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ABSTRACT

SOME STOCHASTIC MODELS FOR MICROORGANISM

DEATH KINETICS

by Frederick Pierce Geyer

Mathematical models currently used for microbial

death kinetics are deterministic. Little attention has

been given to population fluctuations arising from random

aspects inherent in death processes. Modern probability

theory was used to show how quantitative values can be

assigned to the influence of these factors on the popu-

lation size during a reduction process. Consequently,

real death processes were not studied, but instead a method

of mathematical modeling was derived and illustrated.

Death processes were considered as Markov processes

with a continuous time parameter. Chapman-Kolmogorov

equations were derived and solved by the use of probability

generating functions. Models for organisms with one and

two viable states were considered for both time dependent

and constant death rates.

The stochastic models obtained gave theoretical

probability distributions for the discrete levels of

possible population size during a reduction process. The

mean of the probability distribution derived was equivalent

to the prediction of deterministic models. The latter was
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found to give a good approximation of the stochastic model

for determining the lethal treatment required to sterilize

a population of microorganisms.

From the theoretical probability distributions de-

rived, several methods were given to simulate a population

reduction process. These techniques were computer pro-

grammed to generate simulated death processes.

Experimental evidence of the predicted probability

distribution was considered for a homogeneous population

with a constant death rate. The results were inconclusive

because the predicted variation was usually smaller than

the expected variation due to errors of measurement and

observation.

_For a model with two viable states, statistical esti-

mation of transition parameters was considered. The least

squares estimators required the simultaneously solution of

a complex system of non-linear equations. The methods of

successive substitutions and the generalized Newton method

were developed. Their application was successful for data

simulated according to the derived probability distributions.

But these techniques did not give convergence for data with

deviations larger than predicted by the stochastic models.
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PREFACE

The work reported is Just a beginning. The topic

has proven to be very interesting and it has provided a

very rewarding experience in my graduate program. But

many questions have arisen during the study that are not

answered here.

The thesis topic and this dissertation are a

direct result of the training received at the graduate

level. I have tried to fully utilize this training in

carrying out the dissertation research. To some, the

approach may seem theoretical; but to others, the treat-

ment will be at the applied level.

The first inspiration for a thesis on stochastic

models came from Professor J. Gani (now at The University

of Sheffield), whose classroom teaching ability initiated

my interest in this topic. He was also instrumental in

helping me formulate the two-stage death model (Chapter

M) and its solution.

The choice of consistent notation was difficult be-

cause of the extensive mathematical formulations. To

allow for easy computer programming, alphanumeric charac-

ters were used for real and integer valued variables. In
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so doing, the standard use of Greek symbols and English

letters like i, J and k for transitions parameters was

eliminated. In general, the letters 1, J, k, l, m, and

n were used to define only integer valued variables.

The Fortran listing of computer programs used is

not included. Instead, the steps and procedures re-

quired in writing the programs are given. From my

experience, the logic and notation used in Fortran pro-

gramming is an individual matter and it takes about as

much time to adopt someone else's program as to compose

a new one. However, I shall be glad to supply a listing

and/or Fortran source deck for the programs used in

Chapter 6. These were especially difficult, and it took

me several months to debug these programs.

I wish to express my appreciation to the many people

in the department of Agricultural Engineering who have

contributed to my graduate education. To Dr. D. H.

Heldman, my research adviser, I am particularly indebted.

His guidance and interest in the use of stochastic models

were an abetment to my study. Also, Professors C. w. Hall

and F. H. Buelow (now at The University of Wisconsin) were

very helpful in guiding my graduate program.

Additional acknowledgment is given to Professor I. J.

Pflug (Food Science) and Dr. D. Feldman (Statistics) for

serving as guidance committee members. Finally, it seems
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appropriate to acknowledge the support of my family who

were a constant source of encouragement.
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CHAPTER 1

INTRODUCTION

Scope

The application of stochastic models to the death

of populations of microorganisms is examined in this

study. Several cases will be considered in detail.

Emphasis will be given to mathematical derivations and

statistical use of the models.

Mathematical models currently used for microbial

death kinetics are deterministic; that is,for certain

initial values and constant conditions, precise concen-

trations are predicted for subsequent times. Fluctuations

about these precise values are assumed to be a result of

extraneous experimental errors, and statistical methods

are used as smoothing tools to achieve rate constants and

population sizes.

Little attention has been given to the study of

fluctuations arising inherently in the process itself.

These fluctuations are caused not by errors, but by the

laws of chance. If observations on a biological system

are taken as elements in the set of all possible obser-

vations, these observations are usually elements of some

specified subset of all possible observations. Stochastic

l



mathematical models create a subset that is more general

and descriptive than that given by deterministic models.

Allowance is made for random occurrence of individual

events, and a probability is assigned to all elements

within the created subset.

Development of Stochastic Processes
 

The mathematical understanding of physical and bio-

logical processes has continually broadened and deepened

since the work of Newton in the 17th century. Models were

sought that established correspondence between the main

features of experimental results and abstract mathematical

concepts. When randomness appeared in the phenomena, the

classical theory of random variables was applied. Certain

variables were treated as random variables in spaces of a

finite number of dimensions.

In the 19th and 20th centuries, physical and bio-

logical problems arose involving the use of random vari-

ables in infinite-dimensional spaces. The mathematical

framework developed for these problems became known as

stochastic processes. A stochastic process has one or

more varying parameters, of which time is the most common.

The process may have a discrete or continuous varying

parameter. For the discrete case, there may be a

countable infinite number of possible values with a

random variable for each value. A complete stochastic

description will give a probability distribution of each



variable and all possible Joint distributions. Likewise,

for continuous variables, all variable distributions and

Joint distributions must be described.

Before the development of stochastic processes,

physical and biological phenomena that developed with

time were described with deterministic laws. Usually,

chance was ignored and observations were considered pre-

dictable with a probability of one. However, in 1827,

Robert Brown observed that particles in a liquid medium

performed intense random movements. From these obser-

vations came studies leading to the Maxwell-Boltzman

distribution for molecules. Soon probabilistic models

were introduced into the kinetic theory of matter. These

developments were utilized by Gibbs (1902) to lay the

foundation of statistical mechanics.

Einstein (1905, 1906) and Smoluchowski (1906) showed

that Brownian motion could be eXplained by assuming a

tremendous number of irregular motions from molecules of

the liquid. Later, Wiener (1923) gave a rigorous mathe-

matical treatment of this model. In his version of Brown-

ian motion, he showed that the displacement random variable

is, with a probability equal to one, everywhere continuous

as a function of t. This result is of maJor importance in

the mathematical development of stochastic processes.

With rather heuristic methods, Bachelier (1900) developed

a probabilistic model for stock market operations. His



model was roughly equivalent to that of Einstein and

Smoluchowski.

As early as 1908, in a different type of stochastic

model, Erlangl carried out studies on telephone traffic

problems. He derived the equilibrium form of the

Kolmogorov equations for Markov processes with a count-

able number of states. If X(t) is a random variable

denoting the number of events during time t, X(t) would

be a discontinuous function of t, increasing by steps at

times when events occur. When these events are the in-

coming calls at a telephone exchange, Erlang showed, under

reasonable assumptions, that X(t) will have a Poisson

distribution. His work became the foundation for proba-

bilistic models of queueing problems.

Watson (1874) was the first to solve the problem of

extinction of family surnames. This problem was a very

early example of a stochastic process in discrete time.

The name of Taylor (1920) could also be mentioned in this

review of early work with stochastic models. He laid the

foundation for the statistical theory of turbulence. In

this problem, there is not only random variation with

time, but also in space.

These are some of the prominent problems prior to

1925 involving random variation in time, space, etc.

 

lSee Brockmayer et a1. (1948) for complete works of

A. K. Erlang.



Unfortunately mathematical rigor was often lacking in

these analyses. There was no general structure to cover

all types of stochastic problems. With the exception of

the work by Markov, the foundations for the mathematical

theory of random processes were not laid till the late

twenties and the thirties. Then Kolmogorov, Khintchine,

Levy, Feller, and Doob contributed pioneering works. As

interest has grown, many other authors have contributed

to this field and applications have spread to nearly

every branch of science.

Markov Process with Continuous

Time-Parameter

 

 

The most widely used type of stochastic process in

physical and biological processes is known as Markov pro-

cesses. Markov (1906) extended the range of probability

theory from independent events to events that depend on

the preceding trial. For a random variable X(t) with

varying parameter t, a Markov process is defined by the

conditional probability statement:

p{X(t) = x|X(tl) = x1, X(t2) = x2,......X(tr) = xr}

= p{X(t) = XIX(tr) = xr} (1.1)

for all t and t1 < t2 < ‘°°‘<tr < t

Thus X(t) depends only on X<tr) and is independent of all

previous values. Therefore, once the present state is



known, the future probabilistic behavior is uniquely

determined. If the parameter intervals are discrete,

the process is usually called a Markov chain.

For this study, stochastic processes in continuous.

time where the increments of X(t) correspond to non-.

overlapping time intervals are always mutually independent

random variables. Such a process will satisfy the defi-

nition of a Markov process given above. In addition, if

the probability distribution of the increment,

AX(t) = X(t+At) - X(t), (1.2)

depends only on the length t of the time interval, but

is independent of the location of the interval or the

time axis, the process is called stationary or homogeneous.

Models for both homogeneous and non-homogeneous cases will

be considered in this analysis.

A Markov process in continuous time with a finite

number of states is of particular interest. For example,

at any time a microorganism may be considered to be in one

of two states: viable or non-viable.2 For.a Markov pro-

cess in real time (0 i.t < co) and a finite number of states

labeled 1,2,...,N, the probability of being in state J at

time t is labeled pJ(t). From this definition, it follows

that

N

3 PJ(t) = l (1.3)

J=l

_for all t.

 

2A viable organism is capable of reproduction when

placed in a favorable environment.



The transition probabilities, pji(t,s) can then be

defined by

pji(t.s) = p{X(t) = J|X(s) = 1}. (1.u)

X(t) or X(s) is the random variable representing the state

of the system at time t or s whichever the case may be.

If pi(s) > 0, then the following two properties hold:

Property 1 in(t’s) 1 0 (1.5)

N

Property 2 Z

i=1

pji(t.8> = l (1.6)

The following special case of the Chapman-Kolmogorov

equations can then be obtained:

"
M
Z

pk1(u.8) ka(u,t) in(t,s) (1.7)

J 1

0 i s < t < u

Matrix notation may be used where P(t,s) is a N by N

transition matrix. Equation 1.7 can be written

P(u,s) = P(u,t)*P(t,s) (1.8)

If the transition probabilities depend only on

the difference t-s and not on the initial value, 8, the



transition probabilities and matrix are stationary.

Equation 1.7 can be written

pki(8+t) = 321 ka(t) in(S) (1.9)

s, t > 0

For matrix notation, this becomes

P(s+t) = P(t) * P(s) (1.10)

A detailed derivation is given in Appendix A.

The fundamental stochastic differential equations can

then be derived from Equation 1.7. If u is replaced by

t +tAt and s by t in this equation, it can be differenti-

ated (exact differential for a stationary model) with re-

spect to t by taking the limit as At + 0 after a few

algebraic manipulations. This yields the Kolmogorov "for-.

ward system" of differential equations. 0n the other hand,

if u is replaced by s and s-by s - As, the differential may.

be obtained with respect to the variable 8 yielding the

"backward system" of equations. Kolmogorov (1931) was the

first to derive these two systems of equations. A more'

detailed derivation may be found in most stochastic texts

such as Doob (1953, p. 235) and Feller (1957, p. 423).



Stochastic Population Models

3

 

The classical theories of population growth treat

the size of the population as a continuous variable that

proceeds deterministically throughout the whole process.

The fundamental assumption is that the future development

of the population can be exactly predicted once the state

at some initial point is completely specified.

Feller (1939) was the first to use the methods of

Kolmogorov to treat population change as a Markov process

in continuous time. His study led to a birth and death

process with a discrete number of states. Much earlier,

Yule (1924) had given a stochastic birth process in con-

nection with the mathematical theory of evolution. He

considered the creation of new species by mutation as a

random event.

Feller's work was further developed by Arley (1943).

He used a simple birth and death process in the stochastic

theory of the "cascade showers" initiated by cosmic ray.

particles. In a series of papers, Kendall (1948a, 1948b,

1949) treated both homogeneous and non-homogeneous birth

and death models. He also illustrated the use of gener-

ating functions for these processes. Following Kendall,

many other authors have contributed to this field. Among

the special cases considered is the inclusion of immi-

gration into the population.

