0th. T: + "xth2;5“n+6; - -——§—1-T: (A.8a)

Step 2. Sweep in the y-direction.

k n k A

"__X__1 n+1 _ _1 _;1_;y n+1

"y 2Ay TL n_1 [ 2 [ Ay + hyLyAy] + ((PCP)_X+ (PCP)-y)

.AxAx Tn+1

8At L,M

k A n k A k A
_ _ -x -x n+5 - _x -3 -x n+6. n+5 _ -x -x

"x 2Ax TL-1,M 2 [ Ax + thx Ax J TL,M fix 2Ax

n k_ A_ n 83 k_ A_ n

TL-1,M' fly 2Ay TL,u-1 + 2 Ax + thx’Ax

fl k A A A

_1 -1 -1 n . _ . x 1 n

A

- (fix-hxzx- T: + nx-hx:;€-T:+€)-§

A

" (flyohyLyo T: + fly'hyn;1'TTEE-1)? (A.8b)
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ONE DIMENSIONAL TRANSIENT HEAT CONDUCTION

AND QUALITY RETENTION PROGRAM

The one dimensional transient heat conduction program, including

estimation of quality retention, discussed in Chapter 3, is presented

here. An outline of the program is given in Table 3.1, and the listing

for the program, written in Fortran 77 for a Vax 11/750 is given in

Table 8.2.
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Table 8.1 Description of One Dimensional Transient Heat Conduction

and Quality Retention Program.

Subroutine Iitle

PROGRAM FREEZE

SUBROUTINE PROPER

DOUBLE PRECISION

FUNCTION MOIST(X)

DOUBLE PRECISION

FUNCTION DENS(X)

DOUBLE PRECISION

FUNCTION KI(X)

DOUBLE PRECISION

FUNCTION CONDUC(X)

DOUBLE PRECISION

FUNCTION SPHEAT(X)

SUBROUTINE CONSPR

SUBROUTINE INTEGR

BLOCK DATA CONST

SUBROUTINE INPUTl

SUBROUTINE INPUT2

SUBROUTINE SOLN

SUBROUTINE COEFF

Description

Main program; contains program menu.

Allows interactive for thermal properties,

prints out product properties as a

function of temperature.

Determines percentage of unfrozen water fraction

of food product as a function of temperature

below 0°C.

Determines density of food product as a function

of temperature below 0°C.

Determines thermal conductivity of ice as a

function of temperature below 0°C.

Determines thermal conductivity of food product

as a function of temperature below 0°C.

Determines specific heat of food product as a

function of temperature below 0°C.

Calculates constant thermal property

approximations over specified temperature

intervals below 0°C. Writes output to data file.

Determines mean property value over specified

temperature interval using Gauss quadrature

integration.

Defines constant thermal properties (water, ice)

Allows interactive input of ambient conditions

and product geometry. Writes output to data

file.

Allows interactive input of kinetic properties.

Writes output to data file.

Computes temperature distribution and quality

retention as a function of temperature. Calls

output subroutine.

Determines matrix coefficients used in finite

difference algorithm.
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Table 8.1 (cont'd).

SUBROUTINE PFIND Finds values for thermal properties required

for finite difference calculations from the

property values determined in CONSPR.

SUBROUTINE OUTPUT Writes input data and resulting temperature and

quality retention values to output file.
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Table 3.2 Computer Code for One Dimensional Transient Heat Conduction

and Quality Retention Program.

PROGRAM FREEZE

c*****************************************************************

c*****************************************************************

c Residual Shelf-life Program

c by

c Elaine Scott

c 1985

c*****************************************************************

This program calculates the temperature and quality distri-

bution histories of a one dimensional frozen food product

subject to fluctuating ambient temperatures during storage

below OC.0
O

O
0

Input parameters include unfrozen product density, thermal

conductivity and specific heat. The initial freezing

temperature or molecular weight of solids is required to

predict these values for the frozen food product.0
O

O
0

Boundary conditions are assumed to be convective, requiring an

input of the ambient temperature as a function of time, and the

convective heat transfer coefficient. The initial condition must

be a known function of position.0
O

O
O

c*****************************************************************

parameter(maxp-20,maxm-lOl,maxd—lOl,maxc-51,maxs-201)

integer model

double precision wf0,ms,dp,kp,cp,t0,ds,th,tl,avgd,avgk,avgc,

6: ynavg, tdt

character title*20,ttlfil*4,filynl*l,filyn2*l,filyn*1,fildat*12,

&inpdat*12

logical itmode

common/mod/model,/itm/itmode,/ttl/title,ttlfil,/profi1/prpfil,
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Table B.2 (cont'd).

&/datfil/fildat,inpdat,kindat,/prop/wf0,ms,dp,kp,cp,t0,/d/ds,

&/pavg/th,tl,avgd,avgk,avgc,ynavg,/toldt/tdt

C Set ITMODE - .FALSE. if running batch.

ITMODE - .TRUE.

IF(ITMODE)THEN

write(5,1000)

1000 format('l',72('*'),/,'0',t23,'Residual Shelf-life Program',/,'0',

&t35,'by',/,'0',t30,'E1aine Scott',/,'0',t24,'Michigan State',

&' University',/,'0',t30,'January l986',/,'0',72('*'))

WRITE(5,100)

100 FORMAT('0','Program Menu:',//,' ',' 1. Product properties (<0C)’

&,/,' ',' 2. Temperature distribution history: known Ta and h',

&/,' ',' 3. Temp. & qual. dist. histories: exact kinetic prop.',

&/,' ',' 4. Temp. & qual. dist. hist.: random kinetic prop.',

&/,'0',' Ta - Ambient temp.;h - Surface heat trans. coef.',

&//,' ','Selection? ',$)

ENDIF

READ(5,10)model

10 FORMAT(Il)

IF(ITMODE) write(5,200)

200 format(' ',/,' ','Product: ',$)

READ(5,20)TITLE

IF(ITMODE) write(5,300)

300 format(' ',/,' ','Key word for data files; 4 Characters: ',$)

READ(5,20)TTLFIL

20 FORMAT(A)

if(model.eq.l)then

filynl - 'n'

else

if(itmode) write(5,400)

400 format(' ',/,' ',’Are product properties approximations',/,' ',2x,

&'with temperature stored on file? (y/n) ',$)

read(5,20)filynl

if(itmode) write(5,500)

500 format(' ',/,' ','Are input initial and boundary conditions',/,' '

&,2x,'and geometrical dimensions stored on file? (y/n) ',$)

read(5,20)filyn2

if(model.ge.3) then

if(itmode) write(5,600)

600 format(' ',/,' ','Are the kinetic properties stored on file? ',

&' (y/n) ' .$)

read(5,20)filyn3

endif

endif

if(filynl.eq.'n'.or.filyn1.eq.'N')then

call proper

CALL CONSPR

endif

if(mode1.ne.1)then

if(filyn2.eq.'n'.or.filyn2.eq.’N')then

call inputl
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Table B.2 (cont'd).

0
0
0
0

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

endif

if(model.ge.3)then

if(filyn3.eq.'n'.or.filyn3.eq.'N')then

call input2

endif

endif

call soln

endif

end

SUBROUTINE PROPER

This subroutine provides the input for the property functions.

Input values include unfrozen product moisture content, initial

freezing point or molecular weight of solids, and unfrozen

product density, thermal conductivity and specific heat.

Output includes a printout of unfrozen water (percent), density

thermal conductivity and specific heat as functions of temper-

ature.

The variables used in this subroutine are:

Constants-

Cl - 18.015 kg/kmole (molecular weight of water)

C2 - 1./273.15 1/K

C3 - 6003./8.314 K (latent heat of ice/R)

C6 - 273.15 K

Input Variables-

WfO - Unfrozen product moisture content

T0 - Initial freezing temperature (C)

Ms - Molecular weight of solids

Dp - Product density (kg/mA3) ) >0C

Kp - Product thermal conductivity (W/mK) } >0C

Cp - Product specific heat (kJ/kgK) } >OC

Misc. Variables-

Xx - Intermittent value in determining Ms or T0.

Tc - Temperature for printout.

Yn - Character- Y or N

integer type,prpscr,prpfil

double precision cl,c2,c3,c5,c6,wf0,ms,dp,kp,cp,t0,ds,

&di,dw,kw,cpi,cpw,moist,dens,conduc,ki,spheat,tc,xx,t0inv,

&tl,th,eta(20),w(20),tavg,tdif,x(20),avgd,avgk,avgc,ynavg

character yn*1,prpf11*10,prpf12*12,tit1e*20,tt1fil*4
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Table B.2 (cont'd).

logical itmode

external moist,dens,conduc,spheat

common/prop/wf0,ms,dp,kp,cp,t0,/cons/c1,c2,c3,/d/ds,/densi/di,dw,

&/COND/KW,/SPH/CPI,CPW,/ITM/ITMODE,/ttl/tit1e,ttlfil,/profil/prpfil

&/mod/mode1,/pavg/th,tl,avgd,avgk,avgc,ynavg

Save

cl-18.015d0

c2-1.0d0/273.15d0

c3-6003.0d0/8.314d0

c6-273.15d0

IF(.NOT.ITMODE)THEN

READ(10,*)WFO,TO,DP,KP,CP,TYPE

IF(TYPE.NE.1)MS-T0

GO TO 20

ELSE

write(5,2000)

2000 format('l',72('-'),/,'0',t27,'Product Properties',/,'0',72('-'))

5 write(5,100)

100 format(' ',/,' ','Enter initial moisture content(%): ',$)

READ*,WFO

if(wf0.LT.1..OR.WFO.GT.100.)THEN

print*,'Try again!!'

goto S

ENDIF

10 WRITE(S,300)

300 FORMAT('O','Choose:',/,' ',' 1. Initial freezing temperature',/,

&' ',' 2. Molecular weight of solids')

READ(5,*)type

if(type.NE.1)THEN

WRITE(5,400)

400 FORMAT(' ',/,' ','Molecular weight of solids: ',$)

READ(5,*)MS

ELSE

WRITE(5,SOO)

500 FORMAT(' ',/,' ','Initial freezing temperature (C): ',$)

READ(5,*)T0

ENDIF

write(5,600)

600 format(' ',/,' ','Enter unfrozen product property values:',/,

&' ',2x,'density (kg/mh3): ',$)

READ(S,*)DP

WRITE(5,700)

700 FORMAT(' ',2x,'therma1 conductivity (W/mK): ',$)

READ(5,*)KP

WRITE(5,800)

800 FORMAT(' ',2x,'specific heat (kJ/kgK): ',$)

READ(5,*)CP

c Enter temperature range for determination of mean property values.

write(5,850)

850 format(' ',/,' ','Enter temperature range for mean property ',
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C

&

860

880

900

200

'values:'/,2x,'low temperature (C): ')

read(5,*)t1

write(5,860)

format(' ',2x,'high temperature (C): ')

read(5,*)th

t1 - t1 + 273.150d0

th - th + 273.150d0

write(5,880)

format(' ',/,' ',2x,'Use average temperatures in PD solution ?

'(O-no; l'y) ')

read(5,*)ynavg

WRITE(5,900)

FORMAT(' ',/,' ','Are these values correct? (y/n) ',$)

read(5,200)yn

FORMAT(A)

if(yn.ne.'y'.and.YN.NE.'Y')goto 5

ENDIF

20 wf0-wf0/100.0d0

if(type.NE.1)THEN

Initial freezing point

tO-l.0d0/(c2-log(wf0/c1/(wf0/c1+(1.0dO-wf0)/ms))*1.0d0/c3)

ELSE

t0-t0+273.15d0

Molecular weight of solids

tOinv - 1.0d0/t0

xx-exp(c3*(c2-tOinv))

Ms-(l.0d0-wf0)*xx*c1/(wf0*(1.0d0-xx))

ENDIF

Determine mean property value over specified range using Gauss

Quadrature integration: 20 pt. quad.

Eta values:

eta(l) - -0.99312859918509

eta(2) - -0.96397192727791

eta(3) - -0.91223442825133

eta(a) - -0.83911697182222

eta(S) - -0.74633190646015

eta(6) - -0.63605368072652

eta(7) - -0.51086700195083

eta(8) - -0.37370608871542

eta(9) - -O.22778585114165

eta(lO) - -0.07652652113350

do i - 1,10

eta(21-i) - -eta(i)

enddo

Weighting factors:

w(1) - 0.01761400713915
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C

C

w(2) - 0.04060142980039

w(3) - 0.06267204833411

w(h) - 0.08327674157670

w(S) - 0.10193011981724

w(6) - 0.11819453196152

w(7) - 0.13168863844918

w(8) - 0.14209610931838

w(9) - 0.14917298647260

w(10) - 0.15275338713073

do i - 1,10

w(21-i) - w(i)

enddo

Transform eta onto (th - t1) interval

tavg - (th+tl)/2.0d0

tdif - (th-t1)/2.0d0

avgd - 0

avgk - 0

avgc - 0

do i - 1,20

x(i) - tavg + tdif*eta(i)

Sum integral approximation

avgd - avgd + w(i)*dens(x(i))

avgk - avgk + w(i)*conduc(x(i))

avgc - avgc + w(i)*spheat(x(i))

enddo

avgd - 0.50*avgd

avgk - 0.50*avgk

avgc - 0.50*avgc

IF(ITMODE)THEN

prpscr - 0

prpfil - O

write(5,905)

905 format(' ',/,' ','Display product properties on screen? (y/n) ',$)

read(5,200)yn

if(yn.eq.'y'.OR.YN.EQ.'Y')prpscr - 1

write(5,906)

906 format(' ','Do you want product properties - f(T)',

& ' saved in a file? (y/n) ',$)

read(5,200)yn

if(yn.eq.'y'.OR.YN.EQ.'Y')prpfil - 1

IF(PRPSCR.EQ.0.AND.PRPFIL.EQ.0)GO TO 90

ELSE

READ(5,*)PRPFIL

ENDIF

IF(PRPFIL.EQ.1)THEN

WRITE(PRPFL2,910)TTLFIL,'PRP.VAR'

910 FORMAT(' ',A,A)

OPEN(UNIT-12,NAME-PRPFL2(1:12),TYPE-'NEW',CARRIAGECONTROL='LIST'

6:)

write(12,1000)tit1e

write(12,1050)
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write(12,1100)t0-273.150d0

write(12,1200)ms

write(12,1300)

write(12,1400)

WRITE(12,1500)

TC-AINT(t0+2.0d0)+.150d0

40 IF(TC.GE.t0)THEN

WRITE(12,1600)tc-c6,wf0*100.,DP,kp,cp

ELSE

WRITE(12,1600)tc-c6,MOIST(TC)*100.,DENS(TC),conduc(tc),

& SPHEAT(TC)

ENDIF

IF(TC.GE.t0+1.0d0)THEN

TC - TC-1.0d0

GO TO 40

ENDIF

IF(TC.GT.AINT(t0-l.0d0)+.15)THEN

TC - TC-.250d0

GOTO 40

ENDIF

IF(TC.GT.AINT(t0-4.0d0)+.15)THEN

TC - TC-.50d0

GOTO 40

ENDIF

IF(TC.GT.AINT(t0-10.0d0)+.15)THEN

TC-TC-1.0d0

GOTO 40

ELSE

TC-TC-2.0d0

IF(TC.GE.233.150d0)GOTO 40

ENDIF

write(12,1700)t1-273.15,th-273.15,avgd,avgk,avgc

CLOSE(UNIT-12)

ENDIF

C Printout on screen

IF(ITMODE)THEN

IF(PRPSCR.EQ.1)THEN

write(5,1001)tit1e

write(5,1050)

write(5,1100)t0-273.150d0

write(5,1200)ms

write(5,1300)

write(5,1400)

WRITE(5,1500)

1000 format(' ',T31,A)

1001 format('l',T31,A)

1050 format(' ',t27,'Product Properties',/,' ',t22,'as a ',

& 'Function of Temperature')

1100 format(' ',/,' ','Initial freezing temperature(C)- ',f6.2)

1200 format(' ',/,' ','Equivalent molecular weight- ',f6.2)

1300 format(' ',/,' ',28x,'Product properties'//)

1400 FORMAT(' ',/,' ',3X,'Temperature',5X,'Unfrozen',7X,'Density',

& 4X,'Conductivity',2x,' Ap.Sp.Heat')

1500 FORMAT(' ',7X,'(C)',10X,'Water',8x,'(kg/m“3)',7X,'(W/m*K)',
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& 6X,'(kJ/kg*K)',/,3X,S(' ------------ '))

1600 FORMAT(' ',T4,F7.2,T22,F6.2,T36,F6.1,T49,F6.3,T62,F8.3)

1700 format(' ',//,' ','Average property values over the interval '

& ,f6.1,' to ',f6.1' :',/,' ',5x,'Average density - ',t40,f6.1,

& /,' ',5x,'Average thermal conductivity - ',t40,f5.3,/,' ',5x,

& 'Average specific heat - ',t40,f5.3)

TC-AINT(t0+2.0dO)+.150d0

50 IF(TC.GE.t0)THEN

WRITE(5,1600)tc-c6,wf0*100.,DP,kp,cp

ELSE

WRITE(5,1600)tc-c6,MOIST(TC)*100.,DENS(TC),conduc(tc),

& spheat(tc)

ENDIF

IF(TC.GE.t0+1.0dO)THEN

TC - TC-1.0d0

GO TO 50

ENDIF

IF(TC.GT.AINT(t0-1.0dO)+.15)THEN

TC - TC-.250d0

GOTO 50

ENDIF

IF(TC.GT.AINT(t0-4.0d0)+.15)THEN

TC - TC-.50d0

GOTO 50

ENDIF

IF(TC.GT.AINT(t0-10.0d0)+.15)THEN

TC-TC-1.0d0

GOTO 50

ELSE

TC-TC-2.0d0

IF(TC.GE.233.150d0)GOTO 50

ENDIF

ENDIF

ENDIF

write(S,1700)t1-273.15,th-273.15,avgd,avgk,avgc

90 return

END

DOUBLE PRECISION FUNCTION MOIST(X)

c This function determines the unfrozen water

c fraction of a food procduct below the initial freezing temp-

c perature.

c the variables used in this function are:

cl- 18.015 kg/kmole; molecular weight of water

c2- 1./273.15 KA-l

c3- 6003./8.314 K; latent heat of ice/mole/R

wa- moisture content of unfrozen product

ms- molecular weight of solids0
0
0
0
0
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0
0
0

0
0
0
0
0
0

double precision cl,c2,c3,xx,ms,tinv,t0,wf0,dp,kp,cp

common/prop/wf0,ms,dp,kp,cp,t0,/cons/c1,c2,c3

c1-18.015d0

c2-1.0d0/273.15d0

c3-6003.0d0/8.314d0

tinv - 1.0d0/x

xx-exp(c3*(c2-tinv))

moist-xx*(1.0d0-wf0)*c1/(ms*(1.0dO-xx))

return

end

DOUBLE PRECISION FUNCTION DENS(X)

this function determines the density of a food product

below the initial freezing temperature,as a fuction of un-

frozen water fraction.

the variables used in this function are:

di- density of ice (kg/mAB)

dp- density of unfrozen product (kg/m‘3)

ds- density of solids (kg/mAB)

dw— density of water (kg/m23)

wf0- moisture content of unfrozen product

double precision moist,wf0,ms,dp,kp,cp,t0,di,dw,ds

external moist

common/prop/wf0,ms,dp,kp,cp,t0,/densi/di,dw,/d/ds

Save

Solids density

ds-(1.0d0-wf0)/(l.0d0/dp-wf0/dw)

dens—1.0d0/(moist(x)/dw+(1.0d0-wa)/ds+(wf0-moist(x))/di)

return

end

DOUBLE PRECISION FUNCTION KI(X)

c Thermal conductivity of ice as a function of temperature (k)

ki-7.3640d0-0.02850d0*x+3.525d-5*x**2

return

end



274

Table B.2 (cont'd).

DOUBLE PRECISION FUNCTION CONDUC(X)

c This function subroutine determines the thermal conductivity

c of a food product below the initial freezing temperature.

c Thermal conductivity is a function of moisture content and

c solids content, therefore, 'conduc' is a function of temper-

c ature.

c The variables used in this function subroutine are:

c di- density of ice

c dw— density of water

c ki(x)- thermal conductivity of ice as a function of

c temperature

c kp- thermal conductivity of product

c ks- thermal conductivity of solids

c kw- thermal conductivity of water

c wa- unfrozen product moisture content

c moist(x)- moisture content as a function of temperature

c kl- intermittent value

c k2- intermittent value

c k3- thermal conductivity of water-ice phase

c k4- intermittent value

c k5- intermittent value

c va- intermittent value

c val- intermittent value

c c4- 2./3.

double precision moist,dens,ki,wf0,ms,dp,kp,cp,t0,di,dw,ds,

&kw,c4,va,va1,ks,kl,k2,k3,k4,k5

common /prop/wf0,ms,dp,kp,cp,t0,/densi/di,dw,/d/ds,/cond/kw

external moist,dens,ki

c4—2.0d0/3.0d0

c Solids density

ds-(l.0d0-wf0)/(1.0dO/dp-wa/dw)

c Thermal conductivity of solids

va-(l.0d0-wf0)/ds

val-(va/(va+wf0/dw))**c4

ks-kw*(val-((kw-kp)/kw—kp*(l.0d0-va1**.5)/va1))

c Phase I: ice--water

k1-(wf0-moist(x))/di/(moist(x)/dw+(wf0-moist(x))/di)

k2-kl**c4*(1.0d0-ki(x)/kw)

k3-kw*(1.0d0-k2)/(1.0d0-k2*(1.0d0—k1**(1.0dO/3.0d0)))

c Phase II: solids--water/ice

kh-va/(va+(wf0-moist(x))/di+moist(x)/dw)
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0
0
0

0
0
0
0
0

0
0
0
0
0

k5-k4**c4*(1.0d0-ks/k3)

conduc-k3*(l.0d0-k5)/(l.0d0-k5*(l.0d0-k4**(l.0d0/3.0dO)))

return

end

DOUBLE PRECISION FUNCTION SPHEAT(X)

This function determines the apparent specific

heat of a frozen food product as a function of unfrozen water

below the initial freezing temperature.

The external function moist (unfrozen water fraction) used

to determine the apparant specific heat is a function of

temperature; therefore, 'spheat' is also a function of temper-

ature .

the variables used in this function are:

cp - specific heat product >0C (kJ/kgC)

cpi- specific heat of ice (kJ/kgC)

cps- specific heat of solids (kJ/kgC)

cpw— specific heat of water (kJ/kgC)

wa - moisture content of unfrozen product

double precision moist,wf0,ms,dp,kp,cp,t0,cpi,cpw,dh,cps,dcp,c5

external moist

common/prop/wf0,ms,dp,kp,cp,t0,/sph/cpi,cpw

c5-6003.0d0/18.015d0

dh - 0.0010d0

c solids specific heat

cps-(1.0d0-wf0)/(1.0dO/cp-wa/cpw)

if(x+dh.ge.t0)then

dcp - (moist(x)-moist(x-dh))*c5/dh

else

dcp - (moist(x+dh)-moist(x-dh))*c5/(2.0d0*dh)

endif

spheat-(l.0d0-wf0)*cps+moist(x)*cpw+(wa-moist(x))*cpi+dcp

return

end

SUBROUTINE CONSPR
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c This subroutine provides constant property approximations to the

c properties as a function of temperature.

parameter(maxd - 101, maxc - 51, maxs - 201)

integer prpfil,nsd,nsc,nss,ynavg

double precision tc,c5,aa,a,b,t0m1,apb,

&erdens,ercond,erpsh,

&avgdi,avgki,avgci,

&bstep,erldd,er1dc,erlds,er2dd,er2dc,er2ds

&ddera,dderab,rh02d,rhold,cdera,cderab,k2d,k1d,

&sdera,sderab,sph2d,sphld

c Declare variables in common blocks

double precision wf0,ms,dp,kp,cp,t0,

&c1,c2,c3,

&denst(maxd),densc(maxd),condt(maxc),condc(maxc),

&spht(maxs),sphc(maxs),

&tl,th,avgd,avgk,avgc,

&MOIST,DENS,CONDUC,SPHEAT

character tit1e*40,ttlfil*10,prpf13*12,fildat*16

EXTERNAL MOIST,DENS,CONDUC,SPHEAT

common/prop/wf0,ms,dp,kp,cp,t0,

&/cons/c1,c2,c3,

&/CONSTP/DENST,DENSC,CONDT,CONDC,SPHT,SPHC,

&/NCONSTP/NSD,NSC,NSS,

&/tt1/title,ttlfil,

&/profil/prpfil,

&/pavg/th,t1,avgd,avgk,avgc,ynavg

AA - 233.150d0

NTSD - 100

NTSC - 50

NTSS - 200

ERlDD - .050d0

.050d0

.050d0

.250d0

.250d0

.250d0

BSTEP 0.10d0

TOMl - T0-0.050d0

‘5"
;
U U

I
I
I
I
I
I

C Find values for density

5 I - 1

A - AA

DENST(1) - A

B - BSTEP

1P1 - 1+1

APB - A+B
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C Determine % second derivative for density.

