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The history of the theory of equations tzkes us back
to the year 300A.D. when Diophantos, who has been called the
"Father of Algebra", developed the use of abbreviations and
symbols for Algebra. However tne history of graphiocal
representation of functions goes back six hundred years earlier
to the time of Euolid, who represented certain functions by
oconstruoting graphs in the form of rectangles.,

Later in history, about 1500 A.D., in the writings of
Bhaskara, a Hindoo scholar, we find the first steps taken to-
ward oonstrueting graphs of equations when positive and negative
numbers were represented by opposite segments of a straight
line. From this conception, it was but a step more to graph
the relationship of one variable to another by msasuremesnts
along two lines. This was done by Nicholas Horem, & French
teacher, in the fourteenth century. At that time negative
numbers were considered fictitious, so the graphs of Horem
were constructed in one quadrent only.

At the beginning of the seventeenth century, Rene!
Descartes laid the foundation for graphical representation of
functions in all quadrants. Descartes was a French phil-
osophsr and mathematician, born at La Haye in 1596. He adapted
the system of lécating points in a plane by msans of their
distanees from two fixed lines, and introduced the terms
"ordinate" and "5oordinato". The term "abscissa" was first

used by an Italian writer about 1659.



The Nomograph, or aligmment chart as it is sometimes
called, is a special type of graph generally used to solve
certain equations which would require considerable time if
treated by methgmatical analysis. This type of graph also
originated with the French mathematicians. A most compre-
hensive treatise on the subject was published by Professor
Maurice d4' Ocagne of Paris.

In the field of Engineering a limited number of
formulae are used so repeatedly that any msans of conserv-
ing time and effort in their application is desirable. The
nomograph is readily adaptabls to this purpose since its
scales are so easlly constructed and read. Of course, the
nomograph is not to be used as an exact solution, since the
acocuraoy of the graphical solution depends upon the precision
of the diagram; however, the results so found may be regarded
as a very close approximation and generally are within the

limits of sccuracy required in practical engineering.



GENERAL APPLICATION OF GRAPHS



Graphs generally are constructed and used to present a
picture of the variations of a given function, or the relation-
ship of one funetion to that of another.

Funoctions of two variables are generally plotted as in
Fig. 1 and functions of three variables, as in Fig. 2.
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To read the valuss of a point on these ourves requires
interpolation in two directions i.e. along the coordinate ames.
This is generally mentally fatiguing especially if several
readings are to be made and the divisions on the axes are smll,
in which case, errors are easily made.

A funotion of two variables may be graphed in scsle form
where interpolation is sccomplished easily. As an example, we
will oconstruoct a small scale showing the relationship of the

redius of a ocirocle and the area of the ocircle:

Radius of Circle

A SO TN S SRR
e
0 5 10 20 30 40 50 80

Area of ocirocle
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Such scales are quickly made, easily reead, and where
used often, are decidedly advantageous over the type of graphs
represented by figures 1 and 2 (pege 5).



SCALES



Throughout this thesis the term, SCALE, vil]..’ be
frequently used, and in each case it refers to a graphiocal
scale. Lipke defines a graphical scale as "a curve or axis
on which are marked a series of points or strokes correspond-
ing in order to a set of numbers arranged in order of megnitude."

In the odnstruotion of nomographs, the scales are
gensrally non-uniform, depending upon the type of equation
and its degree. 1In the following work equations will be
developed for plotting ths scalss and will be expressed in
terms similar to a Cartesian coordinate equation with reference.
to a given origin. '

A faotor of ma jor importance in oconstructing the scale
is the scale modulus to be used for each variable. We may
define the SCALE MODULUS as a number (or fraction), whioh,
when applied to the f£(X) we wish to plot, will determine the
distance along the ordinate or abscissa for plotting the various
values of X. In the subssequent work this diétance will be
in inches.

For instance suppose:

£(X) = 6 X° + 10

Assumeé X varies from O to S5, and that the
- gcals is to be 10 inches long.
The scals modulus would be the scale length divided by
the largest value of f£(X), which in this case would be:
10 = 1
=






If we plot this f(X) elong the n"Y" ordinate, the
plotting equation is::
y = (Modulus) £(X) = 1 ( ze + 10 ) 4inches.

Substituting values for X in f£(X), gives

X=0 1 2 3 4 5
y = 5/8" 1" 2-1" 4n -5 10"
B B

Plotting these values produces a scale like the following:

Values of X

q 1l 2 S 4 P

i 1 | Il

T 1 T T | T T T T Y ' £(X)

0 I 2». 3 4qn 5n 6 7 gn or lo"
Valuss of y

Origin

The scale is oalibratéd much the same as a slide rule,
i.e. insteead of marking the valus of the f£(X), the value of
X 1s mearked off at the point corresponding to the valus of f£(X).
NOTE that the origin of the scale does not always coincide
with the sero velue of ths variable X, however, in most
cases it will or ocan be made to ocorrespond by rearranging the

equation unless the socale is logarithmioc.



THEORY OF THE
NOMOGRAPHIC CHART

4V
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At ths present time there are several good text books
published which treat of the eonstrusction of nomographs. Each
text adapts a different geomsirical solution for the plotting
equations; however, the final results by each msthod are
identicel. Rather then attempt a new geometrical solution
for these equations we shall apply a mathematical interpretat-
ion whieh has the virtue of flexibility in arranging the
variables.

In an attempt to compare a graph esonstructed with
Cartesian coordinates and a nomograph for the solution of the

sams equation, let us assume:

Y £,(x) +f£,(Y) + £;(z;) +C =0 (where C is a constant)
{ . »
\ N v,
s N4 1ﬁ
2, \ |
~ - e
e - = = o
: @ - R
]
= il 3
. = - :
[ S
Fig. 1 Fig. 2
Cartesian coordinates Nomograph

It appears that in Fig. 2 the scals of X and Y in
Fig. 1 are rearranged and that the curves 2, , Zz and 25
become points on a third scals t4(z1) loceted somewhere
between rl(x) and rz(Y). The plotting equations are
developed to locate the position of these scalss and to give
their ocalibration. The scales 'rl(x) and f,(Y) are so
calibrated that when a given value of X eml Y on their
respective scales are Joined with a straight edge, the correect

valus of Z on the r‘(q) scale may be read.
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Let us consider the solution of these plotting equations
for the different scalss by means of determinates.

Referring to the above Fig. 3; if a, b and ¢ are
in a straight line, then

1. g~ X X3 " X
AEEA Y - 7,

Or olsaring fractions,

2, -x -x +x +x -x -0
NV "X Vg =X, V) P X Vg T Xy Ty " %5 Ty

S

Equation 2 may be set up in aotorminﬁﬁg_ﬁarn, as

1l xl yl
1l x y
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The solution of an equation by a nomograph requires
that three specifisd points that satisfy ths equation must
be in a straight line. Examining this determinmate (equation 3)

we see that x and yi refer to scalar distances, In a

preceding- pur: of this work, covering scales, it was shown
how to eonstruet a scale faor the f£(X) expressed in scalar
distances. So referring to the determinate (equation 3) we
{ and yi by the funoctions they represent.

In other words,

xi - ‘1 £(X) and yi- l[1 t(x)

may replsce x

where: X 1is eny variabls.

m, is the scals modulus along ths x axis.

i
ll1 is ths scale modulus along the y axis.

Referring to Fig. 3, we may consider "a" as a point
in one secale, "b® a point in a second scale, end "o" a
point in a third scele. Hence, if we can write the equation
in determinate form of ths third order so . that only one of
its fariadbles will be in each row, a nomograph can be constructed
for the solution of the equation, providing the valus of the
determinate is equal to zero. Throughout this discussion,
only third order deserminates are oonsidered.
Assume the variables to be U, V end W, We may then

write equation 3 {n this manner:
(x) (y)

1l n,f(T) M ¥(U)
& |1 mfM) MRV | =0

1 m_f(W) M F(W)
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This is a general type of determinate which would

produce plotting equations for ecurved scales. These equations

would be:

U{!-lnr(U) V{Y'Mvr(‘” wlY=M,,!'(W)
xT=m £(0) lx = m (V) 1~x =m £(w)

Vhere: x 1is the distance from ths origin along the x axis,
y 1is the distance from the origin along the y axis.

If a determinate is equal to zero, we may perform the

following operations without changing the value of the determinate.

1,
2.
3.
4,
S.

Interchange any two columns.

Interchange any two rows.

Add any two columns or any two rows.

Multiply any column, or row, by a number other than zero.

Divide any column, or row, by a number other than zero,

Generally an equation of three variables, f(U,V,W), can

be expressed in one of the following forms:

S

6.

rl(u) + fz(v) + rs(w) +C =0
Where C = a constant.
fl(U)‘fz(Y) + ta(l) +C =0

If an equation contains more variablss than three, it can

be reduced to three variadles by the introdustion of a quantity

that represents the sum of the excess variables. For instance



assums the equation to be:

Let: fs(l) + r4(x) - rs(Y)

We may then construet a nomograph for the solution
of this equution, and a seocond nomograph far the solution
of ths equation:

£(0) + (V) + rs(Y) +C =0

These nomogrephs gensrally ocan be combinsd so  that
ra(r) scale is used as a TURNING SCALE and does not require
calibrating. In like manner, equations containing several
variables can be solved by uwsing turning scales and combining

the nomographs.

