

SOME MORPHOLOGICAL ASPECTS OF THE RESPIRATORY SYSTEM OF THE COMMON WATERSNAKE, NATRIX SIPEDON

Thesis for the Degree of M. A.
MICHIGAN STATE UNIVERSITY

Aaldert Mennega

1960

S

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 00612 9518

24781341

LIBRARY
Michigan State
University

SOME MORPHOLOGICAL ASPECTS OF THE RESPIRATORY
SYSTEM OF THE COMMON WATERSNARE, NATRIX SIPEDON

рÀ

Aaldert Mennega

AN ABSTRACT

Submitted to the College of Science and Arts of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF ARTS

Department of Zoology

1960

Approved by In the Genelia,

ا مولاد الله المولادة المولاد والمولاد المولاد المولاد المولاد المولاد المولاد الكيام المولاد المولاد المولاد المولاد المولاد المولا

ે હોર્ડ

Browns Jack Des

Monday as

outhouteted to the College of we wan the fall of all of the college of the second to the college of the college

March 11 March

medical had alteriments

 C_{i}

the test of the te

ABSTRACT

The anatomy of the respiratory system of the common watersnake, <u>Natrix Sipedon</u> was investigated. It was found to have a
functional right lung, which is separated into an anterior alveolar
part and a posterior mechanical part.

The trachea contains the tracheal lung, which, though functional, is developed only slightly. The pulmonary bronchus is the continuation of the trachea into the lung tissue and extends to the mechanical part of the lung.

The rudimentary left lung is found at the extreme end of the trachea. It has alveoli and a narrow communication with the trachea.

The pulmonary artery lies on the ventral right side of the lung, giving off large branches to the left and small branches to the right. The pulmonary vein emerges from the lung tissue at the anterior tip of the lung and empties into the left atrium.

eggine deserve.

enodam compresso ha sea ca group of an end le company de la est end le

ine traches contains the traches long, which has been seen as the contract of the contract of the contract of the contract of the traches in the contract of the contract of the traches in the contract of the contract of the traches in the contract of the contract of the traches in the contract of the track of the track.

്യ ക്യാന് പ്രത്യായ വായി ഒരു ഇവാന് വിവിധ്യാവ് പ്രത്യാന് എന്ന് വേശ്യാന് വിവിധ്യാന് വിധ്യാന് വിവിധ്യാന് വിവിധ്യവ

The public entropy likes on the very discussion for very relative side of all or gively specified of all or gively specified to discussion in the property of the discussion of the discussi

SOME MORPHOLOGICAL ASPECTS OF THE RESPIRATORY SYSTEM OF THE COMMON WATERSNAKE, NATRIX SIPEDON

рy

Aaldert Mennega

A THESIS

Submitted to the College of Science and Arts of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF ARTS

Department of Zoology

1960

Approved by 722 vii. Tana la,

The Secretary of Electric Secretary and the secretary secretary and the secretary of the secretary and the secretary secretary

χū

ngo na Imedian

1. 4. 4. 45

Eduk oma constant la englisa ont of bedchades end am constant la end on the constant season of libral la end on a final libral constant of season of the constant libral constant of the const

Place Wil rate of

Colour to essent eages

W.I

 	Complete and the first of the complete of th	ូវ	Lev orniga

ACKNOWLEDGEMENTS

The author wishes to thank Dr. R. A. Fennel for initiating the problem. Special thanks are due Dr. Marvin M. Hensley, who served as chairman of the Graduate Committee.

Grateful thanks also to Dr. R. H. Baker, Director of the Museum, and Dr. T. W. Jenkins, Department of Anatomy, for serving as committee members and assuming the duties this entails.

Acknowledgement is made to Dr. P. Clark for his advice in regard to the statistics of this work.

Thanks also are extended to Mrs. B. Henderson, departmental secretary, for her help in the administrative details associated with this program.

Acknowledgement is accorded, last but not least, to my wife, Elizabeth, who has, with unfailing patience and untiring helpfulness, helped to make this work possible.

William Da Alex Men

drateful teactor at the teacher and the teachers, it is a cateron, it is not to the cateron at the teachers, and the teachers at the teachers.

salves to the confidence of the section of the result.

caving the result to who about the result.

ൂർമെയ് ഒന്ന വെയ ഒരു പ്രവാശായങ്ങളും ഒരു വാത്യിലെയായും ഇതു ഒരുത്തു പ്രവിധിയുന്നു വരി ന്നു പ്രവാദ് മേന്റ് അതില് എയ്യിലെയുന്നത് പ്രധാനത്തെ പ്രദേശ വരം കൊത്തം ഒരു ക്രത്യിക്ക് പ്രധാനമായിരുന്ന് പ്രവാശ്യം പ്രവാശ്യം പ്രവാശ്യം വരം

TABLE OF CONTENTS

	Page
Abstract	ii
Acknowledgements	i₹
Table of Contents	•
List of tables and graphs	٧i
List of figures	vii
INTRODUCTION	1
METHODS AND MATERIALS	3
THE RELATION TO OTHER ORGANS	4
THE NASAL PASSAGES External nares Nasal cavity Internal nares	12 12 12 14
THE TRACHEA AND THE TRACHEAL LUNG. Glottis. Tracheal rings. Tracheal lung.	15 15 17 17
THE LUNG PROPER AND THE RUDIMENTARY LUNG Respiratory part Intrapulmonary bronchus Apex Mechanical part Rudimentary lung	21 23 24 24 25
THE RIBS	27
THE BLOOD SUPPLY	28 28 28
SUMMARY	30
LITERATURE CITED	32

ا الله الما الشار فواها الأله والروم المالية

$\Omega_{ij} = a_i \in$	
£3.	
v.i.	
٧	······an porte man a contract of the contract
.v	
J. 1, v	berug 19 to subl
£	OFFICE AND A
3	······································
42	· · · · · · · · · · · · · · · · · · ·
	is few all code it. It was a few all code it. It was a few a
0.1 0.1 7.2 7.2	Control of the contro
\$ 1	
23	tation in the
5.3 6.3 6.3	
υÇ	Mark No.
55	ر از در از

LIST OF TABLES AND GRAPHS

		Page
Table I.	Measurements and calculations of the ten male snakes	6
Table II.	Measurements and calculations of the ten female snakes	7
Graph I.	Graph showing comparative position of the ventral scute at which some organs start in males and females	•

A Company of the Comp

• • • •	and a Maria and a decided the second of the	• A : 63 (1) 4 4
* • • •	ുന്ന പർ മുന്നു വർമ്മുമ്പാത്രന്നു പര്യാർ വെ വാവാവുമായിരുന്നു. പരവാശങ്ങളെ കൊണ്ടില	• &x
••••	o à la coltinoj a sustagnos pa unos agent arcis em pro sans doine és asans datisas 	/ ₁₈ ₩ D

LIST OF FIGURES

Figure		Page
1.	Diagram for cross-sections	9
2.	Cross-section through head, in plane (a)	9
3.	Cross-section through neck, in plane (b)	9
4.	Gross-section through heart, in plane (c)	10
5.	Cross-section through rudimentary left lung, in plane (d)	10
6.	Cross-section through the functional part of the right lung	11
7.	Cross-section through the mechanical part of the right lung and liver	11
8.	Dorsolateral view of head of Natrix sipedon	13
9•	Posterior view of transverse section through tip of nose, immediately behind the external naris	13
10.	Side view of head with air passages laid open	16
11.	Traches and lung cut open to show the traches l'lung and intrapulmonary bronchus	20
12.	Ventral view of respiratory organs in relation to heart and liver	22
13.	Ventral view of heart and lungs, including	29

Commence of the commence of the

& ()		grang 🤄
₹	appagent that ownse-d ecorate a	• •
75 •		• . •
:	•••••• in the second se	•:
£.		• \$-
٥°	de grand d'est ryantesens es agreciad en stout en de la colte	• (2)
F 4	Lo de la la la figura de la fig	,3
	Sa frag Calcination (Calcination) and Frag at the first part of the same case.	• 77
> F	Deprivation from the first as the first spiritual statement	
ĵ,	నృతాగు నా నుండిటిందారి ఎట్టులు గారావి మీరి ఇంది∨ారు. నుండినన విజరాశంతానం అటింగు నుండి ఇంది మీరి చెప్పులు చేశాలు ఉంది. ఇంది ఈ ప్రామాల	•€
ાં	Distangeness win well-washing waiv walls	•64
(gs	อาร์ส์ พอเรื่องเจ้า เอาตา สาก สาก กายหลัง เกาะสารเสรี ••••••• สาก เมื่อเกาะสารเกาะสารเสรียว เมื่อว่า เกาะสารเสรียว เมื่อว่า เกาะสารเสรียว เกาะสารเสรียว เกาะสารเสรีย	•10
inter \$	សុខិ ប្រមន្ត្រាប់ ដូចប្រើប្រសាស្ត្រាស់ ប៉ុន្តែ ប្រសាស ដូចប្រឹក្សា រដ្ឋានិស្ត្រាស់ ដូចប្រើប្រឹក្សា បានស្រ្តាស់ ដូចប្រឹក្សា បានស្រ្តាស់ ដូចប្រឹក្សាសុខសុខសុខសុខសុខសុខសុខសុខសុខសុខសុ	؞ چيک
Ç <u>S</u>	gulferland jajord bes reser to testa feroscol	13.

