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ABSTRACT

STATISTICAL INFERENCE FOR FUNCTIONAL AND LONGITUDINAL
DATA

By

Guanqun Cao

Advances in modern technology have facilitated the collection of high-dimensional func-
tional and low dimensional longitudinal data. For these data, it is often of interest to describe
the key signals of the data (mean functions, covariance functions, derivative functions, etc.).
Functional data analysis (FDA) and longitudinal data analysis (LDA) techniques have played
a central role in the analysis of these data. The primary goal of this dissertation is to provide
some novel statistical inference methods for FDA and LDA.

In Chapter 1, we describe the structure (design, notations, etc.) of functional data and
describe the spline smoothing technique as a tool to analysis these data. Longitudinal data
analysis with missing not at random response is also discussed.

In Chapter 2, a polynomial spline estimator is proposed for the mean function of dense
functional data together with a simultaneous confidence band which is asymptotically cor-
rect. In addition, the spline estimator and its accompanying confidence band enjoy semi-
parametric efficiency in the sense that they are asymptotically the same as if all random
trajectories are observed entirely and without errors. The confidence band is also extended
to the difference of mean functions of two populations of functional data. Simulation ex-
periments provide strong evidence that corroborates the asymptotic theory while computing
is efficient. The confidence band procedure is illustrated by analyzing the near infrared

spectroscopy data.



A nonparametric estimation of the covariance function for dense functional data using
tensor product B-splines is considered in Chapter 3. We develop both local and global
asymptotic distributions for the proposed estimator, and show that our estimator is as
efficient as an “oracle” estimator. Monte Carlo simulation experiments and two real data
examples are also provided to illustrate the proposed method in this chapter.

In Chapter 4, we develop a new procedure to construct simultaneous confidence bands for
derivatives of mean curves in FDA. The technique involves polynomial splines that provide
an approximation to the derivatives of the mean functions, the covariance functions and the
associated eigenfunctions. The confidence band procedure is illustrated through numerical
simulation studies and a real life example.

In Chapter 5, we consider data generated from a longitudinal study with potentially
non random missing data. For these data, a joint model for the missing data process and
the outcome process, is found to be at best weakly identifiable. Due to this identifiability
concerns, tests concerning the parameters of interest may not be able to use conventional
theories and it may not be clear how to assess statistical significance. We extend the lit-
erature by developing a testing procedure that can be used to evaluate hypotheses under
non and weakly identifiable semiparametric models. We derive the limiting distribution of
this statistic and propose theoretically justified resampling approaches to approximate its
asymptotic distribution. The methodology’s practical utility is illustrated in simulations and

an analysis of quality-of-life outcomes from a longitudinal study on breast cancer.
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Chapter 1

Introduction

1.1 Functional data analysis

1.1.1 The basics

Functional data analysis (FDA) has recently become a focal area in statistical research, as
recent, technological progress in measuring devices now allow one to observe spatiotemporal
phenomena on arbitrarily fine grids, that is, almost in a continuous manner. This area
remains distinct due to its usefulness to climatology, medicine, meteorology, etc.

The functional data that we consider are a collection of trajectories {ni(x)}?zl which
are i.i.d. realizations of a smooth random function 7(z), defined on a continuous interval X'.
Assume that {n(z),z € X} is an L? process, i.e. E Ix 772(m)da: < 400, and define the mean
and covariance functions m(x) = E{n(z)} and G (x,x’) = cov {77(95),77(95’)}. The covari-
ance function is a symmetric nonnegative-definite function with a spectral decomposition,
G (:c,x/> = ZZ:l AL (7) Yy (x/>, where Ay > A9 > -+ >0, ZZzl Al < +00, are the

eigenvalues, k is either a positive integer or infinity and {w k(x)}/]j;:l are the corresponding
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eigenfunctions and form a set of orthonormal functions in L? (X). By the Karhunen-Loeve
representation, n,(x) = m(z) + 2221 §;1:91.(7), where the random coefficients &;;. are un-
correlated with mean 0 and variance 1, and the functions ¢;. = \/)\_kw k-

Characterizing nonlinear variation in FDA is a challenging problem. In particular, when
random curves are observed on regular dense grids, the existing literature on FDA focuses on
pointwise estimation and inference. This, however, is not sufficient to provide understanding
of the variability of the estimator of the whole regression curve, its derivatives and covariance
function, nor can it be used to correctly answer questions about the curve’s or surface’s shape.

In Chapters 2, 3 and 4, we propose oracle estimators and establish asymptotic correct-
ness of the proposed simultaneous confidence bands/envelopes for mean, covariance and its
derivative functions while the number of observations for each subject tends to infinite as

sample size goes to infinite, using various properties of spline smoothing.

1.1.2 Polynomial spline

To describe the spline functions, we first introduce a sequence of equally-spaced points
{t J}]}Zﬁv called interior knots which divide the interval [0, 1] into (N + 1) equal subin-
tervals I ; = [tJ,tJ+1), J=0,..... Njm — 1, INm = [tNm, 1]. For any positive integer p,

introduce left boundary knots tl_p, ..., 10, and right boundary knots tNm+1’ ey tNm+p7

in which hy is the distance between neighboring knots. Denote by H(p ~2) the space of

p-th order spline space, i.e., p — 2 times continuously differentiable functions on [0, 1] that
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are polynomials of degree p — 1 on [tJ,tJ+1], J=0,...,Nm.

The J-th B-spline of order p is

(2= t5) Byp1 @) (7= tyip) Brrip-1 @
Ljyp—1—1tJ tep —tJ+1

for p > 1, with

1 tJ§$<tJ_|_1
Bjj(x)=1j(x)=

)

0 otherwise.

\
Hence, the B-spline basis of 7—[(_1), the space of constant splines, are indicator functions
of interval T 7, Byq(x) = I;(x),J = 0,...., N, while the B-spline basis of 7(0), the space
of linear splines, are B jo(x) = K{(m—tJ_H) hT_nl}, J = —1,...., Nm, where K (u) =

(1= Jul)+

In this work, X = [0,1] or [0, 1]2. For any function ¢ on a domain X, let ||¢], =
Supyc y |# (x)|. For any Lebesgue measurable Lo-integrable functions ¢ and ¢ on [0, 1],
define their theoretical and empirical inner products as (¢,¢) = f x ¢ (z) ¢ (x)dr and
(@, )9 N = N1 Z L9 (7/N) ¢ (j/N), with the corresponding theoretical and empirical

inner product norms defined as ||qz5||2 = fO ¢2 ) dx and ||qu2 N = N1 Z . 2 (j/N),

N
respectively. The theoretical and empirical inner product matrices of {B J p(a:)}Jml are
) =1-p
denoted as
Nm, . Nm
Vo= (Ba B )3y Vo= (B B ) )
p/)JJ'=1—p 2N) jJ=1—p



1.1.3 The near infrared spectroscopy data

The near infrared spectroscopy data data are recorded on a Tecator Infrared Food and Feed
Analyzer working in the wavelength range 850 - 1050 nm by the Near Infrared Transmission
(NIT) principle. Each sample contains finely chopped pure meat with different moisture, fat
and protein contents. The task is to predict the fat content of a meat sample on the basis
of its near infrared absorbance spectrum.

The spectral data can be naturally considered as functional data as the number of ob-
servation points for each trajectory is relatively large compared with the sample size. In
Chapter 2, we will perform a two-sample test to evaluate whether absorbance from the spec-
trum differs significantly due to difference in fat content. In Chapter 4, we will study the

behavior of the first order derivative of mean absorbance measurements for this data set.

1.1.4 Speech recognition data

Speech recognition data were extracted from the TIMIT database (TIMIT Acoustic-Phonetic
Continuous Speech Corpus, NTIS, US Dept of Commerce) which is a widely used resource for
research in speech recognition. The data set we use was formed by selecting five phonemes
for classification based on digitized speech from this database. From continuous speech
of 50 male speakers, 4509 speech frames of 32 msec duration were selected. From each
speech frame, a log-periodogram was used as transformation for casting speech data in a
form suitable for speech recognition. The five phonemes in this data set are transcribed as
follows: “sh” as in “she”, “dcl” as in “dark”, “iy” as the vowel in “she”, “aa” as the vowel
in “dark”, and “ao” as the first vowel in “water”. For illustration purpose, we focus on

the “sh” and “ao” phoneme classes as representatives of consonants and vowels. There are
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n1 = 872 log-periodograms in the “sh” class, and n9 = 1022 log-periodograms in the “ao”
group. Each log-periodogram consists N = 256 equally spaced points.

This data set was first analyzed by Hastie et al. (1995) using penalized linear discriminant
analysis. One of the basic assumptions is that the covariance functions are the same for
different classes. In Chapter 3, we would like to test the equal covariance assumption formally

by the proposed tensor product spline confidence envelopes.

1.2 Longitudinal data analysis

1.2.1 Problems

Identifiability issues commonly arise with non-random missing data, where the parameters
in the model for the missingness may not be jointly identifiable with those in the model for
the outcomes of interest using only the observed data. Analyses which assume identifiability
may be unreliable, with the joint selection and outcome model yielding flat “estimation”
surfaces potentially having multiple modes.

In Chapter 5, we consider these missing data issues when analyzing longitudinal data
with informative dropout employing the model of Troxel, Lipsitz and Harrington (1998b).
The model is semiparametric, with the parameter being estimated denoted by (0, 3). The
parameter (3 is the selection parameter that measures the extent of non-randomness of the
missing data mechanism and 6 consists of the remaining finite dimensional parameters of
the selection and outcome models. The hypotheses of interest concern covariate effects on
the outcome, which are contained in 6. We extend the profiling idea to arbitrary estimating

functions involving # and 8 but which do not require a complete parametric model specifica-



tion. The generalization of the infimum test and confidence bands to non-likelihood settings
is nontrivial. We present generic conditions which establish the large sample properties of
the estimating function for 6 profiled on 3, including the uniform consistency and weak con-
vergence of the 6 estimator as a function of 5. Owing to the complexity of the asymptotic
distributions of the infimum test and confidence bands, resampling is needed. A theoretically

justified procedure is discussed for approximating such distributions.

1.2.2 The breast cancer data

These breast cancer data are from the International Breast Cancer Study Group-IBCSG,
previously reported by Hiirny et al. (1992); and Troxel et al. (1998b). This is a group of
randomized breast cancer studies with primary endpoints being survival and relapse; and
quality of life being a secondary endpoint. One study, Study VI, is a randomized trial of
adjuvant chemotherapy following surgery for the treatment of breast cancer. In this study, 4
treatments (A, B, C and D) were randomly assigned to 431 pre-menopausal cancer patients
and several domains of quality of life were assessed. In this thesis, we focus on three quality-
of-life domains; 1) PACIS (perceived adjustment to chronic illness scale), 2) Mood and 3)
Appetite. A full description of Study VI and other IBCSG trials may be found elsewhere
(Hiirny et al., 1992; Troxel et al., 1998a). In Chapter 5, we assess the treatment and time

effects on the mean quality of life by apply the proposed test and resampling procedure.



Chapter 2

Confidence Bands for Mean Functions

2.1 Introduction

In functional data analysis problems, estimation of mean function is the fundamental first
step; see Cardot (2000); Rice and Wu (2001); Cuevas, Febrero and Frainman (2006); Ferraty
and Vieu (2006); Degras (2011) and Ma, Yang and Carroll (2012) for example. According
to Ramsay and Silverman (2005), functional data consist of a collection of i.i.d. realizations
{n; (:L')}?Zl of a smooth random function n(z), with unknown mean function En(z) = m(x)
and covariance function G (:c, ! ) = cov {77(96), n(a! )} Although the domain of 7(-) is an
entire interval X', the recording of each random curve 7; () is only over a finite number N,
of points in X', and contaminated with measurement errors. Without loss of generality, we

take X = [0, 1].

Denote by Yz'j the j-th observation of the random curve 7;(-) at time point Xij7 1< <

n,1 < j < N;. Although we refer to variable X, as time, it could also be other numerical

J
measures, such as wavelength in Section 3.6. In this work, we examine the equally spaced
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dense design, in other words, Xz'j =j/N,1 <i<n,1 <j<N with N going to infinity.
For the i-th subject, i = 1,2,...,n, its sample path {j/N, ng} is the noisy realization of

the continuous time stochastic process n;(x) in the sense that Y;; = n, (j/N) + o (j/N) €ij»

2

with errors &;; satisfying £ <€Z'j) =0, E(gij> =1, and {n;(z),z € [0,1]} are i.i.d. copies

of the process {n(x),x € [0, 1]} satisfying F f[O 1] nz(x)dx < +o00.

For the standard process {n(z),z € [0, 1]}, let sequences {)‘k}zozlv {wk;(x)}zozl be the
eigenvalues and eigenfunctions of GG (m,x/ ) respectively, in which \; > Ay > .- > 0,
Zzozl A < 00, {wk’}iozl form an orthonormal basis of L2 ([0,1]) and covariance func-
tion G (x,:c/) = Zzozl A ()Y (x/), which implies that [ G (l’,l’,) Vg, <x’) da! =
Ay (x). The process {n;(x),x € [0, 1]} has the Karhunen-Lotve L? representation n;(x) =
m(z) + Zzozl ;191 (x), where the random coefficients {;;. are uncorrelated with mean 0
and variance 1, and ¢f = \/El/’k:' In what follows, we assume that A\ = 0, for k& > &,
where & is a positive integer or oo, thus G(z,z') = ZZ:l b1.(2) 9} (:pl) and the model that

we consider is

Yij =mG/N)+ D0 &t G/N) +0 (/N) 2. (2.1)

Although the sequences { Ak}llzzl’ {¢k(~)}’]z:1 and the random coefficients ;. exist math-

ematically, they are unknown or unobservable.

The existing literature focuses on two data types. Yao, Miiller and Wang (2005) studied
sparse longitudinal data for which V;, i.e. the number of observations for the i-th curve, is
bounded and follows a given distribution, in which case Ma, Yang and Carroll (2012) obtained
asymptotically simultaneous confidence band for the mean function of the functional data,
using piecewise constant spline estimation. Li and Hsing (2010a) established uniform con-

vergence rate for local linear estimators of mean and covariance function of dense functional
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data, where minj <;<, N; > (n/logn)1/4, as n — 00, similar to our Assumption (A3), but
did not provide asymptotic distribution of maximal deviation or simultaneous confidence
bands. Degras (2011) built asymptotically correct simultaneous confidence bands for dense
functional data using local linear estimators. Bunea, Ivanescu and Wegkamp (2011) pro-
posed asymptotically conservative rather than correct confidence set for the mean function

of Gaussian functional data.

In this chapter, we propose polynomial spline confidence bands for the mean function
based on dense functional data. In function estimation problems, simultaneous confidence
bands are an important tool to address the variability in the mean curve, see Zhao and
Wu (2008); Zhou, Shen and Wolfe (1998) and Zhou and Wu (2010) for related theory and
applications. The fact that simultaneous confidence bands have not been widely used for
functional data analysis is certainly not due to lack of interesting applications, but due to
the greater technical difficulty to formulate such bands for functional data and establish
their theoretical properties. In this work, we have established asymptotic correctness of
the proposed confidence bands using various properties of spline smoothing. The spline
estimators and the accompanying confidence bands are asymptotically the same as if all
the n random curves are recorded over the entire interval, without measurement errors.
They are oracally efficient despite the use of spline smoothing, see Remark 2.2.1. This
provides partial theoretical justification for treating functional data as perfectly recorded
random curves over the entire data range, as in Ferraty and Vieu (2006). Theorem 3 of
Hall, Miiller and Wang (2006) stated mean square (rather than the stronger uniform) oracle
efficiency for local linear estimation of eigenfunctions and eigenvalues (rather than the mean

function), under assumptions similar to ours, but provided only an outline of proof. Among

9



the existing works on functional data analysis, Ma, Yang and Carroll (2012) proposed the
simultaneous confidence bands for sparse functional data. However, their result does not
enjoy the oracle efficiency stated in Theorem 2.2.1, since there are not enough observations
for each subject to obtain a good estimate of the individual trajectories. As a result, it has
the slow nonparametric convergence rate of n—1/ 3logn, instead of the parametric rate of
-1/2

n as in the present work. This essential difference completely separates dense functional

data from sparse ones.

The aforementioned confidence bands are also extended to the difference of two regression
functions. This is motivated by Li and Yu (2008), who applied functional segment discrimi-
nant analysis to a Tecator data set, see Figure 2.3. In this data set, each observation (meat)
consists of a 100-channel absorbance spectrum in the wavelength with different fat, water
and protein percent. Li and Yu (2008) used the spectra to predict whether the fat percentage
is greater than 20%. On the flip side, we are interested in building a 100 (1 — «) % confidence
band for the difference between regression functions from the spectra of the less than 20%
fat group and the higher than 20% fat group. If this 100 (1 — «) % confidence band covers
the zero line, one accepts the null hypothesis of no difference between the two groups, with
p-value no greater than a. Test for equality between two groups of curves based on the
adaptive Neyman test and wavelet thresholding techniques were proposed in Fan and Lin
(1998), who did not provide an estimator of the difference of the two mean functions nor a
simultaneous confidence band for such estimator. As a result, their test did not extend to
testing other important hypotheses on the difference of the two mean functions while our
Theorem 2.2.3 provides a benchmark for all such testing. More recently, Benko, Hardle and

Kneip (2009) developed two-sample bootstrap tests for the equality of eigenfunctions, eigen-
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values and mean functions by using common functional principal components and bootstrap
tests.

This chapter is organized as follows. Section 2.2 states main theoretical results on confi-
dence bands constructed from polynomial splines. Section 2.3 provides further insights into
the error structure of spline estimators. The actual steps to implement the confidence bands
are provided in Section 2.4. A simulation study is presented in Section 2.5, and an empirical
illustration on how to use the proposed spline confidence band for inference is reported in

Section 2.6. Technical proofs are collected in the Appendix.

2.2 Main results

To describe the spline functions, we first define a sequence of equally-spaced points {t J}]}f;nl,
called interior knots, which have been introduced in Chapter 1. Denote by H(p_Q) the
space of p-th order spline space, i.e., p — 2 times continuously differentiable functions on
[0,1] that are polynomials of degree p — 1 on [t j,t 7, 1], J =0,..., N Then #(P=2) =
{Zf}fgl_p bypBp (x) byp ER € [0, 1]}, where B, is the J-th B-spline basis of order
p as defined in de Boor (2001).

We propose to estimate the mean function m(z) by
. . n N ) 2
mp(r) =  argmin Zizl ijl {Yzy —g (j/N)} : (2.2)
g()eH(P=2)
The technical assumptions we need are as follows:
(A1) The regression function m € cr—1,1 [0,1], i.e., m(P—1) ¢ 00,1 [0, 1].

(A2) The standard deviation function o (x) € cOm 0,1] for some p € (0,1].
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(A3) As n — oo, N1/ (2P) 5 0 and N =0 (n9> for some 6 > 1/ (2p); the number of
interior knots Ny, satisfies NNWTL1 — 00, Nﬂ_lpnl/2 — 0, N_1/2N7}n/210gn — 0 or

equivalently Nhpy — 0o, h];nnl/2 — 0, N_l/zh;bl/Qlogn — 0.

(A4) There exists Cy > 0 such that G (z,7) > Cey, v € [0,1]; for k € {1,... Kk}, ¢p. (z) €
cOm 0, 1],22:1 ||¢k:Hoo < oo and as n — oo, hhy, 2211 ||¢kHO,u =o0(1) for a
sequence {/@n}%ozl of increasing integers, with limp—soo kp = K and the constant

€ (0,1] as in Assumption (A2). In particular, EZZHn-Fl H‘%Hoo =o(1).

(A5) There are constants C1,Co € (0,+00), 71,79 € (1,400), B € (0,1/2) and i.i.d.

_ n,k n,N
N(0,1) variables {Zikf}izl 1’ {Zij’g}izl i1 such that

t t
Zz‘zl Sik — Zizl Zik g

max P{ max
1<k<g 1<t<n

> C’lnﬁ} < 02n_71, (2.3)

t t
Z¢:1 Sij — 22'21 Zije

P max  max
1<j<N 1<t<n

> C’lnﬁ} < 0271_72. (2.4)

Assumptions (A1)-(A2) are typical for spline smoothing, see Huang and Yang (2004),
Xue and Yang (2006), Wang and Yang (2009a), Liu and Yang (2010) and Ma and Yang
(2011). Assumption (A3) concerns the number of observations for each subject, and the
number of knots of B-splines. Assumption (A4) ensures that the principal components have
collectively bounded smoothness. Assumption (A5) provides Gaussian approximation of

estimation error process, and is ensured by the following elementary assumption:

-
(A5/) There exist 71 > 4, T9 > 4420 such that E |€ik|7—1 +FE ‘qj‘ 2 - +oo, for 1 < i < oo,
1<k<k,1<7<o0. The number k of nonzero eigenvalues is finite or k is infinite
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while the variables {gik}1<i<oo 1<k<oo @re t.i.d..

Degras (2011) makes a restrictive assumption (A.2) on the Holder continuity of the
stochastic process n(x) = m(x) + Zzoz]_ §1.0p(z). It is elementary to construct examples
where our Assumptions (A4) and (A5) are satisfied while assumption (A.2) of Degras (2011)

1s not.

The part of Assumption (A4) on ¢;.’s holds trivially if  is finite and all ¢;. (z) €

cO:n [0, 1]. Note also that by definition, o). = \/A—k¢k’ Hgkaoo = \//\—k H@/}k”OO,

AW , in which | OO: form an orthonormal basis of L2 ([0,1]), hence, Assump-
ENYENO,u kEJSk=1

¢k||0,u -

tion (A4) is fulfilled for x = oo as long as Aj. decreases to zero sufficiently fast. Following one
Referee’s suggestion, we provide the following example. One takes A\j. = p2[k/2], k=1,2,..

for any p € (0,1), with {4 k}%ozl the canonical orthonormal Fourier basis of L2 ([0,1])

Y1) = Lgpyq(z) = V2 cos (kr)

V2sin (knz)  k=1,2,...,z € [0,1].

gy, (z)

In this case, Zzozl Hd)kHoo =1+ Zzozlpk (V2+v2) =1+2v2p(1 - p)_l < 00, while

for any {Iin}%ozl with kp, increasing, odd and sy, — oo, and Lipschitz order pu =1

e S Nogllon = om U2 G (ke + vk
< 2V2rhmp Zkzl pk_lk = 2V2rhm, (1 — P)_2

= O(hm)=0(1).

Denote by ((z), = € [0,1] a standardized Gaussian process such that E( (z) = 0,
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B2 () =1, z € [0, 1] with covariance function

B¢ («') = 6 (0.0) {6 @6 (")) 2 el e 0.1

and define the 100 x (1 — «)-th percentile of the absolute maxima distribution of ( (),
Vr € [0,1], i.e., P {supwé[o 1] IC ()] < Ql—oz} =1—a, Va € (0,1). Denote by )2 the
100 (1 — «/2)-th percentile of the standard normal distribution. Define also the following

“infeasible estimator” of function m

me) = () =~ 3 i) w € 01]. (25)

The term “infeasible” refers to the fact that m(z) is computed from unknown quantity n; (),
x € [0,1], and it would be the natural estimator of m(z) if all the i.i.d. random curves n;(z),

x € [0, 1] were observed, a view taken in Ferraty and Vieu (2006).

We now state our main results in the following theorem.

Theorem 2.2.1. Under Assumptions (A1)-(A5), forVa € (0,1), as n — oo, the “infeasible

estimator” m(x) converges at the \/n rate

P {Supzpe[O,l] nl/2 |m(z) — m(z)| G (x, x)_1/2 < Ql—a} —1—a,

P{n1/2 i (z) — m(z)| G (z,2) "1/ < Zl_a/Q} 51— a,Vae|0,1],

1/2

while the spline estimator my is asymptotically equivalent to m up to order n™/ <, i.e.

SUP [0, 1] nl/2 |m(z) — rp(z)| = op (1).
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Remark 2.2.1. The significance of Theorem 2.2.1 lies in the fact that one does not need to
distinguish between the spline estimator 1y and the “infeasible estimator” m in (2.5), which
converges with y/n rate like a parametric estimator. We therefore have established oracle

efficiency of the nonparametric estimator 1.

Corollary 2.2.2. Under Assumptions (A1)-(A5), as n — oo, an asymptotic 100 (1 — ) %

correct confidence band for m(x),z € [0,1] is
inp(x) £ G (z,2)2 Qu_yn Y2 Va € (0,1)

while an asymptotic 100 (1 — ) % pointwise confidence interval for m(x),x € [0,1], is

mp(x) £ G (z, x)1/2 Zl—a/2”_1/2'

We next describe a two-sample extension of Theorem 2.2.1. Denote two samples indicated

by d = 1,2, which satisfy

. R . . . .
Ygij =mqG/N) + 3 4 Eqindar G/N) +0q(/N)egijo 1<i<ng 1<j<N

with covariance functions G ;(z, z!) = ZZil a1 ()0 g <x/ > respectively. We denote the
ratio of two sample sizes as 7 = ny/n9 and assume that limn1_>oo r=r>0.

For both groups, let mlp(:v) and mgp(w) be the order p spline estimates of mean functions
m1(x) and my(z) by (2.2). Also denote by (19 (z), x € [0, 1] a standardized Gaussian process

such that E¢q9 (z) =0, EC%Q (x) =1, x € [0, 1] with covariance function

Gq <x,x/> +1rGo <$,x/)

, x,x, € [0,1].
{G1 (z,2) +rGy (x,:zc)}l/2 {Gl (x,a:’) +1rGo (m,x’)}l/Q

EC19 ()12 (l”) =
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Denote by QlQ,l—a the (1 — «)-th quantile of the absolute maxima deviation of (19 (z),
x € [0, 1] as above. We mimic the two sample t-test and state the following theorem whose

proof is analogous to that of Theorem 2.2.1.

