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ABSTRACT

AN EXAMINATION OF MEASUREMENT

ASSUMPTIONS REQUIRED BY

CONFIGURATIONAL CONSISTENCY

THEORY: A

SIMULATION

By

Barbara Earlene Jackson Davis

This study was concerned with the accuracy with which

attribute values can be reconstructed or obtained by using

a multidimensional scaling procedure on a relational

matrix. Relational matrices were simulated under condi-

tions in which the dimensionality of the matrices varied,

relations contained error, and the precision of the

measurement scale varied. The results of the simulation

indicated that the rank of the relational matrix effected

the recovery of the attribute values. The recovery of the

attribute values were also influenced by the precision of

the measurement scale.
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INTRODUCTION

An important theoretical perspective in modern social

psychology is called consistency theory (Abelson et al.,

1968). This "theory” is not really a theory at all but a

collection of partial theoretical formulations (Festinger,

1957; Osgood and Tannenbaum, 1955; Abelson and Rosenberg,

1958; Newcomb, 1953; Cartwright and Harary, 1956; Heider,

1958; and Phillips, 1967) which share the common theme that

man has a need to maintain consistency among his attitudes,

beliefs, and behavior. One such formulation is Phillips'

(1973) configurational consistency theory (CCT). This

theory differs from other consistency formulations in three

important respects: (1) it is more completely axiomatized

than others; (2) it provides explications of the meaning of

consistency over a range of cognitive complexity; (3) it

provides a rationale for a multidimensional scaling

procedure that can be applied to attitudinal data. In the

following pages, points (1) and (2) will be briefly

discussed in preface to a more detailed examination of

point (3). This examination will focus on the measurement

assumptions of configurational consistency theory (CCT) and

relative to these assumptions, the accuracy with which the

multidimensional scaling may be accomplished as a function



of errors of measurement and precision of the measurement

scale.



REVIEW OF LITERATURE

Configurational consistency theory assumes a

dimensional organization of cognition. Cognitions are

represented in CCT as elements which have descriptive

properties called attributes. These attributes are assumed

to index some position on a set of bi-polar scales which

function as attribute dimensions. Examples of such

bipolar scales are good-bad, sweet-sour, strong-weak,

active-inactive, etc. Therefore, the organization of a

person's attribute space is some discrete number of

dimensions and eachcognitive element has a position on each

dimension. That is, an element is assigned to a fixed

point in some attribute space (Phillips, 1973). Such a

dimensional characterization of cognition is similar to

that of Osgood and Tannenbaum (1955) and Scott (1963).

In addition to elements and attributes, a third

important theoretical term in CCT is the concept of a rela-

tion. This notion is similar to Heider's (1958) notion of

a sentiment or a unit relation. A relation, varying

continuously in value between +1 and -l, is assumed to

exist between any given pair of elements. Relations are

assumed to be symmetrical, that is, the relation between

i and j is the same as the relation between j and i. A

relation in CCT is the link between elements.

3



The theory assumes that two elements are mutually

consistent if the relation between them is equal to a

weighted sum of the products of the scale values of the

two elements on all critical attribute dimensions

(Phillips, 1973).

Another feature of CCT is that it provides an explica-

tion of consistency for the complex person as well as for

the simple person. Other consistency formulations are

unable to do this. CCT accomplishes this feature by

allowing for multiple attribute dimensions. The definition

of cognitive complexity in terms of dimensionality is a

common one (Bieri, 1968; Scott, 1963). CCT, however,

provides a method for determining this dimensionality or

complexity of a cognitive structure through the analysis

of the relational configuration of that structure. This

relational configuration can be represented as an nxn

matrix. A relational matrix can be obtained as a first

order datum from a set of judgments. If configurational

consistency holds, an index of complexity or dimensionality

can be determined by finding the rank of the relational

matrix. Configurational consistency is thus given a formal

definition in this context: "If, for a cognitive structure

of complexity m, the associated relational matrix is of

rank mr-where the rank of a matrix is just an index of its

dimensionality-—then the structure is configurationally

consistent." (Phillips, 1973).



An important special case of consistency theory is the

unidimensional model. The unidimensional model of CCT

assumes that any judged relational matrix is of rank 1.

