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Abstract

A STUDY OF
THE BORN-OPPENHEIMER APPROXIMATION

Alvin R. Hagler

The Born-Oppenheimer approximation for molecules is
presented in detail. Up-to-date terminology and notation
are used. Also presented is a survey of work that has

been done in molecular physics in which the Born-Oppenheimer
approximation is assumed or known to be insufficient.
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ANNALEN DER PHYSIK

VIERTE FUOLGE. BAND S

1. Zur Qnrantentheorie der Maolekeln:
von M. Born und R.Oppenheimer

Es wird gezaigt. daB die bekannten Anteila der Tarme einer Malekel
die der Energie der Elekirananbewegung, der Kernschwingungen und
der Rotationen entsprechen. systematissh als dir Glieder einer Potenz-
entwicklung mach der vierten Wurze] des Verhaltnisses Elektronenmasse
su (mittlerer) Kernmaase gewonnen werden kdnnen Das Verfahren
Befert u. a. sine Gleichung filr die Rotationen. die eine Verallgemeine
tung des Angatzes von Kramers und Pauli Kreisel mit eingebautem
Bchwungrad damtellt. Ferner ergibt sich eine Rechtfertigung der von
Franck und Gondon angesteliten Betrachtungen iiber die Tntensitit
von Bandenlinien. Die Verhiltnisse werden awm Beisple] der zwei-
atomigenMelekeln erifutert.

Einleitung

Die Terme der Molekelspektren setzen sich bekanntlich
aus Anteilen verachiedener Grofenordnung zusaminewn; der
gréBte Beitrag rithrt von der Elekironenbewegung um die
Kerne her. dann folgt en Beitrag der Kernschwingungen.
endlich die von den Kernrotationen erzeugten Anteile. Der
Grund $ir die Méglichkeit emner solchen Ordnung liegt offen-
sichtlich in der CiréBe der Masse der Kerne. verglichen mit
der der Elektronen. Vom Standpunkte der alteren Quanten-
theorledie die stationdren Zustande mit Hilfe der klassischen
Mechamik berechnet, ist dieser (Gedanke won Born und
Heisenberg!) durchgetihrt worden; es wurde gezeigt. daB
die aufgegalten Energieanteile als die Glieder wachsender

Ordnung hinsichtlicl: des Verhiltuisses l/ M erscheinen, Wo w

die Blectronenmasse, M eine mittiere Kernmasse ist. Dabei
‘( 2weiten) Kernschwingungen und Rotationen in der gleichen

Ovdnury auf, was dem empi-ischen Betund (beikleirer
Rotatiomguantenzahlen widersprich.

" ) M,.Born u. W. Heiserberg, ann, 4 Phys 74, S. 1. 1224,
Awnalen der Phyeik IV, I-‘o!ge. a4, kol

Fig. 1



INTRODUCTION

The Bormn-Oppenheimer approximation was formulated in a famous
paper published by Bom and Oppenheimer in 1927 Ann. Physik, Vol, 84,
page 457 , It is the most fundamental and basic work in molecular
physics. The first page of that paper, which is the subject of this
study, is reproduced as Figure 1 of this thesis.

The problem that Borm and Oppenheimer investigated may be
quite simply stated., A molecule consists of a semi-rigid nuclear
framework which is free to rotate in inertial space. The nuclei are
in vibratory motion about their equilibrium positions. About the
nuclei, electrons move in considerably more rapid motion. To compute
the allowed energies for the electronic motion along with those of
nuclear vibration and rotation from first principles would provide
accurate prediction of all molecular parameters as well as the complete
emission and absorption spectrum of the molecule. The difficulty, is
however, that the Schroedinger wave equation is impossible to solve
exactly for all but the most simple molecules,

Born and Oppenheimer, in attempting to find an approximate
method of solution of the molecular wave equation, assumed that the
electronic part of the wave equation could be solved for various
nuclear configurations with the nuclei held fixed. The wave equation
for the nuclei could then be solved by successive approximations with

the electronic energy making up part of the potential field in which



the nuclei move, This procedure is now known as the Born-Oppenheimer
approximation,

Theoretical work done in molecular physics can be generally
classified as falling into one of a few categories. The main divisions
can be taken as electronic structure calculations, vibration-rotation
calculations, and vibronic calculations. Among these divisions the
number of papers involving electronic structure calculations, (with
the nuclear framework fixed in its equilibrium configuration), and
those involving vibration-rotation calculations (assuming no direct
electronic interaction with the vibration-rotation motion) is vast,
These papers are important to the understanding of molecular spectro-
scopy and structure, This study, however, is limited to papers in
which the Bom-Oppenheimer approximation is not considered sufficient,
i.e., cases that deal with interactions between nuclear and electronic
motion which is beyond the scope of the Borm-Oppenheimer approximation.

The original paper by Born and Oppenheimer is not readily
available in English. It has been translated and a microfilm copy
was obtained from the Oak Ridge National Laboratory. The quantum
mechanical language and notation used is characteristic of early
quantum mechanics and does differ somewhat from modern works in that
respect. This difference makes the original paper more difficult to
read. In this study modern terminology and notation has been used
in presenting the original theory of Born and Oppenheimer. Some
typographical errors were located in the original paper and these will
be pointed out at the end of this chapter,

As was previously stated, the vast body of work which assumes



complete validity of the Born-Oppenheimer approximation will not
be considered here. A survey of work which does not assume the
Born-Oppenheimer approximation sufficient was made. It is
possible to classify this work in several more or less distinct
categories, These were taken to be: rotational spin uncoupling,
the Jahn-Teller effect, the Renner effect, general vibration-
electronic interactions, and miscellaneous improved methods of
calculation, Each of these is discussed in this work in turn,

The method used was a library search of physics abstracts
from 1926 to 1964, The abstracts were copied on cards and grouped
according to category. There is, as might be expected, some over-
lapping of categories particularly among the Jahn-Teller and Renner
effects, and vibration-electronic interactions since it could be
argued that the first two are simply special cases of the third.

Definitive or basic papers were identified, separated, and
given special emphasis. The most basic papers were then looked up
and read, whereas only the abstract was read for the others except
when the abstract was not clear or sufficiently explicit for our
purpose,

It is hoped that this study will make a contribution toward
identifying and clarifying those problems which are connected with

the Bomm-Oppenheimer approximation.



CHAPTER 1
THE THEORY OF BORN AND OPPENHEIMER

The theory appearing in the famous paper by Bom and Oppenheimer
will be presented in this chapter,

One seeks to solve the Schroedinger equation for the motion of
the electrons of a molecule located in force free space. Each electron
moves in the force field provided by the nuclei and by all the other
electrons. The nuclear framework is semi-rigid and thus admits
vibratory motion. This in turn provides a non-constant force field for
the electronic motion., Also, rotation of the molecule about its center
of mass is possible, Occurence of coupling among the various types of
motion needs, of course, to be considered as well, The translational
motion, as in classical mechanics, separates completely from the other
types of motion if one takes the coordinate origin at the instantaneous
center of mass, This will be done, and the translational motion will
not be considered further.

Since exact solution of the Schroedinger equation is out of
the question, an expansion method of approximation is used. In this
expansion, the zeroth order of approximation relates to the electronic
energy., Terms of the second order correspond to the harmonic portion
of the vibrational energy (normal modes portion), and the fourth
order of approximation is associated principally with the rotational

motion, As will be seen later, energy contributions from orders one



and three vanish. The vanishing of terms of first order is due to
the existence of an equilibrium position for the nuclei. For this
situation the electronic energy of the molecule is a minimum. The
vanishing of terms of order three is more difficult to interpret.

It is, however, indirectly due to the same fact which is responsible
for the vanishing of the first order temms. The theory also shows
that in order to determine the complete eigenfunctions in zeroth
order (and with them the transition probabilities in zeroth order)
one must calculate energies through terms of fourth order. Continu-
ation of the calculation beyond the fourth order has not been carried
out. It is neither simple, nor does it yield results of fundamental
significance. The diatomic molecule is treated as an example of

the general theory.

1. Notation and Definitions.

The mass and rectangular coordinates of the elections will be

denoted by

™ Ky Yes 2y k=1,2,3, " "ym
and that of the nuclei by

Muy X1y Y1) 21, 1-1,2,3,°*,N

Let M be the average of the nuclear masses M, . Let

) « =47

then
M _.m
2 My TR K



(3)

(4

(5)

(6)

(7)

(8)

(9)

(10)

The M, are dimensionless and on the order of unity.
The potential energy of the system is
U(Xy, 'jH Zyy Xay 'juzz."' ) X,,ﬂ,Z,,X“Yz,zz;“)z U(X}X)-

Here X denotes the totality of the election coordinates and X
that of the nuclei. The potential energy function depends only
on the relative positions of the particles, but here no use
is made of the particular form (Coulomb's law).
The kinetic energy of the electrons is represented

by the operator
2 , 2 a a

> (Lp+ ¥+ inm),

-
- "™ e

E am “ku
and the kinetic energy operator of the nuclei is
2,4 i > >t *

== 2 +
REE =P u (5% + 5+ 3z:).

