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ABSTRACT 
 

ANALYSIS OF THE STUDY OF MATERIAL BEHAVIOR 
AT IMPACT RATES OF STRAIN 

 

By 
 

Oishik Sen 
 

Despite the practice of using cylindrical specimens in a Split-Hopkinson Pressure Bar 

experiment, the use of non-cylindrical prismatic specimens is convenient when testing extra-soft 

materials. A part of the current research aims to show the feasibility of using non-cylindrical 

specimens in a Kolsky Bar. For this, experiments were conducted with different model cross-

sections at a nearly constant strain-rate in the Split Hopkinson Pressure Bar. The findings suggest 

the use of a suitable characteristic cross-section dimension of the specimen to determine the 

critical slenderness ratio while selecting a non-cylindrical prismatic specimen. The second part 

of the investigation aims to use the SHPB to find out the strength of an adhesive-bonded single 

lap joint. The current research focuses on extending existing models to predict the strength of 

adhesive joints by introducing a term for strain acceleration, in order to explain the drastic effect 

of overlap area of the joints on the dynamic strength of joints. Reasonably good agreement was 

found between the experiments and the mathematical predictions at moderately high loading 

rates. The third part of the research comprises of developing a Split-Hopkinson Tension Bar. The 

design proposed here comprises of an incidence bar which is 10 feet in length. An end of the 

incidence bar is coupled to a flange, whose diameter is greater than diameter than the incidence 

bar. An annular projectile is allowed to impinge on the flange, thereby generating a tensile pulse 

in the incidence bar. With this, the dynamic stress-strain properties of Copper were obtained. 
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1.1 INTRODUCTION 

Materials and structures are often subjected to dynamic loading. Examples of dynamic loading 

are forces applied to a body when it falls on the ground, collision of two vehicles, impact of a 

structure by a high velocity bullet, vigorous shaking of buildings during an earthquake, impact of 

ship by an iceberg etc. [1.1] From the mechanics point of view, there are three main 

consequences of a dynamic loading [1.2]. 

(i) Stress waves or shock waves are propagated inside a body 

(ii)   The material undergoes large inelastic deformation  

(iii)  As an end consequence of impact, the modes of vibration within a body may be 

excited and the body can start “shaking” or vibrating vigorously 

 

     The material properties and behavior of solids are vigorously affected by the type of loading. 

There is a general trend among most solids to exhibit increased flow stress at higher rates of 

loading, while the toughness of the body decreases [1.3]. The term “strain-rate” is often used to 

define how quickly the material deforms under dynamic loading. Strain rate,ε& , is defined as the rate of 

change of strain with respect to time. At this point, it is helpful to provide some examples of the 

range of strain-rates encountered in typical dynamic problems. During an asteroid impact with 

the earth, the peak strain-rate developed is in the order of 8 110 s−  [1.1, 1.2]. For ballistic impact 

when the velocity of collision is of the order of a few kilometers per second, the typical strain 

rate developed is 5 6 110 10 s−− . For crash events (like an automobile crash), the typical strain-

rate developed is in the order of 2 4 110 10 s−− . However, in practice, for example in the case of 

ballistic impact and asteroid collision, the peak strain-rates or the ultra-high strain rates (in the 
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orders of 6 110 s−  and more) are sustained by a structure/solid for a very low period of time, and 

is usually preceded by a relatively longer time of high strain-rate (in the order of 3 4 110 10 s−− ). 

It is in this long regime of high-strain rate that the material undergoes large deformation and 

therefore it is particularly important to understand the behavior of the material at this range of 

strain-rate. The Split Hopkinson Pressure Bar (Kolsky Bar) is essentially a loading device that is 

used to generate a high strain-rate (2 4 110 10 s−−  ) loading condition in the specimen whose 

dynamic properties are desired. In the most commonly adopted experimental method with the 

Kolsky Bar, the aim is to study the stress-strain relationship of a material at a given temperature 

under high-strain rate conditions.   

1.2 THE SPLIT-HOPKINSON PRESSURE BAR: THEORY  

 The Kolsky Bar loading device is essentially the same as a Universal Testing System for 

compression, except for three major differences. 

I. The generation of load in the Kolsky Bar is generally not achieved by a 

hydraulic/pneumatic system, but is usually done by causing an accelerating projectile to 

impact one end of the set-up. However, in some modifications of the Kolsky Bar, often 

one of the bars is subjected to a static load. This bar is held by a clamp at some point 

along its length and then the clamp is suddenly released causing the load to propagate 

towards the specimen. [1.4] 

II.  The bars are not as stiff as the static load-frames. [1.5] 

III.  There is no “closed-loop” control system, i.e. the attainment of desired experimental 

conditions is achieved through a series of trial tests, [1.5] before embarking on the final 

experiments. This is because the testing conditions are dependent on the sample response. 
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     The basic idea of the Kolsky Bar is that the specimen is deformed between two bars, which 

are used as force transducers and are excited above their resonant frequency. The main 

advantage of this set-up is that it can successfully decouple inertia effects and high strain-rate 

effects, which are generally coupled when materials are subjected to dynamic loading. Figure 1.1 

shows the schematic of a Kolsky Bar. 

 

 

 

Figure 1.1 Schematic Representation of the Split Hopkinson Pressure Bar 

 

     The SHPB technique comprises a specimen, whose material properties are to be tested, 

sandwiched between two cylindrical bars called the incidence bar and the transmission bar. The 

cross-sectional geometry of these two bars is, in general, the same and they are made of the same 

material.  An axial impact on the incident bar is caused by firing an air gun, which in turn 

generates a travelling compressive wave in the incident bar. Typically, the material and the 

cross-section of the specimen is not the same as that of the incidence bar. Hence, due to the 

mismatch of mechanical impedance of these two, when the travelling wave hits the specimen, a 
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part of it is reflected back into the striker bar and a part of it is transmitted through the specimen. 

The transmitted wave impinges on the transmission bar after travelling through the specimen and 

travels forth as a travelling wave, while a part of it is reflected back into the specimen. If the 

specimen is short enough compared to the length of the stress pulse, then it is assumed that stress 

equilibrium is achieved due to several reflections within the specimen in a time much shorter 

than the duration of the test. 