If a relational matrix is of rank 1, then consequently the

person who made the relational judgments was using only

one evaluative dimension. If the relational matrix is not

rank 1 then the relational matrix would be considered to be

inconsistent. The degree of inconsistency could be

measured by the departure from rank 1. This unidimensional

model is just the balance model proposed by Phillips (1967)

of which the Abelson and Rosenberg balance model is a

special case. Balance theory is thus just the special

unidimensional case of CCT. Balance theory conflicts with

complexity because balance requires the rank of the

relational matrix to be one. This is a conflict because

if a relational matrix is complex then its rank will be

greater than one and balance theory doesn't allow the rank

of the relational matrix to be greater than one. CCT

allows the rank of the relational matrix to be equal to the

complexity of the cognitive structure. Since CCT allows

for people of different complexities, it is a potentially

more useful formulation of consistency.

As previously noted, CCT provides a rationale for

multidimensional scaling that can be applied to attitudinal

data. Attribute values can be derived from a relational

matrix by computing the characteristic vectors of the

judged relational matrix. Phillips (1967) has shown that



the dominant characteristic vector of such a matrix can be

empirically identified with global evaluation.

The multidimensional scaling requires the assumption

that the judged relational values of the relational matrix

were made on a ratio scale. A ratio scale is required

because the characteristic vectors of a matrix are unique

up to multiplication by a constant, that is, if C is a

characteristic vector of R than ac is a characteristic

vector of GR if and only if a is a scalar.

Even though CCT seems to be a potentially more useful

formulation of consistency, there are problems with the

measurement assumptions required by it. The process by

which a relational matrix is obtained is by asking a person

to make judgments on certain elements. The values assigned

to these judgments are obtained scores. From a psycho-

metric point of view, obtained scores are equal to true

scores plus some random error. Random error may be thought

of as noise. The measurement problem faced by CCT is the

inaccuracy in recovering attribute values from the rela-

tional matrix. This inaccuracy may be produced by the rank

of the relational matrix, the precision of the measurement

scale, and random noise in the system.

The rank of the relational matrix is defined as the

dimensionality of the configuration from which the

relational matrix is formed. In a study of multidimensional

scaling, Young (1970) found that accuracy in recovering



scale scores was affected by rank. This unexpected

finding was not accounted for by Young.

Another reason for expecting accuracy to be a function

of rank derives from the numerical methods used to recover

latent variables. For example, the computer program

Eigort, which is the basis for the present analysis of

latent vectors decreases in accuracy as rank increases.

Those two facts provide a basis for the hypothesis that the

rank of a relational matrix will contribute to the

inaccuracy in recovering attribute values.

Precision of the measurement scale means the coarse-

ness or fineness of the scale. Precision of the

measurement scale may contribute to the distortion of true

scores in a relational matrix, thereby adding to the

inaccuracy in recovering attribute values.

Noise was defined as random error. Noise may affect

the accuracy in recovering attribute values because the

greater the noise the greater the distortion of true

scores.

With these concepts in mind, it was decided to

investigate the effects of rank of relational matrix.

precision of measurement scale, and noise in the system on

obtaining attribute values from relational matrix.

The issue of error in measurement is not unique to

this study. Young (1970) discussed some issues of measure-

ment involved in metric scaling. Young used a simulation

to examine measurement error. He did five replications.



Young was concerned with metric determinacy which is

the degree of success in obtaining a ratio scale from data

without ratio properties. The variables investigated in

Young's study were (1) the number of points in a configu—

ration, (2) the dimensionality of the underlying real

configuration, and (3) the amount of error contained in a

set of data. Young's results suggested that the degree of

metric determinacy was influenced by the dimensionality of

the configuration. The one dimensional configuration pro-

duced the highest degree of metric determinancy. The two

dimensional configuration produced the second highest

degree of metric determinancy and the three dimensional

configuration produced the lowest degree of metric

determinacy. Young's study indicated that metric

determinacy decreased as the error was increased.

For a better explanation of the multidimensional

scaling process for recovering attribute values a two

dimensional cognitive structure will be considered. A two

dimensional cognitive structure has two nxl vectors

corresponding to its attribute space. Each vector

multiplied by its transpose generates an nxn matrix. With

the two dimensional cognitive structure, there would be

two matrices. The sum of these two matrices is the

relational matrix. The process discussed above is

satisfactory from a theoretical point of view. However

in the case of an empirical study of multidimensional

scale, what would be the values of the main diagonal?



These values were assumed to be 1's in Phillips (1967)

study. A better procedure than just assuming the diagonal

values to be 1's might be to estimate the values. This can

be accomplished by finding the characteristic vectors of

the relational matrix with 1's in the diagonal, then

square each value of the two largest characteristic vectors

(two dimensional structure). The sum of these products is

used in the diagonal instead of the 1's. Then the

characteristic vectors for the relational matrix with the

new diagonal values are computed. This process continues

until the difference between the values in the main diagonal

differs from the new computed diagonal values by only some

specified small amount.

