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ABSTRACT

SOME STOCHASTIC MODELS FOR MICROORGANISM
DEATH KINETICS

by Frederick Pierce Geyer

Mathematlical models currently used for microbial
death kinetlics are deterministic. Little attention has
been given to population fluctuations arising from random
aspects inherent 1n death processes. Modern probability
theory was used to show how quantitative values can be
assigned to the influence of these factors on the popu-
lation size during a reduction process. Consequently,
real death processes were not studled, but instead a method
of mathematical modeling was derived and 1llustrated.

Death processes were considered as Markov processes
with a continuous time parameter. Chapman-Kolmogorov
equations were derived and solved by the use of probability
generating functions. Models for organisms with one and
two vliable states were considered for both time dependent
and constant death rates.

The stochastlic models obtained gave theoretical
probability distributions for the discrete levels of
possible population size during a reduction process. The
mean of the probabllity distribution derived was equivalent

to the predlction of deterministic models. The latter was
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found to glve a good approximation of the stochastic model
for determining the lethal treatment required'to sterilize
a population of microorganisms.

From the theoretical probability distributions de-
rived, several methods were given to simulate a population
reduction process. These technliques were computer pro-
grammed to generate slimulated death processes.

Experimental evidence of the predicted probability
distribution was conslidered for a homogeneous population
with a constant death rate. The results were inconclusive
because the predicted variation was usually smaller than
the expected variation due to errors of measurement and
observation.

~For a model with two viable states, statlstical esti-
mation of transitlion parameters was considered. The least
squares estimators required the simultaneously solution of
a complex system of non-linear equations. The methods of
successlive substitutlons and the generalized Newton method
were developed. Thelr application was successful for data
simulated according to the derived probabilility distributions.
But these techniques did not give convergence for data with

deviations larger than predicted by the stochastlic models.
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PREFACE

The work reported is Just a beglinning. The topic
has proven to be very interesting and it has provided a
very rewarding experience in my graduate program. But
many questions have arisen during the study that are not
answered here.

The thesis toplc and this dissertation are a
direct result of the training received at the graduate
level. I have tried to fully utillize this training in
carrying out the dissertation research. To some, the
approach may seem theoretical; but to others, the treat-
ment will be at the applied level.

The first inspiration for a thesls on stochastic
models came from Professor J. Ganl (now at The University
of Sheffield), whose classroom teaching ability initiated
my interest in this topic. He was also instrumental in
helping me formulate the two-stage death model (Chapter
4) and its solution.

The cholce of consistent notation was difficult be-
cause of the extensive mathematlcal formulations. To
allow for easy computer programming, alphanumeric charac-

ters were used for real and integer valued variables. In
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so doing, the standard use of Greek symbols and English
letters 1like 1, J and k for transitions parameters was
eliminated. In general, the letters 1, jJ, k, 1, m, and
n were used to define only integer valued variables.

The Fortran listing of computer programs used is
not included. Instead, the steps and procedures re-
quired in writing the programs are given. From my
experience, the logic and notation used in Fortran pro-
gramming 1s an individual matter and 1t takes about as
much time to adopt someone else's program as to compose
a new one. However, I shall be glad to supply a listing
and/or Fortran source deck for the programs used 1n
Chapter 6. These were especially difficult, and it took
me several months to debug these programs.

I wish to express my appreciation to the many people
in the department of Agricultural Englneering who have
contributed to my graduate education. To Dr. D. R.
Heldman, my research advisor, I am particularly indebted.
His guldance and interest in the use of stochastic models
were an abetment to my study. Also, Professors C. W. Hall
and F. H. Buelow (now at The University of Wisconsin) were
very helpful in gulding my graduate program.

Additional acknowledgment is given to Professor I. J.
Pflug (Food Science) and Dr. D. Feldman (Statistics) for

serving as guldance committee members. Finally, it seems
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appropriate to acknowledge the support of my family who

were a constant source of encouragement.
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CHAPTER 1

INTRODUCTION

Scope

The application of stochastic models to the death
of populations of microorganisms 1s examined in this
study. Several cases will be considered in detaill.
Emphasis will be glven to mathematical derivations and
statistical use of the models.

Mathematical models currently used for microbial
death kinetics are deterministic; that is, for certailn
initial values and constant conditions, precise concen-
trations are predicted for subsequent times. Fluctuations
about these precise values are assumed to be a result of
extraneous experimental errors, and statlistical methods
are used as smoothing tools to achleve rate constants and
population sizes.

Little attention has been gilven to the study of
fluctuations arising inherently in the process 1itself.
These fluctuatlons are caused not by errors, but by the
laws of chance. If observations on a blological system
are taken as elements in the set of all possible obser-
vations, these observatlions are usually elements of some

specifled subset of all possible observations. Stochastic

1



mathematical models create a subset that 1s more general
and descriptive than that given by determinlstic models.
Allowance 1s made for random occurrence of individual
events, and a probability 1s assigned to all elements

within the created subset.

Development of Stochastic Processes

The mathematical understanding of physical and bilo-
logical processes has continually broadened and deepened
since the work of Newton 1in the 17th century. Models were
sought that established correspondence between the main
features of experimental results and abstract mathematical
concepts. When randomness appeared in the phenomena, the
classical theory of random variables was applled. Certain
varlables were treated as random variables 1n spaces of a
finite number of dimensilons.

In the 19th and 20th centuries, physical and bio-
logical problems arose involving the use of random vari-
ables 1n infinite-dimensional spaces. The mathematical
framework developed for these problems became known as
stochastic processes. A stochastic process has one or
more varying parameters, of which time 1s the most common.
The process may have a discrete or continuous varying
parameter. For the dlscrete case, there may be a
countable Infinite number of possible values with a
random variable for each value. A complete stochastic

description will give a probabilility distribution of each



variable and all possible joint distributions. Likewilse,
for continuous variables, all variable distributions and
Joint distributions must be described.

Before the development of stochastic processes,
physical and biological phenomena that developed with
time were described with deterministic laws. Usually,
chance was lgnored and observations were considered pre-
dictable with a probability of one. However, in 1827,
Robert Brown observed that particles in a liquid medium
performed intense random movements. From these obser-
vations came studies leading to the Maxwell-Boltzman
distribution for molecules. Soon probabllistic models
were introduced into the kinetlc theory of matter. These
developments were utilized by Gibbs (1902) to lay the
foundation of statistical mechanics.

Einstein (1905, 1906) and Smoluchowski (1906) showed
that Brownian motion could be explalned by assuming a
tremendous number of irregular motions from molecules of
the liquid. Later, Wiener (1923) gave a rigorous mathe-
matical treatment of this model. 1In his version of Brown-
ian motion, he showed that the displacement random variable
is, with a probability equal to one, everywhere continuous
as a function of t. This result 1s of major importance in
the mathematlical development of stochastic processes.
With rather heuristic methods, Bachelier (1900) developed

a probabilistic model for stock market operations. His



model was roughly equivalent to that of Einstein and
Smoluchowski.
As early as 1908, in a different type of stochastic

model, Erlang1

carried out studles on telephone traffic
problems. He derived the equilibrium form of the
Kolmogorov equations for Markov processes with a count-
able number of states. If X(t) 1s a random variable
denoting the number of events during time t, X(t) would
be a discontinuous function of t, increasing by steps at
times when events occur. When these events are the in-
coming calls at a telephone exchange, Erlang showed, under
reasonable assumptions, that X(t) will have a Poisson
distribution. Hls work became the foundatlon for proba-
bilistic models of queueing problems.

Watson (1874) was the first to solve the problem of
extinction of family surnames. Thils problem was a very
early example of a stochastic process in discrete time.
The name of Taylor (1920) could also be mentioned in this
review of early work with stochastlc models. He lald the
foundation for the statistlical theory of turbulence. In
this problem, there 1s not only random variation with
time, but also in space.

These are some of the prominent problems prior to

1925 involving random variation in time, space, etc.

1See Brockmayer et al. (1948) for complete works of
A. K. Erlang.



Unfortunately mathematical rigor was often lacking in
these analyses. There was no general structure to cover
all types of stochastlic problems. With the exception of
the work by Markov, the foundatlions for the mathematical
theory of random processes were not lald till the late
twenties and the thirties. Then Kolmogorov, Khintchine,
Levy, Feller, and Doob contributed ploneering works. As
interest has grown, many other authors have contributed
to thls field and applications have spread to nearly
every branch of scilence.

Markov Process with Continuous
Time Parameter

The most wldely used type of stochastic process in
physical and biologlcal processes is known as Markov pro-
cesses. Markov (1906) extended the range of probability
theory from independent events to events that depend on
the preceding trial. For a random variable X(t) with
varying parameter t, a Markov process 1s defined by the

conditional probability statement:

p{X(t) = xlX(tl) xys X(t,) = XoyeeeeasX(t ) = x )

r

p{X(t) = x|X(tr) = x.} (1.1)

for all t and tl < t2 < ....<tr < t .

Thus X(t) depends only on X(tr) and is independent of all

previous values. Therefore, once the present state is



known, the future probabilistic behavior 1s uniquely
determined. If the parameter intervals are discrete,
the process 1is usually called a Markov chain.

For this study, stochastic processes in continuous
time where the increments of X(t) correspond to non-
overlapping time intervals are always mutually independent
random variables. Such a process wlill satisfy the defi-
nition of a Markov process given aboée. In addition, 1if

the probability distributlion of the increment,
AX(t) = X(t+at) - X(t), (1.2)

depends only on the length t of the time interval, but

1s independent of the location of the interval or the

time axis, the process 1s called stationary or homogeneous.
Models for both homogeneous and non-homogeneous cases will
be considered in this analysis.

A Markov process in continuous time with a finite
number of states 1s of particular interest. For example,
at any time a microorganism may be considered to be in one
of two states: viable or non—viable.2 For a Markov pro-
cess 1n real time (0 <t < =) and a finite number of states
labeled 1,2,...,N, the probability of being 1in state J at
time t 1s labeled pJ(t). From this definition, it follows

that

N

) pJ(t) =1 (1.3)
J=1

~for all ¢t.

2A viable organism 1s capable of reproduction when
placed in a favorable environment.



The transition probabilities, in(t,s) can then be

defined by

pyy(t,s) = plX(t) = J|X(s) = 1}. (1.4)

s < ¢t

X(t) or X(s) i1s the random variable representing the state
of the system at time t or s whichever the case may be.

If pi(s) > 0, then the followling two propertilies hold:
Property 1 pji(t,s) >0 (1.5)

N
Property 2 z in(t,s) =1 (1.6)
J=1
The following special case of the Chapman-Kolmogorov

equations can then be obtained:

no~=

pki(u’s) =

5 Pyy(ust) pyy(t,s) (1.7)

0 <s <t <u

Matrix notation may be used where P(t,s) 1s a N by N

transition matrix. Equation 1.7 can be written
P(u,s) = P(u,t)*P(t,s) (1.8)

If the transition probabilities depend only on

the difference t-s and not on the 1nitlial value, s, the



transition probabilities and matrix are stationary.

Equation 1.7 can be written

N
Ppq(s+t) = J:l Pyy(t) pyq(s) (1.9)

s, t >0
For matrix notation, thls becomes
P(s+t) = P(t) * P(s) (1.10)

A detailed derivation 1s given in Appendix A.

The fundamental stochastic differential equations can
then be derived from Equation 1.7. If u 1s replaced by
t + At and s by t in thls equation, it can be differenti-
ated (exact differential for a stationary model) with re-
spect to t by taking the limit as At +» 0 after a few
algebraic manipulations. This yields the Kolmogorov "for-.
ward system" of differential equations. On the other hand,
if u is replaced by s and s by s - As, the differential may
be. obtained with respect to the varlable s ylelding the
"backward system" of equations. Kolmogorov (1931) was the
first to derive these two systems of equations. A more
detalled derivation may be found in most stochastic texts

such as Doob (1953, p. 235) and Feller (1957, p. 423).



Stochastic Population Models
3

The classical theories- of population growth treat
the size of the population as a contlnuous variable that
proceeds deterministically throughout the whole process.
The fundamental assumption 1s that the future development
of the population can be exactly predicted once the state
at some initial point 1s completely specified.

Feller (1939) was the first to use the methods of
Kolmogorov to treat population change as a Markov process
in continuous time. His study led to a birth and death
process with a discrete number of states. Much earlier,
Yule (1924) had given a stochastic birth process in con-
nection with the mathematical theory of evolution. He
consldered the creation of new specles by mutation as a
random event.

