EVALUATION OF CORROSION IN COPPER WATER TUBING

Thesis for the Degree of M. S.

MICHIGAN STATE UNIVERSITY

Arthur L. Plumley

1957

imesis C. Z 3 1293 00671 6645

LIBRARY

Michigan State

University

EVALUATION OF CONTOSION

IN

COPPER WATER TUBING

by
ANTHUR L. PLUMINY

A THESIS

Submitted to the College of Science and Arts Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

1957

EVALUATION OF CORLOSION

IM

COPPER WATER TUBING

by

ARTHUR L. PLUMLEY

AN ADSTRACT

Submitted to the College of Science and Arts Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

1957

Approved

Increased use of copper and its alleys during the past quarter century, particularly in domestic and commercial water distribution systems, has placed new emphasis on the problems of copper correction. A serious correction problem has existed in some of the copper water tubing installations in buildings at Michigan State University. A major study has been undertaken by the Copper and Brass Research Association (CABRA) and the University for the purpose of determining the couses of the copper correction.

An experimental water distribution system of copper tubing, in which effects of increasing temperature and velocity could be observed, has been in service. Periodic examinations have been made to observe the progress of corresion. After nearly two years of service, a part of the system was dissentled and the copper tubing from it sectioned for various observations.

Visual examination of the tubing specimens thus obtained, indicated that a) the deposits on the interior of the tubing varied from a soft, green, powdery layer at 50°F, to a thin, dark, bream adherent film at 200°F, with only scattered islands of deposit at 110° to 160°F; and b) the corresion was of an impingment type.

The correction of this copper tubing was evaluated by determining the well thickness after correction radiographically, gravimetrieally and with dial and special pointed micrometers. Agreement between the methods is excellent and probably within the experimental error.

Graphs were made from the results of each measurement method.

showing loss in wall thickness versus temperature and loss in wall thickness versus velocity. From these graphs, it may be concluded that a) after approaching a minimum value at 80°F, less in wall thickness reaches a maximum prior to the 200°F range. The exact location of this maximum is dependent on the velocity of the unter which flowed in the tubing. For the 1/8, 1/2 and 1/4 inch samples this maximum is near 170°F; for the 1 and 1 1/4 inch samples the maximum is nearer to 140°F, and b) loss in wall thickness increases with increasing velocity. However, it is only above 110°F that the velocity increase tends to influence the extent of correctors. This temperature is also close to the decomposition temperature range for several of the compounds assumed to be formed as initial correction products.

From comparison of the results of the three direct measurement methods with the weight loss method, it may be noted that the corresion in the 3/8 and 1/2 inch samples from 140° through 200°F is probably of an extensive local type. These samples contain a number of very deep pits rather than extensive overall correctors.

An advantage of the radiographic-microphotemetric procedure is that it provides a permanent record of the extent of correcton, as well as an everall picture of the correcton.

X-ray powler patterns of the deposits formed on the interior of the various tube specimens indicate the presence of silica, some copper and iron exides, and some miscellaneous copper compounds. KUE: Arthur Leroy Fluxley

BORN: December 20, 1931, Oklahoma City, Oklahoma

ACABURE CATURE Bread Ripple High School, Indianapolis, Indiana 1946-1950

Antioch College, Yellow Springe, Chie

1000-1005

hichigan State University, East Lansing, Michigan

1995-1957

DECERSE: B.S. in Chemistry, Antioch College 1955

ACKNOWLEDOMENTS

The author expresses his sincere appreciation for the guidance and understanding of Dr. Leurence L. Quill, under whose direction this research was conducted.

He also appreciates the help extended by Mr. Halvern F. Obrecht and others whose interest and efforts were most helpful in completeing this work.

TABLE OF CONTENTS

						Page
INTRODUCTION	•	•	•	٠	•	1
Corresion	•	•	•	•	•	1
Direct Chemical Corrosion	•	•	•	•	•	2
Electrochemical Corregion	. •	•	•	•	•	2
Calvanie-Two Metal Electrochemical Corre	mic	n.	•	•	•	3
Concentration Cell Corrogion		•	•	•	•	3
Pitting or Localized Corresion		•	•	•	•	3
Desincification Corresion		•	•	•	•	h
Stress Corresion and Corresion Fatigus .			•	•	•	4
Erecien-correction er Impingement Correct					·	5
• •			•	•	•	>
Copper Correctes	•	•	•	•	•	6
THE CORROSION PROBLEM AT MICHIGAN STATE UNIVER	uit Eit	T.	•	•	•	8
Water and Water Treatment	, •	•	•	•	•	10
The Approach to the Problem	. •	•	•	•	•	12
Experimental Hethods		•	•	•	•	n
REPORT OF THE EXTENT OF CORRESION		•	•	•	•	ນ
Higrometer Heasurements		•	•	•	•	IJ
Dial Micrometer Feasurements		•	•	•	•	23
Pointed Missonster Heasurenants		•	•	•	•	25
Radiographia Study			•	•	•	25
Organization of Corresion						28
Qualitative Comparison Detween Photography a	nug	e act	io _k)	rept	7•	00
IDENTIFICATION OF DEPOSITS				_		12

experimental I - Evaluation methods	•	•	•	•	•	•	33
Dial Microneter Heasurements	•	•	•	•	•	•	33
Pointed Hieremeter Hearurements	•	•	•	•	•	•	43
Radiographie Procedure	•	•	•	•	•	•	62
Microphetometer Charte	•	•	•	•	•	•	71
Evaluation of Corrosion by Weight Loss .	•	•	•	•	•	•	82
CONCLUSIONS	•	•	•	•	•	•	97
General Comments	•	•	•	•	•	•	97
Temperature Versus Loss in Wall Thickness		•	•	•	•	•	97
Velocity Versus loss in Wall Thickness	•	•	•	•	•	•	99
Comparison of Four Evaluation Hethods .	•	•	•	•	•	•	99
Special Advantages of Evaluation Methods	•	•	•	•	•	•	99
EXPERIMENTAL II - DEST IF ICATION OF DEPOSIT	3	•	•	•	•	•	101
CONCLUSIONS	•	•	•	•	•	•	207
BIELICCHAPHY	•						208

LIST OF TABLES

Table		Fage
I	Panel Specifications	15
II	Boroscope Cheervations	27
III	Binecular Hieroscopie Cheervations	18
IA	Specifications for Covernment Type L Copper Tubing .	35
¥	Dial Microseter Measurements on Corroded Tubing	37
VI.	Depth of Metal Lest by Corresion	41
AII	Pointed Micrometer Measurements on Corroded Tubing .	49
AIII	Depth of Hetal Lest by Corregion	55
n,	Step Wedge Thicknesses	64
IX**	Radiographic-Microphotometer Measurements	73
X	Depth of Metal Lest by Correction	75
II	Cravinotrie Measurements	84
III•	Weight of Notal Lost by Corregion	92
XII	Depth of Hetal Lest by Corresion	92
IIII	Minimum Thickness Remaining	98
IIV	Powdor Pattern Identification	10k

LIST OF FIGURES

Figure		Page
1.	Impingement Type Corrosion	5
2.	The Panel	13
3.	Test Famel Loop	24
4.	Heat Exchangers for the Test Panel	15
5.	The Dial Microneter in Use	24
6.	The Pointed Micrometer in Use	24
7.	Set-up for Making Madiagraphs	29
8.	Samples for Gravinetrie inalysis	27
9.	Radiograph and Photograph of Correded Specimens	n
10.	Lial Misrometer Raxisum Loss in Wall Thickness Versus Temperature	42
11.	Maximum Loss in Wall Thickness Versus Temperature	43
12.	Average Loss in Wall Thickness Versus Temperature	l _i l _i
13.	Maximum Loss in Wall Thickness Versus Velocity	45
14.	Haximum Loss in Wall Thickness Versus Velocity	46
15.	Average Loss in Hall Thickness Versus Velocity	47
1ċ.	Fointed Dicrometer Maximum Loss in Wall Thickness Versus Temperature	56
17.	Maximum Loss in Wall Thickness Versus Temperature	57
13.	Average Loss in Wall Thickness Versus Temperature	53
19.	Maximum Loss in Wall Thickness Versus Velocity	59
20.	Maximum Loss in Wall Thickness Versus Velocity	60
21.	Average Loss in Wall Thickness Versus Velocity	61

Figur		Pagi
22.	Preparation for Radiography	6h
23.	Radiograph of 1/3 inch Samples with Step Wedge	65
24.	Radiograph of 1/2 inch Samples with Step Wedge	66
ಚ.	Rediograph of 3/4 inch Samples with Step Wedge	67
26.	Radiograph of 1 inch Samples with Step Wedge	68
27.	Radiograph of 1 1/4 inch Samples with Step Wedge	69
23.	Key to Exposures of the Ladiegraphs	70
29.	Microphotemeter Tracing	72
30.	Radiographic Measurements Kaximum Loss in Wall Thickness Versus Temperature .	76
31.	Haximum Loss in Well Thickness Vergus Temperature .	77
32.	Average less in Wall Thickness Versus Temperature .	78
33.	Maximum Loss in Wall Thickness Versus Velocity	79
34.	Meximum Loss in Wall Thickness Versus Velocity	80
35.	Average loss in Wall Thickness Versus Velecity	az
36.	Gravinetrie Determinations Average Less in Wall Thickness Versus Temperature .	73
37.	Average Loss in Wall Thickness Fersus Temperature .	94
38.	Average Loss in Wall Thickness Versus Velocity	95
39.	Average Loss in Wall Thickness Versus Velocity	96
ko.	I-ray Powder Fatterns of Deposit Material	203

IMPROPRICTION

During the past quarter century, copper and its alloys, largely because of their inertness, have found increasing use as tubing for both connercial and demostic water distribution systems. In this same period there occurred an upsurge in the chemical treatment of water, particularly for the purpose of reducing hardness. Concurrently, in practice, more frequent instances of corrosion and corrosion failures have been recorded. As a consequence, there has been considerable interest in the determination of the basis causes of such corresion and in the reduction of their frequency.

The overall study of corrosion in a water distribution system, of which this thesis is but a small part, is the first one in which the progress of the corrosion on the inner surfaces of copper water tubing has been observed continuously under extensive and controlled service conditions. Included in this thesis are: 1) a definition of corrosion and explanations of the various types of corrosive attack; 2) a discussion of some methods of water treatment and their effects on corrosiveness of water; 3) a brief discussion of the corrosion problem at Richican State University; 4) a report on several methods of evaluating the extent of corrosion; 5) a discussion of x-ray diffraction methods for determination of corrosion product composition; and 6) general commute and conclusions.

Corrogion

Chemical or electrochemical deterioration of metals is known as sorrosion, in contrast to erosion, which implies destruction by

mechanical wearing. In practice, association of the two may result in acceleration of the deterioration and will be discussed further. A brief resume of the types of corresion has been compiled from humarous sources.

Direct Chamical Corresion

Any chemical reaction in which a pure metal may take part with the production of a compound of the metal, would result in corrosion if allowed to proceed on the metal surface. The action of acid on a metal, or the formation of metal exides or salts due to action of the atmosphere, are typical examples.

Electrochemical Corrosion

blectrochemical corrosion, a deterioration of metals in an electrolyte, involves dissolution of metal at so called anodic areas and deposition of hydrogen from solution at cathodic areas. The finite separation of portions of a metal surface resulting in the anode and cathodic areas may be caused by slight differences in metal structure, imperfections in the initial exide film, hot spots, etc. Electrochemical corrosion will not continue, however, unless hydrogen is evolved or removed by exidation.

As the greater number of instances of corrosion of metals coess in contact with an electrolyte, a more detailed discussion of the various forms of electrochemical corrosion will be given. Calvanie-Two Netal Electrochemical Corrosion - This rapid type of corrosion results when a metal is electrically connected with a less reactive (more electronegative) metal in a single corrosive solution. Corrosion of this type may occur at the juncture of two different metal water pipes, on steel rivets in copper sheeting or the brase bearing on the propeller of a steel ship.

Concentration Cell Corrosion -- A concentration or electrolytic corrosion cell, of which the galvanic cell is one form, may consist of:

- 1. Two different metals in the same electrolyte. (calvanie cell)
- 2. Two metals in different electrolytes. (Deniels cell)
- 3. The same notal in two different concentrations of the same electrolyte. This is the common form of electrolytic corresion.
- 4. The same metal in two different electrolytes.

Fitting or localised Corrosion -- Fitting is the pock-marked form of corrosion of a metal surface due to incomplete protection by a corresion product or other coating, or to small inhomogeneities in the metal. Corrosion tends to occur more rapidly in the unprotected areas than on the major surface and may be accelerated by the small inclusions. If the inclusions are more reactive than the metal, they will be corroded out, and if less reactive or cathodic, they may incluse pitting in their vicinity. A simple concentration cell might also be set up in an inclusion or its vacancy.

Fitting in supportubing is usually of deposit attack form in which the pits occur under porous deposits of corresion products or

foreign material. This type of pitting is due to the formation of an exygen-concentration cell. In this concentration cell the area in contact with a solution low in exygen becomes anodic and is actively corrected, while the area in contact with solution high in exygen becomes eathedic and is thus protected. The area under a deposit, being shielded from contact with the solution containing exygen, becomes anodic and is thus subject to corresion. Fitting is frequently associated with starnent conditions.

Desincification Corrosion - Selective leaching in an alloy is known as desincification. It is most common in brases from which sine may be dissolved, leaving only a surface deposit of copper over a percus and weakened copper base. This type of corrosion is really a specific example of galvanis concentration cell corrosion and is most likely to coour in stagmant or slowly moving water which is relatively high in chloride and low in hardness so that no protective calcium carbonate scale is formed. There are installations of brass tubing now under tests however, this discussion is related primarily to examination of corrosion in copper tuking and desincification warrants no further discussion.

Stress Corrosion and Corrosion Fatigus -- Corrosion may be accelerated by internal stresses or externally applied stresses. Not only may differential stress produce corrosion, but corrosion of any other type may produce a weakened part which may crack under a stress that would not otherwise have affected it. Separation of grains by some uneven distribution of stresses may lead to pitting. Corrosion fatigue is

stress corresion in which the stresses are fluctuating or cyclic in nature.

Erceion-corresion or Impingement Corrosion — bresion is usually regarded as a destructive process involving concurrent removal of material. Impingement or erosion-corresion is usually characterized by rapid and repeated destruction of protective surface films in the presence of rapidly moving, turbulent lipids. Copper tubing suffers impingement attack in systems where the velocity of the water is unusually high and/or turbulent, and where no protective film is found or the initially formed film has been loosened. Fecause the flow is subject to construction irregularities and turbulence, attack usually predominated in local areas or sections near the inlet end of the tubing, but may extend the entire length of an installation. Entrained air bubbles, breaking as they contact the surface of the tubing, act as accelerators of this type of corresion which may be easily identified by its crescent-shaped, elongated pits, frequently underest in the downstress direction. (Figure 1)

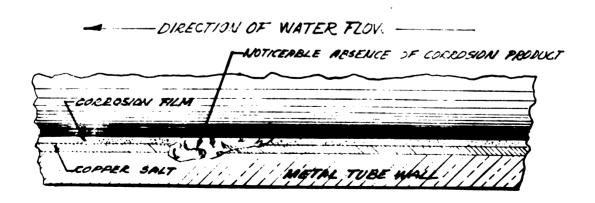


Figure 1. Impingement Type Correction

Copper Correcton

excellent resistance to corrosion displayed by these materials in a wide range of environments. Copper itself is not a particularly resective element and its corrodibility is low, as might be expected, even without a protective film. From the position of copper in the Electromotive Force Series, it is seen that the tendency for formation of hydrogen gas on a copper surface is so slight that the anomat of reaction is insignificant. Although the bessicious of a protective film on copper is not apt to lead to rapid attack as with iron or aluminus, the continued resistance of copper to corrosion depends to a considerable extent on the continued maintenance of a protective film of oxide or some other insoluble deposit.

Constally, to be protective, the film must not only be insoluble, but also afterent and continuous. This files are more likely to possess these properties than heavy, bulky films which are subject to loosening by flowing unter. It seems obvious that formation of soluble salts at the metal surface will result in continued corresion. Likewise, costings that are porous, loosely adherent, or easily broken, effer little protection and may result in formation of economization cells, thus accolerating correction.

Heny of the corresion products formed on copper have low solubility and tend to form adherent, relatively impervious films which help make copper resistant to corresion in many media.

Because of their corrosion resistance in fresh water systems,

copper and its alloys find widespread use in cold and hot water systems for both demestic and industrial installation. Tubing thus installed has usually been found to suffer from only a few of the previously indicated forms of corresion, largely pitting and impingament corresion.

THE CERROSION PROBLEM AT MICHIGAN STATE UNIVERSITY

on the Michigan State University carpus showed few corrosion failures, despite a service record of up to thirty years. In one women's dermitory, Gilchrist Hall, built in 1949, ever forty corrosion failures occurred during the interval June 1951 to august 1952. Concern about these failures led to the initiation of a corrosion conference. Attendance at this conference included representatives from the University and from the country's major copper tubing producers, with whom there had been previous correspondence on the problem. As an outcome of this conference, the Copper and Brase Research Association (CARTA), a manufacturer's association, through its corrosion subscentitues and in co-operation with the University, decided to initiate a rather extensive corrosion testing program.

This initial planning comprised two phases of study. First, determination of the causes of the failures in the Michigan State University installations and subsequent reduction of the frequency of these failures and second, establishment under controlled conditions of the type and primary causes of such corrosion. The program has been intended as basic research in the corrosion of copper in active fresh water systems with a corollary study in prevention or retardation of such corrosion.

Specifically, this study has involved determining the effects of variations in temperature, in velocity and in types of waters circulated through a system of copper water tubing. Waters of varied composition were circulated through panels of copper tubing in such a

manner that the effects of six different temperatures and five veloci-

The conditions for experimental work were not arbitrary but were established as a result of observations made over a long period of time. It had been noted that tubing replacements for corrosion failures coesured less frequently in those systems which had been in use for a long time. There were indications that in these clier buildings, softeness were run beyond the point of exhaustion, flow rates were relatively low and temperatures soderate. Some protective film apparently built up under these operating conditions.

Never installations appeared to have practically no protective film and were found on occasions to have high chloride concentrations in these circulating systems, indicating incomplete rinsing of the sodium scalite softeners before regeneration. Temperatures were found to be in the range of 130° to 200°F. Under these conditions, there appears to be so apportunity for the formation of a protective coating.

Several other observations were made about the installations in which the more frequent failures have occurred. Corrosion of the tubing seems to be prevalent in locations where recirculation systems were in eperation, locals were heavy, temperatures were above 150°F in softeners frequently repenerated to maintain more hardness at all times. Visual examination of the tubes in which failures had occurred indicated pitting-impingment type of erosion. Among the steps which were taken in an effort to reduce the number and severity of failures occurring on empus were (1) lowering of temperatures to below 150°F, (2) blending of soft water and hard water to maintain a slightly scale-forming water,

that is, to have a slightly positive Langeliar Index for the system.

- (3) bypassing of recirculation pumps in the distribution system. Reeirculation pumps had been installed in the hot water lines to insure prompt delivery of hot water to taps on upper floors of the building.
- (4) improving regeneration procedures for sodium scolite softeners with particular attention being paid to the ringing away of chlorides, (3) controlling the carton dioxide content at the wells and reservoir,
- (6) attempting to watch the expen concentration in the system.

The above corrective measures have substantially reduced the number of failures on carpus.

Water and Water Treatment

as indicated, the composition of the water flowing through the copper tubing is significantly related to the type and degree of corresion involved. The usual municipal water supply is fresh water which may contain the following ions derived from compounds present in the soil: Na*, K*, KH4*, Ca**, H6**, Fe**, Fe**, Al***, H*, Cl*, ED*, SO4**, CH*, KCO2*, CO3**, PO4**. There may also be present dissolved gases, such as O2, CO2, SO2, Cl2, KH2, along with organis matter of various sorts, as well as suspended material such as silica, clay, etc. This water is usually treated by chlorination, filtration, scration, etc. to make it potable. In addition, water used for toiler feed, laundry and many decestic purposes may be treated to remove hardness.

