

ORDOVICIAN VERTEBRATES FROM ONTARIO

Thesis for the Degree of M.S.
MICHIGAN STATE UNIVERSITY
KATHLEEN ANNE LEHTOLA
1971

7#85°

3 1293 00671 7668

Michigan State
University

123/15 5 B 1905 WAR

ABSTRACT

ORDOVICIAN VERTEBRATES FROM ONTARIO

Ву

Kathleen Anne Lehtola

Vertebrate fossil fragments found in the northeast part of St. Joseph Island, Ontario, Canada have been referred to <u>Astraspis desiderata</u> Walcott on the basis of their stellate tubercles. The fossils are found in shallow marine limestones of Middle Ordovician age.

This is the first recorded occurrence of an Ordovician vertebrate in limestone. This find considerably widens the geographic range of <u>Astraspis</u> and lends some additional support to the theory of the marine origin of the vertebrates.

ORDOVICIAN VERTEBRATES FROM ONTARIO

Ву

Kathleen Anne Lehtola

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Geology

ACKNOWLEDGMENTS

I wish to thank the following members of my MS committee for their assistance: Dr. J. Alan Holman (Chairman), Dr. James H. Fisher (both of the Department of Geology, Michigan State University), Dr. Jane E. Smith (Lyman Briggs College, Michigan State University) and Dr. Gerald R. Smith (Associate Curator of Lower Vertebrates, Museum of Paleontology, University of Michigan).

Dr. Robert H. Denison (Chicago Field Museum) kindly offered advice and encouragement during the course of this study. I wish to thank Dr. Fisher for extra help in the field and Dr. Robert Kesling (Museum of Paleontology, University of Michigan) for help in identifying fossil invertebrates. Also thanks to Mr. Robert Kelley (Michigan Geological Survey) who helped me locate some of the older reference materials, and to Mr. Karl Kutasi (Museum of Paleontology, University of Michigan) and to Mr. Ralph Taggart (Department of Geology, Michigan State University) who kindly photographed the fossils. Miss Nancy Underwood made the maps in Figures 1 and 2.

TABLE OF CONTENTS

LIST	OF	TAE	BLES		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11
LIST	OF	FIG	URE	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
INTRO	DUC	CTIC	on.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
GEOL	OGY		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ı
S YS T	CAME	CIC	PAL	EC	rno	102		ζY	•	•	•	•	•	•	•	•	•	•	•	1:
DISC	JSS]	ON.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
LIST	OF	REF	ERE	NC	ES	3.			•		•									27

LIST OF TABLES

Table		Pa	ge
1	Stratigraphic relationships of Trenton and Black River rocks		4

LIST OF FIGURES

Figure		Page
1	Paleozoic rocks in the Upper Peninsula of Michigan as mapped by Carl Rominger. (From Michigan Geological Survey, 1873)	. 6
2	Eastern tip of the Upper Peninsula of Michigan, including islands in the St. Mary's River. The outcrop area on St. Joseph Island is solidly shaded. (Modified from Vanlier and Deutsch, 1958).	• 9
3	Three views of an Astraspis plate. Number 3:1 shows the plate in the mat- rix. Plate is in the upper left cor- ner. Numbers 3:2 and 3:3 are close-ups of the plate in different aspects. 3:1 (x 4): 3:2, 3:3 (x 14.2). Photograph by Mr. Karl Kutasi, University of Mich- igan	. 13
4	Five views of a group of tubercles from the dermal armor of an Astraspis desiderata (UMMP V57977) from St. Joseph Island. Couplets 1-3 are stereo pairs; 4-5 are single views. Numbers 1-4 have been treated with silver nitrate. (x 20) Photograph by Mr. Karl Kutasi, University of Michigan	. 16
5	Astraspis desiderata; showing two views of tubercles: 5:1 in cross section, and 5:2 a horizontally sectioned tubercle. (x 165). Photograph by Mr. Ralph Tagart, Michigan State University	. 18
6	Paleogeographic map of North America. Solid black areas are Middle Ordovician outcrops; cross-hatching is thought to be the extent of the epicontinental seas. (From Chamberlin and Salisbury, 1930)	. 25

INTRODUCTION

The earliest fossil vertebrates have perplexed several generations of workers. The remains are fragmentary, not at all abundant and, at times, poorly preserved. The earliest recorded occurrence of Ordovician vertebrates was made in Russia by J. V. Rohon (1889), who published a report of Ordovician fish remains from Russia's Baltic region. He established their vertebrate nature on the basis of the presence of pulp cavities, dentine and dentine tubules, and enamel. These fossils have not been studied further but are currently placed in the Order Thelodontia by Russian paleontologists (Ørvig, 1958).