10 DDERA - (DENS(A+0.0IOdO)-DENS(A))/DENS(A)

DDERAB - (DENS(APB+0.010dO)-DENS(APB))/DENS(APB)

RHOZD - (DDERAB-DDERA)/DDERA

C Determine % first derivative for density.

RHOlD - (DENS(A)-DENS(APB))/(DENS(A))

C Check if second derivative is greater than allowable error; if so,

store

C temperature endpoint value and determine the average property value

for that

C section, assuming property is linear with temperature over each

segment.

IF(ABS(RH02D).GT.ER2DD.OR.ABS(RH01D).GT.ER1DD)THEN

DENST(IP1) - APB

call integr(apb,a,avgdi,avgki,avgci,1)

densc(i) - avgdi

A - A+B

I - IPl

IPl - I+1

C Check if number of steps is greater than array dimensions; if so,

C double the allowable error in the second derivative and repeat calcu-

C lations.

IF(I.GT.NTSD)THEN

ER2DD - ERZDD*2.0dO

ERlDD - ERlDD*2.0d0

GO TO 5

ENDIF

B - BSTEP

ELSE

B - B+BSTEP

ENDIF

APB - A+B

IF(APB.LT.T0-bstep)GO TO 10

DENST(IP1) - T0

call integr(t0m1,a,avgdi,avgki,avgci,1)

densc(i) - avgdi

NSD - I

C Find values for thermal conductivity

20 I - 1

A - AA

CONDT(1) - A

B - BSTEP

1P1 - I+1

APB - A+B

C Determine % second derivative for thermal conductivity.
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30 CDERA - (CONDUC(A+0.010dO)-CONDUC(A))/CONDUC(A)

CDERAB - (CONDUC(APB+0.0lOdO)-CONDUC(APB))/CONDUC(APB)

K2D - (CDERAB-CDERA)/CDERA

C Determine % first derivative for thermal conductivity.

KID - (CONDUC(A)-CONDUC(APB))/(CONDUC(A))

C Check if second derivative is greater than allowable error; if so,

store

C temperature endpoint value and determine the average property value

for that

C section, assuming property is linear with temperature over each

segment.

IF(ABS(K2D).GT.ER2DC.OR.ABS(K1D).GT.ER1DC)THEN

CONDT(IPl) - APB

call integr(apb,a,avgdi,avgki,avgci,2)

condc(i) - avgki

A - A+B

I - IPl

1P1 - 1+1

C Check if number of steps is greater than array dimensions; if so,

C double the allowable error in the second derivative and repeat calcu-

C lations.

IF(I.GT.NTSC)THEN

ER2DC - ER2DC*2.0d0

ERlDC - ERlDC*2.0d0

GO TO 20

ENDIF

B - BSTEP

ELSE

B - B+BSTEP

ENDIF

APB - A+B

IF(APB.LT.T0-bstep)GO TO 30

CONDT(IPl) - TO

call integr(t0m1,a,avgdi,anki,avgci,2)

condc(i) - avgki

NSC - I

C Find values for specific heat

40 I - 1

A - AA

SPHT(1) - A

B - BSTEP

1P1 - 1+1

APB - A+B

C Determine % second derivative for specific heat.

50 SDERA - (SPHEAT(A+0.010d0)-SPHEAT(A))/SPHEAT(A)

SDERAB - (SPHEAT(APB+0.010dO)-SPHEAT(APB))/SPHEAT(APB)



279

Table B.2 (cont'd).

SPH2D - (SDERAB-SDERA)/SDERA

C Determine % first derivative for specific heat.

SPHlD - (SPHEAT(A)-SPHEAT(APB))/(SPHEAT(A))

C Check if second derivative is greater than allowable error; if so,

store

C temperature endpoint value and determine the average property value

for that

C section, assuming property is linear with temperature over each

segment.

C

IF(ABS(SPH2D).GT.ER2DS.OR.ABS(SPH1D).GT.ER1DS)THEN

SPHT(IP1) - APB

call integr(apb,a,avgdi,avgki,avgci,3)

sphc(i) - avgci

A - A+B

I - IP1

IP1 - 1+1

Check if number of steps is greater than array dimensions; if so,

C double the allowable error in the second derivative and repeat calcu-

C lations.

IF(I.GT.NTSS)THEN

ER2DS - ER2DS*2.0d0

ERlDS - ERlDS*2.0d0

GO TO 40

ENDIF

B - BSTEP

ELSE

B - B+BSTEP

ENDIF

APB - A+B

IF(APB.LT.T0-bstep)GO TO 50

SPHT(IP1) - T0

call integr(t0m1,a,avgdi,avgki,anci,3)

sphc(i) - avgci

NSS - I

C Print out approximated property values in file.

85

88

90

100

110

IF(PRPFIL.EQ.1)THEN

WRITE(PRPFL3,85)TTLFIL,'PRP.CON'

FORMAT(' ',A,A)

OPEN(UNIT-12,NAME-PRPFL3(1:12),TYPE-'NEW',CARRIAGECONTROL—’LIST')

WRITE(12,88)TITLE

FORMAT(' ',//,' ',T31,A)

WRITE(12,90)

FORMAT(' ',/,' ',T25,'CONSTANT PROPERTIES')

WRITE(12,100)T0-273.150d0

FORMAT(' ',/,' ','Initial freezing temperature(C)= ',F6.2)

WRITE(12,110)MS

FORMAT(' ',/,' ','Equivalent molecular weight- ',F6.2)
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WRITE(12,120)

120 FORMAT(' ',/,' ',//,28X,'Product Properties'//)

WRITE(12,130)

130 FORMAT(AX,'Temperature',5X,'Unfrozen',7X,'Density',4X,

+'Conductivity',2x,' Ap.Sp.Heat')

WRITE(12,140)

140 FORMAT(' ',7X,'(C)',10X,'Water',8X,'(kg/m“3)',7X,'(W/m*K)',

+6X,'(kJ/kg*C)',/,3X,5(' ------------ '))

TC-AINT(TO+2.0dO)+.150dO

150 IF(TC.LT.T0)GOTO 170

WRITE(12,160)TC-273.150d0,WFO*100.0d0,DP,KP,CP

160 FORMAT(SX,F7.2,T22,F6.2,T36,F6.l,T49,F6.3,T62,F8.3)

GOTO 240

170 DO I - 1,NSD

IF(TC.GE.DENST(I).AND.TC.LT.DENST(I+1))THEN

DE - DENSC(I)

GOTO 180

ENDIF

ENDDO

180 DO I - 1,NSC

IF(TC.GE.CONDT(I).AND.TC.LT.CONDT(I+1))THEN

CO - CONDC(I)

GOTO 190

ENDIF

ENDDO

190 DO I - 1,NSS

IF(TC.GE.SPHT(I).AND.TC.LT.SPHT(I+1))THEN

SP - SPHC(I)

GOTO 200

ENDIF

ENDDO

200 WRITE(12,160)TC-273.150d0,MOIST(TC)*100.0d0,DE,CO,SP

240 IF(TC.GE.T0+1.0dO)GOTO 270

IF(TC.LE.AINT(T0-1.0d0)+.15)GOTO 250

TC-TC-.250d0

COTO 290

250 IF(TC.LE.AINT(T0-4.0d0)+.15)GOTO 260

TC-TC-.50d0

GOTO 290

260 IF(TC.LE.T0-10.0d0)GOTO 280

270 TC-TC-1.0d0

GOTO 290

280 TC-TC-2.0d0

290 IF(TC.GE.233.150dO)GOTO 150

WRITE(12,300)NSD,NSC,NSS

300 FORMAT(' ',/,' ','No. const. density values - ',I3,/,

&X,'No. const. conductivity values - ',I3,/,

&X,'No. const. specific heat values - ',13)

WRITE(12,305)ER1DD,ER1DC,ER1DS,ER2DD,ER2DC,ER2DS

305 FORMAT(' ',/,' ','Error 1D dens. - ’,F6.4,' Error 1D cond. - ',

&F6.4,/' ','Error 1D sp. heat - ',F6.4,' Error 2D density - ',F6.4,

&/,X,'Error 2D cond. - ',F6.4,' Error 2D sp. heat - ',F6.4)

WRITE(12,306)BSTEP

306 FORMAT(' ','Step increment - ',f8.5)

CLOSE(UNIT-12)
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ENDIF

C Store results in data file

C Results for density, thermal conductivity and specific heat

C approximations are stored in 'TTLFILprp.dat'

WRITE(FILDAT,310)tt1fil,'PRP.DAT'

310 FORMAT(' ',a,A)

OPEN(UNIT-12,NAME=FILDAT(1:16),TYPE='NEW',CARRIAGECONTROL-'LIST')

WRITE(12,*)WFO,T0,MS

WRITE(12,*)DP,KP,CP

WRITE(12,*)NSD,NSC,NSS

write(12,*)tl,th,avgd,avgk,avgc,ynavg

DO I-1,NSD

WRITE(12,*)DENST(I),DENSC(I)

ENDDO

DO I-1,NSC

WRITE(12,*)CONDT(I),CONDC(I)

ENDDO

DO I-1,NSS

WRITE(12,*)SPHT(I),SPHC(I)

ENDDO

CLOSE(UNIT-l2)

RETURN

END

SUBROUTINE INTEGR(thi,tlow,avgdp,avgkp,avgcp,ncase)

integer np,ncase

double precision eta(25),w(25),thi,tlow,tavg,tdiff,avgdp,

&avgkp,avgcp,x(25),

&dens,conduc,spheat

external dens,conduc,spheat

c Ncase - 0: 20pt. quad for density, conductivity, sp.heat over tHi -

tLo

c Ncase - 1: 5pt. quad for density

c Ncase - 2: 5pt. quad for thermal conductivity

c Ncase - 3: 5pt. quad for specific heat

0 Determine mean property value over specified range using Gauss

Quadrature integration:0

if(ncase.eq.0)then

0 20 pt. quad.
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C

C

C

C

C

np - 20

Eta values:

eta(l)

eta(2)

eta(3)

eta(4)

eta(S)

eta(6)

eta(7)

eta(8)

eta(9)

-0

-0

-0.

-0.

-0.

-0.

-0.

99312859918509

96397192727791

91223442825133

83911697182222

74633190646015

.63605368072652

—0.

-0.

51086700195083

37370608871542

22778585114165
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eta(lO) - -0.07652652113350

do i - 1,10

eta(21-i) - ~eta(i)

enddo

Weighting factors:

W(1)

W(2)

W(3)

W(4)

W(5)

W(6)

W(7)

W(8)

W(9) 0
0
0
0
0
0
0
0
0

.01761400713915

.04060142980039

.06267204833411

.08327674157670

.10193011981724

.11819453196152

.13168863844918

.14209610931838

.14917298647260

w(10) - 0.15275338713073

do i - 1,10

w(21-i) - w(i)

enddo

else

5 pt. quad.

np - 5

Eta values:

eta(l)

eta(2)

eta(3)

eta(4)

eta(S)

-0.90617984593866

-0.53846931010568

0.0

-eta(2)

-eta(1)

Weighting factors:

W(1)

W(2)

W(3)

W(4)

W(5)

0. 23692688505619

0.47862867049937

0.

W(2)

w(1)

56888888889
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C

C

0
0
0
0
0

endif

Transform eta onto (th - t1) interval

tavg - (thi+tlow)/2.0d0

tdif - (thi-tlow)/2.0d0

andp - O

avgkp - 0

avgcp - 0

do i - 1,np

x(i) - tavg + tdif*eta(i)

Sum integral approximation

if(ncase.eq.0.or.ncase.eq.1)avgdp

if(ncase.eq.0.or.ncase.eq.2)avgkp

if(ncase.eq.0.or.ncase.eq.3)avgcp

enddo

if(ncase.

if(ncase.

if(ncase.

return

end

avgdp + w(i)*dens(x(i))

avgkp + w(i)*conduc(x(i))

avgcp + w(i)*spheat(x(i))

eq.0.or.ncase.eq.1)avgdp - 0.50*avgdp

eq.0.or.ncase.eq.2)avgkp - 0.50*avgkp

eq.0.or.ncase.eq.3)avgcp - 0.50*avgcp

BLOCK DATA CONST

the following values are defined in this block data:

di-

dw-

kw-

cpi-

cpw—

density of ice (917. kg/m23) } block

density of water (998. kg/m‘3)} /densi/

thermal conductivity of water } block

(0.569 w/mk) } /cond/

specific heat of ice }

(2.1 kj/kgk) } block

specific heat of water } /sph/

}(4.187 kj/kgk)

double precision DI,DW,KW,CPI,CPW

COMMON /DENSI/DI,DW,/COND/KW,/SPH/CPI,CPW

SAVE /DENSI/,/COND/,/SPH/

DATA DI,DW/9l7.0d0,998.0d0/,KW/0.5690dO/,

&CPI,CPW/2.10d0,4.1870d0/

END
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0
0
0
0

0
0
0
0

SUBROUTINE INPUTl

This subroutine provides the input for the boundary condi-

tions on the product for the case where the ambient temper-

ature and surface heat tranfer coeffient are known and assumed

to be constant over a given storage period.

Input varibles include, initial product temperature, sym—

metry of boundary conditions, number of constant temperature

storage periods, length of storage period, and surface heat

transfer coefficient.

parameter(maxp-ZO)

integer ct(maxp),cct(maxp),per,sym,sstep,unit,shape,m,

&htype(maxp)

double precision ti,temp(maxp),stor(maxp),hl(maxp),h2(maxp),

&tunit(maxp),h,l,dz,per1,per2,ampl,amp2

character yn*1,title*20,tt1fil*4,fildat*12,inpdat*12

logical itmode

common/bound/per,ti,temp,stor,h1,h2,tunit,

&/geom/shape,h,1,dz,sym,m,mp1,sstep/ttl/title,ttlfil,/mod/model,

&/itm/itmode,/datfil/fildat,inpdat,kindat

Save

if(itmode)go to 3

read*,per,ti,sym

do i - l,per

read*,temp(i),unit,stor(i),h1(i),h2(i)

if(unit.eq.1)then

tunit(i)-3600.0d0

else

tunit(i)-86400.0d0

endif

enddo

read shape

if(shape.lt.3)then

read*,l

h - 1.0d0

else

read*,l

h - 0.0d0

endif

go to 500

write(5,1)

1 format('l',72('-'),/,'0',27x,'Storage Conditions',/,’0',72('-'))

write(6,10)



285

Table B.2 (cont'd).

10 format(' ',/,' ','Enter number of constant temp. storage ',

&'periods: ',$)

read*,per

write(6,20)

20 format(' ',/,' ','Initial product temperature (C): ',$)

read*,ti

write(6,30)

30 format(' ',/,' ','Are the boundary conditions symmetrical? ',

&'(0-No,1-Yes) ',/,' ','(Enter "1" for cylinder & sphere ',

&'geometries) ',$)

read*,sym

write(6,40)

40 format(' ',/,' ','Are these values correct? (y/n) ',$)

read(5,2)yn

2 format(a)

if(yn.ne.'y'.and.yn.ne.'Y')goto 5

c input boundary conditions for each storage period

do 120 i-1,per

45 write(6,50)i

50 format(' ',/,' ','Enter data for period ',i3,':',$)

write(6,60)

60 format(' ',5x,'Storage temperature (C): ',$)

read*,temp(i)

70 write(6,75)

75 format(' ',5x,'Enter units for storage temp.:',/,' ',7x,'1-= hours'

&./.' '.7x.’2- day8')

read*,unit

if(unit.1e.0.and.unit.gt.2)then

print*,'try againl'

goto 70

endif

if(unit.eq.1)then

tunit(i)-3600.0d0

else

tunit(i)-86400.0d0

endif

77 write(6,80)

80 format(' ',5x,'Length of storage period: ',$)

read*,stor(i)

if(stor(i).lt.0)then

print*,'try again!’

goto 77

endif

write(6,82)

82 format(' ',5x,'Enter curve type of heat transfer coefficient:',

&/,' ',7x,'1. constant',/,' ',7x,'2. sinusiodal')

read*,htype(i)

if(htype(i).eq.1)then

write(6,90)

90 format(' ',5x,'Enter surface heat transfer coefficient (W/m“2C):',

&/,' ',7x,'side 1 - ',$)

read*,h1(i)

if(sym.ne.1)then

write(6,100)
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100 format(' ',7x,'side 2 - ',$)

read*,h2(i)

else

h2(i)-0.0d0

endif

else

write(6,102)

102 format(' ',5x,'Enter amplitude (C) and period (hrs) of

sinusiodal',

&' curve for h (side 1) : ',$)

read*,amp1,per1

if(sym.ne.1)then

write(6,104)

104 format(' ',7x,'side 2 - ',$)

read*,amp2,per2

else

amp2-0.0d0

per2-0.0d0

h2(i) - 0.0d0

endif

endif

110 write(5,115)

115 format(' ',/,' ','Are these values correct? (y/n) ',$)

read(5,2)yn

if(yn.ne.'y'.and.yn.ne.'Y')goto 45

120 continue

c input geometry and size

140 write(6,150)

150 format('O','Enter product geometry: ',/,' ',5x,'l - slab',/,' ',Sx

+,'2 - cylinder',/,' ',5x,'3 - sphere')

read*,shape

if(shape.gt.l.and.sym.eq.0)then

print*,'Boundary conditions must be symmetrical for cylinder and',

&' sphere; try again!!'

go to 3

endif

if(shape.eq.1)then

write(6,160)

160 format(' ',/,' ','Enter dimensions for slab:',/,' ',5x,

&'thickness in direction of heat transfer (m) - ',$)

read*,l

h - 1.0d0

else

if(shape.eq.2)then

_ write(6,180)

180 format(' ',/,' ','Enter dimensions for cylinder',/,

+' ',5x,'radius (m)- ',$)

read *,1

h - 1.0d0

else

write(6,200)

200 format(' ',/,' ','Enter dimensions for sphere (m)',/,

+' ',5x,'radius (m)- ',$)

read *,1
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500

590

600

700

710

800

810

900

1000

h-0.0d0

endif

endif

ti - ti+273.150d0

if(sym.eq.l.and.shape.eq.1)L - L*0.50d0

do i - l,per

temp(i) - temp(i)+273.150d0

stor(i)-stor(i)*tunit(i)

if(sym.eq.1.or.shape.ne.1)then

if(shape.eq.1)then

h2(i) - 0.0d0

else

h2(i) - h1(i)

h1(i) - 0.0d0

endif

endif

enddo

if(1.ge.0.80d0)then

m-40

sstep-lO

go to 590

endif

do i-l,10

if(l.1t.i*0.080d0)then

m-i*4

sstep-i

go to 590

endif

enddo

write(inpdat,600)ttlfil,'inp.dat'

format(' ',a,a)

open(unit-12,name-inpdat(l:12),type-'new',carriagecontrola'list')

write(12,700)per,sym,ti

format(' ',12,2x,il,2x,f6.2)

do i - l,per

write(12,710)htype(i)

format(' ',il)

if(htype(i).eq.1)then

write(12,800)temp(i),stor(i),tunit(i),h1(i),h2(i)

format(' ',2x,f6.2,2x,f18.2,2x,f6.0,2(2x,f8.2))

else

write(12,810)temp(i),stor(i),tunit(i),amp1,perl,amp2,per2

format(' ',2x,f6.2,2x,f18.2,2x,f6.0,4(2x,f8.2))

endif

enddo

write(12,900)shape,L,h

format(' ',il,2(2x,f8.4))

write(12,1000)m,sstep

format(' ',12,2x,12)

close(unit-12)

return

end
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SUBROUTINE INPUT2

Kinetic properties to determine quality loss in a food product

are entered in this subroutine. A file titled 'TTLFILkin.dat'

containing the kinetic properties is created. This file is re-

opened in the solution, and it may be reused again in subsequent

runs.0
0
0
0
0

integer model

double precision q0,tref,ea,vea,vq0

character title*20,tt1fil*4,fildat*12,inpdat*12,kindat*12

logical itmode

common /tt1/tit1e,tt1fi1,/mod/mode1,/itm/itmode,

&/datfi1/fildat,inpdat,kindat

c Read batch file data (if itmode - .false.)

if(itmode)go to 1

read*,q0,tref,ea

if(model.eq.4)then

read*,vea,vq0

endif

go to 30

c Read interactive input

1 write(5,2)

2 format('l',72('-'),/,'0',t23,'Reference Shelf-life data',/,'0',

&72('-'))

10 write(5,100)

100 format(' ',/,' ','Enter reference shelf-life (days) : ',$)

read*,qO

write(5,200)

200 format(' ',/,' ','Enter reference temperature for reference',

&' shelf-life (C) : ',$)

read*,tref

write(5,300)

300 format(' ',/,' ','Enter activation energy constant (kJ/mole)

&.$)

read*,ea

if(model.eq.4)then

write(5,400)

400 format(' ',/,' ','Enter standard deviation of activation ',

&'energy const. (kJ/mole) : ',$)

read*,vea

write(5,500)

500 format(' ',/,' ','Enter standard deviation of ref. shelf-life’,

&' (dayS) : ',$)

read*,qu

endif
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write(5,550)

550 format(' ',/,' ','Are these values correct? (y/n) ’,$)

read(5,20)yn

20 format(a)

if(yn.eq.'n'.or.yn.eq.'N')go to 10

30 tref - tref+273.150d0

ea - ea*1000.0d0

if(model.eq.4)then

vea - (vea*1000.0d0)**2.0d0

qu - vq0*vq0

endif

write(kindat,600)tt1fil,'kin.dat'