INTRODUCTION

Throughout the ages snakes have been known, by primitive people as well as by the civilized. Snakes have appeared in the folklore of many tribes and nations, and have given rise to superstitions in many instances. Presumably it is through ignorance that fear of snakes is so widespread and deeply rooted in people. Even in scientific literature there is a striking paucity of information on the anatomy of this group of animals. Being made aware of the gap in the knowledge of this subject, the author attempted to investigate some general aspects of snake anatomy, with the interest drawn especially to the respiratory system.

Preserved specimens of the water snake, Natrix

aipedon, were readily available, and since the species is

representative of the Serpentes, it was selected for this

study. Although studies on fresh specimens are certainly

more ideal, yet the use of preserved specimens was considered

more practical for our purpose.

and the single of the

Electricity of the approachment of the coarse have been located by the problem of the coarse of the problem of the coarse of the

grant of the restance of the setting of the control of the species of the setting and the control of the setting and control of the setting setting and control of the c

The Late of the contains of the containing bentacens

The distribution of N. sipedon ranges from southerly Canada to Florida and westward to the Mississippi (Ditmars, 1941). It is closely confined to the neighborhood of water and can thus be found in many swamps, marshes, streams and lake borders (Allee and Schmidt, 1951). Its food consists mainly of fish (Oliver, 1955).

The primary objectives of the problem were: (a) to survey and compile pertinent literature dealing with the morphology of the respiratory system in snakes; (b) to make a series of illustrations showing the respiratory anatomy and the location of the major organs, in N. sipedon; and (c) te correlate these data with available studies of other species.

It is hoped that this study will provide a basis for future work with dissections of fresh specimens and histological analysis of the warious internal structures.

The december of gigging on a gigging on a consension of the first of all and a consension of a consension of a light). The first consension of the consension of the first of the consension of

dise primery colimant one linear los securosites prefire entitée par survey colimant de color parties par parties de color pa

In is impose that a start, while about a least of leasts flow from a second of the flowing flat of the workers of the least of the workers and the least of the workers and the least of th

METHODS AND MATERIALS

The animals utilized had been fixed in formalin and later transferred to an alcohol solution to facilitate handling. The snakes were a mixed lot of sexually mature males and females of varying ages and sizes, selected at random from a large number of individuals. Approximately ten specimens were dissected and examined internally. Normal dissecting techniques were employed to expose, measure, and analyse the various organs. A handlens was used for those structures which could not be readily observed. Measurements were made with a millimeter rule. A statistical analysis of the organs and locations was made on twenty specimens, ten each of male and female individuals.

State of the Edition

End a foliate of the control of the

Figures 1-7 show the relative position of the respiratory system with respect to the associated major organs in Natrix sipedon.

The masal passages may easily be determined between the external and internal mares. The trachea starts at the glottis and extends posteriorly dorsal to the tongue sheath (Fig. 2). With the esophagus to its left, the trachea continues until it passes the heart on the left side. At the level of the apex of the heart the trachea joins the anterior end of the lung in the vicinity of the 30th ventral scute. At the junction of the trachea and the lung proper, the rudimentary left lung may be found (Fig. 5). The functional part of the right lung continues past the anterior tip of the liver, to about the 43rd ventral scute. The mechanical part of the right lung lies dorsal to the liver (Fig. 7), and extends caudad beyond the liver.

For the computation of tables I and II, ten male and ten female specimens were examined and measured. The females attained the greatest overall length, while the males showed a greater number of ventral scutes from snout to vent. The males ranged in size from 54.0 to 82.0 cm., with an average of 67.9 cm. Their ventral scutes numbered from 182 to 219, averaging 208.2. The females measured from 51.0 to 94.0 cm., with an average of

Sand St. Barre W. W. L. Barrer and a finish and a second section

ejaure 1401 and 140 and 140 periods of the property of the control of the sequence of the sequence of the sequence of the sequence of the control of the con

Live the acceptable for our fields of the contract of the cont

Graph I. Graph showing comparative position of the ventral scute at which some organs start in males and females. The mean of the starting scute is indicated by the horizontal mark; the range by the vertical line.

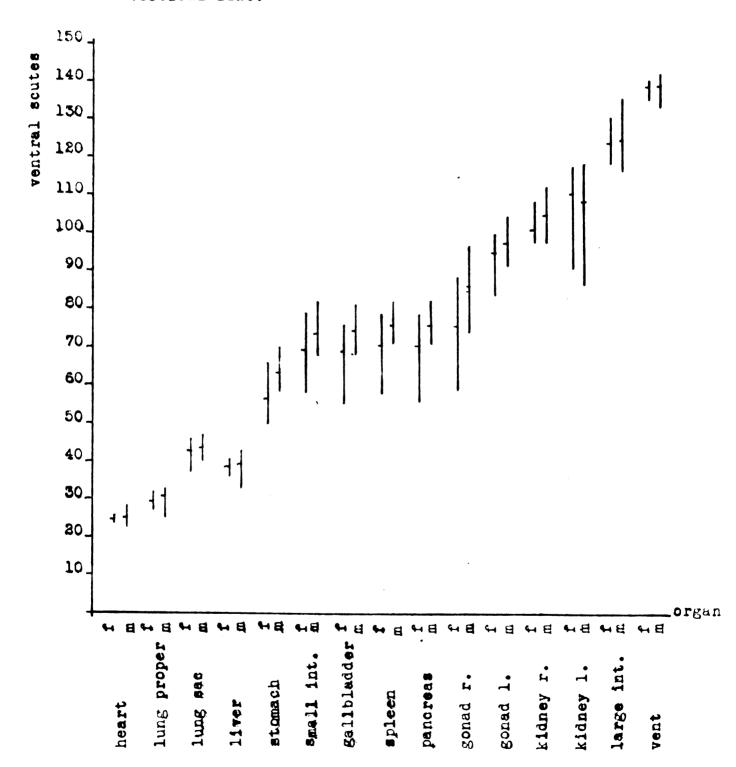


TABLE I

Measurements and calculations of the organs of the ten
male snakes

starting scale organs mean range tail 139.6 134-143 heart 25.7 23-29 lung proper 30.7 25-33 lung sac 43.7 40-47 trachea	mean 3 16.6	dimension ran length	
tail 139.6 134-143 heart 25.7 23-29 lung proper 30.7 25-33 lung sac 43.7 40-47 trachea		length	
heart 25.7 23-29 lung proper 30.7 25-33 lung sac 43.7 40-47 trachea liver 39.5 33-43	3 16.6		
lung proper 30.7 25-33 lung sac 43.7 40-47 trachea		12.0-22.0	
lung sac 43.7 40-47 trachea 39.5 33-43	2.0x0.9	1.5-2.6	0.7-1.0
trachea 39.5 33-43	5.3x0.8	2.5-8.0	0.4-1.2
liver 39.5 33-43			and the second section
	11.0x0.3	9.5-13.0	0.2-0.3
	11.4x0.9	9.0-15.0	0.6-1.2
stomach 63.1 58-70	4.0x0.8	2.5-5.0	0.5-1.1
pancreas 76.0 71-82	1.2x0.5	0.8-1.7	0.3-0.7
gallbladder 74.2 68-81	1.lx0.8	0.6-1.5	0.6-0.8
spleen 75.8 71-82	0.3x0.3	0.2-0.3	0.2-0.3
gonad, r. 86.3 74-97	3.5x0.7	2.0-6.0	0.1-1.2
gonad, 1. 98.0 92-105	3.0x0.7	1.5-4.8	0.3-1.0
kidney, r. 105.7 98-113	6.0x0.5	4.0-7.5	0.3-0.7
kidney, 1. 109.3 87-119	5.6x0.5	3.8-6.8	0.3-0.6
adrenal, r. 93.4 86-97	1.1x0.1	0.5-1.7	0.1-0.2
adrenal, 1. 102.6 96-109	0.8x0.1	0.3-1.6	0.1-0.2
smell int. 73.9 68-82	55.0x0.2	43.0-66.0	0.2-0.3
large int. 125.1 117-136	4.2x0.4	3.0-5.5	0.4-0.5
thyroid body 24.5 20-28			
tongue sheath	0.3x0.1	0.1-0.5	0.1-0.3