The issue in this thesis is the accuracy with which

attribute values can be recovered from a relational matrix,

under conditions in which the dimensionality of the

structure varies, relations contain error, and the

precision of the measurement scale varies.



STATEMENT OF PROBLEM

This study is concerned with the accuracy with which

attribute values can be reconstructed or obtained by using

a multidimensional scaling procedure on a relational matrix.

Configurational consistency theory assumes that the values

of a judged relational matrix are true scores. However, in

empirical situations the values of the judged relational

matrix are obtained scores. This study simulates the

obtained scores for the relational matrix to see if the

correct attribute values can be reconstructed. From a

psychometric point of View, obtained scores are true scores

plus some distorting effect due to error. The distortion

of the true score is thought of as a combination of dimen-

sion of relational matrix, random noise, and precision of

measurement scale.

The simulation generates relational matrices of

different sizes. It generates true score relational

matrices and obtained score relational matrices. Even

though the true values of the diagonals of the true score

relational matrices are known, the simulation puts 1's in

the diagonals and estimates the correct diagonal values.

In the simulation, the obtained score is influenced by the

precision of the measurement scale and random noise.

10
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The dependent variable is the cosine of the angle

between the simulated true score relational matrix's

characteristic vectors and simulated obtained score

relational matrix's characteristic vectors and the cosine

between repeated obtained scores. If the cosine is one,

then the two vectors are the same. Thus vectors are more

similar if the cosine of the angle between them is high.

A main effect due to noise and rank is expected because of

Young's (1970) study and the computer program Eigort.



METHOD

Simulation Study
 

Three (3) 3x3x3x2 factorial designs were used for the

simulation. One factorial design was for 5x5 matrices, one

was for 7x7 matrices and one was for 9x9 matrices. The

first factor was the rank or dimensionality of the relational

matrix--rank 1, rank 2, or rank 3. The second factor was

the precision of the measurement scale used--3 point,

7 point or 11 point scale. The third factor was three

different levels of random noise--level 1 -.O9 to +.09,

noise level 2 -.19 to +.l9, and noise level 3 -.29 to +.29.

The fourth factor was repeated measures on the third factor.

In order to arithmetically simulate an nxn matrix of

rank r, random numbers were generated and used to construct

r lxn true evaluative vectors which were orthogonal to each

other. Next each of those lxn vectors were multiplied by

their transpose--producing r matrices. Then, those

resulting matrices were added together to produce an nxn

true relational matrix of rank r. Next a noise matrix of

the same size (nxn) was generated with its values being

-restricted to a certain interval such as -.09 to +.09.

This noise matrix was added to the true nxn relational

matrix. The noise matrix was an operational definition of

12
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random error in the system. This is due to the usual

psychometric assumption that obtained score is equal to true

score plus random error. Another noise matrix at the same

level of noise as the first was generated for the same nxn

true relational matrix.

A second source of measurement error was distortion

due directly to the precision of the measurement scale.

The nxn matrix of rank r with noise level 1 was deliber-

ately distorted by adjusting it to a k point scale. This

was accomplished by rounding values of each cell of the nxn

matrix off to the nearest tenth place as associated with

the scale being used. For an example: if a 5 point scale

(+1, +.5, 0, -.5, -l) were being used and a value of the

true relational matrix was -.3; then if it were associated

with the 5 point scale its value would have been -.5.

After all of the nxn matrices with rank r and noise

level 1 added were adjusted to different measurement

scales, the characteristic vectors and roots were computed.

They were computed on a computer program called MAT. This

program estimated the correct diagonal values for each nxn

matrix. This was accomplished by finding the character-

istic vectors of the relational matrix with 1's in the

diagonal, then squaring each value of the significant

characteristic vectors. The sum of those products was

used in the diagonal instead of the 1's; next the

characteristic vectors for the relational matrix with the

new diagonal values were computed. This process continued
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until the difference between the values in the main diagonal

differed from the new computed diagonal values by some

specified small amount. The MAT program had a subroutine

called Eigort which computed the characteristic vectors and

roots. The Eigort program recovered the characteristic

vectors for a rank 1 matrix perfectly, but for the rank

two and three matrices the Eigort program did not recover

the characteristic vectors as perfectly as it did for the

rank one matrices. This fact was discovered when the

Eigort subroutine was tested with matrices for which the

characteristic vectors were known. The error in computing

the characteristic vectors for the rank two and rank three

matrices was attributed to the rounding off procedure

used in Eigort. Nevertheless, it was the best program

available for computing characteristic vectors and roots

of matrices.

