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ABSTRACT

STATISTICAL INFERENCE FOR FUNCTIONAL AND LONGITUDINAL
DATA

By

Guanqun Cao

Advances in modern technology have facilitated the collection of high-dimensional func-

tional and low dimensional longitudinal data. For these data, it is often of interest to describe

the key signals of the data (mean functions, covariance functions, derivative functions, etc.).

Functional data analysis (FDA) and longitudinal data analysis (LDA) techniques have played

a central role in the analysis of these data. The primary goal of this dissertation is to provide

some novel statistical inference methods for FDA and LDA.

In Chapter 1, we describe the structure (design, notations, etc.) of functional data and

describe the spline smoothing technique as a tool to analysis these data. Longitudinal data

analysis with missing not at random response is also discussed.

In Chapter 2, a polynomial spline estimator is proposed for the mean function of dense

functional data together with a simultaneous confidence band which is asymptotically cor-

rect. In addition, the spline estimator and its accompanying confidence band enjoy semi-

parametric efficiency in the sense that they are asymptotically the same as if all random

trajectories are observed entirely and without errors. The confidence band is also extended

to the difference of mean functions of two populations of functional data. Simulation ex-

periments provide strong evidence that corroborates the asymptotic theory while computing

is efficient. The confidence band procedure is illustrated by analyzing the near infrared

spectroscopy data.



A nonparametric estimation of the covariance function for dense functional data using

tensor product B-splines is considered in Chapter 3. We develop both local and global

asymptotic distributions for the proposed estimator, and show that our estimator is as

efficient as an “oracle” estimator. Monte Carlo simulation experiments and two real data

examples are also provided to illustrate the proposed method in this chapter.

In Chapter 4, we develop a new procedure to construct simultaneous confidence bands for

derivatives of mean curves in FDA. The technique involves polynomial splines that provide

an approximation to the derivatives of the mean functions, the covariance functions and the

associated eigenfunctions. The confidence band procedure is illustrated through numerical

simulation studies and a real life example.

In Chapter 5, we consider data generated from a longitudinal study with potentially

non random missing data. For these data, a joint model for the missing data process and

the outcome process, is found to be at best weakly identifiable. Due to this identifiability

concerns, tests concerning the parameters of interest may not be able to use conventional

theories and it may not be clear how to assess statistical significance. We extend the lit-

erature by developing a testing procedure that can be used to evaluate hypotheses under

non and weakly identifiable semiparametric models. We derive the limiting distribution of

this statistic and propose theoretically justified resampling approaches to approximate its

asymptotic distribution. The methodology’s practical utility is illustrated in simulations and

an analysis of quality-of-life outcomes from a longitudinal study on breast cancer.
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Chapter 1

Introduction

1.1 Functional data analysis

1.1.1 The basics

Functional data analysis (FDA) has recently become a focal area in statistical research, as

recent technological progress in measuring devices now allow one to observe spatiotemporal

phenomena on arbitrarily fine grids, that is, almost in a continuous manner. This area

remains distinct due to its usefulness to climatology, medicine, meteorology, etc.

The functional data that we consider are a collection of trajectories
{
ηi(x)

}n
i=1 which

are i.i.d. realizations of a smooth random function η(x), defined on a continuous interval X .

Assume that {η(x), x ∈ X} is an L2 process, i.e. E
∫
X η2(x)dx < +∞, and define the mean

and covariance functions m(x) = E{η(x)} and G
(
x, x′

)
= cov

{
η(x), η(x′)

}
. The covari-

ance function is a symmetric nonnegative-definite function with a spectral decomposition,

G
(
x, x′

)
=
∑κ
k=1 λkψk(x)ψk

(
x′
)

, where λ1 ≥ λ2 ≥ · · · ≥ 0,
∑κ
k=1 λk < +∞, are the

eigenvalues, κ is either a positive integer or infinity and
{
ψk(x)

}κ
k=1 are the corresponding
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eigenfunctions and form a set of orthonormal functions in L2 (X ). By the Karhunen-Loève

representation, ηi(x) = m(x) +
∑κ
k=1 ξikφk(x), where the random coefficients ξik are un-

correlated with mean 0 and variance 1, and the functions φk =
√
λkψk.

Characterizing nonlinear variation in FDA is a challenging problem. In particular, when

random curves are observed on regular dense grids, the existing literature on FDA focuses on

pointwise estimation and inference. This, however, is not sufficient to provide understanding

of the variability of the estimator of the whole regression curve, its derivatives and covariance

function, nor can it be used to correctly answer questions about the curve’s or surface’s shape.

In Chapters 2, 3 and 4, we propose oracle estimators and establish asymptotic correct-

ness of the proposed simultaneous confidence bands/envelopes for mean, covariance and its

derivative functions while the number of observations for each subject tends to infinite as

sample size goes to infinite, using various properties of spline smoothing.

1.1.2 Polynomial spline

To describe the spline functions, we first introduce a sequence of equally-spaced points{
tJ
}Nm
J=1, called interior knots which divide the interval [0, 1] into (Nm + 1) equal subin-

tervals IJ =
[
tJ , tJ+1

)
, J = 0, ...., Nm − 1, INm =

[
tNm, 1

]
. For any positive integer p,

introduce left boundary knots t1−p, ..., t0, and right boundary knots tNm+1, ..., tNm+p,

t1−p = · · · = t0 = 0 < t1 < · · · < tNm < 1 = tNm+1 = · · · = tNm+p,

tJ = Jhm, 0 ≤ J ≤ Nm + 1, hm = 1/ (Nm + 1) ,

in which hm is the distance between neighboring knots. Denote by H(p−2) the space of

p-th order spline space, i.e., p − 2 times continuously differentiable functions on [0, 1] that

2



are polynomials of degree p− 1 on [tJ , tJ+1], J = 0, . . . , Nm.

The J-th B-spline of order p is

BJ,p (x) =

(
x− tJ

)
BJ,p−1 (x)

tJ+p−1 − tJ
−

(
x− tJ+p

)
BJ+1,p−1 (x)

tJ+p − tJ+1
, 1− p ≤ J ≤ Nm,

for p > 1, with

BJ,1 (x) = IJ (x) =


1 tJ ≤ x < tJ+1

0 otherwise.

Hence, the B-spline basis of H(−1), the space of constant splines, are indicator functions

of interval IJ , BJ,1(x) = IJ (x), J = 0, ...., Nm, while the B-spline basis of H(0), the space

of linear splines, are BJ,2(x) = K
{(
x− tJ+1

)
h−1
m

}
, J = −1, ...., Nm, where K (u) =

(1− |u|)+.

In this work, X = [0, 1] or [0, 1]2. For any function φ on a domain X , let ‖φ‖∞ =

supx∈X |φ (x)|. For any Lebesgue measurable L2-integrable functions φ and ϕ on [0, 1],

define their theoretical and empirical inner products as 〈φ, ϕ〉 =
∫
X φ (x)ϕ (x) dx and

〈φ, ϕ〉2,N = N−1∑N
j=1 φ (j/N)ϕ (j/N), with the corresponding theoretical and empirical

inner product norms defined as ‖φ‖22 =
∫ 1
0 φ2 (x) dx and ‖φ‖22,N = N−1∑N

j=1 φ
2 (j/N),

respectively. The theoretical and empirical inner product matrices of
{
BJ,p(x)

}Nm
J=1−p

are

denoted as

Vp =
(〈
BJ,p,BJ ′,p

〉)Nm
J,J ′=1−p

, V̂p =

(〈
BJ,p,BJ ′,p

〉
2,N

)Nm
J,J ′=1−p

.

3



1.1.3 The near infrared spectroscopy data

The near infrared spectroscopy data data are recorded on a Tecator Infrared Food and Feed

Analyzer working in the wavelength range 850 - 1050 nm by the Near Infrared Transmission

(NIT) principle. Each sample contains finely chopped pure meat with different moisture, fat

and protein contents. The task is to predict the fat content of a meat sample on the basis

of its near infrared absorbance spectrum.

The spectral data can be naturally considered as functional data as the number of ob-

servation points for each trajectory is relatively large compared with the sample size. In

Chapter 2, we will perform a two-sample test to evaluate whether absorbance from the spec-

trum differs significantly due to difference in fat content. In Chapter 4, we will study the

behavior of the first order derivative of mean absorbance measurements for this data set.

1.1.4 Speech recognition data

Speech recognition data were extracted from the TIMIT database (TIMIT Acoustic-Phonetic

Continuous Speech Corpus, NTIS, US Dept of Commerce) which is a widely used resource for

research in speech recognition. The data set we use was formed by selecting five phonemes

for classification based on digitized speech from this database. From continuous speech

of 50 male speakers, 4509 speech frames of 32 msec duration were selected. From each

speech frame, a log-periodogram was used as transformation for casting speech data in a

form suitable for speech recognition. The five phonemes in this data set are transcribed as

follows: “sh” as in “she”, “dcl” as in “dark”, “iy” as the vowel in “she”, “aa” as the vowel

in “dark”, and “ao” as the first vowel in “water”. For illustration purpose, we focus on

the “sh” and “ao” phoneme classes as representatives of consonants and vowels. There are

4



n1 = 872 log-periodograms in the “sh” class, and n2 = 1022 log-periodograms in the “ao”

group. Each log-periodogram consists N = 256 equally spaced points.

This data set was first analyzed by Hastie et al. (1995) using penalized linear discriminant

analysis. One of the basic assumptions is that the covariance functions are the same for

different classes. In Chapter 3, we would like to test the equal covariance assumption formally

by the proposed tensor product spline confidence envelopes.

1.2 Longitudinal data analysis

1.2.1 Problems

Identifiability issues commonly arise with non-random missing data, where the parameters

in the model for the missingness may not be jointly identifiable with those in the model for

the outcomes of interest using only the observed data. Analyses which assume identifiability

may be unreliable, with the joint selection and outcome model yielding flat “estimation”

surfaces potentially having multiple modes.

In Chapter 5, we consider these missing data issues when analyzing longitudinal data

with informative dropout employing the model of Troxel, Lipsitz and Harrington (1998b).

The model is semiparametric, with the parameter being estimated denoted by (θ, β). The

parameter β is the selection parameter that measures the extent of non-randomness of the

missing data mechanism and θ consists of the remaining finite dimensional parameters of

the selection and outcome models. The hypotheses of interest concern covariate effects on

the outcome, which are contained in θ. We extend the profiling idea to arbitrary estimating

functions involving θ and β but which do not require a complete parametric model specifica-

5



tion. The generalization of the infimum test and confidence bands to non-likelihood settings

is nontrivial. We present generic conditions which establish the large sample properties of

the estimating function for θ profiled on β, including the uniform consistency and weak con-

vergence of the θ estimator as a function of β. Owing to the complexity of the asymptotic

distributions of the infimum test and confidence bands, resampling is needed. A theoretically

justified procedure is discussed for approximating such distributions.

1.2.2 The breast cancer data

These breast cancer data are from the International Breast Cancer Study Group-IBCSG,

previously reported by Hürny et al. (1992); and Troxel et al. (1998b). This is a group of

randomized breast cancer studies with primary endpoints being survival and relapse; and

quality of life being a secondary endpoint. One study, Study VI, is a randomized trial of

adjuvant chemotherapy following surgery for the treatment of breast cancer. In this study, 4

treatments (A, B, C and D) were randomly assigned to 431 pre-menopausal cancer patients

and several domains of quality of life were assessed. In this thesis, we focus on three quality-

of-life domains; 1) PACIS (perceived adjustment to chronic illness scale), 2) Mood and 3)

Appetite. A full description of Study VI and other IBCSG trials may be found elsewhere

(Hürny et al., 1992; Troxel et al., 1998a). In Chapter 5, we assess the treatment and time

effects on the mean quality of life by apply the proposed test and resampling procedure.
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Chapter 2

Confidence Bands for Mean Functions

2.1 Introduction

In functional data analysis problems, estimation of mean function is the fundamental first

step; see Cardot (2000); Rice and Wu (2001); Cuevas, Febrero and Frainman (2006); Ferraty

and Vieu (2006); Degras (2011) and Ma, Yang and Carroll (2012) for example. According

to Ramsay and Silverman (2005), functional data consist of a collection of i.i.d. realizations{
ηi(x)

}n
i=1 of a smooth random function η(x), with unknown mean function Eη(x) = m(x)

and covariance function G
(
x, x′

)
= cov

{
η(x), η(x′)

}
. Although the domain of η(·) is an

entire interval X , the recording of each random curve ηi (x) is only over a finite number Ni

of points in X , and contaminated with measurement errors. Without loss of generality, we

take X = [0, 1].

Denote by Yij the j-th observation of the random curve ηi(·) at time point Xij , 1 ≤ i ≤

n, 1 ≤ j ≤ Ni. Although we refer to variable Xij as time, it could also be other numerical

measures, such as wavelength in Section 3.6. In this work, we examine the equally spaced
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dense design, in other words, Xij = j/N, 1 ≤ i ≤ n, 1 ≤ j ≤ N with N going to infinity.

For the i-th subject, i = 1, 2, ..., n, its sample path
{
j/N, Yij

}
is the noisy realization of

the continuous time stochastic process ηi(x) in the sense that Yij = ηi (j/N) + σ (j/N) εij ,

with errors εij satisfying E
(
εij

)
= 0, E(ε2ij) = 1, and

{
ηi(x), x ∈ [0, 1]

}
are i.i.d. copies

of the process {η(x), x ∈ [0, 1]} satisfying E
∫
[0,1] η

2(x)dx < +∞.

For the standard process {η(x), x ∈ [0, 1]}, let sequences
{
λk
}∞
k=1,

{
ψk(x)

}∞
k=1 be the

eigenvalues and eigenfunctions of G
(
x, x′

)
respectively, in which λ1 ≥ λ2 ≥ · · · ≥ 0,∑∞

k=1 λk < ∞,
{
ψk
}∞
k=1 form an orthonormal basis of L2 ([0, 1]) and covariance func-

tion G
(
x, x′

)
=
∑∞
k=1 λkψk(x)ψk

(
x′
)

, which implies that
∫
G
(
x, x′

)
ψk

(
x′
)
dx′ =

λkψk(x). The process
{
ηi(x), x ∈ [0, 1]

}
has the Karhunen-Loève L2 representation ηi(x) =

m(x) +
∑∞
k=1 ξikφk(x), where the random coefficients ξik are uncorrelated with mean 0

and variance 1, and φk =
√
λkψk. In what follows, we assume that λk = 0, for k > κ,

where κ is a positive integer or∞, thus G(x, x′) =
∑κ
k=1 φk(x)φk

(
x′
)

and the model that

we consider is

Yij = m (j/N) +
∑κ

k=1
ξikφk (j/N) + σ (j/N) εij. (2.1)

Although the sequences
{
λk
}κ
k=1,

{
φk(·)

}κ
k=1 and the random coefficients ξik exist math-

ematically, they are unknown or unobservable.

The existing literature focuses on two data types. Yao, Müller and Wang (2005) studied

sparse longitudinal data for which Ni, i.e. the number of observations for the i-th curve, is

bounded and follows a given distribution, in which case Ma, Yang and Carroll (2012) obtained

asymptotically simultaneous confidence band for the mean function of the functional data,

using piecewise constant spline estimation. Li and Hsing (2010a) established uniform con-

vergence rate for local linear estimators of mean and covariance function of dense functional
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data, where min1≤i≤n Ni � (n/logn)1/4, as n→∞, similar to our Assumption (A3), but

did not provide asymptotic distribution of maximal deviation or simultaneous confidence

bands. Degras (2011) built asymptotically correct simultaneous confidence bands for dense

functional data using local linear estimators. Bunea, Ivanescu and Wegkamp (2011) pro-

posed asymptotically conservative rather than correct confidence set for the mean function

of Gaussian functional data.

In this chapter, we propose polynomial spline confidence bands for the mean function

based on dense functional data. In function estimation problems, simultaneous confidence

bands are an important tool to address the variability in the mean curve, see Zhao and

Wu (2008); Zhou, Shen and Wolfe (1998) and Zhou and Wu (2010) for related theory and

applications. The fact that simultaneous confidence bands have not been widely used for

functional data analysis is certainly not due to lack of interesting applications, but due to

the greater technical difficulty to formulate such bands for functional data and establish

their theoretical properties. In this work, we have established asymptotic correctness of

the proposed confidence bands using various properties of spline smoothing. The spline

estimators and the accompanying confidence bands are asymptotically the same as if all

the n random curves are recorded over the entire interval, without measurement errors.

They are oracally efficient despite the use of spline smoothing, see Remark 2.2.1. This

provides partial theoretical justification for treating functional data as perfectly recorded

random curves over the entire data range, as in Ferraty and Vieu (2006). Theorem 3 of

Hall, Müller and Wang (2006) stated mean square (rather than the stronger uniform) oracle

efficiency for local linear estimation of eigenfunctions and eigenvalues (rather than the mean

function), under assumptions similar to ours, but provided only an outline of proof. Among
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the existing works on functional data analysis, Ma, Yang and Carroll (2012) proposed the

simultaneous confidence bands for sparse functional data. However, their result does not

enjoy the oracle efficiency stated in Theorem 2.2.1, since there are not enough observations

for each subject to obtain a good estimate of the individual trajectories. As a result, it has

the slow nonparametric convergence rate of n−1/3logn, instead of the parametric rate of

n−1/2 as in the present work. This essential difference completely separates dense functional

data from sparse ones.

The aforementioned confidence bands are also extended to the difference of two regression

functions. This is motivated by Li and Yu (2008), who applied functional segment discrimi-

nant analysis to a Tecator data set, see Figure 2.3. In this data set, each observation (meat)

consists of a 100-channel absorbance spectrum in the wavelength with different fat, water

and protein percent. Li and Yu (2008) used the spectra to predict whether the fat percentage

is greater than 20%. On the flip side, we are interested in building a 100 (1− α) % confidence

band for the difference between regression functions from the spectra of the less than 20%

fat group and the higher than 20% fat group. If this 100 (1− α) % confidence band covers

the zero line, one accepts the null hypothesis of no difference between the two groups, with

p-value no greater than α. Test for equality between two groups of curves based on the

adaptive Neyman test and wavelet thresholding techniques were proposed in Fan and Lin

(1998), who did not provide an estimator of the difference of the two mean functions nor a

simultaneous confidence band for such estimator. As a result, their test did not extend to

testing other important hypotheses on the difference of the two mean functions while our

Theorem 2.2.3 provides a benchmark for all such testing. More recently, Benko, Härdle and

Kneip (2009) developed two-sample bootstrap tests for the equality of eigenfunctions, eigen-
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values and mean functions by using common functional principal components and bootstrap

tests.

This chapter is organized as follows. Section 2.2 states main theoretical results on confi-

dence bands constructed from polynomial splines. Section 2.3 provides further insights into

the error structure of spline estimators. The actual steps to implement the confidence bands

are provided in Section 2.4. A simulation study is presented in Section 2.5, and an empirical

illustration on how to use the proposed spline confidence band for inference is reported in

Section 2.6. Technical proofs are collected in the Appendix.

2.2 Main results

To describe the spline functions, we first define a sequence of equally-spaced points
{
tJ
}Nm
J=1,

called interior knots, which have been introduced in Chapter 1. Denote by H(p−2) the

space of p-th order spline space, i.e., p − 2 times continuously differentiable functions on

[0, 1] that are polynomials of degree p − 1 on [tJ , tJ+1], J = 0, . . . , Nm. Then H(p−2) ={∑Nm
J=1−p bJ,pBJ,p (x) , bJ,p ∈ R, x ∈ [0, 1]

}
, where BJ,p is the J-th B-spline basis of order

p as defined in de Boor (2001).

We propose to estimate the mean function m(x) by

m̂p(x) = argmin

g(·)∈H(p−2)

∑n

i=1

∑N

j=1

{
Yij − g (j/N)

}2
. (2.2)

The technical assumptions we need are as follows:

(A1) The regression function m ∈ Cp−1,1 [0, 1], i.e., m(p−1) ∈ C0,1 [0, 1].

(A2) The standard deviation function σ (x) ∈ C0,µ [0, 1] for some µ ∈ (0, 1].
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(A3) As n→∞, N−1n1/(2p) → 0 and N = O
(
nθ
)

for some θ > 1/ (2p); the number of

interior knots Nm satisfies NN−1
m → ∞, N

−p
m n1/2 → 0, N−1/2N

1/2
m logn → 0 or

equivalently Nhm →∞, h
p
mn

1/2 → 0, N−1/2h
−1/2
m logn→ 0.

(A4) There exists CG > 0 such that G (x, x) ≥ CG, x ∈ [0, 1]; for k ∈ {1, . . . , κ}, φk (x) ∈

C0,µ [0, 1] ,
∑κ
k=1

∥∥φk∥∥∞ < ∞ and as n → ∞, h
µ
m
∑κn
k=1

∥∥φk∥∥0,µ = o (1) for a

sequence {κn}∞n=1 of increasing integers, with limn→∞ κn = κ and the constant

µ ∈ (0, 1] as in Assumption (A2). In particular,
∑κ
k=κn+1

∥∥φk∥∥∞ = o (1).

(A5) There are constants C1, C2 ∈ (0,+∞), γ1, γ2 ∈ (1,+∞), β ∈ (0, 1/2) and i.i.d.

N(0, 1) variables
{
Zik,ξ

}n,κ
i=1,k=1

,
{
Zij,ε

}n,N
i=1,j=1

such that

max
1≤k≤κ

P

[
max

1≤t≤n

∣∣∣∣∑t

i=1
ξik −

∑t

i=1
Zik,ξ

∣∣∣∣ > C1n
β
]
< C2n

−γ1 , (2.3)

P

{
max

1≤j≤N
max

1≤t≤n

∣∣∣∣∑t

i=1
εij −

∑t

i=1
Zij,ε

∣∣∣∣ > C1n
β

}
< C2n

−γ2 . (2.4)

Assumptions (A1)-(A2) are typical for spline smoothing, see Huang and Yang (2004),

Xue and Yang (2006), Wang and Yang (2009a), Liu and Yang (2010) and Ma and Yang

(2011). Assumption (A3) concerns the number of observations for each subject, and the

number of knots of B-splines. Assumption (A4) ensures that the principal components have

collectively bounded smoothness. Assumption (A5) provides Gaussian approximation of

estimation error process, and is ensured by the following elementary assumption:

(A5′) There exist τ1 > 4, τ2 > 4+2θ such that E
∣∣ξik∣∣τ1+E

∣∣∣εij∣∣∣τ2 < +∞, for 1 ≤ i <∞,

1 ≤ k ≤ κ, 1 ≤ j <∞. The number κ of nonzero eigenvalues is finite or κ is infinite
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while the variables
{
ξik
}

1≤i<∞,1≤k<∞ are i.i.d..

Degras (2011) makes a restrictive assumption (A.2) on the Hölder continuity of the

stochastic process η(x) = m(x) +
∑∞
k=1 ξkφk(x). It is elementary to construct examples

where our Assumptions (A4) and (A5) are satisfied while assumption (A.2) of Degras (2011)

is not.

The part of Assumption (A4) on φk’s holds trivially if κ is finite and all φk (x) ∈

C0,µ [0, 1]. Note also that by definition, φk =
√
λkψk,

∥∥φk∥∥∞ =
√
λk
∥∥ψk∥∥∞,

∥∥φk∥∥0,µ =√
λk
∥∥ψk∥∥0,µ, in which

{
ψk
}∞
k=1 form an orthonormal basis of L2 ([0, 1]), hence, Assump-

tion (A4) is fulfilled for κ =∞ as long as λk decreases to zero sufficiently fast. Following one

Referee’s suggestion, we provide the following example. One takes λk = ρ2[k/2], k = 1, 2, ...

for any ρ ∈ (0, 1), with
{
ψk
}∞
k=1 the canonical orthonormal Fourier basis of L2 ([0, 1])

ψ1 (x) ≡ 1, ψ2k+1 (x) ≡
√

2 cos (kπx)

ψ2k (x) ≡
√

2 sin (kπx) , k = 1, 2, ..., x ∈ [0, 1] .

In this case,
∑∞
k=1

∥∥φk∥∥∞ = 1 +
∑∞
k=1 ρ

k (√2 +
√

2
)

= 1 + 2
√

2ρ (1− ρ)−1 < ∞, while

for any {κn}∞n=1 with κn increasing, odd and κn →∞, and Lipschitz order µ = 1

hm
∑κn

k=1

∥∥φk∥∥0,1 = hm
∑(κn−1)/2

k=1
ρk
(√

2kπ +
√

2kπ
)

≤ 2
√

2πhmρ
∑∞

k=1
ρk−1k = 2

√
2πhm (1− ρ)−2

= O (hm) = o (1) .

Denote by ζ (x), x ∈ [0, 1] a standardized Gaussian process such that Eζ (x) ≡ 0,
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Eζ2 (x) ≡ 1, x ∈ [0, 1] with covariance function

Eζ (x) ζ
(
x′
)

= G
(
x, x′

){
G (x, x)G

(
x′, x′

)}−1/2
, x, x′ ∈ [0, 1]

and define the 100 × (1− α)-th percentile of the absolute maxima distribution of ζ (x),

∀x ∈ [0, 1], i.e., P
{

supx∈[0,1] |ζ (x)| ≤ Q1−α
}

= 1−α, ∀α ∈ (0, 1). Denote by z1−α/2 the

100 (1− α/2)-th percentile of the standard normal distribution. Define also the following

“infeasible estimator” of function m

m̄(x) = η̄(x) = n−1
∑n

i=1
ηi(x), x ∈ [0, 1] . (2.5)

The term “infeasible” refers to the fact that m̄(x) is computed from unknown quantity ηi(x),

x ∈ [0, 1], and it would be the natural estimator of m(x) if all the i.i.d. random curves ηi(x),

x ∈ [0, 1] were observed, a view taken in Ferraty and Vieu (2006).

We now state our main results in the following theorem.

Theorem 2.2.1. Under Assumptions (A1)-(A5), for ∀α ∈ (0, 1), as n→∞, the “infeasible

estimator” m̄(x) converges at the
√
n rate

P
{

supx∈[0,1] n
1/2 |m̄(x)−m(x)|G (x, x)−1/2 ≤ Q1−α

}
→ 1− α,

P
{
n1/2 |m̄(x)−m(x)|G (x, x)−1/2 ≤ z1−α/2

}
→ 1− α, ∀x ∈ [0, 1],

while the spline estimator m̂p is asymptotically equivalent to m̄ up to order n1/2, i.e.

supx∈[0,1] n
1/2 ∣∣m̄(x)− m̂p(x)

∣∣ = oP (1) .
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Remark 2.2.1. The significance of Theorem 2.2.1 lies in the fact that one does not need to

distinguish between the spline estimator m̂p and the “infeasible estimator” m̄ in (2.5), which

converges with
√
n rate like a parametric estimator. We therefore have established oracle

efficiency of the nonparametric estimator m̂p.

Corollary 2.2.2. Under Assumptions (A1)-(A5), as n → ∞, an asymptotic 100 (1− α) %

correct confidence band for m(x), x ∈ [0, 1] is

m̂p(x)±G (x, x)1/2Q1−αn
−1/2,∀α ∈ (0, 1)

while an asymptotic 100 (1− α) % pointwise confidence interval for m(x), x ∈ [0, 1], is

m̂p(x)±G (x, x)1/2 z1−α/2n
−1/2.

We next describe a two-sample extension of Theorem 2.2.1. Denote two samples indicated

by d = 1, 2, which satisfy

Ydij = md (j/N) +
∑κd

k=1
ξdikφdk (j/N) + σd (j/N) εdij, 1 ≤ i ≤ nd, 1 ≤ j ≤ N

with covariance functions Gd(x, x′) =
∑κd
k=1

φdk(x)φdk

(
x′
)

respectively. We denote the

ratio of two sample sizes as r̂ = n1/n2 and assume that limn1→∞ r̂ = r > 0.

For both groups, let m̂1p(x) and m̂2p(x) be the order p spline estimates of mean functions

m1(x) and m2(x) by (2.2). Also denote by ζ12 (x), x ∈ [0, 1] a standardized Gaussian process

such that Eζ12 (x) ≡ 0, Eζ2
12 (x) ≡ 1, x ∈ [0, 1] with covariance function

Eζ12 (x) ζ12

(
x′
)

=
G1

(
x, x′

)
+ rG2

(
x, x′

)
{G1 (x, x) + rG2 (x, x)}1/2

{
G1
(
x, x′

)
+ rG2

(
x, x′

)}1/2
, x, x′ ∈ [0, 1].
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Denote by Q12,1−α the (1− α)-th quantile of the absolute maxima deviation of ζ12 (x),

x ∈ [0, 1] as above. We mimic the two sample t-test and state the following theorem whose

proof is analogous to that of Theorem 2.2.1.

Theorem 2.2.3. If Assumptions (A1)-(A5) are modified for each group accordingly, then

for any α ∈ (0, 1), as n1 →∞, r̂ → r > 0,

P

supx∈[0,1]

n
1/2
1

∣∣∣(m̂1p − m̂2p −m1 +m2

)
(x)
∣∣∣

{(G1 + rG2) (x, x)}1/2
≤ Q12,1−α

→ 1− α.

Theorems 2.2.3 yields uniform asymptotic confidence band for m1(x)−m2(x), x ∈ [0, 1].

Corollary 2.2.4. If Assumptions (A1)-(A5) are modified for each group accordingly, as n1

→ ∞, r̂ → r > 0, a 100 × (1− α) % asymptotically correct confidence band for m1(x) −

m2(x), x ∈ [0, 1] is
(
m̂1p − m̂2p

)
(x) ± n

−1/2
1 Q12,1−α {(G1 + rG2) (x, x)}1/2, ∀α ∈

(0, 1).

If the confidence band in Corollary 2.2.2 is used to test hypothesis

H0 : m(x) = m0(x), ∀x ∈ [0, 1]←→ Ha : m(x) 6= m0(x), for some x ∈ [0, 1],

for some given function m0(x), as one referee pointed out, the asymptotic power of the test is

α under H0, 1 under H1 due to Theorem 2.2.1. The same can be said for testing hypothesis

about m1(x)−m2(x) using the confidence band in Corollary 2.2.4.
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2.3 Error decomposition

In this section, we break the estimation error m̂p(x)−m(x) into three terms. We begin by

discussing the representation of the spline estimator m̂p(x) in (2.2).

The definition of m̂p(x) in (2.2) means that

m̂p(x) ≡
∑Nm

J=1−p β̂J,pBJ,p(x),

with coefficients
{
β̂1−p,p, ..., β̂Nm,p

}T
solving the following least squares problem

{
β̂1−p,p, ..., β̂Nm,p

}T
= argmin{

β1−p,p,...,βNm,p
}
∈RNm+p

n∑
i=1

N∑
j=1

Yij −
Nm∑

J=1−p
βJ,pBJ,p (j/N)


2

.(2.6)

Applying elementary algebra, one obtains

m̂p (x) =
{
B1−p,p (x) , . . . , BNm,p (x)

}(
X

T
X

)−1
X
T

Y, (2.7)

where Y =
(
Ȳ.1, . . . , Ȳ.N

)T , Ȳ.j = n−1∑n
i=1 Yij, 1 ≤ j ≤ N , and the design matrix X is

X =



B1−p,p(1/N) · · · BNm,p(1/N)

· · · · · · · · ·

B1−p,p(N/N) · · · BNm,p(N/N)


N×(Nm+p)

.
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Projecting via (2.7) the relationship in model (2.1) onto the linear subspace of RNm+p

spanned by
{
BJ,p (j/N)

}
1≤j≤N,1−p≤J≤Nm

, we obtain the following crucial decomposi-

tion in the space H(p−2) of spline functions:

m̂p(x) = m̃p(x) + ẽp(x) + ξ̃p(x), (2.8)

where

m̃p(x) =
∑Nm

J=1−p β̃J,pBJ,p(x), ε̃p(x) =
∑Nm

J=1−p ãJ,pBJ,p(x),

ξ̃p(x) =
∑κ

k=1
ξ̃k,p(x), ξ̃k,p(x) =

∑Nm
J=1−p τ̃k,J,pBJ,p(x). (2.9)

The vectors {β̃1−p, ..., β̃Nm}
T

,
{
ã1−p, ..., ãNm

}T
and

{
τ̃ k,1−p, ..., τ̃k,Nm

}T
in (2.9)

are solutions to (2.6) with Yij replaced bym (j/N), σ (j/N) εij and ξikφk (j/N) respectively.