Feller's work was further developed by Arley (1943).
He used a simple birth and death process in the stochastic
theory of the "cascade showers" initiated by cosmic ray.
particles. In a series of papers, Kendall (1948a, 1948b,
1949) treated both homogeneous and non-homogeneous birth
and death models. He also 1llustrated the use of gener-
ating functions for these processes. Following Kendall,
many other authors have contributed to this field. Among
the speclal cases considered 1s the inclusion of immi-

gration into the population.

3See Lotka, 1945, for a review of deterministic
models of population size.
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As a partial development of the birth and death
models, the simple stochastic death model can be easily
obtained. While early population studies were interested
in processes that 1lnvolved growth or mutations, death
events were only included to make the model more realistic.
Consequently, the study of population reduction with
stochastic death models did not receive much consider-
ation.

However, the concept that human death 1s a random
phenomenon has a long history. Medleval artists often
plctured death as something that "sooner or later" en-
slaved the individual. During the Great Plagues the
mysterious ways in which death took the lives of many and
left others untouched created a marked impression that
death was an unpredictable event. Similarly:the concept
of chance was identified with death as that which obeys
no rule and defles all measure and prediction. But with
the development of the scientific theory of probability,
chance took on meaning as a measurable quantity. Pearson
(1897) argued that human death statistics could be identi-
fied with probability distributions which could be defined
in mathematical terms. From studies of human mortality
statistics, he found five periods of human life that showed
regular chance distribution of mortality.

In this section, 1ndividual deaths have been con-
sidered in a population where life was normal. That 1s;

some 1individuals may die, but others live and perform the
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usual functions of 1life. But in this study, the whole
population is assumed under the stress of a lethal con-
dition which inhibits the normal processes of growth and
reproduction.

Ideas about the action of radiation on organisms
have stimulated a large number of deterministic modelsu
for the survival of organisms. These can usually be
classed into two general types, "hit" and "target" models.
"Hit" theory defines an event (death) as taking place when
the organisms have received a determinable number of "hits"
or quantities of radiation. "Target" theory extends this
concept by theorizing that there are two or more targets,
each of which must receilve one or more hits for an event
to occur.

Bharucha-Reid and Landan (1951) suggested a proba-
bility model for radiation damage. They theorized a
chain of states with the ends being the absorbing states
of death and complete recovery with immunity to further
destruction. For hypothetical transition rates from one
state to the next, the»time dependent probabilities of
reaching the two absorbing states are derived.

Hoffman (1957) postulated that death of individual
cells was a random event, but he did not give any mathe-

matical models. Recently, Fredrickson (1966a) has

MSee Zimmer (1960) for an extensive review with
references for death models 1n radiation bilology.
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suggested the use of stochastlic models to describe the
killing of microorganisms. He gives a probability model
of organism viabllity for three different cases. The
first model 1s the simple death process for a homogeneous
population. Geyer (1966) also illustrates this model for
the death of microorganisms. The second model gives the
time-dependent probability that a clump of organisms has
one or more viable organisms remaining. In the third
model, Fredrickson derives the stochastic equations from
a model suggested by Johnson (1963). This model assumes
that the spore contains at least one each of several
different types of subcellular structures. The proba-
bility of a viable organism remaining is then obtained in
terms of the destruction of all the different substructures.
The basic stochastic death model for microorganisms
was also developed by Terul (1966). He used this model to
predict the most probable time to kill a population of
microorganisms. Some addltional detalls of the work of
Terul and Fredrickson will be given in Chapter 3 where the

basic stochastic model 1s analyzed.



CHAPTER 2

ELEMENTARY STOCHASTIC MODEL

Fundamental Observatlons

Microorganism survival i1s currently considered to
be reproducible according to deterministic laws. Fluctu-
ation 1s ascribed, sometimes correctly and sometimes in-
correctly, to experimental error. This study proposes
that fluctuation in part is due to the random processes
basic to the cause of death. And death kinetics for
microorganisms are irreproducible processes.

The exact cause of microorganism death! is not known,
but a number of rational explanations have been proposed
for some. lethal agents. If death is induced by moist
heat, Rahn (1945, p. 39) has reasoned that death results
from the denaturation of a single molecule. While other
theories do not support thils position, most agree that
some unimolecular or complex molecular action occurs caus-
ing the loss of reproduction ability. If this 1s the case,
the hypothesis of Bartholomay (1957, 1958) may be utilized.

He argued that molecular processes are random processes.

lDeath is defined in the usual sense of nonviability
when placed in a favorable environment.

13
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To substantiate this proposition, Bartholomay considered
the random implications of modern chemical reaction theory.
From this viewpoint, randomness may be found in the Brown-
lan-like motions of molecules, in the random intermolecular
collisions, and in the accompanying intramolecular "random
walks" from one discrete quantum energy level to another.
Bartholomay (1962) has extended this line of reasoning to
enzyme kinetics and concluded that stochastic models should
be used for enzyme reactions. This conclusion can be rele-
vant to the theory of Isaacs (1935) that explains cell death
from disinfectants as a result of enzyme 1lnactivation.

The action of chemical agents on microorganisms can
also be considered as a molecular process. In some circum-
stances, the individual chemical particles execute Brownian
motion with small, rapid steps 1n a random manner to pene-
trate and destroy the cell membrane.

In the case of irradlation, death may be caused by
X-rays, gamma-rays, and alpha-rays from radiocactive material,
fast electrons (cathode rays and beta rays), and other fast
charged particles produced by the use of accelerators. In
all these, energy 1is transferred in discrete quantitles,
and the time between emissions 1s a random variable.
Rutherford et al. (1931) observed this randomness early in
this century with radiocactive material. The waiting times
between decompositions are often described with a negative
exponential distribution and the number of emissions by a

Polsson distribution. In addition, the spatial distribution
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of the radiation in the medium containing the cells can
also be considered a random varlable. The absorption of
radiation by organisms has been theorized to have effects
such as local or point energy release, molecular trans-
formations followling quantum jumps, polarization, sepa-
ration of charge and productlon of free organic radicals
(Zimmer, 1960, p. 15). These actions collectively or
singly are a consequence of statistical properties of the
organlsms and of the basic constitution of matter.

Without further consideration of the causes of micro-
organlsm death, the evidence from the several cases con-
sidered indicate that one or more random factors contribute
to all death processes. The modern theory of quantum
mechanics establishes a comprehensive foundation that there
1s a basic physical randomness of molecular motlion within
all organized protoplasm. But an exact or deterministic
relationship may appear on the macroscopic scale. This
gives an i1llusion that the process 1s reproducible.
Usually, the instrumentation lacks the sensitivity to
measure fluctuatlion on the microscoplic¢ scale. On the other
hand, the growth of microorganism populations can be ob-
served accurately. This 1s possible by measuring the time
intervals between cell divisions with a microscope (Kelly,
1932). But since death is not an observable event such as
cell division, better instrumentation i1s required to ap-

pralse the occurrence of individual deaths.
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Derivation of Elementary Model

This section describes the complete derivation of a
non-homogeneous death process. It 1llustrates the mathe-
matical techniques used in this study and presents the
derivation for the time dependent case. Derivations for
the homogeneous process may be found elsewhere. For
example, Bailey (1964, p. 90) considers the homogeneous
death process.

A lethal environment will be assumed and not specil-
fied as to whether it results from heat, chemical poisons,
irradiation, etc. The lethal condition 1s applied at
time zero with uniform intensity throughout the initial
population of organisms. In order to derive the mathe-
matical model for the population during the process, the
following axloms are accepted.

1. A probability parameter h(t) is defined so that
the probability of death for any organism dur-
ing a short interval t, t+4t is h(t+¢at).

The function h(t) represents the death rate of
the organism at time t. And ¢ is chosen so

that:

1 t+At
it S h(t)dtr = h(t+¢at) (2.1)
t
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The death rate may be defined in terms of
physical and chemical properties of the
organism and the environment, but this re-
lationshlp need not be established to derive
the general stochastic model.

2. The probability of more than one death during
the interval t, t+At is o(At) where o(At)
is the zero order of At. That 1s, o(At) is
some function of At such that the 1limit of
9%%21 as At approaches zero 1s zero.

3. The Joint occurrence of events occurring in
non-overlapping time intervals 1s statistically
independent. Thus, the probability of two or
more of these events 1is calculated by multiply-
ing together the probabilities for each.

Axiom 1 implies that the deaths of cells are inde-
pendent events. Starting with an initial population No’
let n(t) be the random variable representing the number of
viable cells at time t. Note that n(t) is a time de-
pendent discrete random variable with a finite number of
states. The probability of having n living organsism at
time t 1s designated pn(t). This probability 1s not
directly obtainable, but 1t can be derived from the
stochastic differential-difference equations (the Kolmogorov
equations). The "forward system" of these equations may be
obtained from consideration of pn(t+At). This probability

can be obtained by applying Equation 1.7 of Chapter 1.
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First, consider all events leading to n organisms at time
t+At. Three mutually exclusive events (El’ Ess E3) may

produce this condition. They are described as follows:

The Joint occurrence of events E and E, ,.

1° 11 12
Ellz N, - n + 1 deaths occur in time t(o,t).
By definition this probability is pn+l(t).
E12: One death occurs among the n + 1 organ-

isms in time At. According to axiom 1,

thlis probabllity 1is
(n+l)h(t+¢at)at

Therefore, according to axiom 3 the
probabllity of E1 is given by the

equation

p{E,} = p{Ell}p{Elz} = pn+1(t) (n+l)h(t+¢at)At (2.2)

and E,,.

E,: The Joint occurrence of events E21 52

E N, -n+1 (1> 2) deaths occur during

21°
time t. Thls probabllity is pn+i(t).

Esst During t, 1 (1 > 2) deaths occur among
the n + 1 organisms. According to axiom
2, this probability 1s o(at). Thus,

p{E2} = p{E21}p{E22} = 152 pn+i(t) o(at) (2.3)
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E,: The Jjoint occurrence of events E and E

31 32

E N - n deaths take place during time t.

31° o
This probability is pn(t).

E32: No deaths occur for the n remalning

organisms during At. Since the proba-

bility of one or more deaths is

nh(t+¢at)At + o(Aat), the probability

of no deaths 1s 1 - nh(t+at)at - o(at).

According to axiom 3,

p{E3} = p{E31}p{E32} = pn(t)L} - nh(t+¢at)at - o(At)J (2.4)

Since events El’ E2 and E3 are mutually exclusive
ways in which pn(t+At) may occur, the probability for

each of the three events 1s summed,

p, (t+at) = p{E;} + p{E,} + p{E;} (2.5)

3

Substituting the expressions obtalned for the terms on

the right side of thls equation,

(t)o(at)

pn(t+At) = pn+1(t)(n+1)h(t+¢At) + i Ppaq

1=2

+ pn(t) 1l - nh(t+¢at)at - o(At)] (2.6)

By subtracting pn(t) from both sides of this equation and
dividing by At, it becomes:
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P,(t+at) - p (t)
At = Pphy1(t) (n+l)h(t+at)

o(at)

1z pn+i(t) At

i=2

- pn(t) n h(t+¢at) (2.7)

Now consider the 1limlit as At tends to zero, the left side

d pp(t)
of 2.7 becomes the derivative pdt . By axiom 2, the

value of QL%%l goes to zero, and h(t+¢At) becomes h(t).

Consequently, Equation 2.7 can be written

d p,(t)
—G5— = Ppep(t)(n + h(t) - p (t) n h(t) (2.8)

where n = 0,1,...,No

Equation 2.8 represents a system of NO + 1 equations.
Each will have two terms on the right side of 2.8 except
for the case where n 1s 0 or No. Since the state No + 1
can not exist, pNo+l(t) has value zero. Therefore Equation

2.8 1s reduced to the following equation for n = No'

d p, (t)
___ﬂg___ = (t) N_h(t) (2.9)
dt pNo o .

And if n = 0, Equation 2.8 yields

d po(t)
& = p;(t) h(t) (2.10)
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The whole system of equations represented by 2.8

can be efflclently represented by the matrix notation:

(o}

Péil = h(t) A P(%t) (2.11)

[o}

where P(t) 1is the vector |py (t), py _1(t), pl(t), po(t)]
o o™ -

and A 1is the No+l by No+1 matrix

_No j

N, -(N -1)

(N-1)  -(N_-2)

Solution of the System of
Differential Equations

The system of differential equations derived in the
previous section may be solved in several ways. Provided
h(t) 1s defined, these equations can be integrated suc-
cessively starting with n = NO. This process will yield
the general solutlon:

t t
Py(t) = exp(-n / h(T)dT)[(n * DL a)pg, (1)

exp (n éth(r)dT)dT + cn] (2.12)
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ch is the constant of integration defined by initial
conditions (pNo(o) = 1; pn(o) =0 , n < No). But this
method 1s very laborious, especlally since No 1s usually
very large. Also, the integration required in 2.12 could
not be carried out without defining h(t). The latter
difficulty 1s avoided when the matrix form is considered.
For this approach, the solution of Equation 2.11 is easily

obtained as
t
P(t) = exp(A é h(t)dr) (2.13)

The form of this solution is simple, but the evaluation
of exp(A ét h(t)dr) 1s a long and difficult process unless
the eligenvalues and eigenvectors of A can be determined
easily.

