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ABSTRACT

. SUBOPTIMAL FORAGING STRATEGIES FOR A

PATCHY ENVIRONMENT

BY

James Edward Breck

Strategies for allocating the search time of a

predator in a patchy environment are analyzed. Prey of a

single type are assumed to occur only in discrete patches,

which are uniform except for the number of prey they con-

tain. Two economic goals are considered: maximization of

‘ capture rate and minimization of the risk of finding no prey

’ during a foraging period. Since Optimal decision-making

would usually require very complex computations on the part

’ of a predator, three suboptimal strategies are explored: a

Constant Giving-Up Time (GUT) strategy, a Time Expectation

(TE) strategy, and a neutral model for comparison purposes,

a Random strategy. These models assume that environmental

conditions, including mean prey density, have been constant

 
long enough so that no further learning by the predator

.is taking place. An important area for further research is

the addition of learning and monitoring behaviors to forag-

1 ing theory .

 



 

James Edward Breck

Formulae are obtained analytically for the expected

capture rate, and optimal leaving times are evaluated anal-

ytically or by computer optimization techniques for pre-

dators using the GUT, TE, and Random strategies, for the

cases of Poisson and negative binomial distributions of

prey among patches. For the two economic goals,maximization

of capture rate and minimization of risk,the optimal leaving

times converge at low prey density for both the TE and GUT

strategies; Optimizing leaving time to maximize capture

rate provides nearly the same degree of risk minimization

when the risk is greatest-—at low prey densities. The TE

strategy is the best possible strategy for this foraging

problem when there is a Poisson distribution of prey among

patches. The expected capture rate for the Random strategy

approaches that for the TE strategy as mean prey number per

patch increases and as handling time per prey increases.

As the coefficient of variation of the distribution of prey

among patches increases, it becomes more and more important

(for maximizing capture rate) to utilize the information

in the sequence of intercapture times. Thus, the GUT

strategy becomes superior to the TB strategy when the coef-

ficient of variation is large, when the distribution of

prey deviates greatly from the Poisson. Selection pressure

for accurate and precise methods of estimating elapsed

search time should be stronger for animals using the GUT

strategy than for those using the TE strategy; this selection



James Edward Breck

pressure will increase as mean prey number per patch

increases, as searching effectiveness increases, and as

transit time decreases, and will be reduced as accuracy and‘

precision improve.

Future foraging experimenters should present fre-

quency distributions of observed giving-up time, total

search time per patch, and search time between prey

sightings. Mean values alone are unlikely to allow dis-

crimination between search strategies.
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INTRODUCTION

How should a predator allocate time among patches

when foraging in a patchy environment? The Optimal strategy

depends on the economic goal of foraging: the Optimal behav-

ior for a predator maximizing prey capture rate can be dif-

ferent than for a predator minimizing the risk of starvation,

or for a predator requiring a minimum amount Of some essen-

tial nutrient. The Optimal solution also depends on the

details of the foraging problem, such as whether the predator

searches randomly or systematically within each patch.

Other important aspects of the foraging problem are the

statistical distribution of numbers Of prey among patches

and the spatial pattern of numbers of prey per patch. The

requirements Of sampling the environment to estimate prey

numbers and monitoring for changes in mean prey density

adds considerable complexity to the Optimal foraging

strategy. Inclusion Of learning, sampling, and monitoring

requirements in foraging theory will be a difficult but

exciting challenge for further research.

To analyze Optimal foraging strategies for a

Patchy environment it is wise to begin with a simple version

Of? the complex problem. First, assume that there is no



 

significant spatial correlation in numbers Of prey per

patch. That is, to avoid complications involving spatial

patterns, movement patterns between patches, etc., assume

that the numbers of prey in adjacent patches are determined

independently. Assuming a surplus Of patches and that no

patch is visited more than once, then the expected number

Of prey in the next patch to be visited will be completely

determined by the statistical distribution of prey among

patches. The second major simplifying assumption is that

the predator has learned this statistical distribution and

the foraging parameters of the environment. Thus, the

predator's behavior patterns are assumed to be stable, no

longer changing due to learning about means, variances,

conditional expectations, or the consequences in changed

capture rate due to changes in its behavior. Further,

assume that the environment is constant, and that the

predator does no sampling or monitoring for possible changes

in prey density.

Even though these assumptions make the problem

much simpler, Optimal time-allocation decisions are still

quite complex. Oaten (1977a) has given a general solution

for this type Of problem, specifying when to leave any

given patch in order to attain the goal Of maximizing the

capture rate of prey. He suggests that this Optimal

strategy for leaving a patch, involving higher mathematics,

is too complex for any animal to actually use. It is very



 

likely, then, that animals use some much simpler, sub-

optimal strategies for time allocation. In this dis-

sertation I analyze some simple strategies that have been

proposed in the literature, to see what the Optimal behav-

ior would be for each suboptimal strategy, and to see how

these strategies could be distinguished. Two economic

goals are considered: maximization of capture rate and

minimization Of the risk Of doing badly during a foraging

period.

In comparing foraging strategies with one another

and with laboratory and field Observations, reference

points are needed. If behavior is suboptimal, how bad is

it? What is a relatively good performance? To help answer

these questions and provide a bench mark for judging per-

formance I have develOped a neutral model, a Random strategy

for foraging in a patchy environment.

After some short remarks on hierarchies of foraging

decisions, some predictions from the suboptimal strategies

and the Random strategy are compared with Observations from

lab and field. It is clear that detailed comparisons must

be made to distinguish between strategies and determine the

way time allocation decisions are made by predators. I

make some suggestions about what variables are important

to measure in future foraging experiments. Frequency dis-

tributions Of important variables, rather than only means

and variances, allow more detailed comparisons with



   

  

  

  

  
   

   

   

  

 

   

  

*ical predictions and shed more light on the real
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CHAPTER 1

COMPLEXITIES OF FORAGING OPTIMALLY IN

A PATCHY ENVIRONMENT

The Definition Of Optimum: Related to

a Specific Goal, Predator,

and Environment

 

 

 

Predators which hunt for prey that occur in patches

are faced with the very complex problem of allocating

foraging time among patches. The study Of this foraging

problem combines two tOpics Of much interest in ecology:

Optimal foraging theory and spatial heterogeneity. The

ecological implications of a spatially heterogeneous envi-

ronment for population phenomena are thoroughly discussed

in two recent reviews (Wiens 1976, Levin 1976). Schoener

(1971) gives an excellent review Of that rapidly growing

body of literature known as Optimal foraging theory. Pyke,

Pulliam and Charnov (1977) present a more selective review

of the theory and tests of the theory. Other useful

reviews discuss the applicability of economic models

(Rapport and Turner 1977), the behavioral aspects Of

foraging (Krebs 1973) and recent work on foraging strat-

egies of birds (Krebs and Cowie 1976). My discussion and

analysis of the literature on foraging in a patchy

5



 

environment occur in this chapter in connection with some

complexities of the problem; other foraging theory and

experiments are discussed in Chapter 7, in relation to the

results developed here.

The foraging strategy which is Optimal for a pre-

dator depends on at least three factors (MacArthur 1972):

the structure of the environment, the economic goals, and

the capabilities Of the predator. It depends on the

details Of the structure Of the environment, including the

numbers, sizes, and spatial patterns Of prey and patches.

For example, if prey occur only within recognizable patch

boundaries, the Optimal behavior will include a search

within the patch followed by direct movement to the next

patch. If there are no distinct patch boundaries, the

Optimal strategy must include a provision for finding prey

aggregations and staying within them once found.

Which foraging strategy is Optimal depends on the

economic goal: evolutionary theory says that the ultimate

goal Of an individual should be to maximize its inclusive

fitness, so the requirement here is to specify a more

pmoximate goal while foraging. The Optimal behavior for

a.predator with a goal of maximizing prey capture rate

awhile foraging can be different than for a predator mini-

rnizing the risk Of finding no prey while foraging. There

would be yet a different Optimal behavior for a predator
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minimizing the risk of predation while Obtaining a quota

of energy.

Other important determinants of the Optimal

strategy are the capabilities of the predator, both

functional morphology and the behavioral capabilities, such

as learning ability. A word of caution is appropriate

here. Some constraints are apprOpriate for any real

searcher: there are limits to velocity, turning rate, etc.--

instantaneous jumps in location are not permitted. Such

constraints due to physical and morphological limitations

seem apprOpriate when studying Optimal time allocation,

but constraints and specifications of mental abilities

need to be applied with caution. Some Of the discrepancies

between the predictions of Optimal foraging theory and the

results Of experiments or field tests Of that theory are

due to a simplifying assumption made in the theory: pre-

dators are assumed to know with certainty the profita-

bilities of patch types and prey types. But predators are

not capable Of this certain knowledge. Thus, the foraging

problem analyzed by the theory is different from that

encountered by predators; predators must sample, both to

assess profitabilities and prey densities and to monitor

:Eor changes through time.

In the following analysis I distinguish between

predators that search randomly within each patch for

stationary prey and those that search systematically.



 

Other things being equal, of course, a systematic searcher,

which avoids or minimizes re-searching any patch area

should always be more efficient at finding prey than a

predator that searches randomly and may cross its own

search path several times. If the search method is not

Specified, then systematic search and the consequent time

allocations would be part of the Optimal foraging strategy.

Alternatively, one may specify that the predator uses a

random search, in which case the Optimal strategy would be

different.

It should be possible to specify the capabilities

and limitations of a predator to such an extent that the

resulting Optimal behavior is exactly what is Observed.

"For a predator that can only remember the past n events,

can only judge time intervals to within x percent Of the

true duration, . . . the Optimal foraging strategy is

. . . ." Such a complete specification is an important

goal of research on foraging behavior. In this case, how-

ever, the label "Optimal" would be less interesting than

the defining set Of constraints, environmental structure,

and economic goal.

In summary, a foraging strategy by itself cannot

be "Optimal," it is only optimal in relation to a partic-

ular environmental structure, economic goal, and set of

predator capabilities. The next section discusses an

important distinction for describing the structure of the



 

 

 

environment. One must distinguish the spatial pattern of

prey from the statistical distribution Of numbers of prey

among patches in order to determine the Optimal foraging

strategy.

Distinguishing Statistical Distribution

of Prey Among Patches From Spatial

Pattern Of Prey Among Patches

A predator's success at foraging can depend upon

the spatial pattern Of prey as well as the statistical dis-

tribution of numbers Of prey per patch. It is important,

therefore, to distinguish between these two factors when

discussing foraging behavior. Pielou (1969) strongly sug-

gests that, to avoid ambiguity, the term "distribution" be

used in its statistical sense only: one may speak of the

distribution Of a random variable, e.g., the distribution

Of the number of prey per patch. In referring to the

behavior or location of organisms in space she recommends

terms such as "spatial pattern" or "spatial arrangement,"

e.g., a clumped pattern Of insects in a field.

Another important point is that the statistical

distribution of number of items per sample is not suffi—

cient to determine the mechanism underlying that distribu-

tion: a particular distribution can Often arise by several

mechanisms (see, for example, Patil and Stiteler 1974,

Boswell and Patil 1970, 1971, Pielou 1969, Skellam 1952,

Eeller 1943). Furthermore, the distribution does not

inuply any specific pattern or arrangement of the items in



 

C

10

space. Fitting a statistical distribution to data on the

number Of eggs per patch, for example, provides a conveni-

ent way to describe or summarize the data, but information

about the spatial relationships of the organisms is lost.

Various techniques and indices have been proposed to make

use Of some Of the information contained in the spatial

pattern of samples. For a recent review see Patil and

Stiteler (1974).

As an example, consider the negative binomial dis-

tribution, commonly used by biologists to describe the

distribution Of numbers Of organisms per sample (cf.

Bliss 1971, Gurland and Hinz 1971, Bliss and Fisher 1953,

Skellam 1952). A review of its properties is given by

Bartko (1961). As Pielou (1969) shows, this distribution

can be generated by two quite different mechanisms.

Suppose the numbers of insect eggs laid per clutch has a

logarithmic distribution. Suppose, also, that each female

insect chooses patches for oviposition at random; that is,

patches are equally attractive to the females and equally

likely to be selected for oviposition. Then the number

Of clutches per patch will have a Poisson distribution.

The resulting distribution of total number of eggs per

patch will have a negative binomial distribution.

Kobayashi (1966) has studied the common cabbage butterfly,

Pieris rapae crucivora. He found that a logarithmic dis-
 

tribution fit the number of eggs per clutch, a Poisson
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distribution fit the number of oviposition visits by

females per cabbage, and a negative binomial fit the dis-

tribution Of eggs per plant.

Alternatively, suppose that females lay a single

egg per clutch, as do most butterflies (Labine 1968). And

let them select patches randomly so that the number of

visits to patches Of equal attractiveness will have a

Poisson distribution, with the mean number prOportional to

the attractiveness. Suppose, however, that the attractive-

ness Of the patches varies with a gamma distribution. The

probability density function Of the gamma distribution is

given by

f(x) = (xc'ldce'Xd)/r(c) (1.1)

where c and d are two parameters, and P(c) is the gamma

function with parameter c. Then this mechanism will also

give rise to a negative binomial distribution of eggs per

patch. A possible example of this type of mechanism was

given by Walker (1942). She analyzed the distribution of

numbers of eggs of the American bollworm, Heliothis armigera
 

Hb. (Obsoleta F.) among maize plants. This moth lays eggs

singly. The attractiveness of the plants to ovipositing

females becomes very great during a relatively limited

phase Of plant growth, during development of the tassels.

Walker believed that there is a continuOus change through

time in the attractiveness of individual plants. She
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considered the possibility that at a particular point in

time there might be a gamma distribution Of attractiveness,

and she fit the negative binomial to the resulting dis-

tribution of eggs among plants. (She felt, however, that

it was more likely that there would be only a small number

of discrete categories Of attractiveness. SO she preferred

the fit given by the distribution she created by summing

three to nine Poisson distributions. It's not surprising

that distributions with three to nine parameters would fit

the data better than a distribution with only two.) Con-

sult Waters and Henson (1959) for another possible example

of this mechanism, here underlying the distribution of

numbers of the Nantucket pine tip moth, Rhyacionia frustrata

(Comst.), among loblolly pines, Pinus taeda L.
 

Notice that the negative binomial can arise both

in situations where attractiveness is uniform among patches

and where it varies from patch to patch. These two cases

are not the only ways to Obtain this distribution. Boswell

and Patil (1970) provide fourteen different mechanisms

which may give rise to the negative binomial! Additional

tests would be necessary to determine which mechanism is

re3ponsible in a particular case (Of. Bliss 1971, Gurland

and Hinz 1971).

The main point of this discussion is that knowledge

Of the statistical distribution of prey among patches is

not sufficient to determine Optimal predator search
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behavior. One also needs to know the mechanism giving

rise to that distribution and the spatial pattern of prey

among the patches. For example, is there a significant

spatial correlation between patches containing above average

numbers of prey? If a predator has just found a patch

with low numbers of prey, what is the probability that

adjacent patches will also have small numbers of prey?

With the second mechanism described above, hetero-

geneous attractiveness among patches, it could easily be

the case that adjacent patches would have similar attrac-

tiveness; e.g., if adjacent corn plants (adjacent patches)

were in the same low, moist area of a field they might all

be more attractive to some insect (prey) than those plants

in high, dry areas. In this situation a predator which

visited neighboring patches (plants) whenever an above

average patch was discovered would not be exposed to a

negative binomial distribution of prey among patches, and

could sequentially visit plants with above average numbers

Of insects. In effect, there could be a hierarchy of

patch types, with groups of adjacent plants forming a

"higher level patch." In this case, then, the predator

would need a hierarchy of strategies to organize his

foraging behavior. This will be further discussed in

Chapter 4.

Note that within each group of patches which had

equal attractiveness to prey the prey distribution could
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be Poisson. SO even though some prey species may have an

overall distribution among patches such that the variance

greatly exceeds the mean, the predator may need a strategy

for moving among patches where there is a Poisson dis-

tribution Of prey. Furthermore, as long as the predator

stays within a group and moves without revisiting any patch,

the strategy for timing the movements can be more important

than the spatial pattern Of search: EBEE.t° move to the

next patch can be more important than whgge to move.

With the first mechanism discussed, however, there

would be no spatial correlation between locations of above

average patches. The predator visiting a sequence of

patches would be exposed to a negative binomial dis-

tribution Of prey among patches, and would need an appropri- 
ate strategy for moving among them. Note that with this

mechanism Of prey behavior there are no useful groups of

patches formed, and no hierarchy of strategies needed by

the predator. Since the expected number of prey in all

unvisited patches is the same, when to move to the next

patch can be more important than where to go next.

Sampling: A Necessity Of Foraging
 

To determine the Optimal foraging strategy the

capabilities and limitations Of the predator must be

eruecified. One Of the mostsignificant constraints on

ree11.(as Opposed to hypothetical) predators is the lack

Qf' (complete information about the environment, about
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prey and patch types. Many workers studying Optimal diet

selection and Optimal patch use have correctly pointed out

that predators need to sample their environment (e.g.,

Royama 1970, Smith and Dawkins 1971, Smith and Sweatman

1974, Krebs, Ryan and Charnov 1974, Krebs and Cowie 1976,

Krebs, Erichsen, Webber and Charnov 1977, Oster and

Heinrich 1976, Oaten 1977a, Zach and Falls 1976a, b, c,

and others). They need to estimate, for example, the mean

and variance of numbers of prey per patch, for each prey

type and each patch type. If a predator knew the mean

capture rate in each patch type and the mean travel time

between various types, then the Optimal range Of patch

types to be utilized could be determined by the ranking

method described by MacArthur and Pianka (1966). However,

a real predator needs to estimate these values, and there-

fore, can never be statistically certain that the ranking

or the range of patches utilized is correct—-Optimal.

Even when all parts of the environment, all patch types,

all prey types have been sampled and appropriate estimates

made, however, there are two continuing problems: monitoring

the environment for changes and attempting to discover

patterns in the availability, etc. Of prey. Developing

foraging strategies for predators that must sample the

environment for these purposes will be an exciting and

challenging task for further research. Several disciplines
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have much to contribute to develOpments in this promising

area of foraging theory.

If there are N different patch types, determining

the patch types to be visited is a generalized version of

the N-armed bandit problem. A much-studied version is the

2-armed bandit, where the problem, given two different

slot machines, is to maximize expected winnings (or mini-

mize expected losses) by optimally allocating a fixed

number Of trials between them.

One version of the problem that is especially rele—

vant to this discussion is analyzed by Holland (1975).

Let me outline his problem, describing it in foraging

terms. Let the travel time between patches be zero, or a

constant, independent Of patch types visited. Suppose the

predator knows the mean and variance of the capture rate

for each Of two patch types. To maximize the expected

capture rate (or minimize the expected losses) the Optimal

solution is trivial: visit only the type with the higher

mean. With only a little more uncertainty, however, the

problem becomes quite complex. Suppgse the predator knows

the two means and variances, but does not know to which

patch type each belongs. Unless the two distributions of

capture rate are non-overlapping, no finite number of

trials will establish with certainty which patch type

has the higher mean. Once foraging begins the predator

is subject to two sources of loss (Holland 1975, p. 77).
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First, the patch type with the Observed higher capture rate

may in fact be the second-best type, so that continued

foraging in this patch type will realize a smaller overall

mean capture rate. Second, the observed best may truly be

the best patch type, so any trials allocated to the other

type of patch results in a smaller average capture rate.

Holland proves that to minimize these sources of loss over

some finite number Of trials, the number of trials allo-

cated to the Observed best type should grow slightly faster

than exponential function of the number devoted to the Observed second-best patch type.

This allocation plan assumes that the predator

knows in advance which patch type will appear best at the

end Of that finite number of trials. Since this foreknowl-

edge is impossible, Holland suggests a practical plan for

this problem which quickly approaches the above minimal

loss plan. First, allocate a selected number Of trials

to each type of patch, where this number is based on the

known means and variances and the total number of trials

to be allocated. Then, at the end of these initial trials

allocate the remaining trials to the patch type with the

Observed higher capture rate. (Eventually concentrating

On a single type is also Oster and Heinrich's (1976)

result for a constant environment.) Other plans with

different or arbitrary numbers of initial trials to each

would result in a larger expected loss, though I am not
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sure how sensitive the expected loss is to small deviations

from the number selected by Holland's plan. To Obtain

his result Holland uses some approximations which are poor

for small numbers Of trials and for small differences

between the means. These are cases where the losses due to

the approximations would be small. Unfortunately, these

are cases that are needed if graphs such as Figure l are

to be constructed using his plan.