າກສະໄປ ການໄປໃດ ກາງກ່ຽວ ທີ່ໄປ ໃນປະເທດແປກພົກຍຸມົກຄົວເພື່ອເຂົ້າການ ຄວາມຄະນະໄປ ພາຍໄປເສດ ຄວາມຄະນະ

الأناد وأود الم

	nangan ang maga Lu Makasakatak	ক্ষেত্ৰৰ যে উপ্সোক্ষক প্ৰকৃত্ৰণ	en er		neralen versamina e e e e e e e e e e e e e e e e e e e
ide Nadarska	rr ddgesl	Cat 3	করি কোজ	Cast Brd	en; 10
i wakan mama a jaban baka ki ki ki	S.S.C. S.C.E	کیں. ن	104-14	13%.0	1.730
0.1-7.	0.5	Q.030.S	2 3-2 ,	7.33	វ ាជ្ជស្ន
0.4-1.0	○ • • • • • • • • • • • • • • • • • • •	• ** • *	£(=(0	V . 26	rejond tend
diff with more dire tray that again	Parist no Visao coror an	est de l'este un accept	The same of the	4.).u. y .usc
\$.0-4.5	0.9(-0.0	0.00.U	the chi did the deligate	40 741 - 41 00	ຂອດໄປລາ <i>ເລື</i>
	0. (Cm) . ()	C.O. S.	表 一	J E	liver
1.1.4.0	0.3-1.5	\$ Oz0 .	07-02	$\mathcal{F}_{ullet}^{(i)}$ and	40th 043
$\nabla_{\bullet^{(i)}} \cdot \nabla_{\bullet} C$	7.1-0.0	1.787.5	C-57	O. /	830%។ បន្ទ
San San	1.2 4.0	1.1:	ر داستان	5	gelibledcor
€	Ç. (()	€.50.0.	1.0-28	75.0	ကာ မင်္ဂြာ
17. E-7.	e y in section of the	7.4.	$I \not = M_c$	$\hat{\xi}_{(ullet}(d))$	ett elesting
0.5-2.0	Section 1	V.O.O.A.	\$1 - N	C.C	· f & same
V.D-8.0	Carren on	₹. 6 € • 2	(J) - 1	7.8VI	· To enter the to
\$ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	in the state of th	\$.0x0.8	1.4.E=\1.2	C	Klassep, 3.
8.1-2.0	V.J-3.0	1.00.0	100 mg 12	N•80	en (Isomorba
Con-to-C	: • [•	1.000.0	90 5- 20	1.0	.1 .Incerna
Carlan	to water	\$. 020 · 3	و السائد	\$ - CV	.F.E Ifera
₹	8.0-0-8	7. WA	-V1	1.700	.tal egyet
₹ . 14£.0	ે, ેન્ડ ,ે	1.0.0.0	1.5 - 1.5.	2.12	Abou bliogda
\$. S-(.)	2.0-0.0	in Carlo	Ever 0 100 Carpa	Tree die von der gelie	toryan shaeth

TABLE II

Measurements and calculations of the organs of the ten
female snakes.

	startin	g scale		dimension in	cm
organs	mean	range	mean	range length	width
tail	139.1	136-141	15.3	11.5-21.0	
heart	24.7	24-26	2.0xl.0	1.5-2.5	0.6-1.3
lung proper	29.3	27-32	4.3x0.8	3.0-7.0	0.4-1.1
lung sac	42.3	37-46			
trachea		**********	10.450.3	9.5-12.5	0.2-0.4
liver	38.6	36-41	10.2x1.0	7.5-13.5	0.7-1.3
stomach	56.4	50-66	5.2x0.9	3.5-9.0	0.5-1.3
pancreas	70.7	56-79	1.4x0.6	0.7-2.3	0.4-1.0
gallbladder	68.9	<i>55</i> – 76	1.3x0.8	1.0-1.8	0.4-1.2
spleen	70.9	58-79	0.3x0.3	0.2-0.3	0.2-0.3
gonad, r.	75.9	59-89	5.lx0.3	1.5-12.0	0.2-0.4
gonad, 1.	95.1	84-100	3.8x0.3	1.3-11.5	0.2-0.5
kidney, r.	101.6	98-109	5.4x0.4	3.8-7.5	0.3-0.6
kidney, 1.	111.0	91-118	4.6x0.5	3.0-6.5	0.3-0.6
adrenal, r.	88.3	7 9 -9 2	1.4x0.1	0.8-3.0	0.1-0.2
adrenal, 1.	100.7	93-103	1.2x0.1	0.5-2.7	0.1-0.2
small int.	69+7	58-79	60.2x0.3	42.0-81.0	0.2-0.4
large int.	124.1	119-131	4.9x0.5	3.5-6.5	0.3-1.0
thyroid body	23.3	22-25	0.3x0.2	0.1-0.5	0.1-0.3
tongue sheath		6 ~~ 6 ~ ~ ~	5.6x0.1	4.5-7.5	0.1-0.2

మమ్మున్కులో - మంచి దర్శకుల్లో కొండా జానికి మంచి ప్రాటక్షుల్లో ప్రాటక్షుల్లో ప్రాటక్షుల్లో ప్రాటక్షుల్లో ప్రాటక్షుల్లో ప్రాట - మంచి దర్శక్షుల్లో ప్రాటక్షుల్లో ప్రాటక్షుల్లో ప్రాటక్షుల్లో ప్రాటక్షుల్లో ప్రాటక్షుల్లో ప్రాటక్షుల్లో ప్రాటక

	ran ammun as ar.		on the madespers	and a state of a	
2002			ક.કેંગ્રગ્રેગ 🕳	The second se	
sign is	rywa es _{wa} r	######################################	₽ŷ CCC		s nap ro
\$ 10 mm & 10 mm & 10 mm	0.0-2.11	6 . A. L	14.5-01	L. O.	_last
2.5-0.6	Quinest C	0,2.0,2	454 (3		\$*25.894
1.2-3.0	3.0-7.0	0.00.00	Contract of the	ξ. (%.	recomposit
and a amplement	and is beginning,	dand derdeven en sik	Open C	5,004	Lang sec
2.042.0	: <u>,::::-::::</u> ;	Colonia VII	waa wurdhuud teer kale	gridatii gasaa	ត្រាម ខេត្តប្រើ
E.1-5.0	7.84-3.7	F F S S S S	I,	33.0	novil
£.1-0.0	Color to C	e.0:2.0	64-13	7.67	៥៩៦១.១៩៦
· . (J. 03 p. L	62-03	77	papan arj
0.4-1.0	(°, 1-4., 1	0.00E.I	۵7 - ₹1	()	150 milling
	(€.020.0	12-13	6.06	(60 Î.j. s
7. · · · · · · · · · · · · · · · · · · ·	0.11-1.1	£.6:7.3	Ç1.4-7 Ç	75.5	goned, r.
	2.77.41	2.00.3	005-18	1.88	·4 (190 6);
U. O-()	3.3-2.5	i.Car	(())	1. J. V. J.	•w •5# 224
0.9 - 0.0	3 and and	Q.One.A	ell-M	111.0	A CONTRACTOR
5.0-1.0	11.00 m	I.On.	75-50	€. %3	· s (Los tibe
5.0-5.0	7.8-2.7	1.0%.1	()) (, ?	7.002	of quarries
ja junt "O	9. 4 6. 4.	ξ. Φ Γ. ω	(? - 85	5 400	•មក ដែលប
را ۾ اصلي آ	Q owner or	6.047.4	281-471	I.AJI	.# : 0 m. I
[2.0-1.0	L.O.C.	Jan Salan	E . 12	Road States
S. O	4.5-7.5	5 - 120 - Z	Secret State & Sec	ghā sahith - kin milli	Allaens englob

68.0 cm. They had from 179 to 207 ventral scutes, averaging 201.4.

From this we can see that the organs, when located by the number of the ventral scute at which the organ starts, were found to be more cauded in the males than in the females (Graph I). This is substantiated by the figures obtained by Bragdon (1953).

begins at approximately the 30th. The size of the functional part of the right lung differed greatly, ranging in length from 2.5 cm. to 8.0 cm. in males and from 3.0 cm. to 7.0 cm. in females. The mechanical part of the lung slightly exceeded the alweolar part in length; no definite measurements could be obtained. The width of the lung in the males was from 0.4 cm. to 1.2 cm., while in the females it ranged from 0.4 cm. to 1.1 cm. The trachea measured from 9.5 cm. to 13.0 cm. in males and from 9.5 cm. to 12.5 cm. in females.

.0.0 or. They had then 175 to 207 venters sorter, scarsging this. ...

number of the ventral south of the or an object, were found to be done carried to the sales carried to the sales than the treatment (Craph 1). This sales carried to the sales of the carried (1753).

