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Abstract

A STUDY OF

THE BORN-OPPENHEIMER‘APPROXIMATION

Alvin R. Hagler

The Born-Oppenheimer approximation for molecules is

presented in detail. Up-to-date terminology and notation

are used. Also presented is a survey of work that has

been done in molecular physics in which the Born-Oppenheimer

approximation is assumed or known to be insufficient.
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INTRODUCTION

The Born-Oppenheimer approximation was formulated in a famous

paper published by Bonn and Oppenheimer in 1927 Ann. Physik, Vol. 84,

page 457 . It is the most fundamental and.basic work in molecular

physics. The first page of that paper, which is the subject of this

study, is reproduced as Figure l of this thesis.

The prOblem.that Born and Oppenheimer investigated may be

quite simply stated. A molecule consists of a semi-rigid nuclear

framework which is free to rotate in inertial space. The nuclei are

in vibratory motion about their equilibrium positions. About the

nuclei, electrons move in considerably more rapid motion. To compute

the allowed energies fer the electronic motion along with those of

nuclear vibration and rotation from first principles would provide

accurate prediction of all molecular parameters as well as the complete

emission and absorption spectrum of the molecule. The difficulty, is

however, that the Schroedinger wave equation is impossible to solve

exactly for all but the most simple molecules.

Born and Oppenheimer, in attempting to find an approximate

method of solution of the molecular wave equation, assumed that the

electronic part of the wave equation could be solved fer various

nuclear configurations with the nuclei held fixed. The wave equation

for the nuclei could then be solved by successive approximations with

the electronic energy making up part of the potential field in which



the nuclei move. This procedure is now known as the Born-Oppenheimer

approximation.

Theoretical work done in molecular physics can be generally

classified as falling into one of a few categories. The main divisions

can be taken as electronic structure calculations, vibration-rotation

calculations, and vibronic calculations. Among these divisions the

number of papers involving electronic structure calculatims, (with

the nuclear framework fixed in its equilibrium configuration), and

those involving vibration-rotation calculations (assuming no direct

electronic interaction with the vibration-rotation motion) is vast.

These papers are inportant to the understanding of molecular spectro-

sc0py and structure. This study, however, is limited to papers in

which the Born-Oppenheimer approximation is not considered sufficient,

i.e. , cases that deal with interactions between nuclear and electronic

motion which is beyond the scope of the Born-Oppenheimer approximation.

The original paper by Born and Oppenheimer is not readily

available in English. It has been translated and a microfilm copy

was obtained from the Oak Ridge National Laboratory. The quantum

mechanical language and notation used is characteristic of early

quantum mechanics and does differ somewhat from modern works in that

respect. This difference makes the original paper more difficult to

read. In this study modern terminology and notation has been used

in presenting the original theory of Born and Oppenheimer. Some

typographical errors were located in the original paper and these will

be pointed out at the end of this chapter.

As was previously stated, the vast body of work which assumes



complete validity of the Born-Oppenheimer approximation will not

be considered here. .A survey of work which does not assume the

Born-Oppenheimer approximation sufficient was made. It is

possible to classify this work in several more or less distinct

categories. These were taken to be: rotational Spin uncoupling,

the Jahn»Te11er effect, the Renner effect, general vibration-

electronic interactions, and miscellaneous improved.methods of

calculation. Each of these is discussed in this work in turn.

The method used was a library search of physics abstracts

from 1926 to 1964. The abstracts were copied on cards and grouped

according to category. There is, as might be expected, some over-

lapping of categories particularly among the Jahn-Teller and Renner

effects, and vibration-electronic interactions since it could be

argued that the first two are simply special cases of the third.

Definitive or basic papers were identified, separated, and

given Special emphasis. The most basic papers were then looked up

and read, whereas only the abstract was read for the others except

when the abstract was not clear or sufficiently explicit for our

purpose.

It is hoped that this study will make a contribution toward

identifying and clarifying those problems which are connected with

the Born-Oppenheimer approximation.



CHAPTER 1

THE THEORY OF BORN AND OPPENHEIMER -

The theory appearing in the famous paper by Bom and Oppenheimer

will be presented in this Chapter.

One seeks to solve the Schroedinger equation for the motion of

the electrons of a molecule located in ferce free space. Each electron

moves in the force field provided by the nuclei and by all the other

electrons. The nuclear framework is semi-rigid and thus admits

vibratory motion. This in turn provides a non-constant force field for

the electronic motion. Also, rotation of the molecule about its center

of mass is possible. Occurence of coupling among the various types of

motion needs, of course, to be considered as well. The translational

motion, as in classical mechanics, separates completely from the other

types of motion if one takes the coordinate origin at the instantaneous

center of mass. This will be done, and the translational motion will

not be considered further.

Since exact solution of the SChroedinger equation is out of

the question, an expansion method of approximation is used. In this

expansion, the zeroth order of approximation relates to the electronic

energy. Terms of the second order correspond to the harmonic portion

of the vibrational energy (normal modes portion), and the fourth

order of approximation is associated principally with the rotational

motion. As will be seen later, energy contributions from orders one



and three vanish. The vanishing of terms of first order is due to

the existence of an equilibrium position fer the nuclei. For this

situation the electronic energy of the molecule is a minimum. The

vanishing of terms of order three is more difficult to interpret.

It is, however, indirectly due to the same fact which is responsible

for the vanishing of the first order tenms. The theory also shows

that in order to determine the complete eigenfunctions in zeroth

order (and with them the transition probabilities in zeroth order)

one must calculate energies through tenms of fourth order. Continu-

ation of the calculation beyond the feurth order has not been carried

out. It is neither simple, nor does it yield results of fundamental

significance. The diatomic molecule is treated as an example of

the general theory.

1. Notation and Definitions.
 

The mass and rectangular coordinates of the elections will be

denoted by

m,Xk,ij,zk, k=l,2,3,°°-,YI

and that of the nuclei by

ML, XL, YL,ZL, 1.= 1,1,3,"‘,N

Let P4 be the average of the nuclear masses P45”. Let

E(l) K =

then

-l’l = m
(2) ML_NL Ell/71'



(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

The “1. are dimensionless and on the order of unity.

The potential energy of the system is

U(x"|j‘Iz19 79,31,112”. XHYHZHXUYIUZPJH): UOQXL

Here X denotes the totality of the election coordinates and X

that of the nuclei. The potential energy function depends only

on the relative positions of the particles, but here no use

is made of the particular fbrm (Coulomb's law).

The kinetic energy of the electrons is represented

by the operator

”V a: it. at.
E -. fm %1( BXR‘F 33:..- 51R)!

and the kinetic energy Operator of the nuclei is

9. ‘i 31 5“ + 1

R‘_% 1,:1N1‘(-a—Xi+a;1‘l 657:).

The Hamiltonian is given by

H = H0+K4 H‘,

where

W's-Lu = H.(7<, $7“)

‘7; = K} *h ( Rik)-

It will be convenient to use the13hr-6 independent relative

nuclear coordinates

1% = €300 , i= 1,1,3,'“(3N‘6).

which specify the instantaneous distances between the nuclei,

plus an additional six coordinates:

9'1 3 9‘; (X) y '1' 1,1,324y‘5267



(11)

(12)

which are the three Euler angles (9 , CD, 11/) and the three coor-

dinates of the center of mass (xu Yo, z.) , these six coordi-

nates serve to locate the position and orientation of the

molecule in inertial space. The new coordinates g and 9 are

obtained from the nuclear coordinates X by a linear transform-

ation, a fact that has been recognized in writing (9) and (10) .

This transformation does not separate the Hamiltonian

into translational, rotational, and relative motion. However,

H1 - representing the kinetic energy of vibration and rotation -

may be written in three parts as follows:

H1: H“ + ng-i- H69:

(1)
and developments of general vibration-rotation Hamiltonians

show that H§§ is linear and homogeneous in 51/6 €16 g} ; Hg 9

involves the as: i ; and H 99 is independent of Q . Some

general conclusions may be drawn about these operators. If the

Operator H, is applied to any function of the relative coordinates

Hg) , the resulting quantity must be independent of the position

in space and therefore independent of the 9i . In particular,

in Hgg the coefficients of the 3,7553%. cannot depend on 61 .

On the other hand g, , 91, and 95—91 must appear in ng in

addition to %—§i , H99 will contain 23%, , aghand e, in addition

to 6% e. a 9;, -

The Schroedinger equation of the molecule is

(H.+K‘H, —w>w = o,

where the eigenfunctions are denoted by \V and the allowed

energies by W .



(13)

(14)

(15)

Electron Motion with Fixed Nuclei.
 

If in (12) one sets K: o , then a differential equation in the

1., alone is obtained and the X1. appear only as parameters:

[H.cx, 95.7.. ,x>-w1\v=o

This equation represents the motion of electrons about fixed

nuclei. The relative nuclear distances and Eulerian angles

appear as parameters. We assume that this equation is solved.

If we let the origin of coordinates move with the center of

mass of the molecule, translational motion will separate off

completely from all other types of motion, the center-of-mass

coordinates X. , Y., Z. will be superfluous if translational

motion is not of immediate interest, and 91 will now repre-

sent only the three Eulerian anglesCG, 4), W) . Translation

will be disregarded for our purposes and will no longer be

considered explicitly.