     For a thin, longitudinal bar the equation of motion for the axial displacement, u, is given by 

[1.6] 

2 2

2 2 2
0

1u u

x c t

∂ ∂=
∂ ∂

                                                                                                                                                 (1.1) 

where 0c   is the velocity of a longitudinal wave in the material of the bar and is given by 

0
0

0

E
c

ρ
=                                                                                                                                   (1.2) 

    where 0E  and 0ρ  represent the Modulus of Elasticity and density of the material of the 

incidence/ transmission bar. 

 

 

Figure 1.2. Schematic of the Specimen-Bar Interfaces 

Incidence Bar Transmission Bar 

Specimen 

Interface 1 Interface 2 

Incidence Wave 

Reflected Wave 

Transmitted Wave 
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     The solution to Equation (1.1) is given by the classical D’ Alembert’s rule to obtain the 

displacement as 

( ) ( )0 0u f x c t g x c t= − + +                                                                                                          (1.3) 

     Here the functions f and g are arbitrary functions to be determined by initial conditions of the 

problem. The stress, σ, strain, ε, and particle velocity, v can be determined from (1.3) as follows: 

u f g
f g

x x x
ε ∂ ∂ ∂ ′ ′= = + = +

∂ ∂ ∂
                                                                                                                     (1.4) 

( )0E f gσ ′ ′= +                                                                                                                                  (1.5) 

( )0 0 0
u

u c f c g c f g
t

∂ ′ ′ ′ ′= = − + = − +
∂

&                                                                                     (1.6) 

     Let the subscript i denote the parameters related to the incidence pulse, r the parameters 

related to the reflected pulse and t the parameters those related to the transmitted pulse.  Further, 

let the subscripts 1 and 2 denote parameters related to interfaces 1 and 2, as denoted in figure 2.1. 

Thus, the displacements, stresses and strains at interfaces 1 and 2 may be developed as follows. 

( ) ( )1 1 0 0 i ru f x c t g x c t u u= − + + = +                                                                                          (1.7) 

( )2 2 0 tu f x c t u= − =                                                                                                                    (1.8) 

1 1 1 i r i rf g u uε ε ε′ ′ ′ ′= + = + = +                                                                                                     (1.9) 

2 2 t tf uε ε′ ′= = =                                                                                                                       (1.10) 

( )1 0 i rEσ ε ε= +                                                                                                                          (1.11) 

2 0 tEσ ε=                                                                                                                                    (1.12) 

( )1 0 i ru c ε ε= − +&                                                                                                                         (1.13) 
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2 0 tu c ε=−&                                                                                                                                  (1.14) 

     The average stress, sσ  in the specimen arises from the assumption that the force acting on the 

specimen is the average force from interfaces 1 and 2. Thus, 

( )1 0 2 0 0 0

2 2s i r t
s s

A A E A

A A

σ σσ ε ε ε+
= = + +                                                                                   (1.15) 

     where  0A  and sA  are the area of cross-section of the incidence/transmission bar and the 

specimen respectively. The strain-rate in the specimen, sε&  , is proportional to the relative 

velocity of interfaces 1 and 2. This is therefore given by 

( )02 1
s t i r

s s

cu u

l l
ε ε ε ε−= = − + −

& &
&                                                                                               (1.16) 

     In Equation (1.16), sl  denotes the length of the specimen. The specimen strain, sε  , can thus 

be obtained as  

0

t

s sd
τ

ε ε τ
=

= ∫ &                                                                                                                                              (1.17) 

     If the specimen deforms uniformly, then 

i r tε ε ε+ ≅                                                                                                                                 (1.18) 

     Under these conditions, equations (1.15) and (1.16) modify as 

b b
s t

s

E A

A
σ ε=                                                                                                                               (1.19) 

02
s r

s

c

l
ε ε= −&                                                                                                                                              (1.20)  
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     Figure 1.3 shows representative incidence, reflected and transmitted pulses for a dynamic 

experiment of Aluminum 6061-T6 specimen, and the corresponding stress-strain relationship for 

the same.  

(a) 

(b) 

Figure 1.3 Representative curves in a Kolsky Bar Experiment with Al6061-T6 specimen (a) 

Profile of the pulses as measured by strain gages (b) Dynamic Stress-strain Curve 

For interpretation of the references to color in this and all other figures, the reader is referred 

to the electronic version of this thesis. 

 

     Equations (1.1) through (1.20) follow from Shukla and Dally [1.1]. 

 

 1.3 The Split Hopkinson Pressure Bar: Discussions 

In order to attain a representative dynamic stress-strain curve of the specimen, and to enable 

post-impact observations, the following requirements must be fulfilled in a Kolsky Bar 

experiment [1.5] 
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(i) The specimen must deform at the desired strain-rate. This requirement means that the rise 

time of the incidence pulse must be kept as small as possible in comparison to the entire length 

of the pulse. Ideally, for the impact of two elastic bodies, a rectangular pulse is generated in the 

second body. However, in reality it is almost impossible to obtain a pulse with a zero rise-time. 

Therefore, the condition is usually achieved by using a long projectile and adequate pulse 

shaping techniques. In fact, it can be shown from one-dimensional elastodynamic theory [1.6] 

that if the length of the projectile, whose density is 0ρ ,is 0l , and the velocity of the projectile at 

the time of impacting the incidence bar is V, the peak amplitude of the strain-pulse developed in 

the incidence bar is given by 

0 0
max

02i
c V

E

ρε =                                                                                                                         (1.21) 

     while the duration of the total pulse inct , is given by  

           
0

0

2
inc

l
t

c
=                                                                                                                        (1.22)     

     If inct  is comparable to the rise time of the incidence pulse, then the regime of peak strain is 

considerably low. The results from such an experiment do not present a representative behavior 

of the material as the peak strain-rate, because prior to achieving the peak strain-rate the material 

has already been plastically deformed. If the length of the projectile is long, then the numerator 

in the right hand side of Equation (1.22) is considerably large, thus increasing the total duration 

of the pulse. The rise time, in such pulses, are negligible compared to the overall length of the 

pulse. 