Ordovician fish remains were next discovered in Colorado and described by C. D. Walcott (1892). He named two genera and species: Astraspis desiderata Walcott and Eriptychius americanus Walcott. The two genera are easily distinguished, Eriptychius having raised, elongate ridges, and Astraspis having stellate or mushroom-shaped tubercles. Cope (1893) suggested the fossils be placed in the Class Agnatha. In 1936, W. L. Bryant did the first thorough histological study of the two genera. He referred them to the Order Heterostraci on the basis of (1) a prominent median dorsal plate, (2) ornamentation superficially similar to that of other heterostracans and (3) aspidin

(acellular bone).

Darton (1906, 1909), Furnish et al. (1936), and Ross (1957) identified Ordovician ostracoderms in South Dakota, Wyoming and Montana. Furnish and Darton both listed indeterminate vertebrate remains, and Ross reported Eriptychius americanus and Astraspis desiderata from well cores in Montana. Vertebrates of that area were first thoroughly studied by Ørvig (1958) who named a new genus and species, Pycnaspis splendens Ørvig, from near Sheridan, Wyoming. Denison (1967) later relegated Pycnaspis to the synonymy of Astraspis, naming a second species A. splendens.

In 1958, G. W. Sinclair reported two <u>Astraspis</u> plates from British Columbia and Quebec in Canada. Unfortunately, before these could be studied they were lost (Thomas E. Bolton, Geological Survey of Canada, pers. comm.). Other Cambrian and Ordovician vertebrates have been recorded at various times (review in Ørvig, 1958; Denison, 1967), but all have been discredited or need considerable further study.

A reported Ordovician ostracoderm occurrence that was never discredited involved material from the Black River Group near Escanaba, Michigan. In his Historical Geology, R. C. Hussey (1947) figured a platelet of supposed vertebrate origin. The figured specimen has been lost. I microprobed and thin-sectioned another specimen (UMMP V43936) identified as an ostracoderm by Hussey. It has an outer covering of silica and a carbonate interior (Robert H. Ehrlich, Michigan State University, pers. comm.).

But it has been so diagenetically altered that the organic origin of the plate cannot be established.

In the course of my study of Hussey's Middle Ordovician collection from St. Joseph Island, Ontario, several samples were found to contain vertebrate plates with tubercles. These plates are here described and referred to Astraspis desiderata.

Dr. Gerald R. Smith (Associate Curator of Lower Vertebrates, Museum of Paleontology, University of Michigan) granted me permission to study the fragments. They are now again in the Museum of Paleontology collections at the University of Michigan.

This is the third major recorded occurrence of Ordovician vertebrates. It is the first occurrence of Astraspis outside of the Cordilleran region of the western United States. It is the first occurrence of an Ordovician vertebrate in limestone. The paleoecological significance of the limestone is that it probably was deposited in the open sea, thus lending support to a salt-water rather than a fresh-water origin of vertebrates.

GEOLOGY

Hall (in Hussey, 1936) first reported rocks of Middle Ordovician age in the Upper Peninsula of Michigan. He correlated them with the Trenton Group in New York. Winchell (1861) and Rominger (1873) traced these in outcrops from Wisconsin across the Upper Peninsula and into Canada (Figure 1).

The rock terminology has changed considerably in the literature since Hall's report. Hussey (1936) broke the Trenton Group down to the Black River and Trenton Formations. Martin (1956) elevated the Trenton and Black River Formations to group status (Table 1).