Let the nth eigenvalue and its corresponding eigen-

function be denoted by

w=v.(§) , V = ‘Pnhc, gone-1).

Then (13) becomes

[H.(x,%7(,§,e)— v,(§)l\0,.(x,§,o)=o

All V35 are here assumed to be non-degenerate eigenvalues.

This is not usually true for all electronic states of a given

molecule, and if it is not so true, then special considerations

apply. These degeneracies were not, however, considered by

Born and Oppenheimer and will not be considered in this chapter.
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It will be shown below that the function V..(£_,) plays

the part of the potential energy for the vibration of the nuclei.

Instead of taking derivatives with respect to 8,; directly,

let us replace 5-, by g, + K g, and expand with respect to K .

The coefficients of a given power of K will then be a homogeneous

polynomial in C1 whose coefficients are the derivatives with

respect to Ci . Thus the expansion starts with a given nuclear

configuration specified by g and expands about this configura-

tion, the deviations being given by c . We have then,

(M) w<€+wn=\C+KMY+KM?+W,

where

(a) v: = V..( §) ,

(17) (b) VI." = Z Q %%‘,

(c) V?) 3’22. Cigj—a—‘L—a;5,5 ,

V. . 5V _ 3V 5 +’ =ThlS 15 obtained by taking 572 - m) J—g—KEQ C b §+K§)

and evaluating at K = O , etc. Similarly,

m) th=FC+KHT+KWfiH-

(18) o I) 9.)

w)‘fi=%+KR+fiR+

Now we expand the quantities “Pi” and flu in terms of the

eigenfunction ‘9: (x, §,e) :

(a) ‘22).'Z kit)“, Up: ,

19

()(b) To” Zu‘flfi‘?

where Limo is a homogeneous polynomial of the Y‘tb degree in Ci .



(20)

(21)

(22)

(Z3)

(Z4)

(25)

11

For exainple, multiply (18b) by { 9,: Y and integrate over all

electron configuration space:

HWY ‘PL"dx= 11‘."HRS") LPf. c1122 11‘" A.u,

since the \fi’s are orthogonal functions. Now

Op
S— =; Sza—é18=|_—-§"”|<iDSEI-m-IKSZL)35:. a §i+K 1.§; which if

evaluated at K: 0 becomes ”P5."= ; 4‘55FE: - Making use

i

of this equation (20) becomes:

= ms)2 c g3 d. =3: entirgfidx.

By a similar treatment:

me-vezqqnwfi—éng

Thus as asserted, Uni/V is a homogeneous polynomial of degree Y‘

in C1 . The integrals given here, in which Jar represents

the volune element in configuration space of the electrons, are

independent of the orientation of the nuclei in space and there-

fore independent of 91 . They may be evaluated in the princi-

pal axes system.

If F is any Operator Operating on X1 then we will define

0 Y‘

We? F v.“ Ax a a.

as the matrix element of the Pit order of F’ . For 1‘ = 0 this

becomes the ordinary matrix element

x

“e" = th'_‘ I< Yrs) F ‘9: &7(

In general, according to equation (19) ( win: 2’ Um" (a: )

:

FW‘) = (Y‘

““1 Z UnJfiFFn" n! O
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Now it follows from (15) for K=O , and for F=(H2-V.°) that

(H: -v)3: 2-: Hemp-v.3) n".

j( KP,‘.’)“(HZ-\/.°) g. of}. “P“: out

-2; ”3;. [ H «mm: as: - k now: 19.314.

.1; 11.3..(vxu d...» —V° den»)= utE’lO/J'VK).

Thus

0 o ) O o

(26) (H° - v“ :3! = USN ( W! "' V» ).

Now by substituting (16) and (18) into (15) and equating coef-

ficients of similar powers of K=owe obtain

(a) (Ht-W) *PI

(27) (b) (H;- v:) ‘95." +(H3’ -vfl’) ‘9: = o

(c) (H: -v.:)‘R‘."’ + ( 142’ - vf’Wt.” +(H?’—v.‘.“) LP.“ =

Due to the orthogonality of the eigenfunctions, multiplication

by UPS)" and integration over It will, with the use of (25)

provide:

(a) “at“ C V; " Vn)+( Hm)nn’ " V3) Amn' = O,

(28) I

(b) UMJ Vn' "‘ V: )+ ( H? VBLM’ +( H?))’nn “Va’énflw

The expansion (18a) for the Hamiltonian may be treated similarly

(7,) . .

in terms of (Hg nn' ,(H, )M. , .. . which are the matrlx elements

. H '( B H 1),,“ 7 (Walt,

These will be used later.
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3. The Perturbation Equations.

An arbitrary configuration of electrons and nuclei cannot be

dealt with by means of a general perturbation treatment. Only

those conditions that conform to a stable molecule can be

considered. For the unperturbed system the electron motion

will be considered for an arbitrary, but fixed nuclear con-

figuration E1 . Next, all quantities will be developed in

terms of small variations of g, which will be designated

KC, . We assume that for a stable molecule the amplitudes

of vibration. go to zero as K goes to zero, an assumption

that is justified by the results.

As in paragraph 2, equation (18) , we have the expansion

(29) HA1. $7, §+Kc,e)=H:+KHL’+K*H‘:’+~-,

where

H§=H.(7<, 5-.— ’5‘),

o_ _§_fl.°_
H.)- Vzlzj Cigjagiagé ,

and by (11), since '3'; {1(§+K§) =fi §¥(€+K§),

where {CE +K§) is some function of g + KC

(30) K‘H.(X.%7)
‘

K“ R‘ H96 +1K’Hce + Hoe)

K“ ch+ K’( H§e+ H31,» K‘( H;.+ Hg’,+ ""
)+...

)



(31)

(32)

(33)

(34)

(35)
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where

(a) HZC Hg? ( g 356155C3 )7

(b) pizza: (:1 o__HZ-< ’

(a) H;9=H;e(§a 9 21—52%):

(b) H1119 -é:: €15LH:9,

(a) H... =H§e(§ 9:33-25?)

(b) H“) =2 qi 314:9 .

The argument £1 is from here on to be considered as a constant.

The Hamiltonian becomes

H = H.+ K4 H, = H2 4- KH‘f-l- KN Ht.“+ HZ. ) +K3(H‘§’+H;9+

after substitution and collection Of the coefficients of the

various powers of K .

Now we expand the eigenfunctions and energies in the

following manner:

- o (I) 3. (2) O

(a) \V-\V +K\V +I< W + H ,

(b) w= W°+K W“’+ K‘w‘”+m .

Then, by equating the coefficients of the different powers

of K, in the resulting wave equation, to zero, the following

set of perturbation equations result:



(36)

(37)

(38)

15

(a) (HZ-W°)W°=o,

(b) <H2— W°)\I’“’=(\/~I"’ - H?) W,

(c) (H: - W°)\V“’=(w""- H‘f’ - HZ?) \V° + (w“’- H?) w‘”,

(d) (H? - W°W“;(w“’- H‘Z”- 39' Hg; ) w

4" Wu" H?" Hic)W + (w — Ht? ) W‘“,

(e) (H: - WW": ( w“’-— H2”— H3, - Hg; .. H2; ) Ly"

HW— H‘f’—H;, - Hg.) W

+< ww— Hirh H; > W.» (ww- Hi" ) W.

Solution of the Perturbation Equitions of Zero and First Order;

Nuclear Equilibrium.
 

The zeroth order perturbation equation (36a) was presented in

paragraph 2 in the discussion of electron motion for fixed nuclei.

From the normalized eigenfunctions \Pn°(’x, E , 6) introduced in

paragraph 2, and the associated eigenvalues V: = Vn(§), one

obtains the general solution of (36a) in the form

‘1? = X3(c,e> \Efm §,e>,

where X: is an (as yet) arbitrary function of C5. ,9;

These functions are needed to obtain the solutions of the higher

perturbation equations. The next perturbation equation (36b) is

(HE-WINK") = (wt? —H:;’W.°.

It may be solvediif \K‘" is imagined expanded as a series in

\K" . Then it may be seen that the left side of the equation

is orthogonal to W: . Therefore, for non-trivial solutions



(39)

(40)

(41)

16

to exist the right-hand side must be orthogonal to W; with

respect to the x1 , i.e.,

JW.°>*< wt? - H?) w: dx = o,

J<X§)*( LPf)‘ \A/‘J.’ XI.” “Pf.” - ((XZVOFS)’ Hfl’Xi “Pictwo,

or

wfi‘IXZI‘JWS)” kP.‘ dx - IXZI"( Hil’)... = O.

