

LIQRARY

Michigan State

University

MSU
LIBRARIES

RETURNING MATERIALS:

Place in book drop to remove this

checkout from your record. FINES

will be charged if book is returned

after the date stamped below.

16m‘25 i593

USING HIS TECHNIQUES WITHIN INSTRUCTIONAL PROGRAMS:

DATA FLOW DIAGRAMS To DESIGN INSTRUCTION

and

EXPERT SYSTEMS TO DELIVER EXPERTISE

by

Mary Jane Garrett

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Counseling,

Educational Psychology,

and Special Education

1988

ABSTRACT

USING MIS TECHNIQUES WITHIN INSTRUCTIONAL PROGRAMS:

DATA FLOW DIAGRAMS TO DESIGN INSTRUCTION

and

EXPERT SYSTEMS To DELIVER EXPERTISE

by

Mary Jane Garrett

This dissertation discussed the increased need for

efficient and effective instruction of high level intellec-

tual skills. It was noted that learning theories and in-

structional design theories had been developed that dealt

with cognitive processing, but that the tools currently used

by instructional designers did not readily facilitate the

teaching of cognitive processes. Problems with a current

design technique were discussed, and a need was determined

for instructional design techniques that permit developers

to apply learning and instructional theories more effective-

ly, especially in the indicated problem areas.

It was noted that business and industry had also been

affected by the Information Age. The use of data flow

diagrams in instructional design was demonstrated and the

following advantages were found: (a) they help to locate

the points in the learning process where teachers' help may

be needed for students to master the cognitive task; (b)

they show the type and position of information needed for

each process within the instructional system; (c) they aid

in analyzing the cognitive skill to be taught, identifying

the cognitive processes for higher order thinking skills,

and presenting the cognitive skill as a whole; (d) they

show the interrelationships among topics and processes of

instruction at various levels from course to lesson; and (e)

they provide a convenient way to explain a course to inter-

ested, content-area-naive, parties.

The use of expert systems to deliver expertise was

discussed. The limitations of expert systems and the dif-

ferences between expert systems developed for industry and

instruction were discussed. The steps necessary to develop

an expert system for the delivery of expertise within in-

structional programs was discussed and an example of the

development of an expert system to help students learn to

debug computer programs was given. Finally some cautions

about the use of expert systems as a part of instruction

were presented.

ACKNOWLEDGMENTS

I wish to express my appreciation to Dr. Lawrence

Alexander, chairman of my Doctoral Committee, for his en-

couragement and understanding. His counsel and judgement

were most influential in my years at Michigan State Univer-

sity, and his interpretation of often confusing policies and

practices was critical in the completion of my degree. The

amount of time he willingly devoted to the advancement of my

knowledge in instructional design and cognitive psychology

was staggering. I wish there were some way to repay him for

his kindness other than remembering his generosity when

working with my students.

I wish also to express my gratitude to Dr. Paul Slocum,

Dr. Robert Poland, and Dr. Richard McLeod, members of my

committee, who took time from their extremely busy schedules

to attend meetings, review papers, and offer advice. I feel

special gratitude to Dr. Dale Davis, from the University of

Michigan, Flint, for being willing to provide expertise in

Management Information Systems, providing support in my

approach to the topic, and for being part of my committee at

Michigan State University.

Two additional members of Michigan State University's

faculty have more than earned my gratitude: Dr. Joe Byers

and Dr. Stephen Yelon. Neither of these dedicated profes-

sors had any obligation to provide support for me in the

completion of my program, yet Dr. Byers' door was also open

for some friendly advice and Dr. Yelon even reviewed por-

tions of my dissertation and made numerous suggestions for

improvements.

I am also grateful to two former colleagues, Frank

Gregory and Paul Heavilin, who not only provided encourage-

ment and emotional support, but also proofread papers and

offered constructive criticism. Also, without the willing-

ness of Pat Gilbert to allow me to adjust my school schedule

to attend classes at Michigan State University, my advanced

education would have remained a dream.

Finally no words can express my indebtedness to my

parents, Andrew and Irma Tesner, whose love and confidence

in me gave me the desire to learn more, and my children,

Patrick and Paula Garrett, whose willingness to often "do

without their Mother" made this endeavor possible.

ii

TABLE OF CONTENTS

Chapter

LIST OF FIGURES O

1 STATEMENT OF THE PROBLEM AND THE PURPOSE OF THIS

2

3

RESEARCH

RESEARCH QUESTIONS

Broad Questions to be Addressed .

Specific questions to be answered

SCOPE AND LIMITATION OF THIS RESEARCH

OVERVIEW OF THE DISSERTATION

PROBLEMS WITH THE CURRENT INSTRUCTIONAL ANALYSIS

TECHNIQUES .

Introduction

The Development of the Michigan Department of

Education' 3 Data Processing Curriculum Guide

Needs assessment

Analysis and formulation of the program's

goals and objectives

Occupational and (d) learning task analysis

Design of the course '.

Implementation and evaluation

Inadequate Consideration for need for Expertise

and Knowledge

Insufficient Focus on Information

Limitations created by expressing cognitive skills

in a task format

Lack of Consideration for the Interrelationships

Among Topics of Instruction

Lack of Convenient Ways to Explain a Course to

Interested, Content-Area-Naive, Parties . . .

Summary and Conclusion

A Possible Source of Instructional Analysis and

Design Tools

INSTRUCTIONAL DESIGN USING DATA FLOW DIAGRAMS . . .

Introduction

Instructional Analysis and Design Using data flow

diagrams_.

Data Flow Diagrams in Management Information

Systems

An Example of Data Flow Diagrams in Instructional

Design

iii

Page

.vii

\
O
Q
m
U
I
U
l
H

11

13

15

15

17

17

17

20

23

25

26

27

29

30

32

32

32

36

39

4 EXPERT SYSTEMS

Using data flow diagrams to Design Interactive

Video Courseware

Advantages of the Use of data flow diagrams . . .

Data flow diagrams help locate the points in

the learning process where help may be

needed

Data flow diagrams show the type and position

of information needed for processes

within the instruction

Data flow diagrams aid in analyzing the

cognitive skill to be taught

Data flow diagrams show the interrelation-

ships among topics and processes of

instruction

Data flow diagrams provide a convenient way

to explain a course to interested, con-

tent-area-naive, parties

Summary .

Introduction

Definitions

Classes of Expert Systems .

Limitations of Expert Systems . .

Reasons for Developing Expert Systems and

Examples

Expert systems could be developed for

codification, replication and

distribution of expertise

Expert systems could be developed for

combining expertise from many sources .

Expert systems could be developed to amplify

expertise and thus produce dramatic

gains in productivity or in the creation

of new tasks, products, and services . .

Expert systems could be developed to avoid

significant costs in wasted resources

and capital

Expert systems could be developed to generate

complementary streams of revenue

Expert systems could be developed to solve a

variety of problems that are mainly

tractable

Examples that Illustrate Use for Expert Systems in

Education

The Theoretical Potential for the Use of Expert

Systems in Education

The theoretical body of knowledge of expert

systems

The theoretical body of knowledge of learning

theory

iv

53

57

57

58

59

60

61

61

64

64

65

66

68

72

73

74

74

75

76

76

78

83

83

85

Guidelines for Selecting Points for Expert System

Usage

Guidelines for Selecting Points for Expert System

Usage in Instruction

Business versus instructional use

A specific example from vocational data

processing

Steps in Developing an Expert System in Business .

The Use of Shells in Developing Expert Systems . .

Steps in Developing an Expert System in Instruction

In developing an expert system, the purpose

must be kept clearly in mind

Major steps of development

Developing an Expert System for Debugging Programs

Within the Vocational Data Processing

Program

Introduction and first two steps . . .

Selecting a shell

Locating expertise and creating the mle

base

Creating a prototype

Testing the expert system . . .

Monitoring the expert system .

5 DISCUSSION AND RECOMMENDATIONS . . .

Summary of the Research Reported

Recommendations

Cautions

GLOSSARY OF TERMS IN THIS DISSERTATION

APPENDIX A

CURRENT INSTRUCTIONAL SYSTEMS AND DEVELOPMENTS

FIVE INSTRUCTIONAL SYSTEMS MODELS

Core Elements Andrews/Goodson Tasks . .

Stages of Instructional Design

Courseware Design Model

Michigan State University Instructional

Systems Procedure Model

Information Relationships Among Learning

System Design Procedures.

Data Entry Task

Computer Operations Task . . .

Computer Programming Task

CURRICULUM WORKSHEET

Duty No. CP Task No. 2

Duty No. CP Task No. 5

Duty No. C? Task No. 11

Duty No. CP Task No. 15

87

91

91

92

94

96

98

98

98

102

102

103

104

104

105

112

114

114

121

126

127

131

131

132

132

133

134

136

137

138

140

143

146

146

150

154

158

APPENDIX B .

DATA FLOW DIAGRAMS FOR DEVELOPING A COMPUTER

PROGRAM

Designing a Computer Program

Define the Problem 1.0

Define specific outputs 2.0

Define specific inputs 3.0

Define processing sequence and detailed

process 4.0

Represent process specifications graphically

SOO O O O O O O O O O O O O O O O O O O

Develop program detail code 6.0

Test program 7.0

Debug Program 8.0

Evaluate Program 9.0

APPENDIX C O O O O O O O O O O O O O O O O O O

AN EXPERT SYSTEM AID TO DEBUGGING BASIC PROGRAMS .

APPENDIX D O

Checklist for Data Flow Diagrams in Instructional

Design O O O O O O O O O O O O O O O O O O O

APPENDIX E O

Data flow diagrams for a part of a veterinary

medicine course '. ;

PAIN AND ITS TREATMENT IN VETERINARY

MEDICINE 1. 0

PAIN AND ITS CONSEQUENCES 1.1 .

SPECIFIC RESPONSES TO PAIN 1.1.4

TYPES OF PAIN CONTROL 1.2 . . .

OPIATES AND OPIATE RECEPTORS 1.3 .

AGONIST/ANTAGONIST AND NARCOTIC DRUGS 1.4 .

INSTRUCTIONAL DICTIONARY . .'.

Methods of Controling Pain in Veterinary

Medicine

APPENDIX F O O O O O O O O O O O O O O O O O

PROCEDURES FOR DESIGNING AND DEVELOPING

INTERACTIVE VIDEO INSTRUCTION

List of References

General References

vi

162

162

164

166

167

168

169

170

172

173

174

175

176

176

216

216

219

220

220

221

222

223

224

225

226

226

235

235

240

248

Figure 1:

Figure 2:

analys

Figure 3:

LIST OF FIGURES

Instructional Systems Model . .

is process

Overview of the occupational/task

Relationships Between Occupational

Analysis and Program and Course Development

Figure 4: Commonly used symbols in data flow

diagrams

Figure 5: Analysis of the Vocational Data

Processing Program: An Overview of the

System

Figure 6: Designing a Computer Program . .

Figure 7: Define the problem 1. 0

Figure 8: Determine type of output 1. 2 . .

Figure 9: Method of Controlling Pain in

Veterinary Medicine

Figure 10:

Figure 11:

Tasks

Figure 12:

Figure 13:

Figure 14:

Debug Program 8. 0

Comparison of Core Elements and Common

Stages of Instructional Design

Courseware Design Model . . .

Michigan State University

Instructional Systems Procedure Model .

Figure 15: Information Relationships Among

Learning System Design Procedures. .

Figure 6:

Figure 7:

Figure 16:

Figure 17:

Figure 18:

Designing a Computer Program .

Define the Problem 1.0

Define specific outputs 2.0 .

Define specific inputs 3.0 .

Define processing sequence and

detailed process 4.0

Represent process specifications

graphically 5.0

Figure 19:

Figure 20:

Figure 21:

Figure 10:

Figure 22:

Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 27:

Figure 28:

DRUGS

Develop program detail code 6.0

Test program 7.0

Debug Program 8. 0

Evaluate Program 9. 0

PAIN AND ITS TREATMENT IN VETERINARY

MEDICINE 1O 0 O O O O O O O O O O O O

PAIN AND ITS CONSEQUENCES 1.1 .

SPECIFIC RESPONSES TO PAIN 1.1.4.

TYPES OF PAIN CONTROL 1.2 . . .

OPIATES AND OPIATE RECEPTORS 1.3.

AGONIST/ANTAGONIST AND NARCOTIC

104 O O O O O O O O O O O O O O

vii

16

18

38

41

46

50

52

54

93

132

133

134

136

137

164

166

167

168

169

170

172

173

174

175

220

221

222

223

224

.225

CHAPTER 1

STATEMENT OF THE PROBLEM AND THE PURPOSE OF THIS STUDY

With the advent of the Information Age new knowledge is

being produced at an ever increasing rate. Consequently,

efficient and effective education is becoming increasingly

important as a means for communicating this new knowledge.

This has placed an added burden on teachers who are expected

to teach more content at higher skill levels. In addition,

schools are expected to provide instruction in sex, drugs

and careers, areas that, in the past, were never their

responsibility. To meet these demands, educators need

better tools and techniques for planning and delivering

instruction. Resnick (1963, p. 439) suggests "Programmed

instruction offers a means of coping with the universally

acknowledged teacher overload". Reigeluth (1983) states

that if we can develop highly effective instructional re-

sources, then we can free some of the teacher's time to work

on the social, psychological, emotional, and moral develop-

ment of our children and prepare them better for living in

the Information Age.

Business has an analogous problem as a consequence of

our entry into the Information Age, viz, to manage more

information, in more areas, at a higher level of application

so that not only are day-to-day transactions processed, but

2

all levels of management are supplied with information and

supported in the use of technological tools for decision

making. To alleviate these problems, industry has adopted

the techniques of Management Information Systems (MIS), a

branch of computer science/data processing that is concerned

with the organization and coordination of information.

MIS has developed two techniques to deal with the need

for better planning of information systems and more effi-

cient delivery of organized information. These are struc-

tured design methodology, such as data flow diagrams, and

expert systems. Structured design methodology uses systems

concepts to analyze and describe an information system as

functional subsystems and to define the boundaries of and

interfaces between each subsystem. Expert systems are com-

puter programs that simulate the cognitive processes of a

human expert.

Because both education and business systems have simi-

lar problems, involving efficient handling of large amounts

of information, it is reasonable to inquire whether MIS

techniques of data flow diagrams and expert systems might be

used profitably in education. Perelman (1987) comments that

recent changes in instruction have been facilitated by the

use of advanced information technology to design, manage,

and deliver instruction. However, adaptation and transfer

‘of techniques from other fields to the field of instruction

3

should not be done without careful consideration of the

unique constraints in the field of education.

Although current instructional design techniques apply

well to the teaching of learning objectives, such as know-

ledge, comprehension, and application, from the lower levels

of Bloom's (1950) taxonomy, they do not apply well to the

teaching of higher level cognitive skills, such as analysis,

synthesis, and evaluation. In addition, current design

techniques have several problems that a designer of instruc—

tion should consider when attempting to improve instruction:

(a) inadequate consideration for need for expertise and

knowledge, (b) insufficient focus on needed information, (c)

limitations created by expressing cognitive skills in a task

format, (d) lack of consideration for the interrelation-

ships among topics and processes in the instruction, and (e)

lack of convenient ways to explain a course to interested,

content-area-naive, parties. The tools used in designing

instructional systems affect the efficiency of the instruc-

tion produced. Instructional design tools need to be ana-

lyzed and improved. These problems are discussed in more

detail in Chapter II.

The purpose of this dissertation is to investigate the

adaptability of M18 techniques to the design of instruc-

‘tional systems. Two MIS techniques, data flow diagrams and

'expert systems, are examined to determine the potential

utility of these techniques in the design and delivery of

4

instructional systems. To examine this potential utility, a

demonstration is provided of how they might be used in a

particular instructional system, namely teaching programming

in a secondary level vocational data processing course. A

second demonstration of the use of data flow diagrams in the

design of an interactive video course on pain control in

veterinary medicine is also made.

1).

2).

3).

4).

5).

QUESTIONS CONSIDERED IN THIS STUDY

t' s o Addr s

Might the MIS design tool, data flow diagrams, be used

to provide information about the relationships between

major chunks of instruction, that is courses, units,

chapters, and lessons: or the major cognitive processes

within the chunks?

Might the MIS design tool, data flow diagrams, indicate

what information might be needed by students at various

points of instructional programs?

How might the use of data flow diagrams to design MIS

systems be modified to use data flow diagrams to design

instructional systems?

When the objective is to teach complex cognitive

processes such as problem solving, might data flow

diagrams indicate specific points in an instructional

program where individualized expert help might be

provided by an expert system?

How might the MIS techniques for the development and

use of expert systems be modified to use these tech-

niques for the development of expert systems for in-

struction?

Specific questions to be answered

How might the use of data flow diagrams in the design

of a particular secondary vocational data processing

course provide information about the relationships

between major chunks of instruction, that is courses,

units, chapters, and lessons; or the major cognitive

processes within the chunks?

How might data flow diagrams used to design a particu-

lar secondary vocational data processing course indi-

cate what information might be needed by students at

various points of the instructional program?

How was the use of data flow diagrams to design MIS

systems modified to use data flow diagrams to design a

particular data processing course?

How might data flow diagrams, used to design a particu-

lar instructional program to teach the problem solving

skill, computer programming, indicate potential points

in the instruction where expert systems might be used

to provide students with expert help?

How were steps used to develop MIS expert systems

modified to develop an expert system to help teach

students in the data processing course how to debug

Basic computer programs?

SCOPE AND LIMITATION OF THIS STUDY

This feasibility study will seek to demonstrate:

(a) that data flow diagrams might be used in instructional

design to provide information that is useful in the anal-

ysis, design, and development of instruction: (b) that data

flow diagrams might indicate where expert systems may be

appropriate in an instructional program involving the teach-

ing of higher order intellectual skills: and (c) that expert

systems might be used to deliver expert instruction for

secondary students. To show that these benefits are pos-

sible, specific examples using a vocational data processing

program and an interactive video course on pain control in

veterinary medicine were developed.

The study presented in this paper has four major limit-

ations: First, only two examples of the use of data flow

diagrams were presented and only one expert system was

developed. The limitations of generalizations from one or

two examples is obvious. The two demonstrations presented

involved computer applications. Since the tools used in the

instructional design were adapted from the field of computer

science, the question of the influence of common domain

specific characteristics must be raised. Third, the study

was concerned with feasibility. There was no attempt to

test empirically the efficiency of the use of data flow

diagrams or the effectiveness or generalizability of the

8

specific expert system designed. Fourth, only the develop-

ment of a data processing curriculum was examined to deter-

mine the problems with instruction developed with the limi-

tations of the current instructional design and analysis

tools. These issues will be left for additional study.

OVERVIEW OF THE DISSERTATION

This dissertation is concerned with the feasibility of

transferring system design techniques from MIS to the design

of instructional systems. It does not involve any empirical

test of these techniques. Consequently, the format differs

from the format followed by the typical empirical research

dissertation. First, the inadequacies of current instruc-

tional design techniques used to develop the State of Michi-

gan's Vocational Data Processing Curriculum Guide are pre-

sented. Then each of the two techniques from MIS that are

being considered for transfer to instructional design are

presented, along with a demonstration of how each might be

used in the design of instruction. A discussion of the

modifications that this researcher found necessary to trans-

fer the techniques to the instructional design of the two

systems considered and the benefits of the techniques when

used in those instructional designs are presented. Specifi-

cally:

Chapter 2 discusses the problems with the current in-

structional system analysis and design techniques that were

found when the development of a data processing curriculum

was examined.

Chapter 3 describes the MIS structured design tech-

nique, data flow diagrams, indicates how they are used in

information systems design, and demonstrates how they might

10

be used to design a vocational data processing instructional

system. In addition, a brief summary is given of the use of

data flow diagrams in the design of instructional courseware

using interactive video. A demonstration is presented of

the use of data flow diagrams in the development of inter-

active video courseware for pain relief in veterinary medi-

cine.

Chapter 4 describes the MIS delivery technique, expert

systems, indicates the different types of expert systems and

their uses, and indicates how expert systems are developed

and used by industry. Then the business use of expert sys-

tems is contrasted with potential instructional usage and

the design and development of an expert system for use in a

vocational data processing instructional system is demon-

strated.

Chapter 5 presents the conclusions and suggestions for

further study.

A Glossary of terms used may be found before the appen-

dices.

CHAPTER 2

PROBLEMS WITH THE CURRENT INSTRUCTIONAL ANALYSIS TECHNIQUES

W

Education has always sought to provide effective and

efficient instruction, but with the entry of our society

into the Information Age, pressure increased for education

to communicate new knowledge at higher levels and increasing

rates. Instruction, according to R. Gagne (1985), deals

with the deliberate arrangement of events in the learner's

environment for the purpose of making learning happen effec-

tively. Therefore, to meet the instructional challenges of

the Information Age, educators must develop efficient and

effective ways of arranging the instructional events in the

learner's environment, including those events that will lead

to the development of higher order thinking skills.

Efficient instruction is dependent not only on the

sophistication of underlying theories, but also on the tech-

nology for applying these theories. Although behavioral

learning theories predominated in American educational

psychology for most of this century, in recent years learn-

ing theories incorporating cognitive theories have been

developed. These theories provide descriptions of effective

instruction that include information processing and higher

order thinking skills (Ausubel, 1968: Bruner, 1960;

11

12

R. Gagne, 1985). Instructional design, the technology that

applies learning theory to instruction, has also shifted

from a behavioral science orientation, where the emphasis

was to promote a student's overt performance by the manipu-

lation of stimulus materials, to cognitive science orienta-

tion, where the emphasis is to promote cognitive processing

(Merrill, Kowallis & Wilson, 1981). Currently there are

several good instructional design theories that include

techniques for dealing with higher order intellectual skills

(Collins & Stevens, 1983; Gagne & Briggs, 1979; Landa, 1982;

Merrill, 1983: Reigeluth, 1983; Reigeluth & Stein, 1983:

Scandura, 1983).

Since good learning and instructional design theories

exist, the problems encountered in attempting to design

efficient instruction appear to lie not in the theories, but

in the tools and techniques developed to apply those

theories. As Merrill, Kowallis and Wilson (1981) noted,

”models for the development of instruction are surprisingly

lacking in prescriptions that suggest how to execute the

various steps in the model" (P. 300).

To examine more clearly the limitations of the tools

used by current instructional design techniques, this chap-

ter discusses the development of the Michigan Department of

Education's Data_2rgQgggipg_gg;;igglum_§uig§ using an in-

structional systems model modified for vocational courses.

As a vocational data processing instructor in Michigan, this

13

researcher took part in the development of the Curriculum

Guide. After discussing the process of developing the

Guide, selected portions of the curriculum produced are

examined and the following problems are discussed: (a)

inadequate consideration for need for expertise and know-

ledge, (b) insufficient focus on needed information, (c)

limitations created by expressing cognitive skills in a task

format, (d) lack of consideration for the interrelation-

ships among topics and processes in the instruction, and (e)

lack of convenient ways to explain a course to interested,

content-area-naive, parties. Finally this chapter discusses

a possible source of instructional analysis and design tools

and techniques that may alleviate these problems.

,- a; - opuen of e tic f... u-.. u'! 9 _1- . on's

s'n r ' u u Gu

The development of the Michigan Department of Educa-

tion's Dutu Processing Qurriculuu Guide is described by the

Instructional Systems Model shown in Figure 1. Note that

the main components in that model are (a) needs assessment,

(b) analysis and formulation of the program's goals and

objectives, (c) occupational analysis, (d) analysis and

formulation of learning tasks, (e) design of the course, and

(f) implementation and evaluation. To indicate that the

Instructional System's Model is typical of current

A
N
A
L
Y
S
I
S
&
F
O
R
M
U
L
A
T
I
O
N
0
F

P
R
O
G
R
A
i
’
l
/
C
U
R
R
I
C
U
L
U
H

A
N
A
L
Y
S
I
S
A
N
D
F
D
R
I
’
I
U
L
A
T
I
O
N
0
F
L
E
A
R
N
I
N
G
T
A
S
K
S

G
O
A
L
S
/
O
B
J
S

”

I
n
v
e
n
t
o
r
y

o
i

A
s
s
e
s
s
m
e
n
t

o
i

i
d
e
n
t
i
f
i
c
a
t
i
o
n
s
.

L
e
a
r
n
i
n
g
T
a
s
k
s

I
n
p
u
t
C
o
m
p
e
t
e
n
c
e

C
h
a
r
a
c
t
e
r
i
z
a
t
i
o
n
0
i

-
~

-
a
c
t
u
a
l

I
J
o
b
D
e
s
c
r
i
p
t
i
o
n

I
I

L
e
a
r
n
i
n
g
T
a
s
k
s

A
N
A
L
Y
S
I
S

 I
I
n
p
u
t
T
e
s
t

l

A
S
A

B
A
S
I
S
F
O
R

 I
O
c
c
u
p
a
t
i
o
n
a
l
A
n
a
l
y
s
i
s

I

C
O
U
R
S
E

D
E
S
I
G
N
O
F
T
H
E
C
O
U
R
S
E

I
D
E
N
T
I
F
I
C
A
T
I
O
N

[
P
r
o
g
r
a
m
/
C
u
r
r
.
G
o
a
l
S
t
a
t
e
m
e
n
t
s
]

S
e
l
e
c
t
i
o
n

0
1
L
e
a
r
n
i
n
g
E
x
p

I
n
s
t
r
u
c
t
i
o
n
a
l

S
t
r
a
t
e
g
i
e
s

_
r
o
u
p
(
s
)

[
P
r
o
g
r
a
m
/
C
u
r
r
P
e
r
i
o
r
m
a
n
c
e

O
b
j
'
s
l

A
l
t
e
r
n
a
t
i
v
e

M
e
t
h
o
d
s
&

L
l
n
d
l
v
i
d
u
a
l
s

]
A
p
p
r
o
a
c
h
e
s

i
o
r

I
n
s
t
r
u
c
t
i
o
n

O
r
g
a
n
i
z
a
t
i
o
n

C
o
n
t
e
n
t

S
e
l
e
c
t
i
o
n

6
.
O
r
g
.
.
2
5
—

C
R
I
T
E
R
I
O
N
T
E
S
T

F
D
R
C
O
U
R
S
E

S
t
u
d
e
n
t
E
v
a
l
u
a
t
i
o
n
_
]

C
R
I
T
E
R
I
O
N
T
E
S
T

F
O
R
P
R
O
G
R
A
M
/
C
U
R
R

S
t
u
d
e
n
t

(
o
u
t
p
u
t
)

E
v
a
l
u
a
t
i
o
n

S
y
s
t
e
m

H
C
o
u
r
s
e
T
r
y
o
u
t

A
d
a
p
t
e
d
b
y
R
a
y
(
I
9
8
7
)
,
i
r
o
m

I
n
s
t
r
u
c
t
i
o
n
a
l
S
y
s
t
e
m
s
b
y
B
a
n
a
t
n
y
(
I
9
6
8
,

p
.
8
3
)

F
i
g
u
r
e

I
:

I
n
s
t
r
u
c
t
i
o
n
a
l
S
y
s
t
e
m
s

r
l
o
d
e
l

E
v
a
l
u
a
t
i
o
n

14

and

(19

Ile

Sys

prol

pTOI

empj

dew

the

int]

not

steal

15

instructional systems design models, a representative set of

instructional systems design models can be found in Figures

12-16 respectively in Appendix A: (a) Richey's (1986) core

elements compared to Andrews/Goodson's tasks (1980); (b)

Briggs and Wagner's (1981) stages of design: (c) Roblyer

and Hall's (1985) courseware design model: (d) Hamreus's

(1968) instructional systems procedure model: and (e) Davis,

Alexander and Yelon's (1974) information relationships among

learning system design procedures.

In order to show that even though the Instructional

Systems Model was followed completely, there were still

problems with the curriculum produced, each component of the

process is discussed in detail:

(a) Needs assessment. Surveys of randomly selected

employers taken for the needs assessment component of the

development of the Data Processing Curriculum showed that

the number of new jobs in the data processing field was

increasing each year and that employers anticipated that the

number would continue to increase in the foreseeable future.

Thus, from both the employee and the employer's prospective,

there was a need for a vocational data processing curricu-

lum.

(b) a s's r ram' als

and ngaarives. The Data Procesaiug Durriculum guide did

not contain a clear statement of the program's goal. In-

stead it made the statement that the program's ”focus" was

16

S
N
O
I
S
I
3
3
0

8
0
:
1
V
I
8
3
1
|
8
3

‘—I

0
3
5
0
8
3
8
0
0
3
3
0
8
8

‘—I

L
I
V
8
9
0
8
d

8
0
:
]
(
I
B
M

S
X
S
V
I

‘
9
S
3
|
1
0
0

:
I
O
A
8
V
I
~
I
N
0
3

N
0
|
l
d
l
8
3
$
3
0

A

w
w
o
u
v
a
n
o
o
o

9
N
L
L
8
0
8
3
8

N
O
I
S
I
3
3
0

8
0
:
!
S
I
S
V
Q
3
A
I
1
3
3
I
‘
9
0

O
:
I
N
I
0
1

8
3
0
1
‘
!
!
!
)
N
O
I
S
S
V

S
L
N
0
0
3

A
3
N
3
0
0
3
8
J

8
5
3
3
0
8
8

I
—

s
w
v
a
n
u
a
v
a

*

s
m
u
m
s

S
I
S
A
1
V
N
V

1
3
3
1
1
0
3
0
1

0
3
N
|
1
V
H
M

1
8
0
8
3
8
O
N
V

S
I
S
A
'
I
V
N
V

9
N
I
1
$
I
1

1
V
I
.
L
I
N
I

A
:
I
I
8
3
A

1
5
3
.
1
.
.
L
O
1
I
d

T.

I—I

8
1
4
3
.
”
8
0
0
8
9

‘
9
M
O
]

T

.
L
S
I
1
M
3
|
A
3
8

T"

S
i
N
3
L
I
3
1
V
i
S

)
I
S
V
i

S
L
N
B
N
B
I
V
I
S
5
1
0
0

1T:

S
I
N
E
I
-
I
B
I
V
I
S

)
I
S
V
J
.

'
9

5
.
1
.
0
0

:
1
0
9
N
|
.
L
S
I
1
1
V
I
1
I
N
I

S
S
O
O
O
J
d
S
I
S
D
I
O
U
V
)
I
S
O
J
J
I
O
U
O
H
O
U
T
I
O
O
O
8
U
)

1
0
“
O
I
A
J
O
A
O

3
3
O
J
I
’
I
D
H

(
1
.
9
6
”
fi
n
s

N
O
I
1
8
l
8
3
5
3
0

G
O
P

N
O
I
1
V
8
0
3
3
O

3
1
9
N
I
S

—I

8
3
.
1
.
5
0
1
3

1
V
N
O
I
1
V
8
0
3
3
0

S
I
S
A
1
V
N
V

3
H
1

:
I
O
3
8
0
3
5

 _
a

17

occupational preparation in the areas of data entry, com-

puter operations, and computer programming. From this,

statement, the course objectives were inferred. In no place

were they directly stated.

(c) Dgguparigual and (d) learning task analyais. The

two analysis processes were combined and the resulting

process is shown in detail in Figure 2. The outcomes of

these processes were the data entry, computer operations,

and programming task lists presented in Appendix A.

(e) Dasign of rhe course. The details of how the

occupational analysis was then used in the course develop-

ment process are shown in Figure 3. Vocational Data Proces-

sing teachers throughout the State of Michigan were asked to

provide appropriate learning and teacher activities to teach

students the occupational tasks. This researcher was part

of a three member team that reviewed some of the data entry

activities and selected those believed most appropriate.

After testing in several schools and skill centers, the

learning tasks were revised where necessary. Some of the

curriculum worksheets that were developed for the program-

ming portion of the data processing curriculum guide are

presented in Appendix A.

(f) Winn- Except in those

schools that tested the materials, the implementation and

evaluation of the data processing course was left to the

schools and skill centers that used the curriculum guide.

Z
O
-
fi
fl
-
I
O
M
M
O

G
O
G

W

— DUTY STATEMENT ‘A'I

-'| Task 'A-l " I

—[Task 'A-2' I

-| Task 'A-3' |

— DUTY STATEMENT '3' |

-| Task '8-1' |

 —

DUTY STATEMENT '0- I

-{ Task 'C-t' I

h

Ray (1987)

18

All duty statements

are considered as

input for developing

program description

and program goals.

 Some of the duty

statements are

considered as input

for course description

The remaining duty

statements will be

incorporated in other

courses in the

program.

These same duty

statements are

reflected in the units

of instruction.

Tasks associated with

these duty statements

provide input tor

developing pert. obj.

and Identifying

content (what is to be

_ taught).

and course objectives.

W

PROGRAM/CURRICULUM

Program/Curriculum

Description

Program/Curriculum Goals

Goal #1

Goal #2

Goal #3

COURSEOF STUDY

Course Description

I
I
I
T
'
L
I
I

$
1
1
.
1
1
;

Course Objectives

I'I Objective #1

-I Objective #2

—I

'1 Unit #1

;] Perl. oar.

Content

I Content

—I Perl. Obj.

.I Peri. Obj.

-‘ Unit #2

-I Unit #3

4 COURSE OF STUDY

_|

I

|

|

l

I

|

|

|

I

|

I

Units or Instruction I

|

l

|

l
1

l

|

l

|

|COURSE OF STUDY

Figure 3: Relationships between Occupational Analysis and Program 8- Course Development

19

Clearly the development of the Qete Erocessing

gnrzieglum_§gige followed the steps of sound instructional

design and development theories. In addition, the materials

developed were tested by many experienced teachers with many

different types of equipment and students with varying de-

grees of ability. Informal discussions between this re-

searcher and, on the one hand, experieneeg data processing

teachers, and on the other hand, course advisers, who are

businessmen experienced in the area of data processing,

indicated that the curriculum guide was thorough and help-

ful. However, when working with inexperienced teachers,

counselors, administrators, and parents, this researcher

found that they do not understand the guide and they can not

properly use it.

The different reactions to the Curriculum Guide by

experienced and inexperienced people can not be ascribed to

inadequate underlying theory. An alternative explanation is

that the developmental process is inadequate in that the

design and developmental tools used did not produce suffi-

cient information for the inexperienced user. This suggests

the need for information in a usable form for the inexper-

ienced user.

The specific inadequacies of the design and development

tools are now discussed.

20

meatless:

Most cognitive psychologists agree that experts and

novices in any field differ in the amount of domain-specific

knowledge they possess and in the strategies that they apply

to the knowledge base in solving problems (E.D. Gagne, 1985:

Glaser, 1984; Mayer, 1983; Merrill, Kowallis, & Wilson,

1981). During the learning processes, practice with succes-

sive presentations of novel problems is necessary for stu-

dents to develop progressively more expert cognitive strate-

gies and teachers must provide students with feedback as to

the efficiency and effectiveness of the strategies used

(Collins & Stevens, 1983; Landa, 1982; Reigeluth & Stein,

1983). But this implies that when practice exercises for

cognitive strategies are developed, instructional designers

must attempt to locate the points in the instructional

process where the typical learner must be supplied with

expert help to efficiently complete the problem solution.

Thus, it is necessary to satisfy the student's need for both

expert knowledge and problem-solving strategies during the

W.

Notice that the curriculum worksheets for programming

in the Guide attempt to tell teachers how to do this. In

addition, note the use of the action verbs in the teacher

activities: assign readings, provide examples, describe the

process, hand out samples, explain the use, lead a

21

discussion, demonstrate, place the solution on the chalk-

board. For experienced teachers, this listing of activities

with action verbs is sufficient. But for inexperienced

teachers attempting to teach cognitive skills such as pro-

gramming, presenting the activities alone misses the criti-

cal information of ghee to provide students with expert help

e e in e task.

However, when most inexperienced teachers attempt to

teach students behavioral skills such as data entry, then

having only activities with action verbs is not a problem.

For example, consider the tasks for data entry. The major-

ity of the tasks begin with "manipulate". The few that

begin with "analyze" are really only comparing a given

activity to a list of possible activities and picking the

ones that match. These are skills that can easily be des-

cribed and taught using behavioral models and techniques.

It is difficult to develop an instructional guide for

teaching cognitive strategies. One difficulty stems from

the fact that cognitive operations are unobservable and

automated to the extent that their performers are often

unaware or only partially aware of them (Resnick, 1987).

Thus, although vocationally certified teachers have adequate

practical content area experience, they often lack experi-

ence in teaching the cognitive skills involved. In fact,

they are often unaware of the cognitive skills that are

involved in programming, and usually are unaware of the

22

points within the instructional process at which students

need the teachers' help in developing those cognitive

skills. Yet nowhere do the curriculum worksheets tell

teachers of that need.

A second difficulty stems from the fact that students

are not passive receptors of knowledge, but actively inter-

pret incidents in the learning situation with a large set of

preexisting ideas that impose some kind of meaning on what

they are learning (Norman, 1980; Resnick, 1976). Therefore,

instructional methods must be adapted to the individual stu-

dent's interpretations of that instruction. Experienced

teachers know the points at which to watch for student

misinterpretations of the instruction. Inexperienced teach-

ers often fail to note the occurrence of student misinter-

pretations that will make learning more difficult for the

students as they progress to more challenging material.

Designing instruction that takes into account the points at

which students need help and students' idiosyncratic inter-

pretations of the instruction is one of the greatest chal-

lenges for educators.

But, despite these difficulties, some researchers have

developed instructional methods that provide students with

expert help as students develop cognitive strategies (Baker

5 Brown, 1984; Bereiter, 1985; Palincsar, Brown, & Martin,

1987). In addition, Collins and Stevens (1983) have

23

developed a theory of instruction, called Inquiry Teaching,

that provides students with expert help when it is needed.

A major characteristic of inquiry teaching is that a des-

criptive theory of expert performance, that is a detailed

report of what, how, and why something is done, is in fact a

prescriptive theory of instruction, that is a set of direc-

tions for the learner to follow to reach the desired goal of

learning, for the non-expert performer.

These theoretical developments are a further indication

that the problem is not the fault of instructional design

theory, but that instructional design tools and techniques

are needed that systematically indicate the specific points

in an instructional program where expert help is likely to

be required. Unfortunately, even if inexperienced teachers

know where students are likely to require expert help, often

they can not find time to provide this help. Instructional

delivery methods are needed that can make that help avail-

able to students in a timely manner.

MW

In today's Information age society, there is simply too

much to know for people to keep current on everything.

Instead of attempting to "know" everything about a given

subject, it makes sense to consult up-to-date references

(Adams & Imhof, 1987). For example, modern data processing

24

shops provide their programmers, who are professionals, with

manuals, standards, and libraries of existing code.

However, consider how the vocational Data Processing

Currieglgm_§gige handles the information that students must

have in order to program. Note the key phrases concerning

needed information in the programming tasks described on the

worksheets in appendix A: "using a knowledge of data pro-

cessing equipment and techniques" (GP-2), "using a knowledge

of programming techniques" (CF-5), and "using a knowledge of

the specific language" (GP-11 and CP-lS). These phrases

imply that it is necessary for students to know this infor-

mation in order to perform the task, that is, knowing this

information is prerequisite to completing the tasks. In

other words, students must know this information instead of

being provided with the information when it is needed.

Carroll (1976), Scandura (1983), and Snelbecker (1983)

all stressed the need in instruction to consider the infor-

mation students need in order to process new knowledge and

apply existing knowledge. Moreover, when information is

presented within the context of its use, students are likely

to store that information in a manner consistent with the

subject matter structure (Bruner, 1960). Therefore, it may

be inferred that not only is it get necessary for students

to know all the information necessary to complete tasks

befieze they attempt to complete the tasks, learning the

information before it is used may even be detrimental to

25

cognitive processing. However, nowhere in the peee Ezocess—

ing_§n;;1enlgm_§eide is there any indication of what infor-

mation should be eyailable to the students as they attempt

to program.

u . '!1 -a -- 3 ex-ress . 53.. v- :k? a: . . ask

IQIEQI_

I Olson (1973) pointed out that cognitive skills such as

making discoveries, speaking convincingly, writing effec-

tively, and social and ethical skills--cannot be taught

exp11e1§1y because the algorithms underlying them are not

known, or where known, are too complex to communicate effec-

tively. Yet certainly these important skills can be taught

by using instructional techniques such as "thinking out

loud", modeling, demonstrating, and providing feedback in

practice sessions (Baker & Brown, 1984: Bereiter, 1985:

Gagne, 1985: Palincsar, Brown, & Martin, 1987; Resnick,

1987). A common characteristic of these instructional

techniques for teaching cognitive skills is that they teach

the skill as a whole.

However, the Curriculum Guide lists tasks that are

components of cognitive skills without any indication of how

they work together to form a complete skill. This may not

be a problem for experienced teachers, but inexperienced

teachers may teach only the component tasks instead of the

skill as a whole.

26

Experienced teachers know that for cognitive skills,

instruction should start with a broad description of the

skill and then, level by level, should establish the com-

ponent subskills within the context of the complete skill

until eventually the students are presented with the lowest

level of tasks. To help inexperienced teachers teach this

way, instructional design should use techniques that analyze

the cognitive skill level by level, focusing on information

needed, cognitive processes, that is points where students

store, retrieve, organize, apply, or transfer information,

and the relationships among the processes. In addition,

instructional guides thus developed should convey this

information to teachers. This level by level approach is

the type of instructional design technique prescribed in

Reigeluth and Stein's (1983) Elaboration Theory. If the

Curriculum Guide were to convey component skill information

using a technique that clearly showed the part that each

task played in forming the complete skill, then inexperienc-

ed teachers might more effectively teach complex cognitive

skills such as programming.

‘_-. 0! 0 1‘ 1‘ ' a _- S 0‘ iJJ'!‘

Most of the learning and instructional design theorists

consider interrelationships among the topics of instruction,

the structure of the subject matter, and previous knowledge

27

of the students very important (Ausubel, 1968; Bruner, 1960;

R. Gagne, 1985; Landa, 1982; Knirk 8 Gustafson, 1986:

Scandura, 1983; Reigeluth & Stein, 1983). Bruner (1960)

stated the importance of relationships in instruction most

succinctly with the comment that "To learn [subject matter]

structure, in short, is to learn how things are related" (p.