 

~r

3See Lotka, 1945, for a review of deterministic

models of population size.
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As a partial development of the birth and death

models, the simple stochastic death model can be easily

obtained. While early population studies were interested

in processes that involved growth or mutations, death

events were only included to make the model more realistic.

Consequently,the study of population reduction with

stochastic death models did not-receive much consider-

ation.

However, the concept that human death is a random

phenomenon has a long history. Medieval artists often

pictured death as something that "sooner or later" en-

slaved the individual. During the Great Plagues the

mysterious ways in which death took the lives of many and

left others untouched created a marked.impression that

death was an unpredictable event. Similarly;the concept

of chance was identified with death as that which obeys

no rule and defies all measure and prediction. But with

the development of the scientific theory of probability,

chance took on meaning as a measurable quantity. Pearson

(1897) argued that human death statistics could be identi-

fied with probability distributions which could be defined

in mathematical terms. From studies of human mortality

statistics, he_found five periods of human life that showed

regular chance distribution of mortality.

In this section, individual deaths have been con-

sidered in a population where life was normal. That is;~

some individuals may die, but others live and perform the
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usual functions of life. But in this study, the whole

population is assumed under the stress of a lethal con—

dition which inhibits the normal processes of growth and

reproduction.

Ideas about the action of radiation on organisms

have stimulated a large number of deterministic models”

for the survival of organisms. These can usually be

classed into two general types, "hit" and "target" models.

"Hit" theory defines an event (death) as taking place when

the organisms have received a determinable number of "hits"

or quantities of radiation. "Target" theory extends this

concept by theorizing that there are two or more targets,

Peach of which must receive one or more hits for an event

to occur.

Bharucha-Reid and Landan (1951) suggested a proba-

bility model for radiation damage. They theorized a.

chain of states with the ends being the absorbing states

of death and complete recovery with immunity to further

destruction. For hypothetical transition rates from one

state to the next, the time dependent probabilities of

reaching the two absorbing states are derived.

Hoffman (1957) postulated that death of individual

cells was a random event, but he did not give any mathe-

matical models. Recently, Fredrickson (l966a)has

 

“See Zimmer (1960) for an extensive review with

references for death models in radiation biology.
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suggested the use of stochastic models to describe the

killing of microorganisms. He gives a probability model

of organism viability for three different cases. The

first model is the simple death process for a homogeneous

population. Geyer (1966) also illustrates this model for

the death of microorganisms. The second model gives the

time-dependent probability that a clump of organisms has

one or more viable organisms remaining. In the third

model, Fredrickson derives the stochastic equations from

a model suggested by Johnson (1963). This model assumes

that the spore contains at least one each of several

different types of subcellular structures. The proba-

bility of a viable organism remaining is then obtained in

terms of the destruction of all the different substructures.

The basic stochastic death model for microorganisms

was also developed by Terui (1966). He used this model to

predict the most probable time to kill a population of

microorganisms. Some additional details of the work of

Terui and Fredrickson will be given in Chapter 3 where the

basic stochastic model is analyzed.



CHAPTER 2

ELEMENTARY STOCHASTIC MODEL

Fundamental Observations
 

Microorganism survival is currently considered to

be reproducible according to deterministic laws. Fluctu-

ation is ascribed, sometimes correctly and sometimes in-

correctly, to experimental error. This study proposes

that fluctuation in part is due to the random processes

basic to the cause of death. And death kinetics for

microorganisms are irreproducible processes.

The exact cause of microorganism death1 is not known,

but a number of rational explanations have been proposed

for some lethal agents. If death is induced by moist

heat, Rahn (1945, p. 39) has reasoned that death results

from the denaturation of a single molecule. While other

theories do not support this position, most agree that

some unimolecular or complex molecular action occurs caus-

ing the loss of reproduction ability. If this is the case,

the hypothesis of Bartholomay (1957, 1958) may be utilized.

He- argued that molecular processes are random processes.

 

lDeath is defined in the usual sense of nonviability

when placed in a favorable environment.

13
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To substantiate this proposition, Bartholomay considered

the random implications of modern chemical reaction theory.

From this viewpoint, randomness may be found in the Brown-

ian—like motions of molecules, in the random intermolecular

collisions, and in the accompanying intramolecular "random

walks" from one discrete quantum energy level to another.

Bartholomay (1962) has extended this line of reasoning to

enzyme kinetics and concluded that stochastic models should

be used for enzyme reactions. This conclusion can be rele-

vant to the theory of Isaacs (1935) that explains cell death

from disinfectants as a result of enzyme inactivation.

The action of chemical agents on microorganisms can

also be considered as a molecular process. In some circum-

stances, the individual chemical particles execute Brownian

motion with small, rapid steps in a random manner to pene-

trate and destroy the cell membrane.

In the case of irradiation, death may be caused by

X-rays, gamma-rays, and alpha-rays from radioactive material,

fast electrons (cathode rays and beta rays), and other fast

charged particles produced by the use of accelerators. In

all these, energy is transferred in discrete quantities,

and the time between emissions is a random variable.

Rutherford gt_al. (1931) observed this randomness early in

this century with radioactive material. The waiting times

between decompositions are often described with a negative

exponential distribution and the number of emissions by a.

Poisson distribution. In-addition, the spatial distribution
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of the radiation in the medium containing the cells can

also be considered a random variable. The absorption of

radiation by organisms has been theorized to have effects

such as local or point energy release, molecular trans-

formations following quantum Jumps, polarization, sepa-

ration of charge and production of free organic radicals

(Zimmer, 1960, p. 15). These actions collectively or

singly are a consequence of statistical properties of the

organisms and of the basic constitution of matter.

Without further consideration of the causes of micro-

organism death, the evidence from the several cases con-

sidered indicate that one or more random factors contribute

to all death processes. The modern theory of quantum

mechanics establishes a comprehensive foundation that there

is a basic physical randomness of molecular motion within

all organized protoplasm. But an exact or deterministic

relationship may appear on the macrOSCOpic scale. This

gives an illusion that the process is reproducible.

Usually, the instrumentation lacks the sensitivity to

measure fluctuation on the microscopic scale. On the other

hand, the growth of microorganism populations can be ob-

served accurately. This is possible by measuring the time

intervals between cell divisions with a microscope (Kelly,

1932). But since death is not an observable event such as

cell division, better instrumentation is required to ap-

praise the occurrence of individual deaths.
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Derivation of Elementary Model
 

This section describes the complete derivation of a

non-homogeneous death process. It illustrates the mathe-

matical techniques used in this study and presents the

derivation for the time dependent case. Derivations for

the homogeneous process may be found elsewhere. For

example, Bailey (1964, p. 90) considers the homogeneous

death process.

A lethal environment will be assumed and not speci-

fied as to whether it results from heat, chemical poisons,

irradiation, etc. The lethal condition is applied at

time zero with uniform intensity throughout the initial

population of organisms. In order to derive the mathe-

matical model for the population during the process, the

following axioms are accepted.

1. A probability parameter h(t) is defined so that

the probability of death for any organism dur-

ing a short interval t, t+At is h(t+¢At).

The function h(t) represents the death rate of

the organism at time t. And ¢ is chosen so

that:

t+At

g? f h(T)dT = h(t+¢At) (2-1)

t
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The death rate may be defined in terms of

physical and chemical properties of the

organism and the environment, but this re-

lationship need not be established to derive

the general stochastic model.

2. The probability of more than one death during

the interval t, t+At is o(At) where o(At)

is the zero order of At. That is, o(At) is

some function of At such that the limit of

2%%El as At approaches zero is zero.

3. The Joint occurrence of events occurring in

non-overlapping time intervals is statistically

independent. Thus, the probability of two or

more of these events is calculated by multiply—

ing together the probabilities for each.

Axiom 1 implies that the deaths of cells are inde—

pendent events. Starting with an initial population No’

let n(t) be the random variable representing the number of

viable cells at time t. Note that n(t) is a time de-

pendent discrete random variable with a finite number of

states. The probability of having n living organsism at

time t is designated pn(t). This probability is not

directly obtainable, but it can be derived from the

stochastic differential-difference equations (the Kolmogorov

equations). The "forward system" of these equations may be

obtained from consideration of pn(t+At). This probability

can be obtained by applying Equation 1.7 of Chapter 1.
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First, consider all events leading to n organisms at time

t+At. Three mutually exclusive events (El’ E2, E3) may

produce this condition. They are described as follows:

E : The Joint occurrence of events E and E .

l 11 12

E11: NO - n + 1 deaths occur in time t(o,t).

By definition this probability is pn+l(t).

E12: One death occurs among the n + 1 organ-

isms in time At. According to axiom 1,

this probability is

(n+l)h(t+¢At)At

Therefore, according to axiom 3 the

probability of E1 is given by the

equation

p{El} = p{Ell}p{El2} = pn+l(t) (n+1)h(t+¢At)At (2.2)

E2: The Joint occurrence of events E21 and E22.

E21: NO - n + i (i l 2) deaths occur during

time t. This probability is pn+i(t)°

E22: During t, i (i 1 2) deaths occur among

p{E2} = p{E21}p{E22} = i

the n + i organisms. According to axiom

2, this probability is o(At). Thus,

1 2 pn+i(t) 0(At) (2.3)
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E : The Joint occurrence of events E and E
31 32

E31: NO - n deaths take place during time t.

This probability is pn(t).

E32: No deaths occur for the n remaining

organisms during At. Since the proba-

bility of one or more deaths is

nh(t+¢At)At + o(At), the probability

of no deaths is 1 - nh(t+At)At - o(At).

According to axiom 3,

p{E3} = p{E3l}p{E32} -- pn(t)|_l - nh(t+¢At)At - o(At)] (2.14)

Since events El’ E2 and E3 are mutually exclusive

ways in which pn(t+At) may occur, the probability for

each of the three events is summed,

pn(t+At) = p{El} + p{E2} + p{E3} (2.5)

Substituting the expressions obtained for the terms on

the right side of this equation,

pn(t+At) = pn+l(t)(n+l)h(t+¢At) + 1:2 pn+i(t)o(At)

+ pn(t) 1 — nh(t+¢At)At - o(At)] (2.6)

By subtracting pn(t) from both sides of this equation and

dividing by At, it becomes:
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Pn(t+At) - pn(t)

At = pn+l(t)(n+l)h(t+¢At)
 

o(At)

pn+i(t) At

 + Z

i 2

- pn(t) n h(t+¢At) (2.7)

Now consider the limit as At tends to zero, the left side

d (t
of 2.7 becomes the derivative pdt ). By axiom 2, the

value of 9L%%1 goes to zero, and h(t+¢At) becomes h(t).

Consequently, Equation 2.7 can be written

d pn(t)
“_‘6577 = pn+l(t)(n + l)h(t) - pn(t) n h(t) (2.8)

where n = 0,1,...,N
0

Equation 2.8 represents a system of NO + 1 equations.

Each will have two terms on the right side of 2.8 except

for the case where n is 0 or No’ Since the state NO + 1

can not exist, pNO+1(t) has value zero. Therefore Equation

2.8 is reduced to the following equation for n = No'

d p (t)

———§9——— = (t) N h(t) (2 9)
dt pNO o '

And if n = 0, Equation 2.8 yields

d po(t)

“EF_—’ = pl(t) h(t) (2.10)
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The whole system of equations represented by 2.8

can be efficiently represented by the matrix notation:

dP(t) _
‘51?“ — h(t) A P(t) <2-ll>

where P(t) is the vector pN (t), pN _1(t), pl(t), pO(t)]

o o '

and A is the No+l by No+l matrix'

P

.No 1

NO -(NO-l)

(No-l) —(NO—2)

  

Solution of the System of

Differential Equations

The system of differential equations derived in the

previous section may be solved in several ways. Provided

h(t) is defined, these equations can be integrated suc-

cessively starting with n = No' This process will yield

the general solution:

’6 t

pn<t) = exp<—n é h(r)dr)[(n + 1) é h(T)pn+l(T)

exp(n fth(T)dT)dT + c ] (2.12)
O n



22

cn is the constant of integration defined by initial

conditions (pN (o) = 1; pn(o) = o , n < NO). But this

method-is veryolaborious, especially since No is usually

very large. Also, the integration required in 2.12 could

not be carried out without defining h(t). The latter

difficulty is avoided when the matrix form is considered.

For this approach, the solution of Equation 2.11 is easily

obtained as

t

P(t) = exp(A é h(T)dT) (2.13)

The form of this solution is simple, but the evaluation

of exp(A gt h(r)dr) is a long and difficult process unless

the eigenvalues and eigenvectors of A can be determined

easily.