TABLE 1. Stratigraphic relationships of Trenton and Black River rocks.								
Series	Group	Formation						
		Groos Quarry						
Mohawkian	Trenton	Chandler Falls						
	Black River	Bony Falls						

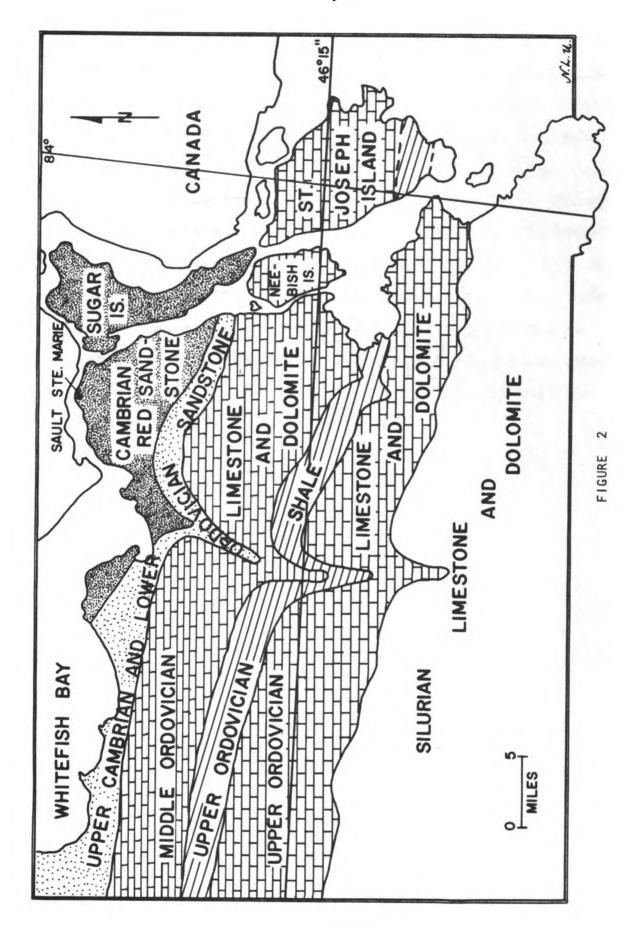
The Trenton and Black River Groups are mainly limestones and dolomites. The best outcrops in the Upper Peninsula are around Escanaba, in Menominee, Delta, Marquette
and Alger Counties. At each of his 86 localities, Hussey
(1936, 1952) described the Trenton and Black River Groups,
subdividing the outcrops into zones. Zones were differentiated on the basis of lamination, pureness or foreign

FIGURE 1. Paleozoic rocks in the Upper Peninsula of Michigan as mapped by Carl Rominger. (From Michigan Geological Survey, 1873).

FIGURE 1

content of the limestone, color, weathering, faunas and contacts.

In differentiating the Trenton Group from the Black River Group, Hussey (1936, p. 243) stated, "Fossils are not as abundant in the Black River as in the Trenton and are usually more difficult to obtain. The break between the two formations cannot be detected upon lithologic grounds but is entirely a faunal one. The relatively unfossiliferous Black River is succeeded by the more highly fossiliferous Trenton with the typical brachiopod,


Zygospira recurvirostris at the very base."

The ostracoderm-bearing rocks of Black River age are from St. Joseph Island, Ontario, which lies off the eastern tip of the Upper Peninsula of Michigan (Figure 2). The outcrop area where Hussey collected fossils is on the northeastern side of the island. Hussey (1952) stated. "The top of the section begins at Quarry Point, on the northeast side of the Island, and continues northward to Gravel Point, and then westward for about two miles, along the north shore of Landspur." The outcrop area is solidly shaded in Figure 2. Unfortunately, Hussey did not pinpoint his collecting site.

Limestones from this outcrop area are pure, finegrained, gray and very fossiliferous. A few brachiopods have been completely filled by calcite crystals; some invertebrate fossils have been partially replaced by pyrite. FIGURE 2. Eastern tip of the Upper Peninsula of Michigan, including islands in the St. Mary's River.

The outcrop area on St. Joseph Island is solidly shaded.

(Modified from Vanlier and Deutsch, 1958).

The age of the St. Joseph Island rocks is put at Lower Black River by Hussey (1936), making them slightly older than any of the western vertebrate-bearing rocks. The Harding sandstone of Colorado has been dated at Late Black River or Early Trenton (Walcott, 1892; Kirk, 1930). Furnish (1936) determined that the Black Hills were the same age as the Harding. Darton (1906) called the Bighorns Late Black River or Early Trenton, but Miller (1930) called the Harding-equivalent beds Riemmond in age. Ross (1957) dated the vertebrate strata of the Williston Basin as Early Trenton. The oldest known vertebrates still remain those of Russia which are considered Lower Ordovician (Denison, 1967).