Theorem 2.2.3. If Assumptions (A1)-(A5) are modified for each group accordingly, then

for any a € (0,1), as ny — o0, 7 =1 >0,

121/ )
ny ‘ (mlp — 1oy —mq + m2> (x)‘

{(G +1Go) (z,2)}1/2

P SUPxG[O,l] < Q12’1_a —1—a.

Theorems 2.2.3 yields uniform asymptotic confidence band for mq(z) —mgy(x), x € [0, 1].

Corollary 2.2.4. If Assumptions (A1)-(A5) are modified for each group accordingly, as nq

— 00, 7 = 1 >0, a 100 x (1 —«a)% asymptotically correct confidence band for mq(z) —
0,1] is (1ny, —7i + /2 Gy +1G 12,y

mo(x), x € [0,1] is (ryy, — gy ) (x) £ny "7Q12 1o {(G1 +7Go) (z,2)}/%, Va €

(0,1).

If the confidence band in Corollary 2.2.2 is used to test hypothesis
Hpy : m(x) = mg(x), Vo € [0,1] «— Hg : m(x) # mq(z), for some x € [0,1],

for some given function mg(z), as one referee pointed out, the asymptotic power of the test is
a under H(, 1 under Hq due to Theorem 2.2.1. The same can be said for testing hypothesis

about mq(x) — mo(x) using the confidence band in Corollary 2.2.4.
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2.3 Error decomposition

In this section, we break the estimation error 7p(x) — m(z) into three terms. We begin by

discussing the representation of the spline estimator 7p(z) in (2.2).

The definition of 7p(r) in (2.2) means that

ZJ 1 pBJp Tp(®);

. . T
with coefficients {5 L—ppr 15} N, p} solving the following least squares problem

. . T
{51—p,p’ ""BNm,p}
n N 2

= argmin Z Z Yij— Z BipBip (j/N) 7 .(2.6)
{ﬁl—p,pr“’ﬁ]\fm, }ERNm+p2—1j:1 J=1-p

Applying elementary algebra, one obtains

-1
i ) = {B1_pp @) By @} (X0 X)X, 2.1)
where Y = (Yl,...,fN)T, % —1zn ”,1 < j < N, and the design matrix X is
Bl—p,p(l/N) BNm,p(l/N)
X —
Bi_pp(N/N) - By, n(N/N)
p.p m;P N x(Nin+p)
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Projecting via (2.7) the relationship in model (2.1) onto the linear subspace of RNm+p

spanned by {Bj’p (j/N)}1<j<N 1-p<J<Nm

tion in the space H(p —2) of spline functions:

, we obtain the following crucial decomposi-

mp(x) = np(z) + ép(x) + Ep(), (2.8)
where
mp(e) = ZJ 1 p~ JpBrple ZJ 1—p WpBrp(e)
Gla) = > & ZJ 1—p kJpBIp@) (2.9)

- ~ T T T
The vectors {/31—]97 ...,5Nm} , {dl_p, ...,ELNm} and {%k,l—]w ""%k,Nm} in (2.9)

are solutions to (2.6) with Y;j replaced by m (j/N), o (j/N) gjj and §; 1.0 (j/N) respectively.

Alternatively,

) T \~L T

mp (1) = {Bl ol ,BNmyp(x)} X' X|] X m

) T \~L_T

ép(z) = { By, (@ )} X X) X e

. _ T\ l_T

Epp (@) = {k{Bl_p’p(x),...,BNm,p(x)} X X) X ¢p1<k<n
: : T :
in which m = (m (1/N),...m(N/N)) is the signal vector,

T

e = (0c(I/N)gq,...,0 (N/N)E ) £j = _121_ gij» 1 < j < N is the noise

T _ . .
vector and ¢ = (¢ (1/N),..., ¢ (N/N)) are the eigenfunction vectors, and £ ;. =
IS g 1<k <k

We cite next an important result from de Boor (2001), p. 149.
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Theorem 2.3.1. There is an absolute constant Cp—l,,u > 0 such that for every ¢ €

cp—Lu [0,1] for some p € (0,1], there exists a function g € 3 (P—1) 0, 1] for which

19 = dlloo < Cp_1p “¢(p—1)‘ pltp=1.

0,1
The next three propositions concern myp(z), ép(z) and Ep(x) given in (2.8).

Proposition 2.3.1. Under Assumptions (A1) and (AS3), as n — oo
SUPL.€[0,1] nl/2 |[rip(z) — m(z)| = o(1). (2.10)
Proposition 2.3.2. Under Assumptions (A2)-(A4), as n — o0

SUPe0,1] nl/2 ép(z)| =op (1). (2.11)

Proposition 2.3.3. Under Assumptions (A2)-(A4), as n — co
sup .12 [Ep(@) = (m(@) = m ()] = op (1) (212)
also for any o € (0,1)
Pl e @) <) - 1-a @B)

Equations (2.10), (2.11) and (2.12) yield the asymptotic efficiency of the spline estimator
mp, i.e. SUPe[0,1] nl/2 |m(z) — mp(z)| = op (1). The Appendix contains the proofs of
the above three propositions, which together with (2.8), imply Theorem 2.2.1.
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2.4 Implementation

This section describes procedures to implement the confidence band of Corollary 2.2.2.

‘ _ N.n
Given any data set <]/N, YZ]) :

j: 72:

from model (2.1), the spline estimator my () is
obtained from (2.7), the number of interior knots in estimating m(x) is taken to be Ny, =
[cnl/ (2p) log (n)], in which [a] denotes the integer part of a. Our experience shows that the
choice of constant ¢ = 0.2, 0.3, 0.5, 1, 2 seems quite adequate, and that is what we recommend.
When constructing the confidence bands, one needs to estimate the unknown functions G (-, -)

and the quantile Q1_,, and then plug in these estimators: the same approach is taken in

Ma, Yang and Carroll (2012) and Wang and Yang (2009a).

The pilot estimator ép (:L', e ) of covariance function G (:1:, i > is

A : . . 2
v oyl S € o (s )}
with €y = nolyn {Y;j — iy (j/N)} {Yij/ — 1 (j’/N)}, 1<j+j <N and

: _ N,
the tensor product spline space H(P—=2).2 = {ZJ,(J;/:l—p by By (t) B,]’,p ()b €
R,t,s € [0,1]} in which Ny = [nl/@p)log(log(n))]. A detailed discussion of the consistent

property of this plug-in estimator can be found in Chapter 3.

In order to estimate ()1 _,, one first does the eigenfunction decomposition of ép <x, ! ) ,
ie. N71 Zj\le ép(j/N,j//N)ﬁ)k (j/N) = /A\k,ﬂ)k (j’/N), to obtain the estimated eigenval-
ues \ f. and eigenfunctions ¥ - Next, one chooses the number « of eigenfunctions by using
the following standard and efficient criterion, i.e.

K = argming <j < {22:1 5\/{;/ Zgzl ;\k > 0.95}, where {Ak}£:1 are the first 7" estimated
positive eigenvalues. Finally, one simulates éb (x) = G'p (x, a:)_l/2 Zgzl Zk:,b&k: (x), where
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qAﬁk = \/5\]{:221/{, Z. p are i.i.d standard normal variables with 1 <k <k and b=1,...,0)/,
and b is a preset large integer, the default of which is 1000. We take the maximal absolute
value for each copy of 6 p (r) and estimates Q1 _, by the empirical quantile Ql—a of these

maximum values. We then use the following confidence band
mp(x):lzn_l/2ép (x,x)l/Q Q11— €[0,1], (2.14)

for the mean function. We estimate ()19 1 _, in a similar way as Ql—a and compute

) A ~1/2 A A - 1/2
(mlp — m2p) () £ny / Q12,1-a {(Glp + T’G2p> (x, x)} : (2.15)
as confidence band for mq(z) — mg(x). Although beyond the scope of this work, as one

referee pointed out, the confidence band in (2.14) is expected to enjoy the same asymptotic

coverage as if true values of Q1_,, and G (z,x) were used instead, due to the consistency of

~

Gp (z, ) estimating G (z,x). The same holds for the confidence band in (2.15).

2.5 Simulation

To demonstrate the practical performance of our theoretical results, we perform a set of

simulation studies. Data are generated from model

. 2 ‘ . .
Yij=m(i/N)+ ), &kop (§/N) +ogij 1 <j<N1<i<n, (2.16)

where £;;. ~ N(0,1),k = 1,2, Eij ™~ N(0,1), for 1 <i<n,1<j <N, mx)=10+
sin {27 (z — 1/2)}, ¢1(z) = —2cos{m (x — 1/2)} and ¢9(z) = sin {7 (x — 1/2)}. This setting
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implies A1 = 2 and A9 = 0.5. The noise levels are set to be ¢ = 0.5 and 0.3. The number of
subjects n is taken to be 60, 100,200, 300 and 500, and under each sample size the number
of observations per curve is assumed to be N = [n0'2510g2(n)]. This simulated process has
a similar design as one of the simulation models in Yao, Miiller and Wang (2005), except
that each subject is densely observed. We consider both linear and cubic spline estimators,
and use confidence levels 1 — a = 0.95 and 0.99 for our simultaneous confidence bands. The
constant ¢ in the definition of Ny, in Section 2.4 is taken to be 0.2, 0.3, 0.5, 1 and 2. Each

simulation is repeated 500 times.

Figures 2.1 and 2.2 show the estimated mean functions and their 95% confidence bands
for the true curve m(-) in model (2.16) with ¢ = 0.3 and n = 100, 200, 300, 500, respectively.
As expected when n increases, the confidence band becomes narrower and the linear and

cubic spline estimators are closer to the true curve.

Tables 2.2 to 2.4 show the empirical frequency that the true curve m (-) is covered by
the linear and cubic spline confidence bands (2.14) at 100 points {1/100,...,99/100,1}
respectively. At all noise levels, the coverage percentages for the confidence bands are close
to the nominal confidence levels 0.95 and 0.99 for linear splines with ¢ = 0.5,1 (Tables 2.1
and 2.2), and cubic splines with ¢ = 0.3,0.5 (Tables 2.3 and 2.4) but decline slightly for
¢ = 2 and markedly for ¢ = 0.2. The coverage percentages thus depend on the choice of
Npm, and the dependency becomes stronger when sample sizes decrease. For large sample
sizes n = 300, 500, the effect of the choice of Ny, on the coverage percentages is negligible.
Although our theory indicates no optimal choice of ¢, we recommend using ¢ = 0.5 for data
analysis as its performance in simulation for both linear and cubic splines is either optimal

or near optimal.
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Figure 2.1: For interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this dissertation. Plots of the linear spline
estimator (2.2) for simulated data (dashed-dotted line) and 95% confidence bands (2.14)
(upper and lower dashed lines) (2.14) for m(z) (solid lines). In all panels, ¢ = 0.3.
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Figure 2.2: Plots of the cubic spline estimator (2.2) for simulated data (dashed-dotted line)
and 95% confidence bands (2.14) (upper and lower dashed lines) (2.14) for m(z) (solid lines).

In all panels, o = 0.3.
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Table 2.1: Coverage frequencies from 500 replications using linear spline (2.14) with p = 2,
Nm = [cnl/(Qp)log(n)] and o = 0.5.

n l—-a ¢c=02 ¢c=03 ¢c=05 ¢c=1 ¢c=2

60 0950 0384  0.790  0.876 0.894 0.852
0990 0.692 0938 0970 0.976 0.942

100 0.950 0.184  0.826  0.886 0.884 0.838
0.990 0476 0936 0964 0.966 0.944

200 0.950 0.418 0.856 0914 0.922 0.862
0990 0.712 0966  0.976 0.990 0.972

300 0.950 0.600  0.888  0.920 0.932 0.874
0990 0.834 0978  0.976 0.980 0.972

500 0.950 0.772  0.880  0.922 0.886 0.894
0.990 0902 0964 0984 0.976 0.976

Table 2.2: Coverage frequencies from 500 replications using linear spline (2.14) with p = 2,
Nm = [cnl/(Qp)log(n)] and o0 = 0.3.

n l—a ¢c=02 ¢c=03 ¢c=05 ¢c=1 c¢c=2

60 0950 0410 0.786  0.930 0.914 0.884
0990 0.702  0.950  0.972 0.966 0.954

100 0.950 0.198  0.822 0916 0.916 0.896
0990 0496 0940 0974 0974 0.968

200 0.950 0.414  0.862  0.946 0.942 0.926
0.990 0.720 0966  0.984 0.984 0.980

300 0.950 0.602  0.896  0.940 0.934 0.926
0.990 0.840 0.982 0984 0.986 0.980

500 0.950 0.768  0.888  0.954 0.950 0.942
0.990 0906  0.968  0.992 0.994 0.988
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Table 2.3: Coverage frequencies from 500 replications using cubic spline (2.14) with p = 4,
Nm = [cnl/(Qp)log(n)] and o = 0.5.

n l—a ¢c=02 ¢c=03 ¢c=05 ¢c=1 c¢c=2

60 0950 0.644 0916  0.902 0.890 0.738

0.990 0.866 0980  0.958 0.964 0.888

100 0.950 0.596  0.902  0.904 0.876 0.846

0990 0.786 0970  0.968 0.956 0.952

200 0.950 0.928 0942  0.932 0.936 0.904

0990 0978 0.992 0982 0.992 0.978

300 0.950 0.920 0948  0.926 0.948 0.898

0990 0976  0.986  0.986 0.988 0.980

500 0.950 0928 0922  0.954 0.902 0.898

0.990 0980 0982 0990 0.976 0.978
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Table 2.4: Coverage frequencies from 500 replications using cubic spline (2.14) with p = 4,
N = [cnl/(Qp)log(n)] and o = 0.3.

n l—-a ¢c=02 ¢c=03 ¢c=05 ¢c=1 ¢=2

60 0950 0.672 0922  0.940 0.940 0.916
0990 0.884 098  0.986 0.984 0.982

100 0.950 0.610 0916 0914 0.914 0.896
0.990 0.798 0980 0974 0.970 0.964

200 0950 0938 0952  0.950 0.948 0.934
0990 0982 0984  0.992 0.982 0.984

300 0.950 0.922 0956  0.948 0.942 0.938
0990 0982 0984  0.988 0.984 0.982

500 0.950 0928 0928 0.936 0.932 0.916
0.990 0980 0982 0990 0.990 0.992

We compare by simulation the proposed spline confidence band to the least squares
Bonferroni and least squares bootstrap bands in Bunea, Ivanescu and Wegkamp (2011)
(BIW). Table 2.5 presents the empirical frequency that the true curve m (-) for model (2.16)
is covered by these bands at {1/100,...,99/100, 1} respectively as Tables 2.1 and 2.2. The
coverage frequency of the BIW Bonferroni band is much higher than the nominal level making
it too conservative. The coverage frequency of the BIW bootstrap band is consistently lower

than the nominal level by at least 10%, thus not recommended for practical use.

We also compare the widths of the three bands. For each replication, we calculate the
ratios of widths of the two BIW bands against the spline band at {1/100,...,99/100,1}
and then average these 100 ratios. Table 2.6 shows the five number summary of these 500

averaged ratios for ¢ = 0.3 and p = 4. The BIW Bonferroni band is much wider than
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Table 2.5: Coverage frequencies from 500 replications using least squares Bonferroni band
and least squares Bootstrap band.

Coverage frequency Coverage frequency
n 1 —a least squares Bonferroni least squares bootstrap
o=0.5 oc=0.3 oc=0.5 oc=0.3
60 0.950  0.990 0.988 0.742 0.744
0.990  0.994 0.994 0.856 0.864
100 0.950  0.996 0.998 0.678 0.712
0.990  0.998 1.000 0.860 0.870
200 0.950  0.988 0.992 0.710 0.734
0.990  1.000 1.000 0.856 0.888
300 0.950  0.988 0.998 0.704 0.720
0.990  1.000 1.000 0.868 0.870
500  0.950  0.996 0.998 0.718 0.732
0.990  1.000 1.000 0.856 0.860
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Table 2.6: Five number summary of ratios of confidence band widths.

least squares Bonferroni/cubic spline least squares bootstrap/cubic spline

n 1l—a Min Q1 Med Q3 Max. Min. Q1 Med. Q3 Max.

60 0.950 0.964 1.219 1.299 1.397 1.845 0.522 0.667 0.716 0.770 0.967
0.990 0.907 1.114 1.188 1.285 1.730 0.527 0.662 0.715 0.770 1.048

100 0.950 0.995 1.263 1.331 1415 1.684 0.565 0.675 0.714 0.754 0.888
0.990 0910 1.148 1.219 1.295 1.603 0.536 0.665 0.708 0.752 0.925

200 0.950 1.169 1.326 1.383 1.433 1.653 0.600 0.683 0.715 0.743 0.855
0.990 1.045 1.197 1.250 1.300 1.507 0.557 0.668 0.702 0.740 0.888

300 0.950 1.169 1.363 1.412 1.462 1.663 0.574 0.690 0.717 0.742 0.838
0.990 1.067 1.228 1.277 1.322 1.509 0.587 0.676 0.707 0.739 0.850

500 0.950 1.273 1.395 1.432 1.476 1.601 0.620 0.691 0.714 0.737 0.818
0.990 1.132 1.243 1.288 1.334 1.465 0.607 0.674 0.707 0.734 0.839

cubic spline band, making it undesirable. While the BIW bootstrap band is narrower, we
have mentioned previously that its coverage frequency is too low to be useful in practice.

Simulation for other cases (e.g. p =2, 0 = 0.5) leads to the same conclusion.

To examine the performance of the two-sample test based on spline confidence band,
Table 2.7 reports the empirical power and type I error for the proposed two-sample test. The
data were generated from (2.16) with ¢ = 0.5 and mq(z) = 10 +sin {27 (x — 1/2)} + ¢ (2),
n = nq for the first group, and mo(x) = 10 + sin {27 (x — 1/2)}, n = ng for the another
group. The remaining parameters, §;., € j» ¢1(x) and ¢9(x) were set to the same values
for each group as in (2.16). In order to mimic the real data in Section 2.6, we set N = 50,

100 and 200 when ny = 160, 80 and 40 and ny = 320, 160 and 80 accordingly. The studied
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Table 2.7: Empirical power and type I error of two-sample test using cubic spline.

() n1 =160, ng =320 ny; =80, ng =160 ny =40, ny =80

Nominal test level Nominal test level Nominal test level

0.05 0.01 0.05 0.01 0.05 0.01

0.6t 1.000 1.000 0.980 0.918 0.794 0.574
0.7sin(x) 1.000 1.000 0.978 0.910 0.788 0.566

0 0.058 0.010 0.068 0.010 0.096 0.028

Monte Carlo SE  0.001 0.004 0.001 0.004 0.001 0.004

hypotheses are:

Hy :mq(xz) =mo(z), Vo € [0,1] «— Hq : mq(z) # mg(x), for some z € [0, 1].

Table 2.7 shows the empirical frequencies of rejecting Hy in this simulation study with
nominal test level equal to 0.05 and 0.01. If §(x) # 0, these empirical powers should be
close to 1, and for 6(x) = 0, the nominal levels. Each set of simulations consists of 500
Monte Carlo runs. Asymptotic standard errors (as the number of Monte Carlo iterations
tends to infinity) are reported in the last row of the table. Results are listed only for cubic
spline confidence bands, as those of the linear spline are similar. Overall, the two-sample test
performs well, even with a rather small difference (6 () = 0.7 sin(x)), providing a reasonable
empirical power. Moreover, the differences between nominal levels and empirical type I error

do diminish as the sample size increases.
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2.6 Empirical example

In this section, we revisit the Tecator data mentioned in Section 1, which can be downloaded
at http://lib.stat.cmu.edu/datasets/tecator. In this data set, there are measurements on n =
240 meat samples, where for each sample a N = 100 channel near-infrared spectrum of
absorbance measurements was recorded, and contents of moisture (water), fat and protein
were also obtained. The Feed Analyzer worked in the wavelength range from 850 nm to
1050 nm. Figure 2.3 shows the scatter plot of this data set. The spectral data can be
naturally considered as functional data, and we will perform a two-sample test to see whether

absorbance from the spectrum differs significantly due to difference in fat content.

This data set has been used for comparing four classification methods (Li and Yu, 2008),
building a regression model to predict the fat content from the spectrum (Li and Hsing,
2010b). Following Li and Yu (2008), we separate samples according to their fat contents
being less than 20% or not. The right panel of Figure 2.3 shows 10 samples from each group.

Here, hypothesis of interest is:

Hpy :mq(z) = mo(x), Vo € [850,1050] +— Hgq : mq(x) # mo(x), for some x € [850, 1050],

where mq(z) and mqy(x) are the regression functions of absorbance on spectrum, for samples
with fat content less than 20% and greater than or equal to 20%, respectively. Among 240
samples, there are ny = 155 with fat content less than 20%, the rest ng = 85 no less than
20%. The numbers of interior knots in (2.2) are computed as in Section 2.4 with ¢ = 0.5
and are Nq,, = 4 and Ny, = 3 for cubic spline fit and Ny,, = 8 and Ny, = 6 for

linear spline fit. Figure 2.4 depicts the linear and cubic spline confidence bands according
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Figure 2.3: Left: Plot of Tecator data. Right: Sample curves for the Tecator data. Each
class has 10 sample curves. Dashed lines represent spectra with fact > 20% and solid lines
represent spectra with fact < 20%.
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to (2.15) at confidence levels 0.99 (upper and lower dashed lines) and 0.999995 (upper and
lower dotted lines), with the center dashed-dotted line representing the spline estimator
1y (x) —my(x) and a solid line representing zero. Since even the 99.9995% confidence band
does not contain the zero line entirely, the difference of low fat and high fat populations’
absorbance was extremely significant. In fact, Figure 2.4 clearly indicates that the less the

fat contained, the higher the absorbance is.
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Figure 2.4: Plots of the fitted linear and cubic spline regressions of mq(z) — mo(z) for the
Tecator data (dashed-dotted line), 99% confidence bands (2.15) (upper and lower dashed
lines), 99.9995% confidence bands (2.15) (upper and lower dotted lines) and the zero line
(solid line).
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In this appendix, we use C' to denote a generic positive constant unless stated otherwise.

Preliminaries

For any vector { = (¢q,...,(s) € R®, denote the norm |[¢||,, = (|{1|" + -+ |CS|7’)1/7‘,
1 <r < 400, [[€lloo = max(|¢q1],...,|¢s]). For any s x s symmetric matrix A, we de-
fine Ajpip (A) and Amax (A) as its smallest and largest eigenvalues, and its L; norm as
A, = Maxee ps ¢4 HCHFl |AC]|,-- In particular, |Allg = Amax (A), and if A is also

nonsingular, min

A—lH — L (a).

2

For any functions ¢, ¢ € L9[0, 1], define the theoretical and empirical inner products as
fO x)dz and (¢, g0>2 N=N" 12 L1 ¢ (i/N)¢(i/N). The corresponding

norms are ||¢||2 = (¢, 9), ||¢||2 N = = (¢, %) N

We state a strong approximation result, which is used in the proof of Lemma 2.6.6.

Lemma 2.6.1. [Theorem 2.6.7 of Csérgé and Révész (1981)] Suppose that§;, 1 < i < oo are
id.d. with E(§1) =0, E(f%) =1 and H(xz) > 0 (x > 0) is an increasing continuous function
such that x_Q_VH(x) is increasing in x for some v > 0 and x_llogH(x) is decreasing in
x with EH (|€1|) < 0o. Then there exist a sequence of Brownian motions {Wn(l)}%ozl and
constants C1, C9, a > 0, depending only on the distribution of §1 and such that for any
{xn} -1 satisfying H™ 1 (n) <zn <Oy (nlogn)1/2 and S; = Zézl &

-1
P<{ m S Wn (1) > < H .
{1<la§n’ - n( )‘ ll?n} B 27”6{ (Gl'n)}

The next lemma is a special case of Theorem 13.4.3, Page 404 of DeVore and Lorentz
(1993). Let p be a positive integer. A matrix A = (%’j) is said to have bandwidth p

if ajj = 0 when |i — j| > p, and p is the smallest integer with this property. Denote by
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d=|All HA_1H2 and d is the condition number of A.

Lemma 2.6.2. If a matriz A with bandwidth p has an inverse A_l, then HA_lH <
00

1/(4p)

20 (1 — 7)1, with cg = 7 2P HA_1’ RER ((d2 1)/ + 1)) .

N _ N
One writes X T X = NVp, xTy = {Zé\le By, (7/N) Yj}JZLl_p, where the theoret-

N
ical and empirical inner product matrices of {B Jp(az)} Jml are denoted as
). = —p

A N,
Vp = <<Bjap’BJ/,p>>JI?:1—p7Vp B (<BJ’p’BJ/7P>2,N> J,Zizl_p' (217)

We establish next that the theoretical inner product matrix Vy defined in (2.17) has an

inverse with bounded Lo norm.

Lemma 2.6.3. For any positive integer p, there exists a constant My > 0 depending only

on p, such that HVng < Mphqgl, where hyp = (N, + 1)_1.
00

PROOF. According to Lemma A.1 in Wang and Yang (2009b), V) is invertible since
it is a symmetric matrix with all eigenvalues positive, i.e. 0 < CpNﬂ_nLl < Mnin (Vp) <
Amax (Vp) < CJDNT,_%1 < o0, where c¢p and Cp are positive real numbers. The compact

support of B-spline basis makes Vjp of bandwidth p, hence one can apply Lemma 2.6.2.