The next about about the block the CSta across of The large leave begins at expression of the right large large than 500c. The since of the large large large of the right large large large stope of the right large large large stope of the Tour Loope stope stope is the Loope large large large large large large large large large stope large l

Fig. 1. Diagram for cross-sections.

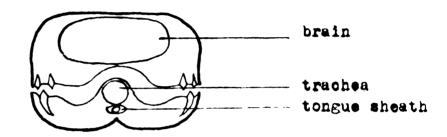


Fig. 2. Cross-section through head, in plane "a" Scale 2:1

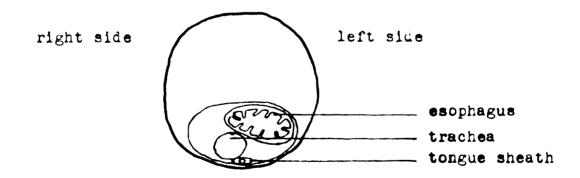


Fig. 3. Cross-section through neck, in plane (b). Scale 2:1

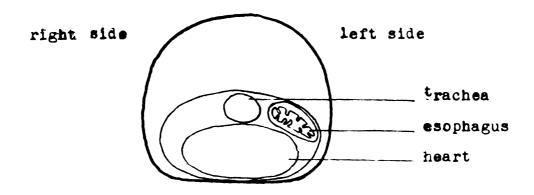


Fig. 4. Cross-section through heart, in plane (c). Scale 2:1

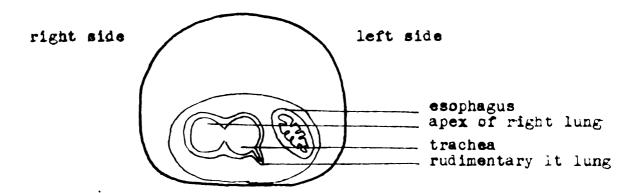


Fig. 5. Cross-section through rudimentary left lung in plane (d). Scale 2:1

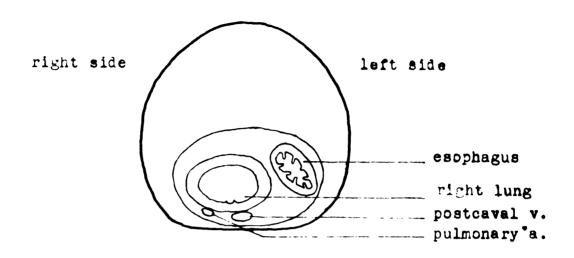


Fig. 6. Cross-section through the functional part of the lung, in plane (e). Scale 2:1

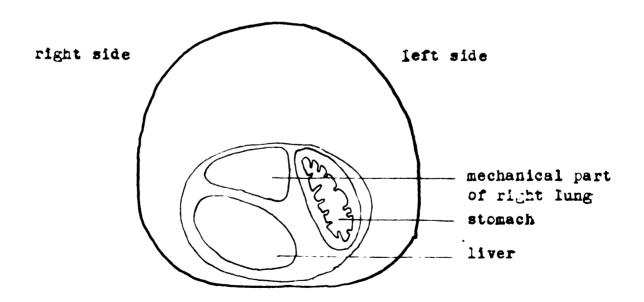
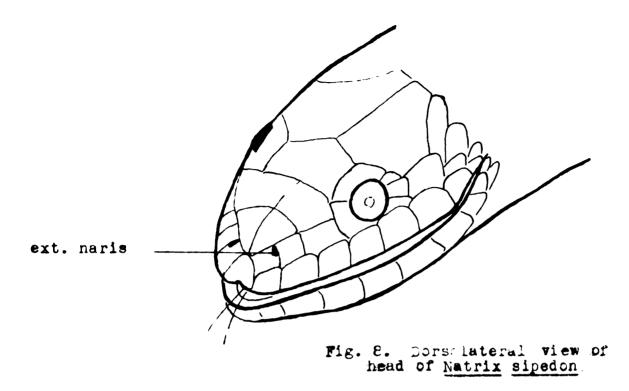


Fig. 7. Cross-section through mechanical part of right lung and liver, in plane (f). Scale 2:1


THE NASAL PASSAGES

The external nares in most snakes are found close to the tip of the snout, well in front of the eye. They are small openings which afford the entrance of air when the mouth is in its usual. i.e.. closed, position. In N. sipedon these openings are approximately one mm. in diameter, and can be found in the position indicated in Fig. 8. It is generally assumed that the external nares of the landsnakes require no special mechanism to close off the air passages from the environment. However, in those snakes which spend much, or all, of their time in the water, this is stated to be different. Katheriner (1899), in his studies, found that all of the latter species have a special mechanism, which keeps the external nares closed constantly, and requires muscular effort only when the nares are to be opened for respiratory purposes. During breathing the blood supply to the cavernous tissue, which normally closes off the nares, is shut off by the surrounding smooth muscles. The cavernous tissue thus collapses, and the air is free to enter the nasal cavity. Cavernous tissue is not present in N. sipedon, so far as could be determined from the preserved specimens used in this study.

The nasal cavity is divided into a vestibule and

المحاول المحا

in di bin in 1911 di bus se bou decembri arta. Iberaria de 18 The a section of the court of the parties of the court and the gift will දෙනයි. ගැන්න්නේ අයයින් එයම මෙනෙන්නෙන්න එයි. ගැන් සිදුමර විධිත එකෙන්න විසි විශාග ing nonge at a digger of a large good of the same factor of the open of the open age. as a aprovess and in a cone time in district the result of the contract of the cone នៅលើ ទី២ ទី សភា សភា ស្គ្រា ruthi adus y Escole y di livria ser bolla pavol qua le 🙃 😘 Il resulta ะ และ เมื่อ เมื่อ เกิดเลย เลื่อง เมื่อ చిన మీఎందు రుజన్ ఈ ఇక్కర్లు కుట్టు కుట్టుకు మీమం. ఆక ముంది మీ ఉంది. మీ ఉంది. మీ weeken, this is whereit to be no his absent. . attention (1.7.), in ligion e e exami suide en moiost alla in II e dunid in dept , a libra e in and , libralance cauda nor on la remne et a saga e nellig pet adoes rank ha ero on, ed elle kana reik in Wildligher dickke reineren alminer said all figure rubile and gradient to have seame any quaderieners caracments the one, which is correllly absent ould the paren, as dontcommon or services and the enclosive stance and all and the contracts ្សាស្រី ខែពេញ គឺគេកាស់។ ការណ៍ សុខជាប្រាស់ គឺ បានធ្វើ ២០០០ ម៉ែល ២ ខែ និង ស្រែង ខ្លាំង ស្គារជាប់ការ ការប្រាំ Made in the or . Marin . I is the way to be uponed and any all 🖫 janua – nie nie kan ir alemanasijo ir semiarnų unio piema kielo niekš kai the rate standard a chair fold that the continues to the said

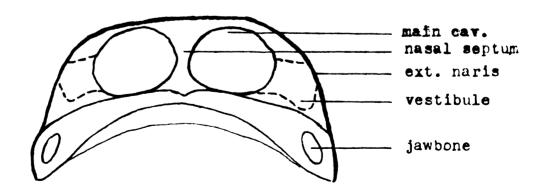


Fig. 9. Posterior view of transverse section through tip of nose, immediately behind the external naris.

main cavity. Generally the vestibule in snakes is poorly developed, except in the case of the marine snakes (Kathariner, 1899; Matthes, 1934; VanderKlauw, 1952). The vestibule in N. sipedon is poorly developed, measuring no more than lxl mm. It is not clearly separated from the main cavity (Fig. 9). A concha is present on the lateral wall of the nasal cavity (Weichert, 1953; Romer, 1956), and extends from the vestibule to almost the end of the nasal cavity (Fig. 10). It measures approximately 4xl mm. Its function is to increase the available sensory surface (Weichert, 1953). The nasal cavity has the functions of olfaction and of air passage. The two nasal cavities are separated by the nasal septum (Kellicott, 1898). The nasal cavities open into the oral cavity by means of the internal nares. These openings are in close relation to the opening of the trachea so that a good connection of the air passages is established when the mouth is closed.

According to the property of the control of the control of the property of the control of the co

THE TRACHEA AND THE TRACHEAL LUNG

An open-mouth view of N. sipedon (Fig. 10) shows the traches as a raised area on the floor of the mouth from opposite the internal nares to the opening of the esophagus. The traches is covered on the outside with oral mucosa. At its anterior end the glottis may be seen immediately posterior and dorsal to the opening of the tongue sheath. As mentioned above, the glottis is in direct relation to the internal nares, and thus the larynx is found far rostrally (Vander Klauw, 1952): ca. 1.0 cm. from the tip of the snout. Kathariner (1899) observes that the glottis prevents food or water from entering the trachea during the act of swallowing. While the prey is in the mouth, the traches is compressed (George and Varde, 1941). In Haterodon it is at the same time protracted by the genio-trachealis muscle (Kellicot, 1898), to allow adequate breathing. The opening of the glottis is flanked by the arytenoid cartilages, to which are attached the muscles which dilate the glottis. The cricoid cartilage is elongated and fused with several tracheal rings in most species (Romer, 1956).