The most appropriate method for solving a system of
Kolmogorov difference equations such as 2.8 1s to use a
generating function. W1lth generating functions, a system
of differential equatlons can usually be reduced to a
partial differential equation. 1In addition, the moments
of the probabillity distributlon are easy to obtain when
the generating function 1s known. To solve the system of
equations represented in 2.8, the following generating

function Q(x,t) 1s defined.

o)

e =

Q(x,t) =

n
. x p,(t) (2.14)

0
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From this definition, the followlng two partial differ-

ential equations are derilved.

N
o dP_(t)
M: T xn _n__. (2.15)
ot - dt
n=0
N
aR(x,t) © n-1
———EL_‘ = I nx p._(t) (2.16)

If Equation 2.8 is multiplied by x" and summed over all

values of n, it becomes

N T
I X —= 1 n+l) x h(t)p t
n=0 dt n=0 n+l
N, .
- & nx" n(t)p () (2.17)
n=0

This equatlon can be rewritten 1n a more suitable form

by - shift of axlis to discard meaningless terms.

NO n dpn(t) No n-1
I X 3T = I nx h(t)pn(t)
n=0 n=0
N
° n-1
- X I nx h(t)pn(t) (2.18)
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Equations 2.15 and 2.16 can then be substituted into 2.18
and a partial differential equation involving the generat-

ing function 1s obtailned.

2806,8) & pee) (1 - x) 8L (2.19)

Using Lagrange's method of auxiliary equations as
described in Appendix B, the following ordinary differen-

tials have the same solution as 2.19.

T - mene - & (2.20)
Two independent solutions of 2.20 are

Q(x,t) = cys (2.21)
and (x - 1) exp(- ét n(t)dr) = o, (2.22)

with c, and c, arbitrary constants. Therefore, Q(x,t) 1s
t

some function of (x - 1l)exp(- f h(t)dt). For the initial
o

conditions, y(x,0) = xNO, the general solution is
t t Ny
Q(x,t) = |x exp(- S h(r)dr) + 1 - exp(- é h(t)dr)
)

(2.23)
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By a series expanslon of 2.23, the coefficients of
x" are obtained. From the definition of the probability
generating function, these coefficients are the values of

p,(t). Thus,

No n N-n
p,(t) = s(t)" [1 - s(t)] (2.24)
n
where s(t) = exp(- fth(T)dr) (2.25)
o)
and No _ NO!
- (No-n)l n!

This result could be obtained directly from 2.23 by
observing that it 1s a generating function for a binomial
distribution with parameter s(t). Since s(t) is the sur-
vival probability for any organism in the population and
each organism was assumed independent, the binomial distri-
bution of Equation 2.24 can be obtained from Equation 2.9
for a N0 of one. However, the method of solutlion given
1llustrates the technlques used for more complex models
(Chapter 4) that can not be solved by simple methods.

The distribution of the random variable n(t) can be
used to determine common statistics such as the mean n
and variance 02. These two statlistics can be obtalned
directly from the probability generating function by
applying the following formulas.
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n(t) = p'(1,t) = N, exp(- ft h(t)dr) (2.26)
o)

02(t) = y'rA,t) + v'(1,6) - ['(1,£)1°

N exp(- ét h(t)dr)[1 - exp(- ét h(t)dt)] (2.27)

Next, the distribution function of the arrival time
of an event may be obtalned. Starting with No organisms,
the probability that at time t no event has occurred is

given by 2.24 for n = No’ Accordingly,

py (t) = exp(- N_ /° h(r)dr) (2.28)
0o o

This 1s also the probabllity that the first event
happens at some instant greater than t. Therefore, the
distribution function of the arrival time u of the first

event 1s given by
u
F(u) = 1 - exp(- NO é h(t)drt) (2.29)

and the corresponding density function is

f(u) = F'(u) = Noh(u)exp(- N, fu h(t)dt) (2.30)
(0]

where h(t) > 0 for t(0,») and h(t) = 0 for only a finite
interval. This equation can be used to give the distri-
bution of the time interval between any two successive

events if the value of No is adjusted to the level of the
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population and the time scale and h(t) are shifted to the
point the last event occurred.

The deterministic model of this process may be com-
pared to the stochastic 1n several ways. Deterministic
kinetics are based on the Law of Mass Action. Accordingly,
any change in population is proportional to the size of

the population. The ordinary differentilial equation

gl—g= -n h(t) (2.31)

describes the model. 1In thls case, the population 1s
treated as a continuous function of time, although n 1s
discontinuous for a real death process. Equation 2.31 may

be integrated to give
t .
n(t) = N exp(- é h(t)dr) (2.32)

This equation has the same form as the equation for the
mean of the stochastic model (2.26), therefore n(t) and
h(t) are the deterministic equivalent of n(t) and h(t)
in the stochastic model. Thus, the stochastic model is
"consistent in the mean" with the deterministic model.
Consequently, the deterministic model may be considered a
speclial case of the stochastic model. The stochastic
model would yleld the same result as the deterministic

only 1f a large number of cases were averaged.
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The stochastlc model not only predicts a fluctuation
from the mean, but it specifies the expected size of these
deviations. With thils model, the reproducibility of the
process can only be considered as a Jjoint probability
distribution of two or more independent events whose proba-
bilitles are specified by Equation 2.24. However, it is
possible to specify a range of values within which the
process would be expected to lle for any level of signifi-
cance desired.

Because the probabilllity distribution derived in
Equation 2.24 is binomlal, it may be approximated with a
normal distrlibution accordlng to the de Moivre-Laplace
Limit theorem (Feller, 1957, Chapter 7). The error of
this approximation will be small if the variance 1s large.
If the variance 1s small, a Polsson distribution could be
used as an approximation of the distribution because the
variance will be small in the same intervals where the
probability 1s very small or close to one. For a normal
approximation, about 68 percent, 95.5 percent and 99.7 per-
cent of the distributlon would be expected to fall within
one, two, and three standard deviations, respectively of

the mean.



CHAPTER 3

HOMOGENEOUS CASE OF ELEMENTARY MODEL

Description

If the organism death rate h(t) is independent of
time t, the process 1s considered homogeneous and h(t) = h.
Assuming a constant lethal environment, several micro-
organism death processes exhliblt homogeneous character-
istics. Rahn (1945) and Stumbo (1965) both concluded that
the death rate of spores by constant temperature heat in-
activation 1s independent of time. Their conclusion was
based on their own laboratory studies as well as those by
other researchers.

On the contrary, conslderable evlidence has been ob-
tained that heat 1lnactivation of spores 1s time dependent
for some conditions. For example, Frank (1957) and Humphrey
(1961) have documented time dependent cases. For spore
irradiation death processes, nelther the homogeneous nor
the non-homogeneous elementary model seems approprlate.
Instead the process 1s consldered more complex, and a
"target" or "hit" model (see p. 1ll, Chapter 1) is usually

given.

29
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The homogeneous case of heat lnactivation will be
non-homogenebus 1f the temperature is not held constant.
Under these conditions, the death rate is a function of
temperature.

Assuming that a death process is homogeneous, 1ts
probability distrilibution may be easily obtained from the
non-homogeneous stochastic model in Chapter 2 (Equation

2.22). Consequently,

No No-n
pn(t) = exp(-nht)|1 - exp(-ht) (3.1)
n (
n(t) = N exp(-ht) (3.2)
02(t) = No exp(—ht)[l - exp(-ht)] (3.3)

Bailey (1964, p. 91), and Frederickson (1966a) gave
this distribution for a stochastic model of microorganism
death kinetics. As an example of this type of process,
Figure 3.1 shows a hypothetical death process for the
distribution of Equation 3.1. As 1s commonly done, the
log of the number of survivors i1s plotted with a linear
time scale. Thus, the mean 1s a stralght line. To ex-
tend thlis consideration to some of the unique features
of the homogeneous model and its application, the follow-

ing was developed.
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Figure 3.1.--Survival Curve for An Elementary
Death Process.
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First, consider the variance of the process. The
lines 1in Figure 3.1 showing the mean plus and minus three
standard deviations may be deceptive. The time of maxi-
mum varlance or standard deviatlion 1s not evident from
this figure. Since the variance (defined in 3.3) is a
continuous function with value zero at the ends of the
time scale (0,»), a time tm of maximum variance may be
found for 0 < tm < =,

The derivative of 3.3 with respect to time and

solved for t in the usual manner to find a maximum ylelds:

t = Ln 2 (3.4)

The size of the maximum variance °m2 1s then:

N,
g = T (3.5)

2

At time tm, the mean is 7? or the expected popu-
lation size is half that of the original population.
Also, the time of maximum variance 1s solely a function
of the death rate constant and the size of the maximum
variance 1s only a function of initial population size.

Consldering another statistic of the process, the
coefficient of variation, CV, 1s a continuously increas-

ing function of time since

CV(t) = a(t) _ //éxp(ht) -1 (3.6)

n(t) No
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This statistic may be thought of as a measure of dis-

persion relative to the mean while the variance is an

absolute measure of the irreproducibility of the process.
On the other hand, the ratio of the variance to

the mean approaches unity as t becomes large, as shown
by
2

a“(t)
n(t)

= 1 - exp(-ht) (3.7)

Hence, the variance and the mean are approximately equal
for large values of t. Since the Polsson distribution
wlll approximate the binomial distribution for large t,
the above condition is obvious.

The distribution function F(u) of time u between
death events 1s easy to obtain for the homogeneous case.

From Equation 2.29

F(u) = 1 - exp(=N'hu) (3.8)

where N' 1s the size of the population before a death
occurs. Hence, the density function 1s the negative

exponential and given by

f(u) = N'h exp(-N'hu) (3.9)

If N' is one, Equation 3.9 glves the density function
of an individual lifetime. Since all individual organisms

are considered independent, the individual lifetimes v
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for the whole population has this distribution. This

can be written

f(v)

h exp(-=hv) (3.10)

These distributions may be used to derive the ex-
pected or mean time to reduce the population to some
specific level. Using the density given in Equation 3.9,
the expected time interval to reduce an initial popu-

lation, No? by one 1s given by

® 1
J uf(u) = .11
! uf(u RN (3 )

By the same method the expected time period to
1
reduce the population by one more is HTN;-:_TT' Continu-
ing this procedure, the expected time, Eﬁ’ to reduce an

initial population, N to the zero level 1s the sum of

o,
all mean times for each individual reductlion. By making

this addition,

e

(3.12)

ot
]
o o]
e =

A computer calculation could be used to determine 55 for
large No' Terul (1966) showed an easy method to approxi-

mate thls value. Using Euler's constant,l he found

1Euler's constant 1s the 1limit as m + « of

m
121 % - tog m|. See Abramowitz and Stegun (1964, p. 255).
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T, L(rogN, + 0.577). (3.13)

Simulation of Process

Using the probabllity distribution for the homo-
geneous process, data may be generated by simulation
techniques. Two methods of simulation were considered.
First, a population destruction as a step-by-step process
was obtalned. Second, a data value was generated glven
any point in time of the process. This latter method 1s
used to simulate laboratory procedures. For experimental
work, the only way to count the number present 1s to dis-
rupt the death process and determine the number of organ-
isms using standard microblological techniques. Thus,
one population can only glve one data point. Consequently,
a large number of homogeneous samples are required to ob-
tain a number of data points for the process.

To simulate the first type of process, assume a
computer 1s avallable with a library functlon to generate
random numbers with a uniform distribution over the inter-
val (0,1). According to the axloms of the general
stochastic model in Chapter 2 (p. 16), the probability

of a death during a short interval (t, t+4t) is

Pp = n h 4t (3.14)

where n 1s the number of organisms at time t. The error
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of this equation is proportional to o(at). If At is
sufficiently small, o(At) will be insignificant.

To simulate a process starting with an initial
number of organlisms at time zero, a computer program was
written to do the following:

1. Calculate the probabllity of a death pD

according to Equation 3.14.

2. Generate a random number RN with uniform
distribution (0,1).

3. Increase time by At.

4, Check if RN 1s equal to or less than Pp If
this condition 1s not met, repeat the above
procedure starting at step 2. If RN 1s equal
to or less than Py perform step 5.

5. Decrease n by one, note time and size of popu-
lation. Then repeat the above steps starting
at step 1, and continue untll the population
reaches zero.

An example of this simulation 1s given in Figure 3.2.