Alternatively,

m̃p (x) =
{
B1−p,p (x) , . . . , BNm,p (x)

}(
X

T
X

)−1
X
T

m

ẽp (x) =
{
B1−p,p (x) , . . . , BNm,p (x)

}(
X

T
X

)−1
X
T

e

ξ̃k,p (x) = ξ̄.k

{
B1−p,p (x) , . . . , BNm,p (x)

}(
X

T
X

)−1
X
T
φk, 1 ≤ k ≤ κ

in which m = (m (1/N) , . . .m (N/N))
T

is the signal vector,

e = (σ (1/N) ε̄.1, . . . , σ (N/N) ε̄.N )
T

, ε̄.j = n−1∑n
i=1 εij , 1 ≤ j ≤ N is the noise

vector and φk = (φk (1/N) , . . . , φk (N/N))
T

are the eigenfunction vectors, and ξ̄.k =

n−1∑n
i=1 ξik, 1 ≤ k ≤ κ.

We cite next an important result from de Boor (2001), p. 149.
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Theorem 2.3.1. There is an absolute constant Cp−1,µ > 0 such that for every φ ∈

Cp−1,µ [0, 1] for some µ ∈ (0, 1], there exists a function g ∈ H(p−1) [0, 1] for which

‖g − φ‖∞ ≤ Cp−1,µ

∥∥∥φ(p−1)
∥∥∥

0,µ
h
µ+p−1
m .

The next three propositions concern m̃p(x), ẽp(x) and ξ̃p(x) given in (2.8).

Proposition 2.3.1. Under Assumptions (A1) and (A3), as n→∞

supx∈[0,1] n
1/2 ∣∣m̃p(x)−m(x)

∣∣ = o (1) . (2.10)

Proposition 2.3.2. Under Assumptions (A2)-(A4), as n→∞

supx∈[0,1] n
1/2 ∣∣ẽp(x)

∣∣ = oP (1) . (2.11)

Proposition 2.3.3. Under Assumptions (A2)-(A4), as n→∞

supx∈[0,1] n
1/2

∣∣∣ξ̃p(x)− (m̄(x)−m (x))
∣∣∣ = oP (1) (2.12)

also for any α ∈ (0, 1)

P
{

supx∈[0,1] n
1/2

∣∣∣ξ̃p (x)
∣∣∣G (x, x)−1/2 ≤ Q1−α

}
→ 1− α. (2.13)

Equations (2.10), (2.11) and (2.12) yield the asymptotic efficiency of the spline estimator

m̂p, i.e. supx∈[0,1] n
1/2 ∣∣m̄(x)− m̂p(x)

∣∣ = oP (1). The Appendix contains the proofs of

the above three propositions, which together with (2.8), imply Theorem 2.2.1.
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2.4 Implementation

This section describes procedures to implement the confidence band of Corollary 2.2.2.

Given any data set
(
j/N, Yij

)N,n
j=1,i=1

from model (2.1), the spline estimator m̂p (x) is

obtained from (2.7), the number of interior knots in estimating m(x) is taken to be Nm =

[cn1/(2p)log (n)], in which [a] denotes the integer part of a. Our experience shows that the

choice of constant c = 0.2, 0.3, 0.5, 1, 2 seems quite adequate, and that is what we recommend.

When constructing the confidence bands, one needs to estimate the unknown functionsG (·, ·)

and the quantile Q1−α and then plug in these estimators: the same approach is taken in

Ma, Yang and Carroll (2012) and Wang and Yang (2009a).

The pilot estimator Ĝp

(
x, x′

)
of covariance function G

(
x, x′

)
is

Ĝp = argmin

g(·,·)∈H(p−2),2

∑N

j 6=j′
{
C.jj′ − g

(
j/N, j′/N

)}2
,

with C.jj′ = n−1∑n
i=1

{
Yij − m̂p (j/N)

}{
Yij′ − m̂p

(
j′/N

)}
, 1 ≤ j 6= j′ ≤ N and

the tensor product spline space H(p−2),2 = {
∑NG
J,J ′=1−p bJJ ′BJ,p (t)B

J ′,p (s) , b
JJ ′ ∈

R, t, s ∈ [0, 1]} in which NG = [n1/(2p)log(log(n))]. A detailed discussion of the consistent

property of this plug-in estimator can be found in Chapter 3.

In order to estimate Q1−α, one first does the eigenfunction decomposition of Ĝp

(
x, x′

)
,

i.e. N−1∑N
j=1 Ĝp(j/N, j′/N)ψ̂k (j/N) = λ̂kψ̂k

(
j′/N

)
, to obtain the estimated eigenval-

ues λ̂k and eigenfunctions ψ̂k. Next, one chooses the number κ of eigenfunctions by using

the following standard and efficient criterion, i.e.

κ = argmin1≤l≤T
{∑l

k=1 λ̂k/
∑T
k=1 λ̂k > 0.95

}
, where {λk}

T
k=1 are the first T estimated

positive eigenvalues. Finally, one simulates ζ̂b (x) = Ĝp (x, x)−1/2∑κ
k=1 Zk,bφ̂k (x), where
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φ̂k =
√
λ̂kψ̂k, Zk,b are i.i.d standard normal variables with 1 ≤ k ≤ κ and b = 1, . . . , bM ,

and bM is a preset large integer, the default of which is 1000. We take the maximal absolute

value for each copy of ζ̂b (x) and estimates Q1−α by the empirical quantile Q̂1−α of these

maximum values. We then use the following confidence band

m̂p(x)± n−1/2Ĝp (x, x)1/2 Q̂1−α, x ∈ [0, 1], (2.14)

for the mean function. We estimate Q12,1−α in a similar way as Q̂1−α and compute

(
m̂1p − m̂2p

)
(x)± n−1/2

1 Q̂12,1−α
{(
Ĝ1p + r̂Ĝ2p

)
(x, x)

}1/2
, (2.15)

as confidence band for m1(x) − m2(x). Although beyond the scope of this work, as one

referee pointed out, the confidence band in (2.14) is expected to enjoy the same asymptotic

coverage as if true values of Q1−α and G (x, x) were used instead, due to the consistency of

Ĝp (x, x) estimating G (x, x). The same holds for the confidence band in (2.15).

2.5 Simulation

To demonstrate the practical performance of our theoretical results, we perform a set of

simulation studies. Data are generated from model

Yij = m (j/N) +
∑2

k=1
ξikφk (j/N) + σεij, 1 ≤ j ≤ N, 1 ≤ i ≤ n, (2.16)

where ξik ∼ N(0, 1), k = 1, 2, εij ∼ N(0, 1), for 1 ≤ i ≤ n, 1 ≤ j ≤ N , m(x) = 10 +

sin {2π (x− 1/2)}, φ1(x) = −2 cos {π (x− 1/2)} and φ2(x) = sin {π (x− 1/2)}. This setting
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implies λ1 = 2 and λ2 = 0.5. The noise levels are set to be σ = 0.5 and 0.3. The number of

subjects n is taken to be 60, 100, 200, 300 and 500, and under each sample size the number

of observations per curve is assumed to be N = [n0.25log2(n)]. This simulated process has

a similar design as one of the simulation models in Yao, Müller and Wang (2005), except

that each subject is densely observed. We consider both linear and cubic spline estimators,

and use confidence levels 1− α = 0.95 and 0.99 for our simultaneous confidence bands. The

constant c in the definition of Nm in Section 2.4 is taken to be 0.2, 0.3, 0.5, 1 and 2. Each

simulation is repeated 500 times.

Figures 2.1 and 2.2 show the estimated mean functions and their 95% confidence bands

for the true curve m(·) in model (2.16) with σ = 0.3 and n = 100, 200, 300, 500, respectively.

As expected when n increases, the confidence band becomes narrower and the linear and

cubic spline estimators are closer to the true curve.

Tables 2.2 to 2.4 show the empirical frequency that the true curve m (·) is covered by

the linear and cubic spline confidence bands (2.14) at 100 points {1/100, . . . , 99/100, 1}

respectively. At all noise levels, the coverage percentages for the confidence bands are close

to the nominal confidence levels 0.95 and 0.99 for linear splines with c = 0.5, 1 (Tables 2.1

and 2.2), and cubic splines with c = 0.3, 0.5 (Tables 2.3 and 2.4) but decline slightly for

c = 2 and markedly for c = 0.2. The coverage percentages thus depend on the choice of

Nm, and the dependency becomes stronger when sample sizes decrease. For large sample

sizes n = 300, 500, the effect of the choice of Nm on the coverage percentages is negligible.

Although our theory indicates no optimal choice of c, we recommend using c = 0.5 for data

analysis as its performance in simulation for both linear and cubic splines is either optimal

or near optimal.
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Figure 2.1: For interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this dissertation. Plots of the linear spline
estimator (2.2) for simulated data (dashed-dotted line) and 95% confidence bands (2.14)
(upper and lower dashed lines) (2.14) for m(x) (solid lines). In all panels, σ = 0.3.
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Figure 2.2: Plots of the cubic spline estimator (2.2) for simulated data (dashed-dotted line)
and 95% confidence bands (2.14) (upper and lower dashed lines) (2.14) for m(x) (solid lines).
In all panels, σ = 0.3.
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Table 2.1: Coverage frequencies from 500 replications using linear spline (2.14) with p = 2,

Nm = [cn1/(2p)log(n)] and σ = 0.5.

n 1− α c = 0.2 c = 0.3 c = 0.5 c = 1 c = 2

60 0.950 0.384 0.790 0.876 0.894 0.852

0.990 0.692 0.938 0.970 0.976 0.942

100 0.950 0.184 0.826 0.886 0.884 0.838

0.990 0.476 0.936 0.964 0.966 0.944

200 0.950 0.418 0.856 0.914 0.922 0.862

0.990 0.712 0.966 0.976 0.990 0.972

300 0.950 0.600 0.888 0.920 0.932 0.874

0.990 0.834 0.978 0.976 0.980 0.972

500 0.950 0.772 0.880 0.922 0.886 0.894

0.990 0.902 0.964 0.984 0.976 0.976

Table 2.2: Coverage frequencies from 500 replications using linear spline (2.14) with p = 2,

Nm = [cn1/(2p)log(n)] and σ = 0.3.

n 1− α c = 0.2 c = 0.3 c = 0.5 c = 1 c = 2

60 0.950 0.410 0.786 0.930 0.914 0.884

0.990 0.702 0.950 0.972 0.966 0.954

100 0.950 0.198 0.822 0.916 0.916 0.896

0.990 0.496 0.940 0.974 0.974 0.968

200 0.950 0.414 0.862 0.946 0.942 0.926

0.990 0.720 0.966 0.984 0.984 0.980

300 0.950 0.602 0.896 0.940 0.934 0.926

0.990 0.840 0.982 0.984 0.986 0.980

500 0.950 0.768 0.888 0.954 0.950 0.942

0.990 0.906 0.968 0.992 0.994 0.988
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Table 2.3: Coverage frequencies from 500 replications using cubic spline (2.14) with p = 4,

Nm = [cn1/(2p)log(n)] and σ = 0.5.

n 1− α c = 0.2 c = 0.3 c = 0.5 c = 1 c = 2

60 0.950 0.644 0.916 0.902 0.890 0.738

0.990 0.866 0.980 0.958 0.964 0.888

100 0.950 0.596 0.902 0.904 0.876 0.846

0.990 0.786 0.970 0.968 0.956 0.952

200 0.950 0.928 0.942 0.932 0.936 0.904

0.990 0.978 0.992 0.982 0.992 0.978

300 0.950 0.920 0.948 0.926 0.948 0.898

0.990 0.976 0.986 0.986 0.988 0.980

500 0.950 0.928 0.922 0.954 0.902 0.898

0.990 0.980 0.982 0.990 0.976 0.978
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Table 2.4: Coverage frequencies from 500 replications using cubic spline (2.14) with p = 4,

Nm = [cn1/(2p)log(n)] and σ = 0.3.

n 1− α c = 0.2 c = 0.3 c = 0.5 c = 1 c = 2

60 0.950 0.672 0.922 0.940 0.940 0.916

0.990 0.884 0.986 0.986 0.984 0.982

100 0.950 0.610 0.916 0.914 0.914 0.896

0.990 0.798 0.980 0.974 0.970 0.964

200 0.950 0.938 0.952 0.950 0.948 0.934

0.990 0.982 0.984 0.992 0.982 0.984

300 0.950 0.922 0.956 0.948 0.942 0.938

0.990 0.982 0.984 0.988 0.984 0.982

500 0.950 0.928 0.928 0.936 0.932 0.916

0.990 0.980 0.982 0.990 0.990 0.992

We compare by simulation the proposed spline confidence band to the least squares

Bonferroni and least squares bootstrap bands in Bunea, Ivanescu and Wegkamp (2011)

(BIW). Table 2.5 presents the empirical frequency that the true curve m (·) for model (2.16)

is covered by these bands at {1/100, . . . , 99/100, 1} respectively as Tables 2.1 and 2.2. The

coverage frequency of the BIW Bonferroni band is much higher than the nominal level making

it too conservative. The coverage frequency of the BIW bootstrap band is consistently lower

than the nominal level by at least 10%, thus not recommended for practical use.

We also compare the widths of the three bands. For each replication, we calculate the

ratios of widths of the two BIW bands against the spline band at {1/100, . . . , 99/100, 1}

and then average these 100 ratios. Table 2.6 shows the five number summary of these 500

averaged ratios for σ = 0.3 and p = 4. The BIW Bonferroni band is much wider than
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Table 2.5: Coverage frequencies from 500 replications using least squares Bonferroni band
and least squares Bootstrap band.

Coverage frequency Coverage frequency

n 1− α least squares Bonferroni least squares bootstrap

σ = 0.5 σ = 0.3 σ = 0.5 σ = 0.3

60 0.950 0.990 0.988 0.742 0.744

0.990 0.994 0.994 0.856 0.864

100 0.950 0.996 0.998 0.678 0.712

0.990 0.998 1.000 0.860 0.870

200 0.950 0.988 0.992 0.710 0.734

0.990 1.000 1.000 0.856 0.888

300 0.950 0.988 0.998 0.704 0.720

0.990 1.000 1.000 0.868 0.870

500 0.950 0.996 0.998 0.718 0.732

0.990 1.000 1.000 0.856 0.860
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Table 2.6: Five number summary of ratios of confidence band widths.

least squares Bonferroni/cubic spline least squares bootstrap/cubic spline

n 1− α Min. Q1 Med. Q3 Max. Min. Q1 Med. Q3 Max.

60 0.950 0.964 1.219 1.299 1.397 1.845 0.522 0.667 0.716 0.770 0.967

0.990 0.907 1.114 1.188 1.285 1.730 0.527 0.662 0.715 0.770 1.048

100 0.950 0.995 1.263 1.331 1.415 1.684 0.565 0.675 0.714 0.754 0.888

0.990 0.910 1.148 1.219 1.295 1.603 0.536 0.665 0.708 0.752 0.925

200 0.950 1.169 1.326 1.383 1.433 1.653 0.600 0.683 0.715 0.743 0.855

0.990 1.045 1.197 1.250 1.300 1.507 0.557 0.668 0.702 0.740 0.888

300 0.950 1.169 1.363 1.412 1.462 1.663 0.574 0.690 0.717 0.742 0.838

0.990 1.067 1.228 1.277 1.322 1.509 0.587 0.676 0.707 0.739 0.850

500 0.950 1.273 1.395 1.432 1.476 1.601 0.620 0.691 0.714 0.737 0.818

0.990 1.132 1.243 1.288 1.334 1.465 0.607 0.674 0.707 0.734 0.839

cubic spline band, making it undesirable. While the BIW bootstrap band is narrower, we

have mentioned previously that its coverage frequency is too low to be useful in practice.

Simulation for other cases (e.g. p = 2, σ = 0.5) leads to the same conclusion.

To examine the performance of the two-sample test based on spline confidence band,

Table 2.7 reports the empirical power and type I error for the proposed two-sample test. The

data were generated from (2.16) with σ = 0.5 and m1(x) = 10 + sin {2π (x− 1/2)} + δ (x),

n = n1 for the first group, and m2(x) = 10 + sin {2π (x− 1/2)}, n = n2 for the another

group. The remaining parameters, ξik, εij , φ1(x) and φ2(x) were set to the same values

for each group as in (2.16). In order to mimic the real data in Section 2.6, we set N = 50,

100 and 200 when n1 = 160, 80 and 40 and n2 = 320, 160 and 80 accordingly. The studied
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Table 2.7: Empirical power and type I error of two-sample test using cubic spline.

δ (x) n1 = 160, n2 = 320 n1 = 80, n2 = 160 n1 = 40, n2 = 80

Nominal test level Nominal test level Nominal test level

0.05 0.01 0.05 0.01 0.05 0.01

0.6t 1.000 1.000 0.980 0.918 0.794 0.574

0.7sin(x) 1.000 1.000 0.978 0.910 0.788 0.566

0 0.058 0.010 0.068 0.010 0.096 0.028

Monte Carlo SE 0.001 0.004 0.001 0.004 0.001 0.004

hypotheses are:

H0 : m1(x) = m2(x), ∀x ∈ [0, 1]←→ Ha : m1(x) 6= m2(x), for some x ∈ [0, 1].

Table 2.7 shows the empirical frequencies of rejecting H0 in this simulation study with

nominal test level equal to 0.05 and 0.01. If δ(x) 6= 0, these empirical powers should be

close to 1, and for δ(x) ≡ 0, the nominal levels. Each set of simulations consists of 500

Monte Carlo runs. Asymptotic standard errors (as the number of Monte Carlo iterations

tends to infinity) are reported in the last row of the table. Results are listed only for cubic

spline confidence bands, as those of the linear spline are similar. Overall, the two-sample test

performs well, even with a rather small difference (δ (x) = 0.7 sin(x)), providing a reasonable

empirical power. Moreover, the differences between nominal levels and empirical type I error

do diminish as the sample size increases.
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2.6 Empirical example

In this section, we revisit the Tecator data mentioned in Section 1, which can be downloaded

at http://lib.stat.cmu.edu/datasets/tecator. In this data set, there are measurements on n =

240 meat samples, where for each sample a N = 100 channel near-infrared spectrum of

absorbance measurements was recorded, and contents of moisture (water), fat and protein

were also obtained. The Feed Analyzer worked in the wavelength range from 850 nm to

1050 nm. Figure 2.3 shows the scatter plot of this data set. The spectral data can be

naturally considered as functional data, and we will perform a two-sample test to see whether

absorbance from the spectrum differs significantly due to difference in fat content.

This data set has been used for comparing four classification methods (Li and Yu, 2008),

building a regression model to predict the fat content from the spectrum (Li and Hsing,

2010b). Following Li and Yu (2008), we separate samples according to their fat contents

being less than 20% or not. The right panel of Figure 2.3 shows 10 samples from each group.

Here, hypothesis of interest is:

H0 : m1(x) = m2(x), ∀x ∈ [850, 1050]←→ Ha : m1(x) 6= m2(x), for some x ∈ [850, 1050],

where m1(x) and m2(x) are the regression functions of absorbance on spectrum, for samples

with fat content less than 20% and greater than or equal to 20%, respectively. Among 240

samples, there are n1 = 155 with fat content less than 20%, the rest n2 = 85 no less than

20%. The numbers of interior knots in (2.2) are computed as in Section 2.4 with c = 0.5

and are N1m = 4 and N2m = 3 for cubic spline fit and N1m = 8 and N2m = 6 for

linear spline fit. Figure 2.4 depicts the linear and cubic spline confidence bands according
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Figure 2.3: Left: Plot of Tecator data. Right: Sample curves for the Tecator data. Each
class has 10 sample curves. Dashed lines represent spectra with fact > 20% and solid lines
represent spectra with fact < 20%.
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to (2.15) at confidence levels 0.99 (upper and lower dashed lines) and 0.999995 (upper and

lower dotted lines), with the center dashed-dotted line representing the spline estimator

m̂1(x)− m̂2(x) and a solid line representing zero. Since even the 99.9995% confidence band

does not contain the zero line entirely, the difference of low fat and high fat populations’

absorbance was extremely significant. In fact, Figure 2.4 clearly indicates that the less the

fat contained, the higher the absorbance is.
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Figure 2.4: Plots of the fitted linear and cubic spline regressions of m1(x) −m2(x) for the
Tecator data (dashed-dotted line), 99% confidence bands (2.15) (upper and lower dashed
lines), 99.9995% confidence bands (2.15) (upper and lower dotted lines) and the zero line
(solid line).
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In this appendix, we use C to denote a generic positive constant unless stated otherwise.

Preliminaries

For any vector ζ = (ζ1, ..., ζs) ∈ Rs, denote the norm ‖ζ‖r = (|ζ1|r + · · ·+ |ζs|r)1/r,

1 ≤ r < +∞, ‖ζ‖∞ = max (|ζ1| , ..., |ζs|). For any s × s symmetric matrix A, we de-

fine λmin (A) and λmax (A) as its smallest and largest eigenvalues, and its Lr norm as

‖A‖r = maxζ∈Rs,ζ 6=0 ‖ζ‖
−1
r ‖Aζ‖r. In particular, ‖A‖2 = λmax (A), and if A is also

nonsingular,
∥∥∥A−1

∥∥∥
2

= λ−1
min (A).

For any functions φ, ϕ ∈ L2[0, 1], define the theoretical and empirical inner products as

〈φ, ϕ〉 =
∫ 1
0 φ (x)ϕ (x) dx and 〈φ, ϕ〉2,N = N−1∑N

j=1 φ (j/N)ϕ (j/N). The corresponding

norms are ‖φ‖22 = 〈φ, φ〉 , ‖φ‖22,N = 〈φ, φ〉2,N .

We state a strong approximation result, which is used in the proof of Lemma 2.6.6.

Lemma 2.6.1. [Theorem 2.6.7 of Csőrgő and Révész (1981)] Suppose that ξi, 1 ≤ i <∞ are

i.i.d. with E(ξ1) = 0, E(ξ21) = 1 and H(x) > 0 (x ≥ 0) is an increasing continuous function

such that x−2−γH(x) is increasing in x for some γ > 0 and x−1logH(x) is decreasing in

x with EH (|ξ1|) <∞. Then there exist a sequence of Brownian motions {Wn(l)}∞n=1 and

constants C1, C2, a > 0, depending only on the distribution of ξ1 and such that for any

{xn}∞n=1 satisfying H−1 (n) < xn < C1 (nlogn)1/2 and Sl =
∑l
i=1 ξi,

P

{
max

1≤l≤n

∣∣Sl −Wn (l)
∣∣ > xn

}
≤ C2n {H (axn)}−1 .

The next lemma is a special case of Theorem 13.4.3, Page 404 of DeVore and Lorentz

(1993). Let p be a positive integer. A matrix A =
(
aij

)
is said to have bandwidth p

if aij = 0 when |i− j| ≥ p, and p is the smallest integer with this property. Denote by
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d = ‖A‖2
∥∥∥A−1

∥∥∥
2

and d is the condition number of A.

Lemma 2.6.2. If a matrix A with bandwidth p has an inverse A−1, then
∥∥∥A−1

∥∥∥∞ ≤
2c0 (1− τ)−1, with c0 = τ−2p

∥∥∥A−1
∥∥∥

2
, τ =

(
(d2 − 1)/(d2 + 1)

)1/(4p)
.

One writes XTX = NV̂p, XTY =
{∑N

j=1BJ,p (j/N) Ȳ.j

}Nm
J=1−p

, where the theoret-

ical and empirical inner product matrices of
{
BJ,p(x)

}Nm
J=1−p

are denoted as

Vp =
(〈
BJ,p,BJ ′,p

〉)Nm
J,J ′=1−p

, V̂p =

(〈
BJ,p,BJ ′,p

〉
2,N

)Nm
J,J ′=1−p

. (2.17)

We establish next that the theoretical inner product matrix Vp defined in (2.17) has an

inverse with bounded L∞ norm.

Lemma 2.6.3. For any positive integer p, there exists a constant Mp > 0 depending only

on p, such that
∥∥∥V−1

p

∥∥∥∞ ≤Mph
−1
m , where hm = (Nm + 1)−1.

Proof. According to Lemma A.1 in Wang and Yang (2009b), Vp is invertible since

it is a symmetric matrix with all eigenvalues positive, i.e. 0 < cpN
−1
m ≤ λmin

(
Vp
)
≤

λmax
(
Vp
)
≤ CpN

−1
m < ∞, where cp and Cp are positive real numbers. The compact

support of B-spline basis makes Vp of bandwidth p, hence one can apply Lemma 2.6.2.

Since dp = λmax
(
Vp
)
/λmin

(
Vp
)
≤ Cp/cp, hence

τp =
(
d2
p − 1

)1/4p (
d2
p + 1

)−1/4p
≤
(
C2
pc
−2
p − 1

)1/4p (
C2
pc
−2
p + 1

)−1/4p
< 1.

If p = 1, then V−1
p = h−1

m INm+p, the lemma holds with Mp = 1. If p > 1, let u1−p =(
1,0TNm+p−1

)T
, u0 =

(
0Tp−1, 1,0

T
Nm

)T
, then

∥∥∥u1−p
∥∥∥

2
= ‖u0‖2 = 1. Also lemma A.1
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in Wang and Yang (2009b) implies that

λmin
(
Vp
)

= λmin
(
Vp
) ∥∥∥u1−p

∥∥∥2

2
≤ uT1−pVpu1−p =

∥∥∥B1−p,p
∥∥∥2

2
,

uT0 Vpu0 =
∥∥∥B0,p

∥∥∥2

2
≤ λmax

(
Vp
)
‖u0‖

2
2 = λmax

(
Vp
)
,

hence dp = λmax
(
Vp
)
/λmin

(
Vp
)
≥
∥∥∥B0,p

∥∥∥2

2

∥∥∥B1−p,p
∥∥∥−2

2
= rp > 1, where rp is an

absolute constant depending only on p. Thus

τp =
(
d2
p − 1

) 1
4p
(
d2
p + 1

)− 1
4p ≥

(
r2p − 1

) 1
4p
(
r2p + 1

)− 1
4p > 0. Applying Lemma 2.6.2

and putting the above bounds together, one obtains

∥∥∥V−1
p

∥∥∥∞ hm ≤ 2τ
−2p
p

∥∥∥V−1
p

∥∥∥
2

(
1− τp

)−1 hm

≤ 2

(
r2p + 1

r2p − 1

)1/2

λ−1
min

(
Vp
)
×

1−

(
C2
pc
−2
p − 1

C2
pc
−2
p + 1

)1/4p

−1

hm

≤ 2

(
r2p + 1

r2p − 1

)1/2

c−1
p

1−

(
C2
pc
−2
p − 1

C2
pc
−2
p + 1

)1/4p

−1

≡Mp.

The lemma is proved.

For any function φ ∈ C [0, 1], denote the vector φ = (φ (1/N) , . . . , φ (N/N))
T

and

function

φ̃ (x) ≡
{
B1−p,p (x) , . . . , BNm,p (x)

}(
X

T
X

)−1
X
T
φ.

Lemma 2.6.4. Under Assumption (A3), for Vp and V̂p defined in (2.17),
∥∥∥Vp − V̂p

∥∥∥∞ =

O
(
N−1

)
and

∥∥∥V̂−1
p

∥∥∥∞ ≤ 2Mph
−1
m , for large enough n. There exists cφ,p ∈ (0,∞) such

that when n is large enough,
∥∥∥φ̃∥∥∥∞ ≤ cφ,p ‖φ‖∞ for any φ ∈ C [0, 1]. Furthermore, if
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φ ∈ Cp−1,µ [0, 1] for some µ ∈ (0, 1], then for C̃p−1,µ =
(
cφ,p + 1

)
Cp−1,µ

∥∥∥φ̃− φ∥∥∥∞ ≤ C̃p−1,µ

∥∥∥φ(p−1)
∥∥∥

0,µ
h
µ+p−1
m . (2.18)

Proof. We first show that
∥∥∥Vp − V̂p

∥∥∥∞ = O
(
N−1

)
. Suppose p = 1, define for any

0 ≤ J ≤ Nm, the number of design points j/N in the J-th interval IJ as NJ , then

NJ = # {j : j ∈ [NJ/ (Nm + 1) , N (J + 1) / (Nm + 1))}, for 0 ≤ J < Nm, and NJ =

# {j : j ∈ [NJ/ (Nm + 1) , N (J + 1) / (Nm + 1)]}, for J = Nm.

Clearly max0≤J≤Nm
∣∣NJ −Nhm∣∣ ≤ 1, and hence

∥∥∥V1 − V̂1

∥∥∥∞ = max
0≤J≤Nm

∣∣∣∣∥∥∥BJ,1∥∥∥2

2,N
−
∥∥∥BJ,1∥∥∥2

2

∣∣∣∣
= max

0≤J≤Nm

∣∣∣∣N−1
∑N

j=1
B2
J,1 (j/N)− hm

∣∣∣∣
= max

0≤J≤Nm

∣∣∣N−1NJ − hm
∣∣∣ = N−1 max

0≤J≤Nm

∣∣NJ −Nhm∣∣ ≤ N−1.

For p > 1, de Boor (2001), Page 96, B-spline property ensures that there exists a constant

C1,p > 0 such that

max
1−p≤J,J ′≤Nm

max
1≤j≤N

sup
x∈[(j−1)/N,j/N ]

∣∣∣BJ,p (j/N)B
J ′,p (j/N)−BJ,p (x)B

J ′,p (x)
∣∣∣

≤ C1,pN
−1h−1

m ,

while there exists a constant C2,p > 0 such that max1−p≤J,J ′≤Nm NJ,J ′ ≤ C2,pNhm
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where N
J,J ′ = #

{
j : 1 ≤ j ≤ N,BJ,p (j/N)B

J ′,p (j/N) > 0
}

. Hence

∥∥∥Vp − V̂p

∥∥∥∞
= max

1−p≤J,J ′≤Nm

∣∣∣∣∣N−1
∑N

j=1
BJ,p (j/N)BJ ′,p (j/N)−

∫ 1

0
BJ,p (x)BJ ′,p (x) dx

∣∣∣∣∣
≤ max

1−p≤J,J ′≤Nm

∑N

j=1

∫ j/N

(j−1)/N

∣∣∣BJ,p (j/N)BJ ′,p (j/N)−BJ,p (x)BJ ′,p (x)
∣∣∣ dx

≤ C2,pNhm ×N
−1 × C1,pN

−1h−1
m ≤ CN−1.

According to Lemma 2.6.3, for any (Nm + p) vector γ,
∥∥∥V−1

p γ
∥∥∥∞ ≤ h−1

m ‖γ‖∞. Hence,∥∥Vpγ∥∥∞ ≥M−1
p hm ‖γ‖∞. By Assumption (A3), N−1 = o (hm) so if N is large enough,

for any γ, one has

∥∥∥V̂pγ∥∥∥∞ ≥ ∥∥Vpγ∥∥∞− ∥∥∥Vpγ − V̂pγ
∥∥∥∞ ≥ hmM

−1
p ‖γ‖∞ −O

(
N−1

)
‖γ‖∞

=
hm
2
M−1
p ‖γ‖∞ .

Hence
∥∥∥V̂−1

p

∥∥∥∞ ≤ 2Mph
−1
m .