The presence of any of the above mentioned ions, or of gases or treatment compounds in sufficient amounts, may alter the corresiveness of the water toward the tabling through which it flows. Further con-

sideration of the previously indicated corresion processes show that
the copper ions going into solution at the anodic areas unite with
the hydroxyl ions or other ions in solution to form copper hydroxide,
exides or salts. If these corresion products are capable of ferming
an adherent, everall coating, they should protect the copper from corresion, but the general protection depends on the solubility of the
corresion products in their environment.

The calcium, magnesium and iron salts are usually responsible for scale formation in water as the temperature increases, and this scale may also help to retard correction through action as a protective conting. These materials are the basis for so called hardness in water.

At present there are two general methods in use for reducing hardness, a) One method, the lime-sods process, involves the removal of the scale forming elements by presipitation. Line may be added to a water containing calcium bisestenate and magnesium solts with subsequent presipitation of calcium carbonate and magnesium hydraxide. Soda ash (Na₀CO₃) is frequently used as a supplement to precipitate the remaining calcium solts as calcium carbonate. b) A second method of water softening is by ion exchange. Nuter to be softened is passed through a bed of insoluble resin, whereupon the calcium and magnesium ions replace the sodium ions of the resin and an effluent water of some or near care hardness susults. The resin is regenerated by flushing with a brine solution. Some ion emphasys resins use hydrogen ions rather than sedium ions and softeners using those resins are resonanted with a mineral coid.

Natural water supplies are usually neutral or alightly asidis

from dissolved cerbon dioxide and contain sufficient dissolved exygen to cause and maintain corrosion. Removal of the often objectionable scale and soun-forming calcium and magnesium salts may allow correction to proceed freely in the absence of the protective coating which would otherwise form. Additional treatment is constinue necessary to allowinte this condition.

The Approach to the Problem

During the course of the overall investigation, a number of similar experiments were undertaken using various types of water ranging from more to well water hardness. This discussion is on observations and evaluations made on copper tubing removed from the first of these meries of controlled experiments.

The test panel consisted of six vertical tubing trains constructed from sections of tubing of decreasing dismeter (1 1/4 to 1/8") and connected in series by means of 1/4" return lines. These sections were connected in order of decreasing dismeters by means of soldered unions for case in disassembling for inspection. (Figure 2 and 3) (Figure 2 is a photograph of the complete panel, Figure 3 is a diagram of one loop of the panel.) The panel was designed so that the union flowed in the direction of decreasing tube dismeters.

The water flowing through each successive loop was heated to a temperature higher than in the previous loop. Specifications for the panel and its operation were determined after consideration of conditions under which copper tubing is used generally, as well as at Michigan State University. The operating temperatures for the various

loops of the panel were room temperature, 80, 110, 140, 170 and 200°F. It is noted that the useful temperature range of water is covered. Thermally regulated heat exchangers were used to obtain the desired temperatures.

(Figure 4)

The sections were approximately 60 diameters in length, this being the minimum length to allow free flow in the major portion of the tubing, thus minimizing the effects of turbulence at the union. The vater flow was set at 6 gallons per minute in order to obtain a velocity of 1.5 feet/second in the 1 1/4 inch section. This is the critical velocity for initiation of turbulence in the 1 1/4 inch tubing, there being streamline water flow below this velocity. Impingement corrosion should, therefore, be at a minimum in tubing of this diameter. Corresponding velocities in the remaining sections are a function of their respective diameters. The dimensions of the tubing sections are

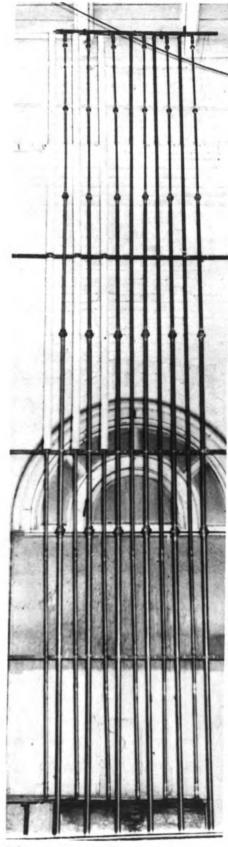
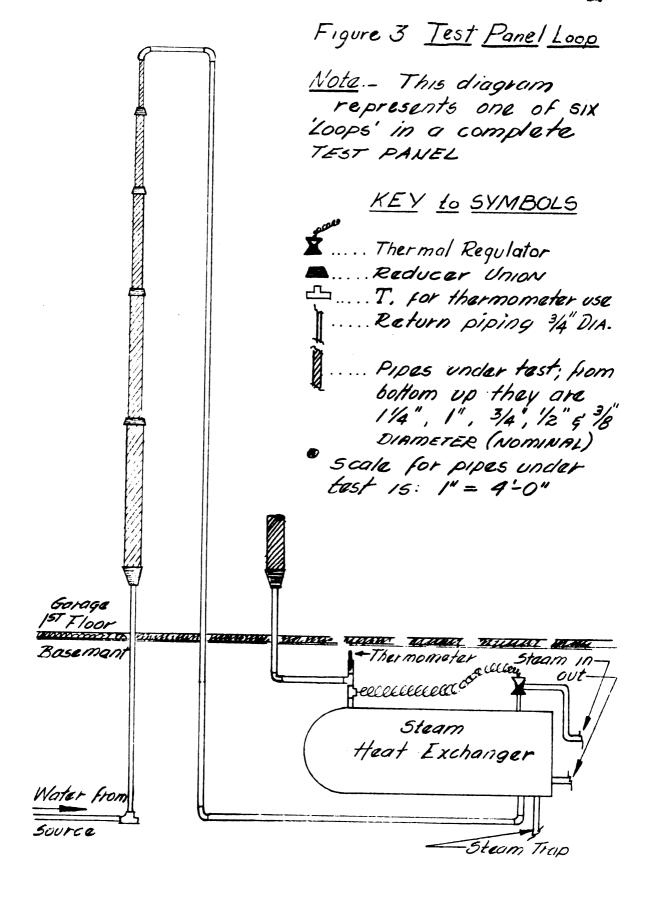



Figure 2. The Fanel

included in Table I.

The panel was in actual operation a total of 498 days. The only interruptions in operation occurred at about four month intervals, at which time the panel was completely disassembled for inspection by the committee during the quarterly corrosion conferences. These inspections were visual, primarily by means of a boroscope, in order not

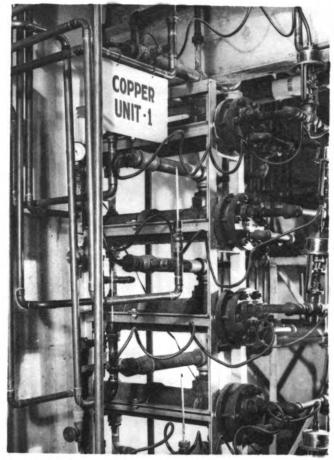


Figure 4. Test Panel Heat Exchangers

to disturb the deposit formed on the interior of the tubing.

Table I
Panel Specifications

Diameter (inches)	1 1/4	1	3/4	1/2	3/8
Length (feet)	6	5	4	3	2
Velocity (ft/sec) at 6 gal/min	1.5	2.3	3.9	8.1	13.1

The panel was removed from operation permanently when it was decided that an additional four months service would probably result in failure somewhere in the system. (This decision was later justified, as the minimum remaining wall thickness at some places was approximately 0.010 inches.)

After the penel had been disassembled, each section was cut transverselly in two. The inlet half was put acide for future observation. The cutlet half was then cut in two longitudinally, one half being retained for observations, and the other half being shipped to the Copper and Brass Research Association for observations.

For this discussion, observations were on the outlet halfsections of tubing which were retained. From these half-sections, six inch lengths were cut, acid cleaned and used for some of the physical measurements recorded later.

The berescope observations included in this report are the final ones made by the CAEGA correction committee on the various lengths of the disassembled panel, prior to sectioning. (Table II)

Other data include microscopis observations on both uncleaned and acid cleaned sections (Table III), wall thickness measurements with microscopies (Tables IV and VIII) and radiographic studies (Tables IX and X). Extent of correcton was also evaluated by determination of the loss of copper by gravinetric analysis. (Tables XI and XII)

the following are convente on the boroscope observations of copper tubing sections by Callia numbers at the final inspection Decumber 12, 1956.

HART TANKS, . CONTROL

Ter.	***************************************	drotor	Corpora
200*	10	· leavy very dark scale, so	e slight surface pitting.
	3/14	+ inlet attack for a out 3/	tion save us alove.
	1/24	• ano, inlat attack in ale	
		 Hoavy brown coating, defin pitting. 	hite but sli _e ht erosion
	3/ 5	*Sere, but worse.	
170°	1,**	+Clicat velocity effect at face with thin brownish fi	entrance, roughened sur-
	10	◆Sarse。	
	3/4	*Cam, but rougher and some	bright etched spots.
	1/2"	+Same, Lut worse.	•
	3/3	+vary rough, with trient t	otions of pite.
11.0°	730	elegaly stoked and roughous with some bright spots.	
	3.	+Came, but progressively me	ore effect.
	3/1.0	♦િ339 0	
	1/24	♦ 8 47.0 •	
	3/3*	*Befinite impingment pitti	n-
110.	1.4	• right stelled surface with	islands of troom scale.
	10	+ arms but more etching.	
	3/24	*Gare, but with progressive	ly greater etching.
	7/50	* are, with progressively r	reator etching.
	3/3"	elegaly etched surface with	islaxis of trown scale.
3 0°	130	Uniform brown green film,	no spourant corresion.
	7.	Seno.	• • • • • • • • • • • • • • • • • • • •
	3/1.0	6 630 •	
	1/24	ික ක.	
	3/3=	Same.	
50*	110	Hery brown scale, no spa	rent actack.
	7.	Same.	
	3/20	\$ ≇.0 •	
	1/24	by otty brown scale, no amp	arent attack.
	3/39	* right stelled copper surfaced a	es with small inlands of

The following ebservations were made with a 15 % binocular microscope.

50°	Communication Deposit	Direction Flow Indicated	Cuservations Etched Sample
3/3	Lt. Brown Large anddis areas Small cathodis	Yes	Cen. corrosion, stra- tified islands
1/2	lt. From Large anodic areas Lt. film overall	Fot clear	Cen. corrosion, is- lands
3/4	Lt. Brown Anodic and cathodic areas equal	li o	Cen. corresion, is- lands
1	It. Brown Uniform	E.	Slight Cen. corresion, small islands, minute pits
11	lt. From mottled light and dark	ko	Very slight Gen. cor- rosion, very small islamis
80*			
3/3	Lt. Red Brown Single enodic line entire length	Not clear	Gen. pitting, islands on effluent end; goug- ing on effluent side of islands
1/2	Lt. Red Brown Uniform	Fot clear	Cen. pitting - some streaked corrosion
3/4	Lt. Red Brown Numerous small streaked amodis areas	Tes	Cen. pitting - streek- ed
1	Lt. Red Brown some large long anodi areas, massrous small streaked smodic areas	•	Gen. corrosion, is- lands, pitting em islands

14	lt. Brown Nottled light and dark	let clear	Some Con. correction, few small intervie
110*			
3/3	Lt. From on islands Large anodic area- causodic islands, slight streaked depoci in anodic area	Yes t	Con. corrocion, large inlands, pitting on is- lands, goujing on of- fluent side of islands
1/2	Erre-larger areas of light deposit in eradic area	Tes	Small islamis, same as
3/4	Same-less contract tetwoon anodic	Yes	Cen. corresion, stra- tified inlands, gong- ing as above, wrinkling
1	Same-more islando, same wrinklos	Tos	Sume as Mun, choppy wrinkles, large round- ed pits
11	Stratified deposits varying suches of brown, pile obvious	Fot elvious	Cem. pitting, islands beneath lovel of pitting
140			
3/3	Very small anounts of Lt. had Brown	les	tion. correction. ex- mane gouged effect in direction of flow
1/2	hed Drown, Stronted light and during longitudinal anodic areas	Tes	decoly forest places as in 1/1"
3/4	Same-less pronounced	Yes	Cem. corrector, long shallow clean valleys, blotchy corrected areas under deposits
1	Fed Brown, streamed light and dark, clight deposits in anotic areas	Not obvious	Con. routening. alternate clean and routh areas
11	Same, small amodio	lot ouvious	Same as 1%, but to a lesser degree

3/3	Fits, Furplish Fed deposit on embodic peaks	Ye s	Considerable Cen- pitting, gouged effect in direction of flow, rounded pits (clean)
1/2	Sæme, less pronounced	Y9 8	Same as 1/F, loss pronosicad
3 /4	It. Heddish From on islands, sheller to 140° 10°	Not clear	Con. roughening, some smooth rounded areas
1	Faxo, elijit deposit in enodic erocs	Not clear	Con. corrector, some iclands
11	Same, less pronomosi	l'o	Con. cerrosion, meercus pin-point islands
200°			
3/3	Lt. Reddien and Deep Brown on eathoric peaks, slight deposit in anodic pits	Tes	Cen. correcton as in 170° 3/3° but not as severe
1/2	It. Focklish covered by doep troom - areas of rounded emodic pits	Yes	Gen. elongated pitting, not as severe as 3/30
3/4	Doop Brown, some anodis areas	Yes	Came rounded pittings large clean pouged areas
1	Doep Brown overall some areas shouth (anodic)	ro .	Cen, minute pitting
11	്ഷാമ	not clear	Same, pitting but less pronounced

From the visual, boroscopis and microscopis observations, a few generalizations about the corrosion and the corrosion products may be made. Except for the clean and probably anodis areas, the deposits are overall, quite adherent and become increasingly harder with increasing temperature. Since the pitting consisted of crescent or horse-shoe shaped formations, with the closed end of the crescents always in the same direction, the corresion can be classified as an impingment type. Furthermore, because the closed ends of the creecents are always in the same direction, it is possible to state the direction in which the water had been flowing. Henry studies have shown that the closed ends lie in the direction of flow.

The sold elemed portions show variation in the degree of this impingement correction. There appears to be a transition from directional impingement correction in the first four test loops, to ordinary pitting under the deposit in the 170° and 200°F test loops, particularly with the larger disseter tubing. This change in behavior seems to indicate some resistance to velocity effects at higher temperatures, though the deposit is sufficiently porous to allow pitting.

This paper deals with two major studies on the copper tubing removed from the experimental operation. The first of these is an evaluation of the extent of corrosion, while the second deals with the composition of the corrosion products.

imperimental Nethods

To determine the extent of corrosion, measurements were made radiographically, gravinetrically and with dial and pointed micro-

motors.

The second section of this report is on the determination of the correction products. I-ray diffraction was used to obtain pewder patterns of material from the deposits on the inner walls of the tubing.

REPORT ON THE EXTENT OF CORRESION

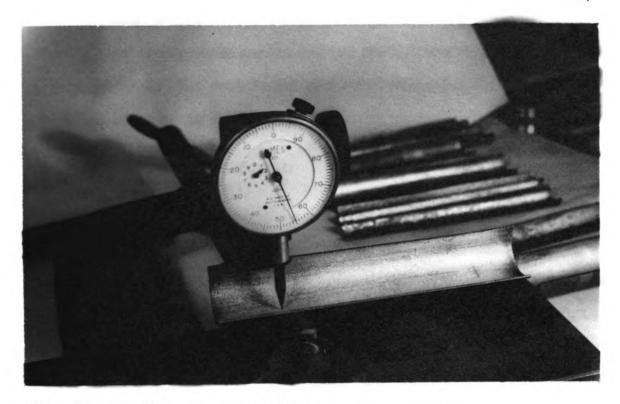
Assessment and reporting of correction has been played with inconsistencies and the lack of a universal language to express the extent of the correction. It is felt that no single method of evaluation can adequately describe the attack on a given specimen and, therefore, several approaches have been combined with the hope of previding a broader and more comprehensive picture of the attack.

Each method of measurement is discussed and a comparison of common results made, along with a presentation of the distinctive advantages of each method. The same six-inch, acid-elemed specimens were used in all of the evaluating measurements except for the gravinetric procedure.

Microsoter Measurements

Dial Micrometer Measurements

The thickness of the metal remaining on each specimen was first determined by dial microsoter measurement. The instrument (Figure 5) was rigidly supported on a frame in contest with a permanently attached ridged block, the more reading being the contest points of the block. The device was calibrated by measurement of complex of new and unused copper tubing of identical meninal diameters with those of the test specimens. Vall thicknesses of the new tubing wave determined by measurement with calibra microsoters. The test specimen readings were then converted to actual inches by comparison with the readings on the new tubing complex.



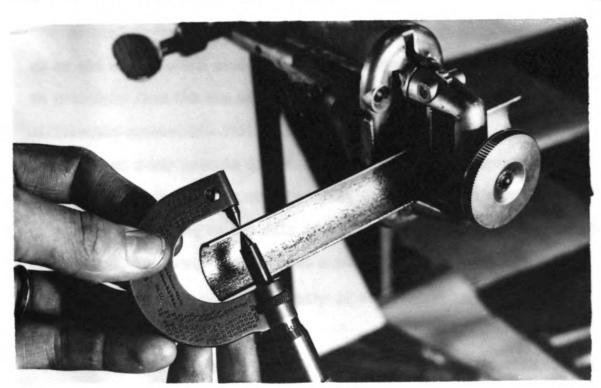


Figure 5. The Dial Micrometer in Use

Approximately ten random dial readings were made along the herisental axis of each corroded sample and the average of each such set was calculated. The meximum and minimum readings found in each set were the extremes in well thickness remaining.

Pointed Migroueter Measurements

A second set of wall thickness measurements was made with a pair of special caliper micrometers, with measuring points having a 30° taper. (Figure 6) This type of micrometer is in general was by CAERA members for such measurements. In this case, three separate sets of readings were made and averaged. These included ten random readings, ten readings taken in areas of minimum wall thickness and ten readings in areas of maximum wall thickness.

Redictrophie Study

Several imvestigators have employed a radiographic technique as an aid in correcton studies. While their approach does not differ in principle from the one used in this study, certain precedural differences necessitate further dispussion.

which has been placed on a short of film (Figure 7), the resulting pattern of blackening on the film is a representation of the degree of pitting. The x-way functions as a sert of depth gauge, the film recording the variations in intensity of that radiation which penetrates the sample.

The resulting radiograph gives an excellent paneranie view of the

corrosion, while quantitative representation of the film blackening can be obtained with the use of a densitometer or microphotometer.

A slight divergence at this point would not be amiss in order to give a brief explanation of the photographic effects of x-rays, radiography and the measurement of intensities of photographic blacksning. Even before their exact nature was known, x-rays were observed to cause blacksning of photographic plates. These rays are capable of initiating the photographic change in the photographic emulsion which results in the deposition of silver particles upon development. The degree of blacksning or density of the deposit is defined in terms of the fraction of the insident light ultimately transmitted to the film.

density - log insident light transmitted light

In other words, a density of 1 means that only 0.1 of the incident light has been transmitted to the film.

It has also been established that the blackening is proportional to exposure (E), where E = been intensity x time. This means that a 50 KY been at 15 me for one hour would give the same blackening as 1 me for 15 hours. This relationship, known as the reciprocity law, is valid for the major portion of an exposure range, ceasing to be linear only at the extremes. In order to interpret the blackening of the film quantitatively, some sort of reference scale is necessary, usually a series of graded spots corresponding to known exposures. In view of the great range of validity of the reciprocity relationship, such a reference scale may be made using a beam of constant intensity and changing the time for a series of exposures. This scale should be

identical with one using constant time and varying the intensity.

A similar reference scale can be made by radiographing a scrime of metal shocks of varying thicknesses on the same file plate as the sample. Error is introduced in both methods when conversion between sample and reference is made, not only by graphs or whatever method is weed for comparison, but also by variation in handling, expecing and processing the film.

The possibility of such errors was minimized in this study by use of an internal standard. A copper step wedge, milled in 0.003 inch steps over the range of thicknesses of the samples, was radiographed with each sample. The use of the internal step wedge minimizes handling and processing errors, while its use with each expense aliminates the separate graph.

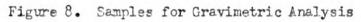
To make accurate measurements of the film blackening, a recording microphotometer was employed. Essically this instrument measures the fraction of incident light that is transmitted through a slit area of the film by means of a photocoll. The photocoloctric current thus produced is measured by a galvanometer, the deflection of the galvanometer being proportional to the transmitted intensity. In this study a Jarrell-Ash comparator bear microphotometer was used, together with a Bristol recorder.