SYSTEMATIC PALEONTOLOGY

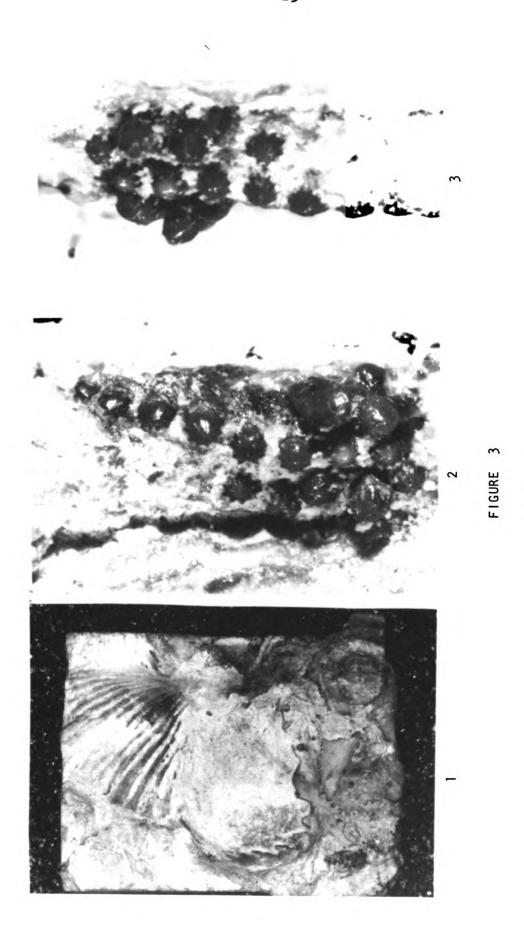
Astraspis desiderata Walcott, 1892 (Figures 3, 4, 5)

<u>Material</u>.--Disarticulated plates with stellate tuber-cles. UMMP V57977.

Age and locality. -- Middle Ordovician (Black River Group). From fossiliferous marine limestone. "St. Joseph Island; West end of North Channel in Lake Huron." UMMP Accession Card 1953 0-14.

<u>Diagnosis</u>.--The fossils are assigned to the genus

<u>Astraspis</u> on the basis of tiny, discrete, disarticulated


plates with tubercles attached; the tubercles have a central pulp cavity surrounded by laminated dentine. They are
assigned to the species <u>A. desiderata</u> because the tubercles are small (0.25-0.40 mm. in diameter) and stellate.

Remarks.--The ostracoderms occur in a nearly pure limestone, with some detrital quartz. No very large fragments are found, the largest having 16 tubercles in three rows and measuring about 1 by 3 mm. (Figure 3). A few single tubercles are found but most are in groups of three, four or five.

The tubercles are soft and scratch very easily. A weak zone may be present along the tubercle base horizontal to the bony plate beneath because many tubercles have fractures there that show air bubbles when dampened, and many tubercles have broken completely off at that place.

The primary sample contains about one surface tubercle per cm².. and saw cuts in any direction through the plate

FIGURE 3. Three views of an Astraspis plate. Number 3:1 shows the plate in the matrix. Plate is in the upper left corner. Numbers 3:2 and 3:3 are close-ups of that plate in different aspects. 3:1 (x 4); 3:2, 3:3 (x 14.2). Photograph by Mr. Karl Kutasi, University of Michigan.

have usually revealed at least one tubercle.

Externally, each tubercle is stellate with a tiny apical knob, and all have a definite pearly lustre (Figures 3 and 4:5). No mushroom-shaped tubercles (cf. grvig, 1958) have been found among the specimens examined from Ontario. The number of rays on each star varies between eight and 13. The maximum variation on any one plate is between nine and 13. As tubercle size increases, the number of rays increases (Sawin, 1959). The tubercles may have grown by division of rays; Figure 4:1 shows such a division on the front tubercle.

The tubercles are irregularly but closely spaced on the plates. Tubercle sizes are also variable. The size range of tubercles on the plate in Figure 4 is 0.25 to 0.40 mm. Tubercle size ranges for Wyoming specimens is 0.19 to 1.39 mm., slightly less than Denison's (1967) maximum diameter of 1.45 mm. His minimum diameter for western Astraspis is 0.10 mm.

The basal bony plate is extremely thin in the Ontario specimens. The western vertebrates are, in general, much thicker (Denison, 1967), but there is considerable variation in their thickness. Therefore, it is not known whether the thinness of the Ontario plates is a reflection of the area of the body from which they came, or whether the entire animal had thinner armor.