Natrix sipedon has no epiglottis, although, in other species, a slightly developed lip or valve at the lower part of the glottis is reported as being present (Hopley, 1884).

Only in the bullsnake (Pituophis) is the epiglottis found as a

rappile two draged angles of the grown collection and collections and collections are the collections and collections are collections are collections are collections and collections are coll sallow of word and one only has noted to all not usus two are see sections so there are a superposed with the goldenian mineral sugar for the wild ža do wred e., bio oris stolet, a colo indicade, i ob desim havino e.c. ายทำไปให้ มีสามรับไป 2008 ซึ่งจากแบบแต่กับ ยา สมรับของแบบ เมาราย เกษากับครับสมรับโรย ครั้งสำรับ ార్డ్ స్థితంగ్లో అనేదే...లాలుగు మీ కల్లోనికు కార్యాలు ఈ ఇక్ట్ కార్డ్ కార్డ్ కార్డ్ కార్డ్ కార్డ్ కార్డ్ ఆన్రామ distribution and Circliff (services) its result is easilife and the a which are a . In the probability (2001) we consider a . We set that the a្សាស់ស្តេច សុខសាស្ត្រាស់ស្ត្រាស់ សេចមិននោះ សី សាម៉ែន ស្រុសពីស្រុសស្រុស សេចមេនេះ សេស្ត្រាស់ ស្ត្រាស់ សេចមេនេះប្ at some of end , there ell of the train and show a guivelists to compressed (source are variety 1961). An articletic it is the to ్.లింగమ్మ్లు / అల్లుకుండా అన్నాయి. గ్రామం అనికాయింది. ముందులు అనికి అంది కాటా ఉంది. 1991), to allow alcounts is addice, the opening of agents ារ៉ាល់ស្ថិតនៅជា មានមានមានស្ថិត នៅ ប្រធានាធិបតី នេះ នៅស្រែក នៅ ស្រែក នៅ មានមានស្ថិត ស្រែក នៅ ស្រែក នៅ ្នាស់ សុទ្រស៊ី ទៅមាន២ សុស្តិតមានី២**១ ១**សៀន (គ្នាសីសស្ត្រី) សុភាសុខសាស្ត្រីនៃ ១៩ ហែ**អ គ**មនិស្សស្រ ២០១៥ ealways flow the System Indiamed done or rails in the bird bate, also (ADEST) LINGA

The second control of the control of

Fig. 10. Side view of head with air passages laid open.

definite structure (White, 1884; Hopley, 1884). It not only aids in closing the glottis, but also accounts for the "hiss" of the bull snake. The hissing of other snakes is caused by the rapid passage of air through the partly closed glottis (Bolk, 1939).

Among snakes the tracheal rings vary in number, size and structure. Generally the rings are complete at the anterior end of the trachea (Thompson, 1913; Bronn, 1890; Bolk, 1939), but after a short distance the sides of the rings fail to meet dorsally, thus leaving an opening, which is filled in with soft, fibrous tissue, or sometimes with a musclebundle (Beddard, 1903 and 1906-a; Bronn, 1890). In N. sipedon the tracheal rings are incomplete from glottis to lung, and the gap is closed by fibrous tissue.

In many snakes the dorsal tracheal soft tissue is continuous with the lung tissue, and actually carries on respiratory function (Beddard, 1906-b). This "tracheal lung", as it is called, exhibits considerable variation in the different snakes (Beddard, 1906-b).

Varde (1951) showed that in Echis carinata, Hydrophis cyanocinctus, and others "the trachea gives off laterally a series of tiny tracheal branches, which after repeated sub-branching form the tracheoles that terminate in alveoli, giving rise to the lung tissue called 'the tracheal lung', in contradistinction to the bronchial lung." The function of this structure seems quite obvious if we keep in mind the snake's difficulty in breathing while swallowing its food. When

definitive structure (likible, really deplie, likel). It was sold as the state of the stall in about y tens ylottin, into the above the few the state of the stall analog. The hierarch tens of others a state in outsed by the sage of air through the plant, elected glotted (wit, likely).

Jacob November 1 and 19 the length of the very in authors and contractors. Contractors 2 the very state and contractors 2 the length of the very state and contractors 2 the length of the light of the length of the light of the

Library states this description of the forms of the sold thereof as some and some the order white the large states of the fire the sold of the contact of the fire the formal sold of the contact of the

the air in the lung proper is not available, due to the closing off of the air passages by a large-size prey, the tracheal lung may be prevailed upon for a sufficient supply of oxygen (George and Barde, 1941). However, in some cases, as in the Black snake, no tracheal lung is present (Attwood, 1916). In other species, such as Causus rhombeatus, a viper, the tracheal lung may carry on the respiratory function completely (Beddard, 1960-a). The respiratory tissue may start at the glottis, or any point posterior to it; sometimes this tissue is even to be found as a wide band, exceeding the width of the trachea (Thompson, 1914-b).

A tracheal lung is present in most snakes as stated early by Cope (Beddard, 1906-a), and since then affirmed by several other investigators (Bolk, 1939); Beddard, 1906-b; Rothley, 1930).

The structure of the tracheal lung is similar to that of the bronchial lung (Varde, 1951; Vander Klauw, 1952; Beddard, 1906-b; Rothley, 1930); the latter will be discussed later.

A special condition exists where the trachea is perforated by large foramina which lead to air-chambers which are divided into compartments by stout connective tissue. Only three species, Ophio-phagus bungarus, Pseudoxenodon chipensis and Coluber oxycephalus, are known to possess these special airchambers (Thompson, 1914-b; Beddard, 1903).

where aim is been interpreted in the control and provided in a reconstruction of the air peaks, of the control of the provided in the control of the control

Three deductions of the control of the property of the book is the control of the

The standards of the lawly law base has standards of the standard of the control of the control of the control of the control of the lawly the standard of the lawly t

a appear of the property of the state of the

In N. sipedon the tracheal lung may be found on the dorsal inner surface of the trachea. It starts at the glottis as a barely perceptible line which gradually widens into a 2 mm. wide band, and continues to the thoracic lung (Fig. 11). Shallow alveoli are present in the posterior two-thirds of this band, along with longitudinal folds of fibrous tissue.

In many species the trachea does not end abruptly at the beginning of the thoracic lung, but usually penetrates into the lung tissue a certain length before its distinction is lost (Attwood, 1916; Beddard, 1906-a). The condition in N. sipedon will be discussed in greater detail below, in connection with the intrapulmonary bronchus.

and the state of the state of the content of the state of

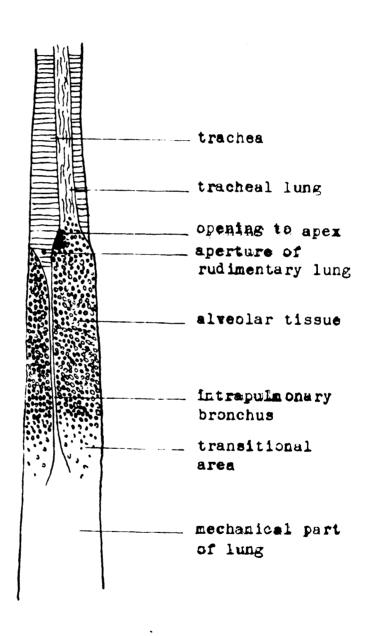


Fig.11. Trachea and lung cut open to show the tracheal lung and intrapulmonary branchus. Scale 2:1

THE LUNG PROPER AND THE RUDIMENTARY LUNG

In snakes the anterior tip of the lung usually is found in the vicinity of the heart (Brongersma, 1951-a), as is the case with N. sipedon (Fig. 12). The length of the lungs varies greatly; in some cases, e.g., Distira evanocineta, they may even reach all the way to the closes (George and Varde, 1941; Thompson, 1914-b). In N. sipedon the lungs grow posteriorly to approximately the end of the liver.

In any reptilian lung we may expect to find a clear separation into mechanical and respiratory parts (Wolf, 1933; Bolk, 1939). The respiratory part is that part which is alveolar and carries on the function of gas-exchange. The mechanical part is the posterior portion which is smooth and appears as a more membranous sac. The respiratory part is usually found in the anterior one-third of the lung (Wolf, 1933), although both extremes may be found: some snakes, e.g., Cylindrophis maculatus and Cerberus rhynchops, have the lung lined throughout with pulmonary tissue (Thompson, 1914-a), while others are lined with pulmonary tissue very scantily, e.g., Causus rhombeatus (Thompson, 1914-b).