The most appropriate method for solving a system of

Kolmogorov difference equations such as 2.8 is to use a

generating function. With generating functions, a system

of differential equations can usually be reduced to a

partial differential equation. In addition, the moments

of the probability distribution are easy to obtain when

the generating function is known. To solve the system of

equations represented in 2.8, the following generating

function Q(x,t) is defined.

0

n

9(x,t) = x pn(t) (2.14)

n I
I
M
Z

O
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From this definition, the following two partial differ-

ential equations are derived.

N

o dP (t)
80(x,t) = z xn n (2.15)

at _ dt

n—O

N

39(x t) O n—l
-——§L—— = z nx p (t) (2.16)

x n=0 n

If Equation 2.8 is multiplied by xn and summed over all

values of n, it becomes

NO n dp“(t) NO ( > n < > <E x —————- = E n+1 x h t p t)

n=0 dt n=0 n+1

N

O n

- 20 n x h(t)pn(t) (2.17)
n:

This equation can be rewritten in a more suitable form

by shift of axis to discard meaningless terms.

No n dpn(t) No n-l

Z x dt 2 n x h(t)pn(t)

n=0 n=0

N

O n-l

- x z nx h(t)pn(t) (2.18)
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Equations 2.15 and 2.16-can then be substituted into 2.18

and a partial differential equation involving the generat-.

ing function is obtained.

2.91%.21 = h(t) (1 — NEE—@5313)— (2.19)

Using Lagrange's method of auxiliary equations as

described in Appendix B, the following ordinary differen-

tials have the same solution as 2.19.

 

dQ(x t) _ dx 3 dt

*‘L-o ‘ h(tm - x) "If (2'20)

Two independent solutions of 2.20 are

Q(x,t) = c (2.21)
l,

and (x - 1) exp(- gt h(r)dr) = c (2.22)
2

with c1 and c2 arbitrary constants. Therefore,0(x,t) is

t

some function of (x - l)exp(- f h(r)dr). For the initial

0

conditions, t(x,o) = xNO, the general solution is

t t No
Q(x,t) = x exp(- f h(r)dr) + 1 - exp(- I h(r)dr)

o o

(2.23)
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By a series expansion of 2.23, the coefficients of

xn are obtained. From the definition of the probability

generating function, these coefficients are the values of

pn(t). Thus,

 

NO . n N-n

pn(t) = s(t) [l - s(t)] (2.24)

n

where s(t) = exp(- fth(r)dr) (2.25)
O

and NO — NO!

- (NO-n)! n!

This result could be obtained directly from 2.23 by

observing that it is a generating function for a binomial

distribution with parameter s(t). Since s(t) is the sur-

vival probability for any organism in the population and

each organism was assumed independent, the binomial distri-

bution of Equation 2.24-can be obtained from Equation 2.9

for a No of one. However, the method of solution given

illustrates the techniques used for more complex models

(Chapter 4) that can not be solved by simple methods.

The distribution of the random variable n(t) can be

used to determine common statistics such as the mean H

and variance 02. These two statistics can be obtained

directly from the probability generating function by

applying the following formulas.
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n(t) = w'(l,t) = NO exp(— ft h(T)dT) (2.26)

O

2 _ 2
o (t) - w'Nl,t) + w'(1,t) - Ew'(l.t)l

= NO exp(— gt h(T)dT)[l - exp(- gt h(r)dr)] (2.27)

Next, the distribution function of the arrival time

of an event may be obtained. Starting with NO organisms,

the probability that at time t no event has occurred is

given by 2.24 for n = No' Accordingly,

t

pN (t) = exp(- N f h(T)dT) (2.28)

o O 0

This is also the probability that the first event

happens at some instant greater than t. Therefore, the

distribution function of the arrival time u of the first

event is given by

u

F(u) = l - exp(- NO 5 h(T)dT) (2.29)

and the corresponding density function is

f(u) = F'(u) = Noh(u)exp(- NO xu h(t)dt) (2.30)
0

where h(T) i 0 for t(0,w) and h(t) = 0 for only a finite

interval. This equation can be used to give the distri-

bution of the time interval between any two successive

events if the value of No is adJusted to the level of the
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population and the time scale and h(T) are shifted to the

point the last event occurred.

The deterministic model of this process may be com-

pared to the stochastic in several ways. Deterministic

kinetics are based on the Law of Mass Action. Accordingly,

any change in population is proportional to the size of

the population. The ordinary differential equation

—— = -n h(t) (2.31)

describes the model. In this case, the population is

treated as a continuous function of time,although n is

discontinuous for a real death process. Equation 2.31 may

be integrated to give

t .

n(t) = Noexp(- é h(T)dT) (2.32)

This equation has the same form as the equation for the

mean of the stochastic model (2.26),therefore n(t) and

h(t) are the deterministic equivalent of fi(t) and h(t)

in the stochastic model. Thus, the stochastic model is

"consistent in the mean" with the deterministic model.

Consequently, the deterministic model may be considered a

special case of the stochastic model. The stochastic

model would yield the same result as the deterministic

only if a large number of cases were averaged.
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The stochastic model not only predicts a fluctuation

from the mean, but it specifies the expected size of these

deviations. With this model, the reproducibility of the

process can only be considered as a Joint probability

distribution of two or more independent events whose proba-

bilities are specified by Equation 2.24. However, it is

possible to specify a range of values within which the

process would be expected to lie for any level of signifi-

cance desired.

Because the probability distribution derived in

Equation 2.24 is binomial, it may be approximated with a

normal distribution according to the de Moivre-Laplace

Limit theorem (Feller, 1957, Chapter 7). The error of

this approximation will be small if the variance is large.

If the variance is small, a Poisson distribution could be

used as an approximation of the distribution because the

variance will be small in the same intervals where the

probability is very small or close to one. For a normal

approximation, about 68 percent, 95.5 percent and 99.7 per-

cent of the distribution would be expected to fall within

one, two, and three standard deviations, respectively of

the mean.



CHAPTER 3

HOMOGENEOUS CASE OF ELEMENTARY MODEL

Description
 

If the organism death rate h(t) is independent of

time t, the process is considered homogeneous and h(t) = h.

Assuming a constant lethal environment, several micro-

organism death processes exhibit homogeneous character-

istics. Rahn (1945) and Stumbo (1965) both concluded that

the death rate of spores by constant temperature heat in-

activation is independent of time. Their conclusion was

based on their own laboratory studies as well as those by

other researchers.

On the contrary, considerable evidence has been ob-

tained that heat inactivation of spores is time dependent

for some conditions. For example, Frank (1957) and Humphrey

(1961) have documented time dependent cases. For spore

irradiation death processes, neither the homogeneous nor

the non-homogeneous elementary model seems appropriate.

Instead the process is considered more complex, and a

"target" or "hit" model (see p. 11,Chapter l) is usually

given.

29
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The homogeneous case of heat inactivation will be

non-homogeneous if the temperature is not held constant.

Under these conditions, the death rate is a function of

temperature.

Assuming that a death process is homogeneous, its

probability distribution may be easily obtained from the

non-homogeneous stochastic model in Chapter 2 (Equation

2.22). Consequently,

N N -n

pn(t) = [ 0] exp(-nht)[l — exp(-ht)] 0 (3.1)

n L

H(t) = NO exp(-ht) (3.2)

02(t) = NO exp(-ht)[1 — exp(-ht)] (3.3)

Bailey (1964, p. 91), and Frederickson (l966a) gave

this distribution for a stochastic model of microorganism

death kinetics. As an example of this type of process,

Figure 3.1 shows a hypothetical death process for the

distribution of Equation 3.1. As is commonly done, the

log of the number of survivors is plotted with a linear

time scale. Thus, the mean is a straight line. To ex-

tend this consideration to some of the unique features

of the homogeneous model and its application, the follow-

ing was developed.
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First, consider the variance of the process. The

lines in Figure 3.1 showing the mean plus and minus three

standard deviations may be deceptive. The time of maxi-

mum variance or standard deviation is not evident from

this figure. Since the variance (defined in 3.3) is a

continuous function with value zero at the ends of the

time scale (0,m), a time tm of maximum variance may be

found for 0 < tm < w.

The derivative of 3.3 with respect to time and

solved for t in the usual manner to find a maximum yields:

t = in 2 (3 4)
 

The size of the maximum variance °m2 is then:

No

0 = 3— (3-5)

2

At time tm, the mean is 1? or the expected popu-

lation size is half that of the original population.

Also, the time of maximum variance is solely a function

of the death rate constant and the size of the maximum

variance is only a function of initial population size.

Considering another statistic of the process, the

coefficient of variation, CV, is a continuously increas-

ing function of time since

 

  

CV<t) 2 C(13): /€Xp(htj - l . (3.6)

fl-(t) No
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This statistic may be thought of as a measure of dis-

persion relative to the mean while the variance is an

absolute measure of the irreproducibility of the process.

On the other hand, the ratio of the variance to

the mean approaches unity as t becomes large, as shown

by

2
c (t)

fi(t)

 

= l - eXp(-ht) (3.7)

Hence, the variance and the mean are approximately equal

for large values of t. Since the Poisson distribution

will approximate the binomial distribution for large t,

the above condition is obvious.

The distribution function F(u) of time u between

death events is easy to obtain for the homogeneous case.

From Equation 2.29

F(u) = l - exp(-N'hu) (3.8)

where N' is the size of the population before a death

occurs. Hence, the density function is the negative

exponential and given by

f(u) = N'h exp(-N'hu) (3.9)

If N' is one, Equation 3.9 gives the density function

of an individual lifetime. Since all individual organisms

are considered independent, the individual lifetimes v
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for the whole population has this distribution. This

can be written

f(v) = h exp(-hv) (3.10)

These distributions may be used to derive the ex-

pected or mean time to reduce the population to some

specific level. Using the density given in Equation 3.9,

the expected time interval to reduce an initial popu-

lation, NO, by one is given by

émuf(u) = h i (3.11)

O

 

By the same method the expected time period to

1
reduce the population by one more is h(No -’1)‘ Continu-

 

ing this procedure, the expected time, EB, to reduce an

initial population, N to the zero level is the sum of
0"

all mean times for each individual reduction. By making

this addition,

(3.12)c
f
l

ll

5
H
4

I
I
M

2

H
”
:

A computer calculation could be used to determine F; for

large No' Terui (1966) showed an easy method to approxi-

mate this value. Using Euler's constant,l he found

 

lEuler's constant is the limit as m + w of

m

2 % - logem . See Abramowitz and Stegun (1964, p. 255).

1 1
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E0 : %(£ogeNO + 0.577). (3.13)

Simulation of Process
 

Using the probability distribution for the homo-

geneous process, data may be generated by simulation

techniques. Two methods of simulation were considered.

First, a population destruction as a step-by-step process

was obtained. Second, a data value was generated given

any point in time of the process. This latter method is

used to simulate laboratory procedures. For experimental

work, the only way to count the number present is to dis-

rupt the death process and determine the number of organ-

isms using standard microbiological techniques. Thus,

one population can only give one data point. Consequently,

a large number of homogeneous samples are required to ob-

tain a number of data points for the process.

To simulate the first type of process, assume a

computer is available with a library function to generate

random numbers with a uniform distribution over the inter-

val (O,l). According to the axioms of the general

stochastic model in Chapter 2 (p. 16), the probability

of a death during a short interval (t, t+At) is

pD = n h At (3.14)

where n is the number of organisms at time t. The error



36

of this equation is proportional to o(At). If At is

sufficiently small, o(At) will be insignificant.

To simulate a process starting with an initial

number of organisms at time zero, a computer program was

written to do the following:

1. Calculate the probability of a death pD

according to Equation 3.14.

2. Generate a random number RN with uniform

distribution (0,1).

3. Increase time by At.

4. Check if RN is equal to or less than pD. If

this condition is not met, repeat the above

procedure starting at step 2. If RN is equal

to or less than p0, perform step 5.

5. Decrease n by one, note time and size of popu-

lation. Then repeat the above steps starting

at step 1, and continue until the population

reaches zero.

An example of this simulation is given in Figure 3.2.

Another method to make a step—by-step simulation of

the process may be derived without any approximation as

in the preceding method. Using the distribution function

for the time interval between events given in Equation

3.8, simulated time intervals v may be generated. As-

suming a random number, R, with a uniform distribution

(0,1) can be obtained, then the desired simulated time

interval, v, is determined from Equation 3.8 where F(u)
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is replaced by R. Shreider (1964, p. 252) outlines this

method and its proof. Thus,

v = - % toge(l—R). (3-15)

Since 1-R is also uniform (0,1), the above equation can

be reduced to

v = __ 7L1- 2oge(R). (3.15)

Simulation of the process was then achieved with a computer

program designed to perform the following:

1. Initialize the program with No organisms and

time equal to zero.