To prove the last statement of the lemma, note that for any x ∈ [0, 1] at most (p+ 1) of

the numbers B1−p,p (x) , . . . , BNm,p (x) are between 0 and 1, others being 0, so

∣∣∣φ̃ (x)
∣∣∣ ≤ (p+ 1)

∣∣∣∣∣
(

X
T

X

)−1
X
T
φ

∣∣∣∣∣ = (p+ 1)

∣∣∣∣V̂−1
p

(
X
T
φN−1

)∣∣∣∣
≤ (p+ 1)

∥∥∥V̂−1
p

∥∥∥∞
∣∣∣∣XT φN−1

∣∣∣∣ ≤ 2 (p+ 1)Mph
−1
m

∣∣∣∣XT INN
−1
∣∣∣∣ ‖φ‖∞

in which IN = (1, ..., 1)
T

. Clearly

∣∣∣∣XT INN
−1
∣∣∣∣ ≤ Chm for some C > 0, hence

∣∣∣φ̃ (x)
∣∣∣ ≤

2Mp (p+ 1)C ‖φ‖∞ = cφ,p ‖φ‖∞. Now if φ ∈ Cp−1,µ [0, 1] for some µ ∈ (0, 1], let
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g ∈ H(p−1) [0, 1] be such that ‖g − φ‖∞ ≤ Cp−1,µ

∥∥∥φ(p−1)
∥∥∥

0,µ
h
µ+p−1
m according to

Theorem 2.3.1, then g̃ ≡ g as g ∈ H(p−1) [0, 1] hence

∥∥∥φ̃− φ∥∥∥∞ =
∥∥∥φ̃− g̃ − (φ− g)

∥∥∥∞ ≤ ∥∥∥φ̃− g̃∥∥∥∞ + ‖φ− g‖∞

≤
(
cφ,p + 1

)
‖φ− g‖∞ ≤

(
cφ,p + 1

)
Cp−1,µ

∥∥∥φ(p−1)
∥∥∥

0,µ
h
µ+p−1
m

proving (2.18).

Lemma 2.6.5. Under Assumption (A5), for C0 = C1

(
1 + βC2

∑∞
s=1 s

β−1−γ1
)

and

n ≥ 1

max
1≤k≤κ

E
∣∣∣ξ̄.,k − Z̄.k,ξ∣∣∣ ≤ C0n

β−1, (2.19)

max
1≤j≤N

∣∣∣ε̄.,j − Z̄.j,ε∣∣∣ = Oa.s.

(
nβ−1

)
(2.20)

where Z̄.k,ξ = n−1∑n
i=1 Zik,ξ, Z̄.j,ε = n−1∑n

i=1 Zij,ε, 1 ≤ j ≤ N , 1 ≤ k ≤ κ. Also

max
1≤k≤κ

E
∣∣∣ξ̄.,k∣∣∣ ≤ n−1/2 (2/π)1/2 + C0n

β−1. (2.21)

Proof. The proof of (2.20) is trivial. Assumption (A5) entails that

F̄n+t,k < C2 (n+ t)−γ1, k = 1, ..., κ, t = 0, 1, ...,∞, in which
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F̄n+t,k = P
[∣∣∣∑n

i=1 ξik −
∑n
i=1 Zik,ξ

∣∣∣ > C1 (n+ t)β
]
. Taking expectation, one has

E
∣∣∣∑n

i=1
ξik −

∑n

i=1
Zik,ξ

∣∣∣
≤ C1 (n+ 0)β +

∑∞
t=1

C1 (n+ t)β
(
F̄n+t−1,k − F̄n+t,k

)
≤ C1n

β +
∑∞

t=0
C1C2 (n+ t)−γ1 β (n+ t)β−1

≤ C1

{
nβ + βC2

∑∞
t=0

(n+ t)β−1−γ1
}

≤ nβC1

[
1 + βC2n

−1−γ1
∑∞

s=1

∑sn−1

t=sn−n (1 + t/n)β−1−γ1

]
≤ nβC1

[
1 + βC2n

−1−γ1 × n
∑∞

t=1
tβ−1−γ1

]
≤ C0n

β,

which proves (2.19) if one divides the above inequalities by n. The fact that Z̄.k,ξ ∼

N (0, 1/n) entails that E
∣∣∣Z̄.k,ξ∣∣∣ = n−1/2 (2/π)1/2 and thus

max1≤k≤κ E
∣∣∣ξ̄.,k∣∣∣ ≤ n−1/2 (2/π)1/2 + C0n

β−1.

Lemma 2.6.6. Assumption (A5) holds under Assumption (A5’).

Proof. Under Assumption (A5′), E
∣∣ξik∣∣τ1 < +∞, τ1 > 4, E

∣∣∣εij∣∣∣τ2 < +∞, τ2 >

4 + 2θ, so there exists some β ∈ (0, 1/2) such that τ1 > 2/β, τ2 > (2 + θ) /β.

Now let H(x) = xτ1, then Lemma 2.6.1 entails that there exists constants C1k, C2k, ak

which depend on the distribution of ξik, such that for

xn = C1kn
β, n
H
(
akxn

) = a
−τ1
k

C
−τ1
1k

n1−τ1β and i.i.d. N(0, 1) variables Zik,ξ such that

P

[
max

1≤t≤n

∣∣∣∣∑t

i=1
ξik −

∑t

i=1
Zik,ξ

∣∣∣∣ > C1kn
β
]
< C2ka

−τ1
k

C
−τ1
1k

n1−τ1β.

Since τ1 > 2/β, γ1 = τ1β − 1 > 1. If the number κ of k is finite, so there are common con-
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stants C1, C2 > 0 such that P
[
max1≤t≤n

∣∣∣∑t
i=1 ξik −

∑t
i=1 Zik,ξ

∣∣∣ > C1n
β
]
< C2n

−γ1

which entails (2.3) since κ is finite. If κ is infinite but all the ξik’s are i.i.d., then C1k, C2k, ak

are the same for all k, so the above is again true.

Likewise, under Assumption (A5′), Lemma 2.6.1 applied to H(x) = xτ2 implies that

there exists constants C1, C2 and a which depend on the distribution of εij and i.i.d. N(0, 1)

variables Zij,ε, such that with xn = C1n
β, n
H
(
akxn

) = a−τ2C
−τ2
1 n1−τ2β and

max
1≤j≤N

P

{
max

1≤t≤n

∣∣∣∣∑t

i=1
εij −

∑t

i=1
Zij,ε

∣∣∣∣ > C1n
β
}
≤ C2a

−τ2C
−τ2
1 n1−τ2β,

Hence, τ2β > 2 + θ which implies that there is γ2 > 1 such that τ2β− 1 > γ2 + θ and (2.4)

follows.

Proof of Proposition 2.3.1.

Applying (2.18),
∥∥m̃p −m∥∥∞ ≤ Cp−1,1h

p
m. Since Assumption (A3) implies that

O
(
h
p
mn

1/2
)

= o (1), equation (2.10) is proved.

Proof of Proposition 2.3.2.

Denote by Z̃p,ε (x) =
{
B1−p,p (x) , . . . , BNm,p (x)

}(
XTX

)−1
XTZ, where

Z =
(
σ (1/N) Z̄.1,ε, . . . , σ (N/N) Z̄.N,ε

)T
. By (2.20), one has ‖Z− e‖∞ = Oa.s.

(
nβ−1

)
,

while

∥∥∥N−1XT (Z− e)
∥∥∥∞ ≤ ‖Z− e‖∞ max

1−p≤J≤Nm

〈
BJ,p, 1

〉
2,N

≤ C ‖Z− e‖∞ max
1−p≤J≤Nm

#
{
j : BJ,p (j/N) > 0

}
N−1 ≤ C ‖Z− e‖∞ hm.
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Also for any fixed x ∈ [0, 1], one has

∥∥∥Z̃p,ε (x)−ẽp (x)
∥∥∥∞ =

∥∥∥{B1−p,p (x) , . . . , BNm,p (x)
}

V̂−1
p N−1XT (Z− e)

∥∥∥∞
≤ C

∥∥∥V̂−1
p

∥∥∥∞‖Z− e‖∞ hm = Oa.s.

(
nβ−1

)
.

Note next that the random vector V̂−1
p N−1XTZ is (Nm + p)-dimensional normal with

covariance matrix N−2V̂−1
p XTvar (Z) XV̂

−1
p , bounded above by

max
x∈[0,1]

σ2 (x)
∥∥∥n−1N−1V̂−1

p V̂pV̂
−1
p

∥∥∥∞ ≤ CN−1n−1
∥∥∥V̂−1

p

∥∥∥∞ ≤ CN−1n−1h−1
m ,

bounding the tail probabilities of entries of V̂−1
p N−1XTZ and applying Borel-Cantelli

Lemma leads to

∥∥∥V̂−1
p N−1XTZ

∥∥∥∞ = Oa.s.

(
N−1/2n−1/2h

−1/2
m log1/2 (Nm + p)

)
= Oa.s.

(
N−1/2n−1/2h

−1/2
m log1/2n

)
.

Hence, supx∈[0,1]

∣∣∣n1/2Z̃p,ε (x)
∣∣∣ = Oa.s.

(
N−1/2h

−1/2
m log1/2n

)
and

sup
x∈[0,1]

∣∣∣n1/2ẽp (x)
∣∣∣ = Oa.s.

(
nβ−1/2 +N−1/2h

−1/2
m log1/2n

)
= oa.s. (1) .

Thus (2.11) holds according to Assumption (A3).

Proof of Proposition 2.3.3.

44



We denote ζ̃k(x) = Z̄·k,ξφk (x), k = 1, . . . , κ and define

ζ̃ (x) = n1/2
[∑κ

k=1

{
φk(x)

}2
]−1/2∑κ

k=1
ζ̃k(x) = n1/2G (x, x)−1/2

∑κ

k=1
ζ̃k(x).

It is clear that ζ̃ (x) is a Gaussian process with mean 0, variance 1 and covarianceEζ̃ (x) ζ̃
(
x′
)

= G (x, x)−1/2G
(
x, x′

)−1/2
G
(
x, x′

)
, for any x, x′ ∈ [0, 1]. Thus ζ̃ (x), x ∈ [0, 1] has the

same distribution as ζ (x), x ∈ [0, 1].

Using Lemma 2.6.4, one obtains that

∥∥∥φ̃k∥∥∥∞ ≤ cφ,p
∥∥φk∥∥∞ ,

∥∥∥φ̃k − φk∥∥∥∞ ≤ C̃0,µ
∥∥φk∥∥0,µ h

µ
m, 1 ≤ k ≤ κ. (2.22)

Applying the above (2.22), (2.21) and Assumptions (A3), (A4), one has

En1/2 supx∈[0,1] G (x, x)−1/2
∣∣∣∑κ

k=1
ξ̄·k
{
φk(x)− φ̃k(x)

}∣∣∣
≤ Cn1/2

{∑κn
k=1

E
∣∣ξ̄·k∣∣ ∥∥φk∥∥0,µ h

µ
m +

∑κ

k=κn+1
E
∣∣ξ̄·k∣∣ ∥∥φk∥∥∞}

≤ C

{∑κn
k=1

∥∥φk∥∥0,µ h
µ
m +

∑κ

k=κn+1

∥∥φk∥∥∞} = o (1) ,

hence

n1/2 supx∈[0,1] G (x, x)−1/2
∣∣∣∑κ

k=1
ξ̄·k
{
φk(x)− φ̃k(x)

}∣∣∣ = oP (1) . (2.23)

In addition, (2.19) and Assumptions (A3) and (A4) entail

En1/2 supx∈[0,1] G (x, x)−1/2
∣∣∣∑κ

k=1

(
Z̄·k,ξ − ξ̄·k

)
φk(x)

∣∣∣
≤ Cnβ−1/2

∑κ

k=1

∥∥φk∥∥∞ = o (1) .
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Hence

n1/2 supx∈[0,1] G (x, x)−1/2
∣∣∣∑κ

k=1

(
Z̄·k,ξ − ξ̄·k

)
φk(x)

∣∣∣ = oP (1) . (2.24)

Note that

m̄(x)−m (x)− ξ̃p(x) =
∑κ

k=1
ξ̄·k
{
φk(x)− φ̃k(x)

}
,

n−1/2G (x, x)1/2 ζ̃ (x)− {m̄(x)−m (x)} =
∑κ

k=1

(
Z̄·k,ξ − ξ̄·k

)
φk(x)

hence

n1/2 sup
x∈[0,1]

G (x, x)−1/2
∣∣∣m̄(x)−m (x)− ξ̃p(x)

∣∣∣ = oP (1) ,

supx∈[0,1]

∣∣∣ζ̃ (x)− n1/2G (x, x)−1/2 {m̄(x)−m (x)}
∣∣∣ = oP (1) .

according to (2.23) and (2.24), which leads to both (2.12) and (2.13).
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Chapter 3

Confidence Envelopes for Covariance

Functions

3.1 Introduction

Covariance estimation is crucial in both functional and longitudinal data analysis. For

longitudinal data, a good estimation of the covariance function improves the estimation

efficiency of the mean parameters (Wang, Carroll and Lin, 2005; Fan, Huang and Li, 2007).

In functional data analysis (Ramsay and Silverman, 2005), covariance estimation plays a

critical role in functional principal component analysis (James, Hastie and Sugar, 2000;

Zhao, Marron and Wells, 2004; Yao, Müller and Wang, 2005a; Hall, Müller and Wang,

2006; Yao and Lee, 2006; Zhou, Huang and Carroll, 2008; Li and Hsing, 2010a), functional

generalized linear models (Cai and Hall, 2005; Yao, Müller and Wang, 2005b; Li, Wang and

Carroll, 2010), and other functional nonlinear models (James and Silvermen, 2005; Li and

Hsing, 2010b). Other related work on functional data analysis includes Ferraty and Vieu

(2006) and Morris and Carroll (2006).
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There are some important recent works on nonparametric covariance estimation in func-

tional data, which are mostly based on kernel smoothing, for example Yao et al. (2005a),

Hall et al. (2006) and Li and Hsing (2010a). More recently, Cai and Yuan (2010) also

proposed a smoothing spline covariance estimator. So far, all existing work concentrated

on estimation and the corresponding asymptotic convergence rate. There is no theoretical

or methodological development for inference procedures on the covariance functions, such

as simultaneous or uniform confidence envelopes. Nonparametric simultaneous confidence

regions are powerful tools for making global inference on functions; see Härdle and Marron

(1991), Claeskens and Van Keilegom (2003) and Zhao and Wu (2008) for related theory and

applications.

In this chapter, we consider a typical functional data setting where the functions are

recorded on a dense regular grid in an interval X and the measurements are contaminated

with measurement errors. Some recent applications of this type of functional data include

near infrared spectra (Li and Hsing, 2010a), recorded speeches for voice recognition (Hastie,

Tibshirani and Buja, 1995), electroencephalogram (EEG) data (Crainiceanu, Stacu and Di,

2009). We propose to estimate the covariance function by tensor product B-splines. In

contrast with the kernel methods (Yao et al., 2005a; Hall et al., 2006; Li and Hsing, 2010b),

our proposed spline estimator is much more efficient in terms of computation. The reason

is that the kernel smoothers are evaluated pointwisely, while for the spline estimator, we

only need to solve for a small number of spline coefficients to have an explicit expression for

the whole function. For smoothing a two-dimensional covariance surface with a moderate

sample size, the kernel smoother might take up to half an hour, while our spline estimator

only takes a few seconds. Computation efficiency is a huge advantage for the spline methods

in analyzing large data sets and in performing simulation studies. The reader is referred to
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Huang and Yang (2004) for more discussions on the computational merits of spline methods.

Compared with the smoothing spline approach of Cai and Yuan (2010), our method uses

reduced rank tensor product B-splines, and is potentially faster while analyzing large data

sets.

We show that the estimation error in the mean function is asymptotically negligible

in estimating the covariance function, and our covariance estimator is as efficient as an

“oracle” estimator where the true mean function is known. We derive both local and global

asymptotic distribution for the proposed spline covariance estimator. Especially, based on

the asymptotic distribution of the maximum deviation of the estimator, we propose a new

simultaneous confidence envelope for the covariance function, which can be used to visualize

the variability of the covariance estimator and to make global inferences on the shape of the

true covariance.

We apply the proposed confidence envelope method to a Tecator near infrared spectra

data set to test the hypothesis that the covariance is stationary. In a speech recognition

application, the classic functional linear discriminant analysis (Hastie et al., 1995; James

and Hastie, 2001) assumes that the random curves from different classes share a common

covariance function. We further extend our confidence envelope method to a two-sample

problem, where one can test whether the covariance functions from two groups are different.

We organize this chapter as follows. In Section 3.2 we describe the data structure and the

proposed spline covariance estimator. In Section 3.3, we study the local and global asymp-

totic properties of the proposed estimator. Based on the theory, we propose a new confidence

envelope approach and extend the method to two-sample hypothesis testing problems. More

implementation details of the proposed confidence envelopes are provided in Section 3.4.

We present simulation studies in Section 3.5 and applications to the Tecator infrared spec-
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troscopy and the speech recognition data set in Sections 3.6. Some concluding remarks are

provided in Section 3.7. All proofs of the theorems and technical lemmas are provided in

the appendix and the supplementary material.

3.2 Spline covariance estimation

3.2.1 Data structure and model assumptions

Following Ramsay and Silverman (2005), the data that we consider are a collection of trajec-

tories
{
ηi(x)

}n
i=1 which are i.i.d. realizations of a smooth random function η(x), defined on

a continuous interval X . Assume that {η(x), x ∈ X} is a L2 process, i.e. E
∫
X η2(x)dx <

+∞, and define the mean and covariance functions as m(x) = E{η(x)} and G
(
x, x′

)
=

cov
{
η(x), η(x′)

}
. The covariance function is a symmetric nonnegative-definite function with

a spectral decomposition, G
(
x, x′

)
=
∑κ
k=1 λkψk(x)ψk

(
x′
)

, where λ1 ≥ λ2 ≥ · · · ≥ 0,∑κ
k=1 λk < +∞, are the eigenvalues, and

{
ψk(x)

}κ
k=1 are the corresponding eigenfunctions

and are a set of orthonormal functions in L2 (X ). By the Karhunen-Loève representation,

ηi(x) = m(x) +
∑κ
k=1 ξikφk(x), where the random coefficients ξik are uncorrelated with

mean 0 and variance 1, and the functions φk =
√
λkψk. In the standard Karhunen-Loève

expansion, κ can diverge to ∞. For practical consideration, κ is always truncated at a finite

number in real data analysis. Our main theoretical results are developed under the assump-

tion that κ is a finite positive integer, but some of our theoretical results can be further

generalized to the infinite dimension case, which will be discussed in Section 3.3.

Without loss of generality, we take X = [0, 1]. Then the observed data are Yij =

ηi

(
Xij

)
+ σ

(
Xij

)
εij , for 1 ≤ i ≤ n, 1 ≤ j ≤ N , where Xij = j/N , εij are i.i.d.

50



random errors with E (ε11) = 0 and E(ε211) = 1, and σ2(x) is the variance function of

the measurement errors. By the Karhunen-Loève representation, the observed data can be

written as

Yij = m (j/N) +
∑κ

k=1
ξikφk (j/N) + σ (j/N) εij.

We model m(·) and G(·, ·) as nonparametric functions, and hence {λk}
κ
k=1, {φk(·)}κk=1

and {ξik}
κ
k=1 are unknown and need to be estimated.

3.2.2 Spline covariance estimator

To describe the tensor product spline estimator of the covariance functions, we first introduce

some notation. Denote a sequence of equally-spaced points
{
tJ
}Ns
J=1, called interior knots

which have been defined in Chapter 1. Let hs = 1/ (Ns + 1) be the distance between

neighboring knots. Let H(p−2) = H(p−2) [0, 1] be the polynomial spline space of order p.

The Jth B-spline of order p is denoted by BJ,p as in de Boor (2001). Thus we define the

tensor product spline space as

H(p−2),2[0, 1]2 ≡ H(p−2),2 = H(p−2) ⊗H(p−2)

=


Ns∑

J,J ′=1−p
b
JJ ′pBJ,p (x)B

J ′,p
(
x′
)
, b
JJ ′p ∈ R, x, x

′ ∈ [0, 1]

 .

If the mean function m(x) was known, one could compute the errors

Uij ≡ Yij −m(j/N) =
κ∑
k=1

ξikφk (j/N) + σ (j/N) εij, 1 ≤ i ≤ n, 1 ≤ j ≤ N.

Denote Ū·jj′ = n−1∑n
i=1 UijUij′ , 1 ≤ j 6= j′ ≤ N , one can then define the “oracle”

51



estimator of the covariance function

G̃p2 (·, ·) = argmin

g(·,·)∈H(p2−2),2

∑
1≤j 6=j′≤N

{
Ū·jj′ − g

(
j/N, j′/N

)}2
, (3.1)

using tensor product splines of order p2 ≥ 2. Since the mean function m(x) is unavailable

when one analyzes data, one can use instead the spline smoother of m(x), i.e.,

m̂p1(·) = argmin

g(·)∈H(p1−2)

n∑
i=1

N∑
j=1

{
Yij − g (j/N)

}2
, p1 ≥ 1.

To mimic the above “oracle” smoother, we define

Ĝp1,p2(·, ·) = argmin

g(·,·)∈H(p2−2),2

∑
1≤j 6=j′≤N

{
ˆ̄U·jj′,p1

− g
(
j/N, j′/N

)}2
, (3.2)

where ˆ̄U·jj′,p1
= n−1∑n

i=1 Ûijp1
Û
ij′p1

with Ûijp1
= Yij − m̂p1 (j/N). Let Ns1 be the

number of interior knots for mean estimation, and Ns2 be the number of interior knots for

Ĝp1,p2(x, x′) in each coordinate. In other words, we have N2
s2

interior knots for the tensor

product spline space H(p2−2),2.

We now provide detailed algorithm for the spline covariance estimator. For simplicity,

denote B
JJ ′,p2

(
x, x′

)
= BJ,p2

(x)B
J ′,p2

(
x′
)

and

Bp2

(
x, x′

)
=

(
B1−p2,1−p2,p2

(
x, x′

)
, . . . , BNs2 ,1−p2,p2

(
x, x′

)
,

. . . , B1−p2,Ns2 ,p2

(
x, x′

)
, . . . , BNs2 ,Ns2 ,p2

(
x, x′

))T
,

X =

{
Bp2

(
2

N
,

1

N

)
, . . . ,Bp2

(
1,

1

N

)
, . . . ,Bp2

(
1

N
, 1

)
, . . . ,Bp2

(
1− 1

N
, 1

)}
T

.
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Then Ĝp1,p2(x, x′) defined in (3.2) can be rewritten as

Ĝp1,p2(x, x′) ≡ β̂Tp1,p2Bp2
(
x, x′

)
, (3.3)

where β̂p1,p2
is the collector of the estimated spline coefficients by solving the following

least squares

β̂p1,p2
= argmin

bp2∈R
(Ns2+p2)2

∑
1≤j 6=j′≤N

{
ˆ̄U·jj′,p1

− bTp2
Bp2(j/N, j′/N)

}2
.

By elementary algebra, one obtains

Ĝp1,p2(x, x′) = BT

p2
(x, x′)

(
XTX

)−1
XT ˆ̄Up1 ,

G̃p2(x, x′) = BT

p2
(x, x′)

(
XTX

)−1
XT Ū, (3.4)

where

ˆ̄Up1 =
(

ˆ̄U·21,p1
, . . . , ˆ̄U·N1,p1

, . . . , ˆ̄U·1N,p1 , . . . ,
ˆ̄U·(N−1)N,p1

)
T

,

Ū = (Ū·21, . . . , Ū·N1, . . . , Ū·1N, . . . , Ū·(N−1)N )T.
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3.3 Asymptotic theory and simultaneous confidence en-

velopes

3.3.1 Assumptions and the oracle property

For any ν ∈ (0, 1], we denote Cq,ν [0, 1] as the space of ν-Hölder continuous functions on

[0, 1],

Cq,ν [0, 1] =

φ : sup
x 6=x′,x,x′∈[0,1]

∣∣∣φ(q)(x)− φ(q)
(
x′
)∣∣∣∣∣x− x′∣∣ν < +∞

 .

We need the following technical assumptions.

(B1) The regression function m ∈ Cp1−1,1 [0, 1].

(B2) The standard deviation function σ (x) ∈ C0,ν [0, 1]. For any k = 1, 2, . . . κ, φk (x) ∈

Cp2−1,ν [0, 1]. Also sup(
x,x′

)
∈[0,1]2

G
(
x, x′

)
< C, for some positive constant C

and minx∈[0,1]G (x, x) > 0.

(B3) The number of knots Ns1 and Ns2 satisfy n1/(4p1) � Ns1 � N , n1/(2p2) � Ns2 �

min
(
N1/2, n1/3

)
and Ns2 � N

p1
s1

.

(B4) The number κ of nonzero eigenvalues is finite. The variables
(
ξik
)∞,κ
i=1,k=1

and(
εij

)∞,∞
i=1,j=1

are independent. In addition, Eε11 = 0, Eε211 = 1, Eξ1k = 0, Eξ21k =

1 and max1≤k≤κ E
∣∣ξ1k∣∣δ1 < +∞, E |ε11|

δ2 < +∞, for some δ1, δ2 > 4.

Assumptions (B1)-(B4) are standard in the spline smoothing literature; see Huang (2003),

for instance. In particular, (B1) and (B2) guarantee the orders of the bias terms of the spline

smoothers for m(x) and φk (x). Assumption (B3) is a weak assumption to ensure the order
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of the bias and noise terms in Propositions 3.3.1 and 3.3.2. Assumption (B4) is necessary

for strong approximation. More discussion about the assumptions is in Section 3.4.

To gain a deeper understanding on the behavior of the spline covariance estimator Ĝp2

in (3.2), we first study the asymptotic property of G̃p2 in (3.1).

Denote by

∆
(
x, x′

)
=

κ∑
k,k′=1

φk (x)φ
k′
(
x′
)(

ξ̄·kk′ − δkk′
)
, (3.5)

where ξ̄·kk′ = n−1∑n
i=1 ξikξik′ and δkk′ = 1 for k = k′ and 0 otherwise.

Proposition 3.3.1. Under Assumptions (B2)-(B4), one has

sup

(x,x′)∈[0,1]2

∣∣∣G̃p2(x, x′)−G(x, x′)−∆
(
x, x′

)∣∣∣ = op

(
n−1/2

)
. (3.6)

The proof of Proposition 3.3.1 is provided in the supplementary material. The next

proposition provides that the tensor product spline estimator Ĝp1,p2 is uniformly close to

the “oracle” smoother at the rate of op

(
n−1/2

)
.

Proposition 3.3.2. Under Assumptions (B1)-(B4), one has

sup

(x,x′)∈[0,1]2

∣∣∣Ĝp1,p2(x, x′)− G̃p2(x, x′)
∣∣∣ = op

(
n−1/2

)
.

The proof of Proposition 3.3.2 is provided in the supplementary material. As a result of

Propositions 3.3.1 and 3.3.2,

sup

(x,x′)∈[0,1]2

∣∣∣Ĝp1,p2(x, x′)−G(x, x′)−∆
(
x, x′

)∣∣∣ = op

(
n−1/2

)
.
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3.3.2 Asymptotic confidence envelopes

The next theorem provides a pointwise approximation to the mean squared error of Ĝp1,p2(x, x′).

Theorem 3.3.1. Under Assumptions (B1)-(B4),

nE[Ĝp1,p2(x, x′)−G(x, x′)]2 = V
(
x, x′

)
+ o(1),

where V
(
x, x′

)
= G

(
x, x′

)2
+G (x, x)G

(
x′, x′

)
+
∑κ
k=1 φ

2
k (x)φ2

k

(
x′
)(

Eξ41k − 3
)

.

Remark 3.3.1. Although the convergence result in Theorem 3.3.1 is derived under the as-

sumption that κ is a finite positive number, it continues to hold when κ→∞ as long as the

sum in the definition of V (x, x′) still converges. The existence of V (x, x′) in the infinite di-

mension case is guaranteed by imposing an additional assumption that E[{supx∈X η(x)}4+δ] <

∞, for some δ > 0, which is commonly assumed in functional data analysis (see Li and Hsing,

2010a). The assumption κ being finite is merely a practical consideration for the develop-

ment of inference procedures. Further discussion on how to choose κ in real data will be

provided in Section 3.4.

To obtain the quantile of the distribution of n1/2
∣∣∣Ĝp1,p2(x, x′)−G(x, x′)

∣∣∣V−1/2
(
x, x′

)
,

one defines

ζZ

(
x, x′

)
(3.7)

=


κ∑

k 6=k′
Z
kk′φk (x)φ

k′
(
x′
)

+
κ∑
k=1

φk (x)φk

(
x′
)
Zk

(
Eξ41k − 1

)1/2

V−1/2
(
x, x′

)
,

where Z
kk′ = Z

k′k and Zk are i.i.d. standard gaussian random variables. Hence, for any(
x, x′

)
∈ [0, 1]2, ζZ

(
x, x′

)
is a standardized gaussian field such that EζZ

(
x, x′

)
= 0,
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Eζ2
Z

(
x, x′

)
= 1. Define Q1−α as the 100 (1− α)th percentile of the absolute maxima

distribution of ζZ

(
x, x′

)
, ∀
(
x, x′

)
∈ [0, 1]2, i.e.

P

 sup(
x,x′

)
∈[0,1]2

∣∣∣ζZ (x, x′)∣∣∣ ≤ Q1−α

 = 1− α, ∀α ∈ (0, 1) .

The following theorem and corollary address the simultaneous envelopes for G(x, x′).

Theorem 3.3.2. Under Assumptions (B1)-(B4), for any α ∈ (0, 1),

lim
n→∞P

 sup

(x,x′)∈[0,1]2
n1/2

∣∣∣Ĝp1,p2(x, x′)−G(x, x′)
∣∣∣V−1/2

(
x, x′

)
≤ Q1−α

 = 1− α,

lim
n→∞P

{
n1/2

∣∣∣Ĝp1,p2(x, x′)−G(x, x′)
∣∣∣V−1/2

(
x, x′

)
≤ Z1−α/2

}
= 1−α, ∀(x, x′) ∈ [0, 1]2,

where Z1−α/2 is the 100 (1− α/2)th percentile of the standard normal distribution.

Remark 3.3.2. Although this covariance function estimator cannot be guaranteed to be pos-

itive definite, it tends to the true positive definite covariance function in probability.

The next result follows directly from Theorem 3.3.2.

Corollary 3.3.3. Under Assumptions (B1)-(B4), as n → ∞, an asymptotic 100 (1− α) %

confidence envelope for G(x, x′), ∀(x, x′) ∈ [0, 1]2 is

Ĝp1,p2(x, x′)± n−1/2Q1−αV
1/2

(
x, x′

)
, ∀α ∈ (0, 1) , (3.8)

while an asymptotic 100 (1− α) % pointwise confidence envelope for G(x, x′), ∀(x, x′) ∈

[0, 1]2 is

Ĝp1,p2(x, x′)± n−1/2Z1−α/2V
1/2

(
x, x′

)
, ∀α ∈ (0, 1) .
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3.3.3 Extension to two-sample test problems

In functional analysis of variance and linear discriminant analysis, it is commonly assumed

that the covariance functions are the same across different treatment groups. It is natural to

extend our method to the two-sample problems, where we can construct confidence envelopes

for the difference between the covariances functions from two independent groups. This

procedure is equivalent to two-sample t-test.

Suppose we have two independent groups of curves with sample sizes n1 and n2, respec-

tively. We denote the ratio of two sample sizes as r̂ = n1/n2 and assume that limn1→∞ r̂ =

r > 0. Let Ĝ
(1)
p1,p2

(x, x′) and Ĝ
(2)
p1,p2

(x, x′) be the spline estimates of covariance functions

G(1)(x, x′) and G(2)(x, x′) by (3.2). Also denote by ζ12

(
x, x′

)
, ∀
(
x, x′

)
∈ [0, 1]2 a stan-

dardized Gaussian process such that Eζ12

(
x, x′

)
≡ 0, Eζ2

12

(
x, x′

)
≡ 1, ∀

(
x, x′

)
∈ [0, 1]2

with covariance function, for x, x′ ∈ [0, 1],

Eζ12

(
x, x′

)
ζ12

(
x, x′

)
=

V1

(
x, x′

)
+ rV2

(
x, x′

)
{V1 (x, x) + rV2 (x, x)}1/2

{
V1
(
x′, x′

)
+ rV2

(
x′, x′

)}1/2
.

