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ABSTRACT 

CONTROL APPLICATIONS TO BIOFUEL ENGINES 

BY 

Xuefei Chen 

Biofuel, a form of renewable fuel, has a promising future, especially as an alternative fuel 

for transportation. Biofuel is usually blended with petroleum fuel and used in flex fuel engines. 

Since the characteristics of biofuel are quite different from those of the petroleum based fuel, it is 

very important to optimize the combustion properties for biofuel engines under different fuel 

blends. This research focuses on biofuel content detection and combustion control of biofuel 

engines under different biofuel contents. 

 The first part of this research is the utilization of the ionic polymer-metal composite 

(IPMC) material as a sensing element of a flow and fluid property sensor for flex fuel engines. 

This research is motivated by the IPMC’s intrinsic sensing characteristic that an IPMC beam is 

capable of producing an electric signal closely correlated to its mechanical movement due to the 

redistribution of mobile ions inside the IPMC material. The IPMC beam is modeled as multiple 

rigid elements connected by rotational springs and dampers in this study. The fluid properties are 

estimated by using the least-squares approach based upon the developed finite element model. 

The proposed estimation scheme was validated in experiments under different fluid media, and it 

was found that the estimated fluid properties have fairly good agreement with their actual values. 

This research is very important for automotive applications where the characteristics of the fuel 

blend need to be identified in real time. 

The second part of the research is targeted at the optimal tracking control of the desired 

air-to-fuel ratio (AFR) based upon adaptively estimated biofuel content for internal combustion 
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engines equipped with lean NOx trap (LNT) aftertreatment systems. The biofuel content is 

adaptively estimated based upon the oxygen sensor signal. The engine system was approximated 

by a third order linear system. A linear quadratic optimal tracking controller was developed to 

track the desired engine AFR during the LNT regeneration period. The robust stability of the 

closed loop system with the biofuel content estimation is guaranteed over the entire biofuel 

content range by using the robust stability criteria for the LPV (linear parameter variation) 

system, where the biofuel gain and the engine speed are considered as the variable parameters. 

Several adaptive control schemes were studied through simulations, and then the selected control 

strategies were evaluated through dynamometer tests for a lean burn spark ignition (SI) engine. 

The best performance was achieved by the gain-scheduled adaptive scheme.  

The third part of the research is detection of the combustion phase and estimation of 

biodiesel content using traditional knock sensors. Existing approaches for the combustion phase 

detection of a diesel engine are mainly based upon the high cost in-cylinder pressure sensor. This 

study focuses on developing a method to estimate the point of 75% of mass faction burned 

(MFB75) by using the traditional knock sensor signal. It was observed through experimental data 

that the knock signal can be correlated to MFB75 location well. Therefore, an MFB75 estimation 

method was proposed based upon the integrated knock signal over each crank angle. The 

proposed approach was validated using the experimental data and consistently provided accurate 

estimation of MFB75. In addition, the study also demonstrates the feasibility of using the knock 

sensor signal to provide a secondary estimation of fuel content. 
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CHAPTER 1 INTRODUCTION 

 

1.1  Background and Motivation 

Today, eighty-five percent of the world’s energy demand is provided by fossil fuels [1]. 

The critical consequences of the future energy supply shortage and environmental degradation 

(climate change and air pollution) have motivated many nations to develop and use renewable 

fuels (biofuels), such as ethanol and biodiesel. The advantages of utilizing biofuels stem from the 

fact that biofuels are mainly produced from large, under-utilized biomass resources that are 

sustainable and renewable in a closed carbon cycle that reduces environment impact. For 

example, today, ethanol is made from starches and sugars, while biodiesel is made from 

vegetable oil, animal fat, or recycled cooking grease [2].  

For automotive engine applications, biofuel is mostly used in flex fuel engines and as 

blending agent with gasoline or diesel, for example, E85 contains 85% of ethanol with 15% 

gasoline, and B20 contains 20% of biodiesel with 80% of petroleum-based diesel. Since the 

energy density and the combustion characteristic for different fuels vary from fuel to fuel, (the 

higher heating value (HHV) of biodiesel is 39-41 MJ/kg, 46MJ/kg for gasoline, 43MJ/kg for 

petrodiesel [3],) it is very important to detect the fuel content for flex fuel engines, so that the 

control system can optimize the combustion by adjusting the fuel quantity, fuel injection timing, 

and so on.   

Researchers have studied several approaches to estimate the biofuel content. For example, 

the oxygen sensor signal was used to detect the fuel content in [4]-[6], the in-cylinder pressure 

signal can also be used to detect fuel information [7], as well as the ionization signal [8]. In this 

research, an ionic polymer-metal composite (IPMC) beam fuel flow sensor was developed to 
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detect the fuel content by identifying the fuel viscosity based upon the fact that different fuels 

have different fluid viscosities.  It is motivated by the unique characteristic of IPMC beam, 

which is capable of producing an electric signal closely correlated with its mechanical movement 

[9]-[10]. The other advantage of the IPMC beam flow sensor is that it also has the potential 

ability of detecting fuel flow rate close to fuel injector location, which is critical for accurate air-

to-fuel ratio (AFR) control.  

Currently, most engine control systems rely on the oxygen sensor signals to regulate the 

AFR [7]. The AFR on gasoline engines is usually maintained at stoichiometric level through 

closed loop control, while the AFR usually runs in open loop operation on diesel or lean burn 

engines. In order to meet the emission regulation for lean burn engines equipped with the lean 

NOx trap (LNT) aftertreatment systems [11], there is a period of LNT regeneration. During the 

regeneration period, the AFR is controlled in a closed loop [12]. The second part of this research 

presented an optimal control method of tracking the desired AFR based upon the adaptively 

estimated biofuel content during the LNT regeneration for lean burn flex fuel engines.   

With the specific emphasis on biodiesel, detecting the combustion phase of diesel engines 

is of great interest to researchers, because the combustion phase directly determines the 

combustion efficiency and the exhaust emissions of diesel engines, as well as its indirect effect 

on engine noise and pollutant formation [13]. Most studies have concentrated on the estimation 

of the start of combustion (SOC), which occurs shortly after the fuel injection. However, the 

SOC is very difficult to determine precisely. The existing approaches for SOC detection have 

sensor based and mode based estimation schemes ([15], [18]). But none are currently available 

for practical application, because they either are too expensive, or have low predictive capability. 

In this research, the traditional knock sensor is proposed to be used for combustion phase 
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detection, and instead of detecting the SOC, this research suggests to detect the 75% of mass 

fraction burned (MFB75) location, because the combustion signals at the MFB75 position are 

usually much stronger than those at the SOC. 

1.2  Research Overview 

1.2.1  Model-based estimation of flow characteristics using an IPMC beam 

An ionic polymer-metal composite (IPMC) beam is capable of producing an electric 

signal closely correlated with its mechanical movement, due to the redistribution of mobile ions 

inside the IPMC material. Motivated by the potential application of this intrinsic sensing 

characteristic to flow property measurements in automotive engines, this research investigates 

the feasibility of detecting the start and end of a pulsating flow and its fluid characteristics using 

an IPMC beam-based sensor. A dynamic model was developed for the IPMC beam under fluid 

flow. The model consists of multiple rigid elements connected by rotational springs, and under 

suitable conditions, has a closed-form solution that enables efficient estimation of fluid 

properties and flow parameters with the least-squares minimization approach. The proposed fluid 

estimation scheme was validated using experimental results with different fluid media, and it was 

found that the estimated fluid drag coefficients, which are highly correlated to fluid viscosity, 

have good agreement with their actual values. This is very important for automotive applications 

where the characteristics of the fuel blend (such as gasoline and ethanol) need to be identified in 

real time. 

1.2.2  AFR tracking with fuel content estimation for lean burn flex fuel engines 

This research presents an optimal control method of tracking the desired air-to-fuel ratio 

(AFR) based upon the adaptively estimated biofuel content for internal combustion engines 

equipped with the lean NOx trap (LNT) aftertreatment system. The fuel content (or percentage of 
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biofuel) is adaptively estimated based upon the exhaust oxygen (air-to-fuel ratio) sensor signal 

under both the normal engine operations with lean combustion and the LNT regeneration 

operations with the closed loop AFR control. The engine system was modeled as a third order 

linear system, a first order system for engine transportation delay, a first order system for exhaust 

manifold filling dynamics, and a first order system for oxygen sensor dynamics. A linear 

quadratic Gaussian (LQG) controller integrated with an integral control was developed to track 

the desired engine AFR during the LNT regeneration period based upon the Kalman state 

estimation. The robust stability of the closed loop tracking control system with the biofuel 

content estimation is guaranteed over the entire biofuel range by using the robust stability criteria 

for the LPV (linear parameter variation) system, where the biofuel content and the engine speed 

are considered as the variable parameters. Several adaptive control schemes were studied 

through simulations, and the selected control strategies were evaluated through dynamometer 

tests for a lean burn spark ignition (SI) engine. The best performance was achieved by using the 

gain-scheduled adaptive scheme. 

1.2.3  Detecting MFB75 and biodiesel blend of a direct injection diesel engine by using 

knock sensor signal 

The fuel efficiency and the exhaust emissions of a diesel engine directly depend on its 

combustion phase. Existing approaches for the combustion phase detection of a diesel engine are 

mainly based upon high cost in-cylinder pressure sensors. This study focuses on developing a 

method to estimate the point of 75% of mass faction burned (MFB75) by using a traditional 

knock sensor signal. It is motivated by the observation through experiment data that the knock 

signal can be correlated to MFB75 location well. The proposed MFB75 estimation approach 

mainly uses the information from the integration of the knock signal, which is an indicator of the 
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knock intensity. It is observed that the knock intensity usually has abrupt increase around 

MFB75 location. Therefore, the difference of the knock integration over each crank angle is 

calculated and used to estimate the MFB75 point based upon certain principles proposed in this 

research. The proposed approach was validated using the experimental data. It was found that the 

proposed approach demonstrates consistent and accurate estimation capability of MFB75. In 

addition to the MFB75 estimation, the study also shows that the knock sensor signal can be used 

as a secondary estimation of fuel content. 

1.3  Organization 

This dissertation is organized as the following: Chapter 2 investigates the feasibility of 

detecting the start and end of pulsating flow property measurements and the fluid characteristics 

in automotive engines by using an IPMC beam-based sensor. Chapter 3 presents an optimal AFR 

tracking method based upon the adaptively estimated biofuel content for internal combustion 

engines equipped with lean NOx trap (LNT) aftertreatment systems. In Chapter 4, the 

combustion characteristics of biodiesels will be studied by using a knock sensor, along with an 

approach for closed-loop combustion in flex fuel diesel engine. The conclusions and the future 

works are addressed in Chapter 5.  
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CHAPTER 2 IPMC BEAM FUEL FLOW CHARACTERISTICS SENSING  

 

2.1  Introduction 

In order to improve engine fuel efficiency with reduced exhaust emissions, advanced 

sensor technologies are widely used for engine management systems (EMS). Prime examples of 

advanced sensors used in EMS are the mass air flow (MAF), manifold air pressure (MAP), in-

cylinder ionization, and exhaust oxygen sensors. The mass air flow in the engine intake manifold 

and the exhaust oxygen fraction before the three way catalytic converter are used to control the 

fuel injection quantity to meet the desired air-to-fuel ratio requirement at the given engine load 

and speed condition, while the in-cylinder ionization sensor is used to provide the in-cylinder 

combustion information for feedback control [19], [20]. The existing flow sensors, especially the 

pulsating flow sensors, operate based upon the Coriolis effect, gear-type positive displacement, 

piston displacement, ultrasonic measurement, or pressure increase [21]. These technologies are 

capable of providing accurate laboratory-grade measurements in a well-controlled environment 

but are not suitable to be used in a production environment such as engine fuel systems.  

With the application of the biofuels (such as ethanol and biodiesel) on the horizon, 

detecting the fuel flow and contents (e.g., blend fraction of gasoline and ethanol) becomes a 

critical technology for maximizing the engine efficiency with reduced emissions [21], [22]. This 

is because the combustion characteristics are quite different for different fuel contents. One 

approach used to estimate biofuel contents is to measure the fluid viscosity or drag coefficient 

since different biofuel blends have distinct viscosity values. It is desirable to obtain such 

measurements in situ and in real time. A key obstacle preventing existing lab-grade sensors from 



7 
 

being used in situ is their sizes, calling for new, miniaturized flow sensors that are amenable to 

the integration with engine fuel systems. With the advances in new materials and 

microfabrication technologies, micro flow sensors have been developed based on a number of 

transduction principles, such as hot-wire anemometry [23], piezoresistivity [24], and capacitance 

change [25]. Miniaturized strain gages could also be potentially integrated with a beam structure 

[26], [27] for flow measurement. 

 
Figure 2-1 Illustration of the sensing mechanism of the IPMC material (For interpretation of the 
references to color in this and all other figures, the reader is referred to the electronic version of 

this dissertation) 

In this research we propose the use of an ionic polymer-metal composite (IPMC) beam 

and a model-based estimation algorithm as a potential approach to in-situ measurement of flow 

properties. IPMC materials have intrinsic sensing and actuation characteristics [9], [10]. As 

illustrated in Figure 2-1, an IPMC has three layers, with an ion-exchange polymer membrane 
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sandwiched by metal electrodes. Inside the polymer, (negatively charged) anions covalently 

fixed to polymer chains are balanced by mobile, (positively charged) cations. Deformation under 

a mechanical perturbation redistributes the cations, producing a detectable electric signal (short-

circuit current) that is well correlated with the mechanical stimulus. Many researchers have 

studied the fabrication [28]-[30], characterization, and modeling [31]-[36] of IPMC sensors and 

actuators. There has also been proof-of-concept exploration of using IPMCs as mechanical 

sensors for force, pressure, displacement, and velocity measurement in medical applications, 

structural health monitoring, and robotics [37]-[42]. Recent years have seen significant interest in 

using IPMC materials for underwater actuation [43]-[51], sensing [37], [40], and energy 

harvesting [52], [53]. 

We have chosen the IPMC material for flow sensing in this work for several reasons. 

First, IPMC has direct mechanosensory property, which minimizes the complexity in both the 

sensor construction and the readout circuit. For example, its readout circuit is much simpler than 

that required for capacitive flow sensing. Low mechanical and electrical complexity in sensor 

construction will facilitate the adoption of IPMC in practical applications such as engine fuel 

systems. Another advantage related to the direct mechanosensory property is the relative ease in 

modeling the sensor beam dynamics, since we only need to consider a uniform IPMC beam. In 

contrast, a strain gage-based flow sensor will typically require embedding the gage in another 

structural beam, and such a hybrid structure will entail much more complex modeling, which 

hinders efficient model-based parameter estimation as proposed in this work. Another advantage 

of IPMC sensors is that, unlike hot-wire or piezoresistive sensors, they automatically capture the 

flow polarity. Finally, the softness of IPMC material allows it to respond to small flows and thus 

attain high measurement sensitivity.   