Since dp = Amax (Vp) /Amin (Vp) < Cp/cp, hence
9 1/4p s o —1/4p 9 _9 1/dp 1 9 _9 —1/4p
rp=(d-1)" (&3 +1) < (G2 -1)" 7 (CRep?+1) <1

If p =1, then V];l = h;LlIijLp, the lemma holds with Mp = 1. If p > 1, let Uy =

T T
T _ (T T — _
<1’0Nm+p—1) ,up = (Op—l’ 1,0Nm) , then Hul_pHZ = [Jugllo = 1. Also lemma A.1
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in Wang and Yang (2009b) implies that

’2
27

Anin (Vp) = A (Vp) ||u >l vpu, - B
min \Vp min \ VP 1=pjlg = "1—p¥P"1—p l=p,p

2
|, < Amax (Vp) llug 3 = Amas (Vp).

T
uOVpuO = HBO,p

2 -2 .
hence dp = Amax (Vp) /Amin (Vp) > HBOJ)HQ HBl_p’pHZ = rp > 1, where rp is an
absolute constant depending only on p. Thus

1 _1 1 1
Tp = (dl% — 1)45 (d]% + 1) ap > (7’22, — 1)21_]9 <7’]% + 1) I > 0. Applying Lemma 2.6.2

and putting the above bounds together, one obtains

IA

—2 —1 -1

r]% +1 1/2 1 01%052 -1 L/4p
1 Chep

p
_ 1/4p)

21\ Y2 02.=2 _ 1\ V4P

p 1), (%p% _

The lemma is proved.

—1
[V g

. T
For any function ¢ € C'[0,1], denote the vector ¢ = (¢ (1/N),...,¢(N/N)) and

function

(@)= {B1_pp @), By, o)} (XTX)—l <o

Lemma 2.6.4. Under Assumption (A3), for Vp and Vp defined in (2.17),

Vo=V -
P~ VP| o

O <N_1> and H\A/—ElH < 2Mph7711, for large enough n. There exists Cop € (0,00) such
00 Y

that when n is large enough, ’(EbH < Cgpr?bHoo for any ¢ € C|0,1]. Furthermore, if
0] )
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6 € CPLR(0,1] Jor some i € (0,1], then for Cpy_y = (e, +1) Cp1,p

H&_‘éHoo = ép—l,uHgb(p_l)HO’uhﬁfp_l. (2.18)

Proor. We first show that HVp — vaoo =0 (N_1>. Suppose p = 1, define for any
0 < J < Ny, the number of design points j/N in the J-th interval Iy as N j, then
Ny =#{j:j€[NJ/(Nm+1),N(J+1)/(Nm+1))}, for 0 < J < Np, and Nj =
#{j:je[NJ/(Nm+1),N(J+1)/(Nm+1)]}, for J = Np,.

Clearly Max)< j< Ny, ‘NJ — th} < 1, and hence

. 5 )
A% —VH = max HB ’ _HB ‘ ‘
H ! ! o0 0<J<Nm Ji1 2,N J1 2
1N 2
= max N ] B N)—h
0<J<Nm Z]:1 71 U/N) m’
- TN NNy = ‘:N max N;— Nhm| < N~ .
0<J<Nm J - hm 0§J§Nm| J m| <

For p > 1, de Boor (2001), Page 96, B-spline property ensures that there exists a constant

Cl,p > () such that

max max sup By (j/N) BJ’,p (j/N) — By (x) B (x)

' /
1—p<JJ <N 1<5EN ze[(j—1)/N.j/N] P
< CpN ™ i,

while there exists a constant C > ( such that max / N,y < Cy Nhm
27p 1—p§J,J SNm J,J 27p
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where N 7 = # {j 1< < N.By, (i/N) By (5/N) > 0}. Hence

V—VH
[Vo -V

1

1 .

- o= S Bp U By GIN) = [ By (@) By (o) do
1—p§J,J/§Nm ‘ Jp 7p 0 J’p J P

IN

N [J/N . .

< CypNhm x N~hx oy ,Ninpt <on—l

According to Lemma 2.6.3, for any (Np, + p) vector -,

Vol < ot g Hence,
00
HVp'y”OO > Mp_lhm |V|lao- By Assumption (A3), N1 o(hm) so if N is large enough,

for any -y, one has

O 1 —1 —1
1V 2 1Verlloe = [Virr = V| 2 g vl = © (N1 vl

hm —1
= 5 M Yoo -

Hence Hvﬁluoo < 2Mph7_n1.

To prove the last statement of the lemma, note that for any x € [0,1] at most (p + 1) of

the numbers By, ,, (7). ., BN,,.p (x) are between 0 and 1, others being 0, so

9.

6@ < (p+1)

T\ L. T (T
X X) X ¢ =@p+1)[V, (X oN
< DIV I on 1] <204 1) apht X TN
< +D|Vp | X ¢ <2(p+1) Mphy, N ¢l oo
o T T .
in which Tyy = (1,...,1) . Clearly |X IyNT1| < Chy for some C' > 0, hence ‘gb(x)‘ <

2Mp (p+ 1) C éllog = cpplldlloe: Now if ¢ € CP=LE0,1] for some p € (0,1], let
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+p—1 .
hH according to
0,11 m g

-1 —1
g € 1P )[O, 1] be such that ||g — ¢| 50 < Cp—1>MH¢(p )’

Theorem 2.3.1, then g =g as g € #(P—1) [0, 1] hence

_|_ —
|+ 16— glog

I
Q-
|
Nyl

o=l =

< (ep 1) 16— gllo < (g +1) Cprpa [P~V Ho,u pitp=1

proving (2.18).

Lemma 2.6.5. Under Assumption (A5), for Cy = Cy (1+56’2 Zgil 55—1—71> and

n>1

max E|€ ;. —Z ‘ < C nﬂ_l, 2.19

1<h<k g.,k: k&l = M0 (2.19)
= . _ 7. %) -1

1<jEN ’8'73 JE ‘ -5 <n > (2.20)

~ 1 ’ 1 -
where Z.k,§ =n 2?21 Zik,ff Z.j,s =n 2?21 Zij,ef 1<j<N,1<k<k. Also

<n 12 (2/m1/2 4 cynf-1, (2.21)

max E‘_
1<k<g £'7k

PROOF. The proof of (2.20) is trivial. Assumption (A5) entails that
Fn—i—t7k <Cy(n +t)_717 k=1,..,k t=0,1,...,00, in which
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Foyt =P szzl Eike — iy Zz'k:,{‘ > Cq (n+ t)ﬁ}. Taking expectation, one has

BN Gk = iy D]

< CLn+07+ 37 1 +07 (Bt = Fogek)
< Clnﬁ—FZiOClCQ (n+t)_7lﬁ(n+t)ﬁ_1
< o {480y >0 nfTiY
1 -1 1
< aey [ TS L g
< nﬁCl [1 +5C’2n_1_71 X nzzltﬂ_l_’”] < Conﬁy

which proves (2.19) if one divides the above inequalities by n. The fact that Z ke ™
N (0,1/n) entails that £ ‘Z.k 5’ —n—1/2 (2/7r)1/2 and thus

max) <p<p B ’fk) <n~1/22/mY2 4+ cynP-1.
Lemma 2.6.6. Assumption (A5) holds under Assumption (A5’).

-
PRrOOF. Under Assumption (A5/), E‘éik‘ﬁ < 400,71 >4, FE 2 o +00, T9 >

gij
4 + 20, so there exists some § € (0,1/2) such that 71 > 2/3, 79 > (2+6) /5.
Now let H(x) = 271, then Lemma 2.6.1 entails that there exists constants Cik, Copr ap

which depend on the distribution of £, such that for

_ I} n _ M1 AT 1718 . . ,
rp = CypnP, H{apon) ap ~Cpp'n 17 and i.i.d. N(0,1) variables Zif ¢ such that
T B 1o 1, 1-m18
P [133%(” E 7;:1'5@147 E i1 sz,ﬁ‘ > Cypn } <02kak; Clk: n :

Since 71 > 2/8, v1 = 718 — 1 > 1. If the number « of k is finite, so there are common con-
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stants C,Co > 0 such that P [maxlgtgn ‘Zle Sik — Z;?:l Zz’k,f) > C’lnﬁ} < Con~ 1
which entails (2.3) since # is finite. If « is infinite but all the ;;.’s are i.i.d., then Cy., Co;., a}.

are the same for all k, so the above is again true.

Likewise, under Assumption (A5'), Lemma 2.6.1 applied to H(z) = 272 implies that
there exists constants C'1, Cy and a which depend on the distribution of ; j and i.i.d. N(0,1)

such that with xzp, = Clnﬁ, S / a_TQCl_Tin_TQﬁ and
H(an)

variables Z; e

t t
Zz‘:1 ij Zz‘:1 Zije

max P{ max
1<)<N 1<t<n

> Clnﬁ} < Cga_7—201_72n1_725,

Hence, 79 > 2+ 6 which implies that there is y9 > 1 such that 798 —1 > v9 + 6 and (2.4)

follows.

Proor or ProrosiTIiON 2.3.1.

Applying (2.18),

|7y — m| 0o < Cp—l,lhgl- Since Assumption (A3) implies that

O <h%n1/2> = 0(1), equation (2.10) is proved.
PROOF OF PROPOSITION 2.3.2.

. —1
Denote by Zp e (x) = {Bl—p,p (x),..., BN,,p (x)} (XTX> X'z, where

7= (c(1/N)Z N/N) Z T By (2.2 has ||Z — —0 f-1
0(1N)Z1c,....0(N/N)Z ) . By (2:20), one has |Z — e/, = Oa.s. (n :

while
HN—le(z—e)H <||Z-efs  max <BJ ,1>
00 1-p<J<Np \ PP /2N
< ClZ-e max {':B /N >O}N_1§C Z — e hm.
17 el max {3 By G/N) 12 elog hm
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Also for any fixed x € [0, 1], one has

Zpe(x)—ep@)| = [{Bi1opp@) ... By, @)V INTIXT (Z —e)
| le = J

o o

< C H\“fgluoo 1Z — ellog i = Ou.s. (nﬁ—l) .

Note next that the random vector \A/']; In—=1xT7 i (Nm + p)-dimensional normal with

covariance matrix N _2\75 IXTar (Z) XV; 1, bounded above by

2 —1a—1Ixr—1xr xr—1 -1, —1|x—1 -1, —-1;-1
max o“ (z) Hn N "V, "VyV H <CN 'n HV H <CN "n “hy,
ze(0,1] PP oo P oo "

bounding the tail probabilities of entries of \75 IN=1XT7 and applying Borel-Cantelli

Lemma leads to

HWlN‘lXTZHm ~ Ous. <N‘1/2n‘1/2h511/210g1/2 (Nim +p))

~ Ous (N—1/2n—1/2h;1/210g1/2n) |
Hence, SUP e 0,1] ‘nl/Qijg (:17)‘ = Oq.s. (N_l/Qh%1/210g1/2n> and
sup ‘nl/Qép (:c)) = Ogq.s. (nﬂ_l/z + N_l/Qh;ll/Qloglmn) =o0q.5.(1).
z€(0,1]

Thus (2.11) holds according to Assumption (A3).

PROOF OF PROPOSITION 2.3.3.
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We denote &k(x) =7 £Or (), k=1,...,k and define

~ K —1/2 — K ~
() =l [0 (@] P o) =026 w2 G

It is clear that ¢ (z) is a Gaussian process with mean 0, variance 1 and covariance EC (z) ¢ (x/ )
~1/2 -

= G(:p,x)_l/2 G (m,a:/> / G (m,x’), for any z, 2’ € [0,1]. Thus ¢ (z), x € [0, 1] has the

same distribution as ¢ (z), x € [0, 1].

Using Lemma 2.6.4, one obtains that

H(bk‘H <C¢pH¢kHoo’H¢k‘ ¢/<;H < Cou ll9kllo  hin L < & < k. (2.22)

Applying the above (2.22), (2.21) and Assumptions (A3), (A4), one has

En1/2 SUPe[0,1] G (I,I)_1/2 ‘2221 Ek {¢k(x) - &k(x)}‘

< onl2 {0 Bkl oull i+ i E 1kl 08lo
< {30, oullo i+ Sy Il =0,
hence
n1/2supx€[01 (x,x) I/Q‘Zk 1 { qﬁk( )H:op(l). (2.23)

In addition, (2.19) and Assumptions (A3) and (A4) entail

En1/2 SUPLe[0,1] G (z, x)_l/Q ‘ZZ:l (Z.kf - Ek) ¢]{;(x))

< P2 ogllae = o)
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Hence

Note that

hence

nl/2 s%al]eu,xrl/? (@) = m (@) = Epla)| = op (1),
xre|U,
s (0. [C (@) = 026 (@,2) T2 fm(2) = m (@)} = op(1).

according to (2.23) and (2.24), which leads to both (2.12) and (2.13).
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Chapter 3

Confidence Envelopes for Covariance

Functions

3.1 Introduction

Covariance estimation is crucial in both functional and longitudinal data analysis. For
longitudinal data, a good estimation of the covariance function improves the estimation
efficiency of the mean parameters (Wang, Carroll and Lin, 2005; Fan, Huang and Li, 2007).
In functional data analysis (Ramsay and Silverman, 2005), covariance estimation plays a
critical role in functional principal component analysis (James, Hastie and Sugar, 2000;
Zhao, Marron and Wells, 2004; Yao, Miiller and Wang, 2005a; Hall, Miiller and Wang,
2006; Yao and Lee, 2006; Zhou, Huang and Carroll, 2008; Li and Hsing, 2010a), functional
generalized linear models (Cai and Hall, 2005; Yao, Miiller and Wang, 2005b; Li, Wang and
Carroll, 2010), and other functional nonlinear models (James and Silvermen, 2005; Li and
Hsing, 2010b). Other related work on functional data analysis includes Ferraty and Vieu

(2006) and Morris and Carroll (2006).
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There are some important recent works on nonparametric covariance estimation in func-
tional data, which are mostly based on kernel smoothing, for example Yao et al. (2005a),
Hall et al. (2006) and Li and Hsing (2010a). More recently, Cai and Yuan (2010) also
proposed a smoothing spline covariance estimator. So far, all existing work concentrated
on estimation and the corresponding asymptotic convergence rate. There is no theoretical
or methodological development for inference procedures on the covariance functions, such
as simultaneous or uniform confidence envelopes. Nonparametric simultaneous confidence
regions are powerful tools for making global inference on functions; see Hardle and Marron
(1991), Claeskens and Van Keilegom (2003) and Zhao and Wu (2008) for related theory and
applications.

In this chapter, we consider a typical functional data setting where the functions are
recorded on a dense regular grid in an interval A and the measurements are contaminated
with measurement errors. Some recent applications of this type of functional data include
near infrared spectra (Li and Hsing, 2010a), recorded speeches for voice recognition (Hastie,
Tibshirani and Buja, 1995), electroencephalogram (EEG) data (Crainiceanu, Stacu and Di,
2009). We propose to estimate the covariance function by tensor product B-splines. In
contrast with the kernel methods (Yao et al., 2005a; Hall et al., 2006; Li and Hsing, 2010b),
our proposed spline estimator is much more efficient in terms of computation. The reason
is that the kernel smoothers are evaluated pointwisely, while for the spline estimator, we
only need to solve for a small number of spline coefficients to have an explicit expression for
the whole function. For smoothing a two-dimensional covariance surface with a moderate
sample size, the kernel smoother might take up to half an hour, while our spline estimator
only takes a few seconds. Computation efficiency is a huge advantage for the spline methods

in analyzing large data sets and in performing simulation studies. The reader is referred to
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Huang and Yang (2004) for more discussions on the computational merits of spline methods.
Compared with the smoothing spline approach of Cai and Yuan (2010), our method uses
reduced rank tensor product B-splines, and is potentially faster while analyzing large data
sets.

We show that the estimation error in the mean function is asymptotically negligible
in estimating the covariance function, and our covariance estimator is as efficient as an
“oracle” estimator where the true mean function is known. We derive both local and global
asymptotic distribution for the proposed spline covariance estimator. Especially, based on
the asymptotic distribution of the maximum deviation of the estimator, we propose a new
simultaneous confidence envelope for the covariance function, which can be used to visualize
the variability of the covariance estimator and to make global inferences on the shape of the
true covariance.

We apply the proposed confidence envelope method to a Tecator near infrared spectra
data set to test the hypothesis that the covariance is stationary. In a speech recognition
application, the classic functional linear discriminant analysis (Hastie et al., 1995; James
and Hastie, 2001) assumes that the random curves from different classes share a common
covariance function. We further extend our confidence envelope method to a two-sample
problem, where one can test whether the covariance functions from two groups are different.

We organize this chapter as follows. In Section 3.2 we describe the data structure and the
proposed spline covariance estimator. In Section 3.3, we study the local and global asymp-
totic properties of the proposed estimator. Based on the theory, we propose a new confidence
envelope approach and extend the method to two-sample hypothesis testing problems. More
implementation details of the proposed confidence envelopes are provided in Section 3.4.

We present simulation studies in Section 3.5 and applications to the Tecator infrared spec-
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troscopy and the speech recognition data set in Sections 3.6. Some concluding remarks are
provided in Section 3.7. All proofs of the theorems and technical lemmas are provided in

the appendix and the supplementary material.

3.2 Spline covariance estimation

3.2.1 Data structure and model assumptions

Following Ramsay and Silverman (2005), the data that we consider are a collection of trajec-
tories {n; (a:)}?zl which are i.i.d. realizations of a smooth random function 7(x), defined on
a continuous interval X. Assume that {n(z),z € X'} is a L? process, i.c. E [y n2(:c)d:c <
+00, and define the mean and covariance functions as m(x) = E{n(z)} and G <m,m/> =
cov {77(3:), n(z') } The covariance function is a symmetric nonnegative-definite function with
a spectral decomposition, G (x,x’) = 2221 ML (2) g (J;’), where Ay > A9 > -+ >0,
2221 A < +00, are the eigenvalues, and {@/} k(x)}zzl are the corresponding eigenfunctions
and are a set of orthonormal functions in L2 (X). By the Karhunen-Loeve representation,
ni(x) = m(z) + 2221 §i1.0p. (), where the random coefficients &;;. are uncorrelated with
mean 0 and variance 1, and the functions ¢;. = \/)\_kw - In the standard Karhunen-Loeve
expansion, x can diverge to co. For practical consideration, « is always truncated at a finite
number in real data analysis. Our main theoretical results are developed under the assump-
tion that k is a finite positive integer, but some of our theoretical results can be further

generalized to the infinite dimension case, which will be discussed in Section 3.3.
Without loss of generality, we take X = [0,1]. Then the observed data are Y%j =
n; <X2> + 0<X'ij> €ijr for 1 <i<n,1<j < N, where Xz'j = j/N, £jj are iid.
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random errors with £ (¢11) = 0 and E(‘%l) = 1, and 02(56) is the variance function of
the measurement errors. By the Karhunen-Loeve representation, the observed data can be
written as

Yij =mG/N) + Y & G/N) + (G/N) ).

We model m(-) and G(-,-) as nonparametric functions, and hence {)\k}’gzl, {¢k(-)}’]§:1

and {¢; k}/g:l are unknown and need to be estimated.

3.2.2 Spline covariance estimator

To describe the tensor product spline estimator of the covariance functions, we first introduce
some notation. Denote a sequence of equally-spaced points {t J}j}fil, called interior knots
which have been defined in Chapter 1. Let hs = 1/(Ns+ 1) be the distance between
neighboring knots. Let n(P=2) = y(r—2) [0, 1] be the polynomial spline space of order p.
The JtP B-spline of order p is denoted by BJ,p as in de Boor (2001). Thus we define the

tensor product spline space as

1221012 = #(P=2)2 2 3(p-2) g 3(-2)
Ny

/ /
- 3 bJJ/pBJ’p(:c)BJ/m(az),bJJ/pER,x,:c e [0,1]
JJ =1—p

If the mean function m(z) was known, one could compute the errors

K
Uij =Yi; —m(/N) = > &pop (G/N)+0 (i/N)ejj, 1<i<n, 1<j<N
k=1

Denote U~jj/ = n_lzg.l:l UijUij/’ 1 < j # 4" < N, one can then define the “oracle”
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estimator of the covariance function

Gpy ()= argmin 3 {U.].j, —g <j/N,j’/N> }2 , (3.1)
g(-)erP2=2) 2 1< i< N

using tensor product splines of order pg > 2. Since the mean function m(x) is unavailable

when one analyzes data, one can use instead the spline smoother of m(z), i.e.,

n N
i 0= agmin 33 {v -0} =1
g()erP1=2) i=1j=1

To mimic the above “oracle” smoother, we define

R 2
GprQ(-,-) = argmin Z {U-jj/,pl —9<j/Naj//N>} ) (3.2)
g(-)en P2 D2 1<l <N

A
fay N

_ . —1<n 7.
where U s o= 251 Vijpy Ugitp,

number of interior knots for mean estimation, and N52 be the number of interior knots for

with Uijpl =Yj; — py (j/N). Let Ng; be the

Gp1’p2 (z,2') in each coordinate. In other words, we have st2 interior knots for the tensor

product spline space 7-[<p2_2)72.

We now provide detailed algorithm for the spline covariance estimator. For simplicity,

denote BJJ’7p2 (x, x/> = BJ;PQ (x) BJ/,p2 (x/> and

AN / /
Bp2 (x,x ) = (Bl—pQ,l—p2,p2 (x,x ) ""’BNSQ,l—pQ,pQ (:r,x > ,

T
/ /
"”Bl—pQ,Ns2,p2 (ZL’,ZL‘ ) ’”"BN827NS2,p2 (CL’,[E >) s

X-JB 2 1 B 1 1 1 T
= p2 N:N yoee ey p2 1,N ,,Bp2 N,l ,7Bp2 I_N’l .
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Then @p17p2 (z,2') defined in (3.2) can be rewritten as

i T
Gplap2 (z, x/) = BplijBp2 <x, x/> , (3.3)

where BprQ is the collector of the estimated spline coefficients by solving the following

least squares

2
- ; 3 T . ./
ﬁplaPQ = argmin , Z {U-jj/,pl —bp23p2(j/N,j /N)} :
bpzéR(N32+p2) 1<j#j <N

By elementary algebra, one obtains

— A

~ / / T Tt
Cpy pyla,a’) = Bgz(g;,a;)<x X) X0y,

~ -1 _
Gpola,a!) = Bj(z,a") (XTX> xTg, (3.4)
where
~ A ~ A ~ T
Upl = <U217p1,7UN17p17,U1N7p1,, (N—l)N,p1> y

U = (0'21""’U‘le'"U‘IN"‘WU-(N—l)N)T‘
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3.3 Asymptotic theory and simultaneous confidence en-

velopes

3.3.1 Assumptions and the oracle property

For any v € (0,1], we denote C%¥ [0, 1] as the space of v-Holder continuous functions on

[0,1],
)gb(Q)(x) _ @) (y))

CtV0,1] =% ¢ : sup it
v#x! x,2'€l0,1] ’x -7 |

< 400

We need the following technical assumptions.

(B1) The regression function m € cr1i—1.1 [0, 1].

(B2) The standard deviation function o (x) € cOv 0,1]. For any k=1,2,...k, ¢1. () €
p2_1al/ ( /) ..
C [0,1]. Also SuP(x,m’)E[O,l]z G |z,2") < C, for some positive constant C

and minxG[O,l] G (z,z) > 0.

(B3) The number of knots Ns; and Ns, satisfy n1/(4p1) < Ns; <N, nl/(2p2) < Nsg <K

min <N1/2,n1/3) and N52 < Ngll.

(B4) The number k of nonzero eigenvalues is finite. The variables (gik)?i71/€]{:1 and

<5~ »>OO’OO are independent. In addition, Fey1 = 0, Ee2, = 1, E§qp =0, E§2 =
1 and max| <<\ B \glk\51 < 400, B ]611\52 < 400, for some 01,09 > 4.

Assumptions (B1)-(B4) are standard in the spline smoothing literature; see Huang (2003),
for instance. In particular, (B1) and (B2) guarantee the orders of the bias terms of the spline

smoothers for m(z) and ¢;. (r). Assumption (B3) is a weak assumption to ensure the order
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of the bias and noise terms in Propositions 3.3.1 and 3.3.2. Assumption (B4) is necessary
for strong approximation. More discussion about the assumptions is in Section 3.4.

To gain a deeper understanding on the behavior of the spline covariance estimator GpQ
in (3.2), we first study the asymptotic property of ép2 in (3.1).

Denote by
K

A <x,x/) = Z ¢;. () ¢k/ (x/) (gkk/ — 6kk’> , (3.5)
kk'=1

where E‘kk, —n! 2?21 gik;fz‘k/ and 5kk/ =1 for k =k’ and 0 otherwise.

Proposition 3.3.1. Under Assumptions (B2)-(B4), one has

( /s)up[ 2 GPQ (z,2) = G(z,2") — A (:L‘,x/) =op <n_1/2> . (3.6)
x,x")el0,1

The proof of Proposition 3.3.1 is provided in the supplementary material. The next
proposition provides that the tensor product spline estimator épl po 18 uniformly close to

the “oracle” smoother at the rate of op (n_1/2>.

Proposition 3.3.2. Under Assumptions (B1)-(B4), one has

L fonte )=t ) <y (57).

The proof of Proposition 3.3.2 is provided in the supplementary material. As a result of

Propositions 3.3.1 and 3.3.2,

o -6 (1) - (7).
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3.3.2 Asymptotic confidence envelopes
The next theorem provides a pointwise approximation to the mean squared error of épl ) (z, i ).

Theorem 3.3.1. Under Assumptions (B1)-(B4),
nE[épl po (T, ) — Gz, x/)]2 =V <$, :)3/) +o(1),

where V <[L‘, 93/> =G <$, :)3’)2 +G(z,2)G (:E/, x/) + 2221 gb% (x) gb% <ZL‘/> (Efilk - 3).
Remark 3.3.1. Although the convergence result in Theorem 3.3.1 is derived under the as-
sumption that k is a finite positive number, it continues to hold when x — oo as long as the
sum in the definition of V (x,z') still converges. The existence of V(x,2’) in the infinite di-
mension case is guaranteed by imposing an additional assumption that F[{sup,c y n(m)}4+6] <
00, for some § > 0, which is commonly assumed in functional data analysis (see Li and Hsing,
2010a). The assumption  being finite is merely a practical consideration for the develop-
ment of inference procedures. Further discussion on how to choose x in real data will be

provided in Section 3.4.