600 format(' ',a,a)

open(unit-12,name-kindat(1:12),type-'new',carriagecontrol-‘list')

write(12,700)q0,tref,ea

700 format(' ',2x,f8.l,2x,f7.2,2x,f13.0)

if(model.eq.4)then

write(12,800)vea,vq0

800 format(' ',2(2x,e11.3))

endif

close(unit-12)

return

end

SUBROUTINE SOLN

parameter(maxd - 101, maxc - 51, maxs - 201)

parameter(maxm-lOl,maxp-20,tol-0.10d0,r-8.3140d0)

integer per,shape,m,sym,sstep,htype(maxp)

double precision wf0,ms,dp,kp,cp,t0,ea,q0,tref,vea,vq0,

&h,1,dz,ti,temp(maxp),stor(maxp),h1(maxp),h2(maxp),tunit(maxp),

&jj,kjj,eabs,eeabs,ssum,HH1(2),HH2(2),ta(2),tavg,qavg,

&qua1(maxm),dsum,vsum,eex,avdl,dqdea,ct(maxp),cct(maxp),dq(2),

&vq,DENST(maxd),DENSC(maxd),CONDT(maxc),CONDC(maxc),

&SPHT(maxs),SPHC(maxs),cc(maxm),dd(maxm),a(maxm),b(maxm),

&c(maxm),d(maxm),t(maxm,2),dt,ds,tl,th,avgd,avgk,avgc,ynavg,

&tdt,amp1,per1,amp2,per2,pi

character tit1e*20,tt1fil*4,fildat*12,inpdat*12,kindat*12

logical itmode

common/bound/per,ti,temp,stor,h1,h2,tunit,/tt1/title,ttlfil

&,/geom/shape,h,l,dz,sym,m,mp1,sstep,/mod/model,/itm/itmode,

&/datfil/fildat,inpdat,kindat,/NCONSTP/NSD,NSC,NSS,/dff/dif,

&/CONSTP/DENST,DENSC,CONDT,CONDC,SPHT,SPHC,/prop/wf0,ms,dp,
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&kp,cp,t0,/shelf/ea,q0,vea,vq0,tref,/d/ds

&/pavg/th,t1,avgd,avgk,avgc,ynavg,/toldt/tdt

save

c Read in boundary and initial conditions

write(inpdat,600)ttlfil,'inp.dat'

600 format(' ',a,a)

open(unit-12,name-inpdat(1:12),type-'old',carriagecontrol-'list')

read(12,*)per,sym,ti

do i - l,per

read(12,*)htype(i)

if(htype(i).eq.1)then

read(12,*)temp(i),stor(i),tunit(i),h1(i),h2(i)

else

read(12,*)temp(i),stor(i),tunit(i),ampl,per1,amp2,per2

endif

enddo

C Input geometry and dimensions

read(12,*)shape,L,H

read(12,*)m,sstep

close(unit-12)

c Read in constant property assumptions

WRITE(FILDAT,310)TTLFIL,'PRP.DAT'

310 FORMAT(' ',A,A)

OPEN(UNIT-12,NAME-FILDAT(1:12),TYPE-'OLD',CARRIAGECONTROLP'LIST')

READ(12,*)WFO,T0,MS

READ(12,*)DP,KP,CP

READ(12,*)NSD,NSC,NSS

read(l2,*)tl,th,avgd,avgk,avgc,ynavg

DO I-1,NSD

READ(12,*)DENST(I),DENSC(I)

ENDDO

DO I-1,NSC

READ(12,*)CONDT(I),CONDC(I)

ENDDO

DO I-1,NSS

READ(12,*)SPHT(I),SPHC(I)

ENDDO

CLOSE(UNIT-l2)

c Read in kinetic data

if(model.ge.3)then

write(kindat,600)ttlfil,'kin.dat'

open(unit-12,name-kindat(1:12),type-'old',carriagecontrol='list')

read(12,*)q0,tref,ea

if(model.eq.4) read(12,*)vea,vq0

close(unit-12)

endif
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pi - dacos(-l.0d0)

dt - 120

dz - L/m

mp1 - m+1

DO k - 1,2

TA(k)-TEMP(1)

if(htype(l).eq.1)then

HHl(k)-Hl(1)

HH2(k)-H2(1)

else

if(amp1.ne.0)then

hh1(k) - amp1*cos(2*pi*(k-1)*dt/(per1*3600))

else

hh1(k) - 0

endif

if(amp2.ne.0)then

hh2(k) - amp2*cos(2*pi*(k-1)*dt/(per2*3600))

else

hh2(k) - 0

endif

endif

DO I - 1,mp1

t(I,k)-ti

enddo

enddo

tavg - ti

time-0

count-0

JJ-O

JJJ-O

DO I - 1,mp1

IF(MODEL.GE.3)THEN

QUAL(I)-Q0*86400.0d0

ELSE

QUAL(I) - 0.0d0

ENDIF

ENDDO

qavg - q0*86400.0d0

if(model.eq.4)then

dq(l) - 0.0d0

dq(2) - 0.0d0

qu-vq0*86400.0d0

vq-qu

endif

nprint - 0

IF(MODEL.LT.3)THEN

HEADTQ-l

else

headtq-2

endif

call output(nprint,headtq,t,tavg,time,jj,qual,qavg,vq,ii,eend,dt)

j-l

c finite difference solution
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do 160 ii-1,per

eend—O

if(ii.ne.l)then

time-time+stor(ii-1)

nprint - 2

call output(nprint,headtq,t,tavg,time,jj,qua1,qavg,vq,ii,eend,dt)

endif

JJ-O

JJj-O

 

c check if time is > length of storage period

65 if(jj.ge.stor(ii))goto 155

c check if product temp. is close to ambient temp.

60

eabs-abs(t(1,2)-temp(II))

do 60 i-2,mpl

eeabs-abs(t(i,2)-temp(ii))

if(eabs.1t.eeabs)then

eabs-eeabs

endif

continue

if(eabs.1t.tol)goto 105

dtmax - stor(ii)-jj

 

C set

count-count+1

ambient temperature - storage temperature

ta(2)-temp(ii)

c boundary conditions

If(htype(ii).eq.1)then

hhl(2)-h1(ii)

hh2(2)-h2(ii)

else

if(ampl.ne.0)then

hhl(2) - amp1*cos(2*pi*(j-1)*dt/(per1*3600))

else

hhl(2) - 0

endif

if(amp2.ne.0)then

hh2(2) - amp2*cos(2*pi*(j-l)*dt/(per2*3600))

else

hh2(2) - 0

endif

endif
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c thomas algorithm

c find coefficients for thomas algorithm

call coeff(ii,hhl,hh2,ta,dtmax,t,a,b,c,d,dt)

CC(1)-c(1)/b(1)

dd(1)-d(1)/b(1)

do k-2,mp1

kk-k-l

cc(k)-c(k)/(b(k)-a(k)*cc(kk))

dd(k)-(d(k)-a(k)*dd(kk))/(b(k)-a(k)*CC(kk))

enddo

t(mpl,2)-dd(mpl)

tavg - t(mpl,2)

do k-2,mp1

kk-m-k+2

t(kk,2)-dd(kk)-cc(kk)*t(kk+1,2)

tavg - tavg+t(kk,2)

enddo

tavg - tavg/mp1

JJ - JJ+dt

C
 

c find quality distribution and adjust time step

if(model.ge.3)then

dsum-O

vsum-O

endif

ssum—O

qavg - 0

do 85 i-1,mpl

if(model.ge.3)then

eex-1.0d0/t(i,2)-l.0d0/tref

d1-exp(-(ea/r*eex))

qual(i)-qual(i)-d1*dt

qavg - qavg+qual(i)

if(model.eq.4)then

dqdea—dl*eex*dt/r

vsum~vsum+dl*eex*dt/r

endif

dsum-dsum+dl

endif

85 continue

c find mass average quality

if(model.ge.3)then

qavg - qavg/mp1

if(model.eq.4)then

dqdea-vsum/(mpl)

dq(2)-dq(1)+dqdea

vq-vq0+dq(2)**2*vea

dq<1)-dq(2>
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endif

endif

 

count-count+l

if(count.ge.60)then

c printout

nprint - 1

call output(nprint,headtq,t,tavg,time,jj,qual,qavg,vq,ii,eend,dt)

count-0

endif

C
 

c initial t for next time step

do 100 i-1,mp1

100 t(i,1)-t(i,2)

ta(1)-ta(2)

hhl(l)-hh1(2)

hh2(l)-hh2(2)

J-J+1

JJJ-JJJ+1

goto 65

c end of finite difference calculations

C *********************************************************

c set product temp. - ambient temperature; determine quality

105 tavg - 0.0d0

do 110 i-1,mp1

do 110 ji-l,2

t(i,ji)-temp(ii)

110 continue

tavg - temp(ii)

cct(ii)-jjj+1

nx-4

dt-(stor(ii)-jj)/nx

do 130 ij-1,nx

JJ-JJ+dt
if(model.ge.3)then

eex-1.0d0/temp(ii)-1.0d0/tref

d1-exp(-(ea/r*eex))

qavg - 0.0d0

do i-l,mp1

qua1(i)-qua1(i)-d1*dt

qavg - qavg+qual(i)

enddo

qavg-qavg/mpl

if(model.eq.4)then

dqdea-d1*eex*dt/r

dq(2)-dq(1)+dqdea

vq-vq0+dq(2)**2*vea
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dQ(1)-dQ(2)

endif

endif

c printout

130

140

150

155

160

nprint - 1

call output(nprint,headtq,t,tavg,time,jj,qual,qavg,vq,ii,eend,dt)

J-J +1

JJJ'JJJ+1

count-0

continue

ct(ii)-jjj+1

do 150 i-l,mpl

t(i,1)-t(i,2)

ta(l)-ta(2)

hhl(1)-hh1(2)

hh2(l)-hh2(2)

if(count.ne.0)then

nprint - 1

call output(nprint,headtq,t,tavg,time,jj,qual,qavg,vq,ii,eend,dt)

endif

count-0

if(ii.eq.per)then

eend-l

nprint - 2

call output(nprint,headtq,t,tavg,time,jj,qua1,qavg,vq,ii,eend,dt)

endif

continue

return

end

SUBROUTINE COEFF(ii,hhl,hh2,ta,dtmax,t,a,b,c,d,dt)

parameter(maxm-lOl,maxp-20,maxd-101,maxc-51,maxs—201)

integer shape,m,mpl,ii

double precision beta,nu,omega,gama,hh1(2),hh2(2),

&aar,ar(maxm),ar1(maxm),area,avgl,avg2,

&da,db,dc,ddd,ta(2),DENST(maxd),DENSC(maxd),

&CONDT(maxc),CONDC(maxc),SPHT(maxs),SPHC(maxs),ck(maxm),

&csd(maxm,2),a(maxm),b(maxm),c(maxm),d(maxm),t(maxm,2),

&dtmax,dt,pi,dzz,dtt,wf0,ms,dp,kp,cp,t0,h,l,dz,ds,

&th,t1,avgd,avgk,avgc,ynavg,tdt

common/geom/shape,h,1,dz,sym,m,mp1,sstep,/prop/wf0,ms,dp,kp,

&cp,t0,/CONSTP/DENST,DENSC,CONDT,CONDC,SPHT,SPHC,/dff/dif,

&/NCONSTP/NSD,NSC,NSS,/d/ds,/pavg/th,t1,avgd,avgk,avgc,ynavg,
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&/toldt/tdt

pi - dacos(-1.0d0)

c weighting functions for finite difference method

c modified crank-nicolson method

c weight. coeff. for d2t/d22

c for time t:

beta-0.50d0

c for time t+1:

nu-0.50d0

c weight. coeff. for dt/dt

c for time t:

omega-~1.0d0

c for time t+1:

gama-1.0d0

q1-0.0d0

q2-0.0d0

dzz-l.0d0/dz

if(shape.eq.2)then

aar-2.0d0*pi*h

else

if(shape.eq.3)then

aar-4.0d0*pi

endif

endif

do 10 i-1,mp1

c slab

if(shape.eq.1)then

ar(i)-h

ar1(i)-h

else

c cylinder

if(shape.eq.2)then

ar(i)-aar*(i-1)*dz

ar1(i)-ar(i)+aar*dz/2.0dO

else

0 sphere

ar(i)-aar*((i-1)*dz)**2.0d0

arl(i)-aar*((i-l)*dz+dz/2.0d0)**2.0d0

endif

endif
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10 continue

CALL PFIND(T,M,CK,CSD,DT,DZ,dtmax)

C **********:k***********************************************

c lst boundary point

AVGl - (AR(1)+AR1(1))*0.50d0

a(1)-0.0d0

c(1)-nu*dzz*CK(1)*ar1(1)

dc--beta*dzz*CK(1)*ar1(1)

b(1)--gama*CSD(1,1)*avg1-nu*hhl(2)*ar(l)-c(1)

db-omega*CSD(1,1)*avgl+beta*hh1(l)*ar(l)-dc

ddd--beta*(ta(1)*hh1(l)*ar(1)+ql)-nu*(ta(2)*hh1(2)*ar(l)+q1)

d(l)-db*t(1,l)+dc*t(2,1)+ddd

c **********************************************************

c

c interior points

do 20 i-2,m

AVGl - (AR(I)+AR1(I))*0.50d0

AVG2 - (AR(I)+AR1(I-1))*0.50d0

a(i)-nu*dzz*CK(I-1)*ar1(i-l)

da--beta*dzz*CK(I-1)*ar1(i-l)

c(i)-nu*dzz*CK(I)*ar1(i)

dc--beta*dzz*CK(I)*ar1(i)

b(i)--gama*(CSD(I,1)*avg2+CSD(I,2)*avgl)-a(i)-c(i)

db-omega*(CSD(I,1)*avg2+CSD(I,2)*avg1)-da-dc

d(i)-da*t(i-1,1)+db*t(i,1)+dc*t(i+1,l)

20 continue

c ***********************************************************

c 2nd boundary point

AVG2 - (AR(mp1)+AR1(M))*0.50d0

c(mp1)-0.0d0

a(mp1)-nu*dzz*CK(M)*arl(m)

da--beta*dzz*CK(M)*ar1(m)

b(mpl)--gama*CSD(mp1,2)*avg2-nu*hh2(2)*ar(mp1)-a(mpl)

db-omega*CSD(mpl,2)*avg2+beta*hh2(l)*ar(mp1)-da

ddd--beta*(hh2(1)*ta(1)*ar(mp1)+q2)-nu*(ta(2)*hh2(2)*ar(mp1)

&+q2)
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d(mp1)-da*t(m,1)+db*t(mp1,l)+ddd

return

end

SUBROUTINE PFIND(T,M,CK,CSPD,DT,DZ,dtmax)

PARAMETER (MAXm-lOl, MAXC-Sl, MAXD=10l, MAXS-201)

INTEGER NC(8),NSC,NSD,NSS

double precision TAVGK,TAVGSD(2),CK(MAXM),CSPD(MAXM,2),

&kc,DC(2),SPC(2),t(maxm,2),dt,dtmax,dz

double precision CONDT(MAXC),CONDC(MAXC),DENST(MAXD),

&DENSC(MAXD),SPHT(MAXS),SPHC(MAXS),

&wf0,ms,dp,kp,cp,t0,ds,

&th,tl,avgd,avgk,avgc,ynavg,

&dens,conduc,spheat

COMMON/CONSTP/DENST,DENSC,CONDT,CONDC,SPHT,SPHC,

&/NCONSTP/NSD,NSC,NSS,/prop/wf0,ms,dp,kp,cp,tO,/d/ds,

&/pavg/th,t1,avgd,avgk,avgc,ynavg/toldt/tdt

external dens,conduc,spheat

MP1 - M+1

eigen(1) - 0.

emax - 1.0e10

cc - 1000.0d0*dz/2.0d0

cl - 1.0d0/(cc*dz)

DO 100 I - 1,mp1

if(ynavg.eq.l.0)then

ckl - 3.0d0*avgk

ck(i) - avgk

do iii - 1,2

spc(iii) - avgc

dc(iii) - avgd

enddo

go to 90

endif

DO KK - 1,5

NC(KK) - 0

ENDDO

IF(I.LE.M)THEN

TAVGK - (T(I,1)+T(I+1,1))*0.50d0

TAVGSD(1) - 0.750d0*T(I,1)+0.250d0*T(I+1,l)

ENDIF

IF(I.GT.1)THEN

TAVGSD(2) - 0.750d0*T(I,1)+0.250d0*T(I-1,1)
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ENDIF

DO 10 J - 2,NSC+1

IF(NC(1).EQ.1)go to 10

IF(I.Eq.Mp1)go to 10

if(tavgk.ge.t0)then

ck(i) - kp

nc(1) - 1

else

if(tavgk.ge.t0-4.0d0)then

ck(i) - conduc(tavgk)

nc(1) - 1

else

IF(TAVGK.LE.CONDT(J))THEN

ck(i) - CONDC(J-1)

NC(l) - 1

endif

endif

endif

10 continue

if(i.gt.1)then

ckl - ck(i-l)+ck(i)+(ck(i-1)*ck(i))**0.5

endif

DO 40 J - 2,NSD+1

DO 30 RR - 1,2

IF(NC(KK+2).EQ.1)go to 30

IF(I.EQ.mp1.AND.KK.eq.1)GO TO 30

IF(I.EQ.1.AND.KK.eq.2)GO TO 30

if(tavgsd(kk).ge.t0)then

dc(kk) - dp

nc(kk+2) - 1

else

if(tavgsd(kk).ge.t0-4.0d0)then

dc(kk) - dens(tavgsd(kk))

nc(kk+2) - 1

else

IF(TAVGSD(KK).LE.DENST(J))THEN

DC(KK) - DENSC(J-l)

NC(KK+2) - 1

ENDIF -

endif

ENDIF

30 CONTINUE

40 CONTINUE

DO 60 J - 2,NSS+1

DO 50 KR - 1,2

IF(NC(KK+5).EQ.1)go to 50

IF(I.EQ.mp1.AND.KK.eq.1)GO TO 50

IF(I.EQ.1.AND.KK.eq.2)GO TO 50

if(tavgsd(kk).ge.t0)then

spc(kk) - cp

nc(kk+5) - 1

else

if(tavgsd(kk).ge.t0-4.0d0)then
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spc(kk) - spheat(tavgsd(kk))

nc(kk+5) - 1

else

IF(TAVGSD(KK).LE.SPHT(J))THEN

SPC(KK) - SPHC(J-1)

NC(KK+5) - 1

ENDIF

endif

ENDIF

CONTINUE

CONTINUE

CONTINUE

CONTINUE

do i - 1,mp1

DO KK - 1,2

CSPD(I,KK) - SPC(KK)*DC(KK)*cc/dt

ENDDO

enddo

RETURN

END

SUBROUTINE OUTPUT(nprint,headtq,t,tavg,time,jj,qual,qavg,vq,

&ii,eend,dt)

parameter(maxp-20,maxm-lOl)

integer per,shape,model,sym,sstep,m,eend,day,dead

double precision wf0,ms,dp,kp,cp,t0,ea,q0,tref,vea,vq0,

&h,l,dz,ti,temp(maxp),stor(maxp),hl(maxp),h2(maxp),tunit(maxp),

&abc(5),hr,c7,time,jj,c8,t(maxm,2),qual(maxm),abcd,qavg,vq,tavg

&,tavg1,dt

character tit1e*20,ttlfil*4,outfi1*12,hh11*29,hh22*21

common/ttl/title,ttlfil/mod/model/shelf/ea,q0,vea,vq0,tref

&/prop/wf0,ms,dp,kp,cp,t0/bound/per,ti,temp,stor,h1,h2,tunit

&/geom/shape,h,l,dz,sym,m,mpl,sstep

C
O
C
O

NPRINT - 0 if printing input parameters and headings

NPRINT - 1 if printing temperature distribution and/or

quality distributions

NPRINT - 2 if printing period no. and end line

IF(NPRINT.EQ.0)THEN

GO TO 1100

ELSE

if(nprint.eq.1)then
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go to 1200

else

go to 1300

endif

endif

1100 write(outfil,1000)tt1fil,'out.dat'

1000 format(' ',a,a)

open(unit-12,name-outfil(1:12),type-‘new',carriagecontrol-'list')

write(12,l)title

l format(' ',///,3x,'Title: ',a20,/3x,' ----- ',//,14x,'Input Para',

+'meters',/,14x,16('-')//)

if(model.ge.3)then

write(12,3)

3 format(' ','Kinetic Parameters')

write(12,4)q0

4 format(' ',/,' ',2x,'Reference shelf-life (days) ............ ',

&f7.l)

abcd-tref-273.150d0

write(12,5)abcd

5 format(' ',2x,'Reference temperature (C) .............. ',f6.2)

abcd-ea/1000.0d0

write(12,6)abcd

6 format(' ',2x,'Activation energy constant (kJ/mole)...',f8.2)

abcd-vq0**0.50d0

if(model.eq.4)then

write(12,8)abcd

8 format(' ',2x,'St. dev. of ref. shelf-life (days) ..... ',f6.2)

abcd-vea**0.50d0/1000.0d0

write(12,9)abcd

9 format(' ',2x,'St. dev. of ea (kj/mole) ............... ',f6.2)

endif

endif

write(12,10)

10 format(' ',/,' ','Unfrozen Product Properties',/)

abcd-wf0*100.0d0

write(12,11)abcd

11 format(' ',2x,'Moisture content (%) ................... ',f6.2)

abcd-t0-273.150d0

write(12,12)abcd

12 format(' ',2x,'Initial freezing temperature (C) ....... ',f6 2)

write(12,13)ms

13 format(' ',2x,'Molecular weight of solids (kg/mole)...',f8 2)

write(12,14)dp

14 format(' ',2x,'Unfrozen product density (kg/m‘3) ...... ',f8.2)

write(12,15)kp

15 format(' ',2x,'Thermal conductivity (W/mK) ............ ',f6.3)

write(12,16)cp

16 format(' ',2x,'Specific heat (kJ/kgK) ................. ',f7.3)

abcd-ti-273.150d0

write(12,17)abcd

17 format(' ',/,' ','Initial Condition:',/,' ',2x,'Product temp.’