Denote by Q12,1−α the (1− α)-th quantile of the absolute maxima deviation of ζ12

(
x, x′

)
,

∀
(
x, x′

)
∈ [0, 1]2 as above.

We have the following theorem, the proof of which is analogous to that of Theorem 3.3.2

and therefore omitted.

Theorem 3.3.4. Under Assumptions (B1)-(B4) modified for each group accordingly, for
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any α ∈ (0, 1), as n1 →∞, r̂ → r > 0,

P

 sup

(x,x′)∈[0,1]2
n

1/2
1

∣∣∣∣Ĝ(1)
p1,p2

(x,x′)−Ĝ(2)
p1,p2

(x,x′)−G(1)(x,x′)+G(2)(x,x′)
∣∣∣∣(

V1
(
x,x′

)
+rV2

(
x,x′

))1/2 ≤ Q12,1−α


= 1− α.

Remark 3.3.3. Under Assumptions (B1)-(B4), an asymptotic 100(1− α)% confidence enve-

lope for G(1)(x, x′)−G(2)(x, x′), ∀
(
x, x′

)
∈ [0, 1]2 is:

Ĝ
(1)
p1,p2

(x, x′)−Ĝ(2)
p1,p2

(x, x′)±n−1/2
1 Q12,1−α

(
V1

(
x, x′

)
+ rV2

(
x, x′

))1/2
, ∀α ∈ (0, 1) .

(3.9)

one can use this confidence envelope to test any hypothesis on G(1)
(
x, x′

)
−G(2)

(
x, x′

)
.

3.4 Implementation

In this section, we describe the procedure to implement the confidence envelopes. Given

the data set
(
j/N, Yij

)N,n
j=1,i=1

, the number of interior knots Ns1 for m̂p1(x) is taken to

be [n1/(4p1)logn], where [a] denotes the integer part of a. Meanwhile, the spline estimator

Ĝp1,p2(x, x′) is obtained by (3.3) with the number of interior knotsNs2 = [n1/(2p2)loglogn].

These choices of knots satisfy condition (B3) in our theory.

To construct the confidence envelopes, one needs to evaluate the percentile Q1−α and
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estimate the variance function V
(
x, x′

)
. An estimator V̂

(
x, x′

)
of V

(
x, x′

)
is

V̂
(
x, x′

)
= Ĝp1,p2(x, x′)2 + Ĝp1,p2(x, x)Ĝp1,p2(x′, x′)

+
∑κ

k=1
φ̂

2
k (x) φ̂

2
k

(
x′
)(

n−1
∑n

i=1
ξ̂
4
ik − 3

)
,

where φ̂k and ξ̂ik are the estimators of φk and ξik, respectively. According to Yao et al.

(2005b), the estimates of eigenfunctions and eigenvalues correspond to the solutions φ̂k and

λ̂k of the eigen-equations,

∫ 1

0
Ĝp1,p2(x, x′)φ̂k (x) dx = λ̂kφ̂k

(
x′
)
, (3.10)

where the φ̂k are subject to
∫ 1
0 φ̂

2
k (t) dt = λ̂k and

∫ 1
0 φ̂k (t) φ̂

k′ (t) dt = 0 for k′ < k. Since

N is sufficiently large, (3.10) can be approximated by

N−1
∑N

j=1
Ĝp1,p2(j/N, j′/N)φ̂k (j/N) = λ̂kφ̂k

(
j′/N

)
.

For the same reason, the estimation of ξik has the form of

ξ̂ik = N−1
∑N

j=1
λ̂
−1
k

(
Yij − m̂p1(j/N)

)
φ̂k (j/N) .

To choose the number of principal components, κ, Müller (2009) described two methods.

The first method is the “pseudo-AIC” criterion proposed in Yao et al. (2005a). The second

is a simple “fraction of variation explained” method, i.e. select the number of eigenvalues

that can explain, say, 95% of the variation in the data. From our experience in the numerical
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studies, the simple “fraction of variation explained” method often works well.

Finally, to evaluate Q1−α, we need to simulate the Gaussian random field ζZ(x, x′) in

(3.7). The definition of ζZ(x, x′) involves φk(x) and V (x, x′), which are replaced by their

estimators described above. The fourth moment of ξ1k is replaced by the empirical moments

of ξ̂ik. We simulate a large number of independent realizations of ζZ(x, x′), and take the

maximal absolute deviation for each copy of ζZ(x, x′). Then Q1−α is estimated by the

empirical percentiles of these maximum values.

For the two-sample hypothesis testing problem, we will center the two groups of curves

separately by their own mean functions, since we do allow each group to have a different

mean function. Analogous to Q̂1−α, we estimate Q12,1−α and further

Ĝ
(1)
p1,p2

(x, x′)−Ĝ(2)
p1,p2

(x, x′)±n−1/2
1 Q̂12,1−α

(
V̂1

(
x, x′

)
+ r̂V̂2

(
x, x′

))1/2
, ∀α ∈ (0, 1) .

(3.11)

is applied for two samples covariance functions in the practice. The rest of the procedure

follows as described in Section 3.3.3.

3.5 Simulation

To illustrate the finite-sample performance of the spline approach, we generate data from

the model

Yij = m (j/N) +
∑2

k=1
ξikφk (j/N) + σεij, 1 ≤ j ≤ N, 1 ≤ i ≤ n,
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where ξik ∼ N(0, 1), k = 1, 2, εij ∼ N(0, 1), for 1 ≤ i ≤ n, 1 ≤ j ≤ N , m(x) = 10 +

sin {2π (x− 1/2)}, φ1(x) = −2 cos {π (x− 1/2)} and φ2(x) = sin {π (x− 1/2)}. This setting

implies λ1 = 2 and λ2 = 0.5. The noise levels are set to be σ = 0.5 and 1.0. The number of

subjects n is taken to be 50, 100, 200, 300 and 500, and under each sample size the number

of observations per curve is assumed to be N = 4[n0.3log(n)]. This simulated process has a

similar design to one of the simulation models in Yao et al. (2005a), except that each subject

is densely observed. We consider both linear and cubic spline estimators, and use confidence

levels 1 − α = 0.95 and 0.99 for our simultaneous confidence envelops. Each simulation is

repeated 500 times.

Table 3.1 shows the empirical frequency that the true surface G(x, x′) is entirely covered

by the confidence envelopes. At both noise levels, one observes that, as sample size increases,

the true coverage probability of the confidence envelopes becomes closer to the nominal

confidence level, which shows a positive confirmation of Theorem 3.3.2.

We present two estimation schemes: a) both mean and covariance functions are estimated

by linear splines, i.e., p1 = p2 = 2; b) both are estimated by cubic splines, i.e. p1 = p2 = 4.

Since the true covariance function is smooth in our simulation, the cubic spline estimator

provides better estimate of the covariance function. However, as can been seen from Table

3.1, the two spline estimators behave rather similarly in terms of coverage probability. We

also did simulation studies for the cases p1 = 4, p2 = 2 and p1 = 2, p2 = 4, the coverage

rates are not shown here because they are similar to the cases presented in Table 3.1.

We show in Figures 3.1 and 3.2 the spline covariance estimator and the 95% confidence

envelops for n = 200 and σ = 0.5. Figures 3.1 and 3.2 correspond to linear (p1 = p2 = 2)

and cubic (p1 = p2 = 4) spline estimators respectively. In each plot, the true covariance

function is overlayed by the two confidence envelopes.
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Figure 3.1: Plots of the true covariance functions (middle surfaces) of the simulated data and
their 95% confidence envelopes (3.11) (upper and lower surfaces): n=200, N=100, σ=0.5.
p1 = p2 = 2.
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Figure 3.2: Plots of the true covariance functions (middle surfaces) of the simulated data and
their 95% confidence envelopes (3.11) (upper and lower surfaces): n=200, N=100, σ=0.5.
p1 = p2 = 4.
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3.6 Empirical examples

3.6.1 Tecator near infrared spectra data

We first apply our methodology to the Tecator data mentioned in Section 1 and chapter

2.6.Figure 3.3 shows the scatter plot of the spectra. As we can see, the spectra can be

naturally considered as functional data, since they are recorded on a dense grid of points

with little measurement error. On the other hand, there is a lot of variation among different

curves. We show the estimated covariance function and the 95% confidence envelope in

Figures 3.4. These results are obtained by applying cubic spline smoothing to both the

mean and covariance functions, with the number of knots Ns1 = 10, Ns2 = 6, respectively.

We also tried other combinations of knots numbers and linear spline estimators. The results

are very similar, and hence are not shown here. From Figure 3.4, we can see that the within

curve covariance is positive and quite significant, since the zero hyperplane is far below the

lower bound of the confidence envelope.

Using the simultaneous confidence envelopes, one can test other interesting hypotheses

on the true covariance function, such as the true covariance being stationary. Specifically,

we are interested in the following hypothesis,

H0 : G(x, x′) ≡ g(|x− x′|), ∀
(
x, x′

)
∈ [a, b]2

v.s. Ha : G(x, x′) 6= g(|x− x′|), ∃
(
x, x′

)
∈ [a, b]2, (3.12)

where g(·) is a stationary covariance function, and [a, b] is the range of wavelength.

To test the hypothesis in (3.12), we need to generate a new estimator under the station-

arity assumption and check if this estimator can be covered by the simultaneous confidence
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envelope. Letting Ĝ(x, x′) be the tensor product B-spline covariance estimator, we define

ĜS(u) = (b − a − u)−1 ∫ b−u
a Ĝ(x, x + u)dx for 0 ≤ u ≤ b − a and ĜS(u) = ĜS(−u)

for a − b < u < 0. Similar to Ĝ, the new estimator ĜS is not guaranteed to be positive

semi-definite, but it is sufficient for our purpose. Under the stationarity assumption, ĜS is

a better estimator of the true covariance. We will pretend that ĜS is the true covariance

and reject the null hypothesis if this function is not covered by the confidence envelope.

Figure 3.5 shows cubic tensor spline envelopes with 0.9995 confidence level, and the center

surface is ĜS(x − x′) as a two-dimensional function. As we can see, even for such a high

confidence level, the estimator under the stationarity assumption is still not fully covered

in the envelopes. We conclude that the covariance structure in these Tecator spectra is

non-stationary. The same conclusion can be drawn using linear tensor spline method.

3.6.2 Speech recognition data

The data were extracted from the TIMIT database (TIMIT Acoustic-Phonetic Continuous

Speech Corpus, NTIS, US Dept of Commerce) which is a widely used resource for research

in speech recognition. The data set we use was formed by selecting five phonemes for

classification based on digitized speech from this database. From continuous speech of 50

male speakers, 4509 speech frames of 32 msec duration were selected. From each speech

frame, a log-periodogram was used as transformation for casting speech data in a form

suitable for speech recognition. The five phonemes in this data set are transcribed as follows:

“sh” as in “she”, “dcl” as in “dark”, “iy” as the vowel in “she”, “aa” as the vowel in “dark”,

and “ao” as the first vowel in “water”. For illustration purpose, we focus on the “sh” and

“ao” phoneme classes as representatives of consonants and vowels. There are n1 = 872
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Figure 3.3: Plot of the Tecator data.
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Figure 3.4: Plots of the cubic tensor product spline covariance estimator (3.3) for the Tecator
data (middle surface) and the 95% simultaneous confidence envelope (3.11) (upper and lower
surfaces).
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Figure 3.5: Plot for testing hypothesis (3.12) for the Tecator data. The upper and lower
surfaces are the 99.95% confidence envelopes for the covariance function, and the middle
surface is the covariance estimator under stationarity assumption, ĜS(x− x′).
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log-periodograms in the “sh” class, and n2 = 1022 log-periodograms in the “ao” group.

Each log-periodogram consists N = 256 equally spaced points. Figure 3.6 shows a sample

10 log-periodograms from each of the two phoneme classes.

This data set was first analyzed by Hastie et al. (1995) using penalized linear discriminant

analysis. One of the basic assumptions is that the covariance functions are the same for

different classes. Judging from the scatter plot of the data in Figure 3.6, despite the clear

difference between the mean functions of the two groups, there is no obvious indication of

difference in covariance structures.

We first obtain the cubic tensor product spline covariance estimators for the two phoneme

classes separately, which are shown in Figure 3.7. These results are obtained by using

Ns1 = 10, Ns2 = 4 number of knots for the “sh” class, and Ns1 = 11 and Ns2 = 5 for the

“ao”class. Different number of knots between the two groups reflects that the sample sizes

are different.

By comparing the covariance estimators in Figure 3.7, there seems to be a visible differ-

ence between the two classes. We now would like to test the equal covariance assumption

formally. The hypotheses of interest are

H0 : G(1)(x, x′) ≡ G(2)(x, x′), ∀
(
x, x′

)
∈ [0, 1]2

v.s. Ha : G(1)(x, x′) 6= G(2)(x, x′), ∃
(
x, x′

)
∈ [0, 1]2 . (3.13)

The 99.95% confidence envelopes for the difference of the two covariance functions are pro-

vided in Figure 3.8, and the zero hyperplane is used as a reference. Since the zero hyperplane

is not covered by the envelopes, the equal covariance hypothesis is rejected with p-value

< 0.0005. We also tried different numbers of knots and the test result is not sensitive to this
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Figure 3.6: Plots of the speech recognition data.

choice. Our results suggest that a quadratic discriminant analysis, that takes into account

the difference in the within-group covariance functions, might yield a better classification

error rate than a linear discriminant analysis in this data set.
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Figure 3.7: Plots of tensor spline estimators for “sh” and “ao” data sets. Right: “sh”; Left:
“ao”.
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Figure 3.8: Plots of hypothesis test (3.13) results with the cubic tensor product spline 99.95%
confidence envelopes (3.11) (upper and lower surfaces) for the speech recognition data and
the zero surfaces (middle flat surface).
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3.7 Summary

In this chapter, we consider covariance estimation in functional data and propose a new

computationally efficient tensor-product B-spline estimator. The proposed estimator can be

used as a building block for further data analysis, such as principal component analysis, linear

discriminant analysis and analysis of variance. We study both local and global asymptotic

properties of our estimator and proposed a simultaneous envelope approach to make inference

on the true covariance function. The method is applied to a Tecator near-infrared spectra

data to test the stationarity assumption on the covariance. In a classification problem, we

further extend our method to a two-sample problem to test the equal covariance assumption

between different treatment groups.
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Throughout this section, C means some positive constant in this whole section.

The detailed proofs of the following lemmas, Proposition 3.3.1 and Proposition 3.3.2 can

be found in the supplement.

Preliminaries

For any positive integer p, denote the theoretical and empirical inner product matrices of{
BJ,p(x)

}Ns

J=1−p
as

Vp =
(〈
BJ,p,BJ ′,p

〉)Ns

J,J ′=1−p
, V̂p =

(〈
BJ,p,BJ ′,p

〉
2,N

)Ns

J,J ′=1−p
.

The following lemma is from Chapter 1, which established the upper bound of
∥∥∥V−1

p

∥∥∥∞.

Lemma 3.7.1. For any positive integer p, there exists a constant Mp > 0 depending only

on p, such that
∥∥∥V−1

p

∥∥∥∞ ≤Mph
−1
s , for a large enough n, where hs = (Ns + 1)−1.

Denote by “⊗” the Kronecker product of two matrices. Note that
∥∥∥(A⊗A)−1

∥∥∥∞ =∥∥∥A−1 ⊗A−1
∥∥∥∞ ≤ ∥∥∥A−1

∥∥∥2

∞
, for any invertible matrix A, which, together with Lemma

3.7.1, leads to the following result.

Lemma 3.7.2. For any positive integer p, there exists a constant Mp > 0 depending only

on p, such that
∥∥∥(Vp ⊗Vp

)−1
∥∥∥∞ ≤M2

ph
−2
s .

Next we define the theoretical and empirical inner product matrices of tensor product
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spline basis

{
B
JJ ′,p2

(
x, x′

)}Ns2

J,J ′=1−p2
as

Vp2,2
=

(〈
BJJ ′,p2

, BJ ′′J ′′′,p2

〉)Ns2

J,J ′,J ′′,J ′′′=1−p2

V̂p2,2
=

(〈
BJJ ′,p2

, BJ ′′J ′′′,p2

〉
2,N

)Ns2

J,J ′,J ′′,J ′′′=1−p2
. (3.14)

The following results show that the difference of Vp2,2
and V̂p2,2

is negligible. Using the

results from Lemma 3.7.2, we can obtain the upper bound of the norm of V̂−1
p2,2

.

Lemma 3.7.3. Under Assumption (A3), for Vp2,2
and V̂p2,2

defined in (3.14),∥∥∥Vp2,2 − V̂p2,2

∥∥∥∞ = O
(
N−1

)
and

∥∥∥∥V̂−1
p2,2

∥∥∥∥∞ = O
(
h−2

s2

)
.

Lemma 3.7.4. For V̂p2,2
defined in (3.14) and any N(N −1) vector ρ =

(
ρ
jj′
)

, there ex-

ists a constant C > 0, such that sup(
x,x′

)
∈[0,1]2

∥∥∥∥N−2BT
p2

(x, x′)V̂−1
p2,2

XTρ

∥∥∥∥∞ ≤ C ‖ρ‖∞.

Denote φ̃
kk′

(
x, x′

)
= BT

p2
(x, x′)

(
XTX

)−1
XTφ

kk′ , and

φ
kk′ =(
φk (2/N)φ

k′ (1/N) , . . . , φk (1)φ
k′ (1/N) , . . . , φk (1/N)φ

k′ (1) , . . . , φk (1− 1/N)φ
k′ (1)

)T
.

The following lemma is a direct result from de Boor (2001), p. 149 and Theorem 5.1 of

Huang (2003), thus the proof is omitted.

Lemma 3.7.5. There is an absolute constant Cg > 0 such that for every g ∈ Cp−1,µ [0, 1],

there exists a function g∗ ∈ H(p−1) [0, 1] and some µ ∈ (0, 1] such that supx∈[0,1]

∣∣g(x)− g∗(x)
∣∣

≤ Cgh
p−1+µ
s . If Assumption (B2) holds, sup

(x,x′)∈[0,1]2

∣∣∣φkk′(x, x′)− φ̃kk′(x, x′)∣∣∣∞ =
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O
(
h
p2
s2

)
.

Proofs of theorems 3.3.1 and 3.3.2

Proof of Theorem 3.3.1. By Propositions 3.3.1,

E[G̃p1,p2(x, x′)−G(x, x′)]2 = E∆2
(
x, x′

)
+ o(1),

where ∆
(
x, x′

)
is defined in (3.5). Let ξ̄·kk′ = n−1∑n

i=1 ξikξik′ , 1 ≤ k, k′ ≤ κ. According

to (3.16) and (3.17), one has

∆
(
x, x′

)
=

κ∑
k 6=k′

ξ̄·kk′φk (x)φ
k′
(
x′
)

+
κ∑
k=1

(
ξ̄·kk − 1

)
φk (x)φk

(
x′
)
.

Since

nE
[
∆
(
x, x′

)]2
=

κ∑
k,k′=1

φ2
k (x)φ2

k′
(
x′
)

+
κ∑

k,k′=1

φk

(
x′
)
φk (x)φk′ (x)φk′

(
x′
)

+
κ∑
k=1

φ2
k (x)φ2

k

(
x′
)(

Eξ41k − 3
)

= G
(
x, x′

)2
+G (x, x)G

(
x′, x′

)
+

κ∑
k=1

φ2
k (x)φ2

k

(
x′
)(

Eξ41k − 3
)
≡ V

(
x, x′

)
,

and the desired result follows from Proposition 3.3.2.

Next define ζ
(
x, x′

)
= n1/2V−1/2

(
x, x′

)
∆
(
x, x′

)
.

Lemma 3.7.6. Under Assumptions (B2)-(B4), sup(
x,x′

)
∈[0,1]2

∣∣∣ζZ (x, x′)− ζ (x, x′)∣∣∣ =
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oa.s. (1), where ζZ

(
x, x′

)
is given in (3.7).

Proof of Theorem 3.3.2. According to Lemma 3.7.6, Propositions 3.3.1 and 3.3.2

and Theorem 3.3.1, for ∀α ∈ (0, 1), as n→∞,

lim
n→∞P

 sup(
x,x′

)
∈[0,1]2

n1/2
∣∣∣Ĝp1,p2 (x, x′)−G(x, x′)

∣∣∣V (x, x′)−1/2
≤ Q1−α


= lim

n→∞P

 sup(
x,x′

)
∈[0,1]2

n1/2
∣∣∣G̃p1,p2 (x, x′)−G(x, x′)

∣∣∣V (x, x′)−1/2
≤ Q1−α


= lim

n→∞P

 sup(
x,x′

)
∈[0,1]2

∣∣∣ζ (x, x′)∣∣∣ ≤ Q1−α


= lim

n→∞P

 sup(
x,x′

)
∈[0,1]2

∣∣∣ζZ (x, x′)∣∣∣ ≤ Q1−α

 .

Supplement

This supplement contains proofs for Lemmas 3.7.3, 3.7.4 and 3.7.6, Propositions 3.3.1 and

3.3.2.
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Proof of Lemma 3.7.3. Note that

V̂p2,2

=

N−2
∑

1≤j 6=j′≤N
B
JJ ′,p2

(
j/N, j′/N

)
B
J ′′J ′′′,p2

(
j/N, j′/N

)
Ns2

J,J ′,J ′′,J ′′′=1−p2

=

N−2

 N∑
j=1

BJJ ′′,p2
(j/N, j/N)

 N∑
j=1

BJ ′J ′′′,p2
(j/N, j/N)


Ns2

J,J ′,J ′′,J ′′′=1−p2

−

N−2
N∑
j=1

B
JJ ′,p2

(j/N, j/N)B
J ′′J ′′′,p2

(j/N, j/N)


Ns2

J,J ′,J ′′,J ′′′=1−p2

= V̂p2 ⊗ V̂p2 −

N−2
N∑
j=1

B
JJ ′,p2

(
j

N
,
j

N

)
B
J ′′J ′′′,p2

(
j

N
,
j

N

)
Ns2

J,J ′,J ′′,J ′′′=1−p2

.

Note that the entries in the matrix V̂p2,2
−V̂p2⊗V̂p2 are zero when the maximum absolute

difference between any two of the indices
(
J, J ′′

)
,
(
J ′, J ′′′

)
is greater than p; otherwise

N−2
N∑
j=1

BJJ ′,p2
(j/N, j/N)BJ ′′J ′′′,p2

(j/N, j/N)

= N−1

[∫ 1

0
B
JJ ′,p2

(x, x)B
J ′′J ′′′,p2

(x, x) dx+O(N−1h−1
s2

)

]
= O

(
N−1hs2 +N−2h−1

s2

)
.
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Hence,
∥∥∥V̂p2,2 − V̂p2 ⊗ V̂p2

∥∥∥∞ = O
(
N−1hs2 +N−2h−1

s2

)
. Since

∥∥∥Vp2 ⊗Vp2 − V̂p2 ⊗ V̂p2

∥∥∥∞
= max

1−p2≤J ′,J ′′′≤Ns2

Ns2∑
J,J ′′=1−p2

∣∣∣∣∣∣∣N−2
N∑

j,j′=1

BJJ ′,p2

(
j

N
,
j′

N

)
BJ ′′J ′′′,p2

(
j

N
,
j′

N

)

−
∫ 1

0

∫ 1

0
B
JJ ′,p2

(
x, x′

)
B
J ′′J ′′′,p2

(
x, x′

)
dxdx′

∣∣∣∣∣
≤ max

1−p2≤J ′,J ′′′≤Ns2

Ns2∑
J,J ′′=1−p2

N∑
j,j′=1

∫ j′/N(
j′−1

)
/N

∫ j/N

(j−1)/N

∣∣∣∣BJJ ′,p2
(
j/N, j′/N

)

×B
J ′′J ′′′,p2

(
j/N, j′/N

)
−B

JJ ′,p2

(
x, x′

)
B
J ′′J ′′′,p2

(
x, x′

)∣∣∣∣ dxdx′
≤ Ch−2

s2

(
Nhs2

)2
×N−2 ×N−2h−2

s2
= CN−2h−2

s2
,

applying Assumption (B3) one has
∥∥∥Vp2 ⊗Vp2 − V̂p2,2

∥∥∥∞ = o
(
N−1

)
.

According to Lemma 3.7.2, for any
(
Ns2 + p2

)2
vector τ , one has

∥∥∥(Vp2 ⊗Vp2)−1τ
∥∥∥∞ ≤

h−2
s2
‖τ‖∞. Hence,

∥∥∥(Vp2 ⊗Vp2)τ
∥∥∥∞ ≥ h2

s2
‖τ‖∞. Note that

∥∥∥V̂p2,2τ∥∥∥∞ ≥ ∥∥∥(Vp2 ⊗Vp2)τ
∥∥∥∞− ∥∥∥(Vp2 ⊗Vp2)τ − V̂p2,2

τ
∥∥∥∞ = O

(
h2

s2

)
‖τ‖∞ .

If τ satisfies that

∥∥∥∥V̂−1
p2,2

∥∥∥∥∞ =

∥∥∥∥V̂−1
p2,2

τ

∥∥∥∥∞ ≤ O
(
h−2

s2

)
‖τ‖∞ = O

(
h−2

s2

)
, the lemma is

proved.

Proof of Lemma 3.7.4. Note that for any matrix A =
(
aij

)m,n
i=1,j=1

and any n by
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1 vector α = (α1, . . . , αn)T , one has ‖Aα‖∞ ≤ ‖A‖∞ ‖α‖∞. It is clear that

∥∥∥N−2XTρ
∥∥∥∞ =

∥∥∥∥∥∥∥∥N
−2


∑

1≤j 6=j′≤N
B
JJ ′,p2

(
j/N, j′/N

)
ρ
jj′


Ns2

J,J ′=1−p2

∥∥∥∥∥∥∥∥
∞

≤ ‖ρ‖∞ max
1−p2≤J,J ′≤Ns2

∣∣∣∣∣∣∣N−2
∑

1≤j 6=j′≤N
B
JJ ′,p2

(
j/N, j′/N

)∣∣∣∣∣∣∣
≤ h2

s2
‖ρ‖∞ .

One also observe that

∥∥∥∥N−2BT

p2
(x, x′)V̂−1

p2,2
XTρ

∥∥∥∥∞ ≤
∥∥∥BT

p2
(x, x′)

∥∥∥∞ ∥∥∥N−2XTρ
∥∥∥∞

∥∥∥∥V̂−1
p2,2

∥∥∥∥∞ ,

which, together with the boundedness of spline functions and Lemma 3.7.3, leads to the

desired result.

Proof of Lemma 3.7.6. According to Assumption (B4) and multivariate Central Limit

Theorem

√
n

{
ξ̄·kk′ ,

(
ξ̄2·k − 1

)(
Eξ41k − 1

)−1/2
}

1≤k<k′≤κ
→d N

(
0κ(κ+1)/2, Iκ(κ+1)/2

)
.

Applying Skorohod’s Theorem, there exist i.i.d. variables Zkk′ = Zk′k ∼ N (0, 1), Zk ∼

N (0, 1), 1 ≤ k < k′ ≤ κ, such that as n→∞,

max
1≤k<k′≤κ

{∣∣∣√nξ̄·kk′ − Zkk′∣∣∣ ,
∣∣∣∣√n(ξ̄2·k − 1

)
− Zk

(
Eξ41k − 1

)1/2
∣∣∣∣} = oa.s. (1) .

(3.15)

The desired result follows from (3.15).
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Proof of Proposition 3.3.1

Recall that the error terms defined in Section 3.2 are Uij = Yij −m(j/N), i = 1, ..., n,

j = 1, ..., N . Note that

Ū·jj′ = n−1
n∑
i=1

UijUij′

= n−1
n∑
i=1

 κ∑
k=1

ξikφk (j/N) + σ (j/N) εij

 κ∑
k=1

ξikφk

(
j′/N

)
+ σ

(
j′/N

)
εij′


= Ū1jj′ + Ū2jj′ + Ū3jj′ + Ū4jj′ ,

where

Ū1jj′ =
κ∑

k 6=k′
ξ̄·kk′φk (j/N)φ

k′
(
j′/N

)
,

Ū2jj′ =
κ∑
k=1

ξ̄·kkφk (j/N)φk

(
j′/N

)
,

Ū3jj′ = n−1
n∑
i=1

σ (j/N)σ
(
j′/N

)
εijεij′ ,

Ū4jj′ = n−1
n∑
i=1


κ∑
k=1

ξikφk (j/N)σ
(
j′/N

)
ε
ij′ +

κ∑
k=1

ξikφk

(
j′/N

)
σ (j/N) εij

 .

Let Ũip2

(
x, x′

)
= BT

p2
(x, x′) (XTX)−1 XT Ūi, where Ūi =

{
Ū
ijj′

}
1≤j 6=j′≤N

, for i =

1, 2, 3, 4. Then we can have the following decomposition for G̃p2(x, x′)

G̃p2(x, x′) = Ũ1p2

(
x, x′

)
+ Ũ2p2

(
x, x′

)
+ Ũ3p2

(
x, x′

)
+ Ũ4p2

(
x, x′

)
.
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Define

U1(x, x′) =
κ∑

k 6=k′
ξ̄·kk′φk (x)φ

k′
(
x′
)
, (3.16)

U2(x, x′) = G
(
x, x′

)
+

κ∑
k=1

{
φk (x)φk

(
x′
) (
ξ̄·kk − 1

)}
. (3.17)

Next we illustrate the facts that Ũ1p2

(
x, x′

)
and Ũ2p2

(
x, x′

)
are the dominating terms in

the above decomposition, which converge uniformly to U1(x, x′) and U2(x, x′) respectively,

while Ũ3p2

(
x, x′

)
and Ũ4p2

(
x, x′

)
are negligible noise terms.

By the definition of Ū1, one has that

Ũ1p2

(
x, x′

)
= N−2BTp2

(x, x′)V̂−1
p2,2

XT


κ∑

k 6=k′
ξ̄·kk′φk (j/N)φ

k′
(
j′/N

)
=

κ∑
k 6=k′

ξ̄·kk′φ̃kk′
(
x, x′

)
.

Lemma 3.7.5 and Assumption (B3) imply that

sup

x,x′∈[0,1]2

∣∣∣(Ũ1p2
− U1)

(
x, x′

)∣∣∣ = sup

x,x′∈[0,1]2

∣∣∣∣∣∣∣
Ũ1p2

−
κ∑

k 6=k′
ξ̄·kk′φ̃kk′


(
x, x′

)∣∣∣∣∣∣∣
≤ κ2 max

1≤k 6=k′≤κ

∣∣∣ξ̄·kk′∣∣∣ sup

x,x′∈[0,1]2

∣∣∣(φkk′ − φ̃kk′)(x, x′)∣∣∣


= Op

(
h
p2
s2
n−1/2

)
= op

(
n−1/2

)
.

84



Similarly,

sup

x,x′∈[0,1]2

∣∣∣(Ũ2p2
− U2)

(
x, x′

)∣∣∣
≤ κ max

1≤k≤κ

∣∣ξ̄·kk∣∣ sup

x,x′∈[0,1]2

∣∣∣(φkk′ − φ̃kk′)(x, x′)∣∣∣


= Op

(
h
p2
s2

)
= op

(
n−1/2

)
.

Therefore, one has

sup

x,x′∈[0,1]2

∣∣∣(Ũ1p2
+ Ũ2p2

− U1 − U2)
(
x, x′

)∣∣∣ = op

(
n−1/2

)
.