Another method to make a step-by-step simulation of
the process may be derived without any approximation as
in the preceding method. Using the distribution function
for the time interval between events given in Equation
3.8, simulated time intervals v may be generated. As-
suming a random number, R, with a uniform distribution
(0,1) can be obtalned, then the desired simulated time

interval, v, is determined from Equation 3.8 where F(u)
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is replaced by R. Shrelder (1964, p. 252) outlines this

method and its proof. Thus,

v e - j—l rog (1-R). (3.15)

Since 1-R is also uniform (0,1), the above equation can

be reduced to

v o= - % rog, (R). (3.16)

Simulation of the process was then achlieved with a computer
program designed to perform the following:

l. Initialize the program with No organlisms and
time equal to zero.

2. Calculate v according to Equation 3.16.

3. Increase time by v and decrease n by one.

4, Record time and population size. Then repeat
the above steps starting at step 2 untill the
population reaches zero.

An example of this type of simulation 1s given in
Figure 3.3. The difference between the curve of Figure
3.2 and that of Figure 3.3 1s caused by the random vari-
ables generated by the computer programs, and not by
difference in the methods used to obtain these two
curves.

To simulate laboratory data for a process starting

with a number of samples, a different technique can be
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used. Since each experimental sample is independent of
the others and provides one data point, each simulated
data point may be simulated independently. The problem
is then reduced to simulating only one point for any
time given the 1nitlal concentration and death rate.
This point will have the blnomial distribution given by
Equation 3.1.

The generation of random numbers with a known
distribution is not difficult. Shreider (1964, p. 252)
glves the procedure for continuous density functions.
But this technique can be extended to the discrete case
in the following manner. In order to obtain a number
belonging to a set of random numbers, Ny having the
probability mass function Pps generate a random number
R with uniform distribution (0,1). Then choose the

smallest ny such that

pj > R (3.17)

This method may be simplifled. Since pJ 1s bi-
nomial, 1t may be approximated by a normal distribution.
To generate a normal distribution, again assume that
random numbers with uniform distribution (0,1) may be
acquired without difficulty. Then a random variable, V,
with a normal distribution (0,1) may be easily generated
by the following equation derived by Box and Muller (1958).
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1/2

V= (=2 %0g, Rl) cos(2nR2) (3.18)

where R1 and R2 are random numbers with uniform distri-
bution (0,1). The cosine function in the above equation
may be 1lnterchanged with the sine function without chang-
ing the distribution of V. Since V is normal (0,1), the
required random number, Nn,., may be determined using the
values of the mean and variance given in Equations 3.2

and 3.3. Thus,

nr(t) = n(t) + V¥g(t) (3.19)

An example of data generated using this procedure 1s

given in Figure 3.4.

A Comparison of Deterministic
and Stochastic Models

The deterministic model has at least two important
faults. First, it assumes the populatlion size 1s a real-
valued continuous function of time rather than an integer-
valued function of time. Second, 1t assumes that the
population size at any given time will always be the same
1f the 1nltlal conditions are not changed. The second
fault 1s the more obJjectlionable of the two because 1t
ignores intrinsic random factors that may influence the
destruction of microorganisms.

The stochastlec approach questions the assumptions

of the deterministic model and thus its validity. By
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Figure 3.4.--Simulated Experimental Data For
Elementary Death Process.
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substituting probabllity relationshlps for deterministic
ones, random fluctuation 1s expected even in the total
absence of experlimental 1rregularities. However, the
amount of inherent varlability may be small and unmeasur-
able by experimental procedures. As shown in Figure 3.1
the expected range of most of the predicted variability

i1s too small to be detected for the reduction of the first
half of the population. On the other hand, the predicted
fluctuations become falrly large relative to the mean as
the population grows small.

The difference between the stochastic and determi-
nistic equations may be compared for prediction of process
times required for sterility of all organisms in a popu-
lation. To obtain complete sterility, the viable popu-
lation must be reduced to zero. Fof the deterministic
model, the population only reaches zero as time approaches
infinity. However, thils model may be used to predict
practical process times if the value of the mean 1s taken
to represent the probabllity of viability for the whole
population. To use this approximation, the mean must have
a value less than one. Then the probability of any
viable organisms remaining at time, t, 1s designated q

in the following equation.

q = N, exp(-ht) (3.20)

where q < 1
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Solving this equation for t, the process time to obtain

a probability of viable population, q, 1is

Process Time (Deterministic Model) = - % 1n[ﬁL] (3.21)
o)

q <1

For the stochastic model, q is 1 - po(t) by definition.
Using the value of po(t) given in Equation 3.1, the process

time required may be specified as follows.

-1
N
Process Time (Stochastic Model) = - L en|l - (1-q) ©

log

(3.22)

To compare these two predictions, Figure 3.5 shows
a plot of both for an initial population of 105. By using
semi-logarithmic scales, the deterministic prediction is
a stralght line. This line does not take on any values
for the inlitial time interval because the mean of the pro-
cess must be reduced to one before the process time can
be determined (Equation 3.21). This line can be considered

1 on the

as a continuation of the mean line in Figure 3.1.
other hand, the stochastic model gives a probabllity of via-
bility for all points in time. It ylelds a line that
asymptotically approaches the deterministic curve as the

process transpires. By the time the probability of any

lThe time scale 1in Figure 3.5 has been changed from
that of Figure 3.1, but the initial populatlon 1s the
same.
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viability is down to .01, the difference between the two
models is indistinguishable. Thus Equations 3.21 and 3.22
yleld the same result for small q. This concluslon can
also be procured by a Taylor series expansion of these

two equations about the point q = 0. Since most processes
designed to produce sterility would demand a probabllity
of sterility of less than .01, the deterministic model is
as good as the stochastic model for predicting the re-
quired process time. This last conclusion implies that
the deterministic model 1s sufficient for sterility appli-
cations even though the stochastic model more accurately

represents real homogeneous death processes.

Experimental Evidence

To find experimental evidence that stochastic models
represent a death process better than deterministlc models,
the experimental variatlion from the mean was studied.
Assuming a homogeneous process, the variation of the re-
sult from the mean can be a result of two factors. First,
the intrinsic randomness of the process wlll cause vari-
ation. Second, errors of experimentation will also contri-
bute to deviatlons from the expected population size. The
latter factor can be caused by a large number of factors
since microorganisms respond to many environmental factors.
Hopefully, the researcher is able to control most of these
varlables. But this 1s a very difficult task. In all

cases the part of the deviation from the mean caused by
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experimental error and that part due to the true process
variation can not be distinguished.

As already stated, the direct observation of mi-
crobial death events 1s not possible with today's techno-
logy. Therefore, death processes of large populations
must be studled. Data of thls type can be obtained by
subjecting a large number of samples of an organlsm to
a lethal condition and withdrawing samples at different
time intervals and counting the number of organisms re-
maining.

Experimental data obtalned by Deweyl working with

Serratia marcescens were analyzed. He 1rradlated (X-rays)

cells of this organism in an oxygen atmosphere. The re-
sults of these tests are shown in Table 3.1. Ordlnary
microbiological techniques were used in counting popu-
lations. This included the diluting of large populations
to obtain a population small enough to count.

Filrst, the death constant, h, was determined from a
linear regression of the logarithm of the percent popu-
lation reduction versus the dose of irradiation received
for each trial. A death constant of .585 (kilorads)™*
was obtained. Using this value for h to determine the
theoretical mean and standard deviation (Equations 3.2 and

3.3), the values in columns 5 and 7 of Table 3.1 were

1

See Dewey (1963) for a report of his experiments.
The data reported here 1is not published 1n his article, but
it was obtained through personal communication.
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calculated. The difference between the theoretical mean
and the population count is given in column 6.

If the deviatlion from the mean was only a result of
the stochastic variation predicted, its expected value
would be the theoretical standard deviation. A chi-
square test could then be used to test the deviations from
the mean against thelr expected values. Thls test was
tried, but most of the experimental deviations were so
much larger (as much as 50 times larger) than the theo-
retical ones that the test ylelded a very negative result.
However, this does not mean that the stochastic model was
invalid because experimental errors could cause the de-
viations to be much larger than the theoretical prediction.
Thus, the experimental errors would dwarf the effect of
the intrinsic variation on the outcome. It 1s also possible
that the intrinsic varlation causes a larger deviation than
predicted by the model.

By considering only the experiments for which the
initial population was over one million, a good correlation
was found between the theoretical and experimental devi-
ations. Experiments A, B, C, D and E all had original
populations over one million. They also had a population
count of less than ten organisms after the irradiation
treatment. A chi-square test for these five experiments
showed the validity of the theoretical variance at a .05

level of significance.
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An attempt was then made to correlate the experi-
mental deviations to the theoretlical standard deviations
by a linear regression. A plot of these data 1s shown
in Figure 3.6. From a least squares analysis of these

data the followling equation was obtalned:

Experimental Deviation = 10.87 Theoretical Deviation

- 8.9 (3.23)

Thus, the experimental deviations were about eleven times
that expected. These two varlables had a correlation co-
efficient of .757. However, this correlation may be due
to another variable such as the number of organisms re-
maining after the treatment. The dilution of the popu-
lation required to obtain a countable number tends to
amplify the errors for large populations. Also, the
theoretical varlance decreases as population decreases
for the range of the experiments since all treatments
extended beyond the dosage of maximum variance (Equation
3.4). Therefore, both may be correlated with population
size.

In concluslon, the experimental results give evi-
dence of the appllicabllity of the theoretical model, but
more accurate measurement techniques are needed to test

the model.
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Figure 3.6.--Influence of Theoretical Standard
Deviation on Experimental Deviation
from Process Mean.



CHAPTER 4

A DEATH PROCESS WITH AN

INTERMEDIATE STATE

In the elementary model of Chapter 2, there was
only one possible transition: a change from a viable
state to a non-vlable state. As an extension of thils
model, one can theorize that the organism may exlist in
two different viable states. One state may be more death
resistant than the other or one state may be a result of
the lethal environment. The second viable state could
also be a result of an adjJustment to the lethal environ-
ment or a partlally destroyed state.

To construct a stochastic model for this case, let
the two viable states be denoted by 1 and 2, and the non-
viable state as state 3. Assume organisms 1n states 1
and 2 both may become non-viable by translitions to state
3. In addition, assume organisms in state 1 may make a
transition to state 2. All other possible transitions
between the three states 1s assumed non-existent.

Visually, this model could be represented by Figure 4.1.

53-
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State State

Figure 4.1.--Three State Model with Transitions
Shown by Arrows.

To derive.a stochastic model for the semi-closed
time interval 0 < t < =, let the number of organisms 1n
each state be represented by the discrete random variables

as follows:

2(t) = number in state 1 at time t.
m(t) = number 1in state 2 at time t.
n(t) = number 1in state 3 at time t.

The Joint probability distribution P, ét% 1s defined as
H] 3

the probability of having % organisms in state 1, m

organisms in state 2 and n organisms in state 3 at time

t. It follows that:
P (t) _ 1 (4.1)

for all t (0,=).
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Further, assume that the initlal concentration in
each state 1s known; that is, 2(o0) = Lo’ m(o) = MO and

n(o) = N . Under these conditlons,

n(t) = Lo + Mo + NO - 2(t) - m(t) (4.2)
Therefore, P, ;t% may be reduced to the two state proba-
L e ]

(t)
bility Pe,m since n(t) is known if & and m are chosen.

Equation 4.1 then reduces to:

pp, (&) =1 (4.3)

The following system of 6 axioms 1s accepted to

derive an analytical expression for pz,ét).

1. The probabllity of a transition of any organ-
ism in state 1 to state 2 during a short time
interval t, t+At 1s represented by the transition
parameter hl(t+¢lAt)At. The function 1 is

chosen such that

t+At

1 -
— { hl(T)dT = hl(t+¢lAt). (4.4)

At

2. The probability of a transition of any organism
in state 2 to state 3 during a short interval

t, t+at is h2(t+¢2At)At. And ¢, 1s defined such

that

ot
o g

f; (1)dt = hy(t+e,at). (4.5)
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3. The probabllity of a transition of any organism
in state 1 to state 3 during a short interval
t, t+At 1s glven by the transition parameter

gl(t+¢3At)At, where is defined in the same

*3
way as ¢, and ¢5 in Equations 4.4 and 4.5.
4, The probabllity of more than one transition
among the three possible types 1n time interval
t, t+0t 1is o(At). Where o(At) 1s the zero
order of At. That 1s,0(At) 1s defined such
that
bemy LAE) . o, (4.6)
5. All posslible transitions other than given in
axioms 1, 2, 3 and 4 have probability zero.
6. The joint occurrence of events occurring in

non-overlapping time intervals 1s statistically

independent.