+,' (C) at time-0 ........... ',f6.2)

c product geometry
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if(shape.eq.1)then

if(sym.eq.1)l - l*2.0d0

write(12,18)l

18 format( ' ',/,' ','Slab Geometry:',/,' ',2x,'thickness (m)',

+26('.'),f10.6)

else

if(shape.eq.2)then

write(12,20)l

20 format(' ',/,' ','Cyclindrical Geometry:',/,' ',2x,'radius (m)',

+29('.'),f10.6)

else

write(12,22)l

22 format(' ',/,' ','Spherical Geometry:',/,' ',2x,'radius (m)',

+29('.'),f10.6)

endif

endif

c boundary conditions

do 40 i-l,per

write(12,24)i

24 format(’ ',/,' ','boundary conditions for period ',i2,':',/)

abcd-stor(i)/tunit(i)

if(tunit(i).eq.3600.0d0)then

write(12,25)abcd

25 format(' ',4x,'storage time(hours) .......... ',f7.2)

else

write(12,26)abcd

26 format(' ',4x,'storage time (days) .......... ',f7.2)

endif

abcd-temp(i)-273.150d0

write(12,27)abcd

27 format(' ',4x,'storage temperature (C) ...... ',f6.1)

write(12,28)

28 format(' ',4x,'convective heat transfer coeff. (W/m“2K):')

if(shape.eq.1)then

write(12,29)h1(i)

29 format(' ',6x,'side 1-',f7.2)

if(sym.ne.1)then

write(12,30)h2(i)

30 format(' ',6x,'side 2-',f7 2)

endif

else

write(12,35)h2(i)

35 format(' ',6x,'at surface— ',f7.2)

endif

40 continue

write(12,45)dt

45 format(4x,’Time step - ',f6.2)

write(12,100)title

100 format(' ',/////,' ','Title- ',a20,/)

if(sym.eq.1)then

write(12,110)
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110 format(' ','Note: Distribution is symmetrical;'/,6x,'results',

+' are shown for half-thickness only.'/)

endif

hh22-'DISTRIBUTION HISTORY'

if(headtq.eq.l)then

hh11-' TEMPERATURE (C) '

else

hhll-'TEMPERATURE (C) & QUALITY (%)'

endif

write(12,120)hh11,hh22

120 format(' ',/,' ',19x,a,/,23x,a,/,19x,27('-'),/)

if(model.lt.3)then

write(12,130)

130 format(' ',28x,'position (m)',/' ',5x,'time',5x,':',42x,

&'Avg Temp')

else

write(12,135)

135 format(' ',28x,'position (m)',/' ',5x,'time',5x,':',42x,

&'Avg Temp Qual.')

endif

do i - 1,5

abc(i)-(i-1)*sstep*dz

enddo

if(model.lt.3)then

write(12,137)abc(1),abc(2),abc(3),abc(4),abc(5)

137 format(' ',4x,'hours :',5(f8.4))

else

if(model.eq.3)then

write(12,140)abc(1),abc(2),abc(3),abc(4),abc(5)

140 format(' ',4x,'days + hr :',5(f8.4),2x,'or Qual')

else

write(12,145)abc(l),abc(2),abc(3),abc(4),abc(5)

145 format(' ',4x,'days + hr :',5(f8.4),2x,'or Qual StD(%)')

endif

endif

if(model.ne.4)then

write(12,150)

150 format(' ',65('-'))

else

write(12,155)

155 format(72('-'))

endif

write(12,160)

160 format(' ','Period 1 :')

c Printout time heading

1200 c7-86400.0d0

tavgl - tavg-273.150d0

do i - 1,5

abc(i)-t((i-1)*sstep+1,2)-273.150d0

enddo

write(12,190)(time+jj)/3600,abc(l),abc(2),abc(3),abc(4),abc(5),
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&tavg1

190 format(' ',f8.2,' hour:',6(f7.2,1x),'C')

if(headtq.eq.2)then

C Printout quality distribution

210

c8-100.0d0/(86400.0d0*q0)

do i - 1,mp1

if(qua1(i).lt.0)then

dead-1

endif

enddo

do i - 1,5

abc(i)-qua1((i-1)*sstep+1)*c8

enddo

if(model.eq.3)then

write(12,210)abc(1),abc(2),abc(3),abc(4),abc(5),qavg*c8

format(' ',14x,':',6(f7.2,1x),'%')

else

write(12,215)abc(1),abc(2),abc(3),abc(4),abc(5),qavg*c8,

&(vq)**0.50d0*c8

215

220

format(' ',l4x,':',6(f7.2,1x),1x,e7.1,'%')

endif

if(dead.eq.1)then

write(12,220)

format(' ',18x,'she1f-life has been exceeded')

endif

endif

return

c Printout end line

1300

300

305

310

if(model.ne.4)then

write(12,300)

format(' ',65('-'))

else

write(12,305)

format(' ',72(’-'))

endif

if(eend.eq.0)then

write(12,310)ii

format(' ','period',13)

else

close(unit=12)

endif

return

end
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APPENDIX C

TWO DIMENSIONAL TRANSIENT HEAT CONDUCTION

AND QUALITY RETENTION PROGRAM

The two dimensional transient heat conduction program, including

estimation of quality retention, discussed in Chapter 3, is presented

here. An outline of the program is given in Table C.1, and the listing

for the program, written in Fortran 77 for a Vax 11/750 is given in

Table C.2.

305



306

Table C.1 Description of Two Dimensional Transient Heat Conduction

and Quality Retention Program.

Subroutine Title

PROGRAM FREEZE

SUBROUTINE PROPER

DOUBLE PRECISION

FUNCTION MOIST(X)

DOUBLE PRECISION

FUNCTION DENS(X)

DOUBLE PRECISION

FUNCTION KI(X)

DOUBLE PRECISION

FUNCTION CONDUC(X)

DOUBLE PRECISION

FUNCTION SPHEAT(X)

SUBROUTINE CONSPR

SUBROUTINE INTEGR

BLOCK DATA CONST

SUBROUTINE INPUTl

SUBROUTINE INPUT2

SUBROUTINE SOLN

SUBROUTINE COEFFl

SUBROUTINE COEFF2

SUBROUTINE THOMAL

Description

Main program; contains program menu.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

Allows interactive input of ambient conditions

and product geometry. Writes output to data

file.

Allows interactive input of kinetic properties.

Writes output to data file.

Computes temperature distribution and quality

retention as a function of temperature. Calls

output subroutine.

Determines matrix coefficients used in first

sweep in ADI finite difference algorithm.

Determines matrix coefficients used in second

sweep in ADI finite difference algorithm.

Solves Thomas Algorithm for inversion of tri-

diagonal matrix.
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SUBROUTINE PFIND

SUBROUTINE READING

SUBROUTINE OUTPUT

307

Finds values for thermal properties required

for ADI finite difference calculations from the

property values determined in CONSPR.

Writes input data to output file.

Writes resulting temperature and quality

retention values to output file.
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Table C.2 Computer Code for Two Dimensional Transient Heat Conduction

and Quality Retention Program.

PROGRAM FREEZE

c*****************************************************************

c*****************************************************************

c Residual Shelf-life Program

c by

c Elaine Scott

c 1985

C*****************************************************************

This program calculates the temperature and quality distri-

bution histories of a two dimensional frozen food product

subject to fluctuating ambient temperatures during storage

below 0C.0
0

0
0

Input parameters include unfrozen product density, thermal

conductivity and specific heat. The initial freezing

temperature or molecular weight of solids is required to

predict these values for the frozen food product.0
0

0
0

Boundary conditions are assumed to be convective, requiring an

input of the ambient temperature as a function of time, and the

convective heat transfer coeffient. The initial condition must

be a known function of position.0
0

0
0

c*****************************************************************

parameter(maxp-20,maxd-lOl,maxc-51,maxs-201)

integer model

double precision wf0,ms,dp,kp,cp,t0,ds

character tit1e*20,ttlfi1*4,filyn1*1,filyn2*1,filyn*l,fildat*12,

&inpdat*12

logical itmode

common/mod/model,/itm/itmode,/ttl/tit1e,ttlfil,/profil/prpfil,

&/datfil/fildat,inpdat,kindat,/prop/wf0,ms,dp,kp,cp,t0,/d/ds



309

Table C.2 (cont'd).

C Set ITMODE - .FALSE. if running batch.

ITMODE - .false.

IF(ITMODE)THEN

write(5,1000)

1000 format('l',72('*'),/,'0',t23,'Residual Shelf-life Program',/,'0',

&t35,'by',/,'0',t30,'E1aine Scott',/,'0',t24,'Michigan State',

&' University',/,'0',t30,'January l986',/,'0',72('*'))

WRITE(5,100)

100 FORMAT('O','Program Menu:',//,' ',' 1. Product properties (<0C)’

&,/,' ',' 2. Temperature distribution history: known Ta and h',

&/,' ',' 3. Temp. & qual. dist. histories: exact kinetic prop.',

&/,' ',' 4. Temp. & qual. dist. hist.: random kinetic prop.',

&/,'0',' Ta - Ambient temp.:h - Surface heat trans. coef.',

&//,' ','Selection? ',$)

ENDIF

READ(5,10)mode1

10 FORMAT(Il)

IF(ITMODE) write(5,200)

200 format(' ',/,' ','Product: ',$)

READ(5,20)TITLE

IF(ITMODE) write(5,300)

300 format(' ',/,' ','Key word for data files; 4 Characters: ',$)

READ(5,20)TTLFIL

20 FORMAT(A)

if(model.eq.l)then

filynl - 'n'

else

if(itmode) write(5,400)

400 format(' ',/,' ','Are product properties approximations',/,' ',2x,

&'with temperature stored on file? (y/n) ',$)

read(5,20)filynl

if(itmode) write(5,500)

500 format(' ',/,' ','Are input initial and boundary conditions',/,' '

&,2x,'and geometrical dimensions stored on file? (y/n) ',$)

read(5,20)fi1yn2

if(model.ge.3) then

if(itmode) write(5,600)

600 format(' ',/,' ','Are the kinetic properties stored on file? ',

&' (y/n) ',$)

read(5,20)filyn3

endif

endif

if(filyn1.eq.'n'.or.fi1yn1.eq.'N')then

call proper

CALL CONSPR

endif

if(model.ne.1)then

if(filyn2.eq.'n'.or.filyn2.eq.'N')then

call inputl

endif

if(model.ge.3)then

if(filyn3.eq.'n'.or.fi1yn3.eq.'N')then

call input2
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C.2 (cont'd).

endif

endif

call soln

endif

end

SUBROUTINE PROPER

Appendix B.

DOUBLE PRECISION FUNCTION MOIST(X)

Appendix B.

DOUBLE PRECISION FUNCTION DENS(X)

Appendix B.

DOUBLE PRECISION FUNCTION KI(X)

Appendix B.

DOUBLE PRECISION FUNCTION CONDUC(X)

Appendix B.

DOUBLE PRECISION FUNCTION SPHEAT(X)

Appendix B.
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SUBROUTINE CONSPR

c See Appendix B.

SUBROUTINE INTEGR(thi,tlow,avgdp,avgkp,avgcp,ncase)

c See Appendix B.

BLOCK DATA CONST

0 See Appendix B.

SUBROUTINE INPUTl

This subroutine provides the input for the boundary condi-

tions on the product for the case where the ambient temper-

ature and surface heat tranfer coeffient are known and assumed

to be constant over a given storage period.0
0
0
0

Input varibles include, initial product temperature, sym-

metry of boundary conditions, number of constant temperature

storage periods, length of storage period, and surface heat

transfer coefficient.0
0
0
0

The variables used in this subroutine are:0

parameter(maxp-ZO)

integer per,symx,symy,stepx,stepy,unit,shape,ixt,iyt,cyn

double precision ti,temp(maxp),stor(maxp),htc(maxp,4),tunit(maxp),

&lx0,lx,1y

character yn*1,title*20,ttlfil*4,fildat*12,inpdat*12

logical itmode

common /ttl/tit1e,ttlfil,/mod/model,/itm/itmode,/datfil/fildat,

&inpdat,kindat
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Save

if(itmode)go to 10

read*,ti,shape,1x0,1x,1y,per

do i - l,per

read*,temp(i),unit,stor(i)

read*,htc(i,1),htc(i,2),htc(i,3),htc(i,4)

if(unit.eq.1)then

tunit(i)-3600.0d0

else

tunit(i)-86400.0d0

endif

enddo

go to 500

write(6,20)

format('l',72('-'),/,'0',27x,'Storage Conditions',/,'0',72('-'))

write(6,40)

format(' ',/,' ','Initial product temperature (C): ',$)

read*,ti

write(6,50)

format('O','Enter product geometry: ',/,' ',5x,'1 - slab',/,' ',5x

&,'2 - cylinder')

read*,shape

if(shape.eq.1)then

write(6,60)

format(' ',/,' ','Enter dimensions for slab:',/,' ',5x,

& 'width - ',$)

read*,lx

1x0 - 0.0d0

write(6,70)

format(' ',5x,'height or length - ',$)

read*,ly

1y0 - 0.0d0

else

write(6,80)

format(' ',/,' ','Enter dimensions for cylinder:',//,

& ' ',5x,'Is the cylinder hollow? (0-No,l-Yes) ',$)

read*,cyn

if(cyn.eq.1)then

write(6,90)

format(' ',5x,'Inner radius (m)- ',$)

read*,le

else

1x0 - 0.0d0

endif

write(6,100)

format(' ',5x,'Outer radius (m)- ',$)

read*,lx

write(6,110)

format(' ',5x,'Length of cylinder (m)- ',$)

read*,ly

endif

if(shape.eq.1)then
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write(6,120)

120 format(' ',/,' ','Indicate whether the heat transfer ',

& 'coefficients are',/,' ',' the same on opposite ends of the ',

& 'slab:',/,' ',5x,'in the x-direction (width)? (0-No,1-Yes) ',$)

read*,symx

write(6,130)

130 format(' ',5x,'in the y-direction (height or length)? ',

& ' (0-No,1-Yes) ',$)

read*,symy

else

symx - 0

write(6,145)

145 format(' ','Are the heat transfer coefficients the same ',

& /,' ',5x,'on opposite ends of the cylinder? (0-No,l-Yes) ',$)

read*,symy

endif

write(6,160)

160 format(' ',/,' ','Enter number of constant temp. storage ',

&'periods: ',$)

read*,per

write(6,170)

170 format(' ',/,' ','Are these values correct? (y/n) ',$)

read(5,180)yn

180 format(a)

if(yn.ne.'y'.and.yn.ne.'Y')goto 30

c input boundary conditions for each storage period

do i-1,per

190 write(6,200)i

200 format(' ',/,' ','Enter data for period ',i3,':',/,

& ' ',5x,'Storage temperature (C): ',$)

read*,temp(i)

210 write(6,220)

220 format(' ',5x,'Enter units for storage temp.:',/,' ',7x,

& '1- hours',/,' ',7x,'2- days')

read*,unit

if(unit.le.0.and.unit.gt.2)then

print*,'Try again!’

goto 210

endif

if(unit.eq.1)then

tunit(i)-3600.0d0

else

tunit(i)-86400.0d0

endif

230 write(6,240)

240 format(' ',/,' ',5x,'Length of storage period: ',$)

read*,stor(i)

if(stor(i).lt.0)then

print*,'Try again!’

goto 230

endif

write(6,250)

250 format('O',5x,'Enter surface heat transfer coef. (W/m“2C):')

if(shape.eq.1)then
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260

270

280

290

300

310

320

330

write(6,260)

format(' ',9x,'at side 1 along width of slab - ',$)

read*,htc(i,1)

else

if(cyn.eq.1)then

write(6,270)

format(' ',9x,'along inner radius of cylinder - ',$)

read*,htc(i,1)

else

htc(i,1) - 0.0d0

endif

endif

if(symx.ne.1.)then

if(shape.eq.1)then

write(6,280)

format(' ',9x,'at side 2 along width of slab - ',$)

else

write(6,290)

format(' ',9x,'along outer radius of cylinder - ',$)

endif

read*,htc(i,3)

else

htc(i,3) - 0.0d0

endif

if(shape.eq.1)then

write(6,300)

format(' ',9x,'at side 1 along height or length of slab - ',$)

else

write(6,310)

format(' ',9x,'at side 1 along length of cylinder - ',$)

endif

read*,htc(i,2)

if(symy.ne.1.)then

if(shape.eq.1)then

write(6,320)

format(' ',9x,'at side 2 along height or length of slab - ',$)

else

write(6,330)

format(' ',9x,'at side 2 along length of cylinder - ',$)

endif

read*,htc(i,4)

else

htc(i,4) - 0.0d0

endif

write(6,170)

read(5,180)yn

if(yn.ne.'y'.and.yn.ne.'Y')goto 190

enddo

c input geometry and size

500 ti - ti+273.150d0

if(symx.eq.1.and.shape.eq.l)Lx - Lx*0.50d0

if(symy.eq.1)Ly - Ly*0.50d0

do i - l,per

temp(i) - temp(i)+273.150d0

stor(i) - stor(i)*tunit(i)
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enddo

if((lx-le).ge.0.40d0)then

ixt - 20

stepx - 5

go to 510

endif

if(lx.1t.0.02d0)then

ixt - 2

stepx - 1

go to 510

endif

do i-1,5

if((lx-le).1t.i*0.040d0)then

ixt - 1*4

stepx - i

go to 510

endif

enddo

510 if(ly.ge.0.40d0)then

iyt - 20

stepy - 5

go to 520

endif

if(ly.lt.0.02d0)then

iyt - 2

stepy - 1

go to 520

endif

do i-1,5

if(ly.lt.i*0.040d0)then

iyt - 1*4

stepy - i

go to 520

endif

enddo

write(inpdat,530)ttlfil,'inp.dat'

530 format(' ',a,a)

open(unit-12,name-inpdat(1:12),type-'new',carriagecontrol-'list')

write(12,*)ti,shape,1x0,1x,1y

write(12,*)symx,symy,cyn,per

do i - l,per

write(12,*)temp(i),stor(i),tunit(i)

write(12,*)htc(i,1),htc(i,2),htc(i,3),htc(i,4)

enddo

write(12,*)ixt,stepx,iyt,stepy

close(unit-12)

return

end
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SUBROUTINE INPUT2

Kinetic properties to determine quality loss in a food product

are entered in this subroutine. A file titled 'TTLFILkin.dat'

containing the kinetic properties is created. This file is re-

opened in the solution, and it may be reused again in subsequent

runs.0
0
0
0
0

integer model

double precision q0,tref,ea,vea,vq0

character title*20,ttlfil*4,fildat*12,inpdat*12,kindat*12

logical itmode

common /ttl/tit1e,ttlfil,/mod/model,/itm/itmode,

&/datfil/fildat,inpdat,kindat

o Read batch file data (if itmode - .false.)

if(itmode)go to 1

read*,q0,tref,ea

if(model.eq.4)then

read*,vea,vq0

endif

go to 30

o Read interactive input

1 write(5,2)

2 format('l',72('-'),/,'0',t23,'Reference Shelf-life data',/,'O',

&72('-'))

10 write(5,100)

100 format(' ',/,' ','Enter reference shelf-life (days) : ',$)

read*,qO

write(5,200)

200 format(' ',/,' ','Enter reference temperature for reference',

&' shelf-life (C) : ',$)

read*,tref

write(5,300)

300 format(' ',/,' ','Enter activation energy constant (kJ/mole) : '

&.$)

read*,ea

if(model.eq.4)then

write(5,400)

400 format(' ',/,' ','Enter standard deviation of activation ',

&'energy const. (kJ/mole) : ',$)

read*,vea

write(5,500)

500 format(' ',/,' ','Enter standard deviation of ref. shelf-life',

&' (daYS) : ',$)

read*,qu

endif
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write(5,550)

550 format(' ',/,' ','Are these values correct? (y/n) ',$)

read(5,20)yn

20 format(a)

if(yn.eq.'n'.or.yn.eq.'N')go to 10

30 tref - tref+273.150d0

ea - ea*1000.0d0

if(model.eq.4)then

vea - (vea*1000.0d0)**2.0d0

qu - vq0*vq0

endif

write(kindat,600)ttlfil,'kin.dat'

600 format(' ’,a,a)

open(unit-12,name-kindat(l:12),type-'new',carriagecontrol-'1ist')

write(12,700)q0,tref,ea

700 format(' ',2x,f8.l,2x,f7.2,2x,f13.0)

if(model.eq.4)then

write(12,800)vea,vq0

800 format(' ',2(2x,e11.3))

endif

close(unit-l2)

return

end

c*********************************************************************

c*********************************************************************

SUBROUTINE SOLN

Parameter(maxd-101,maxc-51,maxs-201,maxx-31,maxp-20,

&tol-1.0d0,r-8.3140d0)

Integer per,shape,ixt,iyt,symx,symy,stepx,stepy,bc,xy,ix,iy,

&cyn,ynavg,ixy,ixpl,iyp1

Double Precision dt2,dens,conduc,spheat,ds,

&htflx(maxp,4),a(maxx),b(maxx),c(maxx),d(maxx),

&txy(maxx),pi,hxy(4,3),bcxy(4,3),qual(maxx,maxx),dq(2),

&time,ptime,tavg,qavg,vq,ftime,t(maxx,maxx,3)

c Declare all variables in common blocks.

Double Precision wf0,ms,dp,kp,cp,t0,

&denst(maxd),densc(maxd),condt(maxc),condc(maxc),spht(maxs),

& sphc(maxs),

&ti,temp(maxp),stor(maxp),htc(maxp,4),tunit(maxp),

&lx,lx0,ly,dx,dy,

&ea,q0,vea,vq0,tref,

&t1,th,avgd,avgk,avgc
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character title*20,ttlfil*4,fildat*12,inpdat*12,kindat*12

Common /prop/wf0,ms,dp,kp,cp,t0,

&/conp/denst,densc,condt,condc,spht,sphc,

&/nconp/nsd,nsc,nss,

&/bound/per,ti,temp,stor,htc,tunit

&/geom/shape,1x,1x0,1y,dx,dy,symx,symy,cyn,ixpl,iyp1,stepy,

&/shelf/ea,q0,vea,vq0,tref,

&/mod/model,/itm/itmode,

&/datfil/fildat,inpdat,kindat,

&/ttl/title,ttlfil,

&/pavg/tl,th,avgd,avgk,avgc,ynavg

8ave

o Read in geometry, dimensions, boundary conditions and initial

condition

write(inpdat,100)ttlfil,'inp.dat'

100 format(' ',a,a)

open(unit-12,name-inpdat(l:12),type-'old',carriagecontrol-'list')

read(12,*)ti,shape,lx0,lx,ly

read(12,*)symx,symy,cyn,per

do i - l,per

read(12,*)temp(i),stor(i),tunit(i)

read(12,*)htc(i,l),htc(i,2),htc(i,3),htc(i,4)

enddo

read(12,*)ixt,stepx,iyt,stepy

close(unit-12)

c Read in constant property assumptions and associated temperature

ranges

c Read in constant property assumptions

write(fildat,110)'karlprp.dat'

110 format(' ',a)

open(unit-12,name-fildat(l:12),type-'old',carriagecontrol-'list')

read(12,*)wf0,t0,ms

read(12,*)dp,kp,cp

read(12,*)nsd,nsc,nss

read(12,*)t1,th,avgd,avgk,avgc,ynavg

do i - 1,nsd

read(12,*)denst(i),densc(i)

enddo

do i - 1,nsc

read(12,*)condt(i),condc(i)

enddo

do i - 1,nss

read(12,*)spht(i),sphc(i)

enddo

close(unit-12)
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C

C

Read in kinetic data

if(model.ge.3)then

write(kindat,100)ttlfil,'kin.dat'

open(unit-12,name-kindat,type-'old',carriagecontrol-'list')

read(12,*)q0,tref,ea

if(model.eq.4)then

read(12,*)vea,vq0

else

vea - 0.0d0

vq0 - 0.0d0

endif

close(unit-12)

endif

Set imposed heat flux equal to 0; user may change if desired.