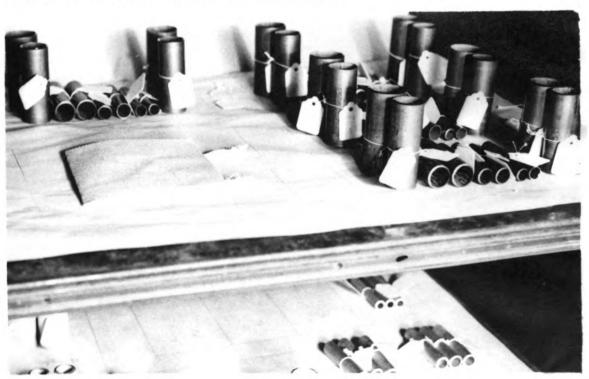
This instrument? employs a double bean technique in which the second beam, comprising a sample of the incident light source, is fed into the same photomultiplier that measures the main light beam passing through the slit. Operations, then, are independent of any fluorestions in the supply voltage and of any light intensity changes

resulting from elouding of the lamp, aging of components, etc.

The recording microphotometer provides a continuous trace of the light transmission through the dark and light spots on the film corresponding to varying degrees of pitting on the samples, since the film sample is moved under the slit light source mechanically at a constant rate. The galvanometer readings are recorded on a continuous chart calibrated from 0 to 100 e/e transmission.

Gravinetrie Determination of Corresion


It would appear that the difference in weight of a sample before and after corresion would be a valid representation of the extent of corresion. Unfortunately, no preliminary weighing of the tubing sections was made. However, because of the manufacturer's rigid adherence to specifications, tubing of recent manufacture was assumed to be satisfactory as a standard.


The everage weight per unit length of each dismeter tubing was determined from several three inch lengths of both new and corroded tubing. (Figure 8) Corroded specimens were compared with new tubing specimens before and after cleaning in a sulfuric acid-dishremate solution.

All specimens were out with a tubing outter and their lengths determined with a vernier caliper. Weighing was done on a standard analytical balance.

Figure 7. Set-up for Making Radiographs

Qualitative Comparison Between Photography and Radiography

The photograph and radiograph (Figure 9) are prints of the same set of corroded tubing samples. The complementary nature of the two methods is evident; the photograph shows the general shape and location of pitting, whereas the radiograph reveals the extent of corresion. The light spots on the radiographic print correspond to the greatest depth of penetration by corresion.

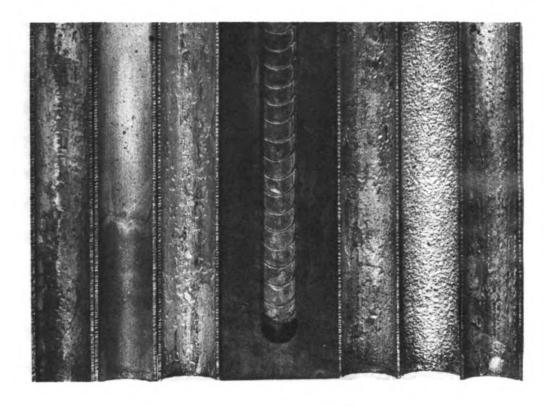
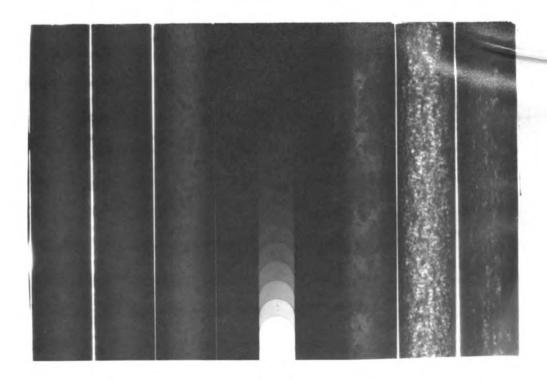



Figure 9. Photograph and Radiograph of Corroded Specimens with Step Wedge

IDENTIFICATION OF DEPOSITS

Early in the course of the corrosion study at Michigan State University (June 1951), microthemical analyses were performed on deposite removed from copper tubing in service at the time. These deposits seemed to be composed largely of cupric oxide, ferric oxide, silica and a basic copper carbonate. Leasur amounts of copper chlerides, sulfates and some calcium salts were found.

It has been assumed that the deposits removed from the panel samples were of a similar nature. The current study was undertaken in an effort to more definitely establish the actual composition of those deposits. Using Novelee equipment with a copper target, Debye-Scherrer powder patterns were made of deposits from the tubing specimens at all temperature ranges. Fatterns were also made of a number of pure copper compounds, the presence of which was possible in the deposits.

The "S" distance of all these patterns was measured, and from this, the interplanar "d" spacings determined graphically. These "d" values, along with the approximate intensities of the lines, were checked against tabulated values for a number of copper compounds. The presence of a number of compounds was thus indicated.

At first, difficulties were encountered with fogging of the film. Apparently iron exide was present in sufficient quantity in the samples to cause x-ray flourescence. The use of an iron target tube lessaned the fogging semewhat but required considerally longer (12 to 15 hours) exposure time.

EXPERIMENTAL I -- EVALUATION METHODS

Two types of micrometer measurements and the radiographic observations were made on cleaned specimens. For the loss in weight or gravinstric determinations, a set of unsectioned tubing lengths was used.

The cleaned specimens were prepared by immersing six inch sectioned specimens, from the effluent end of each length of tubing used in the panel, in 10 e/e potassium dichromate-sulfurie acid solution for ten minutes, brushing lightly, washing with distilled water and allowing to dry.

Comparative graphs accompany each evaluation method and a table comparing results of the evaluation methods is included following all of the data. (Table XIII)

Idal Migrameter Heagurements

For this series of wall thickness measurements a dial micrometer (Ames No. 212 - 10,000 *) (Figure 5), fitted with a special hardened steel pointed contact foot, was used. The instrument was rigidly supported on a frame, with the contact foot coming to rest on a heavy steel base. With the cleaned samples resting on the steel base, initial measurements of the same pit resulted in readings of wide variation. These deviations resulted from a) possibility of transverse rocking of the hemi-cylindrical sample and b) a slight longitudinal bound effect brought about during sectioning of the tubing.

A special brass 3-point V-block was made to correct these errors, and while they wave minimized with this arrangement, now longitudinal

rocking was possible on the three points. In addition, the wide variation in tubing diameter made it necessary to adjust the level of the V-block for each set of samples of different diameter.

Finally, a 1-inch block with 1/4 inch slightly elevated, ridged edges was used, so that in making measurements, the cylindrical shaped sample could be rocked to a slight extent in a transverse direction in order that the maximum pit depth as indicated by the minimum micrometer reading, could be obtained.

headings were also made on samples of new tubing of comparable nominal dismeter to determine the assumt of copper lost by corrosion. The new tubing wall thicknesses were measured with the special pointed micrometers. The average value of ten random readings was taken as the actual wall thickness of tubing prior to corrosion.

As a basis for comparison, the manufacturer's specifications for tubing of the diemeters used in the panels are listed in Table IV.

Table IV

Specifications for Covernment Type L Copper Water Tubing

Theoretical badght (Tol • ± 5 o/o) 15/ft (/or	0.11.7	.212	.339	75.7	£39°
Theoretical 15/rt	0.198	ž. Ž	255	.655	1 26
Wall Informers (Tol = + 0.004) (inches)	0.035	070*	3,10.	c50°	200.
Ineide Literator (inches)	0.430	312.	32.	1.025	1.265
Cutaide Dismetar (inches)	0.50	\$270	.375	1.125	1.375
Fowinal Dismeter (inches)	3/3	27	3/4	H	1 1/c

M.75. - college 1-5 from Forry, Chanten in themselventhooks from Milition, Mira (1750) p 127 Column & calculated from column 5

Approximately ten rendom readings were made longitudinally on each sample and the average of each set calculated. The maximum and minimum readings on the corrected samples were assumed to represent pite and islands respectively. (Table V)

The maximum (or pit), minimum (or island) and average thicknesses of metal lost by correction, as determined by comparison of those measured values (Table V) with theoretical and average measured values of initial tubing wall thicknesses, are listed in Table VI.

Table V

Resultings in this table were made with a disl micrometer on samples of new tabling.

New Tubing - res	New Tubing - readings inches											
Dimeters of tubing sections	3/3	1/3	3/4	1	1 1/4							
	515	156	416	375	339							
	923	4:4	429	3 4	303							
	516	1. 3	1,20	379	303							
	913	450	1,19	3 4	324							
	513	435	413	3 12	3.5							
	519	453	421	3.31	3.24							
	221	453	421	332	297							
	523	L OG	120	3 3	301							
	521	ىكىل	422	3.2	302							
	917	战斗	419	331	275							
Average	513	ليتان	419	332	303							

Follow are the everage values in inches of 10 readings make on the same new tubing samples with the special pointed caliber micrometers.

.033 .037 .043 .047 .055

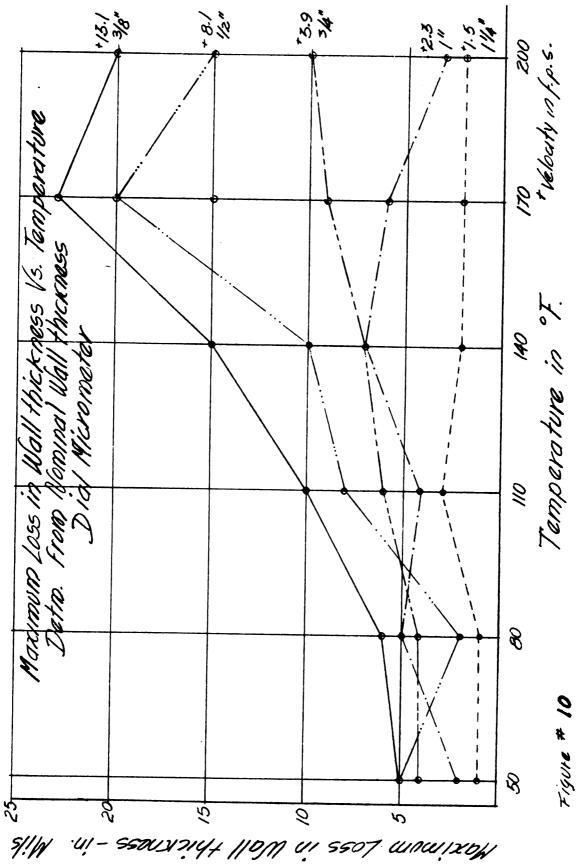
The next table contains the everage values of the dial readings on the corrected tubing converted into actual hades. This conversion was made on the basis of the foregoing relationship.

W.T. - In the following tables "i" and "p" refer to island and pit values respectively.

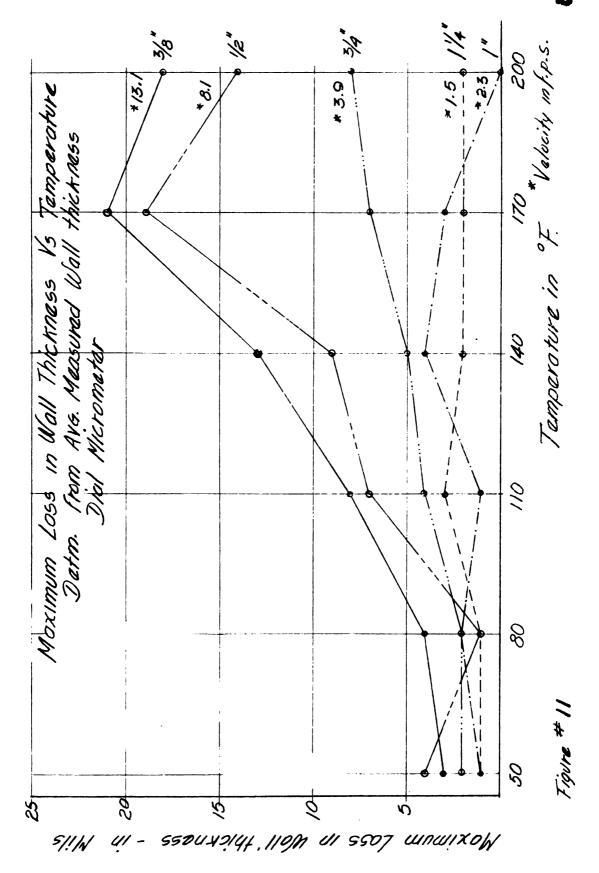
67 67 67		Table We Corners	ion of Dial Ma	Correction of Dial Microsoter Headings to Actual Meadings	ts to actual	Leading	
Diameter		R	200	1107	11.0°F	17071	¥002
Ş	Average	0.033	o.om	0.023	0.024	0.019	0.021
	Island	40.	.033	•033	S.O.	.023	2000
	Nac. Pit	oco.	• 023	520.	.020	200	300.
\$	Average	.037	geo.	1 0:	•035	20.	₹0°
	island	000	eco.	eco.	.037	no.	eco.
	har. Fit	\$60.	.033	zco.	oco.	020	\$20.
\$	Avera 30	S.O.	e.	c.p.	Califo	.033	.038
	Island	370.	cho.	.d.1	-042	opo.	tho:
	Max. Pit	rp.	r _l o.	.039	.033	×0.	.035
ri	Average	670.	Life.	, c.	5,10.	Libo.	• cho
	Island	8	670.	£40.	S.40.	0,3	67O.
	Hax. Pit	870.	Sio.	970	Sho.	क ाठ.	7.50
3 %	Average	\$20.	950.	(%)	13	10°	70.
	Island	9550	650.	10°	750	\$50.	2050

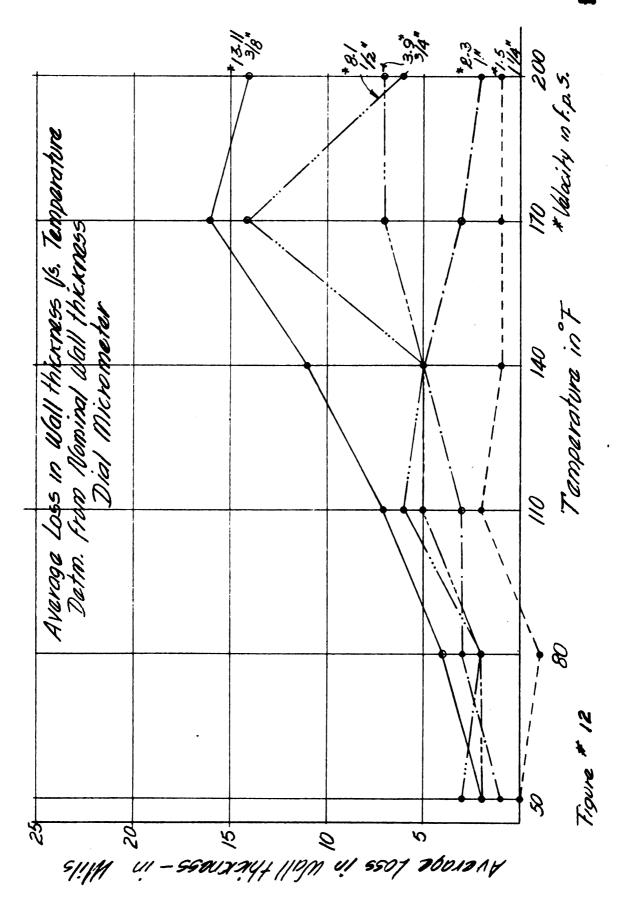
MEASUREMENTS OF PAREL NO. 1 TURING WALL THICKNESS

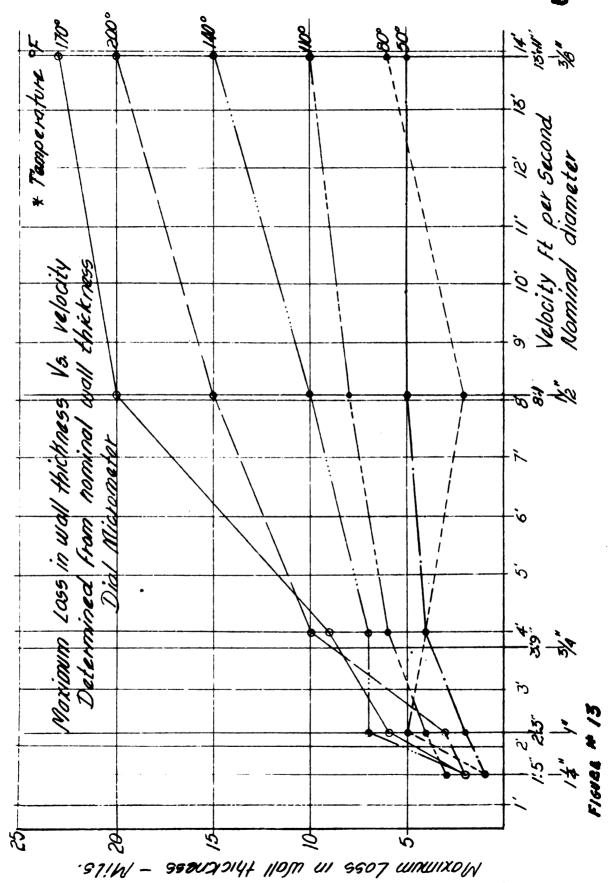
Average of 10 feedings

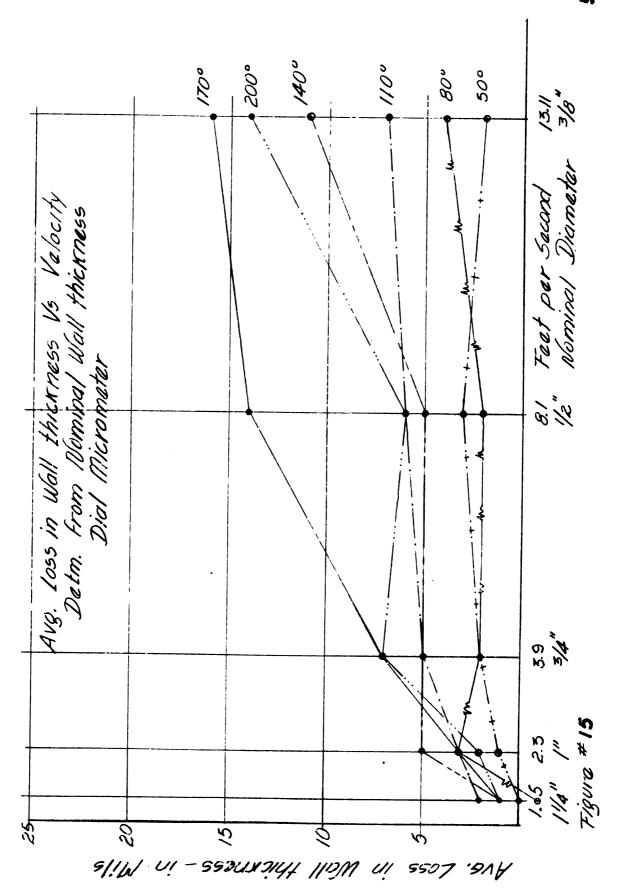

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	115 121 134 130 1410 1415 1409 1413 1415 1420 1411 no islands	372 333 333 333 333 333 343 423 423 423	293 3112 331 294 293 295 294 334 331 2-31 2-31
3 LC1 LC2 LC	115 121 131 130 110 115 109 113 115 120	372 333 333 333 335 333 364 3651 421	294 312 311 294 293 295 294 324 311 2011
3 LC1 9 LC5 6 LC3 7 LC9 1 LC5 1 LC3 1 LC3 1 LC3 1 LC3 1 LC5 1 LC5 1 LC5 1 LC5 1 LC5	1.15 1.21 1.31 1.30 1.10 1.15 1.09 1.13 1.15	372 333 339 373 338 335 330 3634 3651	273 312 311 274 273 275 274 324 311
3 LC1 9 Lc5 5 Lc3 7 Lc6 3 Lc6 3 Lc6 7 Lc4	1.15 1.21 1.31 1.30 1.10 1.15 1.09 1.13	372 333 333 373 333 335 330 341	294 312 331 294 273 275 294 334
3 LC1 9 LC5 6 LC3 7 LC9 3 L564	1.15 1.31 1.30 1.10	372 333 333 323 373 338	29-3 312 321 294 273
3 LC1 9 LC5 6 LC3 7 LC9	1.15 1.21 1.31 1.30	372 333 339 373	273 312 331 274
3 1.42 9 1445	115 121	372 333	29-3 312
5-10	ς	2-5	1
7 123	435	375	312
9 476 2 453	121 102	367 355	306 296
21 473	435	375	2751
			305 3 05
1 493	432	3611	310 312
2 4563	rori	370	379
3 4,71	بلابة	371	3.1 310
3 492 9 478	413 425	363 369	3 03 3 05
3 1/2	3/4	1	11/4
	1 492 1478 1478 1478 1471 1470 1470 1486 1486 1487 1497 1497 1470	3 1/2 3/4 3 1/92 1/13 9 1/78 1/25 3 1/91 1/34 9 1/70 3/91 2 1/964 1/101 3 1/95 1/33 1 1/93 1/32 7 1/97 1/27 31 1/511 1/051 21 1/73 1/35 9 1/76 1/21 22 1/53 1/02 7 1/93 1/35	3 1/2 3/4 1 3 1/92 1/13 363 9 1/78 1/25 369 3 1/91 1/34 371 94 1/70 3/94 3/9 2 1/964 1/191 370 3 1/35 1/33 372 1 1/93 1/92 3/91 24 1/73 1/35 375 9 1/76 1/21 367 22 1/53 1/93 1/35 375