The Hamiltonian is given by

H=Ho+ Kk H,
where
Te+ U = Ho (X, %5, X)

It will be convenient to use the 3N-6 independent relative
nuclear coordinates

& = &(X) , 1=1,2,3,°-(3N-6),

which specify the instantaneous distances between the nuclei,

plus an additional six coordinates:

6; = 65(X) , i= 1,2,3,4,5,6,



which are the three Euler angles (&, ®,¥) and the three coor-
dinates of the center of mass (X,, Yo, Z.) » these six coordi-
nates serve to locate the position and orientation of the
molecule in inertial space. The new coordinates g and © are
obtained from the nuclear coordinates X by a linear transform-
ation, a fact that has been recognized in writing (9) and (10).
This transformation does not separate the Hamiltonian

into translational, rotational, and relative motion. However,
H, - representing the kinetic energy of vibration and rotation -

may be written in three parts as follows:

(11) H, = Hgg + H§9+ Hee
(1)

and developments of general vibration-rotation Hamiltonians
show that I-l,§§ is linear and homogeneous in a% g2 gj ' H to
involves the %—gi ; and Heo is independent of §i . Some
general conclusions may be drawn about these operators. If the
operator H, is applied to any function of the relative coordinates
$(§) , the resulting quantity must be independent of the position
in space and therefore independent of the ©; . In particular,

in Hgg the coefficients of the %giagj cannot depend on ©; .

On the other hand &;, ©;, and %_éi must appear in ng in
addition to %_55. s Hep Will contain aa'éj , §;,and Oy in addition
to 94,0 o, -

The Schroedinger equation of the molecule is
(12) (H.+k*H, -W)V¥ =0,

where the eigenfunctions are denoted by } and the allowed

energies by W .



(13)

(14)

(15)

Electron Motion with Fixed Nuclei.

If in (12) one sets K=¢©0 , then a differential equation in the

Xy alone is obtained and the X, appear only as parameters:
[H (X, &5, X)-WIY =0

This equation represents the motion of electrons about fixed
nuclei. The relative nuclear distances and Eulerian angles
appear as parameters. We assume that this equation is solved.
If we let the origin of coordinates move with the center of
mass of the molecule, translational motion will separate off
completely from all other types of motion, the center-of-mass
coordinates X., Y., Z. will be superfluous if translational
motion is not of immediate interest, and O; will now repre-
sent only the three Eulerian angles(g, ¢,¥) . Translation
will be disregarded for our purposes and will no longer be
considered explicitly.

Let the n% eigenvalue and its corresponding eigen-

function be denoted by

W=V, (%), Y =Y (x,E,e1).
Then (13) becomes
[H.(x,%%,€,6) - V, ()Y (x,5,8)=0

All Vn,S are here assumed to be non-degenerate eigenvalues.
This is not usually true for all electronic states of a giveh
molecule, and if it is not so true, then special considerations
apply. These degeneracies were not, however, considered by

Born and Oppenheimer and will not be considered in this chapter.



10

It will be shown below that the function V,(§) plays
the part of the potential energy for the vibration of the nuclei.

Instead of taking derivatives with respect to §; directly,
let us replace &, by §, + K¢ ; and expand with respect to K .
The coefficients of a given power of K will then be a homogeneous
polynomial in §; whose coefficients are the derivatives with
respect to §; . Thus the expansion starts with a given nuclear
configuration specified by £ and expands about this configura-

tion, the deviations being given by ¢ . We have then,
(16) Vo (E+KE) = Vo + KV + KV +-0,
where
(a Vw =Va(E),
an ) Ve = % ¢, %%: ,
© W':=h % Gt S; -ga%i'—\g“—g}' ,
This is obtained by taking RV = aT%:\-L“(E) ALLKS) - ¢ 5 3 4YK€)

and evaluating at K =O , etc. Similarly,

(@) Ho= Ho+ KHY+ K*HP +--
18
e ) P K E R

Now we expand the quantities ‘*P:’ and ‘ﬁ\’" in terms of the

eigenfunction ¢ (x,E,6) :

(a) \P::’ = %‘ uf:\)n' kP:‘ )
19 0
Do ez U f

; "'y
where LL(:,,\' is a homogeneous polynomial of the Y™ degree in § g
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For example, multiply (18b) by ¢ \?:. )* and integrate over all

electron configuration space:
@) [(9) dx =2 Wl [(RT Y0 dx =3 Ul Swr,

since the ‘P S are orthogonal functions. Now

;‘ (§+K'§1) Zg(%%@ St which if

evaluated at K =0 becomes \P”= Q' ?ga . Making use
n % by i
of this equation (20) becomes:

- o \* S0P o vt D\
) W= SRS G 3R dx - 3 afeeny B dx
By a similar treatment:

(22) nn'= zzggj(\?) ag ag C‘f,

Thus as asserted, u.m' is a homogeneous polynomial of degree r
in Qi . The integrals given here, in which dx represents
the volume element in configuration space of the electrons, are
independent of the orientation of the nuclei in space and there-
fore independent of ©; . They may be evaluated in the princi-

pal axes system.

If F 1is any operator operating on Xj; then we will define
° r
(23) JORO)* F R dx = R

as the matrix element of the rI order of F. For r=0 this

becomes the ordinary matrix element
(24) e = o = JOPOYF 92 dix

In general, according to equation (19), ( \P":” = Z u? )
“ ’

“nll

(25) (V‘) = Z ug:.)w n"n' .
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Now it follows from (15) for K=0O , and for F=(HJ-\)) that

(H: =V e = ORI CH - Vo) P dx
= JORY(HI- V) 3, Ui fa dx
=35 e [SCRD M0 - SRV Rl
£ 25 Ul (VA S = W ) = USTH OV - V),

Thus

(26) He =V = ul (V-ve).

Now by substituting (16) and (18) into (15) and equating coef-

ficients of similar powers of K:owe obtain
@ H=VP =
)
@) ® (Ho= Ve) P + (KO -V) P =0
. ) o _
© (HI=VOE + (U2 - V)R +(HP-V0) ¢,
Due to the orthogonality of the eigenfunctions, multiplication
by ("P,;)* and integration over X; will, with the use of (25)
provide:
)
(a) LA\ml ( Va - V) +( Hm)nn' - Vg dwn! =0 )

(28) '
(b) unno ( Vv\' - \/n )+ ( H() Vw)nn' +( Hw nn va)énﬂ

The expansion (18a) for the Hamiltonian may be treated similarly

() . .
in terms of (MY w! ’(uo ) , e which are the matrix elements

( 2 Hi)m' ) WS)M')

These will be used later.



(29)

(30)
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The Perturbation Equations.

An arbitrary configuration of electrons and nuclei cannot be
dealt with by means of a general perturbation treatment. Only
those conditions that conform to a stable molecule can be
considered. For the unperturbed system the electron motion
will be considered for an arbitrary, but fixed nuclear con-

figuration E; . Next, all quantities will be developed in
terms of small variations of g, which will be designated

K&; . We assume that for a stable molecule the amplitudes
of vibration. go to zero as K goes to zero, an assumption

that is justified by the results.

As in paragraph 2, equation (18), we have the expansion

Ho (X, 35, £4+K8,0) = HI+ KHI+ KA HD 4200 |
where

° o o

Ho -Ho(‘x, a_i, g),
dH.
H?"Z S SE; »
1
kS

o > H.

Ha)= 1/2 Z qi Cj ag ag. ’
Lj 172

and by (11), since %F; f(E+KQ) = & &,C(guag),
where ‘F(§ +K&) is some function of § + K G

K H (X, 33)

\
K'(gr Hee + jK' Heo + Heo)

2,,0 3 o [ 4 W (2)
K Heet K (Hge + Hee )+ K Ho+ Heo+ Hoe



(31)

(32)

(33)

(34)

(35)
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where

° ° >

() Hee Heg (&, 33;9%; ),
' 3H°

b He, 2. G SE,

(@) Hie=Hie(8,0, 37,%),
(b) (I) ; 41 ang

() Hee =Hee (5, 9’5_8_55)
) (0) Z q D_égo

The argument &3 is from here on to be considered as a constant.

The Hamiltonian becomes

Uz Hok KM Hy = HI 4+ KHE 4 K3 CHP + HE )+ K3HD + Hg+

4) (0)) (z)
%)+ KECHD + Hyg + Hy + Hop )+ -

after substitution and collection of the coefficients of the
various powers of K .
Now we expand the eigenfunctions and energies in the

following manner:

- ° “) 2 (2) XX}
(@ V=V +xV ' +rk*WV "+ |
B W= W+K WP+ kW e,

Then, by equating the coefficients of the different powers
of K, in the resulting wave equation, to zero, the following

set of perturbation equations result:
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(@ (He-wW°)W¥°=o0,
) (HI-WHW =(W” - HO) v°,
36) (© (He- WIV®=(W@-H - HZ )W+ (W= HY) W,
@  (H = WO (W-H - Ho - HoO W e
WS HP= LW+ (W - )V,
(@  (He= WY (WO HY- M - He = HED Y
W= HZ-H - He ) W
WS- HE- Ho ) W& (W= W) 2

4. Solution of the Perturbation Equations of Zero and First Order;

Nuclear Equilibrium.