We will now proceed to develope ths plotting equations
for the scales of each variable. First oconsider the type

equation:

This can be set up in determinate form, as

ai ()
o - rl(n)
1 rs(w) +C

Let: the modulus of the scals for f£,(U) = M,
" " " " " " rz(v) - MY
" abscisse distance between the zeros of the above

two seales = D inches.

15



In determinate 7 :

8.

"

/M

0

1/%,

Multiply column (a) by l/llu

-Mu fl(U)
-Mv fz(V)

fa(W) +C

S (b)) /M
We then have: (by using the operations stated on page 14)
l/Mv -fa(') = |0 l
1/)& 1'3(1') 1C 1/Mu 1/mv
(v)
0 - Mu rl(u)
1 - Mv fz(v)
. ¥, U, *
£.(W) + C
Moo M [3 ]

by D, and we have:

9.

(x)

Mu+Mv

(¥)
- M, fl(U)

- M) fa(V)

My My £ (W) +C
M, + iy s

Now multiply column (b) of the above determinate

= 0




The plotting equations are:

For U {

For w

y= -M £(0

inches.

X = 0O 1ineches.

Y= =M £(V)

X = D 1inches.

y= My
> J My D
+
v

inches.

[ram +C ]

inches.

inoches.
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This will produce a nomograph of three parsllel socales,
such as the following figure:

1

Values of W

1 T

values of YV
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We will now oonsider the typs equation, as

6. fl(u) . ra(v) + fa(w) +C =0

Equution 6 e¢an be set up in the following determinate

form:
(a) (o)
0 1 - fl(U)

10. 1 0 - 1,(m) = 0
1 rzm c

Let: the modulus of tl(U) -M
» " " fs(w) - M‘f
* abscissa distance betwean ths zeros of socales

fl(U) and rs(w) = D inches.

In determinate 10:

Divide column (a) by M'
L ] (b) ] “\1
We then have:
0 1/llu - fl(U) 0 1l - M, rl(m
11. 1/1[' 0 - fg(W)| =1 0 - M, (W) | =
l/ll' %; fg(V) c 1 1 ra(V) o]
(a) -(b)
1 1l - uu rl(U)
1 0 - M ra(W) = 0
1 M, £5(V) My My C
My + My Pp(V) My + My Tg(V)




Now multiply column (b) of the preceeding determinate (11)
by D, eand we have:

(x) (y)

1 D - ¥ £,(0)
12. |1 0 - t(W) | =0
1 My D f,(V) M, M, C
LR A My + My £5(V)

The pletiing equations are:

y= - N tl(U) inches.
For U {

x = D inoches.

y=- My My C inches.
Yor v{ M, + My £5(V)

x= M¥D fa(V) inches.

M, + M, £,(V)

y= =M ra(w) inches.
For v {

x= 0 inches.
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If C =0, the plotting equations will produce a
nomograph eommonly known as a "Z" chart, such as the following
figure:

g ax/s

1

Valuss of U

Origin j

If C # 0, the plotting equations will produce a

Frig. 5

nomograph of general oconfiguration, such as the following
figure:

J ax’s

e A i
=

‘3 % -
° ~
@ Q | O
8 - £ -
o o S
> A -
E T-P

origtn—  ° -] e

- 7]
,__X/S



As a special case of equation 4,

the equation:

Setting equation 13 in determinate form, we have:

(a) (b) (o)
1 0 - TTﬁTl
1l
1 -_ 1
14. Y T;TVT
- 1l
ot L))

Let the modulus of 'rl(U) - Mﬁ
L] n L] ” rz(v) == MY

- In determinate 14:
Multiply eolumn

end we have:

6 o 3

(o)

(a) by M,
(b) ® M

(o) = (=1)

(y)
i, 1,(0)

M, £5(W)

let us consider

(x)
0

I; ta(v)

ﬂ; fs(l)

1l

1l

21



Hence the plotting equations are:

Y = llu rl(u) inches.

X = O 1inoches,

~,¥y= 0 1inches.
Yor 75

x = M ra(V) inohes.

Y = llu ta(w) inches.

X = ll' ra(vn inches.

Whieh would produce a nomograph like the following

figure:

Fig. 7

22



Another method of plotting the ram, is to determine
thes modulus, l&, for this scals. We proceed by locating any
point, P, on the fs(w) scale Dby uging the plotting
equations developed on the prec-e ding pege.

o
Let the coordinates of P be: y = l' f3(wp) end x = M, fa('p) :

Let the distance from the origin to P be: M' ra(wp)

From trigonometry:

sin @ = MufS(wg) - Mu

sia P M TW) W,

16.

17, sin180 - (8 +¢) . My f3(Wp) _ My _ sin (0 + @)
sin @ M, f3(Wy,) My, sin @

or

8. - sin (0 +§) _ sin (0 + §)

Having determined ths scale moduli, Mu and M., one
angls (say © ) may be assumed and the other angle (@) . may
be determined from equation 16. Then the modulus l' may be
determined from equation 18.
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As a special ocase of an equetion containing four
variables, let us assume the equation:
19. £,(0) +_rz(V) . f4(¢) + rs(W) . 1‘5(¢) + C =0

Setting up this equation in determinate form, gives:

(a) (b)

1 0 - 1,(V)
20. 0 1 - (W) ' =0
£,(6)  fH) £ (U) +cC

Let the modulus of the scals for f,(V) = M,
” L] L] | ] ” ” ” fs(w) = %
Let the a¥scissa distance between the zZeros of the above

scales =D inches.

In determinate 20:
Divide column (a) Dby u'

" " (b) ” n'

end we have:

L 0 - £,(V)
v
PRERT) 1 t.(9) £,(0) + ¢
v



&0

By performing soms of the operations as stgted on
page 14 upon determinate 21, we arrive at ths following
determinate:

(x) (y)

1 0 - M £(V)
22, |1 D - M, f5(W) - 0
1 M, f5(#) D M, My [£3(0) + C]
My £,(0) + M, £ (8T My £, (F) + M, T4(8)

The plotting equations are:

Yy =- lg fa(V) inches
"

For
x= 0 inches.
{y - - l' ra(vn inches.
For w
x = D 1inoches.

g o M ¥yiny(m +c]
For v&d { Y f‘(,) * ll' fs(ﬂ)

M, D f5(f)
My £4(F) + My £ (H)

To graph the scals for fl(U) end @, assign desirable
valuss for § and plot the scalss of £,(U) for eaeh of the
given values of § .
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These equations will generally produce a nomograph

having a network of socales, as in the following figure.

Values of ¢
%t b,
I3 ®
- 5 K
%] ; 3
8 g &
s
- X .
" Fig. 9 ‘1
SOLUTION

The solution of squations by means of a nemograph
is aecomplished by utilizing the main statemsnt of the theory,
i.e., that thres specified points that satisfy the equation
must be in a straight line. Hence by joining the valus of
U on the tl(U) socals with a straight edge to the valus of
Y on the tg(V) scele, we read the value of W on the ts(W)
scale that satisfies the equetion.
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THE SOLUTION OF VARIOUS ENGINEERING PROBLEMS
BY THE APPLICATION OF
NOMOGRAPHIC CHARTS



SECTION A

ELECTRICAL PROBLEMS

28



29.

RELATIONSHIP OF
VOLTAGE - KVA. - CURRENT



ov

Prastically all computations for the solution of
electrieal circuits involve either the lcad in Kva., or
ths load current in ampsres. A simple form of nomograph
can be eonstructed to express the relationship of load in
Kva., lins eurrent, and phase voltags.

The equations relating these quantities, are

1. I= %— fer singls phase ocircuits.,

2. I = I‘Kv's'i"!‘ for balanced thres phase circuits.

We may express the above equations in logarithmic form

as:

Se log I - log Kva. + log E =0 for single phase current.
4. log I - log Kva. + 1log E + log 1,732 = 0 for three phase
current.

Setting up equation 8§ in determinate form, we have:
1l 0 log Kva.

5. 0 l - 1logZk =0 (single phase oirouit)

1l l log 1
Setting up equation 4 in determinate form, gives:

1l 0 108 Kva. »
6. 0 1l - log B =0 (three phase oirocuit)
1l 1l log I + .23856
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FPor limiting valuss, assume:
Kva, varies from 10 to 100.
I " " 1l * 1000.
E " " 100 " 10,000.

For scals lengths, let:
Kva. socale be 6 inches long.
z " m g ",
Hence the scale modulus for 1log Kva, = 6
and " " " " log E = 3.
Assume an abscissa length equal to 5 inches.
Applying these moduli and abscissa valus to determimates
5 anad 6, and reducing ths determinate so that it oontains a

e¢olumn of units, gives

From determinate S:

1l 0o 6 log Kva.
7 1l 5 -3 log E = 0 (single phase)
1l 10 21leg I
r

Prom determinate 6:

1l 4] 6 Log Kva.
8. 1l ) -3 log E =0 (three phase)
l 10 2(log I + .23856)
k-3







The plotting equations from determinate 7, are:

Yy = 6 log Kva. inches
Yor na.{
X = 0 inoches

Y= ~-3log E 1inches.
For E { (single phase)
x

= § Inches.