110°F	3/3	1/2	3/4	1	1 1/4
	SW.	52 2 519	14.5 14.1	335 333	333 318
	503 503 57 2 53]	519 519	45 2 455	3.17 3.24	325 323
	533 505	139 193	151 152	3751 330	327 3191
	5°5 5°7 577	LE 21 L621	1331 1431	370 370	2001 334
	571 504	525 511	1211)33 3764	332 314
	5154				
Average .	567	502	بايليا 135	332	323
Island Avg. Nax. Fit	531 577	لۇن) 52 2	405 405	376 390	309 126
°/e Islands	30	30	5-10	30	70
140°P	૯ 29 ઉત્તેર	1697 16631	ելել 1 ₆ 2:2	412 371	303 302
	લ્યુ (79	re31	152 159	3 95 3 99	310 312
	623 5134	lon lon	132 1639	110 392	305 5037
	519 1 639	546 528	438 4204	395 399	3)8 312
	€33 €33	537 4314	1036	122 117	303 301
	سلامات.			3751 3691	
Average	હ્યુક	494	ويليا	393	306
Island Avg. Kax. Pit	513 652	178 546	425 461	372 422	301 312
*/o Islanda	10-15	75	70-80	مبا	90


170°F	3/ 3	1/2	3/4	1	1 1/4
	633	5351	493	3301	37.0
	703	555	hilica	3 99	3031
	723 653	535 5 30	45 3 461	339 401	315 318
	653	5391	المنطبة	395	321
	691	634	466	1105	309
	54.34	599	453	100	3021
	5 77 1 709	593 64.2	472 470	339 410	321 2371
	654	597	471	3741	305
Average	662	531	464	384	309
Island Avg.	545	535	1446	377 410	298
Next. Pit	723	લે;2	493	410	321
°/0 Islands	8-5	8- 5	2- 5	60	l spot isls. 90 slight isls.
200°F	5341 653 693 678 631 669 620 5291 701 665	4531 597p 475 550 4571 432 433 515 430 431 599p	4151 1431 1461 1471 1495 1451 1464 1496 1462	370 368 372 3581 373 378 378 378 378 378	3051 315 318 319 317 313 3071 313 313
Average Island Avg. Max. Pit	642 531 701	507 LSL 599	1,63 1,39 1,99	372 353 378	314 306 319
°/e Islands	30	60-70	90	extremely minute pitting	extremely minute pitting 1


Table VI
Depth of Netal Lost by Corrosion (inches)


Nom. Tub.	Initial	L																			
	Thickne	188		50°F			80°			110°			7/10°			170°			200*		
			AVE.		Pit (Max)	AV.	Isl. (Min)		Avg.		Pit (Max)	AVE.	Isl. (Min)	Pit (Nex)	Avg.	Isl. (Min)	Pit (Hax)	AVE.		Pit (Max)	
3/8	+ Tol	.039	.006	.005	.009	.008	.006	.010	.011	.007	.0214	.015	.006	.019	.020	.011	.027	.018	.007	.024	
	Theor	.035	-002	.001	.005	بادە.	.002	.006	.007	.003	.010	.011	.002	.015	.016	.007	.023	.024	.003	.020	
	Yeas	.033	.000	001	.003	-002	.000	*00ft	.005	.001	.008	.009	.000	.013	.024	.005	.021	.012	.001	.018	
1/2	+ Tol	.044	.007	.005	.009	.006	.005	.006	.010	.005	.012	.009	.007	.014	.018	.013	.024	.010	.005	.019	
	Theor	olo.	.003	.001	.005	.002	.001	.002	.006	.001	.008	.005	.003	.010	.ozh	.009	.020	.006	.001	.015	
	Neas	.039	.002	.000	با00،	.001	.000	.001	.005	.000	.007	.004	.002	.009	.013	.008	.019	.005	•000	.014	
3/4	+ Tol	وباه.	.006	.004	.008	.006	.006	.008	.009	.003	.020	.009	.007	.011	.011	.009	.013	.011	.008	.014	
	Theor	.045	.002	.000	.004	.002	.002	.004	.005	.00k	.006	.005	.003	.007	.007	.005	.009	.007	.00l	.010	
	Neas	.ol13	.000	002	.002	.000	.000	.002	.003	•002	.004	.003	.001	.005	.005	.003	.007	.005	.002	.003	
1	+ Tol	.054	.005	.004	.006	.007	.005	.009	.007	.006	.008	•009	.006	.011	.007	.006	.010	.006	.005	.007	
	Theor	.050	.001	.000	.002	.003	.001	.005	.003	.002	.00l;	.005	.002	.007	.003	.002	.006	.002	.001	.003	
	Meas	.Oh7	002	003	001	.000	002	.002	.000	001	.001	.002	001	.004	.000	001	.003	001	002	.000	
1 1/1	+ Tol	.059	.001	.003	.005	.003	.000	.005	.006	.005	.007	.005	.005	.006	.005	٠٥٥١.	.006	.005	.004	.006	
	Theor	.055	.000	001	.001	001	004	.001	*005	.001	.003	.002	.001	.002	.001	.000	.002	.001	.000	.002	
	Neas	.055	.000	001	.001	001	004	.001	.002	.001	.003	.001	.001	.002	.001	.000	.002	.001	.000	.002	



Maximum Loss in Wall thickness - in.

Fointed dicrometer leasurements

For the second set of wall thickness measurements Callin provided Brown and Sharpe No. 13 one inch micrometers with special 33° points. (Figure C) The samples were hold right in a clamp and readings taken earefully, as the points tended to scratch the soft copper.

The date were obtained as follows: ten random readings were made longitudinally; then deliberate attempts were made to find the ten despest pits and the ten proatest islands. The average values of each of these sets of readings were calculated. (Tables VII)

The maximum (or pit), minimum (or island) and everage thicknesses of metal lost by corresion, as determined by comparison of these measured values (Table VII) with theoretical and everage measured values of initial tubing wall thicknesses, are listed in Table VIII.

Table VII

Pointed Micrometer Readings

Kay

HIP - minute localised pitting - smaller than probe

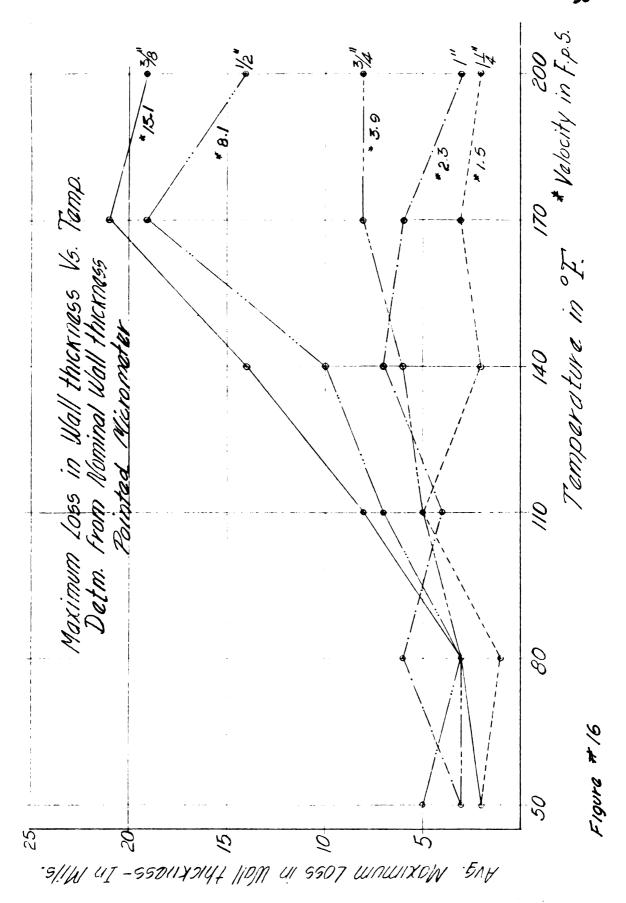
MSI - ne specifie islands

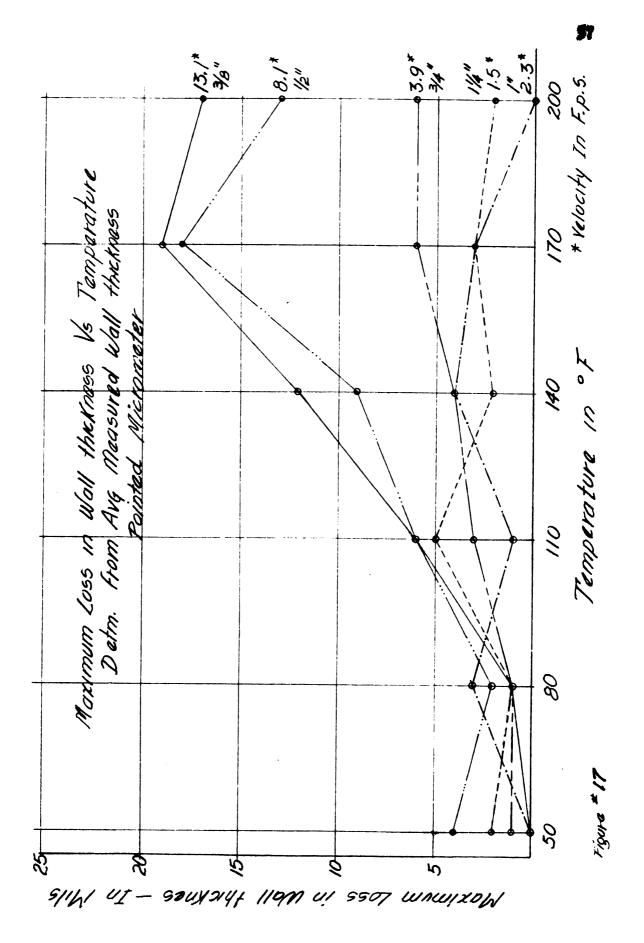
MSP - no specific pite

KLP - no localised pitting

	50 °7	80°7	110°F	21.0°F	170 °y	200°T
	.031	.031	.029	.023	.027	.025
	.033	.033	.029	.025	.022	.026
3/80	.033	.034	.032	.022	.025	.016
	.035	.032	.029	.026	.020	.018
	-034	.032	.032	.022	.019	.033
	.032	.037	.033	.023	.020	.017
Fandon	.035	.033	.027	.028	.024	.023
	.033	.033	.029	.025	.016	.016
	.033	.033	.035	.021	.019	.026
	.034	•032	.027	.024	.021	.030
	(
Average	بلاه.	•033	.030	.024	.021	.023
	+.001	4.00k	+.0.5	+.003	+.006	•.007
	002	002	0 03	003	035	007
	.034	.031	.027	.020	.ozb	.ozh
	بلان.	.031	.026	.021	.016	.016
	.033	.033	.027	.019	.013	-015
	.033	.031	.023	.021	.015	-018
F18	.03k	.032	.023	.023	.016	.01.8
	.033	.034	.029	.020	.024	.015
	.033	بلان.	.023	.024	.010	.016
	.032	.023	.023	.019	.015	.015
	.033	.023	.026	.020	.016	بلاه.
	.032	.031	.026	.020	.03h	.OZA
	-		***			
Average	•033	.031	.027	.021	.014	.016
	+.001	+.002	+.002	+.003	+.002	+.002
	001	003	001	002	004	008
		•		•		
	-035	.033	.033	.036	.027	.023
	-035	بلاه.	•033	ىلان.	.029	.027
	.036	.033	.036	.031	.030	.027
	باوه.	.035	بلان.	.031	.026	.030
Island	•035	بلا0.	.032	.029	•026	•031
	۶۵۵.	.033	•032	•032	•030	•023
	بلاه.	باده.	.033	•033	.031	•029
	-036	.033	.035	.033	.033	.030
	•035	.035	•033	.032	-029	.029
	-035	.0)3	.0)3	بلاه.	.029	.031
American	.035	A21.	(122	011	626	~~~
VARLETO	+.001	.001 +.001	.033	.033	.029	.029
	001	001	+.003 001	+.003 004	♦.00g	+.002
		-,~~	-•		013	001

	50°7	80°F	110°F	Tho F	170°F	200°F
	.037	•033	.03ધ	.037	.025	.035
	.036	.033	.035	.037	.021	•037
1/20	.036	.039	.033	.031	.028	.036
7-	.037	.037	•033	.036	-027	•038
	•035	.033	.036	.033	.030	.035
Randon	.037	•033	.035	.03h	.026	-023
	.035	•039	•036	.032	.027	.033
	.033	.033	بلاه.	.037	.029	.032
	•036	.033	.034	.031	. 025	.025
	.036	.035	•037	.036	.026	.029
Average	.036	.033	•035	٠٥٦٤	.026	deo.
	+.002	+.00 2	+.002	+.003	+.00h	+.00k
	001	031	002	003	005	006
	.035	.035	باده.	.032	.020	.025
	.034	.036	ملاه.	.032	.022	.027
	.035	.033	.033	.030	.020	.029
	.035	.037	.034	.029	-02h	-030
	.035	•033	.033	.031	.020	.029
P18	بنده.	.033	.033	.030	.021	.023
	-036	.033	•033	.029	.019	.O26
	.035	.033	بلاه.	.029	.021	.025
	.035	•033	•033	.025	·as	-027
	.036	.037	-032	.02\$.020	.025
Average	•035	.037	.033	.030	.021	.026
	+.001	••001	+.002	+.002	•.003	+.00k
	001	-002	001	002	032	003
	•039	•039	.036	.033	.030	.035
	.039	•039	•037	.033	ملات.	.036
	.037	.033	•033	.037	.031	-036
	•037	•039	.033	•039	•032	.037
* A	.038	.0i.0	.036	مباه.	.030	.037
Island	.037	.035	.037	.037	.033	.035
	.038	•039	•033	•03 9	.031	.038
	.038 .039	.033	.037	.041	.032	.037
	.038	•033 •039	•037 •037	.033 .039	.032 .031	.037
		•037	1500	*****	-V.JA	.038
Average	.038	•039	.037	.039	.032	.037
	•.001	+.001	+.001	+.0.12	+.002	+.001
	001	001	001	002	002	002


	50°y	80°¥	110°F	140°F	170°F	200°F
	.oh2	ملاات	.oio	ميان.	.038	مناه
	-OLZ	مليان	ماه.	وياه	.038	مين.
3/4"	-01.2	مليله	وياه	حيات.	.033	-OLO
~	-012	Olice	مينه.	-Oil	.039	Life
	-012	-015	-042	Lilo	.037	odio.
Randon	وبات.	.043	.041	.Ohl	مياه.	مباه.
	Lilo.	-Olile	-chil	.039	.033	.ohl
	حباه.	.ouz	•oho	عباه.	•033	-038
	-0/12	دباه.	·ono	.oli3	.033	.oug
	-01 ₂	*Ors	مبات.	.039	.036	.036
Average	.Oli2	-Olida	-010	.ohl	.038	.oko
	•.001	4.0.1	+.002	+.002	+.002	+.031
	001	-0/2	000	03	008	004
	H.L.P.	M. L.P.				
	-042	oul	.039	-038	.037	.037
	0/12	oli	.၀၆၀	.038 .040	.037	.037
	-042	. 04.2	-040	.039	.036	-038
	-012	.043	ميان.	.039	.037	.038
Pis	-042	2بات.	ديان.	.038	.036	.038
	-oul	وبان.	التأن	-038	.035	.037
	عباد.	·0/12	•039	•039	.036	.035
	-042	٤٠١٥.	.ભંગ	.039	.035	•038
	-oliz	2نئن.	olio.	.038	.035	.036
	-013	٠٥٤٤	.039	.033	.036	.034
Average	sio.	.042	·oho	.039	.037	.037
	+.000	+.ou	+.00L	•.002	+.000	+.00E
	031	003	001	001	002	003
	_	n.s. I.				
	eulo.	-04.5	۳۵۱۰۱۴	يناه.	.038	منه.
	Oli 3	دأنناه	cho.	-Oliz	.033	من
	ونيان.	ولبان	دياه.	.au	.લોટ	-013 -014 -014 -014 -014
Y-9A	.043	.ou	·olis	-oli	odo.	-OUR
Island	-01.5 -01.3	مَان.	.Olia	-ako	.oul	
	.04.3	مانه	.di3	color.	-041	-043
	ريان. ديان	دباه. مباه،	"Ofite ofite	ديان.	.039	
	مران مران	ونان.	,ous	بانان. 1بان.	odo. Odo.	ونه. عباه.
	وندن.	وندن	وبدر.	وياه.	-040	ونان.
	4/463	ev-246	•40			•••
Average	طيلاه	وليان	ويان	-oliz	oio.	دياه.
	•.001	+.02	+.002	+.002	+.001	+.001
	001	001	001	002	0.2	-,001


	50 °y	50°Y	110°r	140°F	170°F	200°7
	.ot.3	مينه.	ڪيئن.	-045	.oluk	.olis
	.048	CLB	eulo.	-Oil3	.OLS	-017
7.	ديات.	.043	-046	-043	.0.5	OLB
	. 047	فانثان	•Oi:3	-Olite	Cide	.Oits
	-048	كنان.	-OL6	.Ouk	عباه.	.ol. B
Ranion	.oug	عليك	. Ois	وناه.	-cit	.ol.7
	•043	وللغات	-047	رباه.	حيات.	-050
	.Ohs	کینات.	مين	بأنظاه	- 045	-cut
	.oli8	-047	•046	-046	3 نان	-049
	.050	<u> </u>	-013	کبنه.	-047	-Cita
Average	edo.	وباه.	.Oi.7	طناه	-Oli6	.ous
	+.0U2	·.003	+.002	+.002	+.002	*.002
	001	001	002	001	008	002
	N.S.P.					n.L.P.
	.047	طناه	.cti6	cio.	-duk	-Ob6
	-047	.Oi.5	-046	مليات	مليان	-047
	-Olia	بلدان.	-047	-0نباد	حناه.	-OL7
	·047	-Olile	مياه.	OLE	.043	-046
Pis	-047	مليك	-Oli6	دياه.	-Olds	-OL7
	-047	-01.5	-045	.من	eoh3	.066
	éile.	e Cilia	مباه.	·043	Olule	-oly
	-OL7	ويلان	میان.	-043	.OUS	-OLS
	.0 47	عثبات	-cho	-OLĪ	-043	-OLT
	.Ou3	٠٥٤٠١٤	-047	-015	دياه.	-0L7
Average	.OL7	مأنات	-ch6	.aks	٠٥٤١٠	.d.7
	+.002	+.00 1	•.001	+.001	·.ou	+.000
	000	001	001	001	001	002
	- 050	.OU7	.ભે.ક	بلياه.	.als	.ot.s
	وبناه	.043	ونان	-045	.046	-048
	-050	چېن. پېښ	- 04:3	بلين0.	-047	.050
	edo.	وينه.	•050	-047	النائل.	ھياه.
Island	وباه	·01.7	-04:3	-047	-047	.OLS
	.050	Ecio.	-049	-ous	-046	. 048
	-oks	وبان.	•050	-047	-alse	•050
	•05 0	·047	وبات	-047	.cus	هنا ه.
	.050 -019	-047 04.9	edo.	مباه .	.ok7	-049
	•049	euo.	edo.	. 047	مُ باه.	.048
Averege	-050	•ob3	.okg	ماله.	-047	·Oh9
	+.003	+.000	+.001	+.001		+.001
	001	001	001	002	001	001