The zeroth order perturbation equation (36a) was presented in
paragraph 2 in the discussion of electron motion for fixed nuclei.
From the normalized eigenfunctions \P“°(‘x, E,©) introduced in
paragraph 2, and the associated eigenvalues V' =/, (&), one

obtains the general solution of (36a) in the form
(37) W= Xl (Z,e) P (x, 5,0,

where X: is an (as yet) arbitrary function of &3 ,0; .
These functions are needed to obtain the solutions of the higher

perturbation equations. The next perturbation equation (36b) is
)
(38) (HD-Wa) 7 = (W -H) W2

It may be solved if W is imagined expanded as a series in
Y°® . Then it may be seen that the left side of the equation

is orthogonal to \V: . Therefore, for non-trivial solutions
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to exist the right-hand side must be orthogonal to V.. with

respect to the X3 , i.e.,

JOEY (WO - HOY WS dx = o,

JORY ORI W X0 B dx = SO CRY HE X2 e dx =0,
or
Wa LI SCR)* P dx = 1Xo1* (HY ) =0
Thus,
(39) LCHw = WHY X212 = O,

where (Hg¢)., is the diagonal element of the operator H, ( X;)
and according to (39) it must be a constant, since for equation (39)
to be satisfied, we must have that (H(;))M s \/\/f,? ; the function

X w|* must be non-zero, otherwise W would be identically

equal to zero. It thus follows that

(40) W = (HO.. =0 .
Now, from (17) and (28a), and taking n'’=n , we have that
(H(g)nn= Vv(;', = 51:.\ < %—%—: =0 : hence
(41) 3\41 =0 , for all i.

Equation (41) shows that the relative coordinates gi cannot
be arbitrarily chosen but must correspond to an extreme value
of the electron energy V,(E) . It will later be shown that
this extreme value must be a minimum value. The function

X :(5,6) is as yet unspecified. If in (38) one sets
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Wn =Vu(&)= V2 ,WW=0, and W:=X: P’ , then

the defining equation for \V““’ is obtained:
(42) (HD - vOWY =-H 9 X..

A particular solution according to (27b) is of the form
(43) Yo o= Xa B,

where \P:) is the function (19a) defined by (18). The
general solution of (42) is obtained by the addition of a
general solution (‘P:) of the homogeneous equation with

another as yet undefined factor X“,:( £§,6) ; thus:
o .p) )
(44) W= Xa Pe + XG0

5. Solution of the Perturbation Equations to Second and Third

Order; Nuclear Vibrations.

The second order perturbation equation (36c) reads:
. ( H: _ w:)\ym - ( w(x) - H(:.) - HZ-; )LVO_'_(w(I)_ H(‘\)) \V(l).

After introduction of the first order solutions (44) this

equation becomes
(45) CHZ- VW = (W= HP- Ho X0 B = HI O o+ XE)

which has solutions only if the right-hand side is orthogonal
to P . Multiplying by ( ‘Pa )* and integrating over d x

results in
(46) [CHP + H2 ww +(H) - W2 1X0 =0,
Now it follows from (28b) for V{'=O that

(47) (H®)pw + (H)mw =V,



(48)

(49)

(50)

18

and since H;¢ is independent of X; , one has that, (H« Yo = “.‘

Now it follows that
) o
LH;, + Vi - WR1X, = 0.

Since H;C is the vibrational Hamiltonian, and since V(:’
depends on the displacements G; of the nuclei from their equi-
librium positions &3 , (48) must represent the equation for

nuclear vibration. More explicitly we have for (48),

[ He. CE, '5‘2’%5—53) + 1/2%. 514, a%l\g'e IX2=WEX,.

It is seen that the second order portion of V,( ) plays the
part of the harmonic potential enei'gy of vibration of the
nuclei. This provides a further condition for the existence
of a stable molecule, viz., that the extreme value of V,(§)
defined by (41) must be a minimum; for the quadratic form

V,(:)( £) must be positive definite if all normal modes are to
be stable and vibrations about the equilibrium point are
possible. Equation (49) would be separable if a linear trans-
formation of the €y to normal coordinates were to be performed:
If Oas(%) is an eigenfunction of (49) with eigenvalue \/\/:;) ,
then the general solution to (49) is

(a) w®

o

(b) Xus

ns ’ X X.‘s , where

Prs (8) T35 (&),

The index S specifies the set of 3N-6 vibrational quantum
numbers. The function (O:s (8) 1is as yet undetermined and
must be analyzed when continuing to higher orders of approxi-

mation. As is well known, the functions O’:S(C) are



(51)

(52)

(53)

(54)

19

linear conbimations of products of Hermite orthogonal functions
in the nommal coordinates. The property of the Hemite ortho-
gonal functions, that they are either odd or even will be used
later.

If @ is any operator dependent on &; , then the matrix
’bgg’, : [(ons) & Tl dg,

may be formed, where d & is the volume element in &3 space.
In order to solve equation (45), (48) is substituted into

(45) in the form
(Was “HZ ) X0, = V& X2 |

and then (45) becomes

u)

(Ha= Vo) W = (V2 - HZ)X oo P - HOUXS 2+ X

which has as the solution to the reduced equation :\13) °

“ ’

and the particular solution X :3 kP,(‘D + X:’S ‘-P: . The general

solution is therefore;
@ _ ° @) W 0} @ (po
\'/“ - XV\.S \P“ + an LPn + an LP»\ 9
@ . . os .
where X“s is another, as yet unspecified, function of qi
and ej , since (53) is the solution to the equation of vibration.
Next, the perturbation equations of third order (36d)

may be studied. Introducing functions that have already been

determined, (36d) becomes

(Ho = V) W = (W= H2-Hi - Ho )Xoy W2
H(WE = HZ = Ha (XS5 P+ Xas B
= HI(Xs P2+ X0 0+ Xoe ).

%),
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If the right-hand side is considered to be expanded as a series

in @, (54) may be written
(55) (H=VO WS = WX, 8 - 2 R Yy
where
(56) F;(:,) - 3,» Xm Fw,z> x() + I_—(.'m

Equating the right-hand side of (54) to the right-hand side of

ns ¢

(55) after substituting (56) provides
(57) 2 CREY XS Bh + 3P Xag P + o Xz B7)
= ( H(:-) + H;e + H(l) )XHS LP +( W(L) + l’l(2)+ H;,)(an "P“

+ Xs B+ HYOX 2 P2+ XK PO 4+ X2 ¢ ),
From (57) it is seen that

@ 2. RO X% e = HY X® lP,f,

"

(8) (b) 2 Fun X2 @0=1[(- + HE + HL) e+ HY PRI X,

— ns »
@ 2RI X0 On LM+ Mg + DRI+ (W + HE+ H W
w o
+ H(;) LPyl ]xﬂs ]
Multiplying (58a, b, c) from the left by (‘P:..)* and integrating

over dx gives

@  F' = (HY).w,
(59 ) Fafs CH + HE = Wil ) + (K
@ R = (CH2 % HEgr HE D = (W0 = HE = HE D +HOY,

,3)

where " is a homogeneous operator of odd degree in &'

and %—C- (see equations 31 and 32). Multiplication of (55)

1



(60)

(61)

(62)

(63)
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from the left by ( Pg )* and integration over dx yields
W X5 = Faa’ =0
Substituting (59a) into (56) and using (60), we find

R Xas = (WS- F3) X,

LY

and substituting (47) into (59b), we have
2 _ 0 @) (2)
F:S: = He,-;' + Ve - ns .

Equation (61) is the inhomogeneous equation related to the
vibration equation (48) through the functions X :5 . Since
(48) has solutions X, = 2 '; (8) T2 (<) by (50b) with
eigenvalues Wf:'s), (61) has solutions only when the right-
hand side is orthogonal to c"‘:, with respect to & space.
Because of (50b) this provides a differential equation for
Fos (8,

(Fap =W A =0,
However, as has been established, F,::{n is odd in &,
and %-&1 . If F‘:’:’ is transformed to normal coordinates
Yli , %_Y\i , then it will also be odd in the normal coordinates,
because the transformation from & 3 to Y{i is a linear trans-
formation. Furthermore, the O, ,\°5( &S ), when transformed to

O “°s (Y\) will be products of hammonic oscillator wave func-

tions, so that the integrands of
-]
33 o ° °
r{&’" = j_w Tns (M) F;\‘:”(Yl,%—,,\) Ts (W) Jy‘

will be odd in v|; forall 1 = 1,2,3,--*, 3N-6. Hence,

2’? =0 for s =g’ . Then for (63) to have non-zero
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solutions ,o:s (8 (which we must have in order for the total
wave functions ¥ to be non-vanishing), we must have that
W(3) =0.
The functions (3, remain undefined. Now (61) becomes
2 v - _ ]
F::‘ an - Fv\(:.' X nos ’
and its solution has the form
v _ o) o
(64) ns = Ons Rs s
where S:)s is the following operator (with respect to €;):
3,3)
s - Z' F‘sg, Tt
ns