The tubercles have central, round pulp cavities (Figure 5:1). These cavities are surrounded by dentine. Fine laminations in the dentine parallel to the pulp cavity may

FIGURE 4. Five views of a group of tubercles from the dermal armor of an <u>Astraspis desiderata</u> (UMMP V57977). from St. Joseph Island. Couplets 1-3 are stereo pairs; 4-5 are single views. Numbers 1-4 have been treated with silver nitrate. (x 20). Photograph by Mr. Karl Kutasi, University of Michigan.

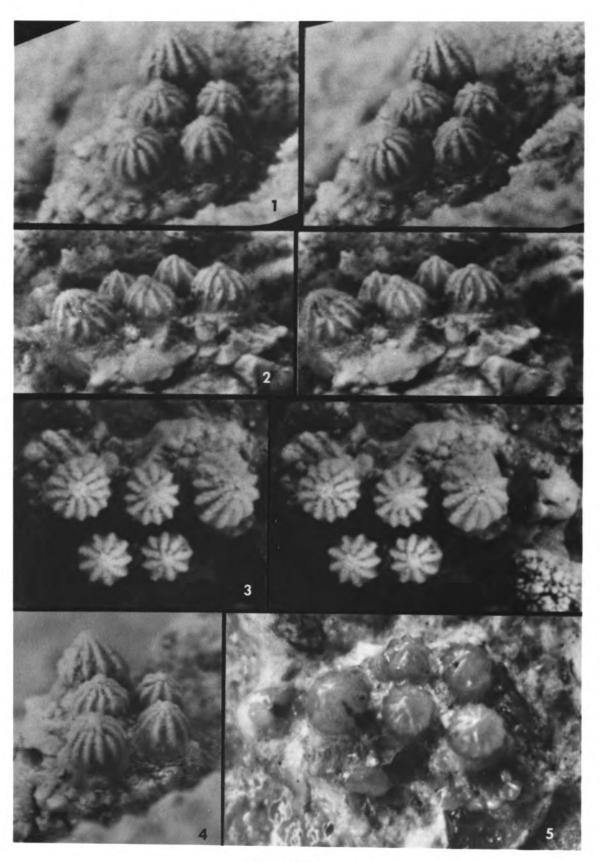
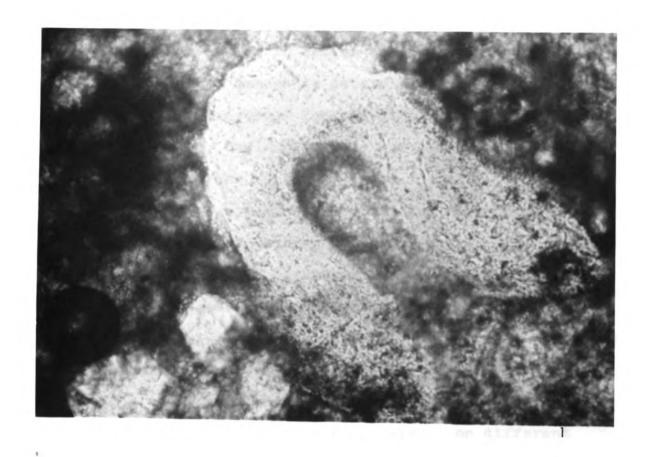



FIGURE 4

FIGURE 5. Astraspis desiderata; showing two views of tubercles: 5:1 in cross section, and 5:2 a horizontally sectioned tubercle. (x 165). Photograph by Mr. Ralph Taggart, Michigan State University.

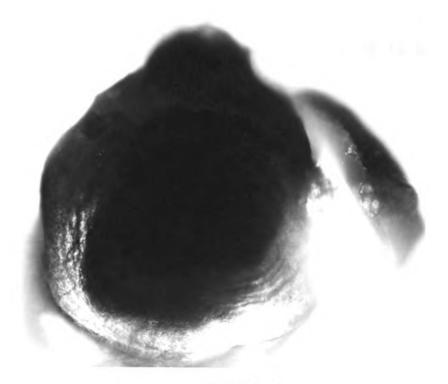


FIGURE 5

be seen on a few specimens (Figure 5:2). On one specimen the laminations appear to extend to the outer edge of the tubercle, but this cannot be determined absolutely. No evidence of any amorphous "enamel-like" layer as reported by Bryant (1936), Denison (1967), and others can be seen on the outer surface of the tubercle.