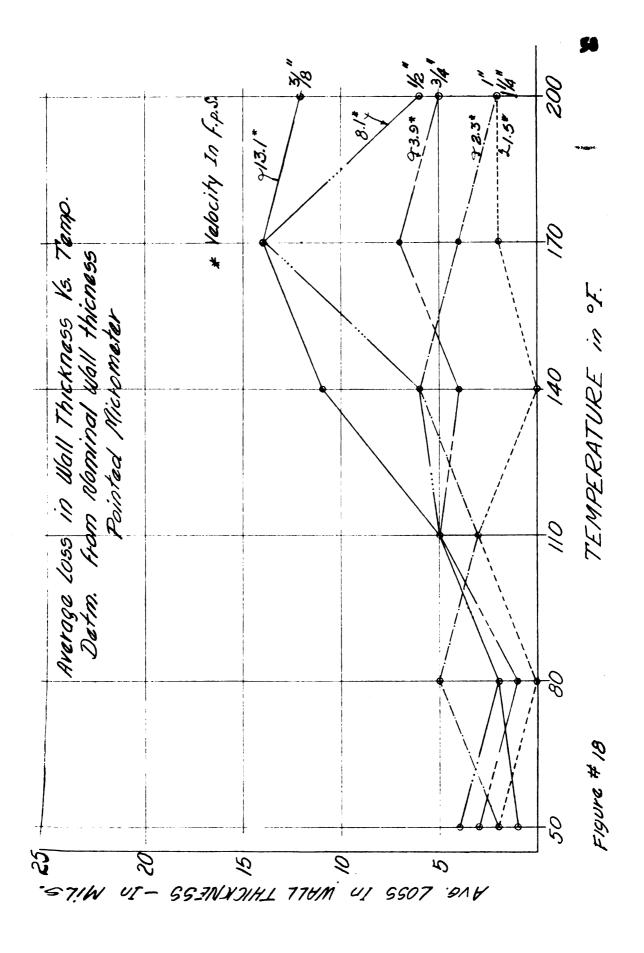
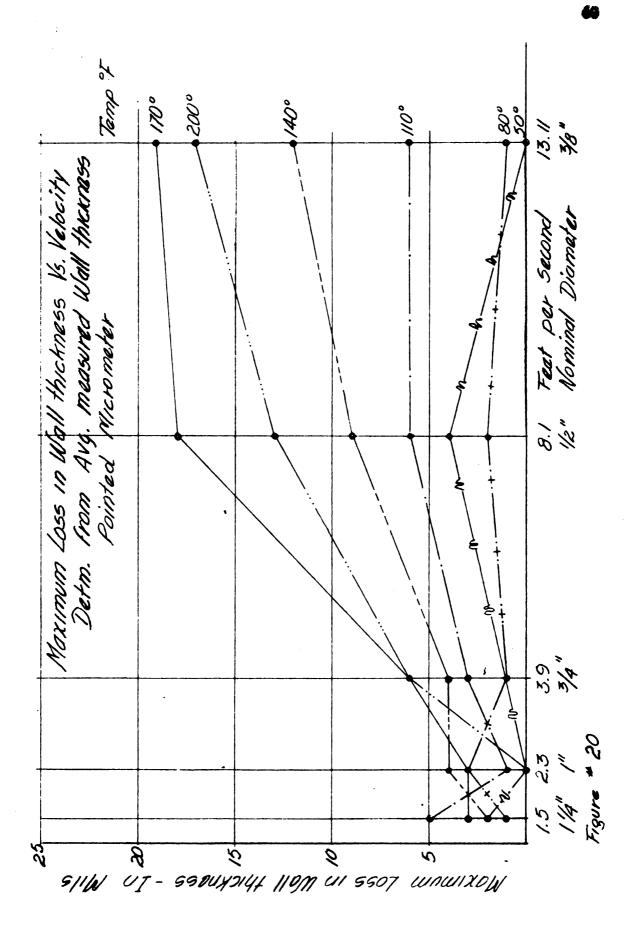
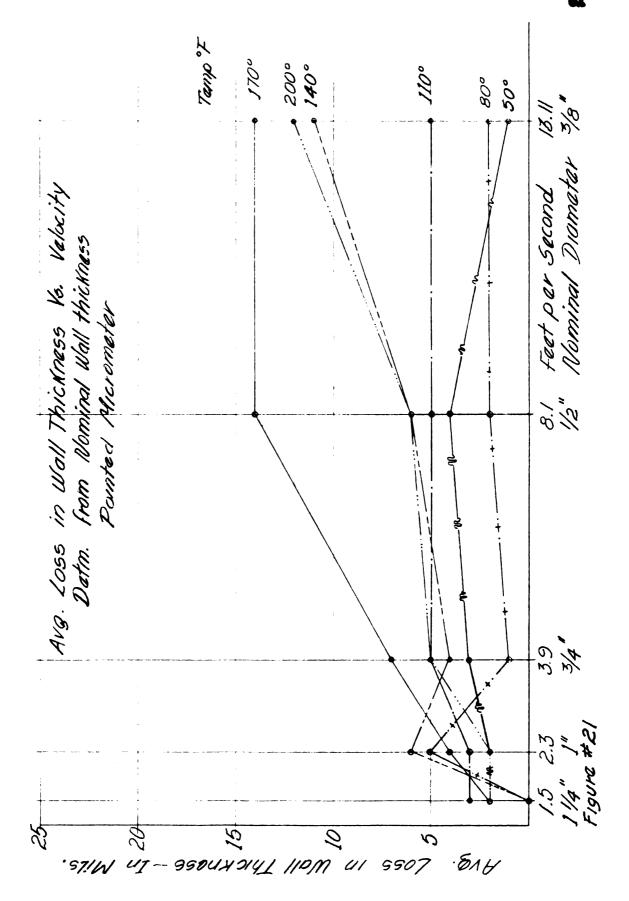

	50°7	4°C8	110°F	llo°f	170°9	200 °7
	.053	.054	•050	•055	.OE2	.053
_	.053	بلزن.	•052	•055	. 0∑2	.053
1 1/4"	-053	•0 ∑ 5	.053	.054	.053	-053
·	-053	•05g	-052	•054	ملان	.052
	-053	•U.5	-050	•055	.0≲5	.053
Eardon	-053	•0 <u>9</u> 5	-052	•055	. 052	.053
	. 053	والأراب	.051	.054	.053	.053
	.053	•0°5	-052	ملاه.	.052	-052
	.053	ق رانه	.053	باری.	.052	. 053
	.053	ىلەرە.	-052	•055	.053	-054
ÀVETACO	•053	•0§5	-052	•055	.053	.053
VART OF A	+.000	+.U.X	+.001	•.000	•.002	+.0.1
	000	031	002	001	O.A	001
	000				4.00.0	-,603
		214				K.L.P.
	-053	•0574	-057	•053	.051	-052
	-052	•0:4	. 051	.053	-052	. 053
	.053	•074	•050	-052	.052	-053
	.053	•055	-050	-05h	.051	-053
P18	.053	•055	وبن.	-053	-053	-052
	-053	بازی.	. 050	-053	.053	-052
	•052	-055	. ₩	-053	•052	-053
	-052	•055	.051	•053	-051	.052
	•053	بلزن.	.050	.053	.052	-052
	.052	.053	•051	.053	.053	•053
AVERGE	•053	.074	•050	.053	.052	-053
	•.000	+.001	•.0.2	+.001	·.0ul	+.000
	001	001	001	001	001	001
	.054	.056	•053	• 0 55	. 05 6	•0 %
	.054	•055	-052	055	-055	054
	.053	-056	•053	.056	.058	.053
	.054	-056	بأران	.057	.057	.054
Island	.053	.097	052	-055	-055	.093
	•053	-055	.053	-055	054	-053
	.054	.057	-052	.057	054	054
	.053	059	.053	076	. 055	-055
	-055	-056	.053	.055	-05.7	-05t
	054	-058	.Q52	.056	-055	-055
	CHARLEMAN					
Average	.07A	•057	.053	•056	.056	·054
•	+.001	+.0.)2	+.001	+.001	+.0/2	+.003
	001	002	001	001	002	001

Table VIII
Depth of Netal Lost by Correcton (inches)


Tub.	initial Vall Thickne	50°F			30°		110"			2140°			170°			200*					
on manage w			Ave.	Isl.	Pit (Nex)	AVE	Isl.	Pit (Max)	Ave.	Isl. (Min)	Pit (Max)	Avg.	Isl. (Min)	Pit (Nax)	AVE.	Isl. (Min)	Pit (Max)	Avg.	Isl.	Pit (Max)	
3/8	+ Tol	.039	.005	.004	.006	.006	.005	.007	.009	.006	.012	.015	.006	.013	.018	.010	.025	.016	.010	.023	
	Theor	.035	.001	.000	.002	.002	.001	.003	.005	.002	.003	.011	.002	.024	.014	.006	.021	.012	.006	.019	
	Meas	.033	001	002	.000	.000	001	.001	-003	.000	.006	.009	.000	*015	.012	.ools	.019	.010	با00،	.017	
9 60		ed.t.	.008	.006	.009	.006	.005	.007	.009	.006	.011	.020	.005	.ozk	.028	.012	.023	.010	.007	.018	
7/2	+ Tol	eldo.		.002	.005	.002	*007	-003	.005	.002	.007	.006	.001	.010	٠٥١١ بلده.	.008	.019	.006	.003	بلده.	
	Theor	oso.	400.	.002	٠٥٥٤ با٥٥٥	-001	.000	.002	.004	.002	.006	.005	.000	.009	.013	.007	.013	.005	.002	.013	
	Peas	.039	.003	# SF SF SE	\$ 2500mg	2000	****							-		000	03.0	.009	.006	.012	
3/4	+ Tol	·019	.007	.005	.007	.005	.005	.007	.009	.006	.009	.003	.007	.010	.011	.009	.012		.002	.008	
	Theor	·045	.003	.001	.003	.001	.001	.003	.005	.002	.005	.004	.003	.006	.007	.005	.008	.005	.000	.006	
	Neas	.043	.001	001	.001	001	001	.001	.003	.000	.003	.002	.001	.00%	.005	.003	.006	.003	.000	.000	
		ari.	.006	.004	.007	.009	.006	.010	.007	.005	.008	.010	.003	.011	.008	.007	.010	.006	.005	.007	*
1	* Tol	.0524	.002		.003	.005			.003	.001	.004	.006	.004	.007	داده.	.003	.006	.002	.001	.003	
	Theor	.050		003			001	.003	.000	002	.001	.003	.003.	.00k	.001	.000	.003	001	002	.000	
	Neas	10000										and.	000	.006	.006	.003	.007	.006	.005	.006	
1 1/	4 Tol	.059	.000	.009	.006	.000	.002		.007	.006	.009	.004	.003	.002		001	.003	.002	.001	.002	
	Theor	.055	.002	2 .003	.002	.000	002	.001	.003	.002	.005		001			001	.003	.002	.001		
	Years	.055	.00	2 .00	.002	.000	002	.001	.003	.002	.005	.000	001	.002	*006	- 0 trulas	4000	**			



A correlating type of data was obtained by making a series of readings in each of several longitudinally marked segments of the tubing. These data have been recorded elsewhere. In second agreement with their reported here.

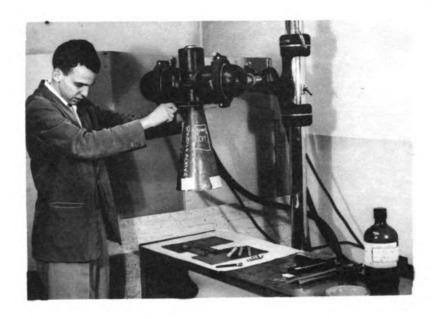
Radio raphie Procedure

For the radiographic observations, the tubing specimens were placed, corroded side up, on the surface of an x-ray film holder under the x-ray tube. The initial radiographic work was done in the hospital x-ray room, using Kodak Elus Brand medical x-ray film.

The first plates were made with an intensifying screen, since it was not known how much of the x-radiation was being absorbed by the copper sample. Upon development, it was found that the exposure of the plate was more than adequate as indicated by the heavy blackening. Subsequent reduction in power on the x-ray tube did not completely eliminate the blackening. As a result the screen was eliminated. The succeeding attempts resulted in quite extinfactory plates. In order set to interfere with the regular operations of the hospital, this procedure was continued using an instrument in the Electrical Engineering Department. The 150 EV Vestinghouse industrial x-ray wait was put in operating condition and employed for the remainder of the radiographic precedure. Following preliminary test exposures, plates of reasonably good visual intensity were obtained.

Riorophotometer measurements were made by placing the film between two sheets of classed spectrographic glass in the appropriate bracket of a Jaco comparator-microphotometer, located in the Agricultural Chemistry Department. The output of this instrument was fed to a Bristol recording galvanometer. The instrument was set so the 100 o/e transmission corresponded to the lightest portion of the film. It was impossible to obtain full scale deflection upon checking the darkest portion of the film.

Changes in exposure were made in an effort to remedy the situation, but films of suitable contrast could not be obtained. The use of a copper sulfate bath to minimise background did not appreciably change the results. Finally a different film, Kodak Industrial Type M, was ordered on the basis of the work of Liebhafsky and Champion.


This film gave much clearer negatives and some microphotometer readings were successfully completed. There was, however, an indication of blacksning around the edges and at the ends of the samples, due to reflected radiation. In an effort to eliminate this difficulty, the samples were placed close together, face down, with small lead pieces at the ends to block reflected x-rays. (Figure 22)

The first step wedge used for comparative purposes was made from eight small leaves of 0.008° copper, soldered together on the edges to give a wedge with a range of 0.06% to 0.008°. It was noted that the depth of steps was too great and the edges of the wedge allowed reflected x-rays to interfere, thus giving greater blackening.

A new wedge was made from a one inch wide, 1/4 inch copper strip by milling the center in 0.003" steps from 0.010 to 0.060". The steps were in the center of a wide strip to minimise reflected radiation.

Contact prints of the radiographs are shown in Figures 23-27.

Figure 22.
Preparation for
Radiography

Exposure information for the radiographs is indicated in Figure 28.

Step Wedge Thicknesses (inches)

Table IX:

1	0.059	10	0.035
2	.057	11	.032
3	.054	12	.029
4	•052	13	.026
5	.049	14	.023
6	.046	15	.020
7	·01/14	16	.017
8	.041	17	.013
9	.0385	18	.010

Figure 23. Radiograph of 3/8 inch Samples and Step Wedge (Plate U, page 70)

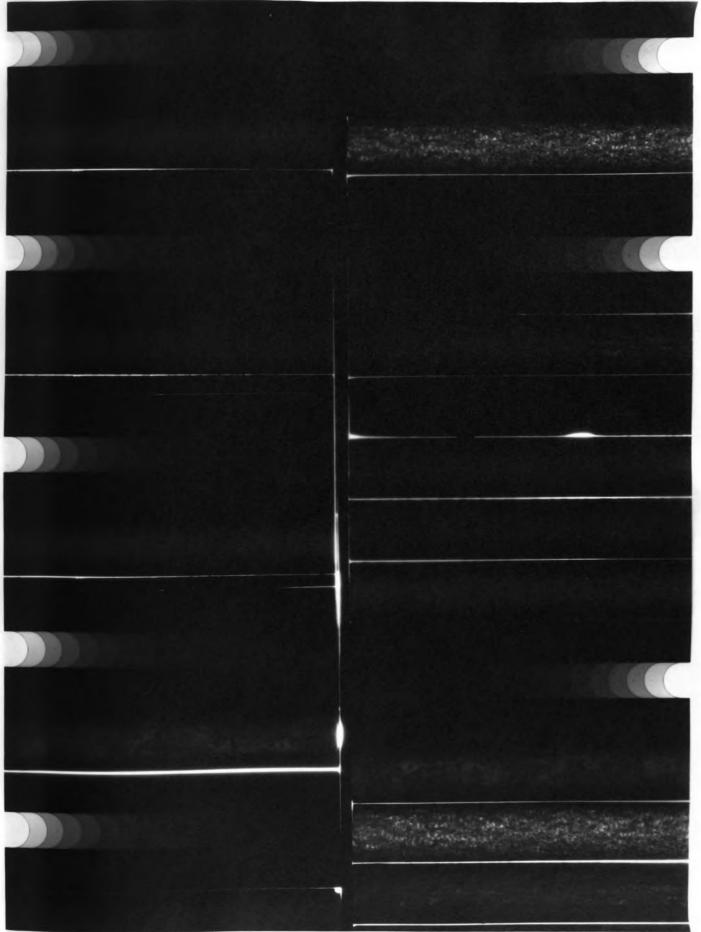


Figure 24. Radiograph of 1/2 inch Samples with Step Wedge (Plate V, page 70)

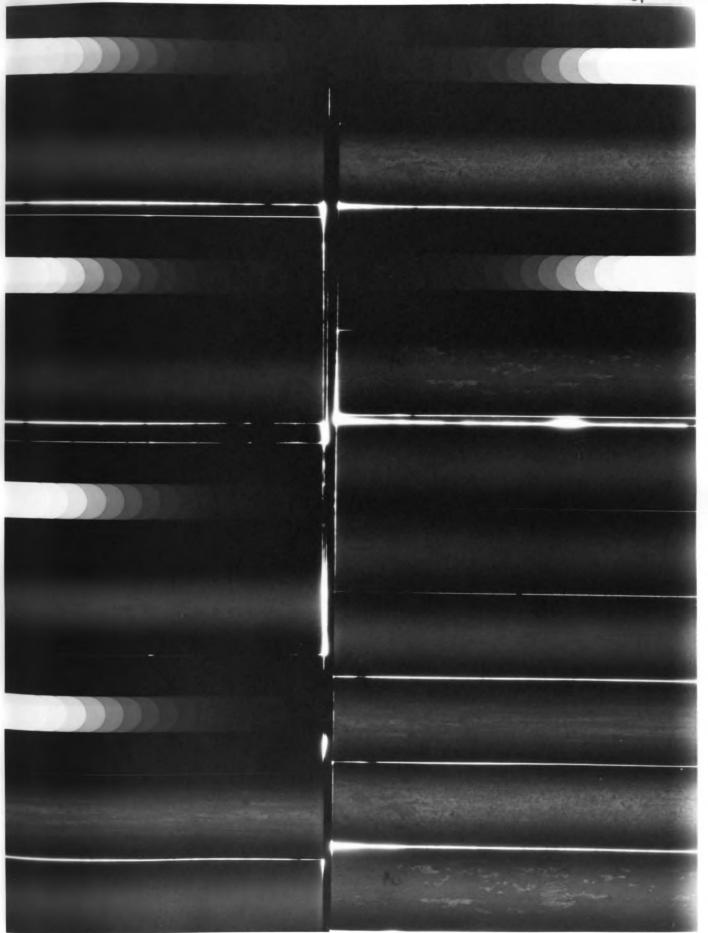


Figure 25. Radiograph of 3/4 inch Samples with Step Wedge (Plate W, page 70)

Figure 26. Radiograph of 1 inch Samples and Step Wedge (Plate X, page 70)

Figure 27. Radiograph of 1 1/4 inch Samples with Step Wedge (Plate Y, page 70)

50° 5 ample	170° Sample
and Wedge	and Wadge
80° Sample	200° 5ample
and Wedge	and Wedge
110° sample	ALL SIX
and Wedge	3/8"
140° Sample	10
and Wedge	SAMPLES
New Tubing	AND
and Wedge	WEDGE

PLATE "U" 3/8" TUBING Exposure Time 30 Secds.

50° Somple and Wedge	170° 5ample
80° Sample	200° Sample
and Wedge	and Wedge
and Wadge	ALL SIX
140° Sample and Wedge	1/2" SAMPLES
New Tubing	ANO
and Wadge	WEDGE

PLATE "V" 1/2" TUB ING Exposure Time 45 Secds.