(65) S w:zs) _ :\z; o
Equation (65) can be obtained by the following steps:
Faw™ :\”s =- F::(S) X:s =" Fﬁ\w (Pns Tns ’
(Hee # V- Wa) X = - F2%p2 o0y,
(WS -CHIe + VXS, ESP RS o,
we now let Xy = /0,‘: ‘; Qg Tnew and have
(W2 A3 2 Qe s = H;¢+v?)@'s§, Q"]
LW B1T Quo T = 1 T Qe Wil Tl s £,

We multiply from the left by (O',‘:s:)* and integrate over d & to

obtain
) (2) (33
ws Qng = Guy Whg = Fan 5
ss!
thus (3,3)
F‘n“
- ss’ . _
(66) Qg = ( @ W ’ QAys=0
ns = Wayg'

. ° et
Since we had Xa’s = Sf"; “: = /?‘:Zans,,qs,,subst1tut1on of
SH



(67)

(68)

(69)

(70)

(71)
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(66) into this establishes (65). Now (55) becomes
3 _ (&) °
(R -V YS == 2, R #0 .
> . . . o
If \I"“ is expanded as a series in ‘-P“ , then (67) may be
multiplied from the left by ( ‘P:.)* with n#n’ and integrated
over dx to give:
: 3) o
[} F_( [} '
W= 2 —V%“:E\g“—
n n!

n )

which can be written as
(z) (s m )
\‘Vm Z ( é:\" l?n"'- vx)n' ns o (:'n’ an LPn')

This expression may be treated in a manner g)]inilar to (56) and
one finds that G-(:n") is a number, o= (_\/F%;J{T,') , and is a
differential operator with respect to &; , whereas G‘vm‘ is an
operator with respect to 4;,6;. Now using (28b),

1) (He)ny! f;: @ _ <
Z- " lpn' Z Ve = Vi an '%u:‘:’ X‘z) kPan:,

Hn‘
thus finally we can write
) (3,2) \rel) cs,n
1"”:”3 LP::’ f\zs 4'2( Gonw X \P):' + Guw an LP“,)

Solution of the Perturbation Equations of the Fourth and Higher

Orders: Rotation and Coupiing Effects.

Equation (36e), after substitution of the quantities that have

already been found, becomes
(H - VYWY = (W= H - W - e - HE) X P2
= CH & Hog + Hoo XOKS 2 +xns ‘P">
+( w‘:;-H‘Z’—H;a( XS Qe X0 P X2 )
- HZLOY X2+ (G X ¢ +G‘,.’*;”?x:, o).
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The right-hand side can be expanded in terms of ‘Y. to obtain

(72) (HE=v2YW® = W X2 9 '% Font B0

where

(73) Pt = Pt 2 XaZ + R X + Fad X5
and where

(74) P2 CHO, + HZ = WB ), +(HY o -

This is found by multiplying (71) from the left by ( $2)* and

. . 42) . . . A
integrating over dx . F,‘(nﬂz) is identical to E‘,‘:‘,”, (59b), ,\t‘?
is of odd order in &; and %—q , and E:t‘ 'is of even order in Sy
i
)
and =—. .
EYy

Equation (72) has non-trivial solutions only if the right-
hand side is orthogonal to ‘P: . Multiplying (72) from the left

by (Ps)* and integrating over dx provides
w* X5 - E¥=o0.
Substituting this into (73) gives
(75) B2 X2 = (W - F4) X0 - B9 X,

The left side, because of (74), is identical to the vibration
equation (48), and therefore the right-hand side must be orthogonal
)

to 0.5 . If the values of X:, and A,s from (50b) and (64) are

introduced along with the definition

@ F—(J,S))
(76) (@) = J(3200" @ S ds = Z el

then it follows that

(77) [ Fag + (R0 ¥y 00 -0,

% ss
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These equations at last define /o:s (6) , and therefore the
motion of the principal axes of inertia in inertial space.

The most interesting term of the operator in (77) is the one
that contains the second derivative with respect to 6, ; it

is formed from H3g X5 \p° as may be seen in (71) and therefore

corresponds to the term in F',::") ,
(78) (3w = SO He, (P2 ) dx

where in the position of the dots the function on which the
operator acts in introduced. Instead of the simple operator
ng , the more complicated (T—!_:;)“ occurs. Physically, this
corresponds to the inclusion of a coupling of the rotational
motion of the nuclei with the electron motion. This is the
effect which Kramersand Pauli(?) attempted to describe in
diatomic molecules by mounting a flywheel on the rotating
nuclear framework. Then there is in (77) the term which is
derived from the operator H¢9 . This corresponds to a coupl-
ing of the rotation with the angular momentum which results
from the nuclear vibrations. Finally, there is a term that
does not affect 6; . It gives an additional contribution on
the order of k* to the vibrational energy and represents
anharmonic corrections,

We now consider the rotation. If r represents a
suitable set of rotational quantum numbers, then one has for

the solution of (77)

(79) W = Wasr 3 2% = Fase (O).



(80)

(81)
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Now (75) and finally (72) can be solved. It is not instructive,
for our general considerations however, to write out the solu-
tions explicitly.

The treatment could be carried on, but nothing fundament-
ally new would result. The higher perturbations describe the
coupling between rotation, vibration, and electron motion. No
new quantum numbers that have not already been introduced would
result.

We now summarize our principal conclusions. It has
been demonstrated that to completely define the eigenfunctions,
even to zeroth order, the solution of the perturbation equations

is required to fourth order, since
Wose (%, 4,0) = 92(x, 5,003 (&) Qe () +++1,

where \f; is the eigenfunction of the electronic motion for
fixed nuclei, Ows is the eigenfunction for hammonic nuclear
vibration, and P,‘Z,. is the eigenfunction for rotation of the
nuclear framework. The vibration coordinates & are measured
from the equilibrium positions §; , which are defined as the
positions for which the energy of the electronic motion V,.(&)

is a minimumn. The energy to the fourth order is

- 2 @ “)
str-v:"‘K “3+K4 WV\SV‘+."’

]
where V, is the minimum value of the electronic energy
which is characteristic of a situation in which the nuclear
. . . . e . )
framework is rigid and at rest in inertial space, Wy\s is the

. . . “) .
hammonic nuclear vibrational energy, W,s» gives the energy



(82)

(83)

(84)

(85)
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of rotation plus anharmonic corrections to the vibrational energy.
Up to and including the fourth order of approximation, the
vibration-rotation motion is independent of the motion of the
electrons.

Special Case of Diatomic Molecules.

As an example of the method, a short treatment of diatomic
molecules will now be given. Since degeneracies will not be
considered, this will be for the special case when the axial
component of the angular momentum of the molecule is zero.

In the case of two nuclei there is only one § coordinate
for the nuclear separation, and five 6 coordinates, which are
the coordinates of the center of mess X,,Y, ,Z, and the polar
coordinates of the orientation of the nuclear axis, § and w .

The kinetic energy of the nuclei is given by
1;,“"( [A-i- gz. ag(g )+ A)
where

€= Tam , po= P

@ A 3 +§7““57.. ,

- A ? . :
b)) A Sin%*e ai o*t sineg %‘6 (sine %‘é)’
2 2
@ My =~ M g

m
oM
Heo m ‘%ﬁ ?F
© Hog == 2w (B /§x Do),



(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)
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Replacing § by & +K& and expanding in terms of k , we find

o _ 2 a"
@ Heg *~gwm X 532,
(b) H;§= o) , P=1,2,"'

« .-k 2M o
(a) H §z |

®)  Heg® %V‘ %d’-g_’;’

R
@ He=- 25, (Ao+"€ﬁ Ay,
® He= f % <A

The equilibrium nuclear separation is determined by

The equations of nuclear vibration (48) are
2 2
EE L 2t s - W1 o
Let
4
);_\\'ﬂ_ _m% , M =S /b ;
then (90) becomes
X L& -v)Y° -
with eigenvalues
Vo? = 25+1 y S = 0,1,2, -
and eigenfunctions
. M
o_ns = e Hs(vk)

where H¢(N) is the S hermite polynomial.



(94)

(95)

(96)

(97)

(98)

(99

(100)
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The vibrational energy is then;

L WE sa % KA c@s b BKA = (S+ 1B BV
or

K*We =(5+%) hy, ;
where

AV = e (A =

The rotational equation (77) exclusive of the anharmonic

correction to the vibrational energy is given in (97). Since
He:e does not contain derivatives with respect to ©; , according
to (85), all temms in (77) except (l-l ;e)“ will be represented

by a constant, Cyg,
— -}
[CHan + Cns — WP TR =0

The translational part of Hg, may be omitted. According to
(78) and (88), for an arbitrary function §(6):

CRRIE - B[O 8, (0 ) dx,
and by (84)

AoCP24) = 02 Ak + £ Ag00 + 2 (s 3k 35 428788

[

Therefore
(Moo $0 == F4, [4,6+£-1(R20A, ‘P:o(x
ok 35 () 35
Now since 238 f(e) é:gfozx].