do i - l,per

do k - 1,4

htflx(i,k) - 0.0d0

enddo

enddo

dx - (lx-lx0)/dfloat(ixt)

dy - ly/dfloat(iyt)

ixpl - ixt+l

iypl - iyt+1

pi - dacos(-1.0d0)

do i - 1,ixpl

do j - l,iypl

do k - 1,3

t(i,j,k) - ti

enddo

if(model.ge.3)qual(i,j) - q0*86400.0d0

enddo

enddo

tavg - ti

do k - 1,3

if(shape.eq.1)then

hxy(l,k) - htc(l,1)*dy

hxy(2,k) - htc(1,2)*dx

hxy(3,k) - htc(l,3)*dy

hxy(4,k) - htc(l,4)*dx

bcxy(l,k) - (htc(l,l)*temp(l)+htflx(l,l))*dy

bcxy(2,k) - (htc(l,2)*temp(1)+htflx(l,2))*dx

bcxy(3,k) - (htc(l,3)*temp(l)+htflx(1,3))*dy

bcxy(4,k) - (htc(l,4)*temp(1)+htf1x(1,4))*dx

else

hxy(l,k) - htc(l,1)*dy*2.0d0*pi*lx0

hxy(2,k) - htc(1,2)*pi*dx

hxy(3,k) - htc(1,3)*dy*2.0d0*pi*lx

hxy(4,k) - htc(1,4)*pi*dx

bcxy(l,k) - (htc(l,1)*temp(1)+htflx(l,1))*dy*2.0d0*pi*lx0

bcxy(2,k) - (htc(l,2)*temp(l)+htflx(1,2))*pi*dx

bcxy(3,k) - (htc(l,3)*temp(1)+htflx(l,3))*dy*2.0d0*pi*lx

bcxy(4,k) - (htc(l,4)*temp(l)+htflx(l,4))*pi*dx

endif
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enddo

if(model.ge.3)then

qavg - q0*86400.0d0

if(model.eq.4)then

dq(l) - 0.0d0

dq(2) - 0.0d0

vq0 - vq0*86400.0d0

vq - vq0

else

vq - 0.0d0

endif

else

qavg - 0.0d0

vq - 0.0d0

endif

time - 0.0d0

ptime - 0.0d0

ftime - 0.0dO

count - 0

nptime - 0

nccc - 0

nprint - 0

if(model.lt.3)then

headtq - 1

else

headtq - 2

endif

call headng

nprint - 0

call output(t,time,ptime,l,nprint,tavg,qual,qavg,vq)

ntime - l

cit***********************m****************************************

do 500 ii - l,per

ptime - 0.0d0

if(ii.ne.l)then

time - time+stor(ii-1)

if(nccc.ne.0)then

nprint - 1

call output(t,time,ptime,ii,nprint,tavg,qual,qavg,vq)

endif

endif

dt2 - 600.0d0

nptime - 0

if(per.ne.l)then

do k - 2,3

if(shape.eq.1)then

ta - temp(ii)

hxy(l,k) - htc(ii,1)*dy

hxy(2,k) - htc(ii,2)*dx

hxy(3,k) - htc(ii,3)*dy

hxy(4,k) - htc(ii,4)*dx

bcxy(l,k) - (htc(ii,l)*temp(ii)+htflx(ii,1))*dy

bcxy(2,k) - (htc(ii,2)*temp(ii)+htflx(ii,2))*dx

bcxy(3,k) - (htc(ii,3)*temp(ii)+htflx(ii,3))*dy
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bcxy(4,k) - (htc(ii,4)*temp(ii)+htflx(ii,4))*dx

else

hxy(l,k) - htc(ii,l)*dy*2.0d0*pi*lx0

hxy(2,k) - htc(ii,2)*pi*dx

hxy(3,k) - htc(ii,3)*dy*2.0d0*pi*lx

hxy(4,k) - htc(ii,4)*pi*dx

bcxy(l,k) - (htc(ii,l)*temp(ii)+htflx(ii,1))*dy*2.0d0*pi*lx0

bcxy(2,k) - (htc(ii,2)*temp(ii)+htflx(ii,2))*pi*dx

bcxy(3,k) - (htc(ii,3)*temp(ii)+htflx(ii,3))*dy*2.0d0*pi*1x

bcxy(4,k) - (htc(ii,4)*temp(ii)+htflx(ii,4))*pi*dx

endif

enddo

endif

c
 

c Check if time is > length of storage period

200 if(ptime.ge.stor(ii))go to 500

c Check if temp. is close to ambient temperature

eabs - abs(t(1,1,3)-temp(ii))

do i - 1,ixpl

do j - l,iypl

if(i.ne.1.and.j.ne.1)then

eeabs - abs(t(i,j,3)-temp(ii))

if(eabs.1t.eeabs)eabs - eeabs

endif

enddo

enddo

if(eabs.1t.tol)go to 300

ptime - ptime+dt2

 

if(ptime.gt.stor(ii))then

kjtime - ptime-dt2

ptime - stor(ii)

dt2 - ptime-kjtime

endif

 

0 First sweep

xy - 0

itpl - ixpl

do j - 1,iypl

ixy-J

if(j.eq.l)bc - -l

if(j.eq.iypl)bc - 1

if(j.ne.1.and.j.ne.iyp1)bc - 0

call coef1(t,ixy,xy,hxy,bcxy,dt2,bc,a,b,c,d)

call thomal(a,b,c,d,itpl,txy)
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do i - 1,ixp1

t(i.J.2) - txy(i)

enddo

enddo

 

c Next sweep in the Y-direction

xy - 1

itpl - iypl

do j - 1,ixpl

ixy - J

if(j.eq.l)bc - -1

if(j.eq.ixpl)bc - l

if(j.ne.1.and.j.ne.ixpl)bc - 0

call coef2(t,ixy,xy,hxy,bcxy,dt2,bc,a,b,c,d)

call thomal(a,b,c,d,iypl,txy)

do i - 1,iypl

t(j,i,3) - txy(i)

enddo

enddo

tavg - 0.0d0

do i - 1,ixpl

do j - l,iyp1

tavg - t(i,j,3)+tavg

enddo

enddo

tavg - tan/(ixp1*iyp1)

C
 

c Find quality distribution and adjust time step

if(model.ge.3)then

vsum - 0

qavg - 0

do i - l,ixpl

do j - 1,iypl

eex - l.0dO/t(i,j,3)-1.0dO/tref

d1 - exp(-(ea/r*eex))

qual(i,j) - qua1(i,j)-d1*dt2

qavg - ang+qua1(i,j)

if(model.eq.4)then

dqdea -dl*eex*dt2/r

vsum - vsum+dqdea

endif

enddo

enddo

c Find mass average quality and variance

qavg - qavg/(ixpl*iypl)

if(model.eq.4)then

dqdea - vsum/(ixpl*iyp1)

dq(2) - dq(1)+dqdea
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vq - vq0+dq(2)**2*vea

d(1(1) - dQ(2)

endif

endif

 

ftime - ftime+dt2

c if(ftime.ge.0.25d0*stor(ii))then

nccc - nccc+l

if(nccc.eq.6)then

c printout

nprint - 2

call output(t,time,ptime,ii,nprint,tavg,qua1,qavg,vq)

ftime - 0.0d0

nccc - 0

endif

 

 

c initial t for next time step

do i - 1,ixpl

do j - 1,iypl

t(i,J,1)-t(1,j,3)

enddo

enddo

do i - 1,4

hxy<1.1> - hxy<1.3>
bcxy(i,l) - bcxy(i,3)

enddo

ntime - ntime+l

nptime - nptime+l

goto 200

c end of finite difference calculations

c *********************************************************

c set product temp. - ambient temperature; determine quality

300 tavg - 0.0d0

do i - 1,ixpl

do j - 1,iyp1

do k - 1,3

t(1.J.k) - temp(ii)

enddo

enddo

enddo

tavg - temp(ii)

nx-l

dt2 - (stor(ii)-ptime)/nx

do ij - 1,nx

ptime - ptime+dt

if(model.ge.3)then
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eex - l.0d0/temp(ii)-l.0d0/tref

dl - exp(-(ea/r*eex))

qavg - 0.0d0

do i - 1,ixp1

do j - l,iyp1

qua1(i,j) - qua1(i,j)-d1*dt2

qavg - qavg+qual(i,j)

enddo

enddo

qavg-ang/(ixp1*iypl)

if(model.eq.4)then

dqdea-dl*eex*dt/r

dq(2)-dq(1)+dqdea

vq~vq0+dq(2)**2*vea

dQ(l)-dq(2)

endif

endif

ntime - ntime+l

nptime - nptime+l

count-0

enddo

do i - 1,ixpl

do j - 1,iyp1

t(1.J.1) - t(1.j.3)

enddo

enddo

do i - 1,4

hxy(i,l) - hxy(i,3)

bcxy(i,l) - bcxy(i,3)

enddo

if(ii.eq.per.and.nccc.ne.0)then

nprint - 3

call output(t,time,ptime,ii,nprint,tavg,qual,qavg,vq)

endif

500 continue

return

end

c*********************************************************************

c*********************************************************************

SUBROUTINE COEF1(t,ixy,xy,hxy,bcxy,dt,bc,a,b,c,d)

Parameter(maxd-101,maxc-51,maxs-201,maxx-31)

integer bc,it,itpl,ixy,shape,symx,symy,ixpl,iypl,stepx,stepy,

&nsd,nsc,nss,cyn,xy,ynavg

Double precision pi,beta,nu,omega,gama,hxy(4,3),bcxy(4,3),
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&a(maxx),b(maxx),c(maxx),d(maxx),dax2,dbx2,dcx2,dax,day,dbxy,

&dcy,dcx,dd,ck(maxx,8),csd(maxx,8),dt,t(maxx,maxx,3),hxy2,hxy4,

&bxy2,bxy4

c Declare all variables in common blocks.

Double Precision wf0,ms,dp,kp,cp,t0,

&denst(maxd),densc(maxd),condt(maxc),condc(maxc),spht(maxs),

& sphc(maxs),

&lx,lx0,1y,dx,dy,

&tl,th,avgd,avgk,avgc

common /prop/wf0,ms,dp,kp,cp,t0,

&/nconp/nsd,nsc,nss,

&/conp/denst,densc,condt,condc,spht,sphc,

&/geom/shape,1x,1x0,ly,dx,dy,symx,symy,cyn,ixpl,iypl,stepy,

&/pavg/tl,th,avgd,avgk,avgc,ynavg

pi - dacos(-1.0d0)

ix - ixpl-l

c Weighting function for ADI finite difference method.

c Modified Crank-Nicolson Method

c 1. Weighting coefficients for d2T/dx2;

c a. at time t:

beta - 0.50d0

c b. at time t+1/2*dt and t+dt

nu - 0.50d0

c 2. Weighting coefficients for dT/dt;

c a. at time t:

omega - -1.0d0

gama - 1.0d0

itpl - ixpl

c Find product property values for each y-value for constant x (ix).

call pfind(t,ixy,xy,itpl,dt,bc,ck,csd)

 

c 1st boundary point

if(bc.eq.-1)then

if(shape.eq.1)then

hxy2 - hxy(2,l)

bxy2 - bcxy(2,1)

else

hxy2 - hxy(2,1)*(1x0+0.25d0*dx)
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bxy2 - bcxy(2,l)*(1x0+0.25d0*dx)

endif

a(l) - 0.0d0

c(l) - nu*ck(l,3)

b(l) - -nu*hxy(1,2)*0.50d0-gama*csd(1,3)-c(1)

dcy - -ck(1,4)

dcx - -beta*ck(1,3)

dbxy - (beta*hxy(l,1)+hxy2)*0.50d0+omega*csd(l,3)-dcy-dcx

dd - —(nu*bcxy(1,2)+beta*bcxy(l,l)+bxy2)*0.50d0

d(1) - dbxy*t(l,ixy,1)+dcy*t(l,ixy+l,1)+dcx*t(2,ixy,1)+dd

endif

if(bc.eq.0)then

c(1) - nu*ck(l,3)

b(l) - -nu*hxy(1,2)-gama*(csd(l,2)+csd(l,3))-c(l)

day - -ck(l,2)

dcy - -ck(l,4)

dcx - -beta*ck(l,3)

dbxy - beta*hxy(1,1)+omega*(csd(l,2)+csd(1,3))-day-dcy-dcx

dd - ~nu*bcxy(l,2)-beta*bcxy(1,1)

d(1) - day*t(l,ixy-1,1)+dbxy*t(l,ixy,1)+dcy*t(l,ixy+l,l)+

& dcx*t(2,ixy,l)+dd

endif

if(bc.eq.1)then

if(shape.eq.1)then

hxy4 - hxy(4,1)

bxy4 - bcxy(4,1)

else

hxy4 - hxy(4,l)*(lx0+0.25d0*dx)

bxy4 - bcxy(4,1)*(lx0+0.25d0*dx)

endif

c(1) - nu*ck(1,3)

b(l) - -nu*hxy(1,2)*0.50d0-gama*csd(1,2)-c(l)

day - -ck(1,2)

dcx - -beta*ck(1,3)

dbxy - (beta*hxy(1,1)+hxy4)*0.50d0+omega*csd(1,2)-day-dcx

dd - -(nu*bcxy(l,2)+beta*bcxy(l,l)+bxy4)*0.50d0

d(1) - day*t(l,ixy-1,l)+dbxy*t(l,ixy,1)+dcx*t(2,ixy,1)+dd

endif

 

c Interior Points

do i - 2,ix

if(bc.eq.-1)then

if(shape.eq.1)then

hxy2 - hxy(2,1)

bxy2 bcxy(2,1)

else

hxy2 - hxy(2,1)*2.0d0*(lx0+dfloat(i-l)*dx)

bxy2 - bcxy(2,1)*2.0d0*(lx0+dfloat(i-l)*dx)

endif

a(i) - nu*ck(i,l)

c(i) - nu*ck(i,3)

b(i) - -gama*(csd(i,3)+csd(i,4))—a(i)-c(i)
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dax - -beta*ck(i,1)

dcy - -ck(i,4)

dcx - ~beta*ck(i,3)

dbxy - hxy2+omega*(csd(i,3)+csd(i,4))-dax-dcy-dcx

dd - -bxy2

d(i) - dax*t(i-l,ixy,1)+dbxy*t(i,ixy,l)+dcy*t(i,ixy+l,l)

+dcx*t(i+1,ixy,1)+dd

endif

if(bc.eq.0)then

&

&

a(i) - nu*ck(i,1)

c(i) - nu*ck(i,3)

b(i) - -gama*(csd(i,1)+csd(i,2)+csd(i,3)+csd(i,4))-a(i)-c(i)

dax - -beta*ck(i,1)

day - -ck(i,2)

dcy - -ck(i,4)

dcx - -beta*ck(i,3)

dbxy - omega*(csd(i,l)+csd(i,2)+csd(i,3)+csd(i,4))-dax-day-dcy

-dcx

d(i) - dax*t(i-l,ixy,l)+day*t(i,ixy-l,1)+dbxy*t(i,ixy,1)+

dcy*t(i,ixy+1,1)+dcx*t(i+l,ixy,1)

endif

if(bc.eq.1)then

&

if(shape.eq.1)then

hxy4 - hxy(4,1)

bxy4 - bcxy(4,1)

else

hxy4 - hxy(4,1)*2.0d0*(lx0+(i-l)*dx)

bxy4 - bcxy(4,1)*2.0d0*(lx0+(i-l)*dx)

endif

a(i) - nu*ck(i,l)

c(i) - nu*ck(i,3)

b(i) - -gama*(csd(i,1)+csd(i,2))-a(i)-c(i)

dax - -beta*ck(i,1)

day - -ck(i,2)

dcx - -beta*ck(i,3)

dbxy - hxy4+omega*(csd(i,1)+csd(i,2))-dax-day-dcx

dd - -bxy4

d(i) - dax*t(i-1,ixy,l)+day*t(i,ixy-l,l)+dbxy*t(i,ixy,1)

+dcx*t(i+l,ixy,1)+dd

endif

enddo

C
 

c 2nd Boundary

if(bc.eq.-1)then

if(shape.eq.1)then

hxy2 - hxy(2,1)

bxy2 - bcxy(2,1)

else

hxy2 - hxy(2,l)*(lx-0.25d0*dx)

bxy2 - bcxy(2,1)*(1x-0.25d0*dx)

endif

a(ixpl) - nu*ck(ixpl,l)

b(ixpl) - -nu*hxy(3,2)*0.50d0-gama*csd(ixpl,4)-a(ixpl)
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dax - -beta*ck(ixpl,l)

dcy - -ck(ixpl,4)

dbxy - (beta*hxy(3,l)+hxy2)*0.50d0+omega*csd(ixpl,4)-dax-dcy

dd - o(nu*bcxy(3,2)+beta*bcxy(3,l)+bxy2)*0.50d0

d(ixpl) - dax*t(ix,ixy,l)+dbxy*t(ixp1,ixy,1)+

& dcy*t(ixpl,ixy+l,1)+dd

endif

if(bc.eq.0)then

a(ixpl) - nu*ck(ixp1,l)

b(ixpl) - -nu*hxy(3,2)-gama*(csd(ixpl,l)+csd(ixp1,4))-a(ixp1)

dax - -beta*ck(ixpl,1)

day - —ck(ixp1,2)

dcy - -ck(ixpl,4)

dbxy - beta*hxy(3,1)+omega*(csd(ixp1,l)+csd(ixp1,4))-dax-day-dcy

dd - -nu*bcxy(3,2)-beta*bcxy(3,1)

d(ixpl) - dax*t(ix,ixy,1)+day*t(ixp1,ixy-l,l)+dbxy*t(ixpl,ixy,l)

& +dcy*t(ixpl,ixy+1,l)+dd

endif

if(bc.eq.1)then

if(shape.eq.1)then

hxy4 - hxy(4,1)

bxy4 - bcxy(4,l)

else

hxy4 - hxy(4,l)*(lx-0.25d0*dx)

bxy4 - bcxy(4,l)*(lx-0.25d0*dx)

endif

a(ixpl) - nu*ck(ixp1,1)

b(ixpl) - -nu*hxy(3,2)*0.50d0—gama*csd(ixpl,l)-a(ixp1)

dax - -beta*ck(ixp1,l)

day - -ck(ixp1,2)

dbxy - (beta*hxy(3,1)+hxy4)*0.50d0+omega*csd(ixpl,l)-dax-day

dd - -(nu*bcxy(3,2)+beta*bcxy(3,1)+bxy4)*0.50d0

d(ixpl) - dax*t(ix,ixy,l)+day*t(ixp1,ixy-1,1)+dbxy*t(ixpl,ixy,1)

& +dd

endif

return

end

C*********************************************************************

c*********************************************************************

SUBROUTINE COEF2(t,ixy,xy,hxy,bcxy,dt,bc,a,b,c,d)

c This is the preliminary version of the subroutine which finds the

coef

c for the second sweep in the Y-direction.

Parameter(maxd-101,maxc-Sl,maxs-201,maxx-3l)

integer bc,iy,itp1,xy,ixy,nsd,nsc,nss,shape,symx,symy,ixpl,

&iypl,stepx,stepy,cyn,ynavg
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Double precision pi,betax,betay,nuy,nux,omega,gama,hxy(4,3),

&bcxy(4,3),a(maxx),b(maxx),c(maxx),d(maxx),dax2,dbx2,dcx2,dax,

&day,dbxy,dcy,dcx,dd,ck(maxx,8),csd(maxx,8),t(maxx,maxx,3),

&hxy2a,hxy2b,hxy4a,hxy4b,bxy2a,bxy2b,bxy4a,bxy4b

c Declare all variables in common blocks.

Double Precision wf0,ms,dp,kp,cp,t0,

&denst(maxd),densc(maxd),condt(maxc),condc(maxc),spht(maxs),

& sphc(maxs),

&lx,lx0,ly,dx,dy,

&tl,th,avgd,avgk,avgc

common /prop/wf0,ms,dp,kp,cp,t0,

&/conp/denst,densc,condt,condc,spht,sphc,

&/nconp/nsd,nsc,nss,

&/geom/shape,lx,lx0,ly,dx,dy,symx,symy,cyn,ixpl,iyp1,stepy,

&/pavg/tl,th,avgd,avgk,avgc,ynavg

pi - dacos(-1.0d0)

c Weighting function for ADI finite difference method.

c Modified Crank-Nicolson Method

c 1. Weighting coefficients for d2T/dx2 and d2T/dy2;

c a. at time t:

betax - 0.50d0

betay - 0.50d0

c b. at time t+1/2*dt and t+dt

nux - 0.50d0

nuy - 0.50d0

c 2. Weighting coefficients for dT/dt;

c a. at time t:

omega - -1.0d0

gama - 1.0d0

iy - iypl-1

c Find product property values for each y-value for constant x (ix).

call pfind(t,ixy,xy,iyp1,dt,bc,ck,csd)

 

c lst boundary point

a(l) - 0.0d0

if(bc.eq.-l)then

if(shape.eq.1)then

hxy2a - hxy(2,1)

hxy2b - hxy(2,3)
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bxy2a - bcxy(2,1)

bxy2b - bcxy(2,3)

else

hxy2a - hxy(2,1)*(lx0+0.25d0*dx)

hxy2b - hxy(2,3)*(1x0+0.25d0*dx)

bxy2a - bcxy(2,1)*(lx0+0.25d0*dx)

bxy2b - bcxy(2,3)*(lx0+0.25d0*dx)

endif

c(1) - nuy*ck(1,8)

b(l) - -nuy*hxy2b*0.50d0-gama*csd(1,7)-c(l)

dcx2 - —nux*ck(l,7)

dbx2 - nux*hxy(l,2)*0.50d0-dcx2

&

&

&

dcy - -betay*ck(l,4)

dcx - —betax*ck(1,3)

dbxy - (betax*hxy(l,1)+betay*hxy2a)*0.50d0+omega*csd(l,3)-dcy

-dcx

dd - -(nux*bcxy(1,2)+betax*bcxy(l,1)+nuy*bxy2b+

betay*bxy2a)*0.50d0

d(1) - dbx2*t(ixy,l,2)+dcx2*t(ixy+1,l,2)+dbxy*t(ixy,1,l)+

dcy*t(ixy,2,l)+dcx*t(ixy+l,1,1)+dd

endif

if(bc.eq.0)then

if(shape.eq.1)then

hxy2a - hxy(2,1)

hxy2b - hxy(2,3)

bxy2a - bcxy(2,1)

bxy2b - bcxy(2,3)

else

hxy2a hxy(2,l)*2.0d0*(1x0+(ixy—1)*dx)

hxy2b hxy(2,3)*2.0d0*(1x0+(ixy-l)*dx)

bxy2a bcxy(2,1)*2.0d0*(lx0+(ixy-l)*dx)

bxy2b - bcxy(2,3)*2.0d0*(lx0+(ixy-1)*dx)

endif

c(1) -

b(l) -

nuy*ck(l,8)