Its inner surface appears spongy and alveolar (Varde, 1951), and a.g., in <u>Tropidonotus natrix</u>, may contain a complicated

and the second of the second second because and a second second of the

The makes the absence of the line of the content of the catality of the makes of the content of the catality of the base of the catality of th

no approvide to a superstant of the complete to find a find a street of the collection of the collecti

edinal) nakoveka ene izvenja no apa enektran venik ekk kalendri pen a nikiri on zam prijuha krija krija krija krija krija e krija 1881.

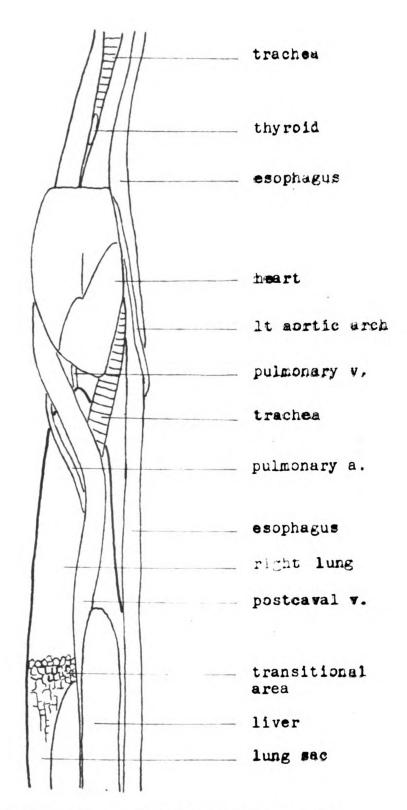


Fig.12. Ventral view of respiratory organs in relation to heart and liver. Scale 2:1

system of niches and crypts, which gives it a toadstool effect (Schmallhausen, 1905). These compartments are separated by partitions which grow perpendicular to the lung-wall to form, more or less, a honeycomb structure (Rothley, 1930). No lobes are found in the snake lung (Graeper, 1929). The development of alveoli in snake lungs shows great variety and ranges from primitive to complex (Varde, 1949). In N. sipedon the alveoli are polygonal in shape, varying from quadrangles to hexagons. They are from 0.5 to 2 mm. deep, depending on the size of the snake and the location in the lung. Particularly at the transition to the mechanical lung they tend to become shallow. There are approximately 250 to 300 alveoli per square cm. of surface area of lung tissue.

as mentioned above, in most snakes the trachea does not end immediately upon meeting the lung, but usually enters the lung a short way. In N. sipedon, however, the trachea ends as soon as it reaches the lung tissue. Ventrally, however, there is a narrow groove (Fig. 11), approximately one mm. wide, which is referred to as the intrapulmonary bronchus or intrapulmonary streak. This structure may be expected in all reptiles (Wolf, 1933), and has been found repeatedly in snakes (Bronn, 1890; Thompson, 1914-a and 1914-b), where it continues to the end of the alveolar tissue,

dualitie tennalis i sill and , a see qui gen independi consideration of the second con

The state of the second second

fans out and is lost in the membrane of the mechanical portion of the lung. This groove has longitudinal folds, and a few shallow alveoli. It seems to have the function of directing part of the air more directly to the posterior part of the lung (Wolf, 1933).

Because the trachea does not meet the lung at its most anterior part, an apex is formed anterior to the junction of these two organs (Thompson, 1913 and 1914-a; Attwood, 1916). Its inner surface is identical to that of the main part of the lung, and its communication with the latter is ample (Fig. 11 and 12). In some cases, a.g., Cylindrophis rufus, only a narrow tube connects the two (Thompson, 1914-a).

In N. sipedon (Fig. 12), as well as in other snakes, the transition from the alveolar to the mechanical part of the lung may be found at about the beginning of the liver (Graeper, 1929). The mechanical portion of the lung has no alveoli and appears as a smooth membrane, continuing along the liver at a uniform diameter, but narrowing down in the end. In some cases the mechanical portion gradually merges into the connective tissues of the body (Attwood, 1916). In some of the Viperidae the thoracic lung has been found to be completely devoid of alveoli (Beddard, 1906-b),

In a colimar, the fact that examples out the examples of the fact of the collection of the collections of the collections of the collections of the collections of the collection of the collect

abbatton part, an epas is for all abbation to the jacinolous has have a been part, and the conference of the object of the selection of the day of the selection of the day of the conference of the test of the cold that is the day of the cold that is all the cold that is also the cold that the cold that is also the cold that the cold that

්වෙයල් මාර්ථ මය වුණක් සැක් විවාස මහා ගනවා ලෙසනමෙන් වෙයි. අනුතුන්ණ

At its given the nilensity to the nest of the other star large as the other star large asy the star of the star of the other star is a star of the sta

and the respiratory function is assumed entirely by the tracheal lung. In those specimens of N. sipedon where the posterior end of the mechanical part of the lung could be approximately determined, it was found to be almost an inch caudal to the posterior end of the liver. Thus the mechanical part exceeds the alveolar part in length.

Although the mechanical part of the lung is denied any function by some (Bolk, 1939), yet its usefulness as an air reservoir cannot be denied (Varde, 1951; Wolf, 1933; Graeper, 1929). This is supported by an experiment with a viper, Vipera berus, which showed that the stored air was sufficient for survival for 29 hours at 7.5 degrees centigrade, while at 29.5 degrees this air lasted for 1.5 hours (Suomalainen, 1939). This store of air is useful during feeding time, or for time spent under water. For marine species the buoyancy, which the mechanical lung affords, may also be significant.

The Pythons and Boas are known to have two lungs (George and Varde, 1941; Beddard, 1906-b), although the left one is invariably reduced in size. All other snakes have only one functional lung, i.e., the right one, while the left lung is

Indicate and oping the state to the analysis of the condition of the state of the s

The section of each of to the proposition of the top access of the light while in the stable of the section of

The applies a sections are near to have the horse to have the lines (income and varies), also ough the lines are to the invariably reduced in the lines will obtain a ches wave unit, our functional tury, i.e., the right of the leds into into into into into interpretability.

either completely absent or rudimentary (Attwood, 1916; Beddard, 1906-b; Varde, 1951; Bronn, 1890; Thompson, 1914-a; Cope, 1894; Butler. 1895: George and Varde. 1941). In those cases where the lung is rudimentary it lies perpendicular to the right lung (Bolk, 1939). The water-snake, N. sipedon, does have a rudimentary left lung (Fig. 13), measuring only 2 to 4 mm. in length. Although for practical purposes it is considered non-functional, in some snakes, including N. sipedon, the rudimentary lung does have alveoli and is highly vascular (Schmalhausen, 1905; Beddard, 1906-b). Its opening may be found as a tiny hole at the very end of the trachea. The growth of the left lung may be minimal, yet no regression occurs during development (Flint, 1906; Baumann, 1902). Although in the early studies there existed a difference of opinion as to whether the single lung of a snake was the right one or the left, Butler (1895) has found sufficient evidence to state clearly that the larger, or only lung, is the homologue of the right lung of other vertebrates.

្នាស់នេះ មានស្ថិត ខ្លាំង ស្ថិត បានសម្រេច បានស្រាស់ នេះ នេះ នេះ និង និងសម្រេច ស្ថិតនេះ ស្ថិតនេះ ស្ថិតនេះ និងស្ Tyrow'n i wate, 1991; imawi, 1890; kaonymori, 1964; word taken and arome amore event the .i.e. it foots in the egreen't title and in the Allow) that the trans of malabaneously aski of green where it good If \$33) . The water contract made are entire to a contract with a fix of tury (.i.j., 1.j.), sembarity of the first of the distribution of the first of the Po, yambildak yaryosha 15 is bordidomo mon-Kunoslonki, ir bo s even seen ened epiede rillim with with the energy on him being review alvadid z i iz ilijing vestatler (sadualimare), ljog sedder., age a seal da edou yell e aa bewel od jast jiloa e aa. .(e-a ji end of the weacher. The growth of the heat later and be all really gradina rollia illor occure diller carologica di lablatica (shin). lenger sinila a hadrene energi belik av elika kan bida kan sinila kan kalangeraka. 🖫 (1991) ు గ్రామం అందే గ్రామ ఆ ఉండి 5 డిత్ గ్రామంట్ ఉప్పునుడి.. ఉందే ఇందుతే ఈ ఆ ఆ ఆ ఆయిన ఏందే ఏం and it the late, skiller (1995) had leaded and their worldbards wi sucia diently that the larger, or oil; large in the incollege of this right hang of which and notice website THE RIBS

Reptiles have motile ribs to promote their breathing (Romer, 1956). In snakes the ribs are used not only for inhalation and exhalation of air, but also for the inner wentilation of the inhaled air between successive breaths. The pairs of ribs move independently of each other (Wolf, 1933; Bolk, 1939). It is considered to be beyond the scope of this work to determine precisely the contribution of the ribs to respiration.