7). Therefore, instructional design should use techniques

that clearly show the interrelationships among the topics

and processes.

Yet nowhere in the Data Processing Curriculum Guide are

any of the relationships among the topics and processes

shown. There is no indication that data entry, computer

operation, and programming skills share common components.

There is no indication of the sequence in which the tasks

should be taught. Experienced teachers know the importance

of such interrelationships and convey them to their

students. Determining the interrelationships should be an

important part of the instructional design process and

conveying those interrelationships to teachers should be a

routine part of instructional development.

,_. -' 01 e_'- W. s o x-U. , a ou_ e to t- -: e-

- e - t e

In the section of this chapter where the development of

the Curriculum Guide was discussed, this researcher noted

that inexperienced teachers, counselors, administrators, and

28

parents do not understand the Guide and can not properly use

it. But these parties are the stakeholders in the course.

Inexperienced teachers need to present instruction to stu-

dents before they can become experienced. Counselors must

help students decide if they should take the vocational data

processing course. Administrators must make both resource

allocation decisions and decisions about what course offer-

ings should be made available to the students of their

districts. Parents need not only to help their children

make intelligent choices as to what courses they should

take, but they must also support their children if they

encounter difficulties in learning the skills presented in

the course.

Each of these stakeholders nee; be able to understand

what is involved in a vocational data processing course.

Yet a thick curriculum guide is an improbable medium for

explaining the course to these stakeholders. Moreover, the

brief "focus" statement and the task lists available in the

Guide are almost meaningless to a person with no experience

in data processing. Even experienced teachers who do under-

stand the Curriculum Guide have difficulty explaining the

course to people who have limited knowledge of the typical

data processing professional's vocabulary or cognitive

style. The designers and developers of the Qete_£;eeeeeing

Currienlgm_§eige made no attempt to provide users with a

reasonable way of understanding the course.

29

W

In this chapter the development of the Michigan Depart-

ment of Education's Qeta Processing Qgrriculug Guide was

discussed as an example of a typical instructional develop-

ment process. Then selected portions of the Guide were

examined and the following problems were discussed: (a) the

Guide did not provide adequate information about points

within the instructional program where students typically

required expert help, (b) the Guide did not indicate the

location and type of information that was needed by the

students as they attempted to learn cognitive skills, (c)

the Guide did not indicate the relationships among the

topics and processes in the instruction, (d) The Guide

listed tasks in a way that might limit the instruction

presented by some inexperienced teachers, and (e) the Guide

did not give interested persons, who had little knowledge of

data processing, any convenient way to understand the data

processing curriculum. After examining several instruc-

tional theories the conclusion was reached that the problems

above were not caused by the underlying theories, but were

the result of the limitations of the tools and techniques

used in designing and developing the curriculum.

To alleviate these limitations, instructional design

must incorporate techniques that allow developers to apply

learning and instructional theories effectively. As many

leaders in the field of instructional theory have stated,

30

the practice of designing and implementing instruction is

greatly influenced by the tools used by instructional de-

signers (Glaser, 1976; Gropper, 1983; Kowallis & Wilson,

1981; Mayer, l983).‘ The tools used by instructional design—

ers affect the implementation of the instruction. Instruc-

tional designers need to examine the tools they now use and

determine if an improvement in the tools used to analyze and

design instruction might not lead to improvements in the

implementation of instruction, especially in the areas

presented as problem areas in this chapter.

A Reeeible §guree gf lnstrucgionel Analysis and Deeign Tools

It is not sufficient merely to recognize that the

Information Age has created a need for improved instruction-

al design tools and techniques; the improvements must be

made. In doing this educators should note that business and

industry have also been affected by the Information Age.

Therefore, one source of possible improvement in the tools

used to design instruction for the Information Age is the

information management sector of the business world. Recent

changes in instruction have been facilitated by the use of

advanced information technology to design, manage, and

deliver instruction customized for the individual learner

(Perelman, 1987). But everything known about technology,

innovation, and productivity in other fields needs to be

reinterpreted in light of this cardinal fact: Educatlgg ls

31

hhe gnly huelness where the gohsume; does most of the wozk

(Perelman, 1987, p. ES-l).

The next chapter examines some tools currently being

used by Management Information Systems (MIS) that may have

potential to alleviate problems with current instructional

analysis and design techniques. However, as these MIS tools

are examined, care will be taken to "reinterpret" their use

in the light of Perelman's warning.

CHAPTER 3

INSTRUCTIONAL DESIGN USING DATA FLOW DIAGRAMS

IDLIQQBQLIQB

In the preceding chapter, several problems with current

instructional design techniques were discussed. In this

chapter the alleviation of those problems through the use of

data flow diagrams in the instructional design process is

discussed.

First, the purpose, conditions, methods, and outcomes

of instructional analysis and design using data flow dia-

grams are discussed. Second, the use of data flow diagrams

in Management Information Systems is reviewed. Third, an

example is presented of instructional analysis and design

using data flow diagrams within a vocational data processing

course. Fourth, an example is presented of instructional

design using data flow diagrams for an interactive video

course in veterinary medicine. Last, the advantages of the

use of data flow diagrams in instructional analysis and

design are discussed.

IDEIIBQEIQDQL Ahalysls and Design gelng daha flow giaggems

A data flow diagram is a graphic tool that could be

used in instructional design to alleviate some of the prob-

lems that may be found with instruction designed with the

32

33

current design tools. Data flow diagrams might do this in

many ways: (a) they might help to locate the points in the

learning process where teachers' help may be needed for

students to master the cognitive task: (b) they might show

the type and position of information needed for each process

within the instructional system: (c) they might aid in

analyzing the cognitive skill to be taught, identifying the

cognitive processes for higher order thinking skills, and

presenting the cognitive skill as a whole: (d) they might

show the interrelationships among topics and processes of

instruction at various levels from course to lesson: and (e)

they might provide a convenient way to explain a course to

interested, content-area-naive, parties.

Since data flow diagrams are used for many different

types of systems in MIS, data flow diagrams probably could

be used for designing instruction for many levels of know-

ledge. However, since current instructional design tech-

niques are adequate for behavioral and lower level intel-

lectual skills, the technique would probably be most effi-

cient when applied to instructional design involving higher

order thinking skills, such as problem solving, or when

applied to the development of computer aided instruction.

In problem solving, the complexity of the task and the

difficulty in designing instructional guides for teaching

cognitive strategies would warrant the extra effort neces-

sary to use data flow diagrams. In computer aided

34

instruction, such as interactive videodisc courseware, the

structure of the data flow diagrams developed in designing

the instruction corresponds to the structure necessary for

programming the instructional system.

This researcher's experience in developing data flow

diagrams as an instructional design technique has shown that

the designer must have certain information: (a) clearly

stated goals of the course or lesson; (b) access either to

subject matter content experts or content analysis in the

form of job, task, or cognitive analysis information; and

(c) access to expert instructors in the subject matter

content area. Also, the designer must know the level of

detail desired by the teachers or instruction developers.

The methods for using data flow diagrams in instruc-

tional design closely resemble the methods employed in the

design of Management Information Systems. Using the goals

as a guide, the designer analyzes existing real world pro-

cesses, consults reference and/or research information, and

seeks the advice of content and instruction experts to

determine the major components of the system and their

interrelationships.

The levels of the analysis/design should be determined

in consultation with the developer or instructor to deter-

mine the appropriate level of detail, but should normally

start at the course level to establish the major interrela-

tionships. Other possible levels of detail are (a)

35

curriculum, (b) program, (c) course, (d) section, (e) unit,

(f) chapter, (g) topic, (h) subtopic, (i) lesson, (j) lesson

component. Each level should be constructed using data flow

diagrams and should include: (a) the starting and ending

points: (b) no more processes, that is points where informa-

tion is organized, transformed, or applied, than the number

that could be stored in short term memory at one time: (c)

an indication of what strategies and knowledge are necessary

for each process point: (d) points where inputs from outside

the instructional program, such as expert help, are needed:

and (e) descriptions of the information passed from process

to process to the level of detail needed by the developer or

instructor‘. For example, prerequisite job skills may be a

sufficient identifier for an experienced developer or teach-

er, but for a different developer or teacher the designer

may need to specify prerequisite abilities, such as able to

read at the fifth grade level, able to write or print legi-

bly, able to communicate with supervisors and other workers,

able to follow simple directions, able to tell time and

monitor time on task, etc. At each level at least one

expert content specialist, one expert teacher, and one

potential teacher should review the analysis with the

1If the instructor is not available or the instruction is to

Ibe designed for more than one instructor, random samples should

Ibe taken of potential instructors to determine what level of

detail is needed. When in doubt, designers should select more,

not less detail/levels.

36

designer and modifications should be made, if necessary,

before the next level is analyzed.

The outcome of the data flow diagram design technique

is a graphical representation of the instructional system at

as many levels as desired by the teacher. Each level graph

shows the major information processes involved, the informa-

tion and knowledge necessary for these processes, the inter-

relationships among the processes, a potential sequencing of

the processes, and points where the student is likely to

need expert help in mastering the instruction.

A checklist of this researcher's instructional design

process using data flow diagrams is presented in Appendix D.

'a ms ' Ma a m t a 'on s 3

Using data flow diagrams to analyze systems is not

unique to instructional design. It addresses the broader

problem of analyzing a process or system to determine what

is needed to manage information. People involved with

management and Management Information Systems (MIS) have

been analyzing systems since the early part of this century.

Recent emphasis in MIS has focused on the data to be col-

lected and the information to be manipulated (Lord, 1983).

The data flow diagram is one of the most commonly used

analysis tools for this task (Davis 8 Olson, 1985). Data

flow diagrams have proven effective in industry to emphasize

the sequence, connectivity, and type of data and information

37

utilized by the system. Therefore it would appear that they

have potential to enhance the instructional design process

as well.

Gane and Sarson (1979) provide a detailed explanation

of data flow diagrams and how they are used in analyzing

information processing systems. The following description

summarizes the technique, showing the basic symbolism, with

the intention of providing only sufficient information for

the reader to understand how data flow diagrams might serve

as an instructional design tool.

Data flow diagrams show the information flow in a

system by using four major symbols: (a) a shadowed square to

indicate an entity external to the system, (b) a rounded

rectangle to show processes, (c) arrows to show the flow of

information, and (d) open rectangles to show data stores.

[See Figure 4]. When the same symbol is redrawn in a dia-

gram to simplify the diagram, extra bars are placed in the

symbol to show that it is repeated. All data in the diagram

are represented in a data dictionary that describes the data

in detail.

To use the data flow diagram technique in instruction,

this researcher modified the meaning of the symbols. The

data flow diagrams show the design of the instructional

system by using the four major symbols:

(a) a shadowed square to indicate points that can not

be completely created in advance of the delivery of the

38

Label for the Process

.

Process, often can be broken downinto

Name
subprocesses.

. Physical location

F.)

Entity external to the system but

necessary at least Under some circumstances.

Can be start and exit points of the system,

other systems that contribute, outside

consultants, outside evaluations, etc.

. Flow of information from one point to

Label , ‘ another. Label Should be explained in

detail in data dictionary.

Data store. Could be files, reference

materials, computer programs, etc.

| * Name I

#...#". An indication that a symbol has been

redrawn to make the diagram less

complicated. Both symbols represent

, _ j the same single entity. More lines are

added for additional symbols repeating.

[* | Name

Label

Gene and Sarson (1979)

FIGURE 4: Commonly used symbols in data flow diagrams

39

instruction. For example, a point at which expert, individ-

ualized instruction is likely to be required, such as an

experienced teacher helping a student find and correct

errors in a program the student is attempting to write:

(b) a rounded rectangle to indicate processes, for

example, points where the student needs to organize, inter-

pret, or transform information or instruction:

(c) arrows to show the passing of information and

instruction between processes; and

(d) rectangles to show stored information, either

externally, as in a reference book, or internally as in an

acquired strategy.

All information that passes from one processes to

another is listed in an instruction dictionary that des-

cribes the information in more detail. For example, the

diagram may indicate input standards, but the instruction

dictionary would specify those standards.

Dia a ' t'o

In the preceding chapter, the development of the voca-

tional Dehe Ereeeesihg Curriculum gglge using instructional

systems-design techniques was discussed. To show how data

flow diagrams could be used in instructional design, the

same vocational data processing course will be analyzed by

this researcher using data flow diagrams. The State of

Michigan's Data Processing Curriculum Guide (1983) was used.

40

The instructional design process given in Appendix D was

followed.

In designing the instruction, this researcher performed

two other functions: subject matter content expert and

expert instructor. This researcher's expertise in these

areas is indicated by: (a) certification by the Institute

for the Certification of Computer Professionals in Data

Processing (CDP), Systems (CSP), and Computer Programming

(CCP): (b) eight years of experience teaching vocational

data processing; and (c) a nomination for teacher of the

year by the researcher's District.

I To design the vocational data processing course using

data flow diagrams as a tool, first the course goals were

established and verified. The goals for this vocational

data processing course were (a) to prepare students for

entry level positions in the data processing field; (b) to

prepare students for post secondary instruction in the data

processing field.

Using content matter and instructional expertise, this

researcher then determined the course components. In this

case, these were: (a) the operation of computers: (b) busi-

ness applications of the use of the computer, including the

entry of data into the computer; (c) the programming of a

computer; (d) the role of computers in business and society:

(e) the skills necessary to obtain and maintain a job in the

data processing industry.

5
.
0

S
J

J
o
b

S
k
i
l
l
s

I
-
°

C
o
m
p
u
t
e
r

t
i
o
n
s

8
)

3
.
0

2
-
0

P
r
o
g
r
a
m
-

P
R
E
R
E
Q
J
I
S
I
'
I
'
E
S
K
I
L
L
S

4
.
0

B
u
s
i
n
e
s
s

,
8
)

"
I
I
I
?

S
P

P
O

.
O
p
e
r
a
t
i
o
n
s

P
P
"
“
"
°
"
‘

e
d

tl
P
B

-
A
p
p
l
i
c
a
t
i
o
n
s
a
n
d

E
n
t
r
y

R
o
l
e
0
"

a
n
d
D
a
t
a

0
0
'
"
m
e

r
a
u
a

P
R

-
R
o
l
e

o
f
C
o
m
p
u
t
e
r
s

i
n

C
o
m
p
u
t
e
r
s

E
n
t
r
y

3
3

S
t
u
d
e
n
t

B
u
s
i
n
e
s
s
a
n
d

I
n
d
u
s
t
r
y

i
n

I
n
d
u
s
t

P
P

-
P
r
o
g
r
a
m
m
i
n
g

8
9

P
J

.
J
o
b

S
k
i
l
l
s

k
—
J
f

O
T
H
E
R
S
K
L
L
S

T
S

-
T
e
a
m
w
o
r
k
a
n
d

F
o
l
l
o
w
i
n
g
S
t
a
n
d
a
r
d
s

E
X
I
T
S
K
I
L
L
S

B
O

-
B
a
s
i
c

S
k
i
l
l
s

i
n
U
s
i
n
g
a
C
o
m
p
u
t
e
r

S
O

-
C
o
m
p
u
t
e
r
O
p
e
r
a
t
i
o
n
s

8
0

-
B
a
s
i
c

S
k
i
l
l
s

i
n
E
n
t
e
r
i
n
g

i
n
f
o
r
m
a
t
i
o
n

8
8

-
A
p
p
l
i
c
a
t
i
o
n
s
a
n
d
D
a
t
a

E
n
t
r
y

.
I
n
t
o
a
C
o
m
p
u
t
e
r

S
R

-
U
n
d
e
r
s
t
a
n
d
i
n
g

o
f
T
e
r
m
i
n
o
l
o
g
y
a
n
d
R
o
l
e

o
f
C
o
m
p
u
t
e
r
s

O
T
H
E
R
F
A
C
T
O
R
S
:

S
P

-
P
r
o
g
r
a
m
m
i
n
g

P
W

.
P
e
r
s
o
n
a
l

P
r
e
f
e
r
e
n
c
e

f
o
r
W
o
r
k

3
1

°
G
e
t
t
i
n
g
W

K
G
G
P
‘
W
a
J
0
5

P
S

-
P
e
r
s
o
n
a
l

P
r
e
f
e
r
e
n
c
e

f
o
r
H
i
g
h
e
r
E
d
u
c
a
t
i
o
n

F
I
G
U
R
E

5
:

A
n
a
l
y
s
i
s

o
f
t
h
e
V
o
c
a
t
i
o
n
a
l
D
a
t
a
P
r
o
c
e
s
s
i
n
g
P
r
o
g
r
a
m
:

A
n

O
v
e
r
v
i
e
w

o
f
t
h
e
S
y
s
t
e
m

W
o
r
k
e
r

I
n

B
u
s
i
n
e
s
s

S
t
u
d
e
n
t

i
n

C
o
l
l
e
g
e

41

42

Once the goals and course components were established,

they were represented in a data flow diagram. [See Figure

5]. Note that at this overview design stage, no attempt was

made to identify specific information needed or the sources

of that information since the diagram would then be so

complex that it would no longer be a useful tool. Also note

that the numbers used to label the processes served only as

a means for linking each process to the more detailed data

flow diagram that might be made of that process. Although

in MIS the process labels normally designate processing

sequence, when this researcher developed the data flow

diagrams included in Figures 5 through 29, the numeric

process labels were not used to indicate a fixed sequence.

The course overview diagram shown in Figure 5 can be

used to show the interrelationships between the course goals

and the major course components. For example, by looking

only at the major symbols, that is the external entities and

the processes, one can see that the major goals of the

course are to prepare a student for a job or for higher

education. One can also see that there are five major

components in the system.

Note that using data flow diagrams, all the information

that would be available to the designer using the current

technology is still available to the designer. However,

notice the additional information that this diagram pro-

vides: (a) there are prerequisite skills for each of the

43

five major components of the course: (b) the job skills of

teamwork and following standards are a part of each of the

other four components; (c) there are computer operations

skills, job skills, programming prerequisites, and business

application and data entry skills that are inputs into the

programming process; (d) the choice of work or school after

completing the course is a matter of personal preference.

To follow the format of the use of data flow diagrams

in MIS, a further explanation of the related information in

the form of an instructional dictionary should now be devel-

oped for each point where information is passed from one

item to another on the data flow diagram. For example, the

prerequisite programming skill, "understanding elementary

algebraic concepts", would be listed in the instructional

dictionary as containing the following components: (a)

understanding the concept variable: (b) knowing the symbols

for and the usage of the relational operators (less than,

greater than, equal, greater than or equal, less than or

equal, and not equal): (c) knowing the symbols for arith-

metic operations (+, -, /,*,), and ‘): (d) knowing the

rules of order for arithmetic operations: (e) knowing how to

solve simple algebraic equations with one unknown: and (f)

knowing how to use scientific notation for numbers.

The complete instructional dictionary has not been

included in this example for the sake of brevity. In prac-

tice, this researcher would include elements in an

44

instructional dictionary only if the target teachers had

some question about the element. For example, most educat-

ors interested in teaching computer programming at the

secondary level probably have very similar concepts of what

”understanding of elementary algebraic concepts” means and

the designer would probably not define the term. However,

if parents, students, or even counselors wanted clarifica-

tion, the design tool provides a mechanism for more precise

specification, and the designer would be able to add this

level of detail to the design without altering the existing

structure.

One of the greatest strengths of a data flow diagram

design tool is the hierarchical nature of its development.

The designer can proceed to the lowest level and specify the

smallest fact needed as a part of the instructional package,

or can stop at a much higher level if that level is suf-

ficient for the instructional program to be developed and

implemented.

The next step in the development process, after the

components of the course are identified, is to analyze each

of the components of the course and to construct data flow

diagrams for each. For the sake of brevity and simplicity,

we will focus only on the programming component. Program-

ming was selected since it entails higher order thinking

skills of problem solving.

A
F

C
O

C
P

C
R

C
S

D
A

D
I

D
Q

D
S

E
C

E
G

E
l

E
0

E
P

E
S

E
V

G
R

G
S

I
P

I
S

J
S

A
l
g
o
r
i
t
h
m
s

a
n
d

f
a
c
t
s

C
o
r
r
e
c
t
i
o
n

s
p
e
c
i
f
i
c
a
t
i
o
n

C
o
d
e
d

p
r
o
g
r
a
m

C
o
d
e

r
u
l
e
s

C
o
d
i
n
g

s
t
a
n
d
a
r
d
s

D
e
t
a
i
l

p
r
o
c
e
s
s

a
l
g
o
r
i
t
h
m
s

k
n
o
w
l
e
d
g
e

D
e
b
u
g
g
i
n
g

i
n
f
o
r
m
a
t
i
o
n

D
e
b
u
g
g
i
n
g

q
u
e
s
t
i
o
n
s

D
e
t
a
i
l

p
r
o
c
e
s
s

s
t
r
a
t
e
g
i
e
s

E
x
i
s
t
i
n
g

c
o
d
e

E
x
i
s
t
i
n
g

g
r
a
p
h
i
c

r
e
p
r
e
s
e
n
t
a
t
i
o
n

E
x
i
s
t
i
n
g

i
n
p
u
t

f
o
r
m
a
t
s

’
E
x
i
s
t
i
n
g

o
u
t
p
u
t

f
o
r
m
a
t
s

E
x
i
s
t
i
n
g

p
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

E
v
a
l
u
a
t
i
o
n

c
r
i
t
e
r
i
a

s
u
b
j
e
c
t
i
v
e

E
v
a
l
u
a
t
e
d

p
r
o
g
r
a
m

G
r
a
p
h
i
c

r
e
p
r
e
s
e
n
t
a
t
i
o
n

o
f

p
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

G
r
a
p
h
i
c

s
t
a
n
d
a
r
d
s

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

p
r
o
b
l
e
m

I
n
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

J
C
L

s
t
a
t
e
m
e
n
t
s

F
i
g
u
r
e

6
:

L
e
g
e
n
d

M
I

N
I

0
8

P
E

P
M

P
P

P
R

P
S

P
W

R
F

R
I

R
0

S
C

S
P

T
D

T
P

U
P

L
o
g
i
c
a
l

e
r
r
o
r

L
a
n
g
u
a
g
e

r
u
l
e
s

M
i
s
s
i
n
g

i
n
f
o
r
m
a
t
i
o
n

N
e
e
d
e
d

I
n
f
o
r
m
a
t
i
o
n

O
u
t
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

P
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n

e
r
r
o
r
s

P
r
o
g
r
a
m

e
r
r
o
r

P
r
o
b
l
e
m

p
r
o
c
e
s
s

d
e
f
i
n
i
t
i
o
n

P
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

P
r
o
b
l
e
m

P
r
o
b
l
e
m

s
o
l
v
i
n
g

s
t
r
a
t
e
g
i
e
s

P
r
o
c
e
s
s
i
n
g

s
t
a
n
d
a
r
d
s

P
r
o
g
r
a
m
w
i
t
h

e
r
r
o
r
s

R
u
l
e
s

f
o
r

o
p
e
r
a
t
i
n
g

R
u
l
e
s

f
o
r

i
n
p
u
t

f
o
r
m
a
t
s

R
u
l
e
s

f
o
r

o
u
t
p
u
t

f
o
r
m
a
t
s

S
p
e
c
i
f
i
c

e
v
a
l
u
a
t
i
o
n

c
r
i
t
e
r
i
a

S
p
e
c
i
f
i
c

p
r
o
c
e
s
s
e
s

T
e
s
t

d
a
t
a

T
e
s
t
e
d

p
r
o
g
r
a
m

U
n
k
n
o
w
n

p
r
o
c
e
s
s

45

p
r

i
n

G
r
a
p
h
i
c

R
e
p
r
e
s
e
n
t
a
t
i
o
n

r
o
c
g
i
s
g
n

a
r
d
s

0
9

S
t
a
n
d
a
r
d
s

.
l

-
m

D
Z
I
K
n
o
w
l
e
d
g
e

E
x
p
e
r
t

0
7

E
X
I
S
I
'
"

I
E
x
i
s
t
i
n
g
G
r
a
p
h
i
c

A

P
r
o
b
l
e
m

P
T

E
r

c
e
s
s
e
s

0
8

R
e
p
m
w
m
a
fl
o
n

'
S
o
l
v
e
r

‘
"
0
3

I
R
e
f
e
r
e
n
c
e

N
I

A
F

I

1
.
0

4
-
0

5
.
0

P
P

D
e
f
i
n
e

Q
I

R
e
p
r
e
s
e
n
t

I
0
3

I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
”

L
E
A
N
E
R

D
e
f
i
n
e

P
r
o
c
e
s
s
l
n

P
r
o
c
e
s
s

t
h
e

8
0
:
:
a
n

F
E

$
9
9
6
8

0
1
0

I
C
o
d
l
n
g
S
t
a
n
d
a
r
d
s

P
r
o
b
l
e
m

D
e
t
a
i
l

r
a
p
h
i
c
a
l
l
y

”
0
‘
3
”
”

I
0
1
1

I
E
x
i
s
t
i
n
g
C
o
d
e

I
[
E

2
.
0

A
3
.
0

5
0

I
0
4

I
I
I
O

S
t
a
n
d
a
r
d
s
1

R
l

'
3

D
e
f
i
n
e

0
9
"
”

D
e
v
e
l
o
p

If
S

e
c
l
f
l
c

P
r
o
g
r
a
m

S
p
e
c

i
c

‘
\
R
l

p
(
3

D
e
t
a
i
l

O
u
t
p
u
t
s

I
0
5

I
E
x
i
s
t
i
n
g

u
n
i
o
n
s

I
n
p
u
t
s

:
I

(
D

8
'
0

A
J
C
L

S
t
a
n
d
a
r
d
s

(
1
’

0
1
4

A
n
d

P
r
o
c
e
d
u
r
e
s

46

D
e
b
u
g

S
S

P
r
o
g
r
a
m

F
F

’
D
1
2
I
O
p
e
r
g
t
i
o
d
a
r
d
s

I

7
.
0

0
1
3

T
e
s
t
D
a
t
a

"
P
X

T
e
s
t

0
3

I
R
e
f
e
r
e
n
c
e
fi
M
a
t
e
r
l
a
l
s
I

P
r
o
g
r
a
m

E
v
a
l
u
a
t
e

P
r
o
g
r
a
m

U
s
e
r
l

a

P
r
o
b
l
e
m

D
e
s
i
g
n
e
r

E
V

 F
I
G
U
R
E

6
:

D
e
s
l
g
r
i
n
g
a
C
o
m
p
u
t
e
r
P
r
o
g
r
a
m

47

A learning objective of programming instruction may be

stated as follows: given a problem not previously seen, the

student will design and produce a program that meets all the

given conditions of the problem and follows the course

programming standards for both design and production. The

evaluation of the performance of the objective is consistent

with standards used by actual data processing shops. These

are given to the students and demonstrated. The course

programming standards are uniform throughout the entire

course, but more detail is added to the standards as the

course progresses.

The next step in system design is to break programming

skill into its component parts or tasks. Figure 6 shows an

overview level of a data flow diagram for the component

skills needed for designing a computer program. Once again

note that the major symbols indicate that there are nine

major components in the designing of a computer program.

These are: (a) define the problem, (b) define the specific

outputs, (c) define specific inputs, (d) define processing

sequence and detail process, (e) represent process specifi-

cations graphically, (f) develop program detail code, (g)

test the program, (h) debug the program if there are errors,

(1) evaluate the program.

With this data flow diagram, all the design information

that is available with current analysis techniques is avail-

able. However, in addition, more information is readily

48

available. For example, there are 16 different types of

information the programmer will need, some more than once.

Expert problem solver, expert debugger, and user/problem

designer are entities external to the programmer's problem

solving process that contribute to the programmer's design

and development of the program. As can be seen from the

numerous arrows between processes, some of the processes are

interrelated. For example, the arrows from 2.0, 3.0, 5.0,

and 8.0 respectively pass to process 6.0 the information:

output specifications, input specifications, process speci-

fications and graphic representation of process specifica-

tions, and correction specifications. In addition proces-

ses are interrelated in that several information stores

provide information to more than one processes. For ex-

ample, D4 and DS both provide information to processes 2.0

and 3.0: and D3 provides information to 1.0, 6.0, and 8.0.

The data flow diagram also shows that the program design

process is not linear, but contains loops as shown by arrows

from process 4.0 to process 5.0 and from 5.0 to 4.0 as well

as the arrow from 8.0 to 4.0 and 8.0 to 6.0.

Although the additional information provided by the

overview of the instruction might be enough so that the

instruction could be implemented without further analysis,

this is unlikely. This researcher would anticipate the need

to provide at least one more level of diagrams to clarify

the instructional needs for each of the major processes.

D
P

I
C

I
I

I
N

I
P

I
S

I
T

M
I

N
I

A
l
g
o
r
i
t
h
i
m
s

P
r
o
b
l
e
m

p
r
o
c
e
s
s

d
e
f
i
n
i
t
i
o
n

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

s
p
e
c
i
a
l

c
o
n
d
i
t
i
o
n
s

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

i
n
p
u
t

a
v
a
i
l
a
b
l
e

&
d
e
s
i
r
e
d

I
n
f
o
r
m
a
t
i
o
n

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

p
r
o
b
l
e
m

I
n
p
u
t

s
t
r
a
t
e
g
i
e
s

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

p
r
o
c
e
s
s

M
i
s
s
i
n
g

i
n
f
o
r
m
a
t
i
o
n

N
e
e
d
e
d

i
n
f
o
r
m
a
t
i
o
n

F
i
g
u
r
e

7
:

L
e
g
e
n
d

0
0

O
S

P
A

P
D

P
P

P
R

P
S

S
P

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

o
u
t
p
u
t

O
u
t
p
u
t

s
t
r
a
t
e
g
i
e
s

P
r
o
c
e
s
s

a
l
g
o
r
i
t
h
i
m
s

P
r
o
b
l
e
m

i
n
p
u
t
d
e
f
i
n
i
t
i
o
n

P
r
o
b
l
e
m

o
u
t
p
u
t

d
e
f
i
n
i
t
i
o
n

P
u
r
p
o
s
e

o
f
p
r
o
g
r
a
m

P
r
o
b
l
e
m

P
r
o
c
e
s
s
i
n
g

s
t
r
a
t
e
g
i
e
s

I
P
O

r
u
l
e
s

P
r
o
b
l
e
m

S
t
r
a
t
e
g
i
e
s

49

E
x
p
e
n

D
1

[
K
n
o
w
l
e
d
g
e

I
P
r
o
b
l
e
m

I
S
o
l
v
e
r

I
0
2

I
C
o
g
n
i
t
i
v
e

S
t
r
a
t
e
g
i
e
s
]

'
N

M
I

M
I

1
.
2

S
t
a
t
e

e
t
e
r
m
i
n
e

F
0

1
.
4

P
u
r
p
o
s
e

 I
L
D
S

I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
s

I

T
y
p
e

o
f

e
t
e
r
m
i
n
e

o
f

O
u
t
p
u
t

P
r
o
b
l
e
m

l
g
o
r
i
t
h
m
s

J

f
o
r

P
r
o
c
e
s
s
i
n
g

EEEEE

1
.
3

D
e
t
e
r
m
i
n
e

p
.

T
y
p
e

o
f

I
>

I
n
p
u
t

1
.
5

1
.
6

D
e
t
e
r
m
i
n
e

S
p
e
c
i
a
l

C
o
n
d
i
t
i
o
n
s

D
e
v
e
l
o
p

I
P
O

‘

a
n
d

BEEEE

C
h
a
n

S
e
q
u
e
n
c
e

I
N

I
I

D
I

I
K
n
o
w
l
e
d
g
e

I

U
S
E
R
-

I
L
0
2

[
C
o
g
n
i
t
i
v
e

S
t
r
a
t
e
g
i
e
q

P
r
o
b
l
e
m

A
s
s
i
g
n
e
r

F
I
G
U
R
E

7
:
D
E
F
I
N
E
T
H
E
P
R
O
B
L
E
M

1
.
0

50

51

Each of the processes shown at this level is analyzed

to determine the component tasks and the relationships among

them. Then a data flow diagram is developed for the next

lower level for each process. Figure 7 shows the data flow

diagram for process 1.0, define the problem.

Note that there are no data stores or external entities

on this level that were not on the previous level. However,

the use of those stores is shown in more detail. In addi-

tion, the role of the individualized instruction in the

computer program design process can be more readily seen.

This researcher believes this level of detail would be

sufficient for developers to develop instructional materials

or for teachers to design the lessons to teach students how

to define the problem, especially if an instructional dic-

tionary were also developed. However to determine whether

even more detail is needed, the designer would present the

design to the developer or instructor for evaluation.

Figure 8 shows the data flow diagram that resulted from

another analysis and design level for process 1.2, determine

the type of output. Again, note that the data flow diagram

not only shows what is necessary to complete a task, it also

shows how each subtask, or component, is related to all the

other components. It shows not only where information is

needed, but separates the information into different types,

which, according to Gagne (1977), is important to the devel-

opment of the final lesson.

N
o
t
e
:

t
h
e
s
e

t
h
r
e
e

I
n
p
u
t

i
n
t
o

1
.
2
1

-
1
.
2
5

'
N
o
t
e
:

T
h
e

e
x
p
e
r
t
p
r
o
b
l
e
m

s
o
l
v
e
r

p
r
o
v
i
d
e
s

I
n
f
o
r
m
a
t
i
o
n
w
h
e
n
e
v
e
r

t
h
e

p
r
o
b
l
e
m
-

s
o
l
v
e
r

f
i
n
d
s

m
i
s
s
i
n
g

I
n
f
o
r
m
a
t
i
o
n
f
r
o
m

1
.
2
.

-
1
.
2
5

m
0
1

I
C
o
g
n
i
t
i
v
e

S
t
r
a
t
e
g
i
e
s
I

_

'
"

0
2

|
K
n
o
w
l
e
d
g
e

I

U
s
e
r
l

P
r
o
b
l
e
m

A
s
s
i
g
n
e
r

:
L
—
I

D
3
'
I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
s

1
.
2
.
.
1

5
D
e
f
i
n
e

P
P

R
e
p
o
r
t
s

.
_

N
e
e
d
e
d

1
"

I
n

D
e
t
a
i
l

1
.
2
.
.
3

1
.
2
.
4

I
m

F
3
2
2
1
;

,
P
P

De
li

nn
‘e

D
e
f
i
n
e

B
e

S
u
m
m
a
r
y

x
c
e
p
t
l
o
n

C
r
e
a
t
e
d
!

3
-

R
e
p
o
r
t
s

R
e
p
o
r
t
s

U
p
d
a
t
e
d

N
e
e
d
e
d

N
e
e
d
e
d

C
D

1
.
2
.
6

C
o
r
n
b
l
n
e

O
r
g
A
a
I
‘
n
z
e

l
d

fi
nl

t
D
O
I
I
'
I
I
I
‘

m
I

D
o

-
D
e
t
a

o
u
t
p
u
t

a
I
o
n

;
°

“
“
'
3

O
D

.
O
u
t
p
u
t

f
l
i
e
s
d
e
f
i
n
i
t
i
o
n

6
0

-
E
x
c
e
p
t
l
o
n
o
u
t
p
u
t
d
e
fi
n
i
t
i
o
n

P
o

-
P
r
o
b
l
e
m

o
u
t
p
u
t

d
e
f
i
n
i
t
i
o
n
s

lI
-

I
n
t
e
r
a
c
t
i
v
e
/
i
n
q
u
i
r
y

o
u
t
p
u
t

d
e
f
i
n
i
t
i
o
n
s

P
P

-
P
u
r
p
o
s
e

o
f
p
r
o
b
l
e
m

1
N

-
i
n
f
o
r
m
a
t
i
o
n

P
R

-
P
r
o
b
l
e
m

11
’

-
I
n
f
o
r
m
a
t
i
o
n
a
b
o
u
t

P
1
0
9
1
0
1
“
0
W
3

P
S

-
P
r
o
b
l
e
m

s
o
l
v
i
n
g

s
t
r
a
t
e
g
i
e
s

M
I

-
M
i
s
s
i
n
g

I
n
f
o
r
m
a
t
i
o
n

s
o

-
S
u
m
m
a
r
y

o
u
t
p
u
t

d
e
f
i
n
i
t
i
o
n
s

F
I
G
U
R
E

8
:

D
e
t
e
r
m
i
n
e
t
y
p
e
o
f
o
u
t
p
u
t

1
.
2

52

53

This level-by-level analysis and design should continue

until the point where the person who actually develops or

implements the lesson for the task has as much information

as is needed to create or teach the lesson. The set of data

flow diagrams developed for experienced teachers would

probably not need to show as many levels as a set of data

flow diagrams developed for inexperienced teachers. If the

experience level of the target teachers is not known or the

instruction is designed for teachers of varying degrees of

experience, the instruction should be designed to the lowest

level that may be needed by the target teachers.

Appendix B contains the complete example of using data

flow diagrams to analyze and design the programming portion

of the vocational data processing class to the second level.

d flow ia rams to si n active V'deo C u se-

EQLQ

The preceding sections of the chapter demonstrated how

data flow diagrams could provide useful information when the

technique was used to design a course including problem

solving in computer programming. Data flow diagrams could

also provide useful information when used to design interac-

tive video courseware. Figure 9 shows the first level data

flow diagram this researcher's design group developed for an

interactive video course for teaching the role of pain and

its control in veterinary medicine. Although the course was

54

Lama:

1 2 a

USESOF

anon-

PAiN
euros-

"

am

1

.

A1 let 3 in A

[37.14 lit-moose] ’1 suIATTITUDES . .A ArnTUD

F

st.e| PAcTs J 3] Films I [34 slots

4 o:

co

excl corners cI WEI
Q]M

P3

<1;an
:I'IWEI'“ y

KNOMEGEOFAMMAL

PmmDnSTnEATuENT

In solving
“0"

m

WI: 1.3

wz is.ts.21.22.24.2s.27.2s.29.st.32

ws: 2.3.3.34-45.47-sz

4 wit: s. :04:

W5: 1.2

IsuIesaacemm lot we: s

_

m
m 1e‘ezaeflsaoeaaease‘zs“

-
we: 5

.

10

Ian ImmuVlBS‘IRATEGES 3,", some we ”1251172022-2427‘:“Pc 12.19

A1: P 1.: F1: P 162

A2 a 1.2 P2: e 1.0

As: u 1 F3: u 1.7

or: P142 P1 P144

cz 81-44 P2: P to

”990: cs: u 1.20 Pa: u is

PnlATE

AcnoN

FunkWWW
PMNW

W

55

still under development at the time of the writing of this

dissertation, the data flow diagrams had been presented to

the client who not only approved of their accuracy, but

indicated approval of the level-by-level design approach by

saying "I can see the whole course now, layer by layer," and

"I knew where I wanted to go with this material, but now I

feel as if I have been given a road map showing me how to

get there". In addition, the menus that will be used to

control the presentations have been developed from the data

flow diagrams and an estimate of the amount of time neces-

sary to the complete the project has been make.

Note the different kinds of information that are pro-

vided at the first level data flow diagram. [See Figure 9].

The diagram shows that learners can enter the course at any

of the four major course processes. The first three proces-

ses are designed to add to the learner's knowledge base,

while the fourth process requires that the learners gee

their knowledge bases, along with cognitive strategies and

reference materials, to solve problems. The information

that the learners will process in order to add to the their

knowledge bases is separated into attitudes, facts, con-

cepts, and principles since each of these major types of

information needs to be presented to learners using dif-

ferent instructional techniques (Gagne, 1985: Gropper, 1983:

Landa, 1982: Reigeluth & Stein, 1983: Scandura, 1983). If

the course is to have learner control of the pace and

56

sequence, the instruction will need to provide learners

access to information from the previous sections. In the

first level data flow diagram shown in Figure 9, the infor-

mation that is presented in one section and then used to

build the knowledge in another section is shown by the

connecting arrows. For example, note that arrow W4 between

Sl.D, stored principles from process 1, and process 2, shows

that principles 8, 10, 11, 12, 13, and 14 are presented in

the process 1, PAIN, but the learner will also need those

principles to process information presented in process 2,

BUTORPHANOL. By using this data flow diagram, the developer

of the instruction knows where the courseware must be able

to either branch back to previous information or provide the

previously presented information in a different format. The

principles represented by W4 are listed in the instructional

dictionary for the course in Appendix E.

Since information provided by the first level data flow

diagram includes the number of major processes, the number

of instructional events of each type, and the number of

links between sections that must be provided, it can be used

by the instructional designer to make rough estimates of the

cost and time necessary to develop the course. However,

sophisticated estimates of development costs can not be made

until the content expert provides information as to the

importance and difficulty of each event in the instructional

dictionary.

57

Appendix E contains the data flow diagrams for the

first section of the course, Pain, and the instructional

dictionary for the section. When the course is authored,

each of the processes from the data flow diagrams will

become a menu selection for the course. Appendix F contains

the procedures developed by the CAI group at Michigan State

University for using data flow diagrams to develop interac-

tive video courseware. The complete process, including the

relationship between the instructional dictionary and the

developmental worksheets is being readied for separate

publication and will be available in the future.

f e o a a f a s

The preceding chapter presented several problems with

the current instructional design techniques. In the preced-

ing sections of this chapter, data flow diagrams were dis-

cussed and a demonstration was made of their use in instruc-

tional design and analysis. In this section we will focus

on the advantages of using this technique.

Deg; flex glagpams help locepe phe pglnts in phe leezp-

ing ppggese whepe help pay be heeded. In the data flow

diagram developed for computer programming, three external

entities, expert problem solver, expert debugger, and user/-

problem designer, contributed to the process of the design

and development of the program that solves the problem.

These entities indicated the points of the process where

58

students often need help when they are learning to program

computers. Even an inexperienced teacher using this data

flow diagram would be able to determine where special effort

may be required to help students learn to program properly.

By using symbols to designate information sources within the

instructional system that are different from the symbols

used for information sources outside the system, data flow

diagrams make it easy to see points where teachers should

consider making expert help available for their students.