9 
 

This research focuses on the potential application of IPMC beams in detecting the start 

and end of pulsating flows as well as their fluid media characteristics in internal combustion 

engines. This application requires IPMC beams to respond to various fluid media differently. 

Therefore, a series of experiments was designed and conducted to study the characteristics of 

IPMC beams oscillating in different fluids.  The test results show that the IPMC sensor output 

(short-circuit current) varies as the fluid medium changes, which indicates that the proposed 

IPMC sensor is able to distinguish different types of fluid media.  

In order to extract flow information and fluid properties from the IPMC sensor output, an 

accurate dynamic model is required for an IPMC beam oscillating in a fluid medium. Modeling 

of the IPMC beam dynamics has been studied in the context of actuation [46]-[49]. To fully 

capture the flexible beam dynamics, an infinite-dimensional model is generally required. For 

practical implementation purposes, however, a finite-dimensional model is desirable. The latter 

can be achieved by considering the first few dominant vibration modes [46]-[48], or 

approximating a flexible beam with multiple, serially connected rigid elements [54]-[56]. While 

linear beam models are only applicable to small deformations, the multi-segment approach can 

effectively address large deformations with low computational complexity [56]. In addition, 

compared to the mode summation-based method [46], the latter approach can more easily 

accommodate nonlinear force terms such as the drag. Therefore, we have adopted the multi-

segment modeling approach in this research.  

Under appropriate conditions, we show that there exists a closed-form solution for the 

beam dynamics, and the solution is linear with respect to the fluid property (product of drag 

coefficient and fluid density) that we are interested in estimating. The correlation of the IPMC 

sensor output to the beam dynamics is provided in [32], where one can see that the sensor’s 
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output signal is approximately proportional to the beam tip velocity when the oscillation 

frequency is relatively low. Based on the solution for the beam tip velocity, a least-squares 

minimization procedure is taken to obtain the fluid property estimation, which is readily 

computed based on the measured IPMC sensing current. We have applied the approach to 

estimate the properties of different fluid media in pulsating flows, and the identified parameters 

demonstrate good agreement with their actual values.  

The rest of this research is organized as follows. In Section 2.2 we present the IPMC 

sensing characteristics under different fluid media. In Section 2.3, the dynamic model for the 

IPMC beam is described. The parameter estimation approach using the least squares 

minimization is developed in Section 2.4, and experimental results are presented in Section 2.5. 

Conclusion and other discussions are provided in Section 2.6. 

2.2  IPMC Sensor Characteristics in Flows  

In this section, a series of experiments was performed to study the sensing behavior of an 

IPMC beam associated with a pulsating flow. We first describe the method for sensor fabrication 

and signal conditioning, and then present the results on characterizing the IPMC beam dynamics 

and its sensing response using high-speed imaging analysis. Finally, we show the IPMC sensor 

responses in pulsating flows of several different fluid media.  

2.2.1  IPMC sensor: fabrication and sensing circuit 

The IPMC used in this study was fabricated with Nafion-117, a commercial ion-exchange 

material from DuPont, by following the general ion-exchange and electroless electrode plating 

processes described in [29]. First, oxygen and argon plasma treatment was applied to roughen the 

surface of the Nafion film [57], followed by cleaning with boiling acid (HCl) and then with 

boiling deionized water (sample preparation). After these preparation steps, the sample was 
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placed in [Pt(NH3)4]Cl2 for over 3 hours to incorporate the platinum complex cations into the 

polymer (ion-exchange). Then, the reducing agent NaBH4 was applied to the membrane in a 

water bath of 60 ˚C, which reduced the platinum complex ions to platinum near the membrane 

surfaces (electrode plating). The ion-exchange and electrode plating processes were repeated 

several times until the electrodes were sufficiently strong and thick, as indicated by the surface 

resistance. The final thickness of the IPMC was about 250 µm. Samples of desired lateral 

dimensions were then cut with a razor. Little pre-bending, if any, was observed for the samples 

used in the experiments. 

Figure 2-2 shows the schematic of the circuit used to measure the short-circuit current of 

an IPMC sensor. The circuit uses a two-tier amplification scheme. The first operational amplifier 

(op-amp) converts the short-circuit current into a voltage, while the second op-amp provides gain 

adjustment through a tunable resistor.  A low-noise, low-bias precision op-amp (OPA 124 from 

Texas Instruments) was adopted for the first-tier amplification, to reduce both the noise and the 

spurious DC bias in the sensor output. The measured spurious DC bias was about 0.0054 µA, 

which was negligible when compared to the actual sensing signals (order of µA) in our work. For 

Op-amp2 in Figure 2-2, a LM 324 from National Semiconductor was used.  The output v2(t) is 

related to the current signal i(t) via v2(t)=(R3R1/R2) i(t). The components we used have the 

following values: R1 = 470 kΩ, R2 = 10 kΩ, and R3 is adjustable from 0 to 50 kΩ.  
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Figure 2-2 Schematic of the circuit for measuring short-circuit current output of an IPMC sensor 

 

2.2.2   High-speed imaging-based characterization  

Figure 2-3 shows the schematic of the setup for the high-speed imaging system. A high-

speed camera (Photron, Model Fastcam APX RS) was used to record the horizontally vibrating 

IPMC beam at the rate of ten thousand frames per second.  A high-repetition pulsed copper 

vapor laser (Oxford Lasers, Model LS20-50) was fired to illuminate the beam vibration.  The 

visible laser illumination was directed to the IPMC beam via a fiber optic cable.  The tip 

displacement of the IPMC beam was extracted from the images using an Optimas image 

processing analysis software.   The sensor output response was taken from the short-circuit 

current measured between the two electrodes of the IPMC beam.  A dSPACE system (dSPACE, 

DS1104) was used for data acquisition and processing. 

Figure 2-4 shows the top view of a rectangular IMPC sample (long edge facing up) in the 

air medium.  The dimensions of the beam were 26.9 mm by 4 mm by 0.25 mm (length by width 

by thickness). One end of the beam was securely clamped by a fixture, allowing the other end to 

freely vibrate.  The cantilevered beam was initially rested at its default position along the beam 

axis.  Then, it was perturbed manually with about 60 degrees clockwise from its default position.  
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As soon as the beam was released from that position, it oscillated around its base similar to a 

pendulum swinging around its pivot point.  The entire swinging motion was recorded until it 

gradually returned back to its default position. 

 
Figure 2-3 Schematic of the high-speed imaging system for characterizing IPMC beam behavior 

   

 

Figure 2-4 An IPMC cantilever beam used in high-speed imaging analysis 

Figure 2-5 shows the snapshot images of the IPMC beam in a time sequence after it was 

released (at t = 0 s), between 0.1 and 0.4 s as the beam vibrated in stagnant air.  Also shown in 

the figure are the trajectories of the tip displacement extracted from the images and the signal 

obtained by integrating the IPMC sensing current output. The period of the oscillation was about 



14 
 

0.044 second. It is evident that the beam was highly flexible under free vibrations.  Due to the 

slight dissipation in air and the damping in the beam, the peak displacement slowly diminished 

until the beam finally returned to its rest position; and the peak of the integrated short-circuit 

current decreased in a similar fashion as the amplitude of the oscillation diminished over time.  It 

can be observed that the integrated short-circuit current correlates very well with the beam tip 

displacement. This confirms that, at relatively low frequencies, the tip velocity of the IPMC 

beam can be approximately related to the current output through a static gain, as implied by the 

physics-based dynamic model for IPMC sensors [32]. 
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Figure 2-5 The tip displacement captured by the high-speed imaging system and the integrated 
short-current signal of the IPMC sensor vibrating in air 
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2.2.3  IPMC responses in different fluid media 

Figure 2-6 shows the flow sensor assembly in which an IPMC beam was securely fixed 

to an adaptor for use in a rigid flow channel. The free length of the IPMC beam was 10 mm. The 

beam was 4 mm wide and 0.25 mm thick.  

 

 
Figure 2-6 An IPMC beam in a sensor assembly 

 

 
Figure 2-7 Schematic of the experimental setup for characterizing IPMC sensor responses in 

different fluid media 

Figure 2-7 shows the schematic of the experimental setup for characterizing the sensor 

responses in different fluid media. The bending direction of the beam was aligned with the 
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direction of the pressurized pulsating flow. The IPMC sensor was located at the inlet of the 

solenoid control valve. The on-off solenoid control signal shown in Figure 2-7 was used to 

generate the pulsating flow to excite the IPMC sensor.  
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Figure 2-8 IPMC sensor responses after the start of the flow pulse 

Three fluid media, nitrogen gas, distilled water, and n-Heptane, were used in the 

experiments due to their distinct fluid properties such as density and viscosity. Note that n-

Heptane is a single-constituent hydrocarbon liquid typically substituted for gasoline in bench 

testing of gasoline fuel system components, and both its density and viscosity are in the mid-

range between those of nitrogen gas and distilled water.  

Figure 2-8 shows the responses of the IPMC sensor stimulated by three different fluid 

media after the solenoid valve was opened. The fluid pressure was regulated at 207 kPa and the 

solenoid pulse duration (pulsating flow duration) was set to 100 ms.  The “Start of Pulse” in the 

figure indicated the instant when the solenoid was energized (i.e., valve opened). The key 

information provided by Figure 2-8 is that the IPMC beam signals were quite distinct under the 
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three fluid media.  In particular, the peak amplitude and the decay of the damped oscillations 

were highly correlated with the differences in the fluid media. The signal magnitude was the 

largest for water, which has the highest density and viscosity among the three fluids. The IPMC 

sensor responses following the end of pulsating flow (by deactivating the solenoid valve) also 

demonstrated different characteristics for the tested fluid media, as shown in Figure 2-9. 
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Figure 2-9 IPMC sensor responses following the end of the flow pulse 

Besides the fluid properties, the fluid injection pressure (or flow rate) is a key parameter 

for internal combustion engines. Figure 2-10 shows the IPMC sensor response to an n-Heptane 

flow at three fluid pressures of 207, 310, and 514 kPa.  These pressures correspond to typical 

conditions found in port fuel injection systems of gasoline engines.  While the signals 

demonstrated similar damping behaviors for the three pressures, their amplitudes were different 

– the higher the pressure, the larger the signal amplitude.   This is reasonable because the fluid 

flow rate directly impacts the driving force on the IPMC beam movement and thus the sensor 

output.    Figure 2-8 to 2-10 indicate that both the amplitudes and the decay characteristics of the 
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IPMC sensor output carry useful information about the flow properties. Note that the sensor 

signal amplitudes and the decay characteristics shown in Figure 2-10 provide a strong indication 

that an IPMC sensor is not only capable of characterizing pulsating flows, but also possibly 

capturing various flow conditions. 
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Figure 2-10 IMPC sensor responses to n-Heptane flow under three fluid pressures 

2.2.4  IPMC beam responses to cyclic flows 

In addition to reacting to pulsating flows with different fluid media and flow rates, 

another advantage of an IPMC flow sensor is its ability to capture the pulse-to-pulse variations 

between consecutive events initiated by the solenoid valve.  Figure 2-11 shows the sensor 

response to two consecutive pulsating events of the water flow at 270 kPa.  In this test, the 

solenoid valve was open for 100 ms and the pulse period was also set to 100 ms, providing a 

50% duty-cycle pulsating flow.  As the solenoid valve was energized by a TTL logic input signal, 

the sensor movement was induced by the pulsating fluid movement, resulting in distinct 

vibration signals immediately after the rising and falling edges of the logic pulse, respectively. It 
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can be clearly seen that the sensor provides fairly repeatable signal corresponding to both pulse 

events. The information embedded in the signal slightly after the rising edge and the falling 

edges of the consecutive pulses could be useful for interpreting the pulse-to-pulse variations of 

the pulsating flow. This type of information is very critical to engine fuel flow control and 

calibrations which directly influence combustion stability. Currently high-fidelity measurement 

of the pulse-to-pulse flow variation is only available through a laboratory test bench. With the 

help of the IPMC flow sensor, the flow variation might be possible to measure it in the vehicle 

environment. 
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Figure 2-11 IPMC sensor response to two consecutive pulses of water flow 

In summary, based upon the above experimental results, the IPMC holds a strong 

promise for measuring pulsating flow characteristics in internal combustion engines, including 

flow start and end instants, flow rate, pulse-to-pulse variations, and fluid media properties. In the 

following section we will discuss a multi-segment model for the IPMC beam dynamics in a fluid 
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medium, which will be useful for estimating fluid characteristics based on the IPMC sensor 

output.  

2.3  A Dynamic Model of an IPMC Beam in Fluid Flow  

In order to effectively describe the dynamic responses of an IPMC beam interacting with 

a fluid flow, a multi-segment dynamic model is adopted in this research. Figure 2-12 illustrates 

the beam model with N rigid-body elements. The elements have equal length, and each is linked 

with its neighboring elements through joints modeled by a rotational spring ( iK ) and a linear, 

rotational damper ( iH ), where the index i denotes the i
th element. The damper collectively 

models the internal damping of the IPMC beam and the hydrodynamic damping due to the 

interaction with the surrounding fluid [46]. We have not considered the nonlinear damping effect 

in the interest of deriving an efficient estimation algorithm for real-time applications. We will 

further discuss this issue in Section VI.  The drag force (FDi) due to the surrounding medium can 

be modeled as a lumped load applied at the element center of mass.  