= 2 log I inches.

Yy
For I {
X = 3,333 1inches.

The plotting equations from determinate 8, are:

y = 6 log Kva. 1inches.

X = 0 inohes.

y=-3 log E 1inches.
r

For (three phase)
x = 5 inches.
Yy= 21logl + 47712

For I {
X = 3,333 1inoches.

We may oombine the two nomographs produced by these
plotting equations. In doing this we calibrate the current
scale on one side for single phase current and on the other
side for baleanced three phase current.

SOLUTION
Join the value of Kva. and E on their respective
secales iith a straight edge, and read the value of I on

the current scale.

(See the following sketeh)

32



EXAMPLE

Singls phsse :

E = 2000 vwlss

Kva, = 50
I = 25 emps. (from ourrent socals)

Three phase:

E = 2000 volts (phase voltage)

mo = 50
I = 14.4 emps. (from current sosls)



vy oo

QD = TIITL5 0 = CURLSLT  CHinT

Sor 5&18.1’1(3(3(2 [.xoCo Circuits

— 100 1000 — 100

— 90
— 80 500 3
400 F
70 o :.:UO
300 -
60 200 E“ 300
3
€0 — 400
100 & — 500

N
C

50 — &/‘40 lu
e : - OV ']
a‘ 0L E
= 30 2 [ ]
30 . - o
s =
20 s
:;: :,_ ~ E [J‘J.
& ’ 5 bt
10 ) — <000 »
20 o +

<
[
(&
c
o
c

5 . =
4 — 4000
& 5000

T ’ LI LN | , rrrr I v11—1|l|I_FITllil‘ll']”':""l]”"l’"l

— 6000

] 2

B — 7000
N — 8000
- 1 t10000

SLUCTRICAL LYST
PLAWNIUG DIVIGILD

HCR = &
10-23-33



IRDUCTIVE REACTANCE
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There have been several formulae developed for the
oomputation of the inductance and inductive reactance of
eondustors. Such sauthors as E.B. Rosa and H.L. Curtis of
the U.S. Bureau 6f Standards treat the subject very thoroughly,
taking into acoount skin effeset of the current and change in
resistance of the condustor. However, for ordinary distridbution
work, such refinements are not required. In this particular
case, we shall develop a modified formula from the ¥basie
relationships presented by F.B. Rosa in his paper # S - 80
of the U. S. Bureau of Standards,

INTERNAL SELF INDUCTANCE OF A CONDUCTOR

- P

/l\\

[ Laf)

.

-~

e

If I is the direct curremt flowing in the conduetor
of radius a, and uniformally distributed throughout, then the
flux linkages may be expressed as:

a
1. 1§ = f; (r%/e2) 1 (2 u I r/e?) ar
- uI® where u = the permeability of the
condustor.,

The internal self inductance then may be expressed as:

2. L= §/I= B.  per centimeser length of condustor.



EXTERNAL SELF INDUCTANCE OF A CONDUCTOR
Where the current is distributed uniformally over the cross

section of the conduestor.

T
¥
U
" : P
o) . ¢
‘ : ¢ 1 i ¥
T T 4 “ 11

g |
By

_JL_L. |
L s B |

o= o vy

The total flux , § , outside the conductor may be

expressed as:

-7

-S/IN <

%0 Al
3. ¢-f( 1l cos @ 40 dy dx

r Jo x :

c

= 27I2(log 2l -1)
T
The external self inductance may be expressed as:

4. L=@¢g/1 = 21( log 2 =-1)
r

Hence the total inductance of the conduector of length

36

1 centimeters is the sum of the internal and external inductances

which may be expressed as:

5. L = 21(log22 -1 + u)

u
T q
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MUTUAL INDUCTANCE OF TWO PARALLEL CONDUCTORS

The mutual induetance of two perallel conductors of
length 1 , radius r, and distance apart 4, will be the numbor‘
of lines of foroce dus to unit ocurrent in one which will cut
the other when the cwrrent goes to zero. This value may be
determined by integrating equation 3 between the limits of
4 end infinity instead of between r and infinity, and
dividing the result by the current I. Performing this operation

we have , the mutual inductance M :

6. M * 2! (log 22 =-1) where d is small compared to 2.

THE SELF INDUCTANCE OF A RETURN CIRCUIT

We may oconsider a return circuit formed by two parallel
conductors similar to the case of two coils (of one turn each)
oconnected in series so that their individual effeots eounter-
act the flow of megnstic flux. The effective induotance for

such a ocondition my be expressed as the following equation:
7. Lo =8L -2 M

Substituting equation § for the valus of 1., and equation 6

for the value of M, we have:
8. L = 41( log 4 + u) oentimsters.
. T 1

-9
= 41( log 4 +%)xlo henrys.
T



unity.

It is assumed that the permeability, u , of eopper is

Hence for the inductance to neutral for one wire of

length ! centimeters, we have:

9.

Ly*22(logy, & +%)x 10~ henrys.
r

Changing the Naperian logarithm to the loglo , the

inductanve per centimeter length is:

10.

, : -9
L /om. = 2 ( 2.30259 log d +%+)x10 henrys.
¢ 10 3

a4 + ,10857 ) x 107° henrys.

= 2 x 8,30259 (loglo
T

= 2 x 2,30259 ( log,, 1.284 4) x 10.9 henrys.
] r

The inductance per 1000 feet of conductor to neutral is:

L_./1000' = ,1404 x 10°° log 1.284 4 henrys.
¢ 10 T

reactance
The inductive/per 1000 feet of conduetor to neutral for

60 cyocles frequency is:

12,

X = ,052916 logl.284 4 ohms. (logarithm to the base 10)
) r

To solve this equation requires the use of a log table.

For general computations we may construct a nomograph to save

times, and the accuracy of which is within the limits required
for distribution work.
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Setting up.equation 12 in determinate form, we have:

1

¢

Assume:

0 log 4

1 - 108 1. 284 = o
r

1l X

4 varies from 2 inches to 200 inoches.
r " " 10 " 1.0 " o

a scals length of approiimatoly '8 inches.,
an abscissa of § inches.

The socale modulus for: d =4 and for: r = 8.

Setting up the determinate to accomodate these scale

mo@uli, gives: (from 13)

14,

1/4
0

1/4

o log 4
1/8 - log 1.284 =
T
1/8 X
(o} 4 log 4
5 - 8 log l1l.284 = 0
. T
5 4 X
3 <0529




From determinate 15, the plotting equations are:

Yy = 4 log 4 inches.
For: d{

X = 0 inches.

y =~ 8 log 1l.284 inches.
For: r 5 r

x = $ inches.
For: .

y= 42X inches.
x§

x= 1,666 inches.

The above formula applies to solid ocondustor. For
stranded oonductor the inductance at 60 oyocle frequency will
be approximately 13 x 10-4 ohms less than for solid conduetor
of the sams size. Henoce on the reactance scale we may plot
the induetance for stranded conduotor by proportional readings.
On the radius scqlo; we may plot the wire size
corresponding to the radius on ons side of the scale and on the
opposite side plof the radius in inohes.

SOLUTION
Join the value of the spacing in inches in the d socale
with a straight edge to the value of the radius (or wire size)
on the radius scale, and read the value of the reactance on
the X socale.
(See the following sketech)



Solid conduestor:

Conductor spacing = 30 inches

Conductor radius

Reactance /1000*

Stranded ocondustar:
Conduotor spacing
Conductar radius

Reactance /1000

«30 inoches
«1115 ohms.

30 inches
«30 inoches
«1102 ohms.

41
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IMPEDANCE CALCULATIONS
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When solving electrical networks it is often desirable to
oxpress the impedance in polar coordimmtes rather than in
rectanguler coordimates to facilitate mathematical operations.
However, it must be barne in mind that the impedance is a obmplox
number and not a veoctor and dus ocare must be exercised when
wsing this expression in produsts containing vectors.

VIn s oircuit under oonsideration:

Let: R = the resistance
X = the reactanoce

Z = the impedanoce.

It ocan be shown by analysis thet the following relations
exist:

2 2
2= B + X 7
e = tan”! X/R 5 "

R

The expression for the impedance in rectangular

cocrdinates is genmerally given as:

1. Z=R + JI
And in polar coordinates as:

2, z /@
The value of the impedance in polar coordinates 1is:

5. 270 =(8+x®)¥/ st 1/m




Finding these values requires oconsiderabdle slide rule
work amnd a table of trigonometric functions. The solution of
this equation is acesomplished with ease and quickly by msans of
& nemograph. The nomogreph msy be constructed from the
relationships stated on page 44, and my be expressed as:

2
4. R +Xz-28-0
2
Se thtnaﬁ -X =0

Setting up equation 4 in determinate form, we bhave:

1 0 22
6. 0 1 -8%| =0
D

Setting up equation 5 in determimete form, we have:

0 1 - g®

1 tan?e O

Examining the above determinates we note that determinate 6
will produce a nomograph like Fig. 1 below, and that determinate 7
will preduee a nomograph like Fig. 2 below.,

y axss

Fig. 1 Fig. 2



If the ocorrect abscissa lengths are chosen, the two
nomographs (Fig. 1 end Fig. 2) may be combined. This may
be accomplished by making the lsngths of the absoissa between
scalss X and R in Fig. 1 equal to that between X and R in Fig. 2.