-nuy*hxy2b-gama*(csd(1,7)+csd(l,8))-c(l)

dax2 - -nux*ck(1,5)

dcx2 - -nux*ck(l,7)

dbx2 - -dax2-dcx2

dax - -betax*ck(l,1)

dcy - -betay*ck(1,4)

dcx - -betax*ck(1,3)

dbxy - betay*hxy2a+omega*(csd(l,3)+csd(1,4))-dax-dcy-dcx

dd - -nuy*bxy2b-betay*bxy2a

d(1) - dax2*t(ixy-1,1,2)+dbx2*t(ixy,l,2)+dcx2*t(ixy+l,1,2)+

& dax*t(ixy-1,l,1)+dbxy*t(ixy,1,1)+dcy*t(ixy,2,l)+

& dcx*t(ixy+l,1,1)+dd

endif

if(bc.eq.1)then

if(shape.eq.1)then

hxy2a - hxy(2,1)

hxy2b - hxy(2,3)

bxy2a - bcxy(2,1)

bxy2b - bcxy(2,3)

else

hxy2a - hxy(2,1)*(lx-0.25d0*dx)

hxy2b hxy(2,3)*(lx-0.25d0*dx)
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bxy2a - bcxy(2,1)*(lx-0.25d0*dx)

bxy2b - bcxy(2,3)*(lx-0.25d0*dx)

endif

c(1) - nuy*ck(1,8)

b(l) - -nuy*hxy2b*0.SOdO-gama*csd(l,8)-c(l)

dax2 - -nux*ck(1,5)

dbx2 - nux*hxy(3,2)*0.50d0-dax2

dax - -betax*ck(l,l)

dcy - -betay*ck(1,4)

dbxy - (betax*hxy(3,1)+betay*hxy2a)*0.50d0+omega*csd(1,4)-dax

-dcy

dd - -(nux*bcxy(3,2)+betax*bcxy(3,1)+nuy*bxy2b+

& betay*bxy2a)*0.5d0

&

d(1) - dax2*t(ixy-l,l,2)+dbx2*t(ixy,1,2)+dax*t(ixy-1,l,1)+

dbxy*t(ixy,l,l)+dcy*t(ixy,2,1)+dd

endif

 

c Int

&

&

&

&

erior Points

do i - 2,iy

if(bc.eq.-l)then

a(i) - nuy*ck(i,6)

c(i) - nuy*ck(i,8)

b(i) - -gama*(csd(i,6)+csd(i,7))-a(i)-c(i)

dcx2 - -nux*ck(i,7)

dbx2 - nux*hxy(l,2)-dcx2

day - -betay*ck(i,2)

dcy - -betay*ck(i,4)

dcx - -betax*ck(i,3)

dbxy - betax*hxy(l,l)+omega*(csd(i,2)+csd(i,3))-day-dcy-dcx

dd - -nux*bcxy(1,2)-betax*bcxy(l,l)

d(i) - dbx2*t(ixy,i,2)+dcx2*t(ixy+1,i,2)+day*t(ixy,i-l,1)+

dbxy*t(ixy,i,1)+dcy*t(ixy,i+1,l)+dcx*t(ixy+1,i,l)+dd

endif

if(bc.eq.0)then

a(i) - nuy*ck(i,6)

c(i) - nuy*ck(i,8)

b(i) - -gama*(csd(i,5)+csd(i,6)+csd(i,7)+csd(i,8))-a(i)-c(i)

dax2 - -nux*ck(i,5)

dcx2 - -nux*ck(i,7)

dbx2 - -dax2-dcx2

dax - -betax*ck(i,l)

day - -betay*ck(i,2)

dcy - -betay*ck(i,4)

dcx - ~betax*ck(i,3)

dbxy - omega*(csd(i,1)+csd(i,2)+csd(i,3)+csd(i,4))-dax-day

-dcy-dcx

d(i) - dax2*t(ixy-l,i,2)+dbx2*t(ixy,i,2)+dcx2*t(ixy+l,i,2)+

dax*t(ixy—1,i,l)+day*t(ixy,i-1,1)+dbxy*t(ixy,i,l)+

dcy*t(ixy,i+1,1)+dcx*t(ixy+1,i,1)

endif

if(bc.eq.1)then

a(i) - nuy*ck(i,6)
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c(i) - nuy*ck(i,8)

b(i) - -gama*(csd(i,5)+csd(i,8))-a(i)-c(i)

dax2 - -nux*ck(i,5)

dbx2 - nux*hxy(3,2)-dax2

dax - -betax*ck(i,1)

day - -betay*ck(i,2)

dcy - -betay*ck(i,4)

dbxy - betax*hxy(3,l)+omega*(csd(i,1)+csd(i,4))-dax-day-dcy

dd - -nux*bcxy(3,2)-betax*bcxy(3,l)

d(i) - dax2*t(ixy-1,i,2)+dbx2*t(ixy,i,2)+dax*t(ixy-l,i,1)+

& day*t(ixy,i-1,1)+dbxy*t(ixy,i,1)+dcy*t(ixy,i+1,l)+dd

endif

enddo

 

c 2nd Boundary

c(iypl) - 0.0d0

if(bc.eq.-l)then

if(shape.eq.1)then

hxy4a - hxy(4,1)

hxy4b - hxy(4,3)

bxy4a - bcxy(4,1)

bxy4b - bcxy(4,3)

else

hxy4a - hxy(4,1)*(lx+0.25d0*dx)

hxy4b - hxy(4,3)*(lx+0.25d0*dx)

bxy4a - bcxy(4,l)*(lx+0.25d0*dx)

bxy4b - bcxy(4,3)*(1x+0.25d0*dx)

endif

a(iypl) - nuy*ck(iyp1,6)

b(iypl) - -nuy*hxy4b*0.50d0-gama*csd(iypl,6)-a(iypl)

dcx2 - -nux*ck(iyp1,7)

dbx2 - nux*hxy(1,2)*0.50d0-dcx2

day - -betay*ck(iyp1,2)

dcx - -betax*ck(iyp1,3)

dbxy - (betax*hxy(1,1)+betay*hxy4a)*0.50d0+omega*csd(iyp1,2)-

& day-dcx

dd - —(nux*bcxy(1,2)+betax*bcxy(1,l)+nuy*bxy4b+

& betay*bxy4a)*0.50d0

d(iypl) - dbx2*t(ixy,iyp1,2)+dcx2*t(ixy+l,iypl,2)+

& day*t(ixy,iypl-l,l)+dbxy*t(ixy,iyp1,1)+dcx*t(ixy+1,iypl,l)+dd

endif

if(bc.eq.0)then

if(shape.eq.1)then

hxy4a - hxy(4,1)

hxy4b - hxy(4,3)

bxy4a - bcxy(4,1)

bxy4b - bcxy(4,3)

else

hxy4a - hxy(4,1)*2.0d0*(lx0+(ixy-1)*dx)

hxy4b - hxy(4,3)*2.0d0*(lx0+(ixy-1)*dx)

bxy4a - bcxy(4,l)*2.0d0*(1x0+(ixy-l)*dx)

bxy4b bcxy(4,3)*2.0d0*(lx0+(ixy-l)*dx)
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endif

a(iypl) - nuy*ck(iyp1,6)

b(iypl) - -nuy*hxy4b-gama*(csd(iypl,5)+csd(iyp1,6))-a(iypl)

dax2 - -nux*ck(iyp1,5)

dcx2 - -nux*ck(iypl,7)

dbx2 - -dax2-dcx2

dax - -betax*ck(iypl,1)

day - -betay*ck(iypl,2)

dcx - -betax*ck(iypl,3)

dbxy - betay*hxy4a+omega*(csd(iypl,l)+csd(iyp1,2))-dax-day-

& dcx

dd - -nuy*bxy4b-betay*bxy4a

d(iypl) - dax2*t(ixy-1,iypl,2)+dbx2*t(ixy,iyp1,2)+

& dcx2*t(ixy+l,iypl,2)+dax*t(ixy-1,iyp1,l)+day*t(ixy,iy,l)+

& dbxy*t(ixy,iyp1,1)+dcx*t(ixy+l,iypl,l)+dd

endif

if(bc.eq.1)then

if(shape.eq.1)then

hxy4a - hxy(4,1)

hxy4b - hxy(4,3)

bxy4a - bcxy(4,1)

bxy4a - bcxy(4,3)

else

hxy4a - hxy(4,1)*(lx-0.25d0*dx)

hxy4b - hxy(4,3)*(lx-0.25d0*dx)

bxy4a - bcxy(4,1)*(1x-0.25d0*dx)

bxy4a - bcxy(4,3)*(lx-0.25d0*dx)

endif

a(iypl) - nuy*ck(iyp1,6)

b(iypl) - -nuy*hxy4b*0.50d0-gama*csd(iypl,5)-a(iypl)

dax2 - —nux*ck(iyp1,5)

dbx2 - nux*hxy(3,2)*0.50d0-dax2

dax - -betax*ck(iyp1,l)

day - -betay*ck(iypl,2)

dbxy - (betax*hxy(3,1)+betay*hxy4a)*0.50d0+omega*csd(iypl,1)-

& dax-day

dd - -(nux*bcxy(3,2)+betax*bcxy(3,1)+nuy*bxy4b+

& betay*bxy4a)*0.50d0

d(iypl) - dax2*t(ixy-1,iyp1,2)+dbx2*t(ixy,iyp1,2)+

& dax*t(ixy-1,iypl,l)+day*t(ixy,iy,l)+dbxy*t(ixy,iyp1,1)+dd

endif

return

end

C*32*******************************************************************

c*********************************************************************

SUBROUTINE THOMAL(a,b,c,d,itpl,t)

Parameter(maxx - 31)
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integer itpl

double precision a(maxx),b(maxx),c(maxx),d(maxx),cc(maxx),

&dd(maxx),t(maxx)

CC(1) - C(1)/b(1)

dd(1) - d(1)/b(1)

do i - 2,itp1

ii - i-l

cc(i) - c(i)/(b(i)-a(i)*cc(ii))

dd(i) - (d(i)-a(i)*dd(11))/(b(i)-a(i)*CC(ii))

enddo

t(itpl) - dd(itp1)

do i - 2,itpl

ii - itpl-1+1

t(ii) - dd(ii)-cc(ii)*t(ii+1)

enddo

return

end

c>9:~k*******************m*****mm**********************************

C7k*1:****************mmm*******m***********************

SUBROUTINE PFIND(t,ixy,xy,itpl,dt,bc,ck,csd)

Parameter (maxd-lOl,maxc-51,maxs-201,maxx-Bl)

Integer nsd,nsc,nss,k1,k2,k3,k4,k5,k6,k7,k8,sd2,sd4,sd6,sd8,xy,

&nc(24),itp1,bc,ixy,shape,cyn,symx,symy,ixpl,iypl,stepy,ynavg

Double Precision pi,dt,dti,dxi,dyi,voll,vol2,tavgk(8),

&tavgsd(8),ck(maxx,8),dc(8),spc(8),csd(maxx,8),

&dens,conduc,spheat,ark(3),volsd(2),t(maxx,maxx,3)

c Declare all variables in common blocks.

Double Precision wf0,ms,dp,kp,cp,t0,

&denst(maxd),densc(maxd),condt(maxc),condc(maxc),spht(maxs),

& sphc(maxs),

&ds,

&1x,lx0,1y,dx,dy,

&tl,th,avgd,avgk,avgc

Common /prop/wf0,ms,dp,kp,cp,t0,

&/conp/denst,densc,condt,condc,spht,sphc,

&/nconp/nsd,nsc,nss,

&/d/ds

&/geom/shape,1x,1x0,ly,dx,dy,symx,symy,cyn,ixpl,iyp1,stepy

&/pavg/tl,th,avgd,avgk,avgc,ynavg

External dens,conduc,spheat
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pi - dacos(-l.0d0)

dti - 1000.0d0/dt

dxi - 1.0d0/dx

dyi - 1.0d0/dy

voll - dx*dy*0.25d0

vol2 - pi*dx*dy*0.5d0

if(xy.eq.0)then

kkxy - 4

kkl - 4

kk2 - 8

kk3 - 12

else

kkxy - 8

kkl - 8

kk2 - 16

kk3 - 24

endif

do 100 i - 1,itpl

if(ynavg.eq.l)then

do ii - 1,8

ck(i,ii) - avgk

dc(ii) - avgd

spc(ii) - avgc

enddo

go to 40

endif

do kk - 1,kk3

nc(kk) - 0

if(kk.le.kk1)then

tavgk(kk) - 0.0d0

tavgsd(kk) - 0.0d0

endif

enddo

if(xy.eq.0)then

if(i.ne.1)tavgk(l) - 0.50*(t(i,ixy,l)+t(i-1,ixy,1))

if(i.ne.1xpl)tavgk(3) - 0.50*(t(i,ixy,l)+t(i+l,ixy,l))

if(ixy.ne.1)tavgk(2) - 0.50*(t(i,ixy,l)+t(i,ixy-1,l))

if(ixy.ne.iypl)tavgk(4) - 0.50*(t(i,ixy,l)+t(i,ixy+1,1))

if(i.ne.1.and.ixy.ne.1)then

tavgsd(l) - 0.0625*(9.0*t(i,ixy,l)+3.0*t(i-l,ixy,l)+

& 3.0*t(i,ixy-l,1)+t(i-1,ixy-l,1))

endif

if(i.ne.ixp1.and.ixy.ne.1)then

tavgsd(2) - 0.0625*(9.0*t(i,ixy,l)+3.0*t(i+l,ixy,l)+

& 3.0*t(i,ixy-1,1)+t(i+1,ixy-l,l))

endif

if(i.ne.ixp1.and.ixy.ne.iypl)then

tavgsd(3) - 0.0625*(9.0*t(i,ixy,1)+3.0*t(i+1,ixy,1)+
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& 3.0*t(i,ixy+1,1)+t(i+l,ixy+1,l))

endif

if(i.ne.l.and.ixy.ne.iyp1)then

tavgsd(4) - 0.0625*(9.0*t(i,ixy,1)+3.0*t(i-l,ixy,l)+

& 3.0*t(i,ixy+1,1)+t(i-l,ixy+1,1))

endif

else

if(ixy.ne.1)then

tavgk(l) - 0.50*(t(ixy,i,l)+t(ixy-l,i,1))

tavgk(S) - 0.50*(t(ixy,i,l)+t(ixy-1,i,l))

endif

if(ixy.ne.ixpl)then

tavgk(3) - 0.50*(t(ixy,i,l)+t(ixy+l,i,l))

tavgk(7) - 0.50*(t(ixy,i,1)+t(ixy+1,i,1))

endif

if(i.ne.l)then

tavgk(2) - 0.50*(t(ixy,i,l)+t(ixy,i-1,1)

tavgk(6) - 0.50*(t(ixy,i,1)+t(ixy,i-l 1)

endif

if(i.ne.iyp1)then

tavgk(4) - 0.50*(t(ixy,i,l)+t(ixy,i+l,l))

tavgk(8) - 0.50*(t(ixy,i,l)+t(ixy,i+l,1))

endif

if(i.ne.1.and.ixy.ne.1)then

tavgsd(l) - 0.0625*(9.0*t(ixy,i,1)+3.0*t(ixy-l,i,l)+

)

)

& 3.0*t(ixy,i-1,1)+t(ixy-l,i-l,1))

tavgsd(5) - 0.0625*(9.0*t(ixy,i,l)+3.0*t(ixy-1,i,l)+

& 3.0*t(ixy,i-l,l)+t(ixy-l,i-1,1))

endif

if(i.ne.1.and.ixy.ne.ixpl)then

tavgsd(2) - 0.0625*(9.0*t(ixy,i,l)+3.0*t(ixy+1,i,1)+

& 3.0*t(ixy,i-l,1)+t(ixy+1,i-l,1))

tavgsd(6) - 0.0625*(9.0*t(ixy,i,l)+3.0*t(ixy+1,i,l)+

& 3.0*t(ixy,i-1,1)+t(ixy+l,i-1,1))

endif

if(i.ne.iyp1.and.ixy.ne.ixpl)then

tavgsd(3) - 0.0625*(9.0*t(ixy,i,1)+3.0*t(ixy+l,i,l)+

& 3.0*t(ixy,i+1,1)+t(ixy+l,i+l,l))

tavgsd(7) - 0.0625*(9.0*t(ixy,i,l)+3.0*t(ixy+l,i,1)+

& 3.0*t(ixy,i+l,1)+t(ixy+l,i+l,1))

endif

if(i.ne.iyp1.and.ixy.ne.1)then

tavgsd(4) - 0.0625*(9.0*t(ixy,i,1)+3.0*t(ixy-l,i,l)+

& 3.0*t(ixy,i+1,l)+t(ixy-l,i+1,l))

tavgsd(8) - 0.0625*(9.0*t(ixy,i,l)+3.0*t(ixy-l,i,1)+

& 3.0*t(ixy,i+1,1)+t(ixy-l,i+l,1))

endif

endif

c*********************************************************************

c Find Product Properties Cooresponding to Averaged Temperatures

c First find appropriate thermal conductivity value
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do 20 kk - 1,kkxy

if(tavgk(kk).eq.0)go to 20

if(tavgk(kk).ge.t0)then

ck(i,kk) - kp

else

if(tavgk(kk).ge.t0-4.0d0)then

ck(i,kk) - conduc(tavgk(kk))

else

do j - 2,nsc

if(nc(kk).eq.1)go to 20

if(tavgk(kk).1e.condt(j))then

ck(i,kk) - condc(j-l)

nc(kk) - 1

endif

enddo

endif

endif

20 continue

C****************************m**************************************

0 Next find appropriate density and specific heat value

do 30 kk - 1,kkxy

if(tavgsd(kk).eq.0)go to 30

if(tavgsd(kk).ge.t0)then

dc(kk) - dp

spc(kk) - cp

nc(kk+kkl) - l

nc(kk+kk2) - 1

else

if(tavgsd(kk).ge.t0-4.0d0)then

dc(kk) - dens(tavgsd(kk))

spc(kk) - spheat(tavgsd(kk))

nc(kk+kkl) - 1

nc(kk+kk2) - 1

else

do j - 2,nsd

if(nc(kk+kkl).eq.l)go to 25

if(tavgsd(kk).le.denst(j))then

dc(kk) - densc(j-l)

nc(kk+kkl) - 1

endif

enddo

25 do j - 2,nss

if(nc(kk+kk2).eq.1)go to 30

if(tavgsd(kk).1e.spht(j))then

spc(kk) - sphc(j-l)

nc(kk+kk2) - 1

endif

enddo

endif

endif

30 continue
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C*********************************************************************

c Determine surface area for conductive heat transfer

c Areas for sweep in the X-direction

40 if(shape.eq.l.and.xy.eq.0)then

ark(2) - dx

if(i.eq.l.or.i.eq.itp1)ark(2) - dx*0.50d0

if(bc.ne.-1.and.bc.ne.l)ark(l) - dy

if(bc.eq.-l.or.bc.eq.l)ark(1) - dy*0.50d0

ark(3) - ark(l)

endif

if(shape.eq.2.and.xy.eq.0)then

if(i.eq.l)ark(2) - pi*dx*(1x0+0.25d0*dx)

if(i.eq.itpl)ark(2) - pi*dx*(lx-0.25d0*dx)

if(i.ne.1.and.i.ne.itp1)ark(2) - pi*dx*(lx0+(i-l)*dx)

ark(l) - 2.0d0*pi*dy*(lx0+((i)-l.50d0)*dx)

ark(3) - 2.0d0*pi*dy*(1x0+((i)-0.50d0)*dx)

if(bc.eq.-l.or.bc.eq.l)then

ark(l) - 0.50d0*ark(l)

ark(3) - 0.50d0*ark(3)

endif

endif

c Areas for sweep in the Y-direction

if(shape.eq.l.and.xy.eq.l)then

ark(2) - dx

if(bc.eq.l.or.bc.eq.-1)ark(2) - dx*0.50d0

if(i.ne.1.and.i.ne.itpl)ark(1) - dy

if(i.eq.l.or.i.eq.itpl)ark(1) - dy*0.50d0

ark(3) - ark(l)

endif

if(shape.eq.2.and.xy.eq.1)then

if(bc.eq.-1)ark(2) - pi*dx*(1x0+0.250d0*dx)

if(bc.eq.1)ark(2) - pi*dx*(lx0-0.250d0*dx)

if(bc.eq.0)ark(2) - pi*dx*(lx0+((ixy)-l.0d0)*dx)

if(bc.ne.-1)ark(1) - 2.0d0*pi*dy*(lx0+((ixy)-l.5d0)*dx)

if(bc.ne.1)ark(3) - 2.0d0*pi*dy*(lx0+((ixy)-0.5d0)*dx)

if(i.eq.1.or.i.eq.itpl)then

ark(l) - ark(l)*0.50d0

ark(3) - ark(3)*0.50d0

endif

endif

c Determine Volume Elements for use with Specific Volume

if(shape.eq.1)then

do jj - 1,2

volsd(jj) - voll*dti

enddo

endif

if(shape.eq.2.and.xy.eq.0)then
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if(i.ne.1)volsd(1) - v012*(1x0+((i)-1.250d0)*dx)*dti

if(i.ne.itpl)volsd(2) - v012*(lx0+((i)-0.750d0)*dx)

& *dti

endif

if(shape.eq.2.and.xy.eq.1)then

if(bc.ne.-1)volsd(1) - v012*(1x0+((ixy)-1.250d0)*dx)

& *dti

if(bc.ne.1)volsd(2) - v012*(1x0+((ixy)-0.750d0)*dx)

& *dti

endif

C*********************************************************************

c Multiply thermal conductivity values by areas, and density*specific

heat

c by volumes

c X - sweep

if(xy.eq.0)then

if(i.ne.l)then

ck(i,1) - ck(i,l)*ark(l)*dxi

if(bc.ne.-l)then

csd(i,1) - dc(l)*spc(1)*volsd(l)

endif

if(bc.ne.1)then

csd(i,4) - dc(4)*spc(4)*volsd(1)

endif

endif

if(i.ne.itpl)then

ck(i,3) - ck(i,3)*ark(3)*dxi

if(bc.ne.-1)then

csd(i,2) - dc(2)*spc(2)*volsd(2)

endif

if(bc.ne.1)then

csd(i,3) - dc(3)*spc(3)*volsd(2)

endif

endif

if(bc.ne.-l)then

ck(i,2) - ck(i,2)*ark(2)*dyi

endif

if(bc.ne.1)then

ck(i,4) - ck(i,4)*ark(2)*dyi

endif

endif

c Y - Sweep

if(xy.eq.l)then

if(bc.ne.-l)then

ck(i,1) - ck(i,1)*ark(l)*dxi

ck(i,5) - ck(i,5)*ark(1)*dxi

if(i.ne.l)then

csd(i,1) - dc(l)*spc(l)*volsd(l)

csd(i,5) - dc(5)*spc(5)*volsd(1)
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endif

if(i.ne.itpl)then

csd(i,4) - dc(4)*spc(4)*volsd(2)

csd(i,8) - dc(8)*spc(8)*volsd(2)

endif

endif

if(bc.ne.1)then

ck(i,3) - ck(i,3)*ark(3)*dxi

ck(i,7) - ck(i,7)*ark(3)*dxi

if(i.ne.l)then

csd(i,2) - dc(2)*spc(2)*volsd(2)

csd(i,6) - dc(6)*spc(6)*volsd(2)

endif

if(i.ne.itpl)then

csd(i,3) - dc(3)*spc(3)*volsd(l)

csd(i,7) - dc(7)*spc(7)*volsd(l)

endif

endif

if(i.ne.l)then

ck(i,2) - ck(i,2)*ark(2)*dyi

ck(i,6) - ck(i,6)*ark(2)*dyi

endif

if(i.ne.itpl)then

ck(i,4) - ck(i,4)*ark(2)*dyi

ck(i,8) - ck(i,8)*ark(2)*dyi

endif

endif

100 continue

return

end

c*********************************************************************

c*********************************************************************

SUBROUTINE HEADNG(nprint,headtq)

parameter(maxp-ZO)

integer per,shape,model,sym,sstep,m,eend,day,dead,cyn

c Declare all variables in common blocks.

Double Precision wf0,ms,dp,kp,cp,t0,

&ti,temp(maxp),stor(maxp),htc(maxp,4),tunit(maxp),

&lx,lx0,ly,dx,dy,

&ea,q0,vea,vq0,tref

character title*20,ttlfil*4,outfil*l2

Common /prop/wf0,ms,dp,kp,cp,t0,

&/bound/per,ti,temp,stor,htc,tunit,

&/geom/shape,lx,1x0,ly,dx,dy,symx,symy,cyn,ixpl,iyp1,stepy,
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&/shelf/ea,q0,vea,vq0,tref,

&/mod/mode1,

&/ttl/title,ttlfil

write(outfil,1000)ttlfil,'out.dat'

1000 format(' ',a,a)

open(unit-12,name-outfil(l:12),type-'new',carriagecontrol-'list')

write(12,1)title

l format(' ',///,3x,'Title: ',a20,/3x,' ----- ',//,l4x,'Input Para',

+'meters',/,l4x,l6('-')//)

if(model.ge.3)then

write(12,3)

3 format(' ','Kinetic Parameters')

write(12,4)q0

format(' ',/,' ',2x,'Reference shelf-life (days) ............ ',

&f7.l)

abcd-tref-273.150d0

write(12,5)abcd

5 format(' ',2x,'Reference temperature (C) .............. ',f6.2)

abcd-ea/1000.0d0

write(12,6)abcd

6 format(' ',2x,'Activation energy constant (kJ/mole)...',f8.2)

abcd—vq0**0.50d0

if(model.eq.4)then

write(12,8)abcd

8 format(' ',2x,'St. dev. of ref. shelf-life (days) ..... ',f6.2)

abcd-vea**0.50d0/1000.0d0

write(12,9)abcd

D

9 format(' ',2x,'St. dev. of ea (kj/mole) ............... ',f6.2)

endif

endif

write(12,10)

10 format(' ',/,' ','Unfrozen Product Properties',/)

abcd-wf0*100.0d0

write(12,11)abcd

11 format(' ',2x,'Moisture content (%) ................... ',f6.2)

abcd-t0-273.150d0

write(12,12)abcd

12 format(' ',2x,'Initial freezing temperature (C) ....... ',f6.2)

write(12,13)ms

13 format(' ',2x,'Molecu1ar weight of solids (kg/mole)...',f8.2)

write(12,14)dp

14 format(' ',2x,'Unfrozen product density (kg/m23) ...... ',f8.2)

write(12,15)kp

15 format(' ',2x,'Thermal conductivity (W/mK) ............ ',f6.3)

write(12,16)cp

16 format(' ',2x,'Specific heat (kJ/kgK) ................. ',f7.3)

abcd-ti-273.150d0

write(12,17)abcd

17 format(' ',/,' ','Initial Condition:',/,' ',2x,'Product temp.’