Depe flow diaggggs show phe hype and poslpien pf infep-

WWW- Since

the data flow diagrams provide graphic indications of the

points within the instruction where information is needed

and, if necessary, the instructional dictionary shows spe-

cifically what is needed, it is easier for teachers to pro-

vide students with the information during the instructional

process instead of requiring students to know the informa-

tion before they attempt the task. In addition, teachers

have a concrete way of determining what media would be most

appropriate for presenting the information to the students.

The potential of existing instructional packages to meet

students' instructional needs could be measured by comparing

the information the packages deliver to the information the

instructional dictionary specified. Hamreus (1968) stated

that if the instructional technologist is to get maximum use

from media in improving learning outcomes, he must be able

59

to determine how, what, and when media can most effectively

be employed. By focusing on the information and sequencing,

data flow diagrams can help designers and teachers determine

where some of the teaching might be relegated to self-paced,

programmed, and computer aided instruction.

-. a o. . -- an: aid ' 1!: to t- ooi' 'v- :.f

;p_he_;epghp. By stressing which data, information, and

strategies are needed at different points of the process,

data flow diagrams help the instructional designer focus on

all the information and interrelationships as a complete

skill. This allows the designer, developer, and instructor

to work at a higher cognitive level. Compare the informa-

tion about the programming process provided by the data flow

diagram in Figure 6 with the task list on computer program-

ming provided in Appendix A. Using the data flow diagram,

even inexperienced teachers could see the part each of the

tasks in computer programming played in making up the com-

plete cognitive skill, yet they could also see the entire,

complete task as an organized whole. Thus they would be

more likely to present the instruction to their students as

a complete cognitive processes, not merely a collection of

behaviorally oriented tasks.

Derry (1984) pointed out that in teaching cognitive

strategies, there must be a taxonomy of curriculum-relevant

component strategies. The data flow diagram can be a tool

to help the instructional designer see the taxonomy of

60

strategies and also see where those strategies are needed in

the instructional program. Therefore the probability is in-

creased that those strategies will be correctly addressed by

the instructional program and will be developed by the

student.

Higher level thinking skills are represented by data

flow diagrams by focusing on goals, information, and needed

expertise instead of focusing on specific tasks that make up

the skill. By examining the different levels of the pro-

cess, the instructional designer can see where cognitive

strategies or diagnostic knowledge are required.

ow ia a s show e t a ' s ' am

ppplee epg ppoeesses of instppctlgh. When data flow dia-

grams are used to design the instruction, even inexperienced

teachers can become more aware of sequencing alternatives in

the presentation of the components. In the discussion of

Figure 6, the specific ways that the data flow diagram

showed the interrelationships among the topics and processes

of instruction were indicated. Since the graphical repre-

sentation of the instruction system produced with data flow

diagrams contains lines showing the passing of information

between components, it is easy to see interrelationships

among cemponents of the system, to identify components that

require the same information, and to note any necessary se-

quencing of components.

61

I. a _ow -°.- ans 9 ov'd— a or e e - . -.- .it

o- :< . - n: -- co - -. 14'!-IV‘ 9-_ '-=. One of

the strengths of data flow diagrams stems from the graphic

nature of its representation. Polhemus (1987) states that

the use of graphics provides a very efficient medium for

exchange of information because graphics are easily explain-

ed, have strong impact, and permit multiple dimensions to be

displayed concurrently.

Using data flow diagrams to represent a system graphi-

cally allows even a relatively inexperienced person to

recognize the critical elements of the instructional design.

Thus more of the stakeholders in the instructional program

could have a better understanding of courses designed using

data flow diagrams. Since the design provides multiple

levels of representation of the system, each level provides

an advanced organizer for the following level. In addition,

since data flow diagrams show one complete level of a system

at a time, an examination of the system could range from

looking at the first level for an overview of the entire

system to carefully analyzing the lowest level of a module

for a detailed analysis of the components, depending on the

needs or desires of the person using the data flow diagrams.

Summary

In this chapter the purpose, conditions, methods, and

outcomes of instructional analysis and design using data

62

flow diagrams were discussed. The use of data flow diagrams

in Management Information Systems was reviewed. The in-

structional analysis and design of a vocational data proces-

sing course using data flow diagrams was developed using the

techniques that were presented in Appendix D. Where ap-

propriate, the results were compared to the results from

Chapter 2. Figure 10 summarizes the major differences. An

example was presented of an instructional design using data

flow diagrams for an interactive video course in veterinary

medicine. The response of the client and the strengths of

the technique were discussed. Finally, the advantages of

the use of data flow diagrams in instructional analysis and

design were discussed. The following advantages were noted:

(a) the location of the expertise needed by students to

learn higher order thinking skills is presented: (b) the

type and position of information needed for each process

within the instructional system is indicated: (c) the com-

ponents of the cognitive processes for higher order thinking

skills are presented as a whole; (d) the interrelationships

among topics and processes of instruction are graphically

shown at as many levels as are needed; and (e) a convenient

way to explain a course to interested, content-area-naive,

parties is available.

Thus, using data flow diagrams to analyze and design an

instructional process provides more information in a readily

usable form than the current systems design technology. In

63

addition, since the symbols used to designate information

sources within the system are different from the symbols

used to designate information sources outside the system,

data flow diagrams also indicate points where expert systems

could be of use to deliver needed information. Expert sys-

tems will be discussed in the next chapter.

Information about the

teaching of programming

provided by the Qurpic-

alum_§uide

tasks that make up pro-

gramming

Figure 10: Currisulum

Guide

Information about the teaching

of programming provided by data

Flow diagrams

the processes that make up pro-

gramming

the points within the instruc-

tional program where students

may need expert help

the type and location of

information needed within the

instructional program

a presentation of the cognitive

skill as an organized whole

the interrelationships among the

processes

a convenient way to explain the

course to content-area-naive

stake holders

compared to Data Flow Diagrams

CHAPTER 4

EXPERT SYSTEMS

IDEIQQHQLiQD

In the preceding chapter the use of data flow diagrams

for instructional design was discussed. It was demonstrated

that data flow diagrams not only emphasize information,

processes, and interrelationships, but also show points in

the instructional program where individualized expert help

may be needed by typical students. In this chapter the use

of expert systems to provide that help is discussed, fol-

lowed by a discussion of some concerns educators might have

when considering the use of expert systems within instruc-

tional programs.

First, expert systems are defined and their use by

business and industry is discussed. Next, the limitations

of expert systems are discussed, followed by a discussion of

some reasons for developing expert systems, despite their

limitations. Examples are presented of expert systems that

have proven to be valuable within instructional programs.

Then the theoretical potential for the use of expert systems

in education is discussed, followed by a discussion of steps

involved in developing expert systems in both business and

education. Finally, an example of the development of an

64

65

expert system within a vocational data processing program is

discussed.

Mining);

Expert systems are computer programs that make the

expertise of an experienced worker available to a novice.

An expert system consists of three parts: (a) a knowledge

base composed of production rules, semantic networks,

frames, relational database, and inference rules: (b) an

inference engine, which consists of the procedures that

generate the consequences, conclusions or decisions from the

existing knowledge: and (c) a working memory, which is a

temporary storage area to hold the immediately relevant

portions of the knowledge base, the user's responses, and

the current inference. An expert system must also have an

user interface, a way of communicating with the user (Boose,

1986; Hayes-Roth, Waterman, 8 Lenat, 1983).

One of the simplest types of expert systems to develop

is the production-rule system. F. Hayes-Roth (1985) cites

many advantages to using rule-based systems. First, since

they incorporate practical human knowledge in conditional

if-then rules, it is possible to develop production-rule

systems to help supply novices with the expertise of ex-

perienced workers in any situation where the expertise could

be expressed by algorithms. Second, since the skill neces-

sary to design production-rule systems increases in direct

66

proportion to the size of the knowledge bases, relatively

inexperienced programmers could develop small systems con-

taining the most critical rules and then add the more com-

plex rules as their programming skills improve and they gain

more knowledge about the content area. Third, by determin-

ing the best sequence of rules to execute, selecting rele-

vant rules, and then combining the results in appropriate

ways, production-rule systems could solve a wide range of

complex problems. In addition, production-rule systems

could help the novice understand the rules the expert used

by explaining their conclusions, retracing their lines of

reasoning, and translating the logic of each rule employed

into natural language.

Since production-rule expert systems are relatively

simple to develop, but still have many advantages, the

development of this kind of expert system should be con-

sidered in situations where the expertise needed could be

expressed in a production-rule format.

CW

When considering the development of expert systems, it

is important to realize that not all expert systems are

designed to do the same type of tasks. Expert systems are

applicable to three generic classes of problems: analysis,

synthesis, and a combination of analysis and synthesis

(Hayes-Roth, Waterman, 8 Lenat, 1983).

67

The simplest class consists of analysis problems.

Analysis problems require classifying a set of objects based

on their features. Typical expert systems designed to solve

analysis problems classify items, provide help in debugging

processes, aid in deriving diagnosis, identify unknown

items, or aid in the interpretation of output from some

system. Currently most of the cost effective expert systems

used by businesses are designed to solve analysis problems

(McCorduck, 1987).

More complex than analysis problems are problems of

synthesis. Synthesis problems are generative problems in

which a solution must be built up from component parts.

Typical expert systems designed to solve synthesis problems

determine the configuration of systems, design systems, and

develop plans for courses of action. Although production-

rule expert systems that are capable of forward chaining

have been developed to solve synthesis problems, most pro-

duction-rule expert systems solve analysis problems.

The most complex problems for which expert systems are

used consist of a combination of analysis and synthesis.

Typical expert systems designed to solve combination prob-

lems are used for command and control, making management

decisions, monitoring complex physical processes, predicting

future events based on current and past events, and deter-

mining components needing repair.

68

In developing expert systems, it is important that the

type of expert system chosen to solve the problem matches

the class of the problem. For example, if the problem

involves synthesis, an expert system that could only do

backward chaining, working from the goal toward the given

data, could not possibly solve the problem. A general

heuristic for planning the development of an expert system

is that the more complex the class of problem, the more

resources will be required to develop the expert system.

Limipeplghs of Exper; Systems

The discussion of the limitations of expert systems in

this chapter is not designed to be either detailed or ex-

haustive. Rather the intention is to provide some insight

into the problems that may occur with the use of expert

systems. A detailed discussion of the limitations of expert

systems and the concerns that potential developers of expert

systems should consider is provided by Hayes-Roth, Waterman,

and Lenat (1983).

To be effective, expert systems must contain a substan-

tial amount of domain expertise organized for efficient

search (Klahr 8 Waterman, 1986). To model the thinking of

experts, expert systems must be able to use heuristics, that

is, rule-of-thumb knowledge that enables experts to make

educated guesses when necessary, and to deal with incomplete

or inconsistent information (Boose, 1986).

69

Expert systems must be able to contain the problem-

solving knowledge of the expert, whatever its form or degree

of complexity (Hayes-Roth, 1985). For example, doctors

doing a diagnosis of a patient must not only classify symp-

toms of the patient, but must also infer the most probable

cause of those symptoms. Experts in the area of finance

must not only know what types of investments are available,

they must also have preferred strategies for reducing the

risk of the investment. They must know how to eliminate the

uncertainty of the effects of future events. Expert repair

persons must not only know how to repair the product, they

must also know the likeliest places to look for relevant

information about the cause of the problem.

In general, experts in all fields must observe events

and make specific inferences based on the observations. In

addition they make abstractions from which they form gener-

alizations and categorizations (Hayes—Roth, 1985). Larkin,

McDermott, D. Simon, and H. Simon (1980) provide an example

from solving algebra problems. Suppose the problem

A board was sawed into two pieces. One piece was

one-third as long as the whole board. It was

exceeded in length by the second piece by 4 feet.

How long was the board before it was out (p. 207)?

was given to both novice and expert algebraic problem

solvers. The typical novice sets up the equation x/3 +

(x/3 +4) = x and solves for the value of x. However, the

expert problem solver almost immediately states that the

70

answer is 12. If pressed to explain the reasoning used, the

expert will note that if one piece was 1/3 of the board, the

other piece 2/3 of the board. Since the second piece, 2/3

of the board, was the length of the first (1/3 of the

board) plus 4 feet, 1/3 third of the board was 4 feet long

and the entire board was 3 times 4 or 12 feet long. Thus by

making abstractions, generalizations, and categorizations

instead of following the ”rules for solving word problems”,

the expert could almost instantly "see" the answer while the

novice was still attempting to express the problem using

mathematical symbols. Experts used the formal "rules for

solving word problems" only when they could not "see" rela-

tionships within the problem that readily lead to the

solution. Thus, experts not only know many ways to reach a

desired goal such as the solution to an algebraic problem,

they also know which ways are necessary and sufficient

conditions for goal achievement under the given conditions

(Hayes-Roth, 1985).

One of the most complex types of knowledge that experts

possess is the knowledge of the limitations of their know-

ledge (Hayes-Roth, 1985). For example, expert doctors not

only know how to make diagnosis and inference of probable

cause, they also know when to tell the patient to seek the

advice of a specialist, an even more knowledgeable expert.

From the preceding discussion it could be seen that the

expertise possessed by experts could represent a wide range

71

of complexity of many different types of knowledge. As

noted by B. Hayes-Roth (1985), the difficulty of modeling

many of those forms of knowledge within an expert system is

obvious.

In addition to difficulty of modeling many types of

knowledge possessed by experts, most expert systems have

other limitations (Hayes-Roth, Waterman, 8 Lenat, 1983).

Although many expert systems could list the rules used by

the system to reach the solution, most could not explain

their results in a manner suited to the particular audience

using the expert system. The novice then could not get the

same benefit from the answer provided by the expert system

that could be obtained from a human expert-even if they both

provided identical solutions. This may limit the usefulness

of the expert system as a training tool.

Also, human experts learn from their experiences. Most

expert systems could not learn from the problems they solve,

stretch their own rules, or restructure their knowledge

(Hayes-Roth, Waterman, 8 Lenat, 1983). Thus, most expert

systems could not improve their performance. To improve the

performance of the expert system, a human expert must deter-

mine what changes must be made and the expert system pro-

grammer must then modify the system. Perhaps the greatest

limitation of expert systems stems from their lack of self

knowledge (Boose, 1986). Expert systems are not able to

determine the relevance of their knowledge to the current

72

problem and they can not degrade gracefully at problem

boundaries. Thus it is quite likely that a novice, giving

an expert system a problem that was not the type for which

the system was developed, might still get a plausible solu-

tion that was very much in error. This could, of course,

cause many problems for the novice.

The final limitation to be considered stems from the

inability of expert systems to engage in the higher levels

of reasoning (Boose, 1986). Expert systems could not reason

about space and time, or reason from underlying problem

domain principles, or reason analogically. These higher

order reasoning abilities are currently only produced by

human experts.

ev o n d xam

Despite their limitations, there are many situations in

which it is useful to develop expert systems (Boose, 1986).

Within the business environment, expert systems may be

developed to help the replacement worker when experts re-

tire, taking their knowledge with them. In some areas, such

as determining the best configuration for a computer net-

work, expertise may be scarce or not available. Often when

experts are available, their expertise may be very expensive

to obtain. When expertise is scarce, an expert system may

help to deliver a product or service in a more timely manner

than would be done by a human expert, because the human

73

expert is not always immediately available. One of the most

common reasons for developing an expert system is that

experts, being human beings with human limitations, are not

always consistent (Boose, 1986).

McCorduck (1987) has researched the current uses and

effectiveness of expert systems in business. She visited

companies in both Japan and the United States and only

considered systems that were actually being used. She cited

numerous examples of large productivity gains or cost reduc-

tions effected by the use of expert systems. She summarized

the information she had gathered in six good reasons for

developing and implementing expert systems:

1. e o e o dif’ at

nd 'str butio 0 'se. If the expertise

of a key person is captured in an expert system, the reason-

ing is coded in a systematic manner that will give consis-

tently identical output for identical input. The expert's

reasoning could then be used by more than one decision maker

in more than one geographical area.

Examples of this effective use of expert systems are:

(a) Nippon Kokan Steel developed an expert system to "clone"

their best blast furnace controller and allow inexperienced

controllers to use his experience: (b) Dupont offered early

retirement to experienced workers to cut costs only to

discover that they needed their expertise! The experts were

brought back and expert systems were developed to nOt only

74

recapture that lost expertise, but also to increase its

continuity in the company; (c) Texas Instrument was able to

keep an old and ”temperamental" machine running by develop-

ing an expert system to help the repair persons quickly to

repair the machine when it broke down.

2. t e 5 con d dev 0 ed for mbin'n

expe1§1ee_firem_mehy_epgzeee. It is not uncommon for busi-

ness decisions to require input from more than one expert.

If an expert system is developed to aid in the decision

making, it could include the expertise of more than one

expert in both its knowledge base and its inference engine.

Thus the combination of the experts' reasoning could be used

without the difficulty of assembling all the experts in one

place.

Examples of this effective use of expert systems: (a)

Digital Equipment Corporation developed the EXpert CONfigur-

ation system EXCON to determine computer configurations.

They also used EXCEL to help salespersons to present the

product more effectively. DEC estimated that the use of

these two systems provided an annual savings of $25,000,000.

(b) Kajima Construction Co. developed an expert system to

determine how to sink the pylons for their construction

projects. The expert system not only saves $200,000 per

year, but also improves the quality of the work.

B-EEWWW

:: 1!! -9 9 01- e 0.2m: _ sa 15 _n °r°duc iv: 0 :1

7S

phe greeplph of new tasks, ppggpcts, end services. Almost

all experts in business are called upon to provide expertise

at a variety of levels. If an expert system could be built

to provide expertise at some lower levels, a resident expert

might have more time to use his expertise at a higher lev-

els. This, in turn would increase the expert's productivity

and allow more time for work with new developments.

Examples of this effective use of expert systems: (a)

Cannon used expert systems to set up simulation runs to test

new camera lens. As a result, one person now could do in

two weeks the design testing that in the past took several

experts months of work. (b) Arthur Anderson developed

expert systems to help with the auditing of financial sys-

tems, allowing high level consultants to aid in more consul-

tations. (c) American Express developed an expert system

that could authorize credit limits in under 90 seconds based

on information in 13 different data basses. It is estimated

that the use of this expert system saved American Express

millions of dollars in credit card fraud each year and also

reduced the time pressure on workers when making credit

decisions.

4. Expert syspems gould be developed to avoid signifi-

s w sted esources ca a . Texas InStru-

ments developed an expert system to help engineers prepare

presentations for documenting capital investment procedures.

This new system took one twelfth of the time of the previous

76

system and saved the company an estimated 500,000 dollars

annually.

5. s ems on v d t e e com-

3 ea evenue. In Japan, a bank developed

an expert system for investment portfolios that analyzed the

customer profile and recommended investments based not only

on current and projected market trends, but also on the

personal philosophy of the investor. The pleased investors

spoke so highly of the investment service that customers

without investment portfolios started using the bank because

it was perceived as modern and good. Three hundred thousand

yen was added to the average amount invested with the bank

annually.

6. s d so v -

WW. Dupont developed

a system that helped local managers to determine how to pay

taxes across different geographical regions. Because the

tax codes are readily available, this was not a difficult

task, but was so time consuming that managers often took the

easiest options, even when other options might have been

more cost effective. With the expert system, it is estimat-

ed that the corporation saved $2,000,000 per year. IBM

developed an expert system that greatly increased the pro-

ductivity of their engineers by helping them complete the

documentation required. Another expert system used by IBM,

which had a very high payoff in cost savings, helped move

77

capital equipment from one geographical region to another.

These expert systems solved problems that were more a matter

of expertise in knowing what was wanted than expertise in

higher order thinking skills. Such tractable problems tend

to consistently have high returns on investment when expert

systems are developed to solve them.

The use of expert systems by business continues to

grow. Coopers 8 Lybrand of New York recently surveyed the

Nation's leading insurance companies and found that 65 per

cent of the companies are either currently using or are

developing expert systems, twice as many as were using

expert systems a year ago. David Shpilberg, their head of

Decision Support Services, says "insurers are realizing that

expert systems technology offers a way to harness knowledge

efficiently in an industry that is extremely knowledge-

intensive" ("Insurance embraces”, 1988, p. 39).

The reasons for developing expert systems in the busi-

ness environment also apply for developing expert systems

within the educational environment. Yazzdani (1987) pointed

out that after an expert system has been developed, the line

of reasoning, knowledge, and organization of the expert

could made available for observation by trainees. In

school, the expertise of the teacher is continually avail—

able, but it must be allocated among many students within a

limited time period. By providing students another source

of expertise, the computer program, not only is the

78

available time teachers have to work with students, a scarce

resource, increased, but students have access to the exper-

tise whenever they need it during the learning process.

{JLP :: I: II tat U - . .10‘ — ’1!: 1 2-1.-

As in business, instruction is knowledge intensive, and

the development of instructional technology has shown a

steady advancement in the level of skills that could be

taught using technology. The evolution of present-day

teaching programs consists of: (a) Pressy's linear frames

(1926), (b) Crowder's scrambled textbooks or branching

frames (1962), (c) adaptive systems that branch based on a

history of responses, and (d) generative systems that use

algorithms to generate problems and answers (Gable 8 Page,

1980). At present, specialized programs designed specifi-

cally for education that use artificial intelligence and

expert systems to aid in student acquisition of some ele-

ments of an expert's knowledge, could be added to the list.

Currently several intelligent tutorial systems are

being used primarily as experimental vehicles in instruction

(Sleeman 8 Brown, 1982). Two examples that use artificial

intelligence in the instructional process are SOPHIE, which

is an operational intelligent computer aided instructional

(ICAI) system designed to provide tutoring in the domain of

electronic troubleshooting, and BUGGY, which is an instruc-

tional game that helps students and inexperienced teachers

79

understand the student's misconceptions in mathematics, by

analyzing errors the student is making (Suppes, 1979).

SOPHIE provides students with simulations in electronic

troubleshooting. Students could enter a board configuration

and the measure of energy to be applied to the board into

SOPHIE and SOPHIE will tell them what output will result.

Students could "experiment" with different board configura-

tions and energy inputs without the risk of damaging the

board components and without expending the large amounts of

time required physically to construct the boards. In addi-

tion, SOPHIE could present students with boards that have

"bugs” in them and require the student to determine what

component is malfunctioning. Students could use different

inputs or even change components on the board as they seek

to find the causes of the malfunctions. Students using

SOPHIE took less time to gain a higher level of expertise in

troubleshooting electronic circuits than students who worked

only with actual circuits.

BUGGY trains student teachers to examine surface mani-

festations of students misconceptions in mathematics and use

the results of that examination to determine the deep-struc-

ture misconceptions in a student's knowledge. When BUGGY

was used with students, the students began to study and

understand the underlying procedural skill instead of merely

performing the behavioral operation (Brown 8 Burton, 1978).

80

Such programs as BUGGY and SOPHIE come closer to in-

structing students with a degree of the skill of a good

teacher than the mere branching capabilities of programed

instruction. One of the most important of these skills is

the teacher's ability to synthesize an accurate "picture,"

or model, of a student's misconceptions from the meager

evidence inherent in the student's errors. If instructional

programs are designed to provide the student with the expert

help that teachers normally supply, they will also need to

be designed to respond appropriately to errors that students

make.

As one example of such an instructional program,

Sebrechts, Shooler, LaClaire and Soloway (1987) created a

computer-based expert system called GIDE which interprets

students' statistical errors. GIDE is a goal-driven diag-

nostic system that analyzes answers to statistical problems

and presents that analysis in a form that is designed to be

used by the student to improve performance in working that

type of problem. Currently, it could evaluate a student's

solution to a statistical problem specifically requiring a

repeated-measures T test. Testing showed that the program

was capable of interpreting over 90% of the student solu-

tions and print out a report of the "bugs", that is, errors

in computation or solution approach. In comparing the

expert system to the work of teaching assistants, the GIDE

program was found to do a consistently better job than the

81

T.A.'s in identifying all the areas of error in the solu-

tion. Although teaching assistants ”interpreted” all the

solutions, over 10% of the solutions graded by the teaching

assistants fell into the category of "I do not understand

what you were attempting to do" as the T.A.'s evaluation.

One of the fastest areas of growth in the development

of expert systems is the use of expert system shells.

Shells are expert systems for which the inference engine has

been designed, but the knowledge base and the rules are left

blank so that applications could be developed by entering

the domain specific application knowledge base and rules.

Lee (1987) reported the use of an expert shell written in

the PROLOG computer language to help students learn con-

cepts, think analytically, and test ideas. The shell creat-

ed a versatile way for the students to explore knowledge

about number theory, or other subjects, and encouraged

students to learn actively and to think logically. Lee

taught the students to program the domain they were explor-

ing using PROLOG and then to see what other information was

true, given the information that they placed in the domain.

Unfortunately, the fact that the students must have communi-

cated with the expert system using PROLOG decreased the

usefulness of the system as an instructional tool, since

learning to use this complex language effectively took a

substantial amount of time.

82

Expert systems are also being designed to teach problem

solving skills. Many areas addressed by emerging technology

in the area of expert systems are those very areas defined

as important areas of problem solving (Newell 8 Simon,

1972). For example, consider this information processing

definition of problem solving by Anderson (1985, pp.198-199)

which states:

Problem solving is defined as a behavior

directed toward achieving a goal. Problem

solving involves decomposing the original goal

into subgoals and these into subgoals until

subgoals are reached that can be achieved by

direct action...Problem solving can be conceived

of as a search of a problem space. The problem

space consists of physical states or knowledge

states that are achievable by the problem

solver. The problem-solving task involves

finding a sequence of operators to transform

the initial state into a goal state, in which

the goal is achieved...The working-backward

method for problem solving involves breaking

a goal into a set of subgoals whose solutions

logically imply solutions of the original

goal...The knowledge underlying problem

solving can be formalized as a set of productions

that specify actions that will achieve goals

under particular conditions.

Boose (1986); Hayes-Roth, F. Hayes-Roth (1985); and

Waterman, 8 Lenat (1983): all described expert systems that

use proposition-rules to make available to novices the

domain specific problem-solving knowledge of an expert.

Many of these systems use backward chaining and most provide

explanations to the user as to the reasoning used by the

system. O'Shea and Self (1983) observed that expert systems

could be used for imparting knowledge from an expert in a

83

field to a large number of trainees. Waterman (1986) stated

the diagnostic function of a human tutor seems ready to be

attacked with the well-established methodology of expert

systems.

!‘ t-o - a_ '0 en a for - s: o oe ; en: in

Education

In addition to the four examples of how expert systems

are being used in educational research and a look at how

expert systems could be useful in problem solving, it is

equally important to note that the theoretical body of

knowledge of expert systems also supports their potential

use in the instructional environment.

eti bod 0 kn w ed e of e .

Wensley (1987) pointed out that there are two broad fun-

ctions for expert systems: expert replacement and user

support. But the potential function of the expert system as

a training tool should not be overlooked. Our current

method of training experts, extensive experience under

apprenticeship, has not changed in centuries. With expert

systems, the experience of an expert is imbedded in the

system. Thus the novice should be able to use the system

and gain expert experience at an accelerated rate (Abdol-

mohammadi, 1987: Wensley, 1987). Thus while replacing an

expert or providing user support, the expert system could

also provide training for a novice to become an expert.

84

As regards the support function, Wensley suggests the

following uses that would be applicable to education:

First, expert systems could serve as an ”intelligent assis-

tant" to experts to check their conclusions. If the con-

clusions arrived at by the expert are different from the

conclusions produced by the expert system, the human expert

is alerted to double check the reasoning by which the con-

clusion was reached.

Second, expert systems could be used to investigate,

expand, and develop expertise. The process of developing an

expert system requires that the expert or team of experts

analyze their expertise closely and actually determine how

that expertise is applied. In the process of developing the

expert system, experts often expand their expertise and

develop expertise at a higher level. As an added benefit,

the experts might be able to spend less time checking their

conclusions, leaving them more time to work on more dif-

ficult problems.

As a third support function, expert systems could

provide users with advice. For example, IBM's expert system

that aided in troubleshooting customer complaints provided

advice to the troubleshooting consultant as to probable

cause and remediation. The expert consultant then used the

expert system's recommendation as one of the factors to be

considered when giving advice to the customer.

85

Lastly, expert systems could serve in a support func-

tion by being one of a set of learning tools to help develop

expertise in a domain. For example, an expert system devel-

oped to help students correct errors in a computer program

could not only help the student learn to correct the errors,

it could also show students the steps that an expert uses

when correcting the errors.

In summary, the theoretical body of knowledge of expert

systems indicates that a broad function of expert systems is

to provide user support. In the discussion of the user

support function of expert systems it was noted that they

help in the development of expertise, provide checks for

conclusions, provide insight into expertise, and provide ad-

vice. Note that most of these ”user” support functions are

similar to the types of support systems that good teachers

provide in an educational environment. Thus, the theoreti-

cal body of knowledge concerning the use of expert systems

supports their potential use in the instructional environ-

ment.

e ' bod w e of l a i theo .

According to cognitive psychologists, the study of higher

order thinking skills must include both the observable

actions of students and their cognitive processes (Anderson,

1985: Ausubel, 1968: Mayer, 1987). For example, how stu-

dents perceive and reason about the subject matter domain in

which they are learning must be considered along with what

86

they are learning. Experts and novices differ in their

cognitive processes. Experts do not simply have more knowl-

edge than novices, they structure the knowledge differently

and apply their knowledge using different problem-solving

strategies (Anderson, 1985). Both Ausubel (1968) and Bruner

(1960) stressed the importance of structuring the subject

matter in instruction. Keravnou and Johnson (1986) noted

that expert systems include the structure of the body of

knowledge and the domain strategies. Thus, expert systems

not only contain the knowledge of an expert, but also the

higher order rules by which that knowledge is manipulated by

the expert. Therefore, it is reasonable to attempt to use

an expert system within an instructional program to train

novices to develop both the expert's knowledge and under-

standing of the structure of the subject matter.

The body of knowledge of inexperienced problem-solvers

is relatively unstructured. As a person gains experience in

problem-solving in the knowledge domain, he gradually im-

poses more structure on this knowledge. The structure re-

flects the strategies and heuristics which have been demon-

strated as effective by experience. On the other hand,

experienced and competent problem-solvers have a knowledge

structure and a set of compatible problem-solving heuris-

tics. They have structured their factual knowledge in the

most efficient and effective way for the subject matter

domain.

87

Therefore, the potential use expert systems in educa-

tion is supported by the theoretical body of knowledge about

learning theory because expert systems contain both the

knowledge of a domain expert and the heuristics that a

domain expert would use to search the knowledge base for the

correct solution to a problem. Thus, a properly designed

expert system might enable novices to structure their knowl-

edge bases in a more effective and efficient manner and

decrease the amount of experience that a novice would need

to become an expert.

Gpigellnes for Selecping Points fg; Expert §ystem Usage

Since developing an expert system as a learning tool or

for another purpose takes time, requires additional soft-

ware, and restricts the use of the computers for other

purposes, before an attempt is made to develop an expert

system, it should be determined that the expertise repre-

sented in the expert system fills a need in the complete

process for which an expert system could be developed. In

industry or business, locating the point in the process

where an expert system could be used is not conceptually

complex: use and organizational chart to locate an expert

within the process and determine whether the expert's con-

tribution could be increased or replaced by an expert sys-

tem. However, Bosse (1986), presented several points that

88

should be considered in the actual application of this

principle:

1. The end user of the expert system should be an

apprentice in the same field who would take three to five

years to become an expert. Since expert systems contain the

structured knowledge of the expert, they also use the spe-

cial vocabulary of the domain expert. Since this special-

ized vocabulary is often meaningless jargon to people with

little or no knowledge of the field, it is necessary that

the users of the expert system already have some experience

with the subject matter domain before using the expert

system. Also, if training the novice is not a lengthy

process taking years to complete, it would be more cost

effective to merely train the novice than to develop and use

an expert system as an aid to learning to be an expert.

2. There should be someone who knows how to solve the

problem already. Expert systems capture the expertise of an

expert. If there is no existing expert, there is no source

for obtaining the expertise to place in the system.

3. The problem should not require team effort or more

than a single expert who could currently solve the problem.

Although expert systems could be developed to hold the

expertise of more than one expert, such systems are very

complex. A team approach to solving a problem may be used

when the problem is so ill-defined that it requires a group

effort to determine what is needed to solve the problem. As

89

a rule, the development of an expert system should not be

attempted unless the problem is well defined and sufficient-

ly limited so that a single expert could solve it.

4. The expert should be available to consult with

users. Expert systems, even extremely well constructed

systems, are computer programs and thus severely limited in

their ability to communicate with human beings. As users

work with the expert system, their skill will increase in

using the system, but there will be many times when the

inexperienced user will not be able to determine what input

to give to the expert system. Contact with the expert is,

therefore, essential, to provide the support that only a

human expert could give to a novice.

5. There should be a clear justification, based on

monetary, liability, or safety considerations, for develop-

ing an expert system. Expert systems should not be built

simply because the expert is available. The development of

an expert system should meet the same cost-benefit criteria

that other projects must meet.

6. The expert should be available for a sufficient

period of time during development and testing of the expert

system. If the developer of the expert system does not have

sufficient access to the expert, the information extracted

from the expert will probably be incomplete and improperly

structured. In addition, during the testing stages of the

90

system, there will need to be frequent comparisons of the

output of the expert system with the output of the expert.

7. The expert should have a collection of real cases

readily available. Such cases are necessary for both the

development and testing of the expert system because an

expert's expertise often is difficult to capture. If the

developer could observe the expert solving real cases, the

developer could gain insight into the expert's problem solv-

ing tactics. Also, the alpha testing of a system requires

many cases to test all aspects of the system.

Chaturvedi (1987) takes a structured approach to the

problem of selecting points in processes to develop expert

systems. He proposes two broad categories of problems with

which expert systems could be used: (a) those that could be

solved with an analysis approach, in which a complex problem

could be successively broken down into a number of subprob-

lems until the subproblems could be solved directly: and (b)

those that could be solved with a synthesis approach, in

which the system starts with solutions to subproblems and

combines those solutions to get a solution to the complex

problem.

Analysis is used for problems such as classification,

interpretation, evaluation, assessment or diagnosis. Ex-

amples of the types of problems requiring synthesis are

design problems and program construction problems. The

primary problem with the synthesis approach is that it is

91

necessary to search through all possible paths, which could

become explosively large in number as the number of starting

subproblems increases even slightly. Consequently solutions

for problems involving synthesis must involve heuristics.

Current expert system technology has had very limited

success with solving problems involving synthesis. Such

solutions rely very heavily on estimations and the mathe-

matics of probabilities and combinations. Currently there

are no mathematical rules for combining the probabilities of

events which are not independent. Until there are, there

probably will not be many successes with systems requiring

synthesis.

.; 16: o_ : e tin- 'oints . 'ao- ; en :a-- n

111W

v 'nst . Researchers such as

Boose (1986), Chaturvedi (1987), and Davis (1987) provide

criteria for determining where the use of an expert system

would be beneficial within the business environment. How-

ever, there is currently little research on where the use of

expert systems is appropriate within the instructional

environment. In business the function of the expert is to

reach some goal. In education the function of teachers, as

experts, is to help students reach some goal, not to reach

the goal for them. As Perelman (1987) points out, in educa-

tion the student must do the work. Thus, subject matter

92

expertise must be integrated into the instructional program

to aid students to arrive at solutions, not to provide

solutions. Such integration could be done by analyzing the

instructional task to determine both where and what type of

expertise is needed.

A specific exemple from voeahiopel data ppocessing. In

the previous chapter it was shown how the analysis technique

of data flow diagrams might help the instructional designer

determine the points within the instructional system at

which an expert system might be useful. By looking at

successive levels of the analysis, the characteristics of

the expert system could be determined.

For example, the overview of the instructional unit for

teaching students to design a computer program, [see Figure

6], indicated three points at which an expert might have

input into the system: (a) in defining the problem; (b) in

defining the processing sequence and detail process; and (c)

in debugging the program. The more detailed analysis shown

in Figures 7 and 8 indicated that expert systems for the

first two points would be synthesis systems or a combination

of analysis and synthesis. Since synthesis systems are very

difficult to develop and have been shown in the past to be

of only limited success, it seemed that an attempt to devel-

op either of these two systems would not have been desira-

ble.

0
8
.
6

D
e
I
I
n
i
t
l
o

s
o

_

L
o
g
I
c
a
l

E
r
r
o
r
s

I

D
8
.
5
I

L
o
g
i
c
a
l

E
r
r
o
r

I

L
E

8
.
.
2

8
.
3

D
e
t
e
r
m
i
n
e

T
O

L
o
g
i
c
a
l

I
E
r
r
o
r

8
.
1

I
8
.
4

I

T
y
p
e

o
f

"
'
"
'

'
.

D
e
f
i
n
e

L
o
g
i
c
a
l

E
r
r
o
r

D
e
t
e
r
m
i
n
e

D
e
t
e
r
m
i
n
e

T
Y
P
O

0
1

T
y
p
e

o
f

I

E
r
r
o
r

L
a
n
g
u
a
g
e

E
r
r
o
r

K
_
_
/

L
E

g
)

8
.
5

T
L

D
e
t
e
r
m
i
n
e

C
a
u
s
e

o
f

L
a
n
g
u
a
g
e

E
r
r
o
r

C
r
i
t
e
r
i
a

f
o
r

I

C
a
u
s
e
s
o
f

I

0
3
-
4

L
a
n
g
u
a
g
e

E
r
r
o
r
s
_
I

I
0
8
-
1

L
o
g
i
c
a
l

E
r
r
o
r

-
C
r
i
t
e
r
i
a

f
o
r

E
8
2

L
a
n
g
u
a
g
e

E
r
r
o
r
s

[
0
8
.
3
I
L
a
n
g
u
a
g
e

E
r
r
o
r
s

N
o
t
e
:

D
a
t
a

s
t
o
r
e
0
1
5
H
a
s
b
e
e
n
b
r
o
k
e
n
d
o
w
n

I
n
t
o

i
t
s
c
o
m
p
o
n
e
n
t

p
a
r
t
s
a
n
d

l
i
s
t
e
d
h
e
r
e
a
s

0
8
.
1

-
0
8
.
7

F
I
G
U
R
E

1
1
:

D
e
b
u
g
P
r
o
g
r
a
m

8
.
0

I

C
E

-
C
a
u
s
e

o
f

l
o
g
i
c
a
l

e
r
r
o
r

C
L

-
C
a
u
s
e

o
f
l
a
n
g
u
a
g
e

e
r
r
o
r

C
P

-
C
o
r
r
e
c
t
i
o
n

t
o
p
r
o
g
r
a
m

D
L

-
D
e
f
i
n
i
t
i
o
n

o
f

l
o
g
i
c
a
l

e
r
r
o
r

L
E

-
L
o
g
i
c
a
l

e
r
r
o
r

L
R

-
L
a
n
g
u
a
g
e

e
r
r
o
r

P
E

-
P
r
o
g
r
a
m

w
i
t
h

e
r
r
o
r
s

S
E

-
S
p
e
c
i
f
i
c

e
r
r
o
r

d
e
f
i
n
i
t
i
o
n

S
L

-
S
o
l
u
t
i
o
n

t
o
l
a
n
g
a
g
e

e
r
r
o
r

S
X

-
S
y
n
t
a
x

T
L

-
T
y
p
e

o
f
L
a
n
g
u
a
g
e

e
r
r
o
r

T
O

-
T
y
p
e

o
f

l
o
g
i
c
a
l

e
r
r
o
r

D
e
t
e
r
m
l
n

-

S
o
l
u
t
i
o
n

1
0

L
a
n
g
u
a
g
e

E
r
r
o
r

S
L

I
0
3

I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
s

I

D
a
t
a
B
a
s
e
s

o
f

A

0
3
-
7

E
r
r
o
r
S
o
l
u
t
i
o
n
s
J

93

94

However, the third point, shown in Figure 11, indicated

an analytic system involving classification and diagnostic

skills. Therefore, it was decided to develop an expert

system designed to aid or replace the expert debugger.

Before describing the steps in developing an expert system

for the instructional program, the process of developing

such a system in business will be described in order to

provide a context.

e o ' x

Several experts in the area of expert systems have

stated the steps necessary to develop an expert system

(Boose, 1986: Buchanan 8 Shortliffe, 1984: Hayes-Roth,

Waterman, 8 Lenat (1983): Tanimoto, 1987). Although the

approach of each of these experts is different, there is

general agreement among them as regards the basic steps.

These are: (a) Identify and clearly define the problem that

the expert system is to solve: (b) locate existing experts

that could be assigned to provide the expertise in solving

the problem: (c) develop the knowledge base and the rules

for applying the knowledge base: (d) develop a prototype

of the expert system: (e) alpha test the prototype using

actual cases: (f) make any modifications necessary to the

prototype until it appears to produce consistently the same

solutions as those produced by the human experts: (9)

document and field test the system: (h) iterate through

95

steps (a) - (g) as often as necessary: (1) release the

system for general use.

f Shells in evelo E e S stem

The many complex steps in the development of an expert

system cause most developers to attempt to simplify the

process by the use of an expert system shell. A shell for

an expert system refers to all the system's procedures but

not the application-specific knowledge: for example, the

procedures for accessing the knowledge and procedures that

generate the consequences, conclusions or decisions from the

existing knowledge base (Tanimoto, 1987). Shells are used

for rapid prototyping and could facilitate the construction

of knowledge bases. However work of formulating the knowl-

edge requires extensive interactive dialogues between a

knowledge-base building tool and one or more human experts.

Waterman (1986) listed many of the commercially available

shells and explained the differences in the way they were

designed.

Because of the complexity of analyzing and obtaining

expertise, most developmental experts agree that if there is

an expert shell available that will meet the requirements

for the system to be designed, that shell is the best choice

for developing the expert system. Ruth (1987) suggested

that two good shells for instructional systems are EXUS and

FIRST CLASS because both are goal driven, rule-based shells

96

with backward and forward chaining. Boose (1986) provided a

relatively simple description of this type of expert system.

In a simple goal driven backward chaining system, the user

picks a goal, with or without the help of the system. The

inference engine looks through all the rules that lead to

that goal and queries the user about the most direct rules

leading to that goal. This process is repeated until the

truth of the goal is established.