     The technique of pulse shaping comprises placing a thin sheet of “buffer” material (like 

Copper, Rubber, Paper, Polycarbonate etc) between the incidence bar and the striker. As the soft 
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material undergoes large deformation at impact, the material generally being of low mechanical 

impedance than the incidence bar, causes a delay in the over-all pulse length due to several 

internal successive reflections of the pulse within it. This reduces the amplitude of the incidence 

pulse and considerably elongates the length of the pulse.  

     The topic of achieving desired test conditions by the pulse-shaping technique has been an 

active field of research. In a study by Frew et. al. [1.7] an analytical model for the response of a 

pulse shaper had been established for an elastic-plastic material. The recommendation was to use 

a “dual” pulse shaper, the striker end of which was manufactured by annealed copper and the 

incidence bar end of the same was manufactured by mild steel. In order to generate dynamic 

hysteresis loops, a similar technique was adopted by Song and Chen [1.8]. In a research by 

Vecchio and   Jiang [1.9], a comparison was made between a pulse-shaped SHPB experiment 

and a non-pulse-shaped SHPB experiment. It was found that after pulse shaping, a large zone of 

constant strain-rate was maintained for both high work-hardening materials as well as for low 

work-hardening materials. For testing brittle materials, Frew et. al. [1.10] used a thin disc of 

annealed copper as pulse shaping material to ensure the attainment of constant strain-rate prior to 

material failure. For testing shape-memory alloys, a similar pulse-shaping was used by Nemat-

Nasser et. al. [1.11] except that he used a copper tube, instead of a copper disc. In a study on the 

dynamic strength of adhesive lap joints Srivastava et. al. [1.12] used a rubber pulse shaper for 

the experiments. 

(ii)  Deformation in the specimen is nearly uniform. This means that the strain in the 

specimen is homogenous and the average value of the strain obtained in Equation (1.20) and 

(1.17) defines the behavior of the entire specimen. If the specimen deformation is non-uniform, 

for example due to wave-propagation effect, then the average value of the specimen will no 
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longer reflect the deformation history of the entire specimen. It is usually a practice in a Kolsky 

Bar experiment to measure the specimen stress from force equilibrium considerations at interface 

2 and the specimen strain and strain-rate from interface 1. It is then assumed that the stresses and 

strain so obtained are the same at each point, and the stresses at one instant of time from 

interface 1 correspond to the value of strain at the same instant of time at interface 2. This can 

only be assumed if the specimen deformation is uniform. This is generally achieved by keeping 

the length of the specimen small. 

(iii)  Stress in the specimen is uniform. This requires that there is negligible wave-propagation 

effect in the specimen. This requirement amounts to effectively neglecting the effect of axial 

inertia on the specimen. This is achieved by choosing the specimen length to be much shorter 

than the total length of the incidence pulse. 

     Conditions (i) and (ii) have called for thorough research for the past few decades. Both 

conditions boil down to ensuring that the force at both ends of the specimen is uniform. This 

condition is generally not met in the first few microseconds of an experiment. However, as the 

incident stress-wave on the specimen undergoes successive reflections, the stress builds up in the 

specimen and a quasi-static condition is achieved. Based on an elastodynamic analysis, attempts 

have been made to quantify the equilibrium time in the specimen. Davies and Hunter [1.13] 

showed that at least three internal transits of the incident wave are needed for achieving stress-

equilibrium in the specimen. Similar conclusions have been drawn by Follansbee et. al. [1.14], 

Chen [1.15] and Wu and Gorham [1.16]. A more conservative estimate was provided by Subhash 

and Ravichandran [1.17] who proposed that at least eight internal reflections of the incidence 

wave is necessary for stress equilibrium. In a thorough analysis by Yang and Shim [1.18], it was 

demonstrated that a pulse with a finite rise time takes lesser time to be equilibrated than a 
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rectangular pulse. However, the conclusions have been based on the assumption that the 

specimen remains elastic till equilibrium is achieved.  

(iv) Specimen is loaded once by a well-defined loading history. This requires that the 

specimen is not subjected to a train of pulses. If the incidence and the transmission bar are very 

short compared to the travel time of the pulses along the incidence and transmission bars, then 

before the first incidence pulse is reflected back on the specimen, another pulse impinges on the 

specimen. The specimen is then subjected to successive loads and the stress and strain history on 

the specimen cannot be obtained. Generally, by choosing the length of the incidence and 

transmission bars equal to 1m and by choosing a small striker bar (long enough to satisfy 

condition i) this condition is satisfied. In practice, a striker of length below 250 mm is found to 

give satisfactory results. 

     In addition to the above mentioned requirements, there are also a number of assumptions that 

have to be satisfied for Equations (1.17) through (1.20) to hold. 

(i) The Hopkinson Bars remain linear elastic. This not only allows the use of bonded-

resistance strain-gages to measure the strains in the incidence and transmission bars repeatedly, 

but also allows the use of the elastodynamic theory to estimate the stress and strain in the 

specimen. The bars are therefore generally made of metals with high yield strength like maraging 

steel or high yield-strength aluminum (Alloy 7075, for example). This also limits the input 

velocity of the striker as follows. 

0

2 y
V

c

σ
<                                                                                                                                       (1.23) 

where yσ  is the yield-stress of the bar 
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(ii)   The effects of dispersion in the bars are small. This means that the pulses as recorded by 

the strain-gages are representative of the strains at interfaces 1 and 2. However, from 

elastodynamic theory, it turns out that the phenomenon of longitudinal wave propagation in a bar 

has a dispersive effect, in that the wave-length and the frequency of the waves are inter 

dependant on one-another.   Thus, the incident, reflected and transmitted pulses change as they 

move along the input and output bars. However, Equations (1.1) through (1.20) have been based 

assuming the condition that the shape of the pulse does not change as they travel along the bars. 

Two consequences of dispersion are important. First, dispersion inevitably induces superimposed 

oscillations in the loading of the specimen. Second, shorter stress pulses with sharper rise times 

cause greater dispersion because of the greater high-frequency content and the wider range. One 

approach to minimizing the effects of dispersion is to use  pulse-shaping materials that are placed 

between the impacting projectile and input bar .This results in the shaping of the incident wave 

with a longer rise time and thus lower dispersion.  