2. Calculate v according to Equation 3.16.

3. Increase time by v and decrease n by one.

4. Record time and population size. Then repeat

the above steps starting at step 2 until the

population reaches zero.

An example of this type of simulation is given in

Figure 3.3. The difference between the curve of Figure

3.2 and that of Figure 3.3 is caused by the random vari—

ables generated by the computer programs, and not by

difference in the methods used to obtain these two

curves.

To simulate laboratory data for a process starting

with a number of samples, a different technique can be
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used. Since each experimental sample is independent of

the others and provides one data point, each simulated

data point may be simulated independently. The problem

is then reduced to simulating only one point for any

time given the initial concentration and death rate.

This point will have the binomial distribution given by

Equation 3.1.

The generation of random numbers with a known

distribution is not difficult. Shreider (1964, p. 252)

gives the procedure for continuous density functions.

But this technique can be extended to the discrete case

in the following manner. In order to obtain a number

belonging to a set of random numbers, n1, having the

probability mass function pn, generate a random number

R with uniform distribution (0,1). Then choose the

smallest ni such that

pJ > R (3.17)

This method may be simplified. Since pJ is bi-

nomial, it may be approximated by a normal distribution.

To generate a normal distribution, again assume that

random numbers with uniform distribution (0,1) may be

acquired without difficulty. Then a random variable, V,

with a normal distribution (0,1) may be easily generated

by the following equation derived by Box and Muller (1958).
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1/2
V = (-2 9.0ge R1) cos(2nR2) (3.18)

where R1 and R2 are random numbers with uniform distri—

bution (0,1). The cosine function in the above equation

may be interchanged with the sine function without chang-

ing the distribution of V. Since V is normal (0,1), the

required random number, nr, may be determined using the

values of the mean and variance given in Equations 3.2

and 3.3. Thus,

“s(t) n(t) + V*o(t) (3.19)

An example of data generated using this procedure is

given in Figure 3.4.

A Comparison of Deterministic

and Stochastic Models

 

 

The deterministic model has at least two important

faults. First, it assumes the population size is a real—

valued continuous function of time rather than an integer-

valued function of time. Second, it assumes that the

population size at any given time will always be the same

if the initial conditions are not changed. The second

fault is the more obJectionable of the two because it

ignores intrinsic random factors that may influence the

destruction of microorganisms.

The stochastic approach questions the assumptions

of the deterministic model and thus its validity. By
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Elementary Death Process.
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substituting probability relationships for deterministic

ones, random fluctuation is expected even in the total

absence of experimental irregularities. However, the

amount of inherent variability may be small and unmeasur—

able by experimental procedures. As shown in Figure 3.1

the expected range of most of the predicted variability

is too small to be detected for the reduction of the first

half of the population. On the other hand, the predicted

fluctuations become fairly large relative to the mean as

the pepulation grows small.

The difference between the stochastic and determi-

nistic equations may be compared for prediction of process

times required for sterility of all organisms in a popu-

lation. To obtain complete sterility,the viable popu-

lation must be reduced to zero. For the deterministic

model, the population only reaches zero as time approaches

infinity. However, this model may be used to predict

practical process times if the value of the mean is taken

to represent the probability of viability for the whole

population. To use this approximation,the mean must have

a value less than one. Then the probability of any

viable organisms remaining at time, t, is designated q

in the following equation.

q = NO eXp(-ht) (3.20)

where q < 1
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Solving this equation for t, the process time to obtain

a probability of viable population, q, is

Process Time (Deterministic Model) = - % 2n[§L] (3.21)

o

For the stochastic model, q is 1 - po(t) by definition.

Using the value of po(t) given in Equation 3.1, the process

time required may be specified as follows.

N -1

Process Time (Stochastic Model) = - %-£n 1 — (l-q) O

(3.22)

To compare these two predictions, Figure 3.5 shows

a plot of both for an initial population of 105. By using

semi-logarithmic scales, the deterministic prediction is

a straight line. This line does not take on any values

for the initial time interval because the mean of the pro-

cess must be reduced to one before the process time can

be determined (Equation 3.21). This line can be considered

1 On theas a continuation of the mean line in Figure 3.1.

other hand, the stochastic model gives a probability of via-

bility for all points in time. It yields a line that

asymptotically approaches the deterministic curve as the

process transpires. By the time the probability of any

 

1The time scale in Figure 3.5 has been changed from

that of Figure 3.1, but the initial population is the

same.
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viability is down to .01, the difference between the two

models is indistinguishable. Thus Equations 3.21 and 3.22.

yield the same result for small q. This conclusion can

also be procured by a Taylor series expansion of these

two equations about the point q = 0. Since most processes

designed to produce sterility would demand a probability

of sterility of less than .01, the deterministic model is

as good as the stochastic model for predicting the re-

quired process time. This last conclusion implies that

the deterministic model is sufficient for sterility appli-

cations even though the stochastic model more accurately

represents real homogeneous death processes.

Experimental Evidence
 

To find experimental evidence that stochastic models

represent a death process better than deterministic models,

the experimental variation from the mean was studied.

Assuming a homogeneous process, the variation of the re-

sult from the mean can be a result of two factors. First,

the intrinsic randomness of the process will cause vari—

ation. Second, errors of experimentation will also contri-

bute to deviations from the expected population size. The

latter factor can be caused by a large number of factors

since microorganisms respond to many environmental factors.

Hopefully, the researcher is able to control most of these

variables. But this is a very difficult task. In all

cases the part of the deviation from the mean caused by
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experimental error and that part due to the true process

variation can not be distinguished.

As-already stated, the direct observation of mi-

crobial death events is not possible with today's techno—

logy. Therefore, death processes of large populations

must be studied. Data of this type can be obtained by

subJecting a large number of samples of an organism to

a lethal condition and withdrawing samples at different

time intervals and counting the number of organisms re-

maining.

Experimental data obtained by Deweyl working with

Serratia marcescens were analyzed. He irradiated (X-rays)
 

cells of this organism in an oxygen atmosphere. The re-

sults of these tests are shown in Table 3.1. Ordinary

microbiological techniques were used in counting popu-

lations. This included the diluting of large populations

to obtain a population small enough to count.

First, the death constant, h, was determined from a

linear regression of the logarithm of the percent popu-

lation reduction versus the dose of irradiation received

for each trial. A death constant of .585 (kilorads)-l

was obtained. Using this value for h to determine the

theoretical mean and standard deviation (Equations 3.2 and

3.3), the values in columns 5 and 7 of Table 3.1 were

 

1

See Dewey (1963) for a report of his experiments.

The data reported here is not published in his article,but

it was obtained through personal communication.
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calculated. The difference between the theoretical mean

and the population count is given in column 6.

If the deviation from the mean was only a result of

the stochastic variation predicted, its expected value

would be the theoretical standard deviation. A chi—

square test could then be used to test the deviations from

the mean against their expected values. This test was

tried, but most of the experimental deviations were so

much larger (as much as 50 times larger) than the theo-

retical ones that the test yielded a very negative result.

However, this does not mean that the stochastic model was

invalid because experimental errors could cause the de-

viations to be much larger than the theoretical prediction.

Thus, the experimental errors would dwarf the effect of

the intrinsic variation on the outcome. It is also possible

that the intrinsic variation causes a larger deviation than

predicted by the model.

By considering only the experiments for which the

initial population was over one million, a good correlation

was found between the theoretical and experimental devi-

ations. Experiments A, B, C, D and E all had original

populations over one million. They also had a population

count of less than ten organisms after the irradiation

treatment. A chi—square test for these five experiments

showed the validity of the theoretical variance at a .05

level of significance.
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An attempt was then made to correlate the experi-

mental deviations to the theoretical standard deviations

by a linear regression. A plot of these data is shown

in Figure 3.6. From a least squares analysis of these

data the following equation was obtained:

Experimental Deviation = 10.87 Theoretical Deviation

- 8.9 (3.23)

Thus,the experimental deviations were about eleven times

that expected. These two variables had a correlation co-

efficient of .757. However, this correlation may be due

to another variable such as the number of organisms re-

maining after the treatment. The dilution of the popu-

lation required to obtain a countable number tends to

amplify the errors for large populations. Also, the

theoretical variance decreases as population decreases

for the range of the experiments since all treatments

extended beyond the dosage of maximum variance (Equation

3.4). Therefore, both may be correlated with pOpulation

size.

In conclusion, the experimental results give evi—

dence of the applicability of the theoretical model, but

more accurate measurement techniques are needed to test

the model.
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CHAPTER 4

A DEATH PROCESS WITH AN

INTERMEDIATE STATE

In the elementary model of Chapter 2, there was

only one possible transition: a change from a viable

state to a non-viable state. As an extension of this

model, one can theorize that the organism may exist in

two different viable states. One state may be more death

resistant than the other or one state may be a result of

the lethal environment. The second viable state could

also be a result of an adjustment to the lethal environ-

ment or a partially destroyed state.

To construct a stochastic model for this case, let

the two viable states be denoted by 1 and 2, and the non—

viable state as state 3. Assume organisms in states 1

and 2 both may become non—viable by transitions to state

3. In addition, assume organisms in state 1 may make a

transition to state 2. All other possible transitions

between the three states is assumed non-existent.

Visually, this model could be represented by Figure 4.1.

53~
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State State

A
 

Figure 4.1.-—Three State Model with Transitions

Shown by Arrows.

To derive.a stochastic model for the semi-closed

time interval 0 :_t < w, let the number of organisms in

each state be represented by the discrete random variables

as follows:

m(t) = number in state 1 at time t.

m(t) = number in state 2 at time t.

n(t) = number in state 3 at time t.

The Joint probability distribution pl gt; is defined as

.9 9

the probability of having 2 organisms in state 1, m

organisms in state 2 and n organisms in state 3 at time

t. It follows that:

p (t) = 1 > (4.1)

for all t (0,w).
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Further, assume that the initial concentration in

each state is known; that is, 2(0) = Lo’ m(o) = M0 and

n(o) . No' Under these conditions,

n(t) = LO + MO + NO — 2(t) - m(t) (4.2)

(t)

p£,m,n

(t)

bility p£,m since n(t) is known if 2 and m are chosen.

Therefore, may be reduced to the two state proba-

Equation 4.1 then reduces to:

z p, (t) = 1 (4.3)

The following system of 6 axioms is accepted to

derive an analytical expression for pg’ét).

1. The probability of a transition of any organ-

ism in state 1 to state 2 during a short time

interval t, t+At is represented by the transition

parameter hl(t+0lAt)At. The function 01 is

chosen such that

t+At

1 -
Kt é hl(r)d1 - hl(t+¢10t). (4.4)

2. The probability of a transition of any organism

in state 2 to state 3 during a short interval

t, t+At is h2(t+¢20t)0t. And 02 is defined such

that

d
H :
3
'

f% (T)dT = h2(t+¢2At). (4.5)
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3. The probability of a transition of any organism

in state 1 to state 3 during a short interval

t, t+At is given by the transition parameter

gl(t+¢30t)0t, where 03 is defined in the same

way as 01 and 02 in Equations 4.4 and 4.5.

4. The probability of more than one transition

among the three possible types in time interval

t, t+At is o(At). Where o(At) is the zero

order of At. That is,o(At) is defined such

that

2:20 W: 0. (4.6)

5. All possible transitions other than given in

axioms l, 2, 3 and 4 have probability zero.

6. The Joint occurrence of events occurring in

non-overlapping time intervals is statistically

independent.

(t+At)
m , consider the

9

To obtain an expression for p2

various transitions which, starting at time t, can lead

to values 8 and m for states 1 and 2 respectively at time

t+At. Since the axioms listed above dictate that the

random variables can either increase by one, decrease by

one or remain the same without having a probability of

order o(At), the transitions shown below in Table 4.1

must be considered.
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TABLE 4.1.--Transitions for model.

 

 

State At Transition State At

Event Time t During At t+At

El 2+1, m-l From state 1 to state 2 £,m

E2 2, m+l From state 2 to state 3 2,m

E3 2+1, m From state 1 to state 3 2,m

E4 8, m No transitions z,m

 

The probability of the first three events listed in

Table 4.1 above is the product of the probability of two

independent events. The first event is the occurrence of

being in the state specified at time t. Its probability

is given by definition. The second independent event has

the probability of a transition during time At. Axioms

1, 2 and 3 specify these probabilities. Consequently,

(t)
p{El} = p£+l,m-1 (2+1) hl(t+¢lAt)At (4.7)

piE2} = pz’éii (n+1) h2(t+¢20t)0t (4.8)

p{E3} = p2+1,m (2+1) sl(t+¢30t)0t. (4.9)

If more than one event of any of the three types

given above or any combination of them occurs, then o(At)

must be a factor in the probability according to axiom 4.
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Let E4 be the event that the process is in state 8,m

after two or more transitions during time interval At.