Thus,

[(HS’)... - wit’] IXSI‘ -- 0,

where (Ht?)M is the diagonal element of the operator HEX Xi)

and according to (39) it must be a constant, since for equation (39)

to be satisfied, we must have that (Hfhn ‘-' W3: ; the function

IX: ‘1 must be non-zero, otherwise ‘44" would be identically

equal to zero. It thus follows that

w‘" = <H‘”) =0

Now, from (17) and (28a), and taking n’: n , we have that

 

(H? mm: V;u = Z: (:11 ‘35—}? = 0 ;hence

1

3g :0 ,forall i.
1

Equation (41) shows that the relative coordinates gi cannot

be arbitrarily chosen but must correspond to an extreme value

of the electron energy V“(§) . It will later be shown that

this extreme value must be a minimum value. The function

X:(§, G) is as yet unspecified. If in (38) one sets
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W: =V.(§) = V: ,W‘:=O , and W:=X: KP: , then

the defining equation for W“: is obtained:

0

(42) (Hi-VDW’ =44? LPVI’X...

A particular solution according to (27b) is of the form

(43) Wt.” = Xn ‘95.”,

where ‘93) is the function (19a) defined by (18). The

general solution of (42) is obtained by the addition of a

general solution UPS) of the homogeneous equation with

>
another as yet undefined factor Xi“ g ,9) ; thus:

() - ° (” <0

(44) W3. - X. “P. + X, W.

5. Solution of the Perturbation Equations to Second and Third

Order; Nuclear Vibrations.
 

The second order perturbation equation (36c) reads:

'(H: — wxw‘“ = ( w‘” — H‘Z" - H2; W°+<wm- H?) \V‘”.

After introduction of the first order solutions (44) this

equation becomes

(45) ( H2 - V3) ‘14.“ = (W3) - HED- H;;)X: ‘9: - Hg“ X3 waxy?”

which has solutions only if the right-hand side is orthogonal

to \P: . Multiplying by ( ‘13:)” and integrating over cl x

results in

o I)

(46) u H?’+ch)m. +< ((2):... — w?1x:=o.

Now it follows from (28b) for vat-'0 that

(47) (HEW... + (H3533. = V5.” ,



(48)

(4 9)

(50)

18

and since Hg; is independent of X- , one has that, (Ha, )Ml- 44.9..

Now it follows that

1) O

IH§§+ Vi. - w‘hx, :0.

Since Hg. is the vibrational Hamiltonian, and since V?

depends on the displacements (:1 of the nuclei from their equi-

librium positions g1 , (48) must represent the equation for

nuclear vibration. More explicitly we have for (48) ,

1H:¢(§, 3%)+1/2i23 €14: ab};—_:y§'_”§3 1X3): Wm DC.

It is seen that the second order portion of V“(?,) plays the

part of the harmonic potential energy of vibration of the

nuclei. This provides a further condition for the existence

of a stable molecule, viz. , that the extreme value of V“( 5:)

defined by (41) must be a minimum; for the quadratic form

VS“ E) must be positive definite if all normal modes are to

be stable and vibrations about the equilibrium point are

possible. Equation (49) would be separable if a linear trans—

formation of the C1 to normal coordinates were to be performed:

If G'n°5(€') is an eigenfunction of (49) with eigenvalue Wt: ,

then the general solution to (49) is

(a) Wm‘ Wns , X:-“X‘s , where

O

(b) X... = (0:.cem-fscq').

The index 5 specifies the set of 3N-6 vibrational quantum

numbers. The function ’0“; (9) is as yet undetermined and

must be analyzed when continuing to higher orders of approxi-

mation. As is well known, the functions O':S( C) are
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linear conbimations of products of Hermite orthogonal functions

in the normal coordinates. The property of the Hermite ortho-

gonal functions, that they are either odd or even will be used

later.

If Q is any Operator dependent on 4-, , then the matrix

(51) ”Egg: = Rainer)" <1 0‘35 dd; ,

may be formed, where d C is the volume element in C1 space.

In order to solve equation (45), (48) is substituted into

(45) in the form

(W53; -H;,)X.°, = V? X35,

and then (45) becomes

(52) (H:- v:) w: = M? — mm LP: - (ms, 9:")- Xii: W),

O

K ’
which has as the solution to the reduced equation X33)

. . o w )
and the part1cular solution X“ \P“ + X35 LP: . The general

solution is therefore;

u) 0 a.) a) u) (z) o

(53) ‘1’. = X... LP. + X“, ‘P. + X.5 LP. ,

2.)

where Xés is another, as yet unspecified, function of 4'1

and e; , since (53) is the solution to the equation of vibration.

Next, the perturbation equations of third order (36d)

may be studied. Introducing functions that have already been

determined , (36d) becomes

(54) (H:-— W)W = (W’- H‘f’- ng— H2’,)X.°, kP:

+(wtf; - H‘3- H;,)(x.°. wen: kRf)

- (42% XS. kP‘.Z"-+— X it; KP1? + X13; ‘83).



(55)

(56)

(57)

(53)

(59)
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If the right-hand side is considered to be expanded as a series

in ‘9: , (54) may be written

(Ho- v: )WO): WC” XY‘OS 1P): - 2"; Rafi) LP;

where

8

Fa) =F-(Jm X024.+F43,2) xii; +F-(353) X0

m

Equating the right-hand side of (54) to the right-hand side of

n5-

(55) after substituting (56) provides

Z}( 53ow ‘83 + F3813; ‘8); + .31)”XI... 8° )

=< Hz? 4- Hg, 4- Hg")st LP° +(- wit; + H234 H;,)( X5, ‘8'

+X‘”, ‘8°)+ H‘;’(x:, we.‘95,"4-+_x::; w; ).

From (57) it is seen that

(a) 2; E?" 532’ ‘8; = H‘BXL? Lat,

(b) 2;; F‘fi?’ X“; ‘83 [<-w:.'-; + H9.“ + H2.) ‘P:+ H‘L’ ‘8."JXSL,

(c) 4:)?"Faj’st LPnn= [(H‘§’+ ng +H"’“)‘P" +(- M.” + H§”+ H243 “P:

+ H? LP? 1X5; ,

Multiplying (583, b, c) from the left by (W:..)" and integrating

over Jar gives

(a) F3? = (H‘l’)..v,

(b) Etta)... (H; + Hm__ W3: )vm’ + (H(;))(l)

)mn' )

= (I) a)

(C) “R,” ( H?) + ng+ H"); “H, _ (W(:)- Hw‘ H; +(H¢ )VWI’

where "313) is a homogeneous Operator of odd degree in 4':

and 274-, (see equations 31 and 32). Multiplication of (SS)



(60)

(61)

(62)

(63)
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from the left by (\P: Y and integration over 47! yields

Wm - R? = 0.

Substituting (59a) into (56) and using (60), we find

F""Xf,'; = C W- WW“

and substituting (47) into (59b) , we have

Rf?“ = H5, + VJ,” - :33.

Equation (61) is the inhomogeneous equation related to the

vibration equation (48) through the functions X:5 . Since

(48) has solutions X5, = ,0“: (6)031“) by (50b) with

eigenvalues W535). (61) has solutions only when the right-

hand side is orthogonal to 01:, with respect to <7 Space.

Because of (50b) this provides a differential equation for

0

do (9) ,

(3)3) _ u) 0 .-

.. (3,3) . .
However, as has been established, Em 15 odd 1n 4‘;

and g2. . If #3:) is transformed to normal coordinates

1

Y1. , 3—. , then it will also be odd in the normal coordinates,
1 v1,

because the transformation from Ci to Y“ is a linear trans-

formation. Furthermore, the O'“°5( §) , when transformed to

0’“: (Y1) will be products of harmonic oscillator wave func-

tions, so that the integrands of

( ) _ .0 ° 0

Fug?! " loco-1:0“) Etc:3>(rls%—fi) dhs(yl) le

will be odd in Vii for all i = 1,2,3,”‘, 3N-6. Hence,

“‘3: = O for 3 z 5’ . Then for (63) to have non-zero

SS



(64)

(65)

(66)
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solutions (0:: (9) (which we must have in order for the total

wave functions \V to be non-vanishing) , we must have that

w(3) = o .

The functions a: remain undefined. Now (61) becomes

1) (I) __ 33)

Fm an - PC»! Xnosrmm

and its solution has the form

 

m _ w

5 P: ,

where 50) is the following operator (with respect to e ):

“S #33) 1
’ 0,6

Sm- FER: Gins'u.) .

as :2 w:1;_“s,

Equation (65) can be obtained by the following steps:

'13.,»ng : affix“: I'd?) [3:5 (Twas .9

(H; + vr—wwin.) X‘” = -Fj:’”p;s on?“

[wi‘é--< H£<+v3’>1><‘” Fff’fl‘; cris

we now let X2): = (a: 2:; ans" 0:50» and have

my; x25; g, awaits» -—< ng+vf)a°,z ansuoam

=[ :3: f3; E5; ans" 01‘2" ,_ Ion: 25;: ans” Wms” n;”]= R3190;us a.”

We multiply from the left by (0120* and integrate over 4 Q" to

 

obtain

(2.) (2.) (3,3)

Wns Owns' " any Wns’ = Fun ,°

55'

thus (3,3)

F“

a a: 83' O _

us’ " ( (“’Wyf? 3 (JIM-o

Since we had X3: : 5:: a: ;- fl‘: gamuqzusubstitution of

s



(67)

(68)

(69)

(70)

(71)
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(66) into this establishes (65). Now (55) becomes

(H: -v:>\l":’ =- g at"? 493..