In a simple data driven forward chaining system, the

user gives the system certain facts and the system draws

whatever conclusions that it could from those facts. The

queries to the user are based on the traits or attributes

characteristic of the given problem domain which are stored

in the knowledge base. Also stored in the knowledge base

are appropriate goals, the heuristics of what to query, and

the desired sequencing. This information is loaded into the

expert system shell through the cooperative efforts of the

knowledge engineer and the domain expert. The knowledge

engineer must not only elicit rules from the expert, he must

also determine all the traits of the propositions and their

characteristics as well as the accompanying control informa-

tion.

Potential sources of expert knowledge for the expert

system include human experts, textbooks, data bases, ex-

amples, case studies, and personal experience. The transfer

of knowledge from human experts to knowledge bases is called

97

expertise transfer. The knowledge transferred consists of

facts, procedures, and judgmental rules in the problem

domain.

In some situations, it may be difficult to obtain

knowledge from experts because their explanations may be in

terms of idealized verbal descriptions. Also much expertise

seems to be compiled in heuristics that are accumulated over

the years and it may be difficult for experts to talk about

these compiled patterns. In such situations, knowledge

extraction techniques may be necessary.

A detailed discussion of knowledge extraction tech-

niques was presented by Waterman (1985) from Clancey (1981)

and reported by Boose (1986). They are summarized as fol-

lows: (a) observe the expert as he actually solves problems

on the job: (b) talk to the expert about the problem and

what he is doing as he solves it: (c) develop an extensive

description of the problem, with or without the help of the

expert, and have the expert react to and improve the des-

cription: (d) do a detailed task analysis of the problem:

(e) develop a prototype of the system and refine it until

the expert and the user agree that it produces the same

results as the expert: (f) examine the system objectively to

determine whether there are any weaknesses, and (g) validate

the system by comparing the system's results with the ex-

pert's results in existing documented cases, or by having

other outside experts use the system and compare its results

98

with the results they would produce for the same problem

input. Most of these techniques are usually needed when an

expert system is to be developed for a complex problem.

e n evelo 'n an E ert s n ns ct'

1h geyeloping an expert syspeh, the puxpose mush be

kepp_glee;ly_ip_hihg. As discussed previously, the purpose

of an expert system in the instructional environment is to

provide students.with the expertise of an expert so that

students could both accomplish some task requiring expertise

egg could also acquire the expertise of the expert. Thus,

an expert system in instruction must not only provide the

student with expertise, but also with an understanding of

the structure of the knowledge of the expert and the heuris-

tics used by the expert. At any point in the use of the

system, the student should not only be able to query the

system to find what knowledge is necessary, but also to find

why it is necessary, and how it fits into the whole problem.

nejp: spepe g: gevelopmenp. Drawing from the steps

used by business to develop expert systems and considering

the unique needs of instruction, this researcher proposes

the following steps in the development of an expert system.

First, the steps will be described generally and then they

will be applied specifically to the Vocational Data Proces-

sing course.

99

1. Select the point in the instructional program where

an expert system might be of use. Using an analytical

technique such as data flow diagrams, determine the points

in the instructional program at which the student may need

individualized expertise. Carefully examine the charac-

teristics of the students who will use the system and ana-

lyze the instructional program to determine the points where

expertise is likely to be needed. These points are the

points where an expert system is likely to be effective.

2. Determine if the problem is appropriate for the use

of an expert system. Determine if the expertise needed by

the student requires analysis, that is classification,

debugging, diagnosis, identification, or interpretation. As

discussed earlier, expert systems from the analysis class

are the simplest systems to develop and proposition-rule

expert systems are the simplest types of analysis systems to

develop. Because of the time and cost constraints of a

typical instructional program, educators should be wary of

attempting to design an instructional expert system that is

not from the analysis class and proposition-rule based. If

an attempt is made to develop a complex expert system, the

costs are likely to be very high and the success is less

likely.

3. Select an appropriate shell for the expert system.

As previously stated, the shell should have procedures for

accessing the knowledge base and inference procedures that

100

are appropriate for the intended application. Appropriate-

ness of shells is estimated by comparing existing applica-

tions using the shells with the task for which the expert

system is being developed. The more characteristics the

systems have in common, such as type of analysis, structure

of the subject matter, apparent heuristics for accessing the

knowledge base, the more likely it is that the shell is

appropriate. Because of time and cost constraints of a

typical instructional program, developers should be wary of

attempting to design an instructional expert system for

which there is not an appropriate shell. Expert systems

could be developed most efficiently if access and inference

procedures already exist.

4. Establish sources for the expertise to be loaded

into the expert system. Locate available reference mater-

ials which indicate how to perform the task under considera-

tion. Also locate at least one expert instructor who has

extensive successful experience with providing expert help

to students attempting to learn the task under considera-

tion, and who is willing to spend time working in the devel-

opment of the expert system. If more than one expert is to

be used, and if there is likely to be disagreement as to how

to do the task, determine in advance the criteria to be used

to determine which advice to follow.

Be certain that the expert agrees as to the correctness

of any reference materials that may be used as a guide.

101

However, if the expert differs from the reference material,

follow the advice of the expert. If the expertise of a

human expert is loaded into the expert system, the expert

system is most likely to provide the type of instructional

support that the human instructor would give.

5. Create the rule base. Work with the expert and the

reference materials to construct the rule-base in the if-

then format. Not only should the expert be asked, but, if

possible, the expert should be observed actually instructing

students in the task. Experts often do not know, or could

not tell, the heuristics that they use in performing a

complex task or instructing students in that task. By

observing the expert, comparing the expert's actions to the

reference materials and the expert's stated rules, and

querying the expert on the actual instructional content, the

rule base of the expert system is much more likely to be

accurate.

6. Create a prototype of the system and test it for

programming errors. Once the system has been programmed and

modified until there are no syntax errors, test the program

by having the expert run the program to see if the expert

agrees with the instructional aids provided by the system,

and make any changes the expert recommends. Then ask anoth-

er expert to test the system. Discuss the recommendations

of the second expert with the developmental expert.

102

When the developmental expert approves of the system,

test it on a representative sample of the target students

who will be using the system and correct any problems that

they may have with the user interface. Check to see that

the results that the students get from the expert system are

the same as the results that the expert said they should

get. When the system appears to be working properly, test

the system, comparing the outcome with a control group

receiving instruction from the expert. Make any necessary

adjustments to the system. By prototyping, testing, and

modifying the system, the expert system is most likely to be

effective as an instructional aid.

7. Continue to monitor the expert system. Use the

system with additional students and add rules or modify

existing rules as indicated. The design of expert systems

is rarely considered to be finished because the situations

for which they were designed tend to change over time.

Therefore, there should be periodic reviews built into the

use of expert systems in instruction so that the systems

will be kept current.

W.The steps in the

development of an expert system within instruction could be

more clearly seen in their application to the program

103

debugging example. Having determined where in the instruc-

tional program expertise was necessary (see Figures 6-8,11)

and having determined that the expertise needed to aid the

student in learning to debug computer programs was an an-

alytic, diagnostic system (see h_epeeifig_exemple_fxem

ypgepiehal geta ppoeessipg within the section QgiQelihee_fgx

. . ,. -. m; . .g-e - -._. n _ s LC 4,)

the next step was to find a shell that would be both reason-

ably priced and effective.

t n s e . Since the objective of the system

was to help the user to debug computer programs as an expert

would, it was necessary to find a shell that would permit

the designer to use production rules that followed closely

the top down, goal driven, breath-first problem solving

techniques used by an expert programmer (Anderson, 1985).

The top down, goal driven approach is represented by back—

ward chaining. Therefore, the shell to be chosen needed to

be capable of backward chaining and be able to group choices

into logical arrangements similar to the breath first tech-

niques used by expert programmers. In addition, the shell

had to allow explanations as to the reasoning behind the

choices, because the objective was not only for students to

be able to debug like an expert debugs, but also to under-

stand the line of reasoning involved so that the knowledge

gained would be properly structured.

. 104

Considering these requirements, this researcher chose

the shell INSIGHT, published by Level Five Research, which

was reCommended by Blaisdell (1985). Although INSIGHT was

limited to only backward chaining, it was reasonably priced

and met all other necessary requirements. Also Level Five

Research was willing to give permission to use an education-

al version of the program for testing with no additional

cost.

nd at s . The

goals and rules were determined by this researcher with the

aid of IBM's basic manual, and with the aid of a student

from a vocational data processing course who had graduated

at the top of the class. The functions of subject matter

content expert and expert vocational data processing in-

structor were performed by this researcher. Three major

goals within the area of logical errors and fifteen major

goals within the area of language errors were identified.

The production-rules were based on the expertise of this

researcher.

Qzeepihg a propopype. A prototype was developed by

this researcher and the graduate student in about forty

hours of programming time. The prototype was initially

tested for appropriateness by two graduate students who were

very competent programmers. Subgoals were added as soon as

the primary goals were working properly. The prototype was

modified as new points were noted. An additional ten hours

105

were needed to test and modify the system. After the system

was tested with students, the final count was sixty-eight

goals.

The rules were grouped so that related goals would

appear on the same screen and multiple possibilities as to

the error conditions would also be displayed on one screen.

To make the system as useful as possible for students, the

system was loaded into the background of the computer's

memory as students programmed in the foreground. If stu-

dents encountered problems for which help was desired, they

switched to the background expert system, found the desired

help, and switched back to the foreground programming ses-

sion to correct the error.

Ieehihg_phe_expexp_eyepep. The prototype was tested

with secondary vocational data processing students who were

learning to develop programs using the BASIC programming

language. Before going to the computer room, students used

Input-Process-Output sheets, layout sheets, and program

flowcharts to design their programs. In a typical computer

session, the student placed a system disk containing the

expert system, Double Dos, which is a program which parti-

tions computer memory and permits more than one program to

run on the same computer concurrently, and BASIC into the

system drive of an IBM compatible computer and turned on the

computer. The auto—execute file on the disk loaded Double

Dos. The Double Dos program partitioned the computer's

106

memory so one part contained 250,000 bytes of memory and the

other portion contained whatever additional memory the

computer had available. Double Dos then loaded the expert

system into the 250,000 byte portion of the memory and made

that portion inactive, or background. Double Dos loaded

BASIC into the other portion of the computer's memory, made

that portion active, set the switch between memory portions

to be the combination of the ALT and ESC key, executed BASIC

so that the ready prompt was displayed, and turned control

of the computer over to the student. This entire process

took approximately one and one-half minutes. Loading BASIC

directly took the typical student approximately one minute.

If students were continuing from earlier computer ses-

sions, they would load their existing BASIC program and con-

tinue their work. If students were starting new programs,

they would start typing a new program into the computer.

When students reached the point where they were ready to

test their programs, they typed RUN, causing one of three

actions to occur: (a) the program ran as the student an-

ticipated: (b) the program ran, but did not run as the

student anticipated: or (c) the program would not run.

To clarify the interface between the student and the expert

system, two examples of how a student might interact with

this expert system are given. The first example will be of a

logical error and the second example will be of a syntax

error e

Ci

ti.

th

107

1. Having entered a portion of the program to test,

the student typed RUN and pressed enter. However, instead

of running properly, the program continued to execute and

did not stop. Being inexperienced and not knowing how to

handle this problem, the student activated the expert system

by pressing ALT and ESC together, a key combination the

student often used in other computer classwork to change

between applications. The student was asked by the expert

system to indicate whether the problem was a logic error or

a language error.

For each question the expert system asked, there were

expand screens that could give the student more information.

These expand screens could be activated from a menu of func-

tion keys that always appeared at the bottom of the stu-

dent's screen. In addition, for each question the student

could indicate that the answer to the question was not

known, and the expert system would then ask a series of

questions to help the student answer the question.

For this example, the student either indicated direct-

ly, or by answering a series of determining questions, that

the error was a logic error. The expert system then dis-

played information about logic errors and their typical

causes. The student was asked to indicate whether or not

the program stopped. In this case the student indicated

that the program did not stop. The expert system asked if

the program had a menu or used the KEYWORD INPUT. If the

108

student indicated that there was no menu and INPUT was used,

the expert system displayed information about the use of the

INPUT statement and the function of trip data. Then the

expert system asked the student if the trip data check was

the line of code immediately following the INPUT line. If

the student indicated that it was not, a screen was dis-

played that explained the function of the check for a trip

data and provided two examples of the proper use of trip

data. The student was then told a logic error in which the

program did not stop had occurred and to correct the error

by checking for trip data input. If the student indicated

that there was a trip record in the program, the expert

system displayed two screens explaining the use of GO TO

statements and explained how to use the trace function to

locate the line numbers that were being executed in a loop.

The student was then told that a logic error in which the

program does not stop had occurred and to correct the error

by changing the GO TO statement.

Having been told the probable cause of the error, given

examples of the proper use of the KEYWORD causing the error,

and told how to correct the error, the student pressed the

ALT and ESC key together and returned to the basic program,

which was still running. The student then made the correc-

tion suggested by the expert system and executed the program

again.

109

2. Having entered a portion of the program to test,

the student typed RUN and pressed enter. However, instead

of running properly, the program executed for a short time

and then printed the message "out of data in line xxx." The

student followed the same procedures followed by the student

in example 1, except that for this example, the student

either indicated directly, or by answering a series deter-

mining questions, that the error was a language error. The

expert system then displayed information about language

errors and their typical causes. The student was given a

list of language errors and asked to indicate the one given

by the program in error. In this case, the student selected

the out of data error. The computer then displayed a screen

containing an explanation of the six most common programming

mistakes that could cause this error. The expert system

then asked the student to indicate which of these six errors

had caused the error message. If the student selected an

error, two screens were displayed which explained the func-

tion of the READ statement and how to check for trip data.

Examples were provided of the proper use of READ and DATA

statements or of matching the DATA and READ variables. The

student was then told that a language error in which an out

of data message had occurred and to correct the error for

whichever of the six methods the student had indicated

caused the problem.

110

If the student indicated that the cause of the out of

data error was not known, the expert system displayed two

screens that explained the characteristics of the six most

common programming mistakes that could cause this error.

The expert system then asked the student a series of ques-

tions that helped determine which specific error had caused

the problem.. For example, first it asked if there was a

check for trip data after the READ statement. Although trip

data was explained on the screen that described the most

probable cause of the out of data error, expand screens were

available so that if the student asked for help, the term

trip data would be explained and several examples of the

proper use of trip data with a READ would be given. If the

student indicated that there was a check for trip data, the

expert system asked the student if the trip data were in the

DATA statement. If the student indicated that trip data

were in the DATA statement, the expert system asked the

student if the value of the data in the check trip data

statement matched the value of the data in the DATA state-

ment. If the student indicated that it did, the expert

system asked the student if the trip data were being as-

signed to the same variable that was being used in the trip

data check. If the student indicated that it was, the

expert system asked the student if for every variable in the

READ statement there was a value in the data statement. If

the student indicated that there was, the expert system

111

asked the student if the variables in the READ statement

matched the data in the DATA statement.

If the answers to any of the above questions would have

been no, the error would have been located and the expert

system would have displayed a screen telling the student how

to correct that particular error. The student would then

have been told that a language error in which there was an

out of data message had occurred and to correct the error by

whichever of the six methods the student had indicated

caused the problem.

Having been told the probable cause of the error, given

examples of the proper use of the KEYWORD causing the error,

and told how to correct the error, the student pressed the

ALT and ESC key together and returned to the basic program.

The student then made the correction suggested by the expert

system and executed the program again.

However, if the student indicated that the last ques-

tion to be asked did not indicate the error, the student was

told that a language error in which there was an out of data

message had occurred but that the expert system could not

determine the correction for the error. The student could

then ask the expert system what reason it had for asking all

the questions. The expert system would then step through

each of the inference rules the system had used and list the

goal to which it was directed. In this example the explana-

tion would be: The question "the program runs is true or

112

false" was asked to determine that ”the error belongs to

language errors." The list of possible syntax errors was

presented to determine that "the error was out of data".

The question "the error is no check for trip data after the

READ” was asked to determine "correct error by checking for

trip data after the Read." The question "the error is no

trip data in the Data statements" was asked to determine

”correct error by adding trip data to DATA statements".

This display of the questions asked and the conclusion that

would have been given if the answer had been no would con-

tinue until all the questions asked by the system had been

displayed. Then the expert system would have printed "the

information provided was not sufficient to reach a conclu-

sion." The student would have gone through this presenta-

tion of questions and their possible conclusions to see if

the answer given had been incorrect or if the cause of the

error could be determined by merely using the expert sys-

tem's line of reasoning. If the student could not determine

the error after asking the expert system to explain its

reasoning, the student would need to ask a human expert for

help.-

0 n h ex e s . As students used the

system, some situations occurred for which the expert system

did not have rules or where the rules were unclear. In such

situations, new rules were added or existing rules modified.

The final system required seventy-two rules. In addition,

113

several points were discovered where the students did not

understand the system's questions and needed more informa-

tion. Expand screens were made available for these more

complex situations. Displays were added for each goal and

subgoal, that explained the rationale underlying the solu-

tion. The modifications took approximately ten additional

hours of programming time, making the total programming

hours approximately sixty. A printout of latest version of

the expert system is given in Appendix C.

CHAPTER FIVE

DISCUSSION AND RECOMMENDATIONS

Segmezy ef the Study Reported

This dissertation discussed the increased need for

efficient and effective instruction of high level intellec-

tual skills in order to meet the challenges of the Informa-

tion Age. It was noted that learning theories and instruc—

tional design theories had been developed that dealt with

cognitive processing, but that the tools currently used by

instructional designers did not readily facilitate the

teaching of cognitive processes. Several specific problems

with one current design technique were identified and dis-

cussed. These were: (a) inadequate consideration for need

for expertise and knowledge, (b) insufficient focus on

needed information, (c) limitations created by expressing

cognitive skills in a task format, (d) lack of consider-

ation for the interrelationships among topics and processes

in the instruction, and (e) lack of convenient ways to

explain a course to interested, content-area-naive, parties.

Thus, the conclusion was reached that there is a need for

instructional design techniques that permit developers to

apply learning and instructional theories more effectively,

especially in the indicated problem areas.

114

115

Next it was noted that business and industry had also

been affected by the Information Age. The suggestion was

made that data flow diagrams and expert systems, two tools

and techniques developed by MIS to handle information, might

also be of use within instructional design. The broad

questions were addressed within the discussion of the spe-

cific questions. The five questions about the use of these

tools were addressed as follows:

1. How might the use of data flow diagrams in the

design of a particular secondary vocational data processing

course provide information about the relationships between

major chunks of instruction, that is courses, units, chap-

ters, and lessons: or the major cognitive processes within

the chunks? By using data flow diagrams to develop part of

the design of a secondary vocational data processing course

and examining several levels of the design, the answer was

determined that data flow diagrams indicated the passing of

information between the units of instruction and processes

within the programming unit as well as indicating the se-

quencing among the units and processes. This information

was not available in the Michigan Vocational Data Processing

Curriculum Guide designed using current design techniques.

Before attempting to address the first broad question,

part of a set of data flow diagrams used to design an inter-

active video unit for veterinary medicine was examined. It

was noted that the data flow diagram of the entire course

116

structure showed that three units of the course would add to

the students' knowledge bases, while a fourth unit would

require students to access information from their knowledge

bases. In addition, it showed that information developed in

some units of the course was needed in other units. Thus it

showed some of the ways that the units were interrelated.

After examining these two demonstrations in which data

flow diagrams were used to design very different types of

instruction, the answer for the first broad question was

determined: the MIS design tool, data flow diagrams, might

provide information in the instructional design process.

2. How might data flow diagrams used to design a particular

secondary vocational data processing course indicate what

information might be needed by students at various points of

the instructional program? The data flow diagrams that were

developed to answer the first specific question also indi-

cated the location and various types of information that

might be needed by students for each of the major processes

and also indicated where the same information was needed for

more than one process.

When the data flow diagrams for the design of the

veterinary medicine courseware were examined they provided:

a structure that corresponded to the presentation format

used in instruction developed for interactive video: a

graphic representation of points where the instruction

needed to provide opportunities for remediation: a way of

117

classifying the instructional events as attitudes, facts,

concepts, and principles for appropriate presentation for-

mats: and the data necessary to estimate the potential cost

of developing the system.

After examining these two demonstrations in which data

flow diagrams were used to design very different types of

instruction, the answer for the second broad question was

determined: the MIS design tool data flow diagrams could

indicate what information might be needed by students at

various points of the instructional program. In addition,

data flow diagrams could provide information that might be

used to develop interactive video courseware.

3. How was the use of data flow diagrams to design MIS

systems modified to use data flow diagrams to design a

particular data processing course? To use the data flow

diagram technique to design the course this researcher

modified the technique to use: (a) the shadowed square to

indicate points that were dependent on the individual stu-

dents: (b) the rounded rectangle to indicate points where

the students organize, interpret, or transform information:

and (c) rectangles to show internally stored information as

well as external stores. In addition, this researcher did

not use the instructional dictionary if the information it

contained was probably known to the developer or teacher.

The third broad question was discussed in the context

of how data flow diagrams were used in business and how they

118

might be used in instructional design. One modification

that might be made is that the symbols used in business to

show activities that were not directly a part of the infor-

mation system might be used in instruction to show points

that are dependent on the individual students or where

expert help might be needed. A second possible modification

might be that the data dictionary used by business is elwaye

developed to show the specific details about the informa-

tion, but the instructional dictionary might not always be

used. For example where the need for cognitive strategies

was shown in the design of the instruction for the cognitive

skill programming, the instructional dictionary was not

used, but the dictionary was very important when it con-

tained the specific instructional events that were a part of

the interactive video course in pain control. A third

possible modification might be that when the purpose of the

instruction is to use interactive video courseware to add to

students' knowledge bases, the information stores might not

be grouped by topic, but might be grouped by type of in-

structional events to facilitate the development of the

presentation modules and to estimate developmental costs.

4. How might data flow diagrams used to design a

particular instructional program to teach the problem sol-

ving skill, computer programming, indicate potential points

in the instruction where expert systems might be used to

provide students with expert help? Through the development

119

and examination of data flow diagrams for the problem solv-

ing skill, computer programming, the answer was determined

that points in the instructional program were indicated

where expert systems might be used to provide the expert

help needed by the students. From this example the answer

to the fourth broad question was determined: when the

objective is to teach complex cognitive processes such as

problem solving, data flow diagrams might indicate points in

an instructional program where individualized expert help

typically might be provided. I

Having discussed the use of data flow diagram in in-

structional design, the second tool from business, expert

systems, was examined to address the fifth specific ques-

tion:

5. How were steps used to develop MIS expert systems

modified to develop an expert system to help teach students

in the data processing course how to debug BASIC computer

programs? After discussing several examples of expert

systems in both business and education, the differences

between expert systems designed for businesses and expert

systems designed for instruction were discussed. The steps

required to develop expert systems in business were dis-

cussed and a specific example of the development of an

expert system for debugging BASIC computer programs was pre-

sented. The development of this expert system took seven

steps: select the point in the instructional program where

120

an expert system might be of use: determine if the problem

is appropriate for the use of an expert system: select an

appropriate shell for the expert system: establish sources

for the expertise to be loaded into the expert system:

create the rule base: create a prototype of the system and

test it for programming errors: and continue to monitor the

expert system.

By comparing the development steps of this expert

system for debugging to the general steps for developing an

expert system for business, the answer to the fifth broad

question was determined. The development of the expert

system used as a tool within an instructional program might

be different from the development of an expert system for

business use in several ways:

1. In business applications, the problem is clearly

defined and the expert is located as the first steps. In

instruction, the need for expert help is not as discernable

and the first steps are to locate the need and see if the

problem is appropriate for the use of an expert system.

2. In business applications, expert systems are built

using whatever techniques the developers think are appro-

priate. In instruction, the financial constraints suggest

the selection of an expert shell for typical classroom

usage.

3. In business, expert systems can be built that have

extensive knowledge bases and rules for applying the

121

knowledge. In instruction, financial and time constraints

might limit the development of expert systems to systems

that can be built from rule bases.

4. In business, the expert system must be extensively

tested and documented before being released for general use.

In instruction, the expert system supplements rather than

replaces the expert teacher so that the testing process

might be less extensive before the system is used.

5. In business, the expert system is released for use.

In instruction, continued monitoring of the system might be

established to keep the system current.

Recommendations

Despite the limitations to this study, it was demon-

strated that an instructional developer can examine and

improve the tools and techniques currently used to design

instructional systems. The discussion and examples pre-

sented suggested that data flow diagrams and expert systems

might provide some improvement. Several areas of study

might prove to be beneficial. One of the greatest research

needs in this area is to determine the impact of data flow

diagrams and expert systems in a wide variety of instruc-

tional systems, especially in those that do not involve com-

puters. Specifically:

1. Do data flow diagrams provide equally useful

information for more structured subject matter areas than

122

for less structured subject matter areas: for example,

mathematics/science, on the one hand, versus language arts

and the social sciences on the other hand?

2. Do data flow diagrams provide useful information to

teachers of different levels of subject matter experience

and expertise?

3. Do data flow diagrams provide useful information

for instruction for students of different grade levels?

4. Can teachers with limited experience with systems

analysis techniques use data flow diagrams without extensive

training in their use?

5. Can instructional designers with limited experience

with systems analysis techniques develop data flow diagrams

without extensive training in their use?

6. Will the information provided in data flow diagrams

enable teachers to determine appropriate media for the‘

delivery of the instructional events?

7. Will non-instructional stakeholders understand data

flow diagrams of instructional programs? If so, will their

understanding depend on the subject matter content or with

their familiarity with the subject matter content?

8. Will inexperienced teachers teach higher order

cognitive skills more effectively if they are given data

flow diagrams of the known processes that compose these

skills than if they are given only conventional information

123

about the skills, such as task lists and lists of objec-

tives?

9. Will students that are provided help by an expert

system learn to do the task as well as students that are

provided help by a human expert? Will there be an interac-

tion with grade level?

10. Will students want to get help from an expert

system or will they want their help to come from a person?

11. Will students using expert systems learn the pro-

cesses involved in a higher order cognitive skill in addi-

tion to demonstrating the behavioral manifestation of the

skill?

12. When applied to different subject matter areas,

will data flow diagrams indicate points at which students

require help?

13. Will expert systems provide help in diagnostic

areas less structured than computer program debugging, for

example in debugging an English composition or a history

report?

A second major area for additional study concerns the

effectiveness and efficiency of the data flow diagram tech-

nique in instructional design and of the expert system as an

instructional delivery tool. Specifically:

1. Will the extra time needed to develop data flow

diagrams as a part of instructional design improve the

instruction sufficiently to justify the additional cost?

124

2. How effective and efficient is the use of data flow

diagrams to design instructional systems compared to other

MIS structured system design techniques (Davis 8 Olson,

1985) such as top-down design with stepwise refinements

(graphically illustrated with hierarchy charts), Structured

Analysis and Design Technique (SADT), and Hierarchy-Input-

Process-Output (HIPO), or with the new Computer Aided Soft-

ware Engineering techniques (CASE)?

3. Will teachers use data flow diagrams to make in-

structional decisions?

4. Will providing students with expert systems be cost

effective? If it costs more to provide students with expert

systems than it did to provide them with competent tutors,

would there be any advantages to using expert systems?

5. Would parents, administrators, teachers, and stu-

dents be willing to accept the "expertise" of a machine?

6. Would teachers feel threatened by the use of expert

systems to teach higher order thinking skills?

The use of data flow diagrams in the design of inter-

active video instruction seems especially promising, but

many questions still require more study. Specifically:

1. Will data flow diagrams consistently show where

access to previously presented materials needs to be made?

2. Will the instructional designer be able to make

estimates of the cost and time necessary to develop the

courseware from the data flow diagrams?

125

3. Will the developer be able to maintain the flow of

the instruction when the instructional dictionary treats

each instructional event independently?

4. Will such factors as the importance and difficulty

for each instructional event provide specific information

about the time, cost, and most appropriate media to use in

developing the courseware?

5. Will experienced designers, developers, and authors

be able to use the data flow diagrams effectively when

designing interactive video courseware?

The discussion of problems with current instructional

design techniques was primarily based on the curriculum

produced by one technique in one subject area. More in-

structional design and development systems need to be ex-

amined to see if other systems have problems similar to the

ones found in the development of the data processing cur-

riculum.

One of the unanticipated findings of this study in the

use of data flow diagrams was that the instructional dic-

tionary was different for the two examples given, which

represent the design of different types of instruction,

which represented different cognitive processes. If the

same flexible design tool were used for a variety of in-

structional design problems and the differences among the

different designs were studied, perhaps some insights into

different cognitive processes might be found.‘ Many

126

different types of courses need to be designed using data

flow diagrams and the results compared to see if there are

any observable differences in the data flow diagrams that

suggest possible differences in cognitive processing.

Qooions

Even if expert systems prove to be efficient and effec-

tive instructional tools, their use still should be care—

fully researched. Wensley (1987) pointed out that there are

psychological as well as cognitive characteristics of ex-

perts. Expert systems currently can only attempt to model

the cognitive characteristics. Adams 8 Hamm (1987) stated:

expert systems work, but they miss much of the subtle,

experience-based wisdom of human experts even as they allow

for acquisition of some elements of an expert's knowledge.

Unfortunately, the best expert systems that could be made

within instructional budgets give only a mechanistic rule-

governed simulation of the lowest stage of an expert's

cognitive skill. Anything approaching higher levels of

human thought is still on the technological horizon.

GLOSSARY

GLOSSARY OF TERMS IN THIS DISSERTATION

Agricultural Age - a period of time in which the economy

is built on the growing of food and the majority of

the workers have jobs working on farms.

Alpha testing: preliminary testing of a computer

program by the developers of the program. Alpha

testing is designed to find any cases that are not

properly addressed by the system so that the system

can be modified to handle all possible cases.

Artificial intelligence (AI) - a field of study that

uses computers to model the information processing

characteristics of humans.

Authoring - the process of writing instructional computer

recognizable code using a language specifically designed

for the development of instructional materials.

Backward chaining: working from the goal toward the

given data.

Breath-first problem solving technique: a technique

where a computer programmer finishes programming

portions of a program that are similar to portions of

programs previously done before even starting

other portions of the program which may be

less familiar.

Chunk: A collection of interrelated facts, concepts, prin-

ciples, attitudes, images, sounds, and feelings that can

be manipulated cognitively as a single unit. "A maximal

familiar substructure of the stimulus (Simon, 1981, p.

80). "any configuration that is familiar to the subject

and can be recognized by him (Simon 8 Newell, 1972, pp.

780-781).

Computer aided instruction (CAI) - any instruction that

uses a computer for the delivery of the instruction.

(see programed instruction)

Data flow diagrams - A manner of graphically documenting

the flow of data and the procedures used within an

information system using four symbols to show: (1)

source or destination of data, (2) flow of data, (3)

processes which transform flows of data, and (4)

storage of data.

127

128

Debugging - in computer programming, the correction of

logical or syntactic errors in a computer program or

system. In problem solving, the process of locating

and correcting errors in a solution.

Expertise transfer is the transfer of knowledge from human

experts to expert system knowledge bases.

Expert system - a computer program that simulates the

cognitive processes of a human expert. Expert systems

are an applied form of artificial intelligence.

Expert System Shells: expert systems for which the

inference engine has been designed, but the knowledge

base and the rules are left blank so that applications

can be developed by entering the domain specific

application knowledge base and rules.

Forward chaining: a method of problem solving that

starts with the given or input and moves toward the

goal.

Heuristics: rule-of-thumb knowledge that enables experts to

make educated guesses when necessary, and to deal with

incomplete or inconsistent information (Boose, 1986).

If-then or if-then-else format: Rules in the form of

proposition, truth inference, negation inference. For

example: If the program runs, the error is an error in

logic else the error is a language error.

Industrial Age - a period of time in which the economy

is built on the production of goods and a majority of

the workers have jobs directly involved with the

production of goods.

Inference engine: procedures that generate the

consequences, conclusions or decisions from the

existing knowledge base.

Information Age - a period of time in which the economy

is based primarily on information processing and a

majority of the workers have technical, managerial,

and clerical jobs.

Information system - a system to organize data in a

meaningful fashion to produce information. The basic

model consists of input, process, storage, and output,

but in recent years distribution has come to be

considered a part of the system. (see Management

Information Systems)

129

Instructional Design - see instructional systems design.

Instructional Systems Design: the total set of procedures

that are followed in planning, developing, implementing,

and evaluating instruction. The procedures are derived

from knowledge of human learning relevant for instruction

and from the results of empirical data obtained during

tryouts of preplanned instruction. (Aronson 8 Briggs,

1983, p. 99)

Intelligent Computer Aided Instruction (ICAI)- a form of

computer aided instruction where the characteristics

of human tutoring are incorporated into the program

allowing instruction to adjust to different individual

student aptitudes. (see computer aided instruction)

Knowledge base: production rules, semantic networks,

frames, relational database and inference rules

critical to a specific domain application.

Loading an expert system shell: The process on entering

the knowledge base and rules into a computer program

that already has developed procedures for accessing

the knowledge base and applying the rules.

Natural language is a language that has developed over time

as part of the process of human interaction.

Management information systems (MIS) - a branch of computer

science/data processing concerned with the organization

and coordination of the information owned by a company so

that not only are day-to-day transactions processed, but

all levels of management are supplied with information

and supported in the use of technological tools for

decision making.

Problem solving - a higher order intellectual skill

consisting of the ability to make decisions or choices

by using multiple pieces of information.

Production-rule expert system: a relatively simple

expert system that consists of productions and rules

in the IF...THEN...Else format.

Programed instruction - instruction designed to present

learning in a step/sequence order, accompanied by

reinforcement. In recent years, programed instruction

has often implied drill and practice types of computer

aided instruction.

130

Prototyping: a method of development of computer programs

or systems that avoids extensive analysis and design

phases in development by creating working models of the

program or system. These models are tested and expanded

or modified until the complete system is finished. This

technique is usually significantly faster than any other

design techniques but risk omission of important

functions that were not considered during initial

development. Usually systems built by the prototype

method require frequent modification after installation.

Prototype: a working model of a system based on

information about the functions of the system. It is

the product of prototyping.

Rule-base: the collection of rules that indicate how

decisions are made or conclusions are reached in a

subject matter domain.

Shell: See Expert System Shell

Structured design methodology - the use of systems

concepts to decompose an information system into

functional subsystems and to define the boundaries and

interfaces of each subsystem.

Technological society - a society where the use of

technology has a major role in the performance of

routine activities.

User interface: a way of communicating with the user.

In expert systems, the user interface should close to

the user's natural language.

Working memory: for an expert system, a temporary

storage area to hold the immediately relevant portions

of the knowledge base, the user's responses, and the

current inference.

APPENDIX A

APPENDIX A

CURRENT INSTRUCTIONAL SYSTEMS AND DEVELOPMENTS

This appendix contains:

Five

Task

task

instructional systems models:

Core Elements Andrews/Goodson Tasks (page 132)

Stages of Instructional Design (page 133)

Courseware Design Model (page 134)

Michigan State University Instructional

Systems Procedure Model (page 136)

Information Relationships Among Learning

System Design Procedures. (page 137)

lists from theWW:

Data Entry tasks (page 138)

Computer Operations tasks (page 140)

Computer Programming tasks (page 143)

worksheets from the Guide:

CP-2 (page 146)

CP-5 (page 150)

CP-ll (page 154)

CP-15 (page 158)

131

FIVE INSTRUCTIONAL SYSTEMS MODELS

Core Elements Andrews/Goodson Tasks

Determine learner

needs

Assessment of need, problem identification

occupational analysis, competence, or

training requirements

Characterization of learner population

Determine goals and

objectives

Formulation of broad goals and detailed

subgoals stated in observable terms

Analysis of goals and subgoals for types

of skills/learning required

Sequencing of goals and subgoals to

facilitate learning

Construct assessment Development of pretest and post-test

procedures Matching goals and subgoals

Design/select

delivery approaches

Formulation of instructional strategy to

match subject-matter and learner

requirements

Selection of media to implement strategies

Development of courseware based on

strategies

Consideration of alternative solutions to

-instruction

Try-out

instructional

system

Empirical try-out of courseware with

learner population, diagnosis of learning

and courseware failures, and revision of

courseware based on diagnosis

Install and

maintain system

Formulation of system and environmental

descriptions and identification of

constraints

Development of materials and procedures

for installing, maintaining, and

periodically repairing the instructional

program

Costing instructional program

Richey (1986,p 96) and Andrews and Goodson (1980)

Figure 12: Comparison of Core Elements and Common Tasks

132

10.

11.

12.

13..

14.

15.

Stages of Instructional Design

Assessment of needs, goals, and priorities

Assessment of resources and constraints, and selection of

a delivery system

Identification of curriculum and course scope and se-

quence

Determination of gross structure of courses

Determination of sequence of unit and specific objectives

Definition of performance objectives

Analysis of objectives for sequencing of enablers

Preparation of assessments of learner performance

Designing lessons and materials: (a) instructional

events: (b) media: (c) prescriptions (utilizing ap-

propriate conditions of learning)

Development of media, materials, activities

Formative evaluation

Field tests and revisions

Instructor training

Summative evaluation

Diffusion and operational installation

Briggs and Wager (1981, 5)

Figure 13: Stages of Instructional Design

133

P
H
A
S
E
I
:

D
E
S
I
G
N

S
t
a
t
e

R
e
v
i
s
i
o
n
C
y
c
l
e

P
e
r
f
o
r
m

I
D
e
v
e
l
o
p

I

i
n
s
t
r
u
c
t
i
o
n
a
l

i
n
s
t
r
u
c
t
i
o
n
a
l

p
e
r
f
o
r
m
a
n
c
e

a
n
a
l
y
s
i
s

A
o
b
j
e
c
t
i
v
e
s

 P
H
A
S
E

i
i
:

P
H
A
S
E

I
l
l
:

P
R
E
-
P
R
O
G
R
A
I
I
I
‘
I
I
N
G
D
E
V
E
L
O
P
M
E
N
T

D
e
v
e
l
o
p

t
e
s
t
i
n
g

s
t
r
a
t
a

!
i
e
s

R
e
v
i
s
i
o
n
C
y
c
l
e

L
R
O
V
I
S
I
O
D
C
9
6
1
8

D
e
v
e
l
o
p

f
l
o
w
c
h
a
r
t
s
a

3
1
0

b
o
a
r
d
s

D
e
v
e
l
o
p

s
u
p
p
o
r
t 1

D
E
V
E
L
O
P
M
E
N
T
I
E
V
A
L
U
A
T
I
O
N

R
e
v
i
s
i
o
n
C
y
c
l
e

I
R
e
v
i
s
i
o
n
C
y
c
l
e

P
r
o
g
r
a
m

f
i
r
s
t
-
d
r
a
f
t

m
a
t
e
r
i
a
l
s

P
e
r
f
o
r
m

f
o
r
m
a
t
i
v
e

e
v
a
l
u
a
t
i
o
n

1

D
e
s
i
g
n
t
e
a
m

r
e
v
i
e
w
a
n
d

r
e
v
i
s
i
o
n

b
e
f
o
r
e
p
g
m
‘
g

9

D
e
s
i
g
n

i
n
s
t
r
u
c
t
i
o
n
a
l

s
t
r
a
t
e
g
i
e
s

P
H
A
S
E

il
l
)

f
R
e
v
i
s
i
o
n
C
y
c
l
e

R
o
b
l
y
e
r
a
n
d
H
a
l
l
(
1
9
8
5
)

F
i
g
u
r
e

1
4
:
C
o
u
r
s
e
w
a
r
e
D
e
s
i
g
n
M
o
d
e
l

1

E
N
D

P
H
A
S
E
I
n

134

135

Various curriculum committees state goals in broad

terms

Instructor meets with Instructional Specialist

Instructor assesses course limits, number of students,

available finances, materials, etc.

Evaluation Specialist joins Instructor and Instructional

Specialist to assist in description of specific

objectives, content and behavoir

Instructor and Evaluation Specialist develop testing

situations which measure defined behavior

Instructor and Instructional Specialist compile completed

input information

Instructor and Instructional Specialist decide on group

size, teacher student ratio contact, communication

methods, experience factore, ect., based on theroy of

instruction

Instructor, Instructional Specialist, Media Specialist,

and other resource persons decide on information sources

and exemplars

Instructor and Media Specialist determine best models

based on perception and learning theory

Instructor and Media Specialist determine which of

various media is called for at points within the system

Instructor, Evaluation. Specialist, and Instructional

Specialist conduct representative dry runs of system

packages

Instructor, Instructional Specialist and Media Specialist

check feasibility' of system.‘with live audience and

related test samples

Hamreus, 1968, p. I-59

Figure 15: Legend

136

A etermine Broad Educational Goals

College - School - Dept. - Course

a

C [Gather Input Data |

L ,

D pacify Entry and Terminal BehaviorI

Develop Rationale fo E

Pre and Post Exams

otal Input Data Combined]

Plan Strategies G I

H [Develop Teaching ExamplesI

of Determined Content

I ,

| [Choose Representative Information Formq

l

[Decide on Transmission Vehiclefi
I ,

J ,

Eollect, Design, Produce Specified Media]

' K [Dry Run-Through]
Develop Evaluation I

Instruments with Field Test Samples

tudent Data as Well L ith Student Group

5 Media Information *

l

Locate and Correct Flawsl

pplication to Course |
J ,

Evaluation and Re-Cycle

To Refine as Necessary

Note: Information feedback loops have been

deleted from this illustration.

Hamreus, 1968, p. l-59

Figure 15: Michigan State University Instructional Systems

Procedure Model.

 D
e
s
i
g
n

P
r
o
c
o
d
i
r
e

I
n
f
o
r
m
a
t
i
o
n
R
a
m
i
r
e
d

f
o
r

P
r
a
c
t
i
c
e

t
h
a
n

i
n
f
o
r
m
a
t
i
o
n

i
s
U
s
e
d

1
.
D
e
s
c
r
i
b
e

c
u
r
r
e
n
t

s
t
a
t
u
s

o
f

s
y
s
t
e
m

t
h
a
t

r
e
s
o
u
r
c
e
s
d
o

i
n
e
e
d
?

t
h
a
t
:

r
e
s
o
u
r
c
e
s

d
o

I
h
a
v
e

t
o
w
o
r
k

w
i
t
h
?

l
i
s
t
:

l
i
m
i
t
a
t
i
o
n
s

a
n
d
c
o
n
s
t
r
a
i
n
t
s

m
u
s
t

I
c
o
n
s
i
d
e
r
?