Assums limiting values of 10 ohms for the scales X, R, and Z.
And assume scale moduli of 'II%?B for the scales of R and Z which
will make these sceles approximately 8.5 inches long, Assume an
abscissa longth equal to 10.2 inches. These odd figures were
ochosen in order to construct a suitable nomogreph on 8" x 11v
paper.

Applying these socale moduli and ubacissé length to

determinate 6, gives:

(x) 9

11.75 0 22 1 0 72
II.,S

2
8. 0 11.7 =-R | = |1 10,2 - R® =0

II.’s

11,75 11.75 X° 1 5.0 X2
Z35.50

Hence the plotting equations are:

y= 22/11.'75 inches
z

For:

X = O inches

y= - R?‘/ll.'?s inches
For: R {

x = 10,2 inches

2

y= X /23,50 1inches
For: X {

X = 5.1 1inches






Using a scale modulus of 1/11.75 for R, and a scale

modulus of 1/235,50 for X, and applying these moduli to

determimte 7 , with an abscissea length equal to 5.10 inches,

we hxve:
0

9. 23,50
23,50

From the above determimmte, the plotting equations are:
¥ = - R%/11.75

YPor: R{
X =
y-

For I{
X =
y-

For: O{
X =

11.75 - R® 1
l

0 | =1

11.75 tane 0 1

inches.

$5.10 1inches.

2
X /23.50 inches.
0 inches.

0 inches.

5.1 tan® @

2 + tan® @

(x) (y)
2
501 - R
II.;S
0 x2
CT.00
5.1 tan> @ 0
2 + tan® ©

inches.

Plotting these equations produces a nomograph as shown

on page 48,

SOLUT ION

47

Join the valuses of R and X on their respective scales

with a straight edge and read the value of 6 on the angle socale

snd the valuse of Z on the impedance scale,

R=26

EXAMPLE
X =7

o
From nomograph Z = 9,32 and 0 = 49.4



[
o
|

[
I

Z

lll’llllll

IMPEDANCE

3

()

NI ETEY T U

1.

>N

or

JL]IJ_LILAFIIIIIIIIJ

»
quluuln_Lulllll

Ill | l|||||lu_]|

Tud LDANCa

10

C.IART

REACTANCE

=R + JX

i

lr][|l|l|

RE*IZTANCE

I—rllIITII1|Il11rYllI‘lIl‘1'[Tf‘[l|1I]lv

J l']lllT‘lTTTTI"'

¢n

C:

3

an

<

10

ALauCTRICAL SYST.L

FLANNING DIVISION

il
10-18=00

1



VOLTAGE  REGULATION
IN SHORT LINES
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The distribution engineer of a Public Utility supplying
elsetrisal power is very much interested in woltage regulation.
It 1s of great concern to him to keep voltege fluctumtion within
e very small limit, but while designing a distribution system to
aseomodate this limit, he must also be conservative in the
investment and must anticipate the future growth of load. The
yeoars 1927, '28 and '29 rather upset his ability to prognosticate
load growth, while 1930, '31,'32 and *'33 left him with an
excess of capacity.

Voltage fluctuation limits are generally between 2% amnd 5%
for the general distribution system supplying municipalities.
Where separate power linss are built for individual customers,
this 1imit is much higher. However, for soms types of loads
that fluctuate 80 rapidly that the regulator at the substation
eannot respond, the voltage regulation is generally limited to
144 at the substation bus. A typical load of this classification
is the starting current of a large motor which lasts only a few
seoonds, but which generally causes flickering lights on the
sys tem.

It is for this type of load that the engineer must
compute the voltage drop on the system. The calculations are
mde assuming a constant voltage on the transmission system
supplying the substation. Ths results are gemsrally determined
as a number of volts drop on soms base woltage, rather than the
percent regulation. 1In caleculations of this type, the length
of eireuit is short enough that the oondustance and susceptance

effects of the line my' be neglected.



METHOD I

FOR LAGGING POWER FACTCR
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Theory

i
DR |
. - . [
. !
S I
= L
—_— — P - - - -
7 Nt et &
5 24 A%
y

v

In the above figure:

0 = 1B + BC = the voltage drop
From the geomatry of ths above figure:
28 = IRcos f§ + XX sin @

B & (neug-msingf

8
Where: Es = gsending voltage

l:r = receiver voltage

= load current in ampares
= resistance of line

reactance of lins

® M o H
n

= power factor at receiver end of line.
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Al
4, K= = voltage dro am 8.
- g P per per

=Roos f +X sin § + 3{IX X cos®f + IR sin°f & IRXsin 2
sin ¢ (i; os “f f:_snﬂl E:s Z)

Generally ths lsngth, BC, 1is extremely small compared to LB
and may be neglscted; in which case:

Se K= Roos § +X sin g

However, if it is desired to use the complete equation (4)
"for K, It will simplify the construstion of the nomograph to

limit the working range of the nomograph within a given relation-
ship of the resistance and reactance drops to the sending voltege.

Assume the IR end IX drops to be 5 % of E,, the
sending voltage. Substituting these values in equation 4, gives:

6. K=Roos § +X sin ¢ +.025Xcosa¢ +.025R81n2¢
- 05X sin # cos §

. o
= R (cos § + .025 sin°F) + X (sin § + .025 cos®f -.025 sin

Setting up equation 6 in determinate form, gives:
1l 0 ' o <R

(cos § + .025 sin®g) (sinf +.025 cos?g -.025 sin2@) -K
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SOLUTION

Join the values of R anrd X on their respeoctive
scales with a straight edge, and read the value of K on
the desired power factor socale. See sketeh on following page.

For single plmse ocircuits:
Voltage drop = 2 I K = 2 K¥e. x 10°
For three phase cirocuits:

Voltage drop = 1,738 I K = 5;2 x 10

It may be seen from the above that the single phase
voltage drop is twice the three phase voltage drop for the
same Kva., load, providing the single phase and three phase

eircuit characteristics are the sams.

EXAMPLE

R = 4,5 ohms X = 4.0 ohms Power faotor = ,70
Fl;om nomograph K = 6,0

(a) Singls phase curremt = 5 amps.
Single phase voltege drop = 2 x 5 x 6,0 = 60 volts,

(b) Three phase ocurrent = 5 amps.
Three phase voltege drop = 1,732 x 5 x 6.0 = 51.9 volts.
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METHOD II

FOR LAGGING POWER FACTORS
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Where one works mostly with a given voltage, it is often
desirable to compute the voltage drop using this voltage as the
base voltege. Hence the vaelues of resistance and reactance for
transmission line, substation, distribution eircuit, distribution
transformer, and secondary oircuit are expressed in relation to
this voltage in terms of an equivalent ocirocuit. A nomograph may
be oconstrueted with sceales ocalibrated for resistance, reaotance,
power faetor, length of oirocuit or a multiplying oconstant,
ocurrent, percent voltage drop, and wvolts drop on some other
base voltage upon which voltage flioker limits are based.

From Method I, we will use the formula

1. E-!.-Er-mcoa¢+nsin¢+§il:xcoa!fm81n¢)2
s

Since the last term of this equation has so little effewt
upon the result (except at unity power ngtor or where R is very
large compered with X and the power factor is very poor) we my
dispense with it for this nomograph. Generally the eurrent and
power factor are estimated in practice so that the inclusion of
this term might assume aceuracy whiech is not warranted. Hence

we will use the abbreviated equation:

2. E'-lr-mooa¢+1:xain¢
Where: I = 1ine ourrent

R = line resistance

X = line reactance

g = 0os~1(Power Factar)
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Let: E. = gending voltage to neutral.

Br = receiver voltage to neutrsl.

r = resistance to neutral per unit length of 1line.
X = reactance " " " " " " " .

L = the number of units of length of line.
Substituting these elements in equation 2, gives:
3. Es-nr-LI(rca¢+x-1n[)

The perocent voltage drop may be expressed as:

4. D= 100 s “Fr = 100L I (rcosg + x sin §)
'E. fa

Let equation 4 be broksn up into parts, so that:

5. A= 100 (reos § + x sin @)
!s
6. B= L A
Then:
7 D=]1IB

Equations 5, 6, end 7 will form three determinates for
plotting three nomographs, and if we choose the scales correctly
they may be combined into one nomograph having two turning socales
which will not require calibrating.



9.

10,

oV

Expressing equatian 5 in determinate form, we have:

1l 0 100 x
.
s
o l - A = 0
sin ¢ - - 100 r cos @
!s

Expressing equation 6 in determinate form, gives:

1.