     Davies [1.19] used numerical results from the Pochhammer–Chree frequency equations to 

determine the dispersion of a travelling elastic wave. He found that in the Hopkinson bar test, the 

wave belong to the first mode of vibration. Lifschitz [1.20] developed an algorithm for 

viscoelastic corrections. Follansbee et. al. [1.21] repeated the calculations of dispersive wave, 

originally made by Davies, to analyze split Hopkinson pressure bar results. They showed that the 

fundamental mode of vibration is excited in the impact test of the SHPB and a dispersion 

correction was suggested to reduce the magnitude of the oscillations of the stress–strain curves. 

In a numerical study by Govender et. al. [1.22], evidences of higher modes of frequency being 

excited was shown.  
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(iii)  Effects of radial inertia are negligibly small. The compression loading is accompanied by 

radial expansion of the specimen. This radial expansion is opposed by a radial inertial effect 

which increases by decreasing pulse length and increasing pulse amplitude. A detailed discussion 

of radial inertia in samples in a Kolsky Bar Experiment is given in Chapter 2 of the report. 

(iv) The effects of end conditions are neglected. This effectively boils down to stating that the 

frictional coefficients at interfaces 1 and 2 are negligibly small. Indeed, Equation (1.1) through 

(1.20) are based on a one-dimensional analysis. The effects of friction at the ends cause a state of 

non-uniform triaxial state in the specimen. Friction constraints the edges of the specimen to 

expand freely and results in an over-reading of the yield stress. In a study by Bertholf and Karnes 

[1.23] the choice of critical specimen dimensions so that the frictional restraints are minimized as 

well as axial equilibrium and minimal inertial stress is attained are discussed. In addition, the 

most widely adopted practice is to lubricate interfaces 1 and 2 so that the effects of friction are 

minimized. Lubricants are shown to be more effective in a high strain-rate experiment than in a 

static experiment, simply because the lubricant has a lower time to fail. Molybdenum Disulfide, 

Graphite, Petroleum Jelly, Teflon are the common forms of lubricant generally adopted. A report 

of different lubricants and their effectiveness in reducing the co-efficient of friction has been 

widely studied [1.16, 1.22, 1.24, 1.25, 1.26]. In addition to effective lubrication, the specimen 

dimensions also play an important role in ensuring minimal frictional restraints.  Gorham [1.16] 

pointed out that larger specimens deformed at the same strain rate involve longer radial 

displacement at higher velocities than in the case of small specimens. Lubricant breakdown is 

more likely under large displacements and loss of lubricant by jetting is enhanced at high 

velocities This may subject the larger specimens to velocity-dependent frictional restraints, 

which can contribute to a prima facie strain rate sensitivity of the material. 
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1.4 The Split Hopkinson Pressure Bar: Modifications  

The Split Hopkinson Pressure Bar technique has been developed since its inception for testing 

different types of materials. As the design of an experiment in a Kolsky Bar is widely dependant 

on the material response, there is a lack of “closed-loop” control for a priori experimental 

design. In this section a more-or-less generalized technique for different types of materials and 

testing conditions are presented. 

(i) Brittle Materials. 

     Brittle materials have the general characteristic that they have a linear elastic stress-strain 

profile and have very little plastic deformation. The only reliable data obtained in case of brittle 

materials from a Kolsky Bar experiment is their failure stress. These materials fail at low values 

of strains and can fail prematurely from high stress concentrations. It is therefore imperative to 

ensure that the materials are in a state of equilibrated stress and deformation before their failure. 

Pulse shaping is critical to these types of materials. A special case of brittle materials is ceramics. 

In addition to the problems described above, ceramics being sufficiently hard, can indent the bar 

surfaces, thus causing considerable stress-concentrations along the circumference of the 

specimen end faces. In a research by Subhash and Ravichandran [1.27], the use of impedance-

matched tungsten-carbide insert was recommended at the specimen-bar interfaces. The inserts 

are generally confined by a steel ring of slightly smaller thickness than the inserts to ensure 

maximum impedance match. However, the use of inserts can lead to repeated loading on the 

specimen, therefore the use of sabot mass is recommended as it immediately produces a tensile 

pulse following the initial compressive pulse in the incidence bar. This causes the separation of 

the bar-specimen interface immediately as the tensile pulse reaches the specimen. Figure 1.4 

shows the recommendations for a brittle material suggested by Subhash [1.27] 



 

Figure 1.4. Modification for brittle materials in a Kolsky Bar

     A detailed research on the effect of sabot mass and momentum trap has been conducted by 

researchers [1.28, 1.29, 1.30], while a research on the pulse shaping techniques and limiting 

strain-rates [1.7, 1.17, 1.27]  indicate that a ramp loading generated by a 

ideally suited for testing brittle materials.

(ii) Low impedance materials 

     Low impedance materials like polymers, rubbers, foams are particularly difficult to test 

because of the following reasons

• Attainment of axial equilibrium takes a long time in these

• The transmitted signal is very low

      Several modifications have been suggested for t

bar for measuring the forces, the hollow transmission bar, having a reduced area, has 

mechanical impedance and thus the signals are considerably amplified in the same. 

also used quartz-crystal transducers at the specimen

of forces in the specimen. However, in a study by Weerasooriya

transducer at the incidence face was found to be highly sensitive to acceleration, thereby posin

problem for accurate determination of the incidence force, unless the reading are post
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Modification for brittle materials in a Kolsky Bar [1.27

A detailed research on the effect of sabot mass and momentum trap has been conducted by 

, while a research on the pulse shaping techniques and limiting 

indicate that a ramp loading generated by a copper 

ideally suited for testing brittle materials. 

materials like polymers, rubbers, foams are particularly difficult to test 

because of the following reasons 

Attainment of axial equilibrium takes a long time in these 

The transmitted signal is very low 

Several modifications have been suggested for this. Chen [1.31] used a hollow transmission 

bar for measuring the forces, the hollow transmission bar, having a reduced area, has 

and thus the signals are considerably amplified in the same. 

ransducers at the specimen-bar interfaces to enable direct measurement 

However, in a study by Weerasooriya[1.33], the quartz crystal 

transducer at the incidence face was found to be highly sensitive to acceleration, thereby posin

problem for accurate determination of the incidence force, unless the reading are post

 

[1.27]. 