Denote that

N−2XT Ū3 =

n−1
n∑
i=1

A
iJJ ′


Ns2

J,J ′=1−p2

,

where

A
iJJ ′ = N−2

∑
1≤j 6=j′≤N

BJ,p2
(j/N)σ (j/N)B

J ′,p2

(
j′/N

)
σ
(
j′/N

)
εijεij′ .

It is easy to see that EA
iJJ ′ = 0 and EA2

iJJ ′ = O
(
h2

s2
N−2

)
. Using standard arguments

in Wang and Yang (2009), one has

∥∥∥N−2XT Ū3

∥∥∥∞ = oa.s.

{
N−1n−1/2hs2log1/2 (n)

}
.
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Therefore, according to the definition of ˜̄U3p2

(
x, x′

)
, one has

sup

x,x′∈[0,1]2

∥∥∥∥BTp2(x, x′)V̂−1
p2,2

N−2XT Ū3

∥∥∥∥∞
≤ Cp2 sup

x,x′∈[0,1]2

∥∥∥Bp2 (x, x′)∥∥∥∞
∥∥∥∥V̂−1

p2,2
N−2XT Ū3

∥∥∥∥∞
= oa.s.

{
N−1n−1/2h−1

s2
log1/2n

}
= oa.s.

(
n−1/2

)
.

Likewise, in order to get the upper bound of
∣∣∣Ũ4p2

(
x, x′

)∣∣∣, one has

XT Ū4

=

{
2

n

∑n

i=1

∑κ

k=1
ξik

∑
1≤j 6=j′≤N

φk (j/N)σ
(
j′/N

)
B
JJ ′,p2

(
j

N
,
j′

N

)
ε
ij′


Ns2

J,J ′=1−p2

.

Let

D
iJJ ′ = N−2

κ∑
k=1

ξik ∑
1≤j 6=j′≤N

φk (j/N)σ
(
j′/N

)
B
JJ ′,p

(
j/N, j′/N

)
ε
ij′

 ,

86



then ED
iJJ ′ = 0,

ED2
iJJ ′ = N−4

κ∑
k=1

∑
1≤j 6=j′≤N

φ2
k (j/N)σ2

(
j′/N

)
B2
JJ ′,p2

(
j/N, j′/N

)
Eξ2ikEε

2
ij′

≤ CN−4
κ∑
k=1

∑
1≤j 6=j′≤N

φ2
k (j/N)B2

J,p2
(j/N)σ2

(
j′/N

)
B2
J ′,p2

(
j′/N

)
= O

(
h2

s2
N−2

)
.

Similar arguments in Wang and Yang (2009) leads to

∥∥∥∥∥XT Ū4
N2

∥∥∥∥∥∞ = oa.s.

{
N−1n−1/2hs2log1/2 (n)

}
.

Thus,

∥∥∥∥∥BTp2(x, x′)V̂−1
p2,2

XT Ū4
N2

∥∥∥∥∥∞ = oa.s.

{
N−1n−1/2h−1

s2
log1/2 (n)

}
= oa.s.

(
n−1/2

)
.

Proof of Proposition 3.3.2

For simplicity, denote

X1 =



B1−p1,p1(1/N) · · · BNs1 ,p1
(1/N)

· · · · · · · · ·

B1−p1,p1(N/N) · · · BNs1 ,p1
(N/N)


N×

(
Ns1+p1

)

for the positive integer p1. We decompose m̂p1(j/N) into three terms m̃p1 (j/N), ξ̃p1
(j/N)
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and ε̃p1 (j/N) in the space H(p1−2) of spline functions:

m̂p1(x) = m̃p1(x) + ε̃p1(x) + ξ̃p1
(x),

where

m̃p (x) =
{
B1−p1,p1 (x) , . . . , BNs,p1

(x)
}(

XT1 X1

)−1
XT1 m,

ε̃p1 (x) =
{
B1−p1,p1 (x) , . . . , BNs,p1

(x)
}(

XT1 X1

)−1
XT1 e,

ξ̃p1
(x) =

{
B1−p1,p1 (x) , . . . , BNs,p1

(x)
}(

XT1 X1

)−1
XT1

κ∑
k=1

ξ·kφk,

where m = (m (1/N) , . . . ,m (N/N))
T

is the signal vector,

e =
(
σ (1/N) ε·1, . . . , σ (N/N) ε·N

)T
, ε·j = n−1∑n

i=1 εij , 1 ≤ j ≤ N , is the noise

vector and φk =
(
φk (1/N) , . . . , φk (N/N)

)T
are the eigenfunction vectors, and ξ·k =

n−1∑n
i=1 ξik, 1 ≤ k ≤ κ.

Thus, one can write the residuals Ûij,p1
= Yij − m̂p1 (j/N) as

Ûij,p1
= m (j/N)− m̃p1 (j/N)− ξ̃p1 (j/N)− ε̃p1 (j/N) + Uij.

Let ˆ̄U·jj′,p1
= n−1∑n

i=1 Ûij,p1
Ûij,′p1

. We calculate the difference of Ĝp1,p2(x, x′) −

G̃p2(x, x′) by checking the difference ˆ̄U·jj′,p1
− Ū·jj′ first. For any 1 ≤ j 6= j′ ≤ N , one

88



has

ˆ̄U·jj′,p1
− Ū·jj′ = n−1

n∑
i=1

[
Uij(m̃p1 −m)

(
j′/N

)
+ Uij′(m̃p1 −m) (j/N)

+ Uijξ̃p1

(
j′/N

)
+ U

ij′ ξ̃p1 (j/N) + Uijε̃p1

(
j′/N

)
+U

ij′ ε̃p1 (j/N)
]

+
(
m̂p1 −m

)(
j′/N

)(
m̂p1 −m

)
(j/N) .

Next, we calculate the super norm of each part of Ĝp1,p2(x, x′)−G̃p2(x, x′) respectively. One

can write ε̃p1

(
j′/N

)
=
∑Ns1
J=1−p1

BJ,p1

(
j′/N

)
wJ , where

{
wJ
}Ns1
J=1−p1

= N−1V̂−1
p1

XT1 e

and

XT


n∑
i=1

Uijε̃p1

(
j′/N

)
1≤j 6=j′≤N

=


n∑
i=1

∑
1≤j 6=j′≤N

Uijε̃p1

(
j′/N

)
B
JJ ′,p2

(
j/N, j′/N

)
Ns2

J,J
′
=1−p2

.
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Thus,

∥∥∥∥∥∥∥XT
n−1

n∑
i=1

Uijε̃p1

(
j′/N

)
1≤j 6=j′≤N

∥∥∥∥∥∥∥
2

2

=

Ns2∑
J,J ′=1−p2n−1

n∑
i=1

∑
1≤j 6=j′≤N

Uij

 Ns1∑
J ′′=1−p1

B
J ′′,p1

(
j′/N

)
w
J ′′

B
JJ ′,p2

(
j/N, j′/N

)
2

≤
Ns2∑

J,J ′=1−p2

Ns1∑
J ′′=1−p1

n−1
n∑
i=1

∑
1≤j 6=j′≤N

UijBJ ′′,p1

(
j′/N

)
B
JJ ′,p2

(
j/N, j′/N

)
2

×
Ns1∑

J ′′=1−p1

w2
J ′′ = I × II,

where

I =

Ns2∑
J,J ′=1−p2

Ns1∑
J ′′=1−p1

n−1
n∑
i=1

∑
1≤j 6=j′≤N

UijBJJ ′,p2

(
j/N, j′/N

)
BJ ′′,p1

(
j′/N

)
2

and II =
∥∥∥N−1V̂−1

p1
XT1 e

∥∥∥2

2
.
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Let h∗ = min
{
hs1 , hs2

}
. The definition of spline function implies that

E[I] = n−1
Ns2∑

J,J ′=1−p2

Ns1∑
J ′′=1−p1


N∑

j,j′′=1

E
(
U1jU1j′′

)
BJ,p2

(j/N)BJ,p2

(
j′′/N

)

×
N∑
j′ 6=j

N∑
j′′′ 6=j′′

BJ ′,p2

(
j′/N

)
BJ ′′,p1

(
j′/N

)
BJ ′,p2

(
j′′′/N

)
BJ ′′,p1

(
j′′′/N

)
≤ C(G, σ2)n−1N4h2

s2
h2∗Ns2 max

{
Ns1 , Ns2

}
≤ C(G, σ2)n−1N4hs2h∗.

Hence,

∥∥∥∥∥∥∥N−2XT

n−1
n∑
i=1

Uijε̃p1

(
j′/N

)
1≤j 6=j′≤N

∥∥∥∥∥∥∥
2

= O

(
n−1/2h

1/2
s2

h
1/2
∗
)
.

Meanwhile, one has that

II ≤ Cp1

∥∥∥N−1XT1 e
∥∥∥2

2
h−2

s1
= Oa.s.

{
(Nnh2

s1
)−1

}
.

By Lemma 3.7.4, one has

n1/2 sup

x,x′∈[0,1]2

∥∥∥∥∥∥∥BTp2(x, x′)V̂−1
p2,2

N−2XT

n−1
n∑
i=1

Uijε̃p1

(
j′/N

)
1≤j 6=j′≤N

∥∥∥∥∥∥∥∞
= O

{
n−1/2N−1/2h−1

s1
h

1/2
s2

h
1/2
∗ h−2

s2

}
= O

{
n−1/2N−1/2h

−1/2
s1

h
−3/2
s2

}
= o (1) .
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Similarly, ξ̃p1

(
j′/N

)
=
∑Ns1
J=1−p1

BJ,p1

(
j′/N

)
sJ , where

{
sJ
}Ns1
J=1−p1

= N−1V̂−1
p1

XT1

κ∑
k=1

ξ·kφk.

Assumption (B3) ensures that

∥∥∥∥∥∥∥XT
n−1

n∑
i=1

Uijξ̃p1

(
j′/N

)
1≤j 6=j′≤N

∥∥∥∥∥∥∥
2

2

≤
Ns2∑

J,J ′=1−p2

Ns1∑
J ′′=1−p1

n−1
n∑
i=1

∑
1≤j 6=j′≤N

UijBJ ′′,p1

(
j′/N

)
BJJ ′,p2

(
j/N, j′/N

)
2

×
Ns1∑

J ′′=1−p1

s2
J ′′ = I × III,

where III =
∥∥∥N−1V̂−1

p1
XT1

∑κ
k=1 ξ·kφk

∥∥∥2

2
. Note that

N−1XT1

κ∑
k=1

ξ·kφk =


κ∑
k=1

ξ·kN
−1

N∑
j=1

BJ,p1
(j/N)φk (j/N)


Ns1

J=1−p1

and

E

 κ∑
k=1

ξ·kN
−1

N∑
j=1

BJ,p1
(j/N)φk (j/N)

2

= O
(
n−1h2

s1

)
,

hence

III ≤ Cp1

∥∥∥∥∥∥N−1XT1

κ∑
k=1

ξ·kφk

∥∥∥∥∥∥
2

2

h−2
s1

= Op

{
(nhs1)−1

}

92



and

n1/2 sup

x,x′∈[0,1]2

∥∥∥∥∥∥∥BTp2(x, x′)V̂−1
p2,2

N−2XT

n−1
n∑
i=1

Uijξ̃p1

(
j′/N

)
1≤j 6=j′≤N

∥∥∥∥∥∥∥∞
= O

{
n−1/2h

−1/2
s1

h
1/2
s2

h
1/2
∗ h−2

s2

}
= O(n−1/2h

−3/2
s2

) = o (1) .

Next one obtains that

E

n−1N−2
n∑
i=1

∑
1≤j 6=j′≤N

UijBJ,p2
(j/N)B

J
′
,p2

(
j′/N

)(
m− m̃p1

)(
j′N

)
2

= n−1N−4
N∑

j,j′′=1

E
(
U1jU1j′′

)
BJ,p2

(j/N)BJ,p2

(
j′′/N

)

×
N∑
j′ 6=j

N∑
j′′′ 6=j′′

B
J ′,p2

(
j′/N

)
B
J ′,p1

(
j′′′/N

)(
m− m̃p1

)(
j′/N

)(
m− m̃p1

)(
j′′′/N

)

≤ C(G, σ2)h
2p1
s1

n−1N−4
(
Nhs2

)4
= C(G, σ2)h

2p1
s1

n−1h4
s2
.

Therefore,

n1/2 sup

x,x′∈[0,1]2

∥∥∥∥BTp2(x, x′)V̂−1
p2,2

N−2XT

n−1
n∑
i=1

Uij

(
m
(
j′/N

)
− m̃p1

(
j′/N

))
j 6=j′

∥∥∥∥∥∥∥∞
= O(h−2

s2
h
p1
s1
hs2) = O(h−1

s2
h
p1
s1

) = o (1) .

Finally, we derive the upper bound of
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sup
x,x′∈[0,1]2

∥∥∥∥BTp2(x, x′)V̂−1
p2,2

N−2XT
(
m− m̂p1

)⊗2
∥∥∥∥∞, where

(
m− m̂p1

)⊗2
=
{(
m− m̂p1

)
(j/N)

(
m− m̂p1

)(
j′/N

)}
1≤j 6=j′≤N

.

In order to apply Lemma 3.7.4, one needs to find the upper bound of

∥∥∥∥(m− m̂p1

)⊗2
∥∥∥∥∞.

Using the similar proof as Lemma A.8 in Wang and Yang (2009) and Assumption (B3), one

has supx∈[0,1]

∣∣∣ε̃p1 (x)
∣∣∣+ supx∈[0,1]

∣∣∣ξ̃p1 (x)
∣∣∣ = o

(
n−1/2

)
. Therefore,

sup(
x,x′

)
∈[0,1]2

(
m (x)− m̂p1 (x)

)(
m
(
x′
)
− m̂p1

(
x′
))

≤
[
supx∈[0,1]

(
m (x)− m̂p1 (x)

)]2
≤

(
supx∈[0,1]

∣∣∣m (x)− m̃p1 (x)
∣∣∣+ supx∈[0,1]

∣∣∣ε̃p1 (x)
∣∣∣+ supx∈[0,1]

∣∣∣ξ̃p1 (x)
∣∣∣)2

≤
[
O
(
h
p1
s1

+ n−1/2
)]2

= O

(
h

2p1
s1

+ n−1 + h
p1
s1
n−1/2

)
= o

(
n−1/2

)
.

Hence

∥∥∥∥(m− m̂p1

)⊗2
∥∥∥∥∞ = o

(
n−1/2

)
. Hence, the proposition has been proved.
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Table 3.1: Simulation results: uniform coverage rates from 500 replications.

σ n 1− α Coverage proportion Coverage proportion

(p1 = p2 = 4) (p1 = p2 = 2)

50
0.950

0.990

0.720

0.824

0.710

0.828

100
0.950

0.990

0.858

0.946

0.834

0.930

0.5 200
0.950

0.990

0.912

0.962

0.898

0.956

300
0.950

0.990

0.890

0.960

0.884

0.958

500
0.950

0.990

0.908

0.976

0.894

0.964

50
0.950

0.990

0.626

0.720

0.690

0.796

100
0.950

0.990

0.752

0.874

0.796

0.904

1.0 200
0.950

0.990

0.798

0.912

0.852

0.944

300
0.950

0.990

0.822

0.922

0.828

0.936

500
0.950

0.990

0.864

0.946

0.858

0.946
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Chapter 4

Spline Confidence Bands for

Functional Derivatives

4.1 Introduction

In exploratory FDA, it is often of interest to estimate the mean functions; see for example,

Ramsay and Silverman (2005), Yao, Müller and Wang (2005a,b), Ferraty and Vieu (2006),

Li and Hsing (2010) and Cao, Yang and Todem (2012). In some settings, however, esti-

mation and inference of derivatives of the mean functions in FDA are of equal importance.

For example, in economics, consistent and direct estimation of derivatives are essential for

estimating elasticities, returns to scale, substitution rates and average derivatives. Often,

these index (derivative) functions are as interesting as the mean functions themselves. An-

other example is in the fields of engineering and biomedical sciences, where the estimation

of velocity and acceleration are of great importance in addition to obtaining a smooth curve

of the measurements.

The problem of estimation and inference of derivatives for functional data is very chal-
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lenging; see Ramsay and Silverman (2005), Liu and Müller (2009), and Hall, Müller and

Yao (2009) for some discussions. Existing methodologies for derivatives of the regression

function in FDA often rely on a pointwise analysis. For example, in Liu and Müller (2009)

the theoretical focus was primarily on obtaining consistency and asymptotic normality of

the proposed estimators, thereby providing the necessary ingredients to construct pointwise

confidence intervals. This approach is important but its usefulness in conducting global in-

ferences is limited. To our knowledge, we are not aware of any methodology that provides

simultaneous confidence bands for functional derivatives in FDA. In this chapter, we develop

such methodology with the primary aim to better understand the variability and shape of

the mean curve.

Nonparametric simultaneous confidence bands are powerful tools for global inference of

functions. Some work has been conducted to study the simultaneous confidence band of the

mean curves for FDA; see Degras (2011), Ma, Yang and Carroll (2012) and Cao, Yang and

Todem (2012). The research work on confidence bands for functional derivatives is actually

sparse. This is partially due to the technical difficulty to formulate such bands for FDA and

establish the associated theoretical properties.

Some smoothing tools are necessary to construct the confidence bands. Popular smooth-

ing methods include kernels (Gasser and Müller, 1984; Härdle, 1989; Xia, 1998; Claeskens

and Van Keilegom, 2003), local polynomials (Fan and Gijbels, 1996), splines (Wahba, 1990;

Stone, 1994) and series expansion methods (Morris and Carroll, 2006). In this chapter, we

use B-splines, which can be readily implemented due to their explicit expression, to con-

struct the bands. B-spline approximation has also been employed to estimate the functional

mixed-effect models in Shi, Weiss and Taylor (1996) and Rice and Wu (2001), and to study

functional data via principle components in Yao and Lee (2006) and Zhou, Huang and Car-
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roll (2008). Other works include Zhou, Shen and Wolfe (1998) and Wang and Yang (2009a)

who have proposed B-spline confidence bands for regression functions.

The proposed confidence bands are asymptotically the same as if all the random tra-

jectories are correctly recorded over the entire interval. As discussed in Section 4.3, the

estimators are semiparametrically efficient thereby providing partial theoretical justification

for treating functional data as perfectly recorded random curves over the entire data range,

as in Cao, Yang and Todem (2012).

The rest of the chapter is organized as follows. In Section 4.2, we introduce the model

and the spline estimators for the mean curves and their derivatives. Section 4.3 presents

the simultaneous confidence bands for the derivatives of the mean curves. Specifically, in

Section 4.3.1, we show that the bands have asymptotically correct coverage probabilities;

and in Section 4.3.2, we discuss how to estimate the unknown components involved in the

band construction and other issues of the implementation. Section 4.4 reports findings from

a simulation study and a real data set. Proofs of technical results are relegated to the

Appendix.

4.2 Models and spline estimators

4.2.1 Models

We consider a collection of trajectories
{
Xi(t)

}n
i=1 which are i.i.d. realizations of a smooth

random function X(t), defined on a continuous interval T . Assume that {X(t), t ∈ T } is

a L2(T ) process, i.e. E
∫
T X

2(t)dt < +∞, and define the mean and covariance func-

tions as m(t) = E{X(t)} and G (t, s) = cov {X(t), X(s)}, t, s ∈ T . The covariance func-
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tion is a symmetric nonnegative-definite function with a spectral decomposition, G (t, s) =∑∞
k=1 λkφk(t)φk (s), where λ1 ≥ λ2 ≥ · · · ≥ 0, are the eigenvalues satisfying

∑∞
k=1 λk <

∞, and
{
φk(t)

}∞
k=1 are the corresponding eigenfunctions that form an orthonormal ba-

sis. By the standard Karhunen-Loève representation (Hall and Hosseini-Nasab, 2006),

Xi(t) = m(t) +
∑∞
k=1 ξikφk(t), where the random coefficients ξik are uncorrelated with

mean 0 and variance λk. In what follows, we assume that λk = 0, for k > κ, where κ is a

positive integer or ∞.

We consider a typical functional data setting where Xi (·) is recorded on a regular grid

in T , and assumed to be contaminated with measurement errors. Without loss of generality,

we take T = [0, 1]. Then the observed data are Yij = Xi

(
Tij

)
+σ

(
Tij

)
εij , for 1 ≤ i ≤ n,

1 ≤ j ≤ N , where Tij = j/N , εij are independent random errors with E
(
εij

)
= 0 and

E(ε2ij) = 1, and σ(·) is the standard deviation of the measurement errors. By the Karhunen-

Loève representation, the observed data can be written as

Yij = m (j/N) +
∑κ

k=1
ξikφk (j/N) + σ (j/N) εij, (4.1)

where m(·), σ(·) and {φk(·)}κk=1 are smooth but unknown functions of t. In addition,

{φk(·)}κk=1 are further subject to constraints
∫ 1
0 φ2

k (t) dt = 1, and
∫ 1
0 φk (t)φk′ (t) dt = 0,

for k′ 6= k.

4.2.2 Spline estimators

We first introduce some notation of the B-spline space. Divide the interval T = [0, 1] into

(Nm + 1) subintervals IJ =
[
ωJ , ωJ+1

)
, J = 0, ..., Nm − 1, INm =

[
ωNm, 1

]
, where

$m :=
{
ωJ
}Nm
J=1 is a sequence of equally-spaced points, called interior knots. Let H(p−2)
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be the polynomial spline space of order p on [0, 1]. The J-th B-spline of order p is denoted

by BJ,p. We augment the boundary and the number of interior knots as ω1−p = ... =

ω−1 = ω0 = 0 < ω1 < ... < ωNm < 1 = ωNm+1 = ... = ωNm+p, in which ωJ = Jhm,

J = 0, 1, ..., Nm + 1 and hm = 1/ (Nm + 1) is the distance between neighboring knots.

Following Cao, Yang and Todem (2012), we estimate the mean function m(·) in (4.1) by

m̂(·) = arg min

g(·)∈H(p−2)

∑n

i=1

∑N

j=1

{
Yij − g (j/N)

}2
=
∑Nm

J=1−p b̂J,pBJ,p(·),

where the coefficients

b̂p =
{
b̂1−p,p, ..., b̂Nm,p

}T
= arg min

RNm+p

n∑
i=1

N∑
j=1

Yij −
Nm∑

J=1−p
bJ,pBJ,p (j/N)


2

.

Let Y =
(
Ȳ·1, . . . , Ȳ·N

)T and Ȳ·j = n−1∑n
i=1 Yij , 1 ≤ j ≤ N . Applying elementary

algebra, one obtains

m̂ (t) = Bp(t)
(
BTB

)−1
BTY (4.2)

in which Bp(t) =
(
B1−p,p (t) , . . . , BNm,p (t)

)
and B =

(
BTp (1/N) , . . . ,BTp (N/N)

)T
is

the design matrix.

We denote by m(ν) (t) the ν-th order derivative of m (t) with respect to t. Since m̂ (t) is

an estimator of m (t), it is natural to consider m̂(ν) (t) as the estimator of m(ν) (t), for any

ν = 1, ..., p− 2, i.e.

m̂(ν) (t) = B
(ν)
p (t)

(
BTB

)−1
BTY, (4.3)

where B
(ν)
p (t) =

(
B

(ν)
1−p,p(t), . . . , B

(ν)
Nm,p

(t)

)
. According to B-spline property in de Boor
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(2001), for p > 2 and 2− p ≤ J ≤ Nm − 1,

d

dt
BJ,p (t) = (p− 1)

(
BJ,p−1 (t)

ωJ+p−1 − ωJ
−

BJ+1,p−1 (t)

ωJ+p − ωJ+1

)
.

Therefore, B
(ν)
p (t) = Bp−ν (t) DT

(ν)
, in which D(ν) = D1 · · ·Dν−1Dν , with matrix

Dl = (p− l)



−1
ω1−ω1−p+l

0 0 · · · 0 0

1
ω1−ω1−p+l

−1
ω2−ω2−p+l

0 · · · 0 0

0 1
ω2−ω2−p+l

−1
ω3−ω3−p+l

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1
ωNm+p−l−ωNm



for 1 ≤ l ≤ ν ≤ p− 2, which is the same as equation (6) in Zhou and Wolfe (2000).

4.2.3 Convergence rate

Define the following “infeasible estimator” of function m(ν)

m̄(ν)(t) = X̄(ν)(t) = n−1
∑n

i=1
X

(ν)
i (t), t ∈ [0, 1] . (4.4)

The term “infeasible”, borrowed from Cao, Yang and Todem (2012), refers to the fact that

m̄(ν)(·) would be a natural estimator of m(ν)(·) if all random curves X
(ν)
i (·) were observed.

In the following, we want to show that the spline estimator m̂(ν)(·) in (4.3) is asymptotically
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equivalent to m̄(ν)(·).

We break the error m̂(ν)(·) − m(ν)(·) into three terms. Let ε̄·j = n−1∑n
i=1 εij ,

1 ≤ j ≤ N . Denote the signal vector, the noise vector and the eigenfunction vectors by

m=
(
m
(

1
N

)
, . . . ,m

(
N
N

))T
, e=

(
σ
(

1
N

)
ε̄·1, . . . , σ

(
N
N

)
ε̄·N

)T
and

φk =
(
φk

(
1
N

)
, . . . , φk

(
N
N

))T
. Projecting the relationship in model (4.2) onto the lin-

ear subspace of RNm+p spanned by
{
BJ,p (j/N)

}
1≤j≤N,1−p≤J≤Nm

, we obtain the

following crucial decomposition:

m̂(ν)(t) = m̃(ν)(t) + ẽ(ν)(t) + ξ̃
(ν)

(t), (4.5)

where m̃(ν) (t) = Γ(ν)(t)m, ẽ(ν) (t) = Γ(ν)(t)e and ξ̃
(ν)

(t) =
∑κ
k=1 ξ̄·kΓ(ν)(t)φk with

Γ(ν)(t) = B
(ν)
p (t)

(
BTB

)−1
BT and ξ̄·k = n−1∑n

i=1 ξik, 1 ≤ k ≤ κ.

The following proposition provides asymptotic properties of the three terms.

Proposition 4.2.1. Under Assumptions (C1)-(C6) in Appendix, one has

supt∈[0,1]

∣∣∣m̃(ν)(t)−m(ν)(t)
∣∣∣ = o

(
n−1/2

)
, (4.6)

supt∈[0,1]

∣∣∣∣ξ̃(ν)
(t)− (m̄(ν)(t)−m(ν) (t))

∣∣∣∣ = oP

(
n−1/2

)
, (4.7)

supt∈[0,1]

∣∣∣ẽ(ν)(t)
∣∣∣ = oP

(
n−1/2

)
. (4.8)

Appendix A.2 contains proofs for the above proposition, which together with (4.5), leads

to the following semiparametric efficiency result.

Theorem 4.2.1. Under Assumptions (C1)-(C6) in Appendix, the B-spline estimator m̂(ν)
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is asymptotically equivalent to m̄(ν) with the
√
n approximation power, i.e.

supt∈[0,1]

∣∣∣m̂(ν)(t)− m̄(ν)(t)
∣∣∣ = oP

(
n−1/2

)
.

Remark 4.2.1. Since the “infeasible estimator” m̄(ν)(t) is the sample average of i.i.d. tra-

jectories
{
Xi(t)

}n
i=1, an application of the central limit theorem gives

supt∈[0,1]

∣∣∣m̄(ν)(t)−m(ν)(t)
∣∣∣ = OP

(
n−1/2

)
. Thus combining with the results in Theo-

rem 4.2.1, one has

supt∈[0,1]

∣∣∣m̂(ν)(t)−m(ν)(t)
∣∣∣ = OP

(
n−1/2

)
.

4.3 Confidence bands

In this section, we develop the simultaneous confidence bands for the derivative function

m(ν)(·).

4.3.1 Asymptotic confidence bands

Let Σ(·, ·) be a positive definite function, and defined as Σ(t, s) =
∑κ
k=1λkφ

(ν)
k

(t)φ
(ν)
k

(s),

t, s ∈ [0, 1]. Denote by ζ (t), t ∈ [0, 1] a standardized Gaussian process such that Eζ (t) ≡ 0,

Eζ2 (t) ≡ 1 with covariance function Eζ (t) ζ (s) = Σ (t, s) {Σ (t, t) Σ (s, s)}−1/2, t, s ∈ [0, 1].

Denote by q1−α the 100 (1− α)th percentile of the absolute maxima distribution of ζ (t),

t ∈ [0, 1], i.e. P
{

supt∈[0,1] |ζ (t)| ≤ q1−α
}

= 1− α, ∀α ∈ (0, 1) .
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Theorem 4.3.1. Under Assumptions (C1)-(C6) in Appendix, ∀α ∈ (0, 1), as n→∞,

P
{

supt∈[0,1] n
1/2

∣∣∣m̄(ν)(t)−m(ν)(t)
∣∣∣Σ (t, t)−1/2 ≤ q1−α

}
→ 1− α.

Applying Theorems 4.2.1 and 4.3.1 gives asymptotic confidence bands for m(ν)(t), t ∈

[0, 1].

Corollary 4.3.2. Under Assumptions (C1)-(C6) in Appendix, ∀α ∈ (0, 1), as n → ∞, an

asymptotic 100 × (1− α) % exact confidence band for m(ν)(t) is

P
{
m(ν)(t) ∈ m̂(ν)(t)± n−1/2q1−αΣ (t, t)1/2 , t ∈ [0, 1]

}
→ 1− α.

4.3.2 Implementation

When constructing the confidence bands, one needs to estimate the unknown function Σ(t, s).

Note that Σ(t, s) = G(t, s), when ν = 0. Following Liu and Müller (2009), we estimate φ
(ν)
k

through the derivatives of G(t, s). According to Cao, Wang, Li and Yang (2012), G (t, s) is

estimated by

Ĝ (t, s) =
∑NG

J,J ′=1−p b̂JJ ′BJ,p (t)B
J ′,p (s) (4.9)

where R̂·jj′ = n−1∑n
i=1

{
Yij − m̂ (j/N)

}{
Y
ij′ − m̂

(
j′/N

)}
, 1 ≤ j 6= j′ ≤ N , NG is

the number of interior knots for B-spline, and the coefficients

{
b̂JJ ′

}NG
J,J ′=1−p

= arg min

RNG+p⊗RNG+p

N∑
j 6=j′

R̂·jj′ −
∑

1−p≤J,J ′≤NG

b
JJ ′BJ,p (j/N)B

J ′,p
(
j′/N

)
2
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with “⊗” being the tensor product of two spaces. They showed that Ĝ converges to G as n

goes to ∞. In this section, we further show that Ĝ and G are asymptomatically equivalent

up to the ν-th partial derivative. We define the ν-th derivative with respect to s for G(t, s)

and Ĝ(t, s) as

G(0,ν)(t, s) =
∂ν

∂sν
G(t, s), Ĝ(0,ν)(t, s) =

∂ν

∂sν
Ĝ(t, s) =

∑
J,J ′

b̂JJ ′BJ,p (t)B
(ν)

J ′,p (s) . (4.10)

Theorem 4.3.3. Under Assumptions (C1)-(C6), one has

sup

(t,s)∈[0,1]2

∣∣∣Ĝ(0,ν)(t, s)−G(0,ν)(t, s)
∣∣∣ = oP (1) , 1 ≤ ν ≤ p− 2.

The proof of Theorem 4.3.3 is given in Appendix A.3.

According to Liu and Müller (2009), we estimate the ν-th derivative of eigenfunctions

φ̂
(ν)
k

using the following eigenequations,

dν

dsν

∫ 1

0
Ĝ(t, s)φ̂k (t) dt =

∫ 1

0

∂ν

∂sν
Ĝ(t, s)φ̂k (t) dt = λ̂kφ̂

(ν)
k

(s) , (4.11)

where φ̂k are subject to
∫ 1
0 φ̂

2
k (t) dt = 1 and

∫ 1
0 φ̂k (t) φ̂k′ (t) dt = 0 for k′ < k. If N is

sufficiently large, the left hand side of (4.11) can be approximated by

1
N
∑N
j=1 Ĝ

(0,ν)(
j
N ,

j′
N )φ̂k

(
j
N

)
. Then we estimate Σ(t, s) by

Σ̂(t, s) =
∑κ
k=1 λ̂kφ̂

(ν)
k

(t)φ̂
(ν)
k

(s).