3. L. M

grisdoend with a serio ord of the filter the serio well and with a fermion.

A salisated to the place of the serion of the serion well and the collection of the fermion.

A collection of the collection of the serion of the serion of the paint of the paint of the serion of the serio

THE BLOOD SUPPLY

Arterial

Since the bloodwascular system plays an essential part in the exchange of gases, it seems advisable to note briefly the main parts of the pulmonary circulation. The pulmonary artery leaves the right side of the ventricle dorsally and runs cranied to the anterior end of the heart. It turns at the right atrium and then runs posteriorly to enter upon the right side of the ventral surface of the lung and extends nearly to the end of this organ (Ray, 1934; Attwood, 1916; O'Donoghue, 1912; Kellicott, 1898). Usually the branches given off to the left side are larger than those given off to the right side. This was proven to be the case also in N. sipedon (Fig. 13). In many cases the tracheal lung may be supplied by a branch from the pulmonary artery (Brongersma, 1951-a and 1951-b; Beddard, 1906-a; Thompson, 1914-b). The posterior part of the lung may sometimes be supplied directly by branches from the dorsal aorta (Brongersma, 1952-b).

Venous

The pulmonary wein is found medial to the pulmonary artery (Fig. 13). It is imbedded ventrally in the lung tissue, and receives branches throughout the length of the lung. It then courses forward and upward to enter the heart on the posterior dorsal side of the left atrium (O'Donoghue, 1912; Ray, 1936; Attwood, 1916).

List of the district of his

Lie Bathon

In a serior of the state of the color of the

The julicomagness of ending and confident to die julicomagness with a few julicomagness and the second of the first tendents and the large of the size of the size

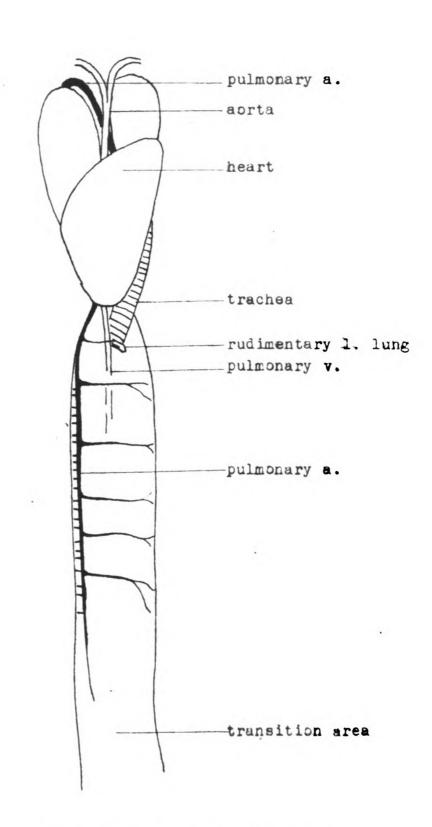


Fig. 13. Ventral view of heart and lungs, including blood vessels. Scale 2:1

SUMMARY

Natrix sipedon was considered a suitable species for studies of the respiratory anatomy of the snake. Preserved specimens were used.

The lung starts at about the 30th ventral scute. The respiratory part extends to about the 43rd wentral scute. The mechanical part continues a short distance beyond the caudal end of the liver.

The organs in the male snake lie more cauded than in the female.

The external and internal nares are easily identified.

The vestibule is poorly developed. The concha is present, enlarging the surface area of the nasal cavity.

The trachea starts at the glottis, opposite the internal nares. The tracheal rings are incomplete from the glottis to the lung. A tracheal lung is present, but not greatly developed.

The developed right lung is separated into an alveolar and a mechanical part. An intrapulmonary bronchus is present.

A free apex is formed at the anterior end of the lung. The left lung is rudimentary, but has alveoli and communicates with the posterior end of the traches.

The ribs are movable in pairs, independently of each other. This enhances the inner ventilation.

THE STATE OF STATE OF THE STATE OF THE STATE OF THE STATE OF STATE

(A) Solder last and describe the sold of the describe of the sold of the so

് നിവരം പ്രവാധ വായ വായം വിവിഷ് ത്രാൻ വിവത്ത് വിവ്യാൻ വിവ്യാൻ വിവ്യാൻ വിവ്യാൻ വിവ്യാൻ വിവ്യാൻ വിവ്യാൻ വിവ്യാൻ വ പ്രവേശി അവിച്ച്

. Do the state of the particle of a state of the state of

In most is a selicing a particular of the selection of th

The rest of the constant of the particle of the particle of the constant of th

The affective construction is a fix of the second of the s

The pulmonary artery lies on the ventral right side of the lung; its branches to the left side of the lung are larger than those to the right. The pulmonary vein is imbedded in the lung tissue until it emerges at the traches. It empties into the posterior dorsal side of the left atrium.

wherever N. sipedon could be compared with other species of snakes the results of this study indicated that the respiratory system of N. sipedon is representative of the Serpentes. In those instances where a structure was shown to be different from that in a certain other species, it usually proved to be the species in question, rather than N. sipedon, which showed the peculiarity.

No specific adaptations or distinctive structures could be found in the respiratory anatomy of N. sipedon to single it out as being better or less well adapted to its environment or to its mode of life. To see the angle defends of the control of the cont

sample, which will be a proposed of the plant of the second secon

In appearable and property or distinct or distinct two assessment of the appearance of the property of the state of the sold at the following the sold at the following the sold at the contract of the sold at the contract of the sold at the sold a

LITERATURE CITED

- Allee, W. C. and K. P. Schmidt. 1951. Ecological Animal Geography. University of Chicago Press: New York. 715 pp.
- Attwood, W. H. 1916. The visceral anatomy of the Black Snake (Zamenia constrictor). Washington Univ. Studies Series Sci., 4:3-38.
- Baumann, M. 1902. Note sur les premiers developpements de l'appareil pulmonaire chez la Couleuvre. (<u>Tropidonotus natrix</u>). Bibliographie anatomique, Revue, X:304-311.
- Beddard, F. E. 1903. On the trachea, lungs, and other points in the anatomy of the Hamadryad Snake, Ophiophagus bungarus. Transactions of the Zool. Soc. of London, ii:319-328.
- Beddard, F. E. 1906-a. Contribution to the anatomy of the Ophidia. Proc. Zool. Soc. London, 1:12-44.
- Beddard, F. E. 1906-b. Contribution to the knowledge of the vascular and respiratory systems in the Ophidia, and to the anatomy of the genera <u>Boa</u> and <u>Corallus</u>. Proc. Zool. Soc. London, 2:499-532.
- Bolk, L; E. Goeppert; E. Kallius and W. Lubosch. 1939. Handbuch der Vergleichenden Anatomie der Wirbeltieren. Urban and Schwarzenberg: Berlin-Wien, Bd. 3:812ff and 909ff; Bd. 6:677ff.
- Bragdon, D.E. 1953. A Contribution to the Surgical Anatomy of the Water Snake, Natrix sipedon, etc. Anat. Rec., 117:145-161.
- Brongersma, L. D. 1951-a. Some notes upon the anatomy of <u>Tropidophis</u> and <u>Trachyboa</u>. Zool. Mededelingen, 31:107-124.
- Brongersma, L. D. 1951-b. De arteria pulmonalis bij <u>Boidae</u> en bij <u>Yenopeltis</u>. Ned. Tijdschrift. Geneesk., 95(34):2490-2491.
- Brongersma, L. D. 1952. Notes upon the arteries of the lung in Python reticulatus (Schn.). Koninkl. Akad. Wetenschap, Amsterdam, Proc. Sect. Sci., 55(1):62-73.
- Bronn, H. G. 1890. Klassen and Ordmungen des Thier-Reichs, Bd. 6. Abt. III:1594 ff.
- Butler, G. W. 1895. On the complete or partial suppression of.... the left lung in snakes, etc. Proc. Zool. Soc. London, 119:691-712.