1l 0 -
1 = 0
L 1

1l 0 B
0 1l -D = 0
I 1 0

To plot the nomograph, lst us choose a length of 10

inches for ths sealss of x, A, B, and D. Assums the following

conditions:

R, = 24000/(3)* volts to neutral, the base wvoltage.
r varies from 0 to 10 ohms,

x varies from O to 10 ohms (scale modulus = 120).
A varies from O to .087 (scale modulus = 120).
L vearies from 0 to 100

I varies from 0 to 10
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Assuming an abscissa length of 10 inches and applying
the given scale moduli to determinate 8, we have:

(x) (y)

1 0 3t x
11, 1l 10 - 120 A = Q
1 10 - %(5)% r cos §
l +,8in ¢ 1 +sin g

From the above determima te, the plotting equations are:

y= .,866 x 1inches.
For: X {
X = 0O 1inches

¥y = - 120 A 1inches (do not calibrate this scale)

For 4 S
X = 10 inches.,

y= - ,866r cos ¢ inches

[‘x - 10 inches.
1 +sin g

Using the same scale modulus for A eand a socsles modulus
of 2 for B, and applying these scale moduli to determinate 9
with an abscissa lsngth of 10 inches, we have:

(r) (<)
1l 0 - 120 A
1 600 )
L + 60




From determimte 12, the plotting equations are:
y= <120 A inches (do nat calibrate this socale).
Por: A {

X = 0 1inches.

y= 2B inches (do not calibrete this scale).
For B {

X = 10 inches,

(Y= 0 1inches.
Yor: L

x = 800 _  inches.
L + 60

Using the socale medulus of 2 for B and a socale
modulus of unity for D, end applying thess scals moduli to
determinate 10 with an absocissa length of 10 inches, gives:

(x) (y)

1l 0 2B
13. 1l 10 -D = 0
1 20 0
I + 8

From determimate 13, the plotting equations are:

y= 2B inches (do not calibrate this scals)
For: B {

x= 0 inches

Yy= - D inoches.
Por: D { .

x = 10 inches.

- 0 inches.

For: I gy

x = —29% _  4inches.
I + 82
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The plotting equations from determinates 11, 12, and
13, will produce three individual nomogrephs. Since we have
chosen tha/:::;o moduli for the variablss common to each
individual nomograph, we mey combine these three nomographs
into one nomograph and use the sceles A end B as turning
socales. This is similar to eonstructing the three nomographs
and then superimposing them so that the scalss common to

each occinocide.

On page 60, we assumsed the value of 24000/(3)% for

Es’ which is the voltage to neutral of a 24 Kv. three phase
transmission system. Hence the ocurrent, I, in determinate 13
is to be considered the three phase line ocurrent. We ocould
construct another nomograph for single phase voltage drop;
however, we may accomplish the same thing by constructing a
second :_scale. for single phase current oﬁ the sams nomograph.
FPor a single phase system: (24 Kv.)

3. = 24000/2 to neutral

Henoe for single phase line current, the plotting
equations for the current I , from determinate 13, may be

expressed as:

20
g 1/(3) + 8

y= 0 1inches.
$f

X = inches.

See Sketeh # HCR - 4 in rear of thesis.
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SOLUTION

(1)Join the value of X with a straight edge to that of
R on the desired power factor scale and locate ths intersection
with turning scalea A . (2) Join this point with a straight
edge to 1L on the length scale and locate the interseotion
with turning scale B. (3) Join this point with a straight
edge to thse value of I on the current scale and read the
psrcent woltege drop.

EXAMPLE
X =@ r=2717 Power factor = .80
L = 40 units I = 2 amps., three phase

From nomograph:

Perecent voltage drop = 4,65

( See Sketoh # HCR - 4 )



METHOD III

FOR LAGGING POWER FACTORS



It is often desirabdble to compute the wltage drop on
the overhead circuits only, where the impedance of the
trensmission line and substat ion may be neglected. FOr cases
of small loads, or where a quick estimate of wire size is
desired for an individual power customer, this calculation is
sufficient.

Henoce, we will attempt to construct a nomogreph for close
appreximation using scales calibrated for condustar spacing,
wire size, power factor, and volts drop per ampere to neutral,
Using the approximate formula for voltage drop from Mehtod II,
page 59, we have:

1. la-lr-LI(rcoaﬂ + xsin § )

For this nomog:aph we will let:
L = Jlength of line in 1000 ft. units.
I = line current in amperes.
r = resistance to neutral psr 1000 ft.
x = reactance to neutral per 1000 ft.

for 60 o¢yocls frequeney.

From & preceeding part of this thesis (page 38), the
inductive reactence per 1000 ft. of condustor to neutral for

60 eycle frequency was developed, as:
2. X = 00529 1% 1088‘ ‘g-
a

Where: 4 = consuctar spacing in inches.

a = conductor redius in inches.
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Let equation 1 be broken up into two parts, so that:

Be E.-Er-LIK
and:
4, K= rocos @ + xs8ing

Substituting equation 2 into equation 4, gives:
S. K= roos $§ + .053 sin ¢ 1log 4(1l.284)
: a
= rcosf + .,0538in @ (logd + log 1.284 )
a

= volts drop to neutral psr emp. per 1000 ft. of conduc tor

We will construct the nomogreph for the solution of
equation 5 only, since the solution of ths voltage drop is
(from equation 3) Jjust a matter of multiplication after the
"value of K is determined.

Examining equation 5, we see that the resistance,r, and
the radius, a, of the cbnductor are directly related. Hence
we will not require a scale for condustor readius if we oconstruct

a scale calidbrated for wire sise.
Setting up egyuation 5 in determinate form, gives:

1l 0 - .053 log 4

6. o 1l K = 0

sing 1 roos @ + .053 sin § log 1.284
a
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Assume a 3 1inoh scale for 4 and a 6 inch scale for K.

If 4 vearies froml to 100, its scale modulus = 0.

If KX wvaries from O to .60, its scale modulus = 10

Assums the abscissa length = 10 inches.

Applying ths ebove moduli and abscissa length to the

determinate 6, we have:

7

Por:

For:

Por:

(x) (y)

0 - 1.59 log d
10 10 K =0
80 30 roos @ +1.5 sin § log l'im
Toein 3 + sin g
Prom determinate 7, the plotting equations ere:
y= - 1.59 log 4 inches
{x - 0 1inches.
{Y = 10 K 1inches.
K
x = 10 1inches,
SO rocos § +1.59 sin § 1log 1=284
‘ y= a ins.
Wire size and S + sin ¢
Power Faotor
= 50 inehes.

3 +s8in g
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SOLUTION

Join the conductor spacing,on the spacing scale, with
a straight edge to the wire size on the desired power factor
scale, and read the value of K on the K scals,

Then the:

Three phase line drop = (3)% LIK = Kva. LK.

Single phase line drop =2 L I XK = 2 Kva. L K.

g

( See sketch on next page 70 )

EXAMPLE

Conduetor spacing = 40 1inches.
Wire size = #2 ecopper.

Power factor = .90
Prom nomograph, K = ,21

I= 10 amps. line ocurrent.

L = 4000 feet.

Three phase line drop = (3)% x 4x10x .21 = 14,6 volts
Single phase line drop = 2 x 4 x 10 x .21 = 16.8 volts
( See sketch on next page)
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SECTION B

MECHANICAL PROBLEMS



STRESSES IN THE STRAND
OF ANCHOR GUYS

72
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REIATIONSHIP BETWEEN THE ANGLE AND THE ELEMENTS OF ITS TANGENT

In rough field work, or where instrument accuracy is not
required, amgles in the lead are generally measured by the
tangent method. This is done by pacing off the legs of a
triangle; one side (b) of which is in the direction of the
lead and the other side (a) in the direction of the offset.
This method is also used to determine the steepness of pole

guys, or. anchor guys.

\

2
\\(*
PoLk

From the above figures, the following relation may bde
expressed:

or in logarithmic form:
2. logtan @ ~-loga +1logd =0

Equation 2 may be set up in determinate form, as:

1 0 - log b
1l 1l log tan 6
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Let:
The scale modulus of a = 3
The socale modulus of b = 6
The abscissa length = 4,5 inches.

Applying these moduli and abscissa length to determinate 8,

gives:
(x) (y)
1l 0 - 6log b
4, 1l 4.5 3 log a = 0
1 3 2 log tan @

Prom the above determinete the plotting equations are:

y= -6 log b inches.
For: b {

x= 0 inches.

y= 3 log a inches.
For: a {

X = 4,5 1inoches.

y= 2 log tan & inches.
For: ratio a/d ‘
or tan @
X = 3 1inches.
SOLUTION

Join the values of a end b on their respedtive scales
with a straight edge, and réad the valwe of a/b or € on
the tangent socale.

See skstch on next page (75).