If r and s are any combination such that after two or

more transitions state r,s becomes state 2,m,

p{Eu} = 2 pr,s(t) o(At) (4.10)

r,s

Event 5 can now be defined as occurring if no

transitions take place during interval At. Because all

possible events must have a total probability of one, the

probability of event 5 is one less all probabilities of

one or more transitions. Therefore,

P{ES} = P£,m(t) (l - q) (4.11)

where

q = 2hl(t+¢lAt)At + mh2(t+¢2At)At

+ £gl(t+At)At + o(At). (4.12)

Since the five events are mutually exclusive ways

in which pn(t+At) may occur, the desired probability is

the summation of the probabilities for each of the five

events.

P£,m(t+At) = p{El} + piE2} + p{E3} + p{Eu} + p{E5} (4.13)
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(t+At) (t) (£+1)hl(t+¢1At)At
pz,m a p2+1,m-1

(t)

p£,m+1

+ (m+1)h2(t+¢2At)At

+ p£+§E% (4+1)gl(t+¢3At)At

(t)
+ p5,"m 1 — £hl(t+¢lAt)At - mh2(t+¢2At)At

- 2gl(t+¢3At)At - o(Ati] + z pr,s(t)o(0t)

r,s

(4.14)

This equation can then be reduced to a differential equation

by-subtracting p, m(t) from both sides, dividing by At and

9

taking limit as At approaches zero. This equation is:

d p£,m(t) (t)

a. = <z+1>n1<0 + p,,,<,:; 6.6.26) 

+ 10,193,; <2+1>gl<t) - p£,m(t)[:2[hl(t)

+gl(t)] + mh2(t)] (4.15)

Taking into account that p2 m(t) has value zero for

9

2 > Lo’ m > MO and 2 or m less than zero, Equation 4.15
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may be reduced to a simpler form for the end points of

the process.

 

 

d PL M (t)

o? o

(4.16)

d p0,g(t)

dt = pl,0(t)gl(t) + p0,lh2(t) (4.17)

As indicated in Chapter 2, the easiest method of

solving the system of equations in 4.15 is by using a

generating function. Therefore, the following bivariate

probability generating function is defined.

 

L M
o o 2 m

w(x,y,t) = Z 2 p2 m(t) x y (4.18)

£=O m=0 ’

From this definition,

' (t)
80 2 m 9 p2 m
—- = Z x y ’ (4.19)
at 2,m dt

83 = 2-1 m
8x 22 2x y p£,m(t) (4.20)

,m

ii a 2 m-l
8y 2 x y £,m(t) (4.21)
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Multiplying each term in Equation 4.15 by xgym

and summing over all possible values of 2 and m, Equation

4.15 becomes

d p (t)
1 m 2 m 2 m

E x y _____.L____ = 2 (£+l)x y h (t) p

2,m dt £,m 1 £+1,m-1

2m

+ 2 (m+1)x y h (t) p
2,m 2 £,m+l

2 m

+ 2 (2+1)x y g (t) p

- z zxp'ym hl(t) + 31(t)} p,,m(t)

£,m

- z mxzymh2(t) p2 (t) (4.22)

2 m ,m
9

The above can be reduced to a single partial differ-

ential equation by substituting the functions defined in

Equations 4.18 through 4.21 along with a few shifts of

axes .

 

34(X.y.t) . a a 8
at yhl(t) 3% + h2(t) 5% + 31(t) 3%

- x[hl(t) + g1(t)] %% - yh2(t) %%

(4.23)
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This may be reduced to

0= h(t)+ (t)-xh(t)+ (t) 94-
y 1 gl 1 El 8x

+ h2(t)(l - y) 3% — 3—5— (4.24)

Using LaGrange's method of auxiliary ordinary

differential equations (Appendix B), Equation 4.24 has

the same solution as:

 

91 dx

0 yhl(t) + gl(t) - [hl(t) + gl(t)]x

_ d1 =91:

' h2(f)(l - 97* -1 (4.25)
 

The solution for this was obtained for initial conditions

that there were L0 in state 1 and Mo in state 2 at the

beginning of the process. The complete derivation is

given in Appendix C. The solution is:

L M

w(x,y,t) = [X8 + y-y + 1 - B - y] 0 [ya + 1 - {I O (4.46)

where

t

a = exp(- f h2(r)d1) (4.27)

O

B = exp[- at [111(1) + gl(r):|d1’] (4.28)

_ t t
y - a g hl(1)exp[- é [%l(r) + gl(r) - h2(1)]dr]dr

(4.29)
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The Joint probability distribution for A in state

1 and m in state 2 is found by selecting the coefficients

of x2 and ym in Equation 4.26. By series expansion,

L m L -2 L —2-1 M

pg m(t) = 0 fig 2 ° 71 1-8-y O

’ 4 i=0 1

M -m+i
O am-i(l-a) O

m—i

 

(4.30)

The summation in the above equation includes all

L -2

terms from zero to m, but only the terms where O

M i

and O are defined need be included. All others have

m-i

value zero.

If MO is zero,

L L -2 L -£-m
o 2 o m o

92.41“) = 2 e m y 1-e-y (4.31)

If L0 is zero, the Joint distribution is not required

because A will start at zero and remain there for the

whole process. In this case the stochastic model reduces

to the elementary model presented in Chapter 2.

According to Equation 4.30, the probability of

extinction is given by

LC MO

p0,o(t) = 1—8—Y 1-a (4.32)
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From the definition of the bivariate generating function

given in Equation 4.18, the generating functions of the

marginal distributions for state 1 and state 2 ,wle,t)

and 02(y,t) respectively, may be specified.

L

[x8 + l - 8] O41(X,t) 4(X513t)

M

[ya + l - 0] OEyY + l - Y] O442(yst) = w(l9y9t)

(4.33)

L

(4.34)

Using Equation 4.33 to determine the probability

distribution for the number of organisms in state 1, it

yields the binomial distribution:

L L -8

10,02) = ° 82(1 - 8) °
2

with mean

n(t) = L08

and variance

2

o£ (t) = LOB(1 - B)

For state 2, the distribution pm(t), mean m(t)

(4.35)

(4.36)

(4.37)

and variance 022(t) are derived from Equation 4.34. It

follows that:
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m L L -i M M -m+i

pm(t) = z °]yi(1-y) ° °]am'i(1-a) O (4.38)
i=0 i m-i

E(t) = Moo: + Loy (4.39)

m2(t) = Mod(1-a) + 107(1—y). (4.40)

The generating function for the Joint distribution

is also used to obtain the covariance (cov) of states 1

and 2. Since

cov(£,m) = E(2,m) - E(A) E(m) (4.41)

where E denotes the expected value and 8 and m are the

usual time dependent variables. The expected values of

2 and m are given in Equations 4.36 and 4.39, respectively.

And

2

_ 3 W(X:y:t)

E(£,m) _ axay

x=y=l (4.42)

Making the prescribed substitutions,

cov(£,m) = — Losy (4.43)

In addition the probability distribution for the

total number in states 1 and 2 may easily be obtained.

The probability generating function wk(z,t) for this

distribution is again acquired from the Joint distri-

bution generating function as given by the following

equation from Feller (1957, p. 261).
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wk(z,t) = t(z,z,t) (4.44)

therefore,

LO MO

¢k(Z,t) = {2(B+Y) + l - (B+Y)] [2a + l — a]

(4.45)

If k(t) indicates the random variable characterizing

the total number in states 1 and 2,

k L L -1 M I M -k+i

pk(t) = 2 [ °](e+y>1(1-(s+9) O [ 0 ]yk'i(1-y) °
i=0 1 k-i

(4.46)

and

E(t) = LO(B+y) + Mod (4.47)

ok2(t) = LO(B+Y)(l-B-y) + Moa(l—a) (4.48)

Using Equation 4.46 to obtain the probability of

extinction, the result is the same as given in 4.31;

i.e.,

LO MO

po(t) = [l-B-YJ [1-71 (4.49)



CHAPTER 5

HOMOGENEOUS CASE OF MODEL WITH

AN INTERMEDIATE STATE

Description
 

If the transition parameters hl(t), h2(t) and gl(t)

of the model described in Chapter 4 are independent of

time, the homogeneous case results. The model could be

visually represented by Figure 5.1. As defined in

Chapter 4, £(t) and m(t) are the number in states 1 and

2 respectively, and m(o) - Lo’ m(o) = M0. Also the proba-

(t)x£ym.bility generating 4(x,y,t) is defined as l: p
,m £,m

State State
 

Figure 5.1.--Three State Model with Constant

Transition Parameters hl’ h2 and-g1.

67
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Replacing hl(t), h2(t) and gl(t) by the constants hl’

h2 and g1 respectively in Equation 4.26 through 4.29,

Lo IVIo
W(x,y,t) = [xb + yc + 1 — b — c] [ya + 1 — a]

(5.1)

where

a = exp(-h2t) (5.2)

b = exp(-(hl+sl)t) (5.3)

h1

c =W [exp(-h2t)—exp(-(hl+gl)t)] (5.4)

If hl + gl = h2, c can not be defined by Equation

5.4. In this special case

c = hlt exp(—h2t) (5.5)

To obtain Equation 5.5, either the limit h2 + hl + gl

of Equation 5.4 may be derived, or the original Equation

(4.29) used to derive Equation 5.4 may be evaluated for

this particular case.

By substituting the expressions given for a, b and

c (Equations 5.2 through 5.4) for a, B, and y,respective1y,

in the equations of Chapter 4, all the results of the non-

homogeneous model may be evaluated for the homogeneous

model of this chapter. Several applications of these

developments will now be considered.
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An Example of Heat Kinetics
 

Shull, Cargo and Ernst (1963) proposed a deterministic

model of the type given in this chapter except they assumed

the rate of transition from state 1 to state 3 to be zero.

Their model was intended to represent the kinetics of heat

activation and thermal death of bacterial spores. At-the

start of a thermal death process, some bacteria were con—

sidered to first undergo a heat activation process and then

a death process due to the hot environment. Other bacteria

were considered to be in a state where germination was

possible without heat activation. Shull gt_al. (1963) used

this model to describe the death curves of Bacillus

stearothermophilus spores.
 

In terms of the three states of Figure 5.1, state 1

would represent the organisms that require heat activation

to germinate. The activation process would then be repre-

sented by a transition to state 2. A11 organisms which

would reproduce without heat activation would be considered

to be in state 2 at the start of the process. From this

state, the organisms would become non-viable by a transition

to state 3.

Frederickson (1966b) extended the model proposed by

Shull gt_al. (1963) by including the possibility of a

direct transition from the unactivated condition (state 1)

to the non-viable condition (state 3). He suggests that

a stochastic model should be used to represent the process,
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but he only gives the derivation of the deterministic

equations or the mean of the stochastic model. The com—

plete probability distribution for this model can be ob-

tained from the probability generating function given in

5.1.

Since the organisms in state 1 would require heat

activation to become countable by standard counting techni-

ques, the number in state 2 is of particular interest.

Its generating function 02(y,t) can easily be obtained

from Equation 4.34. Accordingly

L M

42(y.t) = [yo + l - 01 0 [ya + l - a] O (5.6)

And using Equations 4.38 through 4.40, the probability

distribution pm(t), mean m(t), and variance 0m2(t) are as

 

follows:

m L L —i M M —m+i

pm<t) = z [ °]ci(1-c) ° °]am‘1<1-a) O (5.7)

i=0 1 m-i

m(t) = Moa + Loc (5.8)

m2(t) = Moa(l-a) + Loc(1-c) (5.9)

The mean would increase at the start of the process in

most examples, then die away to zero. To determine the

cases where the mean is maximum at the start of the pro-

cess, consider the time the derivative is zero.
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Letting tm be the time the mean is a maximum,

m 1 81' 2 2 o 1 E1" 2 2 0 1

  

where h1+gl ¢ h2

The maximum will be at t = 0 if Equation 5.10 yields a non-

positive value.