A detailed research on the effect of sabot mass and momentum trap has been conducted by 

, while a research on the pulse shaping techniques and limiting 

copper pulse shaper is 

materials like polymers, rubbers, foams are particularly difficult to test 

a hollow transmission 

bar for measuring the forces, the hollow transmission bar, having a reduced area, has lower 

and thus the signals are considerably amplified in the same. Chen [1.32] 

to enable direct measurement 

the quartz crystal 

transducer at the incidence face was found to be highly sensitive to acceleration, thereby posing a 

problem for accurate determination of the incidence force, unless the reading are post-corrected 
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for transducer acceleration. In a recent study by Hiermaier and Meenken, [1.34], the use of 

Polyvinyl Denoflouride (PVDF) thin film sensors at the incidence and transmission interfaces 

has been demonstrated. The use of viscoelastic pressure bars, with correction for attenuation and 

dispersion have also been recommended [1.35, 1.36, 1.37, 1.38, 1.39]. The use of viscoelastic 

bars poses the added difficulty of post-correction of the strain signals in the incidence and 

transmission bar. Several post-correction algorithms have been proposed and most of these 

require a precise knowledge of the material properties of the polymer used for accurate post-

correction of solutions. In a recent study by Johnson et. al. [1.40] an excellent comparison of the 

testing techniques for soft materials has been provided. The use of a viscoelastic bar reduces the 

level of noise and high-frequency oscillations in a Kolsky Bar, while it severely brings down the 

strain-rate. A hollow aluminum transmission bar, on the other hand, enables higher strain-rate 

testing and the analysis is also easier, but the level of noise is relatively higher in this. 

 

1.5 Description of the current research work 

The current research does not focus on characterization of a particular material using a Split 

Hopkinson Bar, rather focuses on some theoretical aspects of the Hopkinson Bar experimental 

techniques. 

      Chapter 2 proposes a standard for adopting non-cylindrical specimens in a Split Hopkinson 

Pressure Bar. Despite the practice of using cylindrical specimens in a Split-Hopkinson Pressure 

Bar (Kolsky Bar) experiment, the use of non-cylindrical prismatic specimens is not uncommon. 

This is convenient when testing extra-soft materials like brain-tissues, muscles or samples which 

are brittle and cannot be machined to an exact cylindrical shape like bone-samples. The use of a 

non-cylindrical sample with a flat surface also renders the specimen amenable to a 2-D image 
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correlation algorithm. This part of the current research aims to show the feasibility of using non-

cylindrical specimens in a Kolsky Bar. For this, experiments were conducted with a model 

material of different model cross-sections at a nearly constant strain-rate in the Split Hopkinson 

Pressure Bar. The findings suggest the use of a suitable characteristic cross-section dimension of 

the specimen to determine the critical slenderness ratio while selecting a non-cylindrical 

prismatic specimen. It has been shown that if the specimen design is governed by the suggested 

slenderness criterion, then there is no effect of specimen length or cross-sectional shape on the 

stress-strain curve of the material. Through the use of a computational code, the research also 

shows the effect of non-uniform axial stress-distribution along the cross-section of the specimen, 

resulting due to specimen geometry. On quantification of the stress non-uniformity along the 

cross-section of the specimen, the findings indicate that the magnitude of the non-uniformity is 

both small and temporary. 

     Chapter 3 addresses the issue of the drastic effects of over-lap area in adhesive bonded lap 

joints for determination of the dynamic strength of the same. For this, experiments were 

conducted at different loading rates, for identical metallic adherends bonded by a two-part epoxy 

adhesive. Four different types of specimens were adopted, all with a given adhesive thickness. 

The length of overlap and the out-of-plane thickness of the adherends were varied, resulting in 

four different area of overlap. It was found that the average strength, as predicted by the Kolsky 

Bar, increases with a decrease of overlap area. An elastodynamic model for the shear strain of 

the adhesive-bonded single lap joint was developed to investigate this drastic effect of overlap 

area on the average strength of the joint. The mathematical model was found to be dependent on 

both the material properties of the adherend and adhesive, as well as the structural properties of 

the joint, viz. the out-of-plane thickness and the thickness of the adhesive layer. A combined 
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experimental-numerical technique was used to predict the strain distribution over the length of 

the bond in the adhesive. It was found that the edges of the adhesive were subjected to maximum 

strain, while a large part of the adhesive was found to exhibit zero shear strain. For a given out-

of-plane thickness of the adhesive/adherends, reducing the overlap length slightly increased the 

peak strain in the adhesive joint, however, the total length of non-zero strain at the time of failure 

remained the same. But, if the out-of-plane thickness is reduced for a given overlap length, the 

maximum strain is decreased, along with a larger increase of the length of adhesive with non-

zero strain. The cumulative effect of averaging the strain over the entire overlap area was 

decreased shear-strain for an increased overlap area. The Kolsky Bar was identified to predict 

conservative estimate of the shear-strength of an adhesive bonded lap joint, under high rates of 

loading. 

     Chapter 4 addresses a design of a new Tensile Hopkinson Bar at the Composite Vehicle 

Research Center. The design proposed here comprises of an incidence bar which is 10 feet in 

length. An end of the incidence bar is coupled to a flange, whose diameter is greater than 

diameter than the incidence bar. An annular projectile with its inner diameter equal to the 

diameter of the incidence bar and outer diameter equal to the flange is allowed to impinge on the 

flange, thereby generating a compressive pulse in the same, which traverses the entire length of 

the flange and is reflected from the free end as a tensile pulse. This pulse is used for loading the 

specimen. Choice of a proper flange length, the use of a momentum-trap and are found to be 

crucial for the proper functioning of the Split Hopkinson Tensile Bar. Copper was selected as the 

model material and its dynamic tensile properties were determined using the Split Hopkinson 

Tensile Bar. 
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1.6 Conclusion 

This chapter was aimed at developing the theoretical background of the Split Hopkinson 

Pressure Bar technique.  The technique of the Split Hopkinson Pressure bar was described. The 

equations for calculation of specimen stress, strain-rate and strain were derived. Different 

assumptions involved in the Kolsky Bar experimental technique was addressed along with 

relevant review of literature of the same. Issues related to characterization of some types of 

materials were addressed along with relevant review of literature of the same. Finally, the 

chapter concluded with a brief abstract of the scope of the current research work. 
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ON THE USE OF NON-CYLINDRICAL 

SPECIMENS IN A KOLSKY BAR 
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2.1 INTRODUCTION 

The Split-Hopkinson Pressure Bar (SHPB) is a standard apparatus for measuring the mechanical 

response of materials at high strain-rates. The SHPB technique comprises a specimen, whose 

material properties are to be tested, sandwiched between two cylindrical bars called the incidence 

bar and the transmission bar. The cross-sectional geometry of these two bars is, in general, the 

same and they are made of the same material.  An axial impact on the incident bar is caused by 

firing an air gun, which in turn generates a travelling compressive wave in the incident bar. 