To obtain the quantile of the distribution of nl/2 é’pl P9 (z, x/) — G(z, x/)‘ v—1/2 (3:, x’) ,

one defines
¢y (%x/> (3.7)
K / il / 4 1/2 —1/2 /
= 30 70 (@) by (:c ) + ) o (2) o, («’E ) 2, (E51k: - 1) v (‘”x ) !
k#k’ k=1

where 7 Lpl = Z W and Zj. are i.i.d. standard gaussian random variables. Hence, for any

<:13,:17/> € [0, 1]2, Cy <:1c,a:/> is a standardized gaussian field such that FEC» <:13,a7/> = 0,
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ECQZ (m,x’) = 1. Define Q1_, as the 100 (1 — oz)th percentile of the absolute maxima

distribution of ¢ » <IL‘,[B/>, N <x, ZL‘/) € |0, 1]2, ie.

P sup ‘CZ (x,x/>‘§Q1_& =1—a, VYae(0,1).
(x,x/)E[O,l]Q

The following theorem and corollary address the simultaneous envelopes for G(z, z/).

Theorem 3.3.2. Under Assumptions (B1)-(B4), for any a € (0,1),

lim P sup n1/2
n—00 / 2
(z,2")€[0,1]

G’prQ(x,x/) - G(x’xl)‘ vl (I7$,> SQi_q¢=1-q,

nli>moo P {n1/2 ‘épl pa (T, ') — G(a:,x/)‘ v—1/2 (x, x/> < Zl—a/Z} = 1—a,¥(z,2') € [0, 1]2,
where Zl—a/Q is the 100 (1 — a/2)th percentile of the standard normal distribution.

Remark 3.3.2. Although this covariance function estimator cannot be guaranteed to be pos-
itive definite, it tends to the true positive definite covariance function in probability.
The next result follows directly from Theorem 3.3.2.

Corollary 3.3.3. Under Assumptions (B1)-(B4), as n — oo, an asymptotic 100 (1 — ) %

confidence envelope for G(x,z'), ¥(x,2") € [0, 1]2 is
Gpy pyl.a’) = n~Y2q, v1/2 (g; x’)  Vae (0,1), (3.8)

while an asymptotic 100 (1 — a) % pointwise confidence envelope for G(z,z'), V(z,z!) €
[0,1]2 s
épl P2 (957$/) + n_1/2Z1_a/2V1/2 <ac, x/> , Va € (0,1).
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3.3.3 Extension to two-sample test problems

In functional analysis of variance and linear discriminant analysis, it is commonly assumed
that the covariance functions are the same across different treatment groups. It is natural to
extend our method to the two-sample problems, where we can construct confidence envelopes
for the difference between the covariances functions from two independent groups. This

procedure is equivalent to two-sample t-test.

Suppose we have two independent groups of curves with sample sizes n1 and ng, respec-
tively. We denote the ratio of two sample sizes as 7 = ny/n9 and assume that limn1_>oo 7=
r > 0. Let G]<011)’p2 (z,2') and G]<021)’p2 (z,2') be the spline estimates of covariance functions
G(1>(x,x/) and G<2)(:c,a:/) by (3.2). Also denote by (19 (:c,a:/), v (x,x’) € [0, 1]2 a stan-
dardized Gaussian process such that F(q9 (x, x/> =0, EC%Q (x,x/> =1,V (m,x/> € [0, 1]2

with covariance function, for z, 2’ € [0,1],

4] (x,x/) +1rVy (x,x’)

(V] (z,2) + Vo (:c,x)}l/2 {Vi («/,2") + V4 (x’,a:’)}l/?

EC19 (x,a:’) ¢19 (x,x/) =
Denote by Q12,1—a the (1 — a)-th quantile of the absolute maxima deviation of (19 <x, x/> ,
v (x,x/) € o, 1]2 as above.

We have the following theorem, the proof of which is analogous to that of Theorem 3.3.2

and therefore omitted.

Theorem 3.3.4. Under Assumptions (B1)-(B4) modified for each group accordingly, for
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any o € (0,1), as ny = 00, 7 =1 >0,

12 él(?ll),m (I7$/)_é]<?21)7p2 (x,x/)—G(1> (x,x’)+G<2) (z,x)
P sup n

(el (Vi (et V) P2

=1—-aq.

<Q12,1-a

Remark 3.3.3. Under Assumptions (B1)-(B4), an asymptotic 100(1 — «)% confidence enve-

lope for G(l)(x,x/) — G(Q)(x,x/), v (x,x/> e [0,1)2 is:

G](}l)’pQ (Lw’)—é’g(o?pg(%$/)in1_1/26212,1_a <V1 <1‘,x'> +7Vo (x,x’))l/Q, Va € (0,1).
(3.9)

one can use this confidence envelope to test any hypothesis on G<1) (:U, ! ) -G (2) (x, z! >

3.4 Implementation

In this section, we describe the procedure to implement the confidence envelopes. Given
N,n

the data set (j/N, nj)jzl,izl’

the number of interior knots Ns; for 1y (2) is taken to
be [nl/ (4p1) logn], where [a] denotes the integer part of a. Meanwhile, the spline estimator
Gpl o (, 2') is obtained by (3.3) with the number of interior knots Nsg = [nl/(2p2)loglogn].

These choices of knots satisfy condition (B3) in our theory.

To construct the confidence envelopes, one needs to evaluate the percentile Q1 _,, and
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estimate the variance function V' <:L', x’). An estimator V' (x, ! > of V (m, ! > is

v (z.a!)
- G ( /2 a G 1
- YP1:P2 z, )" + pl,pg(%x) pl,pg(iﬁ ,T)

£ @ () (Y Ek-3).

where <Abk and éz L. are the estimators of ¢;. and ., respectively. According to Yao et al.
(2005b), the estimates of eigenfunctions and eigenvalues correspond to the solutions (;5 . and

A i of the eigen-equations,

1, i
/O Cipy po (2,2, (2) d = Ny, (x’) , (3.10)

where the &sk are subject to fol qAb% (t)dt = \j, and fol ¢, (1) qAbk/ (t)dt = 0 for k' < k. Since

N is sufficiently large, (3.10) can be approximated by

VYT ooV, N)og GIN) = Mgy (37N

For the same reason, the estimation of £;;. has the form of
: -1V -1 - oy
G =N A (Vi gy /) g /).

To choose the number of principal components, x, Miiller (2009) described two methods.
The first method is the “pseudo-AIC” criterion proposed in Yao et al. (2005a). The second
is a simple “fraction of variation explained” method, i.e. select the number of eigenvalues

that can explain, say, 95% of the variation in the data. From our experience in the numerical
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studies, the simple “fraction of variation explained” method often works well.

Finally, to evaluate ()1_, we need to simulate the Gaussian random field ¢ 7 (, x/) in
(3.7). The definition of ¢ Z(x,aﬁ/ ) involves ¢p.(z) and V(x,2"), which are replaced by their
estimators described above. The fourth moment of {1;. is replaced by the empirical moments
of éz - We simulate a large number of independent realizations of ¢ 7 (z, ! ), and take the
maximal absolute deviation for each copy of ( Z(:L’,x/ ). Then Qq_,, is estimated by the

empirical percentiles of these maximum values.

For the two-sample hypothesis testing problem, we will center the two groups of curves
separately by their own mean functions, since we do allow each group to have a different

mean function. Analogous to Ql—ow we estimate ()19 1_, and further

A(L n_el2 N —1/2 - N AN 1/2
Gl()l)ij (z,2 >_G]()1)’p2(x7x )Eny / Q12,1—a <V1 (x,x ) + Vo (x,ac )) , Yo € (0,1).

(3.11)
is applied for two samples covariance functions in the practice. The rest of the procedure

follows as described in Section 3.3.3.

3.5 Simulation

To illustrate the finite-sample performance of the spline approach, we generate data from

the model

| 2 | | |
Yij =mG/N)+ >, €xop G/N) + 0551 <j<N1<i<n,
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where ;.. ~ N(0,1),k = 1,2, €ij ~ N(O,1), for 1 <i<n,1<j<N,m(z) =10+
sin {27 (x — 1/2)}, ¢1(z) = —2cos {m (x — 1/2)} and ¢9(z) = sin {7 (x — 1/2)}. This setting
implies A1 = 2 and A9 = 0.5. The noise levels are set to be ¢ = 0.5 and 1.0. The number of
subjects n is taken to be 50, 100, 200, 300 and 500, and under each sample size the number
of observations per curve is assumed to be N = 4[n0'310g(n)]. This simulated process has a
similar design to one of the simulation models in Yao et al. (2005a), except that each subject
is densely observed. We consider both linear and cubic spline estimators, and use confidence
levels 1 — a = 0.95 and 0.99 for our simultaneous confidence envelops. Each simulation is
repeated 500 times.

Table 3.1 shows the empirical frequency that the true surface G(«z, 2! ) is entirely covered
by the confidence envelopes. At both noise levels, one observes that, as sample size increases,
the true coverage probability of the confidence envelopes becomes closer to the nominal
confidence level, which shows a positive confirmation of Theorem 3.3.2.

We present two estimation schemes: a) both mean and covariance functions are estimated
by linear splines, i.e., p; = py = 2; b) both are estimated by cubic splines, i.e. p1 = py = 4.
Since the true covariance function is smooth in our simulation, the cubic spline estimator
provides better estimate of the covariance function. However, as can been seen from Table
3.1, the two spline estimators behave rather similarly in terms of coverage probability. We
also did simulation studies for the cases p; = 4, py = 2 and p; = 2, py = 4, the coverage
rates are not shown here because they are similar to the cases presented in Table 3.1.

We show in Figures 3.1 and 3.2 the spline covariance estimator and the 95% confidence
envelops for n = 200 and o = 0.5. Figures 3.1 and 3.2 correspond to linear (p1 = py = 2)
and cubic (p; = py = 4) spline estimators respectively. In each plot, the true covariance

function is overlayed by the two confidence envelopes.
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Figure 3.1: Plots of the true covariance functions (middle surfaces) of the simulated data and
their 95% confidence envelopes (3.11) (upper and lower surfaces): n=200, N=100, 0=0.5.

p1:p2:2.

63



!

2R

oy
0

00,
W
o

2

X

NN
N
\\:\\\‘\\“

%
%
9

5
%
S

N
N\
N
R
N
N
i
s~
N
~i.
¥,
e
i

Y 27
AR

%
o
Q5
’0"0'0:
%".::,

%

13
33
N,
R

N
R
N\
N
S
S,
S
oo,
7
LK
ey
55
o'l

s
%
55
K
<

o
o,

N
AN
SN
SRR
R TR R R
ORI
R
R

WA
R

<2
5
2%

L

L7
L7
LY

D
R

N

S

S

S

S

N
7

%

2
ooy

oy

%

2%

5
i

222

LY
0‘.

725
e
LLH

L5
az:"
5

25
s

L7
7
55

Q

LY
Y
K25

2

S

L2

X

\\
MMM
NN
LHTHHiw

Nk

il
it
i

‘ Nk
3 \\,~}“\\\\\\\\\\\\\\\“\\\\‘
T HTHHH AR
i

O\ i, i W‘m&ﬁ\&w =
T s i il i I minm h  H i iHhin R

77 71771777 e S I RTINS

LT T B A e e RS TRIRSS
A I =

TS

11 11174 7]
T L T 7777
5:,7771,1,1,'1111’1’1'5”,’[’,’551114’!-;-” ;,',‘,'Iil'l T
I 1T

Figure 3.2: Plots of the true covariance functions (middle surfaces) of the simulated data and
their 95% confidence envelopes (3.11) (upper and lower surfaces): n=200, N=100, 0=0.5.
p1=py =4

64



3.6 Empirical examples

3.6.1 Tecator near infrared spectra data

We first apply our methodology to the Tecator data mentioned in Section 1 and chapter
2.6.Figure 3.3 shows the scatter plot of the spectra. As we can see, the spectra can be
naturally considered as functional data, since they are recorded on a dense grid of points
with little measurement error. On the other hand, there is a lot of variation among different
curves. We show the estimated covariance function and the 95% confidence envelope in
Figures 3.4. These results are obtained by applying cubic spline smoothing to both the
mean and covariance functions, with the number of knots Ns1 = 10, N52 = 6, respectively.
We also tried other combinations of knots numbers and linear spline estimators. The results
are very similar, and hence are not shown here. From Figure 3.4, we can see that the within
curve covariance is positive and quite significant, since the zero hyperplane is far below the
lower bound of the confidence envelope.

Using the simultaneous confidence envelopes, one can test other interesting hypotheses
on the true covariance function, such as the true covariance being stationary. Specifically,

we are interested in the following hypothesis,

Hy: Gz, 2"y = g(lz—2)), v (x,a:’) € [a,b]2

v.s. Hg : Gz, 2’y # g(|lz—2'|), 3 (x,x’) € [a,b]2, (3.12)

where ¢(+) is a stationary covariance function, and [a, b] is the range of wavelength.
To test the hypothesis in (3.12), we need to generate a new estimator under the station-

arity assumption and check if this estimator can be covered by the simultaneous confidence
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envelope. Letting G(x, ! ) be the tensor product B-spline covariance estimator, we define

~

@S(u) =(0b—-a-— fb UG,z + u)de for 0 < u < b — a and Gs(u) = Gg(—u)
for a — b < u < 0. Similar to G, the new estimator G g is not guaranteed to be positive
semi-definite, but it is sufficient for our purpose. Under the stationarity assumption, G g is
a better estimator of the true covariance. We will pretend that G g is the true covariance

and reject the null hypothesis if this function is not covered by the confidence envelope.

Figure 3.5 shows cubic tensor spline envelopes with 0.9995 confidence level, and the center
surface is G g(r — 2') as a two-dimensional function. As we can see, even for such a high
confidence level, the estimator under the stationarity assumption is still not fully covered
in the envelopes. We conclude that the covariance structure in these Tecator spectra is

non-stationary. The same conclusion can be drawn using linear tensor spline method.

3.6.2 Speech recognition data

The data were extracted from the TIMIT database (TIMIT Acoustic-Phonetic Continuous
Speech Corpus, NTIS, US Dept of Commerce) which is a widely used resource for research
in speech recognition. The data set we use was formed by selecting five phonemes for
classification based on digitized speech from this database. From continuous speech of 50
male speakers, 4509 speech frames of 32 msec duration were selected. From each speech
frame, a log-periodogram was used as transformation for casting speech data in a form
suitable for speech recognition. The five phonemes in this data set are transcribed as follows:
“sh” as in “she”, “dcl” as in “dark”, “iy” as the vowel in “she”, “aa” as the vowel in “dark”,
and “ao” as the first vowel in “water”. For illustration purpose, we focus on the “sh” and

“ao” phoneme classes as representatives of consonants and vowels. There are nq = 872
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Figure 3.3: Plot of the Tecator data.
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log-periodograms in the “sh” class, and ny = 1022 log-periodograms in the “ao” group.
Each log-periodogram consists N = 256 equally spaced points. Figure 3.6 shows a sample

10 log-periodograms from each of the two phoneme classes.

This data set was first analyzed by Hastie et al. (1995) using penalized linear discriminant
analysis. One of the basic assumptions is that the covariance functions are the same for
different classes. Judging from the scatter plot of the data in Figure 3.6, despite the clear
difference between the mean functions of the two groups, there is no obvious indication of

difference in covariance structures.

We first obtain the cubic tensor product spline covariance estimators for the two phoneme
classes separately, which are shown in Figure 3.7. These results are obtained by using
Ns1 = 10, NS2 = 4 number of knots for the “sh” class, and Ns1 =11 and N32 = 5 for the
“ao”class. Different number of knots between the two groups reflects that the sample sizes

are different.

By comparing the covariance estimators in Figure 3.7, there seems to be a visible differ-
ence between the two classes. We now would like to test the equal covariance assumption

formally. The hypotheses of interest are

Hy - G(l)(:c,x/) = G(Q)(x,x/), \ (x,x/> € [0, 1}2

vs. He:GW ) # 6@, 3<m,x’)e[o,1}2. (3.13)

The 99.95% confidence envelopes for the difference of the two covariance functions are pro-
vided in Figure 3.8, and the zero hyperplane is used as a reference. Since the zero hyperplane
is not covered by the envelopes, the equal covariance hypothesis is rejected with p-value

< 0.0005. We also tried different numbers of knots and the test result is not sensitive to this
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Figure 3.6: Plots of the speech recognition data.

choice. Our results suggest that a quadratic discriminant analysis, that takes into account
the difference in the within-group covariance functions, might yield a better classification

error rate than a linear discriminant analysis in this data set.
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3.7 Summary

In this chapter, we consider covariance estimation in functional data and propose a new
computationally efficient tensor-product B-spline estimator. The proposed estimator can be
used as a building block for further data analysis, such as principal component analysis, linear
discriminant analysis and analysis of variance. We study both local and global asymptotic
properties of our estimator and proposed a simultaneous envelope approach to make inference
on the true covariance function. The method is applied to a Tecator near-infrared spectra
data to test the stationarity assumption on the covariance. In a classification problem, we
further extend our method to a two-sample problem to test the equal covariance assumption

between different treatment groups.
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APPENDIX

5



Throughout this section, C' means some positive constant in this whole section.

The detailed proofs of the following lemmas, Proposition 3.3.1 and Proposition 3.3.2 can

be found in the supplement.

Preliminaries

For any positive integer p, denote the theoretical and empirical inner product matrices of
x as

A N
Vp = (<BJ7P,BJ,7P>)(]]V;,:1_p, Vp = (<Bjjp,BJ,7p>27N) J;/:1_p'

The following lemma is from Chapter 1, which established the upper bound of HV]; 1 H .
00

Lemma 3.7.1. For any positive integer p, there exists a constant My > 0 depending only

on p, such that HvﬁlH < Mphs_l, for a large enough n, where hs = (Ns + 1)_1.
00

Denote by “®” the Kronecker product of two matrices. Note that H(A ® A)_1H =
00
2
HA_l ® A_lH < HA_1H , for any invertible matrix A, which, together with Lemma
00 00

3.7.1, leads to the following result.

Lemma 3.7.2. For any positive integer p, there exists a constant My > 0 depending only

on p, such that H(Vp ®Vp)_1H < MghS_Q.
00

Next we define the theoretical and empirical inner product matrices of tensor product
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spline basis {BJJ/ (:IZ‘, x’)} as
P2 J,J'=1—pg

\% = B B
P22 (< JJ py’ J”J’”,p2>)JJ/ T M =1—pq

A% 9 = <B 1 B > . (3.14)
D9, ( JJ D9 J"T P9 2N Tl g Jlllzl_p2

The following results show that the difference of Vp272 and \Afp272 is negligible. Using the

results from Lemma 3.7.2, we can obtain the upper bound of the norm of \75212.

Lemma 3.7.3. Under Assumption (A3), for Vp272 and \A/p2’2 defined in (5.14),
Y _ -1 o—1 _ —2
Vor2 = Vsl =0 (V1) ana [Vl =0 (7).
Lemma 3.7.4. For Vp272 defined in (3.14) and any N(N —1) vector p = <pjj/>’ there ex-

ists a constant C' > 0, such that sup N_QBZT7

(m,m’)G[O,l]Q

cr—1
Wyl X 0| < Clpl

2

~ -1
Denote ¢,/ (w, x/) = Bf,2 (z,z) (XTX) XT(Pkkh and

¢kk./ =

(6 2/N) By (UUN) .03 (0 6y (LN, o 65 (UN) g0 (1) 6 (L= 1N 60 (1))

The following lemma is a direct result from de Boor (2001), p. 149 and Theorem 5.1 of

Huang (2003), thus the proof is omitted.

Lemma 3.7.5. There is an absolute constant Cg > 0 such that for every g € cp—Lp 0, 1],
there exists a function g* € #(P—1) [0, 1] and some u € (0, 1] such that SUPe[0,1] |g(x) —g* (93)|

< Cghg . If Assumption (B2) holds, SuP(x,x’)E[O,l]Z cbkk/(x,x ) qbkk/(x,:c )‘oo =

7



Proofs of theorems 3.3.1 and 3.3.2

PrROOF OF THEOREM 3.3.1. By Propositions 3.3.1,
E[Gpy po(w.a') = Gla,a )} = BAZ (w,2) +o(1),

where A <1:, x/> is defined in (3.5). Let g_kk, —n! 2?21 §ikipts 1 <k, k' < k. According

to (3.16) and (3.17), one has

A(x,x/>= ig'kk,% ¢k;’< >+§: (Epp — 1) 0 (2 )¢k<x/>.
=1

k£k!

Since

- Y R@R () Y o (&) oyl oy @ ey ()
k,k'=1 kk'=1
4

= G <:1:,x/>2 +G(z,2)G (x/,x’> + i qﬁ% (x) ¢% <a:’> (Efilk, — 3) =V (:1:,93/) )
k=1

and the desired result follows from Proposition 3.3.2.

Next define ¢ (z,x’) = 711/2\/_1/2 (:v,x/> A <a:,x/>.

Lemma 3.7.6. Under Assumptions (B2)-(B4), sup(x m’)G[O 1]2 ‘CZ (;1;’ ;,;’) —¢ (x, x’)‘ —
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0q.s. (1), where C 7 <x,x’) is given in (3.7).

ProOOF OF THEOREM 3.3.2. According to Lemma 3.7.6, Propositions 3.3.1 and 3.3.2

and Theorem 3.3.1, for Vo € (0,1), as n — oo,

)
. —1/2
nli)mOOP sup nl/2 Gp1,po <:13,a7/> — G(x,x/) % (m,x’) / <Q1_q
\ (x,a:’)E[O,l]Q J
( )
1/2 | A / / n—1/2
= nli>moop sup n Gpy,p9 (ZE,JI ) — Gz, 2|V (QJ,ZE ) <Q1_q
\ (z :13/)6[0,1]2 )
- n1i>moop sub ¢ (x,x/)’ <@l
(z x/)E[O,l]Q
= lim P sup Cy :c,gc/ ) <Q1_q
oo (z x/)€[0,1]2 ( )
Supplement

This supplement contains proofs for Lemmas 3.7.3, 3.7.4 and 3.7.6, Propositions 3.3.1 and

3.3.2.
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Proor or LEMMA 3.7.3. Note that

A\
N32
= By gty GNTIN) B g (313N
1<J7é]l<N TN I =1—pg
= { ZBJJ” (J/N,j/N) ZBJ’J”/ (J/N,j/N)

J,J/,J//,J”/:l—pQ

— QZBJJ/aPZ (J'/N,J'/N)BJ//J///JD2 (4/N,j/N)
j:1 J,J/,J”,J///:1—p2
NSQ
A ~ J 7 J ]
= Vpy @ Vpy — Z BJJ/,pQ ( ) J" T po (N N)
j= J’J/,J”,J”/:l—pQ

Note that the entries in the matrix Vp2’2 —VpQ ®Vp2 are zero when the maximum absolute

difference between any two of the indices (J, J" ), (J roa ) is greater than p; otherwise

N7 D .11y /N3N By i G/ 3/)

- n!

1
/O B{](]/’p2 (m,m) BJ//J/,/,pQ (:L‘,l’) dx + O(N_lhs_Ql)]

- 0 <N_1h32 + N_2h5_21) .

30



3 3 3 _ 1 2 .
Hence, P22~ Vp2 ® VPQHOO =0 <N h32 + N~ “hg, S9 ) Since

NS2

. .
—2 J ] J J
= max Z N Z B, (- —> Bn ym <—, —)
1 p2<J/ JI//<NS2 JJ// T o ; j - 7p2 NN P2\ N' N
/ / /
_/O /0 BJJ/,pQ (l‘,x ) BJ”J”/,pQ (JZ,ZL‘ > dxdx
< Z Z / / 351, (11353
- / /// )N | T2

><B{]//J///7p2 (j/N,j’/N) — BJJ/,])Q (%SC/) BJ//J///,p2 (SC,I/)

—2 2 =2 =2, -2 —2, -2
Chs, (Nh%) x N72 x N72ng,2 = ON~2hg 2,

IA

applying Assumption (B3) one has HVPQ ® Vpy — Vp2 2H -0 (N_1>.
“lloo

s

2
According to Lemma 3.7.2, for any <N52 + p2> vector T, one has H (Vp2 ® Vp2)
00

h—2 | 7|lno- Hence, (Vp2 ® Vp2>THOO > th | 7|l~o- Note that

~

1 2
Vp2,27'HOO = H(Vp2 ®Vp2)7'HOO - H(Vpg ® Vpo)T — Vp2,27‘HOO =0 (hs2) 1700 -

1] =1 9 (=2 .
If 7 satisfies that ‘ A\ 19,2 ‘ = Vp2727' Ny <O <h82 ) 7Tl = O (hSZ ), the lemma is
proved.
m,n
Proor orF LEMMA 3.7.4. Note that for any matrix A = <aij>~ 1 izl and any n by
i=1,j=
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1 vector ¢ = (o, . .. ,om)T, one has [[Aa|s < |Alloo la]|oo- It is clear that

—2~T —2 ) .
|yl = N > Bty NI IN) 0y

—2 . ./
< oo max INTEST By (3NN

2
< 13, lplloo -

One also observe that

P2

2pr I xT —2~xT
V2BV XT | < B3

<[],

which, together with the boundedness of spline functions and Lemma 3.7.3, leads to the

desired result.