The following theorem shows that Σ̂(·, ·) and Σ(·, ·) are asymptomatically equivalent.

105



Theorem 4.3.4. Under Assumptions (C1)-(C6), one has

sup

(s,t)∈[0,1]2

∣∣∣Σ̂(t, s)− Σ(t, s)
∣∣∣ = oP (1) .

The proof of Theorem 4.3.4 is given in Appendix A.4.

In practice, we choose the first L positive eigenvalues λ̂1 ≥. . .≥ λ̂L > 0 by eigenvalue

decomposition of Ĝ(t, s). Then we apply a standard criterion in Müller (2009), to choose the

number of eigenfunctions, i.e. κ = arg min1≤l≤L
{∑l

k=1 λ̂k/
∑L
k=1 λ̂k > 0.95

}
. Müller

(2009) suggests the “pseudo-AIC” and this simple method of counting the percentage of

variation explained can be used to choose the number of principal components. The simple

method performed well in our simulations and is used for our numerical studies.

To construct the confidence bands, we use cubic splines to estimate the mean and co-

variance functions and their first order derivatives. Generalized cross-validation is used to

choose the number of knots Nm (from 2 to 20), to smooth out the mean function. According

to Assumption (C3), the number of knots for smoothing the covariance function is taken to

be NG = [n1/(2p)log(n)], where [a] denotes the integer part of a.

Finally, in order to estimate q1−α, we generate i.i.d standard normal variables Zk,b,

1 ≤ k ≤ κ, b = 1, . . . , 5000. Let ζ̂b (t) = Σ̂ (t, t)−1/2∑κ
k=1

√
λ̂kZk,bφ̂

(ν)
k

(t), t ∈ [0, 1],

q1−α can be estimated by 100(1 − α)-th percentile of {supt∈[0,1] |ζ̂b(t)|}
5000
b=1 . Therefore,

in application we recommend the following band

m̂(ν)(t)± n−1/2Σ̂ (t, t)1/2 q̂1−α, t ∈ [0, 1]. (4.12)
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4.4 Numerical studies

4.4.1 Simulated examples

To illustrate the finite-sample performance of the confidence band in (4.12), we generate

data from the following:

Yij = m (j/N) +
∑κ

k=1
ξikφk (j/N) + εij, εij

i.i.d.∼ N(0, 0.12),

for 1 ≤ i ≤ n, 1 ≤ j ≤ N . We consider two scenarios.

Model I: m(t) = 5t+4 sin(2π(t−0.5)), φ1(t) = −
√

2 cos(2π(t−0.5)), φ2(t) =
√

2 sin(4π(t−

0.5)), ξik ∼ N(0, λk), λ1 = 2, λ2 = 1, κ = 2;

Model II: m(t) = 4t + 1√
2π0.1

exp

(
−(t−0.5)2

2(0.1)2

)
, φk(t) =

√
2 sin (πkt), ξik ∼ N(0, λk),

λk = 2−(k−1), k = 1, 2, . . . , κ = 8.

The second case has similar design as in Simulation C of Liu and Müller (2009). We use

the proposed method in (4.12) and its “oracle” version with true Σ (t, t) to construct the

confidence bands for m(1)(·) respectively in both studies. We consider two confidence levels:

1 − α = 0.95, 0.99. The number of trajectories n is taken to be 30, 50, 100, 200, and for

each n, we try different numbers of observations on the trajectory. Each simulation consists

of 1000 Monte Carlo samples.

We evaluate the coverage of the bands over 200 equally spaced points on [0, 1] and test

whether the true functions are covered by the confidence bands at these points. Tables

4.1 and 4.2 show the empirical coverage probabilities out of 1000 replications for Models

I and II, respectively. From Tables 4.1 and 4.2, we observe that coverage probabilities for
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Table 4.1: Coverage rates of the spline confidence bands in Model I.

95% 99%

n N Est. Oracle Est. Oracle

30 30 0.756 0.831 0.901 0.936

60 0.833 0.900 0.926 0.969

50 50 0.824 0.863 0.932 0.933

100 0.856 0.904 0.947 0.979

100 100 0.851 0.897 0.943 0.971

200 0.856 0.907 0.949 0.971

200 200 0.866 0.910 0.950 0.972

400 0.869 0.944 0.959 0.987

both estimated bands and “oracle” bands approach the nominal levels, which show positive

confirmation of Theorem 4.3.1. In most of the scenarios the “oracle” confidence bands

outperform the estimated bands, and the “oracle” bands arrive at about the nominal coverage

for large n and N . The convergence rates of estimated bands are slower than those “oracle”

bands, but the convergence trend to nominal level is clearly.

Figure 4.1 to Figure 4.8 show the estimated functions and their 99% confidence bands

for the first order derivative curve m(1)(·) for Models I and II, respectively. As expected

when n and N increase, the confidence band is narrower and the cubic spline estimator is

closer to the true derivative curve. For Model I, the boundary effects in all four panels are

almost unnoticeable. For Model II, there seems to be some boundary effects for small n and

N , which are attenuated as n and N increase.
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Figure 4.1: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence

bands (upper and lower dashed lines) of m(1)(t) (solid line) in Model I. n = 30, N = 30.
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Figure 4.2: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence

bands (upper and lower dashed lines) of m(1)(t) (solid line) in Model I. n = 30, N = 60.
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Figure 4.3: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence

bands (upper and lower dashed lines) of m(1)(t) (solid line) in Model I. n = 50, N = 50.
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Figure 4.4: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence

bands (upper and lower dashed lines) of m(1)(t) (solid line) in Model I. n = 50, N = 100.

112



0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
0

2
0

4
0

m
(1

)

n=30, N=30

Figure 4.5: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence

bands (upper and lower dashed lines) of m(1)(t) (solid line) in Model II. n = 30, N = 30.
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Figure 4.6: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence

bands (upper and lower dashed lines) of m(1)(t) (solid line) in Model II. n = 30, N = 60.
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Figure 4.7: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence

bands (upper and lower dashed lines) of m(1)(t) (solid line) in Model II. n = 50, N = 50.
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Figure 4.8: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence

bands (upper and lower dashed lines) of m(1)(t) (solid line) in Model II. n = 50, N = 100.

116



Table 4.2: Coverage rates of the spline confidence bands in Model II.

95% 99%

n N Est. Oracle Est. Oracle

30 30 0.650 0.730 0.830 0.854

60 0.695 0.839 0.860 0.941

50 50 0.817 0.911 0.930 0.982

100 0.830 0.929 0.933 0.986

100 100 0.858 0.940 0.948 0.986

200 0.876 0.939 0.960 0.986

200 200 0.874 0.939 0.949 0.980

400 0.889 0.946 0.963 0.991

4.4.2 Tecator data

Here we apply the proposed method to the Tecator dataset, which can be introduced in

chapter 2.6. Figure 4.9 shows the estimated mean absorbance measurements m(·) and its

estimated first order derivative m(1)(·) in the lower panel. Their 99% confidence bands

(dashed lines) are also included in the figure, both bands have similar band width around

0.1 to 0.2 even though the bands for m(1)(·) looks much narrower in the figure.

As shown in Figure 4.9, in the region of 850 − 950 nm the derivative estimate of mean

absorbance is increasing gradually above 0, which corroborates with the convex behavior

of the corresponding estimated mean function. For wavelength between 950 and 970 nm,

the big bump in the derivative graph is consistent with the changing pattern of the mean

estimate before it reaches the turning point at around 970 nm. When wavelength is larger

than 970 nm, its estimated derivative turns negative and is relatively flat after 1000 nm, and
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it is in accordance with the quick dip of the mean absorbance and a linear decreasing trend

for wavelength larger than 1000 nm.
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Figure 4.9: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of the mean function and its first order derivative.
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For any r ∈ (0, 1], we denote Cq,r [0, 1] as the space of Hölder continuous functions on

[0, 1], Cq,r [0, 1] =
{
φ : ‖φ‖q,r < +∞

}
. The technical assumptions we need are as follows:

(C1) The regression function m ∈ Cp−1,1 [0, 1];

(C2) The standard deviation function σ (t) ∈ C0,δ [0, 1] for some δ ∈ (0, 1];

(C3) The number of observations for each trajectory N � nθ for some θ > 1+2ν
2(p−ν)

; the

number of interior knots satisfies n

1
2(p−ν) � Nm � (N/log(n))

1
1+2ν , n

1
2p �

NG � n
1

2+2ν ;

(C4) There exists a constant C > 0 such that Σ (t, t) > C, for any t ∈ [0, 1];

(C5) For k ∈ {1, . . . , κ}, ι = 0, 1, . . . , p − 2, φ
(ι)
k

(t) ∈ C0,δ [0, 1], for some δ ∈ (0, 1],∑κ
k=1

√
λk

∥∥∥∥φ(ι)
k

∥∥∥∥∞ < ∞; and for a sequence {κn}∞n=1 of increasing integers with

limn→∞ κn = κ, N−δm
∑κn
k=1

√
λk

∥∥∥∥φ(ι)
k

∥∥∥∥
0,δ

= o (1);

(C6) There exist δ1 > 0, δ2 > 0 such that E
∣∣ξik∣∣4+δ1+E

∣∣∣εij∣∣∣4+δ2 < +∞, for 1 ≤ i <∞,

1 ≤ k ≤ κ, 1 ≤ j < ∞. The number κ of nonzero eigenvalues is finite or κis infinite

while the variables
{
ξik
}

1≤i<∞,1≤k<∞ are i.i.d..

Assumptions (C1)-(C6) are standard in the spline smoothing literature; see Huang (2003)

and Cao, Yang and Todem (2012), for instance. In particular, (C1) and (C2) guarantee the

convergence rates of m̂(t) and its derivatives. Assumption (C3) states the requirement of the

number of observations within each curve to the sample size, and the order of the number

of knots of splines. Assumptions (C4) and (C5) concern that the derivatives of principal

components have collectively bounded smoothness. When ι = 0, Assumption (C5) is the
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same as (C4) in Cao, Yang and Todem (2012). Assumption (C6) is necessary when using

strong approximation result in Lemma 4.4.4.

If κ is finite and all φ
(ν)
k

(t) ∈ C0,δ [0, 1], then Assumption (C5) on φ
(ν)
k

’s holds trivially.

For κ =∞, Assumption (C5) is fulfilled as long as λk decreases to zero sufficiently fast. For

example, considering the following canonical orthonormal Fourier basis of L2 ([0, 1]):

φ1 (t) ≡ 1, φ2k+1 (t) ≡
√

2 cos (kπt)

φ2k (t) ≡
√

2 sin (kπt) , k = 1, 2, ..., t ∈ [0, 1] ,

we can take λ1 = 1 and λk = ([k/2]π)−2ν ρ2[k/2], k = 2, ..., for any ρ ∈ (0, 1), then∑∞
k=1

√
λk

∥∥∥∥φ(ν)
k

∥∥∥∥∞ = 1 +
∑∞
k=1 ρ

k (√2 +
√

2
)

= 1 + 2
√

2ρ (1− ρ)−1 < ∞. While for

any δ = 1 and {κn}∞n=1 with κn increasing, odd and κn →∞, one has

N−1
m
∑κn

k=1

√
λk

∥∥∥∥φ(ν)
k

∥∥∥∥
0,1

= N−1
m
∑(κn−1)/2

k=1
ρk
(√

2kπ +
√

2kπ
)

≤ 2
√

2πN−1
m ρ

∑∞
k=1

ρk−1k = 2
√

2πN−1
m (1− ρ)−2

= O
(
N−1
m

)
= o (1) .

In the following, define the theoretical and empirical inner product matrices of{
BJ,p(t)

}Nm
J=1−p

as

Vp =
(〈
BJ,p,BJ ′,p

〉)Nm
J,J ′=1−p

=
(
v
JJ ′,p

)Nm
J,J ′=1−p

,

V̂p =

(〈
BJ,p,BJ ′,p

〉
2,N

)Nm
J,J ′=1−p

=
(
v̂
JJ ′,p

)Nm
JJ ′=1−p

. (4.13)

We establish next that V̂p has an inverse with bounded L∞ norm.
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Lemma 4.4.1. [Cao, Yang and Todem (2012)] Under Assumption (C3), for Vp and V̂p

defined in (4.13),
∥∥∥Vp − V̂p

∥∥∥∞ = O
(
N−1

)
and

∥∥∥V̂−1
p

∥∥∥∞ = O (Nm).

Proof of Proposition 4.2.1

Following Wang and Yang (2009b), we introduce the p-th order quasi-interpolant of m cor-

responding to the knots $, denoted by Q$ (m); see equation (4.12) on page 146 of DeVore

and Lorentz (1993) for details. According to Theorem 7.7.4, DeVore and Lorentz (1993), the

following lemma holds.

Lemma 4.4.2. There exists a constant C > 0, such that for 0 ≤ ν ≤ p − 2 and m ∈

Cp,1 [0, 1], ∥∥∥(m−Q$ (m))(ν)
∥∥∥∞ ≤ C

∥∥∥m(p)
∥∥∥∞ h

p−ν
m .

Lemma 4.4.3. Under Assumptions (C2), (C3) and (C6), one has

1

N

N∑
j=1

BJ,p (j/N)σ (j/N) ε̄·j = OP

√ log(n)

nNNm

 .

Proof. We first truncate the random error εij by un = (nN)γ (2/9 < γ < 1/3) and

write εij = εij,1+εij,2+aij , where εij,1 = εijI
{∣∣∣εij∣∣∣ > un

}
, εij,2 = εijI

{∣∣∣εij∣∣∣ ≤ un

}
−

aij and aij = E
[
εijI

{∣∣∣εij∣∣∣ ≤ un

}]
. It is easy to see that

∣∣∣aij∣∣∣ =
∣∣∣−E [εijI {∣∣∣εij∣∣∣ > un

}]∣∣∣
≤ E

(∣∣∣εij∣∣∣4+δ2
)
u
−(3+δ2)
n . It is straightforward from the boundedness of spline basis that

∣∣∣∣∣∣ 1

nN

N∑
j=1

BJ,p (j/N)σ (j/N)
n∑
i=1

aij

∣∣∣∣∣∣ = O(u
−(3+δ2)
n ).
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Next we show that the tail part vanishes almost surely. Note that

∞∑
n=1

P
{∣∣∣εij∣∣∣ > un

}
≤
∞∑
n=1

E
∣∣∣εij∣∣∣4+δ2

u
4+δ2
n

≤Mδ

∞∑
n=1

u
−(4+δ2)
n <∞.

By the Borel-Cantelli Lemma, P
{
ω|∃N (ω) ,

∣∣∣εij (ω)
∣∣∣ ≤ un for n > N (ω)

}
= 1. Let vε =

max
{∣∣∣εij∣∣∣ , 1 ≤ i, j ≤ N (ω)

}
and there exists N1 (ω) > N (ω), uN1(ω) > vε. Since un =

(nN)γ is an increasing function, un > uN1(ω) > vε and n > N1 (ω).

Therefore P{ω|∃N (ω) ,
∣∣∣εij (ω)

∣∣∣ ≤ un, 1 ≤ i ≤ n, 1 ≤ j ≤ N , for min (n,N) >

N (ω)} = 1, which implies P{ω|∃N (ω) ,
∣∣∣εij,1∣∣∣ = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ N for min (n,N) >

N (ω)} = 1. Thus

∣∣∣∣∣∣ 1

nN

N∑
j=1

BJ,p (j/N)σ (j/N)
n∑
i=1

εij,1

∣∣∣∣∣∣ = Oa.s. (nN)−k , for any k > 0.

Next denote Dj = (nN)−1BJ,p (j/N)σ (j/N)
∑n
i=1 εij,2. Since

Var
(
εij,2

)
= 1− E

[
ε2ijI

{∣∣∣εij∣∣∣ > un

}]
− a2

ij = 1 +OP

{
u
−δ2
n + u

−2(1+δ2)
n

}
,

one has V 2
n = Var

(∑N
j=1Dj

)
= c (nNNm)−1 for a constant c > 0. Now Minkowski’s

inequality implies that

E
∣∣∣εij,2∣∣∣k ≤ 2k−1E

{
εkijI

{∣∣∣εij∣∣∣ ≤ un

}
+ akij

}
≤ 2k−2uk−2

n E
∣∣∣εij,2∣∣∣2 k!, k ≥ 2.

Thus E
∣∣∣Dj∣∣∣k ≤ (2n−1N−1un

)k−2
k!E(D2

j ) < ∞ with the Cramer constant c∗ = 2un
nN .
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For any δ, let δn = δ

√
log(n)
nNNm

. By the Bernstein inequality, for any large enough δ > 0,

P


∣∣∣∣∣∣
N∑
j=1

Dj

∣∣∣∣∣∣ ≥ δn

 ≤ 2 exp

{
−δ2n

4V 2
n + 2c∗δn

}
= 2 exp

 −δ2n
4c

nNNm
+ 4 unnN δn

 ≤ 2n−3.

Hence
∑∞
n=1 P

(∣∣∣ 1
nN

∑N
j=1BJ,p (j/N)σ(j/N)

∑n
i=1 εij,2

∣∣∣ ≥ δn

)
≤ 2

∑∞
n=1 n

−3 < ∞,

for such δ > 0. Thus Borel-Cantelli’s lemma implies the desired result.

Lemma 4.4.4. [Theorem 2.6.7 of Csőrgő and Révész (1981)] Suppose that ξi, 1 ≤ i ≤ n

are i.i.d. with E(ξ1) = 0, E(ξ21) = 1 and H(x) > 0 (x ≥ 0) is an increasing continuous

function such that x−2−γH(x) is increasing for some γ > 0 and x−1logH(x) is decreas-

ing with EH (|ξ1|) < ∞. Then there exist constants C1, C2, a > 0 which depend only

on the distribution of ξ1 and a sequence of Brownian motions {Wn(m)}∞n=1, such that

for any {xn}∞n=1 satisfying H−1 (n) < xn < C1 (nlog(n))1/2 and Sm =
∑m
i=1 ξi, then

P
{

max1≤m≤n |Sm −Wn (m)| > xn

}
≤ C2n {H (axn)}−1 .

Proof of Proposition 4.2.1. We first show (4.6). According to Theorem A.1 of

Huang (2003), there exists an absolute constant C > 0, such that

‖m̃−m‖∞ ≤ C inf
g∈Cp,1

‖g −m‖∞ ≤ C
∥∥∥m(p)

∥∥∥∞ h
p
m. (4.14)

Applying Lemma 4.4.2, for 0 ≤ ν ≤ p− 2,

∥∥∥{Q$ (m)−m}(ν)
∥∥∥∞ ≤ C

∥∥∥m(p)
∥∥∥∞ h

p−ν
m . (4.15)

As a consequence of (4.14) and (4.15) if ν = 0, one has ‖Q$ (m)− m̃‖∞ ≤ C
∥∥∥m(p)

∥∥∥∞ h
p
m,
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which, according to the differentiation of B-spline given in de Boor (2001), entails that

∥∥∥{Q$ (m)− m̃}(ν)
∥∥∥∞ ≤ C

∥∥∥m(p)
∥∥∥∞ h

p−ν
m , (4.16)

for 0 ≤ ν ≤ p− 2. Combining (4.15) and (4.16) proves (4.6) for ν = 1, ..., p− 2.

Next we prove (4.7). Similar to the definition of m̃(ν) (t) and ξ̃
(ν)
k

(t), in the following

we denote φ̃
(ν)
k

(t) = Γ(ν) (t)φk, for any k ≥ 1. Using the similar arguments as in the proof

of (4.6), we can show that, for any k ≥ 1,

∥∥∥∥φ(ν)
k
− φ̃(ν)

k

∥∥∥∥∞ ≤ Cφh
p−ν
m . (4.17)

Also, according to triangle inequality one has that

∥∥∥∥φ̃(ν)
k

∥∥∥∥∞ ≤ cφ

∥∥∥∥φ(ν)
k

∥∥∥∥∞ = O(1).

According to Assumption (C6), E
∣∣ξik∣∣4+δ1 < +∞, δ1 > 0, so there exists some

β ∈ (0, 1/2), such that 4 + δ1 > 2/β. Let H(x) = x4+δ1, xn = nβ , then n
H(axn)

=

a−4−δ1n1−(4+δ1)β = O
(
n−γ1

)
for some γ1 > 1. Applying Lemma 4.4.4 and Borel-

Cantelli Lemma, one finds i.i.d. variables Zik,ξ ∼ N (0, 1) such that

max
k≥1

∣∣∣ξ̄·k − Z̄·k,ξ√λk

∣∣∣ = Oa.s.

(
nβ−1

)
, (4.18)

where Z̄·k,ξ = n−1∑n
i=1 Zik,ξ , k ≥ 1.

If κ is finite, according to (4.18) note that
∣∣ξ̄·k∣∣ ≤ ∣∣∣Z̄·k,ξ∣∣∣√λk +

∣∣∣ξ̄·k − Z̄·k,ξ√λk

∣∣∣,
1 ≤ k ≤ κ, so max1≤k≤κ

∣∣ξ̄·k∣∣ = OP (n−1/2 + nβ−1). Then the definition of m̄(t) in (4.4)
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and (4.17) entail that

∥∥∥∥m̄(ν) −m(ν) − ξ̃(ν)
∥∥∥∥∞ ≤ κ max

1≤k≤κ

∣∣ξ̄·k∣∣ max
1≤k≤κ

∥∥∥∥φ(ν)
k
− φ̃(ν)

k

∥∥∥∥∞ = oP

(
n−1/2

)
.

Thus (4.8) holds according to Assumption (C3).

If κ = ∞, using similar arguments in Cao, Yang and Todem (2012), by (4.18) one can

show that
∣∣ξ̄·k∣∣λ−1/2

k
≤
∣∣∣Z̄·k,ξ∣∣∣ +

∣∣∣∣ξ̄·kλ−1/2
k

− Z̄·k,ξ

∣∣∣∣, for any k ≥ 1, so
∣∣ξ̄·k∣∣λ−1/2

k
=

OP (n−1/2 + nβ−1). Also following Assumption (C5) one has

E sup
t∈[0,1]

∣∣∣∣m̄(ν) (t)−m(ν) (t)− ξ̃(ν)
(t)

∣∣∣∣
≤

κ∑
k=1

E
∣∣ξ̄·k∣∣ sup

t∈[0,1]

∣∣∣∣φ(ν)
k

(t)− φ̃(ν)
k

(t)

∣∣∣∣ ≤ C
κ∑
k=1

E
∣∣ξ̄·k∣∣ sup

t∈[0,1]

∣∣∣∣φ(ν)
k

(t)

∣∣∣∣
≤ C


κn∑
k=1

(
E
∣∣ξ̄·k∣∣λ−1/2

k

)
λ

1/2
k

∥∥∥∥φ(ν)
k

∥∥∥∥
0,δ

hδm

+
κ∑

k=κn+1

(
E
∣∣ξ̄·k∣∣λ−1/2

k

)
λ

1/2
k

∥∥∥∥φ(ν)
k

∥∥∥∥∞


≤ Cn−1/2


κn∑
k=1

λ
1/2
k

∥∥∥∥φ(ν)
k

∥∥∥∥
0,δ

hδm +
κ∑

k=κn+1

λ
1/2
k

∥∥∥∥φ(ν)
k

∥∥∥∥∞
 = o

(
n−1/2

)
.

Hence,

∥∥∥∥m̄(ν) −m(ν) − ξ̃(ν)
∥∥∥∥∞ = oP

(
n−1/2

)
. According to Lemmas 4.4.1 and 4.4.3,

finally we have

∥∥∥ẽ(ν)
∥∥∥∞ =

∥∥∥∥B(ν)
p (t) V̂−1

p N−1BTe

∥∥∥∥∞ ≤ Ch−νm
∥∥∥V̂−1

p

∥∥∥∞ ∥∥∥N−1BTe
∥∥∥∞

= Oa.s.

(
n−1/2N−1/2h

−1/2−ν
m

√
log(n)

)
.
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Thus (4.8) holds according to Assumption (C3).

Proof of Theorem 4.3.1

We denote ζ̃k(t) =
√
λkZ̄·k,ξφ

(ν)
k

(t) , k = 1, . . . , κ and define

ζ̃ (t) = n1/2

[∑κ

k=1
λk

{
φ

(ν)
k

(t)

}2
]−1/2∑κ

k=1
ζ̃k(t) = n1/2Σ (t, t)−1/2

∑κ

k=1
ζ̃k(t).

It is clear that, for any t ∈ [0, 1], ζ̃ (t) is Gaussian with mean 0 and variance 1, and the

covariance Eζ̃ (t) ζ̃ (s) = Σ (t, t)−1/2 Σ (s, s)−1/2 Σ (t, s), for any t, s ∈ [0, 1]. That is, the

distribution of ζ̃ (t), t ∈ [0, 1] and the distribution of ζ (t), t ∈ [0, 1] in Section 3.1 are

identical. Similar to the proof of (4.7), Note that

E supt∈[0,1]

∣∣∣∣ζ̃ (t)− n1/2Σ (t, t)−1/2 ξ̃
(ν)

(t)

∣∣∣∣
= n1/2E supt∈[0,1] Σ (t, t)−1/2

∣∣∣∣∑κ

k=1
ζ̃k(t)− ξ̃(ν)

(t)

∣∣∣∣
≤ n1/2E sup

t∈[0,1]
Σ (t, t)−1/2

κ∑
k=1

(∣∣∣Z̄·k,ξ√λk − ξ̄·k
∣∣∣ ∣∣∣∣φ(ν)

k
(t)

∣∣∣∣+
∣∣ξ̄·k∣∣ ∣∣∣∣φ(ν)

k
(t)− φ̃(ν)

k
(t)

∣∣∣∣)
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If κ is finite, then E supt∈[0,1]

∣∣∣∣ζ̃ (t)− n1/2Σ (t, t)−1/2 ξ̃
(ν)

(t)

∣∣∣∣ = O
(
nβ−1/2 + h

p−ν
m

)
=

o(1). If κ =∞, by Assumption (C5) one has

n1/2E sup
t∈[0,1]

Σ (t, t)−1/2
κ∑
k=1

(∣∣∣√λkZ̄·k,ξ − ξ̄·k
∣∣∣ ∣∣∣∣φ(ν)

k
(t)

∣∣∣∣+
∣∣ξ̄·k∣∣ ∣∣∣∣φ(ν)

k
(t)− φ̃(ν)

k
(t)

∣∣∣∣)
≤ n1/2 sup

t∈[0,1]
Σ (t, t)−1/2

nβ−1
κ∑
k=1

√
λk

∣∣∣∣φ(ν)
k

(t)

∣∣∣∣+ n−1/2
κ∑
k=1

√
λk

∣∣∣∣φ(ν)
k

(t)− φ̃(ν)
k

(t)

∣∣∣∣


= o(1).

Theorem 4.3.1 follows directly.

Proof of Theorem 4.3.3

Following Cao, Wang, Li and Yang (2012), we define the tensor product spline space as

H(p−2),2[0, 1]2 ≡ H(p−2),2 = H(p−2) ⊗H(p−2)

=


NG∑

J,J ′=1−p
b
JJ ′BJ,p (t)B

J ′,p (s) , t, s ∈ [0, 1]

 .

Let Rij ≡ Yij − m(j/N), 1 ≤ i ≤ n, 1 ≤ j ≤ N and R̄·jj′ = n−1∑n
i=1RijRij′ ,

1 ≤ j, j′ ≤ N . Note that the spline estimator in (4.9) is

Ĝ(·, ·) = arg min

g(·,·)∈H(p−2),2

∑N

j 6=j′
{
R̂·jj′ − g

(
j/N, j′/N

)}2
,
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so we define the “infeasible estimator” of the covariance function

G̃ (·, ·) = argmin
g(·,·)∈H(p−2),2

∑
1≤j 6=j′≤N

{
R̄·jj′ − g

(
j/N, j′/N

)}2
. (4.19)

Denote X = B ⊗ B, Bp (t, s) = Bp(t) ⊗ Bp(s) and B
(0,ν)
p (t, s) = Bp(t) ⊗ B

(ν)
p (s). Let

vector R̄ =
{
R̄·jj′

}
1≤j,j′≤N

, then we have

G̃(0,ν)(t, s) ≡ ∂ν

∂sν
Ĝ(t, s) = B

(0,ν)
p (t, s)

(
XTX

)−1
XT R̄. (4.20)

In the following we write φ
kk′ (t, s) = φk (t)φ

k′ (s), φ
(0,ν)

kk′ (t, s) = φk (t)φ
(ν)

k′ (s). Let

φ
kk′ = φk ⊗ φk′ , where φk is a N -dimensional vector defined in Section 2.3,

φ̃
kk′ (t, s) = Bp (t, s)

(
XTX

)−1
XTφ

kk′ . Further we denote

φ̃
(0,ν)

kk′ (t, s) = B
(0,ν)
p (t, s)

(
XTX

)−1
XTφ

kk′ .

Lemma 4.4.5. Under Assumptions (C5), for any 1 ≤ ν ≤ p− 2, and κ =∞, one has

∑
k,k′≥1

√
λkλk′

∥∥∥∥φ(0,ν)

kk′ − φ̃
(0,ν)

kk′

∥∥∥∥∞ = o (1) .

Proof. When κ =∞, one has λk > 0 for any k ≥ 1. Note that

∑
k,k′≥1

√
λkλk′

∥∥∥∥φ(0,ν)

kk′

∥∥∥∥∞ ≤
∑
k≥1

√
λk
∥∥φk∥∥∞ ∑

k′≥1

√
λ
k′
∥∥∥∥φ(ν)

k′

∥∥∥∥∞ = o (1) .
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Also similarly,

∑
k,k′≥1

√
λkλk′

∥∥∥∥φ̃(0,ν)

kk′

∥∥∥∥∞ ≤
∑
k≥1

√
λk

∥∥∥φ̃k∥∥∥∞ ∑
k′≥1

√
λk′

∥∥∥∥φ̃(ν)

k′

∥∥∥∥∞
≤ C

∑
k≥1

√
λk
∥∥φk∥∥∞ ∑

k′≥1

√
λ
k′
∥∥∥∥φ(ν)

k′

∥∥∥∥∞ = o (1) .

Lemma 4.4.6. Under Assumption (C5), for any 0 ≤ ν ≤ p − 2 and k, k′ ≥ 1, one has∥∥∥∥φ(0,ν)

kk′ − φ̃
(0,ν)

kk′

∥∥∥∥∞ = O
(
h
p−ν
G

)
.

Proof. According to Theorem 12.8 of Schumaker (2007), there exists an absolute con-

stant C > 0, such that

∥∥∥φ̃kk′ − φkk′∥∥∥∞ ≤ C

∥∥∥∥φ(p)
k

φ
k′ + φkφ

(p)

k′

∥∥∥∥∞ h
p
G,

which proves (4.6) for the case υ = 0. Let Q (f) the p-th order quasi-interpolant of a function

f ; see the definition in (12.29) of Schumaker (2007), for 0 ≤ ν ≤ p− 2,

∥∥∥∥{Q(φkk′)− φkk′}(0,ν)
∥∥∥∥∞ ≤ C

∥∥∥∥φ(p)
k

φ
k′ + φkφ

(p)

k′

∥∥∥∥∞ h
p−ν
G .