EXAMPLE
a =16 b = 40  From nomograph, a/b = .40 6 = 228° }
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TENSION IN A POLE GUY AT A DEAD END

7
)

|

\

k\

\
\

a

|

8 |
'1’! N
5
(2 i
| !
qll—— Q —_‘-l
From the above figure, the following relation may be
expressed: .
T
10 Tg = h/ 81n 9 = h
sin (tan~l a/b)
OR in logarithmic farm:
2. log '1‘8 - log 'I'h + log s8in (tan'l a/b)
Expressing equation 2 in determinate form, gives:
1l 0 log ‘I‘h
3. 0 1 - log sin (tan™t a/b) =0
1l 1l 1l
. % Tg
Let: The scals modulus for '1'h =6
The scals modulus for the ratio a/b = 6
The abscissa length = 5 inches,
NOTE: In the above figure, Th is assumed to be the equivalent

- eonductor tension acting at the point of guy attachment

on the pols.
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Applying these scale moduli and abscissa length to

determinate 3 , gives:

(x) ()

1l (4] 6 log Th
4. 1l 5 -6 log sin (tan-la/b) = 0

From the above determinate, the plotting equations are:

h

y= «61log T inches.
Yor: T { ,
h(x = 0O 1inches.,

y = - 6 log sin (tan-lt/b) inches.
Por: Retio a/b {
x= 5 1inches.

y= 31log T inches.
For: T { €
€(x = 2.5 inches.

SOLUTION
Join with a straight edge the values of 'rh and a/d
on their respective scales and read the valus of '1'8 on
the 'r8 scals.
See sketoh on next page (78).

EXAMPLE
a =20 b =40 hence a/b = ,50
T}, = 4000 pounds From nomograph, Tg = 9000 pounds &

See sketoh on nsxt page.
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THE HORIZONTAL COMPONENT COF THE TENSION IN A GUY WHERE THE GUY
SPLITS THE ANGLE OF THE CORNER

Where there is a small cormer in a lead, it ias often
desirable to install ths anchor guy so that it splits the angle
of the ocorner snd thus leaves thes climbing space clear on the pole.

Ib

Lk

9"’ ’
- h e \ C. 0O
r a S A , O o

§
o et
4","
o\

If thse total conductor tension on each side of the cornmer
pols is the sams, the horizontal eomponent of the tension in

the anchor guy may be expressed as:

1. T = 2T sin 40 = 2 T sin 3(tan Ya/b)

h
Or in logarithmic form:

2. lchh-logZ‘r-logsinéG =0

Setting up equation 2 in determinate form, gives:

1 0 log 2T
Se. 0 1 log sin 26 = 0

Let: The scale modulus of 2T = 6
The scals modulus of @ = 3
Ths absoissa length = 4,5 inches.
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Applying these scale moduli and absoissa lsngth to
determinate 3 , gives:

(x) (y)

1 0 6 log 2T
4, 1l 4.5 3 lg sin 30 = 0
1l S 2 log Th

From the above determinate the plot ting equations are:

y= 6 log 2T inches.
For: 2T {

X = 0 inches

y= 3 log s8in 40 = 3 log sin 'b(tan-la/b) ins.

For: Ratio a/b
or angle @

X = 4,5 inches.

y= 2 log Th inoches.

For:
T, {

x= 3 inches
SOLUTION
With a straight edge, Jjoin the valuss of 2T and the
ratio a/b or @ on their wespeotive scales and read the values
or
?h on the T, scale.
See sketoh on next page - 8l.

EX:iMPLE
2T = 5500 pounds ratio a/b = .3

From nomograph, '.l'h = 800 pounds.

See sketoh on next pege.
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"Often where there is a carner in the lead it is not
.pou'iblo to install an anchar guy that splits the angls of the
cormer. In such ocases, two guys are installed; one in the
direction of the lead and the other psrpendicular to the lead.
Especially does this oondition exist at street intersecotions

where the line crosses the street in a diagonal manner.

HORIZONTAL COMPONENT OF THE TENSION IN A GUY
WHERE THE GUY IS IN THT DIRECTION OF THE LEAD

From the above figure, the following relation
may be expressed:
1. T = T - T o©os (tan-l a/b)
Lh 1 2 |
We shall break equation 1 into two parts, so that:

2. K = T,_ cos (ttn-l a/b)

2
and

Se T-Tl-K

Setting up equation 2 in determinate form, gives:

1l 0 K
4. 0 1l -Tz =0

1 cos (tan"la/b) O



Let: The modulus of K = 1/2000
The modulus of T, = 1/2000
The absoissa length = 3,33 inches.

Applying these scale moduli and abscissa length to

determinate 4, gives:
(x) (y)

1 0 K/2000
5. 1 3,33 - T,/2000 =0
1 3.33 coa(tan"ta/b) 0
1 + cos (tan~lae/v)

From the above determinate, the plotting equations are:

y = K/2000 inches. (do not plot this scals)
Yor: IK{

X = 0 inches,

y= - Tz/zooo inohes
For: Tz {

X = 3¢33 4inoches,

O 1inoches.

y-
For: Ratio a/b { 1

or angle @ 3.53 cos (tan — a/b) inohes

1 + cos (tan'l a/b)

X =

Setting up equation 3 in determinate form, gives:

1l 0 ‘1‘l
6. 0 l - TLh = O
1 1 K




Let: The scals modulus of Tl = 1/1000

The scale modulus of TLh = 1/1000
The ebscissa length = 7,8 1inoches.
Applying these scale moduli end abscissa length to

determimate 6, gives:

(x) (y)

| 1 0 '1'1/1000
7. 1 7.8 T, /1000 = 0
1 3.9 K/2000

From the above determima te, the plotting equations are:

¥ = T,/1000 inches.
For: T {
l1lx= 0 inches.

(Y - - Lh/].000 inches.
For: TLh{

X = 7.8 1noches.

{y = K/2000 1inehes. (do not calibrate this scale)

For:
x= 3,9 1inches.
We see that by choosing the correoct scale moduli for
T, emd T » the socale modulus for K from determinate 7 1is

1l
the same as that found in determimste 5, so that we may use

the K soale for the turning scale end combine the two
nomographs, Hence the K scale willmt need to he calibrated.

The solution for this nomograph will be given later.

(See pags 86)
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HORIZONTAL COMPONENT OF THE TENSION IN THE GUY
where the guy is pesrpendiculap to the lsad

From the figure on page 82, we darive the following

relation:

8.

9.

10.

-1
Tph T2 8in (tan = a/b)

Or in logarithmic form:

-1
Log Tph log 'r2 log sin (ten ~a/b) 0

Setting up equation 9 in determinate form, gives:

1 0 log sin (tan°1 a/b)
0 1 log T, - 0
1l l log Tph

Let: The scele modulus for T2~ = 6
The scals modulus for ratio a/bor ¢ =3
The absoissa langth = 4.5 inches.

Applying these scale moduli and abscissa length to

determinate 10, gives:

11,

(x) (y)

1 0 3 log sin (tan"ta/b)
1l 4,5 6 log Ta = 0
1l 1.5 2 log Tph
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From determinate 11, the plot ting equations are:

For - Ratio &/b

y= 3 log sin (mn.:L a/b) inches.
or angls 9{

X = 0 1inoches,

Yy= 6 log Tp inches.
For T { ,
2(x = 4.5 1inches.
y= 21log T h inches.
For T h{ p
Pl(x = 1.5 4inches.
SOLUTIONS
A, For the horizontal component of the tension in the guy,
where the guy is in the direction of the lsad.
1. Join the values of T, eand the ratio a/b on their

respsctive scales with a straight edge and locate point K
on the TURNING SCALE.

2. Join this point (K) with a straight edge to the value
of 1‘1 on the '1'1 scale and read the valus of 'th on the
rl’..h scale.

See skatch on page 88.

B. For ths horizontal component of the tension in the guy,
where the guy is perpsndicular to the lead.

With a straight edge, join the values of the ratio a/b,

or angle 0, and 'rz on their respsctive scales and read

the valus of T on the Tph soale,

ph

See skstoh on pege 89.



T1 = 4000 pounds.

Tz = 2500 pounds.

a/b = .50

s

From nomograph on page 88, T = 2170 pounds.

Lh

't

From nomographs on pege 89, T = 1120 pounds.

ph



CHART

Y

ST

Givinge

o

LALllllllllLllllllJ‘llAlIl'lllLlLllLlllll
“

=
[
@]
—

1l

- - Ty rm s
30 3 neu2diog

88

Y
Y

ToauaziLon = g
(]
S
S

D
.nLAlALAJ__l

<00V
4000

| T 7 T T I T A
) ¢ (@ ] (e D
8 [gh] ) () D
(] o ] < O
- AV} =) *H Y
3
0L uoTsuUsn JI03 onpuo)d
0
2 9
~>
o
Py e/ in
’2(\ 5 C
\‘Q“ ] G)‘ (94
|- 1
[' : £
! S e .
a1wo SUTIaINg
. -4
(&)

fj
Q [ £
-
I: N
i AN
Cqt O N
! N
e .)\
o
{ C o
2 2 3 5 s
< o (@} e (0] «
[1®) -3 D] L —~ ‘LJ
l.nl.IA,L;:ln.n.lln.lLlnlllnlnnl.A..IALnll.AAalnnJ

T
7 oIS uUcy JICh onnuogd

L

£

D O

D 4

n 0

e

T ke —~
e iy U2

~ 0

Uyl [}

[ v

O

Ce vl QA

oo

[ B o ]

LIRS

—~ (W]

3 o™



)