Ae"aa_e +cot9-e+-—1—,,-eawz
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it is convenient to let:

1)

8o = [Cor ¥ dxe, A, = [(e) 2 dx,

(101)

]

3= [ K x| mr - (O LR da,

o6 )
The quantities (101) are the diagonal elements of the matrices
of the angular momenta ng , Lo as well as E: ’ [.:, (except for
a factor of 2 or 42), where 6 and co are Euler angles, and
-2

Le, Lw are squares of the mean values. Using this notation

in (97) provides
(102) [(g%z+29“§e+® )4-<;ote(a +8.,)

+ Si1n’*e( Sw +2.T1, 3 S+ )+ ‘!5(Wm Cus)lRs 0.

According to (102), the magnitude of %53&5 w® is equal to
a numerical function of the rotational quantum numbers, 3,,(r) s
for the rotational energy it then follows that
g4
(4) ﬁ M
K ansr

(103) 2mgr Jns(r) = £ Guetr

where

109) Sk ST w55
and is the moment of inertia of the nuclei in the equilibrium
configuration.

Higher approximations will not be considered in this
section. It will be shown next that the diatomic molecule may
also be dealt with by a different perturbation treatment where
the unperturbed motion will consist of the electronic motion

plus uniform nuclear rotation, rather than nuclei at rest.
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8. Independent Treatment of the Diatomic Molecule.

Substituting equation (11) into (12) we obtain
(105) DH KOO + Hgg + Hyg) -wWiW =0,

In the diatomic molecule H go is independent of © , therefore
it is again possible to separate translation and rotation.
Making use of (85) and omitting the terms corresponding to

translational motion we have
(106) [H,-%K‘(%%ﬁ%%§+J§-aAe)-W]W=O.
Now let
(107) V=Y. (8,0 W.(x, 8,

where Y, is a spherical hammonic of v order, i.e. a function

which satisfies
Ng Y, +r(r+1)Y,=0.
Then it follows that
(108) [l-lo‘gfﬁK"(%lgz““%%g‘r—(%))-w]\?r:o.

Now we replace § by § + K& to provide an equation for the

vibrations with uniform rotation. The energy of these states

is given by

(109) R < Bk ‘i‘%—‘}ﬁ = Bororen),
Now we set

(110) w=E+R

and equation (108) becomes

(111) (H°4_KH(U+K2H(2)+... _E)'\K:O,
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where
(a) H® = H3 ,
®  HY= HY+ <R,
(112) © H® = Hcoz)_‘_ % ZIQR"-%‘ %%L ,
@ KK iR R-EL 2 3
and l4:,|4g;"‘ are the operators defined earlier in this paper.

Following the procedure that has already been established, the

perturbation equations are
(@ (H-E)YY¥ =0,
W) ) (H-EVH = (ECH) Y,
@  (H-£)PP= (E-H") W+ (E™- HY) Y e,
(113a) has the solution
(114) E°= Va(%), W= W= oW (8) Pk, 8,

where V, (%), (x,5) have been defined previously and Ty is
arbitrary. The condition of integrability (making use of

orthogonality relations) for (113b) is
(E®-HY) o (&) =0,
Now according to (28a), section 2,
(115) HY = (HY),, + & R'= V:’+§'R'=§'j%- (Va+R);
therefore it follows, as in section 4, that
(116) E”:0 , 3?”5 (V, +R) =0.

This means that for the undisturbed rotation, the centrifugal
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force must be equal in magnitude but opposite in direction to
the restoring force which is due to electronic motion. The

centrifugal force is given by

1,1 o 1
(117) - (M.+Mz) %z = - <f‘j;|'+_/'4 )%2 Y(r+1)

2 g*
where L,=\F(red 4 is the éngular momentum of the system.
From (119) the equilibrium displacement &, may be computed
in temms of the rotation quantum number Y. For small values

of the rotational energy, £, may be expanded in powers of £ ,

where
(118) B=k'E K rireq) = (';-’\f"MJ%‘ ror+1)
to provide
- _1_. 3 "
(119) €r" ~§ + gsvhnﬁ" m2(1+ 5/6 .\_/\7:.‘\" )pz_;.--..

Since B is on the order of K* , only as many terms of this
series may be used as will correspond to the degree of the
approximation in the perturbation treatment.

Proceeding by the method used to solve (113b), we have
w o D) ) 0
(120) V., 2 Oy B + 0 B,
and the condition of integrability of (112c) is

(121) [ Mo +H -EY107 = O,

Now the vibration equation becomes
2 A
q 2 ' " ¢
(122) [-54 S+l SHV +R) -ER 1o, 7 O
Using the method of section 7, we obtain

2@ 1
(123) K*Eyps = (5+ %) hvy



(124)

(125)
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where the frequency V. is given by

ﬂﬁﬁﬁ WO(V +R")

and is still dependent on the rotation quantum number r that

appears in R. Further as in section 7,

° -t
Svns = € Hs(ﬂ) )

where

TR 75 (VW +RY) 5 and Hy O

is the St Hermite polynomial.

If this treatment is continued in the manner previously
established it will be found that E®: 0O, and E®is of the
character predicted by the general treatment.

Errata.

We conclude this chapter with a list of errata that we have
found in the Born-Oppenheimer paper. Corrections have been
made in this thesis.

In (54) [(51) of the original paper] a superscript in
the first part of the last term was corrected.

Equation (59b) [54b of the original paper] H?’ should
appear with a positive sign.

On page 16, after equation (59), it was stated in the
original paper that Fi\sf,\{) is of third degree in Sy, %_Ci'

A correct statement is that FG’”

is of odd degree in
qi>a€i In (71) [(63) of the original paper] several errors in
both superscripts and signs were corrected.

In (90) [(86) of the original paper] a negative sign was

omitted in front of W:‘l).



CHAPTER 2
MAGNETIC INTERACTIONS BETWEEN MOLECULAR ROTATION
AND ELECTRONIC MOTION

As we have discussed, the Born-Oppenheimer approximation assumes
no direct interaction between electronic and nuclear motion., However,
when the electronic state is not one of zero angular momentum, then --
aside from generally small electrostatic and gyroscopic interactions
of higher than fourth order of approximation -- it is necessary to
consider magnetic interactions between the rotating nuclei, orbiting
electrons, and electron spins, This will result in vector coupling
of various types depending on the relative strength of the predomina-
ting interaction. The effect is most pronounced in diatomic molecules,
For these, F. Hund in a series of papers from 1926 to 1928 distinguished
four ideal cases of coupling, It has been found that molecules usually
exhibit predominantly one of these cases. Generally, no actual case
corresponds completely to one of the ideal coupling schemes, It is,
however, found that most actual cases approximate one of the ideal
cases fairly closely., In some molecules one form of coupling may
go over into another if the vibration or rotation energy of the
molecule is changed.

We describe now the four coupling cases as given by Hund,

35
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Case (a): Here the spin-orbit angular momentum with quantized pro-
jection.n.fi along the molecular axis couples with the rotational
angular momentum 0f of the nuclei to form the total angular momentum

J™ as shown in Fig. 2.

Fig, 2

We have that S*™h is the resultant spin angular momentum of all
electrons with quantized projection X4 along the molecular axis,
LM is the resultant orbital angular momentum of all electrons with

quantized projection Ah along the molecular axis, and

Oz A+

L= JLL+D)
S*= YS(S+1)
T2 JJ(T+1)
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Actually, Of is not simply the rotational angular momentum
of the nuclei, but it is a sum of this and rapidly fluctuating
components of the spin and orbital angular momenta perpendicular
to the molecular axis due to their precession about this line, If
A% O , the electronic states exhibit a two-fold degeneracy which
is removed by the rotational-electronic interactions giving rise to a
splitting of levels that is called A -doubling., (Before 1930, thibs
was called 9 -doubling). The splitting is due to a small difference
in the energy depending on the sense of the over-all rotation relative

to the electronic motion,

Case : If A=O0 , or if L* is small, then S* cannot be considered
as tightly coupled to the molecular axis; then A and 0 form a result-
ant N* to which S* couples, forming the total angular momentum

vector J*, In this scheme the spin is thus uncoupled from the molecular
axis, as shown in Fig, 3. When L* is small but A %Q , an electronic
degeneracy is again removed by the rotational-electronic interactions

giving rise to A -doubling similar to case (a).




38

Case (c): If the axial field is not strong enough to break down
the spin-orbit coupling of the individual atoms that form the
molecule, then the total angular momenta J i*h of the individual

atoms will precess about the molecular axis with quantized projec-
tions along the molecular axis that add to form N+ = ; Ji (axial
component)h which then is added to the rotational angular momentum Oh
forming the resultant total angular momentum J™i of the molecule,

Case (c) is illustrated in Fig. 4.

Fig. 4

Case (d): If one electron in a molecule moves in an orbit that is
large compared with separation of the nuclei then this electron,

which carries most of the orbital angular momentum, will be influenced
by axial field polarization, so L* will not have a quantized projection
along the molecular axis but will add to the angular momentum of

rotation (with quantized magnitude R*) to form N* which then adds to
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S* to form the total angular momentum J™ of the molecule, as in
Fig, S.