50° Sample	170° Somple
and Wedge	and Wedge
80° 50mp/a	200° Somple
and Wedge	and Wadge
110° Sample	ALL SIX
and Wadge	1
1400 5ample	3/4"
and Wedge	SAMPLES
	<u>NO</u>
New Tubing	WEDGE
L	

Figure #28

50° Sample and Wadge	140° Sample and Wadge
80° Sample and Wadge	200° 50mpla
110° Sample and Wedge	ALL SIX
170° somple ond Wedge	SAMPLES NO
New Tubing	WEOGE

PLATE "X" I" TUBING Exposure Time 135 Secds.

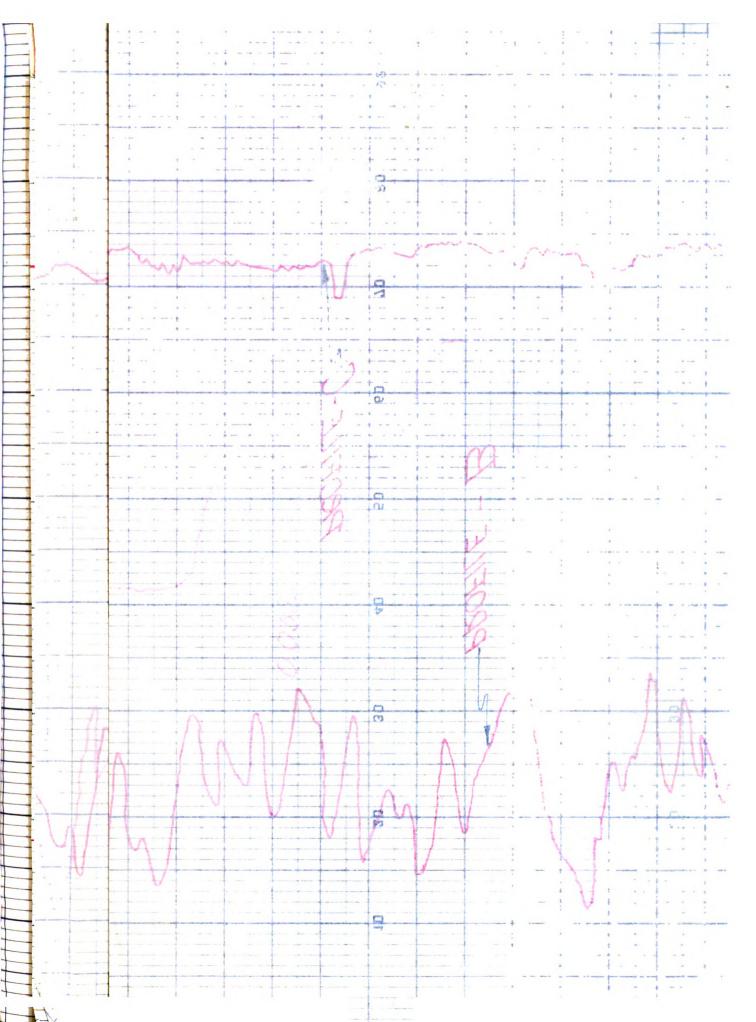
50° Sample and Wedge	170° Sample and Wadge 200° Sample
80° Sample and Wedge	and Wedge
110° somple and Wedge	ALL 1/4" SAMPLES
140° Sample and Wedge	EXCEPT 200°

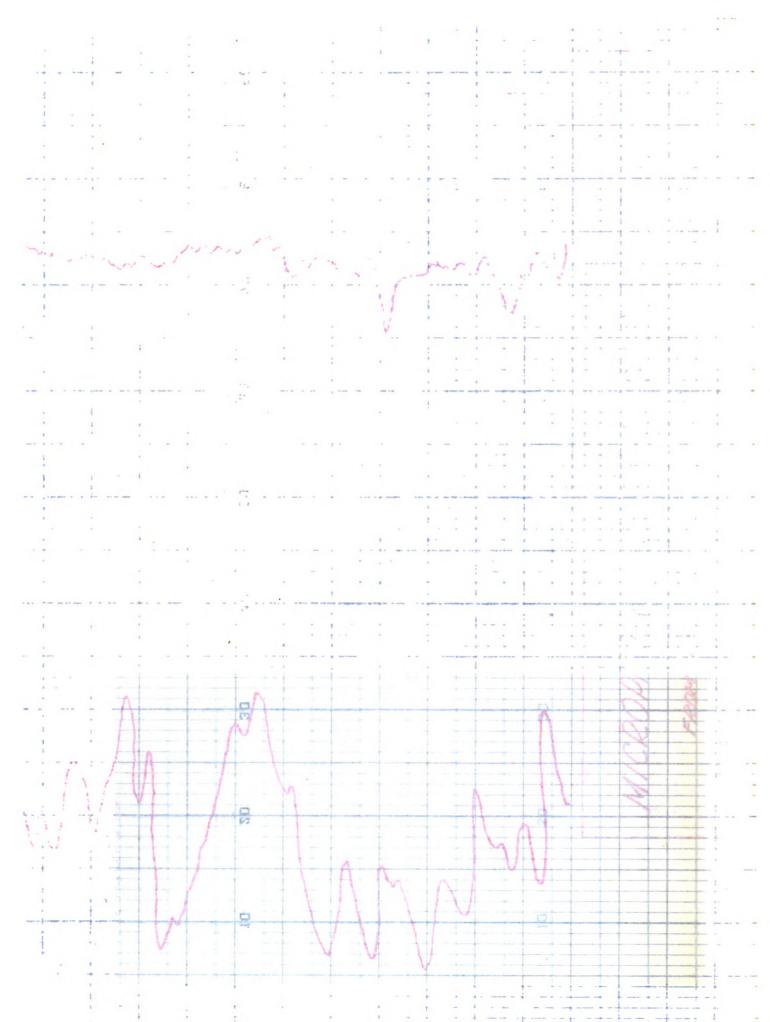
PLATE "Y" 11/4" TUBING Exposure Time 165 Secds.

KEY

TO EXPOSURES OF RADIOGRAPHS

NOTE: All exposures at 50 KV and 15 Ma with 24" plate to target distance


+PLATE "W" 3/4" TUBING Exposure Time 75 Secds.


Microphotemeter Charte

The radiograph corresponding to each sample was placed in the microphotometer as indicated above. The film sample moved in the instrument at 5 millimeters per minute and the slit light source was 80 microns by 1 millimeter. Tracings were made showing a cross-sectional profile of each corroded specimen, and of the step wedge radiographed with it. The thickness, in inches, of each step of the wedge had been measured previously (Table IX*) and was recorded on the chart. From this standard, the maximum, minimum and average wall thickness values of the tubing were determined. (Table IX)

A microphotometer tracing (Figure 29) showing a 1/2 inch tube at 170°F, the corresponding step tedge and a new tubing section, illustrates the method.

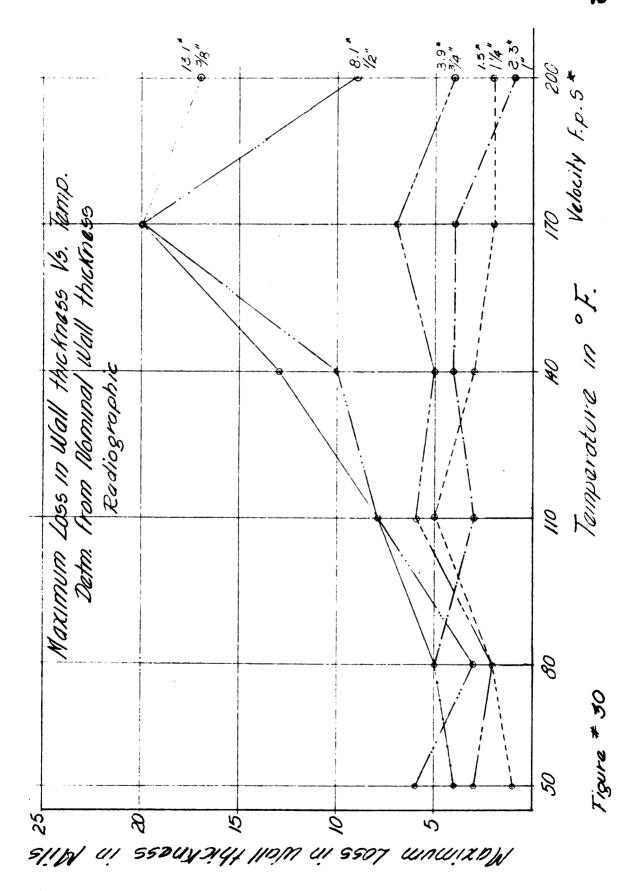
The maximum (or pit), minimum (or island) and average thicknesses of metal lest by corrosion, as determined by comparison of these measured values with theoretical and average measured values of initial tubing wall thicknesses, are listed in Table X.

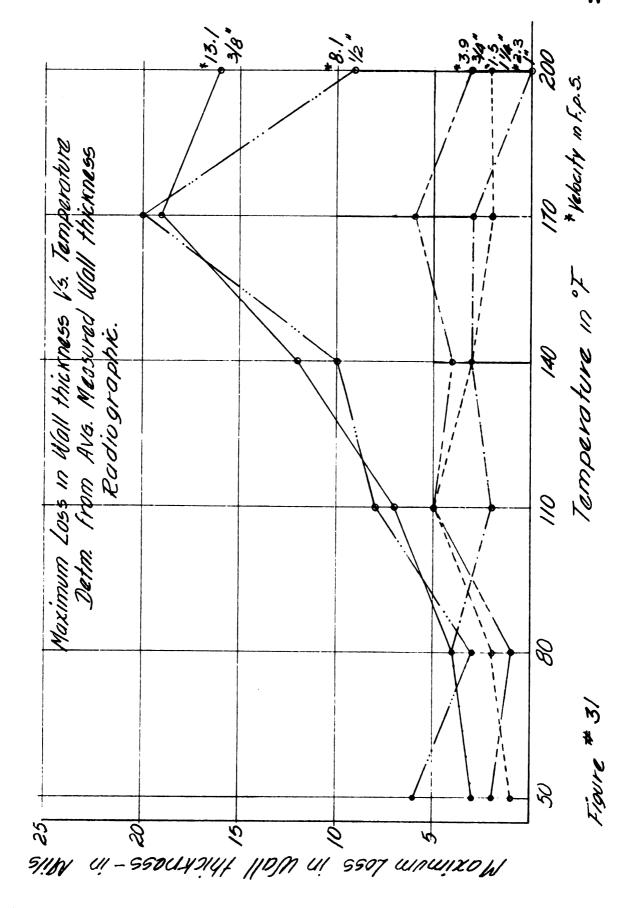
Nadio raphie icrophotometer Measurements

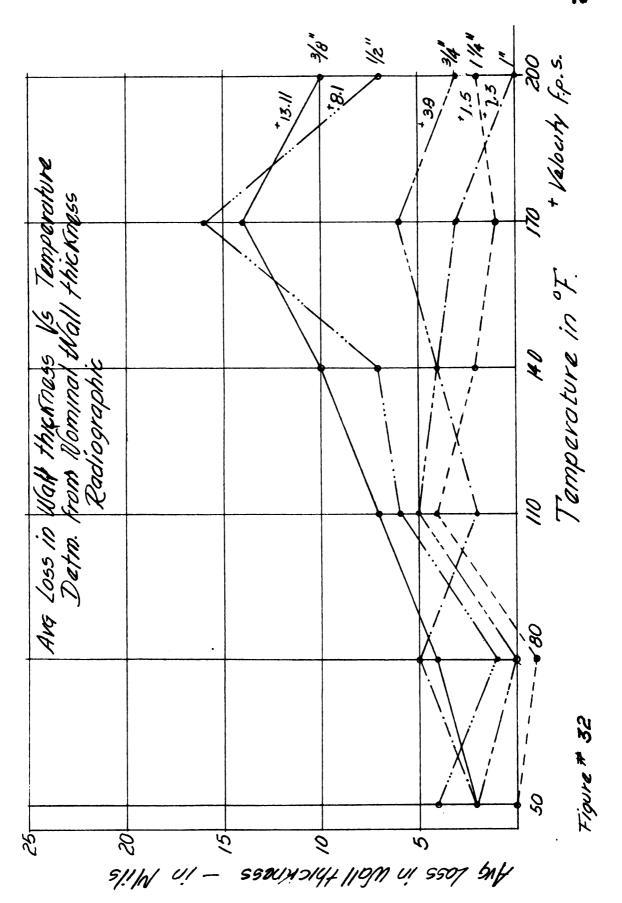
Table IX includes the island, pit and average wall thickness measurements of the corroded tuking as observed from the microphotometer tracings obtained from corresponding radiographs. The form of each tracing is noted by a single descriptive word for a) the average corrosion and b) the degree of fluctuation representing the roughness of corrosion.

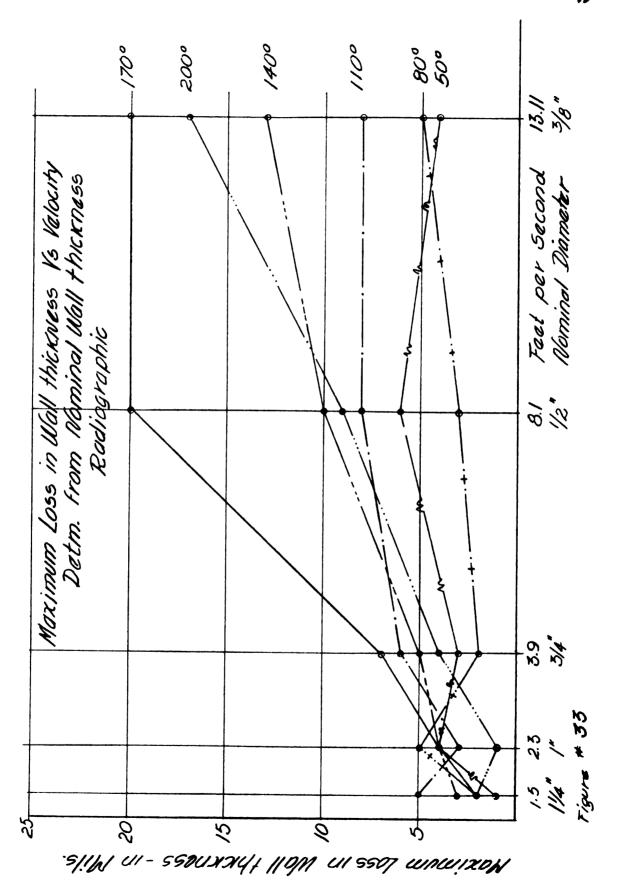
Table II

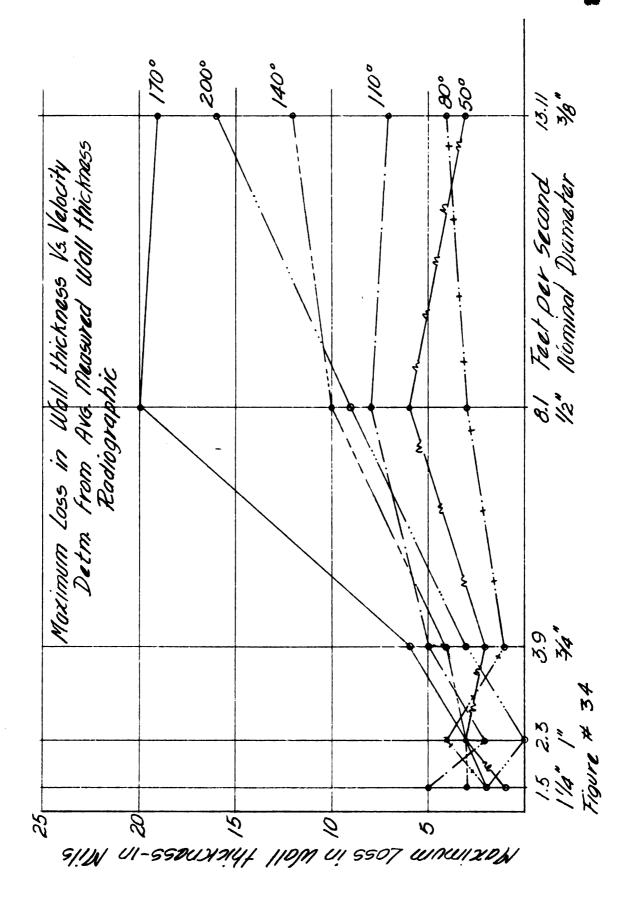
3/8	Average	iverage Island	Partison Island	Average P16	H inima F ib	Notes	b)
50°7	0.033	0.034	0.04	0.031	0.030	6760	little
80°	.031	.032	.033	.030	.023	GAGU	little
110°	.023	.on	.036	.027	.025	even	some eff. end
ייסונג	.025	.023	•030	.022	•020	even	wide
170*	.021	.025	.027	.015	.013	////OAGU	wide
200°	.025	.023	.031	.013	.016	Weren	90236
1/2							
50°T	.036	eco.	.039	.03h	.033	47413	little
80°	.039	مياه.	.042	.037	.036	even slope	very little
130°	باوه.	.036	.033	.032	.030	even	little
•مند	.033	.037	.039	.030	.023	uneven	wide
170.	.024	.026	.030	.020	.018	6760	wide
500.	.033	باده.	.035	.031	.023	uneven	9089

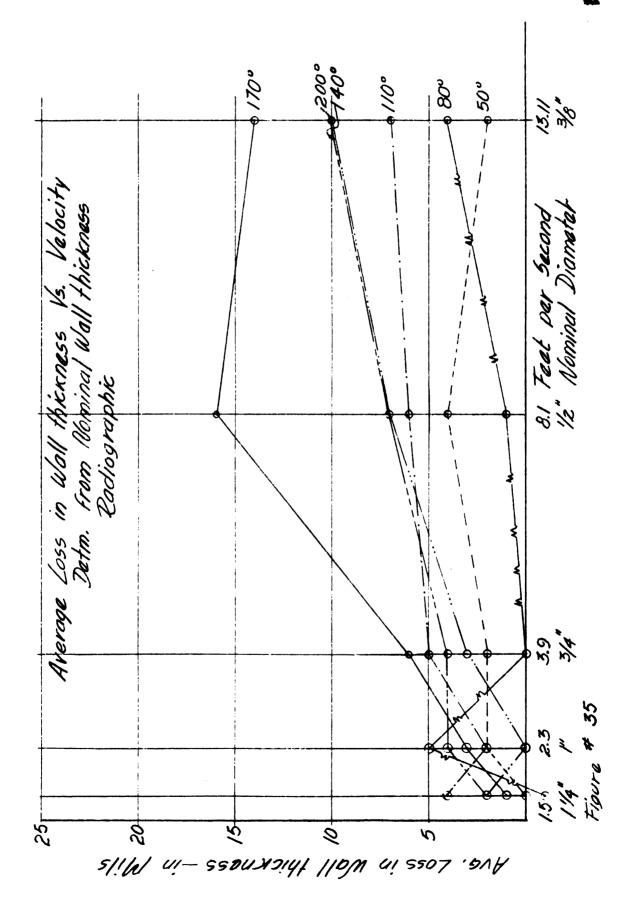

MOTE. - Above "average, island or pli" values are estimated.


