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ABSTRACT

SUBOPTIMAL FORAGING STRATEGIES FOR A
PATCHY ENVIRONMENT

By

James Edward Breck

Strategies for allocating the search time of a
predator in a patchy environment are analyzed. Prey of a
single type are assumed to occur only in discrete patches,
which are uniform except for the number of prey they con-
tain. Two economic goals are considered: maximization of
capture rate and minimization of the risk of finding no prey
during a foraging period. Since optimal decision-making
would usually require very complex computations on the part
of a predator, three suboptimal strategies are explored: a
Constant Giving-Up Time (GUT) strategy, a Time Expectation
(TE) strategy, and a neutral model for comparison purposes,
a Random strategy. These models assume that environmental
conditions, including mean prey density, have been constant
long enough so that no further learning by the predator
is taking place. An important area for further research is

the addition of learning and monitoring behaviors to forag-

ing theory.



James Edward Breck

Formulae are obtained analytically for the expected
capture rate, and optimal leaving times are evaluated anal-
ytically or by computer optimization techniques for pre-
dators using the GUT, TE, and Random strategies, for the
cases of Poisson and negative binomial distributions of
prey among patches. For the two economic goals, maximization
of capture rate and minimization of risk, the optimal leaving
times converge at low prey density for both the TE and GUT
strategies; optimizing leaving time to maximize capture
rate provides nearly the same degree of risk minimization
when the risk is greatest--at low prey densities. The TE
strategy is the best possible strategy for this foraging
problem when there is a Poisson distribution of prey among
patches. The expected capture rate for the Random strategy
approaches that for the TE strategy as mean prey number per
patch increases and as handling time per prey increases.

As the coefficient of variation of the distribution of prey
among patches increases, it becomes more and more important
(for maximizing capture rate) to utilize the information

in the sequence of intercapture times. Thus, the GUT
strategy becomes superior to the TE strategy when the coef-
ficient of variation is large, when the distribution of
prey deviates greatly from the Poisson. Selection pressure
for accurate and precise methods of estimating elapsed
search time should be stronger for animals using the GUT

strategy than for those using the TE strategy; this selection
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pressure will increase as mean prey number per patch
increases, as searching effectiveness increases, and as
transit time decreases, and will be reduced as accuracy and
precision improve.

Future foraging experimenters should present fre-
quency distributions of observed giving-up time, total
search time per patch, and search time between prey
sightings. Mean values alone are unlikely to allow dis-

crimination between search strategies.
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LIST OF SYMBOLS

Following standard notation, E[ ] denotes expected

value, P[ ] denotes probability, and Var|[ ] denotes the

variance of a random variable.
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R the random variable for capture rate
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found

X mean number of prey per patch (no. of prey)

Abbreviations:
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INTRODUCTION

How should a predator allocate time among patches
when foraging in a patchy environment? The optimal strategy
depends on the economic goal of foraging: the optimal behav-
ior for a predator maximizing prey capture rate can be dif-
ferent than for a predator minimizing the risk of starvation,
or for a predator requiring a minimum amount of some essen-
tial nutrient. The optimal solution also depends on the
details of the foraging problem, such as whether the predator
searches randomly or systematically within each patch.

Other important aspects of the foraging problem are the
statistical distribution of numbers of prey among patches
and the spatial pattern of numbers of prey per patch. The
requirements of sampling the environment to estimate prey
numbers and monitoring for changes in mean prey density
adds considerable complexity to the optimal foraging
strategy. Inclusion of learning, sampling, and monitoring
requirements in foraging theory will be a difficult but
exciting challenge for further research.

To analyze optimal foraging strategies for a
Patchy environment it is wise to begin with a simple version

O£ the complex problem. First, assume that there is no



significant spatial correlation in numbers of prey per
patch. That is, to avoid complications involving spatial
patterns, movement patterns between patches, etc., assume
that the numbers of prey in adjacent patches are determined
independently. Assuming a surplus of patches and that no
patch is visited more than once, then the expected number
of prey in the next patch to be visited will be completely
determined by the statistical distribution of prey among
patches. The second major simplifying assumption is that
the predator has learned this statistical distribution and
the foraging parameters of the environment. Thus, the
predator's behavior patterns are assumed to be stable, no
longer changing due to learning about means, variances,
conditional expectations, or the consequences in changed
capture rate due to changes in its behavior. Further,
assume that the environment is constant, and that the
predator does no sampling or monitoring for possible changes
in prey density.