Rotational-electronic interactions cause each rotational
level to be split into (2L + 1) components, As in case (b) the

spin is uncoupled from the molecular axis.

Fig. 5

The development of these ideas is given in a series of papers
published by Hund3,4»3+6»7 in 1926, 1927, and 1928. Experimental
work since that time has demonstrated that cases (a) and (b) are the
ones which principally occur along with a coupling scheme inter-
mediate between (a) and (b).

Further work was done by Hill and Van Vleck® (1928) who
developed a theory of A-type doubling. They considered the spin-
rotation interaction and showed that case (b) can be converted to
case (a) with an adiabatic increase in coupling energy. The coupling
energy was found to be proportional to the cosine of the angle

between S and the molecular axis. The treatment forms the basis of



40

all further work on spin-uncoupling phenomena in coupling inter-
mediate between Hund's cases (a) and (b).

An experiment by Weizel® (1928) in which he discovered nine
bands in the He, spectrum consistent with the angular momentum
becoming uncoupled from the rotation helped verify Hund's ideas.

The theory of the distortion of spin multiplets produced
when the molecule rotates along with X -type doubling was developed
by Van Vleck!? (1929)., He predicted that singlet v states would
exhibit A-type doubling proportional to j(j + 1) where j is the
rotational quantum number, ) doubling, he found, is modified by the
spin in *® states, while p doubling in *s states is due to rota-
tional coupling with the fluctuating components of spin and orbital
angular momentum perpendicular to the molecular axis.

Rotational uncoupling of the orbital angular momentum from
the molecular axis was discussed by Watson!! (1929), He concluded
that the rotational energy is limited by rotational instability due
to the uncoupling,

Kronig and Fujioka!2? (1930) outline a method by which
constants that measure the decoupling may be determined from the
spectrum, and the manner in which they affect intensities. Using this
method Fujiokal3 developed several intensity expressions.

Mulliken and Christy!"* (1931) reformulated Van Vleck's equation
for ) -type and spin doubling in !t ,*3 , and *W states; the results
were applied to several molecules (including intermediate coupling
cases), They found that agreement was particularly good for CaH.

They revised some doubtful J values and identified a new branch in
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the spectrum,

Rotational uncoupling was discussed by Davidson!S (1932)
who found band values and intensities that agree fairly well with
theory for bands in the hydrogen molecular spectrum,

From the work of Van Vleck and that of Kronig the conditions
for the occurrence of perturbations were investigated in detail by
Diekel® (1935)., He found that when the electronic motion can be
described approximately by the precession of a constant angular
momentum about the molecular axis, the elements of the perturba-
tion matrix can be calculated completely,

Van Vleck!7 (1936) demonstrated that the coefficient of
JJ + 1) and (v + 1/2) in the energy terms of hydrogen or deuterium
must contain small corrections due to L uncoupling. The magnitudes
were estimated.

The explicit form of the interaction between rotation and
spin was given by Kovacs!® (1961) for cases intermediate between
(a) and (b) in the *r, 2A ,3w, s, and * states. Previously
the explicit form of the interaction between rotation and spin was
known only for Hund's case (b).

Most of the major theoretical work on Hund's cases was
completed in 1936, An outline, again in historical order, of other
work done in this area will now be given.

Mulliken!? (1927) derived equations for the intensity in
case (b) doublet states in diatomic molecules.

Hund20 (1928) showed that rotational uncoupling has only

limited application when the molecule is in strong electric or
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magnetic fields.

Mulliken2! (1929) published a table summarizing the experi-
mental work that had been done on A -type doubling up to that time.
Dieke22 (1929) discussed the influence of a progression

between cases (a) and (b) on the band spectrum of helium,

Mulliken?3 (1930) gave rules for the determination of .
values and symmetry properties for case (c) coupling.

Mulliken2* (1930) published a table of spectroscopic notation
proposing some revisions. One change was the decision to give the
name ) -type doubling to the effect that had previously been called
o -type doubling.

Van Vleck25 (1951) reviewed the theory of rotational uncoupl-
ing in modern formulation relying heavily on angular momentum
commutation relations. He then applied this to:

(a) Polyatomic molecules with no internal angular momentum,

(b) Electron spin coupling in diatomic molecules not in

2 states,

(c) A-type and e -type doubling.

(d) Coupling of electron spins in polyatomic molecules.

(e) Coupling of nuclear spins in molecules with S = 0,

(f) Intensities and behavior in external fields,

Mann and Hause26 (1960) studied rotational uncoupling by
measuring the magnitude of the infrared Faraday rotation (rotation
of the plane of polarization of incident plane polarized light) in

the NO molecule in 270, and 2w, states.
2 3
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Hougen27 (1963) obtained expressions for the rotational
energy levels in vibronic states using spin uncoupling concepts.

Chiu?® (1964) studied predissociation of diatomic molecules
in case (b) coupling,

Flygare2? (1964) derived equations relating spin-rotation
constants and magnetic shielding.

Raynes3? (1964) presented matrix elements for the Hamiltonian
of a nonlinear polyatomic molecule in a multiplet electronic state
which include magnetic interactions between unpaired electrons

when the multiplicity is non-zero.



CHAPTER 3
THE JAHN-TELLER EFFECT

Degenerate electronic wave functions are possible only if
all the atoms of a molecule lie on a straight line, according to
a theorem proved by H. A, Jahn and E. Teller3! in 1937, In all
other cases involving degeneracy of the electronic energy, a more
stable configuration will be one in which the nuclear framework
is distorted by the electron cloud. This has the effect of removing
the orbital electronic degeneracy by the perturbing influence of
the distortion, The degenerate states will be split in energy by
an amount approximately determined by first order perturbation

theory as:
Ew-E.= JW'HYdr

where H is the perturbation potential, and E, -Ep is the amount
by which the electronic energy is shifted if it is in state W,

in the absence of the perturbation. The perturbation takes the
form of a distortion vibration which is usually called a Jahn-Teller
vibration. Since degeneracy in the electronic wave function was
ignored in the original work by Bormn and Oppenheimer, the Jahn-
Teller effect lies thus beyond the scope of the Borm-Oppenheimer

approximation,
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A distinction must be made between the so called 'static Jahn-
Teller effect," and the ''dynamical Jahn-Teller effect." The former
refers to distortion of the nuclear framework by a given electronic
configuration, i.e. the equilibrium configuration of the nuclei
is permanently changed by the electronic distortion. The latter,
which is the situation that obtains when the electron-nuclear
coupling is weak deals with the distortion of the nuclear motion
by the electronic motion without the nuclei taking up a new equi-
librium position.

The Jahn-Teller theorem holds rigorously ‘only if the wave-
functions considered are for all electrons involved in molecular
binding. It can further be shown that spin degeneracy is also
necessarily removed by the distortion of the nuclear framework if
a stable molecule is to result.

The Jahn-Teller theorem was introduced in 1937. However,
further contributions to the basic theory included in the general
discussion above were made by H. A. Jahn32 (1938) and by Sponer and
TellerS* (1941). Further contributions in the area follow below.

Van Vleck33 (1939) in developing the theory for the structure
of a molecular cluster of the form X*6H,0 (X = Ti, V, Cr) found
that stability is achieved only if the H,0 groups are distorted
from a cubical arrangement in the manner required by the Jahn-
Teller theorem.

The ideas of Jahn and Teller were enlarged upon by 5pik and
Pryce3* (1957) in a survey article in which they discuss the linear
molecule as well as octahedral complexes.

Moffitt and Liehr3S (1957) discussed the implications
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of the Jahn-Teller theorem for the case that the distortion forces
tending to lower the electronic symmetry are of the same order of
magnitude as the vibrational restoring forces. They show that this
leads to direct coupling between electronic motion and nuclear

modes of vibration in the dynamical Jahn-Teller effect. Extensive
calculations were performed. These are of importance for the general
understanding of vibrational effects in the ultraviolet spectra

of molecules.

It was found by Thorson“> (1958) that some forbidden transi-
tions become allowed when the electronic degeneracy is removed by
the Jahn-Teller effect.

Longuet-Higgins, Opik, Pryce, and Sack3? (1958) provided a
survey of the dynamical Jahn-Teller effect and also found that
several ''forbidden' electronic transitions become allowed transitions
when the nuclear framework is distorted to remove electronic de-
generacy.

Clinton and Rice36é (1958) reformulated the Jahn-Teller theorem
with the aid of the Hellmann-Feymman theorem (which states that
many properties of molecules may be explained by considering the
electron cloud as a classical charge distribution rather than
relating it to the customary quantum mechanical interpretation).

In this way they were able to formulate the problem in terms of
forces rather than in terms of the usual energy approach.

Child“? (1960) found by group theoretical arguments that
under certain conditions there is no Jahn-Teller coupling between

vibrations of the same symmetry type.
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Clinton38 (1960) outlined a dynamical treatment of the Jahn-
Teller effect in which effects in the moving nuclear framework
are treated as perturbations on the orientation of the charge
density in inertial space. The Hellmann-Feynmann theorem was used.