As Holland's (1975) analysis makes clear, the

fraction of trials to be allocated to the poorer patch

type decreases as the difference between the known means

increases, or as the mean of the poorer type divided by

the sum Of the means departs from one half. Thus, for a

given total number of trials, a graph of the fraction of

trials devoted to patch type A versus the mean capture rate

in type A divided by the sum of the means should be a

sigmoid shaped curve, as in Figure 1. For the more general

case, discussed below, where the means and variances are

not known initially I would also expect a sigmoid curve;

but the curve should be more flat, departing even farther

from a step function. In either case it should be easiest

to distinguish large mean differences and impossible to

distinguish two equal means. Because of the need to sample,

it will not be a step function. This is the same curve

shape suggested by Krebs, Erichsen, Webber and Charnov

(1977, their Figure 4) to explain their experimental data
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Figure l. Allocation of search effort between two patch

types when sampling is necessary.
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for a similar problem: estimating when it is more pro-

fitable to include a lower-valued prey in the diet.

As a further result Holland's (1975) optimal plan

allocates a smaller and smaller percentage of trials to

the observed poorer patch type as the maximum number of

trials to be optimally allocated increases. So this

analysis predicts that the sigmoid shape should approach

a step function as the number of trials approaches

infinity.

Holland's problem and allocation plan assume that

the means and variances are known to the predator. For a

real world predator these values will have to be estimated.

Worse than that, the values will certainly change through

time. It seems likely that a roughly similar allocation

plan will be effective for this more general problem:

after an initial estimation period where both patch types

are tried, devote an increasing fraction of the trials

to the observed better type. But never completely stOp

visiting the poorer type (a) because the first assessment

may have been incorrect, and (b) because changes in the

mean values may occur with time (cf. Oster and Heinrich

1976). Thus, the predator's selection curve should remain

sigmpid and never reach the step function shape. It is

most important to monitor patch types that are closest in

value to the best type since these types are most likely to
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become the best type; also, the loss from monitoring these

types will be least.

This type of foraging situation is very similar

to the concurrent variable ratio schedule of reinforcement

studied by psychologists (cf. Ferster and Skinner 1957,

Reynolds 1968). When the fraction of total responses that

are made to one key is plotted against the relative proba-

bility of reinforcement on that key, a sigmoid curve is

obtained (e.g., Herrnstein and Loveland 1975). The shape

is still sigmoid even after lengthy exposure to the

schedule, amounting to several hundred trials, often over

testing periods of several weeks. Herrnstein and Loveland

(1975) have noted that, according to the psychological

theory assuming that animals maximize reinforcements per

unit time, there is no reason why preference (for the better

key and schedule) should not become exclusive. But this

psychological theory, as current foraging theory, does not

explicitly take into account the estimation or sampling

problem that animals have, and the possibility that changes

may occur with time. If these problems are considered

there are very good reasons why the step function graph

would not result, reasons that would explain the sigmoid

shape.

The 2-armed bandit problem is very similar to the

concurrent variable ratio schedule analyzed in psychology.

Psychologists generally analyze the terminal or asymptotic
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behavior of animals under these schedules, e.g., the last

few days of results after several weeks exposure to a

schedule. Statisticians are often interested in the

transient behavior as well, in order to maximize the cumu-

lative payoff or minimize cumulative loss (e.g., Holland

1975, Jones 1975). A foraging analysis must be more like

the latter (of. Katz 1974, Katz and Bartnik 1974).

Thus the foraging model which predicts a step

function change in trial allocation (or prey type selection)

is Optimal only for the predator with certain information

about the environment--it cannot be the optimal model for

real predators. All predators have uncertain information

and must sample, and, therefore, the Optimal trial allo-

cation model must predict graphs more like Figure l. The

foraging experiments of Smith and Sweatman (1974) provide

an example of titmice (Paridae) sampling to assess pro—

fitabilities of patches. While the birds generally learned

to concentrate their search in the patches with the higher

prey densities, there was not a perfect correlation between

the number of trials allocated to a patch and the mean

number of prey initially present. In fact, one bird of the

six seemed to prefer the patch with the third—highest prey

density. This is the type of result expected if animals

must sample. This sampling explanation would be supported

if the data showed a strong correlation between the trial
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allocations and the perceived or encountered prey den-

sities--as opposed to the nominal prey densities.

Additional eXperiments of Smith and Sweatman (1974)

provide data consistent with the hypothesis that predators

monitor the environment for changes in prey availability.

When the experimenters reduced the number of prey in the

best patch and increased the number in the poorest patch,

the birds switched their preference to that patch which

had been second-best. The experiments were not continued

long enough for the birds to discover that the formerly

poorest patch had become the best. Oster and Heinrich

(1976) have suggested that majoring and minoring in the

foraging of bumble bees plays a monitoring role. Bumble

bees concentrate their major efforts on a particular flower

type found to be most rewarding, but continue to make

occasional visits to a minor, apparently the second most

profitable flower type (cf. Heinrich 1976, Heinrich, Mudge,

and Deringis 1977). Many predators respond to strong

seasonal shifts in resource availability, and understanding

this phenomenon is another reason for including sampling

and monitoring in foraging models. Such models may help us

understand the dynamics of the switch that many birds make

from insects in spring and summer to seeds in fall and

winter, or the resource tracking done by fish in following

the strong seasonal dynamics of their prey.
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Based on the experiments of Smith and Sweatman

(1974), Bobisud and Voxman (1978) prOpose a simple stochastic

model for the learning behavior of predators foraging among

a finite number of patches, where they assume no depletion

within a patch. They suggest that a predator should alter—

nate one visit to the observed best patch with one sampling-

monitoring visit. While this may be an acceptable strategy

in some situations, it is not the best general solution to

allocating visits (cf. Oster and Heinrich 1976). Unless

the means are quite close or are changing very rapidly,

this results in too few visits to the observed best patch.

Krebs and Cowie (1976) mention that experiments are

underway to study how birds assess their environment,

specifically, to determine the length of the "learning

window." This is the time over which prey density or

encounter rate is averaged. If this "window" is too short

then the predator is too sensitive to chance variations in

the encounter rate. If the "window" is too long, then the

animal becomes less and less able to track small changes

in encounter rate, but it will be getting a more reliable

estimate of the average encounter rate.

In addition to estimating foraging parameters and

Huonitoring for changes, sampling also gives predators the

Pcbssibility of recognizing patterns of prey availability.

DEIVieS and Green (1976) studying reed warblers show that

clifferent types of prey are available at different times of
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the day. As the temperature increases flies become more

active and, to be most effective in capturing prey, the

birds need to change their foraging tactics throughout the

day (see also Davies 1977). For another example, more

tightly controlled by the experimenter, consider the

"Golden Tapes" mentioned by the psychologists, Catania

and Reynolds (1968). Loops of punched paper tapes are

generally used to control the delivery of reinforcement in

Skinner boxes. Each tape specifies a complete variable

ratio or variable interval schedule. These particular

"Golden Tapes" produce very stable, very regular rates of

responding by pigeons subjected to them. When different

tapes are used the pigeons are eventually able to detect

the subtle patterns, learning, for example, that a long

interval (or ratio) is consistently followed by two short

intervals. Thus, the responding by the animals is not

regular on these other tapes, showing that birds can learn

to become sensitive to quite subtle patterns of reinforce-

ment.

Krebs, Erichsen, Webber and Charnov (1977) remark

that the difference between the step function prediction

and the sigmoid prediction (cf. their Figure 4a vs. 4b)

"can be viewed as the price the predator is willing to pay

Jianampling" (Krebs et a1. 1977, p. 36). Real predators

Elave no choice in this matter. This cost of sampling is

Ixnavoidable to all but omniscient predators. In fact,
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there is a cost for not sampling, too. Holland's (1975)

analysis shows one way to find the best trade-off between

these opposing costs. (Holland goes on to describe a

very general adaptive process, which is based on an analogy

with genetic mechanisms and natural selection. This type

of general adaptive process could certainly be effective

for the difficult foraging problems predators must face,

though interpretation of his theory in terms of mental

processes and neural mechanisms would be quite speculative

in our present state of knowledge.) Another type of cost-

involved in sampling is the time and effort required to

learn how best to utilize new patch or prey types. Bees,

for example, often require several visits to a new flower

type before becoming efficient at finding and extracting

nectar or pollen (Heinrich 1976).

This sampling problem, estimation of profitabilities,

monitoring for changes, and recognizing patterns of prey

availability, is an area of foraging theory ripe for further

development. In this specific area the experimental base

is ready for additional advances in theory, to analyze

present results and design additional experiments (cf.

Smith and Dawkins 1971, Smith and Sweatman 1974, Krebs,

liyan and Charnov 1974, Krebs, Erichsen, Webber and Charnov

14974, Heinrich 1976, Heinrich, Mudge, and Deringis 1977).

Some significant steps in this direction have been made by

Oster and Heinrich (1976) and Bobisud and Voxman (1978) ,
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as mentioned above. Additional simple learning models

may prove quite helpful fOr this next stage of theory

development. For a discussion and introduction to stoch—

astic models of learning see Bush and Mosteller (1955) and

Atkinson, Bower and Crothers (1965).

The necessity of sampling makes the predator's

foraging problem very complex. As discussed in the next

section, one way to begin to understand foraging strategies

for a patchy environment is to start with a simpler forag-

ing problem.

Simplifying the Problem
 

As described in the preceding sections the foraging

problem faced by predators hunting in a patchy environment

is very complex. A simpler foraging situation will be

analyzed in this paper, in order to explore more easily

the foraging implications of several strategies proposed

in the literature for allocating search time in a patchy

environment.

As a first simplification, an environment will be

considered where prey occur only within discrete patches;

patches have recognizable boundaries (to the predator), so

‘that a predator can clearly distinguish when it is inside a

Elatch, where prey can occur, or when it is in the area

b-etween patches, where no prey occur. The prey are con-

Sidered to be identical and located (uniform) randomly

‘Mlthin a patch. All patches are considered to be of the
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same type, uniform size, and have an equal degree of search

difficulty for the predator. The problems analyzed here

assume that there is a surplus of unvisited patches, and

that predators do not re-visit patches. One example which

is close to this situation is the foraging of coal tits

(Parus ater) and blue tits (Parus caeruleus) for moth
  

larvae (Ernarmonia conicolana) hidden in pine cones (Gibb
 

1958, 1962, 1966). Another similar example is the winter

foraging of meadowlarks (Sturnella neglecta) for barley
 

seeds hidden in cattle dung pads (Anderson and Merritt

1977).

It will be assumed that the spatial correlation

among neighboring patches in numbers of prey per patch is

zero, so that analysis of search paths between patches can

be excluded from the present study; this assumption is

partly relaxed in Chapter 4. The predator could proceed

to the nearest, unvisited patch; but however the paths are

chosen, the average time spent traveling between patches,

the transit time m, is assumed to be constant, and inde-

pendent of events occurring within a patch. (See Lewis and

Papadimitriou (1978) for a discussion of a similar,

Shortest-path problem, the traveling salesman's tour.)

It is assumed that conditions in the environment

are stable, i.e., that the physical characteristics of the

Patches are constant, and that the statistical distribution
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of the prey among patches not yet visited is constant;

depletion of prey within a patch is permitted.

The important, but complex areas of estimating,

monitoring and recognizing patterns in prey availability

will not be treated further here. These additions will

be fruitful areas for research. Even the analysis of the

simpler case where the predator knows the means, variances,

conditional expectations, etc., is very complicated, as

discussed below. Predators very likely use foraging

strategies that approximate optimal time allocation plans.

Suboptimal Foraging

The previous discussion shows some of the complexity

of the foraging problem that predators face due to their

need to assess profitabilities. Even with one patch type

and one prey type in the environment, however, the foraging

problem is nontrivial (cf. Oaten 1977a), even though no

comparisons of patch and prey profitabilities are necessary.

Dobbie (1968), reviewing the search theory of

Operations research, mentions that problems realistic

enough to include constraints on the searcher's movements

usually require approximate solutions. In a fascinating

book, Simon (1969) noted that for many complex problems

the optimal solution cannot be determined in a reasonable

inmount of time; for many problems the choice cannot be

Imade between a good solution and the best one--the Optimal

is not available (cf. Lewis and Papadimitriou 1978).
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The problem—solver must then search for the most satis-

factory solution. Simon has coined the term "satisficing"

to describe this process, in contrast to the "Optimizing"

procedures possible with simpler problems. Natural selec-

tion must work in this way, favoring the most satisfactory

among the available solutions to biological problems, and

approaching the Optimal solution where possible.

A possible example Of a "satisfactory" foraging

strategy may be that of the spiders described by Turnbull

(1964). The spiders keep their webs in the same location

if a sufficient number of prey are captured; otherwise,

the web location is changed. This may not be an Optimal

strategy, but it may be quite satisfactory.

Pearson (1976) uses the phrase "suboptimal strategy"

to describe a simple decision policy that a predator could

use in choosing which prey types to include in its diet.

While diet selection is not part of the simplified problem

at hand, this example is notable for being "suboptimal" and

for its use of a clock or timer. Call the preferred prey

Type 1 and the less preferred Type 2. If the density of

the Type 1 prey is known with certainty, then the Optimal

rule is to accept only Type 1 prey if the density of Type 1

is above some critical threshold; the predator should

accept both types if the density of Type 1 is below the

threshold density (Pearson 1976, Pulliam 1974, Schoener

1971). Real predators are unlikely to know the true prey
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density with certainty however, so Pearson suggests a

"suboptimal strategy" based on a biological timer or clock.

The timer is started whenever searching begins and is reset

to zero whenever a Type 1 prey is caught. Prey Type 1

individuals are always accepted when encountered; if the

timer ever exceeds some critical value, then prey Type 2

individuals become acceptable as well. Thus, when the

density of Type 1 is high, the diet will consist almost

entirely of Type 1; when the density of Type 1 is low the

acceptance threshold on the timer will almost always be

exceeded and both prey types will occur in the diet; a

mixture of types will occur in the diet at intermediate

densities of Type 1. While not an optimal strategy, it

may be quite satisfactory, and it is certainly very simple.

Oaten (1977a) has given a general solution for the

Optimal foraging strategy for allocating time among patches

to maximize the capture rate. The optimal strategy

specified, however, he admits is quite complex. He says

(Oaten 1977a, p. 283):

Obviously a true optimal procedure would require

remarkable feats Of computing by the predator. In

fact, our criterion for optimality is too narrow; it

would not be "Optimal" for a predator to develop the

memory and computing ability needed to carry out the

Optimal foraging procedure if other abilities are

thereby neglected. A simpler, suboptimal procedure

may be preferable, one that requires only minimal

memory and computation.

It is of interest, then, to analyze some suboptimal

Strategies that have been proposed in the literature and
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to discuss the situations under which each may be most

advantageous. In comparing strategies, Oaten's (1977a)

Optimal strategy sets the upper limit for a predator's

performance in the problem considered here. One reason-

able lower limit is the neutral model for foraging pre—

sented in Chapter 4. This Random strategy is "neutral"

with respect to Optimization of time allocation among

patches: predators leave a patch at randomly chosen times--

no information from previous captures is used in the

decision and no "expectations" guide the predator's

behavior.



CHAPTER 2

SUBOPTIMAL FORAGING STRATEGIES: THE

GIVING-UP TIME AND TIME

EXPECTATION STRATEGIES

The Giving-Up Time Strategy
 

The Giving-up Time (GUT) strategy was prOposed for

situations in which predators must search for prey hidden

in discrete patches (Charnov 1973, Krebs, Ryan, and Charnov

1974, Murdoch and Oaten 1975, Hassell and May 1974). An

example of this situation might be blue tits (Paggg

caeruleus) and coal tits (Parus ater) feeding on moth
  

larvae (Ernarmonia conicolana Heyl.) hidden in pine cones
 

(cf. Gibb 1958, 1962, 1966). A variant of this strategy

might apply to cases where prey are generally aggregated

but are not restricted to discrete patches (Tinbergen,

Impekoven, and Franck 1967, Croze 1970). Tinbergen et

a1. (1967) were the first to use the phrase "giving-up

time." The GUT model provides a basis for the predator's

decision to leave one patch and begin searching in another

one. The GUT is here defined as the maximum duration of

unsuccessful search time a predator will allow before it

leaves its current patch. You can consider the predator

34
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to have a timer which is started whenever searching begins.

If the timer goes Off before any prey is found, then the

predator leaves and moves to the next patch. If a prey

is found the timer is restarted at zero.

There are several pieces of evidence that animals

could have such a timer or clock. Annual and circadian

biological clocks are currently under intense investigation;

a GUT clock, however, must operate on a much shorter time

scale. The first piece of evidence is from psychological

research, where much work has been done on fixed-interval

schedules of reinforcement (of. Ferster and Skinner 1957,

Reynolds 1968). Here, animals are reinforced for the first

response (e.g., key-peck or bar-press) that occurs after a

fixed interval of time since the last reinforcement.

After sufficient experience with this type of reinforcement

schedule, animals stop responding immediately after a rein-

forcement, and then begin responding at an accelerating

rate as the fixed time interval approaches. When cumu-

lative number of responses is plotted against time, the

"fixed interval scallOp" is apparent (of. Reynolds 1968,

Figure 6.4, p. 73). The animals are effectively respond-

ing to the interval of time so as to Obtain reinforcement

as soon as it becomes available. Church, Getty, and Lerner

(1976) mention several other examples of experimental

designs used by psychologists in which the performance of

an animal is related to the expected time of the next
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reinforcing (or punishing) event. "Examples Of this sort

are numerous," say Church, Getty, and Lerner (1976, p. 303),

"and they suggest that animals are capable of estimating

the time of occurrence of an event and adjusting their

performance in an apprOpriate manner." Church and Roberts

(1975) reported on a set of experiments which "suggests

that animals maintain accurate internal representations of

time which they can read." Rats "were successfully trained

to vary the relationship between real time and its internal

representation: to run, stop, or reset an internal clock."

Evidence from neurOphysiology also demonstrates a

kind of timer related to prey capture. Studying vision

and behavior of frogs, Ingle (1975) has found neurons in

the optic tectum which could be responsible for selective

attention. Frogs seldom strike immediately at a potential

prey item that only moves discontinuously--e.g., worms or

some insects. One type of these special neurons turns "on"

1 to 2 seconds after the first detected movement, and

begins a slow steady discharge for 3 to 6 seconds. If the

prey item moves while these cells are "on" the frog will

strike; if not, these cells turn "off" and no strike occurs.

It seems plausible that a similar neural timing circuit

could act as a GUT timer.

(Even if such a GUT clock does not exist, the

results here may approximate those implied by other

mechanisms.)
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Optimal Giving-Up Time to

Maximize Capture Rate

 

 

Appendix A presents a derivation for the expected

capture rate for any given distribution of prey among

patches for a predator using the fixed GUT strategy. The

derivation is based on the following assumptions:

(1) The predator searches randomly within a patch

(of. Rogers 1972).

(2) The prey are uniform--same size, coloration, etc.

(3) The patches are uniform: the searching effective-

ness parameter is constant for all prey in all

patches. This parameter is the inverse of the

mean search time required to find a specific

prey item in a patch.

(4) Each sighting of a prey results in a capture.

This simplifies the algebra, eliminating the

need to include terms for conditional probability

of capture given a sighting.

(5) The GUT is of fixed duration, and does not depend

on how many prey have been found so far in a patch.

The parameter b is the mean handling time per prey item.

Handling time as defined here includes time required to

pursue, attack, and eat the prey, as well as time for any

digestive pause that occurs before searching resumes.

The parameter m is the average transit time between patches.

Similar assumptions were made by Murdoch and Oaten (1975)

as they considered the implications of a GUT foraging model
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for the stability of a predator prey link. They presented

formulae equivalent to (A.10), (A.17), and (A.18), but

they did not give their derivation. Oaten (1977b) discusses

the derivation of (A.18).

Poisson Distribution of Prey

Among Patches

Let us assume that the distribution of prey among

patches is Poisson. This could occur if prey selected

patches completely randomly. (At very low densities it is

Often difficult to statistically reject the hypothesis of

a Poisson distribution of items among samples. The above

assumption might be quite reasonable under these circum-

stances.) As mentioned in Chapter 1, even though the

overall distribution Of prey among patches in a region is

nonrandom, there may be groups of nearly identical patches

where there is a Poisson distribution of prey within each

group, and the above assumption would apply. (As discussed

above, this is one mechanism that can give rise to the

negative binomial distribution.)