Even though these assumptions make the problem
much simpler, optimal time-allocation decisions are still
quite complex. Oaten (1977a) has given a general solution
for this type of problem, specifying when to leave any
given patch in order to attain the goal of maximizing the
capture rate of prey. He suggests that this optimal
strategy for leaving a patch, involving higher mathematics,

is too complex for any animal to actually use. It is very



likely, then, that animals use some much simpler, sub-
optimal strategies for time allocation. 1In this dis-
sertation I analyze some simple strategies that have been
proposed in the literature, to see what the optimal behav-
ior would be for each suboptimal strategy, and to see how
these strategies could be distinguished. Two economic
goals are considered: maximization of capture rate and
minimization of the risk of doing badly during a foraging
period.

In comparing foraging strategies with one another
and with laboratory and field observations, reference
points are needed. If behavior is suboptimal, how bad is
it? What is a relatively good performance? To help answer
these questions and provide a bench mark for judging per-
formance I have developed a neutral model, a Random strategy
for foraging in a patchy environment.

After some short remarks on hierarchies of foraging
decisions, some predictions from the suboptimal strategies
and the Random strategy are compared with observations from
lab and field. It is clear that detailed comparisons must
be made to distinguish between strategies and determine the
way time allocation decisions are made by predators. I
make some suggestions about what variables are important
to measure in future foraging experiments. Frequency dis-
tributions of important variables, rather than only means

and variances, allow more detailed comparisons with



theoretical predictions and shed more light on the real
strategies used. Finally, the questions and problems
raised along the way suggest some promising lines of future
research on the complex problem of foraging in a patchy

environment.



CHAPTER 1

COMPLEXITIES OF FORAGING OPTIMALLY IN

A PATCHY ENVIRONMENT

The Definition of Optimum: Related to
a Specific Goal, Predator,
and Environment

Predators which hunt for prey that occur in patches
are faced with the very complex problem of allocating
foraging time among patches. The study of this foraging
problem combines two topics of much interest in ecology:
optimal foraging theory and spatial heterogeneity. The
ecological implications of a spatially heterogeneous envi-
ronment for population phenomena are thoroughly discussed
in two recent reviews (Wiens 1976, Levin 1976). Schoener
(1971) gives an excellent review of that rapidly growing
body of literature known as optimal foraging theory. Pyke,
Pulliam and Charnov (1977) present a more selective review
of the theory and tests of the theory. Other useful
reviews discuss the applicability of economic models
(Rapport and Turner 1977), the behavioral aspects of
foraging (Krebs 1973) and recent work on foraging strat-
egies of birds (Krebs and Cowie 1976). My discussion and
analysis of the literature on foraging in a patchy
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environment occur in this chapter in connection with some
complexities of the problem; other foraging theory and
experiments are discussed in Chapter 7, in relation to the
results developed here.

The foraging strategy which is optimal for a pre-
dator depends on at least three factors (MacArthur 1972):
the structure of the environment, the economic goals, and
the capabilities of the predator. It depends on the
details of the structure of the environment, including the
numbers, sizes, and spatial patterns of prey and patches.
For example, if prey occur only within recognizable patch
boundaries, the optimal behavior will include a search
within the patch followed by direct movement to the next
patch. If there are no distinct patch boundaries, the
optimal strategy must include a provision for finding prey
aggregations and staying within them once found.

Which foraging strategy is optimal depends on the
economic goal: evolutionary theory says that the ultimate
goal of an individual should be to maximize its inclusive
fitness, so the requirement here is to specify a more
Proximate goal while foraging. The optimal behavior for
a predator with a goal of maximizing prey capture rate
while foraging can be different than for a predator mini-
mizing the risk of finding no prey while foraging. There

would be yet a different optimal behavior for a predator



minimizing the risk of predation while obtaining a quota
of energy.