For the case ν = 0, one has

∥∥∥Q(φkk′)− φ̃kk′∥∥∥∞ =
∥∥∥Q(φkk′)−Q(φ̃kk′)

∥∥∥∞ ≤ C
∥∥∥φ̃kk′ − φkk′∥∥∥∞

≤ C

∥∥∥∥φ(p)
k

φk′ + φkφ
(p)

k′

∥∥∥∥∞ h
p
G,

which, according to the differentiation of B-spline given in de Boor (2001), entails that∥∥∥∥{Q(φkk′)− φ̃kk′}(0,ν)
∥∥∥∥∞ ≤ C

∥∥∥∥φ(p)
k

φ
k′ + φkφ

(p)

k′

∥∥∥∥∞ h
p−ν
G , for 0 ≤ ν ≤ p− 2.
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Lemma 4.4.7. Under Assumptions (C1)-(C6), for any 1 ≤ ν ≤ p− 2

∥∥∥G̃(0,ν) −G(0,ν)
∥∥∥∞ = OP

(
n−1/2 + h

p−ν
G

)
+ oP

(
N−1n−1/2h−1−ν

G log1/2n
)
, (4.21)

∥∥∥Ĝ(0,ν) − G̃(0,ν)
∥∥∥∞ = OP

(
n−1h

−3/2−ν
G + n−1/2h−1−ν

G h
p
m

)
, (4.22)

where Ĝ(0,ν) and Ĝ(0,ν) are given in (4.10) and (4.20).

Proof. Let ξ̄·kk′ = n−1∑n
i=1 ξikξik′ and ε̄·jj′ = n−1∑n

i=1 εijεij′ . To show (4.21),

we decompose R̄·jj′ in (4.19) into

R̄1jj′ =
κ∑

k 6=k′
ξ̄·kk′φkk′

(
j

N
,
j′

N

)
, R̄2jj′ =

κ∑
k=1

ξ̄·kkφkk

(
j

N
,
j′

N

)
,

R̄3jj′ = σ

(
j

N

)
σ

(
j′

N

)
ε̄·jj′ ,

R̄4jj′ = n−1
n∑
i=1


κ∑
k=1

ξikφk

(
j

N

)
σ

(
j′

N

)
ε
ij′ +

κ∑
k=1

ξikφk

(
j′

N

)
σ

(
j

N

)
εij

 .

Denote R̄i =
{
R̄
ijj′

}
1≤j,j′≤N

, R̃(0,ν)
i (t, s) = B

(0,ν)
p (t, s)

(
XTX

)−1
XT R̄i, i = 1, 2, 3, 4.

Then G̃(0,ν)(t, s) = R̃(0,ν)
1 (t, s)+R̃(0,ν)

2 (t, s)+R̃(0,ν)
3 (t, s)+R̃(0,ν)

4 (t, s). Next we define

R(0,ν)
1 (t, s) =

κ∑
k 6=k′

ξ̄·kk′φ
(0,ν)

kk′ (t, s) ,

R(0,ν)
2 (t, s) = G(0,ν) (t, s) +

κ∑
k=1

{
φ

(0,ν)
kk

(t, s)
(
ξ̄·kk − λk

)}
.

Note that R̃(0,ν)
1 (t, s) =

∑κ
k 6=k′ ξ̄·kk′φ̃

(0,ν)

kk′ (t, s), then Lemma 4.4.5 and Assumption (C5)
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imply that if κ is ∞, λkλk′ > 0 and one has

sup

(t,s)∈[0,1]2
E

∣∣∣∣R̃(0,ν)
1 (t, s)−R(0,ν)

1 (t, s)

∣∣∣∣
≤

κ∑
k 6=k′

E

∣∣∣∣ξ̄·kk′ (λkλk′)−1/2
∣∣∣∣√λkλk′

∥∥∥∥φ(0,ν)

kk′ − φ̃
(0,ν)

kk′

∥∥∥∥∞ = o (1) .

Similarly, one has

sup

(t,s)∈[0,1]2
E

∣∣∣∣R̃(0,ν)
2 (t, s)−R(0,ν)

2 (t, s)

∣∣∣∣
≤

κ∑
k=1

E
∣∣∣ξ̄·kkλ−1

k
− 1
∣∣∣λk ∥∥∥∥φ(0,ν)

kk
− φ̃(0,ν)

kk

∥∥∥∥∞ = o (1) .

If κ is finite, then Lemma A.6 and Assumption (C3) imply that

∥∥∥∥R̃(0,ν)
1 −R(0,ν)

1

∥∥∥∥∞ ≤ κ2 max
1≤k 6=k′≤κ

∣∣∣ξ̄·kk′∣∣∣
∥∥∥∥φ(0,ν)

kk′ − φ̃
(0,ν)

kk′

∥∥∥∥∞ = OP

(
h
p−ν
G n−1/2

)
.

Similarly,

∥∥∥∥R̃(0,ν)
2 −R(0,ν)

2

∥∥∥∥∞ ≤ κ max
1≤k≤κ

∣∣ξ̄·kk − λk∣∣ ∥∥∥∥φ(0,ν)
kk

− φ̃(0,ν)
kk

∥∥∥∥∞ = OP

(
h
p−ν
G

)
.

Hence,

∥∥∥∥R̃(0,ν)
2 −R(0,ν)

2

∥∥∥∥∞+

∥∥∥∥R̃(0,ν)
1 −R(0,ν)

1

∥∥∥∥∞ = o (1). By Proposition 3.1 in Cao,

Wang, Li and Yang (2012), one has

∥∥∥N−2XT R̄3

∥∥∥∞ =
∥∥∥N−2XT R̄4

∥∥∥∞ = oP

(
N−1n−1/2hGlog1/2 (n)

)
.
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Hence,

∥∥∥∥R̃(0,ν)
3

∥∥∥∥∞ =

∥∥∥∥R̃(0,ν)
4

∥∥∥∥∞ = oP

(
N−1n−1/2h−1−ν

G log1/2n
)

. Therefore,

∥∥∥G̃(0,ν) −G(0,ν)
∥∥∥∞ ≤

κ∑
k 6=k′

ξ̄·kk′
∥∥∥∥φ(0,ν)

kk′

∥∥∥∥∞ +
κ∑
k=1

(
ξ̄·kk − λk

) ∥∥∥∥φ(0,ν)
kk

∥∥∥∥∞
+

∥∥∥∥R̃(0,ν)
1 −R(0,ν)

1

∥∥∥∥∞ +

∥∥∥∥R̃(0,ν)
2 −R(0,ν)

2

∥∥∥∥∞ +

∥∥∥∥R̃(0,ν)
3

∥∥∥∥∞ +

∥∥∥∥R̃(0,ν)
4

∥∥∥∥∞
= OP

(
n−1/2 + h

p−ν
G

)
+ oP

(
N−1n−1/2h−1−ν

G log1/2n
)
.

The proof of (4.22) is similar to Proposition 2.1 in Cao, Wang, Li and Yang (2012), thus

omitted.

Proof of Theorem 4.3.3: According to Lemma 4.4.7, one has

∥∥∥Ĝ(0,ν) −G(0,ν)
∥∥∥∞ ≤ ∥∥∥G̃(0,ν) −G(0,ν)

∥∥∥∞ +
∥∥∥Ĝ(0,ν) − G̃(0,ν)

∥∥∥∞ = oP (1).

Proof of Theorem 4.3.4

We first show asymptotic consistency of λ̂k and φ̂k(·), for k ≥ 1, in the following lemma.

Lemma 4.4.8. Under Assumptions (C1)-(C6), one has

∣∣∣λ̂k − λk∣∣∣ = oP (1) ,
∥∥∥φ̂k − φk∥∥∥∞ = oP (1) , k ≥ 1.

Proof. We first want to show that for any k ≥ 1,
∥∥∆φk

∥∥∞ = oP (1), in which ∆ is the

integral operator with kernel Ĝ − G. Note that
(
∆φk

)
(t) =

∫
(Ĝ − G) (s, t)φk (s) ds. By

Theorem 4.3.3, when ν = 0,
∥∥∥Ĝ−G∥∥∥∞ = oP (1). Thus, for any k ≥ 1,

∥∥∆φk
∥∥∞ = oP (1).
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Hall and Hosseini-Nasab (2006) gives the L2 expansion

φ̂k − φk =
∑
k′ 6=k

(
λk − λk′

)−1 〈
∆φk, φk′

〉
φ
k′ +O

(
‖∆‖22

)
,

where ‖∆‖2 =

[∫ ∫ {
Ĝ (s, t)−G (s, t)

}2
dsdt

]1/2
. By Bessel’s inequality, one has∥∥∥φ̂k − φk∥∥∥2

≤ C
(∥∥∆φk

∥∥2
∞ + ‖∆‖22

)
= oP (1). By (4.9) in Hall, Müller and Wang (2006)

and Theorem 4.3.3

λ̂k − λk =

∫ ∫
(Ĝ−G) (s, t)φk (s)φk (t) dsdt+O

(∥∥∆φk
∥∥2

2

)
= oP (1) .

Thus
∣∣∣λ̂k − λk∣∣∣ = oP (1) for any k ≥ 1. Next note that

λ̂kφ̂k (t)− λkφk (t) =

∫
Ĝ (s, t) φ̂k (s) ds−

∫
G (s, t)φk (s) ds

=

∫
(Ĝ−G) (s, t)

(
φ̂k (s)− φk (s)

)
ds+

∫
(Ĝ−G) (s, t)φk (s) ds

+

∫
G (s, t)

{
φ̂k (s)− φk (s)

}
ds.

By the Cauchy-Schwarz inequality, uniformly for all t ∈ [0, 1]

∫
G (s, t)

(
φ̂k (s)− φk (s)

)
ds ≤

(∫
G2 (s, t) ds

)1/2 ∥∥∥φ̂k − φk∥∥∥2
= oP (1) .

Similar arguments and Theorem 4.3.3 imply that
∫

(Ĝ − G) (s, t)
(
φ̂k (s)− φk (s)

)
ds =

oP (1) and
∫

(Ĝ−G) (s, t)φk (s) ds = oP (1). All the above together yield
∥∥∥λ̂kφ̂k − λkφk∥∥∥∞ =
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oP (1). By the triangle inequality and

λk

∥∥∥φ̂k − φk∥∥∥∞ ≤ ∥∥∥λ̂kφ̂k − λkφk∥∥∥∞ +
∣∣∣λ̂k − λk∣∣∣ ∥∥∥φ̂k∥∥∥∞ = oP (1) ,

the second result in Lemma 4.4.8 follows directly.

Proof of Theorem 4.3.4. According to Lemma 4.4.8 and Theorem 4.3.3, one has

∣∣∣∣φ̂(ν)
k

(s)− φ(ν)
k

(s)

∣∣∣∣ =

∣∣∣∣∣λ̂−1
k

∫ 1

0
Ĝ(0,ν)(t, s)φ̂k (t) dt− λ−1

k

∫ 1

0
G(0,ν)(t, s)φk (t) dt

∣∣∣∣∣
≤

∣∣∣λ̂−1
k − λ−1

k

∣∣∣× ∫ 1

0

∣∣∣Ĝ(0,ν)(t, s)φ̂k (t)
∣∣∣ dt

+λ−1
k

∫ 1

0

∣∣∣Ĝ(0,ν)(t, s)φ̂k (t)−G(0,ν)(t, s)φk (t)
∣∣∣ dt.

Hence, sups∈[0,1]

{∫ 1
0

∣∣∣(Ĝ(0,ν) −G(0,ν)
)

(t, s)φ̂k (t) +G(t, s)
(
φ̂k − φk

)
(t)
∣∣∣ dt} = oP (1)

and

∥∥∥∥φ̂(ν)
k
− φ(ν)

k

∥∥∥∥∞ = oP (1). Theorem 4.3.4 follows from the definition of Σ(t, s).
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Chapter 5

Testing Hypotheses Under Weakly

Identifiability

5.1 Introduction

Data in statistical research are often well described by models, in which the scientific ques-

tions of interest are described by an unknown, finite-dimensional parameter vector. Such

models may be either fully parametric or semiparametric, where other aspects of the model

may be described by infinite dimensional parameters which are completely unspecified. In

such settings, it is often of interest to use the observed data in order to draw inferences about

the parameters of interest. Standard inferential techniques may be applied if the parameters

of interest can be well estimated by minimizing a parametric loss function or more gener-

ally by solving a parametric estimating function which does not involve infinite dimensional

nuisance parameters. In many situations, however, these parameters may be nonidentifiable

or at best weakly identifiable from the estimating function so that the standard inferential

theories may not be valid. The goal of this paper is to develop hypothesis tests for scenarios
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in which the model parameters are weakly identifiable. Conceptually, the term weak identifi-

ability refers to the situations where data contain some information about model parameters

but not enough to identify them uniquely.

To illustrate the problem quite sharply, we consider a simple theoretical example where

a fully parametric model is indexed by an unknown parameter vector (θ, β) for an observ-

able random quantity Y . We assume that realizations {Yi}ni=1 of Y are independent and

identically distributed (i.i.d) normal N (θ + β, 1) variates. The objective is to evaluate the

hypothesis H0 : θ0 = 0, where θ0 is the true value of θ. Using only observed data and

assuming that β0, the true value of β is unknown, inferences for θ0 may not be conducted

using standard techniques due to identifiability problems arising from the mean model being

overparameterized.

Another interesting, more practical illustration of this problem comes from the missing

data literature where weakly identifiable models are frequently encountered. Specific ex-

amples include the study of publication bias in meta-analysis (Chambers and Welsh, 1993;

Copas, 1999; Copas and Li, 1997) and the analysis of longitudinal data subject to non-

random nonresponses (Scharfstein et al., 1999; Kenward et al., 2001; Rotnitzky et al., 2001;

Little and Rubin, 2002). Identifiability issues commonly arise with non-random missing data,

where the parameters in the model for the missingness may not be jointly identifiable with

those in the model for the outcomes of interest using only the observed data, particularly

with semiparametric models, where some of the nuisance parameters may be infinite di-

mensional. Analyses which assume identifiability may be unreliable, with the joint selection

and outcome model yielding flat “estimation” surfaces potentially having multiple modes.

These phenomena have previously been reported by several authors in modeling potentially

non-ignorable missing data models (Scharfstein et al., 1999; Todem et al., 2010) .
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In section 3, we consider these missing data issues when analyzing longitudinal data with

informative dropout employing the model of Troxel et al.(1998b). The model is semiparamet-

ric, with the parameter being estimated denoted by (θ, β), where β is the selection parameter

that measures the extent of non-randomness of the missing data mechanism and θ consists

of the remaining finite dimensional parameters of the selection and outcome models. The

hypotheses of interest concern covariate effects on the outcome, which are contained in θ. In

Troxel et al. (1998b), a so-called pseudo-likelihood analysis, described in detail in Section 3,

was carried out under the assumption of parameter identifiability. The resulting estimating

function only involves (θ, β), with the longitudinal dependence in the outcomes completely

unspecified and not estimated. We investigated the parameter identifiability assumption in

a reanalysis of the cancer data from Troxel et al. (1998b) by profiling the pseudo-likelihood

analysis in β (Figure 5.1). The profile pseudolikelihood is flat in β, suggesting a model that

is at best weakly identifiable. These results draw into question inferences which assume

identifiability of θ and β.

Due to identifiability concerns, tests concerning the model parameters cannot use con-

ventional theory to assess statistical significance. Essentially, the standard estimation and

inference techniques may fail due to the models being overparameterized. A natural rem-

edy is to partition the parameter indexing the estimating function into certain parameters

of interest and other parameters which may be viewed as secondary parameters. For the

theoretical example discussed earlier, where Y is normally distributed, the parameter of in-

terest in light of the hypothesis under study is θ, while β is the secondary parameter. In

the missing data application (Troxel et al., 1998b), the parameter β which describes the

informativeness may be viewed as the secondary parameter, while the covariate effects in

θ may be of primary interest in hypothesis testing. In practice, the choice of θ and β will
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Figure 5.1: Supremum of the pseudo-likelihood function profiled across β, the parameter
measuring the extent of non-randomness of the missing data mechanism in the study.
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depend on the application.

Various approaches to the problem of non identifiable parameters that have appeared

in the literature focused primarily on maximum likelihood based procedures. Almost all

previous works in hypothesis testing deal with the case where non identifiability only occurs

under the null hypothesis. Examples include Davies (1977, 1987), Hansen (1996), Ritz

and Skovgaard (2005) and Song et al. (2009). Generally, this requires that the model is

identifiable under the alternative hypothesis. In sensitivity analysis, the testing problem

has a different formulation. The model may not be identifiable under either the null or the

alternative hypothesis. Moreover, even after fixing a set of parameters, it may not be clear

whether the parameters of interest can be consistently estimated under the null hypothesis.

To be concrete, in the normal example, for each value of β, the maximum likelihood estimator

of θ consistently estimates θ0 + β − β0, where θ0 and β0 are the true values of θ and β.

This only equals θ0 when β = β0. Our approach to inference about the parameters of

interest is to adapt the profiling strategy from the earlier works described above. Because

the testing problem is fundamentally different, the resulting developments are nonstandard,

with relatively little work in the literature on this problem. Since the model may not be

identifiable even after profiling, we need to consider the behavior of the profile estimator

under model misspecification under the null.

This inferential strategy poses substantial technical challenges beyond those encountered

with supremum tests which assume identifiability under the alternative. In missing data

applications used to motivate the sensitivity analysis, rigorous results for full likelihood

analyses have been established (Lu and Copas, 2004), essentially requiring model identifia-

bility. More recently, Todem et al. (2010) demonstrated how to conduct likelihood inference

via infimum tests, including a precise analysis of the behavior of the profile estimators under
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model misspecification and the distribution of the corresponding infimum test. Such tests

are particularly important when the quantity being tested does not increase or decrease

monotonically as the nonidentified parameters are increased or decreased. Under mono-

tonicity, it is only necessary to perform the tests at the limits of the nonidentified parameter

space. They developed simultaneous confidence bands which enable identification of those

values of the sensitivity parameter for which significant results are obtained. Although these

likelihood-based methods are useful, they require a full distribution specification for the data.

This can be a difficult task in practice, especially when observed data do not have enough

information to fully identify the parameter of interest.

In this paper, we extend the profiling idea to arbitrary estimating functions involving

θ and β but which do not require a complete parametric model specification. Our set-up

includes the likelihood score functions as a special case. The generalization of the infimum

test and confidence bands to non-likelihood settings is nontrivial. The infimum test has

the advantage that it is simply defined directly in terms of contrasts whereas the supremum

tests are obtained through nontrivial derivations using the log-likelihood functions (Dacunha-

Castelle and Gassiat, 1999). We present generic conditions which establish the large sample

properties of the estimating function for θ profiled on β, including the uniform consistency

and weak convergence of the θ estimator as a function of β. To our knowledge, these

theoretical results are novel, with issues related to nonidentifiable estimating functions not

having been studied rigorously, previously. We accommodate misspecification and uniformity

in β in a general paradigm which permits the profiling to be carried out with respect to any

suitable estimating function. Owing to the complexity of the asymptotic distributions of the

infimum test and confidence bands, resampling is needed. A theoretically justified procedure

is discussed for approximating such distributions.
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The rest of this chapter is organized as follows. In Section 5.2, we present the general

framework of the problem, the proposed test and the resampling procedure, along with a

proof of the key asymptotic properties. In Section 5.3, the methodology is exhibited using

the cancer dataset in Troxel et al. (1998b) and in simulations, where the naive Wald test

may have either inflated type I error rate or reduced power. Some remaining issues are

discussed in Section 5.4.

5.2 The method

5.2.1 The general framework

We consider a model involving a finite dimensional parameter $ ∈ Ω for an observable

random quantity Y . The parameter $ may not completely determine the distribution of

Y , that is, there may be other aspects of the model which are unspecified. The interest is

drawing inferences about $ with i.i.d realizations {Yi}ni=1 of Y and a general estimating

function SY ($). Denote by $0 the true value of $. If E{SY ($0)} = 0, then an estimator

$̂ of $0 usually can be obtained by solving the estimating equation, SY ($) = 0; see

Chapter 5 of van der Vaart (2000b) for an overview of Z-estimators. If SY identifies $0,

then under other mild regularity conditions, this estimating equation yields a consistent and

asymptotically normal parameter estimator. Under such regularity conditions, inferences

about $0 can be conducted using the large sample properties of $̂. Problems may occur if

the model as a function of $ is “overparameterized”, with multiple values of $ satisfying

E{SY ($)} = 0. In this case, the estimator may not have the usual asymptotic properties.

Nonidentifiability can be addressed by fixing some components of $, conditional upon
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which the remaining parameters are uniquely defined by SY . One may partition $ = (θ, β),

where θ, a p-dimensional vector, is assumed to be “identifiable” for a fixed q-dimensional

vector β, as defined in Section 2.2 below. If the true value β0 of the nonidentified parameter

β is known, the estimator θ̂0 at β = β0 can be used to conduct reliable inferences about θ0,

the true value of θ. This estimator is readily available by solving the estimating equation

SY (θ, β0) = 0, for fixed and known β0. The approach is unfeasible, as the true value β0 is

usually unknown to the analyst in practice. A common strategy is to fix β and study the

estimator of θ at various values of β ∈ Ξ. To highlight the dependence on β, we denote by

θ̂(β), the estimator of θ for a fixed β. The estimator of θ when β = β0 is θ̂0 = θ̂(β0).

For the simple normal example, θ̂(β) = Ȳ − β and θ̂(β0) = Ȳ − β0, where Ȳ is the

sample mean. This estimator is normally distributed with mean θ0 + β0 − β and variance

n−1, uniformly in β, for each fixed n. Of course, in general, it is not possible to obtain clean

finite sample results and large sample approximations are needed. In the subsection below,

we study the uniform asymptotic properties of θ̂(β) for β ∈ Ξ.

5.2.2 Large sample properties of θ̂(β)

When β is fixed at its true value β0, it is well established that for an estimating function

SY (θ, β0) which is smooth in θ, the estimator θ̂ is consistent and approximately normal

under mild regularity conditions (see, for example, van der Vaart and Wellner, 2000a). That

is, n
1
2{θ̂(β0)−θ0} →d N (0,Σ0), where Σ0 = (D(θ0))−1var(SY (θ0, β0))(D−1(θ0))T , with

D(θ0) being the expected value of the first order derivative of SY (θ, β0) with respect to θ.

These properties of θ̂(β0) can be used to conduct large-sample inferences about θ0.

For a given β, the estimator θ̂(β) will converge to a quantity θ∗(β), which is generally

144



different from θ0 if β 6= β0. For the simple normal example, θ∗(β) = θ0 + β0 − β. This

contrasts with set-ups on testing with nonidentifiability under the null (Davies, 1977, 1987),

where it is generally assumed that θ∗(β) = θ0 for all β. Moreover, appropriately stan-

dardized, θ̂(β) will be asymptotically normal, with variance which may be estimated using

a sandwich variance approach. This is an extension of standard pointwise asymptotic the-

ory for maximum likelihood estimation with misspecified models, originating in the seminal

work of Huber (1967) and White (1982). We study below the uniform convergence of this

estimator across all values of β ∈ Ξ.

Suppose the data consist of iid realizations {Yi}ni=1 of Y . Let sYi
(θ, β) be the contribu-

tion of subject i to the estimating function SY (θ, β). Define Sn(θ, β) = n−1∑n
i=1 sYi

(θ, β)

and S̃(θ, β) = E{sY1
(θ, β)}. Let gYi

(θ, β) = ∂sYi
(θ, β)/∂θ, WY (θ, β) = n−1∑n

i=1 gYi
(θ, β)

and W̃ (θ, β) = E{gY1
(θ, β)}. For any given β ∈ Ξ, let θ̂(β) denote the solution to

SY (θ, β) = 0, that is SY (θ̂(β), β) = 0. The “least false” (White, 1982) parameter θ∗(β),

satisfies S̃(θ∗(β), β) = 0. Define G1 = {sYi(θ, β) : i = 1, . . . , n, θ ∈ Θ, β ∈ Ξ} and

G2 = {gYi(θ, β) : i = 1, . . . , n, θ ∈ Θ, β ∈ Ξ}.

We assume the following regularity conditions:

C1. The sets Θ ⊂ Rp and Ξ ⊂ Rq are compact and θ∗(β) is an interior point of Θ for any

β ∈ Ξ.

C2. The function classes, G1 and G2, are pointwise measurable and satisfy the uniform

entropy condition (van der Vaart and Wellner, 2000a).

C3. infθ∈Θ,β∈Ξ λmin{−W̃ (θ, β)} > 0, where λmin(·) denotes the minimum eigenvalue of

a matrix.
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C4. The estimating function SY (θ, β) has continuous first order derivatives with respect

to θ for any given β ∈ Ξ.

Condition C1 defines the parameter space for the implied parameter θ∗(β) for a given

β. Because θ∗(β) may be nonconstant in β, the parameter space for θ∗(β) across β is

contained in a suitably defined functional space. Conditions C2 and C3 give conditions

under which uniform asymptotic results for θ∗(β) may be obtained. The entropy condition

C2 ensures that the estimating function is well behaved across all β. The condition is satisfied

by functions which are uniformly bounded and uniformly Lipschitz of order > {dim(θ) +

dim(β)}/2, where dim(·) denotes the dimension of a vector. Condition C3 guarantees the

identifiability of θ∗(β) for all β. The longitudinal data model presented in Section 3 meets

these requirements. Note that the smoothness specified in condition C4 only applies to θ.

Differentiability in β is not assumed. Non-smoothness in θ could be accommodated under

stronger assumptions.

The proof of the following theorem is provided in the appendix.

Theorem 5.2.1. Under Conditions C1-C4, supβ∈Ξ ‖ θ̂(β) − θ∗(β) ‖→p 0, where ‖ · ‖

represents the Euclidean norm. Furthermore, n
1
2
(
θ̂(β)− θ∗(β)

)
converge weakly to a tight

Gaussian process with positive definite covariance function

Σ∗(β1, β2) = lim
n→∞ cov

{
n

1
2
(
θ̂(β1)− θ∗(β1)

)
, n

1
2
(
θ̂(β2)− θ∗(β2)

)}

=

[{
W̃ (θ∗(β1), β1)

}−1
]T

E
{
sY1

(θ, β1)sTY1
(θ, β2)

}{
W̃ (θ∗(β2), β2)

}−1
.
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For fixed β,

Σ∗(β, β) = lim
n→∞ var

{
n

1
2
(
θ̂(β)− θ∗(β)

)}

=

[{
W̃ (θ∗(β), β)

}−1
]T

E
{
sY1

(θ, β)sTY1
(θ, β)

}{
W̃ (θ∗(β), β)

}−1
.

The covariance function may be easily estimated using a robust sandwich variance estimator

along the lines of White (1982), which is valid under model misspecification. This estimator

may be used to construct pointwise confidence intervals for θ∗(β) at fixed β using the point-

wise asymptotic normality of θ̂(β). However, for the testing and confidence band procedures

described below, the complexity of the limiting distribution across β is prohibitive for con-

ducting inference, even with variance estimation. For such scenarios, we suggest resampling

to approximate the distribution of the estimator.

It can easily be shown that the regularity conditions are satisfied for the simple normal

example. Interestingly, θ̂(β) − θ∗(β) = Ȳ − θ0 − β0, which does not depend on β. This

greatly simplifies the results of Theorem 1, since the standardized estimators are identical

for all β, which is not generally true. One should note that the form of the mean model

is critical. If we assumed that E(Y ) = θβ, then the eigenvalue condition, C3, would be

violated at β = 0 and the uniform convergence in Theorem 1 would fail to hold on intervals

containing zero.

5.2.3 Global sensitivity testing

Suppose we are interested in evaluating the null hypothesis: H0 : Cθ0 = c, where θ0 is

the true value of θ and C an r × dim(θ0) contrast matrix for assessing single and multiple
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linear combinations of model parameters. For example, when testing the jth component of

θ, one takes C to be 1 × dim(θ) vector with a one at the jth position and zeros elsewhere.

Under nonidentifiability, the above hypothesis cannot be tested without imposing unverifiable

restrictions. If the true sensitivity parameter β0 is known, then H0 : Cθ∗(β0) = c, where

θ∗(β0) = θ0.

In practice, where β0 is unknown, one may consider the process θ∗(β), observing that

the trivial inequality,

0 ≤ inf
β∈Ξ

‖Cθ∗(β)− c‖ ≤ ‖Cθ∗(β0)− c‖ ≤ sup
β∈Ξ

‖Cθ∗(β)− c‖,

permits a conservative assessment of H0. To do so, we formulate the infimum hypothesis:

Hinf : infβ∈Ξ ‖Cθ
∗(β)− c‖ = 0.

The infimum statistic Tinf = infβ∈Ξ ‖Cθ̂(β)−c‖ can be used to evaluate this hypothesis.

The distribution of this statistic can be derived analytically in some simple situations. As an

example, we revisit the normal scenario discussed earlier where the interest is in evaluating

the hypothesis, H0 : θ0 = 0, using the processes θ̂(β) = Ȳ − β. For ease of illustration,

assume Ξ = [0, 1], such that the infimum statistic becomes Tinf = infβ∈[0,1] |Ȳ − β|. This

is a mixture of a point mass at 0 with probability Pr(Ȳ ∈ [0, 1]) and two truncated normal
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distributions. Specifically,

inf
β∈[0,1]

|Ȳ − β| =



−Ȳ if Ȳ < 0,

0 if Ȳ ∈ [0, 1],

Ȳ − 1 if Ȳ > 1.

The corresponding cumulative distribution function-CDF Finf (x) = Pr(infβ∈[0,1] |Ȳ −β| ≤

x) is

Finf (x) = Pr(Ȳ ≤ x+ 1)− Pr(Ȳ ≤ −x), for x ≥ 0. (5.1)

In particular, we have Finf (0) = Pr(Ȳ ≤ 1) − Pr(Ȳ ≤ 0) = Pr(Ȳ ∈ [0, 1]), reflecting the

point mass at 0 for Tinf .

In general, because of the complexity of the limiting distribution of the infimum of the test

process, simple general analytic results do not appear tractable. Instead, resampling may

be utilized. A simple nonparametric bootstrap (Efron and Tibshirani, 1993) may be used

to compute variance estimators, and to carry out the simultaneous inferences necessary for

the infimum tests and the confidence bands, described below. The validity of the bootstrap

follows automatically from empirical process theory under the regularity conditions given in

van der Vaart and Wellner (2000b) even under model misspecification. This requires the

boundedness of the estimating function for fixed β ∈ Ξ. A difficulty with the nonparametric

bootstrap is that it requires solving the estimating function for all β in each bootstrap sam-

ple, which may be computationally demanding. An alternative resampling technique which

does not require repeatedly solving the estimating function may be constructed. The basic
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idea is to generate realizations directly from the limiting distribution of θ̂(β) and to use these

realizations to approximate the distribution of the infimum test and confidence bands. This

resampling technique has been extensively used in the literature when the true asymptotic

distribution is hard if not impossible to derive analytically (see for example, Parzen et al.,

1994 and Zhu and Zhang, 2006). To do this, one fixes the estimator based on the observed

data and then “perturbs” this estimator using a disturbance which conditionally on data

has mean zero and variance-covariance in β equalling that of θ̂(β) in Theorem 5.2.1. The

procedure is given by the following steps:

Step 1. Generate n i.i.d random variables from a standard normal model ζ, denoted

{ζ(b)
1 , . . . , ζ

(b)
n }, where superscript (b) represents replications.

Step 2. Given the realizations of the data, {Yi}ni=1, and values of β ∈ Ξ, calculate θ̃
(b)

(β)

using the simulated {ζ(b)
1 , . . . , ζ

(b)
n } and the equation,

θ̃
(b)

(β) = θ̂(β) +

[
n−1∑n

i=1 sYi
(θ̂(β), β)ζ

(b)
i

]
W−1
Y (θ̂(β), β), (5.2)

where the statistic θ̂(β) takes value θ̂
o
(β) for observed data {Yi}ni=1.

Step 3. Calculate T (b)
inf

= infβ∈Ξ ‖Cθ̃
(b)

(β)− c‖ using θ̃
(b)

(β), β ∈ Ξ.