Appendix B describes the approximation procedure

used to calculate the expected capture rate for a Poisson

distribution of prey among patches.

The expected capture rate E[R], equation (A.18),

is plotted in Figure 2 as a function of the constant GUT,

t, for various values of mean prey number per patch, x.
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Figure 2. Expected capture rate as a function of GUT for

several levels If mean number of prey per patch,

x. p=0.1 sec." , m=3.0 sec., and b=l.0 sec.
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The Optimal GUT to maximize expected capture rate decreases

as average number of prey per patch increases.

Figure 3 shows the expected capture rate E[R] for

several values of the searching effectiveness parameter, p,

with m, x, and b held constant. As the predator becomes a

more effective searcher, i.e., as p increases, E[R]

increases, and the Optimal GUT decreases. The peak of the

E[R] curve also becomes sharper as p increases. Therefore,

the relative advantage of the Optimal GIT over nearby

values of GUT becomes greater, and there should be stronger

selection for using the Optimal GUT as p increases.

One can see from Figure 4 that the expected capture

rate increases as the transit time, m, decreases. Here,

too, the peak Of the E[R] curve becomes sharper as the

Optimal GUT decreases with decreasing m.

Figures 5 and 6 show the results of a computer

simulation of a predator using the GUT strategy. In

Figure 5 there is a Poisson distribution Of prey among

patches. Each vertical line represents one standard error

on either side Of the mean capture rate, R. These results

are as predicted; compare Figure 2. A predator testing

trial values of the GUT to find the Optimal GUT would have

difficulty; for the conditions represented here, even 15

or so replicates of 1 hour of foraging would not be enough

to determine the Optimal GUT with much confidence. This

problem is discussed further in Chapter 6.
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Figure 3. Expected capture rate as a function of the GUT

for several levels Of the searching-effectiveness

parameter, p. x=l.0 prey per patch, m=3.0 sec.,

and b=l.0 sec.
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Figure 4. Expected capture rate as a function of the GUT

for several levels of the transit time, m.

x=l.0 prey per patch, p=0.1 sec.’1, and b=l.0

sec.
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Figure 5. Mean capture rate as a function of the GUT for a

Poisson distribution Of prey among patches.

Mean capture rate 5 1 SE is plotted (10 repli-

cates), p=0.1 sec. , m=3.0 sec., b=l.0 sec.,

T=3600 sec.
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Figure 6. Mean capture rate as a function of the GUT for a

negative binomial distribution of prey among

patches. Mean capture rate i 1 SE is plotted

(10 replicated), p=0.1 sec.'l, m=3.0 sec., b=

1.0 sec., T=3600 sec.
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Figure 6 presents simulation results for a negative

binomial distribution of prey among patches; other parameter

values are the same as in Figure 5. The optimal GUT

decreases as x increases and as h, the clumping parameter,

decreases. As h decreases, the intercapture time is an

increasingly reliable indicator of the number of prey

remaining in the patch, and this GUT strategy can exploit

this information. (TO anticipate some later results,

compare this with the conclusions of Appendix D; as h

approaches infinity--as the negative binomial approaches

the Poisson--Only the total search time in the patch, not

the intercapture time, is a reliable indicator of the

number of prey remaining.) The mean capture rate curve

has a sharp peak when the variation in number of prey per

patch is large, i.e., at low values of h. SO, as h

decreases it would be more advantageous to possess an

accurate and precise GUT clock. More discussion on this

point appears below.

thimal Giving-Up Time to

Minimize Risk of Finding

NO Prey

 

Minimization of Risk for a

Poisson Distribution of

Prey Among Patches

For the goal of minimizing the risk of doing badly

cane can ask: what is the probability of finding zero prey

:Ln the next patch visited? To compute the answer, multiply
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the probability of finding zero prey in a patch that con-

tains n prey (A.4), by the probability that the next patch

contains n prey, summed over all possible values of n.

For a Poisson distribution of prey among patches (B.6),

this is:

ll

|
|
M
8

P[C=O in next patch] P[C=0In] P[N=n]

n 0

(2.1)

= § (e‘npt)(x“e‘x)

n=0 n!

where C is the number of prey found in the patch,

p is the searching effectiveness parameter,

t is the GUT, and

x = E[N] is the average number of prey per patch.

Remembering that

:
3

£

(2.2)

"
P
1
8

0 v
s
:

II

(
D

and letting xe_pt = w, equation (2.1) can be reduced to

_pt-

ex(e l)
P[C=O in next patch] = (2.3)

SNOW, what should a predator's GUT be to minimize the risk

(bf starvation? The predator may need to minimize the

probability of finding zero prey during some relatively

JJong period of time--for example, several hours for a small

llird or mammal in winter. When the environment is just a
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single patch, the way to minimize the probability of not

finding any prey is to search for as long as possible in

that patch, i.e., let t+w. When there are many patches

there will be some search time after which it will be more

profitable to try another patch. Let t be the GUT, and m

be the transit time, the average time spent moving to the

next patch. Let T be the total foraging time; choose T so

that T/(t + m) is an integer, or else T>>(t + m), so that

any fraction of the last patch searched in this time will

be a negligible portion of the total time. Then T/(t + m)

is a number which represents the maximum number of patches

that can be visited during the time interval [0,T]. SO

then, the probability of finding zero prey during the

interval [0,T] is the probability Of finding zero prey in

the first patch, multiplied by the probability of finding

zero prey in the second patch, . . ., multiplied by the

probability of finding zero prey in the T/(t + m) patch.

That is, the risk is

= exT(e'Pt-1)/(t + m)
P[C=0 during [0,T]] (2.4)

Equation (2.4) is graphed against t, the GUT, in

Figures 7, 8, and 9. In Figure 7 the mean number of prey

per patch x and the searching effectiveness parameter p

are held constant. It shows that as the transit time m

increases, the risk (probability of finding no prey during

[0,T] increases. The optimal GUT is that GUT which



  



Figure 7.
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Probability of finding zero prey in one hour as

a function of the GUT for several levels of the

transit time, m, and a Poisson distribution of

prey among atches. x=0.005 prey per patch,

p=0.1 sec.’ , and T=3600 sec.
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Figure 8. Probability Of finding zero prey in one hour as

a function of the GUT for several levels Of the

searching-effectiveness parameter, p, and a

Poisson distribution of prey among patches.

x=0.005 prey per patch, m=3.0 sec., and T=3600

sec.
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Figure 9. Probability of finding zero prey in one hour as

a function of the GUT for several levels of the

mean number of prey per patch, x, and a Poisson_l

distribution of prey among patches. p=0.1 sec. ,

m=3.0 sec., and T=3600 sec.
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minimizes this risk; this Optimal GUT increases as the

transit time m increases.

In Figure 8 the mean number of prey per patch x

and the transit time m are constant. Notice that as the

searching effectiveness p increases, the risk decreases

and the Optimal GUT decreases.

The next figure, 9, shows how risk varies with

GUT and mean number of prey per patch x; the searching

effectiveness parameter p and transit time m are constant.

As one might expect, the risk of finding no prey during

[0,T] decreases as x increases; but the Optimal GUT to

minimize risk is independent of mean prey abundance.

From equation (2.4) one can calculate the Optimal

GUT for minimizing risk--the GUT which minimizes the

probability of finding zero prey during the foraging time

[0,T]. Take the derivative of (2.4) with respect to t,

The GUT.

d P[C=0 during [9,T1] =

at (2.5)

 

 

- t -pt
-xT -pt (e P - 1) xT(e - l)/(t + m)

(t + m)[%e + t + m ] e

A minimum (or a maximum) can occur where the derivative

is zero, i.e., where the term in brackets in (2.5) is

zero, where

e’Pt(1 + p(t + m)) = 1. (2.6)
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Appendix C shows that the value Of t which satisfies the

above (2.6) equation yields a minimum risk, and not a

maximum, for 0 < t < T. An examination of the curves in

Figures 7, 8, and 9 may help make this analytical result

more intuitive.

Assuming p and m are known, equation (2.6) can

only be solved iteratively for t. For example, for p =

0.1 sec.-1 and m = 3.0 sec., the Optimal GUT = 6.86 sec.

(see Figure 9). Notice that for this case of a Poisson

distribution Of prey among patches the Optimal GUT for

minimizing risk is independent of both the mean number of

prey per patch x, and the total foraging time T; the

Optimal GUT depends only on p and m. See Figure 10. The

risk itself, however, does depend on x and T, and it

decreases as x and T increase: the probability of finding

zero prey decreases the longer the foraging bout and the

higher the mean number of prey per patch.

Why is this optimal GUT to minimize risk inde-

pendent Of the mean in this case? This Optimal leaving

time depends on the relative values of the expected number

remaining in the current patch to the expected number in

the next patch, taking into account the cost of moving

between patches. Upon arrival at a patch the expected

number of prey present is the mean number, x. For a

Poisson distribution of prey among patches the number of
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Figure 10. The GUT that minimizes the risk of finding zero

prey as a function of the transit time, m, for

several levels of the searching-effectiveness

parameter, p, for a Poisson distribution of prey

among patches.
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prey expected to remain in a patch decreases exponentially

with search time (see Appendix D).

E[Klt, Poisson] = xe—pt

where K is the number of prey remaining in the patch,

t is the total time spent searching in the patch

(sec.),

x is the mean number of prey per patch, and

1
p is the searching effectiveness parameter (sec.- ).

Relative to the mean, x, this is

E[Klt, Poisson]/x = e-pt.

Thus, the fraction of the mean (i.e., of the expected

number of prey in the next patch) that is expected to

remain in the current patch after a given amount of search

time is independent of the mean. Therefore, for a risk-

minimizing predator in an environment with a Poisson dis-

tribution of prey among patches, the optimal time to move

on to another patch is independent of the mean.

Minimizing the Risk of Finding

Zero Prey for a Negative

Binomial Distribution Of

Prey Among Patches

As described before (2.1), the probability of

finding zero prey in the next patch is:

P[C=0 in next patch] = e-npt P[N=n] (2.1)

"
M
B

n 0
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where C is the number captured in the next patch,

n is the number of prey initially in the patch,

p is the searching effectiveness parameter,

t is the GUT, and

P[N=n] is the probability function for the dis-

tribution of prey among patches.

For a negative binomial distribution of prey among

patches, the probability that a patch will initially have

n prey is:

P[N=n] II

A

5
"

+ :
3 I

(
.
4

) p“ (2.7)

where hP = x is the mean number of prey per patch, E[N],

h is the clumping parameter, h > 0,

Q = 1 + P, and

the variance of N is Var[N] = x + xz/h = hPQ.

Substituting (2.7) into (2.1) and rearranging yields:

(2.8)
CD

P[C=0 in next patch] = Q.h X (Fe—pt)n(h + n - 1)

n=0 Q n

Feller (1968, p. 63) notes that:

(h + n ' 1) (-1)n =(’h) (2.9)

n n

Thus, (2.8) can be put into the following form:
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_ m - -pt n -

P[C=0 in next patch] = Q h 2 (L) ( h) (2.10)

0

This is now in a form where the binomial theorem (e.g.,

Feller 1968, p. 165) can be used to obtain a closed form

expression.

P[C=0 in next patch] = (Q - Pe-pt)—h (2.11)

As before, (2.4), let T/(t + m) be the maximum

number of patches that could be visited in total foraging

time T, where T/(t + m) is assumed to be an integer (or

T>>t + m so that incomplete searching of final cone is

insignificant). Then the probability of finding zero prey

in the time interval [0,T] is:

P[C=0 during [0,T]] = (Q - pe'Pt)'hT/(t + m)
(2.12)

In terms Of the mean x and clumping parameter h, this is:

P[C=0 during [0,T]] =

(2.13)

 

(1 + x(1 _ e-pt))-hT/(t + m)

h

where x/h = P and l + x/h = Q.

To find the GUT providing the minimum risk of

finding zero prey during the interval [0,T], equation

(2.13) is differentiated with respect to t, the GUT.



66

d[§7C=O during [0,T]] =

dt

 

( hT )(1 + x(l - e"pt)\’h"'P/(t + m)

t + m h I (2.14)

h

1 )log (1 + x(l - e'Pt))]

t + m e h

[—pxe-pt (l + x(l - e-pt)) -1 +

 

This risk-minimizing Optimal GUT can now be found be

solving for the value of t which makes the expression

within the brackets in (2.14) equal to zero, subject to

the constraint 0<t<w. That is, the following equation

can be solved for a nonzero, noninfinite t:

(l/h)(t + m) pxe’Pt = G(t) loge G(t) (2.15)

where G(t) = l + (l - e-pt)x/h

Unfortunately, no simple analytical solution is possible,

but a numerical answer can easily be found by an iterative

process.

Though the probability of finding no prey declines

as T increases, the GUT which minimizes this risk is inde—

pendent Of T. Notice that the Optimal GUT to minimize risk

is dependent on the mean number of prey per patch x, in

contrast to the case for a Poisson distribution of prey,

and is also dependent on the clumping parameter h. More

accurately, the dependence is on the ratio x/h; i.e., on

the relative values of x and h, not on the absolute values.
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As an example, using the values m = 3.0 sec. and p = 0.1

1
sec.- as in the computer simulation, x/h = 5.0 yields an

optimal GUT = 3.58 sec.; x/h = 1.0 gives GUTOpt = 5.33 sec.;

x/h = 0.01 gives GUTO = 6.84 sec.; as x/h approaches
pt

0.0, GUT approaches 6.86 sec.
Opt

The Poisson distribution is a limiting form of

the negative binomial, obtained as the clumping parameter

h approaches infinity. The results above can be partially

checked by noting whether the same Optimal GUT is found

when h approaches infinity as was found in (2.6) for a

Poisson distribution of prey among patches. Equation (2.14)

can be rearranged as follows:

 

 

 

d P[C=0 gtringfl),T]]= (2.16)

(1 + A(t)/h)'hT/(t + m)[_TBxe-pt +

(t + m) (l + A(t)/h)

loge (1 + A(t)/h)hT/(t T m]

t + m

where A(t) = x(1 - e—pt)

Then, using the relationship

lim (1 + a/h)bh = eab (2.17)
h+oo

and simplifying, the following limit is obtained as the

negative binomial approaches the Poisson distribution:
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lim d P[C=0 during [0,T]] =

dt

 

h+w (2.13)

Txe

t + m

 

 

- _ ”Pt _ _
x(1 e )T/(t + m)[_pe pt + (1 _ e pt)]

t + m

Comparing the term in brackets in (2.18) with (2.6), it

is Obvious that the optimal GUTs are the same in the limit.

Comparing Foraginngoals:

Maximization of Capture

Rate vs. Minimizatibn

Of Risk

 

 

 

For a Poisson distribution of prey among patches

and a predator using the GUT strategy, the above results

show that the two goals of foraging result in different

Optimal GUTs, one which maximizes the expected capture

rate, and a different Optimal GUT which minimizes the risk

of finding no prey. What are the differences in capture

rate and longest intercapture time when these two different

goals require different GUTs? Figure 11 shows the results

of a stochastic simulation which bear on this question.

The left group of histograms shows the mean and one standard

error of the longest intercapture time occurring during

one hour or five hours Of simulated foraging, for 20

replicates. The difference in Optimal GUTs increases as m

increases; results are compared for transit times of m = 3

and 22 seconds. Note that after only one hour (20 reps.)

the results happened to come out the opposite of expected:

the GUTs which were to minimize the risk of finding no



Figure 11.
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Comparison of simulation results for Optimal

GUT to maximize capture rate versus Optimal

GUT to minimize risk, for a GUT strategy and a

Poisson distribution of prey among patches.

A. Mean 1 1 SE (20 replicates), longest inter—

capture time during T=1 and T=5 hours of simu—

lated foraging, for transit times of m=3 and

m=22 seconds. B. Mean 2 1 SE (20 replicates),

capture rate during T=1 and T=5 hours of simu-

lated foraging, for transit times of m=3 and

m=22 ieconds. X=10.0 prey per patch, p=0.1

sec." , and b=l.0 sec. "MAX RATE" indicates

results for Optimal GUT to maximize capture

rate, and "MIN RISK" indicates results for

Optimal GUT to minimize risk of finding no

prey.
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prey resulted in longer maximum intercapture times than

the GUTs which were to maximize capture rate. However,

after 20 replicates of five hours Of foraging the results

were as expected: the GUTs which were to minimize the

risk resulted in shorter maximum intercapture times.

Notice that in all cases the GUTs which were to maximize

the capture rate did so; they consistently minimized the

average time between prey captures.

If the results shown in Figure 11 generalize to

other situations then the advantage of using the risk-

minimizing GUT may be relatively small. It should be

noted that the difference between the two Optimal GUTs is

smaller at lower values Of mean prey number x (in the

simulation x = 10.), but these low values of x are where

the risk is greatest and the risk-minimizing goal should

be most important. Also, the difference in capture rate

between the two Optimal GUTs appears relatively large

compared to the difference in maximum intercapture time:

the risk-minimizing predator appears to pay a relatively

large cost in reduced capture rate for only a small

reduction in maximum intercapture time (which should be

closely related to the risk of finding no prey). Further

remarks on this comparison are contained in the Discussion.

The Time Expectation Strategy
 

One possible strategy that a predator could use

is the Time Expectation (TE) strategy. Krebs (1973) and
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Krebs, Ryan and Charnov (1974) proposed one form of this

strategy: the predator spends a constant total amount of

time per patch. This was suggested as an alternative to

Gibb's (1962) Number Expectation strategy.

Results from Appendix D suggest another form of

this strategy. Appendix D shows, for a Poisson dis-

tribution of prey among patches and a Poisson search pro-

cess within patches, that the expected number of prey

remaining in a patch depends on the cumulative search time

that has elapsed in the patch, and does not depend on the

number of prey found up to that time. An intuitive argu-

ment may clarify the point. If the distribution of prey

among patches is Poisson, then one can consider that each

prey in the environment independently and randomly selected

a patch to inhabit. Thus, the finding of one or several

prey in a patch gives no information about how many others

selected that same patch. Upon first arriving at a patch

the expected number of prey present is the average number

for all patches. Additional time spent searching, however,

makes it less and less likely that (more) prey remain to

be found: there is an exponential decay with search time

in the expected number of prey remaining in the patch.

If the predator's foraging strategy was to leave a patch

when the expected number remaining reached some threshold

(or, alternately, when the expected additional time to
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next capture reached a threshold), then the predator could

leave each patch after a fixed amount of search time.

This, then, suggests another form of the TB

strategy of Krebs (1973) and Krebs, Ryan, and Charnov

(1974): the predator spends a constant total amount Of

search time in each patch (rather than a constant total Of

search plus handling time). With this TE strategy there

will be no extension of search time if additional prey are

found. One could imagine the "giving-up time clock" of

the GUT strategy pausing as each prey is found and handled,

but not being reset; the clock's "alarm" would then indi-

cate when some fixed total search time had elapsed in the

current patch.

Expected Capture Rate and

Optimal—Total Search

Time_per Patch

 

 

 

Appendix D presents the derivation for the expected

number Of prey captured per patch, E[C], and Appendix E

the expected capture rate, E[R], for a predator using the

TB strategy. For a given total search time, t, the

expected number captured, E[C], will be

E[C] = x(l - e-pt) (E.7)

where x is the average number of prey per patch, and

p is the searching effectiveness parameter.
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This is the stochastic equivalent of the deter-

ministic "Random PredatorvKuation" of Rogers (1972).

As in Rogers' analysis, it assumes the predator searches

randomly within a patch.

The expected capture rate, E[R], will be the

expected number caught per patch, E[C], divided by the

expected total time per patch: search time, t, plus

transit time, m, plus total handling time, bE[C]:

E[R] = x (1 - e‘Pt) (E.8)

t + m + bx(1 - e-pt)

 

For a given total search time, t, the expected cap-

ture rate depends on the average number of prey per patch,

x, but not on the form of the distribution for prey among

patches. Likewise, the Optimal total search time per

patch, tO t’ which maximizes the mean capture rate, does

P

not depend on either the distribution of prey among patches

or the mean of that distribution. Appendix F shows that

topt is a function of p and m, the searching effectiveness

parameter and the transit time between patches. The value

of t for which the following equation holds is tOpt:

e‘Pt(1 + p(t + m)) = 1 (F.2)

Note that this expression for to is the same as equation
pt

(2.6) above. For the TE strategy the total search time

Which maximizes the mean capture rate is the same as that
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which minimizes the risk of finding no prey for a Poisson

distribution Of prey among patches, but these two Optimal

times are different for a negative binomial distribution.