If hl+gl = h2,

 

M h

1 o 2

t = —— l - “H‘ (5.11)

m h2 Lo 1]

In addition,the time the variance is maximum will

occur between the end points of the time interval (0,w) be-

cause am2(o) = 0 2(co) = 0 according to Equation 5.9. The
m

time of maximum variance is the solution to the equation

Moh2(hl+gl-h2)

[58‘5‘1][)h1+81)exp('(h1+31'h2)t)'h2] = Lohl
 

where hl+gl # h2 (5.12)
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and

  

l - 2h t a h M
l _ 2 o

if hl+gl = h2

Since these equations are both implicit equations,

it is impossible to make any general observation about the

size of the maximum variance and the time of the maximum

variance in relation to the time of the maximum value for

the mean.

This process may be simulated in a manner similar to

that used for the simple death process in Chapter 3. Using

a computer with a library function to generate random.

numbers with a uniform distribution over the interval (0,1),

a step-by-step process can be simulated in the following

manner. For 8 in state 1 and m in state 2, the axioms of

Chapter 4 may be written for the homogeneous model. The

three possible transitions have the following probabilities

for a very small time interval At

p{transition from state 1 to state 3} Ap 8g At (5.14)
l 1

p{ H H H l to H 2} Ap2 _ fihlAt (5.15)

p{ n n u 2 to n 3} mh At (5.16)

Ap3 2
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If At is sufficiently small, the probability of

more than one of these events occurring during At will

be insignificant. To insure this condition, a At was

picked such that the maximum sum of Apl, Ap2 and Ap3

was less than .1. A computer program was written to

perform the following steps:

1. Initialize the program for the number in state

1 and state 2 at time zero.

Calculate the probabilities of the possible

transitions according to Equations 5.14, 5.15

and 5.16. Assign each of these probabilities

to a different portion of the complete interval

between 0 and l where the length of each portion

is determined by the size of Apl, Ap2 and Ap3.

Generate a random number RN with a uniform

distribution (0,1).

Increase time by At.

Check if RN falls within any of the intervals

assigned in step 2. If it does not, repeat the

above steps starting at the third one. If RN

is in the interval determined by Apl, go to

step 6. If RN is in the interval Ap2, go to

step 7; and if RN is in the interval Ap3, go

to step 8.

Decrease the number in state 1 by one and re-

peat the process starting at step 2.
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7. Decrease the number in state 1 by one and in-

crease the number in state 2 by one. Record

the time and number in state 2. Then repeat

the procedure starting at step 2.

8. Decrease the number in state 2 by one. Record

the time and number in state 2. And repeat the

process starting at step 2 until the number in

m
_
_
.
.
l
l
.
1
:
1
.
1
9
a
n

both one and two are zero.

An example of this simulation procedure is shown

in Figure 5.2.  

"
k-

1

This process can also be simulated by generating the

time intervals between events in a manner similar to the

one used in Chapter 3 (p. 36). Yet this procedure is

complicated by the possibility of two types of transitions

for both state 1 and state 2. For state 1 Equation 3.16

can be used to generate the time u when the number is de-

creased by one. So

-1oge(RN)

u = (hl+gl)£ (5.17)
 

where RN is a random number uniformly distributed over

the interval (0,1). To distinguish if the reduction is

caused by a transition from state 1 to state 3 or a

transition from state 1 to state 2, a random experiment

with these two outcomes could be performed with the

probabilities proportional to the parameters of transition,

g1 and hl' This procedure will simulate two transitions.
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The only event left to generate is the time interval v

between the transitions from state 2 to state 3. Be-

cause this transition has the same characteristics as

the one in Chapter 3 used to derive Equation 3.15 which

gives the time interval between events, Equation 3.15 may

be used to find v. Therefore,

 

-1oge(RN) }

V "' “W- (5.18) p

2

where RN is defined as before.

This simulation procedure will have an error because i

a transition to state 2 is not taken into account in

determining the next transition from state 2 to state 3

until the next transition of the latter type occurs. This

error will be insignificant if the reduction to zero of

the number in state 1 is somewhat sooner than for state 2.

By using the above method, the complex form of the

distribution for the number in state 2 (Equation 5.7) is

avoided. However, the distribution of the time interval

between a transition from state 1 to state 2 or from state

2 to state 3 involves a very simple form of the Joint

probability distribution given by Equation 4.30. But this

approach would also incur errors of the type mentioned in

the proceding paragraph.

A simulation was achieved with a computer program

as follows:
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Initialize the program for time zero. Generate

the time of the first transition from state 1

by Equation 5.17 and the time of the first

transition from state 2 to state 3 by Equation

5.18.

Compare the time of the next transition from

state 1 to the time for the next transition

from state 2. If the latter type occurs first,

proceed to step 6; otherwise continue to step 3.

Generate a random number uniformly distributed  '
l
fl
'
.

.

on the interval (0,1). If this is less than the

value of hl/(hl+gl), proceed to step 5; otherwise

go to step 4. When 2 reaches zero, the time of

the next transition from state 1 should be set

at a very large number so as to avoid any more

transitions of this type.

Decrease 2 by one and generate the time of the

next transition from state 1 by adding the inter-

val u (obtained by another evaluation of Equation

5.17) to the current time in the simulated pro-

cess. Then return to step 2.

Decrease 2 by one and increase m by one; record

the time and size of m. Again obtain a new

value of the interval u from Equation 5.17 and

determine the time of the next transition of

this type as in step 4. Then return to step 2.
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6. Decrease m by one, record time and size of m.

Generate a new value for v (Equation 5.18) and

determine the time of the next transition from

state 2 to state 3 by using this value. Continue

this procedure until the number in state 2 reaches

zero. in

An example of the results of this type of simulation

is shown in Figure 5.3.

To simulate laboratory data for this model, the method

 discussed in Chapter 3 (p. 38) may be utilized. The indi— J

vidual data points were generated by assuming a normal

distribution as an approximation of a binomial distribution.

Because the generating function (Equation 5.6) is the pro—

duct of two binomial generating functions, the distribution

(Equation 5.7) is the sum of several binomial factors.

Consequently, a normal approximation can also be used to

approximate the distribution. A random data point mr(t)

can then be generated by the following equation

41,0) = {6(6) + v*om(t) (5.19)

where E(t) and om(t) are the mean and standard derivation

defined in Equations 5.8 and 5.9. The variable V is a

normal deviate which can be generated by Equation 3.10.

Again the approximation of the distribution by a normal

will be without significant error if the variance is

sizable.
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An Example of Change of

Death Rate

 

 

The three state model of Chapter 4 is also proposed

by Terui (1966) and used by Komenushi, Takada and Terui

(1966) to represent a change of the death rate constant

of Bacillus pumilus spores during heat sterilization.
 

These researchers assumed that a spore may exist in two T

viable states,both which will germinate using standard

culturing techniques. They theorized that spores in one

state could make a transition to a state of lower or

 
higher resistance to heat sterilization. The change is E

considered to be a discrete molecular change. Thus the

viable organism can exist in only one state or another;

there is no continuum between the possible states of

existance. Prior to the work of Terui, Komemushi g£_al.

(1966), Scharer and Humphrey (1963) had proposed a similar

model to account for the non-logarithmic order of death

curves for Bacillus stearothermophilus. But they gave
 

only two possible transitions: one transition from an

initial viable state to a second viable state and a transi-

tion from the second viable state to a non-viable state.

On the other hand, Terui (1966) included direct transitions

from both viable states to the non-viable state. Neither

Terui nor Scharer suggests probabilistic models, but they

give the deterministic equations.

The stochastic model for this example would be

described by the generating function given in Equation
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4.45. Adopting this generating function, wk(z,t), for

the homogeneous case,

Lo Mo
wk(z,t) = [z(b+c) + 1 - b - c] [za + 1 - a] (5.20)

This model gives the distribution for the total number in

states 1 and 2 or k = 2 + m. As derived in Equations

a
.
f
f
.
.
1 I

4.46, 4.47 and 4.48, the probability distribution of k

is the following

 
k L L —1 M M -k+i

pk(t> = z [ °}(b+c)i(1-b-c) ° [ ° ]ck-i(l-c) 0
i=0 1 k-i

(5.21)

with mean E(t) and variance 0k2(t) given by

E(t) = Lo(b+c) + Moa (5.22)

ok2(t) = Lo(b+c)(1-b-c) + Moa(l-a) (5.23)

The values of a, b and c are the same as given at the

beginning of the chapter in Equations 5.2 through 5.5.

The simulation of this process can be accomplished

with the same computer programs presented in the previous

sections. The only change required in these programs is

the recording of the total number in states 1 and 2 in-

stead of Just the number in state 2. Figures 5.4 and 5.5

give examples of this type of simulation. The method to

simulate time intervals between transitions (p. 73) was
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used in Figure 5.5 and Figure 5.4 was plotted from the

same program used to plot Figure 5.2.

In addition, the generating function (Equation

5.20) is the product of two binomial generating functions.

So the normal approximation of the distribution may be

used in the same manner as in the previous section (p. 78)

 

 

$2

to generate random data points for the distribution given ;A

there.

Analysis of Model

As compared to the deterministic model, the stochastic L-

model provides a more accurate description of the real pro-

cess. It defines the population size only at the discrete

levels of possible existence and predicts the influence

of random variables on the individual organisms.

The model of this chapter may be compared with the

equivalent deterministic model in the same way as was done

for the elementary homogeneous model of Chapter 3 (p. 41).

Without giving the details of the analysis, the same con-

clusion as found in Chapter 3 was reached for this model.

Namely, the deterministic model is sufficient for pre-

diction of the lethal dosage required for a probability

of sterility greater than 0.99.

To test the stochastic model of this chapter, the

same procedure as was given for the elementary model

(Chapter 3) is required. But experimental errors must

be small enough so as not to overshadow the intrinsic
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variation of the process. This requirement is very

difficult to obtain, and it is beyond the scope of this

study to search for better methods for testing micro-

organism death processes.

As an example of this model, the data of Shull

gt_al. (1962) were considered and found to have very

large variations, at least too large to verify the

stochastic model. However, the data were analyzed to

ascertain if they fitted the generalized characteristics

of the model. This resulted in the need to estimate the  
transition rates from the experimental data. Chapter 6

examines this problem.



CHAPTER 6

DETERMINATION OF PARAMETERS FOR TWO

STATE DEATH MODEL

 

 

 

[7“)

Statistical Methods to

Determine Parameters

Before any experimental evidence of the homogeneous

model of Chapter 5 can be considered, numerical values g

for hl, h2 and g1 are required. Unless these parameters

can be isolated for measurement, all three must be deter-

mined from the same set of data. In this chapter, the

determination of these parameters from the same set of

data is considered for the heat activation model in

Chapter 5 where the experimental data would be expected

to give the number in state 2. In-addition to the trans—

ition parameters, the initial number in state 1, Lo’ may

be unknown too.

For the elementary homogeneous model (Chapter 3),

only one parameter, the death rate constant, was required.

This was easy to obtain by a linear regression (logarithm

of population versus time). But the model considered

here can not be reduced to the form of a polynomial. If.

86
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it could, standard statistical methods could be used.

However, the problem of finding four parameters can be

reduced to a problem of finding two parameters for cer-

tain conditions. If h2 < hl,the slope of a semilog plot

of the mean of the process approaches -h2 as time be-

comes arbitrarily large. The mean of the process was

‘
.
'
-
‘

given in Equation 5.8 as:

 

L h
— o 1
m(t) = —————:—— [exp(—h t) - exp(-(h +g )t)] ;

i

+ MO exp(-h2t) . (6.1)

Therefore,

L h
— o l
m(large t) = —————:—— + M exp(—h t) . (6.2)

If t is zero in Equation 6.2, the ordinate intercept of

the line asymptotic to the mean line for large t is ob-

tained. Thus,

Lohl

h1+31'h2

Ordinate Intercept = + M (6.3)
0

Consequently, if a semilog plot of the data becomes

linear for large t, h2 can be obtained from the slope of

the linear portion and one of the other three parameters

determined from Equation 6.3.
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Assuming that hl and g1 are to be determined by

statistical analysis, LO will be determined from Equation

6.3. To find hl and g1, the method of moments, the

method of maximum likelihood, and the least squares

method were considered. The latter method was chosen

because it was the least complex of the three to apply

to the model. A logarithmic transformation of the data

was introduced as is usually done for models involving

exponentials. Therefore, the least squares equation for

this model is:

Sum of Squares = z[2n m(ti) - 2n D(ti):|2 (6.4)

i

where D(ti) represents the experimental population

size (state 2) at time ti.