(
E
x
a
n
p
l
e
s
:

t
i
m
e
;

s
t
u
d
e
n
t

e
n
t
r
y

s
k
i
l
l
s
;

e
d
s
i
n
i
s
t
r
a
t
i
v
e

r
u
l
e
s
;

s
p
a
c
e
)

D
e
r
i
v
i
n
g

a
n
d
w
r
i
t
i
n
g

o
b
j
e
c
t
i
v
e
s

D
e
s
i
g
n
i
n
g

i
n
s
t
r
u
c
t
i
o
n
a
l

p
r
o
c
e
d
u
r
e
s

F
o
m
l
a
t
i
n
g

a
n
d

i
m
l
e
m
s
n
t
i
n
g

e
v
a
l
u
a
t
i
o
n

p
l
a
n

 2
.

D
e
r
i
v
e

a
n
d

w
r
i
t
e

l
e
a
r
n
i
n
g

o
b
j
e
c
t
i
v
e
s

G
o
a
l
s

R
e
f
s
r
e
n
t

s
i
t
u
a
t
i
o
n

a
n
a
l
y
s
i
s

S
t
b
j
e
c
t

m
a
t
t
e
r

a
r
e
a
s

R
e
s
o
u
r
c
e
s

a
n
d

l
i
m
i
t
a
t
i
o
n
s

F
o
r
n
i
a
l
t
e

e
v
a
l
u
a
t
i
o
n

p
l
a
n
s
.

D
e
s
c
r
i
b
e

a
n
d

a
n
a
l
y
z
e

t
a
s
k
s
.

I
n
s
t
r
u
c
t
i
o
n
a
l

p
r
o
c
e
d
i
r
s
s
.

F
e
e
d
o
s
c
k

t
o

r
e
f
e
r
e
n
t

a
n
d

l
e
a
r
n
i
n
g

s
y
s
t
e
m
d
e
s
c
r
i
p
t
i
o
n
.

 3
.

f
o
r
m
i
a
t
e

e
v
a
l
u
a
t
i
o
n

p
l
a
n
s

O
b
j
e
c
t
i
v
e
s

R
e
s
o
u
r
c
e
s

a
n
d

l
i
m
i
t
a
t
i
o
n
s

I
l
i
p
l
e
f
n
e
n
t

o
v
a
l
.

p
l
a
n
:

a
s
s
e
s
s
m
e
n
t

o
f

s
t
u
d
e
n
t

a
c
h
i
e
v
e
m
e
n
t
.

R
e
d
e
s
i
g
n

o
f

l
e
a
r
n
i
n
g

s
y
s
t
e
m
.

P
u
s
h
e
d
:

t
o

o
b
j
.

 4
.

D
e
s
c
r
i
b
e

a
n
d

a
n
a
l
y
z
e

t
a
s
k
s

O
b
j
e
c
t
i
v
e
s

R
e
f
e
r
e
n
f
:

s
i
t
u
a
t
i
o
n

a
n
a
l
y
s
i
s

D
e
s
i
g
n
a
n
d

i
n
p
l
e
m
e
n
t

i
n
s
t
r
u
c
t
i
o
n
a
l

p
r
o
c
e
d
u
r
e
s
.

F
e
e
d
o
a
c
k

t
o

o
b
j
e
c
t
i
v
e
s

a
n
d

e
v
a
l
u
a
t
i
o
n
.

 5
.

D
e
s
i
g
n
a
n
d

i
m
i
e
n
a
n
t

i
n
s
t
r
u
c
t
i
o
n
a
l

p
r
o
c
s
.

L
e
a
r
n
i
n
g

p
r
i
n
c
i
p
l
e
s

T
a
s
k
d
e
s
c
r
i
p
t
i
o
n

a
n
d

a
n
a
l
y
s
i
s

I
l
p
l
e
f
i
i
s
n
t
:
e
v
a
l
u
a
t
i
o
n

p
l
a
n
:

a
n
a
l
y
s
i
s

o
f

p
l
a
n
n
e
d
,

e
x
e
c
u
t
e
d
,

a
n
d

r
e
s
u
l
t

6
.

I
n
p
l
e
m
e
n
t

e
v
a
l
u
a
t
i
o
n

p
l
a
n

E
v
a
l
u
a
t
i
o
n

p
l
a
n

i
n
s
t
r
u
c
t
i
o
n
a
l

p
r
o
c
e
d
u
r
e
s

d
e
s
i
g
n

p
l
a
n

A
s
s
e
s
s

s
t
u
d
e
n
t

a
c
h
i
e
v
e
m
e
n
t
.

I
d
e
n
t
i
f
y

i
n
s
t
r
u
c
t
i
o
n
a
l

p
r
o
b
l
e
m
s

f
o
r

r
e
d
e
s
i
g
n
.

7
.

R
e
d
e
s
i
g
n

E
v
a
l
u
a
t
i
o
n
d
a
t
a

L
e
a
r
n
i
n
g

p
r
i
n
c
i
p
l
e
s

I
n
s
t
r
u
c
t
i
o
n
a
l

p
r
o
c
e
d
u
r
e
s

d
e
s
i
g
n

p
l
a
n

L
e
a
r
n
i
n
g

s
y
s
t
e
m
d
e
s
c
r
i
p
t
i
o
n

R
e
d
e
s
i
g
n
e
d

s
y
s
t
e
m

 D
a
v
i
s
,

A
l
e
x
a
n
d
e
r
,

8
Y
e
l
o
n
,

1
9
7
4
,

p
.

3
1
5

F
i
g
u
r
e

1
6
:

I
n
f
o
r
m
a
t
i
o
n

R
e
l
a
t
i
o
n
s
h
i
p
s

A
m
o
n
g

L
e
a
r
n
i
n
g

S
y
s
t
e
m
D
e
s
i
g
n

P
r
o
c
e
d
u
r
e
s

137

DE-l

DE-2

DE-3

DE-4

DE-lO

DE-ll

Data Entry Task

Ifléh

Manipulate switches, keys and levers using a

knowledge of the device operations to activate

a data entry device.

Manipulate switches, keys and levers using a

knowledge of the device operations to de-

activate a data entry device.

Analyze device malfunctions using a knowledge

of the device operations to identify the cause

of the malfunction as to whether it can be

corrected by the operator or is to be reported

to a service firm.

Manipulate switches, keys and levers using a

knowledge of the device operations to correct

malfunctions on a data entry device.

Manipulate switches, keys and levers using a

knowledge of the device operations to execute

standard service functions, such as changing

ribbons, cleaning screens, emptying chips and

other such services.

Manipulate switches, keys and levers using a

knowledge of the specific device to create a

program to control record format operations

such as skipping and duplicating.

Manipulate switches, keys and levers using a

knowledge of the specific device to load a

program to control record format operations

such as skipping and duplicating.

Manipulate switches, keys and levers using a

knowledge of the specific device to load media

onto or into a device for keying data.

Manipulate switches, keys and levers using a

knowledge of the specific device to select a

program format for a specific record.

Manipulate switches, keys and levers using a

knowledge of the specific device to enter data

onto a media.

138

DE-12

DE-13

DE-14

DE-lS

DE-16

DE-17

DE-18

DE-19

139

Iéfik

Manipulate switches, keys and levers using a

knowledge of the specific device to verify by

machine the data previously entered into a

media by a keying device.

Analyze a data field using a knowledge of media

coding to verify visually the data previously

entered onto a media by a keying device.

Manipulate switches, keys and levers using a

knowledge of the specific device to duplicate

data from one record to another.

Manipulate switches, keys and levers using a

knowledge of the specific device to update data

contained in an existing record.

Write job information using a knowledge of

recording procedures to create a log of com-

pleted work.

Analyze written descriptions in technical

manuals using a knowledge of the device to

resolve problems with device operations.

Place media in a storage area using a knowledge

of storage techniques to maintain a media file

library in a logical sequence.

Place media in protective containers using a

knowledge of media storage techniques to store

media.

CO-l

CO-Z

CO-3

CO-4

CO-S

CO-6

C0-7

C0-8

CO-9

CO-lO

Computer Operations Task

Elias};

Arrange a group of jobs to be executed on a

computer using a knowledge of computer system

performance to minimize the operational steps

and overall run time.

Analyze operating instructions using a know-

ledge of media used with a specific system to

obtain the media needed for a specific job to

be executed on the computer.

Read operation instructions using a knowledge

of computer operations procedures to identify

the sequence of steps to be performed in

completing a specific job on the computer.

Inform persons who are assuming your duties of

the status of operations using a knowledge of

computer console operations and messages to

maintain uninterrupted operations.

Analyze operation instructions using a know-

ledge of peripheral equipment to identify the

media to be used with a specific job.

Analyze operating instructions using a know-

ledge of peripheral equipment to identify the

media to be used with a specific job.

Place media in a storage area using a knowledge

of storage techniques to maintain a media file

library in a logical sequence.

Manipulate protective containers using a

knowledge of data storage techniques to store

media in containers.

Manipulate switches and keys on a computer

console using a knowledge of computer console

operations to power up and initialize a com-

puter system.

Manipulate switches and keys on a computer

console using a knowledge of operating system

commands for a specific system to reassign

control functions such as priorities and memory

allocations.

140

00-11

CO-12

CO-13

C0-14

CO-15

CO-16

CO-17

C0-18

CO-19

CO-ZO

141

Ififik

Manipulate switches and keys on peripheral

devices using a knowledge of specific devices

to load media onto the device.

Select job control commands using a knowledge

of job control language to run a specific job

on a computer system.

Analyze messages produced on a console using a

knowledge of messages produced by a specific

operating system to identify the status of a

job being processed by a computer.

Analyze written descriptions in technical

manuals using a knowledge of a specific job

control language to interpret descriptions of

job control statements for a specific computer

system.

Compare computer produced output to a job

description sample using a knowledge of com-

puter media output to verify the accuracy of a

computer run.

Write information in a log using a knowledge of

computer operations to record information about

completed jobs.

Analyze machine generated output using a

knowledge of computer operations to identify

the cause of processing errors.

Manipulate switches and keys on a computer

console using a knowledge of a specific operat-

ing system to restart a program execution in

which an abnormal halt has occurred.

Manipulate levers, keys and switches on media

devices using a knowledge of the specific

devices to adjust operating performance of the

device.

Write information on labels using a knowledge

of cataloging descriptions to identify specific

media as to the data entry thy contain.

C0-21

C0-22

C0-23

CO-24

CO-25

142

Task

Manipulate levers, switches and keys on media

devices using a knowledge of the specific

device to complete routine servicing normally

performed by the operator.

Interpret device performance indicators using a

knowledge of the specific device to identify a

machine malfunction.

Report verbally or in writing the malfunction

of a device using a knowledge of the reporting

procedure to notify service firms of the

malfunction.

Analyze operating instructions using a know-

ledge of back-up and restorations procedures to

identify files that need back-up.

Interpret system performance using a knowledge

of system performance to identify system

performance inefficiencies.

CP-l

CP-2

CP-3

CP-4

CP-S

CP-6

CP-7

CP-8

CP-9

Computer Programming Task

Task

Analyze a program request using a knowledge of

programming techniques to prepare an estimate

of the time involved in preparing an executing

a computer program.

Analyze a program request containing‘specifi-

cations using a knowledge of data processing

equipment and techniques to prepare program

documentation that describe the parameters

necessary to produce the desired output.

Analyze program specifications using a know-

ledge of file organizational types to prepare

file specifications to be described in the

program.

Analyze program specifications using a know-

ledge of data characteristics to identify

specific data characteristics to be described

in the program.

Analyze program specifications using a know-

ledge of programming techniques to construct a

guide to code the logical steps of a program.

Analyze written descriptions in technical

manuals using a knowledge of a specific

language to interpret descriptions of language

statements and operating characteristics of a

specific computer system.

Write language statements using a knowledge of

the specific language and program documents to

produce a source program coded in a specific

language.

Review a source program using a knowledge of

the specific language to identify coding errors

within the source program prior to compilation.

Key source statements into a device using a

knowledge of the device to produce computer

readable source statements.

143

CP-lO

CP-ll

CP-12

CP-13

CP-14

CP-15

CP-16

CP-17

CP-18

CP-19

CP-ZO

144

I§§B

Write job control statements using a knowledge

of job control language and the specific

operating systems to produce the instructions

necessary to compile a source program into an

object program.

Analyze error notation produced by a computer

using a knowledge of the specific language to

identify syntax errors in the source program.

Write source statements using a knowledge of

the specific language and an error notation

listing to produce corrected statements in a

source program.

Design data using a knowledge of data charac-

teristics to test the logical correctness of a

program.

Write job control statements using a knowledge

of job control language and the specific

operating system to produce the instructions

necessary to execute an object program.

Analyze output data produced by an object

program using a knowledge of the test data to

identify logical errors in the program.

Write source statements using a knowledge of

the specific language and output test data to

produce a corrected logical sequence in a

source program.

Analyze output of a test run with a user using

a knowledge of the program requirements to

obtain approval that the program is producing

the desired results.

Write user instructions using a knowledge of

the program logic and specifications to produce

a user's manual.

Collect program listings, test data, and other

specified documents using a knowledge of

documentation to produce documentation of the

design, coding and operation of the program.

Analyze program documentation using a knowledge

of programming techniques to produce a list of

coding changes to a computer program.

Task Ho.

CP-21

145

1:383

Write operating instructions using a knowledge

of the program logic and specifications to

produce an operations manual.

CURRICULUM WORKSHEET

Duty No. CP Task No. 2

Duty: Performing Activities Related to Computer Programming

Task: Analyze a program request containing specifications

using a knowledge of data processing equipment and

techniques to prepare program documentation that

describe the parameters necessary to produce the

desired output.

Pre-Test (Same as Achievement Indicators):

The learner:

1. Analyze the program request to determine des-

cription of input/output data and major proces-

sing parameters

2. Prepared a written general description of the

input files, output files and major processing

parameters and/or logic

References a Resources:

See Bibliography Nos. 1, 8, 9, 10, 11, 12, 13, 14, and 19 at

end of section.

146

Duty/task Number CP-2

BTUDENT LEARNING ACTIVITIES TEACHER ACTIVITIES

1. Participate in a class

discussion on how to ana-

lyze a program request to

determine description in-

put/output data and major

processing parameters.

Analyze a program re-

quest.

Prepare a written general

description of input/out-

put files and major pro-

cessing parameters and/or

logic.

Read assignments and

handouts to understand

how to accomplish the

task.

Use a flowcharting tem-

plate and flowcharting

instructions to correctly

flowchart a program re-

quest.

Student can describe the

files necessary to pro-

duce the desired output.

147

Take the class through

a simple program re-

quest showing them how

to write a general

description of the in-

put and output files

and major processing

parameters and/or log-

1c.

Assign readings and/or

handouts to accomplish

this task.

Assign readings and/or

handouts to teach sys-

tem flowcharting.

Provide flowcharting

templates.

Describe the input

Files.

Describe the output

files.

Hand out a sample nar-

rative to the class.

Duty/Task Number CP-2

TOOLS AND/OR EQUIPMENT CONDITIONS

Central processing unit (CPU)

capable of COBOL, RPG, and

BASIC or access to a time-

sharing computer.

Cathode Ray Tubes (CRT)

devices for input and output.

Printer -- on-site.

An adequate number of work-

stations should be available

so that one half of the class

is involved in hands-on activ-

ities at any one time.

Other off-line data entry

equipment: key-to-tape, key-

to-diskette (floppy disk),

key-to-card.

The activity of writing

general descriptions for

input/output files and ma-

jor processing parameters

could be accomplished most

any place. These are the

kind of activities students

should be involved in when

they can't get on a work-

station.

Criteria: Competence in the task will be recognized when to

program documentation describes the data and logic

necessary to prepare file specifications, data

characteristics and a logic guide for the program.

148

Duty/Task Number CP-2

Post-Test

§9§1_§t§tgm§n§_£1 - You will produce documentation that

describes the parameters necessary to produce a desired

output.

Esrfgrmanse_gbisstixs_il - Given a program request. You will

demonstrate the following tasks: (a) analyze the input/output

request and (b) prepare a written description of the input,

output, and required processing. Performance will be accepted

when documentation describes the data and logic completely,

enabling the file specifications to be written without error.

Bvaluation/reedback

149

CURRICULUM WORKSHEET

Duty No. CP Task No. 5

Duty: Performing Activities Related to Computer Programming

Task: Analyze program specifications using a knowledge of

programming techniques to construct a guide to code

the logical steps of a program.

Pre-Test (Same as Achievement Indicators):

The learner:

1. Analyze the specifications to determine the

organization of the logic necessary to produce

the desired output.

2. Prepared a guide to the logical structure of

the program by constructing a design document

accepted by the industry.

ROIOIODCOE & Resources:

See Bibliography Nos. 10, 11, 12, 13, 14, 15, and 19 at end of

section.

Reference Manuals

150

Duty/task Number CP-S

STUDENT LEARNING ACTIVITIES TEACHER ACTIVITIES

1. Student can read the text

material.

2. Student can diagram

(flowchart) problems.

3. Student can write the

logic steps in an orderly

fashion (IOP chart).

4. Students can exchange

logic guides and check

for each others errors.

5. Participate in.a class

discussion about program

flowcharting.

6. Write a detailed

flowchart.

7. Determine the necessary

calculations or.proces-

sing steps in a program.

8. Determine the logical

steps in a program.

151

Explain uses of flow-

charting symbols (if

used).

Explain a situation

requiring program to

student.

Lead a class discus-

sion about detailed

program flowcharting.

Provide sample flow-

chart.

Provide flowcharting

templates.

Demonstrate the pro-

gramming cycle.

Place solution to the

problem on chalkboard

or overhead projector.

Duty/Task Number CP-S

TOOLS AND/OR EQUIPMENT CONDITIONS

Central processing unit (CPU)

capable of COBOL, RPG, and

BASIC or access to a time-

sharing computer.

Cathode Ray Tubes (CRT)

devices for input and output.

Printer -- on-site.

An adequate number of work-

stations should be available

so that one half of the class

is involved in hands-on activ-

ities at any one time.

Other off-line data entry

equipment: key-to-tape, key-

to-diskette (floppy disk),

key-to-card.

Flowcharting template.

Overhead projector.

Chalkboard.

This is an individualized

and/or group activity which

could be accomplished in or

out of the classroom with

no equipment needed. An

appropriate supply of card

layouts and printer spacing

charts are necessary. An

appropriate supply of flow-

charting templates and cod-

ing sheets are necessary.

Criteria: Competence in the task will be recognized when the

design of the logic describes the processing needed

to produce the output according to techniques used

within the industry.

152

Duty/Task Number CP-S

Post-Test

§g§1_§;§;gmgnt_11 - You will construct a guide to code the

logic steps of the program.

W11- Given a program statement and the

necessary tools, the student will construct a guide to code

the logic of the problem. Performance will be accepted when

the guide correctly describes the logic necessary to solve the

problem and is completed according to techniques used within

the industry. .

Evaluation/Feedback

153

CURRICULUM WORKSHEET

Duty No. CP Task No. 11

Duty: Performing Activities Related to Computer Programming

Task: Analyze error notation produced by a computer using

a knowledge of the specific language to identify

syntax errors in the source program.

Pre-Test (Same as Achievement Indicators):

The learner:

l. Matched each error in the error listing with

the source statement

2. Noted the nature of the error in the source

statement according to the specific language

structure

References a Resources:

See Bibliography Nos. 10, 11, 12, 13, 14, and 19 at end of

section.

Reference Manuals

154

Duty/task Number CP-ll

STUDENT LEARNING ACTIVITIES TEACHER ACTIVITIES

1. Know when, where, and how 1” Describe the common

to get program diagnos- errors encountered in

tics. similar programs and

enumerate the possible

2. Participate in a group reasons for the

discussion on debugging errors.

programs.

2. Halp individual stu-

3. ~ Be able to debug a pro- dents find particular-

gram without assistance. 1y difficult errors.

4. Correctly use available :1. Demonstrate how to

debugging tools or de- debug a program.

vices.

4. Provide a handout of a

program for debugging.

5. Provide and demon-

strate whatever debug-

ging tools and devices

that are available.

155

Duty/Task Number CP-ll

TOOLS AND/0R EQUIPMENT CONDITIONS

Central processing unit (CPU) A classroom situation

capable of COBOL, RPG, and should be available that

BASIC or access to a time- allows students the oppor-

sharing computer. tunity to identify and cor-

rect syntax errors. Refer-

Cathode Ray Tubes (CRT) ence manuals and debugging

devices for input and output. templates should be avail—

able.

Printer -- on-site.

An adequate number of work-

stations should be available

so that one half of the class

is involved in hands-on activ-

ities at any one time.

Other off-line data entry

equipment: key-to-tape, key-

to-diskette (floppy disk),

key-to-card.

Debug template.

Criteria: Competence in the task will be recognized when all

errors have been identified as to type.

156

Duty/Task Number CP-ll

Post-Test

§g§1_§tatemgnt_11 - You will identify syntax errors in the

source program.

Egrfggmgngg Objective i; - Given a source listing and an error

listing produced by the compiler, you will identify the syntax

errors in the source listing. Performance will be accepted

when all errors have been identified.

Evaluation/Peedback

157

CURRICULUM WORKSHEET

Duty No. CP Task No. 15

Duty: Performing Activities Related to Computer Programming

Task:l Write source statements using a knowledge of the

specific language and output test data to produce a

corrected logical sequence in a source program.

Pre-Test (Same as Achievement Indicators):

The learner:

1. Selected the coding sheets for the specific

language

2. Wrote the statements to correct the logical

errors using a source listing

References 5 Resources:

See Bibliography Nos. 10, 11, 12, 13, 14, and 19 at end of

section.

Reference Manuals

158

Duty/task Number CP-15

STUDENT LEARNING ACTIVITIES TEACHER ACTIVITIES

1. Students can write the 1” Provide handouts to

language statements in cover the procedure

corrected form, to elim- for correcting a

inate the errors. printout.

2. Using system input device 2. Demonstrate techniques

to correct errors in the for horizontal and

source program. vertical centering.

3. Recompile and execute the :3. Ensure that the stu-

job control statements. dent understands why

the original state-

ments were in error.

159

Duty/Task Number CP-15

TOOLS AND/OR EQUIPMENT CONDITIONS

Central processing unit (CPU)

capable of COBOL, RPG, and

BASIC or access to a time-

sharing computer.

Cathode Ray Tubes (CRT)

devices for input and output.

Printer -- on-site.

An adequate number of work-

stations should be available

so that one half of the class

is involved in hands-on activ-

ities at any one time.

Other off-line data entry

equipment: key-to-tape, key-

to-diskette (floppy disk),

key-to-card.

Spacing rulers.

In a laboratory situation

the students will retrieve

their printout, proofread

for logical errors and cor-

rect these errors. Stu-

dents should use vertical

and horizontal rules dis-

cussed in the class.

Printer spacing charts

should be provided for stu-

dent use.

Criteria: Competence in the task will be recognized when the

object program is error free and executes as des-

cribed in the program specifications.

160

Duty/Task Number CP-lS

Post-Test

anl Statemeng £1 - You will write corrected source code to

eliminate logical errors in your source program.

Earfigzmanca Objectiva £1 - Given a source listing with logical

errors identified, and an output listing with erroneous data,

the student will write the source code correctly to eliminate

all errors. Performance will be accepted when the object

program produces an output listing with correct data.

Evaluation/Feedback

161

APPENDIX B

APPENDIX B

DATA FLOW DIAGRAMS FOR DEVELOPING A COMPUTER PROGRAM

This Appendix contains the data flow diagrams showing

the design for the instruction to teach students how to

develop computer programs to solve problems.

Designing a Computer Program

Define the Problem 1.0

Define specific outputs 2.0

Define specific inputs 3.0

Define processing sequence and detailed

process 4.0

Represent process specifications

graphically 5.0

Develop program detail code 6.0

Test program 7.0

Debug program 8.0

Evaluate program 9.0

162

(Page

(page

(Page

(page

(Page

(Page

(page

(page

(page

(page

164)

166)

167)

168)

169)

170)

172)

173)

174)

175)

A
F

C
O

C
P

C
R

C
S

D
A

D
I

D
Q

D
S

E
C

E
G

E
I

E
O

E
P

E
S

E
V

G
R

G
S

I
P

I
S

J
S

A
l
g
o
r
i
t
h
m
s

a
n
d

f
a
c
t
s

C
o
r
r
e
c
t
i
o
n

s
p
e
c
i
f
i
c
a
t
i
o
n

C
o
d
e
d

p
r
o
g
r
a
m

C
o
d
e

r
u
l
e
s

C
o
d
i
n
g

s
t
a
n
d
a
r
d
s

D
e
t
a
i
l

p
r
o
c
e
s
s

a
l
g
o
r
i
t
h
m
s

k
n
o
w
l
e
d
g
e

D
e
b
u
g
g
i
n
g

i
n
f
o
r
m
a
t
i
o
n

D
e
b
u
g
g
i
n
g

q
u
e
s
t
i
o
n
s

D
e
t
a
i
l

p
r
o
c
e
s
s

s
t
r
a
t
e
g
i
e
s

E
x
i
s
t
i
n
g

c
o
d
e

E
x
i
s
t
i
n
g

g
r
a
p
h
i
c

r
e
p
r
e
s
e
n
t
a
t
i
o
n

E
x
i
s
t
i
n
g

i
n
p
u
t

f
o
r
m
a
t
s

E
x
i
s
t
i
n
g

o
u
t
p
u
t

f
o
r
m
a
t
s

E
x
i
s
t
i
n
g
p
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

E
v
a
l
u
a
t
i
o
n

c
r
i
t
e
r
i
a

s
u
b
j
e
c
t
i
v
e

E
v
a
l
u
a
t
e
d
p
r
o
g
r
a
m

G
r
a
p
h
i
c

r
e
p
r
e
s
e
n
t
a
t
i
o
n

o
f

p
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

G
r
a
p
h
i
c

s
t
a
n
d
a
r
d
s

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

p
r
o
b
l
e
m

I
n
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

J
C
L

s
t
a
t
e
m
e
n
t
s

F
i
g
u
r
e

6
:

L
e
g
e
n
d

L
o
g
i
c
a
l

e
r
r
o
r

L
a
n
g
u
a
g
e

r
u
l
e
s

M
i
s
s
i
n
g

i
n
f
o
r
m
a
t
i
o
n

N
e
e
d
e
d

I
n
f
o
r
m
a
t
i
o
n

O
u
t
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

P
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n

e
r
r
o
r
s

P
r
o
g
r
a
m

e
r
r
o
r

P
r
o
b
l
e
m

p
r
o
c
e
s
s

d
e
f
i
n
i
t
i
o
n

P
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

P
r
o
b
l
e
m

P
r
o
b
l
e
m

s
o
l
v
i
n
g

s
t
r
a
t
e
g
i
e
s

P
r
o
c
e
s
s
i
n
g

s
t
a
n
d
a
r
d
s

P
r
o
g
r
a
m
w
i
t
h

e
r
r
o
r
s

R
u
l
e
s

f
o
r

o
p
e
r
a
t
i
n
g

R
u
l
e
s

f
o
r

i
n
p
u
t

f
o
r
m
a
t
s

R
u
l
e
s

f
o
r

o
u
t
p
u
t

f
o
r
m
a
t
s

S
p
e
c
i
f
i
c

e
v
a
l
u
a
t
i
o
n

c
r
i
t
e
r
i
a

S
p
e
c
i
f
i
c

p
r
o
c
e
s
s
e
s

T
e
s
t

d
a
t
a

T
e
s
t
e
d

p
r
o
g
r
a
m

U
n
k
n
o
w
n

p
r
o
c
e
s
s

163

3
1
:

S
t
a
n

a
r
d
s

C
o

n
fi
i
v
e

’
-

4
’
G
r
a
p
h
i
c

R
e
p
r
e
s
e
n
t
a
t
i
o
n

D
i

9
0
5

P
r
o
c
e
s
s
m

I
0
9

S
t
a
n
d
a
r
d
s

C
B

4

E
x
p
e
r
t

E
x
i
s
t
i
n

E
x
i
s
t
i
n

G
r
a

h
i
c

0
2
'
K
n
o
w
l
e
d
g
e

P
r
o
b
l
e
m

P
T

0
7

P
r

c
e
s
s
e
s

D
B

R
e
p
g
r
e
s
e
n
g
a
t
i
o
n

'
S
o
l
v
e
r

'
‘

"
0
3

E
e
f
e
r
e
n
c
e

,
N
I

E
!

A
F

I

1
.
0

4
-
0

5
.
0

P
P

D
e
f
i
n
e

p
g

.
R
e
p
r
e
s
e
n
t

D
3

I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
s

I

if

R
I

D
e
f
i
n
e

S
p
e
c
i
f
i
c

\
R
i

O
u
t
p
u
t
s

0
5

E
x
i
s
t
i
n

i
/
o

K
_
_
‘
J

°

D
e
f
i
n
e

D
e
v
e
l
o
p

S
p
e
c
i
f
i
c

(
B

P
é
g
g
fi
m

i
n
p
u
t
s

C
o
d
e

8
.
0

J

D
e
b
u
g

G
P

P
r
o
g
r
a
m

S
S

H
:

7
.
0

T
e
s
t

P
r
o
g
r
a
m

r
0
3

b
e
l
e
r
e
n
c
e
v
M
a
t
e
r
i
a
l
s
g
l

E
v
a
l
u
a
t
e
R
M

\
1

P
r
o
g
r
a
m

P
r

r
a
m
m
i
n

a
n
d

D
1
6

0
%

a
t
i
o

U
s
o
r
!

3

P
r
o
b
l
e
m

D
e
s
i
g
n
e
r

E
l
l

F
I
G
U
R
E

6
:

D
e
s
i
g
n
i
n
g
a
C
o
m
p
u
t
e
r
P
r
o
g
r
a
m

1

L
E
A
R
h
E
R

D
e
f
i
n
e

P
r
o
c
e
s
s
i
n

P
r
o
c
e
s
s

t
h
e

s
e
x
i
s
m

S
p
e
c
s

C
R

[
0
1
0

[
C
o
d
i
n
g
S
t
a
n
d
a
r
d
s

P
r
o
b
l
e
m

r
a
p
h
l
c
a
i
i
y

D
e
t
a
i
l

P
r
o
c
e
s
s
e

K
j

[
0
1
1

1
E
x
i
s
t
i
n
g
C
o
d
e

l
r
—
m

a
.0

L.
E
/

'
‘

D
4

1
V
O

S
t
a
n
d
a
r
d
s

I
'

'
3

6
'
0

1

J
C
L

S
t
a
n
d
a
r
d
s

0
1
4

A
n
d

P
r
o
c
e
d
u
r
e
s

D
i
2
'

O
p
e
r
g
t
i
o
n

t
a
n
d
a
r
d
s

l

D
1
S
I
T
e
s
t
D
a
t
a

1

164

D
P

I
C

I
I

I
N

I
P

I
S

I
T

M
I

N
I

A
l
g
o
r
i
t
h
i
m
s

P
r
o
b
l
e
m

p
r
o
c
e
s
s

d
e
f
i
n
i
t
i
o
n

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

s
p
e
c
i
a
l

c
o
n
d
i
t
i
o
n
s

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

i
n
p
u
t

a
v
a
i
l
a
b
l
e

&
d
e
s
i
r
e
d

I
n
f
o
r
m
a
t
i
o
n

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

p
r
o
b
l
e
m

I
n
p
u
t

s
t
r
a
t
e
g
i
e
s

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

p
r
o
c
e
s
s

M
i
s
s
i
n
g

i
n
f
o
r
m
a
t
i
o
n

N
e
e
d
e
d

i
n
f
o
r
m
a
t
i
o
n

F
i
g
u
r
e

7
:

L
e
g
e
n
d

0
0

O
S

P
A

P
D

P
P

P
R

P
S

S
P

I
n
f
o
r
m
a
t
i
o
n

a
b
o
u
t

o
u
t
p
u
t

O
u
t
p
u
t

s
t
r
a
t
e
g
i
e
s

P
r
o
c
e
s
s

a
l
g
o
r
i
t
h
i
m
s

P
r
o
b
l
e
m

i
n
p
u
t

d
e
f
i
n
i
t
i
o
n

P
r
o
b
l
e
m

o
u
t
p
u
t

d
e
f
i
n
i
t
i
o
n

P
u
r
p
o
s
e

o
f

p
r
o
g
r
a
m

P
r
o
b
l
e
m

P
r
o
c
e
s
s
i
n
g

s
t
r
a
t
e
g
i
e
s

I
P
O

r
u
l
e
s

P
r
o
b
l
e
m

S
t
r
a
t
e
g
i
e
s

_155

E
x
p
e
r
t

0
3

R
I

M
i
i

[
0
1

L
K
n
o
w
i
e
d
g
e

]
P
r
o
b
l
e
m

l
l

1
e
e
r
e
n
c
e

a
t
e
r
m

l
S
o
l
v
e
r

[I
0
2

I
C
o
g
n
i
t
i
v
e

S
t
r
a
t
e
g
i
e
s
]

r
N

M
i

M
i

1
.
2

P
P

e
t
e
r
m
i
n
e

F
D

1
,
4

1
5

T
y
p
e

o
f

i
‘

'
e
t
e
r
m
n
e

D
e
t
e
r
m
i
n
e

0
"
t
h

l
g
o
r
i
t
h
m
s

S
p
e
c
i
a
l

p

f
o
r

C
o
n
d
i
t
i
o
n
s

p
p

P
r
o
c
e
s
s
i
n
g

a
n
d

p
o

4
S
e
q
u
e
n
c
e

S
t
a
t
e

P
u
r
p
o
s
e

o
f

P
r
o
b
l
e
m

_
/

D
e
v
e
l
o
p

I
P
O

C
h
a
n

sagas

1
.
3

D
e
t
e
r
m
i
n
e

p
»

T
y
p
e

o
f

H
I
n
p
u
t

I
S

\
i
N
”
_
0
1

I
K
n
o
w
l
e
d
g
e

j

0
2

[
C
o
g
n
i
t
i
v
e

S
t
r
a
t
e
g
i
e
q

I
P

U
S
E
R
-

P
r
o
b
l
e
m

A
s
s
i
g
n
e
r

F
I
G
U
R
E

7
:
D
E
F
I
N
E
T
H
E
P
R
O
B
L
E
M

1
.
0

166

I
0
5

I
E
X
W
N
G

“
0

I
I
D
4

I
S
t
a
n
d
a
r
d
s

f
o
r

i
/
O

,
A

_
S
P
e
c
i
f
i
c
a
t
i
o
n
s

I
I

S
p
e
c
i
f
i
c
a
t
i
o
n
s

F

2
.
2

D
e
v
e
l
o
p

P
r
o
b
l
e
m

O
u
t
p
u
t

S
p
e
c

f
o
r

E
x
i
s
t
i
n
g

S
p
e
c

F
o
r

O
u
t
p
u
t

E
S

-
E
x
i
s
t
i
n
g

i
/
O

s
p
e
c
i
f
i
c
a
t
i
o
n
s

O
S

-
O
u
t
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

N
S

-
N
e
w

o
u
t
p
u
t
f
o
r
m
a
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

P
O

-
P
r
o
b
l
e
m

o
u
t
p
u
t

d
e
f
i
n
i
t
i
o
n

O
F

-
E
x
i
s
t
i
n
g
o
u
t
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n

R
F

-
R
u
l
e
s

f
o
r
o
u
t
p
u
t
f
o
r
m
a
t
s

f
o
r
m
a
t
s

f
o
r
o
u
t
p
u
t

d
e
f
i
n
i
t
i
o
n

F
I
G
U
R
E

1
7
:

D
e
f
i
n
e

s
p
e
c
i
f
i
c
o
u
t
p
u
t
s
2
.
0

167

E
x
i
s
t
i
n

n
o

I
I
S
t
a
n
d
a
r
d
s

f
o
r

l
/
O

I
D
S

I
‘
S
p
e
g
c
i
f
l
c
a
t
i
o
n
s
1

I
0
4

I
S
p
e
c
i
f
i
c
a
t
i
o
n
s

L
o
c
a
t
e

a
n
y

E
x
i
s
t
i
n
g

S
p
e
c

F
o
r

i
n
p
u
t

P
l

I
S

E
l

-
E
x
i
s
t
i
n
g

i
n
p
u
t
f
o
r
m
a
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

'
N
l
-
N
e
w

i
n
p
u
t
f
o
r
m
a
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

i
s

-
I
n
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

P
I

-
P
r
o
b
l
e
m

I
n
p
u
t

d
e
f
i
n
i
t
i
o
n

R
F

-
R
u
l
e
s

f
o
r

i
n
p
u
t
f
o
r
m
a
t
s

F
I
G
U
R
E

1
8
:

D
e
f
i
n
e

s
p
e
c
i
f
i
c
i
n
p
u
t
s
3
.
0

168

0
7

I
E
x
i
s
t
i
n
g

P
r
o
c
e
s
s
e
s

m S
e
p
a
r
a
t
e

,
P
r
o
c
e
s
s

D
e
f

i
n
t
o

D
i
s
c
r
e
t
e

p
I
O
C
G
S
S

w
a
s
)

S
e
q
u
e
n
c
e

M
o
d
u
l
e
s

P
P

I

A
F

-
A
l
g
o
r
i
t
h
i
m
s
a
n
d

p
r
o
c
e
s
s
e
s

D
E

-
D
e
f
i
n
i
t
i
o
n

o
f

l
o
g
i
c
a
l
p
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

E
S

-
E
x
i
s
t
i
n
g
p
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

L
R

-
L
a
n
g
u
a
g
e

r
u
l
e
s

P
D

-
P
r
o
b
l
e
m
s

p
r
o
c
e
s
s

d
e
f
i
n
i
t
i
o
n
s

P
E

-
P
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n

e
r
r
o
r
s

P
M

-
P
r
o
c
e
s
s
m
o
d
u
l
e
s

P
P

-
P
r
o
c
e
s
s

p
r
o
b
l
e
m

d
e
f
i
n
i
t
i
o
n

P
S

-
P
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

P
T

-
P
r
o
c
e
s
s
i
n
g

s
t
a
n
d
a
r
d
s

S
A

-
S
e
q
u
e
n
c
e
d

a
l
g
o
r
i
t
h
i
m
s
a
n
d

p
r
o
c
e
s
s
e
s

S
M

-
S
e
q
u
e
n
c
e
d
m
o
d
u
l
e
s

S
P

-
S
p
e
c
i
f
i
c
p
r
o
c
e
s
s

S
T

-
S
t
r
a
t
e
g
y

U
P

-
U
n
k
n
o
w
n

p
r
o
c
e
s
s
e
s

F
I
G
U
R
E

1
9
:

D
e
f
i
n
e
p
r
o
c
e
s
s
i
n
g
s
e
q
u
e
n
c
e
a
n
d

d
e
t
a
i
l
e
d
p
r
o
c
e
s
s

I
4
.
3

‘.

L
o
c
a
t
e

E
x
i
s
t
i
n
g

}
P
r
o
o
c
e
s
s

S
p
e
c

f
o
r

M
o
d
u
l
e
s

l
4
.
6

I

C
o
m
b
i
n
e

A
n
d

O
r
g
a
n
i
z
e

P
r
o
c
e
s
s

4
.
4

S
e
q
u
e
n
c
e

A
l
g
o
r
a
n
d

4
.
5

D
e
v
e
l
o
p

D
e
t
a
i
l

S
p
e
c

A
L
E
/
L
0
3

I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
s

I

4
—
5
"

P
r
o
c
e
s
s
e
s

.
S
t
e
p
s

i
n

W
i
t
h
i
n

s
u
e
n
c
e

A
I
S
?
»
a
n
d

P
r
o
c
e
s
s
e
s

N
e
w

r
u
l
e
s

 4
*

p

S
T

E
x
p
e
n

P
r
o
c
e
s
s

D
e
f
i
n
e
r

L
P

169

Ex
is
ti

G
r
a

hi
s

I
0
8

I
R
e
n
p
g
r
e
s
e
n
‘
t
’
a
t
i
o
n

D
e
v
e
l
o
p

5
P
r
o
c
e
s
s

F
l
o
w
c
h
a
r
t

R
r
e
s
e
n
t
a
t
i
o
n

r

1
G
r
a
p
h
i
c

a
n

E
F

-
F
l
o
w
c
h
a
r
t

E
r
r
o
r
s

G
T

-
G
r
a
p
h
i
c
s
t
a
n
d
a
r
d
s

E
R

-
E
x
i
s
t
i
n
g
g
r
a
p
h
i
c

r
e
p
r
e
s
e
n
t
a
t
i
o
n

‘
P
E
-

P
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n

e
r
r
o
r
s

F
L

-
F
l
o
w
c
h
a
r
t

P
S

-
P
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s

G
R

-
G
r
a
p
h
i
c

r
e
p
r
e
s
e
n
t
a
t
i
o
n

S
R

-
S
p
e
c
i
f
i
c
g
r
a
p
h
i
c

r
e
p
r
e
s
e
n
t
a
t
i
o
n

G
S

-
G
r
a
p
h
i
c
s
y
m
b
o
l
s

S
S

-
S
p
e
c
i
f
i
c
g
r
a
p
h
i
c
s
t
a
n
d
a
r
d
s

F
I
G
U
R
E

2
0
:

R
e
p
r
e
s
e
n
t
p
r
o
c
e
s
s

s
p
e
c
i
f
i
c
a
t
i
o
n
s
g
r
a
p
h
i
c
a
l
l
y

5
.
0

e
s
k
c
h
e
c
k

F
l
o
w
c
h
a
r
t

170

C
C

C
D

C
E

C
I

C
O

C
P

C
R

C
S

E
C

E
I

E
O

E
P

G
R

C
o
r
r
e
c
t
i
o
n

c
o
d
e

C
o
d
i
n
g

s
t
a
n
d
a
r
d
s

C
o
d
e
w
i
t
h

e
r
r
o
r
s

C
o
d
e
d

i
n
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

C
o
d
e
d

o
u
t
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

C
o
d
e
d

p
r
o
g
r
a
m

C
o
r
r
e
c
t
i
o
n

S
p
e
c
i
f
i
c
a
t
i
o
n
s

C
o
d
i
n
g

s
y
n
t
a
x

C
o
d
i
n
g

o
u
t
p
u
t

s
y
n
t
a
x

E
d
i
t

c
o
d
e

E
x
i
s
t
i
n
g

i
n
p
u
t

c
o
d
e

E
x
i
s
t
i
n
g

o
u
t
p
u
t

c
o
d
e

E
x
i
s
t
i
n
g

p
r
o
c
e
s
s

c
o
d
e

G
r
a
p
h
i
c

r
e
p
r
e
s
e
n
t
a
t
i
o
n

o
f

p
r
o
g
r
a
m

l
o
g
i
c

F
i
g
u
r
e

2
1
:

L
e
g
e
n
d

I
C

I
E

I
S

I
T

O
S

O
T

P
C

P
O

P
M

P
R

P
S

I
n
p
u
t

c
o
d
i
n
g

s
y
n
t
a
x

I
n
p
u
t

e
d
i
t

c
o
d
e

I
n
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

I
n
p
u
t

s
t
a
n
d
a
r
d
s

O
u
t
p
u
t

s
p
e
c
i
f
i
c
a
t
i
o
n
s

O
u
t
p
u
t

s
t
a
n
d
a
r
d
s

P
r
o
c
e
s
s

P
r
o
c
e
s
s

P
r
o
c
e
s
s

P
r
o
c
e
s
s

P
r
o
c
e
s
s

c
o
d
e

c
o
d
e

s
t
a
n
d
a
r
d
s

m
o
d
u
l
e

c
o
d
e

s
p
e
c
i
f
i
c
a
t
i
o
n
s

c
o
d
i
n
g

s
y
n
t
a
x

s
p
e
c
i
f
i
c
a
t
i
o
n
s

171

 II
0
3

I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
s

I

II
0
1
0

I
E
x
i
s
t
i
n
g
C
o
d
e

.