If W?) is expanded as a series in ‘P: , then (67) may be

multiplied from the left by ( ‘P:.)* with nh’t' and integrated

over do: to give:

, ‘ .5." “PS.

“’33": V:-v:no )

which can be written as

X( ) (3 m

V“ 2; ( ‘3?" "ML+G’I’MX .‘3+ 6&3 X302).

This expression may be treated in a mannerrsgflar to (S6) and

one finds that G13“?is a number, d:”= (Va—V’ ,), and is a

differential operator with respect to 4‘1 , whereas Gm:is an

operator with respect to {1,6, Now using (28b) ,

.> (P. ’(H‘flnnofi'o w _ ’

2G3' (”=25- Vn°"'Vm an ‘éuUmnI‘Pn'X‘nz;= “Ran33Gnn'

thus finally we can write

w:”= up? x53; +Z< ii’fi’fx: a: +— of? x:, LP: >.

Solution of the Perturbation Equations of the Fourth and Higher

Orders: Rotation and Coupling Effects.

Equation (36c) , after substitution of the quantities that have

already been found, becomes

(H: warm? = <w“’- H:“’— H:;. - gg—ngxs. LP:

~( Hf,”+ H°e + H")XX":- LP° +Xn°s(”‘9‘”)

+< wS; - H‘?- chxxtfi W°+ LP"LPUG; W”)

HS’WS’ .+Z’<cr";?’x:.':~9:.+a‘33’x:.a0:).]
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(76)

(77)
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The right-hand side can be expanded in terms of ‘9: to obtain

0 a (4) O

(H. —v,) V,” = W’Xfis LP: -% Ev LP“,

where

(4) _ (4.2) m (4,3) m (4,4) 0

En’ " my ms + va’ ms + va’ n5 ,

and where

(4, > u)

Em' 2 :( He}; + H?) — wY‘la; )vm’ +(H(<:))nn’ 0

This is found by multiplying (71) from the left by ( ‘49:)" and

o o ‘ o o o )

1ntegrat1ng over 0‘1 . "(,4)” 1s 1dent1cal to as)”, (59b), “:7,

is of odd order in (’1 and 332:1 , and E21015 of even order in d,“

a
and — .

ac,

Equation (72) has non-trivial solutions only if the right-

hand side is orthogonal to “P: . Multiplying (72) from the left

by (“PS )7 and integrating over six provides

0 _ (4) _

Wm an Em " 0'

Substituting this into (73) gives

(4 (1) (4) ( 4) ° - (4 3) (I)

51;”an =(W -R1:>an‘ t ’ an.nu

The left side, because of (74), is identical to the vibration

equation (48) , and therefore the right-hand side must be orthogonal

m

to 02°, . If the values of X; and “3 from (50b) and (64) are

introduced along with the definition

’(§ FHA?)

(6):; = Mania“? 53:: a: =§ ;; _” :3:

then it follows that

(4‘14) 8,3) (I) (4) o _

[F' +(F'M )5, -W ijs .0.VM

SS
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These equations at last define A:(e) , and therefore the

motion of the principal axes of inertia in inertial space.

The most interesting term of the operator in (77) is the one

that contains the second derivative with respect to 6 1 ; it

is formed from H39 X; KP: as may be seen in (71) and therefore

corresponds to the term in F5" ,

(113;). = loan" H; ( tan->47:

where in the position of the dots the function on which the

operator acts in introduced. Instead of the simple Operator

H39 , the more complicated (EL, occurs. Physically, this

corresponds to the inclusion of a coupling of the rotational

motion of the nuclei with the electron motion. This is the

effect which Kramers and Pauli(2) attempted to describe in

diatomic molecules by mounting a flywheel on the rotating

nuclear framework. Then there is in (77) the term which is

derived from the Operator H“ . This corresponds to a coupl-

ing of the rotation with the angular momentum which results

from the nuclear vibrations. Finally, there is a term that

does not affect 61 . It gives an additional contribution on

the order of K4 to the vibrational energy and represents

anharmonic corrections .

We now consider the rotation. If r represents a

suitable set of rotational quantum numbers, then one has for

the solution of (77)

W“’= “‘2’. ;fi‘; =flé’M9).
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Now (75) and finally (72) can be solved. It is not instructive,

fer our general considerations however, to write out the solu-

tions explicitly.

The treatment could be carried on, but nothing fundament-

ally new would result. The higher perturbations describe the

coupling between rotation, vibration, and e1ectron.motion. No

new quantum numbers that have not already been introduced would

result.

we now summarize our principal conclusions. It has

been demonstrated that to completely define the eigenfunctions,

even to zeroth order, the solution of the perturbation equations

is required to fourth order, since

W... (at, 4‘, e) = \P:('x, gem-,5, (¢>/€.§r(e)+---,

where ‘9: is the eigenfunction of the electronic motion for

fixed nuclei, 0'}: is the eigenfunction for harmonic nuclear

vibration, and F“; is the eigenfunction for rotation of the

nuclear framework. The vibration coordinates 4'; are measured

from the equilibriun positions g, , which are defined as the

positions for which the energy of the electronic motion V“( 3;)

is a minimun. The energy to the fourth order is

- — 2 L2.) (4)

WWSV-v;+K whs+K4 Wn5r+°",

o

where V“ is the minimum value of the electronic energy

which is characteristic of a situation in which the nuclear

. . . . . . (2.) .

framework 15 rigid and at rest in inertial space, WM, 15 the

. . . (4) .

harmonic nuclear Vibrational energy, WM? gives the energy
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of rotation plus anharmonic corrections to the vibrational energy.

Up to and including the fourth order of approximation, the

vibration-rotation motion is independent of the motion of the

electrons.

Special Case of Diatomic Molecules.
 

As an example of the method, a short treatment of diatomic

'molecules will now be given. Since degeneracies will not be

considered, this will be for the special case when the axial

component of the angular momentum of the molecule is zero.

In the case of two nuclei there is only one § coordinate

for the nuclear separation, and five 6 coordinates , which are

the coordinates of the center of mass X, , Y, )z, and the polar

coordinates of the orientation of the nuclear axis, 9 and w .

The kinetic energy of the nuclei is given by

- .. 4 h). I14: 9.... 2 §___ -‘ ,g
1;, - K i?” [Ag-F g: 3§(§ a§)+ gAe]

where

vim—fin, , ,uJ/HM)2
WM;

and

.b‘ ‘ b‘
(a) A. = 57: +373+gzg ,

1 " ____1__ .

sun‘s 655" + 51116 3‘6 (51"‘9 3‘9):

1 1

.5
?

(b)

(a) Hg; :"2.m N 5%" i

{‘1

(C) H99 :- 7%Wt(A°+ M Ag).
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(87)

(88)

(89)

(90)

(91)

(92)

(93)
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Replacing g by § +K§ and expanding in terms of K , we find

(a) ”Sshgainf" 52-1.

(b) H' = o, P=1,2

(a) Hcl =-‘t‘r 2-5 L

(b) I
f
:

g
i
g
:

W
E n

$
1
1
1
0
!

:9 =

2.

(a) H39= - 7’57” (130+ ’5 A9),

.(I) _ ’- Q,

(b) Hee- 7%“ {i CAe.

The equilibrium nuclear separation is determined by

\/
,=——"=O.VQ (J 5

The equations of nuclear vibration (48) are

big, 3‘2"” ‘a 4“ V.”<§> - wif’lx: =o.

Let

a=%,WS’ ., hfiaw, n a :45,-

then (90) becomes

[fizi-(VQ‘E'WZNX: =o,

with eigenvalues

V213 = 25H , s = 0,1,2,---

and eigenfunctions

on: = 8'“ HM)

where H$(Y\) is the 5th hermite polynomial.
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(97)

(98)
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(100)
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The vibrational energy is then;

2. W53 :03“: 57:42" :(QS +1) b fly/$5 =(S+VQ)$TTW

or

K‘ wi‘; = cs+a> m;

where

#JE4/qé1v: 3‘ HT «M14731. ” =Vo

The rotational equation (77) exclusive of the anharmonic

 

 

correction to the vibrational energy is given in (97) . Since

”:9 does not contain derivatives with respect to 63 , according

to (85), all terms in (77) except (H 39)“ will be represented

by a constant, Cns ,

_‘ O

“ng». 4' C705 _ Wow-1&5 =0

The translational part of H99 may be omitted. According to

(78) and (88), for an arbitrary function {(9):

(17°) He) ="1mgzi(‘Pf)A(\P° max,

and by (84)

A9( ‘93) = “P: A94: + (A810: *2 (si1nze 36:23 53+§§°§él

 

Therefore

(T41), Hen-fin [A£+H(~P,:)*A 8:4:

4' 517;e 57’SOP:ig—

Now since + 7' Ba"; 50%)" ¥“o;:].

A9:'§§ +Cot9—B+-—-1-—teaw2
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it is convenient to let:

a. J<¢:)*%‘§dx, 21.. Ref-a—fgtdx,
(101)

GB: =](\P,,°)* g—gJOK; 31‘“ I083)" 33-5,": .14.

The quantities (101) are the diagonal elements of the matrices

of the angular momenta L9 , L...) as well as E: , E: (except for

a factor of n2 or 4152) , where e and w are Euler angles, and

-2.