3/4	Average	Average Island	Harduna Island	Average Fit	Kinima Fit	liotes a)	b)
50°F	0.043	٥.٥نيا،	٥.٥٤٨	0.042	0.041	even	little
80°	. 045	·0;15	.01.5	.043	-042	even slope	very little
110.	دينه.	.041	.042	.039	.035	even	little
370.	.ola	2بات.	.043	دباه.	.033	moaen	0000
170°	.039	وياه.	.ત્રા	.033	.036	GVGIZ	80%8
200°	2نا0.	.ભા3	بليند.	.ભા	.039	even	BCING
1							
50°F	.043	وياد.	.050	.046	كياه.	even	very little
80°	. 0i.5	ئ بان.	. 046	5ن0.	. 014	even	very little
110.	.043	edo.	eio.	7ناه.	.046	even	9000
שיונ.	.046	.01.7	.a:7	میده	3 ناه.	even	acma
170°	.047	.01.7	.dis	6بلاه.	.Oi,6	even	#CINO
2 00°	.090	.050	.051	.લ.૭	.01.9	moven	8000
1 1/4							
50 T	.055	.055	.056	.054	.053	ADSAGU	little
8 0°	.056	.056	.057	.053	.052	6.4615	8098
110.	.051	.052	.053	.050	.04.9	Estaur	\$000
Jio.	.053	.053	.054	.052	.052	even	little
170*	.054	.054	•055	.053	.053	676 0	90m0
200*	.053	.053	.054	.053	.052	979 2	little


Table X


Depth of Metal Lost by Corrosion (inches)


Nom. Tub. Dia.	Initial Wall Thickne			50°9			30°			110°			140°			170°			200°	
			AVE.	Isl. (Ein)	Pit (Max)	AVC	Isl. (Min)	Pit (Max)	AVE.		Pit (Next)	AVE.	Isl. (Min)	Pit (Max)	Avg.	Isl. (Min)	Pit (Max)	AVE.		Pit (Max)
3/8	+ Tol	.039	.006	.005	.003	.003	.007	.009	.011	.008	.012	بلاه.	.011	.017	.018	.012	.02la	.014	.011	.021
	Theor	.035	.002	.001	.004	.004	.003	.005	.007	.004	.003	.010	.007	.013	.ou	.003	.020	.010	.007	.017
	1938	بلاه.	.001	.900	.003	.003	.002	.00li	.006	.003	.007	.009	.006	.012	.013	.007	.019	.009	.006	.016
1/2	+ Tol	٠٥١٨,	.008	.006	.010	.005	.004	.007	.010	.003	.012	.011	.007	.01h	.020	.018	.024	.011	.010	.013
	Theor	.oho	.oot	.002	.006	.001	.000	.003	.006	.002	.003	.007	.003	.010	.016	.014	.020	.007	.006	.009
	Neas	.039	.003	.001	.005	.000	001	.002	.005	.001	.007	.006	.002	.009	.015	.013	.019	.006	.005	.008
3/4	+ Tol	.oh9	.006	.005	.007	*00/	.004	.006	.009	.008	.010	.008	.007	.009	.010	.009	.011	.007	.006	.008
	Theor	.045	•002	.001	.003	.000	.000	.002	.005	.004	.006	٠٥٥٤	.003	.005	.006	.005	.007	.003	.002	.004
	Peas	، كاباد	.001	.000	.002	001	001	.001	+004	.003	.005	.003	.002	باده.	.005	.004	.006	.002	.001	.003
1	+ Tol	.054	.006	.005	.003	.009	-003	.009	.006	.005	.007	.007	.007	.008	.008	.007	.008	.00h	.004	.005
	Theor	.050	.002	.001	.00l	.005	.00ls	.005	.002	.001	.003	.003	.003	.004	.004	.003	.004	.000	.000	.001
	Neas	.049	.001	.000	.003	,00h	.003	.001	.001	.000	.002	.002	.002	.003	.003	.002	.003	001	001	.000
1 1/	4 + Tol	.059	.004	.00h	.005	.003	.003	.006	.008	.007	.009	.006	.006	.007	.005	.005	.006	.006	.006	.006
	Theor	.055	.000	.000	.001	001	001	.002	1001	.003	.005	.002	.002	.003	.001	.001	.002	.002	.002	.002
	Heas	.055	.000	.000	.001	001	001	.002	.004	.003	.005	.002	.002	.003	.001	.001	.002	.002	.002	.002



Evaluation of Correcton by Weight Loss

To evaluate the corrosion by less of weight, unsectioned tubing was cut into three-dash lengths with a tubing cutter. New tubing of the same mominal dismeter and make as the corrected specimens was used to obtain samples for "criginal" weight. This procedure was undertaken because the tubing was made to the same specifications as that eriginally used.

Two specimens were out from each of the correded sections and three from the new tubing sections. These were weighed on an analytical balance before and after cleaning. Cleaning operations involved immersing for twenty minutes in a 5 c/c potentium dichromate-culturis acid bath, rimsing with distilled water and finally rinsing with smallytical grade othyl acctate.

The langths of these samples were determined by averaging four vernior caliper measurements. The average weight loss in grams per centimeter was determined as the difference between the average weight per centimeter of the new and the corroded tubing samples. A similar comparison was also made between the corroded tubing and the theoretical weight of new tubing according to specifications. Allowance was made for the slight loss due to the cleaning process. Results are included in Table II.

The average wall thicknesses remaining (Table XII') were calculated from the average weights, using the relationship of the theoretical wall thickness to the theoretical weight. As an example, for the 1/8 inch scaple at 50°F .035 - average wall thickness 2.547

then everage wall thickness is 0.031 inches.

In Table XII' is listed the loss of copper by corresion expressed as inches of wall thickness for the "Theoretical Loss", "Described Loss", and "Inches per Year Loss". These data were obtained by comparing the "Remaining" wall thickness values with those for new and unused tubing expressed as theoretical and average peasured wall thicknesses.

Table II .

Cravinstrie Precedure Sussery

* 3	*	8	**	2.	Š	•	Ä	_	11%	•7
	¥.	4	A.	2	Å	4	۲,	*	Å,	4
Total Modgitt (grams)										
Defore Cleaning	20.4393	23/13/3 20.7953	29.cm3	29.CM3 29.FE20	kg.6633	19.663 to.035	n.0323 70.9253	70.9253	99.3419 93.4317	93.4.34.7
After Cleaning	20.3033	20.30 BD.0265	29.35.3	29.303 29.3973	W.1755 W.372	താന	To-cor To-life	70.474.3	93.757 97.9525	97.9525
Cleaning Loss	0.1305	0.1633	0.2315 ೦.೩೮.೭	0.17.2	0.1923	0.226	0.1.01	0,1515	0.552	0.5723
Total Length (incres)	2000 de 1000 d	60000000000000000000000000000000000000	00000000000000000000000000000000000000	0.0000 0.0000 0.0000 0.0000	20.05 20.05	2000 2000 2000 2000 2000 2000 2000 200	2000 2000 2000 2000 2000 2000 2000 200	80000000000000000000000000000000000000	2000 2000 2000 2000	25.5.3 25.5.3 25.5.3
Average (inches)	3.033	3.033	3.0.L	3.05	3.053	3.065	3.064	3.031	3.075	3.033
(centificaters)	7.703	7.3m	7.732	7.758	1.753	7.735	1.78	3.73	7.811	37.7
wateht (c/m)	2.636	2.634	3.7%	3.73	6.3m	6.36.3	9.073	9.093	12.663	12.6%
Average	2.	2.636	3.733	33	6.362	91	9.033	ð	22.669	\$

S

Table XI b

18	*	8.	*	2.	Ž	•	2	_	1 1/4	9.
	*	2	٠,	2	۸,	2	4	4	A .	*
Total Medight (green)										
Eafore Cleaning	22.0307 23.	21.9334	12.5571	n.55# n.8559	52.04.95 51.6041	51.60l1	n.u.n n.5333	72.5333	101.6309	101.6309 101.1342
After Cleaning	21.92% 21.	21.321h	31.336	31.336 31.7039	n.en a.w	SI.BB	71.1265	71.1265 72.2195	101.1657	101.1657 100.7US
Cleening	0.1073 0.	0.1120	0.1751	0.11	0.2203	0.2102	0.3212	0. X33	0.14652	0.1,697
Total Langth (Inches)	90000 90000 90000	48.48 6.69 6.49 6.49 6.49 6.49 6.49 6.49 6.49	0000 00000 00000	70.070 8.000 8.000	1.075 1.075 1.053	3.0% 3.0% 3.0% 3.0%	3.026	55.53	2001 2001 2001 2001	3.073 2.073 2.024 2.024 2.024
Arachae (inches) (centimeters)	3.065	3.0k7 7.739	3.063	3.07k	3.076	3.050	3.009	3.063	7.333	3.066
	2.335	2.03	\$50-\$	1907	6.63h	6.633	9.306	9.5%	22.9%	12.972
Average	નં	2.317	4	14-ch8	3	4.63 h	•	9.295	ä	12.936

Table XI c

1.011	**	*	*2/1	8.	3/40	•	A		13/4	9
	A.	Ass	As	Aga	Α,	Ass	44	2	As	A _o
Total Weight (grams)										
Bofore	13.8653	13.8658 19.1159	28.0291	28.0291 27.9435 46.4395 46.7223	16.1395	16.7223	70.1546	70.15% 69.3536		93.79ko 97.5kgs
Af ter Cleaning	13.7463	13.7468 19.0260	27.8942	27.894.2 27.7962 146.2097 146.5099	16.2097	16.5099	69.87 46 69.0696	9690-69	98.44.19	98.4419 97.1815
Cleaning	0.1190	0.1099	0.1349	0.1349 0.1473	0.2298	0.2124	0.2300	0.2300 0.2340	0.3521	0.3680
Total Langth (inches)	3.045 3.045 3.035	3.066	3.055 3.055 5.055 5.055	3.036	3.050	3.002	3.060	100 de 10	3.00% 3.07% 3.00%	######################################
(Andres)	3.043	3.066	3.03	3.026	3.041	3.055	3.063	3.030	3.072	3.034
(centimeters)	7.730	7.786	7.693	7.636	7.723	1.759	7.781	1.69.1	7.302	7.706
ij	2.425	2.443	3.623	3.626	5.983	5.99h	3.980	8.973	12.616	12.610
Average		2.434	3.620	8	5.989	69	8.977	F	12.608	909

Table XI &

TOTA	-	×3	A	3/20	M	*			•	•
Total Welcht (grans)	-	4	₹		₹	4	→		4	4 3/c 7
Before Cleaning	14.7693	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		27.670, 27.6516	14-71-64	Warted Wasses 67-6917 66-5659	67-6317	6. 553		93.23.2 81.00.3
After	10.70L1	14.6322	27.5916	21.5916 27.5CL		41.5363 14.3933	67.5036	67.83 4 64. 3756		93.9455 94.7630
Cleening	0.0056	0.003	0.0263	0.0322	0.1601	0.103	0.1831	0.1503	0.2377	0.2162
Total Ion;th (Inches)	2000 2000 2000 2000 2000 2000 2000 200	750.4 50.4 50.4 60.4 60.4	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 C	6 000000000000000000000000000000000000	3.050 3.051	3.059 3.072 3.0%	3.004 3.004 3.002	3.00g	38.9 38.9 3 9.9
(inches)	7	c c	7				3.02	3.020	3.030	2.938
(centimeters)	1.7 ET.	7.72	3.047	3.033	3.04.9	3.0.L	3.066	3.03 7.649	3.055	2.951
#(T)	1.902	2,52	3.565	3.572	5.759	5.743	8.663			78.21
e/heavy	7.90	ø	3.5%		5.750	.9	8.66	•	12.657	

Table II .

707	\$		*	•	×	•	2		2 1/2	8.7
	₹	2	Å	4	4	4	4	*	4	2
Total Meligit (grams)										
Before	12.736	12.7166 12.8452	21.8208	21.8208 2 2.0735	Ma.6076	4.6076 kS-304h	61-2268	67.2268 67.2UUS	96.554	96.554 6 97.3 453
After Clearing	12.6269	12.6269 12.75%	2.73	23.9652	14.2035 15.2774	15.170h	£6.9789	66.9789 66.8793	%. &9	%. & <i>0</i>
Cleaning	0.0377	0.0±6	0.1011	0.1133	0.1991	0.1940	0.2479	0.2652	0.3039	0.3360
Total Length (inches)	**************************************	60000 60000 600000	2000 2000 2000 2000 2000 2000 2000 200	4444 4444	240.00	000 d 000 d 000 d	45000	0000	2000	2.000 2.000 2.000 4.000
Average (inches)	3.030	3.04	2.999	3.033	3.026	3.07	3.056	3.042	Stoles .	3.063
(eentiesters)	7.6%	1.72	1.616	1.7d	7.636	1.801	7.763	1.727	7.75	7.730
	1.60	7.650	e de la companya de l	2.83	5.776	5.736	6.627	8.654 8	22,525	22.470
AVERGO	7.6	3	*	2.651	Ž	S.782	3	147	ä	22.Lkg

Table II f

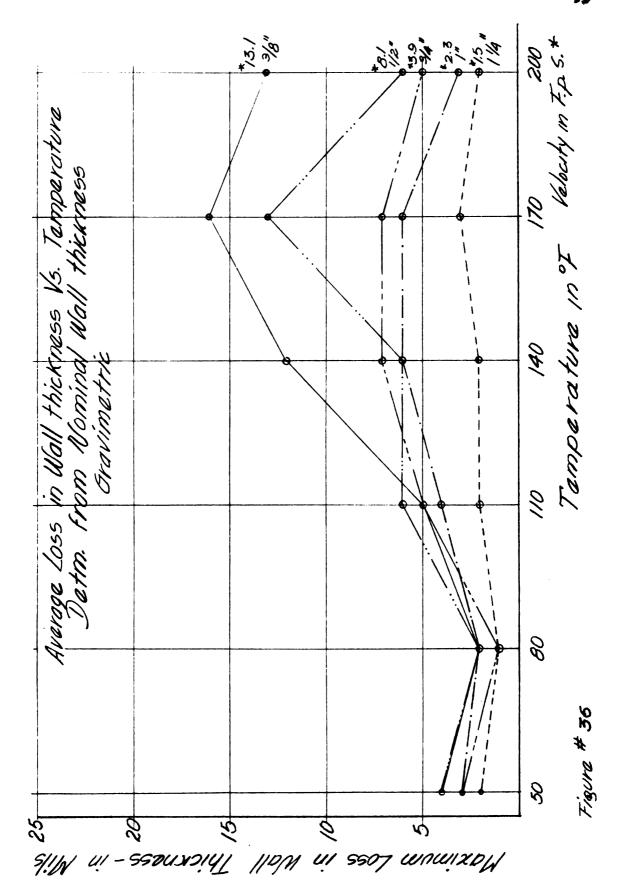
2007	X	E.	3/20	£.	3/2	•	Ä		1 1/2	.
	4	2	Y.	2	A;	4	Ą:		γ.	3
Total belight (gramme)										
Before Cleaning	167.41	14.751 14.7236	28.2375	28.2375 23.5043	17.0457 LG.7373	16-7373	71-1633 71.9536	72.9536	97.XT3	97.31 73 98.6255
After Cleaning	14.60H	11.607 14.5743	23.0762	23.0762 23.35G	127733 b6.1631s	Market de la constant	n.vir n.esa	71.6504	96.3793 93.17 3 1	93.1731
Cleaning Loss	0.14Ch	0.11.ch 0.1543	0.1613	0.1C/k	0.2639	0.2759	0.3021	0.3032	ودينده	क्टम्ग-०
fotal Length (Inches)	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	50000 50000 50000 50000	50000 50000 50000	70000 70000 70000	40.00 40.00 50.00 50.00 50.00 50.00	2.233 3.033 3.034 3.045	800 mm	3.076 3.053 3.053	2440 2000 2000 2000 2000 2000 2000 2000	3.02 2.53 2.53 2.53 2.53 2.53 2.53
Average (inches)	3.037	3.020	3.04	3.04	3.031	3.033	3.035	3.067	3.032	2.939
(contineters)	1.75	7-672	7.732	L7.7	7.698	7.639	7.710	1.7%	1.701	7.5%
Weight (g/om)	1.393	1.3%	3.cn	3.672	£-07	mo-	9.230	9.193	12.530	12.931
Average	Ä	1.396	Ä	3.652	6.019	479	9.214	ਰ	12.7%	%

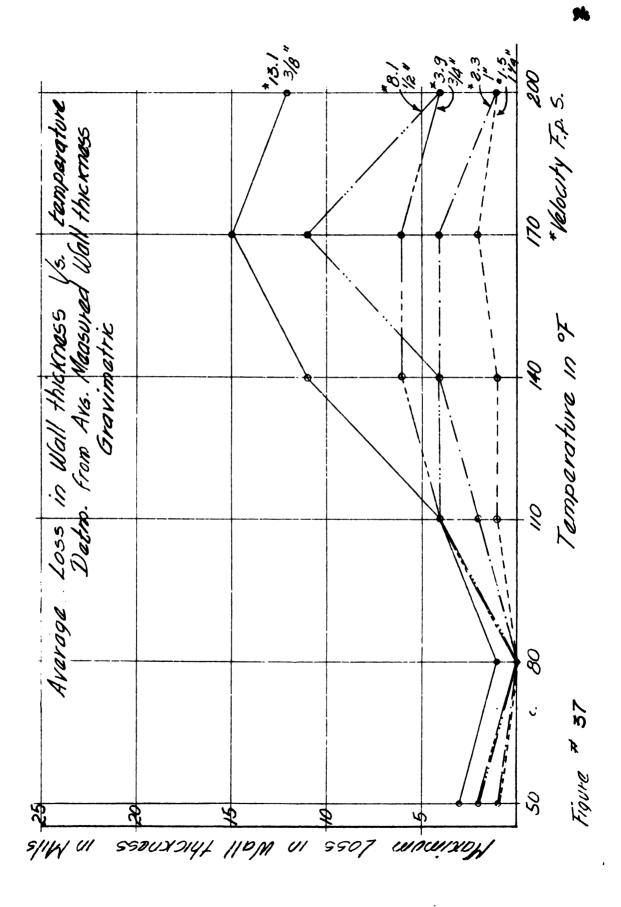
Table XI g

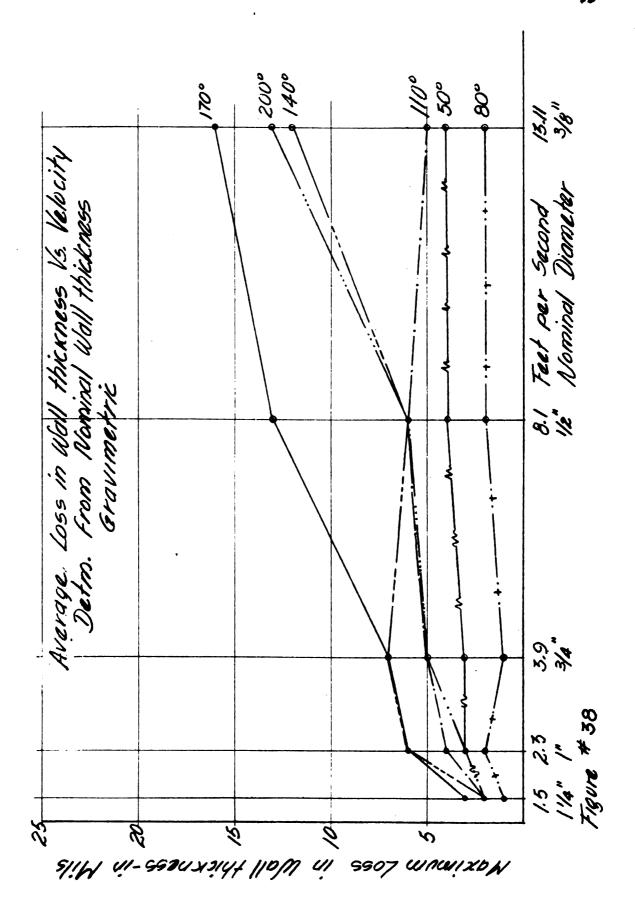
Crarlestele Precedure Sumary New Tubing

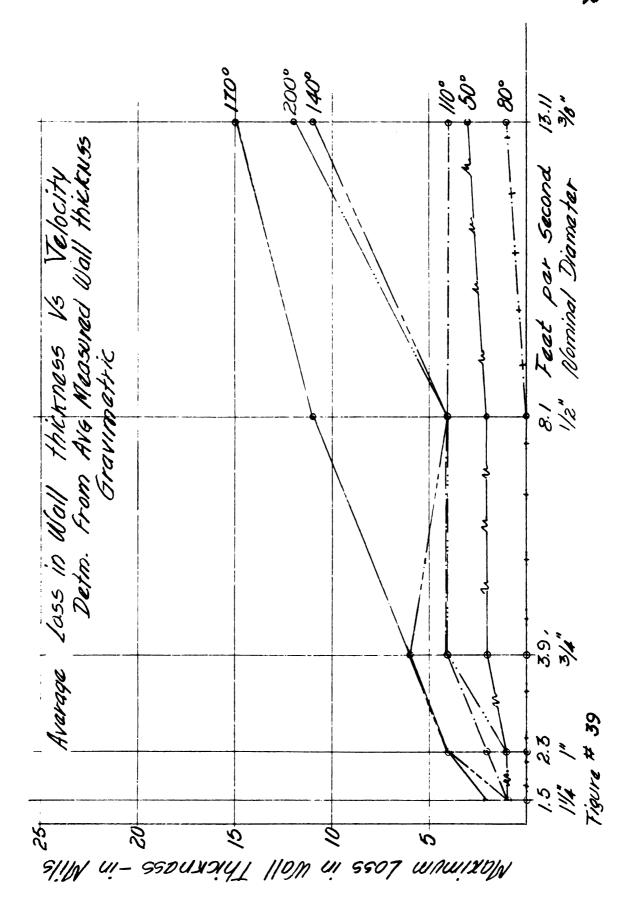
	Height Average (Three Samples) (Tene	Length Average (Four Featureants on Three Samples) inches eentimeters	on Three Samples) pentimeters	beight per length grans/sentineter	Wall Thiskness inches
3/3	21.539	3.015	7.653	2.300	460.0
%	31.039	3.0%	1.722	9 20 -¶	0.038
*	34.03h	2.023	ક.પ્રક	4.617	4,10.0
~	72.126	3.006	7.634	71.9	0.048
\$ 1	99°866	3.057	1.765	12.661	450-0