(t+at)

m , consider the
S

To obtain an expression for P,
various transitions which, starting at time t, can lead
to values £ and m for states 1 and 2 respectively at time
t+At. Since the axloms listed above dictate that the
random variables can elther increase by one, decrease by
one or remalin the same without having a probability of

order o(At), the transitions shown below in Table 4.1

must be considered.
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TABLE 4.1.--Transitions for model.

State At Transition State At
Event Time t During At t+at
El 2+1, m-1 From state 1 to state 2 2,m
E2 2, m+l From state 2 to state 3 2,m
E3 2+1, m From state 1 to state 3 2,m
Eu 2, m No transitions 2,m

The probabllity of the first three events listed in
Table 4.1 above 1s the product of the probability of two
independent events. The first event 1s the occurrence of
being in the state specified at time t. 1Its probability
1s given by definition. The second independent event has
the probability of a transition during time At. Axioms

1, 2 and 3 specify these probabilities. Consequently,

(t)

p{El} * Po+1,m-1 (2+1) hl(t+¢lAt)At (4.7)
p{E,} = p, (9] (m+1) ny(t+e,at)at (4.8)
p{E3} = le,m (2+1) gl(t+¢3At)At. (4.9)

If more than one event of any of the three types
given above or any combination of them occurs, then o(At)

must be a factor in the probability according to axiom 4.
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Let Eu be the event that the process is in state &,m
after two or more transitions during time interval At.
If r and 8 are any combination such that after two or
more transitions state r,s becomes state &,m,
p{Eu} = I p, S(t) o(at) (4.10)
r,s ’
Event 5 can now be defined as occurring if no
transitions take place durlng interval At. Because all
possible events must have a total probability of one, the

probabllity of event 5 1s one less all probabllities of

one or more transitions. Therefore,
P{Eg} = p, ,(t) (1 -q) (4.11)

where

qQ = zhl(t+¢lAt)At + mh2(t+¢2At)At

+ zgl(t+At)At + o(at). (4.12)

Since the five events are mutually exclusive ways
in which pn(t+At) may occur, the desired probabllity 1s
the summation of the probabllities for each of the five

events.

pz,m(t+At) = p{El} + p{E2} + p{E3} + p{Eu} + p{ES} (4.13)
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= (t)
pz’m(t+At) Po+l,m-1 (2+1)h, (t+¢,8t)at

(t)
* Py ome1 (MHLID(E+e,0E) 0L

+ p2+§5% (2+1)g, (t+o8t)at

(t)
+ pl,m 1l - zhl(t+¢1at)At - mh2(t+¢2At)At

- zgl(t+¢3At)At - o(At)] + rzs pr’s(t)o(At)

(4.14)

This equation can then be reduced to a differential equation
by subtracting P, m(t) from both sides, dividing by At and

»
taking limit as At approaches zero. This equation 1is:

d p, (t)
— A = b nE] Gl (e) + by (8D meldng(6)

+ 08 g 0) - b, () [a[ny (0)

+gl(t)] + mh2(t)] (4.15)

Taking into account that P, m(t) has value zero for
3

£ >Lj,m>M and £ orm less than zero, Equation 4.15
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may be reduced to a simpler form for the end points of

the process.

a Py (%)
0’ o
It = - pLo’Mo(t)[}[hl(t) + gl(t)) + mh2(t)]
(4.16)
d py o(t)
—3t = P1,0(t)8y(t) + py 1hy(E) (4.17)

As indicated in Chapter 2, the easlest method of
solving the system of equations in 4.15 1is by using a
generating function. Therefore, the following bivariate

probablility generating function is defined.

Lo Mo

v(x,y,£) = = I p, (t) xty™ (4.18)
2=0 m=0 ’

From this definition,

qap (t)
gt = 3 xzym ———%%m——— (4.19)
%,m

3 o g gxtiym

= y p, (t) (4.20)
9X 2,m 2,m
oY 2 m-1
a1 omx'y p, _(t) (4.21)
9y £,m %,m
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Multiplying each term in Equation 4.15 by xzym
and summing over all possible values of & and m, Equation

4.15 becomes

d p, (t)
2.m L,m L.m
I xy —_—2 . = I (2+1l)x ¥y h (t) p _
%,m dt %,m 1 2+1l,m-1

2. m
+ zz (m+1)x"y h,(t) Py m+1
,m
£.m
+ I (#+l)x"y g,(t) p
2,m 1 241,m
L.m
- I &X'y [h (t) + g (t)} p (t)
2,m 1 1 2,m
-z mx*y™n,(e) p, (1) (4.22)
2,m ’

The above can be reduced to a single partial differ-
ential equation by substituting the functions defined in
Equations 4.18 through 4.21 along with a few shifts of

axes.

ay(x,§ét) = yh, (t) %% + h,(t) %% + g, (%) %%

- x[hl(‘c) + gl(t)} 5% - yny(t) S

(4.23)
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Thils may be reduced to
0 = |yh (t) + g, (t) - x|{n, () + g, (£) || &
Yy &1 1 &1 3x

+hy(8)(1 - y) 5% - 5 (4.24)

Using LaGrange's method of auxiliary ordinary
differential equations (Appendix B), Equation 4.24 has

the same solution as:

ay . ax
D oyny(e) + g (0) - [hy(t) + g ()]

- dy = dt

"R, =y © -l (8.25)
The solution for thils was obtalned for initial conditions
that there were Lo in state 1 and Mo in state 2 at the
beginning of the process. The complete derivation is

given in Appendix C. The solution 1is:

L M
v(x,y,t) = {%B +yy +1 -8 - {} ° {%a + 1 - %J ©  (4.46)
where
t
o = exp(- /~ h,(1)dr) (4.27)
)
B = exp(— ét Eﬁfr) + gl(T)JdT] (4.28)
t t
Yy = a é hl(T)exp{- é hl(r) + gl(r) - h2(T)JdT]dT

(4.29)
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The Joint probability distribution for 2 in state

l and m in state 2 1s found by selecting the coefficients

of x* and y™ in Equation 4.26. By series expansion,

L mi{L -2 L -2=1| M M _ -m+i
pz,m(t) = i O]BRiZO[ Oi }Yi[}-s-{} © [ :}am"i(l-a) °
% me

(4.30)

The summation 1n the above equation 1ncludes all
L -2
terms from zero to m, but only the terms where ©
M i
and ° are defined need be included. All others have
m-1

value zero.

If Mo is zero,

L, L,-2 Ly=%-m
Py m(t) = | |[8° Y™ 1-8-y (4.31)

) m

If Lo is zero, the joint distribution 1s not required
because 2 will start at zero and remaln there for the
whole process. In this case the stochastic model reduces
to the elementary model presented in Chapter 2.

According to Equation 4.30, the probability of

extinction 1s given by

LO MO
P o(t) = |1-8-y 1-a (4.32)
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From the definition of the bilvariate generating function
given in Equation 4.18, the generating functions of the
marginal distributions for state 1 and state 2 ,wl(x,t)

and wz(y,t) respectively, may be specified.

L
b(x,t) = w(x,1,t) = [x8 + 1 - 8] ° (4.33)

M L
w2(yst) = W(l,yst) = [yc‘ + 1 - G] O[yY + 1 - Y] °©

(4.34)

Using Equation 4.33 to determine the probability
distribution for the number of organisms in state 1, it

ylelds the binomial distribution:

L L -2
p,(t) = [ °]e“<1 -8)° (4.35)
L
with mean
2(t) = LOB (4,36)
and variance
6,2(t) = L 8(1 - 8) (4.37)
2 o} ’ '

For state 2, the distribution p_(t), mean m(t)
and varilance 022(t) are derived from Equation 4.34. It

follows that:
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m (L L-1| M

p,(t) = I °]yi<1-y> ° [ °]am‘i<1-a>
1=0{ 1 m-1

m(t) = Mo + Ly

m2(t) = Moa(l—a) + Loy(l—y).

M -m+i
© (4.38)

(4.39)

(4.40)

The generating functilion for the joint distribution

1s also used to obtain the covariance (cov) of states 1

and 2. Since

cov(e,m) = E(2,m) - E(2) E(m) (4.41)

where E denotes the expected value and 2 and m are the

usual time dependent variables. The expected values of

2 and m are given in Equations 4.36 and 4.39, respectively.

And

2
E(g,m) = 2 g§§§Y:t)

1}
'_J

X=y
Making the prescribed substitutions,

cov(a,m) = - LOBY

(4.42)

(4.43)

In addition the probabllity distribution for the

total number in states 1 and 2 may easlily be obtained.

The probabllity generating function wk(z,t) for this

distribution 1s again acquired from the Joint distri-

bution generating function as given by the followlng

equation from Feller (1957, p. 261).
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wk(z,t) = ¥(z,z,t) (4.44)
therefore,
L M
be(2,0) = [2(8%7) + 1 = (8+)] ° [za + 1 - o] °

(4.45)

If k(t) indicates the random variable characterizing

the total number in states 1 and 2,

k |L L -1|M M -k+i
P(t) = I { °]<e+y)1<1-<s+y> ° [ ° ]yk‘i<1-y> °

1=0{ 1 k-1
(4.46)
and
k(t) = LO(B+Y) + Mo (4.47)
okz(t) = L, (8+y) (1-8-y) + M_a(l-a) (4.48)

Using Equation 4.46 to obtain the probability of
extinctlion, the result 1s the same as given in 4.31;

i.e.,

I"O MO
py(t) = [1-8-y] ° [1-v] (4.49)



CHAPTER 5

HOMOGENEQOUS CASE OF MODEL WITH

AN INTERMEDIATE STATE

Description

If the transition parameters hl(t)’ h2(t) and gl(t)
of the model described in Chapter 4 are independent of
time, the homogeneous case results. The model could be
visually represented by Figure 5.1. As defined in
Chapter 4, 2(t) and m(t) are the number in states 1 and
2 respectively, and 2(o) = Lo» m(o) = M,. Also the proba-

bility generating v(x,y,t) 1s defined as oIp P (t)xzym.

Figure 5.1.--Three State Model with Constant
Transition Parameters hl’ h2 and 81+
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Replacing hl(t), h2(t) and gl(t) by the constants h,,

h, and g, respectively in Equation 4.26 through 4.29,
Lo My
¥(x,y,t) = [xb + yc + 1 - b - ¢] (ya + 1 - al
(5.1)
where
a = exp(-h2t) (5.2)
b = exp(-(hl+gl)t) (5.3)
By

c = m (exp(-h2t)-exp(-(hl+gl)t)] (5.4)

If hl + g, = h2, ¢ can not be defined by Equation

5.4, 1In this special case

c = hyt exp(-hzt) (5.5)

To obtain Equation 5.5, either the limit h2 - hl t g
of Equation 5.4 may be derived, or the original Equation
(4.29) used to derive Equation 5.4 may be evaluated for
this particular case.

By substituting the expressions given for a, b and
¢ (Equations 5.2 through 5.4) for a, B, and vy, respectively,
in the equations of Chapter 4, all the results of the non-
homogeneous model may be evaluated for the homogeneous
model of this chapter. Several applications of these

developments wlill now be considered.
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An Example of Heat Kinetics

Shull, Cargo and Ernst (1963) proposed a deterministic
model of the type given in this chapter except they assumed
the rate of transition from state 1 to state 3 to be zero.
Thelr model was intended to represent the kinetics of heat
activation and thermal death of bacterial spores. At the
start of a thermal death process, some bacteria were con-
sidered to flrst undergo a heat activatlon process and then
a death process due to the hot environment. Other bacteria
were considered to be in a state where germination was
possible without heat activation. Shull et al. (1963) used
this model to describe the death curves of Baclllus

stearothermophilus spores.

In terms of the three states of Figure 5.1, state 1
would represent the organlsms that require heat activation
to germinate. The activation process would then be repre-
sented by a transition to state 2. All organisms which
would reproduce without heat activation would be considered
to be in state 2 at the start of the process. From this
state, the organisms would become non-viable by a transition
to state 3.

Frederickson (1966b) extended the model proposed by
Shull et al. (1963) by including the possibility of a
direct transition from the unactivated condition (state 1)
to the non-viable condition (state 3). He suggests that

a stochastic model should be used to represent the process,
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but he only glves the derivation of the deterministic
equations or the mean of the stochastic model. The com-
plete probabllity distribution for thls model can be ob-
tained from the probabillity generating function given 1in
5.1.

Since the organisms in state 1 would require heat
activation to become countable by standard counting techni-
ques, the number in state 2 1s of particular interest.