In addition, this capture rate-maximizing total search time

for the TE strategy is the same as the GUT which minimizes

the risk of finding no prey for a Poisson distribution

(see equation (2.6)).

Suppose that the predator has no cues or sources of

information about the number of prey in a patch other than

its own experience in each patch. If the distribution of

prey has a large variance/mean ratio, the TE strategy would

likely be inferior to a GUT-type strategy. For example,

if most patches had a small number or zero prey, and most

prey were concentrated in a small proportion of the patches,

then a GUT-type strategy would allow the predator to avoid

spending a full "total search time" in a poor patch, and

would tend to allocate more search time in rich patches.

If, however, there is a Poisson distribution of prey among

patches, it appears that the TE strategy with total search

time topt is the best possible strategy for either maxi-

mizing the mean capture rate or minimizing the risk of

finding no prey, or both. For example, in experimental

situations where the prey has been distributed randomly

among patches (and other assumptions Of this model are met--

see Chapter 1), the Optimal forager should eventually

learn not to vary the total search time because of prey
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captures or the mean density of prey. Its search time

(but not total time) per patch should be a constant,

dependent only upon p and m. Figure 5 above is a graph

of optimal search time (equivalent to the Optimal GUT to

minimize risk) versus p and m.

There is another situation where the TB strategy

would apparently be the best way to allocate time among a

group Of patches. If the overall distribution of prey

among patches in the environment arises from the com-

pounding of many Poisson distributions, each with a dif-

ferent mean (e.g., the negative binomial), then the pre-

dator may choose to forage in a particular group of patches

with a high mean. Within this group the distribution of

prey would be Poisson and the TE strategy would be best.

For deciding how to allocate time among the groups of

patches, however, a higher level strategy would be useful

(see Chapter 4).

Observed "GUT" Inversely

Related to Prey Density

 

 

Because the total search time for the TE strategy

is independent of the mean prey number per patch, a higher

mean will decrease the average time between prey captures;

notice, also, that the average time between the last prey

capture and emigration from the patch will decrease. Thus,

the Observed ”giving-up time" will decrease as mean prey

density increases, but it will not be due to an active
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response or changed behavior on the part of the predator.

Observing changes in "GUT" with mean prey density, then,

does not by itself mean that a GUT foraging strategy is

being used by the predator.

The frequency distribution of observed GUT for this

strategy is evaluated in Appendix G and discussed in

Chapter 5.

Computer Stochastic Simulation:

Results and Discussion

 

 

Figures 12 and 13 show the results of a computer

stochastic simulation of the TB strategy for a Poisson

(Figure 12) and a negative binomial (Figure 13) distri-

bution of prey among patches. Comparing these graphs with

those for the GUT strategy (Figures 6 and 7) one can see

that the peaks Of the capture rate are much broader for

the TE strategy than for the GUT strategy. A deviation

from the Optimal search time per patch will thus have

less effect on the capture rate for the TB strategy than

an equal deviation from the optimal GUT. Stated another

way, to maintain a nearly maximal capture rate the animal

with the GUT strategy requires a much more accurate clock

than the predator using the TE strategy. The TE strategy

would appear to be more robust to deviations from the

Optimal search time. Also, the GUT strategy is more

sensitive to noise in the system--chance variations in
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Mean capture rate as a function of search

time per patch for a Poisson distribution of

prey among patches. Mean capture rate 311 SE

(10 replicates) is plotted. p=0.1 sec. ,

m=3.0 sec., b=l.0 sec., T=3600 sec.
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Mean capture rate as a function of search time

per patch, for a negative binomial distribution

of prey among patches. Mean capture rate 1 1

SE (10 replicates) is plo ted. x=5.0 prey per

patch, h=l.0, p=0.1 sec." , m=3.0 sec., b=l.0

sec. and T=3600 sec.



81

0
.
2
5

 

-
)

l

0
.
2
0

J

0
1
5

>
<

n a
)

b

0
.
1
0

J

 

M
E
R
N

C
R
P
T
U
R
E

R
R
T
E

[
P
R
E
Y
/
S
E
C

 
  

ID

9‘

(:7 ‘ ..

75‘7“‘-«=x = 1.0

D

O

.0 I j I I

c13.00 5.00 10.00 15.00 20.00 25.00

SERRCH TIME PER PHTCH (SEC.)

Figure 13



82

search time between captures, whereas the TE strategy

tends to average out stochastic fluctuations in inter-

capture time .

thimal Total Search Time per

Etch to Minimize the Risk

O_f Finding NO Prey

Equation (E.4) gives the probability of capturing

i prey, given n prey are present initially, for a predator

using the TB strategy. The probability of finding i = 0

prey , given n prey in a patch, would be:

P[C=0|n] = e'npt (2.19)

where t is the total search time in the patch.

The probability of finding zero prey in the next patch

visited would take into account the distribution of prey

among patches:

P[C=0 in next patch] = P[N=n] e-npt (2.20)

n “
M
S

0

where P[N=n] is the probability function for the dis-

tribution of prey among patches.

Notice that this equation (2.20) is the same as (2.1)

above - Thus, whatever the distribution Of prey among

patches, the optimal search time per patch which minimizes

the risk of finding no prey will be the same for both the

GUT and TE strategies. Equation (2.6) , shows how to find
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this Optimal total search time for the case of a Poisson

distribution Of prey among patches, and equation (2.15),

does the same for a negative binomial distribution.



CHAPTER 3

THE RANDOM STRATEGY: A REFERENCE POINT

FOR EVALUATING SUBOPTIMAL STRATEGIES

Expected Capture Rate for a

Neutral Model

 

 

In evaluating subOptimal foraging strategies

reference points are needed. The Optimal strategy is one

Obvious benchmark for comparison, setting an upper limit

on performance (of. Oaten 1977a). What is a reasonable

lower limit to performance in a patchy environment? One

way to estimate a lower bound on a predator's performance

is to construct a neutral model (Caswell 1976, Crowder

1978, Gould 1978) for a foraging strategy. Such a model

is designed to be "neutral" with respect to the factor or

influence under investigation. For example, make the

reasonable assumption that natural selection is acting to

Optimize (in some way) the amount of search time a pre-

dator spends in each patch. Then one neutral model for a

search time allocation plan would be a strategy in which

search time per patch was determined randomly, and not in

a manner Optimized by natural selection. Other strategies

should be able to do at least this well, and this ”Random"

84
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strategy should set a reasonable lower bound on performance

in allocating time among patches.

In addition, this Random strategy can help determine

how sensitive the expected capture rate is to variations in

the leaving time, and, consequently, how great the selec-

tive pressure is for an accurate and precise foraging

clock.

In this Random strategy the predator's total search

time in a patch is determined randomly, perhaps by chance

events completely unrelated to foraging. Assume that the

predator does not leave a patch while pursuing or handling

prey, but only while searching. Suppose that, while

searching, the instantaneous probability that the predator

1 1(1.
will leave is constant and equal to r- , with 0<r'

This yields a negative exponential distribution of Ts’

total search time in a patch, with a mean total search

time of r seconds, and a variance of r2 seconds. The

probability density function for total search time will be

f(t) = (l/r)e-t/r (3.1)

An analytical solution can be found for the

expected number of prey found in a patch that initially

contains n prey.
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E[C|n, Random] fco B[C|n,t] f(t) dt

0

= I” n(l - e-pt)(l/r)e-t/r dt (3.2)

o

= __E£E_

rp + l

where r is the mean total search time per patch.

The expected number of prey captured in a patch is

found by taking into account the distribution of prey among

patches.

E[ClRandom] = Z E[C|n, Random] P[N=n]

n=0

= xr (3.3)

rp + l

where x = Z n P[N=n] is the mean number of prey per patch.

n=0

Notice that the average number of prey captured per patch

depends on x, but not on the form of the distribution of

prey among patches.

The corresponding expected number for the Time

Expectation (TE) strategy is (cf. Appendix E):

E[CITE] = x(l - e’pt) (E.7)

where t is the fixed total search time per patch.

If the average total search time in the Random

strategy is the same as the fixed total search time in the

TB strategy, then the expected number Of prey found per
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patch is always less for this Random strategy, for 0<r =

t<m; the two expected numbers converge as r and t both

approach either zero or infinity. Letting r = t,

E[CIRandom] = x(EEE§—I) (3.4)

 

_ Pt -

E[CITE] = x(1 - e pt) = x E—————£

ept

(3.5)

= x 4pt + D

pt + l + D

m i

where D = Z lgEL— = ept - (l + pt)

i=2 '

From these two expressions it is easy to show the stated

inequality. Let a = pt, then divide each expression by n.

a < a +

a + 1 a + 1

  

D

+ D (3.6)

=:>a(a + l + D) = a2 + a + aD <

(a+l)(a+D)=a2+a+aD+D

$0 < D Q.E.D.

In a given environment, then, the animal using the TB

strategy is expected to find more prey per patch than the

animal with the Random strategy.

The expression for expected capture rate E[R] is

given by (3.7), and takes account of the variable search

time.

 

‘ -1

E[R] = (‘r + miéifi+ 1) + b) (3.7)
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As the mean prey abundance per patch x approaches infinity,

the capture rate is limited by the handling time b, as

expected.

lim E[R] = 1/b (3.8)

x+m

Maximizing the Mean Capture Rate

It seems a little strange to consider Optimizing a

Random strategy, but it is possible to determine the

instantaneous probability of leaving, l/r, which maximizes

the mean capture rate for this strategy. First, find the

derivative of the expected capture rate with respect to r.

 9_§lfil.= 1(_EL..1) ((r + m)(rP + 1) + b)-2 (3.9)

p

dr x r rpx

This derivative will be zero and E[R] will be a maximum

when

r = rcpt = (m/p)l/2 (3.10)

The expected capture rate is a maximum for this value of

r since the second derivative evaluated at this point is

negative. Notice that this Optimal value of r, which

maximizes the capture rate for this strategy, depends only

upon m and p, the transit time between patches and the

searching effectiveness parameter; it does not depend on

:mean prey number per patch x, or the form of the dis-

tribution of prey among patches. Substituting the
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Optimal r into equation (3.7), the maximum expected capture

rate is

 

1/2 2 -1

_ _ (1 + (mp) )
E[er — rcpt] — [: xp + 5] (3.11)

This maximum expected capture rate for the Random strategy

can be compared to the maximum for the TE strategy (the

Optimal strategy for a Poisson distribution of prey among

  

patches), equation (F.4). The following ratio results:

_ (3.12)
E[RIRandom, r-ropt] = 1 + p(m + bx + tOEF)

E[RITE, t = t 1 1 + p(m + bx + 2(m/p)1/2)
Opt

Notice that as mean prey number per patch, x, gets very

large this ratio approaches 1; this is because both capture

rates approach l/b. As handling time increases toward

infinity this ratio also approaches 1; in this case both

capture rates are approaching zero. Additional comparisons

of these two strategies are made in the next section using

results Of computer simulations, and in Chapter 5 using

experimental data from the literature.

Computer Stochastic Simulation:

Results and Discussion

 

 

Figure 14 shows the results of a computer simu-

lation of this Random strategy, where mean total search

tflme, t8 = r is on the abscissa. This is compared in the

same figure with results from another stochastic simulation
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Comparison of TE and Random strategies: Mean

capture rate as a function Of mean search time

per patch, r, for a Poisson distribution of

prey among patches. Mean capture rate 311 SE

(10 replicates) is plotted. p=0.1 sec. ,

m=3.0 sec., b=l.0 sec. and T=3600 sec.
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using the Time Expectation (TE) strategy, where the total

search time T8 is fixed during a particular simulation run.

The Random strategy does quite well, but the capture rate

is lower than if a constant TS had been used. Notice,

however, that a predator using this Random strategy with

a mean near the optimal total search time would still have

a capture rate that is a large fraction of the maximum

possible with the TB strategy. For the parameters chosen

for these simulation runs (x = 5 prey per patch, m = 3

1
sec., p = 0.1 sec.- ), the Random strategy with r0 = 5.48

pt

seconds results in an expected capture rate of 0.173 prey

per second. For the TE strategy with a fixed T8 of

topt = 6.86 seconds, the mean capture rate is 0.201 prey

per second. So the TB strategy yields a maximum capture

rate that is 16% greater than the maximum of the Random

strategy under these conditions.

Evaluated at t = 15 seconds for the TB strategy

and r = 15 seconds for the Random strategy, the difference

between the mean capture rates for the two strategies

appears to be increasing. Fairly quickly, however, further

increases in leaving times cause the mean capture rates to

converge; at very large values of t and r both capture rates

approach zero.

These simulation results, shown in Figure 15, are

expected from the analytical results given in equations

(3.7), (E.8), and (3.12)--expected capture rate for the
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Random strategy, expected capture rate for the TE strategy,

and the ratio of the maximum capture rates, respectively.

These equations show the type of results depicted in

Figure 14 to be quite general, i.e., the mean capture rate

for the Random strategy is always less than the mean cap—

ture rate for the TE strategy, and the mean capture rates

converge and approach zero as t and 4 approach zero and as

t and r approach infinity. Thus, the parameter values

chosen for this simulation run can be quite arbitrary;

similar results are expected.

It appears, therefore, that a predator using the

Random strategy can do quite well regarding capture rate

compared to the TE strategy as long as the mean of the

total search time is somewhere near the optimal value,

and even this requirement appears to be weak. Conversely,

under these circumstances the TE strategy, optimal for a

Poisson distribution of prey among patches, does only 16%

better than the neutral model, this Random strategy. This

16% advantage could increase fitness very significantly,

however. Suppose that the capture rate obtained with the

Random strategy is just sufficient to cover a predator's

maintenance costs. The higher capture rate of the TE

strategy might allow growth and reproduction when neither

was possible under the Random strategy. The advantage of

leaving some as Opposed to no offspring could thus be due

to a relatively small increase in capture rate, and the
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selective advantage of the better strategy could be quite

large.

Remember that this neutral model of foraging in a

patchy environment is not intended to provide a realistic

description of any predator's behavior. Rather it is

merely a reference point for judging performance, for

comparing strategies.



CHAPTER 4

A HIERARCHY OF FORAGING STRATEGIES

What is a Patch?
 

A hierarchy of patch types is generally present in

the environment. Small prey-containing units with distinct

boundaries, patches, often occur in distinct groups, and

these groups occur in larger distinct units. As an example,

the pine cones studied by Gibb (1958, 1962, 1966) are dis-

tinct prey-containing units--"patches." Gibb (1966)

showed that trees differed significantly in the average

number of moth larvae found per cone; the pine cones are

naturally grouped into distinct units--trees. The trees

occur in woodlots or forests, etc. Predators need some

strategy for allocating search time among pine cones, and

they also need some strategy for allocating time among

trees and among groups of trees. A hierarchy of strategies

is required. In this context the question "what is a

patch?" is largely semantic; the answer depends on which

strategy in the hierarchy is being studied. The capture

rate may be much more sensitive to changes in strategy or

foraging variables (e.g., GUT or total search time) at one

level in this hierarchy than at other levels. The

95



96

comparison of several levels regarding this sensitivity

may be what is implied by the question (cf. Gill and Wolf

1977).

Effectiveness of Strategies

While the TB strategy can sometimes be the optimal

time allocation strategy at some levels of the foraging

hierarchy, it is unlikely to be useful at all levels in

the hierarchy. For example, if prey occur randomly among

pine cones according to a Poisson distribution, then a

bird seeking to allocate time among cones should use the

TE strategy. If, however, as Gibb found with his moth

larvae, there happen to be large differences in "intensity"

of prey from tree to tree, then a predator should not use

this TE strategy at the tree level. The finding of

several "good cones" would be a good indication that a

specific tree had an above average intensity of infestation.

The strategy used should allow the bird to make use of this

information in its foraging. But using the TB strategy

at this level would not use that information and the animal

would make a response based on the overall average intensity.

A GUT strategy, however, could be used to exploit cones

on "good" trees.

Figure 15 shows how the GUT strategy can be gene-

ralized for use at any level in this hierarchy. A timer

is used for each level, and the apprOpriate timer is reset

rafter each "good" event: cone-timer is reset after each
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Figure 15. The GUT strategy generalized for use at any

level in the hierarchy of foraging strategies.

Strategies are shown for moving among trees

and among cones on a single tree.
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("good") prey capture, tree-timer is reset after each "good"

cone, woodlot-timer is reset after each "good" tree, etc.

The predator moves to the next unit whenever that timer

reaches the appropriate GUT, or when all lower-level units

have been searched, e.g., move between trees when either

the tree-timer reaches the GUT or when all cones on
tree

the tree have been searched.

Computer Stochastic Simulation:

Results and Discussion

Figure 16 shows the results of a stochastic simu-

lation of a predator foraging among pine cones, with a

Poisson distribution of prey among cones on each tree.

The mean of the Poisson is different on each tree, and

is chosen randomly for each tree from an Erlang dis-

tribution. Considering the entire group of trees, then,

the distribution of prey among cones has a negative binomial

distribution (see Chapter 1). Fifty pine cones are on

each tree. The predator is given a TE strategy for moving

between cones on a tree--the optimal strategy in this case,

because of the Poisson distribution of prey among cones

within each tree. The predator is using the GUT strategy

at the tree level, as specified in Figure 16. In this

example simulation, the overall capture rate is maximized

when the GUT is 18 seconds; large deviations from this
tree

value can make about a 15% difference in overall capture

rate.



Figure 16.

100

Mean capture rate as a function of giving-up

time for trees. Mean capture rate 1 1 SE (20

replicates) is plotted. There is a Poisson

distribution of prey among patches on a tree,

with the mean for each tree chosen randomly

from an Erlang distribution (mean of 5.0 prey

per cone on a tree, yariance among trees is

6.250). p=0.1 sec.’ . m=3.0 sec., b=l.0

sec., T=3600 sec., Good-cone-threshold=0.3

prey per sec., total of 50 cones per tree
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Notice that at very long values of GUTtree the

overall capture rate approaches the average for the envi-

ronment as a whole (compare with Figure 13). This is

because the predator stays so long on each tree in this

case that nearly all the cones on each tree are visited;

the GUT is so long that the predator does not leave
tree

poor trees soon enough.

Further exploration of hierarchies of strategies

is recommended. In this context, one of the first questions

that must be addressed is "How much is enough?" What

capture rate will satisfy a predator so that it remains

in a particular hunting area or patch group? Comparison

of relative sensitivity of overall capture rate to the

strategies and variables at each level in the hierarchy

should prove illuminating.



CHAPTER 5

COMPARING STRATEGIES WITH OBSERVATIONS

FROM LAB AND FIELD

Distinguishing Among Foraging Strategies

How may these foraging strategies, GUT, TE and

Random, be compared experimentally? Each strategy assumes

that predators have reached stable patterns of behavior,

i.e., learning behavior is not complicating the results.

The best comparisons between strategies can be made when

a complete time-series of foraging events has been recorded.

Significant events include arrival at a patch, time of each

prey sighting, the time an animal finishes handling a prey

item and resumes search, and the time an animal leaves a

patch. From this set of data the average handling time

and mean transit time can be computed. The giving-up time

is defined as the search time from last prey capture until

the animal leaves the patch, or, if no prey have been

found, the time from arrival in a patch until leaving that

patch. The intercapture times are the search times between

prey captures in a patch, and total search time is simply

the sum of the intercapture times in a patch plus the giving-

up time.
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Each strategy predicts different patterns for the

set of intercapture times, giving-up times, and total

search times per patch. These differences are summarized

in Figure 17. For the constant GUT strategy the giving-up

time would be expected to be constant, but due to small

variations in measurement by the experimenter and varia-

bility in the animal, one would expect a distribution of

giving-up times tightly clustered around some mean value.

For this strategy all intercapture times must be less than

or equal to the giving-up time. If any intercapture time

on a single patch exceeds the giving-up time, the predator

should leave the patch. An observation that a predator

did not leave a patch in this circumstance would constitute

evidence that the fixed GUT strategy was not being used.

Total search time would be expected to be variable with no

total search times being less than the giving-up time.

For the TB strategy the observed giving-up time

should be variable, with a unimodal frequency distribution

function as described in Appendix G. Some intercapture

times will be longer and some shorter than the observed

giving-up time. The total search time, however, should be

relatively constant; the frequency distribution should be

tightly clustered around the mean.