The exterior shape of the tubercles from Ontario is identical to that of western <u>Astraspis</u> <u>desiderata</u>. The Ontario <u>Astraspis</u> have an extremely thin basal plate and a smaller average tubercle diameter than those of the Cordilleran region. Possibly the small average size indicates that we have so far only sampled a few plates from young individuals. The Ontario and western <u>Astraspis</u> may have lived in different epicontinental seas or on different coasts of a single sea. But until more information is available about <u>Astraspis</u> and its distribution, nomenclatorial recognition of the Black River form is not warranted.

DISCUSSION

The fact that Ordovician vertebrates have been described from three such widely separated localities as Russia, Ontario and the western United States indicates they are much more widely distributed in North America than formerly thought and suggests the possibility of a world-wide distribution. It is interesting to note the occurrence of Astraspis desiderata from both the Cordilleran region of the United States and from Ontario, Canada, marine localities about 1500 miles apart.

The question of a fresh or salt water origin of vertebrates is an old but still controversial one. The first paper to deal specifically with the subject was that of T. C. Chamberlin (1900), who proposed a fluviatile origin for vertebrates based on the basic fusiform shape. He believed the fish developed their shape by living in swiftly flowing currents. In other words, the animal essentially was still and the medium moved past it.

In 1935, Romer and Grove published their classic paper on the environment of the early vertebrates. They discussed the paleontology of all vertebrate-bearing strata in North America from the Ordovician through the Devonian. Only their discussion of the Ordovician deposits will be reviewed here because the Silurian and Devonian localities have no bearing on the origin of vertebrates controversy.

The Ordovician Harding sandstone of Colorado is

considered to be a marine deposit because it contains marine invertebrates. Because the vertebrate material, though abundant, is always fragmentary and often water-worn, Romer and Grove (1935, p. 810-811) concluded. "The littoral nature of the deposit combined with the fragmentary nature of the fossil material has led to the general acceptance of the theory that the Harding sandstone vertebrates were in life inhabitants of fresh waters." They postulated the transporting of millions of fish fragments down rivers to the ocean. The Russian occurrence of Ordovician vertebrates is mentioned only briefly by Romer and Grove. These fossils occur in the marine glauconitic sands of the Baltic.

In rebuttal to Chamberlin's arguments put forth favoring a fluviatile vertebrate origin, Berry (1925) stated
that when fish move through quiet water the same stresses
are put on the body as when the water moves past the fish.
He also said that, while most existing fish are fusiform,
that simply happens to be the shape which slips through the
water with the least resistance. Thus fusiform shape cannot
be considered as proof of fresh-water vertebrate origin.

Romer and Grove's conclusion as to the fresh-water origin of the Harding vertebrates was based primarily on the fragmentary nature of the remains. Denison (1956) questioned their reasoning on several grounds: (1) some of the fragments are water-worn, but many others are very well preserved, (2) the fragments are found in equal abundance at all outcrops of the Harding, covering some 15,000 square miles, and at the Harding-equivalent outcrops

in the Wyoming, South Dakota and Montana area, and (3) the fragments are often quite large, up to about 4 cm., yet the sand is very well sorted. Currents that can sort sand grains so well could have sorted the vertebrates had they been transported. Both Denison and Robertson (1957) disregarded the bulk of Romer and Grove's paper which was a detailed summary of the North American Devonian deposits. By Late Silurian or Early Devonian, evidence is found for the existence of marine and freshwater vertebrates; thus, by then they are adapted to both modes of life.

Nils Spjeldnaes (1967) would attribute the fragmentation of the vertebrates to bacteria and other scavangers living in the sediments. Another possible explanation for the fragmentation might lie in their suturing. The anterior dermal armor of Astraspis and Eriptychius was composed of tiny, discrete plates. The plates abutted against one another with vertical sutures (Denison, 1967). Perhaps in life the armor was held together by some organic cementing agent. When decay set in after death, the plates would become loose and subject to any water movement. This might account for the fragmentary nature of the Ordovician vertebrates.

The new Ontario limestone locality is important as the first vertebrate occurrence in limestone from the Ordovician. Up to now all Ordovician vertebrates have been reported from sandstones, shales and siltstones.