Its generating function wz(y,t) can easlily be obtalned

from Equation 4.34. Accordingly

L M
vo(y,t) = [ye + 1 -¢c]°[ya+1-al?® (5.6)

And using Equations 4.38 through 4.40, the probability

distribution pm(t), mean m(t), and variance cmz(t) are as

follows:
m{|L L -1i{ M M -m+i
Py(t) = I [ °]c1<1-c> ° °}am‘i<1-a> ° (5.7)
i=0¢{ 1 m=-1
m(t) = M,a + Lc (5.8)
cm2(t) = M_a(l-a) + Lc(l-c) (5.9)

The mean would increase at the start of the process in
most examples, then die away to zero. To determine the
cases where the mean 1is maximum at the start of the pro-

cess, consider the time the derivative 1s zero.
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Letting tm be the time the mean 1s a maximum,

L h. (h +g,)
t=————l———9.n|:h > 1 1 < } (5.10)
1

m hl+gl-h2 2Mo(hl+gl-h2) + h2LOh

where h1+gl # h2

The maximum will be at t = 0 1f Equation 5.10 yields a non-
positive value.

If hl+gl = h2,

M h
1 o2
t. == 1 = Tho (5.11)
m h2 Lo l]

In addition, the time the variance is maximum will
occur between the end points of the time interval (0,=) be-
cause om2(o) = cmz(w) = 0 according to Equation 5.9. The

time of maximum varlance 1s the solution to the equation

M_h,(hy+g,=h,)

[%%—5—%][khl+sl>eXp(-(hl+gl-h2)t)-hé} = TR,

where h,+g, # h, (5.12)
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and

1 - 2h.ta h, M
1 . 20
[ 1 - 2a } (1 - b t] = (5.13)

if hl+g1 = h2

Since these equations are both implicit equations,
it 1s impossible to make any general observation about the
slze of the maximum variance and the time of the maximum
variance 1in relation to the time of the maximum value for
the mean.

Thls process may be simulated in a manner similar to
that used for the simple death process in Chapter 3. Using
a computer with a library function to generate random
numbers with a uniform distribution over the interval (0,1),
a step-by-step process can be simulated 1n the followlng
manner. For & in state 1 and m in state 2, the axloms of
Chapter 4 may be written for the homogeneous model. The
three possible transitions have the following probabilitles

for a very small time 1nterval At

p{transition from state 1 to state 3} Ap Lg- ot  (5.1h4)
1 1

pi " " " 1l to " 2} Apg—zhlAt (5.15)

p{ " n n 2 to " 3}

p3 = mh,at (5.16)
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If At 1is sufficiently small, the probability of

more than one of these events occurring during At will

be insignificant. To insure thils condition, a At was

picked such that the maximum sum of Apl, Ap2 and Ap3

was less than .1l. A computer program was written to

perform the following steps:

1.

Initialize the program for the number in state
1l and state 2 at time zero.

Calculate the probabilities of the possible
transitions according to Equations 5.14, 5.15
and 5.16. Assign each of these probabilities
to a different portion of the complete 1interval
between 0 and 1 where the length of each portion
is determined by the size of Apl, Ap2 and Ap3.
Generate a random number RN with a uniform
distribution (0,1).

Increase time by At.

Check 1f RN falls within any of the intervals
assigned 1n step 2. If it does not, repeat the
above steps starting at the third one. If RN
1s in the 1nterval determined by Apl, go to
step 6. If RN is in the interval Ap,, 80 to
step 73 and if RN 1s in the interval Py, g0

to step 8.

Decrease the number in state 1 by one and re-

peat the process starting at step 2.
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7. Decrease the number in state 1 by one and in-
¢crease the number in state 2 by one. Record
the time and number 1n state 2. Then repeat
the procedure starting at step 2.

8. Decrease the number in state 2 by one. Record
the time and number 1n state 2. And repeat the

process starting at step 2 until the number in

both one and two are zero.

An example of thils simulation procedure is shown

in Figure 5.2.

[ ;-

This process can also be simulated by generating the
time intervals between events in a manner similar to the
one used in Chapter 3 (p. 36). Yet this procedure is
complicated by the possibility of two types of transitions
for both state 1 and state 2. For state 1 Equation 3.16
can be used to generate the time u when the number 1s de-

creased by one. So

—loge(RN)

u = W (5-17)

where RN 1s a random number uniformly distributed over

the interval (0,1). To distinguish if the reduction is
caused by a transition from state 1 to state 3 or a
transition from state 1 to state 2, a random experiment
with these two outcomes could be performed with the
probabilities proportional to the parameters of transition,

g, and hl‘ This procedure wlll simulate two transitions.
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The only event left to generate is the time interval v
between the transitlions from state 2 to state 3. Be-
cause thils transitlon has the same characteristics as

the one in Chapter 3 used to derive Equation 3.15 which
glves the time interval between events, Equation 3.15 may

be used to find v. Therefore,

-loge(RN)
vV = —— (5.18)

h2m
where RN 1s defined as before.

This simulatlon procedure will have an error because
a transition to state 2 1is not taken into account in
determining the next transitlion from state 2 to state 3
until the next transition of the latter type occurs. This
error will be insignificant 1f the reduction to zero of
the number in state 1 1s somewhat sooner than for state 2.

By using the above method, the complex form of the
distribution for the number 1n state 2 (Equation 5.7) is
avolded. However, the distrlbution of the time interval
between a transitlion from state 1 to state 2 or from state
2 to state 3 involves a very simple form of the Joint
probability distribution given by Equation 4.30. But this
approach would also lncur errors of the type mentioned in
the proceding paragraph.

A simulation was achlieved with a computer program

as follows:
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Initialize the program for time zero. Generate
the time of the first transition from state 1

by Equation 5.17 and the time of the flrst
transition from state 2 to state 3 by Equation
5.18.

Compare the time of the next transition from
state 1 to the time for the next transition

from state 2. If the latter type occurs flrst,
proceed to step 6; otherwise continue to step 3.
Generate a random number uniformly distributed

on the interval (0,1). If this 1s less than the
value of hl/(hl+gl), proceed to step 5; otherwilse
go to step 4. When & reaches zero, the time of
the next transition from state 1 should be set

at a very large number so as to avold any more
transitions of this type.

Decrease 2 by one and generate the tilme of the
next transition from state 1 by adding the inter-
val u (obtained by another evaluation of Equation
5.17) to the current time in the simulated pro-
cess. Then return to step 2.

Decrease & by one and increase m by one; record
the time and size of m. Agaln obtaln a new

value of the interval u from Equation 5.17 and
determine the time of the next transition of

this type as in step 4. Then return to step 2.
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6. Decrease m by one, record time and size of m.
Generate a new value for v (Equation 5.18) and
determine the time of the next transition from
state 2 to state 3 by using this value. Continue
this procedure until the number 1in state 2 reaches
zero. o

An example of the results of thls type of simulation

is shown in Figure 5.3.
To simulate laboratory data for this model, the method

discussed in Chapter 3 (p. 38) may be utilized. The indi- J

vidual data points were generated by assuming a normal
distribution as an approximatlion of a binomial distribution.
Because the generating function (Equation 5.6) 1s the pro-
duct of two binomlal generating functions, the distributlon
(Equation 5.7) 1s the sum of several binomial factors.
Consequently, a normal approximation can also be used to
approximate the distribution. A random data point mr(t)

can then be generated by the followlng equation

m_ (t) = m(t) + Vo (t) (5.19)

where M(t) and on(t) are the mean and standard derivation
defined in Equations 5.8 and 5.9. The variable V is a
normal deviate which can be generated by Equation 3.10.
Again the approximatlion of the distribution by a normal
will be without significant error if the variance 1is

sizable,
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An Example of Change of
Death Rate

The three state model of Chapter U4 1s also proposed
by Terul (1966) and used by Komenushi, Takada and Terui
(1966) to represent a change of the death rate constant

of Bacillus pumilus spores durlng heat sterilization.

These researchers assumed that a spore may exist in two i
viable states, both which will germinate using standard
culturing techniques. They theorized that spores in one

state could make a transitlion to a state of lower or

higher resistance to heat sterilization. The change 1s !
considered to be a dlscrete molecular change. Thus the

viable organism can exist in only one state or another;

there is no continuum between the possible states of

existance. Prior to the work of Terul, Komemushl et al.

(1966), Scharer and Humphrey (1963) had proposed a similar

model to account for the non-logarithmlc order of death

curves for Baclllus stearothermophilus. But they gave

only two possible transitions: one transition from an
initial viable state to a second viable state and a transi-
tion from the second viable state to a non-viable state.
On the other hand, Terul (1966) included direct transitions
from both viable states to the non-viable state. Neither
Terul nor Scharer suggests probabilistic models, but they
give the deterministic equations.

The stochastic model for this example would be

described by the generating function given in Equation
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4.45, Adopting this generating function, wk(z,t), for

the homogeneous case,

Lo M,
wk(z,t) = [z(b+c) + 1 = b - c] [za + 1 - a] (5.20)

This model gives the distribution for the total number 1n
states 1 and 2 or k = ¢ + m, As derived in Equations
4,46, 4.47 and 4.48, the probability distribution of k

is the following

k (L L -1(M M -k+i
p(t) = | ° (b+c) (1-b-c) © [ o k=11 )
1=0{ 1 k-1
(5.21)
with mean k(t) and variance ck2(t) given by
k(t) = Lo(b+c) + Moa (5.22)
0 2 (t) = Ly(b+c)(1-b=c) + M_a(l-a) (5.23)

The values of a, b and ¢ are the same as given at the
beginning of the chapter in Equations 5.2 through 5.5.
The simulation of this process can be accomplished
with the same computer programs presented in the previous
sections. The only change requlred in these programs 1s
the recording of the total number in states 1 and 2 in-
stead of Just the number in state 2. Figures 5.4 and 5.5
give examples of this type of simulation. The method to

simulate time intervals between transitions (p. 73) was
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used in Figure 5.5 and Figure 5.4 was plotted from the
same program used to plot Figure 5.2.

In addition, the generating function (Equation
5.20) 1s the product of two binomlal generating functions.
So the normal approximation of the distributlion may be
used in the same manner as in the previous section (p. 78)
to generate random data points for the distributlion given

there.

Analysis of Model

As compared to the determlinistic model, the stochastic
model provides a more accurate description of the real pro-
cess. It defines the population size only at the discrete
levels of possible existence and predicts the influence
of random variables on the individual organisms.

The model of this chapter may be compared with the
equivalent deterministic model in the same way as was done
for the elementary homogeneous model of Chapter 3 (p. U41).
Without giving the detalls of the analysis, the same con-
cluslon as found in Chapter 3 was reached for this model.
Namely, the deterministic model 1is sufficient for pre-
dictlion of the lethal dosage required for a probability
of sterility greater than 0.99.

To test the stochastic model of this chapter, the
same procedure as was given for the elementary model
(Chapter 3) is required. But experimental errors must

be small enough so as not to overshadow the intrinsic
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varlation of the process. This requirement 1s very
difficult to obtaln, and it 1s beyond the scope of this
study to search for better methods for testing micro-
organlism death processes.

As an example of thls model, the data of Shull
et al. (1962) were considered and found to have very
large varlatlons, at least too large to verify the
stochastic model. However, the data were analyzed to
ascertain if they fltted the generalized characterlstics
of the model. Thils resulted in the need to estimate the
transition rates from the experimental data. Chapter 6

examines this problemn.




CHAPTER 6

DETERMINATION OF PARAMETERS FOR TWO

STATE DEATH MODEL

Statlistical Methods to
Determine Parameters

Before any experimental evidence of the homogeneous
model of Chapter 5 can be consldered, numerical values
for h

h, and g, are required. Unless these parameters

1? 72
can be 1soclated for measurement, all three must be deter-
mined from the same set of data. In this chapter, the
determination of these parameters from the same set of
data 1s conslidered for the heat activation model in
Chapter 5 where the experimental data would be expected
to give the number 1n state 2. In addition to the trans-
ition parameters, the 1inltial number 1in state 1, LO, may
be unknown too.