It is expected that predators will have strategies

that are more effective than the Random strategy; pre-

dictions of this neutral model are presented for
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Figure 17. Distinguishing among the constant GUT, TE, and

Random strategies. (Search is assumed to be

random, continuous.)
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comparative purposes. For the Random strategy the observed

giving-up time will be variable, with a unimodal frequency

distribution function similar to that of the TE strategy,

but with a larger range of values. As with the TB strategy

some intercapture times will be longer and some shorter

than the observed giving-up time. The total search time

is variable; the primary assumption of this strategy is

that the frequency of total search times is described by a

negative exponential equation, or, equivalently, that the

instantaneous probability of leaving a patch while search-

ing is constant.

Several pieces of evidence will provide stronger

support for establishing which strategy is being used than

a single line of evidence. Thus, while comparisons of

giving-up time distributions would find two of these

strategies with variable giving-up time distributions, these

two strategies (TE and Random) can be distinguished by

examining the frequency distribution of total search time.

The major differences between strategies are apparent in

the frequency distributions of these variables. Comparisons

of means of these variables would be a much less powerful

test. Of course, these three strategies are not the only

jpossible policies for allocating time in a patchy environ-

lnent» Examination of the means and frequency distributions

of intercapture time, observed giving-up time, and total

search time per patch can provide much insight into the
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actual mechanisms of foraging, the actual strategies used

by predators.

Search Within a Patch: Continuous

vs. Discrete Trial Search,

and Random vs. Systematic

Search

The formulae for predicted capture rate, etc.,

given here for these three strategies should not be

applied in their present forms to experiments such as

those of Krebs, Ryan and Charnov (1974), Smith and Dawkins

(1971), or Smith and Sweatman (1974), because two important

assumptions are not met. First, these formulae apply only

to continuously searching predators, where, until the next

prey is found, the probability of finding a prey at any

instant of search time is constant (the constant does

depend on the number of prey remaining in the patch). This

is not the case for the experiments mentioned above; prey

were placed in holes or cups within a patch, and the proba-

bility of finding a prey changed abruptly as each hole or

cup was Opened. I would call this latter case a discrete

trial search. Second, these equations assume that the

predator searches at random, not systematically, within a

gpatch, This random search analysis assumes that there is

a depletion effect in the patch, but that when one of k

prey'is found the subsequent search can be described

exactly as before the capture except that k - l prey now

remain. This would not be the case for a systematic
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searcher, since a capture would mean both that k - l prey

are left and that a smaller patch area remains to be

searched.

Foraging strategies can be cross-classified by

making these distinctions between discrete trial search

and continuous search, and between random and systematic

search. As implied above, the predictions of these

strategies will vary depending on which pair of search

categories applies; the mathematical models for each of

the four possible pairs are different, and the best course

of action for the predator changes accordingly. The

classification of the search depends on both the experi—

Inental design and the behavior of the predator. Systematic

search requires a predator capable of either recognizing

and using external signs of a previous search or of

internally generating a patterned movement.

As mentioned above, the discrete trial search

experiments of Krebs, Ryan and Charnov (1974), Smith and

Dawkins (1971), and Smith and Sweatman (1974) lend them-

selves to systematic search. Removal of foil caps from

cups or gummed tape over holes leaves a clear indication

of which parts of the patch have been searched. As noted

by Zach and Falls (1976c) and Krebs and Cowie (1976), if

no depletion or depression effects occur, and none were

reported in the experiments of Krebs, Ryan and Charnov

(1974), then the model of Charnov (1973, 1976) does not
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apply. Recognition of the distinction between random and

systematic search would have helped clarify the theory's

applicability.

Zach and Falls (1976c) report that the ovenbirds

(Seiurus aurocapillus) they observed searched in a fairly
 

systematic manner within a patch; apparently the birds

continuously scanned the patch. Zach and Falls concluded

that the birds were not hunting by number or time expec-

tation strategies; they suggested that the Optimal leaving

time may "coincide with complete coverage" of the patch

(Zach and Falls 1976c, p. 1894). I can show, however,

that for a systematic and continuous searcher using a TE

strategy, the Optimal behavior to maximize the capture rate

is to search the entire patch. Thus, their results agree

with this prediction of the TE strategy, rather than con-

flict with it. Variations in search speed and the com-

plicating effects of area restricted search, not included

in the present models, should account for some of the vari-

ations in total search time per patch that they Observed.

As Observed in the next section of this chapter

the experiments Of Cowie (1977) and some of the foraging

tasks of Partridge (1976) can be classified as continuous

and random search, and, therefore, best fit the models

presented in Chapters 2 and 3. In these cases birds probe

in small cups of sawdust or shredded paper for pieces of

mealworms. Because the material in the patch (cup) shifts
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so easily, a systematic search would be difficult, and the

rapid, probing beak movements of the birds probably come

very close to a continuous search.

I have not found any foraging experiments in the

published literature that are unambiguous examples of the

random and discrete trial search combination. This

general type Of search can be illustrated by the urn models

of probability theory, where a collection of red and white

balls ("prey" and "no prey") are sampled with replacement.

It should be clear from these examples that it is

very important to correctly classify foraging experiments,

and compare the appropriate version Of each strategy with

the results.

Formulae to describe discrete trial search and

systematic search are under development for these three

strategies. As.a beginning step, Appendix H presents the

probability functions and mean values for the number of

trials between captures in a discrete trial search, for

both randomly and systematically searching predators.

Cowie's Laboratory Experiments

With Birds

 

 

In comparing the predictions of strategies with

Observations from lab and field, it is important to meet

the assumptions Of the models as closely as possible.

.Among recent foraging experiments those of Cowie (1977)

Seem to come closest to meeting the assumptions of the
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suboptimal foraging models analyzed above. Cowie performed

foraging experiments using six wild-caught great tits

(Parus major). Experiments were run in an aviary (4.6 m x
 

3.7 m) containing five artificial trees. The patches, six

to a tree, were made from short sections of plastic pipe,

sealed at one end and filled with sawdust. The prey were

quarter sections of mealworms. Six prey were hidden in

each patch. Each bird was subjected to two types Of experi-

ments, identical in every respect, except for the traveling

time between patches. Each patch was covered with a card-

board lid. In one experiment these lids could be easily

pulled Off, and in the other set Of experiments the lids

were modified so that they just fit inside the rim of the

cup and had to be pried out. For each experimental type

the lids were all of one kind or the other, and the envi-

ronments were classified as "hard" or "easy," corresponding

to these differences in "Traveling Time" between patches.

Six ten minute trials were performed on each bird in each

environment.

These experiments seem to fit the assumptions of

my model strategies quite closely, except perhaps for the

assumption of experience. With a total Of only one hour

experience in each environment it is not clear that the

animals' behavior patterns had stabilized, or that the

animals had learned enough about the environment in that

short interval to Optimize their behavior. Other
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assumptions are met by the discrete patches used and by

the continuous search within a patch. (This is to be dis-

tinguished from experiments such as those of Krebs, Ryan

and Charnov (1974) or Smith and Sweatman (1974) in which

searching within a patch occurred as discrete trials,

e.g., where a patch was composed of an array of cups,

Opened one by one.) It also appears likely that the birds

searched randomly within a patch rather than searching

systematically.

Parameterization of the GUT, TE, and Random

strategies is accomplished in the following way. The

transit time, m, was measured by Cowie for each environment.

Handling times, b, were not significantly different in each

environment, so a mean value of 8.21 seconds is used.

Multiplying total time per patch (Cowie's Time in Patch

plus Traveling Time) by the average capture rate, the

average number Of prey captured per patch in each environ-

ment is Obtained. In both environments this is about 2

prey captured per patch. Assuming that search is a Poisson

process, the expected intercapture interval measured when

exactly two prey are taken from each patch will be equal

to l/2(l/6p + l/5p), where p is the searching effective-

ness parameter. Using an average value of the measured

intercapture time of 14.89 seconds, the value for p is

found to be 0.01231 second-1. Since all patches contained

n=6 prey, and knowing p, m, and b, the Optimal total search
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time for the TE strategy can be computed (cf. equation

(F.2)), as well as the Optimal GUT for the GUT strategy

(using a search technique on equation (A.18)). By sub-

tracting handling time from the time spent in the patch

given by Cowie, the total search time in each patch can be

Obtained. Averaging this value for both environments

provides one estimate for r, the parameter of the Random

strategy. An Optimal value of r can be Obtained from

equation (4.10), r = (m/p)l/2.
Opt

Two questions can be asked about the birds in

Cowie's (1977) foraging experiments. First, what strategy

are the birds actually using? Second, how good is their

mean capture rate (a) relative to the optimum, the best

possible for this search problem, and (b) relative to a

neutral model, the Random strategy? Please refer to

Table l as these questions are discussed.

First, it should be noted that the fit Of these

three strategies (TE, GUT, and Random) to Cowie's (1977)

data could be made even closer. The leaving times for

these strategies were not chosen to provide the best fit

to the data in Table L,but were computed using the

minimum information necessary from that published by

Cowie. A better fit to all the data in Table 1 Could be

obtained by varying p and the TB or GUT or r values. For

example, if a slightly shorter total search time were used

for the TE strategy, then all three variables for that
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strategy in Table 1 would be reduced and come even closer

to Cowie's results.

The information available is not sufficient to

determine what strategy the birds are actually using. The

predictions Of all three subOptimal strategies fit the data

fairly well, but the predictions Of the TB and GUT strategies

are more in agreement with the data than those of the Random

strategy. The time in the patch predicted by the TE and

GUT strategies comes quite close to the Observed values;

the corresponding values for the Random strategy are low.

All expected capture rates except one are within one

standard error Of the Observed mean value, and all expected

capture rates are within two standard errors of the observed.

Thus, capture rate alone is not sufficient to distinguish

these three strategies. The pattern in mean number captured

per patch is not clear, but the predictions of the Random

strategy with r = rOpt are farthest from the Observed mean

number. The GUT strategy value is very close for the "hard"

environment, but predictions Of the TB and Random strategies

are closer for the "easy" environment. More pieces of

evidence than that presented here will be required to dis-

tinguish among these strategies or to reject them all.

Frequency distributions of variables such as the total

search time in the patch, the GUT, and the intercapture

times would be very helpful. Also, the numbers predicted

by these strategies should be based on values Obtained



117

from independent estimation of all parameters. It would

also be helpful to further reduce the standard errors by

additional replication.

How well did these birds perform? That is, how

good was their time allocation strategy? To make a com-

parison with the best possible strategy for this foraging

problem the reader is invited to consult Oaten (1977a) for

determination of the maximum expected capture rate. His

analysis in that paper assumes that the birds know the

values of all parameters as well as the necessary condi—

tional expectations; if this assumption is not met the

predicted maximum expected capture rate will be an over-

estimate.

How good is the observed average capture rate of

the birds relative to the capture rate predicted by the

neutral model of time allocation? In the "hard" environ-

ment the birds' mean capture rate is only 3.1% higher than

that predicted by the Random strategy (with an estimated

r of 41.52 seconds). The Random strategy's capture rate

is within 1 standard error Of the Observed capture rate;

for the "hard" environment the standard error is 10.5% of

the mean. In the "easy" environment the birds' mean

capture rate is 13.7% higher than that Of the Random

strategy (whose r is 41.52 seconds). In this environment

the standard error is 14.8% of the observed mean capture
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rate, so, again, the capture rate from the Random strategy

is within 1 standard error of the Observed.

While the other data, time in a patch and mean

number of prey found per patch, suggest that the Random

strategy is probably not the one used by the birds, it is

noteworthy that the capture rates are so relatively close.

Of course, if these differences are real, even this rela-

tively small improvement over the Random strategy could

make an important difference over a long foraging time,

especially in times of stress--bottlenecks (Wiens 1977).

Notice that the mean capture rates predicted by the

TE strategy are higher than those Observed as well as higher

than those predicted by the constant GUT strategy. Based

on expected capture rates the TE strategy is superior to

the GUT strategy for this experimental situation, and

results in 6.3% and 8.1% larger capture rates in the "hard"

and "easy" environments, respectively. Though the TB

strategy capture rates are larger than those actually

Observed, they are within two standard errors of the

Observed mean; it would be helpful to confirm this result

with additional experiments.

What conclusions can be drawn from this experiment

about the selective pressure for accurate and precise clocks

or timers? Notice that the curve of expected capture rate

versus leaving time is quite flat for all three strategies.

Examine Figures 18, 19, and 20. (Because Cowie used a
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Expected capture rate as a function of search

time per patch (TE stratng). for the con-

ditions in the experiments of Cowi§l(l977).

N=6 prey per patch, p=0.0123l sec. , m=4.76

and 21.03 sec., b=8.21 sec.; Optimal search

time per patch = 26.3 sec. for m=4.76 sec.,

and Optimal T =52.2 sec. for m=21.03 sec.

Expected captfire rate is computed by sub-

stituting E[C|N=6], equation (E.5), for E[C]

in equation (E.8).
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Figure 19.
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Expected capture rate as a function of the GUT

(GUT strategy), for the conditions in the

experiments of Cowie (1977). N=6 prey per

patch, p=0.01231 sec.-1, m=4.76 and 21.03

sec., b=8.21 sec., Optimal GUT = 14.4 sec.

for m=4.76 sec. and Optimal GUT=26.2 sec. for

m=21.03 sec. Expected ca ture rate is com-

puted by substituting E[C N=6], equation (A.9),

for E[C], and E[T [N=6], equation (A.16), for

E[Ts] in equation (A.18).
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Figure 20.
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Expected capture rate as a function of mean

search time per patch (Random strategy) for the

conditions in the experiments of Cowie (1977).

N=6 prey per patch, p=0.01231 sec.'1, m=4.76

and 21.03 sec., b=8.21 sec. r estimated to be

41.52 sec., and r0 t=l9.66 sec. for m=4.76 sec.

and ropt=4l.33 sec. for m=21.03 sec. Expected

capture rate is computed by substituting

E[C|N=6], equation (4.2), for E[C], and r for

E[TS] in equation (A.18).
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constant number Of prey in each patch, corresponding

adjustments were made in the equations for expected capture

rate; e.g., for Figure 18, expected capture rate was com-

puted by substituting E[C|N=6], equation (E.5), for E[C]

in equation (E.8).) From these graphs it can be seen that

fairly large changes in search time, or GUT, or mean total

search time (for Figures 18, 19, and 20, respectively)

will produce only slight differences in mean capture rate.

Thus, under these conditions, selective pressure for an

accurate timer appears weak. If the animals use any of

these strategies I would expect great variability in the

Observed leaving times for the same reason. I would expect

that it would take much experience with these conditions

for an animal to find the Optimal leaving time, but these

capture rate curves are so flat that any leaving time some-

what close to the Optimum may be quite sufficient, espe-

cially if the environment can change slightly.

If the birds had a goal of minimizing the risk of

finding zero prey while foraging, then their predicted

behavior would be quite different. If a predator knows that

all patches contain the same number Of prey initially, then

the risk of finding zero prey is minimized by Spending all

foraging time in one patch: do not waste time moving between

patches since no patch is better than the one currently

occupied. This result may be different if there is a
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nonzero quota of prey that must be met, e.g., the Optimal

behavior may be to change patches after 1 prey is found.

The analysis of foraging experiments such as this

one should be more fruitful if it were done on individual

birds, rather than on results averaged across birds, but

such data were not published for this experiment. Other

workers have found significant individual differences in

the patterns of behavior used to obtain reinforcements (e.g.,

Will 1974) and in time required to obtain prey in a variety

of foraging tasks (Partridge 1976).

A Prey Distribution From Published

Field Data: Simulation Results
 

Here is an example of how these suboptimal foraging

strategies compare using a prey distribution based on pub-

lished field data. These data come from Gibb's (1966)

study of titmice foraging on pine cones for larvae of the

eucosmid moth Ernarmonia conicolana. Gibb examined 13,045
 

pine cones collected in three different years, and was able

to tell the number of moth larvae that were available to

titmice, and also how many the birds had found. Gibb found

that the two-parameter Neyman Type A distribution (Neyman

1939) fit these combined data quite closely, while data

were significantly different from the one-parameter Poisson

distribution. From the data presented by Gibb (1966, his

Table 5) I computed a mean of 0.4289 prey per pine cone,

and a variance about the mean of 0.6174. Fitting the data
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to the Neyman Type A distribution, I obrained m1 = 0.4395

and m2 = 0.9759 for the two parameters. These values were

used for the computer simulation whose results are shown in

Figure 21 for the TE strategy and Figure 22 for the GUT

strategy.

Even for this significantly non-Poisson distribution

of prey the TE strategy results in a slightly greater maxi-

mum capture rate than the GUT strategy. It appears that the

flexibility of the GUT strategy in permitting the predator

to search longer on an especially good pine cone is more

than Offset by the sensitivity of this strategy to chance

variations in intercapture time. That is, mean capture rate

is reduced on those occasions when a predator leaves "too

soon" due to long intercapture intervals that occur on

patches with several prey still remaining. This sensitivity

is not as great for the TE strategy, and for this prey dis-

tribution this Offsets the TB strategy's lack of flexibility

in search time.

For this set of parameter values (see below), the

capture rate curves for both strategies are quite flat.

Mean capture rate is not very sensitive to small changes

iJa GUT or total search time per patch, and a broad range of

tliose leaving times gives nearly the same capture rate.

If? this prey distribution is typical of natural prey dis-

tributions (see below), then there may be little selective

Pressure to have an accurate foraging clock.
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Two caveats must be made about these simulations.

First, though the prey distribution is based on Gibb's

data, the values for searching effectiveness, p, transit

time, m, and handling time, b, are only guesses. Gibb

did not record such data while observing birds directly.

Rather he inferred the birds' behavior from examination of

their foraging marks on the cones. These capture rate

curves would vary if my guesses are incorrect. The capture

rate curves would be more sharply peaked if searching

effectiveness is increased, or if transit time is decreased

(see Figures 3 and 4), or if mean number of prey per patch

is increased; notice the sharper peak when the mean number

of prey per cone is increased about twelve-fold (to 5.0

prey per cone) from the Observed mean number per cone.

Second, this prey distribution is based on pooling

pine cone data from three separate years. While the fitted

Neyman Type A distribution summarizes the combined data

succinctly, no bird would be exposed to that exact dis-

tribution on a single foraging occasion in a single year.

This may be a fair approximation, however. A better

foraging analysis could be made if simulations were done

using information on the distribution of prey among cones

on a single tree, and information on the distribution of

prey among trees in the forest.

Nonetheless, this provides some idea of a prey

distribution to which predators may be exposed in a natural

Situation .
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Figure 21. Mean capture rate as a function of search time

per patch (TE strategy), for a Neyman Type-A

distribution of prey among patches. Mean cap-

ture rate i 1 SE is plotted (10 replicates).

x=5.000 preyzper patch (32:7.197) or 0.429 pre

per patch (3 =0.6174), m=3.0 sec., p=0.1 sec.’ ,

b=l.0 sec., and T=3600 sec.
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Figure 22.
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Mean capture rate as a function of giving-up

time (GUT strategy) for a Neyman Type-A dis-

tribution of prey among patches. Mean capture

rate i 1 SE is platted (10 replicates). x=5.000

prey perzpatch (5 =7.197) or 0.429 prey pei

patch (s =0.6174), m=3.0 sec., p=0.1 sec." ,

b=1.0 sec., T=3600 sec.
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Some Observed Parameter Values for

the Negative Binomial
 

What are some realistic parameter values for the

negative binomial distribution of prey among patches?

Table 2 presents some of the parameter values of the

negative binomial distribution that have been measured

for animals in several natural habitat units--single leaves,

tip of pine shoot, branch whorl, and trees. These units

might be considered patches or patch groups in a hierarchy

of patch levels. While the negative binomial is commonly

used to describe the numbers of organisms per quadrat or

other artificial sampling unit (e.g., Ryan 1974), the

results of such an application would need careful scrutiny

to determine their relevance to foraging theory. This is

because (a) such quadrats are not discrete patches Observ-

able by a predator, and (b) quadrat size is chosen by the

researcher, and, as Patil and Stiteler (1974) and others

(cf. Southwood 1966) have pointed out, the values Of the

parameters of the negative binomial are known to change

with quadrat size.

Some of the entries in Table 2 require explanation.

Tamaki et al. (1973) marked 500 peach tree leaves per year

in 1970 and 1971 and counted the number of green peach

aphids (Myzus persicae) on these leaves several times per
 

week during September and October. For each year the three

sets Of values for x and h given in the table represent

(1) the smallest mean number per leaf Observed that fall,
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(2) the smallest mean where the distribution of numbers per

leaf was significantly different than a Poisson distribution,

and (3) the largest mean among those for which the distri-

bution was significantly non-Poisson. Thus, these values

in Table 5.2 give an indication for a natural population

of the variation in the distribution of numbers of animals

per natural sampling unit, i.e., per patch.