Typically, the material and the cross-section of the specimen is not the same as that of the 

incidence bar. Hence, due to the mismatch of mechanical impedance of these two, when the 

travelling wave hits the specimen, a part of it is reflected back into the striker bar and a part of it 

is transmitted through the specimen. The transmitted wave impinges on the transmission bar after 

travelling through the specimen and travels forth as a travelling wave, while a part of it is 

reflected back into the specimen. If the specimen is short enough compared to the length of the 

stress pulse, then it is assumed that stress equilibrium is achieved due to several reflections 

within the specimen in a time much shorter than the duration of the test. Based on one-

dimensional calculations [2.1], it has been established that the amplitude of the transmitted pulse 

is a measure of stress in the specimen and the amplitude of the reflected pulse is useful in 

calculating the strain rate in the specimen. The equations for stress sσ , strain rate sε&   and strain 

sε   in the specimen of cross-sectional area sA  and length sL  deforming homogenously are 

given by: 
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where, 0A  and 0E  refer to the area of the cross-section and modulus of elasticity of the incidence 

bar respectively, ε  is the axial strain; while the subscripts t, and r refer to the waves as recorded 

as a transmitted wave in the transmission bar and reflected wave in the incident bar respectively; 

0c  is the velocity of propagation of a longitudinal wave in the bar of mass density 0ρ   

0 0 0/c E ρ=                                                                                                                                                       (2.4) 

     Generally, the specimen whose material-properties are desired is cylindrical. However, cases 

when non-circular specimens are chosen are not uncommon. This is particularly convenient 

when working with specimens which are difficult to be machined into an exact cylindrical shape 

like muscles [2.2], bones [2.3], and have been commonly used for testing graphite epoxy 

composites [2.4], carbon-epoxy laminated composites [2.5], graphite epoxy-composite laminates 

[2.6], RCC Materials [2.7]. Figure 2.1 shows some examples of specimens where an exact 

cylindrical shape was difficult to prepare. 

 

(a) 

 

(b) 

Figure 2.1: Examples of cases where machining cylindrical specimens are difficult 

(a) Porcine Muscle [2.2] (b) bovine cortical bone [2.3] 
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With advancements in optical methods for full-field strain calculations, the combination of 

image-correlation techniques for specimen strain calculations, combined with impact loads 

generated with a Kolsky Bar has been widely practiced and adopted [2.8,2.9]. Usually, if the 

specimen is cylindrical, as is typically adopted, then a 3-D image correlation algorithm is 

adopted. In a recent study by Schmidt and Tyson [2.10] the relative convenience of 2-D image 

correlation over 3-D image correlation has been reported. If a 2-D image correlation is to be 

adopted, then there is a necessity of a least one flat face on the specimen, which causes one to 

deviate from cylindrical to non-cylindrical specimens. In a study by Siviour [2.11], the use of 

cuboidal specimens in a compression Hopkinson Bar has been demonstrated. 

In a cylindrical specimen, the specimen design is governed by choice of an appropriate 

slenderness ratio (which is the ratio of the length to diameter of the sample). In such specimens, 

the critical value of the slenderness ratio has been researched [2.12, 2.13]. However, in a non-

cylindrical specimen such a slenderness-ratio has not been defined. Recent studies on the effect 

of specific cross-sectional shapes of specimens on the dynamic stress-strain curve in a 

Hopkinson Bar Experiment have been carried out by Eyassu and Vinson [2.4] and Pankow et. al. 

[2.14] and the results indicate that the shape of the cross-section does not affect the dynamic 

stress-strain curve of the material drastically. In the current investigation, a general design 

criterion for any non-cylindrical samples is proposed by suggesting an appropriate cross-

sectional dimension and a slenderness ratio for a specimen with arbitrary cross-sectional 

geometry. Furthermore, a model for radial inertia for non-cylindrical specimen has been 

proposed by extending the existing model of Samanta [2.15] for cylindrical specimen.  With the 

use of a model material and model geometry of specimen cross-section, the effect of cross-
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sectional shapes of a prismatic specimen has been studied when the design of specimen is carried 

out based on the recommendations suggested in the current investigation.  

 

2.2 Design of Specimen 

In a Hopkinson Bar Experiment for material characterization, there exist several important 

factors which guide the design of a specimen. The major considerations in designing a specimen 

of appropriate dimension are: 

• The effect of friction at the interface between the bars and the sample  

• The effects of lateral inertia in the sample and,  

• The necessity to ensure the condition that the specimen is subjected to uniform stresses 

throughout its length.  

     In the current investigation, Aluminum 6061 alloy has been chosen as the model material for 

studying the effect of cross-sectional shapes. The model cross-sectional shapes of specimens 

adopted are rectangular, square, and hexagonal; and are all compared against specimens with 

circular cross-sections. Table 1 summarizes the specimens adopted in the current investigation. 
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Table 2.1. Description of Specimens Adopted in the Current Investigation 

Cross-section of the Specimen Length of the Specimen Nomenclature 

Hexagon (Hex1) 

Edge Size: 6 mm 

5.5 mm Hex1short 

8 mm Hex1long 

Hexagon (Hex2)  

Edge Size: 4.5 mm 

4.5 mm Hex2short 

6 mm Hex2long 

Rectangle (Rec1) 

Edge Sizes: 6 mm x 6mm 

3.5 mm Rec1short 

5 mm Rec1long 

Rectangle (Rec 2) 

Edge Size: 6.5 mm x 12.7 mm 

6 mm Rec2short 

8 mm Rec2long 

Circle (Circ1) 

Diameter: 12.7 mm 

6.4 mm Circ1short 

9 mm Circ1long 

Circle (Circ 2) 

Diameter: 11 mm 

5.5 mm Circ2short 

8.3 mm Circ2long 

 

 

Figure 2.2 Specimens adopted in the current investigation  
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     A major assumption involved in the calculations of the dynamic stress-strain behavior of a 

specimen is that the specimen can be approximated as a one-dimensional object, in which at any 

given cross-section, the stress is the same, i.e., the radial distribution of stress is uniform. 