5
'
m
m

 I
I
D
3

I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
s

'
'~
m C
o
r
r
e
c
t

0
3

C
N
S

i
n

E
r
r
o
r

C
D

.
0
1
1

C
o
d
i

g
S
t
a
n
d
a
r
d
s

I

P
O

172

6
.
6

C
o
d
e

P
M

P
r
o
c
e
s
s

5
’

I
$

M
o
m
.
”

|
0
1
0
I
E
x
i
s
t
i
n
g
fi
C
o
d
e

m

0
3

I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
s
j

F
I
G
U
R
E

2
1

D
e
v
e
l
o
p
p
r
o
g
r
a
m

d
e
t
a
i
l
c
o
d
e

6
.
0

C
o
m
p
i
l
e

P
r
o
g
r
a
m

l
7
.
.
3

I
m

a

’
E
s
t
a
b
l
i
s
h

>
r
u
n

J
P

T
i
m
e

C
M

T
e
s
t

R
u
n

o
f

T
P

P
r
o
g
r
a
m

 K
r
)

0
A

D
J
C
L

P
r
o
c
e
d
u
r
e
s

J
S

1
4
.
1

a
n
d
S
t
a
n
d
a
r
d
s

D
E
x
i
s
t
i
n
g
J
C
L

0
1
2

O
p
e
r
a
t
i
o
n
n
s

1
4
-
2

P
r
o
c
e
d
u
r
e
s

A
s
s
i
g
n
m
e
n
t

S
t
a
n
d
a
r
d
s

173

N
o
t
e
:

0
1
4

h
a
s
b
e
e
n
b
r
o
k
e
n
d
o
w
n

i
n
t
o

i
t
s
c
o
m
p
o
n
e
n
t

p
a
r
t
s

C
P

-
C
o
d
e
d
p
r
o
g
r
a
m

O
A

-
O
p
e
r
a
t
i
o
n
a
s
s
i
g
n
m
e
n
t

C
M

-
C
o
m
p
i
l
e
d
p
r
o
g
r
a
m

P
E

-
P
r
o
g
r
a
m

w
i
t
h

e
r
r
o
r
s

E
R

-
E
s
t
a
b
l
i
s
h
e
d

r
u
n
t
i
m
e

T
D

-
T
e
s
t
d
a
t
a

J
P

-
J
C
L

p
r
o
c
e
d
u
r
e
s

T
P

-
T
e
s
t
e
d

p
r
o
g
r
a
m

J
S

-
J
C
L

s
t
a
t
e
m
e
n
t
s

F
I
G
U
R
E

2
2
:

T
e
s
t
p
r
o
g
r
a
m

7
.
0

0
1
3

T
e
s
t

D
a
t
a

C
E

-
C
a
u
s
e

o
f

l
o
g
i
c
a
l

e
r
r
o
r

I
0
8
.
6

D
e
t
'
n
g
fl
z
l
o
é
n
o
r
s

C
L

-
C
a
u
s
e

o
f
l
a
n
g
u
a
g
e

e
r
r
o
r

*
C
P

-
C
o
r
r
e
c
t
i
o
n

t
o
p
r
o
g
r
a
m

0
8
.
5

L
o
g
i
c
a
l

E
r
r
o
r

0
L

-
D
e
f
i
n
i
t
i
o
n

o
f

l
o
g
i
c
a
l

e
r
r
o
r

L
E

L
E

-
L
o
g
i
c
a
l

e
r
r
o
r

L
R

-
L
a
n
g
u
a
g
e

e
r
r
o
r

P
E

-
P
r
o
g
r
a
m

w
i
t
h

e
r
r
o
r
s

S
E

-
S
p
e
c
i
f
i
c

e
r
r
o
r

d
e
f
i
n
i
t
i
o
n

S
L

-
S
o
l
u
t
i
o
n

t
o
l
a
n
g
a
g
e

e
r
r
o
r

S
X

-
S
y
n
t
a
x

T
L

-
T
y
p
e

o
f
L
a
n
g
u
a
g
e

e
r
r
o
r

T
O

-
T
y
p
e

o
f

l
o
g
i
c
a
l

e
r
r
o
r

s
.
.
2

3
-
3

D
e
t
e
r
m
i
n
e

T
O

D
e
f
i
n
e

T
y
p
e

o
f

.
L
o
g
i
c
a
l

E
r
r
o
r

L
o
g
i
c
a
l

E
r
r
o
r

I

I

f
8
.
4

I

D
e
t
e
r
m
i
n
e

D
e
t
e
r
m
i
n
e

I
T
Y
P
o

O
I

T
y
p
e

o
f

E
r
r
o
r

-
L
a
n
g
u
q
e

E
r
r
o
r

&
_
J

m D
e
t
e
r
m
i
n
e

C
a
u
s
e

o
f

L
a
n
g
u
a
g
e

E
r
r
o
r

L
E

C
r
i
t
e
r
i
a

f
o
r

S
L

U
3
3

I
R
e
f
e
r
e
n
c
e

M
a
t
e
r
i
a
l
s

I
0
3
-
1

L
o
g
i
c
a
l

E
r
r
o
r

C
a
u
s
e
s
o
f

0
8
.
4

L
a
n
g
u
a
g
e

E
r
r
o
r
s

C
r
i
t
e
r
i
a

f
o
r

0
3
-
2

L
a
n
g
u
a
g
e

E
r
r
o
r
s

D
a
t
a
B
a
s
e
s

o
f

E
r
r
o
r

S
o
l
u
t
i
o
n
s

 E
3
8
3

I
L
a
n
g
u
a
g
e

E
r
r
o
r
s

I

N
o
t
e
:

D
a
t
a

s
t
o
r
e
0
1
5
H
a
s
b
e
e
n
b
r
o
k
e
n
d
o
w
n

i
n
t
o

I
t
s
c
o
m
p
o
n
e
n
t

p
a
r
t
s
a
i
d

l
i
s
t
e
d
h
e
r
e
a
s

0
8
.
1

-
0
8
.
7

F
I
G
U
R
E

1
1
:

D
e
b
u
g
P
r
o
g
r
a
m
8
.
0

174

C
R
?

I
T
P

D
e
t
e
r
m
i
n
e

T
P

C
o
r
r
e
c
t
-

8
)

:
(
2
:
9
3
3
:
1
3
?

E
)

T
P

m

3

8

O
u
t
p
u
t

I
n
p
u
t
F

U
s
e

r
l

A
P
r
o
b
l
e
m

.
A
s
s
i
g
n
e
r

E
B

-
E
v
a
l
u
a
t
i
o
n

c
r
i
t
e
r
i
a
f
o
r

I
n
p
u
t

E
P

-
E
v
a
l
u
a
t
e
d
p
r
o
g
r
a
m

E
C

-
E
v
a
l
u
a
t
i
o
n

c
r
i
t
e
r
i
a

f
o
r

i
n
p
u
t

O
E

-
O
b
j
e
c
t
i
v
e

e
v
a
l
u
a
t
i
o
n

c
r
i
t
e
r
i
a

E
l

-
E
v
a
l
u
a
t
e
d

I
n
p
u
t

T
P

-
T
e
s
t
e
d
p
r
o
g
r
a
m

E
O

-
E
v
a
l
u
a
t
e
d
o
u
t
p
u
t

F
I
G
U
R
E

2
3
:

E
v
a
l
u
a
t
e
d
P
r
o
g
r
a
m

9
.
0

I
e
t
e
r
m
i
n
e

‘

E
l
i

a
n
d

C
o
r
r
e
c
t
-

n
e
s
s

o
f

P
r
o
c
e
s
s

 I
D
i
e
I
p

r
a
m
m
i
n
g
a
n
d

e
r
a
t
l
o
n
s
s
t
a
n
d
s
a

175

APPENDIX C

APPENDIX C

AN EXPERT SYSTEM AID TO DEBUGGING BASIC PROGRAMS

S A M P L E K N O W L E D G E B A S E

D E B U G

an aid to debugging basic programs

.
-
0
-
0
-
O
-
O
-
0
-
O
-

O
-
0
-
.
-
0
-
O
-
O
-
0
-
0
-

O
.

!

TITLE Debugging Aid to basic programs DISPLAY

I

D E B U G

DEBUGGING AID FOR BASIC PROGRAMS

Debugging aid to basic programs is a knowledge base

designed to guide the introductory basic student

through the process of identifying unknown errors in

a basic program. Debug will assist the student in:

- identifying the type of error in the program

- determining the type of language or logical error

- determining the cause of the error

- determining the solution to the error

DEBUG is a prototype system that is restricted in scope to a

number of errors commonly made by introductory basic students.

176

177

NEXT without FOR Syntax error

RETURN without GOSUB Out of data

Illegal function call Undefined line number

Subscript out of range Duplicate Definition

Division by zero Type Mismatch

can't continue Missing operand

Device Timeout Device Fault

FOR without NEXT Out of paper

WHILE without WEND WEND without WHILE

Advanced Feature FILE handling ERRORS

The data contained in DEBUG has been extracted from the

Microsoft Corp. BASIC IBM Personal Computer Hardware

Reference Library, and based on the experience of the

Shiawassee County Vocational Data Processing Instructor:

Mary Garrett.

l

!

THRESHOLD = 60

CONFIDENCE OFF

1

1. The error belongs to Logic errors

1.1 error is program output in error

1.1.1 correct error by reformatting output

1.1.2 correct error by reassigning algorithms

1.1.3 correct error by adding more output lines

1.1.3.1 correct error by adding print lines

to condition.

1.1.3.2 correct error by adding total print

lines

1.1.4 correct error by adding a GO T0 line

1.2 error is program does not stop

1.2.1 correct error by changing the GO TO

1.2.2 correct error by checking for trip data input

1.2.3 correct error by adding end option to menu

1.3 error is program stops but has no output

1.3.1 correct error by adding print (output) lines

1.3.2 correct error by moving print (output) lines

2. The error belongs to language errors

2.1 NEXT FOR error DISPLAY fornext

2.1.1 correct error by matching FOR and NEXT

variables

2.1.2 correct error by proper nesting of FOR

...NEXTs

2.1.3 correct error by matching FOR and NEXT

statements

2.1.4 correct error by removing GO TO to a line

inside the loop

2.1.5 correct error by clearing FOR..NEXT variable

Undefined line number DISPLAY undefined line number

RETURN Without GOSUB DISPLAY RETURN without GOSUBM
N

U
N

2.4 Out of data DISPLAY

2.4.1 correct error

READ

2.4.2 correct error

statements

2.4.3 correct error

2.4.4 correct error

with READ

2.4.5 correct error

2.4.6 correct error

READ variables

178

out of data

by

by

by

by

by

by

2.5 can't continue DISPLAY

2.6 Advanced Feature DISPLAY advanced feature

2.7 Subscript out of range DISPLAY subscript out of

range

checking for trip data after

adding trip data to DATA

matching check with trip data

matching variable in check

adding to the trip data

matching the DATA with the

can't continue

2.7.1 correct error by adding a dimension statement

fixing a logic error2.7.2 correct error by

2.7.3 correct error

subscipt

2.7.4 correct error

2.7.5 correct error

by

by

by

increasing dimension statement

moving the dimension statement

fixing a typing error

2.8 Division by zero DISPLAY division by zero

2.9 Duplicate Definition DISPLAY duplicate definition

2.9.1 correct error by removing a definition

2.9.2 correct error by moving a definition

2.9.3 correct error by changing a goto

2.10 Missing operand DISPLAY missing operand

2.11 Type mismatch DISPLAY type mismatch

2.11.1 correct error by putting quotes around a

string constant

2.11.2 correct error by putting a $ at the end of a

variable name

2.11.3 correct error by changing print using image

2.11.4 correct error by changing variable type in a

function

2.11.5 correct error by converting a type

2.11.5.1 convert a string to number DISPLAY

string to number

2.11.5.2 convert a number to string DISPLAY

number to string

2.12 WHILE WEND error DISPLAY whilewend

2.12.1 correct error by matching WHILE and WEND

statements

2.12.2 correct error by removing GO TO to between

WHILE and WEND

2.13 Illegal function call DISPLAY illegal function

2.13.1 correct error by defining PRINT USING image

2.13.2 correct error by changing values in a

string function

2.13.2.1 assign a value to string variable

in function

i

! RULES FOR DETERMINING LOGICAL

!

RULE

IF

THEN

AND

ELSE

AND

!

RULE

IF

AND

THEN

1

2.13.3

2.13.4

2.13.5

2.13.6

2.13.7

2.14 Device

2.14.1

2.14.2

2.14.3

2.14.4

2.15 Syntax

2.15.1

2.15.2

2.15.3

2.15.4

2.15.5

2.15.6

2.15.7

2.15.8

2.15.9

For determining belongs to

179

2.13.2.2 shorten string length variable in

string function

correct error by changing argument in a

function

correct error by changing negative or large

subscript

correct error by not assigning a negative

record number

correct error by not raising a negative

number to a power

correct error by not trying to delete a

nonexistent line

error or out of paper DISPLAY device error

correct error by turning on printer

correct error by pressing select button on

printer

correct

printer

correct

printer

error DISPLAY

correct error

correct error

correct error

correct error

correct error

correct error by

2.15.6.1 correct

2.15.6.2 correct

USING

correct error by using :

with message

correct error by correctly assigning values

correct error by adding a variable after an

AND or OR

correct error by

function

error by connecting or replacing

cable

error by putting paper in the

syntax error

changing READ and/or DATA

adding a space

fixing the spelling

changing variable name

matching parenthesis

fixing punctuation

error by using , with READ

error by using : with PRINT

2.15.6.3 with INPUT

adding missing term in a

ERROR

Logic errors

The program runs

The error belongs to Logic

DISPLAY CHARACTERISTICS OF

errors

THE LOGIC ERROR

The error belongs to language errors

DISPLAY CHARACTERISTICS OF THE LANGUAGE ERROR

for differentiating Logic error

The error belongs to Logic errors

the program IS has output

error is program output in error

RULE

IF

AND

AND

THEN

RULE

IF

AND

THEN

AND

RULE

IF

AND

THEN

AND

RULE

IF

AND

THEN

AND

RULE

IF

AND

THEN

AND

ELSE

AND

RULE

IF

AND

THEN

RULE

IF

AND

AND

THEN

AND

RULE

IF

AND

AND

THEN

AND

180

for differentiating program output in error

error is program output in error

the program output IS has the correct values

the output does not match the planned output

correct error by reformatting output

for differentiating program output in error

error is program output in error

the program output IS does not have the correct values

correct error by reassigning algorithms

DISPLAY algorithms

for differentiating program output in error

error is program output in error

the program output IS some expected output is missing

correct error by adding more output lines

DISPLAY add print lines to condition

for differentiating program output in error

error is program output in error

the program output IS there is only one line of detail

output

correct error by adding a GO T0 line

DISPLAY add a GO T0 line

for differentiating correct error by adding output

correct error by adding more output lines

the program total lines are not missing

correct error by adding print lines to condition

DISPLAY add print lines to condition

correct error by adding total print lines

DISPLAY adding total print lines

For differentiating Logic error

The error belongs to Logic errors

the program IS does not stop

error is program does not stop

For differentiating program does not stop

error is program does not stop

the program has a main menu.

the menu does not have an end option

correct error by adding end option to menu

DISPLAY end option to menu

For differentiating program does not stop

error is program does not stop

the program uses INPUT to get new data

after the INPUT does not check for trip data

correct error by checking for trip data input

DISPLAY check for trip data

RULE

IF

AND

AND

THEN

AND

!

RULE

IF

AND

THEN

!

RULE

IF

AND

THEN

AND

ELSE

AND

I

181

For differentiating program does not stop

error is program does not stop

the program checks for trip data

there is no menu or a menu with an end option

correct error by changing the GO TO

DISPLAY GO TO

For differentiating Logic error

The error belongs to Logic errors

the program IS no output

error is program steps but has no output

For differentiating program stops but has no output

error is program stops but has no output

the program does not have print (output) lines

correct error by adding print (output) lines

DISPLAY add print lines

correct error by moving print (output) lines

DISPLAY move print lines

1 RULES FOR DIFFERENTIATING LANGUAGE ERROR

!

RULE

IF

AND

THEN

AND

!

RULE

IF

AND

AND

THEN

AND

!

RULE

IF

AND

AND

THEN

AND

!

RULE

IF

AND

AND

THEN

AND

1

For differentiating NEXT FOR error

NEXT FOR error

the lines connecting FOR ... NEXT ARE cross

correct error by proper nesting of FOR ...NEXTs

DISPLAY preper nesting of FOR ... NEXTs

For differentiating NEXT FOR error

NEXT FOR error

the lines connecting FOR ... NEXT ARE do not cross

the FOR variable IS does not match connected NEXT

variable

correct error by matching FOR and NEXT variables

DISPLAY match FOR ... NEXT variables

For differentiating NEXT FOR error

NEXT FOR error

the lines connecting FOR ... NEXT ARE do not cross

the FOR variable IS is not connected to a NEXT

statement

correct error by matching FOR and NEXT statements

DISPLAY match FOR and NEXT statements

For differentiating NEXT..... FOR error

NEXT FOR error

the lines connecting FOR ... NEXT ARE do not cross

the FOR variable IS extra NEXT is connected to the FOR

statement

correct error by matching FOR and NEXT statements

DISPLAY match FOR and NEXT statements

RULE

IF

AND

AND

AND

THEN

RULE

IF

AND

AND

AND

THEN

AND

RULE

IF

AND

THEN

AND

RULE

IF

AND

THEN

AND

RULE

IF

AND

THEN

AND

RULE

IF

AND

AND

RULE

IF

AND

THEN

AND

182

For differentiating NEXT FOR error

NEXT FOR error

the lines connecting FOR ... NEXT ARE do not cross

the FOR variable IS matches the connected NEXT

variable

the program has IS a GO TO to a line inside the loop

correct error by removing GO TO to a line inside the

loop

DISPLAY removing branch to inside loop

For differentiating NEXT FOR error

NEXT FOR error

the lines connecting FOR ... NEXT ARE do not cross

the FOR variable IS matches the connected NEXT

variable

the program has IS no GO TO to a line inside the loop

correct error by clearing FOR..NEXT variable

DISPLAY clearing FOR..NEXT variable

For differentiating Out of data

Out of data .

the error IS is no check for trip data after the READ

correct error by checking for trip data after READ

DISPLAY correct Out of Data

For differentiating Out of data

Out of data

the error IS is no trip data in the DATA statements

correct error by adding trip data to DATA statements

DISPLAY correct Out of Data

For differentiating Out of data

Out of data

the error IS is check for trip data not same as in

DATA

correct error by matching check with trip data

DISPLAY correct Out of Data

For differentiating Out of data

Out of data

the error IS is variable READ is not variable in Check

correct error by matching variable in check with READ

DISPLAY correct Out of Data

For differentiating Out of data

Out of data

the error IS not enough data after the trip data

correct error by adding to the trip data

DISPLAY correct Out of Data

RULE

IF

AND

THEN

AND

RULE

IF

THEN

AND

RULE

IF

THEN

RULE

IF

THEN

AND

RULE

AND

THEN

AND

RULE

IF

AND

AND

THEN

AND

RULE

AND

AND

THEN

AND

AND

AND

183

For differentiating Out of Data

Out of data

the error IS what is being READ doesn't match the DATA

correct error by matching the DATA with the READ

variables

DISPLAY matching the DATA with the READ variables

DISPLAY correct Out of Data

For advanced feature

the error message is advanced feature

advanced feature

DISPLAY advanced feature

For can't continue

the error message is can't continue

can't continue

DISPLAY can't continue

FOR undefined line number

the error is undefined line number

undefined line number

DISPLAY undefined line number

For differentiating Subscript out of range

Subscript out of range

there is a dimension statement IS False

correct error by adding a dimension statement

DISPLAY adding a dimension statement

For differentiating Subscript out of range

Subscript out of range

there is a dimension statement IS True

the value of subscript in error < 1

correct error by fixing a logic error

DISPLAY subscript out of range by logic error

For differentiating Subscript out of range

Subscript out of range

there is a dimension statement IS True

the value of subscript in error > value in the

dimension statement

correct error by increasing dimension statement

subscript

or correct error by fixing a logic error

DISPLAY picking the value for a dimension statement

DISPLAY subscript out of range by logic error

RULE

IF

AND

AND

AND

AND

THEN

AND

AND

!

RULE

IF

AND

AND

AND

THEN

!

RULE

IF

AND

AND

THEN

AND

1

RULE

IF

AND

THEN

AND

AND

!

RULE

IF

AND

AND

AND

184

For differentiating Subscript out of range

Subscript out of range

there is a dimension statement IS True

the value of subscript in error <= value in the

dimension statement

DISPLAY typing errors on subscripts

the dimensioned variable IS matches the variable in

error

the dimension is being cleared by a CLEAR or other

statement ‘

correct error by moving the dimension statement

DISPLAY moving the dimension statement

For differentiating Subscript out of range

Subscript out of range

there is a dimension statement IS True

the value of subscript in error <= value in the

dimension statement

the dimensioned variable IS does not match the

variable in error

correct error by fixing a typing error

For differentiating duplicate definition

Duplicate Definition

DISPLAY how to find array being defined twice

duplicate definition IS caused by an array being

defined twice

correct error by removing a definition

DISPLAY other than removing a definition

For differentiating duplicate definition

Duplicate Definition

duplicate definition IS caused by an OPTION BASE

command

correct error by moving a definition

or correct error by moving the OPTION BASE command

DISPLAY moving the OPTION BASE command

For differentiating duplicate definition

Duplicate Definition

duplicate definition IS caused by something else

DISPLAY the two other causes of duplicate definition

the array was IS set to the default size of 10 before

the definition

THEN correct error by moving a definition

RULE

IF

AND

AND

THEN

AND

RULE

IF

AND

WEND

THEN

AND

RULE

IF

AND

AND

THEN

RULE

IF

AND

AND

THEN

AND

RULE

IF

AND

THEN

RULE

IF

AND

AND

THEN

AND

185

For differentiating duplicate definition

Duplicate Definition

duplicate definition IS caused by something else

the array was IS not set to the default size of 10

before the definition

correct error by changing a goto

or some other method

For differentiating WHILE WEND error

WHILE WEND error

the lines drawn ARE each WHILE does not connect to a

correct error by matching WHILE and WEND statements

DISPLAY match WHILE and WEND statements

For differentiating WHILE WEND error

WHILE WEND error

the lines drawn ARE each WHILE connects to a WEND

the program has IS a GO TO to a line inside the loop

correct error by removing GO To to between WHILE and

WEND

DISPLAY removing branch to between WHILE and WEND

For differentiating Illegal function call DISPLAY

illegal function

Illegal function call

the error line contains IS a PRINT USING image

the PRINT USING image is not defined

correct error by defining PRINT USING image

DISPLAY PRINT USING image

For differentiating Illegal function call DISPLAY

illegal function

Illegal function call

the error line contains IS a string function

correct error by changing values in a string function

For differentiating Illegal function call DISPLAY

illegal function

Illegal function call

correct error by changing values in a string function

the value assigned to the function's string variable

is null

assign a value to string variable in function

DISPLAY value string

RULE

IF

AND

AND

THEN

AND

RULE

IF

AND

THEN

AND

RULE

IF

AND

THEN

AND

RULE

IF

AND

THEN

AND

RULE

IF

AND

THEN

RULE

IF

AND

THEN

AND

i

186

For differentiating Illegal function call DISPLAY

illegal function

Illegal function call

correct error by changing values in a string function

the value of the length variable in the function is

wrong

shorten string length variable in string function

DISPLAY length string

For differentiating Illegal function call DISPLAY

illegal function

Illegal function call

the error line contains IS a function other than a

string

correct error by changing argument in a function

DISPLAY argument

For differentiating Illegal function call DISPLAY

illegal function

Illegal function call

the error line contains IS contains an arrayed

variable

correct error by changing negative or large subscript

DISPLAY negative subscript

For differentiating Illegal function call DISPLAY

illegal function

Illegal function call

the error line contains IS a GET or PUT statement

correct error by not assigning a negative record

number

DISPLAY GET/PUT

For differentiating Illegal function call DISPLAY

illegal function

Illegal function call

the error line contains IS a variable raised to a

power

correct error by not raising a negative number to a

power

DISPLAY negative power

For differentiating Illegal function call DISPLAY

illegal function

Illegal function call

the error line contains IS command to delete a line or

lines

correct error by not trying to delete a nonexistent

line

DISPLAY delete line

RULE

IF

AND

THEN

RULE

IF

AND

THEN

RULE

AND

THEN

RULE

IF

AND

THEN

AND

RULE

AND

THEN

AND

RULE

IF

AND

AND

THEN

RULE

IF

AND

THEN

RULE

IF

AND

AND

THEN

RULE

IF

AND

THEN

AND

187

For differentiating Device error

Device error or out of paper

the printer IS not turned on

correct error by turning on printer

For differentiating Device error

Device error or out of paper

the printer IS on, but the select button is not on

correct error by pressing select button on printer

For differentiating Device error

Device error or out of paper

the printer IS on and the select button is on

correct error by connecting or replacing printer cable

For differentiating out of paper

Device error or out of paper

the printer IS the paper light is on

correct error by putting paper in the printer

DISPLAY out of paper

For differentiating syntax error

Syntax error

the syntax error is on a DATA statement

correct error by changing READ and/or DATA

DISPLAY correct DATA syntax error

For differentiating syntax error

Syntax error

DISPLAY a space may be needed.

there is no space between two variables/commands

correct error by adding a space

For differentiating syntax error

Syntax error

you mistyped the name of a command

correct error by fixing the spelling

For differentiating syntax error

Syntax error

DISPLAY keywords can cause syntax errors

there is a reserved word in the variable name

correct error by changing variable name

For differentiating syntax error

Syntax~error

there is not an equal number of "(" and ")"

correct error by matching parenthesis

DISPLAY matching parenthesis

RULE

AND

THEN

RULE

THEN

RULE

188

For differentiating syntax error

Syntax error

error line has READ or PRINT USING or INPUT with

message

correct error by fixing punctuation

For differentiating punctuation errors

correct error by fixing punctuation

the error line IS has a READ statement

correct error by using , with READ

DISPLAY using a , with READ

For differentiating punctuation errors

correct error by fixing punctuation

the error line IS has a PRINT USING statement

correct error by using ; with PRINT USING

DISPLAY using a ; with PRINT USING

For differentiating punctuation errors

correct error by fixing punctuation

the error line IS has an INPUT with message statement

correct error by using : with INPUT with message

DISPLAY using a ; with INPUT with message

For differentiating syntax error

Syntax error

there is an expression to the left of an equal sign

correct error by correctly assigning values

DISPLAY how to correctly assign values

For differentiating syntax error

Syntax error

there is constant to the left of an equal sign

correct error by correctly assigning values

DISPLAY how to correctly assign values

For differentiating syntax error

Syntax error

the error was on an IF statement

DISPLAY how to check AND and OR

an AND or OR is missing a value

correct error by adding a variable after an AND or OR

For differentiating syntax error

Syntax error

correct error by adding missing term in a function

or correct error by other

DISPLAY correct syntax error by other

189

RULE For differentiating type mismatch

IF Type mismatch

AND type of values you are working with IS strings

AND you are assigning a constant

AND the constant does not have quotes around it

THEN correct error by putting quotes around a string

constant

1.

RU For differentiating type mismatch

IF Type mismatch

AND type of values you are working with IS strings

AND the variable being assigned the string does not end

with a $

THEN correct error by putting a $ at the end of a variable

name

AND DISPLAY put 5 on all

I

RULE For differentiating type mismatch

IF. Type mismatch

AND error was with a PRINT USING

THEN correct error by changing PRINT USING image

AND DISPLAY correcting PRINT USING image

1

RULE 'For differentiating type mismatch

IF Type mismatch

AND error from function (SWAP, LEFTS, ...) except IF and

LET

AND type of values you are working with IS numbers

THEN correct error by changing variable type in a function

AND DISPLAY changing variable type in a function

AND DISPLAY number to string

I

RULE For differentiating type mismatch

IF Type mismatch

AND error from function (SWAP, LEFTS, ...) except IF and

LET

AND type of values you are working with IS strings

THEN correct error by changing variable type in a function

AND DISPLAY changing variable type in a function

AND DISPLAY string to number

I

RULE For differentiating type mismatch

IF Type mismatch

AND error from function (SWAP, LEFTS, ...) except IF and

LET -

AND type of values you are working with IS mixed

THEN correct error by changing variable type in a function

AND DISPLAY changing variable type in a function

AND DISPLAY string to number

AND DISPLAY number to string

!

190

RULE For differentiating type mismatch

IF Type mismatch .

AND type of values you are working with IS mixed

THEN correct error by converting type

I

RULE For differentiating converting type

IF correct error by converting type

AND You are using IS string with numbers

THEN convert a string to number

AND DISPLAY string to number

I

RULE For differentiating converting type

IF correct error by converting type

AND You are using IS number with strings

THEN convert a number to string

AND DISPLAY number to string

1

DISPLAY syntax error

A syntax error is what the computer uses to say that it has

no better way of describing the error. One of the most

common causes of a syntax error is a typing error. Make

sure that all commands on the line with the error are

correctly spelled.

l

DISPLAY matching parenthesis

If the number of left parenthesis isn't the same as the

number of right ones, then you must find where the extra

or missing one is. When nesting commands and subscripted

variables it is easy to forget to add a). Start from the

inside and work your way out, writing down the steps on

paper if needed. This way you can find where you are

missing or have an extra parenthesis. Here is an example:

(Y*((3+4)/S(X))/5

(3+4) start from the inside

(3+4)/S(X) and work your way out

((3+4)/S(X))

Y*((3+4)/S(X))

(Y*((3+4)/S(X))/5 <-- Missing a right). We can

(Y*((3+4)/S(X)))/5 then add the missing).

i

DISPLAY using a , with READ

There are two ways to get syntax error with a READ.

One is to just have a READ without specifying what to READ

the data into. The other is to use the wrong type of

punctuation with the READ command. Here is an example:

10 READ A$;B$;C$ should be 10 READ A$,B$,C$

I

DISPLAY using a 3 With PRINT USING

The first value after a PRINT USING statement is the

191

format in the form of a string. The format must be

separated from the other values to be printed using a ;.

If you use a comma, it will result in a syntax error.

Here is an example of the correct way to use PRINT USING:

100 PRINT USING” ####.## \ \";N,A$

or

10 Is = " ####.## \ \"

100 PRINT USING I$;N,A$

I

DISPLAY using a : with INPUT with message

Whenever you use the INPUT with Message form of INPUT, you

must place a ; between the message and the first variable

that will be input. If you omit the ; or use a comma, the

result will be a syntax error. Here is an example of the

correct way to use INPUT with a message:

100 INPUT ”what is your age"; A

200 INPUT "Enter starting date , ending date";SD,E0

!

DISPLAY how to correctly assign values

A common error to beginning students is to place things

on the wrong side of the equal sign. Whatever is on the

left side of the = is replaced with what is on the right

side after being evaluated. You can not normally have a

command on the left side of the = with the exception of

LET and MIDS. Example:

10 Y + Z = X

This will not work. If you switch the left and right sides

you will get:

10 X 8 Y + Z

and this will cause the computer to replace the old value

of X with the sum of Y and 2 when line 10 is executed.

You also can not assign a value to a constant.

!

DISPLAY how to check AND and OR

If you are using AND or OR, then you might be using it

incorrectly. Here is an example of how it can be used

incorrectly to cause a syntax error:

10 IF A<B OR >C THEN 100

There must be an expression on both sides of an AND and OR.

The line above could be corrected by changing it to:

10 IF A<B OR A>C THEN 100

192

l

DISPLAY correct syntax error by other

If none of the other possibilities are true, then you need

to look up the command that the error occurred on, and check

the syntax of the command. It is also possible that you

put two commands on one line without properly separating

them with a :.

One common mistake is leaving out a term from a command.

Here is an example:

100 IF LEFT$(A$) = "Y” THEN 10

This should be corrected as follows:

100 IF LEFT$(A$,1) = "Y" THEN 10

l

DISPLAY correct DATA syntax error

A syntax error on a data statement is caused by trying to

read a number, when the information on the DATA line

contains a non—number.

You should first find out the location of the READ

statement that is giving the problem. Use TRON/TROFF to

help you find it.

A common cause of this error, is getting the DATA out of

sync with the READ. Check the data statements, and if a

string you wish to read contains either a "," or a "z" then

enclose that part of the data in quotes. Example:

10 Read TS

100 DATA "Subject: Computers"

I

DISPLAY a space may be needed

BASIC requires a space between most variables, keywords

and numbers. If you run things together, the computer will

not be able to pull them apart and break it down. A space

is not needed after a number, and after a special symbol

such as <>()=+-*/‘:. Check the line with the error and see

if you need a space.

Here are a few examples:

Incorrect: Minimum spacing:

10 FORA=1TO3 10 FOR A=1TO 3

20 PRINTA;A*A 20 PRINT A;A*A

30 NEXTA 30 NEXT A

l

DISPLAY keywords can cause syntax errors

Sometimes if you have a reserved word inside of a variable

name, it will cause a syntax error. In some instances it is

allowable to have a reserved word in a variable name. A

reserved word in a variable will give the most trouble if

it starts the variable name. Here is the list of all the

reserved words in BASIC.

variables on the line with the error contains one.

I

!

193

Check and see if any of the

ABS AND ASC ATN AUTO BEEP

BLOAD BSAVE CALL CDBL CHAIN CHRS

CINT CIRCLE CLEAR CLOSE CLS COLOR

COM COMMON CONT COS CSNG CSRLIN

CVD CVI CVS DATA DATES DEF

DEFDBL DEFINT DEFSNG DEFSTR DELETE DIM

DRAW EDIT ELSE END EOF EQV

ERASE ERL ERR ERROR EXP FIELD

FILES FIX FN FOR FRE GET

GOSUB GOTO HEXS IF IMP INKEYS

INP INPUT INPUT# INPUTS INSTR INT

KEY KILL LEFTS LEN LET LINE

LIST LLIST LOAD LOC LOCATE LOF

LOG LPOS LPRINT LSET MERGE MIDS

MKDS MKIS MKSS MOD MOTOR NAME

NEW NEXT NOT OCTS OFF ON

OPEN OPTION OR OUT PAINT PEEK

PEN PLAY POINT POKE POS PRESET

PRINT PRINT# PSET PUT RANDOMIZE READ

REM RENUM RESET RESTORE RESUME RETURN

RIGHTS RND RSET RUN SAVE SCREEN

SGN SIN SOUND SPACES SPC(SQR

STEP STICK STOP STRS STRIG STRINGS

SWAP SYSTEM TAB(TAN THEN TIMES

TO TROFF TRON USING USR VAL

VARPTR VARPTRS WAIT WEND WHILE WIDTH

WRITE WRITE# XOR -

DISPLAY type mismatch

A type mismatch error is caused by trying to use one type

variable when the computer is expecting a different type.

The two most common errors, are mixing a string with a

numeric value, and mixing a numeric value with a string.

Another possible cause is trying to SWAP two variables of

different type. If you wish to transfer from one type to

another, then use the conversion functions VAL and STR$.

Here are some examples that will cause this error.

Incorrect Correct Assuming

A = "JOE" As = "JOE"

BS a A B$ = STR$(A) You want to store the

string equivalent of

the value in A.

A = 3 / C$ A = 3 / VAL(C$) CS in known to contain

a number, and you wish

to divide 3 by that num-

ber.

194

I

DISPLAY put $ on all

You will need to put the s after all string variables.

Make sure that you add the $ to all locations where you

have string variables in your program. You can

also use DEFSTR to make a variable into a string without

the S, but if you do this, you must treat the variable

as if the variable had a $ at the end of it.

i

DISPLAY correcting PRINT USING image

A type mismatch error will occur with a PRINT USING if the

format doesn't match the type of variables being printed.

Check your format, and compare the types that it defines

with those of the variables. Also, some characters have

special meaning, and if you wish to display them, you must

use the _ (underscore) character.

First character of a string

\n spaces\ A string of n+2 characters

& Variable length string field

A digit in a number

+ beginning or end of ### format

- beginning or end of ### format

** fill leading spaces with asterisks

$$ floating $

**$ floating $ with leading asterisks
AAAA

specify exponential format

_ (underscore) print next character exactly

If you wish to print something like:

You have $100.00 dollars!

Then your format would be:

”You have $$#####.## dollars_!"

1

DISPLAY changing variable type in a function

Check the reference manual for the type of values that

function expects. Then use the conversion routines

VAL and STR$ to convert an incorrect type to the

correct type, or use a command that matches the

type of variable you want.

!

DISPLAY string to number

If you have a number in the form of a string, and wish to

convert it to a number, then use the function VAL.

Here is an example:

10 INPUT"Enter a number";N$

20 NUMBER = VAL(NS)

30 PRINT”Number ="; NUMBER

I

DISPLAY number to string

If you have a number, and wish to convert it to a

string, then use the function STR$. Here is an

example:

195

10 INPUT"Enter a number"; NUMBER

20 NS = STR$(NUMBER)

30 PRINT"Number ="NS

!

DISPLAY CHARACTERISTICS OF THE LOGIC ERROR

CHARACTERISTICS OF A LOGIC ERROR

The program runs, but the results are not what

the programmer planned or the user expected.

DISPLAY CHARACTERISTICS OF THE LANGUAGE ERROR

CHARACTERISTICS OF THE LANGUAGE ERROR

The program does not run, and the computer prints out

some sort of error message.

I

DISPLAY end option to menu

A menu should always include an option to end the

program. This is usually the last item on the menu.

Choosing this option should cause the program to

branch to an end routine or a line number containing

the word end.

i

DISPLAY check for trip data

In a program that gets its data from input statements,

there must be a statement after the input statement

to determine if it is time for the program to stop.

This is done by comparing the input variable to some

predetermined value, called trip data, that signals

that the user is through entering data. A typical

example is:

100 INPUT"How old are you (enter 0 to end)";X

110 If X = 0 then END

If your program uses arrays, make sure your trip check

uses the same element of the array as the input. A

typical example is:

100 PRINT"Enter 0 to end"

110 PRINT"what is the cost of item"X;:INPUT C(X)

120 If C(X) = 0 then 200 :'processing begins at line 200

196

!

DISPLAY GO TO

GO TO statements that go to a line number smaller

than the line number of the GO TO statement may

set up an endless loop.

GO TO statements that go to a line number smaller

than the line number of the GO TO statement should

go to a line number that:

1). Is an INPUT statement

2). Is a read statement

3). Is an EOF(#) statement

4). Is a Menu statement

5). GET # statement

If one of these is not the destination of the GO TO

statement, determine which of the above is the proper

destination for your GO TO statement and change the

line number to match that line number.

If you can not find the GO T0 line that is causing the

problem, type TRON (TRace ON) and then run your program.

Each time the computer runs a line of your program, the

line number will appear on the screen. Watch for repeating

patterns of line numbers. These will show you where your

program is looping. The GO TO that is causing the problem

will be one of those numbers (usually the largest).

Press CTRL BREAK to stop the program and change the GO TO

so it goes to one of the five possible destinations given

on the previous page. You will probably want to type

TROFF (TRace OFF) to turn off the appearance of the line

numbers. If the program still does not stop, repeat

the use of TRON to find the new loop and correct it.

I

DISPLAY add print lines to condition

If some of the detail output (prints each time you get

a new set of input data) does not print even though some

does, the most likely cause is that you have IF...THEN

statements for handling some of the input data in

different ways and that one or more of those routines

do not have the print (output) statements as part of

the routine. If you can not find the routine that is

missing the print (output) statements, type TRON (TRace

ON) and then run your program. Each time the computer runs

a line of your program, the line number will appear on the

screen. Watch for repeating patterns of line numbers that

include the input data lines but do not produce output.

These will show you where your program is looping without

printing the output. Add the print line to the loop before

it goes back to get more data. Type TROFF (TRace OFF)

before running the program again.

197

If the line numbers go by too fast to read, you may find

it useful to hold down the CTRL and SHIFT keys and press

the PRTSC key to print all the output to the screen to the

printer. This will make it easier for you to follow the

TRON line number output. Press the three keys again to

stop sending the output to the printer.