The Harding Formation in Colorado is a fairly fine-grained,

well-cemented, red sandstone and the Harding-equivalent in the Wyoming area is a coarser grained, poorly cemented sand. Darton (1909) reported some fish from the Black Hills of South Dakota occurring in the Whitewood limestone. Furnish et al.(1936) figured the Black Hills vertebrate fragments, but placed them in the underlying Harding-equivalent Roughlock siltstone. Ross (1957) reported fragments in the sandstones and shales of the Winnipeg Formation in the Williston Basin. The Russian vertebrates are in marine glauconitic sands.

Sandstones, shales and siltstones can occur in marine, brackish or fresh-water. Limestones are nearly always marine in origin; they imply a quiet environment, either shallow or deep (Pettijohn, 1957).

The Ontario ostracoderm-bearing limestone is considered to be a fairly shallow open sea deposit (Hussey, 1936; Dr. R. Kesling, University of Michigan, pers. comm.; Dr. C. E. Prouty, Michigan State University, pers. comm.). Paleogeographic maps (Figure 6) indicate that Michigan was under an epicontinental sea in the Middle Ordovician.

Invertebrates identified from the limestone which bears the ostracoderms, include Liospira of. eugenia (a low-spired gastropod of the Ordovician), Zygospira recurviros-tris (a brachiopod ranging from Middle to Upper Ordovician), Rhynchotrema minnesotensis (a brachiopod ranging from Middle to Upper Ordovician), Rhynchotrema sp., Eoleperditia fabulites (an ostracod from the Middle Ordovician), a rib-bon-like cryptostome bryozoan, and a colonial coral. No

FIGURE 6. Paleogeographic map of North America.

Solid black areas are Middle Ordovician outcrops; crosshatching is thought to be the extent of the epicontinental seas. (From Chamberlin and Salisbury, 1930).

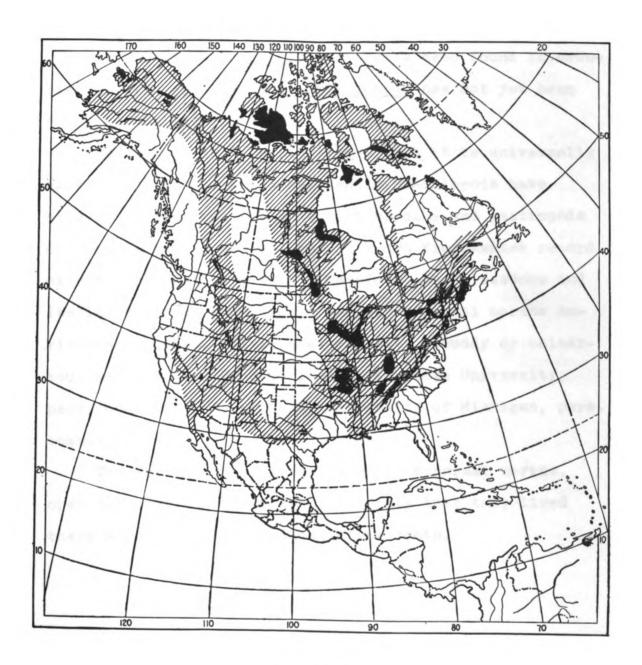


FIGURE 6

trilobites are present. The fossils are well preserved generally; some are fragmented, many are not. Rhyncho-trema is most abundant; Liospira, Eoleperditia and the bryozoan are also common.

In the west, <u>Astraspis</u> has always been found in asso-ciation with <u>Eriptychius</u>. <u>Eriptychius</u> has not yet been found in the Ontario rocks.

Robertson (1957, p. 158) says that it is universally agreed that corals and non-lingulid brachiopods have always been marine. He adds that bryozoa and gastropods are predominately marine, and no known fresh-water record exists for fossil bryozoa. Therefore, the limestone and its invertebrate fauna would suggest a normal marine environment, quiet, fairly shallow, with a muddy or calcareous bottom (Dr. H. Scott, Michigan State University, pers. comm.; Dr. R. Kesling, University of Michigan, pers. comm.).

The appearance of vertebrates in a normal marine, open sea environment suggests strongly that they lived there and were not introduced after death.