It was shown by Hobey and McLachlan>? (1960) ‘that the Born-
Oppenheimer calculation can be adapted directly to a degenerate
electronic state. They used a dynamical Jahn-Teller treatment to
set up the equations of motion and discussed symmetry-forbidden
transitions that become allowed through Jahn-Teller distortion.

Clinton and Hamilton5! (1960) used the results of Clinton
and Rice3® to calculate force curves for 0; and NO.

A dynamical Jahn-Teller treatment was used by Liehr32 (1960)
to calculate vibronic intensities in electronically forbidden
bands.

Zalewski3? (1961) presented the results of a study of the
static Jahn-Teller effect in the C6H6+ ion. Bond lengths were
computed.

Child and Longuet-Higgins“® (1961) developed the theory
needed to interpret infrared, Raman, and microwave spectra of
molecules in electronic states with orbital degeneracy. Conclu-
sions were drawn about a molecular dipole moment that would be
symmetry-forbidden in a non-degenerate electronic state, and
Jahn-Teller active vibrations that give rise to overtones.

Child*! (1962) investigated the general case of a four-fold
degenerate octahedral molecule for strong vibronic coupling with
a Jahn-Teller vibration and made predictions about the spectra

that should result.
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The Jahn-Teller effect in the particular case of aromatic
ions was studied by Coulson and Golebiewski“2 (1962). They found
a potential function more general than that of Moffitt and Liehr3S.
It is in good agreement with theoretical electronic structure
calculations for benzene and triphenylene.

Coulson and Strauss“3 (1962) computed potential energy

+

curves for an arbitrary displacement of the atoms in CHu+, CF, »

and the excited states of NHa* and NH, by using the Hellmann-
Feynman theorem. They were able to make predictions of the
magnitude of the displacement of a nucleus in the static Jahn-
Teller effect.

Child“"* (1963) developed formulas for vibronic energy levels
of electronically degenerate molecules that exhibit a weak Jahn-
Teller effect.

The static Jahn-Teller effect in octahedral and tetrahedral
molecules was examined by Birman53 (1963). Several modes of
instability were found, and suggestions were made for further work.

Forgman and Orgel“® (1959) measured the infrared spectra
of the tris-acetylacetonates of chromium, manganese, iron and alumi-
num to 400 cm ! The nature of the bands which they attributed to
the vibrational motion of the oxygen atoms relative to the metal
was, they concluded, consistent with the operation of the Jahn-
Teller mechanism in the manganic compound.

Claasen and Weinstock“7 (1960) failed to detect a Jahn-Teller
effect in IrF; similar to that found in OsF.

Snyder“® (1960) attributed poor resolution in the E.S.R.
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spectra of aromatic negative ions to the Jahn-Teller effect.
Experimental work done on the Jahn-Teller effect that comes
under the general heading of solid state physics is not covered
here although much has been done in that area.
Further references to the Jahn-Teller effect will be found

in another section dealing with general vibronic interactions.



CHAPTER 4
THE RENNER EFFECT

The structure of the n-term in linear, triatomic molecules
was investigated in 1934 by Renner>3. The two-fold degeneracy
in the n-term could be removed, he found, by a perturbation
produced when the molecule was 'bent." This bending is produced
by two-fold degenerate vibrations, the ''bending modes."

A two-fold degenerate electronic wave function of the
form “y= Vli_“ e““ describes the n state in a linear triatomic
molecule when all of the nuclei lie on a straight line. (Where ¢
is the azimuthal coordinate) and A is the component of the total
electronic angular momentum along the molecular axis. (The angle
¢ is mearured around the figure axis.) Under the perturbing
influence of a distortion vibration, the degeneracy is split such

that even (gerade) and odd (ungerade) non-degenerate wave functions

result. These may be written:

Renner was able to compute the difference in energy in the V@
and ¥, vibronic states.
There was no further work on this effect until Dressler and

Ramsay>6é (1957) suggested that the transition between two states
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with large vibronic splitting in the electronic absorption spectrum
of NH2 should be written 2Al ™ --2B, according to Mulliken's defini-
tion of B,. They expected spectra of the same type for HCO, CH2+’
BH,, and H,0".

The ideas of Dressler and Ramsay lead to predicted frequencies
that are in agreement with experimental observation, according to
Pople and Longuet-Higgins57 (1958). PopleS5® (1960) extended the
theory of vibronic interaction in linear triatomic molecules in «
electronic states to account for coupling between an odd electron
spin and orbital angular momentum. He obtained expressions for
splittings and shifts in energy.

Hougen39 (1962) considered the effect of Fermi resonance on
the vibronic energy levels of linear triatomic molecules in =
electronic states when the Renner, and spin-orbit interactions are
small compared to the distortion vibration frequency. The results
agree with experimental data on the A2r vibronic states of BO,.

Hougen and Jesson8? (1963) give expressions for anharmonic
corrections to the energy of vibration of linear triatomic molecules

in = electronic states with very small Renner effect and spin-orbit

interaction.



CHAPTER 5
THE GENERAL INTERACTION BETWEEN
ELECTRONIC MOTION AND NUCLEAR VIBRATIONS

In the Born-Oppenheimer approximation, interactions between
nuclear and electronic motion are completely neglected. The wave
function y is assumed separable: ¢ = Yo ¥n» where y is the com-
plete wave function, Ve is the purely electronic wave function,
and Yy is the wave function corresponding to nuclear motion.
Actually the wave function ¢ contains an interaction tem
neglected by the Born-Oppenheimer approximation, i.e., ¢y =
(we vt wen). This function is termed the '"vibronic wave function"
if Yy = vy (vibrational wave function) and VYen = Vev (an inter-
action term that cannot be factored). The function ¢ is termed

" s s san'' 3 = =
the '"'rovibronic wave function'" if Yy = ¥y, Vo and VYon = ¥ where

evr’
Yy is the rotational wave function and Yovr is an interaction tem
involving vibration, rotation, and electronic termms that cannot

be factored.

The Jahn-Teller and Remner effects are seen to be special
cases of this more general treatment of interaction temms ignored
in the Born-Oppenheimer approximation. At times it is difficult
to distinguish cases which should be classified Jahn-Teller effect
or Renner effect from the more general vibration-electronic inter-

actions.

The first significant paper published in this area - which
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remains a very active one to this day - was by Condon®! (1927)

in which he proposed that energy eigenvalues should be the sum of

a function depending on electronic quantum numbers and a function
depending on vibrational quantum numbers, i.e., ¢ = Ve’ where Yne
is a function of electronic quantum numbers, electronic coordinates,
and nuclear coordinates. Little appears in the literature follow-
ing Condon's contribution until 1956. (Work on the Jahn-Teller
effect and Renner effect is not considered here.)

Wu and Bhatia®2 (1956) found it necessary to include the
coupling between electronic and nuclear motion when considering
Vander Waal's interactions, since these are of the same order of
magnitude.

A survey of non-empirical and semiempirical calculations of
vibronic interaction was provided by Liehr®3 (1957).

Liehr®* (1957) showed that the complete molecular wave
equation must be modified, if approximate electronic wave functions
are used, in order for the Born-Oppenheimer approximation to be
applied properly. He provided a reformulation of the Born-Oppenheimer
calculation that incorporates the needed modifications.

The interaction between nuclear and electronic motion in
degenerate electronic states of octahedral molecules was investigated
by Moffitt and Thorson®> (1957).

Liehr66,67,68 (1958) performed calculations for several
rovibronic intensities. He found, however, poor agreement with
experiment at 50,000 cmn~l., and 39,500 cm”"!. This paper was followed
by another in which he evaluates a number of integrals that appeared

in the first. A third paper was published to provide some numerical
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corrections to the intensities of vibronic transitions previously
calculated.

Dressler and Ramsay®? (1959) measured the electronic absorp-
tion spectra of NH, and ND, and were able to verify vibronic
structure in an excited vibronic state.

Liehr’?? (1960) discussed the variation of electronic energy
as the nuclei of the C6H6+ molecule are displaced. Vibronic
constants for the determination of energies were computed, and also
vibronically allowed intensities were calculated. Only fair
agreement with experiment was obtained.

Large vibronic interactions in complex molecules should not
be expected, but radiationless transitions are highly probable
according to El'Yoshevich?! (1960).

Fulton and Gouterman?? (1961) presented a general mathematical
treatment of the vibronic coupling of two electronic states. They
show that spectral distribution in bands differ considerably from
the expected if vibronic coupling is present.

Liehr73 (1961) derived formulae for non-degenerate electron
distributions by using the Born-Oppenheimer approximation and first
order perturbation theory. He was able to compute vibronic ab-
sorption intensities of benzene, the cyclopentadienide ion, and
the tropylium ion. Configurational instability is found for these
in agreement with the Jahn-Teller theorem. A mathematical and
pictorial description of the nuclear dynamics of molecules exhibit-
ing the Jahn-Teller effect is given. Suggestions for future work

were made,



55

An essay concerned with the classification of vibronic
interactions in molecular systems was written by Liehr?"* (1962).