 
Figure 2-12 A cantilever beam modeled by a finite number of rigid elements 
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Figure 2-13 Free body diagram of the ith beam element 

Figure 2-13 shows the free body diagram for one element, where ( , )x y  are the 

coordinates in the inertial frame.  For each element, the governing equation can be written in the 

following form based upon Newton’s law 

( ) ( ) ( ) ( )1 1 1 1 1 1

( 1) ( 1)     sin cos  sin cos , ( 1, , ),
2 2 2 2

i i i i i i i i i i i i i i

iy i ix i i y i i x i

J H K H K

l l l l
F F F F i N

θ θ θ θ θ θ θ θ θ

θ θ θ θ

− − + + + +

+ +

+ − + − − − − −

= + + + =

ɺɺ ɺ ɺ ɺ ɺ

⋯
 

(2.1) 

where iJ  is the moment of inertia for the thi  element, l is the length of the  beam element, ixF  

and iyF  are the reaction forces at the thi  node in the x and y directions, respectively, and 
( 1)i xF +  

and ( 1)i yF + are defined similarly for the ( 1)thi +  node. Note that, from Newton’s law, the 

translational motion satisfies the following equations:  

( 1) ,i ix Di ix i xm a F F F +⋅ = + −  (2.2) 

( 1) ,i iy iy i ym a F F +⋅ = −  (2.3) 
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where im  is the effective mass of beam element i, as defined later in (2.11), and ixa and iya are 

the accelerations in x and y directions, respectively, at the center of the mass for element i. To 

facilitate the derivation of an efficient estimation algorithm for real-time applications, we assume 

small angular displacements in this study, so that 

sin , cos 1,  1, 2, , .i i i i Nθ θ θ≈ ≈ = ⋯  (2.4) 

Note that the approximation made in equation (2.4) leads to a maximum error of 1.5% when the 

beam angle is less than or equal to 10 degrees (0.17 rad). With this assumption, both ixa and iya  

can be approximated by the following equations.  

1

1

1
,  1,2, , ,

2

i

ix j i

j

a l l i Nθ θ
−

=

= + =∑ ɺɺ ɺɺ ⋯  
(2.5) 

0,   1, 2, , .iya i N= = ⋯  (2.6) 

Note that since ( 1)N yF + is zero, we have 0iyF = , 1, 2, , ,i N= ⋯  from (2.3) and (2.6). On the 

other hand, from (2.2) and (2.5), ixF in (2.1) can be solved as a linear combination of DjF
 
and 

, 1, 2, , ,j j Nθ =ɺɺ ⋯  with ( 1) =0.N xF +   

The drag force DiF  applied to each element is exerted by the surrounding medium, and it 

can be expressed as 

2ˆ
,

2
i

Di D
V

F b l C ρ= ⋅ ⋅ ⋅ ⋅  
(2.7) 

where b is the beam element width, DC  is the drag coefficient, ρ is the fluid density, and ˆ
iV is 

the relative beam velocity with respect to the fluid at the center of the element. Note 

that 0
ˆ
i xiV V V= + , where 0V  is the fluid velocity, and xiV  is the x-direction component of the 
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beam element linear velocity ( iV ) at its center of mass. Again, assuming that iθ  is relatively 

small, we can approximate xiV  by iV .     

The moment of inertia iJ , rotational stiffness iK , and damping coefficient iH  can be 

expressed in terms of the beam dimensions, and the properties of the beam material and the fluid,  

2

,
12
i

i e
m l

J J
⋅

= =  
(2.8) 

3

,
12i e
b c

K K
l

γ ⋅ ⋅
= =  

(2.9) 

2 2 ,i e i i e eH H J K J Kξ ξ= = ⋅ ⋅ = ⋅ ⋅  (2.10) 

where im  is the effective mass for element i, c is the beam element thickness, γ is the (effective) 

Young’s modulus of IPMC material, and ξ is the critical damping ratio accounting for both 

material damping and hydrodynamic damping. The effective mass i
m  represents the sum of the 

actual mass of element i and the added mass for this element due to beam-fluid interactions [46], 

[60], and it can be expressed as 

,i em blcρ=  (2.11) 

where eρ represents the effective density of the beam, which depends on the material density, 

fluid density, and beam geometry. Note that since all the beam elements are identical, they have 

the same moment of inertia eJ , stiffness eK , and the damping coefficient eH .  

We can rewrite (2.1) in a compact matrix form: 

,bJ H Kθ θ θ⋅ + ⋅ + ⋅ = Γɺɺ ɺ  (2.12) 

where J, H, and K are matrices of moments of inertia, damping coefficients, and spring constants, 

respectively. For the N-element beam model, these matrices are expressed as 
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(2.14) 
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(2.15) 

The angular displacement vector θ  and the fluid flow-induced torque vector bΓ  are expressed as 
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(2.16) 

 

2.4  Least-Squares Fluid Parameter Identification 

Assume that all the IPMC beam model parameters defined in (2.13), (2.14), (2.15) are 

available. We further assume that the fluid flow velocity 0V  in (2.16) is known; in practice, this 

value could be determined in a number of ways, e.g., based on the applied fluid pressure. We can 

rewrite (2.12) into the following state-space form, where the product of remaining unknown 

parameters DC
 
and ρ appears linearly in the driving term,  
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where 
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where N NI × is an identity matrix and  
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Note that the velocity iV  at the center of element i and the beam tip velocity tipV  satisfy the 

following equations,  

1

1

/ 2
i

i i j

j

V l lθ θ
−

=

= + ∑ɺ ɺ , 
(2.18) 

1

N

tip j

j

V lθ
=

= ∑ ɺ . 
(2.19) 

As discussed in Section II, when the vibration frequency is relatively low, the short-circuit 

current signal shorti  from the IPMC sensor can be related to the beam tip velocity tipV  through a 

static gain, 

,tip shortV iη= ⋅  (2.20) 
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where the gain η can be determined with the formulae presented in [32] or obtained 

experimentally. 

From (2.14) and (2.15), the damping matrix H is proportional to the stiffness matrix K, 

that is, H Kβ= , where β  is a scalar. The mode frequencies in system (2.12) can be obtained by 

using Rayleigh damping theory [58]. System (2.12) can be transformed into its modal 

coordinates,  

,T
b bq H q K q P+ + = Γɺɺ ɺ  (2.21) 

where, 1
bq P θ−= is the angular displacement vector in the modal coordinates, and 

T
b bH P HP= and T

b bK P KP=  are diagonalized damping and stiffness matrices, respectively. The 

column vectors,  ( 1,2, , ),biP i N= ⋯  of the coordinate transformation matrix, 

[ ]1, , , , ,b b bi bNP P P P= ⋯ ⋯ is the orthonormal mode shape vectors satisfying the 

following conditions 

2( ) 0i biK J Pω− =  and 1,T
bi biP JP = 1, 2, , ,i N= ⋯  (2.22) 

where iω is the thi
 
mode frequency. Recall that we are concerned with pulsating flows in this 

research. Therefore, within each pulse, the IPMC beam is subject to a constant flow following 

the initial impact, which implies that the first mode response 

[ ]1 11 1 1, , , ,
T

b b bi bNP p p p= ⋯ ⋯ dominates the beam vibrations.  If higher-frequency 

modes are excited by the initial impact, the responses associated with those modes will be 

damped out much faster than that of the first mode, in which case one can use the output data 

beyond the initial impact for parameter estimation. With these considerations, we derive the 

following relationships between the angular velocities, 
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θ θθ
= = = =
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(2.23) 

Consequently, from (2.18) and (2.19), the velocity iV  for element i can be expressed in terms of 

the beam tip velocity tipV , 
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For practical implementation purposes, we can convert the continuous-time model (2.17) 

to the discrete-time version, 
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for a given sampling period sT , where ˆ b s
A T

bA e= , ˆ
b bC C= , and 
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solution to (2.25) can be obtained as  
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Let the initial condition of the state be 0(0)x x= . The following equation can be obtained based 

upon (2.26),  
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where n is the number of signal data points selected for identification. Note that the system 

matrices ˆ ˆˆ( ,  ,  )b b bA B C  are known, and the velocity vectorV , as defined following (2.17), can be 

calculated using equations (2.20) and (2.24). Therefore, the matrix ( )b nΦ  can be obtained based 

upon the IPMC sensor output. To estimate the fluid property parameter DC ρ  (product of the 

drag coefficient and fluid density), we seek the solution that minimizes the squared error:  

0

2
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D

x
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(2.28) 

The corresponding solution can be readily computed as 
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2.5  Experimental Results on Fluid Property Estimation  

In this section, we apply the proposed modeling and estimation approach to estimate the 

fluid property parameter, DC ρ , for two fluid media (water and n-Heptane) based upon the 

IPMC sensor output signals shown in Figure 2-8 and Figure 2-9. The number of rigid elements in 

the model impacts both modeling accuracy and computational complexity; a higher number of 

elements leads to more accurate modeling but entails higher computational cost. The number of 

rigid elements required to achieve certain accuracy in approximating a flexible beam is highly 

dependent on the geometry and material properties of the beam [59].  

Figure 2-14 shows the simulated responses of the beam tip velocity following an initial 

impact, when different values of N are adopted for the number of rigid elements. The beam 

dimensions used in the simulation were the same as those of the IPMC beam used in the 

experiments, and other simulation parameters were chosen based on general knowledge about 
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beam and fluid properties. The Simulink Simscape toolbox was utilized for the simulation. It can 

be observed in Figure 2-14 that, as the element number increases, the beam tip velocity trace 

gradually converges, and that the five-element model achieves a sound tradeoff between 

modeling accuracy and computational efficiency. Therefore, a model with five rigid elements 

was adopted in this work. 
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Figure 2-14 Convergence of the model as the number of beam elements increases 

Before applying the estimation algorithm, we need to identify a few parameters for the 

beam model. The effective Young’s modulus γ of IPMC was calculated based on the measured 

beam stiffness, following an experimental procedure described in [61]. The width b and the 

thickness c of the beam were measured directly, and the length l of each beam element was 

obtained by the measured beam length divided by 5. The gain η relating the beam tip velocity to 

the IPMC short-circuit current was estimated based on the results from high-speed imaging 

analysis (Figure 2-5). Finally, the damping ratio ξ and the effective beam density eρ were 

identified through curve-fitting, as shown in Figure 2-15. In particular, we tuned these two 
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parameters until good agreement was achieved between the simulated beam tip velocity and the 

measured short-circuit current signal, following the rising edge of the control pulse in a pulsating 

water flow. These parameters were then used to estimate the fluid property parameter for other 

cases. Table 2-1 lists all the parameters identified for the beam model.  
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Figure 2-15 Identification of ξ  and eρ through curve-fitting, where the measured IPMC current 

was taken from the case of a pulsating water flow, following the activation of the solenoid valve 

Table 2-1. Parameters of the experimental IPMC beam. 

γ 

(N/mm²) 
ξ 

   eρ  

(g/cm³) 

η 

(m/s/µA) 

l 

(mm) 

b 

(mm) 

c 

(mm) 

500 0.14 3 0.22 2 4 0.25 

 

Table 2-2 lists the properties of the two fluids (water and n-Heptane), as well as their 

measured average velocities. Reynolds numbers ( eR ) of the two fluids are obtained as [62]:  
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=  
(2.30) 

where v is the kinematic viscosity of the fluid. Based upon the obtained Reynolds number, the 

actual drag coefficient DC  can be found using Figure 8.8 and Table 8.2 in [62]. Note that these 

drag coefficients were obtained with the assumption of a round, cylindrical beam. Since the 

IPMC beam is rectangular, we have provided a range of values for DC  in Table 2-2.  

Table 2-2. Parameters of the tested fluids. 

Liquid 
ρ 

(g/cm³) 
v  (mPa⋅s) V0 (m/s) eR  DC  

Water 1 1.007×10
-6

 0.15 595.8 1.1 to 1.3 

n-Heptane 0.684 0.564×10
-6

 0.22 1583.4 0.8 to 1 
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Figure 2-16 Selection of signal segment for parameter estimation, for the case where the beam 
motion was initiated by the start of a water flow pulse 
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Next, we will estimate the fluid property parameter DC ρ  for water and n-Heptane using 

the measured IPMC sensor outputs shown in Figure 2-8 and Figure 2-9, and compare the 

estimates with the values derived from Table 2-2. The sampling time was 0.5 ms. Figure 2-16 

shows the IPMC short-circuit current signal following the start of the water flow, and the 

simulated beam tip velocity based on the parameters ξ, eρ , and DC ρ  that were obtained 

through curve-fitting. Recall that this was how the beam parameters ξ and eρ were identified.  

Due to the large angular displacement at the start of pulse flow, the current signal does not 

correlate well with the simulated beam tip velocity immediately following the impact, since 

small displacement was assumed in the modeling process. In order to better identify the fluid 

property, we focused on a data segment away from the initial impact. The two vertical lines in 

Figure 2-16 depict the time interval for which the sensor data was used for parameter estimation. 
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Figure 2-17 Estimation error as a function of data length, for the case where the beam motion 
was initiated by the start of a water flow pulse 
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Note that the number n of data points used in parameter identification affects the 

accuracy of the least-squares estimation. To demonstrate this effect, we took the test data shown 

in Figure 2-16 and performed estimation with data of different length.  Figure 2-17 shows the 

estimation error as a function of the signal length n. The estimation error is with respect to the 

midpoint of the calculated range for DC ρ  shown in Table 2-3. It can be seen that the estimation 

error drops as the signal length increases. But after the signal length is increased to a certain 

value, the estimation error converges. This is because it takes a certain number of data points to 

convey the oscillation characteristics. Therefore, the selection of the test data segment (including 

the data length) plays an important role in determining estimation accuracy and computational 

complexity. Figure 2-18 shows the selected data segments for parameter estimation for the three 

other cases. Note that in these cases, ξ and eρ identified earlier were used, and the values of 

DC ρ  were obtained from the least-squares optimization. 
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Figure 2-18 Selection of signal segments for parameter identification for the other three cases 

The estimated fluid property parameters are summarized in Table 2-3 against the 

calculated ones.  Here the calculated DC ρ  range is obtained based on the data listed in Table 2-2. 
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It can be seen that the identified parameters are very close to their corresponding calculated 

values. Furthermore, the identified parameters using the data following the start of the pulses are 

consistent with those based upon the data following the end of the pulses. This is very important 

for automotive applications of on-board diagnostics and fuel composition detection.  

Table 2-3. Estimated fluid property parameter DC ρ for water and n-Heptane. 

Injection Fluid 
Calculated 

DC ρ  

Estimated 

DC ρ  

Start Water 1100-1300 1157.4 

End Water 1100-1300 1137.0 

Start n-Heptane 547.2-684 579.3 

End n-Heptane 547.2-684 613.2 

 

2.6  Conclusions and Discussions 

Motivated by the potential application of the IPMC beam as flow sensors for automotive 

engines, this research investigates the feasibility of an efficient algorithm for identifying the fluid 

properties using the output of an IPMC sensor beam under pulsating flows. A dynamic, multi-

segment model for IPMC beam dynamics was developed and solved analytically. The obtained 

solution, linear in the parameter of interest (product of drag coefficient and fluid density), was 

then used to identify the fluid parameter through least-squares minimization, where, again, an 

analytical solution was readily available. The estimation scheme was applied to pulsating flows 

of two different media, water and n-Heptane, and the estimated fluid parameters showed good 

agreement with the true parameters for those media.  