Other important determinants of the optimal
strategy are the capabilities of the predator, both
functional morphology and the behavioral capabilities, such
as learning ability. A word of caution is appropriate
here. Some constraints are appropriate for any real
searcher: there are limits to velocity, turning rate, etc.--
instantaneous jumps in location are not permitted. Such
constraints due to physical and morphological limitations
seem appropriate when studying optimal time allocation,
but constraints and specifications of mental abilities
need to be applied with caution. Some of the discrepancies
between the predictions of optimal foraging theory and the
results of experiments or field tests of that theory are
due to a simplifying assumption made in the theory: pre-
dators are assumed to know with certainty the profita-
bilities of patch types and prey types. But predators are
not capable of this certain knowledge. Thus, the foraging
problem analyzed by the theory is different from that
encountered by predators; predators must sample, both to
assess profitabilities and prey densities and to monitor
for changes through time.

In the following analysis I distinguish between
Predators that search randomly within each patch for

stationary prey and those that search systematically.



Other things being equal, of course, a systematic searcher,
which avoids or minimizes re-searching any patch area
should always be more efficient at finding prey than a
predator that searches randomly and may cross its own
search path several times. If the search method is not
specified, then systematic search and the consequent time
allocations would be part of the optimal foraging strategy.
Alternatively, one may specify that the predator uses a
random search, in which case the optimal strategy would be
different.

It should be possible to specify the capabilities
and limitations of a predator to such an extent that the
resulting optimal behavior is exactly what is observed.
"For a predator that can only remember the past n events,
can only judge time intervals to within x percent of the
true duration, . . . the optimal foraging strategy is
« « « «" Such a complete specification is an important
goal of research on foraging behavior. In this case, how-
ever, the label "optimal" would be less interesting than
the defining set of constraints, environmental structure,
and economic goal.

In summary, a foraging strategy by itself cannot
be "optimal," it is only optimal in relation to a partic-
ular environmental structure, economic goal, and set of
predator capabilities. The next section discusses an

important distinction for describing the structure of the



environment. One must distinguish the spatial pattern of
prey from the statistical distribution of numbers of prey
among patches in order to determine the optimal foraging
strategy.

Distinguishing Statistical Distribution

of Prey Among Patches From Spatial
Pattern of Prey Among Patches

A predator's success at foraging can depend upon
the spatial pattern of prey as well as the statistical dis-
tribution of numbers of prey per patch. It is important,
therefore, to distinguish between these two factors when
discussing foraging behavior. Pielou (1969) strongly sug-
gests that, to avoid ambiguity, the term "distribution" be
used in its statistical sense only: one may speak of the
distribution of a random variable, e.g., the distribution
of the number of prey per patch. 1In referring to the
behavior or location of organisms in space she recommends
terms such as "spatial pattern" or "spatial arrangement,"
e.g., a clumped pattern of insects in a field.

Another important point is that the statistical
distribution of number of items per sample is not suffi-
cient to determine the mechanism underlying that distribu-
tion: a particular distribution can often arise by several
mechanisms (see, for example, Patil and Stiteler 1974,
Boswell and Patil 1970, 1971, Pielou 1969, Skellam 1952,
Feller 1943). Furthermore, the distribution does not

imply any specific pattern or arrangement of the items in
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space. Fitting a statistical distribution to data on the
number of eggs per patch, for example, provides a conveni-
ent way to describe or summarize the data, but information
about the spatial relationships of the organisms is lost.
Various techniques and indices have been proposed to make
use of some of the information contained in the spatial
pattern of samples. For a recent review see Patil and
Stiteler (1974).

As an example, consider the negative binomial dis-
tribution, commonly used by biologists to describe the
distribution of numbers of organisms per sample (cf.