For the elementary homogeneous model (Chapter 3),
only one parameter, the death rate constant, was required.
This was easy to obtain by a linear regression (logarithm

of population versus time). But the model considered

here can not be reduced to the form of a polynomial. If

86
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it could, standard statistical methods could be used.
However, the problem of finding four parameters can be
reduced to a problem of finding two parameters for cer-
tain conditions. If h2 < hl,the slope of a semilog plot
of the mean of the process approaches -h2 as time be-
comes arbitrarily large. The mean of the process was

given in Equation 5.8 as:

L.h
m(t) = h—l-i—g%:ﬁg |:exp(-h2t) - exp(—(hl+gl)t)]
M exp(-h,t) . (6.1)

Therefore,

L h

— o'l
m(large t) = ————
[h1+31‘h2

+ M%} exp(-h2t) . (6.2)
If t 1s zero in Equation 6.2, the ordinate intercept of
the line asymptotic to the mean line for large t 1s ob-
tained. Thus,

L.h

o1
—_— ¢+ M (6.3)
hl+gl—h2 o}

Ordinate Intercept =
Consequently, 1f a semllog plot of the data becomes
linear for large t, h2 can be obtained from the slope of

the linear portion and one of the other three parameters

determined from Equation 6.3.
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Assuming that hl and g, are to be determined by
statistical analysis, LO will be determined from Equation
6.3. To find hy and g1 the m;thod of moments, the
method of maximum likelihood, and the least squares
method were considered. The latter method was chosen
because it was the least complex of the three to apply
to the model. A logarlithmic¢ transformation of the data
was introduced as 1s usually done for models involving
exponentials. Therefore, the least squares equation for
this model 1s:

Sum of Squares = 2[?n H(ti) - 2n D(ti?]z (6.4)
i

where D(ti) represents the experimental population
size (state 2) at time ty-
The parameters hl and g, are to be determined so
that Equation 6.4 1s a minimum. By taking partial deriva-
tives of Equation 6.4 with respect to g, and hy, the
normal equatlons are cobtailned. Designating these equatilons

NG and NH respectively,

n H(ti) - 2n D(ti) aﬁ(ti)

NG(h,,g,) = 0 = & (6.5)
1°=1 1 E(ti) 3
and
Ln H(ti) - 2n D(ti;-ai(ti)
NH(h,,g,) = 0 = I — 5 (6.6)
i m(ti) 1

T IR ......q
G
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where

am(ti) Loh1

= t exp[-(h +g,)¢t
agl hl+gl-h2 [j. 1 =1 1]

[QXP(-hzti) - exP('(hl+gl)ti)]

- (6.7)
hi*g)-h; -
and
aﬁ(ti) _ Lo (gl-h2){exp(-hzt)-exp(-(hl+gl)ti)] i
ahl hl+gl-h2 hl-l-gl—h2
+ hltiexp[-(h1+gl)t1{] (6.8)

Numerical Methods to Solve
Normal Equations

Since Equations 6.5 and 6.6 are non-linear, explicit
solutions are not possible and numerical methods are re-
qulired. To simultaneously solve these non-linear equations,
the two general procedures given by Hildebrand (1956, p.
450) were investigated. The first of these was the method
of "successive substitutions." For this method, functions
Fl(hl,gl) and F2(h1,gl) were defined such that

k+l

hy

= F, (h,%,eg. 5 (6.9)

1(h17s8

and g, " = Fy(n e ) (6.10)
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where the superscripts indicate the number of iterations.
if hlk+l and g1k+1 converge to the solution of the normal
equations as k increases, Equations 6.9 and 6.10 can be
solved successlvely to reach this solution.

The functions Fl(hl,gl) and F2(hl,gl) can be defined
several ways to obtain a convergent serlies. Two common
methods, the Newton-Raphson method and the method of
false position (Regula Fulsl) were chosen. Ostrowskil

(1960) gives an extensive analysis of both of these pro-

cedures. For the method of false position:

k k-1 k-1

1
k k k-1 _ k-1

k-1 k k

K
Fi(hy7s8;

and
F.(h k g k) - o1 1 1 1 1 1
2 71 =1 k k k-1 k-1
NG(hl ,8; ) = NG(h, 81 )
(6.12)
If the Newton-Raphson method 1s used,
kK _k K NH(glk’hlk)
NH'(gl »hy ™)
and
, k k
NG(g, ,h;™)
k k, _ k 1 °71
F2(hl 389 ) = g, - T (6.14)

NG' (g0, ")

Yy
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The second method given by Hlldebrand was the
generallzed Newton-Raphson iteration. This technique
th

lteration values for h, and

simultaneously glves the k 1

g, To derive this method, the nonlinear terms in a
Taylor expansion of Equations 6.5 and 6.6 are neglected;

and the following set of linear equations results:

| o
i
kK k Kk :
(h KL k)aNH(hl & ), (g KHL _ k)aNH(hl 281 ) ;
1 1 3hy C31 &1 38, g
_ Kk
= -NH(h,,g;") (6.15) !
Kk kK _ k
L T N ML R B SN ML W
1 1 3h, €1 g, N
= -NG(h,*,e,*) (6.16)

These equatlons can be solved by ordinary methods
for systems of linear equations.

In order that these 1lteration procedures converge to
the required solutions for hl and 81> certaln conditions
must be satisfied. 1In general, the 1nitial approximations,

h‘ll and gll, must be sufficiently near the true solution;

and the iteration must be asymptotically stable at the
true solution. Hildebrand (1956) 1lists several checks
to determine 1f the latter condition willl be satisfied.

But no theoretical methods are known to find or describe
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the area of convergence. Thils lack of knowledge was the
major limiting factor in applying the techniques to the

normal equations of the model.

Test of Numerlcal Procedures

To test the numerlcal methods developed, data were

generated using the theoretical probability distribution T

L

of the stochastic model and the method outline 1n Chapter F
5 (p. 78). Figure 6.1 1illustrates the mean and some of

the simulated data results for Lo = 2*105, MO = 105,

Liam

hl = 0,15, h2 = 0.1 and g, = 0.02. A complete description
of the generated data 1s given in Table 6.1. Two factors
were varied to test the numerical procedures, the initlal
values assigned to hl and 81 and the number of data
points lncluded in the analysis. Initial solutions of
.005, .015, .045, and .095 were tested for g1 and values
of .1, .115, .16, and .235 were used for h,.

The number of data points used was varied in two
ways. Filrst, time 1interval between data polnts was varied
from 1 to 15 time units. Second, the span over which data
polnts were taken was tested for two time periods: 0 to
50 and 0 to 100.

The results of these tests were twofold. Eilther
the values of h1 and 8 converged to a point within
several percent of the true value,or they diverged with-
out bound. The number of data points included did not

greatly affect this outcome. The use of data points in
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TABLE 6.1.--Simulated datal to test numerical procedures.

Mean of Generated2

Time Process Data Point
0.0 1.000000+4005 1.000000+005
1.0 1.167006+005 1.165802+005
2.0 1.277133+4005 1.2785114005
3.0 1.342201+005 1.344286+005
4.0 1.371905+005 1.375992+4005
5.0 1.374169+4005 1.372426+005
6.0 1.3554554005 1.352477+005
7.0 1.321003+005 1.319747+005
8.0 1.2750504005 1.2760654005
9.0 1.221001+005 1.225535+4005
10.0 1.161576+4005 1.159621+005
11.0 1.098931+005 1.097840+005
12.0 1.034761+005 1.034640+005
13.0 9.703796+004 9.690525+004
14.0 9.067958+004 9.1147504+004
15.0 8.447666+004 8.447515+004
16.0 7.348469+004 7.864076+004
17.0 7.274291+004 7.286045+004
18.0 6.727754+004 6.708961+004
19.0 6.210448+4004 6.1633584004
20.0 5.723153+004 5.716327+004
21.0 5.266017+004 5.260256+004
22.0 4,838705+004 4,829220+004
23.0 4.4405174+004 4,4442554004
24.0 4,0704864+004 4,097648+004
25.0 3.727454+004 3.742213+004
26.0 3.410136+004 3.391315+004
27.0 3.117169+004 3.129079+004
28.0 2.847149+004 2.826854+004
29.0 2.598663+004 2.596877+004
30.0 2.3703134004 2.392843+004
31.0 2.160732+004 2.185985+004
32.0 1.968596+4+004 1.982628+004
33.0 1.792636+004 1.789219+4004
34,0 1.631642+004 1.623829+004
35.0 1.484469+004 1.495526+004
36.0 1.350034+004 1.353512+004
37.0 1.227325+004 1.225394+004
38.0 1.115392+004 1.110343+004
39.0 1.013351+004 1.0068414004
40.0 9.203791+003 9.149679+4003
41.0 8.357134+4003 8.2437384003
42,0 7.5864834003 7.614369+003
43.0 6.885317+003 6.7231444003
4y.0 6.2476264003 6.305551+003
45,0 5.667879+003 5.659554+003
46.0 5.140990+003 5.1817494003
47.0 4,662289+4003 4,6343524003
48.0 4,227497+4003 4.,215839+003
4g.0 3.832692+003 3.838401+003
50.0 3.474286+4003 3.443167+003
51.0 3.148998+003 3.125185+003
52.0 2.853831+4003 2.917185+4003
53.0 2.586050+003 2.633761+003
54,0 2.343158+4003 2.368917+003
55.0 2.122880+4003 2.102508+4003

Fa

VECARTX.
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Mean of

Generated

h

Time Process Data Point2
56.0 1.923141+003 1.2704044003
57.0 1.742053+002 1.744521+003
58.0 1.577689+4003 1.521233+4003
59.0 1.429110+4003 1.449417+003
60.0 1.2942€67+4003 1.241873+4003
61.0 1.172076+003 1.204211+4003
62.0 1.061360+003 1.085119+4003
63.0 9.610523+002 1.018934+003
64.0 8.7018124002 8.966196+002
65.0 7.878662+002 7.646256+002
66.0 7.1330744002 7.148970+002
67.0 6.457786+002 5.219608+002
68.0 5.846211+002 5.669627+002
69.0 5.292371+4002 5.317168+002
70.0 4.,790846+4002 5.406635+002
71.0 4.,336717+002 4,087201+4002
72.0 3.925526+002 3.875082+002
73.0 3.553229+002 3.634952+002
74.0 3.216164+4002 2.178051+002
75.0 2.911007+4002 3.147960+002
76.0 2.534749+002 2.520887+00?
77.0 2.384662+4002 2.500732+4002
78.0 2.1582734002 2.029398+002
79.0 1.953343+002 1.892332+4002
80.0 1.707843+4002 1.521595+00?2
81.0 1.599936+002 1.820469+002
82.0 1.447956+002 1.392428+002
33.0 1.310396+002 1.291327+002
84.0 1.185851+002 1.062L144002
85.0 1.073203+002 1.1720424007
86.0 9.712136+001 1.074102+002
87.0 8.789076+001 9.300l161+001
88.0 7.9525754001 7.1924364001
89.0 7.196717+001 6.639253+001
0.0 6.513377+001 6.3050144001
91.0 5.894142+4001 5.490436+001
92.0 5.3337414001 5.721963+001
93.0 4.826592+001 3.976850+001
94.0 4,367637+001 3.318353+001
95.0 3.952303+001 4,546303+001
96.0 3.5764454001 3.3583904001
97.0 3.236316+001 3.427428+4+001
98.0 2.928520+001 3.0758484001
99.0 2.649987+001 3.023038+4001
100.0 2.397936+001 2.268864+001

lInitial Populations:

2Format:
second number.

S 5 « 5
State 1 - 2%107, “tate 2 - 10-.

First number 1s multiplied by 10e, where e 1is the
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the first 50 time units gave convergence more often than
if the time span of 0 to 100 time units was used. While
this result might 1lmply that additional information was
a hindrance to reaching the true values of hl and 81>
the process for large t 1s a function of h2. Therefore,

the 1lnclusion of data points between 50 and a 100 time

=8
units does not add any new information to determine hl ;
and gq: Another interesting result was that the time

interval between data polnts had very little 1nfluence on

the final outcome of the test. If the procedure con- i

verged for an interval of one time unit and a span of

50 time units, 1t converged for other intervals. Even
for intervals of 15 time units with only three data
points, the convergence was as good as for 50 data points
spaced one time unit apart.

Table 6.2 gives the results for the various start-
ing points. In cases where divergence occurred, one of
two events happened. Either hl and 8, increased without
bound or h1 became negative. If the latter took place,
a logarithm of negative number could occur which would
terminate the 1lteration procedure. Another solutlon
that required termination of the iteration was 1if
hlk+glk = h2. If thils occurred, there was a division
by zero in the normal equations. For certain initial

values, the iteration procedures did converge to this

point. When hl+gl = h2, a different set of equations
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TABLE 6.2.-=-Numerical solution of normal equations for
various 1nitial conditions.

True Values:
hl= . 15, gl=.02

Numerical Solution

1

Numerical Method
%2%3::1 Successive Substitutions Generalized
Newton-
Method of Newton-Raphson Raphson
hl 8 False Position Method Method
Convergence and |Convergence to
.1 .005 |[Divergence hl+gl = h2 Convergence
Convergence to
.1 .015 |Convergence hl+gl = h2 Convergence
.1 .045 |Convergence Convergence Convergence
Convergence and
.1 .095 |Divergence Divergence Divergence
.115 .005 |Convergence Divergence Divergence
.115 .015 |Convergence Convergence Convergence
.115 .045 |Convergence Convergence Convergence
.115 .095 | Divergence Divergence Divergence
.16 .005 | Convergence Convergence Convergence
.16 .015 | Convergence Convergence Convergence
Convergence and | Convergence and
.16 .045 | Divergence Divergence Divergence
.16 .095 | Divergence Divergence Divergence
.235 .005 | Divergence Convergence Divergence
Convergence to
.235 .015 | Divergence hl+gl = h2 Divergence
.235 .045 | Divergence Divergence Divergence
.235 .095 | Divergence Divergence Divergence

1Generally the 1nitlal values led to convergence or
divergence regardless of number of data points considered.