1.9, LN» are squares of the mean values. Using this notation

in (97) provides

(102) ((39.» 29.%g3+@:)+cote(5 +éw)

+ $>i1)'u"65)(8123?.)1 +231)».boo 4‘ .n.)+ 15(WW- Cnsflfoon: 0.

According to (102), the magnitude of 3%?35 ’ is equal to

Vil‘

a numerical function of the rotational quantum numbers, 3“;(r) ;

for the rotational energy it then follows that

K4 2.
(4)

(103) K Wu“. =§£§E 345(7‘) = 1'3. jmhr)

where

(104) = fi‘ g2 =M1+Mzz g2,

and is the moment of inertia of the nuclei in the equilibrium

configuration.

Higher approximations will not be considered in this

section. It will be shown next that the diatomic molecule may

also be dealt with by a different perturbation treatment where

the unperturbed motion will consist of the electronic motion

plus unifonm nuclear rotation, rather than nuclei at rest.
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(108)

(109)

(110)

(111)
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Independent Treatment of the Diatomic MOlecule.
 

Substituting equation (11) into (12) we obtain

[H.+ “(Hgg +H§e + H99) -w]\)f= o.

In the diatomic molecule ng is independent of G , therefore

it is again possible to separate translation and rotation.

Making use of (8S) and omitting the terms corresponding to

translational motion we have

[Hr 4?” <%-g+ gig-g? J§-».A.,)-\/J1HJ=O.

Now let

V= Y,(G,co)\I/r('x,§),

where ‘Yr is a spherical harmonic of"rt5 order, i.e. a fUnction

which satisfies

A6 Y, +r(r+1)Yr‘-‘

Then it follows that

(tn-$.35. (s'g+%5‘§ seen-mine

Now we replace § by '5' + K ’3’ to provide an equation for the

vibrations with uniform rotation. The energy of these states

is given by

2 z
12‘ +3 K NEH) ,__ 2.1 run-1).

Now we set

vv = E3+-12

and equation (108) becomes

(Ho4-KH(”+K2H(2)+"° ’E)\K.:O,
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(114)

(115)

(116)
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where

(a) H°= 3,

|)_ n o

(b) H‘ - H2+<R,

2 a

(C) Hm= H?“ 1/z qzkl‘jffi‘ $232- 2

II 2.

(d) H“’=H‘f’+%438"% ‘3’ 3‘5; 7

o ) . . . .

and 14.,143,"“ are the operators defined earlier in this paper.

Following the procedure that has already been established, the

perturbation equations are

(a) (H°'E°)‘Yr° =0:

(b) (H'- E°)‘I’.‘"= (5“- H‘”) ‘14",

(C) (Ho- E~)\y§>.(1=.‘”- H‘“) \1/;+(£"’- WWI/g”,

(113a) has the solution

5°: v,,< 1:) , 91:: \an = 011nm) flu, g),

where Vn( E), LP,,°(7(,§) have been defined previously and O}: is

arbitrary. The condition of integrability (making use of

orthogonality relations) for (113b) is

(E"’ — H22“) 0”,: c c) = 0,

Now according to (28a), section 2,

Hi1; =(H2’),m + 512': v,:”+<78’= (ff;- (v.+12);

therefore it follows, as in section 4, that

7

E(l):o Ell—g(vn+R):O.

This means that for the undisturbed rotation, the centrifugal
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force must be equal in magnitude but opposite in direction to

the restoring force which is due to electronic motion. The

centrifugal force is given by

__ _ _L_.-_ J. .1. 2 < )

(117) “(M+M,,)§ ' (MI+«M1)JB YE? 2

 

where L,=V¥‘(r+1)¥\ is the angular Immentun of the system.

From (119) the equilibrium displacement 5' r may be computed

in terms of the rotation quantum number Y‘ . For small values

of the rotational energy, g. may be expanded in powers of {3 ,

where

(118) fl = K4 4Y4“ 5‘2 r(r+1)= flair/14))? Mir-+1)

to provide

1 m

(119) §.= ‘9' + 37.13“ fed” 5/2 {7 )(8’+---.

Since (5 is on the order of K4 , only as many terms of this

series may be used as will correspond to the degree of the

approximation in the perturbation treatment.

Proceeding by the method used to solve (113b) , we have

(120) ‘i’fiut'=01?“ “Pm-*- 6"” ‘R 9

and the condition of integrability of (112c) is

(z) (I) (I) _ <2) 0 _

(121) [HM +(H >M [-3M 10‘” - O.

Now the vibration equation becomes

121 1 1 1. u , (2.) o _

(122) [*gfi %?a+/i C (WNW-En Jove-O.

Using the method of section 7, we obtain

(123) KZ’E‘QS = (5+ ‘6.) hv. 7
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where the frequency 1),. is given by

= 417T ((81,381 W + R")

and is still dependent on the rotation quantum number 1" that

 

appears in R . Further as in section 7 ,

a 8-1/1 '1

G-rns = H 5W)

where

«if

is the 5‘5 Hermite polynomial.

bl“; (Vn"+R”) .9 and! H5(Yl)

If this treatment is continued in the manner previously

established it will be found that E‘3’=o,anol Emis of the

character predicted by the general treatment.

£11223:-

We conclude this chapter with a list of errata that we have

found in the Born-Oppenheimer paper. Corrections have been

made in this thesis.

In (54) [(51) of the original paper] a superscript in

the first part of the last term was corrected.

Equation (59b) [54b of the original paper] hfif’ should

appear with a positive sign.

On page 16, after equation (59) , it was stated in the

original paper that F3“. is of t___hird degree in 3:1,,5-21 .

A correct statement is that F'ci’” is of odd degree in

€1,343 In (71) [(63) of the original paper] several errors in

both superscripts and signs were corrected.

In (90) [(86) of the original paper] a negative sign was

omitted in front of Wm.



CHAPTER 2

MAGNETIC INTERACTIONS BETWEEN MOLECULAR ROTATION

AND ELECTRONIC MOTION

As we have discussed, the Born-Oppenheimer approximation assumes

no direct interaction between electronic and nuclear motion. However,

when the electronic state is not one of zero angular momentum, then —-

aside from generally small electrbstatic and gyroscopic interactions

of higher than fourth order of approximation -- it is necessary to

consider magnetic interactions between the rotating nuclei, orbiting

electrons, and electron spins. This will result in vector coupling

of various types depending on the relative strength of the predomina-

ting interaction. The effect is most pronounced in diatomic molecules.

For these, F. Hund in a series of papers from 1926 to 1928 distinguished

four ideal cases of coupling. It has been found that molecules usually

exhibit predominantly one of these cases. Generally, no actual case

corresponds completely to one of the ideal coupling schemes. It is,

however, found that most actual cases approximate one of the ideal

cases fairly closely. In some molecules one form of coupling may

go over into another if the vibration or rotation energy of the

molecule is changed.

we describe now the four coupling cases as given by Hund.

35
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Case [a]: Here the spin-orbit angular momentum with quantized pro-

jectionn‘h along the molecular axis couples with the rotational

angular momentum on of the nuclei to form the total angular momentum

J‘h as shown in Fig. 2.

 
Fig. 2

We have that S*fi is the resultant spin angular momentum of all

electrons with quantized projection Sh along the molecular axis,

L*h is the resultant orbital angular momentum of all electrms with

quantized projection All along the molecular axis, and

A+Z

L(L+1)

5*: Js<s +15

J"; JJU +15

r
;

l
l
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Actually, on is not simply the rotational angular momentum

of the nuclei, but it is a sum of this and rapidly fluctuating

components of the spin and orbital angular momenta perpendicular

to the molecular axis due to their precession about this line. If

A i: O . the electronic states exhibit a two-fold degeneracy which

is removed by the rotational-electronic interactions giving rise to a

splitting of levels that is called A -doub1ing. (Before 1930, this

was called a'-doub1ing). The splitting is due to a small difference

in the energy depending on the sense of the over-all rotation relative

to the electrmic motion.

Case : If Ato , or if L* is small, then 8* cannot be considered

as tightly coupled to the molecular axis; then A and 0 form a result-

ant N* to which 8* couples, forming the total angular momentum

vector J*. In this scheme the spin is thus uncoupled from the molecular

axis, as shown in Fig. 3. When L* is small but A #0 , an electronic

degeneracy is again re:noved by the rotational-electrcnic interactions

giving rise to A-doubling similar to case (a).
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Case [c]: If the axial field is not strong enough to break down

the spin-orbit coupling of the individual atoms that form the

molecule, then the total angular momenta Ji*h of the individual

atoms will precess about the molecular axis with quantized projec-

tions along the molecular axis that add to form :11: = IZ J1“ (axial

component)‘h which then is added to the rotational angular momentum 0h

forming the resultant total angular momentum J*h of the molecule.

Case (c) is illustrated in Fig. 4.

 

 

Fig. 4

Case [d]: If one electron in a molecule mows in an orbit that is

large canpared with separation of the nuclei then this electron,

which carries most of the orbital angular momentum, will be influenced

by axial field polarization, so L* will not have a quantized projection

along the molecular axis but will add to the angular momentum of

rotation (with quantized magnitude R*) to form N* which then adds to
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5* to form the total angular momentum J*h of the molecule, as in

Fig. 5.