Our work has shown the promise of using IPMC for measuring flow conditions and fluid 

properties in pulsating flows. While the study was motivated by emerging automotive 

applications (such as detecting the composition of fuel blends), it can be extended and applied to 
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flow sensing in other areas including biomedical systems. One such example could be the 

measurement of flow characteristics in blood vessels (pulsating flow in nature). On the 

fabrication side, with the advances being made in lithography-based microfabrication [30], [63], 

and [64], IPMC sensors can be scaled down to the micrometer range to accommodate the 

aforementioned applications. On the algorithm side, the dynamic model and the associated 

estimation scheme proposed in this work naturally accommodate scaling.  

We now discuss several characteristics of IPMC materials as relevant to their proposed 

use in this research. The first is the bandwidth of an IPMC sensor. Since the sensing property is 

enabled by the redistribution of ions under mechanical stimuli, one might be concerned about the 

IPMC sensing bandwidth (the actuation bandwidth of IPMC is typically below 10 Hz). In fact, 

the bandwidth of IPMC sensors is sufficiently high for most applications envisioned in this 

research. For example, as it can be seen in Figure 2-8 to Figure 2-11, the output of an IPMC 

sensor beam that is 10 mm long, 4 mm wide, and 0.25 mm thick can clearly capture the motion 

of the beam vibrating at about 150 Hz. For property measurement of a flow (especially, a 

pulsating flow), one can design the geometry of the IPMC beam, so that its resonant frequency is 

high enough to allow significant mechanical motion in the frequency range of interest. We note, 

however, as the sensor is scaled down (e.g., by making it shorter) to obtain high resonant 

frequencies, the signal conditioning and amplification circuit needs to be properly enhanced to 

accommodate the generally weaker output from a small sensor.   

It should be noted that fabrication of IPMC materials is yet not fully mature. For example, 

sample properties may have batch-to-batch variations, and material behaviors can change over 

time. As a result, one will need to calibrate individual sensors and periodically recalibrate them 

to obtain accurate sensor parameters in practical applications. On the other hand, IPMC 
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fabrication is a very active research area and it is anticipated that, with further development, 

IPMCs will have much reduced batch-to-batch variation and much improved long-term 

behavioral stability. Furthermore, the model-based estimation algorithm proposed in this 

research exploits salient features (e.g., the damping characteristics) of the beam dynamics, which 

greatly reduces the importance of the absolute signal amplitude and thus mitigates the impact of 

the non-ideal behavior of IPMCs. We also want to point out that the modeling approach and the 

estimation algorithm presented in this research are applicable to other beam-shaped flow sensors 

and thus not limited to IPMC sensors.     

Our current study has not considered the effect of surrounding fluid media on IPMC 

physical and mechanosensory properties. This did not seem to have a big impact on the presented 

work since, in each experiment, the IPMC sensor had relatively short time in contacting with the 

fluid. In long-term applications, one will need to address the potential influence of the fluid 

media on the sensor behavior. One approach is to coat or package the IPMC sensor beam so that 

it is isolated from the fluid. An alternative is to characterize the mechanical and sensing 

properties of the IPMC beam in each fluid and incorporate those properties in model-based 

estimation. In this work, we have also ignored the phase lag between the IPMC current output 

and the tip velocity. Such dynamics [32] can be incorporated to improve the estimation accuracy, 

especially for applications involving high-frequency beam oscillations.  

In the interest of obtaining analytical solutions and thus efficient estimation algorithms 

for real-time applications, we have adopted several approximations and simplifications in the 

modeling and estimation approach. When offline estimation is acceptable, or when adequate 

computing power is available, one can consider extending the approach in a few directions, to 

improve the accuracy in the beam dynamics modeling and in the fluid property estimation.  
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First, instead of using the multi-segment modeling approach presented in this research, 

one can consider using nonlinear finite element methods to solve the nonlinear beam dynamics, 

which can potentially lead to more accurate solutions. Second, we have assumed a constant 

added-mass in this research.  In extension, one could incorporate the fluid density-dependence of 

the added mass in the inertia matrix. The resulting estimation problem will be much more 

sophisticated, but it offers the possibility to simultaneously estimate the fluid density and the 

drag property. Third, nonlinearities can be included to improve the model fidelity across wider 

ranges of operating conditions and fluid properties. Besides dropping the small angular 

displacement assumption, an interesting question to investigate is nonlinear hydrodynamic 

damping. For example, the Keulegan-Carpenter (KC) number [65] in our setting was estimated 

to be about 0.5 and the frequency parameter was about 2400.  Nonlinear damping, where the 

damping coefficient depends on the oscillation amplitude and frequency, could exist for such a 

combination of KC number and frequency parameter [66]. In our work, nonlinear damping has 

not been considered, which is partly justified by the fact that in many applications of interest 

(e.g., estimating a pulsating flow in an engine fuel system), the resulting amplitudes and 

frequencies of beam oscillations have relatively small variations. For other applications where 

the vibration characteristics could vary significantly, it will be of interest to examine nonlinear 

damping.     

Finally, we note that, while this work has focused on the sensing of pulsating flows, 

IPMC sensors can also be used to measure continuous flows. In the latter setting, the flutter 

instability of an IPMC beam when the flow speed exceeds critical values can be potentially 

exploited to extract the flow information. For example, the measurement of the flutter frequency 
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(easily available from IPMC output) can be used to infer either the flow speed (if fluid properties, 

such as viscosity, are known) or the fluid properties (if the flow speed is known). 
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CHAPTER 3 AFR TRACKING WITH BIOFUEL CONTENT ESTIMATION  

 

3.1  Introduction 

 The interest of biofuels is due to its renewable characteristics and low emissions [3], [67] 

such as particulate matter (PM). For diesel engines, biodiesel is commonly blended with 

petroleum based diesel. Because its physical properties and chemical compositions are quite 

different from the petroleum based diesel [68]-[70], the blend of biodiesel and petroleum based 

diesel has quite different combustion characteristics. Similarly, for gasoline engines, the ethanol 

is blended with petroleum based gasoline, leading to quite different combustion characteristics. 

In order to optimize the combustion process for a given biofuel blend, it is necessary to identify 

the biofuel content so that the combustion process can be optimized through fuel injection timing 

and mass for diesel engines and through fuel mass and spark timing for gasoline engines. It is 

also worth mentioning that biofuel contains less energy content by volume than that of 

conventional petroleum based fuel. Therefore, the injected fuel quantity needs to be increased to 

meet the same engine load requirement compared to the petroleum based fuel.       

There are several approaches that can be used to estimate the fuel content. References 

[4]-[6] estimate the fuel content based upon the oxygen sensor signals, [7] proposes using the in-

cylinder pressure signal, [8] uses the ionization signal to estimate the fuel content, and the ionic 

polymer-metal composite beam sensor was used to estimate the fuel content through identifying 

the fuel viscosity in [71]. In this research, the oxygen sensor signal was used to adaptively 

estimate the biofuel content for a flex fuel lean burn engine. A similar technique has been used 

for gasoline engines [6], where the AFR (air-to-fuel ratio) of gasoline engines is maintained at 
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the stoichiometric level through the closed loop control. However, neither the diesel engines nor 

the lean burn SI engines regulate AFR. This introduces an additional degree of difficulty to 

estimate the fuel content since it has to be completed with the AFR fluctuation. It will be even 

more challenging with an aging oxygen sensor with slow transient response. However, during 

the regeneration of the LNT (lean NOX Trap) aftertreatment system, the engine AFR is 

controlled in a closed loop for flex fuel lean burn engines, which provides an opportunity to 

accurately estimate the fuel content.  

The LNT technology is designed to significantly reduce the engine NOx (nitric oxide and 

nitrogen dioxide) emissions for lean burn engines, such as diesel engines [11], [12] and [72]. In 

order to reduce the NOx emissions, an LNT catalyst is utilized to store the NOx emissions during 

lean operation, and when the stored NOx reaches a certain level, the LNT needs to be 

regenerated through rich AFR operation. During the short rich operation period, the LNT catalyst 

releases its stored NOx and regenerates its storage capacity, where the released NOx is converted 

into non-polluting nitrogen due to the rich AFR. 

The rich AFR can be achieved either by using post injection [73] or by extending the 

main injection [74] to increase fuel injection mass. The quantity of injection needs to be 

controlled in a closed loop to regulate the AFR to the desired level based upon the oxygen sensor 

signal. The control strategies for the closed loop AFR control have been widely studied; see [6] 

for PI control, [22] for sliding mode control, [75] for adaptive control, and [76] for LPV control. 

In this research, an adaptive LQ tracking controller was proposed for biofuel lean burn engines to 

regulate the AFR during the LNT regeneration process, the biofuel content is estimated using a 

gradient based adaptive law [77]. The advantage of the LQ tracking control is that it constitutes a 

linear feedback control that can be easily computed and implemented with estimated state 
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information subjected to system uncertainties and measurement white Gaussian noise [78]. In 

order to eliminate the steady state error, an integral action was introduced in the LQ controller.  

The lean burn engine system was approximated in this research by a third order linear 

system with a transport delay between the engine combustion chamber and the exhaust manifold, 

exhaust manifold filling dynamics and the oxygen sensor dynamics. Since the mass air flow 

measurement and adaptive fuel content estimation introduces uncertainties into the system, the 

robust stability of the closed loop system was also studied in this research. The robust stability 

analysis of uncertain linear systems has received a lot of attention, particularly in the context of 

uncertain linear systems with time-varying parameters [79]-[83]. Most of the existing approaches 

use quadratic stability analysis, which is known as a sufficient condition for the stability of linear 

systems with arbitrarily fast time-varying parameters, because it does not take into account 

bounds on the time-derivatives of the varying parameters [79]-[80]. This research investigates 

the robust stability of the closed loop systems with linear parameter variations (LPV) inside a 

polytope with the bounded variation rate [82]-[83].  

Several adaptive control schemes were studied through simulations with respect to the 

tracking control and adaptive estimation performance. The developed tracking control with 

adaptive biofuel content estimation was validated through dynamometer experiments of a lean 

burn SI engine. The best performance was reached with the adaptive gain-scheduling scheme. 

The gain-scheduled adaptive estimation is not only able to track the desired AFR during the fast 

fuel content transition but also is able to reduce the estimated fuel content fluctuation induced by 

oxygen sensor noise.  

The main contribution of this research is the application of the adaptive LQ tracking 

control to regulate the AFR during LNT regeneration with guaranteed robust stability with 
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respect to the varying fuel content estimation error and engine speed. The proposed control 

strategy was demonstrated on the engine dynamometer for a flex fuel lean burn engine equipped 

with LNT regeneration aftertreatment system.      
 

The rest of this research is organized as follows. In Section 3.2 the system model is 

discussed and Section 3.3 presents the proposed adaptive estimation and tracking control 

algorithms. The robust stability analysis of the closed loop system is discussed in Section 3.4. 

Section 3.5 provides the simulation study results, the experiment validation is described in 

section 3.6, and Section 3.7 addresses the conclusions and future work. 

 

3.2  Engine System Model 

The lean burn engine system is modeled as a direct fuel injection engine with the exhaust 

manifold filling dynamics and oxygen sensor dynamics, see Figure 3-1, where the physical 

engine dynamics is shown in the solid box called plant. To simplify the control design process, 

the engine model describes the dynamics from u to 3x . In the actual application the control input 

will be converted into the fuel mass fuelmɺ  based upon the measured air charge mass ˆ airmɺ  and 

adaptively estimated fuel content ˆ.α  

fuelmɺ Φˆ

ˆ
air

DS

m

ασ

ɺ
DS

airm

ασ
ɺ

3x2x
1xu

 

Figure 3-1 Engine system modeling 

The input Φ in the solid box is the equivalence fuel-to-air ratio defined by  
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(3.1) 

where airmɺ is the air mass charged into the cylinder; DSσ is the stoichiometric air-to-fuel ratio 

for the petroleum based fuel; and α is the stoichiometric gain between petroleum fuel and 

biofuel blend defined by 

,BD

DS

σ
α

σ
=  

(3.2) 

where BDσ  is the stoichiometric air-to-fuel ratio for the given biofuel blend. The injected fuel 

fuelmɺ  is calculated based upon the measured charged mass ˆ airmɺ and the estimated fuel gain α̂ as 

shown below, 

ˆ
,

ˆ
air

fuel
DS

m
m u

ασ
=
ɺ

ɺ  
(3.3) 

where, u  is the equivalence fuel-to-air ratio calculated by the controller, and will be defined in 

the following section. 

The transport delay between the cylinder and exhaust manifold can be modeled using the 

following first order transfer function 

1
1

1
( ) ,

1
G s

sτ
=

+
 

(3.4) 

where 1τ is the time constant for the transport delay, which accounts for the time from the instant 

of the fuel injection to the opening of the exhaust valve. The exhaust manifold filling dynamics 

is also modeled as the first order dynamics as follows  

2
2

1
( ) ,

1
G s

sτ
=

+
 

(3.5) 
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where 2τ  is the time constant of the charge filling dynamics and is a function of the effective 

length of the exhaust manifold and the exhaust flow rate. In this research, 2τ  is measured from 

the time that the exhaust valve opens to the oxygen sensor signal changes. The oxygen sensor 

dynamics is also modeled as the first order dynamics as below  

3
3

1
( ) ,

1
G s

sτ
=

+
 

(3.6) 

where 3τ is the time constant of the sensor dynamics. Note that 3τ  increases as the sensor gets 

old.  

Therefore, the system transfer function from input equivalence ratio ( )U s  to the output 

equivalence ratio ( )Y s  measured by the oxygen sensor is 

3
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where  ( )fuelM s  is the Laplace transformation of  fuelmɺ .  Equation (3.7) can also be expressed 

as  

1 2 3
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(3.8) 

where ( )U s  is the Laplace transformation of  u , and 
ˆ

1
ˆ

air

air

m

m

α
δ

α
= −
ɺ

ɺ
 represents the system 

uncertainty due to the estimation error of the fuel content α̂  and measurement error of the air 

charge mass ˆ airmɺ . In addition, the fuel injection shot-to-shot variations are modeled as the 

system noise input w , and the oxygen sensor measurement noise is represented by v . This leads 

to the following nominal state space model with 0δ = , 
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0 ,     0 ,  0 0 1 .

0
1 1

0

c c cA B C

τ
τ

τ τ

τ τ

 
−   

  
  

= − = =  
  
  
 −   

 

 

Linear system (3.9) is then discretized into the following discrete state space model with 

a sample period of 0.025 s. 