LIST OF REFERENCES

- Berry, E. W. 1925. The environment of the early vertebrates. Amer. Nat. 59:354-362.
- Bryant, W. L. 1936. A study of the oldest known vertebrates, <u>Astraspis</u> and <u>Eriptychius</u>. Proc. Amer. Phil. Soc. 76(4):409-427.
- Chamberlin, T. C. 1900. On the habitat of the early vertebrates. Jour. Geol. 8:400-412.
- Chamberlin, T. C. and R. D. Salisbury. 1930. College textbook of geology, Pt. II historical. Henry Holt and Co. New York.
- Cope E. D. 1893. The vertebrate fauna of the Ordovician of Colorado. Amer. Nat. 27:268-269.
- Darton, N. H. 1906. Fish remains in Ordovician rocks in Bighorn Mountains, Wyoming, with a resume of Ordovician geology of the Northwest. G.S.A. Bull. 17:541-566.
- . 1909. Discovery of fish remains in Ordovician of the Black Hills, South Dakota. G.S.A. Bull. 19:567-568.
- Denison, R. H. 1956. A review of the habitat of the earliest vertebrates. Fieldiana: Geol. 11(8):361-457.
- _____. 1967. Ordovician vertebrates from western United States. Fieldiana: Geol. 16(6):131-192.
- Furnish, W. M., E. J. Barragy and A. K. Miller. 1936. Ordovician fossils from upper part of type section of Deadwood formation, South Dakota. A.A.P.G. Bull. 20:1329-1341.
- Hussey, R. C. 1936. The Trenton and Black River rocks of Michigan. Mich. Geol. Surv. Pub. 40, ser. 34, pt. 3.
- _____. 1947. Historical Geology. McGraw-Hill Book Co. New York.
- . 1952. The Middle and Upper Ordovician rocks of Michigan. Mich. Geol. Surv. Pub. 46, ser. 39.

- Kirk, Edwin. 1930. The Harding sandstone of Colorado. Am. Jour. Sci., 5th ser., 20:456-465.
- Martin, H. M. 1956. An index of the geology of Michigan: 1823-1955. Mich. Geol. Surv. Pub. 50.
- Michigan Geological Survey. 1873. Atlas accompanying reports on the Upper Peninsula. Julius Bien. New York.
- Miller, A. K. 1930. The age and correlation of the Bighorn formation of northwestern United States. Am. Jour. Sci., 5th ser., 20:195-213.
- Ørvig, Tor. 1958. <u>Pycnaspis splendens</u>, new genus, new species, a new ostracoderm from the Upper Ordovician of North America. Proc. U.S.N.M. 108:1-23.
- Pettijohn, F. J. 1957. Sedimentary rocks. Harper and Row. New York.
- Robertson, J. D. 1957. The habitat of the early vertebrates. Camb. Phil. Soc. Biol. Rev. 32:156-187.
- Rohon, J. V. 1889. Uber unter-silurische Fische. Bull. Acad. Imp. Sci., St. Petersburg, new ser. 1(33), no. 2: 269-277.
- Romer, A. S. and B. H. Grove, 1935. Environment of the early vertebrates. Amer. Midl. Nat. 16:805-856.
- Rominger, Carl. 1873. Paleozoic rocks of the Upper Peninsula. Mich. Geol. Surv. v. 1, pt. 3.
- Ross, R. J. 1957. Ordovician fossils from wells in the Williston Basin, eastern Montana. U.S.G.S. Bull. 1021-M: 439-510.
- Sawin, H. J. 1959. Notes on the origin of bony armer. Rice Inst. Pamphlet. 46:90-108.
- Sinclair, G. W. 1958. Occurrence of fish in the Ordovician of Canada. G.S.A.Bull. 69:1644.
- Spjeldnaes, Nils. 1967. The paleoecology of the Ordovician vertebrates of the Harding formation (Colorado, USA). Colloques int. Gent. natn. Rech. Scient. 163:11-20.
- Vanlier, K. E. and Morris Deutsch. 1958. Reconnaissance of the ground water resources of Chippewa County, Michigan. Mich. Geol. Surv. Progress Rpt. 17.

- Walcott, C. D. 1892. Preliminary notes on the discovery of a vertebrate fauna in Silurian (Ordovician) strata. G.S.A. Bull. 3:153-172.
- Winchell, Alexander. 1861. First biennial report of the progress of the geological survey of Michigan: 1859-1860. Mich. Geol. Surv.