The listed values for h, the exponent of the nega-

tive binomial, are near 1 or smaller. Theoretically the

negative binomial distribution converges to the Poisson

as h approaches infinity; practically speaking, Southwood

(1966) says that a value of h greater than about 8 suggests

that the negative binomial is approaching the Poisson,

implying that when h is this large it becomes very diffi—

cult tO show that an Observed distribution is significantly

different than the Poisson.

Values of h = 0.1 and h = 1.0, then, appear to be

reasonable values to use in computer simulations of

foraging.

A discussion of the implications of the statistical

distribution of prey among patches on choice of foraging

strategy appears below.



CHAPTER 6

DISCUSSION

Foraging Theory for a Patchy Environment
 

Theory for foraging in a patchy environment has been

developed for several different aspects Of the foraging

problem. Among the topics considered are the foraging path

when patches are not discrete units (Cody 1971, Smith 1977,

1974a, b, Thomas 1974, 1977, Croze 1970, and references

therein); the patch types to be included in an Optimal

itinerary (MacArthur and Pianka 1966, Charnov 1973);

Optimal flock size for foraging (Thompson, Vertinsky and

Krebs 1974, Thompson and Vertinsky 1975); assessing and

monitoring patch profitability (Oster and Heinrich 1976,

Bobisud and Voxman 1978); the stability of the predator-

prey system in a patchy environment (Oaten 1977b,

Murdoch and Oaten 1975, Hassell and May 1974); the

aggregative response of predators (Readshaw 1973, Hassell

and May 1973, 1974, Bobisud and Voxman 1978, Royama 1970,

1971); the proportion of prey in a patch that are consumed

(Gibb 1962, Emlen 1973); and strategies for determining

when to leave a patch (Oaten 1977a, Parker and Stuart 1976,

Cook and Hubbard 1977, Charnov 1973, 1976, Krebs 1973,

136



137

Krebs, Ryan and Charnov 1974, Krebs and Cowie 1976,

Charnov, Orians and Hyatt 1976, Emlen 1973, Tullock

1971, Gibb 1962).

Charnov (1973, 1976) was apparently the first to

mathematically describe a procedure for choosing an Optimal

leaving time for a patchy environment, for a goal of maxi-

mizing capture rate of prey. His treatment is quite gene-

ral. He does not analyze any specific search processes

or prey distributions; this is apparently the reason only

qualitative predictions are made between his theory and

the experimental data Of Krebs, Ryan and Charnov (1974).

In what Charnov (1973, 1976) terms the "marginal value

theorem," from an analogy with economic theory, he deter-

mines that the predator should leave a patch when the

expected capture rate (the "marginal" capture rate)

declines to the average capture rate for the set of patches

visited. Charnov (1973) and co-workers (Krebs, Ryan and

Charnov 1974, Charnov, Orians and Hyatt 1976) give a

simplified version of the movement rule based on the GUT

concept. He states that when handling time is small the

rate of prey capture is approximately proportional to the

inverse of the average time between prey captures. Thus,

.he suggests that a predator might use the time between

captures as a measure Of the food intake rate. Trans-

lating the theorem's predictions into the GUT measurement,

a predator is predicted to leave a rich (poor) environment
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when the time between captures is small (large). Charnov

predicts that the GUT should be longer in a poor environ-

ment than in a rich environment, and that the GUT should

be constant for all patches within an environment. Both

of these predictions were generally supported by the data

of Krebs, Ryan and Charnov (1974) (but see below).

Charnov (1973, 1976) does not explicitly mention

the distinction between random and systematic search within

a patch. He refers to one case where the expected capture

rate remains constant: when prey abundance does not change

during the foraging time. Charnov points out that the

best strategy in that case is to find a patch Of the best

type and to remain in it. A predator searching system-

atically within a patch might not experience a decrease in

capture rate until the entire patch has been searched, and

Charnov's theory would not apply unqualified to such a

case. Some kind Of behavioral "depression" (Charnov,

Orians and Hyatt 1976) could occur, however, where the

remaining prey become increasingly difficult to find, so

that assumption of his model would be met. It is not

clear that Charnov's model applies to the experiments

Of Krebs, Ryan and Charnov; the birds probably searched

systematically, and behavioral "depression" appears impos-

sible .

Oaten (1977a) argues convincingly that stochastic

Imodels are necessary for formulating Optimal foraging
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strategies. He gives a general solution for the problem

of Optimizing time spent in a patch for the goal of maxi-

mizing the capture rate. His optimal strategy uses all

the information in the sequences of successive search times

in a patch, combined with the previously "known" distri-

bution Of prey among patches, to compute the best time to

leave that patch. Oaten gives a thorough critique of

Charnov's analysis, and shows that Charnov's strategy (of

leaving when the expected capture rate drops to the average

for the patches visited) is not the Optimal time-allocation

strategy. The Optimum is a dynamic GUT strategy; the

Optimal GUT is not a constant, but depends at each foraging

instant on the expected capture rate and, unlike Charnov's

movement rule, also depends on "the future success an

Optimal predator could expect to have if another prey were

captured in the next instant, together with the instan-

taneous likelihood of such a capture" (Oaten 1977a, p. 276).

Noting the mathematical complexity Of computing the Optimal

behavior, Oaten suggests the analysis of stochastic models

of simpler, subOptimal foraging strategies--"stochastic

Optimization under clearly specified constraints," such as

the predator being able to remember only a limited number

of events and times (Oaten 1977a, p. 283). Oaten criti-

cizes other applicable models (Charnov 1973, 1976, Parker

and Stuart 1976, Cook and Hubbard 1977) for being
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deterministic, and shows that Charnov's strategy can do

arbitrarily poorly compared to Oaten's Optimal strategy.

Parker and Stuart (1976) examine the problem of

optimally allocating investments in patches that contain

resources. Their general analysis is done using the

"currency" (Schoener 1971) of fitness or fitness-gain rate.

They arrive at a theorem equivalent to Charnov's (1973,

1976) "marginal value theorem." Oaten (1977a) says that

Parker and Stuart's paper can be criticized for somewhat

the same reasons he criticized Charnov. The case where

resources in patches decay exponentially is considered;

fitness-gain is assumed to vary with investment in the same

manner that capture rate varies with total search time in

my equation (E.7). They derive an equation for Optimal

investment in a patch that is equivalent to my equations

(2.6) and (F.2). By starting from a given form for resource

decay, attention is diverted from the underlying mechanisms

and some of the assumptions giving rise to equations of

that form. They do not explicitly distinguish between

randomly and systematically searching predators, even

though their particular result will not generally apply

to systematic searchers.

As an example application of their theory they

predicted the Optimal time that a male dung fly should

invest in copulation to maximize its fitness-gain rate,

i.e., to maximize the percentage of all females' eggs
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fertilized by that male. Parker and Stuart do not suggest

a mechanism by which male flies could decide on the Optimal

time, the Optimal duration of copulation. It seems very

unlikely that male flies could observe the percentage or

total number of all females' eggs that they are fertilizing

as a function of COpulation duration. It also seems that

a genetic feedback is precluded by the possibility of

changes in the proportion of virgins or the density of

females requiring a different leaving time. A neutral

model analysis would be very helpful here. It seems that

their model needs to include other information the flies

can use; e.g., Parker and Stuart mention that there is

some evidence that males can assess the egg content of

females.

Parker and Stuart take a further step in the

foraging analysis and consider the influences Of competing

predators on leaving time. They use a game theory approach

and determine the evolutionarily stable strategy (cf.

Maynard Smith 1974) for several specified conditions.

Cook and Hubbard (1977) study the time allocation

of parasites among a finite number of patches containing

hosts. In this analysis the parasites' goal is to maxi-

mize the number of hosts parasitized in some fixed time.

Cook and Hubbard argue that when both the number of

patches and the total hunting time available are fixed,

the Optimal solution is to reduce the encounter rate
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with healthy hosts to the same level in all patches. For

a given density of hosts in each patch, a given total

foraging time, and a fixed amount of time spent in transit

between patches, they compute the amount of time that

should be spent in each patch. They predict that the

threshold encounter rate with healthy hosts should decline

as the time available for foraging increases. This

solution would not apply, e.g., to situations where the

total foraging time was unpredictable or unknown to the

parasite. In such cases the parasite should switch more

frequently between patches so that at any potential stOpping

time all patches have been reduced to approximately the same

rate of encounter with healthy hosts; this would involve

much more time spent traveling between patches, however,

so less time would be available for searching within each

patch. This would also mean that the total transit time

would vary, contrary to the assumption of their model.

Cook and Hubbard feel that the similarity between the pre-

dictions of their model and the experimental data of Hassell

(1971) suggests that "the parasites are able to get quite

close to the Optimal solution" (Cook and Hubbard 1977,

p. 120). A neutral model would be helpful in assessing

to what extent this similarity is due to effective time

allocation decisions or other factors. Oaten (1977a)

offers some criticisms of this paper, noting that this

solution does not give the Optimal time allocation because
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some information is neglected (as above). He also points

out some other weaknesses in their assumptions, logic,

and mathematical technique.

Emlen (1973) analyzes a strategy which might be

called the threshold food capture rate strategy. Here he

assumes that an animal leaves a patch whenever the food

capture rate within a patch drops to some constant thres-

hold rate. He does not suggest how an animal might measure

food capture rate. If prey items are of equal food value

and an animal estimates capture rate by the inverse of

the search time since the last capture (or arrival) in the

current patch, then this strategy is equivalent to the

constant GUT strategy. Emlen uses this strategy to predict

the prOportion of prey taken as a function of the number

available prey initially in the patch. Applied to Gibb's

(1966) pine cone data, "the fit is far from perfect, but

is an approximate description of the behavior of the birds"

(Emlen, 1973, p. 185). Emlen suggests, as Charnov does,

that predators might lower the threshold capture rate in

poor hunting areas and raise it in good areas. Emlen does

not attempt to determine the optimal threshold food capture

rate for the general case.

Murdoch and Oaten (1975) develop capture rate

equations for the constant GUT strategy, for a Poisson and

a negative binomial distribution of prey among patches, and

random search within a patch. They did not determine
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optimal GUT, however; they applied the equations to an

analysis of stability of the predator-prey system.

The "Number Expectation" strategy was prOposed by

Gibb (1962, see also Krebs, Ryan, and Charnov 1974) to

explain why pine cones with above-average numbers of moth

larvae had a lower percentage of larvae taken by foraging

birds than cones with an intermediate number of prey. If

a bird came to expect a certain number of larvae on each

cone, he reasoned, it might leave above-average cones when

this "expected number" of prey had been found, as evidenced

either by its own success or by the marks on the cone indi-

cating the success of other birds. Gibb (1962) suggested

that in small plots with very low numbers of prey on each

cone the birds sampled these cones and rejected them as

uneconomical. He did not, however, suggest the strategy

used in these cases of rejection.

As others have implied (Simons and Alcock 1971)

this Number Expectation strategy is an incomplete strategy;

that is, it does not specify what to do under all circum-

stances. ("Strategy" is used here in the game theory

sense, meaning a complete specification of what is to be

done in every possible situation of the specific problem

studied.) If the birds find the "expected number" they

are to leave a patch (cone), but how are they to proceed

if they cannot find this number of prey in a patch--for

example, if the patch contains less than this number of
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prey? Simons and Alcock (1971) propose a "test strategy"

for deciding on how long to forage in any patch: "test"

an area by searching for some short time and leave if no

prey are found; otherwise, stay and search the area "care-

fully." The hypothesis that birds use the Number

Expectation strategy has been tested and rejected by

Simon and Alcock (1971), Krebs, Ryan and Charnov (1974),

and Zach and Falls (1976c), and as Krebs (1973) notes, it

is not supported by the original data.

Conditions WherelEach Suboptimal

Strategy Does Best

 

 

Let Gibb's (1962) terminology be reinterpreted so

that the "expected number" refers to the expected Optimal

number of prey to be captured rather than to the expected

total number of prey in a patch. In this case, then, there

is a certain situation where a type of Number Expectation

strategy is Optimal, when combined with a GUT strategy

(cf. Krebs, Ryan, and Charnov 1974), a type of "test

strategy" (Simons and Alcock 1971). Suppose that all

patches contain either zero prey Or some constant number

of prey, n. The Optimal strategy (Oaten 1977a) is to

search a patch for some fixed amount of time and then

leave if no prey have been found. If any prey have been

seen, however, it must mean that the patch has n prey.

The predator should then remain in the patch until some

fixed number j of prey have been found (and n-j remain),
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and then leave the patch immediately. Note that this

strategy is Optimal only if it is certain that all prey

occur in groups of size n, a very unlikely circumstance in

the real world. This situation can easily be constructed

in the laboratory, however (e.g., Simons and Alcock, 1971;

Krebs, Ryan, and Charnov, 1974). If there is a variation

in the number of prey occurring together in a patch, then

this strategy is no longer optimal. And if there are any

(nonzero) groups Of prey smaller than the fixed number j,

then this strategy will not work at all: predators would

get "stuck" in these patches searching for the "expected

number" of prey, j, when there were no more to be found.

The Time Expectation strategy will be Optimal when

there is a Poisson distribution of prey among patches, and

there is no spatial correlation of prey numbers per patch.

This would be the case, for example, if each prey in-

dividual randomly selected a patch to inhabit. In this

case the total time spent searching in the patch contains

all the revelant information for optimal time allocation;

there is no additional information to be gained from the

number of prey items found and the sequence of search

times in the current patch. The predator should eventually

learn not to be "distracted" by short or long search times,

or the number of prey already found, but should spend a

constant total search time per patch. If there is any

deviation from the random distribution of prey, however,
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the sequence of numbers and search times will contain

useful information and the Time Expectation strategy will

be suboptimal.

The fixed GUT strategy should do better and better

compared to the Time Expectation strategy as the distribu-

tion Of prey among patches becomes more "clumped," i.e.,

as the coefficient of variation gets larger and larger than

one. When the prey distribution is Poisson the TE strategy T

is superior because the GUT strategy is too sensitive to

stochastic variations in the series of search times;

predators tend to leave too soon when an early search time

is long, and tend to stay too long when a series of short

search times occurs. As the coefficient of variation of

numbers of prey per patch increases, however, it becomes

more and more important to utilize the information con-

tained in the series of search times in order to Obtain a

high capture rate.

I can think of no realistic situations where the

Random strategy would be optimal. As prey density gets

very large, however, the capture rate under this Random

strategy approaches l/b (cf. equation (3.8)); the same

limit is approached by the TE and fixed GUT strategies,

and the optimal one. Let the "minimum cost" of using one

strategy compared to another strategy be defined as the

difference between the expected maximum capture rates

expressed as a percentage of the greater maximum rate.
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(This is similar to Bryant's (1973) definition of the

"cost of using a tactic.") Then the minimum cost of using

the Random strategy compared to the TE, fixed GUT, or an

optimal strategy is small at very high prey densities; the

minimum cost approaches zero as prey density approaches

infinity (See equation (3.12) in Chapter 3). The minimum

cost of using the Random strategy relative to these other

strategies also decreases as the handling time increases.

So, the lower the prey density and the shorter the handling

time, the more important it is for predators to use strate-

gies superior to this Random strategy, i.e., the greater the

cost of using this Random strategy. Since prey densities

fluctuate through time, this provides an analytical confir-

mation of the arguments made by Wiens (1977) that selective

pressure for optimal behavior may be intense or significant

only in certain "bottle-neck" situations.

How sensitive are these suboptimal strategies to

small deviations away from the optimal leaving time? Com-

pared to the TB strategy the constant GUT strategy is rela-

tively sensitive to small deviations from the optimal GUT.

That is, a predator with a GUT strategy needs a more accu-

rate clock than a predator with a TE strategy to maintain

a near-optimal capture rate. It becomes more sensitive as

transit time decreases, as searching-effectiveness increases,

and as mean prey number per patch increases. This is shown

in Figures 4, 3, and 2, respectively. It is clear
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for both of these strategies that a predator with a more

accurate and precise clock would have an advantage: a

higher average capture rate. In examining Figures 23

and 24 it can be seen that the capture rate curve is much

more flattened near the peak for the TB strategy than for

the GUT strategy. If animals have difficulty measuring

time very accurately and precisely (cf. Church et a1.

1976, and references therein), then the TE strategy may be

more advantageous than the fixed GUT strategy. If other

possible uses for the clock are ignored, it can be sug-

gested that selective pressure for a more accurate and

precise foraging clock will decrease as precision and

accuracy increase. It should also be the case that a

tradeoff is reached between the gain in average capture

rate due to increases in the clock's accuracy and precision

and the cost of further improvements in the clock. For

the Random strategy variation in leaving time is inherent

in the model, but like the TE strategy, the Random strategy

is relatively insensitive to small changes in r, the mean

total search time per patch.

How sensitive are these three strategies to the

‘variation:h1number Of prey per patch? For the constant GUT

strategy a higher variance leads to a better performance,

a higher average capture rate. See Figure 6, which shoWs

results for a negative binomial distribution of prey among

Patches. This strategy can take advantage of the
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information contained in the sequences of intercapture

times in a patch. Thus, it is better able to take advantage

of patches with above average numbers of prey and avoid

patches with less than average numbers of prey. The TE

strategy is relatively insensitive to variance. In fact,

its expected capture rate is sensitive only to the mean of

the distribution Of prey. As the variance in the number of

prey per patch increases, the performance of this strategy

is degraded relative to the fixed GUT strategy, which is

more able to capitalize on the extreme values of prey per

patch. As with the TE strategy the Random strategy is

sensitive to the mean and relatively insensitive to the

variance in the distribution of prey among patches. There-

fore, for prey distributions close to the Poisson the TE

strategy is the best of these three strategies; for prey

distributions with a high coefficient of variation the GUT

strategy will be the best.

Comparing Foraginngoals
 

Two goals have been considered here: maximization

of the capture rate and minimization Of the risk of finding

.no prey while foraging. The results presented above indi-

cate that for the GUT and TE strategies the optimal leaving

times for these goals converge as mean prey density

declines; that is, for both strategies, when prey are

scarce, the Optimal leaving time to maximize the capture

rate approaches the optimal leaving time to minimize the
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risk. But occasions of low prey density are precisely the

occasions where it would be most important to minimize

risk. If an animal could switch goals at appropriate

times to maximize fitness, one might expect a predator to

have a capture rate-maximizing goal at high prey densities

and a risk-minimizing goal at low prey densities. Results

above, however, suggest that a predator with a capture

rate-maximizing goal need not switch goals at low prey

densities, since the optimal leaving time will approach

that of the risk-minimizing goal on the appropriate

occasions--low prey densities. If experiments were de-

signed to test whether a predator used a risk-minimizing

or a capture rate-maximizing leaving time, one might

mistakenly think that a high risk, low prey density situ-

ation would be most appropriate. Such an experiment

would not answer the question, since the leaving times

for each goal would probably be indistinguishable.

The risk-minimizing goal may be more appropriate

for determining other aspects of the foraging process,

e.g., flock size in birds. Thompson, Vertinsky and

Krebs (1974) analyzed a simulation model of flocks of

foraging birds and found that the Optimal flock size to

maximize capture rate was different from the flock size

to minimize the wide fluctuations of capture rate,

especially the low values. Animals employ many means of

buffering the fluctuations in food intake rate--large crop
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size or stomach capacity, fat deposits, etc. (cf. Calow

and Jennings, 1977); it is clear that such features reduce

the risk of starvation. Note that the "risk" analyzed in

the earlier chapters is the "risk of finding zero prey

during some foraging period"; this should be closely related

to the predator's risk of starvation, certainly an important

influence on fitness. While the risk-minimizing leaving

time reduces the probability of finding no prey, it also

reduces the expected capture rate. The reduction in mean

capture rate caused by this risk-minimizing leaving time

may itself be a factor contributing to the risk of starva-

tion. I suggest, therefore, that the risk of starvation

may be more effectively reduced by other adaptations than

by a choice of a risk-minimizing leaving time.