( 1) ( ) ( ) ( )
.

( ) ( ) ( )

x k Ax k Bu k Bw k

y k Cx k v k

+ = + +

= +
 

(3.10) 

Note that, both the input noise { ( ), 0,1,...}w k k = and measurement noise { ( ), 0,1,...}v k k = are 

assumed to be zero mean and mutually independent random vectors such that 

{ ( )} 0, { ( ) ( )} 0

{ ( )} 0, { ( ) ( )} 0

E w k W E w k w k

E v k V E v k v k

= = >

= = >
 

(3.11) 

where W and V are the corresponding covariance matrices. 

3.3  Control Strategy Development 

The proposed control algorithm used to regulate the combustion air-to-fuel ratio with the 

presence of unknown biofuel content is an adaptive LQG tracking controller as shown in Figure 

3-2, where the adaptive scheme is used to estimate the fuel gain α (or content); the Kalman state 

estimator is used to estimate system state vector x , and the optimal LQ tracking controller is 

used to track the desired equivalence ratio r based upon the estimated states.  
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x̂

3x

α̂

fuelmɺu

 

Figure 3-2 Adaptive LQG tracking control system 

 

3.3.1   Adaptive fuel gain estimation 

In equation (3.7), assuming that the injected fuel mass for conventional fuel is known, the 

air mass can be measured by a mass flow sensor, and state 3x is the fuel-to-air ratio measured by 

the oxygen sensor at the exhaust manifold. The only unknown term is the fuel gainα . We can 

reorganize equation (3.7) into the below form, 

3
1

( ) ( ) ( ) ( ),fuel
air

X s G s M s s
m

α αφ= =
ɺ

 
(3.12) 

where 

1 2 3

( )
(1 )(1 )(1 )

DSG s
s s s

σ
τ τ τ

=
+ + +

,
1

( ) ( ) ( )fuel
air

s G s M s
m

φ =
ɺ

. 

 Discretizing transfer function ( )G s defined in equation (3.12) yields the following 

discrete transfer function 
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3
1

( ) ( ) ( ) ( )fuel
air

X z G z M z Z z
m

α α= =
ɺ

 
(3.13) 

Based upon the gradient method introduced in [77] that minimizes the instantaneous cost 

2
3

2

ˆ( ( ) ( 1) ( ))
ˆ( ) ,

2 ( )s

x k k z k
J

m k

α
α

− −
=  

(3.14) 

where ( )z k is the inverse “z” transformation of ( )Z z , the adaptive law is obtained as 

ˆ ˆ( 1) ( ) ( ), for [ , ]
ˆ ( ) ,

ˆ ( 1), otherwise

k k z k
k

k

α ε α α α
α

α
− + Γ ∀ ∈

= 
−

 
(3.15) 

where constant α  and α represent the lower and upper bounds of the estimated ˆ ( )kα , 

respectively; Γ is the adaptive gain; and ( )kε is defined by 

3
2

ˆ( ) ( 1) ( )
( ) .

( )s

x k k z k
k

m k

α
ε

− −
=  

(3.16) 

where 2 ( ) 1 0.01 ( ) ( )T
sm k z k z k= + is chosen to guarantee the bounded estimation of ˆ ( )kα . 

It is well known that the convergence of the estimate α̂  is guaranteed by the persistent 

exciting ( )tφ  assumption [77], where ( )tφ  is the inverse Laplace transform of ( )sφ in (3.12). 

Since ( )tφ  is a scalar function, as long as the fuel flow is great than zero, or 0fuelm >ɺ , there 

exist 0ξ >  and 0
0T > such that 

0

0( ) ( )
t T T

t
d Tφ τ φ τ τ ξ

+
≥∫  

(3.17) 

for 0t ≥ . Since the above integral is always invertible, the condition for the persistent excitation 

is always satisfied, and hence, the estimation convergence is guaranteed. 
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3.3.2   Kalman state estimation  

The Kalman state estimation is a stochastic filter that provides the optimal state 

estimation for a linear system subject to Gaussian noise inputs. For a given initial state ˆ(0)x  and 

the current measurement ( )y k , the Kalman estimate states can be expressed in the following form 

ˆ ˆ ˆ( 1) ( ) ( ) [ ( 1) ( )].fx k Ax k Bu k K y k Cx k+ = + + + −  (3.18) 

The Kalman estimation gain fK can be calculated from the following equation 

1[ ] ,T T
fK HC CHC V −= +  (3.19) 

where the state error covariance matrix H is solved by the following algebraic Riccati equation  

1[ ( ) ] .T T T TH A H HC CHC V CH A BWB−= − + +  
(3.20) 

3.3.3  LQ tracking control with integral 

In this section, an LQ controller was developed to track the desired equivalence fuel-to-

air ratio. In order to eliminate the steady state error, an integral control was introduced into the 

LQ controller by defining the tracking error ( )e k as 

( 1) ( ) ( ) ( ) ( ) ( ) ( ).e k e k y k r k e k Cx k r k+ = + − = + −  (3.21) 

Augmenting state vector 
( )

( )
( )

x k
x k

e k

 
=  

 
ɶ  yields the following state equation 

( 1) ( ) ( ) ( )
,

( ) ( )

x k Ax k Bu k dr k

y k Cx k

+ = + +

=

ɶ ɶɶ ɶ

ɶ ɶ
 

(3.22) 

where  

3 1 3 10 0
,   ,   [ 0],

1 0 1

A B
A B C C d

C

× ×     
= = = =     −     
ɶ ɶɶ . 

The cost function of the LQ controller is defined as  
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1

0

[ ( ) ( ) ( ) ( )] ,
N

T T

N k

J E x k Qx k u k Ru k
−

→∞ =

  
= + 

  
∑ ɶ ɶ  

(3.23) 

where the weight matrices Q  and R are given so that 0TQ Q= ≥ , and 0TR R= > . Then, the 

optimal control is  

( ) ( ) ( ),ru k Kx k K r k= − +ɶ ɶ  (3.24) 

where 

1[ ] ,T TK B SB R B SA−= + ɶɶ ɶ ɶ ɶ  (3.25) 

and S is the solution to the following algebraic Riccati equation 

1[ ( ( ) ] ,T T TS A S S B B SB R B S A Q−= − + +ɶ ɶɶ ɶ ɶ ɶ  
(3.26) 

rK in equation (3.24) is calculated by 

1

1,T T
rK B SB R B F

−
 = +
 
ɶ ɶ ɶ  

(3.27) 

and   

1

1 3 2 3 2 ,T T T
F I A A SF F A SF F d

−
 = − − +
 

ɶ ɶ ɶ  
(3.28) 

where 1
2

TF B R B−= ɶ ɶ , [ ] 1
3 2F I F S

−= + , and I is an identity matrix. 

Define the dimension of x , y and u as xn , yn and un , respectively. Partition the state 

feedback matrix in terms of its first xn columns and its last yn columns, 

[ ].x eK K K=ɶ  (3.29) 

Then, the optimal control law can be written as follows 

[ ]
( )

( ) ( ).
( )

x e r

x k
u k K K K r k

e k

 
= − + 

 
 

(3.30) 
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Since not all states are measurable, recall the Kalman state estimate ˆ( )x k  and replace ( )x k with 

ˆ( )x k in equation (3.30). Then, the LQG control law can be expressed as below 

ˆ( ) ( ) ( ) ( ).x e ru k K x k K e k K r k= − − +  (3.31) 

 

3.4  System Robust Stability Analysis  

The robust stability of the closed loop system, shown in Figure 3-2, in the presence of 

system uncertainty δ  is analyzed using the approach introduced in [83] for linear parameter 

variation systems.  For the stability analysis, the system noise input w  and the oxygen sensor 

measurement noise v  in equation (3.10) are set to zero. Replacing the control input with u  

defined in equation (3.31), equation (3.10) can be expressed as 

[ ]ˆ( 1) ( ) ( ) ( ) (1 ( )),x e rx k Ax k B K x k K e k K r kδ+ = + − − + +  (3.32) 

where the estimated state x̂  and the tracking error e  can be expressed as 

[ ]
ˆ ˆ ˆ( 1) ( ) [ ( 1) ( )]

ˆ( ) ( ) (1 ( )),

f

x e r

x k Ax k K Cx k Cx k

B K x k K e k K r kδ

+ = + + −

+ − − + +
 

(3.33) 

Then, equations (3.32), (3.33), and (3.21) can be written into the state space form  

( 1) ( ) ,CL CL CL CLx k A x k B r+ = +  (3.34) 

where 

1

( )

ˆ( ) ( ) ,

( )

CL

n

x k

x k x k

e k ×

 
 =  
   1

(1 ( ))

( ) (1 ( ))( ) ,

1

r

CL f r

n

k BK

B k k B K CB K

δ
δ

×

 +
 

= + + 
 − 
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1

(1 ( )) (1 ( ))

(1 ( ))( )
(1 ( ))( )

0 1

x e

f

CL f f e
f x

n

A k BK k BK

A K C
A K CA k B K CB K

k B K CB K

C

δ δ

δ
δ

×

− + − + 
 − = − + + − + +
 
  

, and the order of the 

closed loop system is 7n = . Define 

0 ( ) ,
( )

0 1

x e

f

f f e
f x

A BK BK

A K C
A K CA B K CB K

B K CB K

C

− − 
 − = − + − +
 
  

 

(3.35) 

3 3

3 3

1 3 1 3

0

0 ( ) ( ) ,

0 0 0

x e

f x f e

BK BK

A B K CB K B K CB K

×

×

× ×

 − −
 

∆ = − + − + 
 
 

 

(3.36) 

so that the closed loop system matrix is 

0 ( ) .CLA A k Aδ= + ∆  (3.37) 

Since the reference input does not affect the system stability, the closed loop system (3.34) 

with 0r =  is investigated as follows 

( 1) ( ( )) ( ).CL CL CLx k A k x kδ+ =  (3.38) 

It is clear that CLA is a linear function of ( )kδ , and therefore, system (3.39) is a linear parameter 

varying system and the robust stability can be analyzed using the approach described in [83]. 

This study focuses on the effect of the fuel content estimation to stability with the air flow 

measurement error. Note that the air flow estimation can also be improved by using the speed-

density approach. From equation (3.8), δ  can be expressed as follows.  

ˆ ( ) ( )
( ) 1.

ˆ ( )

air

air

m k k
k

m k

α
δ

α
= −
ɺ

ɺ
 

(3.39) 
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Let airε  be the percentage error bound for the charged mass air measurement. It is easy to get 

that 

[ ]min max( ) (1 ) (1 ) .BD DS DS BD
air air

DS BD

k
σ σ σ σ

δ δ δ ε ε
σ σ

 − −
∈ = − + 

 
 

(3.40) 

Define 

1 0 min ,A A Aδ= + ∆  (3.41) 

2 0 max ,A A Aδ= + ∆  (3.42) 

so that the time varying matrix (3.37) can also be expressed in the following form  

2

1

( ( )) ( ) ,CL i i

i

A k k Aβ β
=

= ∑  
(3.43) 

where [ ]1 2( ) ( ) ( )
T

k k kβ β β∈ is the vector of time-varying parameters in the unit simplex 

2
2

2
1

: ( ) 1, 0, 1, 2 .i i

i

k iβ β β
=

  Λ = ∈ = ≥ = 
  

∑ℝ  

(3.44) 

The rate of variation of the parameters 

( ) ( 1) ( ), 1, 2i i ik k k iβ β β∆ = + − =  (3.45) 

is assumed to be limited by a priori defined bound 0b >  such that 

( ) , 1, 2ib k b iβ− ≤ ∆ ≤ =  (3.46) 

with [ ]0, 1b∈ . The case 0b =  indicates ( )kβ is frozen, so that the system becomes a linear 

time-invariant system. While 1b = implies that ( )kβ is allowed to vary arbitrarily inside 2Λ . 

Therefore, the bound on the variation rate of ( )kδ can be expressed as 

max min max min( ) ( 1) ( ) ( ).b k k bδ δ δ δ δ δ− − ≤ + − ≤ −  (3.47) 

Meanwhile, it is also easy to find from (3.44) and (3.45), the following is satisfied  
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2

1

( ) 0.i

i

kβ
=

∆ =∑  
(3.48) 

To model the domain of the bound on time-difference, the vector 

2 2( ( ), ( ))T xk kβ β∆ ∈ℝ can be assumed to belong to the compact set 

2 2 1

2 2

2

1

2

1

: { , , },

, , ,

,
1 0, 1, 2,

0, 1, ,

M

j
j j j

j

b j j
i i

i

j
i

i

co g g

f
g f h

h

f with f i

h j M

ξ ξ×

=

=

 ∈ ∈
 

  
  = ∈ ∈
   

 
Ψ =  

= ≥ = 
 
 
 = = 
 

∑

∑

ℝ ⋯

ℝ ℝ

⋯

 

(3.49) 

where the vectors 
jg for 1, ,j M= ⋯ can be found to be 

1
1

1

1 1 0 0 1

0 0 1 1 1

0 0

0 0

M
M

M

b b

f f b b
g g

b b b bh h

b b b b

− 
   −   = =   − −   
 − − 

⋯
⋯

⋯
 

(3.50) 

with 6M = , see [83]. Once the columns of the set bΨ are defined, the convex can be expressed 

as  

1

( ( ), ( )) ( ),

jM
T

j
j

j

f
k k k

h
β β γ

=

 
 ∆ =
 
 

∑  

(3.51) 

where ( ) Mkγ ∈Λ , and MΛ has the similar expression as 2Λ . 