Contract the second

- - The said that the teach of the spectrage of the said o
- - ្រុង ស្រាប់ស្ព្រី ប្រធានថា ប្រែទេ នេះ មេជា ត្រូវមានបង្គាល់ ស្រាប់ និង គួរ[6]នឹង គេ នេះ ត្រូវបង្គាល់ ម៉ា គេរដ្ឋ រដ្ឋស្នាក់ បារីរស់ស្គ្រាស់ ស្រាប់ ស្រាប់ ប្រធានបង្គាល់ ស្រាប់ សមានប្រធានថា នេះ បានបង្គាល់ គេរដ្ឋ ភាពស្រាប់ ស្រាប់ ស្រាប់ ប្រសិន្ត្រាស់ គឺស្រាប់ គឺស្រាប់ សមានបង្គាល់ ស្រាប់ សមានបង្គាល់ ស្រាប់
 - ు కార్స్ట్రైస్ (20) కార్యాలు అక్కువ అంది. అక్కువించిలో అంది. ఇవాలుకోండ్ ఈ ఈ ఉన్నారి. తెల్లు ఎక్కువ్వికి మందుకు ముందుకు మందుకు మందుకు మందుకు మందుకు మందుకు
- The first of the contract of the contract of the first of the contract of the
- Dest y by we have easily no anthing are no interested 2029. Therefore a an a complete was a sometime as an accomplete and the complete and a complete and a
 - ాజ్యేమ్ పుట్నారుకులోను మొద్దానికి అయిన అయిన అయినాకికోండు. అని కాంట్రి ముంది ప్రాంతంలో ఈ ముంది కాంట్రి ముంది ఈ ముందుకు మార్క్ మార్క్ మంది కాంట్రిక్ మంది మంది మందికి ముందుకు మంది మంది మంది మంది మందికి మార్క్ మార్క్ మార్క్
- The general section of the section o
 - ్రైల్లో అని స్టుప్పుడు. పైనట్ను కేట్లుకుండు ప్రత్యేక కోటుకోవడు. కి.మంటో అడ్స్ సిస్ ఎడ్ఎడ్ ఎక్కువ గార్వు తాగాన్ ఎక్కువడాను, మెంకు కోట్స్ సిక్స్ ఎం.ఆస్ కాణ్గ్ ఎక్కువ మహారాలు, కోస్ ఎక్కువ ఎం.ఎస్.మీమ్మాడ్ తెడ్డు.
 - on the second second of the se
 - and and the control of the company of the control o
 - The first state of a second of the second of

- Cope, E. D. 1894. On the Lungs of the Ophidia. Proc. Amer. Phil. Soc.. xxxiii:217-225.
- Ditmars, R. L. 1941. Snakes of the World. The MacMillan Comp.: New York. 207 pp.
- Flint, J. M. 1906. The development of the lungs. Amer. J. Anat., 6:6.
- George, C. J. and M. R. Varde. 1941. A note on the modification of the lung and the traches in some Indian snakes.

 J. Univ. Bombay (N.S.), 10B(3): 70-73.
- Graeper, L. 1929. Abschlusz der Fleurahoehlen und Lungendifferensierung bei Reptilien. Gegenbauer's Morph. Jb., 62: 543-573.
- Hopley, C. C. 1884. Epiglottis in Bull snake (<u>Pituophis</u>). American Naturalist (Philad.), xviii:732-733.
- Katheriner, L. 1899. Die Nase der im Wasser lebenden Schlangen als Luftweg und Geruchsorgan. Zool. Jb. Abt. Syst., xiii:415-442.
- Kellicott, D. S. 1898. The dissection of the Ophidian. Gen. Bio. Supp. House: Chicago. 72 pp.
- Matthes, E. 1934. Sinnesorgane. Geruchsorgane. Handb. Vergl. Anat. Wirbeltiere, 2(2): 879-986.
- O'Donoghue, C. H. 1912. The circulatory system of the common Grass-snake (Tropidonotus natrix). London Proc. Zool. Soc., 1912:612-647.
- Oliver, J. A. 1955. The Natural History of North American Amphibians and Reptiles. D. Van Nostrand Comp., Inc.: New York. 359 pp.
- Ray, H. C. 1934. On the arterial system of the Common Indian Rat snake, Ptvas mucosus L. J. Morph. Fhilad., 56:533-575.
- Ray, H. C. 1936. On the venous system of the Common Indian Ratsnake, <u>Ptyas mucosus</u> (L). J. Morph., 59(3):517-547.
- Romer, A. S. 1956. Osteology of the Reptiles. U. of Chicago Press: Chicago. 772 pp.
- Rothley, H. 1930. Ueber den feineren Bau der Luftroehre und der Lunge der Reptilien. Zeitschr. Morph. Oekol. Tiere. Berlin, 20:1-61.
- Schmalhausen, J. J. 1905. Die Entwicklung der Lungen bei <u>Tropidonotus</u> natrix. Anat. Anzeiger, xxvii:511-520.

- Cope, a. D. 1875. On the Perce of the Universe. Cope, and on the L. Appellant.
 - 28 Degree L. L. L. Ser Ser en en anno 1924. Bus autobre des de la constitue des gardes en en en en en en en en
- alling a. a. il ilie descuprati of the in a actual as a sure as a
 - Compage, so to most to the trades 1200 of the continuent of the continuent of the continuent of the continuent of the trade of the trad
- Streets, L. 1722. A sching den aleman enblud had de gen ill brancheneng.
 - non-more $(n_{1}, n_{2}, n_{3}, n_{4}, n_{5})$ since $(n_{1}, n_{2}, n_{3}, n_{4}, n_{5})$, which is a subspaced $(n_{2}, n_{3}, n_{4}, n_{5})$ and $(n_{2}, n_{4}, n_{5}, n_{5})$ and $(n_{2}, n_{4}, n_{5}, n_{5}, n_{5})$
 - ala seprelie ما الله و المعالم عليه المعالم المعالم المعالم المعالم المعالم المعالم المعالم المعالم المعالم ا - المعالم المعالم
 - Light of the thing of the state of the state
 - and the state of the second control of the control of the second second control of the second second

 - ្យប្រជាពលរដ្ឋ ប្រជាពលរដ្ឋ ប្រជាពល ដឹងស្គ្រា ស្ដីស្គី នៃឈាស់ស្គាល់ដើម្បី ស្គាប់ស្គី ស្គី ស្គី ស្គ្រាស់សំដឹង សម្រាស់ស្គី ស្គី ស្គាល់ដែល ប្រជាពលរដ្ឋ ស្គាល់ស្គី ស្គាល់សមាល់ស្គី ស្គាល់សំដី ស្គី ស្គី សំដីសំគី ស្គាស់
 - The control of the second of the control of the second of
 - and the state of the contraction of the second specific the state of t
 - andres, i.e. i.e. 12366. Delegables, oil bios ample sem, ii.e. mp. 10 lange apperaint
 - The statement of the state of the control of the statement of the statemen

- Suomalainen, P. 1939. Wie lange vermeg die Kreuzotter, <u>Vipera</u>
 <u>berus</u> L, mit dem Luftvorrat ihrer Lunge und des Luftsackes
 auszukommen? Ann. Zool. Soc. Zool.-Bot. Fennicae Vanamo,
 7(4):3-8.
- Thompson, J. C. 1913. Contributions to the anatomy of the Ophidian. London Proc. Zool. Soc., 1913:414-425.
- Thompson, J. C. 1914-a. Contributions to the Anatomy of the Ilysiidae. Philad. Proc. Acad. Nat. Sci., 66:285-293.
- Thompson, J. C. 1914-b. Further Contributions to the Anatomy of the Ophidia. London Proc. Zool. Soc., 1914:379-402.
- Vander Klauw, C. J. 1952. The Size and Position of the Functional Components of the Skull, etc. Arch. Neerlandaises de Zoologie, Leiden, 1952:152ff, 547ff, 56lff.
- Varde, M. R. 1949. The morphological and histological variations in the lung in snakes. Proc. Indian Sci. Congr. 36th, 3:168-169.
- Varde, M. R. 1951. The morphology and histology of the lung in snakes. J. Univ. Bombay N.S., 19B(5):79-89.
- White, C. A. 1884. On the character and function of the epiglottis in the Bull snake (<u>Pituophis</u>). American Naturalist (Philad.), xviii:19-21.
- Weichert, C. K. 1953. Elements of Chordate Anatomy. McGraw-Hill: New York. 451 pp.
- Wolf, S. 1933. Zur Kenntnis von Bau und Funktion der Reptilienlunge. Zool. Jahrb. Jena Anat., 57:139-190.

- A CONTRACTOR OF A CONTRACT OF SAME OF A CONTRACT OF A CONTRACTOR OF A CONTRACT OF A CO
- ా. కార్మంలో మండ్ మండ్ కార్మంలోకి కొట్టు మండి మండి కార్మంలో ఉన్నాయి. • మండ్ కార్మంలో కార్మ
- and the second consistency with the second consistency of the second c
 - and the operation will be and discount on the control of the section of the control of the contr
 - To the real objection observed the form of the series of t
 - on realization from a field in the real tending to a time of the last of the l
 - A control of the second form the consequence of the control of the first of the first of the first of the first of the control of the control
- ក្សាស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្ ស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត ស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត្រីស្ត
 - orang menanggan kananggan kembangan mendada dan bandan anggan beranda dalam kembanggan belanggan beranda dalam Panggan Banggan Banggan beranda
- . As produced to the model of the second to the second to the second of the second second of the second se

ROOM USE CHLY

ECT SER STOY