By repeatedly generating the normal variates {ζj}nj=1, B times, and repeating steps 2 and

3 for each generated sample, we obtain the empirical distribution of T (b)
inf

given observed

data. Theorem 2 below establishes that this empirical distribution converges to the marginal

asymptotic distribution of Tinf as n → ∞. Let 1(E) be the indicator function for event

E . The p-value of the test is then B−1∑B
b=1 1(T (b)

inf
≥ T oinf ), the proportion of these

bootstrap observations which exceed T oinf the observed value of the statistic.
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For the simple normal example, we compare the resampling null distribution of T (b)
inf

to the analytical distribution Finf (.) in (5.1) for a finite sample size. Setting θ0 = 0 un-

der the null and β0 = 0.5, we generate {Yi}ni=1 from a normal distribution N (0.5, 102).

Furthermore, we take Ξ = [0, 1] and for each resample b = 1, · · · , B, we compute T (b)
inf

=

infβ∈[0,1] |θ̃
(b)

(β)|, where θ̃
(b)

(β) = Ȳ −β−n−1∑n
i=1(Yi− Ȳ )ζ

(b)
i . Results with n = 100

and B = 10000 resamples are plotted in Figure 5.2. The resampling distribution provides a

good approximation to the analytical distribution for this simple hypothetical example.

If the infimum (null) hypothesis cannot be rejected, then a supremum test or equivalently

a simultaneous confidence region may be used to check whether ‖Cθ∗(β) − c‖ > 0 in some

regions of Ξ. The supremum hypothesis Hsup may be tested with the statistic T osup =

supβ∈Ξ ‖Cθ̂(β) − c‖ using the bootstrap realizations of θ̃
(b)

(β), β ∈ Ξ. The p-value of

the supremum test is then B−1∑B
b=1 1(T (b)

sup ≥ T osup), where T (b)
sup are the bootstrap

realizations of the statistic. Alternatively, a simultaneous confidence region for Cθ∗(β) − c

across all values of β may be constructed. Let 0 < ϕ < 1. A simultaneous confidence region

for Cθ∗(β)− c, β ∈ Ξ is given by {ϑ(β) : Ξ→ Rr; ‖ϑ(β)−Cθ̂(β) + c‖ < ρϕ}, where ρϕ is

the (1− ϕ)th empirical percentile of {supβ∈Ξ ‖Cθ̃
(b)

(β)− Cθ̂o(β)‖}Bb=1, with θ̂
o
(β) being

the value of the statistic θ̂(β) for observed data {Yi}ni=1.

The following result supports the validity of the resampling based infimum test and

confidence bands.

Theorem 5.2.2. Under Conditions C1-C4, the conditional distribution of the process

n1/2{θ̃(β) − θ̂
o
(β)} given realizations {Yi}ni=1 of Y , is asymptotically equivalent to the

unconditional distribution of the process n1/2{θ̂(β)− θ∗(β)}, β ∈ Ξ.

Theorem 5.2.2 (proof provided in the appendix) coupled with a continuous mapping
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Figure 5.2: Plot of the exact (solid line) and the resampled (dashed line) CDF (CDF(x) =
Pr(infβ∈[0,1] |Ȳ −β| ≤ x)) of the infimum test statistic under the null θ0 = 0 for the simple

normal example, assuming the true parameter β0 = 0.5, sample size n = 100 and B = 10000
resamples.
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theorem gives that the infimum and supremum tests can be carried out using this resampling

procedure. For the simple normal example, n1/2{θ̂(β) − θ∗(β)} = n1/2(Ȳ − θ0 − β0) and

n1/2{θ̃(β) − θ̂o(β)} = −n−1/2∑n
i=1(Yi − Ȳ )ζi, which do not depend on β. The random

quantity n1/2(Ȳ −θ0−β0) is normally distributed with mean 0 and variance 1, uniformly in

β, for each fixed n. Given observed data {Yi}ni=1, −n−1/2∑n
i=1(Yi− Ȳ )ζi is also normally

distributed with mean 0 and variance n−1∑n
i=1(Yi − Ȳ )2 which converges almost surely

to 1 as n→∞.

The choice of the support Ξ of β is critically important in performing the test in practice.

If values of β are selected in some data-driven fashion, the limiting distribution in Theorem

1 will be invalid. This is similar to Hansen (1996) for the case where the model is identifiable

under the null after profiling on β, that is, when θ∗(β) = θ0, ∀β ∈ Ξ. On the other hand,

an approach which ignores sample information about Ξ may be unnecessarily conservative

and potentially sacrifices power. One possible solution is to consult with subject-matter

experts on the choice of Ξ. This choice ideally should be based on prior studies, as in the

breast cancer analysis in Section 3, where closely related datasets were used to select the

range for the sensitivity parameter. From a technical standpoint, this choice should also be

computationally feasible.

5.3 Numerical studies

5.3.1 Pseudo-likelihood models with missing data

We consider the data set-up and model described in Troxel et al. (1998b) for potentially non-

random missing data in longitudinal studies. The model will be referred to as the TLH model.
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The data arise from a longitudinal study where each subject i (i = 1, . . . , n), is to be observed

at K occasions. For subject i, we have a K×1 response vector, Y ∗i = (Y ∗i1, . . . , Y
∗
iK)T which

may not be fully observed. To accommodate missingness, subject i has a vector of missing

data indicators Ri = (Ri1, . . . , RiK)T , where Rit = 1 if Y ∗it is observed and 0 otherwise.

Let Y ∗i,obs and Y ∗i,miss denote the observed and missing components of Y ∗i , respectively.

Each individual also has a K×J covariate matrix Xi, which is assumed fully observed. The

response Yi in our general formulation is {Y ∗i,obs, Ri,Xi}.

The key idea of the TLH methodology is to model the time point pair (Y ∗it, Rit), with-

out accounting for the dependence on other time points. Let f(u | w) denote the density

function of random quantity u conditional on possibly non random quantity w. We assume

a simple selection model given by, f(Y ∗it, Rit | Xit,$) = f(Y ∗it | Xit,$)f(Rit | Y ∗it,Xit,$),

where $ is a finite but unknown parameter and Xit may contain both time dependent and

independent covariates.

The TLH model assumes that density f(Y ∗it | Xit,$) is that of normal N (µit, σt), where

µit and σt (t = 1, · · · , K) are elements of $. The missing data process is assumed to satisfy

Rit ∼ Bernoulli(1 − πit) where the failure probability πit = Pr(Rit = 0 | Y ∗it,Xit,$).

We assume a logistic regression model relating the missing data probability to potentially

unobserved responses, that is,

logit(πit) = γ0t + γ1tXit + βtY
∗
it, (5.3)

where γjt and βt (j = 0, 1; t = 1, · · · , K) are unknown parameters and elements of $. The

parameter βt measures the extent of non-randomness of the missing data mechanism in the

study at time t. Specifically, exp{βt} represents the odds ratio for missing response at time t

154



for each additional unit increase of the hypothetical response Y ∗it. Here, πit in (5.3) depends

on Y ∗it and not on previous elements of Y ∗i . Following warnings by Troxel et al. (1998b),

we emphasize that this model could suffer from misspecification if the approximation of the

logistic link function to the true link function fails.

The TLH model lends itself to a pseudo-likelihood analysis (Gong and Samaniego, 1981),

where the longitudinal association is naively ignored in the likelihood construction. Specifi-

cally, the independence pseudo-likelihood function based on observed data {Y ∗i,obs, Ri,Xi}
n
i=1

is

`ind($) =
n∏
i=1

f(Y ∗i,obs, Ri | $) =
n∏
i=1

∫
· · ·
∫
f(Y ∗i,obs, Y

∗
i,miss, Ri | $)dY ∗i,miss

=
n∏
i=1

K∏
t=1

{f(Y ∗it, Rit | $)}Rit
{∫

f(Y ∗it, Rit | $)dY ∗it

}1−Rit

=
n∏
i=1

K∏
t=1

{f(Y ∗it | $)f(Rit | Y
∗
it,$)}Rit

{∫
f(Y ∗it | $)f(Rit | Y

∗
it,$)dY ∗it

}1−Rit

=
n∏
i=1

K∏
t=1

{f(Y ∗it | $)(1− πit)}
Rit

{∫
f(Y ∗it | $)πitdY

∗
it

}1−Rit
.

We have suppressed the dependence on covariates in `ind($). As a pseudo-likelihood model,

conditions C1-C4 are easily verified and the asymptotic results hold. The densities in the

TLH model are normal and Bernoulli, which are smooth functions of the unknown parame-

ters.
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5.3.2 Real data analysis

To illustrate our methodology, we consider data from the International Breast Cancer Study

Group-IBCSG, previously reported by Hürny et al. (1992); and Troxel et al. (1998b). This

is a group of randomized breast cancer studies with primary endpoints being survival and

relapse; and quality of life being a secondary endpoint. One study, Study VI, is a randomized

trial of adjuvant chemotherapy following surgery for the treatment of breast cancer. In this

study, 4 treatments (A, B, C and D) were randomly assigned to 431 pre-menopausal cancer

patients and several domains of quality of life were assessed. In this paper, we focus on

three quality-of-life domains; 1) PACIS (perceived adjustment to chronic illness scale), 2)

Mood and 3) Appetite. These variables were originally measured on a 0− 100 scale but are

normalized using a square-root transformation as recommended by Troxel et al. (1998b).

Questionnaires for the quality of life assessment were administered to study patients at

baseline and every three months for two years. Our analysis employs the first three time

points, with rates of missing data equalling 16%, 33% and 37% for PACIS, 16%, 33% and

38% for Mood, and 15%, 33% and 38% for Appetite. A full description of Study VI and

other IBCSG trials may be found elsewhere (Hürny et al., 1992; Troxel et al., 1998a).

As in earlier analyses of Study VI, we consider the following model for the measurement

outcome,

µit = µ0t + α1X1i + α2X2i + α3X3i, (t = 1, 2, 3),

where µ0t is a time-dependent intercept and αj is a slope associated with Xji, j = 1, 2, 3.

Here (X1i,X2i,X3i) =


(1, 0, 0) if treatment A, (0, 0, 1) if treatment C

(0, 1, 0) if treatment B, (0, 0, 0) if treatment D.
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The missing data model is

logit(πit) = γ0t + βY ∗it (i = 1, . . . , 431; t = 1, 2, 3),

where γ0t is a time-dependent intercept and β is a slope associated with Y ∗it. As discussed

previously, β quantifies the nonrandomness of the missing data process. A constant σt is

assumed across time.

Our objective is to assess the treatment and time effects on the mean quality of life. Under

the assumed model, the hypotheses of interest are α1 = α2 = α3 = 0 and µ01 = µ02 = µ03

for the treatment and time effects, respectively. As a preliminary analysis, we first evaluated

these hypotheses under identifiability assumptions. Specifically, we fit the TLH model by

simultaneously estimating both β and θ = (α1, α2, α3, µ01, µ02, µ03, γ01, γ02, γ03) via the

independence pseudolikelihood estimating function. A Wald test based on the sandwich

estimator of the covariance matrix of the regression parameter estimates was performed to

evaluate the hypotheses of interest. P-values of these Wald tests for the three responses are

given in Table 1. In brief, these inferences suggest that there is no treatment effect on PACIS

and Appetite and no time effect on PACIS and Mood. The treatment effect on Mood and

the time effect on Appetite are significant at 1% level. In addition to these analyses, we also

conducted two crude analyses that do not explicitly model the missing data mechanism. The

first analysis used only subjects with complete data sequences, therefore removing subjects

with incomplete data profiles. The second analysis ignored the missing data and conduct the

so-called ignorable (missing at random) inferences by forcing β, the non-randomness missing

data parameter, to 0. Results of these analyses are also summarized in Table 1. From these

additional exploratory analyses, the treatment and time effects are found to be statistically
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significant for Mood at 5% level. The ignorable analysis also appears to yield a statistically

significant time effects on Appetite. Of course, these crude analyses may not be reliable as

they rely on assumptions that are not verifiable using observed data at hand.

The Wald tests conducted under the assumption of identifiability may not have desirable

properties if identifiability is violated. As illustrated in Figure 5.1, the model was at best

weakly identifiable for the outcome PACIS. Model identifiability was also a concern for β

for the other two responses. We performed the infimum test to conservatively evaluate the

treatment and time effects on the three quality of life domains. To conduct these tests, the

set Ξ for the range of β was obtained from an independent source. We considered data

on post-menopausal cancer patients from Study VII of the IBCSG trials. Objectives of

this study were similar to those of Study VI, except that the menopausal status of study

participants differed. The joint model appeared to be identifiable when applied to Study

VII data. Based on these results, we derived 99% confidence intervals to use as ranges

for β in the infimum tests for Study VI. The ranges for PACIS, Mood and Appetite were

[−4, 0], [−3, 0] and [−5.6,−1.6], respectively. Recall that in the missing data model, exp{−β}

represents the odds ratio of being observed at any time point for each additional unit increase

of the hypothetical response Y ∗it. Since Y ∗it takes values in the range 0 − 10 on a square-

root scale, for the selected ranges, the odds ratio may be as high as; exp{4} = 54.60 for

PACIS, exp{3} = 20.09 for Mood, and exp{5.6} = 270.43 for Appetite. One might criticize

these upper bounds as being scientifically unreasonable. However, permitting such extreme

scenarios provides for a conservative test, which is in the spirit of sensitivity analysis. For

computational feasibility, the ranges were approximated on fine grids with equally spaced

points of 0.02. P-values of the infimum tests are given in Table 1.

The infimum hypothesis for the treatment effect was rejected for Mood at the 5% level (p-
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Table 5.1: P-values for evaluating the Treatment and Time effects using data from Study
VI of the IBCSG trials

Reponeses

PACIS Mood Appetite

TLH 0.281 0.008 0.229

Treatment Wald test COM† 0.170 0.041 0.370

effect IGN‡ 0.303 0.011 0.376

Infimum test 0.231(0.522*) 0.025 0.281(0.369*)

TLH 0.216 0.552 <0.001

Time Wald test COM† 0.302 0.030 0.163

effect IGN‡ 0.142 0.006 0.023

Infimum test 0.134(<0.001*) 0.063(<0.001*) <0.001

* P-value of supremum test

† Complete cases; ‡ Ignorable cases
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value= 0.025), but not for PACIS (p-value= 0.281) and Appetite (p-value= 0.231). For the

time variable, a strongly significant effect was detected only for Appetite (p-value< 0.001).

For nonsignificant infimum test results, a supremum test was conducted to see if one could

not reject the null hypothesis for all values β ∈ Ξ. The supremum test for the treatment

effect was not rejected on PACIS (p-value= 0.522) and Appetite (p-value= 0.369), but was

strongly rejected for the time effect on PACIS (p-value< 0.001) and Mood (p-value< 0.001).

When the supremum test was rejected, a sensitivity analysis was conducted using a

simultaneous 95% confidence band approach to identify regions of β for which the point-

wise null hypotheses are rejected. Plots of these analyses for contrasts µ∗01(β) − µ∗02(β)

and µ∗02(β) − µ∗03(β) for PACIS and Mood are given in Figure 3. For PACIS, the 95%

simultaneous confidence band for µ∗02(β) − µ∗01(β), −4 ≤ β < −0.4; and µ∗03(β) − µ∗02(β),

−4 ≤ β ≤ −3, did not contain 0. Similar analyses for Mood revealed that a 95% simultane-

ous confidence band for µ∗02(β)−µ∗01(β), −3 ≤ β < −0.7, did not contain 0. The confidence

band for µ∗03(β)− µ∗02(β) did not exclude 0 over the selected range of β (−3 ≤ β < 0). The

Wald tests which assume identifiability were nonsignificant for all pairwise comparisons at

the 5% level.

5.3.3 Simulation study

In this section, we report results of a simulation study comparing the performance of the

infimum test to that of the naive Wald test derived under identifiability assumptions. The

simulations were conducted under a TLH model specified so as to roughly approximate data

from Study VI of the IBCSG trials. For simplicity, only two treatments (A and B) and two

time points (K = 2) were considered. The outcome vector (Y ∗i1, Y
∗
i2), assuming dependence

on subject i, was generated from a two-dimensional normal distribution with univariate mean
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Figure 5.3: The top panel corresponds to PACIS; and the bottom panel to Mood. In each
panel, the solid lines represent µ̂02(β) − µ̂01(β) (on the left) and µ̂03(β) − µ̂02(β) (on the
right) for fixed values of the parameter β. The dashed lines are the corresponding 95%
simultaneous confidence bands and the dotted lines are the null values.
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models,

µit = µ0t + αtX1i, t = 1, 2,

and time-point variances σt, t = 1, 2, and correlation coefficient ρ. The parameters µ0t and

αt are time-dependent intercepts and slopes associated with covariate X1i, which equals 1 if

treatment B and 0 otherwise. We reparameterized µ0t and αt as, µ0t = α̃0 + α̃1I(t = 2) and

αt = α̃2 + α̃3I(t = 2), where I(t = 2) is an indicator variable taking value 1 at the second

time point. Throughout our simulations, we fixed the variances σt, t = 1, 2, to 1 and the

correlation coefficient ρ to 0.4. Missing observations were generated using a logistic model

relating the dropout probability πit to the response Y ∗it as,

logit(πit) = γ0t + γ1tX1i + βY ∗it,

where γ0t, γ1t and β are respectively the intercept and slopes associated with X1i and Y ∗it.

Time-dependent parameters γ0t and γ1t were reparameterized as, γ0t = γ̃0 + γ̃1I(t = 2)

and γ1t = γ̃2 + γ̃3I(t = 2), t = 1, 2.

We study the size and power of the infimum and Wald tests for α̃3, the parameter that

captures the interaction effect of time and treatment on the mean response. We set α̃3 = 0

and α̃3 = 1 for the size and power of the test respectively. Additionally, (α̃1, α̃2) = (0, 0) and

(γ̃1, γ̃2, γ̃3) = (0.5,−2, 0.2) when evaluating size, and (α̃1, α̃2) = (0.1, 1) and (γ̃1, γ̃2, γ̃3) =

(1,−3, 1) when evaluating power.

The parameter γ̃0 was varied throughout our simulations to produce different missing

data rates. Specifically, to study the size of the test γ̃0 was fixed to 0.5, to produce about

15% and 22% missing observations at the first and second time point, respectively and at
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1.8 to produce about 33% and 43% missing observations at the first and second time point,

respectively. For the power, γ̃0 was fixed to 0.5, producing rates of missing observations

roughly 14% and 26% at the first and second time point, respectively and to 2, producing

rates of missing observations roughly 32% and 46% at the first and second time point,

respectively. Finally, throughout our simulations, we set the true β to −1.

One thousand datasets were generated with sample sizes 100 and 300. Equal proportions

of subjects were assigned to treatment A and B. The infimum tests were performed on the

interval Ξ = [−2, 0]. To ensure computational feasibility, a fine grid of equally spaced points

of 0.02, was considered. We used 1000 resamples from the alternative resampling scheme

discussed in section 2.3 to approximate the null distribution of the infimum test.

The infimum and Wald tests were performed using working regression models having the

same form as those used to generate data. These models saturate the number of parameters,

leading to potential nonidentifiability as a result of overparameterization. Table 2 shows the

rejection rates for nominal test levels 0.01, 0.05, and 0.1. Asymptotic standard errors (as

the number of Monte Carlo iterations tends to infinity) are reported in the last row of the

table. Overall, the infimum tests perform well, with the resampling distribution of the test

providing a reasonable approximation to the nominal level. The Wald test appears to be

very liberal when compared to the infimum test. The anti-conservativeness of the Wald test

does not diminish as the sample size increases. Based on these results, our recommendation

is to avoid the Wald test when identifiability is of concern. Because the empirical type I error

rate of the infimum test and that of the Wald test are different, comparing their empirical

powers is not appropriate. Nevertheless for both methods, a larger sample size improves

the power of detecting the alternatives under consideration, a finding consistent with the

literature. Moreover, the power decreases with increasing missing data rates.
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Table 5.2: Empirical type I error and power of the infimum test] and Wald test (in paren-
thesis) for evaluating the interaction effect represented by the parameter α̃3

n=100 n=300

True Missing+ Nominal test level Nominal test level

value data rate 0.1 0.05 0.01 0.1 0.05 0.01

α̃3 = 0 15%, 22% 0.099 0.049 0.011 0.103 0.057 0.010

(γ̃0 = 0.5) (0.147) (0.092) (0.034) (0.158) (0.117) (0.059)

33%, 43% 0.110 0.044 0.010 0.122 0.062 0.012

(γ̃0 = 1.8) (0.149) (0.097) (0.051) (0.165) (0.113) (0.073)

α̃3 = 1 14%, 26% 0.982 0.959 0.870 >0.999 >0.999 >0.999

(γ̃0 = 0.5) (0.961) (0.944) (0.848) (0.948) (0.942) (0.934)

32%, 46% 0.905 0.846 0.675 0.999 0.999 0.993

(γ̃0 = 2) (0.889) (0.827) (0.659) (0.961) (0.949) (0.926)

Monte carlo SE 0.003 0.007 0.009 0.003 0.007 0.009

] Test performed using Ξ = [−2, 0]

+ First and second time point missing data rate
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While the ability to choose an appropriate support set Ξ of β to perform the infimum

tests is highly desirable in practice, our simulations (results not shown) indicate that only

a minimal inflation of type I error rate is observed under a modest misspecification of the

set Ξ. For example, when Ξ does not contain the true β but β0 is not far away from the

boundaries of the set, close to the nominal level is still achieved under the null hypothesis.

As an example, we performed the infimum test on the interval [0, 2], which does not contain

β0 = −1. For this range of β, the infimum tests nearly maintain their sizes at all significance

levels. However, when [10, 12] was selected for the range of β, the infimum tests were overly

anti-conservative.

Another simulation study was conducted to evaluate the effects of the choice of the set Ξ

on the power of the infimum tests. Specifically, we generated data as before, but performed

the infimum tests on wider intervals, namely [−3, 3] and [−5, 5]. Results of this simulation

study are given in Table 5.2. As expected, the power decreases as the interval widens, which

occurs regardless of the missing data rate. Following a referee’s recommendation, further

simulations were conducted to evaluate the loss of power when the infimum test is performed

on a given support set of β compared to the ideal set Ξ = {β0}. For this, we generated the

data as before with the only difference that α̃3 = 0.7. We then performed the infimum test

using Ξ = [−2, 0] and Ξ = {−1}. Results revealed a minor loss of power of the infimum test

on Ξ = [−2, 0] compared to the ideal set Ξ = {−1} (see Table 5.4).

5.4 Discussion

While hypothesis testing under nonidentifiability has been previously considered, the frame-

work is often too restrictive for sensitivity analyses. In a sensitivity analysis, the model may
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Table 5.3: Empirical power of the infimum test to detect the interaction effect α̃3 = 1 for
two ranges Ξ of β with true value being β0 = −1

n=100 n=300

Ξ Missing+ Nominal test level Nominal test level

data rate 0.10 0.05 0.01 0.10 0.05 0.01

[−3, 3] 14%, 26% 0.912 0.865 0.720 0.999 0.997 0.987

32%, 46% 0.783 0.706 0.529 0.981 0.960 0.905

[−5, 5] 14%, 26% 0.899 0.836 0.655 0.997 0.990 0.970

32%, 46% 0.767 0.695 0.492 0.953 0.925 0.858

Monte carlo SE 0.003 0.007 0.009 0.003 0.007 0.009

+ First and second time point missing data rate

Table 5.4: Empirical power of the infimum test to detect the interaction effect α̃3 = 0.7 for
two sets Ξ of β with true value being β0 = −1

n=100 n=300

Ξ Missing+ Nominal test level Nominal test level

data rate 0.10 0.05 0.01 0.10 0.05 0.01

[−2, 0] 13%, 23% 0.806 0.699 0.470 0.996 0.989 0.949

{−1} 13%, 23% 0.829 0.725 0.469 0.998 0.998 0.982

[−2, 0] 31%, 44% 0.677 0.570 0.342 0.978 0.957 0.834

{−1} 31%, 44% 0.707 0.589 0.348 0.992 0.974 0.915

Monte carlo SE 0.003 0.007 0.009 0.003 0.007 0.009

+ First and second time point missing data rate
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not be identifiable under either the null or alternative hypothesis, and profiling may not

lead to consistent estimation of the parameter of interest under the null. As a result, the

supremum test may not be appropriate. As discussed in this paper, a theoretically rigorous

approach to this testing problem may be based on infimum statistics, whose distribution

must be carefully considered under model misspecification under the null hypothesis.

The infimum testing approach was previously studied for likelihood analyses of parametric

models (Todem et al., 2010). In this paper, we have extended these results to general

estimating functions for parametric models. This includes limiting results for the profile

estimators and the infimum test and confidence bands, as well as the validity of the bootstrap

procedure. Such results are critically important in sensitivity analyses of complex data arising

in longitudinal studies, where full model specification may be difficult and partially specified

models may be more easily analyzed using non-likelihood based approaches.
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Proof of Theorem 5.2.1

i) We show that supβ∈Ξ ‖ θ̂(β)− θ∗(β) ‖→p 0.

Condition C2 implies that G1 and G2 are Donsker and hence Glivenko-Cantelli (van der

Vaart andWellner, 2000a, 2000b). Therefore,

sup
θ∈Θ,β∈Ξ

‖SY (θ, β)− S̃(θ, β)‖ →p 0 and sup
θ∈Θ,β∈Ξ

‖WY (θ, β)− W̃ (θ, β)‖ →p 0. (5.4)

The definitions of θ̂(β) and θ∗(β) and Condition C4 imply that

0 = SY (θ̂(β), β)− S̃(θ∗(β), β)

=
(
SY (θ̂(β), β)− SY (θ∗(β), β)

)
+
(
SY (θ∗(β), β)− S̃(θ∗(β), β)

)
= W̃ (θ̌(β), β)

(
θ̂(β)− θ∗(β)

)
+ v2n(β)

(
θ̂(β)− θ∗(β)

)
+ ν1n(β), (5.5)

where θ̌(β) is on the line segment between θ̂(β) and θ∗(β). Also, supβ∈Ξ |v2n(β)|

→p 0 and ν1n(β) = SY (θ∗(β), β)− S̃(θ∗(β), β). From (5.5), we have,

sup
β∈Ξ

‖θ̂(β)− θ∗(β)‖ = sup
β∈Ξ

∥∥∥−(W̃−1(θ̌(β), β) + v2n(β)
)
ν1n(β)

∥∥∥
≤ sup

β∈Ξ

∥∥∥−W̃−1(θ̌(β), β) + v2n(β)
∥∥∥ sup
β∈Ξ

‖ν1n(β)‖ .

Because of Condition C3, for any θ ∈ Θ, for any β ∈ Ξ, there exists a positive number

λ1, such that λmin(β) > λ1 > 0. For any s × s symmetric matrix A, denote its Eu-

clidean norm as ‖A‖ = λmax (A), where λmax (A) is the largest eigenvalue of A and if

A is also nonsingular,
∥∥∥A−1

∥∥∥ = λ−1
min (A). Therefore,

∥∥∥−W̃−1(θ̌(β), β)
∥∥∥ = λ−1

min(β) ≤

λ−1
1 , and supβ∈Ξ ‖θ̂(β) − θ∗(β)‖ ≤ λ−1

1 supβ∈Ξ ‖νn(β)‖. The uniform consistency of
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θ̂(β) to θ∗(β) follows from supβ∈Ξ ‖νn(β)‖ = supβ∈Ξ ‖SY (θ∗(β), β) − S̃(θ∗(β), β)‖ ≤

supθ∈Θ,β∈Ξ ‖SY (θ, β)− S̃(θ, β)‖ →p 0, according to (5.4).

ii) We show that n1/2(θ̂(β)− θ∗(β)) converge weakly to a tight Gaussian process.

Based on the uniform consistency of θ̂(β), and (5.4) and (5.5), applying the Taylor

expansion to SY (θ̂(β), β) around SY (θ∗(β), β) gives

n1/2
(
θ̂(β)− θ∗(β)

)
≈ −n−1/2W̃−1(θ∗(β), β)ν1n(β)

= −n−1/2
∑n

i=1
W̃−1(θ∗(β), β)

(
sYi

(θ∗(β), β)− EsY1
(θ∗(β), β)

)
= −n−1/2

∑n

i=1
W̃−1(θ∗(β), β)sYi

(θ∗(β), β) ≡ −n−1/2
∑n

i=1
ηi(β),

where ≈ denotes asymptotic equivalence uniformly in β ∈ Ξ. Because Condition C2 implies

that G1 is Donsker and using previous results that W̃−1(θ∗(β), β) is uniformly bounded

for β ∈ Ξ, the function class {W̃−1(θ∗(β), β)sYi
(θ∗(β), β), β ∈ Ξ, i = 1, . . . , n} is Donsker.

This permits the application of a functional central limit theory to establish the weak conver-

gence of θ̂(β). Therefore, limn→∞ cov
{
n1/2

(
θ̂(β1)− θ∗(β1)

)
, n1/2

(
θ̂(β2)− θ∗(β2)

)}
= E

(
η1(β1)ηT1 (β2)

)
= Σ∗(β1, β2). For a given β, var

{
n1/2

(
θ̂(β)− θ∗(β)

)}
= E

(
η1(β)ηT1 (β)

)
.

Proof of Theorem 5.2.2

Applying the Taylor expansion to sYi
(θ∗(β), β) around sYi

(θ̂
o
(β), β) gives

n−1/2
∑n

i=1
sYi

(θ∗(β), β)ζi

= n−1/2
∑n

i=1
sYi

(θ̂
o
(β), β)ζi + n−1/2

(
θ∗(β)− θ̂o(β)

)∑n

i=1
gYi

(θ̄(β), β)ζi,

170



where θ̄(β) is on the line segment between θ̂
o
(β) and θ∗(β). Given observations {Yi}ni=1,

Condition C4 and supβ∈Ξ

∥∥∥θ∗(β)− θ̂o(β)
∥∥∥ = op (1), one has

n−1/2
∑n

i=1
sYi

(θ∗(β), β)ζi ≈ n−1/2
∑n

i=1
sYi

(θ̂
o
(β), β)ζi.

Based on the definition of θ̃(β) in (5.2) and (5.4), one has

n1/2
(
θ̃(β)− θ̂o(β)

)
= −n−1/2W−1

Y (θ̂
o
(β), β)

∑n

i=1
sYi

(θ̂
o
(β), β)ζi

≈ −n−1/2W−1
Y (θ̂

o
(β), β)

∑n

i=1
sYi

(θ∗(β), β)ζi

≈ −n−1/2W̃−1(θ∗(β), β)
∑n

i=1
sYi

(θ∗(β), β)ζi

= −n−1/2
∑n

i=1
ηi(β)ζi.

Hence, conditional on observations {Yi}ni=1, n1/2
(
θ̃(β)− θ̂o(β)

)
converges weakly to a

Gaussian process with mean 0 and covariance function

Σo(β1, β2) = limn→∞ n−1∑n
i=1 E(ηi(β1)ζiζ

T
i η
T
i (β2) | Y ). We also have

Σo(β1, β2)− Σ∗(β1, β2)

= lim
n→∞n−1

∑n

i=1

[
E(ηi(β1)ζiζ

T
i η
T
i (β2) | Y )

]
− E

(
η1(β1)ηT1 (β2)

)
= lim

n→∞n−1
∑n

i=1

(
ηi(β1)ηTi (β2)

)
− E

(
η1(β1)ηT1 (β2)

)
= 0.

Hence, limn→∞ cov
{
n1/2

(
θ̃(β1)− θ̂o(β1)

)
, n1/2

(
θ̃(β2)− θ̂o(β2)

)}
= Σ∗(β1, β2), the

conditional distribution of n1/2
(
θ̃(β)− θ̂o(β)

)
is asymptotically equivalent to the uncon-

ditional distribution of n1/2
(
θ̂(β)− θ∗(β)

)
.
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