Next the cosines were obtained between the simulated

true score vector and the simulated obtained score vector.

After that the cosines between the repeated simulated

obtained score was computed. All matrices were distorted

due to a particular precision of measurement scale except

for the true relational matrix.

The cosines between the repeated (independent

replication) measures served as a measuring device in

determining the amount of error in the system when we did

not have true scores. This measure was analogous to a

test-retest reliability measure. Thus, it was possible to
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determine the magnitude of main effects and interactions of

rank of relational matrix, amount of noise in the system,

and scale precision in obtaining attribute values from a

relational matrix.



RESULTS

The dependent variables were the average cosine

between simulated true score vectors and simulated obtained

score vectors and the cosine between repeated simulated

obtained score vectors. The results from the simulated

true scores and simulated obtained scores are presented

first, after which the results from the repeated simulated

obtained scores are presented.

An ANOVA was performed on each different size of

matrix individually with rank of relational matrix, noise

level, and precision scale as the factors. For the 5x5

matrices the analysis on the true score cosines indicated

that there was a main effect due to rank of the relational

matrix (p<.0001) (see Table l). A Newman-Keuls test

indicated that rank 1 matrices had significantly higher

cosines than matrices of greater dimensionality (p<.05).

The ANOVA indicated that for the 5x5 matrices there was a

significant interaction of rank and precision. A Newman-

Keuls test indicated that the combination of rank one with

intermediate precision (7 point scale) and rank one with

high precision (11 point scale) had significantly higher

cosines than any other combination of rank and precision.

For the 7x7 matrices there was a main effect due to

the precision scale (p<.0001). High and intermediate

16
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precision had significantly higher cosines than did low

precision. There was a main effect due to rank for the

7x7 matrices. Rank one matrices had significantly higher

cosines than did matrices of higher dimensionality. The

analysis also suggested that there was a significant

interaction of noise and precision. A Newman-Keuls test

indicated that the combination of low noise with high

precision had significantly higher cosines than any noise

level with low precision and better than intermediate noise

with intermediate precision. The combination of inter-

mediate noise and high precision had significantly higher

cosines than low noise and low precision. Other combinae

tions of noise and precision were not significantly

different. There was also another significant interaction

for the 7x7 matrices and that was the combination of rank

and precision. The combination of low rank with both

intermediate and high precision had significantly higher

cosines than any other combination of rank and precision

(p<.05). There was no significant difference between the

combination of low rank with intermediate precision and low

rank with high precision.

For the 9x9 matrices there was a main effect due to

the precision scale (p<.0001). High and intermediate

precision scales had significantly higher cosines than did

low precision scale (p<.05). Another main effect for the

9x9 matrices was the rank of the matrix (p<.0001). The

ANOVA suggested that for the 9x9 matrices that there was a
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significant interaction of rank and precision. By per-

forming further analysis it was indicated that the

combination of low rank with either intermediate or high

precision had a significantly higher cosine than did any

other combination of rank and precision (p<.05).

The comparisons of simulated matrices with true score

indicated that rank (for all different size matrices) and

precision (for 7x7 and 9x9 matrices) were main effects.

Rank one matrices (for all size matrices) had significantly

higher cosines than matrices of higher dimensionality.

Intermediate and high precision (for 7x7 and 9x9 matrices)

had significantly higher cosines than low precision.

Significant interactions were also observed. The inter-

action of rank and precision was significant for all size

matrices. The combination of low rank with either

intermediate or high precision had significantly higher

cosines than any other combination of rank and precision

for all size matrices. The interaction of noise and

precision was only significant for the 7x7 matrices. There

was no main effect due to noise for any of the different

size matrices. '

Next an ANOVA was performed on the repeated simulated

obtained scores. For the 5x5 matrices there was a

significant interaction of all three factors.

For the 7x7 matrices there was a main effect due to

precision scale. Low precision scale had significantly

higher cosines than intermediate or high precision scales
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(p<.05). The analysis also suggested that there was a main

effect due to rank. Rank one matrices had higher cosines

than matrices of greater dimensionality (p<.05). Rank two

matrices had higher cosines than rank three matrices.