However, as a specimen is subjected to a compressive wave, due to Poisson’s effect, the cross-

section of the specimen tends to expand, which is resisted by an inertial effect. For specimens 

with circular cross-section, the stress arising due to radial inertia has been widely studied and 

researched. Details of these can be found in Kolsky [2.1], Davies and Hunter [2.16], Samanta 

[2.15], Gorham [2.17,2.18], Forrestal et. al.[2.19],  Song et. al. [2.20], Warren and Forrestal 

[2.21] and an excellent account of the same is given in a book chapter by Ramesh [2.13]. In the 

current investigation, we propose a model for radial inertia for non-circular specimens, following 

the approach of Samanta by the use of material coordinates for the specimen. The detailed 

derivation and discussion regarding the same can be found in the appendix A of the paper. Here, 

however, we present the final result in equation (2.5).   

2 2
2
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J h J h
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= − − − + +   
   
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&& &                                                                                         (2.5) 

     Here Dσ  denotes the stress in the specimen, mlp   is the traction at the specimen-transmission 

bar interface, ρ   is the density of the specimen, J  and A   refer to the polar moment of inertia 

and area of the cross-section of the specimen, and h  is the length of the specimen. For a material 

of high flow stress, the effect of inertia is negligibly small, and as has been shown in the 

appendix, is smaller by orders of magnitude for aluminum specimens.  It can be significant for 

materials of low yield strength, as has also been reported in literature [2.13, 2.21]. 

     In a typical Kolsky Bar experiment, stresses and strains are measured from the signals 

produced in the strain gages mounted on the transmitter bar and the incidence bar respectively. It 
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is assumed that the stress and strain are uniform throughout the length of the specimen. This in 

turn, results in an assumption that neglects the effects of axial inertia in the specimen and this 

holds good only if the specimen is short enough so as to attain axial equilibrium due to several 

succesive reflections of the stress wave generated in the specimen in a time much shorter than 

the entire duration of the test [2.22, 2.23, 2.24, 2.25, 2.26]. From an elastodynamic analysis for  

composite materials, Subhash and Ravichandran [2.23, 2.24] showed that approximatly eight 

internal reflections of a stress-wave in the specimen are needed for axial equilibrium, and 

provided the following equation for equilibrium time, T: 

8 s

s

l
T

c
=                                                                                                                                                                  (2.6) 

where sl  is the length of the specimen and sc  is the velocity of sound-wave in the specimen. 

This shows that longer the length of the specimen, longer is the time when the assumption of 

stress uniformity throughout the specimen holds. This implies that a shorter specimen is better in 

terms of stress-uniformity throughout the length of the sample, however, shorter the sample, 

greater are the effects of interfacial friction. In the case of cylindrical specimens, the critical 

slenderness ratio, based on the considerations of inertia, axial uniformity of stresses and 

interfacial friction has been researched widely and for a sample of diameter d and length l an 

accepted value of slenderness ratio [2.14] is 

0.5
l

d
=                                                                                                                                                                   (2.7) 

     A less restrictive slenderness ratio is [2.15] is given by 

1
l

d
≤                                                                                                                                                                        (2.8) 
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     Unlike in a cylindrical specimen, where the diameter is chosen to be the characteristic cross-

sectional dimension, in a non-cylindrical specimen, the characteristic cross-sectional dimension 

needs to be arrived at. This arises from the derivation of inertial stresses in the sample, where if J 

is the polar-moment of inertia of the cross-section of the sample and A is the area of the cross-

section, then the characteristic cross-sectional dimension /J A  replaces the terms involving 

diameter (d) in the inertial stress terms. Thus, the more general term, /J A   (which is 

equivalent to / 2 2d   for a cylinder), forms the appropriate characteristic cross-sectional 

dimension for a specimen of arbitrary cross-section. The critical slenderness ratio of a specimen 

of arbitrary cross-section therefore becomes 

1.4
l

J

A

=                                                                                                                                   (2.9a) 

2.8
l

J

A

≤                                                                                                                                  (2.9b) 

this can be combined to give 

1.4 2.8
l

J

A

≤ ≤                                                                                                                         (2.10) 

     On substitution of the value for /J A  for a circle, Equations (2.9)-(2.10) reduce to 

Equations (2.7) - (2.8); however, Equations (2.9)-(2.10) is valid for a prismatic specimen with 

any cross-sectional shape, whereas Equations (2.7)-(2.8) are valid for specimens with circular 

cross-sections alone.    

     To check if the length of the specimen of a given cross-section affects the dynamic stress-

strain curve, two different lengths of the specimen were adopted, subjected to the restrictions 
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imposed by Equation (2.9) and (2.10). Table 2.2 summarizes the value of slenderness ratio for 

each of the samples chosen. 

Table 2.2: Slenderness ratio of the specimens adopted 

Sample Name Slenderness ratio ( )/ /l J A  

Hex1long 2 

Hex1short 1.4 

Hex2long 2.1 

Hex2short 1.5 

Rec1long 2 

Rec1short 1.4 

Rec2long 1.9 

Rec2short 1.5 

Circ1long 2 

Circ1short 1.4 

Circ2long 2.1 

Circ2short 1.4 

  

     A major cause of erroneous results in a typical Hopkinson Bar experiment is interfacial 

friction. Friction at the interface of the specimen-incidence bar and the specimen-transmitter bar 

causes the ends to be constrained against free expansion and creates a state of non-uniform 

triaxial stress in the specimen. Analysis and minimization of friction in Hopkinson Bar 

experiments has been an active field of research [2.27, 2.28, 2.29, 2.30]. Interfacial friction is 

highly dependent on the material to be tested. In the current investigation, the methods of 
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reducing interfacial friction for metallic specimens, as suggested by Hartley et. al.  [2.30] are 

adopted and are briefly summarized. The rationale behind each of the following steps is beyond 

the scope of current discussion and only the key points are summarized. 