Both convergence and divergence are shown where this did

not hold.
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apply as shown in Chapter 5. However, thls was not put
into the computer program because it did not seem signifi-
cant in most cases.

All three numerical procedures give convergence for
most initial values tested except the ones located the
farthest from the true solution. But the method of
false position converged over a little wider range of
initial values than the other two methods. It is also
the easlest to program on the computer because no deriva-
tives are required. On the other hand, the generalized
Newton-Raphson method converged the fastest. It took
about one-third the computer time required for each of
the two successive substltutlion techniques.

Application of Numerical Methods
to Experimental Data

After successful use of the numerical procedures
for simulated data, the techniques were applied to the
experimental data reported by Shull et al. (1962). They
used this data for a modell similar to the homogeneous
two-stage model of Chapter 5. But they did not include
a transition from state 1 to state 3. Without this
transition, statistical techniques were not required to
determine the parameters. However, the model did not

give a very good flt of the data. The addition of the

lsee discussion on p. 69.

e T

‘l
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transition from state 1 to state 3 to the model was
hoped to improve the experimental fit of the data to
the theoretical model. -

Table 6.3 shows the experimental data used. But
convergence was not obtalned for any of the three pro-
cedures successfully applied to simulated data. Whille
in theory an area of convergence exists, in reality it
could not be found even though a very large number of
initial values were tested.

Two reasons can be given for this negative outcome.
First, the experimental data are more irregular than the
simulated data. Assuming the experimental errors were
substantially reduced, the experimental data should
behave similar to the simulated data and result in con-
vergence for the parameters belng estimated by the
numerical procedures. But the actual process may not
be the same as assumed 1in the theoretical model. This
1s a second reason for the fallure to find an area of
convergence for the experimental data.

Further study of this problem 1s needed. Perhaps
the numerical procedures can be modifled so that values
for hl and g, can be obtained. Also, the assumption
that the transitions are homogeneous can be questioned.
The transition required for heat activation (state 1
to state 2) of the spore could well be time dependent.

Practically no studles have been made of the
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TABLE 6.3.--Experimental data for two-stage death model.

1

(State Two)

Time Population

0 1.26

.8 1.90546
2.2 1.41254
2.6 1.62181
N) 1.12202
4.4 6.9183
4.9 7.0794
5.4 7.244Y
5.9 4.3652
6.2 8.9125
7.2 4.,4668
7.8 3.2734
9.0 7.762
11.1 7.943
12.4 1.995
12.7 5.82
15.2 1.58
17.1 l.22
17.3 7.2
19.7 1.4
22.7 2
23.7 2

* 10°
* 10°
* 10°
* 10°

* 10°

* lOu
"

10 | J
* 10" B

lData taken from work of Shull

et al.

(1962).
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mathematical nature of heat activation. From the limited
data of Murrell (1961), no evidence is given that the

transition is homogeneous. Further studles are needed

in this regard.



CHAPTER 7

SUMMARY AND CONCLUSIONS

This study has shown how quantitative values can
be assigned to the influence of random varlables on the
death of microorganisms. To accomplish this, axloms

were stated; and a mathematical theory derived to de-

scribe real death processes. Accordingly, real pro- ;3
cesses were not studied; instead, a method of modellng LJ
was glven. Modern probability theory was applied to
acquire the results.
The general nature of the order of death processes
of microorganisms has been considered by many people,
but there were essentlally no approaches from a stochastic
point of view. The stochastlic models given required very
few assumptions in addition to the ones assumed for death
rates in deterministic models.
The death processes studled were viewed as Markov
processes with a continuous time parameter. The methods
of deriving and solving a model of this type were illus-

trated for an elementaryl process and used for a more

lOrganisms of a homogeneous population were assumed
to either exist in a viable state or make a transition to
a non-viable state.

102
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complex model in which the organism could exlst in two
different viable states. In each case, a general mathe-
matical model was derived without specifying the form of
the transition parameters. From the models, a theoretical
probabllity distribution was acquired and used to simulate
the supposed process.

The elementary model was analyzed for the condition
where the transition parameter was independent of time.
Some experimental evidence that the model predicted the
experimental derivation was found, but no conclusive
verdlict can be made without further study and better
instrumentation to minimize experimental errors.

For the practical problem of sterilizing populations
of microorganisms, deterministic models were found to give
a good approximation of the stochastic model.

The estimatlion of parameters for the model with
two viable states was consldered. A complex system of
non-linear equatlions ensued. Numerical methods were
developed to simultaneously solve these equations. But
their application was only successful for simulated data.
Further work 1s needed to refine these procedures for
use with experimental data.

The methods and results of this study could be
extended to a model with n different viable states dur-
ing a death process. In general, the use of stochastic
models éhould be considered in other engineering model-

ing studles where bilological entities are involved. By

¥
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using a stochastic approach, experimental variation from
the mean 1is not viewed as experimental error. Instead,
varlations can be predicted,and the stochastic model can
quantitatively describe the expected size of these de-

viations from the mean.

L
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APPENDIX A

STATIONARY TRANSITION PROBABILITIES
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From Equation 1.7 of Chapter 1,

N
pki(u’s) = Jilpkj(u’t)pji(t’s). (A.1)

When the transition probabilities depend only on the
length of the time interval and not on its starting

Eo o

point,

Pyy(ts8) = pyy(t-s) (A.2)

and L

pki(u,s) = pki(u-t+t-s) (A.3)

This can be written as:

N

pki(u’s) = Jilpkj(u"t)pji(t"s) (A.u)

By redeflning the time intervals as t = u-t,

8 = t-s and substituting into Equation A.4,

N
s+t) = I

Py € 11E>1,{J(‘c)p'j1(8) (A.5)



APPENDIX B

LAGRANGE'S METHOD FOR SOLUTION OF A
PARTIAL DIFFERENTIAL EQUATION
OF FIRST ORDER

108



109

The stochastic models in this thesls yleld first
order partial differentlal equations. This 1s a common
type of equation for many Markov processes. The best
method of solutlion of this type of equation was gilven

by Lagrange. For an account of the general theory, the

T
texts by Cohen (1933) and Forsyth (1885) can be con- ‘
sulted.

In order to find a solution to a partial differ- I
ential equation of the form: i;
9Z 9Z 9Z _
Rl ———axl + R, ""'"ax2 + R3 —ax3 = Q (B.1)

where Rl’ R2, R3 and Q are functions of the independent
variables X15 X5 x3 and the dependent variable z, con-
sider the linear partilial differential equation

)

R, =— + R

9 26
1 axl

5 5%%-+ R3 gg% + Q=0 (B.2)
If this equatlion has solution e(xl,xe,x3,z) = C where C
1s a constant of integration, then this equation can be
solved in terms of z giving a solution of Equation B.1l.
Therefore, a solution for Equation B.2 leads to a solution
of Equation B.1l.

To solve Equation B.2, Lagrange showed that a

system of ordinary differential equations could be formed
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which would have the same solution as Equation B.2.
These so-called subsidlary equations are formed in the

followlng way:

R, Ry RS Q (B.3)

Now the problem has been reduced to solving a series of
ordinary differential equatlions. From Equation B.3,
choose three independent equations which can be inte-

grated. Let the three solutions to these 1lntegrals be

el(xi,x2,x3,z) = b, (B.4)
ez(xl,x2,x3,z) = b, (B.5)
63(xl,x2,x3,z) = b3 (B.6)

where bl’ b2 and b3 are constants of integration.

Then any arbitrary function W(el,e2,e3) = 0 with
partial derivatives willl be the general solutilon of
Equation B.2. 1In thls case, choose an arbitrary

function such that:

Z(el,e2) = e3 (B.7)

which 1s a more convenient form of the solution. The
function Z can be explicitly determined i1f initial

conditions are given.
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Assuming inltial condition:

Z = ;(xl,xz,O), (B.8)

then substitute Equation B.8 into Equation B.7.

Therefore,

Z(el(xl,x2,0,;(xl,x2,0)),62(xl,x2,0,;(x1,x2,0))

= 63(x1,x2,0,c(x1,x2,0)) (B.9)

To determine the exact form of Z, let:

A = el(xl,x2,0,c(xl,x2,0)) (B.10)

and

Ay = ez(xl,x2,0,;(x1,x2,0)) (B.11)

From these two equations, solve for Xq and X5 in
terms of A and Ay This result 1s then substituted into
Equation B.9, and the function Z 1s defined. The general
solution is then obtalned from Equation B.7 with Al = 61
and A2 = 92 where el and 92 are defined in Equations B.4
and B.5. Thus 63 = 2(91,92) has been completely specified,
and the original partial differential equation solved

yilelding a useful relationship between X1s X5, x3 and z.
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In the foregoing the method of Lagrange was 1illus-
trated for the case of three independent varlables. An
extension to any number of independent variables follows

the 1llustrated procedure along exactly the same lines.




APPENDIX C

SOLUTION OF DIFFERENTIAL EQUATION FOR
STOCHASTIC MODEL WITH
INTERMEDIATE STATE
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The stochastlc model of Chapter 4 yilelded the follow-

ing exact differential equation:

dy(x,y,t) _ dx
0 ©yn (E) + g (8] - (h (&) + g (E))x
4 _dt
SR e (Imy) T eI (C.1)

It immedlately follows that

Y(x,y,t) = a. (C.2)

In the above equation and 1n the followlng ones, the ai's
stand for some constant. From Equation C.1l, the last

two differentials can be solved as follows:

h t = __l' (C-3)

Thils has solution:

t
sn(y=1) = f h2(t)dr + a (C.4)
(0]

2
And it can be written:

t
y=1*+ a3exp(f h2(T)dT) (C.5)
0

or a3 = (y-1exp(~/ hy(r)dr) (c.6)
o

I3 o
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The stochastic model of Chapter 4 yielded the follow-
ing exact differential equation:

dy(x,y,t) dx
0

T YB(E) ¥ g1(E) - (By(E) + g1(E))x

Ay (8) (I-y) - -1 (C.1)

It immediately follows that

Y(x,y,t) = ay. (C.2)

In the above equation and in the following ones, the ai's

stand for some constant. From Equation C.l, the last

two differentials can be solved as follows:

d _ dt
Ay (€)(I-y) - -1 (c.3)
Thls has solution:
t
in(y=1) = s h2(r)dr + a, (Cc.4)
o
And it can be written:
t
vy =1+ aexp(/ h, (t)dr) (C.5)
3 o 2

or ay = (y-l)exp(-fth2(r)dr) (C.6)
o)

, sz F

il
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Now a second palr of independent differentials from

Equation C.1 can be chosen and solved. For

dx =4t (e
yhl(t) + gl(t) - (hl(E) + gl(t))x -1

substitute the expression found for y in Equation C.5

and rearrange the expression. Then,

dx .

(c.8)

This 1s a linear differential equation with solution:

(x-l)exp{—ét(hl(r) + g, (1) )dr +(y-1)exp(-éth2(r)dr) *

éthl(r)exp(—ét[hl(r) + g (1) - hy(1)ldr) = a,

(C.9)

Using Equations C.2, C.6 and C.9, ¥(x,y,t) can be defined

as a function of a3 and a,-
Y(x,y,t) = f(a3,au) (C.10)

Given the 1initial condiltilons,

¥(x,y,0) = x %y © . (C.11)

I - hl(t)+gl(t) X = -gl(t) - (l + a3exp(£th2(r)dr hl(t)
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Using the form given in Equation C.10 for t = O,

L M

f(y-1,x-1) = x %y © (C.12)

In order to define this function for solution of general

form in Egquation C.10, let

02=

y -1 (C.13)

x =1 (C.14)

Then Equation C.12 can be written:

f(plgp2) =
Then from Equation C.10,

¥Y(x,y,t) =

This can be rewritten as:

¥(x,y,t)

where

L M
(p,+1) “(pq+1) ° (C.15)
M L
(a5+1) ®(ay+1) ° (C.16)
M L

[ya+l-a] O[xB+yy+l-8-y] © (C.17)

exp(-éth2(t)dr) (C.18)
t
exp(-é [h, (1)+g, (1) ]ax) (C.19)
h, (t)exp(-s [hy (1) +gy ()
() - T
o M1 Pl=l thtT)Tg) it

- h,(7)]1dr) (C.20)
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