Finding the Optimal Leaving Time
 

The papers of Charnov (1973, 1976), Parker and

Stuart (1976), Cook and Hubbard (1977), and Oaten (1977a)

are all seeking to determine the Optimal strategy for allo-

cating time in a patchy environment. As Oaten (1977a)

demonstrates, the optimal strategy would require great

information-handling ability of the Optimal forager;

probability functions, conditional expectations, various

means, etc., are used in the mathematical computation of

Optimal leaving time. Predators that use the suboptimal

strategies presented here could also estimate the

necessary parameters and compute the optimal leaving time.
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However, suboptimal foragers could use much simpler methods

of finding the best leaving time for a particular strategy.

One quite simple method of finding the best leaving

time would be to try a particular value of leaving time for

a short period and then compare the capture rate with that

for a different leaving time. Some technique or algorithm

could be used to home in on the best leaving time, e.g., an

adaptive process like those studied by Holland (1975).

Figures 23 and 24 are the results of stochastic simula-

tions, showing the mean capture rate (and one standard

error of the mean, for five replicates) after five minutes

of simulated foraging. Figure 23 shows results for a

Poisson distribution of prey among patches, and Figure 24

for a negative binomial distribution. The optimal leaving

time in field situations will vary in time and space, so it

is important that the predator be able to find the Optimum

as quickly as possible. Short (5 minute) "test" periods

were compared here.

Two points can be made about these results. First,

there is a great deal of noise; a predator would not be wise

to place too much confidence in the results of any one

five-minute test. Second, the Time Expectation strategy

is less sensitive to change in leaving time than is the

constant Giving-Up Time strategy.

The inclusion of learning models in foraging theory

will enable more realistic predictions about predators'



Figure 23.

154

Mean capture rate as a function of search

time per patch (TE strategy) or giving—up

time (GUT strategy), for a Poisson distri-

bution of prey among patches. Mean capture

rate + 1 SE is plotted (5 replicates).

x = 570 prey per patch, m = 3.0 sec.,

p = 0.1 sec.‘ , b = 1.0 sec., and T = 300

sec.
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156

Mean capture rate as a function of

search time per patch (TE strategy)

or giving-up time (GUT strategy), for

a negative binomial distribution of

prey among patches. Mean capture rate

: 1 SE is plotted (5 replicates). x =

5.0 prey per patch, h = 1.0, m = 3.0

sec., p = 0.1 sec.'1, b = 1.0 sec.,

T = 300 sec.
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behavior, especially for experiments of short duration and

for situations where conditions are changing. Time-

sequences of foraging events from lab and field are needed

to test and suggest such models.



CHAPTER 7

SUMMARY AND CONCLUSIONS

In discussions of foraging theory the distinction

should be made between the spatial pattern of prey and the

statistical distribution of prey among patches. Both types

of information are important to the determination of an

optimal foraging strategy. As has been noted several

times before (e.g., Pielou, 1969; Boswell and Patil, 1970,

1971) it is generally the case that several different

mechanisms can give rise to the same statistical distri-

bution. Knowledge of the mechanisms giving rise to the

statistical distribution and spatial pattern of prey can be

used to further specify the Optimal foraging strategy.

When Observing predators that must assess profita-

bilities of patch types and prey types, one should not

expect step-function shifts in patch utilization and diet

breadth, as predicted by that foraging theory which assumes

certain knowledge of profitabilities. The predator's

sampling problem is closely related to some problems in the

fields of Operations research, statistics, and psychology.

159



160

Advances in understanding the foraging process can be made

by studying the contributions of these other disciplines.

The general problem of optimally searching for prey

in a patchy environment is extremely complex. Animals

have likely found "suboptimal" strategies which give

results that approximate the optimal strategy at a much

reduced "cost of computation."

General formulae are given for the expected capture

rate for predators using the fixed Giving-Up Time, Time

Expectation, and Random strategies, and specific formulae

are given for Poisson and negative binomial distributions

of prey among patches. Both randomly and systematically

searching predators are considered. These formulae can

be easily applied to experimental situations for the pre-

diction Of capture rates under each Of these time allocation

strategies.

For the two economic goals maximization of capture

rate and minimization of risk, the optimal leaving times

of the TE and GUT strategies converge at low prey densities.

This low density is precisely the situation where it should

be most important to minimize risk, since one can afford to

be "risky" when prey density is high and the absolute level

of risk is much reduced. Thus, there may be very few

situations where the risk minimization goal is a critically

important one for the determination of the optimal leaving

time; the capture rate-maximization goal provides nearly
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the same degree of risk minimization when the risk is

greatest--at low prey densities. This goal may be important

in maximizing the contribution to fitness of other factors,

such as optimal flock size (of. Thompson, Vertinsky'and

Krebs, 1974).

The capture rate under the Time Expectation

strategy is less sensitive to timing errors than under

the Giving-Up Time strategy. Predators which cannot esti-

mate or predict time (durations) very accurately or pre—

cisely may generally have a higher capture rate under the

TB strategy than under the GUT strategy.

For a Poisson distribution of prey among patches

the Time Expectation strategy is the optimal strategy for

allocating time among patches for the assumptions made

here; it is superior in this case to the fixed GUT strategy

because (a) the TE strategy is less sensitive to stochastic

variations in intercapture time, and (b) there is no addi-

tional information in the sequence of intercapture times.

As the coefficient Of variation of the distribution

of prey among patches increases, it becomes more and more

important (for maximizing the capture rate) to utilize the

information in the sequence of intercapture times. Thus,

the GUT strategy becomes superior to the TB strategy when

the CV is large, when the distribution of prey deviates

greatly from the Poisson.

The "cost" (in reduced capture rate) of using the

Random strategy decreases as prey density increases; the
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"cost" approaches zero as the prey density approaches

infinity. For this reason, predators which hunt for prey

types that have high mean numbers per patch may not be

under as severe selective pressure to forage optimally as

predators which hunt for prey types that have small mean

numbers per patch; for example, predators may trade off

hunting for large numbers of small-sized prey with

foraging for small numbers Of large—sized prey. The large

numbers per patch may allow even a Random strategy to be

quite satisfactory.

A hierarchy of "patch types" is generally present

in the environment, e.g., pine cones, groups of cones,

pine trees, forests. Strategies are needed by predators

for allocating foraging time among "patch types" at each

level. The GUT strategy can be generalized for use at any

level in the hierarchy.

Each suboptimal strategy studied here-—GUT, TE,

and Random--predicts different patterns for the frequency

distributions of intercapture times, giving-up times, and

total search times per patch. Comparisons of only the

means of these variables would be a much less powerful

test for discriminating between strategies.

The predictions of a strategy will vary depending

on the type of search done by the predator. It is impor-

tant, therefore, to distinguish random from systematic

search, and continuous from discrete trial search.
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The three suboptimal strategies are compared with

experimental data of Cowie (1977). The maximum mean

capture rates predicted by the TB strategy are higher

than those observed as well as higher than those predicted

by the constant GUT strategy. The maximum mean capture

rate predicted by the constant GUT strategy is higher than

the Observed rate in the "hard" environment (long transit

time), and lower than the Observed rate in the "easy"

environment (short transit time). In each case the GUT

strategy's predicted capture rate is within one standard

error of that Observed. The observed capture rates are

higher than those predicted by the Random strategy,but

the predictions are within one standard error of the

observed capture rates.



CHAPTER 8

RECOMMENDATIONS

It is important to emphasize again that the defini-

tion of optimal behavior depends on the particular goal as

well as on the particular constraints of a foraging problem.

Charnov (1973) distinguishes the goal from the "game."

If we expect to find the optimal behavior predicted by

theory we must be sure that the goal and the "game" of the

model are the same as those of the animal.

As every researcher knows, it is important to

design experiments to fit the assumptions of the model

being tested. I would like to state here some important

considerations for designing foraging experiments. The

animal species chosen should be those likely to have the

goals and strategies under consideration. Vertebrates

such as mammals or birds would probably be most likely to

utilize complex decision-making strategies, while arthropods

may have much simpler strategies. Most foregoing theory

to date assumes that the animals have much experience with

the environment, and that stable patterns of behavior have

been reached. It is important, therefore, to allow the

animals to become thoroughly familiar with the experimental

164
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conditions. Animals may persist for a long time, however,

with sampling or monitoring behavior, so that assumptions

that this behavior is not occurring may be incorrect. It

is important to specify discrete patches for experiments

involving any of the strategies developed here. The theory

of area-restricted search would apply if prey do not occur

in discrete patches. Predictions will vary depending on

whether predators search randomly or systematically within

a patch. In situations where a patch consists of many

smaller cells (e.g., Krebs, Ryan and Charnov, 1974; Smith

and Sweatman, 1974; Smith and Dawkins, 1971), any marks on

individual cells which could identify them as having been

searched would facilitate systematic foraging, clearly

superior to random foraging in such cases. Notice that

the theories involving random search generally assume

depletion of the prey within a patch (cf. Charnov, 1973).

A systematic forager would not experience depletion of the

prey in those areas of the patch not yet searched, unless

a type of behavioral depression was occurring (Charnov,

Orians and Hyatt, 1976). To avoid significant depletion,

trials may be of short duration, or better yet, continuous

replacement of the prey may occur (e.g., Krebs, Erichsen,

Webber and Charnov, 1977).

Experiments should be designed to measure all

important variables which are needed by the theories being

tested. In some field situations it is very difficult to

pinpoint the time of successful captures (Baker, 1973;
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Davies, 1977). While other interesting observations on

foraging may be made under these conditions, data lacking

capture times are not sufficient to allow discrimination

between certain foraging strategies. If the number of prey

initially present in each patch is known and can be

followed through time, then nearly all important foraging

variables can be determined from a time-sequence of the

following foraging events: time Of arrival at a patch, the

finding of each prey, time when handling is completed, the

finding of the next prey, time when handling is completed,

. . , time of departure from the patch, time Of arrival

at the next patch, . . . . From this data the mean GUT

can be computed, as well as the intercapture time, given

a known number of prey remaining in the patch. From this

sequence the searching effectiveness parameter, p, the

transit time, m, the handling time, b, and the total search

time per patch, Ts, can also be computed. It is assumed

that n or x, the number or mean number of prey per patch

is known for all patches.

For a more complete analysis of foraging behavior

and comparisons with predictions from strategies, frequency

distributions of certain important variables should be

presented along with means and variances (e.g., Davies,

1977). Frequency distributions should be compiled for

GUT, TS (analogous to "run length" in a patch, studied by

Bobisud and Voxman (1978) for discrete trial search),
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total time per patch, and intercapture time given k prey

per patch, for all possible k. Because alternative

strategies and goals make different predictions about the

frequency distributions these presentations are useful for

distinguishing strategies and contain much more information

than just means and variances.

Another recommendation is that results be compared

with a neutral model, a null hypothesis of the foraging

sequence.

Further research is needed to explain the large

variability in foraging behavior among individuals (cf.

Partridge, 1976; Smith and Sweatman, 1974; Cowie, 1977;

Krebs, Erichsen, Webber and Charnov, 1977). If natural

selection is optimizing animals' behavior why should we

expect such variability? Krebs, Ryan and Charnov (1974)

suggest that part of the variation in their results is

due to using hand-reared as opposed to wild caught birds.

They suggest that natural selection may act to remove the

lower tail of a distribution, those individuals which

perform least well. The variation in performance among

Cowie's (1977) birds also appears large, though his birds

were wild-caught. It is clear that part of the variation

is due to differences in foraging history, in previous

learning experience. This implies that it would be useful

to record the foraging history of each individual during

an experiment to see if this accounts for some of the
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variation--for example, that variation caused by each

individual making different estimates of the foraging

parameters. One version of this type of analysis would be

to examine the prey densities per patch experienced by each

predator, rather than the nominal patch densities, in rela-

tion to subsequent patch utilization by each individual.

The stochastic learning model develOped by Bobisud and

Voxman (1978) predicts that differences in patch ranking

by individuals is to be expected due to chance differences

in their foraging experiences in each patch. The study

of the causes of individual variation, then, can give us

insights into the foraging strategies used by predators,

and the addition of learning models (including sampling

and monitoring the environment) to foraging strategies

should be especially rewarding.

Another area under active investigation is the

length of the learning "window," the time period over

which prey densities and other foraging parameters are

estimated (Krebs and Cowie, 1976).

Additional suboptimal strategies need to be

developed for problems with other constraints. Several

recent experiments have involved systematic search by

the predator (Smith & Dawkins, 1971; Smith & Sweatman,

1974; Zach & Falls, 1976c; probably Krebs, Ryan & Charnov,

1974), and apprOpriate model strategies are needed for

predictive and comparative purposes. The risk of predation

appears to be an important foraging constraint for some



169

animals, and minimization of the risk of predation (See the

models of Pearson, 1976; Katz, 1974; Schoener, 1971) should

be analyzed in the context of a patchy environment. Other

constraints include the time required to satisfy other

needs and the influence of hunger level and internal energy

supply (Sibly and McFarland, 1976; McFarland and Lloyd,

1973; Gill and Wolf, 1975; Wolf and Hainsworth, 1977).

Spatial factors are important in the real world and foraging

theory for a patchy environment will need to include studies

of search path between patches and the influence of the

prey's spatial pattern (cf. Gill and Wolf, 1977; Zach and

Falls, 1976a; Smith, 1974a, b, and references therein), as

well as the predator's spatial memory (Olton and Samuelson,

1976; Barnett and Cowan, 1976). A variety of other neutral

models should provide additional insight. The capture

rate which will satisfy a predator so that it remains in a

particular hunting area or patch group needs to be deter-

mined. Comparison of relative sensitivity of overall cap-

ture rate to the strategies and variables at each level in

the foraging hierarchy should prove illuminating.

These areas of foraging theory provide several

interesting problems where workers from several disciplines

will be needed--workers from psychology, statistics, and

operations research. With these allies the future looks

very promising for the continued analysis of foraging

strategies for a patchy environment.
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APPENDIX A

EXPECTED CAPTURE RATE FOR A PREDATOR USING A

GIVING-UP TIME STRATEGY

Assume that either prey are located at random

within a patch, or the predator searches at random within a

patch, or both (cf. Rogers, 1972). Then the predator's

search will be a Poisson process (as assumed by Murdoch

and Oaten, 1975). Assume for simplicity that each

successful search results in a capture. Handling time will

include time to pursue, attack, and eat the prey, as well

as any "digestive pause" before searching resumes.

Define n as the number of prey initially in a

patch,

t as the giving-up time, GUT, and

p as the mean capture rate when only one

prey is in the patch, or, alternatively,

l/p is the expected search time required

to find a specific prey individual in a

patch.

Arbitrarily number the prey individuals from 1 to n.

Let X1, X2,. . ..,}g1be the cumulative search times at

which prey #1, prey #2, . . . , prey #n are found. (Count

170
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only search time now, not handling or transit time.)

Notice that these individuals could be caught in any order.

Let x(1), x(z), . . . be the order statistics for the

search time at which the predator makes its first find,

its second find, etc. This problem has a counterpart in

queueing theory: Feller (1971, p. 18) examines the same

situation when he considers parallel waiting lines. He

interprets x Xn as the lengths of n service times1’ . . .,

commencing at time 0 at a post office with n counters. In

his case the order statistics x(1), x(z), . . ., x(n)

represent the successive times of terminations, or

successive discharges.

As Feller notes,the event [x(l) > t] is the simul-

taneous realization of n independent events [Xn > t], each

of which has probability e-pt. So the probabilities

multiply and the result is

P[X > t] = e“npt (A.1)
(1)

Because this is a Poisson process, where individual

events occur independently Of one another, the continuation

of the process should be independent of x(1), so that the

search time between the first and second captures,

x(2)-x(l), should have the distribution

P[X -x > t] = e'(n"1’pt (A.2)
(2) (l)
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Reasoning in an analogous manner, Feller (1971,

p. 19) proves that the n variables x(1), x(2)-X(l),

. . . , x(n)-x(n-l) are independent and that the density

of x(i+l)-x(i) is given by ke-kpt, where i + k = n.

(A.3)

What is the expected number of prey captured,

given that initially n prey are in the patch? Let C be

the random variable for the number of prey captured.

n

E[Cln] = z iP[C=i|n] (A 4)

i = 0

where C is the random variable for number of prey

found (captured) in the patch,

P[C=i|n] is the probability of capturing i prey

given that n prey are in the patch

initially.

To be completely general, one can allow different

giving-up times to be specified for successive captures:

t is the GUT when 0 prey have been captured, . . . , ti
0

is the GUT after i prey have been captured in this patch.

For example, the giving-up time may change with hunger as

successive prey captures are made in a patch.

Following from the above definitions, the probabi—

lity of finding no prey given n is the probability that

the predator left the patch before the "first capture"

occurred. That is,
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-npt

P[C=Oln] = P[X > toln] = e o (A.5)
(1)

Likewise, the probability of finding exactly 1

prey given n is the probability that the predator made the

first capture but not the second capture.

p[c=1]n] = P[X(l) < t0 and x(2)—x(l) > t1] =

'(n-l)pt
<1-e'npt0) (e 1) (A.6)

In general, the probability that the (i+l)th prey was not

found, but all 1 previous prey were found is

'(n-i)pt. i-l -(n-j)pt.

P[C=i i nln] = e 1 IT (l—e 3 (A.7)

i=0

Notice that P[C=i|n] can be computed from the following

recursive formula:

1 -(n-i)pt.

P[C=i|n] = P[C=i-lln] (5 - l)e 1 (A.8)

-(n-(i-l))pt._

where Q = e 1 1

P[C=0In] = e-npt

Of course the predator cannot find more prey than are

there, so

II

CP[C=i > nln]

One can now compute the expected number of prey captured,

given n
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n

E[C|n] = z iP[C=i|n]

i=0

n 1-1

= z ie'(n'l)pti H (l—e'(n’3)ptj

i=0 , )

J=0

(A.9)

Let P[N=n] describe the probability distribution

of prey among patches, with E[N] = x. Then the expected

number of prey found per patch, given the mean number of

prey per patch is given by

E[C] = z P[N=n]E[C|n] (A.10)

n=0

If all successive giving-up times are the same

duration, t =t = . . . =t a constant, then the expected
0 1

number found per patch is

n

E[C] = z P[N=n] z ie‘(n'i)Pt H (l_e-(n-j)pt)

(A.11)

Expected Search Time Between Captures, Given a GUT

It was shown above that if search is a Poisson

process, then the probability density function for search

time to the next capture is

-kpt

f(ts) = kpe S (A.3)
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where k is the number of prey currently in the patch,

and

tS is the search time to the next capture, and

l/p is the mean search time when only 1 prey is

in the patch.

The mean of this negative exponential distribution

of search times is l/kp and the variance is k-zp-z. Note

that here only search time is measured, and not the total

time between captures.

What is the mean search time between captures,

conditional on the search time being less than the GUT?

That is, the mean search time only of those searches that

could result in a prey capture is

t -kptS

f tskpe dt

E[t [t <t,k] = o
S S'-

S

 

__. .____.____. >
t -kpt kp ( kpt - 1) for k _'l

f kpe s dtS e

0 ULlZ)

If n prey are in a patch and r=n—k have been captured so

far, then

E[tS Its <tr,r,n] = l - t

r r (n-r)p _
(e(n r)pt_1)

 

(A.13)

Expected Total Search Time Per Patch
 

First calculate E[Tsln], the expected total search

time per patch, given that there are n prey in the patch

initially. This is done by multiplying the expected search
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time given i prey are found and n prey are present initially

by the probability that i prey are found (given n) and

summing over all possible values of i. The expected search

time given that i prey are found includes the mean time

spent searching for each of the i prey plus the final

giving-up time.

E[Tsln ] = P[C=olm ' t

= ' t <_ ,0, +t+ P[C lln] (E[tSOI 50—f0 n] 1)

= ' t < ,0, + < 2 ++ P[C 2|n] (E[tSOI So_t0 n] E[tslltsl-Fl' ,n] 02)

—n-l

+ P[C=nln] ° (E[t [t <t ,0,n]+-4-+E[t It < ,n-1,n]+t )
s s -O s s n

O O n-1 n-1

UL14)

For simplicity let the successive giving-up times be a

constant, t, i.e.,

t0=tl=t2= . . .=tn=t.

In a more compact notation,

En i-l

E[T In] =( Z P[C=i|n] t+ Z E[ts It :t,r,n] +tP[C=0ln] for mil

5 i=1 r=0 r Sr

5t for n=0 
(A.15)
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P[C=i|n] Z E[t ItS ft,r,n] for n11

t for n=0

(A.16)

If one knows the distribution of prey among

patches, then the expected total search time per patch can

be computed. Multiply the expected search time given n

prey per patch by the probability that there will be n

prey per patch, and sum over all possible values of n.