 Choose the Lyapunov matrix ( ( ))P kβ and ( ( ))kβΩ to have the following affine 

parameter-dependent structure 
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2

1 1

( ( )) ( ) ( ) ,
M

i i j j
i j

P k k P k Pβ β γ
= =

= =∑ ∑  
(3.52) 

2

1 1

( ( )) ( ) ( ) ,
M

i i j j
i j

k k kβ β γ
= =

Ω = Ω = Ω∑ ∑  
(3.53) 

where 
2

1

j
j ii

i

P f P

=

= ∑ , and 
2

1

j
j ii

i

f

=

Ω = Ω∑ . Similarly, ( ( ))CLA kβ also can be converted as  

1

( ( )) ( ( )) ( )
M

CL CL j j
j

A k A k k Aβ γ γ
=

= = ∑  
(3.54) 

with 
2

1

j
j ii

i

A f A

=

=∑ . According to reference [83], if there exist, for 1, ,j M= ⋯ , matrices 

n n
j

×Ω ∈ℝ  and, for 1, 2i = , symmetric positive-definite matrices n n
iP ×∈ℝ  such that  

2

1

1

( )

0

j j
i j ji i

i

N
jT T T

j j j j ii
i

f h P A

A f P

=

=

 
+ Ω 

 
> 

 Ω Ω + Ω − 
 

∑

∑
 

(3.55) 

for 1, ,j M= ⋯  and  

2

1

( )
0

j jl l
i i i l j j li i

i

T T T T
j l l j jl

f f h h P A A

A A

=

 
+ + + Ω + Ω 

> 
 

Ω + Ω Θ  

∑
 

(3.56) 

with 
2

1

( )
jT T l

jl j j l l i ii
i

f f P

=
Θ = Ω +Ω +Ω +Ω − +∑  for 1, , 1j M= −⋯  and 1, ,l j M= + ⋯ , then 

system (3.39) is exponentially stable.  
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3.5  Model Calibration and Simulation Validation 

3.5.1 Engine dynamometer test setup  

The proposed LQ tracking control with adaptive estimation was validated on a lean burn 

SI flex fuel engine. The specifications of the target single cylinder are listed in Table 3-1. 

Table 3-1: Engine system parameters 

Engine displacement 0.4 liter 

Compression Ratio 12.5 

Engine Speed 1500 rpm 

DSσ  (gasoline) 14.6 

DBσ  (E85) 9.7 

1τ  
0.08 

second 

2τ  
0.06 

second 

3τ  0.2 second 

 

Figure 3-3 Engine dynamometer setup shows the engine dynamometer test setup used for 

generating engine model calibrations and closed loop control tests. The engine has a DI fuel 

injection system. Two fuel tanks, one filled with gasoline and the other filled with E85, were 

connected to a fuel pipe line through a fuel switch valve as illustrated in Figure 3-4. Both fuel 

tanks were regulated at 5 MPa by two high pressure Nitrogen bottles. The engine was operated at 

1500 rpm with 5 bar IMEP (indicated mean effective pressure). The engine responses were 

recorded by the A&D combustion analysis system (CAS). Table 3-1 lists the calculated engine 

model parameters obtained from the test data.  
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Figure 3-3 Engine dynamometer setup 

 

Figure 3-4 Fuel system diagram 

 

3.5.2 Stability validation  

Table 3-2 lists the values of the parameters used for the controller design. The excitation 

noise covariance matrices W and V were selected assuming that the exciting noise w  is usually 

much larger than the measurement noise v . The LQ control weighting matrices Q and R were 

selected based upon the closed loop system response time and its relative stability.  

E85 fuel tank Gasoline fuel tank Fuel line 

One cylinder engine High pressure Nitrogen 
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Table 3-2: Control parameters 

Q  R  W  V  

1 0.012 0.012 0.012

0.012 1 0.012 9.6

0.012 0.012 250 60

0.012 9.6 60 2.6

 
 
 
 
 
 

 100 1 0.0005 

The resulting Kalman state estimation gain is  

[4.0543 3.2287 0.6467]TfK =  (3.57) 

and the resulting controller is given as below,  

[0.3426 0.29441.1345]

0.1526

2.2992

x

e

r

K

K

K

=

=

=

 

(3.58) 

The system stability analysis was completed by finding the feasible solutions for 

equations (3.55) and (3.56) using the Matlab LMI toolbox. Two positive definite symmetric 

matrices 1P  and 2P  were found with b  equal to 1, see (3.59). The result indicates that ( )kβ is 

allowed to vary arbitrarily fast inside 2Λ , which consequently leads to the conclusion that 

( )kδ can vary arbitrarily for [ ]min max( )kδ δ δ∈  based upon (3.47). The system robust stability 

is guaranteed even when the fuel content is changed from one fuel (gasoline) to the other (E85) 

in one time step. This is almost impossible in reality.  

1

0.40 0.05 0.06 0.23 0.05 0.08 0.03

0.05 0.55 0.08 0.15 0.23 0.01 0.10

0.06 0.08 0.07 0.02 0.03 0.05 0.13

0.23 0.15 0.02 1.28 0.48 0.04 0.12

0.05 0.23 0.03 0.48 0.85 0.04 0.12

0.08 0.01 0.05 0.04 0.03 0.07 0.12

0.03 0.1

P

− − − −

− − − −

− − − − −

= − −

− −

− − −

− − 0 0.13 0.12 0.09 0.12 1.44

 
 
 
 
 
 
 
 
 
 − − − − 

 

(3.59) 
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2

0.39 0.05 0.06 0.26 0.10 0.07 0.03

0.05 0.55 0.08 0.14 0.23 0.01 0.10

0.06 0.08 0.07 0.01 0.03 0.05 0.13

0.26 0.14 0.01 1.30 0.48 0.04 0.13

0.10 0.23 0.03 0.48 0.83 0.03 0.09

0.07 0.01 0.05 0.04 0.03 0.07 0.12

0.03 0.1

P

− − − −

− − − −

− − − − −

= − −

− −

− − −

− − 0 0.13 0.13 0.09 0.12 1.44

 
 
 
 
 
 
 
 
 
 − − − − 

 

For the practical applications, the engine transport delay and exhaust manifold filling 

dynamics are parameter-varying. To be more specific, the transport delay and the exhaust 

manifold filling dynamics can be modeled as a function of engine speed and they can be 

approximated as follows,  

1 10
1500

engN
τ τ= ×  

(3.60) 

2 20
1500

engN
τ τ= ×  

(3.61) 

where engN
 
is the current engine speed, 10τ and 20τ are the time constant values for the engine 

transport delay and the exhaust manifold filling dynamics when the engine is operated at 1500 

rpm.  

In order to show that the closed loop system is stable under varying engine speed, the 

closed loop system robust stability under varying fuel gain estimation errors and engine speeds 

was studied. The engine speed was varied between 600 and 5500 rpm. In this case the parameter 

varying region of the closed loop matrix CLA  was defined as shown in Figure 3-5. Using the 

same stability analysis approach [83] as the one variable case, four positive definite symmetric 

matrices 3 6iP= ⋯ were found for b equal to 1, which indicates that the system is robustly stable 

when both transport delays ( 1τ  and 2τ  due to varying engine speed) and the fuel content 
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estimation error vary in full range within one sample period. Matrices 3 6iP= ⋯ .can be found in 

(3.62). For an alternative solution, a LPV (linear-parameter-varying) control can be designed to 

guarantee the stability and performance.    

_ min max( , )CL engA N δ_ min min( , )CL engA N δ

_ max min( , )CL engA N δ _ max max( , )CL engA N δ

 

Figure 3-5 Closed loop system matrix CLA  varying bound 

 

8
3

0.38 0.16 0.16 0.40 0.19 0.12 0.33

0.16 0.38 0.22 0.04 0.30 0.16 0.87

0.16 0.22 1.01 0.00 0.16 0.88 6.09

10 * 0.40 0.04 0.00 0.69 0.11 0.01 0.86

0.19 0.30 0.16 0.11 0.39 0.11 0.38

0.12 0.16 0.88 0.01 0.11 0.77 5.34

0.33 0.8

P −

− −

− −

− − − − −

= − −

− −

− − − −
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8
4

0.37 0.14 0.15 0.41 0.17 0.12 0.15

0.14 0.36 0.20 0.03 0.28 0.15 0.55

0.15 0.20 0.97 0.01 0.15 0.84 5.84

10 0.41 0.03 0.01 0.84 0.06 0.02 0.76

0.17 0.28 0.15 0.06 0.38 0.11 0.23

0.12 0.15 0.84 0.02 0.11 0.73 5.13

0.15 0

P −

− −

− − −

− − − − −

= ∗ − − −

− −

− − − −

.55 5.84 0.76 0.23 5.13 42.88

 
 
 
 
 
 
 
 
 
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(3.62) 
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8
5

0.31 0.06 0.13 0.43 0.10 0.10 0.02

0.06 0.23 0.20 0.01 0.02 0.16 0.66

0.13 0.20 1.14 0.01 0.14 0.98 6.90

10 * 0.43 0.01 0.01 0.88 0.09 0.03 1.04

0.10 0.20 0.14 0.09 0.26 0.10 0.21

0.10 0.16 0.98 0.03 0.10 0.86 6.04

0.02 0

P −

− − −

− − −

− − − −

= − −

− −

− − − −

− .66 6.90 1.04 0.21 6.04 49.63

 
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 
 
 
 
 
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8
6

0.27 0.07 0.11 0.38 0.10 0.09 0.18

0.07 0.23 0.21 0.01 0.02 0.16 0.76

0.11 0.21 1.11 0.04 0.15 0.96 6.76

10 * 0.38 0.01 0.04 0.84 0.09 0.06 1.31

0.10 0.20 0.15 0.09 0.27 0.11 0.29

0.09 0.16 0.96 0.06 0.11 0.84 5.91

0.18 0

P −

− − −

− − −

− − − −

= − −

− −

− − − −

− .76 6.76 1.31 0.29 5.91 48.89

 
 
 
 
 
 
 
 
 
 − − − 

 

Note that above conclusion is reached based upon the control gain given in equation 

(3.58). However, if we redesign the state estimator for system (3.10) by placing the poles at  

[0.90 0.89 0.88],  (3.63) 

and change the control gain for system (3.22) by placing the poles at  

[0.94 0.86 0.85 0.84],  (3.64) 

it is infeasible to find the two positive definite symmetric matrices 1P and 2P when b is equal or 

greater than 0.72. This indicates that the closed loop system with adaptive estimation may not be 

stable if the estimation and control gain is not properly chosen. 

3.5.3 Simulations results 

For lean burn engine simulations, the AFR is not controlled in a closed loop except 

during the LNT regeneration, while the Kalman state estimation updates the estimated state 

vector under all engine operational conditions. The LNT regeneration enabling threshold and 

actuator saturation were not considered for this study. Instead, a recorded lean burn engine AFR 
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signal was used as the reference AFR input, along with the mass air flow signal. Three adaptive 

estimation schemes were used in the simulations as follows:  

1) Regular scheme: the fuel content estimation is updated for adaptive control with one 

adaptive gain all the time. 

2) Semi-active scheme: the fuel content estimation is active only during the LNT 

regeneration process. 

3) Dual-gain scheme: same as the regular scheme except that two adaptive estimation gains 

are used, where the small gain is used under the open loop AFR operation and the large 

gain during the LNT regeneration. 
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Figure 3-6 Regular scheme with the oxygen sensor on the engine ( 3 0.2τ = )  

The remaining section studies the three adaptive schemes. For simplicity, the engine 

equivalence (fuel-to-air) ratio Φwas converted into the normalized air-to-fuel ratio λ  in the 

simulation plots. Note that 1/ λΦ = . To simulate the injector shot-to-shot variation and AFR 
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sensor measurement noise, 3% white noise was added to the injected fuel quantity and 5% white 

noise to the AFR sensor output. 
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Figure 3-7 Regular scheme with an aged oxygen sensor ( 3 0.3τ = ) 

Figure 3-6 shows the simulation results of the regular scheme (scheme 1) with the 

measured oxygen sensor time constant 3 0.2τ = . The adaptive gain Γ
 
was chosen to be 0.015. 

The engine was operated under the open loop AFR operation for most of the time, and the four-

second LNT regeneration occurred every 60 seconds. During the regeneration, the normalized 

AFR was controlled in a closed loop and was regulated to be slightly less than one. Gasoline was 

used at the start of the simulation and was switched to E85 at 200
th

 second. Since the adaptive 

estimation was always active, the biofuel content was identified within 7 seconds after the fuel 

switch. However, with the aged oxygen sensor that adds additional modeling error for the 

adaptive estimation, the selected adaptive gain ( 0.015Γ = ) might be too big to have stable 
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biofuel gain estimation. Figure 3-7 shows the simulation results with an aged oxygen sensor 

( 3 0.3τ = ), where the fuel content estimation error increases during the transient AFR operations. 

In order to reduce the adaptive estimation error during the open loop AFR operation, the 

second adaptive control scheme (semi-active scheme) estimates the fuel content only during the 

LNT regeneration with the same adaptive gain as that used in scheme 1 (regular scheme); see 

Figure 3-8 for the simulation results. It can be observed that the biofuel content converges in 

several seconds after the LNT regeneration period begins.  The advantage of this scheme is that 

the adaptive estimation is stopped during the open loop AFR operation to eliminate estimation 

error during the transient AFR operation, however, the disadvantage is that the fuel content is not 

updated until the next LNT regeneration period, which could lead to large engine fuel and torque 

control error. Note that accurate engine torque control is very important for hybrid powertrains. 
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Figure 3-8. Semi-active scheme with an aged oxygen sensor ( 3 0.3τ = ) 
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The third adaptive control scheme (dual-gain scheme) combines the advantages of the 

previous two schemes. It uses a small adaptive estimation gain ( 0.005Γ =  for this simulation) 

during the open loop AFR operation and a large adaptive estimation gain ( 0.015Γ = ) during the 

LNT regeneration period. Figure 3-9 shows the simulation results of the dual-gain scheme. The 

AFR represented by the dotted line is the fuel gain estimated under the same conditions as these 

in Figure 3-8. It is obvious that the small adaptive gain used during the open loop AFR operation 

is capable of providing an accurate estimation of the fuel content before the next regeneration 

event even though the convergence is slow. Note that in an actual engine operation, the fuel 

content change will not be in a step and it will vary relatively slowly. This can be found in the 

next section. Therefore, the performance of the third adaptive control scheme could be better. 
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Figure 3-9. Dual-gain scheme with an aged oxygen sensor ( 3 0.3τ = ) 

The AFR trace represented by the dashed line in Figure 3-9 is the estimated fuel content 

with 3% mass air flow sensor error, leading to about 3% fuel content estimation error  
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3.6  Engine Dynamometer Validation 

The fuel content transition process for experimental validation was designed to start with 

one type of fuel (for instance, gasoline), and then with the fuel switched to the other (for instance, 

E85) in the middle of the test. After the fuel is switched, two types of fuel are mixed in the fuel 

line around the fuel switch valve and eventually the fuel line is filled with the second fuel. 