Rotational-electronic interactions cause each rotational

level to be split into (2L + 1) components. As in case (b) the

Spin is uncoupled from the molecular axis.

 

Fig. 5

The development of these ideas is given in a series of papers

published by Hund3:‘*-505-7 in 1926, 1927, and 1928. Experimental

work since that time has demonstrated that cases (a) and (b) are the

mes which principally occur along with a coupling scheme inter-

mediate between (a) and (b).

Further work was done by Hill and Van Vleck8 (1928) who

developed a theory of A-type doubling. They considered the Spin-

rotation interaction and showed that case (b) can be converted to

case (a) with an adiabatic increase in coupling energy. The coupling

energy was found to be prOportional to the cosine of the angle

between S and the molecular axis. The treatment forms the basis of
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all further work on spin-uncoupling phenomena in coupling inter-

mediate between Hund's cases (a) and (b).

An experiment by Weizel9 (1928) in whiCh he discovered nine

bands in the He,L spectrum consistent with the angular momentum

becoming uncoupled from the rotation helped verify Hund's ideas.

The theory of the distortion of spin multiplets produced

when the molecule rotates along with A-type doubling was developed

by Van Vleck10 (1929)o He predicted that singlet 4T states would

exhibit A-type doubling proportional to j(j + 1) where j is the

rotational quantum number, ,A doubling, he f6und, is modified by the

spin in ‘11 states, while ,0 doubling in is states is due to rota-

tional coupling with the fluctuating components of spin and orbital

angular momentum perpendicular to the molecular axis.

Rotational uncoupling of the orbital angular momentum from

the molecular axis was discussed by Watson11 (1929). He concluded

that the rotational energy is limited by rotational instability due

to the uncoupling.

Kronig and Fujioka12 (1930) outline a method by which

constants that measure the decoupling may be determined from.the

spectrum,and the manner in which they affect intensitieso Using this

method Fujiokal3 developed several intensity expressions.

Mulliken and Christyl“ (1931) refbrmulated Van Vleck's equation

for A -type and spin doubling in 1W ,‘Z , and ”'11 states; the results

were applied to several molecules (including intermediate coupling

cases)o They found that agreement was particularly good for CaH.

They revised some doubtful J values and identified a new branch in
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the spectrum.

Rotational uncoupling was discussed by Davidson15 (1932)

who fOund band values and intensities that agree fairly well with

theory for bands in the hydrogen molecular spectrum.

From the work of Van Vleck and that of Kronig the conditions

for the occurrence of perturbations were investigated in detail by

Dieke16 (1935). He found that when the electronic motion can be

described.approximate1y by the precession of a constant angular

momentum about the molecular axis, the elements of the perturbae

tion matrix can be calculated completely.

Van Vleck17 (1936) demonstrated that the coefficient of

J(J + 1) and (v + 1/2) in the energy terms of hydrogen or deuterium

must contain small corrections due to L uncoupling. The magnitudes

were estimated.

The explicit form.of the interaction between rotation and

spin was given by Kovacs18 (1961) for cases intermediate between

(a) and (b) in the “11 , 1A ,311, 8A , and 4'n' states. Previously

the explicit form of the interaction between rotation and spin was

known only for Hund's case (b)°

MOst of the major theoretical work on Hund's cases was

completed in 1936. An outline, again in historical order, of other

work done in this area will now be given.

Mulliken19 (1927) derived equations for the intensity in '

case (b) doublet states in diatomic molecules.

Hund20 (1928) showed that rotational uncoupling has only

limited application when the molecule is in strong electric or
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magnetic fields.

Mulliken21 (1929) published a table smarizing the experi-

mental work that had been done on A -type doubling up to that time.

Diekezz (1929) discussed the influence of a progression

between cases (a) and (b) on the band spectrum of helium.

Mulliken23 (1930) gave rules for the determination of .n.

values and symmetry properties for case (c) coupling.

Mullikenz“ (1930) published a table of spectroscopic notation

proposing some revisions. One change was the decision to give the

name x-type - doubling to the effect that had previously been called

0' ~type doubling.

Van Vleck25 (1951) reviewed the theory of rotational uncoupl-

ing in modern formulation relying heavily on angular momentum

conmutation relatims. He then applied this to:

(a) Polyatomic molecules with no internal angular momentum.

(b) Electron spin coupling in diatomic molecules not in

2 states.

(c) A -type and p-type doubling.

(d) Coupling of electron spins in polyatomic molecules.

(e) Coupling of nuclear spins in molecules with S - 0.

(f) Intensities and behavior in external fields.

Mann and Hausez‘S (1960) studied rotational uncoupling by .

measuring the magnitude of the infrared Faraday rotation (rotation

of the plane of polarization of incident plane polarized light) in

the N0 molecule in "Try and "11' states.
2 39.
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Hougenz" (1963) obtained expressions for the rotational

energy levels in vibronic states using spin uncoupling concepts.

Chiu28 (1964) studied predissociation of diatomic molecules

in case (b) coupling.

Flygare29 (1964) derived equations relating spin-rotation

constants and magnetic shielding.

Raynes3° (1964) presented matrix elements for the Hamiltonian

of a nonlinear polyatomic molecule in a multiplet electronic state

which include magnetic interactions between unpaired electrons

when the multiplicity is non-zero.



CHAPTER 3

THE JAHN-TELLER EFFECT

Degenerate electronic wave functions are possible only if

all the atoms of a molecule lie on a straight line, according to

a theorem proved by H. A. Jahn and E. Teller31 in 1937. In all

other cases involving degeneracy of the electrmic energy, a more

stable configuration will be one in which the nuclear framework

is distorted by the electron cloud. This has the effect of removing

the orbital electronic degeneracy by the perturbing influence of

the distortion. The degenerate states will be split in energy by

an amount approximately determined by first order perturbation

theory as:

EC. -E.. = I‘V'H'Volr

where H is the perturbation potential, and E; "En is the amount

by which the electronic energy is shifted if it is in state ‘0’,

in the absence of the perturbation. The perturbation takes the

form of a distortion vibration which is usually called a Jahn-Teller

vibration. Since degeneracy in the electronic wave function was

ignored in the original work by Born and Oppenheimer, the Jahn-

Teller effect lies thus beyond the scape of the Born-Oppenheimen

approximation.

44
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A distinction.must be made between the so called ”static Jahn-

Teller effect," and the "dynamical Jahn-Teller effect." The former

refers to distortion of the nuclear framework by a given electronic

configuration, i.e. the equilibrium configuration of the nuclei

is permanently changed by the electronic distortion. The latter,

which is the situation that obtains when the electron-nuclear

coupling is weak deals with the distortion of the nuclear motion

by the electronic motion without the nuclei taking up a new equi-

librium position.

The Jahn-Teller theorem holds rigorously only if the wave-

fUnctions considered are for all electrons involved in molecular

binding. It can further be shown that spin degeneracy is also

necessarily removed by the distortion of the nuclear framework if

a stable molecule is to result.

The Jahn-Teller theorem was introduced in 1937. However,

further contributions to the basic theory included in the general

discussion above were made by H. A. Jahn32 (1938) and by Sponer and

Tellersl+ (1941). Further contributions in the area follow below.

V'an'Vleck33 (1939) in developing the theory for the structure

of a molecular cluster of the fOrm X’6H20 (X 8 Ti, V, Cr) fbund

that stability is achieved only if the H20 groups are distorted

from a cubical arrangement in the manner required by the Jahn-

Teller theorem.

The ideas of Jahn and Teller were enlarged upon by Opik and

Pryce3“ (1957) in a survey article in which they discuss the linear

molecule as well as octahedral complexes.

MOffitt and Liehr3S (1957) discussed the implications
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of the Jahn-Teller theorem for the case that the distortion forces

tending to lower the electronic symmetry are of the same order of

magnitude as the vibrational restoring forces. They show that this

leads to direct coupling between electronic motion and nuclear

modes of vibration in the dynamical Jahn-Teller effect. Extensive

Calculations were perfbrmed. These are of importance fOr the general

understanding of vibrational effects in the ultraviolet spectra

of molecules .

It was fOund by Thorson"5 (1958) that some forbidden transi-

tions become allowed when the electronic degeneracy is removed by

the Jahn-Teller effect.

Longuet-Higgins, Opik, Pryce, and Sack37 (1958) provided a

survey of the dynamical Jahn-Teller effect and also found that

several "ferbidden" electronic transitions become allowed transitions

when the nuclear framework is distorted to remove electronic de-

generacy.

Clinton and Rice36 (1958) reformulated the Jahn-Teller theorem

with the aid of the Hellmann-Feynman theorem (which states that

many properties of molecules may be explained by considering the

electron cloud as a classical charge distribution rather than

relating it to the customary quantum mechanical interpretation).

In this way they were able to formulate the problem in terms of

forces rather than in terms of the usual energy approach.