The parameters hl and g1 are to be determined so

that Equation 6.4 is a minimum. By taking partial deriva-

tives of Equation 6.4 with respect to g1 and hi, the

normal equations are obtained. Designating these equations

NG and NH respectively,

2n m(ti) - 2n D(ti) 061701)

 

 

NG(h ,g ) = 0 = 2 (6.5)

1 1 1 E(ti) 881

and

2n E(ti) - 2n D(t1)— aim-(ti)

NH(h1,gl) 0 = z _ ah (6.6)

i m(ti) l

'
A
“

‘
K
w
t
fl
—
I
_
I
"
.
‘
-
fl
l
.
q

 I '
v
i

‘
,
"
—
9
2
?

'
v

 



89

where

am(ti) Lohl

______ a _____——— t exp[-(h +g )t
agl hl+gl-h2 [:1 1 1 1]

[5Xp(-h2ti) ' exP(-(hl+gl)tifl

 

 
  

 

- (6.7)
111+gl-h2 15*

17 ‘

and

afi(ti) = LO (gl-h2)[exp(-h2t)-exp(-(hl+sl)ti)) g.

ahl hl+gl—h2 hl+gl-h2

+ hltieXp[-(hl+gl)tii] (6.8)

Numerical Methods to Solve

Normal Equations

 

 

Since Equations 6.5 and 6.6 are non-linear, explicit

solutions are not possible and numerical methods are re-

quired. To simultaneously solve these non-linear equations,

the two general procedures given by Hildebrand (1956, p.

450) were investigated. The first of these was the method

of "successive substitutions." For this method, functions

Fl(hl,gl) and F2(hl,gl) were defined such that

k+1

1 (h k k) (6.9)h = F
1

+

and glk l = F2(hl ,glk) (6.10)
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where the superscripts indicate the number of iterations.

If hlk+l and g1k+l converge to the solution of the normal

equations as k increases, Equations 6.9 and 6.10 can be

solved successively to reach this solution.

The functions Fl(h ) and F2(h ) can be defined1981 1981

several ways to obtain a convergent series. Two common

5' R

A
:

methods, the Newton—Raphson method and the method of

”
I
N
“

a
“

false position (Regula Fulsi) were chosen. Ostrowski

(1960) gives an extensive analysis of both of these pro-

cedures. For the method of false position:

 

 

 

 

 

n k'lNH(h k,g k) — n kNH(h k’1,g k"1)
F (h k g k _ 1 1 1 1 1 1

3 ‘ - -1

l l l NH(hlk.elk) - NH<hlk T.slk )

(6.11)

and

8 k"lNCHh k.s k) - s kNG(h k'l.s k'1)
F (h k g k) = 1 1 1 1 1 1

2 ’ - -1 1 NG(hlk,glk) _ NG(hlk 1,glk 1)

(6.12)

If the Newton-Raphson method is used,

k k

k k k NH(g1 ’h1 )

NH'(gl ,hl )

and

, k k
NG(g ,h )

F2(hlk,glk) = g1k - l k l k (6.14)

NG'(sl .hl )
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The second method given by Hildebrand was the

generalized Newton-Raphson iteration. This technique

simultaneously gives the kth iteration values for hl and

g1. To derive this method,the nonlinear terms in a

Taylor expansion of Equations 6.5 and 6.6 are neglected;

and the following set of linear equations results:

  

 

  

i?“

3.

k k k k 4

(h k+l _ h k)3NH(h1 ’g1 ) + ( k+l _ k)3NH(h1 ’gl ) g

1 1 an g1 g1 8g ..
l l ;

_ k k
- -NH(hl ,gl ) (6.15) ,1;

k k k k

(h k+l _ h k aNG<h1 ’31 ) + ( k+l _ k)3NG(h1 ’81 )

1 1 an g1 81 8g
1 1

= -NG(hlk,Slk)
(6.16)

These equations can be solved by ordinary methods

for systems of linear equations.

In order that these iteration procedures converge to

the required solutions for hl and g1, certain conditions

must be satisfied. In general, the initial approximations,

hil and gfh,must be sufficiently near the true solution;

and the iteration must be asymptotically stable at the

true solution. Hildebrand (1956) lists several checks

to determine if the latter condition will be satisfied.

But no theoretical methods are known to find or describe
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the area of convergence. This lack of knowledge was the

maJor limiting factor in applying the techniques to the

normal equations of the model.

Test of Numerical Procedures
 

To test the numerical methods developed, data were

generated using the theoretical probability distribution I

‘
4

of the stochastic model and the method outline in Chapter E

5 (p. 78). Figure 6.1 illustrates the mean and some of A

the simulated data results for L0 = 2*105, M0 = 105,

 h1 = 0.15, h2 = 0.1 and g1 = 0.02. A complete description 4

of the generated data is given in Table 6.1. Two factors

were varied to test the numerical procedures, the initial

values assigned to hl and g1, and the number of data

points included in the analysis. Initial solutions of

.005, .015, .045, and .095 were tested for g1, and values

of .l, .115, .16, and .235 were used for hl'

The number of data points used was varied in two

ways. First, time interval between data points was varied

from 1 to 15 time units. Second, the span over which data

points were taken was tested for two time periods: 0 to

50 and 0 to 100.

The results of these tests were twofold. Either

the values of hl and g1 converged to a point within

several percent of the true value,or they diverged with-

out bound. The number of data points included did not

greatly affect this outcome. The use of data points in
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-— Mean of Process

\
X Simulated Data

 

Initial Populations

State l- 204 no?

State 2- io'

Transition Rates

1:,- .l5 (time units)"

by .l0(time write)"

"3' .02 (time units)"

1.1.1.1.] .1

20 40 60 80 IOO l20

Time

Figure 6.1.—-Simulated Data for Test of

Numerical Procedures.



TABLE 6.1.--Simulated data1
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to test numerical procedures.

Mean of Generated2

Time Process Data Point

0.0 l.000000+005 1.000000+OO5

1.0 1.167006+005 1.165802+005

2.0 1.277133+005 l.278511+005

3.0 l.342201+005 1.344286+005

4.0 1.371905+005 1.375992+005

5.0 l.374169+005 1.372426+005

6.0 l.355455+005 1.352477+005

7.0 1.321003+005 l.3l9747+005

8.0 1.275050+005 l.276065+005

9.0 1.221001+005 1.225535+005

10.0 l.161576+005 1.159621+005

11.0 1.098931+005 1.097840+005

12.0 1.034761+005 l.034640+005

13.0 9.703796+004 9.690525+004

14.0 9.067958+004 9.114750+004

15.0 8.447666+004 8.447515+004

16.0 7.848469+004 7.864076+004

17.0 7.274291+004 7.286045+004

18.0 6.727754+004 6.708961+004

19.0 6.210448+004 6.163358+004

20.0 5.723153+OO4 5.716327+OO4

21.0 5.266017+004 5.260256+004

22.0 4.838705+004 4.829220+004

23.0 4.440517+004 4.444255+004

24.0 4.070486+004 4.097648+004

25.0 3.727454+OO4 3.742213+004

26.0 3.410136+004 3.391315+004

27.0 3.117169+004 3.129079+004

28.0 2.847149+004 2.826854+004

29.0 23598663+004 2.596877+004

30.0 2.3703l3+004 2.392843+004

31.0 2.160732+004 2.185985+004

32.0 l.968596+004 l.982628+004

33.0 1.792636+004 l.789219+004

34.0 1.631642+004 1.623829+004

35.0 1.484469+004 1.495526+004

36.0 1.350034+OO4 1.3535l2+004

37.0 1.227325+004 1.225394+004

38.0 1.115392+OO4 1.110343+004

39.0 1.013351+004 1.006841+004

40.0 9.20379l+003 9.149679+003

41.0 8.357134+003 8.243738+003

42.0 7.586483+OO3 7.614369+003

43.0 6.885317+003 6.723144+OO3

44.0 6.247626+OO3 6.305551+003

45.0 5.667879+003 5.659554+003

46.0 5.140990+003 5.181749+003

47.0 4.662289+003 4.634352+003

48.0 4.227497+003 4.215839+OO3

49.0 3.832692+003 3.838401+003

50.0 3.474286+003 3.443167+OO3

51.0 3.148998+003 3.125185+003

52.0 2.853831+003 2.917185+003

53.0 2.586050+003 2.633761+003

54.0 2.343158+003 2.368917+003

55.0 2.122880+003 2.102508+003

I“;‘ in

‘
.
"
.
n
~

F
A
Q
“
.

1
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Mean of Generated

Time Process Data Point

56.0 1.923141+003 1.970404+003

57.0 1.742053+003 1.744521+003

58.0 1.577989+003 1.521233+003

59.0 1.429110+003 1.449417+003

60.0 1.294267+003 1.241873+003

61.0 1.172076+003 1.204211+003

62.0 1.061360+003 1.085119+003

63.0 9.610523+002 1.018934+003

64.0 8.701812+002 8.966196+002

65.0 7.878662+002 7.646256+002

66.0 7.133074+002 7.148970+002

67.0 6.457786+002 5.919608+002

68.0 5.846211+002 5.669627+002

69.0 5.292371+002 5.317168+002

70.0 4.790846+002 5.406635+002

71.0 4.336717+002 4.087201+002

72.0 3.925526+002 3.875082+002

73.0 3.553229+002 3.634952+002

74.0 3.216164+002 3.178051+002

75.0 2.911007+002 3.147960+002

76.0 2.634749+002 2.520887+002

77.0 2.384662+002 2.500732+002

78.0 2.158273+002 2.029398+002

79.0 1.953343+002 1.892332+002

80.0 1.707843+002 1.521595+002

81.0 1.599936+002 1.820469+002

82.0 1.447956+002 1.392428+002

83.0 1.310396+002 1.291327+002

84.0 1.185891+002 1.062414+002

85.0 1.073203+002 1.172043+002

86.0 9.712136+001 1.074102+002

87.0 8.789076+001 9.304161+001

88.0 7.953675+001 7.192436+001

89.0 7.196717+001 6.639253+001

90.0 6.513377+001 6.305014+001

91.0 5.894142+001 5.490436+001

92.0 5.333741+001 5.721963+001

93.0 4.826592+001 3.976850+001

94.0 4.367637+001 3.318353+001

95.0 3.952303+001 4.546303+001

96.0 3.576445+001 3.358390+001

97.0 3.236316+001 3.427428+001

98.0 2.928520+001 3.075848+001

99.0 2.649987+001 3.023038+001

100.0 2.397936+001 2.268864+001

 

 

[—

lInitial Populations: State 1 - 2*105, State 2 - 10).

2Format: First number is multiplied by 108, where e is the

second number.
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the first 50 time units gave convergence more often than

if the time span of 0 to 100 time units was used. While

this result might imply that additional information was

a hindrance to reaching the true values of h and gl,
1

the process for large t is a function of h Therefore,20

the inclusion of data points between 50 and a 100 time

 

Em

units does not add any new information to determine hl E

and g1. Another interesting result was that the time

interval between data points had very little influence on

the final outcome of the test. If the procedure con- 1

verged for an interval of one time unit and a span of

50 time units, it converged for other intervals. Even

for intervals of 15 time units with only three data

points, the convergence was as good as for 50 data points

spaced one time unit apart.

Table 6.2 gives the results for the various start—

ing points. In cases where divergence occurred, one of

two events happened. Either hl and g1 increased without

bound or hl became negative. If the latter took place,

a logarithm of negative number could occur which would

terminate the iteration procedure. Another solution

that required termination of the iteration was if

hlk+glk a h2. If this occurred, there was a division

by zero in the normal equations. For certain initial

values, the iteration procedures did converge to this

point. When h1+gl = h2, a different set of equations
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TABLE 6.2.--Numerical solution of normal equations for

various initial conditions.

 

True Values:

hlg 0 15, 81:.02

Numerical Solution1

 

 

Numerical Method

 

 

 

 

 

7:13:81 Successive Substitutions Generalized

Newton—

Method of Newton—Raphson Raphson

hl gl False Position Method Method ft

Convergence and Convergence to

.l .005 Divergence hl+gl = h2 Convergence

Convergence to

.l .015 Convergence hl+gl = h2 Convergence

.1 .045 Convergence Convergence Convergence 77

Convergence and

.1 .095 Divergence Divergence Divergence

.115 .005 Convergence Divergence Divergence

.115 .015 Convergence Convergence Convergence

.115 .045 Convergence Convergence Convergence

.115 .095 Divergence Divergence Divergence

.16 .005 Convergence Convergence Convergence

.16 .015 Convergence Convergence Convergence

Convergence and Convergence and

.16 .045 Divergence Divergence Divergence

.16 .095 Divergence Divergence Divergence

.235 .005 Divergence Convergence Divergence

Convergence to

.235 .015 Divergence hl+gl = h2 Divergence

.235 .045 Divergence Divergence Divergence

.235 .095 Divergence Divergence Divergence    
1Generally the initial values led to convergence or

divergence regardless of number of data points considered.