Correspondingly, three combustion stages can be clearly observed through the estimated fuel 

gain: a) combustion with the first fuel, b) the transition combustion with the mixed two fuels, and 

c) combustion with the second fuel. The engine throttle was fixed for all tests. Also, since the 

experimental validation is centered at the AFR control during the LNT regeneration, the engine 

torque balance was not considered. As a result, the engine spark timing was fixed during the test; 

otherwise, it could be controlled to keep the engine torque output constant during the LNT 

regeneration. Similar to the simulations in the previous sections, the closed loop reference AFR 

was set to 1.0 during the closed loop LNT regeneration, and the open loop reference was set to 

1.3 when the engine is not in the LNT regeneration mode. In order to avoid the interaction 

between transient AFR control and adaptive estimation, the fuel content estimation was disabled 

during AFR transition for the first 0.6 seconds. The adaptive estimation gain used in the 

experiments was retuned such that the fuel content fluctuation was minimized under the fixed 

fuel content with the fastest convergence rate. Note that the retuned adaptive estimation gains are 

smaller than these used in the simulations due to additional mass-air-flow sensor noise that was 

not considered in simulations. 
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Figure 3-10. a Single adaptive gain for fuel transit from gasoline to E85 
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Figure 3-10.b Single adaptive gain for fuel transit from gasoline to E85 

The engine dynamometer test started with one adaptive gain scheme with 0.0025Γ = . 

Figure 3-10 a-b illustrates the test for the fuel transition from gasoline to E85. The entire 
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transition lasted for about 700 seconds. In Figure 3-10.a, it can be observed that the entire 

transition consists of three periods, slow, then fast, then slow. With about 40% of the fuel content 

transition was accomplished during the fast transition period, which is from 300
th

 to 400
th

 

second. Due to the adaptive estimation error, the AFR control error exists especially during the 

open loop control period. Figure 3-10.b shows the details of the AFR signal from 238
th

 to 248
th

 

second and from 350
th

 to 500
th

 second. It is easy to see that the measured AFR closely followed 

the reference signal during the LNT regeneration period due to closed loop control, while during 

the open loop AFR operation, there was some misfire or partial burn occurred due to the lean 

limit of the SI engine combustion caused by the fuel estimation error. The key observation from 

Figure 3-10 is that the majority of the fuel content transition occurs during the open loop AFR 

operation period. Therefore, it is very important to use appropriate adaptive gain to estimate the 

fuel content during the open loop AFR operation.   
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Figure 3-11 Dual adaptive gain for fuel transit from gasoline to E85 
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Figure 3-11 provides the test results for the dual-gain scheme. Since most of the fuel 

transition was completed during the open loop AFR operation, the closed loop adaptive gain was 

kept at 0.0025, while the open loop gain was set at 0.005. The experimental results show certain 

performance improvement, but the large estimation error exists during the transition. 

In order to improve the fuel content estimation performance during the open loop 

operation, the gain-scheduling scheme for adaptive estimation was proposed. Table 3-3 shows 

the tuned adaptive gain with respect to AFR error. The corresponding simulation results are 

shown in Figure 3-12.  It can be seen that, with the scheduled adaptive gain, the time for the fuel 

gain to converge is significantly reduced compared to the dual-gain scheme in Figure 3-9. And 

the dynamometer test demonstrates a similar improvement as shown in Figure 3-13.  

Table 3-3 Scheduled adaptive gain 

λ error 0 0.01 0.02 0.03 0.04 0.05 

Adaptive 
gain 

1e-4 2.5e-4 5e-4 6.2e-3 0.0125 0.0125 
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Figure 3-12 Gain scheduling scheme with an aged oxygen sensor ( 3 0.3τ = ) 
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Figure 3-13 Gain scheduling for fuel transit from gasoline to E85 

In order to have a quantitative comparison among the three adaptive schemes used in the 

test, the mean absolute deviation (MAD) of the AFR error of each scheme was calculated and 

provided in Table 3-4.  

Table 3-4 AFR mean absolute deviation  

 
One 
gain 

Two gain 
Gain 

scheduling 

MAD 0.02777 0.02594 0.02476 

 

Finally, the same gain-scheduling adaptive scheme was also tested for the fuel transition 

from E85 to gasoline. Figure 3-14 illustrates the test result with the same scheduled adaptive 

gains. Compared with the fuel transition from gasoline to E85, the transition from E85 to 

gasoline has a much faster initial transition period. It only took 25 seconds for the fuel gain to 

transition from 0.67 to 0.83, while it took nearly 600 seconds to complete the rest of the fuel 

transition. This could be due to the fact that E85 has higher viscosity than gasoline. As a 
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summary, the dynamometer experiment results show that the proposed LQ optimal controller 

with the gain-scheduling adaptive scheme provides the best fuel content estimation with the 

accurate AFR tracking during the LNT regeneration.   
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Figure 3-14 Gain scheduling for fuel transit from E85 to gasoline 

 

3.7  Conclusions  

This research proposes to use the LQ optimal tracking scheme to regulate the air-to-fuel 

ratio (AFR) of a biofuel lean burn engine during the lean NOx Trap (LNT) regeneration period 

based upon the adaptively estimated biofuel content. The robust stability of the closed loop 

system with adaptive estimation can be analyzed based upon the framework of the linear 

parameter varying systems. Several adaptive control schemes were studied through both 

simulation and dynamometer experiments. The results show that the proposed LQ tracking 

control with the gain-scheduling adaptive estimation provided the best fuel estimation 

performance (minimal AFR error) and demonstrated the ability to regulate the AFR during the 
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LNT regeneration for a flex fuel lean burn engine. It was also found that the fuel transition from 

E85 to gasoline is much faster than the same process from gasoline to E85 for the same 

configuration.   
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CHAPTER 4 DETECTING MFB75 AND BIODIESEL BLEND USING A 

KNOCK SENSOR 

 

4.1  Introduction 

Detect the combustion phase of diesel engines is of great interest to researchers, since it 

can be used as feedback signal for closed loop combustion control to improve fuel efficiency and 

reduce the exhaust emissions of a diesel engine. In particular, the estimation of the start of 

combustion (SOC), which occurs shortly after the fuel injection, attracts the most attention. The 

techniques that can be used to estimate the SOC in diesel engines include using a high speed 

camera to capture the first appearance of the visible flame, and measuring the sudden rise in-

cylinder pressure or temperature caused by the combustion [90]-[92]. However, these detection 

technologies can only be used in the lab environment due to the high cost and low sensor 

durability. 

Over the past decades, numerous efforts have been devoted to developing the numerical 

models of the ignition delay, defined as the time interval between the start of injection (SOI) and 

the SOC. The combustion ignition delay consists of a physical delay and a chemical delay. The 

physical delay includes the time required for fuel atomization, vaporization and mixing with the 

air, whereas the chemical delay denotes the processes of pre-combustion reactions of the fuel, air, 

and residual gas mixture which lead to auto-ignition [90].  In general, these numerical ignition 

delay models were developed as a function of the mixture pressure, temperature, and 

composition [93]-[97], and the most commonly used model is based upon the Arrhenius function 

similar to what was proposed by Wolfer [93] as below, 
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=  
 

 
(4.1) 

where P and T  are in-cylinder pressure and temperature respectively; aE is activation energy; 

uR is universal gas constant; A and n are calibration parameters. However, those models showed 

limited predictive ability of ignition delay, compared to experimental results.  

  As a result, many studies have turned to finding a low cost sensor for SOC detection and 

estimation. Among them, the traditional knock sensor has been considered as a promising 

candidate due to its intrinsic relations between the combustion pressure wave and the vibration 

signals [98]. Reference [99] proposes the use of the wavelet transform of the engine knock signal 

to detect the SOC. Reference [100] proposes an approach to detect the SOC using the envelop of 

the knock sensor signal. The knock sensor was also used as an indicator of the SOC for HCCI 

engines [101]. However, further investigation shows that the knock signal is usually very weak at 

SOC due to its low sensitivity. Therefore, reference [102] used a lab grade accelerometer sensor 

for detecting the SOC.  

Since SOC is defined as the crank location when 1% fuel is burned, the actual SOC is 

very difficult to detect due to the early stage of the combustion. Therefore, many studies use the 

10% of the mass fraction burned (MFB10) location as the indication of SOC [103], [104]. 

However, the combustion phase detection robustness can be improved by correlating the knock 

signal to the combustion phase where rapid combustion occurs. In this case, high signal to noise 

ratio estimation can be achieved. This study proposes estimating the 75% of the mass fraction 

burned (MFB75) location using the knock signal.  

Two traditional knock sensors (used on 2012 GM Cruze) and one instrumentation 

accelerometer sensor (Omega ACC793) were used during the study to detect the MFB75. It turns 



74 
 

out that the sensitivity of the traditional knock sensor is good enough for this application, which 

provides a low cost alternative for combustion phase detection. The integration of the knock 

sensor signal over fixed crank angles was used as the indicator of the knock intensity, while the 

difference of the knock integration over each crank angle was used to detect the MFB75 location. 

Two types of fuel, petroleum diesel (B0) and Canola based biodiesel (B100) [3], as well as their 

blend (B50), were investigated.  As a result, the proposed method indicates that MFB75 can be 

detected consistently. 

Besides the study of the combustion phase detection using knock signal, the feasibility of 

using the knock sensor signal to identify the biodiesel content was also investigated in this study. 

Note that different biodiesel content leads to different cetane number (CN),which results in 

different combustion process, such as different SOC, burn rate, burn duration, and so on [67]-

[69]. Therefore, in order to optimize the combustion process for biodiesel engines, it is necessary 

to estimate the blend of the biodiesel in real time. The existing approaches of detecting fuel 

content are based upon oxygen sensors [105], in-cylinder pressure sensors [7], ionization sensors 

[8], and the ionic polymer-metal composite beam flow sensor [71]. In this study, three fuel 

blends, B0, B50, and B100 were used during the combustion tests using a single optical cylinder 

diesel engine. Note that Canola has higher CN than petroleum diesel. The biodiesel content was 

estimated based upon the knock integration. The test results show a clear difference between B0 

and B50, whereas the difference between B50 and B100 is not as obvious. It was also observed 

that the estimated MFB75 locations can also be used for fuel blend estimation since biodiesel 

content also affects the combustion phase. The future work includes the investigation of 

biodiesel content detection using combined criteria of knock intensity integral and difference (the 

estimated MFB75).  
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The rest of this chapter is organized as follows. Section II introduces the engine 

experiment setup; Section III presents the relationship between knock signal and the combustion 

phase correlated using the high speed combustion images. The developed MFB75 detection 

method, as well as the estimated results, is presented in Section IV. The analysis results of the 

fuel content detection using the knock senor signal is discussed in Section V. Section VI adds the 

conclusions and the future work. 

 

4.2  Combustion Experiment Setup 

Table 4-1: Engine specifications 

Bore 95 mm 

Stroke 105 mm 

Displacement 0.75 liter 

Cylinder Number 1 unit 

Compression Ratio 17:1 unit 

 

The engine combustion experiments were conducted using a single cylinder optical diesel 

engine as shown in Fig 1. The engine specifications are listed in Table 4-1. The intake manifold 

pressure and the intake air temperature were maintained at 1.35 bar and 25˚C, respectively. Note 

that no external EGR (exhaust gas recirculation) was used in this study. The diesel injector, used 

in the test, was a Siemens piezo injector using a 6-hole nozzle with holes of 0.185mm with a 

cone angle of 154 degrees, and the fuel pressure in the common rail was regulated at 125 MPa. 

One lab grade accelerometer sensor and one knock sensor were mounted directly on the cylinder 

wall as shown in Fig 2 to minimize the mechanical vibration noise introduced by other engine 

moving parts. The other knock sensor was positioned on the cylinder head. The in-cylinder 

pressure signal was measured by a Kistler pressure transducer. All combustion data including 
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knock and pressure signals were recorded by a baseline CAS (Combustion Analysis System) 

from AND Technologies, and all the signals were sampled at 60kHz.   

 

 

Figure 4-1. Engine dynamometer test setup 

The tests were conducted at two engine speeds, 1200 rpm and 1500 rpm. The engine load 

was maintained at 5 bar IMEP (indicated mean effective pressure) by adjusting the fuel injection 

pulse width. Two types of fuel injection modes, main injection only and main injection with pilot 

injection, were used during the study. In order to study the knock sensor responses to different 

knock intensities, injection timing was changed while the fuel injection pulse was kept constant.  

Accelerometer & 
Knock sensor 

High speed camera 
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Figure 4-2. Optical test setup diagram 

The diesel combustion usually consists of a cold flame phase and a blue flame phase, as 

well as an explosion flame phase [106], [107]. However, it is difficult to distinguish between the 

blue flame phase and the explosion flame phase, because there exists no exact-single point of the 

SOC [106]-[108]. Reference [108] used the infrared and visible imaging techniques 

simultaneously to study the combustion process from fuel spray to the end of the combustion. In 

this research, high speed combustion images were obtained through optical engine tests and were 

used to correlate the knock signal with the combustion phase. The high-speed camera used in this 

research was a Photron Fastcam APX RS. A shutter speed of 98 sµ was used at a frame rate of 

10,000 fps with a 512 512× pixel resolution. The frames were synchronized with the data 

collected by the CAS system by a TTL trigger pulse. Figure 4-2 shows the diagram of the high 

speed imaging test. 
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4.3  High Speed Combustion Imaging Tests 

As mentioned above, the high speed combustion imaging tests were conducted to 

investigate relationship between the knock sensor signal and the combustion phase. The 

combustion phase is represented by MFB in this study. The MFB at the k-th interval is calculated 

as follows [109], [110], 

0
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(4.2) 

where cP∆ represents the pressure rise due to the combustion, and it is calculated by  

,c vP P P∆ = ∆ −∆  (4.3) 

where P∆ is the in-cylinder pressure change, and vP∆  represents the pressure rise due to the 

combustion chamber volume change, it is calculated by 

1
1 1 1 ,

n

k
v k k k

k

V
P P P P

V

−
− −

   ∆ = − = − 
   

 

(4.4) 

where kP is the in-cylinder pressure at the k-th step. 

It was observed that the knock sensor mounted on the cylinder wall provided a similar 

level of signal-to-noise (S/N) ratio to that of the accelerometer; whereas the S/N ratio of the 

knock sensor installed on the cylinder head was very low. The knock sensor mounted on the 

cylinder wall was used in the rest of the study, and it was filtered by a bandpass filter with cutoff 

frequencies of 3 kHz and 18 kHz, respectively.  

 Figure 3 shows the combustion images synchronized with the in-cylinder pressure 

(InCylPre), MFB, and the knock signal. In this combustion case, a 0.5ms fuel pulse was 

delivered at 12 degrees before top dead center (BTDC). The first visible flame (a tiny orange 
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flame with certain blue flame) was observed around 182
nd

 crank angle degree. It can be seen that 

this SOC was captured by the knock sensor. The significant flame was developed around the 

MFB10 location. However, the knock signal did not show high S/N ratio until 191
st

 crank angle 

degree, where the combustion phase was very close to the point of MFB75. And it can be 

observed that the majority of the knock signal occurs between MFB75 and MFB90 locations.   