Let E[n] = x, the mean number of prey per patch.

 

E[TS] = z P[N=n]E[TSIn]

n=0

w n i-l

E[TS] = t+ 2: P[N=n] z P[C=i|n] Z: E[tS Its it,r,n]

n=1 i=1 =0 r r

or,

m n 1-1

E[Ts] = t+ z P[N=n] z (“”1””) II (1-e"“'3’Pt)

n=l i=1 j=0

1-1

2 1 - t

—O (n-r)p e(n-r)pt

(A.17)



178

Expected Capture Rate Per Patch

One can now compute E[RL the expected capture

rate, using an equation from Murdoch and Oaten (1975);

see also Oaten (1977b).

E[R] = E[C]

ETTS] + b - E[C] + m (A.18)

 

where E[C] is given by (A.10), and

E[Ts] is given by (A.17),

b is the mean handling time per prey, (seconds),

and

m is the mean transit time between patches

(seconds).

The particular distribution of prey among patches

will determine the specific expression for P[N=n] which

is used in computing E[C] and E[TS].
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APPENDIX B

CALCULATION OF EXPECTED CAPTURE RATE FOR

A POISSON DISTRIBUTION OF PREY AMONG

PATCHES AND A GUT STRATEGY

For the GUT model and assuming a random search

within a patch, Appendix A gives formulae for calculating

the expected number of prey captured in a patch E[CIn]

(A.9), and the expected search time per patch E[Tsln],

(A.16), conditional on there being n prey initially

present in the patch. These equations are equivalent to

those of Murdoch and Oaten (1975), though the notation is

modified slightly.

If the distribution of prey among patches is known,

then equations (A.10), (A.17), and (A.18) can be used to

compute the overall expected capture rate (the overall

functional response of Murdoch and Oaten, 1975).

Starting from Murdoch and Oaten's (1975) version

of (A.9), I develOped the following recursive formula

for calculating E[CIn]:

E[C|0] 0

E[Cln] (l + E[C|n-1])(1 - epr-npt}) (B.1)
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The expected search time per patch, given n prey

initially present also has a recursive form:

E[Tsln] = Ta(n) + th(n) (3.2)

where T (0) = 0

a

Ta(n) = (Ta(n-l) + l/np)(l - epr-npt}) (B.3)

and Tb(0) = 1

Tb(n) = (l - exp{-npt})Tb(n-l) (B.4)

In the calculations using equations (A.8) and

(A.l6) the summations were not taken to infinity, of

course, but were truncated whenever the bound on the error

for E[CIn] became very small. As Murdoch and Oaten (1975)

show, when n gets very large, then E[C|n] gets close to

E[Cln-l] + l, i.e., the derivative of E[CIn] with respect

to n gets close to 1, so that E[Cln] is essentially a

straight line. Thus, if the summation for E[C] in equation

(A.10) is taken from n = 0 to n = j, then the bound Bj on

the error for E[C] is approximately equal to

oo

2
?

j z (E[C|N=j] + n - j) P[N=j]

n=j+l

Z (E[C|N=j] - j) z P[N=j] + z jP[N=j] (0.5)

n=j+l n=j+l
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If there is a Poisson distribution of prey among

patches, then the probability function of the Poisson is

used for P[N=j]:

=' = j-XP[N j] xje
(B.6)

Bj :(E[c|N=j]- j) Z (523:f)_ + Z 215:2:31 (B 7)
r

' °

n=j+1 n“ n=j+1 n'

where x is the mean number of prey per patch.

Since the summations will be done over 0 to j,

j

Z Xn -x

——%T—- = Sj will be known, and so

n=0 ’

m Xn -x

z #— = 1 - s. will be known. (B.8)

n=j+l n. 3

Also, note that

00

Z n xne“X _ x:"'-J'e-X + j Z xne-X (B 9

. _n: ' __j! —““‘n. ° ’

n=3+l n=j+l

Hence the bound Bj on the error for E[C], given that the

summations in equations (A.8) and (A.16) are taken from

n=0 to n=j rather than to infinity, is approximately equal

to

j+le-x

3.

B. : (E[C|N=j] - j + x)(1 - sj) + x (3.10)

3
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In all computations involving E[C] or E[Ts], the summations

were terminated when either this approximate bound Bj was

less than 0.0001,or P[N=n] was less than 10‘38.

With E[C] and E[TS] computed as described above,

the expected capture rate E[R] for a Poisson distribution

of prey among patches is easily found from equation (A.18).
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PROOF OF A GUT WHICH MINIMIZES RISK

(Thanks to Dave Ruppert of the Statistical Consultation

Service at Michigan State University for the following

proof.)

Let

and

Let

Let

Let

P[predator finds no prey in time interval [0,t] ] =

 

the number of prey in patches l,2,3,...be identically

independently distributed random variables.

pln] = Prob[n prey in the ith patch]

P[n,t] = Prob[predator will find no prey in t seconds

given that there are n prey in patch]

where t is the Giving-Up-Time.

N = T/(t+m)

where T is some long search time, T >>(t+m), and m is

the transit time between patches.

~

w T/(t+m) defn

Z p[n] P[n,t] = f(t)
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To minimize log f(t) (for 0i<t <T):

d [log f(t)] = 'T

T 1 m . .+ __. m z le] d P[1.t1
“I“ 2 pm P[i,t9 1

n=0

'=0 dt

Example: Let P[n,t] = e-ptn and Pin] =11ne‘u

n!

00
-pt_

2 Pin] P[n,t] = e“e 1)

n=0

Thus f(t) = e‘e-pt’l) “THHM

Now log f(t) _ (e'Pt-l)

lJT t+m

 

And g ((103 f(t)) _ (t+m) (-pe‘§t) - (gm-1)

dt uT (t+m)‘

= 1-Lp(t+m) + 1] e-pt

(t+m)2

Let h(t) = [p(t+m) + 1] e‘Pt
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Then g (log f(t)) = 1 ._ h(t) T > 0 if h(t) <

dt (t+m)2 ) u = 0 if h(t) = l

< 0 if h(t) > 1

Now h(O) = pm + l > 1

-p2(t+m)e'pt < oand h'(t)

and h(cn) = 0

Therefore h(t) decreases monotonically from pm + 1 to 0

as t goes from 0 to «n.

Therefore d log f(t) = 0 has a unique solution t*

dt

 

0 if t < t*

0 if t t*

> 0 if t > t*

A

d log f(t)

dt

Therefore f(t) has a minimum at t*
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APPENDIX D

EXPECTED NUMBER OF PREY REMAINING

IN THE PATCH

It would be very useful to the predator to be able to

estimate the number of prey remaining in the current patch.

Assuming that the mean prey number per patch is known

(perhaps after much experience with a particular prey

distribution), the expected number of prey in the patch upon

first arrival would be the mean. Assuming that there are no

other reliable environmental cues to estimate prey abundance,

the predator can use the sequence of search times between

captures as information about prey density in the patch: if

times between captures are short, the patch probably is a

high-quality patch; if times between captures are long, the

patch is probably a low-density patch.

Since the number of prey remaining is simply the

initial prey number minus the number caught, the problem

can be changed to that of estimating the initial prey

number. Assume for simplicity that each prey found is

captured, so that x(1) denotes the search time to the first

prey capture (the pursuit time required to capture the prey
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is included with handling time). The probability that the

patch initially contained n prey given that the first prey

capture occurred at tS is given by Bayes' law:

1

= t IN = n] P[N - n]

p[N = nlx(1 = t ]= (1) S1

 

ZP[X =t |N=j]P[N=j]

S1

(D.l)

where x(1) is the random variable for search time before

the first prey capture (to the first prey

sighting),

tSl is a possible value for x(1),

N is the random variable for number of prey

initially in the patch, and

n is a possible value for N.

Expected Number of Prey Remaining Given a Poisson Distri-

bution of Prey AmoggpPatches

For the Poisson distribution of prey among patches,

.
(0.2)

where X = E[N] is the mean number of prey per patch.

The probability density function for search time before the

first capture for a given number of prey in the patch is

given by (A.3):
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-pntS

P[X(l) = tS IN = n] = pne 1 (A.3)

Given these relationships, then one can compute

the probability that the patch initially had n prey, given

that the search time to the first capture was tS

1

(Pne-pnts )(xn e-x)
l *

 

 

 

n.

P[N - nlx(l) - tsl] = .

m -ths j -x

we 1)(_,_xe )j=0 3-

(D.3)

After a little algebra the result is

( -ptS ) n-l

P[N - an(l) = tsl] = xe l

m ( -ptS ) j-l

_ l
(n 1). E j xe l

3=0 j:

(D.4)

Note that

2 wk = ew,

k=0 ET

(D.5)
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so that a closed form expression is:

 

(D.6)

The probability that there were N prey initially in

the patch given that one prey was found at tsl equals the

probability that there are N-l prey remaining given that

one was found at tS .

l

P[N = n|tS ] = P[K = n-1|ts ] (0.7)

l l

where K is the random variable for number of prey remaining

in the patch.

To find the expected number remaining,E[K], multiply

each possible number remaining by its probability and sum

over all possible numbers remaining. If one prey was found

then the smallest possible initial number was n-l. One can

label the summation index as k = n-l so that it runs over

all possible remaining numbers of prey.

E[Klts ] = z kP[K = k = n-1|tS ]

1 k=0 1

k! (0.8)
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After a little algebra, any applying the relation-

ship (D.5), one obtains the desired result.

_pt

8

_ l
E[K tS ] — xe (D.9)

1

where K is the number of prey remaining in the patch,

x is the mean number of prey per patch,

p is the searching effectiveness parameter,

t is the time at which the first prey was found.
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DERIVATION OF EXPECTED CAPTURE RATE FOR THE

TIME EXPECTATION STRATEGY

Interpret X1, . . . , Xn as the search times

required to find each of n prey. As in Appendix A, there
 

is no restriction on the order in which these prey may be

found. Assume, as before, that search within a patch is a

Poisson process. Then the search time to find each in-

dividual prey has a common probability density function

(p.d.f.). That is, the p.d.f. for each search time Xi is

given by

-pt

f(ts) = pe s (E.1)

(Notice that this, again, is analogous to Feller's (1971)

problem of parallel waiting lines, where the X1, . . . , Xn

are interpreted as the lengths of n service times commencing

at time 0 at a post office with n counters.)

It follows from (E.1) that the probability that the

search time required to find a specific prey exceeds a given

time is given by

—pt

P[Xi > t] = e for each i = l, . . . , n. (E.2)
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Since the Xi are independent, one can treat the capture of

prey during some fixed time t as a set of Bernouilli trials
I

where one defines for each prey

"failure" = P[Xi > t] = e-pt

u n ____. = _ -pt
and success P[Xi < t] 1 e (B.3)

for all i = l) - . - r n.

This leads to a binomial distribution of number of

"successes" during the search time t. The probability that

i prey are found when n prey are present initially is:

p[c -_- iln] =61) (1__e"pt)i e-Pt (n-i) (E.4)

where C is the random variable for number of prey found

per patch,

1 is a possible value for C,

n is the number of prey initially in the patch, and

t is the total search time in the patch.

Due to the binomial distribution of C, the mean or expected

value of C is

E[Cln] = n P["success"] = n(l-e-pt) (E.5)

and the variance of C is

Var[Cln] = n P["success"] PI"failure"] = n(l-e"pt)e-pt

(B.6)
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Expected Number of Prey Found per Patch When the Mean
 

Number of Prey per Patch is Known
 

Suppose the statistical distribution of prey among

patches is known, and one wants to know the expected number

of prey found in a patch. Equation (E.5) gives the expected

number of prey found per patch given n prey initially

present in the patch, and one can multiply this by the pro-

bability that there will be n prey initially present and

sum over all possible values of n.

Let P[N=n] describe the distribution of prey among

patches, where E[N] = x, the mean number of prey per patch.

Then

E [C] = z n(l-e-pt) p [N=n]

n=0

x(1-e’pt) (E.7)

This says that whatever the distribution of prey

among patches, the expected number of prey captured per

patch depends only on the mean of that distribution.

Expected Capture Rate per Predator: The Predator's Func-

tional Response
 

The expected capture rate for the Time Expectation

strategy will be the expected number of prey captured per
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patch divided by the expected time Spent per patch. Total

time per patch will include the total search time, t, a

constant for this strategy; total handling time; and the

transit time to the next patch.

E[R] E[C]

t + b E[CT + m

 

= x(1-e-pt)

t + bx(1-e‘pt) + m (E.8)

 

where R is the mean capture rate per patch,

b is the mean handling time per prey,

m is the mean transit time between patches,

t is the total search time per patch,

x is the mean prey density per patch, and

p is the searching effectiveness parameter.

This capture rate depends on the mean prey density per

patch, but is independent of the exact form of the distri-

bution of prey among patches. For given values of t, p, b,

and m, this expression for capture rate increases monoto-

nically with mean prey density per patch, x, and approaches

l/b as an asympotote.

_1_i_m_ E[R] l
x+w — E for t, p, b, m constant (E.9)
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OPTIMAL TOTAL SEARCH TIME TO MAXIMIZE CAPTURE

RATE FOR THE TIME EXPECTATION STRATEGY

The expected capture rate for the Time Expectation

strategy was derived in Appendix E and was shown to hold for

any distribution of prey among patches. As before,

'13: E[R] = x(1-e’Pt)

t + m + bx(l-e-pt) (E.8)

 

Differentiating R with respect to t, one Obtains, after a

little algebra:

 

i}: = xlempt (l + p(t + m)) -l]

dt [t + m + bx(1-e-pt)]2_ (F'l)

A maximum (or minimum) of Rwill occur where 3% = 0.

The first derivative will approach zero as t approaches

infinity, and this leads to a value of R that approaches

zero, a minimum. Biologically stated, the mean capture rate

will approach zero for a predator that stays forever in a

single, depletable patch.

The first derivative will also be zero when t is

chosen so that
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e’pt (1 + p(t + m)) = 1. (F.2)

This must be at a maximum for R. This is the only non-

negative, finite value of t for which the first derivative

is zero. The first derivative is positive at t 0, and

approaches zero as t approaches infinity (where R approaches

zero). Since R is non-negative for the range 0 < t < w ,

then (F.2) must give the unique value of t where the sign of

the first derivative changes from positive to negative.

That is, (F.2) must give a maximum R, and the optimal t.

Unfortunately, the optimal value of t specified by

(F.2) cannot be calculated in a simple way. An iterative

solution can easily be done by computer, however.

Notice that the optimal total search time t depends

only on p and m; the optimal t is independent of prey den-

sity, and further, is independent of the distribution of

prey among patches! A predator using this tactic need only

estimate p and m to be able to find the optimal t and do

as well as is possible for this tactic.

Since t = topt solves equation (F.2) the following

expression can be used to simplify the formula for the maxi-

mum expected capture rate:

pt

+m= (e Opt_ l)/p
(F03)
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Substituting the above expression into (E.8) and doing a

little algebra the result is:

 

_ Pt _

R =E[th=t ]=e°pt+b 1:
max opt i?

1 + p (t t + m) + b -1

OP (F.4)
XP

If the prey distribution among patches is Poisson,

then this tactic, with optimal t, would be the best

possible-~it would yield the maximum capture rate.
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APPENDIX G

FREQUENCY DISTRIBUTION OF OBSERVED GUT FOR

THE TIME EXPECTATION STRATEGY

What is the expected frequency distribution of

observed GUT for the TB strategy? For the case when only

one prey is found in a patch it is relatively easy to

determine the frequency distribution, or, in other words,

the probability density function (p.d.f.) for observed GUT.

In this case the p.d.f. for search time to the first capture

t has a negative exponential distribution, truncated at
s

1

ts, the total search time.

-pt -1

f(t ) = (l - e s pe

S1

_pts

lOSt st (G.1)

If the first prey is found after ts seconds of search and

l

a total of tS seconds are allocated to searching, then the

Observed GUT must be t = tS - tS . Substituting ts — t =

l

tS into the above equation and multiplying numerator and

1
pt

S the result is the p.d.f. of the observeddenominator by e

GUT, t, for the TB strategy when l prey is found in the

patch.
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pt )-1 pt

f(t) = (e s - l pe 0

Notice that this is a positive exponential curve, truncated

(
A

(
1
'

A

- ts (G.2)

at t = t

5

-pt -1

- p(l - e 59

f(t)

   =~———

Observed GUT, t,

Given 1 prey found

Figure G1. Probability density function of

observed GUT for the TE strategy,

given that one prey is found in

a patch.

For the case where more than 1 prey is found the

total search time to the last capture will be the sum of

several independent intercapture times. Thus, when several

independent variables (each with a different negative expo-

nential p.d.f.) are added together, the sum will have a

p.d.f. roughly like this:

f(ti)

 
 

Total Search Time ts

to Last Capture, t3

1

Figure G2. Probability density function of search

time to the last prey capture for the

TB strategy, given that i prey are found

in a patch.
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Hence, the observed GUT, t = t5 - tS , will have a p.d.f.

i

that is the mirror image of f(ts ):

i

f(t)

 
 

Observed GUT, t t

s

Figure G3. Probability density function of

observed GUT for the TB strategy,

given that i prey are found in a

patch.

Observed giving-up times measured in laboratory or field

situations should have frequency distributions similar to

these shown here if the animals are using the TB strategy.

Further discussion of this point occurs in Chapters 5 and 6.
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APPENDIX H

DISCRETE TRIAL SEARCH: NUMBER OF

TRIALS BETWEEN CAPTURES

In several Of the recent experiments studying

foraging in a patchy environment the search by the predator

within a patch involved discrete trials, e.g., removing foil

caps from an array of cups (Smith and Dawkins, 1971; Smith

and Sweatman, 1974), or removing sticky labels covering

holes in artificial pine cones (Krebs, Ryan and Charnov,

1974). To model these situations and determine Optimal

predator behavior one of the first steps required is to

specify the distribution of trials between captures. Truly

optimal predators should search systematically, never re-

visiting a previously searched cell, e.g., a cup or hole.

If a visit involves changing the appearance Of a cup or

hole, the covering is removed, then spatial memory of cell

location need not be involved. For predators that search

randomly, revisits to a cell can occur, reducing search

efficiency. Best possible allocation of search trials can

also be determined for these randomly searching predators.

Consider a situation where there are k prey distri-

buted randomly among N cells, with no more than one prey per
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cell; N - k cells will be empty. What is the probability

that r trials will be required to find a prey? That is,

what is the probability that the predator will find r - 1

cells empty, followed by a success on trial r?

Random Search

The search until the next prey is found can be con-

sidered a series of Bernoulli trials, where

P ["success"] = k/N, and (H.l)

P ["failure"] 1 - k/N (H.2)

Thus, the probability of finding a prey on trial r, i.e.,

r - l "failures" followed by one "success," is

r - 1

P[ rlk, N] = (k/N) (1 - k/N) (H.3)

This is the probability function of the geometric distri-

bution, a special case of the negative binomial distribu-

tion.

The mean number of trials required to find a prey,

given k prey and N cells is

E[rlk, N] = z (rk/N) (1 - k/N)r ' 1 = N/k for k < N

r l

(H.4)

and when all cells contain prey

E[rlk, N] = 1 trial. for k = N (H.5)
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To find the probability function and mean number

of additional trials to the next capture, decrement k by

1, so that k equals the number of prey remaining, and use

equations (H.3) and (H.4) above.

Systematic Search

For a predator that does not revisit any pre-

viously searched cells, the probability function of the

hypergeometric distribution provides the probability that

the first r - 1 trials will be unsuccessful.

k (N-r+l)

r - l N-k

(. ‘f 1) = (N1)

After searching r - 1 cells of the total N cells the pro-

 P [first r-l cells emptylk, N] = (H.6)

bability that the next cell searched contains a prey is

P["success"|k, N — r + l] = k/(N - r + l) (H.7)

Multiplying (H.6) by (H.7), one obtains the probability

of finding a prey on trial r for a systematic searcher:

( k ) (N r + l)

P[rlk, N] = r l k _ - k k

k)(N - r + 1

  

2

I
2
1
2

I

1) (N - r + l) (Nr

(H.8)

The mean number of trials required to find a prey for this

case is given by the following expression:
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N-k+1 ( k )

E[rlk, N] = Z rk r - l

r=l (N - r + l) ( N )

r l

 

N-k+l

Z

r=l

kk!

N!

r(N - r)!

(k - r + l)! (H°9)

 

To find the probability function and mean number of

additional trials to the next capture, decrement k by l and

decrement N by r, and use the formulae above.
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