Both convergence and divergence are shown where this did

not hold.
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apply as shown in Chapter 5. However, this was not put

into the computer program because it did not seem signifi-

cant in most cases.

All three numerical procedures give convergence for

most initial values tested except the ones located the

farthest from the true solution. But the method of

false position converged over a little wider range of

initial values than the other two methods. It is also

the easiest to program on the computer because no deriva-

tives are required. 0n the other hand, the generalized

Newton-Raphson method converged the fastest. It took

about one-third the computer time required for each of

the two successive substitution techniques.

Application of Numerical Methods

to Experimental Data

 

 

After successful use of the numerical procedures

for simulated data, the techniques were applied to the

experimental data reported by Shull et_al. (1962). They

used this data for a model1 similar to the homogeneous

two-stage model of Chapter 5. But they did not include

a transition from state 1 to state 3. Without this

transition, statistical techniques were not required to

determine the parameters. However, the model did not

give a very good fit of the data. The addition of the

 

lSee discussion on p. 69.
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transition from state 1 to state 3 to the model was

hoped to improve the experimental fit of the data to

the theoretical model.'

Table 6.3 shows the experimental data used. But

convergence was not obtained for any of the three pro-

cedures successfully applied to simulated data. While

in theory an area of convergence exists, in reality it

2
"

“
I
'
l
l
.
2
9
1
1
“
”

could not be found even though a very large number of

initial values were tested.

Two reasons can be given for this negative outcome.

 
First, the experimental data are more irregular than the

simulated data. Assuming the experimental errors were

substantially reduced, the experimental data should

behave similar to the simulated data and result in con-

vergence for the parameters being estimated by the

numerical procedures. But the actual process may not

be the same as assumed in the theoretical model. This

is a second reason for the failure to find an area of

convergence for the experimental data.

Further study of this problem is needed. Perhaps

the numerical procedures can be modified so that values

for h and g1 can be obtained. Also, the assumption
1

that the transitions are homogeneous can be questioned.

The transition required for heat activation (state 1

to state 2) of the spore could well be time dependent.

Practically no studies have been made of the
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TABLE 6.3.--Experimenta1 data for two-stage death model.l

 

 

Time Population (State Two)

0 1.26 * 105

.8 1.90546 * 105

2.2 1.41254 * 105

2.6 1.62181 * 105 53?

4.0 1.12202 * 105

4.4 6.9183 4 10”

4.9 7.0794 * 10” ; j)

1 1
5.4 7.2444 * 10

5.9 4.3652 * 10”

6.2 8.9125 * 10“

7.2 4.4668 * 10“

7.8 3.2734 * 10“

9.0 7.762 * 103

11.1 7.943 * 103

12.4 1.995 * 103

12.7 5.82 * 102

15.2 1.58 * 102

17.1 1.22 * 102

17.3 7.2 * 10

19.7 1.4 * 10

22.7 2

23.7 2,

1Data taken from work of Shull et a1.

 

(1962).
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mathematical nature of heat activation. From the limited

data of Murrell (1961), no evidence is given that the

transition is homogeneous. Further studies are needed

in this regard.

 



CHAPTER 7

SUMMARY AND CONCLUSIONS

This study has shown how quantitative values can

be assigned to the influence of random variables on the '

death of microorganisms. To accomplish this, axioms

were statedgand a mathematical theory derived to de-

 scribe real death processes. Accordingly, real pro- 2 A

cesses were not studied; instead,a method of modeling [7

was given. Modern probability theory was applied to

acquire the results.

The general nature of the order of death processes

of microorganisms has been considered by many people,

but there were essentially no approaches from a stochastic

point of view. The stochastic models given required very

few assumptions in addition to the ones assumed for death

rates in deterministic models.

The death processes studied were viewed as Markov

processes with a continuous time parameter. The methods

of deriving and solving a model of this type were illus-

trated for an elementary1 process and used for a more

 

1Organisms of a homogeneous population were assumed

to either exist in a viable state or make a transition to

a non-viable state.
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complex model in which the organism could exist in two

different viable states. In each case, a general mathe-

matical model was derived without specifying the form of

the transition parameters. From the models, a theoretical

probability distribution was acquired and used to simulate

the supposed process.

The elementary model was analyzed for the condition 1

where the transition parameter was independent of time.

Some experimental evidence that the model predicted the

experimental derivation was found, but no conclusive  
verdict can be made without further study and better

instrumentation to minimize experimental errors.

For the practical problem of sterilizing populations

of microorganisms, deterministic models were found to give

a good approximation of the stochastic model.

The estimation of parameters for the model with

two viable states was considered. A complex system of

non—linear equations ensued. Numerical methods were

developed to simultaneously solve these equations. But

their application was only successful for simulated data.

Further work is needed to refine these procedures for

use with experimental data.

The methods and results of this study could be

extended to a model with n different viable states dur-

ing a death process. In general, the use of stochastic

models should be considered in other engineering model-

ing studies where biological entities are involved. By
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using a stochastic approach, experimental variation from

the mean is not viewed as experimental error. Instead,

variations can be predicted,and the stochastic model can

quantitatively describe the expected size of these de—

viations from the mean.

 ,1
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STATIONARY TRANSITION PROBABILITIES
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From Equation 1.7 of Chapter 1,

N

pki(u,s) = Jilka(u’t)in(t’s)' (A.l)

When the transition probabilities depend only on the

length of the time interval and not on its starting

point,

in(tsS) = in(t'S) (131.2)

and

pk1(u,s) = pki(u-t+t-s) (A.3)

This can be written as:

N

pki(u,s) = J:lpkj(u-t)p31(t-s) (A.4)

By redefining the time intervals as t = u—t,

s = t-s and substituting into Equation A.4,

N

pki(s+t) = J: pk3(t)pji(s) (A.5)

 



APPENDIX B

LAGRANGE'S METHOD FOR SOLUTION OF A

PARTIAL DIFFERENTIAL EQUATION

OF FIRST ORDER

108
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The stochastic models in this thesis yield first

order partial differential equations. This is a common

type of equation for many Markov processes. The best

method of solution of this type of equation was given

by Lagrange. For an account of the general theory,the

 

Ira

texts by Cohen (1933) and Forsyth (1885) can be con- I.

F l

sulted.

In order to find a solution to a partial differ- ; ?

ential equation of the form: i5

8z 8z 8z _

where R1, R2, R3 and Q are functions of the independent

variables x1, x2, x3 and the dependent variable 2, con-

sider the linear partial differential equation

88 8888 _

2 ““312 + R3 "“1113 + 9 1‘2 ‘ 0 (3'2)

86

1 8x1

R + R

If this equation has solution e(xl,x2,x3,z) = C where C

is a constant of integration, then this equation can be

solved in terms of z giving a solution of Equation B.1.

Therefore, a solution for Equation B.2 leads to a solution

of Equation B.1.

To solve Equation B.2, Lagrange showed that a

system of ordinary differential equations could be formed
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which would have the same solution as Equation B.2.

These so-called subsidiary equations are formed in the

following way:

 

 

dxl a dx2 = dx3 g Qfi

Ri R2 '85 Q (B.3)

rm

Now the problem has been reduced to solving a series of

ordinary differential equations. From Equation B.3,

choose three independent equations which can be inte-

grated. Let the three solutions to these integrals be j
1

81(xl,x2,x3,z) = bl (B.4)

62(xl.x2.x3.z) = b2 (8.5)

83(xl,x2,x3,z) = b3 (8.6)

where bl’ b2 and b3 are constants of integration.

Then any arbitrary function W(el,62,83) = 0 with

partial derivatives will be the general solution of

Equation B.2. In this case, choose an arbitrary

function such that:

Z(8l,82) = 83 (B.7)

which is a more convenient form of the solution. The

function Z can be explicitly determined if initial

conditions are given.



lll

Assuming initial condition:

2 = C(X1.X2.0). (B.8)

then substitute Equation B.8 into Equation B.7.

Therefore,

Z(81(xl,x2,0.§(xl,x2,0)).62(xl,x2,0,;(xl,x2,0))

= 93(xl.x2.0.c(xl.x2.0)) (B.9)

To determine the exact form of Z, let:

Al = 81(xl,x2,0,§(xl,x2,0)) (8.10)

and.

A2 = e2(xl,x2,0,;(xl,x2,0)) (B.11)

From these two equations, solve for x1 and x2 in

terms of Al and 12. This result is then substituted into

Equation B.9,and the function Z is defined. The general

solution is then obtained from Equation 8.7 with Al = 81

and 12 8 62 where 81 and 82 are defined in Equations B.4

and B.5. Thus 83 8 Z(el,82) has been completely specified.

and the original partial differential equation solved

yielding a useful relationship between x1, x2, x3 and z.

e
!
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In the foregoing the method of Lagrange was illus-

trated for the case of three independent variables. An

extension to any number of independent variables follows

the illustrated procedure along exactly the same lines.

 



APPENDIX C

SOLUTION OF DIFFERENTIAL EQUATION FOR

STOCHASTIC MODEL WITH

INTERMEDIATE STATE

113
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The stochastic model of Chapter 4 yielded the

ing exact differential equation:

d7(x,y,t) dx

0 ' yhl(t) + 81(t) - (hl(t) + gl(t))x
  

. 91 .21.
h2(t)(l-yj -1

 

It immediately follows that

W(X,y,t) = a1.

follow-

(C.l)

(c.2)

In the above equation and in the following ones, the ai's

stand for some constant. From Equation 0.1, the last

two differentials can be solved as follows:

dy = dt

h2(t)(l'Y) -1

This has solution:

t

2n(y-1) f h2(t)dr + a

O
2

And it can be written:

t

y = l +.a exp(f h (r)d1)
3 o 2

or a3 (y-1)exp(-fth2(1)d1)

o

(0.3)

(0.4)

(C.5)

(0.6)
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The stochastic model of Chapter 4 yielded the follow-

ing exact differential equation:

  

 

d1(X.y.t) = 9X

0 yhl(t) + 81(t) - (hl(t) + 21(t))x

h2(t)(l-yj -1

It immediately follows that

t(x,y,t) = al-

(0.1)

(0.2)

In the above equation and in the following ones, the ai's

stand for some constant. From Equation 0.1, the last

two differentials can be solved as follows:

dy =

h2(t)(l-y7 '1

 

This has solution:

2n(y-l)

t

g h2(r)dr + a2

And it can be written:

t

y = l +.a exp(f h (T)dr)
3 o 2

or a3 = (y-l)exp(-fth2(r)dr)

o

(0.3)

(0.4)

(C.5)

(C.6)

n
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Now a second pair of independent differentials from

Equation 0.1 can be chosen and solved. For

dtd -
" :‘i‘ a (0.7)

X

ytht) + 210:) - (6107+ 21(t))x

substitute the expression found for y in Equation 0.5

 

and rearrange the expression. Then, €31

99*- h (t)+g (t) x = —g (t) — 1 + a exp(fth (1)81 n (t) .
dt ‘ l l l 3 O 2 l j

(J;

(0.8) L1'

This is a linear differential equation with solution:

(x-l)exp[-ét(hl(r) + gl(1))d1 -+(y-1)exp[-éth2(r)dr) s

éthl(r)exp(-ét[hl(r) + gl(1) - h2(r)]dt) = a4

(0.9)

Using Equations 0.2, 0.6 and C.9, W(x,y,t) can be defined

as a function of a3 and an.

1(x,y,t) = f(a3,au) (0.10)

Given the initial conditions,

4’(x,y,0) — x 0y 0 . (0.11)
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Using the form given in Equation 0.10 for t = 0,

L M

f(y-l,x-l) = x 0y 0 (0.12)

In order to define this function for solution of general

form in Equation 0.10, let

01

p2

y — l (0.13)

x - l (C.l4)

Then Equation 0.12 can be written:

f(plsOZ)

Then from Equation 0.10,

4(X.y.t) =

This can be rewritten as:

1(X.y.t)

where

‘
2 ll

L M
o o

(01+l)(02+l) (0.15)

M L

(a3+l) O(au+l) O (0.16)

M0 L0

[ya+1—a] [x8+yy+1-8-Y] (0.17)

t
exp(-f h2(r)dr] (0.18)

O

t

exp(-é [hl(T)+gl(T)]dr) (0.19)

ft t

00 hl(t)exp(—é [hl(r)+gl(1)

- h2(r)]d1) (0.20)
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