Table III


Maight of Hetal Lost by Correcton


Theoretical 6.773 - Yolsrance 6.432 * Tolsrance 13.235 Theoretical 9.743 * Tolsrance 9.241 * Tolsrance 9.347 * Tolsrance 13.314 † Tolsrance 13.314


Table Mil's


Depth of Metal Lost by Corrosion

.011	0.019 0.022 .016 .013 .015 .012	20. 10. 200. 200.	.033 .004 .005 .005	770°	2000 2000 2000 2000
1 60.	29. 29. 29.	ते हैं हैं हैं हैं हैं हैं हैं	9999	4884	& \$ \$ \$
100	0.0. 8.0. 13.	8 3333	9.00.00	440.000 400.000	e e e e e e e e e e e e e e
.	0.00 800 800 800 800	6.000 8.000 8.000 9.000 9.000	4000	igo ga ga ga ga	44000 44000
ន	4 500 500 500 500 500 500 500 500 500 50	\$ 100 100 100 100 100 100	200 200 200 200 200 200	1-100 1000 1000 1000 1000	<i>දි</i> දු දු දු
wall Thiokness	Remaining Theoretical Loss Measured Loss Inches per Year Loss	Renaining Theoretical loss Measured loss Inches per Tear loss	Remaining Theoretical Loss Heasured Loss Inches per Lear Loss	Remaining Theoretical Loss Messured Loss Inches per Year Loss	Remaining Theoretical Less Heasured Loss Inches per Year Loss
Tubing Literates					

CONCIUSIONS (EXPERIMENTAL I)

There is rather close agreement in results obtained by the four different methods of correcton evaluation. (Table XIII) The effects on correcton by changes in unter temperature and velocity are indicated in the graphs. To give an indication of the imminence of failure, a set of graphs was drawn with the maximum loss in wall thickness plotted against velocity and against temperature. In a second set of graphs, the average loss in wall thickness was also plotted against velocity and against temperature. This second set of graphs, using average loss in wall thickness, was made in order that all four evaluation methods might be compared, as the gravimetric procedure yields only average values.

Concerni Comments

Temperature Versus Less in Wall Thickness Orapha (Figures 10, 11, 12, 16, 17, 18, 30, 31, 32, 36, 37)

There is apparently a slight drop in the loss in wall thickness due to correction at 80°F, followed by a gradual increase as the temperature increases, with the maximum usually occurring prior to 800°F. This maximum is at 170°F in the 1/8, 1/2 and 1/4 inch tubing and at semantial lower temperatures in the 1 and 1 1/4 inch tubing. It may be conjectured that the higher water velocities in the small diameter tubing may be preventing or hindering deposition of a protective scating, which would otherwise form at these temperatures, and that the centing probably formed more completely in the larger tubing.

Table LIII

Minimum Wall Thickness Remaining (Inches)

Hon. Diameter Taling	Mathod of	.	8	.ca	1,0	170.	200
\$	Hal Ho. Foint His. Hadio, raphie Granimetrio	o S S S S S S S S S S S S S S S S S S S	8496	8 2 2 3	8223	धुंबुंबुं <mark>ब</mark> ुं	200 200 200 200 200
\$	Ulal File. Foint File. Fadiographie Cravinatrie	P. S.	5000	8 5 5 6 6 8 6 6 6 6	2000	8888	25.00 25.00
*	Esal File. Foint Mic. Esalographic Gravicatrie	4444	वृत्तु वृ	800 00 00 00 00 00 00 00 00 00 00 00 00	9 000000000000000000000000000000000000	96. 50. 50. 50.	ू दुवाती इस्तुवाती
Ħ	Cial File. Foint File. Radiographie Cravingetrie	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	9 9 9 9 2 4 2 3	9.9.9.9.9.9.0.0.0.0.0.0.0.0.0.0.0.0.0.0	वृद्धं वृद्धं	न्द्रवेत	चृ द्वेद्
1 1/4	Cial Mis. Point Me. Eadlographis Grantmetrie	કું કું કું છું	<u> </u>	8000 8000 8000		8.50 8.50 8.50 8.50 8.50 8.50 8.50 8.50	<u> </u>

Velocity Versus Loss in Wall Thickness (Figures 13,14,15,19,20,21,33,34,35,36,39)

As expected, the loss in wall thickness generally increases with velocity. This effect is much less pronounced in the low temperature range. It is only above 110°F that the velocity increase tends to influence the extent of corrosion. It is interesting to note that this is also the decomposition temperature range of several copper compounds assumed to be formed as the initial corrosion products.

Comparison of the Four Evaluation Nothods

Comparison of the results of four methods of evaluation (Table IIII) shows that the average wall thickness remaining as determined gravimetrically differs considerably from the minimum remaining wall thickness in the 1/3 and 1/2 inch tubing from 100° through 200°F.

This would indicate formation of several deep pits rather than extensive overall corrosion. This is borne out by examination of the radiographs of these samples.

Special Advantages of Evaluation Nathods

The disadvantages of the various methods have been indicated in their respective discussions. It must be pointed out, however, that each method has certain advantages over the others. The micrometer procedures allow direct measurement of individual pits and probably consume less time than the other methods requiring conversions and calibrations of various instruments. The dial micrometer is much easier to read and contacts with consistent pressure, while the pointed micrometers can probably be handled more rapidly.

The radiographic procedure gives a clear, overall picture not obtainable by the other methods and is a permanent record for comparison. In addition, of course, the microphotemeter tracings allow immediate determination of the extent of correcton and present more of a physical picture of the severity and character of the correcton. It is probable that this is the most comprehensive of the various evaluation methods. The number of operations involved necessitate use of considerable time and may allow a certain number of errors in addition to those inherent in measurements of any cert.

The gravimetric method, as employed in this evaluation, suffered in that the true original weights were not available. It is, however, a good method for general correction evaluation in that local pite and islands are averaged.

It must be noted that the agreement of results serves to indieate that the most rapid method, probably that with pointed micrometers, is sufficiently valid to be used alone in most instances. However, it is felt that the employment of several methods in conjunction better serves to evaluate the extent of the corrosion of tubing.

EXPERITABLE II - IDENTIFICATION OF DEPOSITS

Samples for powier pattern determinations in the early portion of this work were prepared by grinding the material with a boron earbide mortar and postle and packing the resulting powder carefully into a 0.03 cm glass capillary. The capillary was then scaled with a match flame to give a sample tube of about one-half inch length. This tube was then mounted in a Phillips, Debye-Scherrer type, 11.4 cm senera. After alignment, the camera was loaded with Kodak Ho-Sorsen type film which had been cut and punched to fit the camera. The camera was then placed on the Horeloo m-ray unit for exposure.

All exposures were for 6 hours at 35 KV and 16 ma., using copper K-~ radiation.

Exposures were nais for the following compounds, toth for the purpose of obtaining standards for comparison and to become familiar with the operation of the apparatus: NaCl, CuCl, CuCl,

improvement, but at the cost of tripling exposure times to obtain even faint lines.

The patterns obtained from the various deposit samples are included (Figure 40) along with a list of the "d" spacings and the relative intensities of the major lines of the x-ray patterns. (Table XIV)

Identification of the lines was made by comparison of experimental "d" values to those in the Hanamalt, Rinn, Frevel Tables. 10
The line intensities are relative for each film and are designated
1-5, strongest to weekest. Only a few 25 distances were measured in
erder to determine a midpoint, the remainder of the 5 values were
them obtained by subtraction of the midpoint value from the measured
value of the lines. The corresponding "d" values were them determined from a graph made especially for the camera used. (Table XIV)

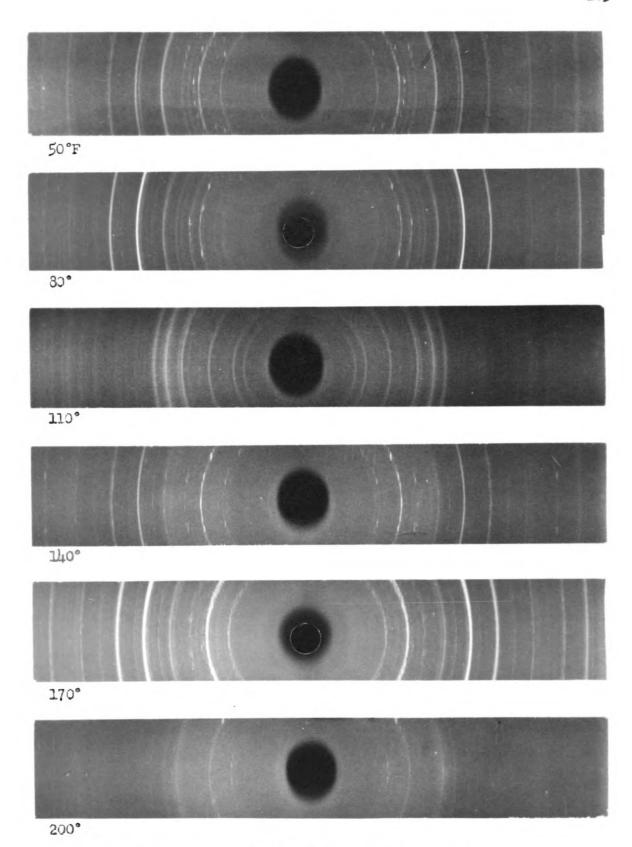


Figure 40. X-ray Powder Patterns of Deposit Material

VIX older

Powier Pattern Identification

Line Intensity	26 (cm) Measured Distance	S (on) Distance	d (Å) From Graph	Probable Identity
Deposit fr	m 1 1/4° t	mbing at 5	O'F	
4	4.200	2.100	4.18	sio, (4.25)
		2.667	3.34	810, (3.35)
35551		2.767	3.22	
5		2.932	3.04	GaGO _a (3.0b)
5		3.087	2.91	CuCO _a (2.86)
ì	7-305	3.653	2.45	Fe0 (2.47); Ou 0 (2.45);
				CaCO _a (2.19)
5	8-455	4.223	2.14	FeO (2.1h); OugO (2.12)
2	8.635	4.343	2.08	Cu (2.03)
3		5.052	1.80	Cu (1.81); SiO ₂ (1.82)
5		5.977	1.64	
4		6.142	1.51	Fe0 (1.51); Cu ₂ 0 (1.51)
5	13.630	6.865	1.37	S10 ₀ (1.375)
52354555		7.412	1.29	Gu (1.277); Gugo (1.283)
5		7.712	1.25	
Deposit fre	m 1 1/4" t	subling at 8	o°F	
<		1.290	6.95	Oug(POg)g (6.9)
É		2.095	4.19	S10, (4.25)
Ś	4.580	2.290	3.85	
Ś	5.185	2.593	3.42	Cuso ₄ · HaC (3.40)
L		2.663	3.34	SiO ₂ (3.35)
5		2.875	3.20	Gu01 (3.12)
I.		2.933	3.0h	GaGO ₃ (3.04); Ou ₃ (PO ₄) ₃ (3.02)
Š		3.165	2.83	Ouco, (2.86)
Š		3.323	2.69	Feata (2.69); FeCla (2.68)
**********	7.295	3.643	2.46	CuaC (2.45); FeO (2.47);
				Ouso, HaO (2.46)
5		3.940	2.29	GaCO, (2.28)
1	8.695	4.348	2.07	Ou (2.08); FeCl ₃ (2.08)
5		4.760	1.91	GuGl (1.91); GaGO ₃ (1.92)
2	10.110	5.055	1.80	Cu (1.81)
5		5.400	1.70	Cu ₃ (PO ₄) ₂ (1.71) ₁ Fe ₂ O ₃ (1.69)
5		5.735	1.60	CuCl (1.63)
5		6.125	1.51	CugO (1.51); FeO (1.51)
1525555		6.815	1.38	Sio ₂ (1.375)
3		7.428	1.29	Gu (1.277); GugO (1.283)

Table XIV

Line Intensity	25 (cm) Measured Distance	S (cm) Distance	d (Å) From Oraph	Probable Identity			
Deposit from 1 1/4" tubing at 110"F							
2	2.965 3.540	1.483	5.98 4.96	GuCO ₃ (6.0) GuCO ₃ (5.1)			
î	4.850	2.425	3.65	0u00a (3.68)			
\$	44000	2.675	3.34	810a (3.35)			
Š		3.090	2.89	CuCl _a (2.90)			
i		3.137	2.85	Cuco _a (2.86)			
1		3.552	2.52	FeO (2.47); OuO (2.51)			
1	- 5 5 5 5	3.857	2.34	GuCla (2.36); GuO (2.31)			
5	8.265	h.133	2.19				
5		4.235	2.13	red (2.1h); dugo (2.12)			
5	8.780	5.475	2.05	Gu (2.08)			
2		5-475	1.67	0.00 (2.60)			
2		5.630	1.62	CuC1 (1.63)			
2		5.803	1.59	C+ C /2 E2\+ Fac /2 E3\			
**************************************		6.775	1.50	CugC (1.51); FeC (1.51) SiC ₂ (1.375)			
Deposit fr	on 1 1/4° a	nd 1° tubi	ng at 14	O°F			
h.		2.105	4.18	810g (4.25)			
	5.345	2.673	3.33	Sio (3.35)			
NUNDAN NUNDAN.		3.200	2.39	GuCla (2.90)			
5		3.640	2.47	Cu ₂ O (2.45)			
5	7.390	3.945	2.28				
1	8.655	4.328	2.03	Cu (2.03)			
2	20 000	4.575	1.98	a. (9.09)			
	10.095	5.048	1.80	Cu (1.81)			
2	11.950	5.435	1.67	C. 0 /3 531			
2	77.330	5.975 6.900	1.55	Cugo (1.51)			
Ĭ.		7.405	1.29	Sio (1.375) Ou (1.277); Ous (1.283)			
5		8.090	1.20	or (x.2//) ongo (x.20)			
Deposit fr	m 1 1/4° a	nd l" tubi	ng at 17	O*F			
L		2.105	4.18	sio, (4.25)			
5		2.425	3.65	CuCO _a (3.63)			
2	5.370	2.635	3.31	S10a (3.35)			
4525454525	-	3.115	2.37	Gucca (2.86); Gucla (2.90)			
4	12000	3.660	2.45	Cugo (2.45)			
5	7.905	3-953	2.28	- 1			
1	8.695	4.348	2.03	Cu (2.08)			
5		4.595	1.97				
2	10.105	5-053	1.30	Cu (1.81); SiO ₈ (1.82)			
5		5.505	1.66				

Table XIV

Line Intensity	25 (cm) Feasured Distance	S (cm) Distance	d (Å) From Craph	Probable Identity
3 5	15.960	5.970 6.820 7.430 7.930	1.54 1.35 1.29 1.22	Cu ₂ O (1.51) &iO ₂ (1.375) Cu (1.277); Cu ₂ O (1.233)
Deposit fro	= 1 1/4° t	ubing at 2	1°00	
4 1 2 5 4	4.160 5.320 7.115 7.205	2.030 2.640 3.553 3.643 3.865	4.24 3.34 2.52 2.46 2.33	\$10 _m (4.25) \$10 _m (3.35) \$40 (2.51) \$40 (2.47) \$40 (2.31)

Concidences (Experimental II)

From Table IIV, it may be observed that certain lines appear in all the samples. The substances thus indicated as present in all the samples are silica, copper and an exide of copper. The presence of metallic copper is due to the sampling technique. Secause of the repetition of certain lines in the x-ray diagrams, which are known to be due to suprous exide, it may be assumed that suprous exide is present in all deposite except the 250°F sample. Similarly, supric exide may be assumed to be in this sample. Basic copper carbonate lines appear in the pictures of the deposite below 150°F; while lines attributable to several other copper salts appear randomly throughout the series. Traces of from exides are also indicated; they are nost evident in the 55°F sample. A few faint lines remain unidentified due to time limitations and the lack, in this department, of an adequate gystem of crees references to the line indexes.

These results are in reasonable agreement with those expected on the basis of the composition of previously analysed corrosion products of copper. The change in composition of the exides and the lack of carbonate above 110°F are anticipated on the basis of the observed changes in color and structure of these deposits with increasing temperature. (Table III)

This presentation was not intended as an exhaustive study of deposit composition, but rather as a sort of general survey to verify expectations. Nore extensive analysis would, of course, involve investigation of the deposits of each disseter tubing as well as repeated runs on the above samples.

BIBLIOCRAPHY

1. Listed are the various references consulted in preparation of the discussion of corresion.

Anaconda Publication 5-36, *Corrosion Resistance of Copper and Copper Alleys*, pp 3-6, The American Brass Company, Naterbury, Connecticut (1950)

"Bridgeport Condenser and Heat Exchanger Tube Handbook", pp 50-92, bridgeport Brass Company, Bridgeport, Connecticut (1954)

Bulow, C.L., J. New England Water Works Assoc., LVIX No 2, 163-182, (1945)

Cilbert, P.T., "Chemical Properties and Cerrosion Resistance of Copper and Copper Alloys", A.C.S. Monograph No. 122, Chapter 13, Reinhold, pp 379-393 (1954)

Kallen, H.P., Power, Dec., pp 74-80 (1956)

McKay, R.J., and Worthington, R., "Corresion Resistance of Metals and Alloys", pp 29-48, Reinheld (1936)

Robertson, W.P., Hole, V.F., Devenport, W.H. and Talboom, F.P. (1957) to be published in J. Klactre. Chem. Sec.

Secvill Condenser Tubes, pp 1-12, Secvill Kamufacturing Co., Waterbury, Connecticut

Vande Bogart, L.G., "Combating Correction in Industrial Process Piping", Crane Tech. Paper No. 108, Crane Company (1939)

- 2. Specific information about the project has been obtained from the progress reports "A Study on the Causes of Copper and Brass Corrosion", Interim Reports No. 1-8, June 2, 1955 to April 30, 1957
- 3. Champion, F.A., J. Inst. Notals LXIX, pp 60-64 and 495 (1943)
- b. Ibid. pp 61
- 5. Liebhafsky, H.A., and Neukirk, A.E., Corrosion 2, No. 11, 432-435 (1953)
- 6. Klug, H.P., and Alexander, L.E., "X-ray Diffraction Procedures", pp 103-110, Wiley (1994)

- 7. Minneapolie-Honeywell Instrumentation Data Sheet, No. 10.16-16, April 1952
- 8. "A Study on the Causes of Copper and Brass Corrosion", Interim Esport No. 1, p 1, June 2, 1955
- 9. Clark, C.L. "Applied I-Rays", Ch IX, pp 152-184, FoCran-Hill (1940)
- 10. Hanawelt, J.D., Rinn, H.W., and Frevel, L.K., I and R.C., Anal Ed 10, 457 (1933)
- 11. Recorded in project laboratory notetook, to be included in Interia Report No. 9.

CHEMISTRY LIBRARY Date Due

JUL 11 16	9.		
01.76-9			
		A Light	
1115	00000	39	
JIII 29		23	
7836	385		
Demco-293		-	

Thesis CHEMISTRY LITTREE C. 2
Plumley,
Evaluation of corrosion in copper vater tubing.