Bliss 1971, Gurland and Hinz 1971, Bliss and Fisher 1953,
Skellam 1952). A review of its properties is given by
Bartko (1961). As Pielou (1969) shows, this distribution
can be generated by two quite different mechanisms.
Suppose the numbers of insect eggs laid per clutch has a
logarithmic distribution. Suppose, also, that each female
insect chooses patches for oviposition at random; that is,
patches are equally attractive to the females and equally
likely to be selected for oviposition. Then the number
of clutches per patch will have a Poisson distribution.
The resulting distribution of total number of eggs per
patch will have a negative binomial distribution.
Kobayashi (1966) has studied the common cabbage butterfly,

Pieris rapae crucivora. He found that a logarithmic dis-

tribution fit the number of eggs per clutch, a Poisson
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distribution fit the number of oviposition visits by
females per cabbage, and a negative binomial fit the dis-
tribution of eggs per plant.

Alternatively, suppose that females lay a single
egg per clutch, as do most butterflies (Labine 1968). And
let them select patches randomly so that the number of
visits to patches of equal attractiveness will have a
Poisson distribution, with the mean number proportional to
the attractiveness. Suppose, however, that the attractive-
ness of the patches varies with a gamma distribution. The
probability density function of the gamma distribution is

given by

£(x) = (x°"*a%e~*%) /T (¢) (1.1)

where ¢ and d are two parameters, and I'(c) is the gamma

function with parameter c. Then this mechanism will also
give rise to a negative binomial distribution of eggs per
patch. A possible example of this type of mechanism was
given by Walker (1942). She analyzed the distribution of

numbers of eggs of the American bollworm, Heliothis armigera

Hb. (obsoleta F.) among maize plants. This moth lays eggs
singly. The attractiveness of the plants to ovipositing
females becomes very great during a relatively limited
phase of plant growth, during development of the tassels.
Walker believed that there is a continuous change through

time in the attractiveness of individual plants. She
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considered the possibility that at a particular point in
time there might be a gamma distribution of attractiveness,
and she fit the negative binomial to the resulting dis-
tribution of eggs among plants. (She felt, however, that
it was more likely that there would be only a small number
of discrete categories of attractiveness. So she preferred
the fit given by the distribution she created by summing
three to nine Poisson distributions. 1It's not surprising
that distributions with three to nine parameters would fit
the data better than a distribution with only two.) Con-
sult Waters and Henson (1959) for another possible example
of this mechanism, here underlying the distribution of

numbers of the Nantucket pine tip moth, Rhyacionia frustrata

(Comst.), among loblolly pines, Pinus taeda L.

Notice that the negative binomial can arise both
in situations where attractiveness is uniform among patches
and where it varies from patch to patch. These two cases
are not the only ways to obtain this distribution. Boswell
and Patil (1970) provide fourteen different mechanisms
which may give rise to the negative binomial! Additional
tests would be necessary to determine which mechanism is
responsible in a particular case (cf. Bliss 1971, Gurland
and Hinz 1971).

The main point of this discussion is that knowledge
of the statistical distribution of prey among patches is

not sufficient to determine optimal predator search
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behavior. One also needs to know the mechanism giving
rise to that distribution and the spatial pattern of prey
among the patches. For example, is there a significant
spatial correlation between patches containing above average
numbers of prey? If a predator has just found a patch
with low numbers of prey, what is the probability that
adjacent patches will also have small numbers of prey?

With the second mechanism described above, hetero-
geneous attractiveness among patches, it could easily be
the case that adjacent patches would have similar attrac-
tiveness; e.g., if adjacent corn plants (adjacent patches)
were in the same low, moist area of a field they might all
be more attractive to some insect (prey) than those plants
in high, dry areas. In this situation a predator which
visited neighboring patches (plants) whenever an above
average patch was discovered would not be exposed to a
negative binomial distribution of prey among patches, and
could sequentially visit plants with above average numbers
of insects. 1In effect, there could be a hierarchy of
patch types, with groups of adjacent plants forming a
"higher level patch." 1In this case, then, the predator
would need a hierarchy of strategies to organize his
foraging behavior. This will be further discussed in
Chapter 4.

Note that within each group of patches which had

equal attractiveness to prey the prey distribution could
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be Poisson. So even though some prey species may have an
overall distribution among patches such that the variance
greatly exceeds the mean, the predator may need a strategy
for moving among patches where there is a Poisson dis-
tribution of prey. Furthermore, as long as the predator
stays within a group and moves without revisiting any patch,
the strategy for timing the movements can be more important
than the spatial pattern of search: when to move to the
next patch can be more important than where to move.