He used the pictorial model provided by Jahn and Teller3! and by
Sponer and Tellers3*“,

Second order perturbation theory was used by Bader’> (1962)
to detemine the change in electronic charge density due to nuclear
vibration. lle found a particular type of electronic distortion
is energetically favored over other possible distortions.

Merrifield?® (1963) showed that the vibronic Schroedinger
equation may be solved numerically if it is assumed that electronic
excitation influences the nuclei only in changing their equilibrium
distance but not their frequency of vibration.

Kolos and Wolniewicz’? were able to compute energies and
expectation values for the vibronic ground states and the first

vibrational excited states of H,, D,, and T, using the complete

29
non-relativistic Hamiltonian and 147-term variational wave functions.
Hougen?8 (1964) found that in vibronic interactions in
molecules with a fourfold symmetry axis the Jahn-Teller active
vibrations are non-degenerate, whereas degenerate vibrations are not
Jahn-Teller active. The Renner effect does affect the position of
the energy levels, however. In limiting cases of the Jahn-Teller
effect and the Renner effect it is possible to write vibronic
wave functions as a product of vibrational and electronic wave
functions even though there are degenerate electronic states and

vibrations capable of removing the degeneracy.

General vibronic equations for the coupling of two electronic
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states in temms of previously given adiabatic potentials?2?, in
which the coupling terms depend only on the coordinates, were
developed by Gouterman’?® (1965). This is the last major theoretical
contribution as of this writing. Other work pertinent to the
theory of vibronic coupling will now be presented.

Herzberg and Teller8? (1933) discussed the selection rules
for the vibration quantum numbers during an electronic transition.

Using the fact that with group theoretical calculations it
can be shown that all degenerate electronic states in non-linear
polyatomic molecules are unstable3!, Narumi and Takano®! (1950)
computed the vibronic interaction energy, with the assumption that
it is on the order of the potential energy of the vibration.

McDowell182 (1954) discussed the formation of different
vibronic states in methane under impact of electrons with known
energy.

Sidman and McClure®3 (1956) studied the absorption and
emission spectra of azulene in which, they decided, one of the
transitions is perturbed by a vibrational-electronic interaction.

A theoretical discussion of the weak bands of formaldehyde
was presented by Pople and Sidman8“ (1957). They showed that the
intensity of the perpendicular bands can be accounted for by
vibrationally-induced mixing of excited electronic states.

Witowski and Moffitt85 (1960) derived the Hamiltonian that
represents the vibronic states of a dimer formed by two identical
molecules.

Albrecht86 (1960) suggested that the major part of the
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electric-dipole allowedness in the phosphoresence of benzene is
due to vibronic mixing of 3Blu and 3Elu states.

A formula was derived for line shape contours of a band due
to an electronic-vibrational transition by Rebane87 (1960).

DeVoe88 (1962) used first order perturbation theory to explain
the electronic absorption spectrum of chromophores by considering
the interaction between vibronic lines of the same electronic
band or others.

In a conference on luminescence the Fourier representation of
vibronic bands was discussed by Stepanov®?® (1962).

Albrecht®? (1963) used second order perturbation theory to
bring dipole allowed character into a spin-forbidden transition.

He considered spin-vibronic coupling in this treatment.

Hougen®! (1963) discussed nearly degenerate vibronic states.
lle points out a loose analogy to the problem of spin uncoupling in
the 2n state of a diatomic molecule in his treatment.

Read®2 (1964) discussed the effect of vibronic interactions
on the differential cross sections for excitation of a molecular

state by electron collision.



CHAPTER 6
CRITIQUES AND REFINEMENTS OF THE APPROXIMATION

Presented in this final chapter is significant work of
fairly recent origin pertaining to (a) critical evaluation of the
Born-Oppenheimer approximation, (b) consideration of correction
terms neglected in the Born-Oppenheimer approximation, and (c)
methods of solution that attempt to not introduce the Born-
Oppenheimer approximation at all.

In 1951 Born®3 devised a method which permits the direct
inclusion of temms representing interactions between nuclear and
electronic motion. It was assumed that y total (x,X) - :§ wn(x)~
¢n(x,X). Here ¢ total is a function of both nuclear and electronic
coordinates, X and ¥, wn(X) depends on nuclear coordinates (X), and
¢n(x,X) depends on electronic coordinates (x) with the nuclear
coordinates (X) entering as parameters. This treatment, however,
still makes use of the adiabatic approximation in that the nuclei
are considered clamped for the computation of ¢n(x,X), the electronic
wave function.

Aroeste®* (1953) found that expanding the molecular wave
function by the Born-Oppenheimer method in terms of the parameter
k = (m/M) W provides perturbation matrix elements of the first
order in x. Some of these contain non-adiabatic terms which may,

in principle, be calculated.
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The coupling between electronic and nuclear motions of two
helium atoms has been considered by Wu®5 (1956). He concluded that
this interaction is not negligible when compared to the Vander Waal's
interaction.

Dalgarno and McCarroll96 investigated the coupling between
electronic and nuclear motion in diatomic molecules, particularly
for cases of large nuclear separation. They found that the
nuclear-electronic coupling energy is on the order of ﬁ-times the
electronic kinetic energy if the molecule were imagined separated
adiabatically to two atoms in S states. Hence,'for this situation
the nuclear-electronic coupling may be ignored. If one or both of
the separated atoms are in non-zero orbital angular momentum states,
then the coupling cannot be ignored since it will not be negligible
compared to the Vander Waal's interaction. Quantitative results are
given for the 150;' and 2 Po;, configurations of H; and the iZ ;
state of H,. An estimate of the error involved in the use of the
Born-Oppenheimer approximation is also given. This work was con-
tinued and enlarged upon in a later paper®’.

A variational method was formulated by Kolos and Roothaan?8
(1960) for calculating the exact electronic wave function by explicitly
accounting for the interelectronic distance in the hydrogen molecule.
Excellent agreement with experiment was attained for energy calcula-
tion. A comparison with various approximate methods of solution
was made in order to obtain a better evaluation of those methods that
must be used for more than two-electron systems.

Jepson and Hirschfelder®® (1960) present a review of the
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work that has Been done on calculation of the coupling terms
neglected in the Born-Oppenheimer approximation. They suggest
that more accurate wave functions are attainable if center-of-mass
coordinates are used rather than the usual coordinate system
fixed in space.

The portion of the binding energy of the hydrogen molecule
that may be attributed to interaction between nuclear and electronic
motion was calculated by Kolos and Wolniewicz!00 (1961). The
correction to the computed binding energy which ignores this inter-
action cannot be checked directly, however, as it is smaller than
the experimental error of the best available value.

Fromanl0! (1962) devised a method for the calculation of
"reduced electronic energy' which is found by assuming finite
nuclear mass for molecules similar to the manner in which it is
done for atoms. He uses the Born-Oppenheimer approximation in
this calculation and claims to have attained results in slightly
better agreement with experiment than heretofore available for
H,, 1D, and D,. The effect, as expected, is largest for H,.

Kolos and Wolniewicz1092 (1963) discuss the shortcomings
and limitations of the Born-Oppenheimer approximation. They
assert that greatly improved results will not follow from attempts
to improve the approximation. Complete accuracy will come only
from exact solution of the complete wave equation for all the
particles involved. A variational procedure is formulated which
does not at any point introduce separation of nuclear and electronic

motion. The wave equation used is the Schroedinger equation.
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This equation is, however, not completely satisfactory to the
accuracy desired, because such matters as spin effects and rela-
tivistic corrections are not included. An extended discussion of
these effects and their expected contributions to the energy is
given. Application of the procedure to the hydrogen molecule is
outlined and gives satisfactory results.

The computational work on the hydrogen molecule is extended
and further refined by Kolos and Bolnevichl03 (1963).

The Franck-Condon principle was re-formulated by Tavger!O0“
(1963) so that it would be more consistent with the quantum
mechanics of electronic transitions in polyatomic molecules.

Further calculations on the hydrogen molecule were performed
by Kolos and Wolniewicz!05 (1964) by using the methods given in
a previous work102,

The interaction between electronic and nuclear motion was
analyzed by Michal06 (1964) with the aid of time-dependent quantum
mechanics in a study of molecular systems. A comparison was made
with the results of the Born-Oppenheimer approximation.

Fisk and Kirtman!07 (1964) investigated sources of error
involved in the Born-Oppenheimer treatment. An effective potential
function for nuclear motion was found in terms of vibrational
momentum and the internuclear distance. A method was presented for
computing the energy shifts due to nuclear-electronic coupling
which was then applied to I, by obtaining a numerical solution of
the Schroedinger wave equation for the effective potential. An

energy shift of about 0.2 cm™! was computed due to the interaction.
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It is now possible to solve the Schroedinger wave equation
to experimental accuracy for the hydrogen molecule, but for more
complex molecules for which exact solution is virtually impossible
at the present time (even with numerical techniques), the Born-

Oppenheimer approximation continues to be of value.
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