+,' (C) at time-0 ........... ',f6.2)

c product geometry

if(symy.eq.1)ly - 1y*2.0d0
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if(shape.eq.1)then

if(symx.eq.1)lx - lx*2.0d0

write(12,18)lx,ly

18 format( ' ',/,' ','Slab Geometry:',/,' ',2x,'width',

& ': x direction (m)',17('.'),f9.5,/,' ',2x,'height or length',

& ': y direction (m)',6('.'),f9.5)

else

if(lx0.eq.0.0)then

write(12,20)lx,ly

20 format(' ',/,' ','Cyclindrical Geometry:',/,' ',2x,'radius (m)',

& 29('.'),f9.5,/,' ',2x,'height or length: y direction (m)',

& 6('.'),f9.5)

else

write(12,22)lx0,1x,1y

22 format(' ',/,' ','Cyclindrical Geometry:',/,' ',2x,'inner radius

& '(m)',23('.'),f9.5,/,' ',2x,'outer radius (m)',23('.'),f9.5,

& /,' ',2x,'height or length: y direction (m)',6('.'),f9.5)

endif

endif

c boundary conditions

do 50 i-1,per

write(12,24)i

24 format(' ',/,' ','Boundary Conditions for Period ',12,':',/)

abcd-stor(i)/tunit(i)

if(tunit(i).eq.3600.0d0)then

write(12,25)abcd

25 format(' ',2x,'Storage time(hours) .................... ',f7.2)

else

write(12,26)abcd

26 format(’ ',2x,'Storage time (days) .................... ',f7.2)

endif

abcd-temp(i)-273.150d0

write(12,27)abcd

27 format(' ',2x,'Storage temperature (C) ................ ',f6.2,/)

write(12,28)

28 format(' ',2x,'Convective heat transfer coeff. (W/m“2K):')

if(shape.eq.1)then

write(12,30)htc(i,l)

30 format(' ',4x,'in the x-direction: ',/,' ',6x,

& 'at x - 0.0 ........................ ',f7.2)

if(symx.eq.0)then

write(12,32)lx,htc(i,3)

32 format(' ',6x,'at x - ',f9.5,' .................. ',f7.2)

endif

else

if(cyn.eq.1)then

write(12,34)lx0,htc(i,1)

34 format(' ',4x,'in the radial direction: ',/,' ',6x,

& 'at x - ',f9.5,' (inner radius)','....',f7.2)

endif

write(12,36)1x,htc(i,3)

36 format(' ',6x,'at x - ',f9.5,' (outer radius)','....',f7.2)

endif
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write(12,38)htc(i,2)

38 format(' ',4x,'in the y-direction: ',/,' ',6x,

& 'at y - 0.0 ........................ ',f7.2)

if(symx.eq.0)then

write(12,40)ly,htc(i,4)

40 format(' ',6x,'at y - ',f9.5,' .................. ',f7.2)

endif

50 continue

return

end

Cuh?*******************************************************************

SUBROUTINE OUTPUT(t,time,ptime,ii,nprint,tavg,qual,qavg,vq)

parameter(maxx - 31)

integer ixpl,iypl,ii,model,per,shape,symx,symy,stepy,cyn

double precision t(maxx,maxx,3),time,ptime,1x,1x0,ly,dx,dy,

&abc(lO),qual(maxx,maxx),tavg,qavg,vq,ea,q0,vea,vq0,tref,hr,phr,

&ttime,pttime,day,pday

character title*20,ttlfil*4,outdat*15,hh11*29,hh22*21

common/ttl/title,tt1fil,

&/geom/shape,lx,lx0,ly,dx,dy,symx,symy,cyn,ixp1,iypl,stepy,

&/shelf/ea,q0,vea,vq0,tref,

&/mod/mode1

C NPRINT - 0 if printing initial conditions at the beginning of first

C storage period.

C NPRINT - 1 if printing temperature distribution and/or quality

C distributions at the end/beginning of itermentent storage

C periods.

C NPRINT - 2 If printing temperature distribution and/or quality

C distributions at itermentent times during a storage period.

C NPRINT - 3 if printing temperature distribution and/or quality

C distributions at the end of last storage period.

write(12,20)title

20 format(///,10x,'Product - ',a,//)

ttime - time+ptime

day - ttime/86400.0d0

hr - ttime/3600.d0

pday - ptime/84600.0d0

phr - ptime/3600.0d0

if(nprint.eq.0)then

write(12,30)

30 format(le,'These are the initial conditions at the beginning ',

& 'of the ',/,13x,'first storage period.',/)
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else if(nprint.eq.1)then

write(12,40)

& 'Total elapsed time .................... ',day,'days',hr,'hrs',

& 'Beginning of storage period .................. ',ii,

& 'End of storage period ........................ ',ii-l

40 format(le,a,f6.2,a,f8.2,a,/,2(10x,a,i3,/))

else if(nprint.eq.2)then

write(12,50)

& 'Total elapsed time ............... ',day,'days',hr,'hrs -',

& ttime,'sec',

& 'Storage Period ............................... ',ii,

& 'Elapsed time from beginning of',

& ' storage period ..................... ',pday,'days',phr,'hrs'

50 format(le,a,f6.2,a,f8.2,a,f8.l,a,/,10x,a,i3,2(/,10x,a),f6.2,a,

&f8.2,a,/)

else if(nprint.eq.3)then

write(12,60)

& 'Total elapsed time .................... ',day,'days',hr,'hrs',

& 'End of last storage period ................... ',ii

60 format(le,a,f6.2,a,f8.2,a,/,10x,a,i3,/)

endif

if(shape.eq.1)then

if(symx.eq.l.and.symy.eq.0)then

write(12,70)

70 format(le,'Note: Distribution is symmetrical in the x direction;'

& /,l3x,'resu1ts are shown for half-thickness only.'/)

else if(symx.eq.1.and.symy.eq.l)then

write(12,80)

80 format(le,'Note: Distribution is symmetrical in both ',

& 'x and y dimensions;',/,l6x,'results are shown for ',

& 'half-thicknesses only.'/)

endif

endif

if(shape.eq.2)then

if(cyn.eq.0.and.symy.eq.1)then

write(12,90)

90 format(le,'Note: Distribution is symmetrical in both ',

& 'radial and y dimensions;',/,l6x,'results are shown for ',

& 'half-diameter and half-thickness only.'/)

else if(cyn.eq.1.and.symy.eq.l)then

write(12,100)

100 format(le,'Note: Distribution is symmetrical in the y dir',

& 'ection;'/,16x,'resu1ts are shown for half-thickness only.'/)

endif

endif

hh22-'DISTRIBUTION HISTORY'

if(model.eq.2)then

hh11-' TEMPERATURE (C) '

else

hhll-'TEMPERATURE (C) & QUALITY (%)'

endif

write(12,110)hh11,hh22

110 format(/,29x,a,/,33x,a,/,29x,29('-'),/)



Table

120

130

140

150

160

170

180

190

200

345

C.2 (cont'd).

write(12,120)

format(37x,'y—position (m)',/,11x,'x-position (m)|')

if(iypl.eq.3)then

nstep - 3

else

nstep - 5

endif

do i - 1,nstep

abc(i)-(i-1)*stepy*dy

enddo

if(iypl.eq.3)then

write(12,130)abc(l),abc(2),abc(3)

write(12,150)

else

write(12,140)abc(l),abc(2),abc(3),abc(4),abc(5)

write(12,160)

endif

format(25x,'|'3(f8.4))

format(25x,'|'5(f8.4))

format(le,42('—'))

format(le,58('-'))

if(model.ge.3)then

c8-100.0d0/(86400.0d0*q0)

do i - 1,ixpl

do j - l,iypl

if(qua1(i,j).1t.0.0d0)dead-1

enddo

enddo

endif

stepx - (ixpl-1)/4

do i - 1,nstep

do j - 1,nstep

abc(j) - t((i-1)*stepx+1.(J-1)*stepy+l,3)-273.15d0

if(model.ge.3)then

abc(j+nstep)-qual((i-1)*stepx+1,(j—1)*stepy+l)*c8

endif

enddo

if(nstep.eq.3)then

write(12,170)(i-1)*stepx*dx,abc(l),abc(2),abc(3)

else

write(12,180)(i-l)*stepx*dx,abc(1),abc(2),abc(3),abc(4),

abc(5)

endif

format(l6x,f8.4,' |',3(f7.2,1x),'C')

format(l6x,f8.4,' |',5(f7.2,1x),'C')

if(model.eq.3)then

if(nstep.eq.3)then

write(12,190)abc(4),abc(5),abc(6)

else

write(12,200)abc(6),abc(7),abc(8),abc(9),abc(10)

endif

format(25x,’|',3(f7.2,1x),'%')

format(25x,’|',6(f7.2,lx),'%')

endif
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enddo

if(iypl.eq.3)then

write(12,150)

else

write(12,160)

endif

write(12,210)tavg-273.15

210 format(///,10x,'Average temperature (C) - ',f7.2)

if(model.ge.3)then

write(12,220)qavg*100.0d0/(86400.0d0*q0)

220 format(/,10x,'Average quality (% ref. quality) - ',f7.2)

if(model.eq.4)write(12,230)(vq)**0.50d0*c8

230 format(/,10x,'Average st. dev. of quality ',

& '(% of ref. quality) - ',e7.1)

endif

if(dead.eq.1)then

write(12,240)

240 format(/,10x,'Shelf-life was exceeded at some point on body.')

endif

if(nprint.eq.3)then

write(12,250)'End of date file.’

250 format(/,10x,a,i3,a)

close(unit-12)

endif

return

end
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APPENDIX D

SURFACE HEAT TRANSFER COEFFICIENT

ESTIMATION PROGRAM

The program used to estimate surface heat transfer coefficients

using the sequential regularization procedure, discussed in Chapter 3,

is presented here. An outline of the program is given in Table D.l, and

the listing for the program, written in Fortran 77 for a Vax 11/750 is

given in Table D.2.
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Table D.l Description of Surface Heat Transfer Coefficient Estimation

Program.

Subroutine Title

PROGRAM FREEZE

SUBROUTINE PROPER

DOUBLE PRECISION

FUNCTION MOIST(X)

DOUBLE PRECISION

FUNCTION DENS(X)

DOUBLE PRECISION

FUNCTION KI(X)

DOUBLE PRECISION

FUNCTION CONDUC(X)

DOUBLE PRECISION

FUNCTION SPHEAT(X)

SUBROUTINE CONSPR

SUBROUTINE INTEGR

BLOCK DATA CONST

SUBROUTINE INPUTl

SUBROUTINE SOLN

SUBROUTINE COEFF

SUBROUTINE PFIND

SUBROUTINE OUTPUT

SUBROUTINE SIMUL

SUBROUTINE RAND

Description

Main program; contains program menu.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

See Table B.1.

Allows interactive input of ambient and internal

product temperature measurements, and product

geometry. Writes output to data file.

Computes surface heat flux and surface heat

transfer coefficients as a function of time using

the sequential reqularization procedure. Calls

output subroutine.

Determines matrix coefficients used in first

sweep in ADI finite difference algorithm.

See Table B.1.

Writes estimated surface heat flux and surface

heat transfer coefficients to output data file.

Matrix inversion subroutine.

Generates normally distributed random numbers

used in determining optimal parameters.
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Table D.2 Computer Code Listing for Surface Heat Transfer Coefficient

Estimation Program.

PROGRAM IHCPlD

c*****************************************************************

c*****************************************************************

C

C

C

C

Surface Heat Transfer Coefficient Estimation Program

by

Elaine Scott

1986

c*****************************************************************

0
0

0
0

0
0

0
0

0
0

0
0

0
0

This program estimates the surface heat transfer coefficient

as a function of time during frozen food storage. The program

assumes one dimensional heat transfer, with a convective boun-

dary condition at x - 0, and an insulated boundary at x - L.

Input property parameters include unfrozen product density,

thermal conductivity and specific heat. The initial freezing

temperature or molecular weight of solids also is required to

predict these values for the frozen food product.

Boundary conditions are found from internal temperature meas—

urements and known ambient temperatures. The input data file

includes product geometry; number of nodes; number of time steps

for both data points and for finite difference calulations;

number of thermocouples and location; and ambient temperature and

thermocouple reading at each time step.

c*****************************************************************

parameter(maxt-250,maxm-41,maxd—lOl,maxc=51,maxs—201)

integer mode1,ynavg

double precision wf0,ms,dp,kp,cp,t0,

&ds,

&th,tl,avgd,avgk,avgc

character title*40,ttlfil*10,filyn1*l,filyn2*l,filyn*l,fildat*16,

&inpdat*16

common/mod/model,

&/tt1/tit1e,tt1fil,
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&/Pr0P/Wf0.ms.dp.kp.CP.t0.

&/d/ds,

&/pavg/th,tl,avgd,avgk,avgc,ynavg

write(5,1000)

1000 format('l',72('*'),/,'0',t20,'Heat Transfer Coefficient ',

&'Estimation',/,'0',t35,'by',/,'0',t30,'E1aine Scott',/,'0',t24,

&'Michigan State',’ University',/,'0',t32,'May l986',/,'0',72('*'))

WRITE(5,100)

100 FORMAT('O','Program Menu:',//,' ',' 1. Product properties (<0C)’

&,/,' ',' 2. Estimate heat transfer coefficient h',

&/,'0',' h - Surface heat trans. coef.',

&//,' ','Selection? ')

READ(5,10)mode1

10 FORMAT(Il)

write(5,300)

300 format(' ',/,' ','Key word for data files; 6 Characters: ')

READ(5,20)TTLFIL

20 FORMAT(A)

if(model.eq.l)then

filynl - 'n'

else

write(5,400)

400 format(' ',/,' ','Are product properties approximations',/,' ',2x,

&'with temperature stored on file? (y/n) ')

read(5,20)filynl

write(5,500)

500 format(' ',/,' ','Are input initial and boundary conditions',/,' '

&,2x,'and geometrical dimensions stored on file? (y/n) ')

read(5,20)filyn2

endif

if(filynl.eq.'n'.or.filynl.eq.'N')then

call proper

CALL CONSPR

endif

if(model.ne.1)then

if(filyn2.eq.'n'.or.filyn2.eq.'N')then

call inputl

endif

call soln

endif

end

SUBROUTINE PROPER

c See Appendix B.
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DOUBLE PRECISION FUNCTION MOIST(X)

c See Appendix B.

DOUBLE PRECISION FUNCTION DENS(X)

c See Appendix B.

DOUBLE PRECISION FUNCTION KI(X)

c See Appendix B.

DOUBLE PRECISION FUNCTION CONDUC(X)

c See Appendix B.

DOUBLE PRECISION FUNCTION SPHEAT(X)

c See Appendix B.

SUBROUTINE CONSPR

c See Appendix B.

SUBROUTINE INTEGR(thi,tlow,avgdp,avgkp,avgcp,ncase)

c See Appendix B.



352

Table D.2 (cont'd)

BLOCK DATA CONST

c See Appendix B.

SUBROUTINE INPUTl

This subroutine provides the input for the boundary condi-

tions on the product for the case where the ambient temper-

ature and surface heat tranfer coeffient are known and assumed

to be constant over a given storage period.0
0
0
0

Input varibles include, initial product temperature, sym-

metry of boundary conditions, number of constant temperature

storage periods, length of storage period, and surface heat

transfer coefficient.0
0
0
0

parameter(maxt - 250,maxtc - 10)

integer shape,mpli,ntime,ntc,ndt

double precision delt,tamb(maxt),tc(maxt,maxtc),xtc(maxtc),L

character yn*l,title*40,ttlfil*10,fildat*l6,inpdat*l6

common /ttl/tit1e,ttlfil,

&/datfil/fildat,inpdat

save

write(6,l)

l format(' ',/,' ','Product: ')

READ(5,2)TITLE

2 format(a)

c input geometry and size

5 write(6,10)

10 format('l','Geometry',/,' ',8('-'),/'0','Enter product geometry: '

&,/,' ',5x,’1 - slab',/,' ',5x,'2 - cylinder',/,' ',5x,

&'3 - sphere')

read*,shape

if(shape.eq.1)then

write(6,20)

20 format(' ',/,' ','Enter dimensions for slab;',/,' ',5x,

&'thickness in direction of heat transfer (m) : ')

read*,l

else

if(shape.eq.2)then

write(6,30)
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30 format(' ',/,' ','Enter dimensions for cylinder',/,

&' ',5x,'radius (m) : ')

read *,1

else

write(6,40)

40 format(' ',/,' ','Enter dimensions for sphere (m)',/,

&' ',5x,'radius (m) : ')

read *,1

endif

endif

write(5,50)

50 format(' ',/,' ','Enter total number of nodes in F.D. ',

&'calculations : ')

read*,mpli

write(5,60)

60 format('O','Storage Conditions',/,' ',18('-'))

write(6,70)

70 format('O',/,' ','Enter total number of temperature ',

&'measurements ',/,' ','(include time - 0) : ')

read*,ntime

write(6,80)

80 format(' ',/,' ','Enter time increment between each ',

&'temperature measurement (sec) : ')

read*,delt

write(6,85)

85 format(' ',/,' ','Enter number of time steps per temperature',

&' measurement interval ',/' ','(for F.D. calculations) : ')

read*,ndt

write(6,90)

90 format(' ',/,' ','Enter total number of thermocouples : ')

read*,ntc

write(6,100)

100 format(' ',/,' ','Are these values correct? (y/n) ')

read(5,110)yn

110 format(a)

if(yn.ne.'y'.and.yn.ne.'Y')goto 5

write(6,120)

120 format(' ',/,' ','Enter location of each thermocouple.’/)

do itc - 1,ntc

write(6,130)itc

130 format(' ','Location of T.C. No. ',12,'(m) : ')

read*,xtc(itc)

enddo

write(6,140)

140 format(' ',/,' ',’Enter ambient temp. and each thermocouple ',

&'measurement (C) ',/,' ','for every time step.',/)

do it - 1,ntime

write(6,150)it-1

150 format(' ','Time step:',i3,5x,'tamb- ')

read*,tamb(it)

do itc - 1,ntc

write(6,160)itc

160 format(' ','T.C.(',i2,')- ')

read*,tc(it,itc)

enddo

enddo
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do i - 1,ntime

if(tamb(i).ne.0.)then

tamb(i) - tamb(i)+273.150d0

endif

do itc - 1,ntc

if(tc(i,itc).ne.0.)then

tc(i,itc) - tc(i,itc)+273.150d0

endif

enddo

enddo

write(inpdat,170)ttlfil,'ihcpinp.dat'

170 format(' ',a,a)

open(unit-l2,name-inpdat(1:16),type-‘new',carriagecontrol-'list')

write(12,*)title

write(12,*)shape,L,mpli

write(12,*)ntime,de1t,ndt

write(12,*)ntc

do i - 1,ntc

write(12,*)xtc(i)

enddo

do i - 1,ntime

write(12,*)tamb(i)

do itc - 1,ntc

write(12,*)tc(i,itc)

enddo

enddo

close(unit-l2)

return

end

SUBROUTINE soln

parameter(maxd - 101, maxc - 51, maxs - 201, iterat - l)

parameter(maxm-21,maxtc-6,maxr—15,maxrpl-l6,maxt—250,r-8.3140d0)

parameter(maxrdt - 500)

integer shape,mpli,ntime,ntc,rfts,mx,ynavg,mistc,irfts,

&rfti,ntci,yn

double precision a(maxm),b(maxm),c(maxm),da(maxm),db(maxm),

&dc(maxm),dz(maxm),dt(maxm),cc(maxm),ddt(maxm),ddx(maxm),

&t(maxm,maxrdt),x(maxm,maxrdt),ql(maxrpl),q2(maxt),qlstar,

&xk(maxtc,maxr),ds,htc,xmat(maxr,maxr,maxtc),xtx(maxr,maxrpl),

&h0(maxr,maxr),hl(maxr,maxr),h2(maxr,maxr),sum,sum2,

&tt(maxr,maxtc),xx(maxr,maxtc),xmatt(maxr,maxr,maxtc),qq(maxr),

&sumhl,sumh2,tstar(maxm,maxrdt),ratiox,ttime,sumhtc,htca,shtc

c Declare variables in common blocks

double precision wf0,ms,dp,kp,cp,t0,

&l,dxi,
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&DENST(maxd),DENSC(maxd),CONDT(maxc),CONDC(maxc),SPHT(maxs),

&SPHC(maxs),

&delt,

&tamb(maxt),tc(maxt,maxtc),xtc(maxtc),

&tl,th,avgd,avgk,avgc,

&alpha,w0,wl,w2

&sumt1,sumt2,ctl,ct2,tal,ta2

character title*40,ttlfil*10,fildat*l6,inpdat*l6

common/ttl/title,ttlfil,

&/geom/shape,l,dxi,

&/datfil/fildat,inpdat,

&/NCONSTP/NSD,NSC,NSS,

&/CONSTP/DENST,DENSC,CONDT,CONDC,SPHT,SPHC,

&/pr0p/wf0.ms.dp.kp.CP.t0./d/ds.