PROOF OF LEMMA 3.7.6. According to Assumption (B4) and multivariate Central Limit

Theorem

vn {f.kku (E?k - 1) (Efilk - 1)_1/2}19@,9 —q N (OFL(FH-l)/Z’ IH(HH)/z) :

Applying Skorohod’s Theorem, there exist i.i.d. variables Zk’k” = Zk/k' ~ N(0,1), Z;. ~

N (0,1), 1 <k < k' < &, such that as n — oo,

max {‘\/ﬁg'kk/_zkk‘/"

1<k<k!<k

vn <€2k - 1) - 7y, (Elelk — 1>1/2‘} = oa.s. (1).
(3.15)

The desired result follows from (3.15).
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Proof of Proposition 3.3.1

Recall that the error terms defined in Section 3.2 are Uij = Yij —m(j/N),i=1,..,n,

7 =1,...,N. Note that

n
IR oy
Va2 Yty
1=

= p! Zl kz Eikor (G/N) +0 (/N) e kz ik Pk (j//N> to (j//N> “ig!
i=1 \k=1 =1

= U,.,4+U,.,+0U,..
155" T Y25t + Vgt

U, ..
+ 4]]’7

where

o = Z gkklﬁbk(]/N)gbk/ (]’/N>7

U,
Jj
-
_ K _
Upjjt = kglﬁ-kk;%(j/f\f)% (/)

n
Uy = n_l2a(j/N)a(j’/N>sij5ij/,
1=

n K K
Ugit = nl ; kzlgiwk (j/N)o (j’/N) it + kzléikqﬁk (j’/N) o (j/N)e;j

for i =

1,2,3,4. Then we can have the following decomposition for ép2 (x, ! )

ép2 (x,x/) = Z:{1p2 <:13,:17/> +L~12p2 (a:,x/> —|—L~{3p2 (m,a:/> +Z/~l4p2 (a:,x/> )
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Define

Uy (z,2') = i E ! O () Dy (96/> , (3.16)
k#£K
UQ(x,m/) =G <:1c,a:/> + f: {gbk (z) ¢ (:13/> (Ekk - 1)} : (3.17)
k=1

Next we illustrate the facts that Z;{1p2 (x, a:l> and L72p2 <m, x/> are the dominating terms in
the above decomposition, which converge uniformly to Uy (x, 2! ) and Ug(z, ') respectively,

while Z/~{3p2 <x, ! ) and Z:{4p2 (x, ! ) are negligible noise terms.

By the definition of I__Tl, one has that

K
Z;{lp2 (I,x/> = N_2B]7;2 (x,fl)V;;QXT Z gkklﬁbk; (J/N) ¢k/ (]//N>

kK
K _ ~
= 2 Gpbpy ()
k#k!
Lemma 3.7.5 and Assumption (B3) imply that

~ ~ H: — ~

sup ‘(Zx[lPQ —Uy) <x,x/>‘ = sup Z/{1p2 — Z § 1/ Prp! (x,x/>
z,a2'€[0,1)2 z,2'€[0,1)2 k£l
2 ‘— P /
< k% max 3 /‘ sup )(¢ 1= @) (2, ’

1<kAk <r kk v 012 kk kk ( >

= Op (hggn_1/2> = op (n_1/2> .
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Similarly,

sup ‘(LNIQPQ —Us) (x, x,) ‘
z,2'€[0,1)2

< p T /
hS Klg]?gli }5kk¢| x7x/5611[18’1]2 ‘(d)kk, ¢kk/) <Z‘,I )’

- 0,(1) = (17,

Therefore, one has

z,2'€[0,1)2
Denote that
2~ T 1 = NSQ
N X U3 = n Z A’LJJ/ )
i=1 JJ'=1-poy
where
A g = N2y B py U/N)o i/N) By, <j//N> o (j’/N) cijeiji

1<j#j'<N

It is easy to see that EA@’JJ’ = 0 and EA2

e O (h2 N_Q). Using standard arguments

in Wang and Yang (2009), one has

HN_ZXTI_J:))H = 0a.s. {N_ln_1/2h5210g1/2 (n)} :
00
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Therefore, according to the definition of (73]92 (x, z! ), one has

o1 =25 T
sup HBP2 x,T )Vp2’2N X U3H

.2’ €[0,1)2 00

IN

—1 Ar—2~T 77
Cp2 sup HBp2 (:c x HOOHVP2 2N X U3H

'e[0,1]2 o0
= o0a.s. {N_ln_1/2hs_2110g1/2n} = 0a.s. <n_1/2> )
Likewise, in order to get the upper bound of 5{4]92 (z, z ) , one has
XTI_J4
2 n K
- 2% Y
i J
N ( N) B LA P
Z:/ (]/ Yo (i'/ JJ/,p2 (N N> g’Lj/

Let

Dy = 22 37 Z Cb]{;(j/N)U(jl/N)BJJ/m(j/N,jl/N>5/

ij

F=1\  1<j#j/<N
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then ED@'JJ’ =0,

K
ED = NTUSD S GNP (FIN) BE (/N 5TIN) B B
k=11<jAj'<N ’
KR
ONTEYT X RGN B, /N0 (§/N) B, (5'/)
k=11<j#5'<N ’
- o(h§2N—2).

2
iJJ!

IN

Similar arguments in Wang and Yang (2009) leads to

x!10y 1 —1/2 1/2

H 2 zoa.s_{N n /hszlog/ (n)}
xO

Thus,
T_
1 XTU 1 —1/2, -1, 1/2 —1/2
'31?2(9”’5”/)%2,2 N24 = 0a.5. {N n /hs2 log/ (n)}zoa_s_ <n />

X0

Proof of Proposition 3.3.2

For simplicity, denote

Bipypy /) By py (V/N) NX(NS +p1>
1

for the positive integer p1. We decompose mp, (j/N) into three terms mpy (j/N), épl (j/N)
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and Epq (j/N) in the space 1(P1-2) of spline functions:

mpy (x) = mpy (z) + Epy (z) + gpl (@),

where

iy (1) = {Bl_me (2), .. BN, p, (@ )} (XlTxl)_l XT'm
Epy (x) = {Bl_pr1 (2), .., BN, p, (@ )} <X1TX1> leTe

6y (@) = {B1_pypy @)oo By @) (xTX,) T x ; s

T
where m = (m (1/N),...,m(N/N)) is the signal vector,
T
e = (0(1/N)eq,...,0 (N/N)E.yy) g = n~1 ,?_152], 1 < j < N, is the noise
T _
vector and ¢;. = (gbk(l/N),...,gbk (N/N)) are the eigenfunction vectors, and § ;. =

n—1 2?21 g 1 < k< k.

Thus, one can write the residuals Uzg 1 =Y —rpy (j/N) as

A~

Uijpp = m G/N) = py (5/N) = &py (5/N) = Epy (5/N) + Uy

Let U ., = n 1
Vil T e

GPQ (z,2') by checking the difference U-jj’ Py U i first. For any 1 < j # j/ < N, one

.

: A /
%m Uzy b1 We calculate the difference of Gpy py(z,2") —
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has

Usitw Vst = ”_1;[%(%1 m) (/N + Uy gy —m) (3/N)
+ Uyjiépy (j’/N) + Uy tépy (G/N) + Ujjepy (j/ /N) U, sy /N)]

+ (mpl —m) (j//N> (mpl - m> (J/N)-

~

Next, we calculate the super norm of each part of Gpl D2 (x, :E/)—GpQ (z,2") respectively. One

L . Ns
can write Ep; (]//N) ZJ Jpl (] /N> w y, where {wJ} 1 =N" 1Vp11X?

and

n
T ~ ./
X Z Uijgpl (] /N)
=1 1<j#j <N

- i Z U gpl (] /N> JJ/,pQ (]/Na],/N>

=L1<j#5'<N J,.J =1-pg
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Thus,

2
T n
xTEn=tS vz (] /N)
i=1 1<j#5'<N ||
JJ'=1-py
n Nsy ’
-1 ./ . -/
Y wgl S By (PN ) | By, (85N)
i=11<j#5/<N J"'=1-py
N82 Nsl n 2
—1 ./ . ./
< XX | X By, (V) By, (GN5N)
J,J!=1—py J"'=1—p; =11<j#5'<N
x> why =IxIl
J”Zl—pl
where

-y Y L'y oy UijB gt o (/N3 IN) By (5'/N)

JJ'=1=py J"=1-py | =11<j#j/<N

_ I v=15=1xT |2
and 17 = [NtV IxTe||
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Let hx = min {hsl , hg2}. The definition of spline function implies that

N32 Ngl N
Bl =27t Y 3 3 E<U1lej,,> By (i/N) By, <j”/N>

JJ'=1=py J"'=1-p; |jj"=1

N N
B (J N)B <./ N)B (-/// N)B <./// N)
X /Z: -///2:-// T o N ) By \TIN) Byt (37N ) By, A5
JFIIE]
< C(G.oHn N E, hENs, max {Nsl, NSQ} < C(G.o)n " N hsy s

Hence,

n
_ _ ./ _1/2,1/2,1/2
S R I (;’/N) :O(n 1/2hs2/ nl/ )
i=1

1<j#j'<N||9

Meanwhile, one has that
2
—1~T —2 2 \—1
1< Cy, HN X7 eH2 hs? = Oas, {(Nnhsl) } .
By Lemma 3.7.4, one has

n
n1/2 sup ng (x,z )V 212N 2XT n_l Z Uijgpl <]//N>
z.2'€[0,1)? i=1 1<j#5' <Nl oo

_ 0{ —1/2 - 1/2}1811,11/2,11/%S2 } _ O{n—1/2N—1/2hS—11/2hS—23/2} o).
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- s /. Ns ‘
Similarly, fpl (]’/N) = Zlel—pl BJ7p1 (]//N> s.j, where

Ns o lyT N =
{SJ}lel_pl =NV Xy ) &y
=1

Assumption (B3) ensures that

i 2
XTI en N 08, <j//N)
=1 1<j#j'<N||o
Ns, Ns o
< > > nt > Ui By ., <j//N) Byt p (j/ij//N>
J,J'=1=po J"=1-p; i=11<575'<N
Ns;
< Y s%,, = I xIII,
J”zl—pl

o _ 2
where 1] = HN_leler‘lr 22:1 §k¢kH2 Note that

Ko Ko . N Nsy
NXE S e = NS By, (/N 0y, (/)
k=1 k=1 j=1 J=1-py
and
Ko N 2 1.9
BN ENTIY By G/N)op G/N)| =0 (n 7))
k=1 Jj=1
hence
o 2
I11 < Cp, N—1X1T >t hs_f =Op {(nhsl)_l}
k=1 2
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and

n
nl/2 sup B%; (x, x,)V;;?QN_2XT n~l Z U’ijgpl (j//N>
z,2'€[0,1]2 i=1 1<j#5 <Nl oo

- O{ _1/2hsll/2h1/2 1/2h_2} O(n_1/2h5_23/2):0(1).

Next one obtains that

2
nTINTEST N 0By, G/N) B y (j’/N) <m—mp1) (j’N)
i=11<j#£j/<N P2
_ iy Z (Ulj 19”> By GIN) By, (5 ( ”/N)
J
DS Bty () By (07IN) (= gy ) (/) (0 =y ) (57/)
i'#5 5" #5"

o 4 201 _
< C(G,UQ)thl 1y 4<Nh32> = C(G,o%)hs tn ™,

Therefore,

n1/2 sup HBp2 T,T )Vp_21’2N_2XT
.2’ €[0,1)2

" ; Ui (o (7/) = (/%)

= O(hg? Wit hsy) = O(hgy' h1) = 0 (1).

375 oo

Finally, we derive the upper bound of
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A . ®2
sup 0.1]2 HB};2 (z, 2V ’2]\7 2xT (m — mp1> H , where

= ) o

(m iy )™ = { (= ) 6130 (=) (P

A\ ®2
oo

Using the similar proof as Lemma A.8 in Wang and Yang (2009) and Assumption (B3), one

In order to apply Lemma 3.7.4, one needs to find the upper bound of

has SUP [0, 1] ‘épl (x)’ +8uperp 1] (Epl (x)‘ =0 (n_1/2>. Therefore,

Sup($,x’)6[0,1]2 <m () — rpq (x)) (m (x/) — Mpy (x/)>
2

IN

[Supxe[o,u (m (x) — mpy (:z:))}
(Supxe[o,u ‘m () —mp; (ﬂf)‘ +8UPe(p 1] ‘5191 (x>‘ +8UPe0 1] ‘gm (f)Dz

0 (W12 =0 (S 4t 0 12) =0 (7112).

IA

IN

Hence

. ®2 —1/2 .
(m - mp1> =0 (n ) Hence, the proposition has been proved.
00
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Table 3.1: Simulation results: uniform coverage rates from 500 replications.

o n 1 —a | Coverage proportion | Coverage proportion
(p1 =p2=4) (p1 =p2=2)
0.950 0.720 0.710
50
0.990 0.824 0.828
0.950 0.858 0.834
100
0.990 0.946 0.930
0.950 0.912 0.898
0.5 | 200
0.990 0.962 0.956
0.950 0.890 0.884
300
0.990 0.960 0.958
0.950 0.908 0.894
500
0.990 0.976 0.964
0.950 0.626 0.690
50
0.990 0.720 0.796
0.950 0.752 0.796
100
0.990 0.874 0.904
0.950 0.798 0.852
1.0 | 200
0.990 0.912 0.944
0.950 0.822 0.828
300
0.990 0.922 0.936
0.950 0.864 0.858
500
0.990 0.946 0.946

95



Chapter 4

Spline Confidence Bands for

Functional Derivatives

4.1 Introduction

In exploratory FDA, it is often of interest to estimate the mean functions; see for example,
Ramsay and Silverman (2005), Yao, Miiller and Wang (2005a,b), Ferraty and Vieu (2006),
Li and Hsing (2010) and Cao, Yang and Todem (2012). In some settings, however, esti-
mation and inference of derivatives of the mean functions in FDA are of equal importance.
For example, in economics, consistent and direct estimation of derivatives are essential for
estimating elasticities, returns to scale, substitution rates and average derivatives. Often,
these index (derivative) functions are as interesting as the mean functions themselves. An-
other example is in the fields of engineering and biomedical sciences, where the estimation
of velocity and acceleration are of great importance in addition to obtaining a smooth curve
of the measurements.

The problem of estimation and inference of derivatives for functional data is very chal-
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lenging; see Ramsay and Silverman (2005), Liu and Miiller (2009), and Hall, Miiller and
Yao (2009) for some discussions. Existing methodologies for derivatives of the regression
function in FDA often rely on a pointwise analysis. For example, in Liu and Miiller (2009)
the theoretical focus was primarily on obtaining consistency and asymptotic normality of
the proposed estimators, thereby providing the necessary ingredients to construct pointwise
confidence intervals. This approach is important but its usefulness in conducting global in-
ferences is limited. To our knowledge, we are not aware of any methodology that provides
simultaneous confidence bands for functional derivatives in FDA. In this chapter, we develop
such methodology with the primary aim to better understand the variability and shape of
the mean curve.

Nonparametric simultaneous confidence bands are powerful tools for global inference of
functions. Some work has been conducted to study the simultaneous confidence band of the
mean curves for FDA; see Degras (2011), Ma, Yang and Carroll (2012) and Cao, Yang and
Todem (2012). The research work on confidence bands for functional derivatives is actually
sparse. This is partially due to the technical difficulty to formulate such bands for FDA and
establish the associated theoretical properties.

Some smoothing tools are necessary to construct the confidence bands. Popular smooth-
ing methods include kernels (Gasser and Miiller, 1984; Hérdle, 1989; Xia, 1998; Claeskens
and Van Keilegom, 2003), local polynomials (Fan and Gijbels, 1996), splines (Wahba, 1990;
Stone, 1994) and series expansion methods (Morris and Carroll, 2006). In this chapter, we
use B-splines, which can be readily implemented due to their explicit expression, to con-
struct the bands. B-spline approximation has also been employed to estimate the functional
mixed-effect models in Shi, Weiss and Taylor (1996) and Rice and Wu (2001), and to study

functional data via principle components in Yao and Lee (2006) and Zhou, Huang and Car-
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roll (2008). Other works include Zhou, Shen and Wolfe (1998) and Wang and Yang (2009a)

who have proposed B-spline confidence bands for regression functions.

The proposed confidence bands are asymptotically the same as if all the random tra-
jectories are correctly recorded over the entire interval. As discussed in Section 4.3, the
estimators are semiparametrically efficient thereby providing partial theoretical justification
for treating functional data as perfectly recorded random curves over the entire data range,
as in Cao, Yang and Todem (2012).

The rest of the chapter is organized as follows. In Section 4.2, we introduce the model
and the spline estimators for the mean curves and their derivatives. Section 4.3 presents
the simultaneous confidence bands for the derivatives of the mean curves. Specifically, in
Section 4.3.1, we show that the bands have asymptotically correct coverage probabilities;
and in Section 4.3.2, we discuss how to estimate the unknown components involved in the
band construction and other issues of the implementation. Section 4.4 reports findings from
a simulation study and a real data set. Proofs of technical results are relegated to the

Appendix.

4.2 Models and spline estimators

4.2.1 Models

We consider a collection of trajectories {X@'(t>}?:1 which are i.i.d. realizations of a smooth
random function X(t), defined on a continuous interval 7. Assume that {X(¢),t € T} is
a LQ(T) process, i.e. EfTX2(t)dt < 400, and define the mean and covariance func-
tions as m(t) = E{X(t)} and G (t,s) = cov{X(t),X(s)}, t,s € T. The covariance func-
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tion is a symmetric nonnegative-definite function with a spectral decomposition, G (t, s) =
Zzozl A0 (t)dp. (s), where A\| > Ao > --- > 0, are the eigenvalues satisfying Zzozl AL <
oo, and {qﬁk(t)}zozl are the corresponding eigenfunctions that form an orthonormal ba-
sis. By the standard Karhunen-Loéve representation (Hall and Hosseini-Nasab, 2006),
X;(t) = m(t) + 2120:1 ;191 (t), where the random coefficients &;;. are uncorrelated with
mean 0 and variance ;.. In what follows, we assume that \;. = 0, for & > &, where & is a
positive integer or co.

We consider a typical functional data setting where X (-) is recorded on a regular grid
in 7, and assumed to be contaminated with measurement errors. Without loss of generality,
we take 7 = [0, 1]. Then the observed data are Vi =X, (Ti ) +o <Tij) g4, for 1 <i <,
1 <j < N, where T i = Jj/N, €55 are independent random errors with E <5ij> = 0 and
E (522]-) =1, and o(-) is the standard deviation of the measurement errors. By the Karhunen-

Loeve representation, the observed data can be written as

Yij=m@/N)+ Zzzl &0k (G/N) + 0 (5/N) e, (4.1)

where m(+), o(-) and {gbk()}gzl are smooth but unknown functions of ¢. In addition,
{¢k(-)}i_, are further subject to constraints fol ¢% (t)dt = 1, and fol O, () ¢ps (t) dt =0,

for k' # k.

4.2.2 Spline estimators

We first introduce some notation of the B-spline space. Divide the interval 7 = [0, 1] into
(Nm + 1) subintervals I; = [wJ,wJ_H), J =20,...,Njm — 1, INm = [wNm,l], where
wm = {w J}]}]Lnl is a sequence of equally-spaced points, called interior knots. Let ”H(p —2)
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be the polynomial spline space of order p on [0,1]. The J-th B-spline of order p is denoted
by By D We augment the boundary and the number of interior knots as Wl—p = - =
1=wy=0<wy <. <wn, <1:wNm+1 = = WNpy in which w j = Jhm,

J=0,1,.... Nm + 1 and hyp, = 1/ (Nm + 1) is the distance between neighboring knots.

Following Cao, Yang and Todem (2012), we estimate the mean function m(-) in (4.1) by

m() = argmm Zl_ Z] 1{ ]/N} ZJ 1 pl;JpBJp()
g()enr=2)

where the coeflicients

A A A T n N Nm 2

Let Y = (Yl,...,YN)T and Y’j — 1 Z” 1YU’ 1 < j < N. Applying elementary

algebra, one obtains

i (t) = Bp(t) (BTB) “IpTy (4.2)

in which By (t) = (Bl op. By )) and B = (B%(UN),...,B% (N/N))T is

the design matrix.

We denote by m(¥) (t) the v-th order derivative of m (t) with respect to t. Since 1 () is
an estimator of m (t), it is natural to consider ) (t) as the estimator of m(¥) (t), for any

v=1,..,p—2 ie.

) (1) = B](f) (1) <BTB) “IpTy, (4.3)
where Béw (t) = (Biy_)p’p(t), ’B](\lf/r)n,p(t)) . According to B-spline property in de Boor
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(2001), forp >2and 2 —p < J < Ny, — 1,

Qg =1t Bripa
dt P Wpp—1 W] W p W 4l

Therefore, B;ﬁ (t) =Bp_y (t) D%;), in which D) = Dy ---D,,_ 1Dy, with matrix

—1
_ 0 0 0
_ 1 _—1 0 0
WITWl—ptl W2TW2—pt
Dl = (p - l) 0 1 —1 0
W2TWo—pl W3TW3—p+l
0 0 0 0 1

“Nm4p—1"“Nm,

for 1 <1 <wv <p-—2, which is the same as equation (6) in Zhou and Wolfe (2000).

4.2.3 Convergence rate

Define the following “infeasible estimator” of function m¥)
— (v _ (v _ . —1\"n (v)
AW = xW @) =n S, el (4.4)

The term “infeasible”, borrowed from Cao, Yang and Todem (2012), refers to the fact that
) (+) would be a natural estimator of m¥) (+) if all random curves X (V) (+) were observed.

]

In the following, we want to show that the spline estimator ) (+) in (4.3) is asymptotically
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equivalent to m(V)()
We break the error m(V)() - m<’/)() into three terms. Let £; = ”_12?:151']"

1 < j < N. Denote the signal vector, the noise vector and the eigenfunction vectors by

m=(m (&) cm (W) e= (0 (F)zno (F)en)’ and
OTRES (qﬁk (%) oo O <%))T Projecting the relationship in model (4.2) onto the lin-

car subspace of RVMTP spanned by {ij(j/N)}1< N 1ep<J< N obtain the
’ )NV I=PSJISINm

following crucial decomposition:
)ty = W) + e ) + W) e, (4.5)

where (V) (1) = T0) (hym, &) (1) = T (B and EW) (1) = S5, €7 (1), with
r) @) = B](,”) (1) <BTB)_1 B and &), =n 10 & 1<k <k

The following proposition provides asymptotic properties of the three terms.

Proposition 4.2.1. Under Assumptions (C1)-(C6) in Appendiz, one has

SUPy[0,1] ‘m(V)(t) —m¥) (t)’ =0 (n_1/2> , (4.6)
Do ‘g@) () — () (1) = m¥) (t))‘ —op (n1/2), (4.7)
SUPse[0,1] ‘é(y)(t)‘ =op <n_1/2> : (4.8)

Appendix A.2 contains proofs for the above proposition, which together with (4.5), leads

to the following semiparametric efficiency result.

Theorem 4.2.1. Under Assumptions (C1)-(C6) in Appendiz, the B-spline estimator V)
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15 asymptotically equivalent to m(V) with the \/n approzimation power, i.e.
SUPy0,1] Th(y>(t) - m<l’)(t)‘ =op (n_1/2) :

Remark 4.2.1. Since the “infeasible estimator” fn(V)(t) is the sample average of i.i.d. tra-
jectories {Xi(t)}?:p an application of the central limit theorem gives
SUP; ¢ [0,1] )m(y) (t) — m(V>(t)’ =O0p (n_1/2>. Thus combining with the results in Theo-

rem 4.2.1, one has

SUPs[o) 1] ’Th<y)(t) - m(y)(t)’ =Op <n_1/2> .

4.3 Confidence bands

In this section, we develop the simultaneous confidence bands for the derivative function

m) ().

4.3.1 Asymptotic confidence bands

Let X(-, ) be a positive definite function, and defined as ¥(t,s) = Z’g:l)\kqbl({;y)(t)@(fy) (s),
t,s € [0,1]. Denote by ¢ (t), t € [0, 1] a standardized Gaussian process such that E( (t) =0,
E¢2 (t) = 1 with covariance function EC () ( (s) = X (t,s) {2 (¢,t) X (s, s)}_l/Q, t,s €0,1].
Denote by qj_,, the 100 (1 — a)th percentile of the absolute maxima distribution of ( (),

tel0,1],ie P {SuptE[O,I] IC ()] < ql—a} =1-—a,Vae (0,1).
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Theorem 4.3.1. Under Assumptions (C1)-(C6) in Appendiz, Vo € (0,1), as n — oo,
P {SuPtE[O,l] nl/2 T_n(V)(t) —m(v) )% (t,t)_1/2 < ql—a} —1—a.

Applying Theorems 4.2.1 and 4.3.1 gives asymptotic confidence bands for m¥ )(t), t e

[0, 1].

Corollary 4.3.2. Under Assumptions (C1)-(C6) in Appendiz, Vo € (0,1), as n — oo, an

asymptotic 100 x (1 — a) % ezact confidence band for m(V)(t) is

P {m(V) &) e mW @) £ 12 mt,0Y2, tel, 1} —1-a

4.3.2 Implementation

When constructing the confidence bands, one needs to estimate the unknown function (¢, s).
Note that X(t, s) = G(t, s), when v = 0. Following Liu and Miiller (2009), we estimate Qﬁl(:)
through the derivatives of G(t, s). According to Cao, Wang, Li and Yang (2012), G (¢, s) is

estimated by

N N A
Git,s) = J,?’: 1y by Bap @ By, () (4.9)

where R/ = nlyn {Yij —m(j/N)} {YZ.]., — " (j’/N)}, 1<j#j <N, Ngis

the number of interior knots for B-spline, and the coefficients

b}y,
N

= N arg miI}V Z R'jj/ - Z by By (7/N) BJ/,p <j//N)
RYGTPQRVGTP j4 i 1—p<JJ'<Ng
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with “®” being the tensor product of two spaces. They showed that G converges to G as n
goes to co. In this section, we further show that G and G are asymptomatically equivalent
up to the v-th partial derivative. We define the v-th derivative with respect to s for G(t, s)

and G(t, s) as

14 14

GOV 1, 5) = (%G(t 5. GOV (¢ g) = 88—(; = b, 4By, ) S”)p (s). (4.10)
J,J! ’

Theorem 4.3.3. Under Assumptions (C1)-(C6), one has

sup G(Oy)(ts) G(Oy)(ts) =op(l), 1<v<p-2
(t,5)€[0,1]2

The proof of Theorem 4.3.3 is given in Appendix A.3.