If your program uses arrays and is missing some of the

output, check to see if you are incrementing (adding a

value to) the loop parameter (the variable following the

FOR and the NEXT). ,This will cause the output to skip some

lines as the variable is incremented by both the program

code and the NEXT statement.

I

DISPLAY adding total print lines

After the trip data has been reached, the program should

print the total lines before it ends. The easiest way to

do this is to change the trip data check line so that

instead of ending it will go to a line number which is

higher than any of the other program lines and print

the total line before ending. For example

100 If X = 0 then 900

900 Print"the total XXXXXXX is”TOTAL

910 END

1

DISPLAY add print lines

Locate the line that contains GO TO the line that inputs

the data to be processed. Add a line before the GO T0 line

that prints the detail output (out put each time data is

input). If you can not find the GO T0 line, type TRON

(TRace ON) and then run your program. Each time the

computer runs a line of your program, the line number will

appear on the screen. Watch for repeating patterns of line

numbers that include the input data lines but do not produce

output. These will show you where your program is looping

without printing the output. Add the print line to the loop

before it goes back to get more data. Type TROFF

(TRace OFF) before running the program again.

I

DISPLAY move print lines

Locate the line that prints your output. Locate the line

that has the GO TO the line that inputs the data to be

198

processed. Move the PRINT line to the line before the GO T0

line. Delete it from its old line number. If you can not

find the GO T0 line, type TRON (TRace ON) and then run

your program. Each time the computer runs a line of your

program, the line number will appear on the screen. Watch

for repeating patterns of line numbers that include the

input data lines but do not produce output. These will

show you where your program is looping without printing

the output. Move the print line to the loop before it goes

back to get more data. Type TROFF (TRace OFF) before

running the program again.

!

DISPLAY add a GO TO line

After a program prints the output line, it must go back to

the get input data line to continue processing until all

the input data is processed. Locate the line that prints

the output and add a line following it that contains

GO TO and the line number of the input line. This makes a

loop that allows the program to get the input and print

the output until all the input is processed.

I

DISPLAY Algorithms

Algorithms are rules or formulae used to determine values.

For example:

200 AREA = 3.1416 * RADIUS * 2

is the Algorithm for determining the area of a circle. If

your format (layout) of the output is correct, but the

numbers are wrong, the most likely cause is that one or

more of the algorithms are wrong.

When looking for incorrect algorithms, be certain that you

check for variable names that you have spelled wrong. For

example:

199 RADUS = DIAMETER/2

200 AREA = 3.1416 * RADIUS * 2

will give an AREA of zero since the RADUS and RADIUS are

different variables.

I

DISPLAY fornext

Before you attempt to determine the cause of the error,

list your program on paper. Draw a line from each

FOR statement to its Next statement. Use this listing

to answer the questions that follow.

199

——-100 FOR X = 1 TO 20 -——-100 FOR X = 1 TO 20

[:150 FOR Y = 3 TO 15 -150 FOR Y = 3 TO 15

200 NEXT Y 200 NEXT X

'——-235 NEXT X ‘—235 NEXT Y

i

DISPLAY proper nesting of FOR ... NEXTs

When a FOR ... Next loop occurs within another FOR ... NEXT

loop, you must be careful that the loops are nicely nested.

For example:

NICELY NESTED IMPROPER NESTING

'———100 FOR X = 1 TO 20 '———100 FOR X = 1 TO 20

[:150 FOR Y = 3 TO 15 r—150 FOR Y = 3 TO 15

200 NEXT Y 200 NEXT X

-——235 NEXT X “—235 NEXT Y

If the lines cross, as in the example of IMPROPER NESTING,

change the code so that they are NICELY NESTED.

I

DISPLAY match FOR ... NEXT variables

Every FOR variable name = start value TO end value

must have EXACTLY one NEXT variable name. There are two

common violations of this rule:

CHANGED VARIABLE NAME TWO NEXT STATEMENTS

100 FOR X = 1 TO 20 100 FOR X = 1 TO 20

150 IF Z=W THEN NEXT X

235 NEXT Z 235 NEXT X

If you have changed variable names, change code so the

FOR and NEXT both have the same variable name.

Although some versions of BASIC allow you to have TWO NEXT

statements, IBM version 2.0 -3.2 do not. Change your program

so the IF statement is THEN GO TO 235 instead of NEXT X.

l

DISPLAY match FOR and NEXT statements

Every FOR variable name = start value TO end value

must have EXACTLY one NEXT variable name. There are two

common violations of this rule:

200

CHANGED VARIABLE NAME TWO NEXT STATEMENTS

'———100 FOR X = 1 TO 20 -———100 FOR X = 1 TO 20

. 150 IF Z=W THEN NEXT X

'——-235 NEXT 2 '———235 NEXT X

Although some versions Of BASIC allow you to have TWO NEXT

statements, IBM version 2.0 -3.2 do not. Change your program

so the IF statement is THEN GO TO 235 instead of NEXT X.

If you have changed variable names, change code so the

FOR and NEXT both have the same variable name.

I

DISPLAY removing branch to inside loop

You must not have a GO T0 line outside of the FOR .. NEXT

loop in your program that GOes TO a line inside a

FOR ... NEXT loop. The GO TO must go to the FOR statement

in a loop or not GO TO a loop at all.

PROPER GO TO A FOR NEXT IMPROPER GO TO A FOR NEXT

100 FOR x = 1 TO 20 100 FOR X = 1 TO 20

. 120

235 NEXT X I35 NEXT x

*---400 GO TO 100 400 GO TO 100

If you are not certain if there is a GO TO a line number

inside the loop, type TRON (TRace ON) and run your program.

The line numbers print on the screen as the program runs

and you can see if there is a line number outside the lOOp

before the error occurs. Change the GO TO and type TROFF.

l

DISPLAY clearing FOR..NEXT variable-

Sometimes if you have a very long program, even when you

have not changed variable names, have not used improper

nesting, or do not have two NEXT statements, you may still

get either a FOR without NEXT or Next without FOR error.

This can occur when you exit from one FOR ... NEXT loop

without clearing the variable and move into a new loop.

Eventually, the computer runs out of storage places to

indicate where to return. To correct this, Change as shown

ORIGINAL CODE CHANGED CODE

100 FOR X = 1 TO 20 100 FOR X = 1 TO 20

150 IF Z = W THEN 310 150 IF Z=W THEN X=21: GO TO 235

-—-235 NEXT X 235 NEXT X

250 IF X > 21 THEN 310

310 0...... 310

201

!

DISPLAY RETURN without GOSUB

The program has reached a RETURN statement without

first executing (reaching) a GOSUB. The usual cause of

this error is not having an END to your program. Add

an END statement before the first line of the subroutine.

If the error is not corrected by adding an END statement,

type TRON (TRace ON) to display the lines of codes as they

are run. When the error appears on the screen, the line

numbers of the code run before the error will also appear.

ADD either a GO TO to branch back to the input of data

statement or an END among the lines of code run before the

lines of code that make up the subroutine. Type TROFF

(TRace OFF) to restore the program to normal run mode.

I

DISPLAY out of data

This problem is normally caused by one of six possible

error conditions:

1). forgetting to put a check for the Trip Data after

the READ statement

2). forgetting to add the trip data after all the normal

data to be processed in the DATA statements

3). not having the Trip Data in the data statement match

the check following the read

4). Not having the variable in the check after the READ

match the variable in the READ statement

5). Reading into more than one variable at a time, and

having nothing after the trip data to fill the other

variables being read in

6). Having an error in the DATA causing it to no longer

match the READ variables

Check each of these six and correct any that cause a

problem.

I

DISPLAY correct Out of Data

When using the READ....DATA statements, your program should

resemble this code. Correct your code to follow this

example:

100 READ X$,Y,Z$

110 IF X$ = ”END" THEN END

1000 DATA Joe,34,Doctor,BILL,45,Lawyer,SUE,12,student

1010 DATA Frank,39,teacher,Paul,54,teacher aid

1020 DATA END,-99,END

202

Note that the out of data error would occur if 1020 were

1020 DATA end,-99,END since END does not equal end

i

DISPLAY matching the DATA with the READ variables

You need to first find out how far the DATA matches

correctly with the READ. Add some PRINT statements

after the READ, then run the program and see at what

point incorrect values for DATA start coming up. You

can then check the data around the area where the program

started reading the incorrect data. Here are some

things to look for when checking your DATA:

* Two commas next to each other

* A comma starting or ending a line

* A ":" or a ",” as part of a data element you want to

read (If you wish to read a : or , then enclose that

data element in "quotes."

i

DISPLAY advanced feature

You have chosen an advanced feature such as PAINT or LINE

or CIRCLE or COLOR or some other KEY word or expression

that can only be used with advanced BASIC. SAVE your

program. Type SYSTEM and press enter. You will now be

back at the DOS level. Type BASICA (BASIC with Advanced

features) and press enter. LOAD your program and run it

again. You will not get an Advanced feature error if you

are using BASICA.

l

DISPLAY can't continue

You have typed CONT and the program can not start up again

from wherever it had stopped. On IBM basic, you can not

press the break key when you are LISTing your program and

start it up again by typing CONT. If you want to stop a

LIST, hold down the CTRL key and press NUM LOCK. Start up

again by pressing ENTER.

If you have pressed CTRL Break to look at your program, you

must not type a line number or EDIT. If you do, you will

not be able to start your program up again by typing CONT.

If you try, you will get a can't continue error.

To correct a can't continue error, just RUN your program

again from the start (type RUN and press enter).

I

DISPLAY undefined line number

You have a branching statement (GO T0 or GOSUB) that tells

the program to branch (GO TO) a line number, but the line

number to which it is supposed to go does not existli.

203

List your program and find the correct line number. If you

are certain you typed in the line to which the program

should branch, but it is not there, you should not only

type in the line, but you should also check to see if you

accidently typed in the wrong line number when you entered

the line. Common typing errors for line numbers include

typing a 0 for a 9 (or a 9 for a 0); dropping a repeated

digit (4000 instead Of 40000): and reversing digits (typing

a 1223 instead Of 1232). If you have typed the line number

incorrectly, be certain to remove the incorrect line and

retype any lines it may have replaced before you try to run

your program again.

I

DISPLAY subscript out of range

A subscript out of range error can be caused many different

things. One cause would be misspelling a function such a

LOG(), thus causing the computer to think that you are

using a subscripted variable when you wished to use the

function. Select the Option for a typing error if this is

what happened.

Some functions, such as TAB require that there is no space

between the function name and the "(". A common error is

to include a space after the word TAB. If this is what

happened, then select the Option for a typing error.

Without using a dimension (DIM) statement, you imply to

computer a DIM variable(10). This will allow you to use

any integral value from 0-10 as the subscript, unless if

you have "OPTION BASE 1” in your program, which will set

the lowest allowable subscript at 1.

i

DISPLAY typing errors on subscripts

Double check that the variables in the dimension statement

are spelled the same, and have the same number of sub-

scripts within the (...). If an array was defined as:

10 DIM A(20,20)

You would not be able to access A(X), but you could access

A(X,Y). If one of the variables is spelled differently,

or has a different number of subscripts, then does not

match.

I

DISPLAY adding a dimension statement

If you are using an array, you should include a dimension

(DIM) command. The dimension is optional if it is a single

subscripted array and will not exceed 10, but it is good

programming practice to include one even if the array will

not exceed 10.

204

When determining the size to use, for an array which you do

not know the maximum subscript needed, it can be set up to

be easy to change as follows:

10 LN=20:OPTION BASE 1

20 DIM FIRST$(LN),LAST$(LN)

100 N=0:PRINT"Type X,X when finished."

110 N=N+1 : INPUT"Lastname, First":LAST$(N),FIRST$(N)

120 IF LASTS(N)=”X” AND FIRSTS(N)-"X” THEN N=N-l:GOTO 200

130 IF N=LN THEN PRINT"Sorry, no more room.":GOTO 200

140 GOTO 110

200 ...

The size of the array is determined in the first line. If

you decide to change the size of the array, you need only

change the value of LN in line 10.

OPTION BASE 1 is optional, and it's only advantage is that it

saves memory by not allowing you access to element 0 in an

array. If you have double or triple subscripted arrays,

this can save a large amount Of memory.

1

DISPLAY picking the value for a dimension statement

You need to either increase the value in the dimension

statement for the variable that caused the error, or change

your program to keep from going outside the range of the

dimension statement. Take the following program as an

example:

20 DIM FIRST$(20),LAST$(20)

100 N=0:PRINT"Type X,X when finished.”

110 N=N+1 : INPUT"Lastname, First";LAST$(N),FIRST$(N)

120 IF LASTS(N)="X” AND FIRSTS(N)="X” THEN N=N-1:GOTO 200

140 GOTO 110

200 ...

With the above program, if the person tries to enter in 21

names, the computer will respond with a subscript out of

range error. However, by adding two lines and changing a

third, we will eliminate this problem, as follows:

10 LN=20=OPTION BASE 1

20 DIM FIRST$(LN),LAST$(LN)

100 N=0:PRINT"Type X,X when finished.”

110 N=N+1 : INPUT"Lastname, First";LAST$(N),FIRST$(N)

120 IF LAST$(N)="X" AND FIRST$(N)=”X” THEN N=N-l:GOTO 200

130 IF N=LN THEN PRINT"Sorry, no more room.”:GOTO 200

140 GOTO 110

200 ...

205

OPTION BASE 1 is optional, and simply helps to save memory

by telling the computer we will not be accessing FIRST$(0),

or LAST$(0). The change in line 20 is made so that if the

array size ever needs to be changed, it can be changed

easily, simply by changing the value of LN in line 10.

Line 130 will stop the person from entering too many names,

thus keeping N from going outside the bounds of the array.

It is also possible that the error may have been caused by

some type Of logic error. If so, make use of TRON/TROFF

and PRINT statements to find out what is causing it to go

outside the limit.

I

DISPLAY subscript out of range by logic error

If your program is trying to access an array element that

it should not access to figure out why, here are a few simple

steps that you can take to help find the cause of the error.

1. Place a PRINT before each access of the subscript, and

print the subscript value, and the contents of the

array element if it will help.

2. Place a PRINT after each calculation that is used in

calculating the subscript value. This can be useful

if you are using some sort of hashing technique, and

have an error in your hashing formula.

3. If your program goes through many lines while

calculating the value for the subscript, then use

TRON and TROFF to turn on and off listing the

lines it is accessing.

i

DISPLAY moving the dimension statement

If your array is shrinking in size, then you probably

need to move it. Some commands must be given in a certain

order. A CLEAR command will clear out all variables,

including any definitions for an array. There are other

commands that may cause this to happen such as improper

use of the COMMON and CHAIN commands or RUN your program from

a line other than the start. Also, make sure that you are not

using ERASE to delete the array.

If you have a CLEAR statement in your program, make it the

first thing to be executed.

l

DISPLAY division by zero

A division by zero error will not stop execution of a pro-

gram in IBM basic. It is there as a warning which the

computer displays if you attempt to divide by zero, or

raise 0 to a negative exponent. A division by be zero will

cause that portion of the expression to be evaluated as

machine infinity (+/-).

206

You might want to make sure that there isn't a CLEAR, or

other command wiping out the contents of a variable causing

you to try and divide by zero. You can also put in a check

as in the following program:

10 PRINT"When finished enter -99"

20 INPUT"Number”;NUMBER

30 IF NUMBER = -99 THEN 100

40 TOTAL = TOTAL + NUMBER

50 COUNT = COUNT + 1

60 GOTO 20

100 IF COUNT = 0 THEN PRINT"You did not enter any numbers

to average." : GOTO 120

110 PRINT"The average of the numbers is: ”; TOTAL / COUNT

120 END

I

DISPLAY duplicate definition

You have tried to redefine the size of an array. There are

a number Of different possible causes, which include:

* The same array is defined in two DIM statements (or

the same DIM statement is executed twice.)

* The program encounters a DIM statement for an array

after the default dimension of 10 is established for

that array.

* The program sees an OPTION BASE statement after an

array has been dimensioned, either by a DIM statement

or by default.

!

DISPLAY how to find array being defined twice

The first thing that I recommend you do is to examine your

program and see if you are directly defining the array

twice. One way to dO this is to save your program in ascii

(EXAMPLE: SAVE"PROGRAM”,A) and load it into a text editor.

You can then use global search commands and look for the key

word DIM. All DIM statements should be near the top of the

program (after a CLEAR statement if you have one.) If you

are defining the size Of an array for many variables, you

might have accidently typed in the same variable twice,

even on the same line.

I

DISPLAY other than removing a definition

If you really want to define the array twice (Perhaps to

increase the size of the array) you can use the ERASE

command to clear out one or more arrays. Remember that,

if you do this, the previous contents Of the array will be

lost (unless you save the array somewhere else.)

I

DISPLAY moving the OPTION BASE command

Move the OPTION BASE command to the beginning of your

program. It must be in front of any DIM statements, or

207

commands that will use arrays. A clear statement will

reset it back to the default of OPTION BASE 0.

l

DISPLAY the two other causes of duplicate definition

There are two other common causes of a duplicate definition

error. One is initializing the array to something before

the DIM statement as in the following example:

10 A$(1)="RED”:AS(2)8”BLUE”:A$(3)="GREEN”

20 DIM A$(3)

After the computer encounters A$(1)="RED" it notices that

it is a new array, and will assign it a default dimension

size of 10, and when it reaches line 20 the computer

already has it set up for size 10. To solve this sort of

problem, move the dimension statement to the beginning of the

program.

The other common error is shown in the example below:

10 DIM X$(50)

20 CLS

1000 INPUT"Do you wish to run this again?”;Q$

1010 IF LEFT$(Q$,1)="Y" or LEFT$(Q$,1)="y” THEN 10

If the person decided to redo the program, the computer

will encounter the same dimension statement twice. There

are a couple of ways that this can be fixed. You only

need change either line 10, or line 1010 in this case. You

could change line 10 to:

10 CLEAR : DIM X$(50)

or change line 1010 to:

1010 IF LEFT$(Q$,1)="Y" or LEFT$(Q$,1)="y" THEN RUN

or change line 1010 so it jumps to a point after the DIM.

1010 IF LEFT$(Q$,1)="Y" or LEFT$(Q$,1)="y” THEN 20

I

DISPLAY missing operand

You have an expression in your program that is missing an

operand. Having a * (multiply) or the OR operator with

nothing after it, are common causes for this error. Also

some commands like LOCATE and POKE will give this error if

you do not supply all of the operands.

To fix this error, add the missing operand(s) or fix some

sort of typing error that may have caused it. You may need

to look up the command or operator in the reference

208

manual. They will have the format of the command and all

required operands for that command.

I

DISPLAY whilewend

To attempt to determine the cause of the error,

list your program on paper. Draw a line from each

WHILE statement to the nearest WEND, starting with

the WHILE and WEND that are closest to each other.

'———100 WHILE X <= 20

[:150 WHILE Y = 1 AND Z < 10

200 WEND

'—-—235 WEND

l

DISPLAY match WHILE and WEND statements

Every WHILE expression must have EXACTLY one WEND

statement. There are three common causes of this error:

MISSING WEND MISSING WHILE TWO WEND STATEMENTS

100 WHILE X = 1 100 100 WHILE X <= 10

. . [—150 IF Z=W THEN WEND

235 235 WEND L'235 WEND

If you have left out either a WHILE or a WEND,

rewrite the code so that each WHILE matches a WEND.

If you have two WEND statements, change your program

so the IF statement is THEN GO TO 235 instead of WEND.

i

DISPLAY removing branch to between WHILE and WEND

You must not have a GO T0 line outside of the WHILE...WEND

loop in your program that GOes TO a line inside a WHILE ..

.. WEND loop. The GO TO must go to the WHILE statement

in a loop or not GO TO a loop at all.

PROPER GO TO A WHILE....WEND IMPROPER GO TO WHILE..WEND

100 WHILE X = 1 [-100 WHILE X = 1

: 120.

235 .WEND l"135 WEND

'——-400 GO TO 100 ‘———400 GO TO 120

If you are not certain if there is a GO TO a line number

inside the loop, type TRON (TRace ON) and run your program.

209

The line numbers print on the screen as the program runs

and you can see if there is a line number outside the loop

before the error occurs. Change the GO TO and type TROFF.

l

DISPLAY illegal function

List the line in which the illegal function Call occurred.

If the line has a PRINT USING statement, print the image.

For Example: 100 PRINT USING IS: X, Y, 2

type ? IS and press enter. If you get a blank line and OK,

15 is not defined! Either add a line defining I$ or move

the existing line so that it is ALWAYS executed before the

PRINT USING statement.

If there is no PRINT USING image or if it is defined, print

any other functions (see pages 4-17 thru 4-22 in the IBM

BASIC manual) until you find the one that is causing the

illegal function Call. If the argument [inside the ()1, is

a variable, print that also. For example:

100 y = SQR(X)

? SQR(X)

ILLEGAL FUNCTION CALL

? X

-27

!

DISPLAY PRINT USING image

Print the image from the PRINT USING image.

For Example: 110 PRINT USING IS; X, Y, Z

type ? IS “and press enter.

OK

If you get a blank line and OK,

Is is not defined! Either add a line defining IS

109 IS = "##.## ### ###.###"

or move the existing line so that it is ALWAYS executed

before the PRINT USING statement. Make

200 IS = "##.## ### ###.###”

! 5 IS = "##.## ### ###.###"

DISPLAY value string

Print the variable in the string function. For example:

If 100 XS = RIGHT$(C$,1) then run the program. When

ILLEGAL FUNCTION occurs, print the variable

? C$

OK

210

Change the code so that CS (or the variable from your

program) has a value before line 100. If there is a chance

that CS (or the variable from your program) might have no

value (might be the null set), make the line

100 IF CS 8 "" THEN XS = "” ELSE XS = RIGHTS(C$,1)

i

DISPLAY length string

Print the variable in the string function. For example:

If 100 XS = MIDS(CS,S,1) then run the program. When

ILLEGAL FUNCTION occurs, print the variable

? S,C$

If S<=0 or CS is less than S characters long, you would not

be able to find the middle starting with the Sth character!

Either the value of CS (or your program's variable) is not

being assigned correctly, or the starting position is

not being assigned correctly. Change your code so that

both of these values are properly assigned. If you are

assigning them properly but some of the test data is in

error, change the code to test for valid values:

100 IF S<=0 or LEN(CS)<S then XS="" ELSE X$=MID$(C$,S,1)

i

DISPLAY argument

Print any functions (see pages 4-17 thru 4-22 in the IBM

BASIC manual for a list of possible functions) until you

find the one that is causing the illegal function Call.

If the argument [inside the ()1, is a variable, print that

also. For example:

100 y = SQR(X)

? SQR(X)

ILLEGAL FUNCTION CALL

? X

-27

If seeing the value of the variable does not show you what

the problem is, look up the function in the BASIC manual

and compare the value of the variable in your program with

the values that are allowed for the argument. Change the

code so that values are being assigned correctly. If some

of the test data is in error, change the code to test for

valid values:

100 If X < 0 then X = o ELSE y = SQR(X)

211

DISPLAY negative subscript

If there are no functions (see pages 4-17 thru 4-22 in the

IBM BASIC manual for a list of possible functions), print

any subscripted variables until you find the one that is

causing the illegal function Call. If the subscript [inside

the ()], is a variable, print that also. For example:

100 Y = SUM(X)

? SUM(X)

ILLEGAL FUNCTION CALL

? X

-27

Since you can not have a negative value of a subscript,

change the code so that values assigned to the subscript

are not negative. If some of the test data is in error,

change the code to test for valid values:

100 If x < 0 then y = o ELSE y = SUM(X)

i

DISPLAY negative power

If there are no functions (see pages 4-17 thru 4-22 in the

IBM BASIC manual for a list of possible functions) and no

arrays, print any variables raised to a power until you find

the one that is causing the illegal function Call. Print

both the variable and the power:

100 Y = X‘Z

? X‘Z

ILLEGAL FUNCTION CALL

? X

-27

OK

? z

1.34

OK

Since you can not have a negative value raised to a non

integer power, change the code so that values assigned to

the variable are not negative or the power is an integer.

If some of the test data is in error, change the code to

test for valid values:

100 If X < 0 then Y = X‘INT(Z) ELSE Y = X‘Z

!

DISPLAY delete line

List the lines that you are attempting to delete.

If any of them do not list, the lines do not exist.

You can not delete a nonexistent line!

Retype your delete command so that you are using

lines that exist.

212

DISPLAY get/put

Print the variable indicating the record number.

For example:

100 GET #1, RECORD.NUMBER

? RECORD.NUMBER

-8

OK

Since you can not have a negative value for a record

number, change the code so that values assigned to the

record number are not negative. If some of the test data

is in error, change the code to test for valid values:

100 If RECORD.NUMBER < 1 then PRINT"Record number

incorrect":PRINT"Correct data and rerun the program": END

ELSE GET #1, RECORD.NUMBER

I

DISPLAY device error

A device error occurs when the BASIC program attempts

to communicate with one of the hardware devices such as

the printer, disk drive, modem, or cassette recorder.

The most common error is that the printer is not turned

on or that the select button needs to be pressed for the

printer to be ready, although the problem could be that

the printer cable is bad.

After trying to communicate with a device for a preset

number of seconds, BASIC will issue a DEVICE TIMEOUT

error.

If BASIC can tell that there is something wrong with

the hardware, it will issue a DEVICE FAULT ERROR.

I

DISPLAY out of paper

An out of paper error occurs when the BASIC program

attempts to communicate with the printer and fails to

complete the task.

The most common error is that the printer has run out of

paper, but this error can also occur if the printer is not

turned on or that the select button needs to be pressed for

the printer to be ready, although the problem could be that

the printer cable is bad.

Look at the printer and see if the paper light is on.

If so, put paper in the printer or if it has paper, check

to be certain that the paper opens the paper sensor switch.

You may need to move the paper to keep the sensor open.

I

213

EXPAND The error belongs to Logic errors

Before you can determine what is causing an error, you must

determine the type of error that has happened. Errors in

logic occur when the program runs, but the results are not

what you expected. Language errors occur when the code

does not follow the rules for basic code. Language errors

cause the compiler to print out a message to help you

determine the source of the error.

I

EXPAND The error belongs to language errors

Before you can determine what is causing an error, you must

determine the type of error that has happened. Errors in

logic occur when the program runs, but the results are not

what you expected. Language errors occur when the code

does not follow the rules for basic code. Language errors

cause the compiler to print out a message to help you

determine the source of the error.

I

EXPAND there is only one line of detail output

Detail output is the type of output where one line is

output for each set of data input. For example:

100 READ A,B,C

110 IF A=0 THEN END

120 D=A+B/C

130 PRINT A,B,C,D

140 GOTO 100

Line 130 is detail output since it prints each time

A,B, and C are read.

!

EXPAND correct error by reassigning algorithms

Algorithms are rules or formulae used to determine values.

For example:

200 AREA = 3.1416 * RADIUS ‘ 2

is the Algorithm for determining the area of a circle. If

your format (layout) of the output is correct, but the

numbers are wrong, the most likely cause is that one or

more of the algorithms are wrong.

When looking for incorrect algorithms, be certain that you

check for variable names that you have spelled wrong. For

example:

199 RADUS = DIAMETER/2

200 AREA = 3.1416 * RADIUS ‘ 2

214

will give an AREA of zero since the RADUS and RADIUS are

different variables.

!

EXPAND after the INPUT does not check for trip data

Trip data is special data (like -99 or END OF FILE or

sometimes even 0) that could not be ”true" data for a

program. It is used to signal the program that processing

is finished. A program that uses either a READ statement

or INPUT to get the data to process usually has a check

for some special data (trip data) in the line following

the READ or INPUT lines.

1

EXPAND correct error by checking for trip data input

Trip data is special data (like -99 or END OF FILE or

sometimes even 0) that could not be "true" data for a

program. It is used to signal the program that processing

is finished. A program that uses either a READ statement

or INPUT to get the data to process usually has a check

for some special data (trip data) in the line following

the READ or INPUT lines.

EXPAND the program checks for trip data

Trip data is special data (like -99 or END OF FILE or

sometimes even 0) that could not be ”true" data for a

program. It is used to signal the program that processing

is finished. A program that uses either a READ statement

or INPUT to get the data to process usually has a check

for some special data (trip data) in the line following

the READ or INPUT lines.

!

EXPAND the value of subscript in error

Look at the line on which the error occurred. Find which

variable gave the error. If there is more than one

subscripted variable on the line, then use PRINT until

you find which one gives the error. Example:

100 A(X)=B(Z) * C(Y*2)

You could then do, PRINT A(X), and if it returns a value,

that is not the one causing the error. Let's say that

you found C(Y*2) to be the one in error, you would then

”PRINT Y*2", and enter in the value given by the computer.

215

EXPAND value in the dimension statement

Find the dimension statement that defines the array that

is giving the error. If there is a variable in the

subscript, be sure to give the value of the subscript, and

not the contents of the subscript. Example:

10 LN=1oo : DIM A(LN), B(LN), C(LN*2)

And C(...) was found to be causing the problem. You would

then respond with 200 for this question.

!

END

APPENDIX D

APPENDIX D

Checklist for Data Flow Diagrams in Instructional Design

I. Have the course goals been identified?

II. Have course goals been separated into nine or less

logical subgroups called course components?

A. Have the components been verified by a subject

matter expert?

B. Have interrelationships between the components

been identified and verified?

C. Has a DFD been made of the course components

and their interrelationships?

1. Have information and processes between

components been explained to the level

required for development and

implementation?

2. Has the correctness of the data flow

diagram been verified by

a). a subject content area expert?

b). an expert content area teacher?

c). a potential instructor?

III. Have the goals of each component been determined?

IV. Have the component goals been separated into

logical groupings called units?

A. Have the units been verified by a subject

matter expert?

B. Have interrelationships between the units been

identified and verified?

C. Has a data flow diagram been made of the units

and their interrelationships?

1. Have information and processes between

units been explained to the level required

for implementation?

2. have necessary knowledge, strategies, and

reference materials been shown and

explained?

3. have points where expert help may be

necessary been identified?

4. Has the correctness of the data flow

diagram been verified by

a). a subject content area expert?

b). an expert content area teacher?

c). a potential instructor?

V. Have the goals of each unit been identified?

A. Have the goals been verified by a subject

matter expert?

B. Have interrelationships between the goals been

identified and verified?

216

VI.

VII.

217

Has a data flow diagram been made of the

goals and their interrelationships?

1. Have information and processes between

goals been explained to the level required

for implementation?

2. have necessary knowledge, strategies, and

reference materials been shown

3. have points where expert help may be

necessary been identified?

4. Has the correctness of the data flow

diagram been verified by

a). a subject content area expert?

b). an expert content area teacher?

c). a potential instructor?

Have the enabling objectives been identified?

A.

B.

C.

Have the enabling objectives been verified by

a subject matter expert?

Have interrelationships between the enabling

objectives been identified and verified?

Has a data flow diagram been made of the

enabling objectives and their

interrelationships?

1. Have information and processes between

enabling objectives been explained to the

level required for implementation?

2. have necessary knowledge, strategies, and

reference materials been shown and

explained?

3. have points where expert help may be

necessary been identified?

4. Has the correctness of the data flow

diagram been verified by

a). a subject content area expert?

b). an expert content area teacher?

c). a potential instructor?

Have the tasks involved in reaching the objectives

been identified?

A. Components?

1. Starting and ending points?

2. processes?

a). information needed?

b). interrelationship between processes?

c). points were expert help is needed?

Have the tasks and components been verified by

a subject matter expert?

Have interrelationships between the components

been identified and verified?

Has a data flow diagram been made of the tasks

and components their interrelationships?

1. Have information and processes between

tasks and components been explained to the

level required for implementation?

218

2. have necessary knowledge, strategies, and

reference materials been shown?

3. have points where expert help may be

necessary been identified?

4. Has the correctness of the data flow

diagram been verified by

a). a subject content area expert?

b). an expert content area teacher?

c). a potential instructor?

VIII. Does the developer or instructor feel confident

that the lessons can be developed (using Gagne's

(1985) elements of instruction, Reigeluth's (1982)

Elaboration Theory, or Landa's (1982) Snowball

approach)?

APPENDIX E

APPENDIX E

PAIN AND ITS TREATMENT IN VETERINARY MEDICINE:

AN INTERACTIVE VIDEO COURSE

This appendix contains part of the design of an interactive

video course using data flow diagrams.

Data flow diagrams for Pain 1.0 Page 220

Instructional Dictionary for Pain 1.0 . . . Page 226

219

220

Lama

1.1 1.2 1.3 1.4
*r-——-4

PAIN TYPESOF OPIATES AGONISTI

AND rrS PAN AND ASCNIST
OPIATE

NAnoonC

P 1 s

P -3 P a

[1.1IATTTTUDFSJ P 23

P 144’ P 1'39-32

1,1] FACTS J [1.2| FACTS 7 [1.31 FACTS [1.4] FACTS]

F 1-31 P 40-54 P 55-62

1.1|CCNCEPTS| 1.2IWT8 1.31m 1.4looucsns]

P '__ P 943 P 1144

' 1.11m] 1.2[PRINCPLES] 1.3TPRINCIPLES] 1.4] was]

PA: D rrS PANCCNTnoL OPIA AoomSTS

V "9'05

s1 [WW“ I wr p a...
ANDnSCONTnoL m; P4“,

W3: PO—IO

Figure 24: PAIN AND ITS TREATMENT IN VETERINARY MEDICINE 1 .0

221

LEM

1.1.1 1.1.2 1.1.3
_\

PAIN
PANAND more ANIMAL

coma»: AND W

LEvaS TOM"

P '2 w P W4

F11 ATTITUDES [1.1.2 ATTITUDESH P 11

P 12 P 3.10 w

.1.1[FACTS .1.2[FACTS | .1.3[FACTS I

P 1-2 w P 3-5 P M

.1. 1jcoNCEFIS M12] .1.a| CONCEPTS

P 1-3 F 4-0

..12] PRNCPLESI .1.3| PHNCIPLES]

RNTOTHEVEI'

PANnECEPTonS LEVELS

ANIMALHESPdNSEToPAIN

V

WOFPAN

ANDTTSCONTROL

1

LEAFNER

Figure 25: PAIN AND rrs CONSEQUENCES 1.1

$
5
5
3
.
5
5
.
.

P 214

I

I‘i-‘I FACTS]

P 9-31

.1.4[CONCEPTS]

P 12 - 14

1.4] PRNCIPLES]

TO PAIN

PA 1-2

PF 2-10

PG 2-5

PP 1-3

222

1.1.4.1 1.1.4.2 1.1.4.3 1.1.4.4 1.1.4.5

INTRO‘ DOG CAT cow HORSE

DUCTION GENERAL’
IZA'I'IONS

L_J L_J K__J K—

P 910 P 1 -15 P 11on P21 -

MEMEOFPAN

ANDITSOGITROL

81

Figure 26: SPECIFIC RESPONSES TO PAIN 1.1.4

223

1.2.1 1.2.2 1.2.3 1.2.4

SEJATDN

ANESTHESIA “3 ANALCESIA

 _J

p

17 -2o

FACTS |

.22] CONCEPTS—l

2.2] PPNCIPLES]

ANESTHESIA D ANALGESIA ANE HESIA SEDA AND

TRANOU 12AT10N

s1 WEDGEOFPNN

ANDrrSCONTROL

Figure 27: TYPES OF PAIN CONTROL 1.2

224

mm

P 9-5
P 7-29

taxi FACTS |

F 52-54

[13.3] (11409781

pm

.3.3[PRNCIPLEEI

mm

81 WEDGEOFMAL

PAIN AND ITS TREATMENT

Figure 28: OPIATES AND OPIATE RECEPTORS 1.3

225

LEATHER

14.1 . 1.4.2 . 1.4.3 1.4.4 ,

3:ng USESOF CONTROLOF

m AGONIST/ AGONISTI W8

Bum“ m ANTAGONIST

””12 mi) ”m

1155

P 30

p 57 [1.4.3] FACTS]

P P 53-59

fi.4.2 mos-"413114.44 WISJ

p 12—13

..421 PRINCPLESI ..4a] PRNCIPLEQ

SAGONISTI£AGONIST ASONISTéAG-ON

mOMEDCEOFPAN

ANDITSCONTHOL

-

Figure 29: . AGONIST/ANTAGONIST AND NARCOTIC DRUGS 1.4

225

Lem

1.4.1 1.4.2 1.4.3 1.4.4

AGON'ST’ USESOF CONTROLOF

ANTAGONIST

m AGON'ST’ W's“ NARCOTICS
wron- mm ANTAGONIST

PI-IANOL I Dans I m

P55

P -30

P 57 L‘-3I FACTS I

P F 53-53

h.4.2 WIS] 14.43] CONCEPTS]

p 1213I

..42 [PRINCIPLES] “..43I PFINCIFLESI

AOONISTSla‘g POG'IIECLDN
AGONIST/ AGONIST AGONIST

mowiEDCEOFPAN

ANDITSOONTFICI.

-

Figure 29: . AGONIST/ANTAGONIST AND NARCOTIC DRUGS 1.4

225

Lem

1.4.1 1.4.2 1.4.3 1.4.4

AGONIST’ USESOF CONTROLOF

ANTAGONIST

m AGON'ST’ moms“ NARCOTICS

BUTOR- AGONIST mm

Puma—J 011133 I ”“33

vss

P -30

p 57 [1.4.3] FACTS I

P P 53.53

[1.4.2 CONCEPTS] .4.3] comma]

p 1213 P 14

.42] PRINCPLESI .43] PRNCIPLES]

a: G

AGONIST/ AGCNIST AGONIST AGON

WEDGEG‘PAN

ANDITSCONTRQ

81

I

Figure 29: . AGONIST/ANTAGONIST AND NARCOTIC DRUGS 1.4

INSTRUCTIONAL DICTIONARY

for

Methods of Controling Pain in Veterinary Medicine

Section T: Pain

(num)(level)(sequence)

Part A: 1.1.1 (Pain and the veterinarian's concern about pain)

(1)

(2)

(1)

(2)

(1)

(2)

Part

(3)

(10)

(42) (1)

(22) (2)

(42) (3)

(42) (4)

(42) (5)

(33) (6)

3: 1.1.2

(33) (1)

(22) (2)

(32) (3)

(32) (4)

(32) (5)

(33) (6)

(33) (7)

(32) (8)

(22) (9)

Pain is a complex physiological phenomenon that is (

difficult to identify and interpret in animals.

No single area of the brain is specifically responsible (

for the perception of pain.

Veterinarians should alleviate pain and suffering in (

animals.

Veterinarians should suspect the presence of pain in (

animals if under the same circumstances humans

experience pain.

The judicious use of drugs for relief of pain can (

significantly reduce animal suffering.

Pain relievers should be selected for animals if (

(a) the animal can, in fact, be made more comfortable.

(b) the pain-relieving drugs will not be detrimental.

(Pain receptors and response levels)

The modifier, PAIN, should not be applied to these (

neurological components because the PERCEPTION of pain

does not necessarily occur with:

(a) stimuli

(b) impulses

(c) pathways

(d) reflexes

Noxious describes stimuli which give rise to pain. (

A receptor is that portion of a nerve which responds to (

a stimulus and causes the transmission of an impulse to

the brain.

Nociceptors are receptors specifically responsive to (

noxious stimuli.

Nocipceptive threshold is the intensity of stimulation (

of a nociceptor needed to generate nerve impulses.

The pain detection threshold is the strength achieved by(

a noxious stimulus to cause the perception of pain.

The pain tolerance threshold is the highest intensity of(

noxious stimuli a human subject will permit an

experimenter to deliver.

The strength of a noxious stimulus necessary to reach (

the nociceptive threshold varies little among humans

and animals.

The strength of a noxious stimulus needed to cross the (

pain detection threshold is variable.

226

2

2

(reference) type

)2

)2

)1

)1

)3

)3

)3

)2

)2

)2

)2

)2

)2

)2

)2

(2)

(4)

(5)

(3)

(3)

Part

(4)

(6)

(5)

(7)

(8)

(11)

(6)

(33) (10)

(32) (11)

(21) (12)

(33) (13)

(32) (14)

(42) (15)

C: 1.1.3

(32) (1)

(41) (2)

(41) (3)

(31) (4)

(31) (5)

(31) (6)

(43 (7)

227

If individuals have experienced pain previously and (2

repeatedly, the strength of a noxious stimulus necessary

to cross the pain detection threshold is probably higher

than for individuals who have not experienced pain.

If pain is dull, it is more easily tolerated than (2

sharp pain.

A variety of different stimuli evoke pain: (2

(a) superficial (skin)

(b) mechanical (pressure)

(c) thermal (heat)

(d) chemical (burns)

(e) visceral (gut).

There are many different types of pain (2

(a) the perceptual experience can change dramatically

with variation of the intensity of the stimulation

(b) A needle puncture is not as painful as a skin

incision.

If animals are stimulated at about the same intensity (2a

that human subjects first report the detection of pain,

they will begin to escape Stimulation.

Veterinarians should not ignore the perception of pain (2a

in animals.

(Animal Response to Pain)

If an animal exhibits behavioral changes, the animal may(3

be experiencing pain.

Behavioral changes indicative of pain range from (3

vigorous activity to relative lethargy.

(a) moaning, groaning, crying, mimering, bellowing

(b) looking at a specific area

(c) licking, biting

(d) decrease in physical activity

(e) poor appetite

If acute or sharp pain is identified by palpitation of (3

an affected area, the animal may attempt to escape or

attack.

Clinical signs of the presence of pain: (3

(a) lameness

(b) shallow breathing

(c) moaning, crying

Signs of localized pain: (3

(a) Belly: tense abdominal muscles

(b) Chest: shallow breathing or elbows away from the

body in a distressed manner.

Muscle guarding is tense abdominal muscles due to belly (3

pain.

If an animal has experienced pain for many days, the (3

animal may tolerate the painful experience and become

quiet or withdrawn with no overt behavioral evidence of

suffering.