&/meas/delt,ntime,ntc,ndt

fi/measZ/tamb,tc,xtc,

&/pavg/tl,th,avgd,avgk,avgc,ynavg,

&/ihcp/irfts,alpha,w0,wl,w2

save

c Read in boundary and initial conditions

write(inpdat,600)ttlfil,'.dat'

600 format(' ',a,a)

open(unit-12,name-inpdat(1:16),type-'old',carriagecontrol-'list')

read(12,*)tit1e

read(12,*)shape,l,mp1i

read(12,*)ntime,delt,ndt

read(12,*)ntc

read(12,*)xtc(l),xtc(2),xtc(3)

read(12,*)xtc(4),xtc(5),xtc(6)

do i - 1,ntime

read(12,*)tamb(i),tc(i,1),tc(i,2),tc(i,3),tc(i,4),tc(i,5),tc(i,6)

if(tamb(i).ne.0.0)then

tamb(i) - tamb(i)+273.15d0

endif

sum - 0.0d0

sumx - 0.0d0

do j - 1,ntc

if(tc(i,j).ne.0.0)then

tc(i,j) - tc(i,j)+273.15d0

endif

sum - sum +tc(i,j)

sumx - sumx+ xtc(j)

enddo

enddo

close(unit-l2)

write(5,11)

11 Format(' ','Average ambient temperature values? (1-y,0-n) ')
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read(5,*)yn

if(yn.eq.l)then

sumtl - 0

sumt2 - 0

ctl - 0

ct2 - 0

do i - 1,ntime

if(tamb(i).gt.258.15)then

sumtl - sumtl+tamb(i)

ctl - ct1+l

else

sumt2 - sumt2+tamb(i)

ct2 - ct2+l

endif

enddo

tal - sumtl/ctl

ta2 - sumt2/ct2

do i - 1,ntime

if(tamb(i).gt.258.15)then

tamb(i) - tal

else

tamb(i) - ta2

endif

enddo

endif

c Read in constant property assumptions

WRITE(FILDAT,310)'ld_t1cPRP.DAT'

310 FORMAT(' ',a)

OPEN(UNIT-l2,NAME-FILDAT(1:16),TYPE-'OLD',CARRIAGECONTROL-‘LIST')

READ(12,*)WFO,T0,MS

READ(12,*)DP,KP,CP

READ(12,*)NSD,NSC,NSS

READ(12,*)tl,th,avgd,avgk,avgc,ynavg

DO I-1,NSD

READ(12,*)DENST(I),DENSC(I)

ENDDO

DO I-1,NSC

READ(12,*)CONDT(I),CONDC(I)

ENDDO

DO I-1,NSS

READ(12,*)SPHT(I),SPHC(I)

ENDDO

CLOSE(UNIT-l2)

c Check for bad T.C.

do i - 1,ntime

mistc - 0

sum - 0.0d0

do itc - 1,ntc

sum - sum + tc(i,itc)

if(tc(i,itc).eq.0.0)then

mistc - mistc + 1

endif
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enddo

do itc - 1,ntc

if(tc(i,itc).eq.0.0)then

tc(i,itc) - sum/(ntc-mistc)

endif

enddo

if(tamb(i).eq.0.0)then

if(i.eq.l)then

ii - l

4 if(tamb(ii+1).ne.0.0)then

do jj - 1,ii

tamb(jj) - tamb(ii+l)

enddo

else

ii - ii+1

go to 4

endif

else

ii - i

6 if(tamb(ii+l).ne.0.0)then

tamb(i) - (tamb(i-l)+tamb(ii+l))/2.0d0

else

ii - ii+1

go to 6

endif

endif

endif

enddo

c Regularization components

write(6,3)

3 format(' ',/,' ','Enter alpha,w0,w1,w2: ',$)

read*,alpha,w0,wl,w2

write(6,2)

2 format(' ',/,' ','Enter number of future time steps- ',$)

read*,irfts

rfts - irfts

dti - delt/ndt

mi - mpli-l

dxi - L/mi

ndtt - rfts*ndt

ntci - ntc

do i - l,rfts

q1(i) - 0.0d0

do j - l,rfts

if(i.ne.j)then

h0(i,j) - 0.0d0

else

h0(i,j) - 1.0d0

endif
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O

h1(i,j) - 0.0d0

h2(i,j) - 0.0d0

enddo

if(i.lt.rfts)then

hl(i,i) - -1.0d0

hl(i,i+1) - 1.0d0

endif

if(i.lt.rfts-l)then

h2(i,i) - 1.0d0

h2(i,i+1) - -2.0d0

h2(i,i+2) - 1.0d0

endif

enddo

htc - 0.0d0

Assume value for ql*: Use q1* - 0.0

qlstar - 0.0d0

call output(0,q1,htc,l)

finite difference solution

do 100 it - 1,ntime-1

q2(it) - 0.0d0

 

Assume value for q1*: Use q1* - ql(1)

if(it.gt.1)then

call output(l,ql,htc,it,0.)

endif

Initialize Tstar and set sensitivity coefficients equal to xero.

if(it.eq.l)then

sum - 0.d0

ntci - ntc

do itc - 1,ntc

if(tc(l,itc).eq.0.0d0.and.ntc.ne.l)then

ntci - ntc-l

else

sum - sum+tc(l,itc)

endif

enddo

do i - 1,mpli

Tstar(i,1) - sum/ntci

t(i,1) - sum/ntci

x(i,1) - 0.0d0

enddo

if(tamb(l).eq.0.0)tamb(l) - tamb(2)

endif
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c thomas algorithm

c find coefficients for thomas algorithm

call coeff(t,dti,mpli,a,b,c,da,db,dc)

do ir - l,rfts

do idt - 1,ndt

9
'

9
‘

indt - ndt*(ir-l)+idt

if(ir.eq.1)then

dt(1) - db(1)*tstar(l,indt)+dc(l)*tstar(2,indt)

-qlstar*0.50d0

else

dt(1) - db(1)*tstar(l,indt)+dc(l)*tstar(2,indt)-qlstar

endif

if(idt.eq.l)then

dz(1) - db(1)*x(1,indt)+dc(l)*x(2,indt)-0.5d0

else

dz(1) - db(1)*x(1,indt)+dc(l)*x(2,indt)-l.0d0

endif

do i - 2,mpli-l

dt(i) - da(i)*tstar(i-1,indt)+db(i)*tstar(i,indt)

+dc(i)*tstar(i+1,indt)

dz(i) - da(i)*x(i-1,indt)+db(i)*x(i,indt)

+dc(i)*x(1+1,indt)

enddo

if(ir.eq.1)then

dt(mpli) - da(mpli)*tstar(mpli-1,indt)+db(mpli)

*tstar(mpli,indt)-0.Sd0*(q2(it)+q2(it+l))

else

dt(mpli) - da(mpli)*tstar(mpli-1,indt)+db(mpli)

*tstar(mpli,indt)-q2(it+l)

endif

dz(mpli) - da(mpli)*x(mpli-l,indt)+db(mpli)*x(mpli,indt)

00(1) - C(1)/b(1)

ddt(l) - dt(1)/b(1)

ddX(1) - dZ(1)/b(1)

do k - 2,mpli

kk - k-l

cc(k) - c(k)/(b(k)-a(k)*cc(kk))

ddt(k) - (dt(k)-a(k)*ddt(kk))/(b(k)-a(k)*cc(kk))

ddx(k) - (dz(k)-a(k)*ddx(kk))/(b(k)-a(k)*cc(kk))

enddo

tstar(mpli,indt+1) - ddt(mpli)

x(mpli,indt+l) - ddx(mpli)

do k - 2,mpli

kk - mpli-k+1

tstar(kk,indt+l) - ddt(kk)-cc(kk)*tstar(kk+1,indt+1)

x(kk,indt+l) - ddx(kk)-cc(kk)*x(kk+1,indt+1)

enddo

enddo

enddo
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do itc - 1,ntc

do i - 2,mpli

if(xtc(itc).lt.(i-1)*dxi)then

mx - i

ratiox - (xtc(itc)-(i-2)*dxi)/dxi

go to 5

endif

enddo

5 do ir - 2,rfts+1

irr - (ir-1)*ndt+l

tt(ir-1,itc) - tstar(mx-1,irr)+

& ratiox*(tstar(mx,irr)-tstar(mx-1,irr))

xx(ir,itc) - x(mx-l,irr)+ratiox*(x(mx,irr)-x(mx-l,irr))

enddo

enddo

c ...........................................................

c Calculate q from measured temperatures

do itc - 1,ntc

do ii - l,rfts

do jj - l,ii

xmat(ii,jj,itc) - xx(ii-jj+2,itc)

enddo

enddo

enddo

do itc - 1,ntc

do ii - l,rfts

do jj - l,rfts

xmatt(ii,jj,itc) - xmat(jj,ii,itc)

enddo

enddo

enddo

do ii - l,rfts

sum2 - 0.0d0

do jj - l,rfts+l

sum - 0.0d0

sumhl - 0.0d0

sumh2 - 0.0d0

do itc - 1,ntc

do j - l,rfts

if(jj.le.rfts)then

sum - sum + xmatt(ii,j,itc)*xmat(j,jj,itc)

else

sum2 - sum2 + (tc(it+j,itc)-tt(j,itc))

& *xmatt(ii,j,itc)

endif

if(itc.eq.1)then

sumhl - sumhl + hl(ii,j)*hl(jj.j)

sumh2 - sumh2 + h2(11,j)*h2(Jj.j)

endif

enddo

enddo

if(jj.le.rfts)then

xtx(ii,jj) - sum + alpha*(w0*h0(ii,jj)+wl*sumhl+w2*sumh2)
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else

xtx(ii,jj) - sum2

endif

enddo

enddo

c Call Gauss elimination subroutine

call simul(xtx,qq,rfts,1)

do ir - l,rfts

ql(ir+l) - qlstar+qq(ir)

enddo

c Knowing ql, reevaluate d(1) and repeat back substition to find

c t.

do ir - 1,ndt

if(it.eq.1.or.ir.ne.1)then

dt(1) - db(l)*t(l,ir)+dc(l)*t(2,ir)-ql(2)

else

if(ir.eq.1)then

dt(1) - db(1)*t(l,ir)+dc(1)*t(2,ir)-0.5d0*ql(1)

& -0.5d0*q1(2)

endif

endif

do i - 2,mi

dt(i) - da(i)*t(i-1,ir)+db(i)*t(i,ir)+dc(i)*t(i+l,ir)

enddo

if(ir.eq.1)then

dt(mpli) - da(mpli)*t(mi,ir)+db(mpli)*t(mpli,ir)

& -0.5d0*(q2(it)+q2(it+l))

else

dt(mpli) - da(mpli)*t(mi,ir)+db(mpli)*t(mpli,ir)

& -q2(it+l)

endif

ddt(1)-dt(1)/b(l)

do k-2,mpli

kk-k—l

ddt(k)-(dt(k)-a(k)*ddt(kk))/(b(k)-a(k)*cc(kk))

enddo

t(mpli,1+ir)-ddt(mpli)

do k-2,mp1i

kk-mi-k+2

t(kk,l+ir)-ddt(kk)-cc(kk)*t(kk+l,l+ir)

enddo

enddo

C
 

0 Estimate the heat transfer coefficient from q and t.

sum - 0.0d0

do i - 1,ndt+1

if(i.eq.l.or.i.eq.ndt+1)then

sum - sum+0.50d0*t(l,i)
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else

sum - sum+t(1,i)

endif

enddo

sum - sum/ndt

htc - ql(2)/((tamb(it+1)+tamb(it))*0.50d0-sum)

c end of finite difference calculations

c ***********************************************'k*********

c Initialize t and ql

ql(1) - ql(2)

if(it.eq.ntime-1)call output(l,ql,htc,ntime)

do i - 1,mpli

t(i,1) - t(i,ndt+l)

tstar(i,1) - t(i,ndt+1)

enddo

if(it.ge.ntime-irfts)then

rfts - rfts-l

endif

100 continue

c printout

call output(2,q1,htc,it)

return

end

SUBROUTINE COEFF(t,dti,mpli,a,b,c,da,db,dc)

parameter(maxm-Zl,maxp-lO,maxd—lOl,maxc=51,maxs=201,maxr-15)

parameter(maxrdt - 500)

integer shape,mi,mpli,ii,nsd,nsc,nss,ynavg

double precision beta,nu,omega,gama,

&aar,ar(maxm),arl(maxm),area,avgl,avg2,ck(maxm),

&csd(maxm,2),a(maxm),b(maxm),c(maxm),da(maxm),db(maxm),dc(maxm),

&t(maxm,maxrdt),z(maxm,maxrdt),dti,pi,dxx,dtt

c Declare variables in common statements
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double precision l,dxi,

&wf0,ms,dp,kp,cp,t0,

&DENST(maxd),DENSC(maxd),CONDT(maxc),CONDC(maxc),SPHT(maxs),

&SPHC(maxs),ds,

&th,t1,avgd,avgk,avgc

common/geom/shape,l,dxi,

&/pr0p/wf0.ms.dp.kp.cp.t0.

&/CONSTP/DENST,DENSC,CONDT,CONDC,SPHT,SPHC,

&/NCONSTP/NSD,NSC,NSS,

&/d/ds,

&/pavg/tl,th,avgd,avgk,avgc,ynavg

pi - dacos(-1.0d0)

c weighting functions for finite difference method

c modified crank-nicolson method

c weight. coeff. for d2t/dx2

c for time t:

beta-0.50d0

c for time t+l:

nu-0.50d0

c weight. coeff. for dt/dt

c for time t:

omega--l.0d0

c for time t+l:

gama-1.0d0

mi - mpli-l

dxx-1.0d0/dxi

dtt-l.0d0/(2.0d0*dti)

if(shape.eq.2)then

aar-2.0d0*pi

else

if(shape.eq.3)then

aar-4.0d0*pi

endif

endif

do 10 i-l,mpli

c slab

if(shape.eq.1)then

ar(i)-l.0d0

arl(i)-l.0d0

else

c cylinder
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if(shape.eq.2)then

ar(i)-aar*(i-1)*dxi

arl(i)-ar(i)+aar*dxi/2.0d0

else

c sphere

ar(i)-aar*((i-l)*dxi)**2.0d0

arl(i)-aar*((i-l)*dxi+dxi/2.0d0)**2.0d0

endif

endif

10 continue

CALL PFIND(T,Mi,CK,CSD,dti,dxi)

c **********************************************************

c lst boundary point

AVGl - (AR(l)+AR1(l))*0.50d0

a(l) - 0.0d0

c(1) - nu*dxx*CK(1)*arl(l)

b(l) - -gama*CSD(1,1)*avg1-c(1)

da(l) - 0.0d0

dc(l) - -beta*dxx*CK(l)*ar1(l)

db(l) - omega*CSD(1,1)*avg1-dc(l)

c **********************************************************

c interior points

do i-2,mi

AVGl - (AR(I)+AR1(I))*0.50dO

AVG2 - (AR(I)+AR1(I-1))*0.50d0

a(i) - nu*dxx*CK(I-1)*arl(i-1)

c(i) - nu*dxx*CK(I)*arl(i)

b(i) - -gama*(CSD(I,1)*avg2+CSD(I,2)*avg1)-a(i)-c(i)

da(i) - -beta*dxx*CK(I-l)*arl(i-1)

dc(i) - -beta*dxx*CK(I)*arl(i)

db(i) - omega*(CSD(I,l)*avg2+CSD(I,2)*avgl)-da(i)-dc(i)

enddo

c ***********************************************************

c 2nd boundary point

AVG2 - (AR(mpli)+AR1(Mi))*0.50d0
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c(mpli) - 0.0d0

a(mpli) - nu*dxx*CK(Mi)*arl(mi)

b(mpli) - -gama*CSD(mpli,2)*avg2-a(mpli)

dc(mpli) - 0.0d0

da(mpli) - -beta*dxx*CK(Mi)*arl(mi)

db(mpli) - omega*CSD(mpli,2)*avg2-da(mpli)

return

end

SUBROUTINE PFIND(T,Mi,CK,CSPD,dti,dx)

C See Appendix A

SUBROUTINE OUTPUT(nprint,ql,htc,it)

parameter(maxp-lO,maxm-21,maxr-lS,maxt-250,maxtc-6)

integer shape,ntime,ntc,irfts

double precision ql(maxr),htc,ttc(6),ttamb

c Declare variables in common statements

double precision wf0,ms,dp,kp,cp,t0,

&1,dxi,

&delt,

&tamb(maxt),tc(maxt,maxtc),xtc(maxtc),

&alpha,w0,wl,w2

character title*40,ttlfil*10,outfil*20,hhll*30,hh22*21

common/ttl/title,tt1fil,

&/Pr0P/wf0.ms.dp.kp.cp.t0.

&/geom/shape,l,dxi,

&/meas/delt,ntime,ntc,ndt

&/meas2/tamb,tc,xtc,

&/ihcp/irfts,alpha,w0,wl,w2

C NPRINT - 0 if printing input parameters and headings.

C NPRINT - 1 if printing estimated heat flux and heat

C transfer coefficient.
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C NPRINT - 2 if printing end of file.

IF(NPRINT.EQ.0)THEN

GO TO 1100

ELSE

if(nprint.eq.1)then

go to 1200

else

go to 1300

endif

endif

1100 write(outfil,1000)ttlfil,'out.dat'

1000 format(' ',a,a)

open(unit-12,name-outfil(1:20),type-'new',carriagecontrol-'list')

write(12,10)title

10 format(///,3x,'Tit1e: ',a20,/3x,' ----- ',//,14x,'Input Para',

+'meters',/,14x,l6('-')//)

write(12,20)

20 format(/'Unfrozen Product Properties',/)

abcd-wf0*100.0d0

write(12,30)abcd

30 format(2x,'Moisture content (%) ................... ',f6.2)

abcd-t0-273.150d0

write(12,40)abcd

40 format(2x,'Initial freezing temperature (C) ....... ',f6.2)

write(12,50)ms

50 format(2x,'Molecular weight of solids (kg/mole)...',f8.2)

write(12,60)dp

60 format(2x,'Unfrozen product density (kg/mA3) ...... ',f8.2)

write(12,70)kp

70 format(2x,'Thermal conductivity (W/mK) ............ ',f6.3)

write(12,80)cp

80 format(2x,'Specific heat (kJ/kgK) ................. ',f7.3)

sum - 0

do i - 1,ntc

sum - sum+tc(l,i)

enddo

abcd - sum/ntc-273.150d0

write(12,90)abcd

90 format(/'Initial Condition:',

& /2x,'Avg. Product temp. (C) at time-0 ...... ',f7.2)

c product geometry

if(shape.eq.1)then

write(12,100)l

100 format( /'Slab Geometry:',

+ /2x,'thickness (m) ......................... ',f10.6)

else

if(shape.eq.2)then

write(12,110)l

110 format(/'Cyclindrical Geometry:',

+ /2x,'radius (m) ............................. ',f10.6)

else

write(12,120)l
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120 format(/'Spherical Geometry:',

+ /2x,'radius (m) ............................. ',f10.6)

endif

endif

c input conditions

write(12,130)ntime

130 format(/2x,'Total no. of measurements .............. ',13)

write(12,140)de1t*(ntime-l)

140 format(2x,'Total time (sec) ....................... ',f10.2)

tothrs - delt*(ntime-l)/3600.0d0

write(12,150)tothrs

150 format(2x,'Total time (hrs) ........................ ',f7.3)

write(12,160)delt

160 format(2x,'Time step for IHCP solution (sec) ...... ',f10.2)

write(12,162)delt/ndt

162 format(2x,'Time step for FD solution (sec) ........ ',f10.2)

write(12,168)dxi

168 format(2x,'Position step for FD solution (sec) ....',f7.4)

write(12,170)ntc

170 format(2x,'Total no. of thermal couples ........... ',i3)

do itc - 1,ntc

write(12,180)itc,xtc(itc)

180 format(4x,'Location of T.C.(',12,') ............. ',f7.4)

enddo

write(12,l82)irfts,a1pha,w0,wl,w2

182 format(2x,'IHCP regularization solution parameters:',/,

& 4x,'No. of future time steps ............. ',12,/,

& 4x,'Regu1arization parameter (alpha) ..... ',e7.l,/,

& 4x,'Weighting coefficient - 0th order ....',f5.3,/,

& 4x,'Weighting coefficient - lst order ....',f5.3,/,

& 4x,'Weighting coefficient - 2nd order ....',f5.3)

write(12,190)tit1e

190 format(/////'Title- ',a,/)

hh22-‘TRANSFER COEFFICIENTS'

hhll-‘ESTIMATED HEAT FLUXES AND HEAT'

write(12,200)hh11,hh22

200 format(/18x,a,/,22x,a,/,18x,29('-'),/)

write(12,210)

210 format('lNo.| Tamb | TC(1) | TC(2) | TC(3) | TC(4) | TC(S) |',

a ' TC(6) | q | h |'/72('-'))

c Printout T.C. temperature measurements

1200 ttamb - tamb(it) - 273.150d0

do itc - 1,ntc

ttc(itc) - tc(it,itc) - 273.150d0

enddo

write(12,220)it,ttamb,ttc(1),ttc(2),ttc(3),

& ttc(4),ttc(5),ttc(6),q1(l),htc
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220 format(i3,lx,f6.l,lx,6(f7.2,1x),f6.1,1x,f6.2)

return

c Printout end line

1300

230

c***

c***

c***

c***

c***

c***

c***

c***

30

c***

c***

c***

write(12,230)

format(72('-'))

close(unit-12)

return

end

SUBROUTINE SIMUL(ASTORE,X,N,INDIC)

parameter(maxr - 15,maxr1 - 16)

double precision AIJCK, DETER, EPS, PIVOT, PIVOTI

double precision A(maxr,maxrl)

double precision IROW(maxr),JCOL(maxr),JORD(maxr)

double precision ASTORE(maxr,maxrl),X(maxr)

INITIALIZE PARAMETERS

MAX - N

IF(INDIC.GE.0) MAX - N+l

EPS - 1.0D-20

STORE THE ARRAY SINCE INVERTED IN PLACE

DO J-1,MAX

DO I-1,N

A(I,J) - ASTORE(I,J)

enddo

enddo

FOR DEBUGING PURPOSES, PRINTOUT THE "A" MATRIX

BEGIN THE ELIMINATION PROCEDURE

DETER - 1.0DO

DO 130 K-1,N

KMl - K-l

SEARCH FOR THE PIVOT ELEMENT

PIVOT - 0.0D0
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DO 80 I-1,N

DO 70 J-1,N

c***

C*** SCAN IROW AND JCOL ARRAYS FOR INVALID PIVOT SUBSCRIPTS

c***

IF(K.EQ.1) GO TO 60

DO ISCAN-1,KM1

DO JSCAN-1,KM1

IF(I.EQ.IROW(ISCAN)) GO TO 70

IF(J.EQ.JCOL(JSCAN)) GO TO 70

enddo

enddo

6O IF(DABS(A(I,J)).LE.DABS(PIVOT)) GO TO 70

PIVOT - A(I,J)

IROW(K) - I

JCOL(K) - J

70 CONTINUE

80 CONTINUE

c***

C*** INSURE THE SELECTED PIVOT IS LARGER THAN EPS

c***

IF(DABS(PIVOT).GT.EPS)GO TO 90

c WRITE(5,2000) PIVOT

c 2000 FORMAT(' ','VALUE FOR PIVOT IS TOO SMALL, SUBROUTINE

TERMINATED.')

c WRITE(1,2000) PIVOT

RETURN

C***

C*** UPDATE THE DETERMINANT VALUE

C***

90 IROWK - IROW(K)

JCOLK - JCOL(K)

DETER - DETER*PIVOT

c***

C*** NORMALIZE PIVOT ROW ELEMENT

c***

PIVOTI - 1.0D0/PIVOT

DO J-l,MAX

A(IROWK,J) - A(IROWK,J)*PIVOTI

enddo

c***

C*** CARRY-OUT ELIMINATION AND DEVELOP INVERSE

c***

A(IROWK,JCOLK) - PIVOTI

DO I-l,N

AIJCK - -A(I,JCOLK)

IF(I.EQ.IROWK) GO TO 120

A(I,JCOLK) - AIJCK*PIVOTI

DO J-1,MAX

IF(J.NE.JCOLK) A(I,J) - A(I,J) + AIJCK*A(IROWK,J)

enddo

120 enddo

130 CONTINUE

c***

C*** ORDER THE SOLUTION VALUES (IF ANY) AND CREATE JORD ARRAY

c***
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DO 140 I-l,N

IROWI - IROW(I)

JCOLI - JCOL(I)

JORD(IROWI) - JCOLI

IF(INDIC.GE.O) X(JCOLI) - SNCL(A(IROWI,MAX))

CONTINUE

RETURN

END

SUBROUTINE RAND(tc,ntime,ntc)

Parameter(maxt-250,maxtc-6)

integer ntime,ntc,seedi*4

Double Precision tc(maxt,maxtc),u(maxt),a0,al,b1,b2,r,e,t,ak

c Subroutine to generate normally distributed random numbers.

10

20

30

write(5,1)

format(' ','Enter seed no. for this run:')

read(5,*)seedi

a0 - 2.30753

a1 - 0.27061

bl - 0.99299

b2 - 0.04481

do itc - 1,ntc

do i - 1,ntime

u(i) - ran(seedi)

enddo

do j - 1,ntime

r - u(j)

if(r-0.5d0)10,10,20

ak - 1.0d0

go to 30

ak - -1.0d0

go to 30

t - (log(l.0/(r*r)))**0.5

e - t-(a0+al*t)/(l.0+b1*t+b2*t*t)

tc(j,itc) - tc(j,itc) + ak*e*0.27

enddo

enddo

return

end
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APPENDIX E

RESULTS FROM SECOND AND THIRD

EXPERIMENTAL TEST REPETITIONS

This appendix contains the results from the second and third

experimental test repetitions. The experimental temperature

measurements from Tests 1b,c, shown in Figures E.1b,c, were used in

estimating the surface heat transfer coefficients, as shown in Figures

E.2b,c, and in verifying the numerical model (Figures E.3b,c). Tests

2b,c and Tests 3b,c were also used in verifying the numerical model;

results are given in Figures E.4b,c and Figures E.5b,c, respectively.
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