A series of validation tests demonstrate similar correlations between the knock sensor 

signal and the combustion phase as shown in Figure 4-3. Therefore, detection of the MFB75 

location using knock sensor signal was proposed in this study.  
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Figure 4-3. high speed images with in-cylinder pressure and knock signals 

4.4  MFB75 Detection Method 

Figure 4-4 shows a combustion event with relatively high knock intensity, which is 

evaluated based upon the signal KnockInt defined by, 
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20
( )

TDC

TDC
KnockInt Knock dτ τ

+
= ∫  

(4.5) 

where τ represents the crank angle; Knock is the filtered knock sensor signal; and KnockInt 

represents the knock integration over 20 crank angle degree window starting from TDC. The 

signal KnockIntCA(i) is the integration of the knock signal over one crank degree starting at the 

i-th crank angle. It is defined by 

1
( ) ( )

i

i
KnockIntCA i Knock dτ τ

+
= ∫  

(4.6) 

Note that KnockIntCA represents the difference of the KnockInt over one crank degree. 
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Figure 4-4. MFB75 detection with intense knock 

In Figure 4-4, the rising edge of the signal MFBflag denotes the location of MFB10, and 

the falling edge of MFBflag denotes the MFB75 location. It can be seen that the MFB75 location 

is very close to the KnockIntCA peak, which is the first KnockIntCA peak greater than one. In 

addition, the following KnockIntCA peaks are all greater than one. 
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Figure 4-5. MFB75 detection with weak knock 

The knock integration shown in Figure 4-4 reaches 80. A similar investigation was 

conducted for the combustions with relatively weak knock at light load, whose KnockInt is less 

than 20 as shown in Figure 4-5. However, the KnockIntCA peak corresponding to the point of 

MFB75 has the similar characteristics to the case shown in Figure 4-4. In this case, the first 

KnockIntCA peak is around 0.75.  

Based upon the above observations, it is proposed to use the following criteria for 

detecting MFB75 location based upon the knock signal. The MFB75 location can be determined 

at i-th crank angle if 

( 1) _ ,KnockIntCA i KnockIntCA Thrsh− ≤  (4.7) 

and 

( ) _ ,

2

KnockIntCA j KnockIntCA Thresh

with j i i

≥

= +⋯
 

(4.8) 

and 

1

( )

1
( )

i

j

KnockIntCA i

KnockIntCA j
i

α

=

≥

∑
 

(4.9) 
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where KnockIntCA_Thresh and α  are two calibration parameters.  Figure 4-6 shows the flow 

chart of the proposed MFB75 estimation algorithm. The physical interpretation of the detection 

logic is to correlate the sharp increase of KnockIntCA to locate the MFB75.   

 
Figure 4-6. MFB75 estimation algorithm working flow chart 

 

Table 4-2: Statistical analysis of the estimated MFB75 location  

Fuel 
Pilot 

Injection 
(degree/ms) 

Main Injection 
(degree/ms) 

Mean of 
MFB75 
(degree) 

Mean of 
Detected 
MFB75 
(degree) 

MAD 
Knock 

Integration 

Engine 
speed 
(rpm) 

0/0 10/0.5 10.8 10.6 2 20.3 1500 

 0/0 13/0.5 9.9 10.8 1.3 18.4 1500 

24/0.35 4/0.5 12.4 11.7 0.9 24.7 1500 
B0 

24/0.35 4/0.5 10.5 11.5 1.2 25.8 1200 

0/0 10/0.5 8 8.6 0.8 50.7 1500 

 0/0 13/0.5 6.7 6.4 0.5 51 1500 

24/0.25 4/0.5 12.5 13.1 1 20.8 1500 
B50 

24/0.35 4/0.5 10.3 10.3 0.5 42 1200 

0/0 10/0.5 7.1 6.4 1.3 46.5 1500 

0/0  13/0.5 5.3 5.1 0.5 57.7 1500 

24/0.35 4/0.5 11.8 11.1 1.4 27.1 1500 

24/0.25 4/0.5 11.7 13 1.4 19.1 1500 

B100 

24/0.25 4/0.45 9.6 10.8 1.3 25.9 1200 
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Based upon the above detection strategy, statistical analysis was conducted. In this 

analysis, engine tests with three different fuels, B0, B50, and B100, were conducted at two 

engine speeds, 1200rpm and 1500 rpm. Several groups of injection parameters were tested in 

order to study the proposed approach over different knock intensity. For each test, the mean 

value of the MFB75 location (crank angle) and the mean absolute deviation (MAD), both 

measured and estimated, were calculated over 40 combustion cycles. In this study, 

KnockIntCA_Thresh was set at 0.7, and α was fixed at 1.5. Table 4-2 provides the analysis 

results. It can be seen that the estimated meanvalues of MFB75 are very close to the actual ones, 

and based upon the MAD, it can be concluded that the estimation has good cycle-to-cycle 

accuracy with largest estimation error equal to 2 degrees. Furthermore, it is observed that the 

higher the knock intensity, the better the estimation accuracy.  
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Figure 4-7. MFB75 estimation under same fuel blend 

Figure 4-7 shows a comparison result of B50 with three different fuel injection timings, 7, 

10, and 13 degrees BTDC with the same fuel injection pulses. It can be found that the MFB75 
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estimation associated with the 13 degree BTDC injection provided the most accurate result. This 

is because the injection at 13 degree BTDC led to the largest knock intensity, while the injection 

at 7 degree BTDC led to the least.  In addition, the analysis results also show that when the 

knock intensity is high, the deviation of the estimated value leans to negative, and vice versa. 

Therefore, the absolute estimation error can be further reduced by using different 

KnockIntCA_Thresh and α  under different knock intensities, which, in general, is function of 

engine speed and load condition. The other approach is to generate an offset map as a function of 

engine speed and load. It is believed through data analysis that the estimation error can be 

reduced to within one degree. 
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Figure 4-8. MFB75 estimation comparison under same injection conditions 

In addition, it was also noticed that for the same fuel injection conditions, the MFB75 

location of B100 is the smallest, whereas the one of B0 is the largest as shown in Figure 4-8. 

This is not only because B100 starts combustion earlier, but it also burns much faster. Therefore, 

it is possible that the estimated MFB75 can be used to detect the biodiesel fuel content.  
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4.5  Biodiesel Content Estimation 

The interest in detecting the biodiesel content is due to the fact that difference in fuel 

content leads to different SOC, burn rate, burn duration, etc. This research studies the feasibility 

of using the knock integration information to estimate the fuel content. Three types of fuel, B0, 

B50, and B100, were studied in this research. 

Figure 4-9 shows the knock integration for the engine combustions of three different 

fuels under the same engine operational condition. The same fuel pulse, 0.5ms, was used with 

two different injection timings, 13 and 7 degrees BTDC, which lead to different knock intensities. 

It can be seen that the differences between three different fuels are quite distinct. B100 has the 

highest knock intensity in both cases, whereas B0 has the lowest. This is because B100 has 

highest CN, so that the combustion occurs earlier and burns faster than these of B0 and B50 as 

shown in Figure 4-10.  
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Figure 4-9. Knock integration without pilot injection 
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Figure 4-10. In-cylinder pressure and MFB compare 
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Figure 4-11. Knock integration with pilot injection 

Since pilot injection reduces the knock intensity significantly, a study with pilot injection 

was also conducted in this research. The main injection is a 0.45ms fuel pulse delivered at 4 

degrees BTDC. Two different pilot fuel pulses, 0.2ms and 0.3ms, were tested with the injection 

timing fixed at 24 degree BTDC. Note that, the engine load was close to the data shown in 

Figure 4-9. With pilot injection, the magnitude of the knock integration reduced dramatically as 

shown in Figure 4-11. However, the differences in the knock intensity of the three fuels were still 

as distinct as without the pilot injection.  
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Since knock is affected by many factors, such as intake air temperature, intake air 

pressure, injection timing and so on, a statistical analysis was conducted by evaluating the mean 

value of the knock integration over 40 consecutive combustion cycles, and the results are 

presented in Table 4-3. Figure 4-12 shows the corresponding statistical analysis for easy 

comparison. 

Table 4-3: Statistical analysis of knock integration 

Pilot Injection Main Injection Knock Integration  
Engine speed 

(rpm) Timing /Pulse 

(degree /ms) 

Timing /Pulse 

(degree /ms) 
B0 B50 B100 

24/0.2 4/0.5 4.4 10.8 12.1 

24/0.3 4/0.5 4.4 13 14.8 1200 

0/0 10/0.5 4.4 12.6 13.4 

24/0.2 4/0.5 6 18.5 20.2 

24/0.3 4/0.5 6.3 19.9 20.9 

0/0 10/0.5 16.9 48 48.2 
1500 

0/0 13/0.5 18.1 48.6 57.4 

 

The results show a clear difference between B0 and B50, whereas the difference between 

B50 and B100 is not that obvious except for case #4 at 1500 rpm. Further investigation of the 

fuel blend between B0 and B50 is necessary. However, the results in Figure 4-8 show that both 

the actual and the estimated MFB75 location have clear differences among three fuels. Therefore, 

it is possible to precisely estimate the fuel blend by using both of the above mentioned 

information, the estimated MFB75 location and the knock integration.  In a summary, it is 

feasible to use the knock sensor signal for estimating the fuel content. 



88 
 

0

10

20

30

40

50

60

70

1200/#1 1200/#2 1200/#3 1500/#1 1500/#2 1500/#3 1500/#4

Engine Speed (rpm)

K
n

o
c
k
 I

n
te

g
ra

ti
o

n
B0 B50 B100

    

Figure 4-12. Knock integration comparison for three fuel blends 

 

4.6  Conclusions 

This study proposes a method to detect the 75% mass fraction burned (MFB75) location 

using the traditional knock sensor signal. This study was motivated by using a low cost sensor to 

detect or estimate the combustion phase. The experimental data shows that the knock signal 

demonstrates certain correlation to MFB location. An estimation algorithm based upon the 

piecewise knock integral was proposed and validated using the experimental data. It shows that 

the MFB75 estimation error, using knock sensor signal, is within 2 crank degrees. With the help 

of calibrating the detecting thresholds as function of engine speed and load, it can be reduced 

down to one degree. In addition, investigation of using the knock sensor signal to estimate the 

biodiesel blend was conducted. The results show the feasibility of estimating the biofuel content 

using the knock sensor signal.  
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CHAPTER 5  CONCLUSIONS AND FUTURE WORK 

5.1  Conclusions 

Different blend of biofuel has different start of combustion (SOC), burn rates, and other 

properties. It is important to detect the fuel blend and optimize the combustion for biofuel 

engines. This dissertation investigates the control applications to biofuel engines through several 

different aspects, such as biofuel content estimation, biofuel engine air-to-fuel ratio control, as 

well as the biofuel engine combustion phase detection.  

The first part of this dissertation studied the feasibility of using ionic polymer material 

composite (IPMC) beams to detect the fuel flow properties (such as fluid density and drag 

coefficient,) for fuel content estimation. In this study, an IPMC beam flow sensor was developed 

and tested in a series of pulsating flow experiments, which were used to simulate the fuel 

injections. The experimental results show that the IPMC beam flow sensor not only is able to 

detect the start and end of pulsating flow, but also shows distinct responses under different fluid 

media. This is very important for biofuel engines where the characteristics of the fuel blend need 

to be identified in real time. A dynamic, multi-segment model for IPMC beam under fluid flow 

was developed, which was then used to identify the fluid parameters through least-squares 

minimization. The estimation scheme was evaluated with two different pulsating flows, water 

and n-Heptane, and the estimated fluid parameters showed good agreement with the true 

parameters for those media.  

The second study used an LQ optimal tracking scheme to regulate the air-to-fuel ratio 

(AFR) of a biofuel lean burn engine during the lean NOx Trap (LNT) regeneration period based 

upon the adaptively estimated biofuel content by using the oxygen sensor signal. The robust 
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stability of the closed loop system with adaptive estimation was analyzed based upon the 

framework of the linear parameter varying (LPV) systems, where both the estimated fuel gain 

and the engine speed were considered as time varying parameters. Several adaptive control 

schemes were evaluated through both simulation and dynamometer experiments. The results 

show that the proposed LQ tracking control with the gain-scheduling adaptive estimation 

provided the best fuel estimation performance (minimal AFR error) and demonstrated the ability 

to regulate the AFR during the LNT regeneration for a flex fuel lean burn engine.  

The third part of this dissertation studied the use of a low cost knock sensor to detect the 

75% mass fraction burned (MFB75) location, and also to estimate the biofuel content. A series of 

experiments were performed, and the experimental data shows that the knock signal 

demonstrates certain correlation to the MFB75 location. In this study, an estimation algorithm 

based upon the piecewise knock integral was proposed and validated using the experimental data. 

It was found that the MFB75 estimation error is within 2 crank degrees. In addition, the analysis 

results also show that the deviation of the estimated MFB75 location is highly correlated with the 

knock intensity. This study also conducted an investigation of the use of the knock sensor signal 

to estimate the biodiesel blend. The results show that both the knock intensity and the detected 

MFB75 location hold strong promising feasibility for the biofuel content estimation.  

 

5.2  Recommendations for Future Work 

The work presented in this dissertation was at the early stage. There is still a lot of work 

to be done to continue improving the ideas or methodologies presented in this dissertation, 

especially for the IPMC beam flow sensor. In order to implement the IPMC beam flow sensor 

onto automotive engines, several issues must be addressed. For example, the IPMC sensor 
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should be minimized , so that it can be installed into the fuel injector; the sensor signal 

conditioning method (both hardware and software) should be improved to obtain higher signal to 

noise ratio (S/N); and a criterion for the sensor signal data selection used for estimation should 

be developed. 

There is still room of improvement for the method of using the oxygen sensor for the LQ 

optimal tracking control to regulate the air-to-fuel ratio (AFR) of a biofuel lean burn engine 

during the lean NOx Trap (LNT) regeneration period based upon the adaptively estimated 

biofuel content.  For example, for practical applications, engine torque needs to be regulated to a 

target value based upon the estimated fuel content during the LNT regeneration. 

In terms of using the traditional knock sensor to estimate the MFB75 location, it is 

believed that the estimation accuracy can be significantly improved with the help of calibrating 

the detecting thresholds as function of engine speed and load. In addition, the development of an 

accurate biofuel content estimation algorithm using both estimated MFB75 and knock intensity 

for biofuel blends is very promising. 
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