89

SUY CIART
Giving Forizontsl Tension ih Guy
"here Guy 1is Perpencdicular to Le=zd

Angle

T 5 5000 — 5020
8012 L4000 i
! - 300
40 -—E .3 u 0 — 4000
oG - 2000 F
BO‘ﬂE;‘S 3 ? -
-4 F o
— '4 ’ : jof :—ﬂ,
203 L1000 - 2000
1.2 E-800 8 -
E - 3 d
T 600 o [
] Fsoc ¢ -
.2 - o -
103 f a0 [ 2000
+ . ~-3200 © ! e
1 > _ - Y i =
-l : 8
. o [
SR E f § C;
+.07 & =100 9 : -
- .06 =80 - b
Fos  Fm e
- .04 ~Fe 8 Ton —1000 g
1 -0 § =900 &
- .03 = :% r_b _ T - ©
- L 20 + ey Lead "1 —800
_ i ' e -
1 J—.O—; 'ga ' /TZ —7C0
—10 )/ i
n ’
/ —600
I
—.01 500

Flactricel Systoemn
Plsnning Divisicn
ECR = &

5 - 11 - &1



SAG AND TENSION COMPUTATIONS
FOR SPANS ASSUMING PARABOLIC FORM
UNDER CHANGES IN LOADING AND TEMPERATURE



01

It is often required that the planning engineer design
special eonstruction to acsomodate certain field conditions.
This occurs when the stendard types of coms truction are not
suitable due to various restrictions. Such cases under this
| classifisation are river crossings, leke crossings, and super
highway oenstruetions at complicated intersections,

After pole locations have been established, the next part
of the design problem is the determination of eondusctor fonsions
and sags for stringing and loaded conditions so that the proper
smount of guying may be obtained, and that proper clsarances
my be maintained,

FYor spans up to five hundred feet with the normsl sags
used, we will generally be within ocomstruotion acocuracy to
consider the span assumes parabolic form. With this assumption

we will proceecd to develop the releationships of sag and tension.

SYMBOLS
w = wgight per foot of conductor.
L = length of span in feet.
= sag in feet.

= 3/L = sag factar.

= oconductar tension in pounds (for which guying is computed)

s
d
T
E = modulus of elasticity of econductor in pounds.
A = grea of ocondustor in square inches.

t = temperature in degrees Fahrenheit.

X = goefficient of thermal expansion of conduotor per re
L, = gero - stress length faotor.

e = glongation per foot length of eondustor.

A = length of conductor in feet.



THE PARABOLIC CABLE

:4—___ L 3]
!

1 \ T 1
T s M |
| T - ?’/ w L '
S 5
| D Sl
l4 ) _‘L ) )
| 'E ke

From the above figure the following reletionships may
be developed:

= vl
L T= g
2e J)L- L(l"’ de - 32 d4 +ooooooo)
_.3_ —5-—_.

Since 4 is a very small number, all terms after the
second in the above series (equation 2) may be disregarded.

Hence we use the formula:

s. A= L(1L+ 84a%)
-5

In this development we are mainly interested in the
horizontal tension T, since this is ths valus for which the
guying must be designed to meet, and the pols foundesions are
designed to support the vertical load.

The following solution is based upon assumptions that
are within the limits of accuracy required in practical
overhead-lines construction, and is not to be considered

a ‘solution for precision work.
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We may define the length factor as the length of oondustor
divided by the length of span, or, the length of condustor per

foot lsngth of span; and for a conduoctar under tension T, may

be expressed as,

. .
4. 1= A = 1+ 84 (using equation 3, page 92)
T -3 ’

The length faoctor for zero stress in the conductor my
be expressed approximately, as:
2
50 20 = 1 + 8 d - T
3 TAE
The elongation of conduetor per foot length of span may

be expressed as: (at temperature t)

60 °t bd 20 - l
Henoce using equation 5 :
2
v 3 ir
Substituting the value of T from equation 1 1into equation
glves:
8. o, + W L - 8 dz = 0
B d AE 3
Expressing equation 8 1in determinate form, gives:
1l 0 wL
AT
90 = O
0 1l °t




For a suitable nomogreph we will use:

Soale modulus for wL =4 X 104
iE

Scale modulus for et =2 X 103

Abscissa length = 10 inches.

Applying the above moduli and ebscissa length to

determinate 9, and rearranging the determinate, we have:

(x) (y)

1 0 4w x 20t
iE
3
10. |1 10 2 e x 10 -
3
1 1600 4 256 & x 10°
1+ 160 4 3(1 + 160 4 )

From determinate 10, the plotting equations are:
4
y= 4wl x10 inches.
For: wL { iE

X = 0 inches,

3
y= 2 ., X 10 inches.
For: ] {
T lxy = 10 4inches.

4
y = 256 da x 10 inches.
3(1 + 160 4)
For: d
X = 1600 d inches,
1 +160 d

See sketch # X - HCR - 11 in rear of thesis.



The nomograph constructed from the plotting equations
on page 94 will solve the condition of’changes in loading
providing the temperature remains constant. To make the
solution applicable to changes in tempersature, we use the

following reasoning:

The zero-stress length factor for temperature tl is,
N 2
11. L,= 1 + 84 - wl
. 3 8 4 AE

Hence, the zero~-stress length factor for tempsrature t is,

2

2“- ’ P,I -
lz' (<] ZO +k a ( tz tl)

Since 2; is very nearly equal to unity and <x(tz - tl)

is very smll, we may assume:

= ) Je) -
13. L ) + (t2 tl)

Subtracting unity from each side of equation 13 , gives:

Mo (L -1)=(5=1) + x(t,=%)

Oor, from equation 6, we have:

15.

+ < (tz - tl)

’t& 't,
We shall now construct an auxiliary scale for cx(tz - tl)
80 that it may be used in oconjunction with the .t scals of the
nomograph. It may be seen from the plotting equation of ot, that
a length of two inohes on the o, scale 1is equivalent to .001 foot
change in length. Hence we will use the following equations for

the auxiliary scales:
3 -6
For ocopper: y=(2x10)(9.6 x 10 )(t2 - tl) inches,

-6
For ACSR v = (2 x 10°)(10.1 x 10" ") (%, - t,) inches.

2

For Steel: ¥ = (2 x 10%)(7.5 x 107%) (%2 = t;) inches.
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In order to construct a nomogreph to a large emnough
socals for desirable aocuracy, and yet not exceedingly large in

size, the scale w1 was folded on the value 5. Thus we

AR
have a Sceale"A" for w1l for values from 0 to 5, and
AR
a Scale "B" for w. L for valuss from 5 to 10. Likewise
%

the values of the sag factar "d" were plotted on two separate
scales to accomodate Scales ™A™ and "B". Hence when solving

& given condition of w1l on scals "A" use "d" to scals "Av,

and for & given condition where w 1L is to scals "B", use "d"

to socals "B".

SOLUTION

If the known conditions are: w, , dl, at temperature tl

1l

and we wish to find d2 under oconditions of '2 and tz ,

proceed as follows:

1, Join the point wlL/AE on the WL/AE scale with a straight
edge to the point dl on the "4d" scals and locate the
point .1 on the ., scale. (For temperature tl)

2. To the point ¢, add the lsngth D<('I;2 - tl) from the

auxiliary scale to locate the point e, (For temp. tz).

3. Locate the point sz/AE on the WL/AE socale.

4. Join the point e, with a straight edge to the point

2
'2L/A.E on their respective sceles and read the new

value dz on the "4d" scals,

See Sketch X - HCR = 11 1in rear of thesis.



EXAMPLE
See Sketoh # X - HCR - 11

Assume the following stringing conditions:

Using #4 TBWP Medium Hard conductor,solid.

L = 150 feest.

1 ™ +164 pounds per foot (no wind and no ice)/
t, = 60° Fanr.

A = ,033 square inches.

E = 14x10°

8, = 18 inches. (1.5 feet)
1 = s/L =.010

T = wlL/edl = 307 pounds.

Pind ths value of the sag, s_, ahd the tension, Tz,

’
for loaded conditions of an 2 pound wind, # inch of ice,
and a temperature , tz, of 0° Fahr. This involves a
change in temperature of 60 degrees and a change in
weight of wire psr foot from .l64 pounds to 1l.16 pounds.
Proceed as follows:

wix 10*/ax = .533
1™ -010

01 = -,0004 (not necessary to tabulate). (From nomograph)
., = .l - X60 = -,00098 (not necessary to tabulate).

w,L x 104/A3 = 3,77

d2 = ,0215 (from nomograph)

Henoe:

8y = ,0215 x 150 = 3,825 ft = 38,7 inches

Tp = 1.16 x 150/(8 x .0215) = 1010 pounds.



ANALYSIS OF
A FLEXIBIE DEAD-END POLE



It ocours sometimes, in subdivisions and on certain

private property, that an anchor guy cannot be installed at
- the end of the }ead. In such cases some means must be devised
to hold the last pole, or as it is generally called, the "dead-
end pole"., However, the pole next to the dead-~end pole in the
lead generally ocan be anchored and treated As a rigid structure.
With such construction, the last pole is called a TFLEXIBIE
DEAD=-END POLE. The amount of tension that may be held by this
pole depends mostly upon the pole foundation. It has been
found from practice that a pole may be loaded up to one-half
its ultimate strength if a log heel and breaster are used, two-
thirds its ultimate strength if crushed stone is used around the
pole, and full ultimate strength if the pole is set in oconorete.
However , consideration must be given to the type of soil and'
the grade of construction from which a suitables safety factor
may be determined.