The analysis suggested that for the 9x9 matrices that

there was a main effect due to rank. After performing the

Newman-Keuls test, it was indicated that rank one matrices

had significantly higher cosines than did rank two or rank

three matrices. There was a main effect due to noise. Low

noise matrices had significantly higher cosines than matri-

ces which had either intermediate or high noise. Low

precision scale matrices had significantly higher cosines

than intermediate or high precision.

The analyses of the repeated scores indicate that

there was a main effect due to the rank of the relational

matrix (for 7x7 and 9x9 matrices). Both rank one 7x7 and

9x9 matrices had significantly higher cosines than matrices

of higher dimensionality. Also for the 7x7 matrices the

rank two matrices had significantly higher cosines than

rank three matrices. There was a main effect due to

precision for the 7x7 and 9x9 matrices. The 7x7 and 9x9

matrices with low precision scale had significantly higher

cosines than those with intermediate or high precision

scale.

The 5x5 matrices had a significant interaction of all

factors rank, precision, and noise.
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The analyses suggest that for both the true score and

repeated measurement comparisons there were main effects

due to rank. The analyses indicate that for both sets of

data that the rank one matrices had significantly higher

cosines than matrices of greater dimensionality. Both sets

of data also had a main effect due to precision. The

matrices with the intermediate or high precision scales

for the true score comparison had significantly higher

cosines than matrices with low precision scales. This was

just the opposite effect found in the repeated score com-

parison where the matrices with the low precision scale had

significantly higher cosines than matrices with inter-

mediate or high precision. There was no main effect due to

noise for the true score comparison and only one of the

matrices, 9x9, in the repeated measures comparison had a

main effect due to noise.

The true score data showed a significant interaction

of rank and precision--low rank with intermediate or high

precision had significantly higher cosines than any other

combination of rank and precision. There was an inter-

action effect of noise and precision for the 7x7 true score

data. The only significant interaction for the repeated

score data was a significant three way interaction of all

the factors for the 5x5 matrices.



DISCUSSION AND SUMMARY

The major issue in this thesis was the accuracy with

which attribute values can be recovered from a relational

matrix, under conditions in which the dimensionality of the

structure varies, relations contain error, and the precision

of the measurement scale varies. Analyses were performed

on the different sizes of matrices separately because the

size of the matrix was not one of the factors under

investigation. The different size matrices were only used

for the purpose of generality.

The results of the comparisons of the relational

matrices indicate that the rank of a relational structure

does effect the accuracy of the recovery of the attribute

values. This was expected because of the results of

Young's (1970) study and the computer program Eigort. Low

rank relational matrices recovered attribute values better

than matrices of higher rank.

For the true score matrices, the 7x7 matrices and the

9x9 matrices had a main effect due to precision. Both set

of matrices had significantly higher cosines with inter-

mediate or high precision than with low precision. The

results suggest that for a unidimensional model of

consistency, intermediate or high precision would be

21
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necessary. This was due to the interaction of rank one

with intermediate or high precision. This implies that

Phillips (1967) would have obtained significantly better

support for his model if he had used a finer precision

scale than the three point scale he used.

Neither the 7x7 repeated score matrices nor the 9x9

repeated score matrices had any significant interactions.

Both the 7x7 and the 9x9 repeated score matrices had main

effects due to rank and precision. This time the precision

scale with the highest cosine was the low precision scale.

This is in opposition to the true score matrices where

intermediate or high precision scales produced significantly

higher cosines than low precision scale.
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Table 1. Summary of Analysis of Variance for 5x5 Matrices with True

 

Scores.

Source SS DF MS F

A (Precision of Measurement Scale) .1426 2 .0713 .5451

B (Noise Level) .6012 2 .3006 2.2974

C (Rank of Relational Matrix) 6.3662 2 3.1831 24.3289*

AB 1.1124 4 .2781 2.1253

AC 1.5896 4 .3974 3.0377*

BC .3632 4 .0908 .6940

ABC .4872 8 .0690 .5274

Exp Error 14.1304 108 .1308

 

*Significant at p<.05

Table 2. Means Table 5x5 Matrices with True Scores.

AC (Precision X Rank)

 

 

R1 R2 R3

P31 .486 .440 .176

P82 .811 .320 .227

P83 .879 .207 .233

Marginal

Means .725 .322 .223
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Table A1. Summary of Analysis of variance for 7x7 Matrices with True

 

Scores.