With the first mechanism discussed, however, there
would be no spatial correlation between locations of above
average patches. The predator visiting a sequence of
patches would be exposed to a negative binomial dis-
tribution of prey among patches, and would need an appropri-
ate strategy for moving among them. Note that with this
mechanism of prey behavior there are no useful groups of
patches formed, and no hierarchy of strategies needed by
the predator. Since the expected number of prey in all
unvisited patches is the same, when to move to the next

patch can be more important than where to go next.

Sampling: A Necessity of Foraging

To determine the optimal foraging strategy the
capabilities and limitations of the predator must be

specified. One of the most significant constraints on

real (as opposed to hypothetical) predators is the lack

0f complete information about the environment, about
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prey and patch types. Many workers studying optimal diet
selection and optimal patch use have correctly pointed out
that predators need to sample their environment (e.g.,
Royama 1970, Smith and Dawkins 1971, Smith and Sweatman
1974, Krebs, Ryan and Charnov 1974, Krebs and Cowie 1976,
Krebs, Erichsen, Webber and Charnov 1977, Oster and
Heinrich 1976, Oaten 1977a, Zach and Falls 1976a, b, c,
and others). They need to estimate, for example, the mean
and variance of numbers of prey per patch, for each prey
type and each patch type. If a predator knew the mean
capture rate in each patch type and the mean travel time
between various types, then the optimal range of patch
types to be utilized could be determined by the ranking
method described by MacArthur and Pianka (1966). However,
a real predator needs to estimate these values, and there-
fore, can never be statistically certain that the ranking
or the range of patches utilized is correct--optimal.

Even when all parts of the environment, all patch types,
all prey types have been sampled and appropriate estimates
made, however, there are two continuing problems: monitoring
the environment for changes and attempting to discover
patterns in the availability, etc. of prey. Developing
foraging strategies for predators that must sample the
environment for these purposes will be an exciting and

challenging task for further research. Several disciplines
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have much to contribute to developments in this promising
area of foraging theory.

If there are N different patch types, determining
the patch types to be visited is a generalized version of
the N-armed bandit problem. A much-studied version is the
2-armed bandit, where the problem, given two different
slot machines, is to maximize expected winnings (or mini-
mize expected losses) by optimally allocating a fixed
number of trials between them.

One version of the problem that is especially rele-
vant to this discussion is analyzed by Holland (1975).

Let me outline his problem, describing it in foraging
terms. Let the travel time between patches be zero, or a
constant, independent of patch types visited. Suppose the
predator knows the mean and variance of the capture rate
for each of two patch types. To maximize the expected
capture rate (or minimize the expected losses) the optimal
solution is trivial: visit only the type with the higher
mean. With only a little more uncertainty, however, the
problem becomes quite complex. Supp&ée the predétor knows
the two means and variances, but does not know to which
patch type each belongs. Unless the two distributions of
capture rate are non-overlapping, no finite number of
trials will establish with certainty which patch type

has the higher mean. Once foraging begins the predator

is subject to two sources of loss (Holland 1975, p. 77).
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First, the patch type with the observed higher capture rate
may in fact be the second-best type, so that continued
foraging in this patch type will realize a smaller overall
mean capture rate. Second, the observed best may truly be
the best patch type, so any trials allocated to the other
type of patch results in a smaller average capture rate.
Holland proves that to minimize these sources of loss over
some finite number of trials, the number of trials allo-
cated to the observed best type should grow slightly faster
than exponential function of the number devoted to the
observed second-best patch type.

This allocation plan assumes that the predator
knows in advance which patch type will appear best at the
end of that finite number of trials. Since this foreknowl-
edge is impossible, Holland suggests a practical plan for
this problem which quickly approaches the above minimal
loss plan. First, allocate a selected number of trials
to each type of patch, where this number is based on the
known means and variances and the total number of trials
to be allocated. Then, at the end of these initial trials
allocate the remaining trials to the patch type with the
observed higher capture rate. (Eventually concentrating
on a single type is also Oster and H<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>