We will now analyze this problem with an attempt to

arrive at its solution.
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SYMBOLS

number of oonductors.
weight per foot of condustor uhder stringing oconditions.
” " ” ” ] ”- loaded L .
distanoce between polss at ground line in feet.
span length in feet under stringing conditions.
" " " n " loaded " .
oconduotor sag in feet under stringing conditions.
] [} [} ” ” load‘d " N
Si/L1 = gag factor.
oonductor tension in pounds under stringing conditions.
" d " " " loaded " .
pole deflection constant in pounds per inoch defleotion.
T/P = pole defleotion in inches.
oconduotor area in square inoches.(oross-seoctional area)
modulus of elasticity of ocondustor in pounds.
temperature in degrees Fahr. for stringing conditions.

” " ” (] ” 1“d°d ” o
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coeffioient of thermal expansion of econductor per degree Fahr.

oconduotor length in feet under stringing conditions.

” " L] ” L] loaded ] .
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ASSUMPTION: The final tension in the wire will be equal to
the resisting force offered by the pole, and that

ths condustor assumes parabolic form.
By analysis of conditions in the above figure, we have:

1. 4, m BTy reet.
T

Subtracting . from . gives,

s - ‘f' = n -
Se . YA m(TO Tb)
Analyzing the elongation of ths condustor dus to changes

in temperature and tension, we have:

- t 4 3 I - \,. -
4, )c AA 20 (to tb) + A;J (Tc Tb)
Likewise:
) - ,\' \' ' - L -
5. A= A m ANy - k) Pb(?b -go)
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Expressing ., and ., in terms of L, end L, Tespectively,

we have:

<2
6. 2, =L + 85p

b I
b
2

8
7 A =L, ¥ r;g
o

Substituting equation 7 in equation 4, we have:
2 2

; 8 s 8 s
8. Howm s, = (L, + z)oc(to - %) + (L + : J( Tg = Ty)

Substituting equation 6 in ecuation S5, we have:

. 8 SZ 8 S2
9% Ry = o= (Ly +-3-52)“:(tb = %) - Ly +'3'EB)( To = Tv)
. b b

Subtracting equation 6 from equation 7, gives:

2 2
g8 (Se - Sy
bt gl T

]

-

pj PR -
0. %-y= L,-L

Subtracting equation 7 from equation 6, gives:

2 2
11, A,-2, =L -1, + 8(5 - S
6 ¢ L I ’L;),

By examining ths figure on page 101, we see that:

e

- V. - ,' - n ’
12, Lb LO = . 7 m(To - Tb)

By ordinary comperison:
13, 'l'b/'rc = ('b do)/(wc db)

Without introducing an appreciable degree of error,
we may maks the following assumption:

. 2 L] 2
LyLg = Ly, = L,
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ANALYSIS OF A
FLEXIBLE DEAD-END POLE
USING
TWO DIFFERENT SIZES OF CONDUCTORS



SYMBOLS

All functions referring to the first conductor size
have subsoript "1", end all functions referring to the second
oconductor size have subscript n2n,

The additional subsordpt "b" is used to denote stringing

conditions at tempsrature ¢ and the additional subseript "o"

b’
is used to denote loaded conditions at the temperature ¢ o*

Other than the above subsoript notations, ths symbols

used are the same as those in the previous problem.
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ASSUMPTION: That the final tensions in the wires will be equal
to the resisting force offered by the pole, and
that the conductors assume perabolic farm.

By analysis of oconditions in the above figure, we have:

1. 4 = P1Tib ¥ %2 Tap  feet.
1z 7

2, <, = D1 Tiot Dp Toy  peet,
1T

Analyzing the elongation of the conductors due to changes

in temperature and tension, we have:

bi - ‘ = ) o~ - R < -
3. = '%c\\(tc tb) + ’ (T1° le)
[E,l
- - + e i
4o A=Aty = ) TiEF (Toq ?21:)
2
. .= m . (t.=t%) + Ay (T.. - T.)
I A T 1b lo
TaEf,
6 -l to=t ) +  oc (D T )
’ = e o (B = ) ﬁﬁ 2b 20
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NOMOGRAPHIC SOLUTION
OF THE CUBIC EQUATION



Exemining equation 16 on page 103, equation 20 on page 104,
equations 7 and 8 on page 107, and equations 10 and 11 en
page 108, for the solution of flexible dead-end pole problems,
we note that they are of & cubic type. This is rather a difficult
type of equation to solve; hence we will construct a nomograph
far the solution of this speciel form of equation. We note that

the above mentioned formulae are all of the type:

3 2

1. T +KT +C = 0

Expressing equation 1 1in nomographiec form, gives:

1l 0 - K
2. 0 1 - C = 0
72 1 o

Assume the scale moduli for K &and C = unity

snd assume an abscissa length = 10 inches.

Setting up determinate 2 to accomodate ths above socale

moduli and abscissa length, gives:

(x) (y)

1 0 - K

Se 1l 10 -C
3
1 10 T

° + 72 + 1




From determinate 3, the plotting equations are:
Y = - K inOhOSQ
For K {
x= 0 inches
y= -C inches.
For c {

X = 10 1inoches.

S
y = T inches.,
For T { ™ + 1
x

= —10 inches.

™ +3

We will constrict the nomograph for the following values:

K varying from +95 to - 10
C " " 0 to - 15
T d " 0 to + 10

See Sketoh # X - HCR - 6 in rear of thesis.

If ths ocomputed valuss of K and C do not lie within
the plotted values on the chart, 1let:
T = a T where a is any desirabls number.
Then, substituting (aT') for T in equation 1, we have:
(T')3+ K('l")2 + ¢ - 0
Ta 3

a
Then:
For valuse of K on chart use K' = K (ocomputed)
a
For falus of C on ochart use C'= (C gcomguted)
S
a

Then value of T from nomograph = T* = T/a or T=aT



SOLUTION

With a straight edge, join the values of K amnd C
on their respeoctive scales and réead the valus of . T on
the tension scale.

See Sketoh # X - HCR - 6 1in the back of thesis.

EXAMPLE
Using a flexible dead-end pole, assume it is required
to determine the stringing sag at 60o Fahr. for a 40 foot,
class 2 Western cedar pole so that it will not dbe over
stressed when holding three #0 bare copper oconductors when
subjected to a loading of an 8 pound wind and one-half inch
of ice at 0° Fahr. Assume the soil conditions are such that
a safety factor of 3 1is chosen.
For such a oase :

n =3 (#0 bars eopper eonductors)

w, = ,326 pounds (per foot, no wind end no ice)
w_ = 1,262 pounds (per foot with an 8 # wind eand £" ice)
L = 100 feet (assumed spean length) '
tb = 60° Fahr. (stringing temperature)
t, = 0° Fahr. (loaded temperature)

AR = 1.1606 x 106

-9.6x 10 °

40 foot, oclass 2 Western cedar pole
P = 60 pounds (per inch deflection)
Ultimate strength = 3700 pounds
Safety factor = 3



From these oonditions:

o
T = 3700 = 411 unds tension per conductor (0 F.,8#wind,2"ice
o = 2200, PO P (O°F.,8fwind, % )i

L =100 - 3 x 411 = 98,29 feet (formula 21, page 104)
E. _361 ’

3
S = 1,262 x 9.63 x 10 = 3,70 feet (formula 1, page 92)
° 8 x 411

d = 3,70 (sag factor)

Using . equation 19, page 104, to show how little
effect the portion g,dz has in the term (1 +3§ dz):

Solving for ths value of K from equation 19, page 104:

8
K=29 x 1.415 x 1,1606 x 10:5 +1.1606 x 1.0038 x 9.6 x 60 _ 411

[
3 x1.1606 x 10
155 60 = 0655 +1.,0038

- - 310.5
Solving for the value of C from equation 19, page 104:

Cm= - .106 x 9.63 x 1.1606 x 10°

6
24( 3 xxl.légﬁgx lg + 10038)

6
= - ,981 x 10

To solve this on the nomograph we will use the pwreviously
mentioned transformation (page 111) and let a = 100

Then:
K' = - 310.5/100 = = 3,105

C' = - ,98l x 106/106 = - ,981

From the nomograph (Sketch # X - HCR - 6 in rear of thesis)
T* = 3.2

Henoce:

T, = 3.2 x 100 = 320 pounds (tension psr condustor for

b 60° Fahr. no ice and no wind)

L, = 100 - 3 x 320 = 98,67 feet (stringing condition)
b . 12 x 60

Sp = 326 X 9,71 X 103 = 1,23 feet (string. sag)

) o 285/




CONCLUS ION



I have found in my work as a Planning Engineer for a
utility company that these nomogrephs are practical, and
sufficiently accurate, and that they provide economy of
time and effort. Therefore with entire confidence in their
value in the engineering field, I submit them to the members
of the Graduate Council of Michigan State College.
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