Source SS DF MS F

A (Precision of Measurement Scale) 1.2740 2 .6370 12.6739*

B (Noise Level) .0872 2 .0436 .8668

C (Rank of Relational Matrix) 4.0570 2 2.0285 40.3619*

AB .5232 4 .1308 2.6027*

AC 1.0468 4 .2617 5.2066*

BC .0808 4 .0202 .4025

ABC .5456 8 .0682 1.3572

Exp Error 5.4216 108 .0502

 

*Significant at p<.05
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Table A2. Means Table for 7x7 Matrices with True Scores.

AB (Precision x Noise)

N1 N2 N3

P81 .152 .209 .244

P82 .386 .278 .378

P83 .557 .442 .315

 

Table A3. Means Table for 7x7 Matrices with True Scores.

AC (Precision X Rank)

 

 

R1 R2 R3 Marginal

Means

P51 .280 .242 .082 .202

P52 .652 .186 .202 .347

P33 .781 .282 .248 .437
 

Marginal

Means .572 .237 .178
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Table Bl. Summary of Analysis of variance for 9x9 Matrices with True

 

Scores.

Source 88 DF MS F

A (Precision of Measurement Scale) 1.5220 2 .7610 16.1332*

B (Noise Level) .0778 2 .0389 .8250

C (Rank of Relational Matrix) 3.7970 2 1.8985 40.2497*

AB .1352 4 .0338 .7163

AC 1.1668 4 .2917 6.1850*

BC .1452 4 .0363 .7698

ABC .3872 8 .0482 1.0220

Exp Error 5.0868 108 .0471

 

*Significant at p<.05

Table B2. Means Table 9x9 Matrices with True Scores.

AC (Precision x Rank)

 

Marginal

R1 R2 R3 News

P81 .271 .188 .154 .205

P52 .693 .313 .204 .403

PS3 .804 .232 .312 .449
 

Marginal

Means .589 .244 .223
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Table Cl. Summary of Analysis of Variance for 5x5 Matrices with

Repeated Scores

 

Source 88 DF MS F

A (Precision of Measurement Scale) .5964 2 .2982 3.2221

B (Noise level) .8612 2 .4306 4.6529

C (Rank of Relational Matrix) 4.5112 2 2.2556 24.3732

AB .4836 4 .1209 1.3061

AC I 1.2560 4 .3140 3.3925

BC .2528 4 .0632 .6835

ABC 1.5936 8 .1967 2.1253*

Exp Error 9.9900 108 .0925

 

*Significant at p<.05
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Table C2. Observed Cell Means for 5x5 Matrices Repeated Scores
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Table D1. Summary of Analysis of variance for 7x7 Matrices with

Repeated Scores.

 

 

Source 88 DF MS F

A (Precision of Measurement Scale) 1.5564 2 .7782 9.5890*

B (Noise level) .2958 2 .1479 1.8223

C (Rank of Relational Matrix) 6.6388 2 3.3194 40.9002*

AB .5740 4 .1435 1.7681

AC .3404 4 .0851 1.0484

BC .6520 4 .1630 2.0090 I

ABC .8240 8 .1030 1.2696

Exp. Error 8.7588 108 .0811

 

*Significant at p<.05

Table D2. Means Table for 7x7 Matrices with Repeated Scores.

A (Precision)

P51 P82 P83

.709 .498 .472

 

 

Table D3. Means Table for 7x7 Matrices with Repeated Scores.

C (Rank)

R1 R2 R3

 

.849 .516 .311
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Table E1. Summary of Analysis of Variance for 9x9 Matrices with

Repeated Scores.

 

Source S DF MS F

A (Precision of Measurement Scale) 3.7688 2 1.8844 25.3010*

B (Noise Level) 1.4484 2 .7242 9.7231*

C (Rank of Relational Matrix) 3.7760 2 1.9980 26.8256*

AB .2320 4 .0580 .7782

AC .4040 4 .1010 1.3563

BC .6828 4 .1707 2.2918

ABC .6528 8 .0816 1.0950

Exp Error 8.0352 108 .0744

 

*Significant at p<.05

Table E2. Means Table for 9x9 Matrices with Repeated Scores.

A (Precision)

P51 P82 PS3

 

.780 .399 .461

 

Table E3. Means Table for 9x9 Matrices with Repeated Scores.

B (Noise Level)

 

N1 N2 N3

.693 .470 .476

 

Table E4. Means Table for 9x9 Matrices with Repeated Scores.

C (Rank)

R1 R2 R3

.787 .393 .460
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