According to Liu and Miiller (2009), we estimate the v-th derivative of eigenfunctions

gAb](:) using the following eigenequations,

/Gtsgzﬁk, £ dt = /—Gts By, (1) dt = \dt) (s), (4.11)

where qﬁk are subject to f() gzﬁk t)dt = 1 and f() gf)k, gzﬁk/( ydt = 0 for k' < k. If N is
sufficiently large, the left hand side of (4.11) can be approximated by

R ./ R .
% Zévzl G(O”/)( ’jN)¢k (i) Then we estimate (¢, s) by

5(t,8) = 8 As 08l (s).

The following theorem shows that 3(-,-) and (-, -) are asymptomatically equivalent.
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Theorem 4.3.4. Under Assumptions (C1)-(C6), one has

A

sup X(t,s) = X(t,s)| =op(1).
(s,t)€[0,1]2

The proof of Theorem 4.3.4 is given in Appendix A 4.

In practice, we choose the first L positive eigenvalues 5\1 >.0> ) 1, > 0 by eigenvalue

decomposition of G (t,s). Then we apply a standard criterion in Miiller (2009), to choose the
. ) . - . l A L X .

number of eigenfunctions, i.e. x = argmin) << {Zkzl Akl 2281 Mk > 0.95}. Miiller

(2009) suggests the “pseudo-AIC” and this simple method of counting the percentage of

variation explained can be used to choose the number of principal components. The simple

method performed well in our simulations and is used for our numerical studies.

To construct the confidence bands, we use cubic splines to estimate the mean and co-
variance functions and their first order derivatives. Generalized cross-validation is used to
choose the number of knots Ny, (from 2 to 20), to smooth out the mean function. According
to Assumption (C3), the number of knots for smoothing the covariance function is taken to

be No = [n1/<2p>10g(n)], where [a] denotes the integer part of a.

Finally, in order to estimate gq1_, we generate i.i.d standard normal variables Z}. 4,

; o _ S (v
1<k <k b=1..,5000 Letd,(t) =3t 1/2 Zzzlq/Aka’b@({ ) (t), t € [0,1],
q1_ can be estimated by 100(1 — «)-th percentile of {SuptE[O 1] \&b(t)|}22010 Therefore,

in application we recommend the following band

W) £0 128 0,0 24, teo,1). (4.12)
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4.4 Numerical studies

4.4.1 Simulated examples

To illustrate the finite-sample performance of the confidence band in (4.12), we generate

data from the following:

: K : ..
Yij=m(/N)+ > Eron G/N) +ej, e~ N(0,0.12),

for 1 <i<n,1<j<N. We consider two scenarios.

Model I: m(t) = 5t+4sin(2r(t—0.5)), ¢1(t) = —v/2cos(2m(t—0.5)), ¢po(t) = v/2sin(4r(t—

05)), £Zk ~ N(O’)\k)’ /\1 = 2, )\2 = 1, R = 2;

2
Model T1: m(t) = 4t + \/%0.1 exp (—%) o1.(1) = v/2sin (nkt), &1 ~ N(0, \p),

Ae=2"k=1) p—12 k=5

The second case has similar design as in Simulation C of Liu and Miiller (2009). We use
the proposed method in (4.12) and its “oracle” version with true X (¢,¢) to construct the
confidence bands for m(1) (+) respectively in both studies. We consider two confidence levels:
1 —a = 0.95,0.99. The number of trajectories n is taken to be 30, 50, 100, 200, and for
each n, we try different numbers of observations on the trajectory. Each simulation consists
of 1000 Monte Carlo samples.

We evaluate the coverage of the bands over 200 equally spaced points on [0, 1] and test
whether the true functions are covered by the confidence bands at these points. Tables
4.1 and 4.2 show the empirical coverage probabilities out of 1000 replications for Models

I and II, respectively. From Tables 4.1 and 4.2, we observe that coverage probabilities for
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Table 4.1: Coverage rates of the spline confidence bands in Model I.

95% 99%
n N Est. Oracle | Est. Oracle

30 | 30 | 0.756 0.831 | 0.901 0.936
60 | 0.833 0.900 | 0.926 0.969

50 | 50 | 0.824 0.863 | 0.932 0.933
100 | 0.856 0.904 | 0.947 0.979

100 | 100 | 0.851 0.897 | 0.943 0.971
200 | 0.856  0.907 | 0.949 0.971

200 | 200 | 0.866  0.910 | 0.950 0.972

400 | 0.869 0.944 | 0.959 0.987

both estimated bands and “oracle” bands approach the nominal levels, which show positive
confirmation of Theorem 4.3.1. In most of the scenarios the “oracle” confidence bands
outperform the estimated bands, and the “oracle” bands arrive at about the nominal coverage
for large n and N. The convergence rates of estimated bands are slower than those “oracle”

bands, but the convergence trend to nominal level is clearly.

Figure 4.1 to Figure 4.8 show the estimated functions and their 99% confidence bands
for the first order derivative curve m(l)() for Models I and II, respectively. As expected
when n and N increase, the confidence band is narrower and the cubic spline estimator is
closer to the true derivative curve. For Model I, the boundary effects in all four panels are
almost unnoticeable. For Model II, there seems to be some boundary effects for small n and

N, which are attenuated as n and N increase.
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Figure 4.1: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of m<1)(t) (solid line) in Model I. n = 30, N = 30.
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Figure 4.2: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of m<1)(t) (solid line) in Model I. n = 30, N = 60.

110



n=50, N=100

o _|
q.
o |
N

-

s

£
O_
o
(Tl_

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.3: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of m<1)(t) (solid line) in Model I. n = 50, N = 50.
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n=50, N=100
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Figure 4.4: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of m<1)(t) (solid line) in Model I. n = 50, N = 100.
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Figure 4.5: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of m<1)(t) (solid line) in Model II. n = 30, N = 30.
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Figure 4.6: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of m<1)(t) (solid line) in Model II. n = 30, N = 60.
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Figure 4.7: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of m<1)(t) (solid line) in Model II. n = 50, N = 50.
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Figure 4.8: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of m<1)(t) (solid line) in Model II. n = 50, N = 100.
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Table 4.2: Coverage rates of the spline confidence bands in Model II.

95% 99%
n N Est. Oracle | Est. Oracle

30 | 30 | 0.650 0.730 | 0.830 0.854
60 | 0.695 0.839 | 0.860 0.941

50 | 50 | 0.817 0.911 | 0.930 0.982
100 | 0.830  0.929 | 0.933 0.986

100 | 100 | 0.858 0.940 | 0.948  0.986
200 [ 0.876  0.939 | 0.960 0.986

200 | 200 | 0.874 0.939 | 0.949 0.980

400 | 0.889 0.946 | 0.963 0.991

4.4.2 Tecator data

Here we apply the proposed method to the Tecator dataset, which can be introduced in
chapter 2.6. Figure 4.9 shows the estimated mean absorbance measurements m(-) and its
estimated first order derivative m(l)() in the lower panel. Their 99% confidence bands
(dashed lines) are also included in the figure, both bands have similar band width around

0.1 to 0.2 even though the bands for m(1) (-) looks much narrower in the figure.

As shown in Figure 4.9, in the region of 850 — 950 nm the derivative estimate of mean
absorbance is increasing gradually above 0, which corroborates with the convex behavior
of the corresponding estimated mean function. For wavelength between 950 and 970 nm,
the big bump in the derivative graph is consistent with the changing pattern of the mean
estimate before it reaches the turning point at around 970 nm. When wavelength is larger

than 970 nm, its estimated derivative turns negative and is relatively flat after 1000 nm, and
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it is in accordance with the quick dip of the mean absorbance and a linear decreasing trend

for wavelength larger than 1000 nm.
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Figure 4.9: Plots of the cubic spline estimators (dotted-dashed line) and 99% confidence
bands (upper and lower dashed lines) of the mean function and its first order derivative.
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For any r € (0, 1], we denote C%" [0, 1] as the space of Holder continuous functions on

[0,1],

(C1)

(C6)

cer0,1] = {qﬁ : HqﬁHW < —i—oo}. The technical assumptions we need are as follows:

The regression function m € cp—1L1 [0, 1];

The standard deviation function o (t) € c0.9 [0, 1] for some & € (0,1];

The number of observations for each trajectory N > n? for some 6 > %; the
1 1 1

number of interior knots satisfies n2(0—v) « N < (N/log(n))1+2v n2P <

1
Ng < n2+2v.
There exists a constant C' > 0 such that X (t,t) > C, for any t € [0, 1];
For k € {1,...,k}, t =0,1,...,p— 2, (bl(gb) (t) € 0,0 0,1], for some ¢ € (0,1],
22:1 VAL H¢§€L) < 00; and for a sequence {Fdn}%ozl of increasing integers with
00

limp— o0 kn = K, Nn_lé ZZTZH VAL HCb](;)

=o(1);
0,6

4+d9
EZ])

There exist 01 > 0, 09 > 0 such that £ ‘fik‘4+61+E‘ < 400, for1 < i < oo,

1 <k<k,1<j<oo. The number k of nonzero eigenvalues is finite or kis infinite

while the variables {éik‘}l<z’<oo 1<k<oo 0re t.i.d..

Assumptions (C1)-(C6) are standard in the spline smoothing literature; see Huang (2003)

and Cao, Yang and Todem (2012), for instance. In particular, (C1) and (C2) guarantee the

convergence rates of m(t) and its derivatives. Assumption (C3) states the requirement of the

number of observations within each curve to the sample size, and the order of the number

of knots of splines. Assumptions (C4) and (C5) concern that the derivatives of principal

components have collectively bounded smoothness. When ¢ = 0, Assumption (C5) is the
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same as (C4) in Cao, Yang and Todem (2012). Assumption (C6) is necessary when using
strong approximation result in Lemma 4.4.4.

If k is finite and all (bl({:l/) (t) € 00 [0, 1], then Assumption (C5) on ¢§€V)’s holds trivially.

For k = oo, Assumption (C5) is fulfilled as long as A;. decreases to zero sufficiently fast. For

example, considering the following canonical orthonormal Fourier basis of L2 ([0, 1]):

$1(t) = 1,¢9541 (1) = V2cos (knt)

Por. (1) = V2sin (krt)  k=1,2,...,t € [0,1],

we can take A\ = 1 and A\ = ([k/2] 7T)_2Vp2[k/2], k = 2,.., for any p € (0,1), then

w2 v o]

any 0 = 1 and {mn} -1 With rp increasing, odd and kp — oo, one has

N;llzgil\/rngbg/)

=1+ 22 P (V24v2) =1+ 2v2p(1 - p) 71 < 0o. While for

— 1Zl€n 1/2k(\/_k7r+\/_k7r>
< 2v2xN1p Zzozl Pk = 2varN L (1 p) 2

- O(Nﬂgl) ~0(1).

In the following, define the theoretical and empirical inner product matrices of

{Bj’p(t) }]JVZLl_p as

I (TR A T A

v, - (<BJ7p,BJ,7p>27N)J7J,:1_ (g p)om o e

We establish next that Vp has an inverse with bounded Lo norm.

122



Lemma 4.4.1. [Cao, Yang and Todem (2012)] Under Assumption (C3), for Vp and Vp

defined in (4.13), va - Vp((oo ~0 (N—l) and ijngoo — O (Nm).

Proof of Proposition 4.2.1

Following Wang and Yang (2009b), we introduce the p-th order quasi-interpolant of m cor-
responding to the knots w, denoted by Qw (m); see equation (4.12) on page 146 of DeVore
and Lorentz (1993) for details. According to Theorem 7.7.4, DeVore and Lorentz (1993), the

following lemma holds.

Lemma 4.4.2. There exists a constant C > 0, such that for 0 < v < p—2 and m €
crlio, 1),

H(m - Qw (m))(V)HOO <C Hm(p)Hoo W
Lemma 4.4.3. Under Assumptions (C2), (C3) and (C6), one has

1 Y N)o (j/N)z.; = O log(n)
N; plU/MN)eGN)Ej=0p |\ [T N,

PROOF. We first truncate the random error £;; by un = (nN)7 (2/9 < v < 1/3) and

> un}, Eij,Q = gijj{

write €ij = €ij,1 +€ij,2+aij> where €ij,1 = gij[{ €ij €ij < un}—

a; and ajj = E [62]]{’82]‘ < unH It is easy to see that ajj| = ‘—E [‘gijl {‘82]’ > unH ‘
4+9 —
<F (‘52 j‘ 2) Up, (3+52). It is straightforward from the boundedness of spline basis that
N n
. —(3+9
. 3. By )7 /) Y = Ofu, T2
j=1 1=1
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Next we show that the tail part vanishes almost surely. Note that

By the Borel-Cantelli Lemma, P {wEIN (w),

£ij (w)‘ <up forn> N(w)} = 1. Let ve =

max{‘sz-j‘ 1<, j < N(w)} and there exists N1 (w) > N (w), UN (w) Ve Since up, =

w)

(nN)7 is an increasing function, uy > UN (w) > Ve and n > Ny (w).

Therefore P{w|3N (w),

cj @) S wn, 1 <0 < 1< <N, for min(n,N) >
N (w)} = 1, which implies P{w|3N (w), ‘52']',1‘ =0,1<i<n, 1<j <N formin(n,N) >
N (w)} = 1. Thus

N

n
1 . . _
2 By (i/N)o (/N) Y €ij1| = Oaus. (nN) k| for any k > 0.
j=1 i=1

Next denote D, = (nN)—1 By, (i/N)o(j/N) >y ¢€jj2- Since

—0 —2(1+6
>UnH—%2j=1+0p{un 2—|—un ( 2)},

Var (5@-’2) =1—-F [5%]{ €jj

one has Vr% = Var (Z;V 1 Dj) = c(n]\me)_1 for a constant ¢ > 0. Now Minkowski’s

inequality implies that

k 2

E ‘82']"2

k k—2
Thus F ‘Dj) < <2n_1N_1un> k:!E(D?) < 0o with the Cramer constant ¢* = %U—Z\T}
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For any 9, let 65, =9 %. By the Bernstein inequality, for any large enough ¢ > 0,

N 52 52 3
P Z Dj >6n p <2expl —a—D—— % = 2exp ic n < 2n~ “.
=1

2 ES un,
J= Vi + 2¢%on nN Nm, + 4nN5n

Hence Y09, P (‘ﬁ SN By G/N)o(i/N) Z?:mj,z\ > 5n) <252 03 <o,

for such 6 > 0. Thus Borel-Cantelli’s lemma implies the desired result.

Lemma 4.4.4. [Theorem 2.6.7 of Csdrgd and Révész (1981)] Suppose that &;, 1 < i < n
are i.i.d. with E(§{1) = 0, E(f%) =1 and H(z) > 0 (x > 0) is an increasing continuous
function such that x_Q_VH(x) 15 increasing for some v > 0 and a:_llogH(x) 15 decreas-
ing with EH (|§1|) < oo. Then there exist constants C, Co, a > 0 which depend only

on the distribution of £&1 and a sequence of Brownian motions {Wn(m)}2° ,, such that

n=1’

for any {xn}>° ¢ satisfying a1 (n) < ap < Cq (nlog(n))1/2 and Sm = 2211 &;, then

P {maxlgmgn 1S — Wi, (m)] > xn} < Con {H (azn)} L.

PROOF OF PROPOSITION 4.2.1. We first show (4.6). According to Theorem A.1 of

Huang (2003), there exists an absolute constant C' > 0, such that

I —mlla <C  inf |lg—mlla <C Hm(P)H WP (4.14)
geCPs o0

Applying Lemma 4.4.2, for 0 <v < p— 2,

H{Qw (m) —m}(”)HOO gCHm(p)Hooh%”. (4.15)

As a consequence of (4.14) and (4.15) if v = 0, one has [|Qz (m) — Mj5o < C Hm(p) H i
00
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which, according to the differentiation of B-spline given in de Boor (2001), entails that

[t@w (m) - )| chm(p)Hoohgl—”, (4.16)

(0. 9]

for 0 < v < p—2. Combining (4.15) and (4.16) proves (4.6) for v =1,...,p — 2.

Next we prove (4.7). Similar to the definition of ) (t) and él({”) (t), in the following
we denote gb/(:) (t) = ) (t) @y, for any k > 1. Using the similar arguments as in the proof

of (4.6), we can show that, for any k > 1,

-t

< Cyhin ”. (4.17)
(0. 9]

Also, according to triangle inequality one has that

] <] -oo

According to Assumption (C6), E‘fik‘4+61 < 400, 61 > 0, so there exists some

_ 4+51 _ b n _

B € (0,1/2), such that 4 + ;1 > 2/8. Let H(z) = x , Tp, = n”, then =
H(axnp)

a401,1=(4+01)8 _ ¢ (n_71> for some y1 > 1. Applying Lemma 4.4.4 and Borel-

Cantelli Lemma, one finds i.i.d. variables Z;p. ¢ ~ N (0,1) such that

perfe i 2] = 0ns (1571, a9

where Zk},£ = n_l 2?21 Zik,§> k > 1.

Y

If k is finite, according to (4.18) note that |Ek‘ < ‘Zkf‘ VAL + ‘ék — Zk:ﬁ‘/)‘k

1<k <k, somax)cp<,. |Ep] = Op(n_1/2 —|—nﬁ_1). Then the definition of m(t) in (4.4)
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and (4.17) entail that

< K max } k:| max
00 1<k<g 1<k<g

’qbl(:) _ ;bl({;l/)

o0

Thus (4.8) holds according to Assumption (C3).

=op (n_1/2> .

If Kk = oo, using similar arguments in Cao, Yang and Todem (2012), by (4.18) one can

— _1/2 _
§. 1AL —Zg|

Op(n_1/2 + nﬁ_l). Also following Assumption (C5) one has

— _1/2 _
show that[€.| A7 < |Zye| +

B sup ’m(” (t) — m) (1) — V) <t>'

te(0,1]
K
< Bl sw o 00— \<02E\5k\ [ 0)
k=1 €[0,1] te[0,1]
kn
< 0{ <E!§.k\A,;1/2) /\llC/Q'gbg:) Oéhén
kI:]_ )
al —1/2 1/2
5 i)
k:/{n+1 00
kn
e POt T I e L I SO}
k=1 0,6 k=kn+1
Hence, m¥) —mv) _g(y) = op (n_1/2>. According to Lemmas 4.4.1 and 4.4.3,
00
finally we have
5 — —1 15T, —v ||xr—1 1T
[OL = [ ovette T <on i vmTe]

- as.( —1/2N=1/2), 12 log(n)).
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for any £ > 1, so }£_k|)\k =



Thus (4.8) holds according to Assumption (C3).

Proof of Theorem 4.3.1

We denote{’ Z gb ,k=1,...,k and define
ki k& k

27~ ) .
C() =nl/? [Z*;:l A {cb,(f) <t>} ] S G =TT G

It is clear that, for any ¢ € [0, 1], ¢ (t) is Gaussian with mean 0 and variance 1, and the
covariance EC (t)( (s) = 2 (t,t)_1/2 Y (s, s)_1/2 Y (t,s), for any t,s € [0,1]. That is, the
distribution of ¢ (t), t € [0,1] and the distribution of ¢ (t), t € [0,1] in Section 3.1 are

identical. Similar to the proof of (4.7), Note that

Esupte[(),l] ’5 (t) — nl/25, (t, t)_1/2 g(y)(t)‘
= 1 2EBsup iy S (672 ‘Zgzl Gty — EW) (t)‘

< 2w 507 S (yzké\/’k e [0 0] + el o0 - 30
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If s finite, then E'supcfg ] ‘{“ () — nl/25 (t,6)~1/2 é(”)(t)‘ -0 <n5—1/2 + h%_y) -

o(1). If kK = oo, by Assumption (C5) one has

e I T R

nl/2 sup E(t,t) 1/2
t€[0,1]

{nﬂl SRVER T IO R SRV el é;i”)@}
=1 =1

= o(1).

IN

Theorem 4.3.1 follows directly.

Proof of Theorem 4.3.3

Following Cao, Wang, Li and Yang (2012), we define the tensor product spline space as

1(P=2)210 12 = 3(=2)2 _ 3(r=2) g 3/(p-2)
Ng
= >, bypBry By (s), ts€0.1]
JJ'=1—p

Let RZJ = Yz

—m(j/N), 1 <i<n 1<j <N and R.jj/ = "_12?:132'J'R¢j”

1< j,j < N. Note that the spline estimator in (4.9) is

é’(.,.): 'argmiri 2£j’i§j’{é~jj/_g<j/Nﬂj//N>}27



so we define the “infeasible estimator” of the covariance function

G(,-) = argming(. -)G'H(p_2)’2 Z {R-jj’ —g (j/N,j,/N) }2 : (4.19)
’ 1<j#j' <N

Denote X = B® B, By (t,5) = Bp(t) ® Bp(s) and B](QO’”) (t,s) = Bp(t) ® B](O”)(s). Let

vector R = , then we have

{Birbie
1<5,7"<N

(0.v)

GO o= 2 ey g = B,

OsV (t,s) (XTX> - xR, (4.20)

In the following we write ¢,/ (t, 5) = ¢ (1) .1 (s), gzﬁl(g%,y) (t,s) = ¢ (t) gzﬁl(;) (s). Let

¢)k K= P ® ¢k;” where ¢}, is a N-dimensional vector defined in Section 2.3,
~ -1
oy (t,s) =Bp(t,s) (XTX> XT¢kk/' Further we denote

5]({%,”) t,5) = B (1,5) (x7x) - X7, 0.

Lemma 4.4.5. Under Assumptions (C5), for any 1 <v < p— 2, and k = 0o, one has

> w4

kk'>1

Oy)

k’k/ - ]{/{/ :0(1>'

PROOF. When k = 0o, one has A\j. > 0 for any k£ > 1. Note that

ORRYTEWS i f e

kk'>1
130

kk’
k' >1



Also similarly,

2 VARAR || kk’ = Z\/rk”%ngoo 5/(;)
kk'>1 E>1
< OZW\%HOO o =ew.

k>1 E'>1

Lemma 4.4.6. Under Assumption (C5), for any 0 < v < p —2 and k, k' > 1, one has

PGl e (ng).

"¢kk/ kk’
PROOF. According to Theorem 12.8 of Schumaker (2007), there exists an absolute con-

stant C' > 0, such that

hp

[0 = ope] o < © H%(f)%' * %%(5) G

which proves (4.6) for the case v = 0. Let @ (f) the p-th order quasi-interpolant of a function

f; see the definition in (12.29) of Schumaker (2007), for 0 < v < p — 2,

p—v
hG .

0(oue)-eu ], e -]

For the case v = 0, one has

”Q <¢kk’> - akk’”oo - HQ (d)k:k;’) - Q@kk/)H <C H%kkl - ¢kk/”oo

cleP o+ ool

IN

Gv

which, according to the differentiation of B-spline given in de Boor (2001), entails that

H{Q (91) —5,%,}(0#)

Clof o +orol)| wg T rro<v<p2

©¢) ‘
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Lemma 4.4.7. Under Assumptions (C1)-(C6), for any 1 <v <p—2

a0w) _ o(0.0) H

o0

=0p (n_1/2 + h]é_y> +op (N_ln_1/2h51_ylog1/2n> , (4.21)

a0v) _ a0w) H —0p (n—lhé?’/Q_” + n—l/QhC—;l—Vh%) L (422)
(0@

where GOV) and GOV) are given in (4.10) and (4.20).

P2 _ ., —1<xn ] - _ —1
PROOF. Let £ 1,7 =n > §ik&;p and it =n Zz RIRE To show (4.21),

we decompose R-jj’ in (4.19) into

- i J'\ A i J
Z k! Okl (N N) = kak%k; (N’N)’

LAk =
: J i
i1 =0 (N) d <N> =i
N v AV A - AWE
D4 2 Gkt (N) d (ﬁ) s+ D Sikk (ﬁ) o (N) “ij (-
1=1 Lk=1 k=1

Denote R; = {Rijj }1<] <N 7~2Z( ) (t,s) = Béo’w (t,s) <XTX)_1 XTRZ-, i=1,2,3,4.
Then (?(()W)(t, s) = R(lo V) (t,s)+ 7~2( V) (t ,s)—i—?ééo’y) (t, s)—l—?églo’V) (t,s). Next we define

Ry7ts) = ngk”bkk/ (t5),
k£E!

k=1

~(0,v

>, (071/) _ K P ) :
Note that R (t,s) = [y g'kk,qbkk’ (t,s), then Lemma 4.4.5 and Assumption (C5)

1
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imply that if  is oo, )‘k/\k;’ > (0 and one has

sup E ‘ﬁgo’y)(t, s) — Rgo’y)(t, s)
(t,5)€[0,1]2
i _ —-1/2 v) ~(0,v
< 2 F ‘%y (wryr) ’VAkAk/ o = =00
kk! >

Similarly, one has

sup E ‘fzg
(t,s)€[0,1]2

K
z - 0, ~(0,
< Z E ’fkk)\k 1_ 1‘ AL H¢I<€ky) - ¢](€kl/)
k=1

oozo(l).