Child“9 (1960) feund by group theoretical arguments that

under certain conditions there is no Jahn-Teller coupling between

vibrations of the same symmetry type.
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Clinton38 (1960) outlined a dynamical treatment of the Jahn-

Teller effect in which effects in the moving nuclear framework

are treated as perturbations on the orientation of the charge

density in inertial space. The Hellmann-Feynmann theorem was used.

It was shown by Hobey and M'cLachlanso (1960)\that the Born-

Oppenheimer calculation can be adapted directly to a degenerate

electronic state. They used a dynamical Jahn-Teller treatment to

set up the equations of motion and discussed symmetry-forbidden

transitions that become allowed through Jahn-Teller distortion.

Clinton and Hamilton51 (1960) used the results of Clinton

and Rice36 to calculate force curves for 0: and NO.

A dynamical Jahn-Teller treatment was used by Liehr52 (1960)

to calculate vibronic intensities in electronically forbidden

bands.

Zalewski39 (1961) presented the results of a study of the

static Jahn-Teller effect in the CGHG+ ion. Bond lengths were

computed.

Child and Longuet-Higgins“° (1961) deve10ped the theory

needed to interpret infrared, Raman, and microwave spectra of

‘molecules in electronic states with orbital degeneracy. Conclu-

sions were drawn about a molecular dipole moment that would be

symmetry-forbidden in a non-degenerate electronic state, and

Jahn-Teller active vibrations that give rise to overtones.

Child“1 (1962) investigated the general case of a four-fold

degenerate octahedral molecule for strong vibronic coupling with

a Jahn-Teller vibration and made predictions about the spectra

that should result.
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The Jahn—Teller effect in the particular case of aromatic

ions was studied by Coulson and Golebiewski“2 (1962). They feund

a potential function more general than that of Moffitt and Liehr35.

It is in good agreement with theoretical electronic structure

calculations for benzene and triphenylene.

Coulson and Strauss"3 (1962) computed potential energy

4.

curves for an arbitrary displacement of the atoms in CHu+, CF“ ,

and the excited states of NH3+ and NH3 by using the Hellmann-

Feynman theorem. They were able to make predictions of the

magnitude of the displacement of a nucleus in the static Jahn-

Teller effect.

Child““ (1963) deve10ped formulas for vibronic energy levels

of electronically degenerate molecules that exhibit a weak Jahn-

Teller effect.

The static Jahn-Teller effect in octahedral and tetrahedral

molecules was examined by Birman53 (1963). ,Several modes of

instability were found, and suggestions were made for further work.

Forgman and Orgel“6 (1959) measured the infrared spectra

of the tris-acetylacetonates of chromium, manganese, iron and alumi-

num to 400 cm-) The nature of the bands which they attributed to

the vibrational motion of the oxygen atoms relative to the metal

was, they concluded, consistent with the Operation of the Jahn-

Teller mechanism in the manganic compound.

Claasen and Weinstock“7 (1960) failed to detect a Jahn-Teller

effect in IrF6 similar to that found in OsFG.

Snyder"8 (1960) attributed poor resolution in the E.S.R.
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spectra of aromatic negative ions to the Jahn-Teller effect.

Experimental work done on the Jahn-Teller effect that comes

under the general heading of solid state physics is not covered

here although.much has been done in that area.

Further references to the Jahn-Teller effect will be found

in another section dealing with general vibronic interactions.



CHAPTER 4

THE RENNER EFFECT

The structure of the n-term in linear, triatomic molecules

was investigated in 1934 by Renner55. The two-fold degeneracy

in the n-term could be removed, he found, by a perturbation

produced when the molecule was "bent." This bending is produced

by two-fo1d degenerate vibrations, the "bending modes."

A two-feld degenerate electronic wave function of the

form “qr: hi.“ en” describes the 1: state in a linear triatomic

molecule when all of the nuclei lie on a straight line. (Where ¢>

is the azimuthal coordinate) and .K is the component of the total

electronic angular momentum along the molecular axis. (The angle

4) is mearured around the figure axis.) Under the perturbing

influence of a distortion vibration, the degeneracy is split such

that even (gerade) and odd (ungerade) non-degenerate wave fUnctions

result. These may be written:

(6” + eWb)
.3 - .L.

2M7!-

w= 51,—,(62m— 6"”)

Renner was able to compute the difference in energy in the'Hfi

and. 46 vibronic states.

There was no further work on this effect until Dressler and

Ramsay55 (1957) suggested that the transition between two states

50
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with large vibronic splitting in the electronic absorption spectrum

of NH2 should be written 2A1 ”u "231 according to Mulliken's defini-

tion of B1. They expected spectra of the same type fer HCO, CH2+,

BHZ, and H20+.

The ideas of Dressler and Ramsay lead to predicted frequencies

that are in agreement with experimental observation, according to

P0ple and Longuet-Higgins57 (1958). Pople58 (1960) extended the

theory of vibronic interaction in linear triatomic molecules in n

electronic states to account for coupling between an odd electron

spin and orbital angular momentum. He obtained expressions for

splittings and shifts in energy.

Hougen59 (1962) considered the effect of Fermi resonance on

the vibronic energy levels of linear triatomic molecules in n

electronic states when the Renner, and spin-orbit interactions are

small compared to the distortion vibration frequency. The results

agree with experimental data on the Azn vibronic states of 802.

Hougen and Jesson5° (1963) give expressions for anharmonic

corrections to the energy of vibration of linear triatomic molecules

in 1 electronic states with very small Renner effect and spin-orbit

interaction.



CHAPTER 5

THE GENERAL INTERACTION BETWEEN

ELECTRONIC MOTION AND NUCLEAR VIBRATIONS

In the Born-Oppenheimer approximation, interactions between

nuclear and electronic motion are completely neglected. The wave

function e is assumed separable: w = we on, where w is the com-

plete wave function, we is the purely electronic wave function,

and on is the wave function corresponding to nuclear'motion.

Actually the wave function u contains an interaction term

neglected by the Born-Oppenheimer approximation, i.e., w -

(we ¢n+ wen). This function is termed the "vibronic wave function"

if on s uv (vibrational wave function) and wen s wev (an inter-

action term that cannot be factored). The function u is termed

" . . . n . = =
the rOV1bron1c wave functlon 1f on - wv or and wen - w where

evr’

or is the rotational wave function and wevr is an interaction term

involving vibration, rotation, and electronic terms that cannot

be factored.

The Jahn-Teller and Renner effects are seen to be special

cases of this more general treatment of interaction terms ignored

in the Born-Oppenheimer approximation. At times it is difficult

to distinguish cases which should be classified Jahn-Teller effect

or Renner effect from the more general vibration-electronic inter-

actions.

The first significant paper published in this area - which

52



53

remains a very active one to this day - was by Condon61 (1927)

in which he pr0posed that energy eigenvalues should be the sum of

a function depending on electronic quantum numbers and a function

depending on vibrational quantum numbers, i.e., w = wne’ where wne

is a function of electronic quantum numbers, electronic coordinates,

and nuclear coordinates. Little appears in the literature fellow-

ing Condon's contribution until 1956. (WOrk on the Jahn-Teller

effect and Renner effect is not considered here.)

Wu and Bhatia62 (1956) found it necessary to include the

coupling between electronic and nuclear motion when considering

Vander waal's interactions, since these are of the same order of

magnitude.

A survey of non-empirical and semiempirical calculations of

vibronic interaction was provided by Liehr63 (1957).

Liehrs“ (1957) showed that the complete molecular wave

equation must be modified, if approximate electronic wave functions

are used, in order for the Born-Oppenheimer approximation to be

applied prOperly. He provided a reformulation of the Born-Oppenheimer

calculation that incorporates the needed modifications.

The interaction between nuclear and electronic motion in

degenerate electronic states of octahedral molecules was investigated

by MOffitt and Thorson65 (1957).

Liehr55i57i58 (1958) performed calculations for several

rovibronic intensities. He found, however, poor agreement with

experiment at 50,000 cm'l. and 39,500 cm'l. This paper was followed

by another in which he evaluates a number of integrals that appeared

in the first. A third paper was published to provide some numerical
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corrections to the intensities of vibronic transitions previously

calculated.

Dressler and Ramsay69 (1959) measured the electronic absorp-

tion spectra of NH2 and ND2 and were able to verify vibronic

structure in an excited vibronic state.

Liehr7° (1960) discussed the variation of electronic energy

as the nuclei of the C6H6+ molecule are displaced. Vibronic

constants for the determination of energies were computed, and also

vibronically allowed intensities were calculated. Only fair

agreement with experiment was obtained.

Large vibronic interactions in complex molecules should not

be expected, but radiationless transitions are highly probable

according to El'Yoshevich71 (1960).

Fulton and Gouterman72 (1961) presented a general mathematical

treatment of the vibronic coupling of two electronic states. They

show that spectral distribution in bands differ considerably from

the expected if vibronic coupling is present.

Liehr73 (1961) derived formulae for non-degenerate electron

distributions by using the Born-Oppenheimer approximation and first

order perturbation theory. He was able to compute vibronic ab-

sorption intensities of benzene, the cyclopentadienide ion, and

the tropylium ion. Configurational instability is found for these

in agreement with the Jahn-Teller theorem. A.mathematical and-

pictorial description of the nuclear dynamics of molecules exhibit-

ing the Jahn-Teller effect is given. Suggestions for future work

were made.
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An essay concerned with the classification of vibronic

interactions in molecular systems was written by Liehr7“ (1962).