)4

)4

)3

)3

)4

)1

)4

)3

)4

)3

)3

)2

)4

228

Part 0: 1.1.4 (Specific responses to pain)

(9) (42) (1a) There can be a great deal of interspecies and (4)3

individual variability in response to pain.

(a) Hounds seem less likely than poodles to be

sensitive to pain.

(b) Cats may only Show visible signs of pain when the

stress becomes more pronounced.

(c) Grinding of teeth and head pressing are probable

signs of pain in runinants.

(d) Profuse sweating may indicate severe pain in a

horse.

(10) (22) (1b) The presence of pain can be inferred from the observing (t1,4)3

changes in the animal's:

(a) posture

(b) vocalizing

(c) temperament

(d) respiration

(e) other miscellaneous behaviors

(11) (41) (2a) General signs of behavior indicating pain or discomfort (t1,4)3

in the dog’s posture:

(a) anxious expression;

(b) tail between legs

(c) “hang dog" look

(d) shifts in position

(e) not comfortable

(12) (42) (2b) General signs of behavior indicating pain or discomfort (t1,4)3

in the dog's Vocalizing:

(a) Howls

(b) Distinctive bark

(c) Noans

(d) Groans

(13) (32) (2c) General signs of behavior indicating pain or discomfort (t1,4)3

in the dog's Temperament:

(a) Aggression

(b) Cringing

(c) Submissive

(d) Escapes

(e) Licks or bites area

(14) (32) (2d) General signs of behavior indicating pain or discomfort (t1,4)3

in the dog's Respiration:

(a) Abnormal breathing pattern:

(b) rate and depth altered,

(c) panting, labored

(15) (42) (2e) General miscellaneous signs of behavior indicating pain (t1,4)3

or discomfort in the dog:

(a) penile protrusion

(b) Frequent urination

(c) Shivering

(16) (42) (3a) General signs of behavior indicating pain or discomfort (t1,4)3

in the cat's posture:

(a) Tucked in paws

(b) hunched head and neck

(c) Shifts position

(d) Tucked up abdomen

(e) not comfortable

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(32)

(32)

(32)

(32)

(42)

(32)

(42)

(32)

(32)

(42)

(42)

(42)

(3b)

(3c)

(3d)

(3e)

(4a)

(4b)

(4c)

(4d)

(4e)

(5a)

(5b)

(SC)

229

General signs of behavior indicating pain or discomfort

in the cat's Vocalizing:

(a) Distinctive cry

(b) Missing

(c) Spitting

General signs of behavior indicating pain or discomfort

in the cat's temperament:

(a) Ears flattened

(b) Fear of being handled

(c) May cringe

General signs of behavior indicating pain or discomfort

in the cat’s Respiration:

(a) Abnormal breathing pattern:

(b) panting, breathe heavy

General Miscellaneous signs of behavior indicating pain

or discomfort in the cat:

(a) Unsteady gait

(b) limps

(c) Shivering

General signs of behavior indicating pain or discomfort

in the cow's Posture:

(a) Head down - ears limp

(b) Tucked up abdomen

(c) Need pressing

General signs of behavior indicating pain or discomfort

in the cow's Vocalizing:

(a) Grinding teeth

General signs of behavior indicating pain or discomfort

in the cow's Temperament:

(a) withdrawn

(b) Depressed

(c) Not active

General signs of behavior indicating pain or discomfort

in the cow's Respiration:

(a) Grunting

(b) Dyspnea

General Miscellaneous signs of behavior indicating pain

or discomfort in the cow:

(a) limp

General signs of behavior indicating pain or discomfort

in the Horse's Posture:

(a) Rolls

(b) Stretches

(c) Looks at area

(d) Kick at area

General signs of behavior indicating pain or discomfort

in the horse's Vocalizing:

(a) Grinding teeth

General signs of behavior indicating pain or discomfort

in the horse's Temperament:

(I) Depressed

(b) Aggressive

(t1,4

(t1,4

(11,4

(t1,4

(11,4

(t1,4

(t1,4

(t1,4

(t1,4

(t1,4

(t1,4

(t1,4

)3

)3

)3

)3

)3

)3

)3

)3

)3

)3

(29)

(30)

(12)

(31)

(13)

(14)

(7)

Part

(32)

(15)

(16)

(33)

Part

(34)

(17)

(18)

(19)

(42) (5d)

(32) (5e)

(22) (6a)

(43) (6b)

(22) (6c)

(42) (6d)

(42) (6e)

E: 1.2.1

(43) (1)

(42) (2)

(42) (3)

(42) (4)

F: 1.2.2

(42) (1)

(31) (2)

(32) (3)

(32) (4)

230

General signs of behavior indicating pain or discomfort (t1,4

in the horse's Respiration:

(a) Grunting

(b) Labored breathing

General miscellaneous signs of behavior indicating pain (t1,4

or discomfort in the horse:

(a) limp

(b) Sweat

Even though there is a great deal of interspecies and

individual variability in response to pain, there are

some broad generalizations that can be made about pain

that apply to many species.

Intense emotional reactions by a patient can be

produced by

(a) Levels of pain

(b) above the tolerance threshold.

High levels of pain in animals can usually be observed

through changes in the animal's behavior.

High levels of pain, when associated with human beings,

are said to evoke suffering.

If pain is near-detection level, it

(a) can be tolerated

(b) is not necessarily disruptive

(c) does not produce a high degree of emotional

reactivity.

(Analgesia and Anesthesia)

Drugs acting on the nervous system, particularly the

brain, are the primary agents for the alleviation of

pain:

(a) for use as a central control mechanism

(b) for use as a peripheral control mechanism.

Analgesia is relief of pain without unconsciousness.

(

(

(

(

General Anesthesia is the loss of both sensation to pain(

and consciousness.

Sleep

(a) produces loss of consciousness

(b) increases the pain detection threshold

(c) does not eliminate the response to pain.

(Anesthesia)

The Principle purpose for the use of anesthetic and

analgesic agents is to prevent response to pain

(a) induced from diagnostic procedures

(b) during surgery.

Local anesthesia or local analgesia involves loss of

sensation of a limited area of the body.

Regional anesthesia involves loss of sensation of a

large area of the body such as the hind legs.

General anesthesia provides overall insensitivity of

the whole body and unconsciousness.

I.

)3

)3

)2

)3

)2

)2

)4

)3

)2

)2

)3

)3

)2

)2

)2

(20)

(8)

Part

(21)

(35)

(36)

(37)

Pll't

(22)

(23)

(24)

(38)

(25)

(39)

Part

(40)

(41)

(22) (5)

(42) (6)

G: 1.2.3

(41) (1)

(32) (2)

(42) (3)

(42) (4)

H: 1.2.4

(32) (1)

(21) (Z)

(32) (3)

(33) (4)

(32) (5)

(32) (6)

I: 1.3.1

(33) (1)

(33) (2)

231

Amnesia is the inability to remember past experiences or(

a loss of memory for a given time period.

If an individual is given a surgical level of general (

anesthesia, the individual will experience

unconsciousness, analgesia, absence of muscle movement

following a noxious stimulus, and amnesia.

(Sedation and tranquilizers)

Sedatives and tranquilizers produce a mild degree of (

central nervous system depression for which the patient

is conscious, but calm.

Sedatives and tranquilizers (

(a) do not relieve pain

(b) may dull conscious perception of pain

(c) relieve tension and anxiety.

Some drugs provide analgesia as well as mild sedation (

in the dog and human, but do not readily produce sleep:

(a) Morphine

(b) meperidine

(c) oxymorphone

Tranquilizers are administered to animals (

(a) to produce a calming effect

(b) providing a chemical restraint.

(analgesia)

Opiates are a group of naturally occurring opium (

compounds and their chemically related derivatives such

as morphine.

An exogenous substance is a substance outside the body. (

An Opioid is an exogenous substance which binds a (

specific type of nociceptor called opiate receptors.

Opioids (

(a) attach to the opiate receptors.

(b) At least partially block the sensation of painful

stimulus

Nonopioid antinfalammatory agents such as flunixin (

(banamine) and analgesics such as xylazine (Rompun)

have no affinity for opiate receptors.

Opioids produce their major effects on the central (

nervous system:

(a) analgesia

(b) sedation, with variable side effects of

respiratory depression

(c) decreased gastrointestinal motility

(d) nausea and vomiting

(Opiate receptors, Enkephalins and beta-endorphins)

The relative analgesic potency of opioids appears to be (

related to their attraction to receptors in the body.

Densities of opiate receptors are high in anatomical (

areas associated with physiologic functions that are

altered by Opioids.

)2

)4

)2

)3

)3

)3

)2

)2

)2

)3

)2

)3

)3

)3

(42)

(26)

(43)

(44)

(45)

(46)

(9)

Part

(47)

(48)

(49)

(50)

(51)

(33) (3)

(31) (4)

(33) (5)

(33) (6)

(42) (7)

(43) (8)

(44) (9)

J: 1.3.2

(32) (1)

(32) (2)

(32) (3)

(33) (4)

(42) (5)

232

There appears to be a correlation between the site of

action and the opioid effect.

Endogenous substances are produced inside the body.

Opiate receptors appear to be associated with specific

areas in the brain that function as sites of action for

a number of endogenous substances.

Enkephalins and beta-endorphins:

(a) are endogenous opioid-like compounds which

(b) appear to function as a built-in protective

mechanism of the body to

(c) help relieve pain.

It is assumed that exogenous opioids produce their

effects by mimicking some of the actions of enkephalins

and beta-endorphins

Some injured animals may not appear to be in pain

because of the production of endorphins.

If phenothiazine tranquilizer is administered to a

recently wounded animal, the treatment might actually

enhance pain by inhibiting the endorphin system-even if

the animal looks pain-free.

(Classification of Opiate Receptors)

The three major opiate receptors are Mu, Kappa, and

Sigma. The Mu receptors mediate analgesia and euphoria

and:

(a) respiratory depression

(b) dilation of the pupil

(c) sedation

(d) physical dependence

(e) abuse potential

The three major opiate receptors are Mu, Kappa, and

Sigma. Kappa receptors are primarily responsible for:

(a) analgesia

(b) pupillary constriction

(c) a modest degree of sedation

(d) a mild respiratory depression

The three major opiate receptors are Mu, Kappa, and

Sigma. Sigma receptors cause:

(a) restlessness

(b) mental anxiety

(c) hallucinations

(d) respiratory and circulatory stimulatory effects.

Two receptor types found in selected tissue:

(a) Delta receptors which appear to be selective for

enkephalins.

(b) Epsilon receptors which have a high selectivity

for -endorphins but lack affinity for enkephalins.

Most opioids

(a) have different affinities for different receptors

(b) are called drugs of the attracted receptor

(i.e. kappa drugs or mu drugs).

(

(

(

10

10

10

10

10

)3

)2

)3

)3

)3

)3

)4

)3

)3

)3

)3

)3

Part

(52)

(53)

(27)

(28)

(10)

(54)

Part

(55)

(11)

K: 1.3.3

(33) (1)

(44) (2)

(32) (3)

(32) (4)

(43) (5)

(41) (6)

L: 1.4.1

(43) (1)

(32) (2)

Part M: 1.4.2

(56)

(57)

(42) (1)

(43) (2)

233

(Classifying Opioid Drugs)

Opioid drugs are categorized as agonists, antagonists, (11)3

or mixed agonist-antagonists depending on their actions

at the receptor sites. Opioid agonist acting at mu,

kappa, and sigma receptors:

(a) morphine

(b) meperidine

(c) fentanyl

(d) oxymorphone

Opioid drugs are categorized as agonists, antagonists, (11)3

or mixed agonist-antagonists depending on their actions

at the receptor sites. Opioid antagonists, which exert

little or no physiological affect on their own:

(a) act at opiate receptors

(b) block the effects of the opioid agonist by its

displacement from the receptors.

Drugs are referred to as kappa agonists or mu agonists (11)2

if they activate either kappa or an receptors

respectively.

Drugs are antagonists if they reverse the effects of the(11)2

opioid agonist by its displacement from the receptors.

If opioid agonists that produce their effects at only (11)4

kappa receptors are used, analgesia can be achieved

without the side effects seen when mu receptors are also

triggered.

Naloxone (11)3

(a) is a pure opioid antagonist which

(b) attaches to all opiate receptors.

(Agonist/Antagonist Drugs: Butorphanol)

Drugs classified as agonist/antagonist analgesics may (12)3

bind to the mu receptors and either exert no action or

have only limited effects while exerting agonist action

at the kappa receptors to provide analgesia and varying

degrees of sedation.

(a) Butorphanol (stronger agonist than nalbuphine,

weaker antagonist)

(b) Nalorphine (weak agonist - strong antagonist)

(c) levallorphan (weak agonist - strong antagonist)

(d) Nalbuphine (weak agonist but stronger antagonist)

(e) Pentazocine

If a drug has a selective nature as a kappa agonists, (12)4

fewer side effects are associated with its use.

(Uses of Agonist/antagonist Drugs: Dutrophanol)

Agonist/antagonist analgesics may be used alone to (13)3

(a) provide analgesia

(b) produce the effects of an opioid agonist.

Agonist/antagonist analgesics may be used after the use (13)3

of a pure opioid to

(a) return the patient to consciousness

(b) relieve the opioid induced respiratory depression

(c) and to enhance analgesia.

(12)

(13)

Part

(29)

(58)

(30)

(59)

(14)

Part

(31)

(60)

(61)

(62)

(32)

(43) (3)

(42) (4)

M: 1.4.3

(42) (1)

(32) (2)

(32) (3)

(32) (4)

(31) (5)

0: 1.4.4

(21) (1)

(21) (2)

(32) (3)

(32) (4)

(32) (5)

ATTITUDES: 3

234

If a pure opioid such as fentanyl or oxymorphone has (

been used as a component of an anesthetic procedure and

analgesia is desired for postsurgical pain, an

agonist/antagonist analgesic such as butorphanol may be

given to return the patient to consciousness and relieve

the opioid induced respiratory depression while

enhancing analgesia.

If all the effects of an agonist/antagonist analgesic (

are to be reversed, a pure antagonist such as naloxone

may be given.

(Control of Agonist/antagonist Drugs)

Agonist/antagonist opioids have strong analgesic (

properties but have little propensity for physical

dependence or abuse.

Butorphanol and nalbuphine are not listed as controlled (

substances by the Federal Drug Enforcement Agency since:

(a) little propensity for physical dependence,

(b) however, they have a strong analgesic property.

Pentazocine is included as a class IV drug. (

The addictive properties of opioids is of little direct (

importance in the treatment of animals

(a) because veerinary patients are not usually given

opportunity to develop drug dependence

but are often restricted because of human

dependence.

If a drug such as the opioid agonists has a liability of(

addiction or physical dependence by humans, drug control

regulations may restrict veterinarians from using that

drug; especially for practices without good security and

record keeping systems.

(b)

(Narcotics)

The term narcotic, which originally designated drugs (

which stupify, now designates any substance which can

cause physical dependence or abuse.

Narcotic no longer denotes a pharmacological class, but (

designates any substance which can cause physical

dependence or abuse.

A narcotic may be an analgesic, but an analgesic may (

not be a narcotic, even if it affects opiate receptors.

Butorphanol is a agonist/antagonist with low potential (

for physical dependence because:

(a) even though symptoms resembling those of opiate

withdrawal were observed,

addictive behavior indicating a psychological

need was not exhibited.

(b)

Dutorphanol is not a Controlled substance and therefore (

is NOT classified as a narcotic drug with abuse

potential.

FACTS: 32 CONCEPTS: 62 PRINCIPLES:

13

13

14

14

14

14

14

15

15

15

15

15

14

)4

>4

)2

)3

)2

)3

)4

)2

)3

)3

)3

)2

APPENDIX F

APPENDIX F

PROCEDURES FOR DESIGNING AND DEVELOPING INTERACTIVE VIDEO

1).

2).

3).

4).

INSTRUCTION

Determine that there is sufficient time to take on a

new project.

a).

b).

c).

Meet

a).

b).

It there is, check that there are not other pro-

jects to which you have future commitment or other

projects more worthy to do.

If there is not time available, check whether any

of the current projects that are less worthy can

be temporarily set aside to work on this project.

If so, reschedule them, do not just forget them.

Do not undertake a project, no matter how worthy,

if there will not be sufficient time to do a

thorough job with the project.

with the potential client

Determine his perceived needs, target audience,

and project expectations.

Explain the CAI groups role (if the project is to

be undertaken) and explain, as much as possible,

the CAI groups expectations of the client.

Collect copies of any relevant resource materials

the client may have available for the project (or

a working outline of what the course materials

will be).

Review and organize the data from the client.

a).

b).

c).

d).

Meet

a).

b).

c).

If the need for the project is not readily

apparent, do an needs analysis, otherwise merely

state the need for the project in instructional

format.

Reviewing notes from the meeting with the client

and at least skimming the materials the client

presented, determine the course, major section,

and unit goals.

Prepare an instructional needs report and an unit

level instructional goals outline.

Develop a unit level data flow diagram WITHOUT

INSTRUCTIONAL EVENT INFORMATION.

with the potential client

Verify that the materials developed so far are

correct.

Provide a rough estimate of the amount of time

involved with the project.

Establish deadline for a go/no go project deci-

Sion.

235

5).

6).

7).

8).

9).

236

Using the materials given by the client or meeting with

the client or associate, determine the instructional

events for each unit. Enter into a word processor with

10/70 margins. Save in ASCII (to end each line with a

line feed) with extension .seq. (see Sawyer.seq as an

example).

a). Course Title

b). Section heading

c). Unit information (repeat for each unit)

1). Part name (repeat each change in subpart)

2). Subpart name (if applicable)

A. lst Instructional event

1). (sequence number) First line

2). indent, rest of lines

B. 2nd Instructional event

1). (sequence number) First line

2). indent, rest of the lines

C. Etc.

Check the instructional events against the source

materials. Make sure all were entered. Determine the

reference of the instructional event. Determine the

type of each instructional event:

1. Attitude

2. Fact

3. Concept

4. Principle

Reload the instructional event file with margins 10/80.

Add the reference to the first line of each instruc-

tional event so that it takes a maximum of 5 spaces and

ends at 77. Add the number for the type of instruc-

tional event so that it ends at 79. Save in ASCII with

extension .iev.

Change the names of the files Run Instrdic.bas to

create the instructional dictionary. The output should

be an ASCII file ending with the extension .dic.

Using the instructional dictionary as a guide,

(a) complete the Data Flow Diagrams at least to the

Part level. Complete a subpart level data flow

diagram if:

(1) any part appears to have natural subdivisions

or

(2) any part has more than 15 events and the

amount of information presented needs group-

ing to aid in both comprehension and recall

(b) Indicate instructional events introduced in one

section and used in another on the data flow

diagram

237

(c) Recheck the instructional dictionary and data flow

diagram with the original source of instructional

material

(1) making any necessary changes

(a) omissions of materials

(b) sequencing errors

(c) misread materials

(2) prepare suggestions for the client for

changes where materials

(a) seem to be missing for good instruction-

al flow

(b) seem to be redundant

(c) seem to be extraneous

10). Meet with the client to

(a) verify the work completed:

(1) data flow diagram is correct at all desired

levels

(2) the instructional dictionary is complete

(3) the suggestions for client changes need to be

made

(b) ask client to

(1) determine the level of importance and dif-

ficulty for each instructional event

(leveldir.wp)

(2) fill out course and section worksheets

(Course.out).

(c) Provide followup support for activities in (b)

where necessary.

11). When client has completed (b) from 10)

(a) Enter the two digit level importance/difficulty

number into the data dictionary and save it in

ASCII.

(b) After changing the names, Run INSTRWRK.BAS. The

result will be:

(1) filename0.wrk containing all the low level

instructional events

(2) filenames.wrk containing the medium level

instructional events

(3) filenamel.wrk containing the high level

instructional events.

(c) Using the importance/difficulty number as a guide,

give the client an estimate of the amount of time

the project will take for each of the interested

parties.

12). While the client is filling out the instructional

events worksheets the authoring should begin for the

courseware

(a) create Menus from the Data Flow Diagrams

(b)

(C)

(d)

238

(1) Each process symbol should be a menu item

(2) Use models from the authoring system Library.

set up course introductions (If the video is not

developed yet, merely access dummy points on any

available disk and change frame numbers when the

video is available)

program the low level worksheets

If possible, start filming video segments from the

course and section outlines.

13). Encourage the client to "turn in" the worksheets after

each

(a)

(b)

(C)

(d)

(6)

part is completed (or at most, each section).

suggest improvements to the client if the materi-

als on the worksheets seem in ANY WAY inadequate.

Program complete parts whenever possible.

(1) Have a member of the staff check it.

(2) Make corrections/modifications

Have the client ”look over” each part (if pos-

sible) as soon as it is developed. (This will not

only allow for formative feedback as to how the

course is progressing, but will also help to keep

the client enthusiastic as he sees concrete prog-

ress being made.)

make modifications the client thinks important.

Verify!

Have students from the target audience check each

part upon completion for formative feedback.

Check any MAJOR recommendations by the student

evaluators with the client before programming the

"improvements”.

14). Check on the video production (if not completed ear-

lier).

(a)

(b)

(C)

(d)

(e)

(f)

15). When

(a)

(b)

(C)

Check that the storyboard has all necessary ele-

ments for the instruction

Check that the storyboard is arranged and organ-

ized efficiently

Check that all instructional elements were actual-

ly taped. If not, schedule taping OR consult with

client to modify the instruction

Check editing of master video tape

Review the final version with the client

Repeat (c)-(e) for mastered video disk

all the course programming is completed,

completely test the course with CAI staff member

with little contact with the development of the

course.

Modify any problem areas. Repeat (a) G (b) as

needed.

have the client test the program completely at the

CAI offices, if possible.

239

(1) Solicit feedbaCk NON-JUDGMENTALLY. Provide

information when requested ONLY.

(2) Watch for non verbal feedback as the client

works through the complete system. Solicit

feedback on any areas that appear to be

problem areas for the client.

16). When the client is satisfied with the program, two or

17).

13) .

19).

20).

21) .

three students from the target student population

should run the program while being observed at the CAI

offices.

(a) Watch for nonverbal feedback as the students work

through the complete system.

(b) Solicit feedback on any areas that appear to be

problem areas for the students AFTER they have

finished the complete course.

(c) students should also fill out formative evaluation

forms that help determine areas that may be im-

proved in the courseware.

When the improvements suggested by the students are

incorporated in the course (if they are considered

improvements by the instructional designer and the

client),

(a) the course should be tested by four or five

students from the target student population in

the setting that will be used for the target

population.

(b) Students should fill out formative evaluation

forms that help determine areas that may be im-

proved in the courseware

(c) students should be debriefed, if possible, to see

if there are other possible areas of improvement.

When the improvements suggested by the students are

incorporated in the course (if they are considered

improvements by the instructional designer and the

client),

(a) the course should be ready for target student use

(b) continue to monitor the course carefully checking

(1) formative evaluation forms

(2) summative evaluation forms

(3) final tests of student learning.

Make any modifications necessary if 17) indicates the

need.

Ask client to evaluate the performance of your group

and the product produced. Use results to improve per-

formance on next project.

Continue modifications 17 and 18 as long as the course

is being used on at least a periodic check schedule.

LIST OF REFERENCES

List of References

Abdolmohammadi, M.J. (1987, Spring). Decision support

and expert systems in auditing: A review and

research directions. '

researgh. 173-185.

Adams, D.M. & Hamm, M. (1987). Artificial intelligence

and instruction: Thinking tools for education.

I.H,E, Jggrnal, 15(1), 59-62.

Adams, R. & Imhof, H. (1987). Computers in the sciences.

The_§9_2211ng_1_acher 15(4). 20-

Anderson. J R. (1985) Q_sa11122.naxsholosx_aad_1ts

impliggrigng (2nd ed.). New York:W.H. Freeman and

Company.

Andrews, D. H. and Goodson, L. A. (1980). A comparative

analysis of models of instructional design. gggrnal_gr

1n§1192112n11_d_xe122men1 3(4). 2-16.

Aronson, D.T., G Briggs, L.J. (1983). Contributions of

Gagne and Briggs to a prescriptive model of

instruction. In C. M. oReigeluth (Ed.).

t uct' 1- es 0 '

Qf_fheir_gurrest_§_etu§ (pp- 75-100)- New Jersey:

Lawrence Erlbaum Associates.

Atkinson, R. C. (1976). Adaptive instructional systems:

Some attempts to Optimize the learning process. In D.

Klahr (ed). Qossifiga_and_1natrustioaI (pp- 81-108)

Hillsdale, New Jersey: Lawrence Erlbaum Associates,

Publishers.

Ausubel, D.P- (1968) Edsectional_2exch212911__a

gggnirigg_yigw. New York: Holt, Rinehart and Winston.

Baker, L., G Brown, A. L. (1984L Metacognitive skills

and reading. In D. Pearson (ed.), garggggg_gr_;§gging

IQEEQIQD (pp. 353-394). New York: Longman.

Banathy. B-H. (1968)- Instructional_§xstem§- Palo Alto,

Ca.: Fearon Publishers.

240

241

Bereiter, C. (1985). Toward a solution of the learning

Paradox. Bex1ew_of_Edusafioasl_Eeaearsh- 55. 201-226-

Blaisdell, J. H. (1985, October). Knowledge engineering

software supporting delivery of an expert system

within the CIS curriculum. In a paper presented to

Inf2rmat12n_§xs1sma.£dusatisn.§2nfezense. Huston.

Bloom, B.S., G Broder, L.J. (1950). Ergblgm;§glying

se . An exploratory

investigation. Chicago: University of Chicago Press.

Boose, J. H. (1986).

sysrem design. New York:Elsevier.

Briggs, L-J- & Wagner. w.w. (1981)- _nsndbsok_9f_nzscedures

f2I_the_design_ef_instrnstion (2nd ed-)- New

Jersey:Educational Technology Publications.

Brown, J. S., G Burton, R. R. (1978). Diagnostic models

for procedural bugs in basic mathematical skills.

In D. F- Walker 8 R D. Hess, ID§EIEQ§12D31_§2£§!Q£§-

Belmont, Ca.: Wadsworth Publishing Company.

Bruner. 3.8- (1960). Ihs_aroseaa_2f_edssationo New

York: Random House.

Buchanan, B.S., & Shortliffe, E.H. (1984). Rulg;fia§gg

sxnsrt_axatems1__Ihe_MYQIN_exnerimen1§_2f_the

afanford_aeRr1stic_nrosrammins_arsiest. Menlo

Park, California:Addison-Wesley.

Carroll, J. B. (1976). Promoting language skills: The

role of instruction. In D. Klahr (ed.), Qggnirign

and_ln§rrggrign, (pp. 3-22). Hillsdale, New Jersey:

Lawrence Erlbaum Associates, Publishers.

Chaturvedi, A.R. (1987, July). §1£2§212D2§Q§128

am wor e s s blem selecti . Paper

presented at the North American Conference of the

International Business Schools Computer Users Group,

Flint, Michigan.

Collins, A., & Stevens, A.L. (1983). A cognitive theory

of inquiry teaching. In C. M. Reigeluth (Ed.).

t ctional—desi n e 0 3° 'e

9f_1heir_surreat_sfetu§ (pp- 4'36)- New Jersey:

Lawrence Erlbaum Associates.

242

a si c u . (1983). produced by

MSU Curriculum Resource Team. Michigan State

University. East Lansing, Michigan: Michigan

Department of Education.

Davis, 6. B., 5 Olson, M. H. (1985). Mnnnggngnr

ormat e s-

atrusture1_and_nexelsnmsnt- N.Y-: McGraw-Hill Book

Company.

Davis. L- N- (1987. June). Seedisg_erpsrt_exetem

rggnnolggy in industrial sertings. Paper presented at

the National Educational Computing Conference,

Philadelphia, Pennsylvania.

Davis, R.M., Alexander, L.T., & Yelon, S.L. (1974).

a in S stem esi n An 0 The I ve

9f Insrrnctinn. New York: McGraw-Hill Book Company.

Derry. 8- J- (1984. April)- Strategx_TrainiDs1_An

Lea n' Mode f . Paper presented at

Annual Meeting, American Educational Research

Association, New Orleans, LA.

Gable, A, a Page, C.V. (1980). The use of artificial

intelligence techniques in computer-assisted

instruction: an overview. In D.F. Walker 8 R.D.

Hess. Instructional_§2ftware. Belmont. Ca.:

Wadsworth Publishing Company.

Gagne. E-D- (1985). Ihe_22gn1tixe_£§xsholegx_2f_ashool

lgarning. Boston: Little, Brown and Company.

Gagne, R.M. (1977). The ggndirions 9r lenrning (3rd

ed.). New york: Holt, Rienhart, and Winston.

Gagne. R-N- (1985). Iae_22n11112n§_of_learniag_aad

theorx_of_1aatrustioa. (4th ed-) New York: Holt.

Rinehart and Winston.

Gagne, R. M. & Briggs, L.J. (1979). Eringipi§§_gf

a 5 (2nd ed.). New York: Holt,

Rinehart and Winston.

Gagne, R.M. & White, R.T. (1978). Memory structures and

learning outcomes. Bex1ea_of_Edssatioaal_Besear2h1 48-

137-222.

Gane. C-. 8 Sarson. T- (1979)- Structured_fixsfem§

s' ols h . N.Y.: Improved System

Technologies Inc.

243

Glaser, R. (1976). Cognitive psychology and

instructional design. In D. Klahr (ed.), Qggnirinn

and_instrssfion (pp- 303-315)- Hillsdale. New

Jersey: Lawrence Erlbaum Associates, Publishers.

Glaser, R. (1984L Education and thinking: The role of

knowledge. Amerieen_zex_holosist 39(2). 93-104-

Glaser, R., & Resnick, L.B. (1972). Instructional

Psychology- AnD211.1exieg_of_2§¥sholesx. 23. 207-276.

Gropper, G.L. (1983). A metatheory of instruction: A

framework for analyzing and evaluating instructional

theories and models. In C. M. Reigeluth (Ed.).

ct ona - e n t ° v w

91.1heir__urrenf_sf_125 (pp- 37-53)- New Jersey:

Lawrence Erlbaum Associates.

Hamreus, D.G. (1968). The Systems Approach to

Instructional Development. In Teaching Research, A

Division of the Oregon State System of Higher

Education.

Instructionel_lechnglssx-

Hayes-Roth, B. (1985). A blackboard architecture for

control. Artificial.ln12111sense. 26. 251-321-

Hayes-Roth, F. (1985). Rule-Based systems.

Qonsna19_tisa§_2__1he_agu 28. 9.

Hayes-Roth, F., Waterman, D.A., & Lenat, D.B. (Eds).

(1983). 8211112g_exner1_§xafems. Reading. Na:

Addison-Wesley.

Hayes-Roth, F., Waterman, D.A. & Lenat, D.B. (1983).

An overview of expert systems, in F. Hayes-Roth, D.

A. Waterman G D.B. Lenat (Eds.). finilging_gxngrr

gyfirgms. Reading, Mas.:Addison-Wesley.

Hayes-Roth, F., Klahr, P., & Mostow, D.J. (1986).

Knowledge acquisition, knowledge programming, and

knowledge refinement. in P. Klahr & D.A. Waterman

(Eds.). '

. Reading, Massachusetts: Addison-Wesley.

Insurance embraces expert systems. (1988, April). MQQQID

foice_1echnolosx. 33(4). 39-

Keravnou, E.T.,& Johnson, L. (1986). anngrgnr_expgrr

gygreng. London: Koglan Page.

244

Klahr, P., G Waterman, D.A. (1986). Artificial

intelligence: a Rand perspective. in P. Klahr G D.A.

Waterman (Eds.). ExRer1_axetema_1eghnigsesi_sool§1

and applications. Reading, Massachusetts: Addison-

Wesley Publishing Company.

Knirk, F. G. G Gustafson, K.L. (1986). Instrngrionai

1e2hn9l2sx1_A_axs1emat12_Approash_12_zdssag1oao New

York: Holt, Rinehart and Winston.

Landa, L.N. (1982). The algo-heuristic theory of

instruction. In C. M. Reigeluth (Ed.). Insrrngrignnl

s theories ode s° v o '

gnrrgnr_§rgrn§ (pp. 163-211). New Jersey: Lawrence

Erlbaum Associates.

Larkin, J., McDermott, J., Simon, D.P.L & Simon, H.A.

(1980). Expert and novice performance in solving physics

problems. Sc'e , 208, 185-193.

Lee, M.C. (1987). Expert-system based instructional

systems. In W.C. Ryan (Ed.), Ergceggings Nationgi

Egucarionai Computing Conferenge (pp. 139-142).

Eugene, Or.: International Council on Computers in

Education.

Lord. x.w., Jr. (1983). QD£_Eexiew_uaanal__1_dete

£rgggssing_finngpggk. New York: Van Nostrand Reinhold

Company.

Mayer, R.E. (1983). ’ ' m

t o . New York: W.H. Freeman and Company.

McCorduck. P- (1987. July). Ielling_the_1ruth1_neinl¥-

Paper presented at the North American Conference of

the International Business Schools Computer Users

Group, Flint, Michigan.

Merrill, M. D. (1983) Component display theory. In C. M.

Reigeluth (Ed.). Instructionai-design theorigs gng

a9dela1_aa_2xerx1ew_2f_1heir_surrent_atatua (pp- 279-

333). New Jersey: Lawrence Erlbaum Associates.

Merrill, n. D., Kowallis, T., & Wilson, a. G. (1931).

Instructional Design in Transition. In F. H. Farley &

N. J. Gordon (Eds.), c 010 t °

ELQLQ Q: the Unign (pp. 298-348). Berkley, Ca.:

McCutchan Publishing Corporation.

245

Merrill, P. F. (1978). Hierarchical and informational

processing task analysis: A comparison. igurnni of

1nsfru2112n_l_dexelsnmen1 1(2). 35-40.

Newell, A., 8 Simon. H-- (1972)- Human_problem_aolxiag-

Englewood Cliffs, N.J.: Prentice-Hall.

Norman, D.A. (1980). What goes on in the mind of the

learner. In W. J. McKeachie (Ed.), Learning,

cognition, and college teaching.

Iggching and Learning (No. 2). San Francisco: Jossey-

Bass.

Olson, D.R. (1973) What is worth knowing and what can be

taught. Sghool Review, 82, 27-43.

O'Shea. T- 8 Self. J. (1983). Learning_and_teashing_wifh

ggnpnrgr_. Harvester Press.

Palincsar, A.S., Brown, A.S., 8 Martin, S. M. (1987).

Peer interaction in reading comprehension instruction.

Educational_£sxsh21991at. 231-253-

Perelman, L.J. (1987).

ggngglg. An ITTE technology leadership network

special report from the institute for the transfer of

technology to education of the National School Boards

Association.

Polhemus. N- (1987 July) Ia1er1211xe_§9_pster_§renhiss

rgr Expigrgtory Qgra Analysis. Presentation at the

North American Conference of the International

Business Schools Computer Users Group, Flint,

Michigan.

Ray, R. (1987, Fall Term). In handout for course:

a: - .. no voc. 'OI - I 1e . -:l . _--e

Michigan: Michigan State University.

Reigeluth, C. M. (1983). Instructional design: what is

it and why is it?. In C. M. Reigeluth (Ed. L

ctional-desi e de v

smLtheir_surrent_etatu§ (pp. 4-36) New Jersey:

Lawrence Erlbaum Associates.

Reigeluth, C.M., a Stein, F.S. (1983) The elaboration

theory of instruction. In C. M. Reigeluth (Ed.).

s uctional-desi n t ' v

of_1heir_snrren1_atstna (pp- 335-382)- New Jersey:

Lawrence Erlbaum Associates.

246

Resnick, L. B. (1963). Programmed instruction and the

teaching of complex intellectual skills: Problems and

PrOSPectS- H_rxard_Edu_1112nal_Bexiew. 33. 439-471-

Resnick, L. B. (1973). Hierarchies in children's

learning: a symposium. Instructional_§21ease. 2. 311-

323.

Resnick, L.B. (1976). Task analysis in Instructional

design: Some cases from mathematics. In D. Klahr

(ed-i. Q29D1119a_end_lnstrustionI (pp- 51-80)-

Hillsdale, New Jersey: Lawrence Erlbaum Associates,

Publishers.

Resnick, L. B. (1985). Cognition and instruction:

Recent theories of human competence. In B.L. Hammonds

(Ed.), ast r ectu se 'e : Vol. 4. Psyghglggx_gng

igarning (pp. 123-186), Washington, DC: American

Psychological Association.

Resnick. L-B- (1987i- Edssa119n.and.learaiag_19_th1nk-

Washington: National Academy Press.

Richey, Rita, (1986). h as

g: instrnctional gesign. New York:London/Nichols

Publishing.

Roblyer, M.D. G Hall, K.A. (1985). st ' ' s

dea1ga_of_22mR21er_c2sraeware1__A_work§hgn_handhegk-

Tallahassee, F.: Florida AGM University.

Ruth, s.R. (1987, July). c ' ex

0 -- . Paper presented at

the North American Conference of the International

Business Schools Computer Users Group, Flint,

Michigan.

Scandura, J.M. (1983). Instructional strategies based on

the structural learning theory. In C. M. Reigeluth

(Ed.). nstruc iona -des n t o s'

9xerx1ew_21.11.1r_surrEDE_efasss_(pp- 213-246)- New

Jersey: Lawrence Erlbaum Associates.

Sebrechts, M., Schooler, L.J., LaClaire, L., G Soloway,

E. (1987). Computer-based interpretation of

students' statistical errors: a preliminary empirical

analysis of GIDE. In W. C. Ryan (Ed.), Eroggedings

Na119na1_Edasa112n11.9912111ng_gomferease (pp- 143-

148). Eugene, Or.: International Council on Computers

in Education.

a1

247

Simon. H. (1981). Ihe_a2iensee_of_1he_ertifigiel (2nd

ed.). Cambridge, Ma.: MIT Press.

Simon. H-A- & Newell, A- (1972)- Human_aroblem_eolxing-

Englewood Cliffs, New Jerseszrentice-Hall.

Sleeman, D. G Brown, J.S. (1982). Introduction:

Intelligent tutoring systems. In D. Sleeman G J. S.

Brown (Eda-)- In1e11192n1_1212r1ns_axa1ema. N-Y.:

Academic Press.

Snelbecker, G.E. (1983). Is instructional theory alive

and well?. In C. M. Reigeluth (Ed.). nst t n -

i theor a d Od ° '

gnrrgnr status (pp. 437-472). New Jersey: Lawrence

Erlbaum Associates.

Suppes, P. (1979). Observations about the application of

artificial intelligence research to education. In D.F.

Walker G R.D. Hess, Innrrngrignn1_§grrynrg. Belmont,

Ca.: Wadsworth Publishing Company.

Tanimoto, S- L- (1987). The_elements_of_artificial

inrglliggngg. Rockville, Maryland: Computer Science

Press .

Waterman. D.A. (1986). A_guide_to_exnert_axsfemal

ngging, M.A.: Addison-Wesley.

Waterman, D. A. G Jenkins, B.M. (1986). Developing

expert systems to combat international terrorism. In

P. Klahr, G D.A. Waterman (Eds.). Erpgrr_§y§rgn§

rgghnignes, rogis, nng appiiggrions. Reading,

Massachusetts: Addison-Wesley Publishing Company.

Wensley, A. (1987, July).

systems. Paper presented at the North American

Conference of the International Business Schools

Computer Users Group, Flint, Michigan.

Yazdani. N- (1987)- Ia1e1l1gen1_fntoriag_§xs191§1_aa

gygryig_. In R. W. Lawler G M. Yazdani (Eds.).

Artificial intelligence and education (vol. 1).

Norwood, New Jersey: Ablex Publishing.

General References

American Psychological Association. (1983). Empiiggrign

manual (3rd ed.). Menasha, Wisconsin: Banta Company.

Jonassen. D- H- (ed-)- (1988)- Inatrnstional_deeisna_for

microcomp_1_r_co_r§e_areu e u w . New Jersey: Lawrence Erlbaum

Associates.

Hunt. N- (1982). Ihe_un1xerae_w11h1n1_a_new_§21en2e

gxplgres the human ming. N.Y.: Simon and Schuster.

Kulik, J.A, Bangert, R.L., G Williams, G.W. (1983).

Effects of computer-based teaching on secondary school

students. In D.F. Walker G R.D. Hess, Ingrrngrignnl

gprrynr_. Belmont, Ca.: Wadsworth Publishing Company.

Lenat, D. B. (1984). Computer software for intelligent

systems. QPMA Magazine, 67, 24-25.

McCorduck. P- (1985). The_snixer§el_mash1ae. N.Y.:

McGraw-Hill.

Mayer, R. E. (1987). u ' ° ve

npprgngn. Boston: Little-Brown.

Michigan State University. (1986). Ing_grngnnrg_§gnggl

oLi-e to t - 9 -.. o . we: ' : l' s- . a.

digsgrrnrions. E. Lansing, Mi.: MichiganState

University.

Minsky, M. (1986). Sggigry_gf_ming. N.Y.: Simon and

Schuster.

Quinlan, J. R. (1986). FERNO: A pgnrigng approach to

uncertain inference. In P. Klahr G D.A. Waterman

(EGS-)- Ez2sr1_axa1emS.LEEhnisnesi_1221§1_aDQ

nppiiggrigng. Reading, Massachusetts: Addison-Wesley

Publishing Company.

Rankin, S. C., G Hughes, C. S. (1987). The Rankin-

Hughes framework. In C. Canning G K. Bunting (Eds.).

'1‘ ‘ 0.0 1° 1.11 1° :._ 0:; u - u

how_comnstins_can_heln- Westland Michigan: MACUL-

Umar. A. (1987. July). G9f1ware_§spnsrt_eaz1roamen_§-

Paper presented at the North American Conference of

the International Business Schools Computer Users

Group, Flint, Michigan.

248

Whimbey, A., G Lochhead, J. (1980). Problem §giving and

ggmprehension (2nd ed.). Phila.: The Franklin

Institute Press.

Yen, D. (1987, July). v 0 ma em

nppliggrions or empgrt systems. Paper presented at

the North American Conference of the Inter national

Business Schools Computer Users Group, Flint,

Michigan.

249