If k is finite, then Lemma A.6 and Assumption (C3) imply that

(0,v)  ~(0,v)

¢kk’ B ¢kk:’

H,,égo,u) B R(lo,y)

< /<62 max ‘Ekk/‘ = OP <h%_yn_1/2> .
oo

00 1<k#k'<r

Similarly,

= (0,v) (0,v) = H (0,v) ~(0,v) p—v
R(’ — Ry <k max (£ — M| |0)) | — &5 =0p|(h :
H 2 2| S ek = Akl opr T — O p (")
Hence, 7@%0’”) - Réo’m + 7~2<10’V) - R%O,l/) = 0(1). By Proposition 3.1 in Cao,
00 00

Wang, Li and Yang (2012), one has

HN_QXTI_%gH = HN_ZXTR4H =op (]\7_17”L_1/211G10g1/2 (n)) :
00 00
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Hence, (0.v) = HRELO V) =op (N_ln_l/zhél_yloglmn). Therefore,
(0. @] 0.9)
(0 (2 (0.)
HG ") - H E:fky ky '+§:@kk—Aw’%¢
kAk! k=1 >
5(0.v) _ o (0p) 50.v) _ (0p) 5(0.v) 5(0.v)
©,9) (0. 9] (0. 9]

= Op <n_1/2 + h%_y> +op (N_ln_l/Qhél_Vlog1/2n> .

The proof of (4.22) is similar to Proposition 2.1 in Cao, Wang, Li and Yang (2012), thus

omitted.

PROOF OF THEOREM 4.3.3: According to Lemma 4.4.7, one has

(0G0 <0 G0+ |60 G0 ~opi

Proof of Theorem 4.3.4

We first show asymptotic consistency of 1. and b (), for k > 1, in the following lemma.

Lemma 4.4.8. Under Assumptions (C1)-(C6), one has

3 —A‘: 1, —op(1), k>1
‘k k| =op (1) =op(), k=

PROOF. We first want to show that for any k > 1, HAgzﬁk,Hoo =op (1), in which A is the
integral operator with kernel G — G. Note that (Agy) (1) = f(@ —G) (s,t) 9. (s)ds

Theorem 4.3.3, when v = 0,

}C;’ — GHoo =op (1). Thus, for any k > 1, HA(kaOO =op(1).
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Hall and Hosseini-Nasab (2006) gives the L? expansion

O — 0= > (Ak - /\k’>_1 <A¢k7¢k/> ¢rs + O (HAH%) ,
K £k

. 2 1/2
where [|Aflg = {f Ik {G (s,t) — G (s, t)} dsdt] . By Bessel’s inequality, one has

H{bk - ¢kH2 < C (||agg|Z, + 1213) = op (1). By (4.9) in Hall, Miiller and Wang (2006)

and Theorem 4.3.3

;\k - )\k = //(G - G) (S,t) ¢k (8) gbk (t) dsdt + O (HAQZSkH%> =O0op (1) .

Thus ‘5\/{ - )‘k’ =op (1) for any k > 1. Next note that

ALog (t) — Aoy, (t) = /é(s,t) o (3) ds—/G(s,t) ¢, (5) ds
= [G=6) (50 (34 (5) = 04 0)) ds+ [(G =) (5000 (s)ds
+ [0 {op () - op ()} s

By the Cauchy-Schwarz inequality, uniformly for all ¢ € [0, 1]

G (s.t) (0 () — o (5)) ds < ( [ G*(s,1)ds
[ Jis< ([ @ onas)

Similar arguments and Theorem 4.3.3 imply that [(G — G) (s,t) (g}ﬁk (5) — o (s)) ds =

1/2
T —

op(1) and f(G'—G) (s,t) @1, (s) ds = op(1). All the above together yield H;\k&k - )\kgka
00
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op (1). By the triangle inequality and

S N L | A Ml

the second result in Lemma 4.4.8 follows directly.

PrROOF OF THEOREM 4.3.4. According to Lemma 4.4.8 and Theorem 4.3.3, one has

N . |
/\kl/o GOVt 5)g;. (t)dt-A,;l/O GOVt 5)p). (t) dt

< x;l—Agl‘ x/()l‘é(o»”)(t,s)$k(t)‘dt

1
1
+)\/

ko Jo

Hence, SUPSE[O 1] {

q%](:) _ d’](:)

GOVt 5)¢;. (1) — GOV (2, 5)g). (t)] dt.

I (6O = GO (t,5)6y (1) + Gt ) (5 — o) ()] dt} =0 (1)

and = op (1). Theorem 4.3.4 follows from the definition of X(t, s).

0
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Chapter 5

Testing Hypotheses Under Weakly

Identifiability

5.1 Introduction

Data in statistical research are often well described by models, in which the scientific ques-
tions of interest are described by an unknown, finite-dimensional parameter vector. Such
models may be either fully parametric or semiparametric, where other aspects of the model
may be described by infinite dimensional parameters which are completely unspecified. In
such settings, it is often of interest to use the observed data in order to draw inferences about
the parameters of interest. Standard inferential techniques may be applied if the parameters
of interest can be well estimated by minimizing a parametric loss function or more gener-
ally by solving a parametric estimating function which does not involve infinite dimensional
nuisance parameters. In many situations, however, these parameters may be nonidentifiable
or at best weakly identifiable from the estimating function so that the standard inferential

theories may not be valid. The goal of this paper is to develop hypothesis tests for scenarios
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in which the model parameters are weakly identifiable. Conceptually, the term weak identifi-
ability refers to the situations where data contain some information about model parameters
but not enough to identify them uniquely.

To illustrate the problem quite sharply, we consider a simple theoretical example where
a fully parametric model is indexed by an unknown parameter vector (6, 3) for an observ-
able random quantity Y. We assume that realizations {5/2}?21 of Y are independent and
identically distributed (i.i.d) normal N(6 + 3, 1) variates. The objective is to evaluate the
hypothesis Hyy : 6y = 0, where 6 is the true value of 6. Using only observed data and
assuming that (), the true value of 3 is unknown, inferences for 6y may not be conducted
using standard techniques due to identifiability problems arising from the mean model being
overparameterized.

Another interesting, more practical illustration of this problem comes from the missing
data literature where weakly identifiable models are frequently encountered. Specific ex-
amples include the study of publication bias in meta-analysis (Chambers and Welsh, 1993;
Copas, 1999; Copas and Li, 1997) and the analysis of longitudinal data subject to non-
random nonresponses (Scharfstein et al., 1999; Kenward et al., 2001; Rotnitzky et al., 2001;
Little and Rubin, 2002). Identifiability issues commonly arise with non-random missing data,
where the parameters in the model for the missingness may not be jointly identifiable with
those in the model for the outcomes of interest using only the observed data, particularly
with semiparametric models, where some of the nuisance parameters may be infinite di-
mensional. Analyses which assume identifiability may be unreliable, with the joint selection
and outcome model yielding flat “estimation” surfaces potentially having multiple modes.
These phenomena have previously been reported by several authors in modeling potentially

non-ignorable missing data models (Scharfstein et al., 1999; Todem et al., 2010) .
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In section 3, we consider these missing data issues when analyzing longitudinal data with
informative dropout employing the model of Troxel et al.(1998b). The model is semiparamet-
ric, with the parameter being estimated denoted by (6, 3), where 3 is the selection parameter
that measures the extent of non-randomness of the missing data mechanism and 6 consists
of the remaining finite dimensional parameters of the selection and outcome models. The
hypotheses of interest concern covariate effects on the outcome, which are contained in 6. In
Troxel et al. (1998b), a so-called pseudo-likelihood analysis, described in detail in Section 3,
was carried out under the assumption of parameter identifiability. The resulting estimating
function only involves (6, 5), with the longitudinal dependence in the outcomes completely
unspecified and not estimated. We investigated the parameter identifiability assumption in
a reanalysis of the cancer data from Troxel et al. (1998b) by profiling the pseudo-likelihood
analysis in § (Figure 5.1). The profile pseudolikelihood is flat in (3, suggesting a model that
is at best weakly identifiable. These results draw into question inferences which assume
identifiability of 6 and f.

Due to identifiability concerns, tests concerning the model parameters cannot use con-
ventional theory to assess statistical significance. Essentially, the standard estimation and
inference techniques may fail due to the models being overparameterized. A natural rem-
edy is to partition the parameter indexing the estimating function into certain parameters
of interest and other parameters which may be viewed as secondary parameters. For the
theoretical example discussed earlier, where Y is normally distributed, the parameter of in-
terest in light of the hypothesis under study is 6, while 3 is the secondary parameter. In
the missing data application (Troxel et al., 1998b), the parameter 5 which describes the
informativeness may be viewed as the secondary parameter, while the covariate effects in

6 may be of primary interest in hypothesis testing. In practice, the choice of § and [ will
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Figure 5.1: Supremum of the pseudo-likelihood function profiled across [, the parameter
measuring the extent of non-randomness of the missing data mechanism in the study.
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depend on the application.

Various approaches to the problem of non identifiable parameters that have appeared
in the literature focused primarily on maximum likelihood based procedures. Almost all
previous works in hypothesis testing deal with the case where non identifiability only occurs
under the null hypothesis. Examples include Davies (1977, 1987), Hansen (1996), Ritz
and Skovgaard (2005) and Song et al. (2009). Generally, this requires that the model is
identifiable under the alternative hypothesis. In sensitivity analysis, the testing problem
has a different formulation. The model may not be identifiable under either the null or the
alternative hypothesis. Moreover, even after fixing a set of parameters, it may not be clear
whether the parameters of interest can be consistently estimated under the null hypothesis.
To be concrete, in the normal example, for each value of 5, the maximum likelihood estimator
of  consistently estimates 6y + 3 — S, where 0y and Sy are the true values of 6 and f.
This only equals 6y when 8 = (3. Our approach to inference about the parameters of
interest is to adapt the profiling strategy from the earlier works described above. Because
the testing problem is fundamentally different, the resulting developments are nonstandard,
with relatively little work in the literature on this problem. Since the model may not be
identifiable even after profiling, we need to consider the behavior of the profile estimator
under model misspecification under the null.

This inferential strategy poses substantial technical challenges beyond those encountered
with supremum tests which assume identifiability under the alternative. In missing data
applications used to motivate the sensitivity analysis, rigorous results for full likelihood
analyses have been established (Lu and Copas, 2004), essentially requiring model identifia-
bility. More recently, Todem et al. (2010) demonstrated how to conduct likelihood inference

via infimum tests, including a precise analysis of the behavior of the profile estimators under
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model misspecification and the distribution of the corresponding infimum test. Such tests
are particularly important when the quantity being tested does not increase or decrease
monotonically as the nonidentified parameters are increased or decreased. Under mono-
tonicity, it is only necessary to perform the tests at the limits of the nonidentified parameter
space. They developed simultaneous confidence bands which enable identification of those
values of the sensitivity parameter for which significant results are obtained. Although these
likelihood-based methods are useful, they require a full distribution specification for the data.
This can be a difficult task in practice, especially when observed data do not have enough
information to fully identify the parameter of interest.

In this paper, we extend the profiling idea to arbitrary estimating functions involving
0 and [ but which do not require a complete parametric model specification. Our set-up
includes the likelihood score functions as a special case. The generalization of the infimum
test and confidence bands to non-likelihood settings is nontrivial. The infimum test has
the advantage that it is simply defined directly in terms of contrasts whereas the supremum
tests are obtained through nontrivial derivations using the log-likelihood functions (Dacunha-
Castelle and Gassiat, 1999). We present generic conditions which establish the large sample
properties of the estimating function for # profiled on [, including the uniform consistency
and weak convergence of the 6 estimator as a function of 5. To our knowledge, these
theoretical results are novel, with issues related to nonidentifiable estimating functions not
having been studied rigorously, previously. We accommodate misspecification and uniformity
in (8 in a general paradigm which permits the profiling to be carried out with respect to any
suitable estimating function. Owing to the complexity of the asymptotic distributions of the
infimum test and confidence bands, resampling is needed. A theoretically justified procedure

is discussed for approximating such distributions.
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The rest of this chapter is organized as follows. In Section 5.2, we present the general
framework of the problem, the proposed test and the resampling procedure, along with a
proof of the key asymptotic properties. In Section 5.3, the methodology is exhibited using
the cancer dataset in Troxel et al. (1998b) and in simulations, where the naive Wald test
may have either inflated type I error rate or reduced power. Some remaining issues are

discussed in Section 5.4.

5.2 The method

5.2.1 The general framework

We consider a model involving a finite dimensional parameter w € 2 for an observable
random quantity Y. The parameter @ may not completely determine the distribution of
Y, that is, there may be other aspects of the model which are unspecified. The interest is
drawing inferences about w with i.i.d realizations {}/2}?:1 of Y and a general estimating
function Sy-(@). Denote by @ the true value of w. If E{Sy (@)} = 0, then an estimator
@ of w( usually can be obtained by solving the estimating equation, Sy (w) = 0; see
Chapter 5 of van der Vaart (2000b) for an overview of Z-estimators. If Sy identifies @,
then under other mild regularity conditions, this estimating equation yields a consistent and
asymptotically normal parameter estimator. Under such regularity conditions, inferences
about w() can be conducted using the large sample properties of . Problems may occur if
the model as a function of w is “overparameterized”, with multiple values of w satisfying

E{Sy (w)} = 0. In this case, the estimator may not have the usual asymptotic properties.
Nonidentifiability can be addressed by fixing some components of w, conditional upon
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which the remaining parameters are uniquely defined by Sy-. One may partition @ = (6, 3),
where 0, a p-dimensional vector, is assumed to be “identifiable” for a fixed g-dimensional
vector 3, as defined in Section 2.2 below. If the true value 3() of the nonidentified parameter
[ is known, the estimator 90 at 8 = B can be used to conduct reliable inferences about 6,
the true value of . This estimator is readily available by solving the estimating equation
Sy (6, 8p) = 0, for fixed and known (). The approach is unfeasible, as the true value 3 is
usually unknown to the analyst in practice. A common strategy is to fix 5 and study the
estimator of # at various values of § € Z. To highlight the dependence on 3, we denote by

9(5), the estimator of 6 for a fixed . The estimator of § when 3 = f) is 90 = 9(60).

For the simple normal example, é(ﬁ) =Y — 8 and 9(50) =Y — B, where Y is the
sample mean. This estimator is normally distributed with mean 6 + 3 — 8 and variance
n_l, uniformly in 3, for each fixed n. Of course, in general, it is not possible to obtain clean

finite sample results and large sample approximations are needed. In the subsection below,

we study the uniform asymptotic properties of 9(ﬁ) for g € =.

5.2.2 Large sample properties of @(6)

When 3 is fixed at its true value (), it is well established that for an estimating function
Sy (6, Bp) which is smooth in 6, the estimator 6 is consistent and approximately normal
under mild regularity conditions (see, for example, van der Vaart and Wellner, 2000a). That
is, n%{é(ﬂo) —0p} =4 N(0, %), where S = (D(6)) ™ Lvar(Sy- (6, B)) (D1 (00))T, with
D(6) being the expected value of the first order derivative of Sy (6, () with respect to 6.

These properties of é(ﬁ()) can be used to conduct large-sample inferences about 6.
For a given 3, the estimator é(ﬁ) will converge to a quantity 6*(3), which is generally
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different from 6 if 8 # 8. For the simple normal example, *(3) = 6y + Sy — 8. This
contrasts with set-ups on testing with nonidentifiability under the null (Davies, 1977, 1987),
where it is generally assumed that 0*(3) = g for all 8. Moreover, appropriately stan-
dardized, 6(3) will be asymptotically normal, with variance which may be estimated using
a sandwich variance approach. This is an extension of standard pointwise asymptotic the-
ory for maximum likelihood estimation with misspecified models, originating in the seminal
work of Huber (1967) and White (1982). We study below the uniform convergence of this
estimator across all values of g € =.

Suppose the data consist of iid realizations {Yl}?:1 of Y. Let s, (6, 5) be the contribu-
tion of subject 7 to the estimating function Sy- (6, 3). Define Sy (0, 3) = n—1 2?21 5Y; 0, 8)
and 5(0, ) = E{sy, (6, 8)}. Let gy (0. 5) = sy, (6, 8)/00, Wy (6,5) = n~ ' 30 gy (0. 5)
and W(0,5) = E{gy1 (0,8)}. For any given 8 € Z, let A(3) denote the solution to
Sy (0,8) = 0, that is Sy(@(ﬂ),ﬁ) = 0. The “least false” (White, 1982) parameter 60*(3),
satisfies S(0*(5),8) = 0. Define Gy = {sy,(0.8) » i=1....n 0 €0 ¢€Z}and
QQZ{QYZ,(@,B): i=1,...,n, 0 €0,5€=}.

We assume the following regularity conditions:

C1. The sets © C RP and = C RY are compact and §*(f3) is an interior point of © for any

b ez

C2. The function classes, G1 and G9, are pointwise measurable and satisfy the uniform

entropy condition (van der Vaart and Wellner, 2000a).

C3. inf@e@,ﬁeE )\min{—W(Q, B)} > 0, where Api, () denotes the minimum eigenvalue of

a matrix.
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C4. The estimating function Sy-(6,5) has continuous first order derivatives with respect

to 6 for any given € =.

Condition C1 defines the parameter space for the implied parameter 6*(3) for a given
B. Because 6*(3) may be nonconstant in 3, the parameter space for 6*(3) across 3 is
contained in a suitably defined functional space. Conditions C2 and C3 give conditions
under which uniform asymptotic results for #*(3) may be obtained. The entropy condition
C2 ensures that the estimating function is well behaved across all 5. The condition is satisfied
by functions which are uniformly bounded and uniformly Lipschitz of order > {dim(f) +
dim(/3)}/2, where dim(-) denotes the dimension of a vector. Condition C3 guarantees the
identifiability of §*(3) for all 8. The longitudinal data model presented in Section 3 meets
these requirements. Note that the smoothness specified in condition C4 only applies to 6.
Differentiability in 3 is not assumed. Non-smoothness in 6 could be accommodated under

stronger assumptions.

The proof of the following theorem is provided in the appendix.

Theorem 5.2.1. Under Conditions C1-C4, supgem | 6(8) — 0%(p) |—p 0, where || - |

1L
represents the Euclidean norm. Furthermore, n2 (9(5) — 9*(6)) converge weakly to a tight

Gaussian process with positive definite covariance function

S*(81,89) = lim {n% (051) — 0 (51)) n? (8(59) - 9*(62))}
_ {{W(H*(m),ﬁﬁ}_l]TE{sy1(0,51)53T/1(9,52)}{W(Q*(ﬁz),@)}_l
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For fixed £,

n—oo

$*(8,8) = lim var {n% (08) - 0*(®) }
. -7 T - -1
= [{wer o0} ] e{semnsf 0.0} {6t o).0)

The covariance function may be easily estimated using a robust sandwich variance estimator
along the lines of White (1982), which is valid under model misspecification. This estimator
may be used to construct pointwise confidence intervals for §*(3) at fixed 3 using the point-
wise asymptotic normality of @(6) However, for the testing and confidence band procedures
described below, the complexity of the limiting distribution across g is prohibitive for con-
ducting inference, even with variance estimation. For such scenarios, we suggest resampling

to approximate the distribution of the estimator.

It can easily be shown that the regularity conditions are satisfied for the simple normal
example. Interestingly, @(ﬁ) —0*(8) =Y — 6y — B(, which does not depend on . This
greatly simplifies the results of Theorem 1, since the standardized estimators are identical
for all 8, which is not generally true. One should note that the form of the mean model
is critical. If we assumed that E(Y) = 63, then the eigenvalue condition, C3, would be
violated at 5 = 0 and the uniform convergence in Theorem 1 would fail to hold on intervals

containing zero.

5.2.3 Global sensitivity testing

Suppose we are interested in evaluating the null hypothesis: Hpy : Cy = ¢, where 6 is

the true value of # and C an r x dim(f)) contrast matrix for assessing single and multiple
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linear combinations of model parameters. For example, when testing the jth component of
0, one takes C' to be 1 x dim(f) vector with a one at the jth position and zeros elsewhere.
Under nonidentifiability, the above hypothesis cannot be tested without imposing unverifiable

restrictions. If the true sensitivity parameter S is known, then Hy : co* (Bg) = ¢, where

0% (8o) = 09

In practice, where §() is unknown, one may consider the process 6*(3), observing that

the trivial inequality,
0< inf [|CO*(8) — cfl < |CO*(Bg) — ell < sup [[C6*(8) — el
BEE pe=E

permits a conservative assessment of Hy. To do so, we formulate the infimum hypothesis:

Hjpp:infge= 1CO*(B) — ¢| = 0.

The infimum statistic 7y, = inf g = |CO(8)—¢|| can be used to evaluate this hypothesis.
The distribution of this statistic can be derived analytically in some simple situations. As an
example, we revisit the normal scenario discussed earlier where the interest is in evaluating
the hypothesis, Hyy : 03 = 0, using the processes @(ﬁ) = Y — B. For ease of illustration,
assume Z = [0, 1], such that the infimum statistic becomes Ty, ¢ = infﬁe[OJ] Y — §|. This

is a mixture of a point mass at 0 with probability Pr(Y € [0,1]) and two truncated normal
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distributions. Specifically,

The corresponding cumulative distribution function-CDF F,  ¢(x) = Pr(inf Bel0,1] Y -8 <
x) is

Fop(x)=Pr(Y <a+1) —Pr(Y < —z), for z>0. (5.1)

In particular, we have F}, ¢(0) = Pr(Y < 1) — Pr(Y < 0) = Pr(Y € [0,1]), reflecting the

point mass at 0 for Ty ¢-

In general, because of the complexity of the limiting distribution of the infimum of the test
process, simple general analytic results do not appear tractable. Instead, resampling may
be utilized. A simple nonparametric bootstrap (Efron and Tibshirani, 1993) may be used
to compute variance estimators, and to carry out the simultaneous inferences necessary for
the infimum tests and the confidence bands, described below. The validity of the bootstrap
follows automatically from empirical process theory under the regularity conditions given in
van der Vaart and Wellner (2000b) even under model misspecification. This requires the
boundedness of the estimating function for fixed g € =. A difficulty with the nonparametric
bootstrap is that it requires solving the estimating function for all 5 in each bootstrap sam-
ple, which may be computationally demanding. An alternative resampling technique which

does not require repeatedly solving the estimating function may be constructed. The basic
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idea is to generate realizations directly from the limiting distribution of @( f) and to use these
realizations to approximate the distribution of the infimum test and confidence bands. This
resampling technique has been extensively used in the literature when the true asymptotic
distribution is hard if not impossible to derive analytically (see for example, Parzen et al.,
1994 and Zhu and Zhang, 2006). To do this, one fixes the estimator based on the observed
data and then “perturbs” this estimator using a disturbance which conditionally on data
has mean zero and variance-covariance in 8 equalling that of 9(5) in Theorem 5.2.1. The

procedure is given by the following steps:

Step 1. Generate n i.i.d random variables from a standard normal model (, denoted

O

1 n’ }, where superscript (b) represents replications.

Step 2. Given the realizations of the data, {Y;}?:l, and values of 8 € Z, calculate @(b) (B)

using the simulated {( gb), o ,C%b) } and the equation,

1) () = 0(9) + | LT sy (09). 0| Wi L @s). ). (5:2)

.2 20
where the statistic () takes value 6 () for observed data {YZ}ZL:l

Step 3. Calculate 7;%)} = infgcz HCé(b)(ﬁ) — ¢|| using é(b)(ﬁ), peE.

n

=1’ B times, and repeating steps 2 and

(b)

3 for each generated sample, we obtain the empirical distribution of 7;71 ¥ given observed

By repeatedly generating the normal variates {¢ j}

data. Theorem 2 below establishes that this empirical distribution converges to the marginal

asymptotic distribution of 7;, fasn — oo Let 1(€) be the indicator function for event
. _ b .

E. The p-value of the test is then B 1215’:1 1(7;51} > 7;%]0), the proportion of these

bootstrap observations which exceed 7;% f the observed value of the statistic.
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(b)

For the simple normal example, we compare the resampling null distribution of ’Cn i
to the analytical distribution F}¢(.) in (5.1) for a finite sample size. Setting 6 = 0 un-
der the null and By = 0.5, we generate {Y;}I' ; from a normal distribution N(0.5, 102).
Furthermore, we take = = [0, 1] and for each resample b = 1,--- , B, we compute 7;%} =
inf g (0,11 80 ()), where 90)(8) = v — g—n=1 5 (v; - V)¢!?). Results with n = 100
and B = 10000 resamples are plotted in Figure 5.2. The resampling distribution provides a
good approximation to the analytical distribution for this simple hypothetical example.

If the infimum (null) hypothesis cannot be rejected, then a supremum test or equivalently
a simultaneous confidence region may be used to check whether [|C0*(8) — ¢|| > 0 in some
regions of Z. The supremum hypothesis Hgyp may be tested with the statistic 7;%29 =
SUpgex |CO(B) — ¢|| using the bootstrap realizations of 9(17)(5),5 € Z. The p-value of
the supremum test is then B! 2]63)21 1(7!'9(51)9 > Tgup), where 7'3(5])) are the bootstrap
realizations of the statistic. Alternatively, a simultaneous confidence region for C6*(3) — ¢
across all values of § may be constructed. Let 0 < ¢ < 1. A simultaneous confidence region
for CO*(B) — ¢, B € Zis given by {9(8) : 2 — R": [|9(8) —CO(B) +¢| < po}t, where py, is
the (1 — ¢)th empirical percentile of {Supﬁez ||Cé(b)(5) — C@O(,@)H}bB:l, with éo(ﬁ) being
the value of the statistic () for observed data (Vi .

The following result supports the validity of the resampling based infimum test and

confidence bands.

Theorem 5.2.2. Under Conditions C1-C4, the conditional distribution of the process
nl/Q{é(ﬁ) - 90(5)} given realizations {Yz}?zl of Y, is asymptotically equivalent to the

unconditional distribution of the process nl/z{é(ﬂ) —0*(B)}, BeE.