He used the pictorial model provided by Jahn and Teller31 and by

Sponer and Tellers“.

Second order perturbation theory was used by Bader7s (1962)

to determine the change in electronic charge density due to nuclear

vibration. He found a particular type of electronic distortion

is energetically favored over other possible distortions.

Merrifield76 (1963) showed that the vibronic Schroedinger

equation may be solved numerically if it is assumed that electronic

excitation influences the nuclei only in changing their equilibrium

distance but not their frequency of vibration.

Kolos and WOlniewicz77 were able to compute energies and

expectation values for the vibronic ground states and the first

vibrational excited states of H2, D and T2 using the complete2.

non-relativistic Hamiltonian and l47-term variational wave functions.

Hougen78 (1964) found that in vibronic interactions in

molecules with a fOurfold symmetry axis the Jahn-Teller active

vibrations are non-degenerate, whereas degenerate vibrations are not

Jahn-Teller active. The Renner effect does affect the position of

the energy levels, however. In limiting cases of the Jahn-Teller

effect and the Renner effect it is possible to write vibronic

wave functions as a product of vibrational and electronic wave-

functions even though there are degenerate electronic states and

vibrations capable of removing the degeneracy.

General vibronic equations for the COUpling of two electronic
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states in terms of previously given adiabatic potentials72, in

which the coupling terms depend only on the coordinates, were

deve10ped by Gouterman79 (1965). This is the last major theoretical

contribution as of this writing. Other work pertinent to the

theory of vibronic coupling will now be presented.

Herzberg and Teller80 (1933) discussed the selection rules

fOr the vibration quantum numbers during an electronic transition.

Using the fact that with group theoretical calculations it

can be shown that all degenerate electronic states in non-linear

polyatomic molecules are unstab1e31, Narumi and Takano81 (1950)

computed the vibronic interaction energy, with the assumption that

it is on the order of the potential energy of the vibration.

McDowell82 (1954) discussed the fbrmation of different

vibronic states in methane under impact of electrons with known

energy.

Sidman and McClure83 (1956) studied the absorption and

emission spectra of'azulene in which, they decided, one of the

transitions is perturbed by a vibrational-electronic interaction.

A theoretical discussion of the weak bands of formaldehyde

was presented by Pople and Sidmane“ (1957). They showed that the

intensity of the perpendicular bands can be accounted for by

vibrationally-induced mixing of excited electronic states.

Witowski and Moffitt85 (1960) derived the Hamiltonian that

represents the vibronic states of a dimer formed by two identical

molecules.

Albrecht86 (1960) suggested that the major part of the
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electric-dipole allowedness in the phosphoresence of benzene is

due to vibronic mixing of 3Blu and 3Blu states.

A formula was derived for line shape contours of a band due

to an electronic-vibrational transition by Rebane87 (1960).

DeVOe88 (1962) used first order perturbation theory to explain

the electronic absorption spectrum of chromophores by considering

the interaction between vibronic lines of the same electronic

band or others.

In a conference on luminescence the Fourier representation of

vibronic bands was discussed by Stepanov89 (1962).

Albrecht90 (1963) used second order perturbation theory to

bring dipole allowed character into a spin-forbidden transition.

He considered spin-vibronic coupling in this treatment.

Hougen91 (1963) discussed nearly degenerate vibronic states.

He points out a loose analogy to the problem of spin uncoupling in

the 2n state of a diatomic molecule in his treatment.

Read92 (1964) discussed the effect of vibronic interactions

on the differential cross sections for excitation of a molecular

state by electron collision.



CHAPTER 6

CRITIQUES AND REFINEMENTS OF THE APPROXIMATION

Presented in this final chapter is significant work of

fairly recent origin pertaining to (a) critical evaluation of the

Born-Oppenheimer approximation, (b) consideration of correction

terms neglected in the Born—Oppenheimer approximation, and (c)

methods of solution that attempt to not introduce the Born-

Oppenheimer approximation at all.

In 1951 Born93 devised a method which permits the direct

inclusion of terms representing interactions between nuclear and

electronic motion. It was assumed that w total (x,X) = 2% wn(X)-

¢n(x,X). Here w total is a function of both nuclear and electronic

coordinates, X and x, ¢n(X) depends on nuclear coordinates (X), and

¢n(x,X) depends on electronic coordinates (x) with the nuclear

coordinates (X) entering as parameters. This treatment, however,

still makes use of the adiabatic approximation in that the nuclei

are considered clamped for the computation of ¢n(x,X), the electronic

wave function.

Aroeste9“ (1953) found that expanding the molecular wave

function by the Born-Oppenheimer method in terms of the parameter

r = (m/M)V“ provides perturbation matrix elements of the first

order in K. Some of these contain non-adiabatic terms which may,

in principle, be calculated.
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The coupling between electronic and nuclear motions of two

helium atoms has been considered by wu95 (1956). He concluded that

this interaction is not negligible when compared to the vander Waal's

interaction.

Dalgarno anndCarroll96 investigated the coupling between

electronic and nuclear motion in diatomic molecules, particularly

for cases of large nuclear separation. They found that the

nuclear-electronic coupling energy is on the order of % times the

electronic kinetic energy if the molecule were imagined separated

adiabatically to two atoms in S states. Hence,'for this situation

the nuclear-electronic coupling may be ignored. If one or both of

the separated atoms are in non-zero orbital angular momentum states,

then the coupling cannot be ignored since it will not be negligible

compared to the vander Waal's interaction. Quantitative results are

given for the 150:; and 1P0; configurations of H: and the 12;

state of'Hz. An estimate of the error involved in the use of the

Born-Oppenheimer approximation is also given. This work was con-

tinued and enlarged upon in a later paper97.

A variational method was formulated by Kolos and Roothaan98

(1960) fOr calculating the exact electronic wave function by explicitly

accounting for the interelectronic distance in the hydrogen molecule.

Excellent agreement with experiment was attained for energy calcula-

tion. A comparison with various approximate methods of solution‘

was made in order to obtain a better evaluation of those methods that

must be used fer more than two-electron systems.

Jepson and Hirschfelder99 (1960) present a review of the
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work that has been done on calculation of the coupling terms

neglected in the Born-Oppenheimer approximation. They suggest

that more accurate wave functions are attainable if center-of‘mass

coordinates are used rather than the usual coordinate system

fixed in space.

The portion of the binding energy of the hydrogen molecule

that may be attributed to interaction between nuclear and electronic

motion was calculated by Kolos and Wolniewiczloo (1961). The

correction to the computed binding energy which ignores this inter-

action cannOt be checked directly, however, as it is smaller than

the experimental error of the best available value.

Froman101 (1962) devised a method for the calculation of

"reduced electronic energy" which is found by assuming finite

nuclear mass for molecules similar to the manner in which it is

done for atoms. He uses the Born-Oppenheimer approximation in

this calculation and claims to have attained results in slightly

better agreement with experiment than heretofore available for

H2, HD, and D2. The effect, as expected, is largest for H2.

Kolos and Wolniewicz102 (1963) discuss the shortcomings

and limitations of the Born-Oppenheimer approximation. They

assert that greatly improved results will not follow from attempts

to improve the approximation. Complete accuracy will come only

from exact solution of the complete wave equation for all the

particles involved. A variational procedure is formulated which

does not at any point introduce separation of nuclear and electronic

motion. The wave equation used is the Schroedinger equation.
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This equation is, however, not completely satisfactory to the

accuracy desired, because such matters as spin effects and rela-

tivistic corrections are not included. An extended discussion of

these effects and their expected contributions to the energy is

given. Application of the procedure to the hydrogen.molecule is

outlined and gives satisfactory results.

The computational work on the hydrogen molecule is extended

and further refined by Kolos and Bolnevich103 (1963).

The Franck-Condon principle was re-formulated by Tavgerlo“

(1963) so that it would be more consistent with the quantum

mechanics of electronic transitions in polyatomic molecules.

Further calculations on the hydrogen molecule were performed

by Kolos and Wolniewicz105 (1964) by using the methods given in

a previous workloz.

The interaction between electronic and nuclear'motion was

analyzed by'Micha106 (1964) with the aid of time-dependent quantum

mechanics in a study of molecular systems. A comparison was made

with the results of the Born-Oppenheimer approximation.

Fisk and Kirtman1°7 (1964) investigated sources of error

involved in the Born-Oppenheimer treatment. An effective potential

function for nuclear motion was found in terms of vibrational

momentum and the internuclear distance. A method was presented for

computing the energy shifts due to nuclear-electronic COUpling‘

which was then applied to H2 by obtaining a numerical solution of

the Schroedinger wave equation for the effective potential. An

energy shift of about 0.2 cm“1 was computed due to the interaction.
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It is now possible to solve the Schroedinger wave equation

to experimental accuracy for the hydrogen molecule, but for more

complex molecules for which exact solution is virtually impossible

at the present time(even with numerical techniques), the Born-

Oppenheimer approximation continues to be of value.
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