Theorem 5.2.2 (proof provided in the appendix) coupled with a continuous mapping
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Figure 5.2: Plot of the exact (solid line) and the resampled (dashed line) CDF (CDF(x) =
Pr(infﬂe[o 1] Y — 3] < x)) of the infimum test statistic under the null y = 0 for the simple

normal example, assuming the true parameter 3 = 0.5, sample size n = 100 and B = 10000
resamples.
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theorem gives that the infimum and supremum tests can be carried out using this resampling
procedure. For the simple normal example, n1/2{9(ﬁ) —0*(B)} = n1/2(17 — g — Bp) and
nl/Q{é(ﬁ) - 90(6)} = 1/2 2?21(3/2 — Y')¢;, which do not depend on . The random
quantity nl/ 2(3_/ — 0y —Bp) is normally distributed with mean 0 and variance 1, uniformly in
B, for each fixed n. Given observed data {Y%}%z:l, _n~1/2 ?:1 (Y; —Y')¢; is also normally
distributed with mean 0 and variance n ! ZZ‘:l(YZ - )7)2 which converges almost surely

tol asn — oo.

The choice of the support = of 3 is critically important in performing the test in practice.
If values of § are selected in some data-driven fashion, the limiting distribution in Theorem
1 will be invalid. This is similar to Hansen (1996) for the case where the model is identifiable
under the null after profiling on 3, that is, when 0*(3) = 0, VB € Z. On the other hand,
an approach which ignores sample information about = may be unnecessarily conservative
and potentially sacrifices power. One possible solution is to consult with subject-matter
experts on the choice of =. This choice ideally should be based on prior studies, as in the
breast cancer analysis in Section 3, where closely related datasets were used to select the
range for the sensitivity parameter. From a technical standpoint, this choice should also be

computationally feasible.

5.3 Numerical studies

5.3.1 Pseudo-likelihood models with missing data

We consider the data set-up and model described in Troxel et al. (1998b) for potentially non-

random missing data in longitudinal studies. The model will be referred to as the TLH model.
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The data arise from a longitudinal study where each subject i (i = 1,...,n), is to be observed
at K occasions. For subject 7, we have a K x 1 response vector, YZ>X< = (YZ* R, YZ"}()T which
may not be fully observed. To accommodate missingness, subject ¢ has a vector of missing
data indicators R; = (R;1,..., R; K)T, where R;y = 1 if Y;g is observed and 0 otherwise.

Let Y*, and Y*
1,0bs

i miss denote the observed and missing components of Yi*’ respectively.

Each individual also has a K x .J covariate matrix X, which is assumed fully observed. The

. . . *k
response Y; in our general formulation is {Y:i,obs’ R;, X;}.

The key idea of the TLH methodology is to model the time point pair (Y%

it Rit) , with-

out accounting for the dependence on other time points. Let f(u | w) denote the density
function of random quantity w conditional on possibly non random quantity w. We assume

a simple selection model given by, f(Y;;, Rjp | X, @) = f(Y; | X4 @) f(Ry | Y{;,Xit,w),
where o is a finite but unknown parameter and X;; may contain both time dependent and

independent covariates.

The TLH model assumes that density f (Y; | X4, @) is that of normal N (14, 0¢), where
pip and oy (t =1,--- , K) are elements of . The missing data process is assumed to satisfy
R;; ~ Bernoulli(l — m;4) where the failure probability 7;; = Pr(R;; = 0 | Yﬁ,Xit,w).
We assume a logistic regression model relating the missing data probability to potentially

unobserved responses, that is,

logit(mjy) = Yot +71e Xt + Bt Yy (5.3)

where Vjt and f¢ (j=0,1;t=1,---, K) are unknown parameters and elements of w. The
parameter ; measures the extent of non-randomness of the missing data mechanism in the

study at time ¢. Specifically, exp{f;} represents the odds ratio for missing response at time ¢
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for each additional unit increase of the hypothetical response Y{'g Here, m;; in (5.3) depends

on YZ’; and not on previous elements of YZ’I< Following warnings by Troxel et al. (1998b),

we emphasize that this model could suffer from misspecification if the approximation of the

logistic link function to the true link function fails.

The TLH model lends itself to a pseudo-likelihood analysis (Gong and Samaniego, 1981),

where the longitudinal association is naively ignored in the likelihood construction. Specifi-

cally, the independence pseudo-likelihood function based on observed data {Y*

is

lind(@)

Ry, XH

1,0bs’

*
I £07 e i | ) = H/ O e Vs Bi | 20 i

1-R;;
{F (Y, Rip | @)} Z’f{/f it z’t|w)dyi>§} Z

{FYF | @) f(Ryg | Vb, )} it

—
—=

~
I
—_
~
I
—_

—
— =

~
I
—_
~
I
—_

P0G | ) (i | Vi =) |

{
ﬁ ﬁ{f(WEW)(l—wzt zt{/f Vi | @) }1_Rit‘

We have suppressed the dependence on covariates in £;,, ;(z). As a pseudo-likelihood model,

conditions C1-C4 are easily verified and the asymptotic results hold. The densities in the

TLH model are normal and Bernoulli, which are smooth functions of the unknown parame-

ters.
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5.3.2 Real data analysis

To illustrate our methodology, we consider data from the International Breast Cancer Study
Group-IBCSG, previously reported by Hiirny et al. (1992); and Troxel et al. (1998b). This
is a group of randomized breast cancer studies with primary endpoints being survival and
relapse; and quality of life being a secondary endpoint. One study, Study VI, is a randomized
trial of adjuvant chemotherapy following surgery for the treatment of breast cancer. In this
study, 4 treatments (A, B, C and D) were randomly assigned to 431 pre-menopausal cancer
patients and several domains of quality of life were assessed. In this paper, we focus on
three quality-of-life domains; 1) PACIS (perceived adjustment to chronic illness scale), 2)
Mood and 3) Appetite. These variables were originally measured on a 0 — 100 scale but are
normalized using a square-root transformation as recommended by Troxel et al. (1998b).
Questionnaires for the quality of life assessment were administered to study patients at
baseline and every three months for two years. Our analysis employs the first three time
points, with rates of missing data equalling 16%, 33% and 37% for PACIS, 16%, 33% and
38% for Mood, and 15%, 33% and 38% for Appetite. A full description of Study VI and
other IBCSG trials may be found elsewhere (Hiirny et al., 1992; Troxel et al., 1998a).

As in earlier analyses of Study VI, we consider the following model for the measurement
outcome,

it = kot + a1 Xq; +apXo; +agXs;,  (t=1,2,3),

where pi(y; is a time-dependent intercept and aj is a slope associated with X i Jg =123
(

(1,0,0) if treatment A, (0,0,1) if treatment C
Here (X1, X9, X3;) = 4

(0,1,0) if treatment B, (0,0,0) if treatment D.

\
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The missing data model is

logit(m;1) = vor + 8y (i=1,...,431; t =1,2,3),

where () is a time-dependent intercept and 3 is a slope associated with Y; As discussed
previously, 8 quantifies the nonrandomness of the missing data process. A constant oy is

assumed across time.

Our objective is to assess the treatment and time effects on the mean quality of life. Under
the assumed model, the hypotheses of interest are oy = a9 = ag = 0 and pg1 = pg2 = 13
for the treatment and time effects, respectively. As a preliminary analysis, we first evaluated
these hypotheses under identifiability assumptions. Specifically, we fit the TLH model by
simultaneously estimating both # and 6 = (a1, a9, a3, to1, #02: H03> Y01 Y02: Y03) Via the
independence pseudolikelihood estimating function. A Wald test based on the sandwich
estimator of the covariance matrix of the regression parameter estimates was performed to
evaluate the hypotheses of interest. P-values of these Wald tests for the three responses are
given in Table 1. In brief, these inferences suggest that there is no treatment effect on PACIS
and Appetite and no time effect on PACIS and Mood. The treatment effect on Mood and
the time effect on Appetite are significant at 1% level. In addition to these analyses, we also
conducted two crude analyses that do not explicitly model the missing data mechanism. The
first analysis used only subjects with complete data sequences, therefore removing subjects
with incomplete data profiles. The second analysis ignored the missing data and conduct the
so-called ignorable (missing at random) inferences by forcing (3, the non-randomness missing
data parameter, to 0. Results of these analyses are also summarized in Table 1. From these

additional exploratory analyses, the treatment and time effects are found to be statistically
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significant for Mood at 5% level. The ignorable analysis also appears to yield a statistically
significant time effects on Appetite. Of course, these crude analyses may not be reliable as
they rely on assumptions that are not verifiable using observed data at hand.

The Wald tests conducted under the assumption of identifiability may not have desirable
properties if identifiability is violated. As illustrated in Figure 5.1, the model was at best
weakly identifiable for the outcome PACIS. Model identifiability was also a concern for
for the other two responses. We performed the infimum test to conservatively evaluate the
treatment and time effects on the three quality of life domains. To conduct these tests, the
set = for the range of § was obtained from an independent source. We considered data
on post-menopausal cancer patients from Study VII of the IBCSG trials. Objectives of
this study were similar to those of Study VI, except that the menopausal status of study
participants differed. The joint model appeared to be identifiable when applied to Study
VII data. Based on these results, we derived 99% confidence intervals to use as ranges
for § in the infimum tests for Study VI. The ranges for PACIS, Mood and Appetite were
[—4,0], [-3,0] and [—5.6, —1.6], respectively. Recall that in the missing data model, exp{—3}
represents the odds ratio of being observed at any time point for each additional unit increase
of the hypothetical response Y;g Since Y;t‘ takes values in the range 0 — 10 on a square-
root scale, for the selected ranges, the odds ratio may be as high as; exp{4} = 54.60 for
PACIS, exp{3} = 20.09 for Mood, and exp{5.6} = 270.43 for Appetite. One might criticize
these upper bounds as being scientifically unreasonable. However, permitting such extreme
scenarios provides for a conservative test, which is in the spirit of sensitivity analysis. For
computational feasibility, the ranges were approximated on fine grids with equally spaced
points of 0.02. P-values of the infimum tests are given in Table 1.

The infimum hypothesis for the treatment effect was rejected for Mood at the 5% level (p-
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Table 5.1: P-values for evaluating the Treatment and Time effects using data from Study
VT of the IBCSG trials

Reponeses
PACIS Mood Appetite

TLH 0.281 0.008 0.229

Treatment ~ Wald test ~ COMT 0.170 0.041 0.370

effect IGNY 0.303 0.011 0.376
Infimum test 0.231(0.522%) 0.025 0.281(0.369*)

TLH 0.216 0.552 <0.001

Time Wald test COMT 0.302 0.030 0.163

effect IGNY 0.142 0.006 0.023

Infimum test 0.134(<0.001%)  0.063(<0.001%)  <0.001

* P-value of supremum test

T Complete cases; ¥ Ignorable cases
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value= 0.025), but not for PACIS (p-value= 0.281) and Appetite (p-value= 0.231). For the
time variable, a strongly significant effect was detected only for Appetite (p-value< 0.001).
For nonsignificant infimum test results, a supremum test was conducted to see if one could
not reject the null hypothesis for all values § € =. The supremum test for the treatment
effect was not rejected on PACIS (p-value= 0.522) and Appetite (p-value= 0.369), but was
strongly rejected for the time effect on PACIS (p-value< 0.001) and Mood (p-value< 0.001).

When the supremum test was rejected, a sensitivity analysis was conducted using a
simultaneous 95% confidence band approach to identify regions of S for which the point-
wise null hypotheses are rejected. Plots of these analyses for contrasts u("jl(ﬂ) — /162(5)
and MSQ(B) - Még(ﬁ) for PACIS and Mood are given in Figure 3. For PACIS, the 95%
simultaneous confidence band for 1155(8) — pf1 (8), —4 < B < —0.4; and p3(8) — 19 (8),
—4 < 8 < -3, did not contain 0. Similar analyses for Mood revealed that a 95% simultane-
ous confidence band for ,uz")2(6) - ,uE")l(,B), —3 < 8 < —0.7, did not contain 0. The confidence
band for MSg (B) — ,u("b (8) did not exclude 0 over the selected range of § (=3 < 3 < 0). The
Wald tests which assume identifiability were nonsignificant for all pairwise comparisons at

the 5% level.

5.3.3 Simulation study

In this section, we report results of a simulation study comparing the performance of the
infimum test to that of the naive Wald test derived under identifiability assumptions. The
simulations were conducted under a TLH model specified so as to roughly approximate data
from Study VI of the IBCSG trials. For simplicity, only two treatments (A and B) and two
time points (K = 2) were considered. The outcome vector (Y;i, YZ’E), assuming dependence

on subject 7, was generated from a two-dimensional normal distribution with univariate mean
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Figure 5.3: The top panel corresponds to PACIS; and the bottom panel to Mood. In each

panel, the solid lines represent figo(5) — fi91(3) (on the left) and fig3(8) — fig2(5) (on the
right) for fixed values of the parameter 5. The dashed lines are the corresponding 95%
simultaneous confidence bands and the dotted lines are the null values.
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models,

Hit = kot + Xyt =12,

and time-point variances oy, = 1,2, and correlation coefficient p. The parameters ji; and
ay are time-dependent intercepts and slopes associated with covariate X7,;, which equals 1 if
treatment B and 0 otherwise. We reparameterized jiy and oy as, pgp = ég+aql(t = 2) and
ap = &g + agl(t = 2), where I(t = 2) is an indicator variable taking value 1 at the second
time point. Throughout our simulations, we fixed the variances o¢,t = 1,2, to 1 and the
correlation coefficient p to 0.4. Missing observations were generated using a logistic model

relating the dropout probability 7;; to the response YZ’; as,

logit () = vor +71¢X14 + BY7),

where v(z, 71+ and 3 are respectively the intercept and slopes associated with Xy, and YZ’;
Time-dependent parameters y(; and 1, were reparameterized as, yo; = 7o + 711 (t = 2)

and v14 = Yo +y3l(t =2),t =1,2.

We study the size and power of the infimum and Wald tests for &g, the parameter that
captures the interaction effect of time and treatment on the mean response. We set &g =0
and &g = 1 for the size and power of the test respectively. Additionally, (&1, d&9) = (0,0) and
(%1:72:73) = (0.5, =2,0.2) when evaluating size, and (&1, &9) = (0.1,1) and (71,792,73) =

(1,—3,1) when evaluating power.

The parameter () was varied throughout our simulations to produce different missing
data rates. Specifically, to study the size of the test 7 was fixed to 0.5, to produce about

15% and 22% missing observations at the first and second time point, respectively and at
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1.8 to produce about 33% and 43% missing observations at the first and second time point,
respectively. For the power, 7y was fixed to 0.5, producing rates of missing observations
roughly 14% and 26% at the first and second time point, respectively and to 2, producing
rates of missing observations roughly 32% and 46% at the first and second time point,
respectively. Finally, throughout our simulations, we set the true g to —1.

One thousand datasets were generated with sample sizes 100 and 300. Equal proportions
of subjects were assigned to treatment A and B. The infimum tests were performed on the
interval = = [—2,0]. To ensure computational feasibility, a fine grid of equally spaced points
of 0.02, was considered. We used 1000 resamples from the alternative resampling scheme
discussed in section 2.3 to approximate the null distribution of the infimum test.

The infimum and Wald tests were performed using working regression models having the
same form as those used to generate data. These models saturate the number of parameters,
leading to potential nonidentifiability as a result of overparameterization. Table 2 shows the
rejection rates for nominal test levels 0.01, 0.05, and 0.1. Asymptotic standard errors (as
the number of Monte Carlo iterations tends to infinity) are reported in the last row of the
table. Overall, the infimum tests perform well, with the resampling distribution of the test
providing a reasonable approximation to the nominal level. The Wald test appears to be
very liberal when compared to the infimum test. The anti-conservativeness of the Wald test
does not diminish as the sample size increases. Based on these results, our recommendation
is to avoid the Wald test when identifiability is of concern. Because the empirical type I error
rate of the infimum test and that of the Wald test are different, comparing their empirical
powers is not appropriate. Nevertheless for both methods, a larger sample size improves
the power of detecting the alternatives under consideration, a finding consistent with the

literature. Moreover, the power decreases with increasing missing data rates.
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Table 5.2: Empirical type I error and power of the infimum test! and Wald test (in paren-
thesis) for evaluating the interaction effect represented by the parameter érg

n=100 n=300
True Missing+ Nominal test level Nominal test level
value data rate 0.1 0.05 0.01 0.1 0.05 0.01
ag =0 15%, 22%  0.099  0.049  0.011 0.103  0.057  0.010

(0 =0.5) (0.147) (0.092) (0.034) (0.158) (0.117) (0.059)

33%, 43%  0.110  0.044  0.010 0.122  0.062  0.012
(39 =1.8) (0.149) (0.097) (0.051)  (0.165) (0.113) (0.073)

g =1 14%, 26%  0.982  0.959  0.870  >0.999 >0.999 >0.999
(59 = 0.5) (0.961) (0.944) (0.848)  (0.948) (0.942) (0.934)

32%, 46%  0.905  0.846  0.675 0.999  0.999  0.993
(50=2) (0.889) (0.827) (0.659)  (0.961) (0.949) (0.926)

Monte carlo SE 0.003  0.007  0.009 0.003  0.007  0.009

f Test performed using = = [—2, 0]

* First and second time point missing data rate
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While the ability to choose an appropriate support set = of 3 to perform the infimum
tests is highly desirable in practice, our simulations (results not shown) indicate that only
a minimal inflation of type I error rate is observed under a modest misspecification of the
set =. For example, when = does not contain the true 8 but 3() is not far away from the
boundaries of the set, close to the nominal level is still achieved under the null hypothesis.
As an example, we performed the infimum test on the interval [0, 2], which does not contain
By = —1. For this range of 3, the infimum tests nearly maintain their sizes at all significance
levels. However, when [10, 12] was selected for the range of [, the infimum tests were overly
anti-conservative.

Another simulation study was conducted to evaluate the effects of the choice of the set =
on the power of the infimum tests. Specifically, we generated data as before, but performed
the infimum tests on wider intervals, namely [—3, 3] and [—5,5]. Results of this simulation
study are given in Table 5.2. As expected, the power decreases as the interval widens, which
occurs regardless of the missing data rate. Following a referee’s recommendation, further
simulations were conducted to evaluate the loss of power when the infimum test is performed
on a given support set of § compared to the ideal set = = {f}. For this, we generated the
data as before with the only difference that &g = 0.7. We then performed the infimum test

using = = [—2,0] and = = {—1}. Results revealed a minor loss of power of the infimum test

on E = [-2,0] compared to the ideal set = = {—1} (see Table 5.4).

5.4 Discussion

While hypothesis testing under nonidentifiability has been previously considered, the frame-

work is often too restrictive for sensitivity analyses. In a sensitivity analysis, the model may
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Table 5.3: Empirical power of the infimum test to detect the interaction effect avg = 1 for

two ranges Z of § with true value being ) = —1
n=100 n=300
= Missing+ Nominal test level Nominal test level

datarate 0.10 0.05 0.01 0.10 0.05 0.01

[—3, 3] 14%, 26% 0.912 0.865 0.720 0.999 0.997 0.987
32%, 46% 0.783 0.706 0.529 0.981 0.960 0.905

[—5, 5] 14%, 26% 0.899 0.836 0.655 0.997 0.990 0.970
32%, 46% 0.767 0.695 0.492 0.953 0.925 0.858

Monte carlo SE 0.003 0.007 0.009 0.003 0.007 0.009

T First and second time point missing data rate

Table 5.4: Empirical power of the infimum test to detect the interaction effect ag = 0.7 for
two sets = of 3 with true value being 5y = —1

n=100 n=300

+

(1]

Missing Nominal test level Nominal test level

data rate 0.10 0.05 0.01 0.10 0.05 0.01

[—2,0] 13%, 23% 0.806 0.699 0.470 0.996 0.989 0.949
{-1} 13%, 23% 0.829 0.725 0.469 0.998 0.998 0.982

[—2,0] 31%, 44% 0.677 0.570 0.342 0.978 0.957 0.834
{-1} 31%, 44% 0.707 0.589 0.348 0.992 0.974 0.915

Monte carlo SE  0.003 0.007 0.009 0.003 0.007 0.009

T First and second time point missing data rate
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not be identifiable under either the null or alternative hypothesis, and profiling may not
lead to consistent estimation of the parameter of interest under the null. As a result, the
supremum test may not be appropriate. As discussed in this paper, a theoretically rigorous
approach to this testing problem may be based on infimum statistics, whose distribution
must be carefully considered under model misspecification under the null hypothesis.

The infimum testing approach was previously studied for likelihood analyses of parametric
models (Todem et al., 2010). In this paper, we have extended these results to general
estimating functions for parametric models. This includes limiting results for the profile
estimators and the infimum test and confidence bands, as well as the validity of the bootstrap
procedure. Such results are critically important in sensitivity analyses of complex data arising
in longitudinal studies, where full model specification may be difficult and partially specified

models may be more easily analyzed using non-likelihood based approaches.
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Proof of Theorem 5.2.1
i) We show that supgez || 0(8) = 0%(5) [|[=p 0

Condition C2 implies that Gy and Gy are Donsker and hence Glivenko-Cantelli (van der

Vaart andWellner, 2000a, 2000b). Therefore,

sup  ||Sy-(0,8) —S(6,8)|| —=p 0 and S W0, 8) — W (0 — 5.4
e, pe= Y b ! ee@L,lgeE Y )= WAl p? - (54

The definitions of §(8) and §*(8) and Condition C4 imply that

0 = Sy(8(8).5) —SE"(5),5)
= (Sy(8(8), 8) — Sy (0(8). 8)) + (Sy (4% (8). B) - S(6%(8), 8))
= W), 8) (08) — 6°(8)) +van(8) (08) - 0%(8)) + v1n(8),  (55)

where 0(3) is on the line segment between 6(3) and 6*(8). Also, SUpgem |9, (B)]

—p 0 and v1,(8) = Sy (0*(8), B) — S(0*(B), B). From (5.5), we have,

sup [03) = 0"()] = sp o |- (10,8 +van(9)) v1n ()

< sup |- L), 6)+U2n(ﬁ)H sup (71, (8)].
pe= pEe=

Because of Condition C3, for any € € O, for any § € =, there exists a positive number
A1, such that A5, (8) > Ap > 0. For any s x s symmetric matrix A, denote its Eu-
clidean norm as [|A| = Amax (A), where Amax (A) is the largest eigenvalue of A and if

A is also nonsingular,

a7

= A1 (A). Therefore, H—V”’V—l(é(ﬁ),ﬁ)H =19 <

)\1_1, and supgez 160(8) — 0%(B)|| < Al_lsupﬁez llvn(B)]]. The uniform consistency of
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6(5) to 6%(B) follows from supgez [vn(B)] = supgez 1Sy (8%(5), 8) — SE*(8), B <

SUPYe @, fe= 1Sy (0, 8) — 5’(9, B)|l —p 0, according to (5.4).
ii) We show that nl/z(é(ﬁ) — 0*(B)) converge weakly to a tight Gaussian process.

Based on the uniform consistency of 6(8), and (5.4) and (5.5), applying the Taylor

expansion to Sy(@(ﬁ), B) around Sy (6*(5), B) gives

n!2 (88) = 0%(8)) = —n ™ VP O% (). D1 (9)
2T WTHEH(6),8) (sv, 6% (8), ) — By, 67(5),9))
= V2N WTNOR(8), B)sy, (07(8), ) = —n AT mi(8),

where ~ denotes asymptotic equivalence uniformly in # € =. Because Condition C2 implies
that G is Donsker and using previous results that V~V_1(9* (8), B) is uniformly bounded
for 5 € Z, the function class {W_l(ﬁ*(ﬁ),ﬂ)sYi(é’*(ﬁ),B),ﬁ € Z,i=1,...,n} is Donsker.
This permits the application of a functional central limit theory to establish the weak conver-
gence of 9(6) Therefore, limy—s oo cov {n1/2 (9(51) — 6’*(61)> ,n1/2 (@(52) — 9*(62))}
=E (771(61)771T(6z)>

— X*(81, B2). For agiven B, var {n1/2 (8(8) — 0%(8)) } = E (my(81] (8))

Proof of Theorem 5.2.2
Applying the Taylor expansion to SY%(Q*(B), 3) around S%(éo(ﬁ), B) gives
—1/2 n *
n

S V5 S sy, (0°(8), )G, + n~1/2 (0*(6) - 90(6)) > iy 9y, (008).5)¢;:
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where 6(f3) is on the line segment between 90(6) and 0*(5). Given observations {Y%}?:l’

Condition C4 and sup ge= 0*(B) — 90(@“ = op (1), one has

W2 sy 080G VST sy (606,006

Based on the definition of 8(3) in (5.2) and (5.4), one has

w2 (609) - 90(5)) =/ 2W§ L858 S sy, 0°9). 916
_1/2W Z , B)¢;
- Z , B)G;

= o712 Zi:l ni(B)Gi

Q

Q

Hence, conditional on observations {Y;}! i, nl/2 <é(5) - 90(6)> converges weakly to a

Gaussian process with mean 0 and covariance function

3981, B2) = limp—o0o n~1 2?21 E(ni(ﬂl)CiC,{n;f(ﬁg) | Y). We also have

2°(81, B2) — (81, B2)
= gm0 ST B (806G 0! (82) )] — B (m (B (82))

n—oo

= lim n—1 Zizl (m(m)ni (52)) ~-E (nl(ﬁl)an(gz)) _

Hence, limy—soo cov {nl/Q < (B

~ 0
1) - (ﬁ1)) nl/? (9(ﬁ2) —0 (52))} = ¥*(B1.B2), the
conditional distribution of n1/2 (é( ) — 90(6)> is asymptotically equivalent to the uncon-

ditional distribution of nl/2 <9(ﬁ) - 9*(ﬁ)).
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