(i) The ends of the incidence and transmission bar were polished using a 600-grit SiC 

paper. 

(ii)  The specimens were  polished in a random fashion using a 1200-grit SiC paper 

(iii)  A thin layer of Molybdenum Disulfide lubricant was applied at the ends of the bar, to 

avoid heavy lubrication. 

(iv) While sandwiching the sample, it was ensured that the sample is free to slide. 

     Having adopted the above mentioned measures to minimize the effects of inertia (due to the 

choice of the model material), non-uniform stress-distribution in the specimen (by appropriate 

choice of specimen length) and interfacial friction (by suitable lubrication methods and choosing 

appropriate specimen slenderness ratio), the samples were tested at nearly constant strain-rates to 

study the effect of specimen geometry. To ensure that all the samples were subjected to almost 

the same strain-rates, irrespective of the different length of each sample, different projectile 

lengths (ranging from 203.2 mm and 101.6 mm) were adopted and different pulse shapers were 

used for pulse-shaping. The strain-rate adopted was in the range of 1100-1400/s. The specimens 

were sandwiched between two high-strength steel bars, each of which was 1.8288 m (6 ft) long 

and 15.875 mm (5/8 inch) in diameter. The responses were measured with electrical resistance 

strain gages, bonded to the middle of the incident and transmitter bars, connected to Vishay 

Signal Conditioning Amplifiers (Model 2310B); and the response from the strain gages were 

recorded on a LeCroy digital oscilloscope (Model 354A). Equations (1) through (3) were then 

used to obtain the time-resolved stress and strain history in the specimen.   
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2.3 Results and Discussions 

2.3.1 Effect of Specimen Length 

     The first effect of specimen length that was investigated was the condition of force 

equilibrium on both ends of the specimen. It was found that good equilibrium exists at both the 

end faces. The variation of axial forces with time on both ends of the specimen, Rec2long, is 

plotted in Figure 2.3. 

 

 

(a) 

 

(b) 

Figure 2.3. Check for axial equilibration of the Specimen (a) The pulses measured 

from the strain-gage readings (b) Plot of Ratio of Forces at the Incidence Face over 

Transmitter Face 

 

     The specimen was found to attain axial equilibrium in approximately 10 microseconds for a 

pulse that was over 100 microseconds in duration. Table 2.3 summarizes the equilibrium time as 

measured from strain-gage data in the specimens. 
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Table 2.3: Axial Equilibrium time in Specimens 

Specimen Equilibrium Time as 

Measured from Strain-

Gages (μμμμs) 

Equilibrium Time predicted from 

Equation (6) (μμμμs) 

(Approximated at First Decimal Place) 

Hex1long 10 12 

Hex1short 6 8 

Hex2long 8 9 

Hex2short 6 7 

Rec1long 6 7 

Rec1short 4 5 

Rec2long 10 12 

Rec2short 8 9 

Circ1long 12 14 

Circ1short 8 10 

Circ2long 10 12 

Circ2short 8 8 

 

     Dynamic stress-strain curves of each type of specimen are shown in Figure 2.4. It was found 

that except for the initial rising part of the curve (which is generally not of much concern in a 

Hopkinson Bar experiment due to effects of varying strain-rate), there is no drastic effect of 

specimen length of a given cross-section on the dynamic stress-strain curve of the specimen (at 

least after a strain of 0.01) and the stresses are within 4% of each other. 
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(a) 

(c) 
(d) 

 

(e) 

Figure 2.4. Effect of Change of Length of (a) Circ1&Circ2 (b) Hex1 (c) Hex2 (d) Rec1 (e) Rec2 
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2.3.2 Effect of Specimen Cross-Section 

     The influence of specimen cross-sectional shape is now studied to see the effects of deviating 

from a cylindrical to a non-cylindrical specimen. A comparison of the stress-strain curves of 

specimens with non-circular cross-sections to those with circular cross-sections is shown in 

Figure 2.5. 

 

 

(a) 

  

(b) 

Figure 2.5. Comparison of Stress-strain Curves of Specimens of Different Cross-sectional 

Shapes (a) The Stress-strain Curves (b) Comparison of Yield Stress 
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          From Figure 2.5, it can be seen that the rectangular samples slightly underestimate the 

yield stress in the sample, however, the deviation of yield stress of a rectangular specimen from a 

cylindrical one remains within 10%. The specimen geometry is thus found not to affect the 

dynamic characteristic curves drastically, provided the specimen slenderness ratio is guided by 

Equations (2.9) and (2.10), and interfacial friction is properly taken into consideration. In the 

ensuing section of the investigation, the assumption of stress-uniformity along the cross-section 

of the specimen has been investigated. 

2.4 Analysis of Stress-Uniformity along the Cross-section of the Specimen 

A Hopkinson Bar experiment rests on the fundamental assumption that the stress in a specimen 

is uniaxially uniform [2.16]. While this assumption is quite trivial when using cylindrical 

specimens in combination with cylindrical bars, this may become a concern when experiments 

are performed using non-cylindrical specimens in combination with round bars. This section of 

the investigation is aimed at studying and quantifying the effects of sharp edges in the specimen 

on the assumption that the specimen stress is uniaxially uniform based on numerical studies 

using a commercial Finite Element Software ABAQUS 6.8. An explicit analysis is performed 

with the use of 8-noded linear brick elements with reduced integration and hour-glass control 

(C3D8R). The effect of friction has been neglected at the specimen-bar interfaces and frictionless 

tangential contact conditions are used at the specimen-bar interfaces. In the current modeling, 

four types of specimen were chosen: a cylindrical sample with diameter 4mm, a hexagonal 

sample with edge size 4.5mm, a rectangular sample with edge size 4mm x 12mm, and a square 

sample with edge size 10 mm. A trapezoidal load was given in the form of distributed pressure at 

one face of the incidence bar. Figure 6 shows a typical model of the entire assembly and the load 

given at the incidence face. 
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Figure 2.6 A Model of the SHPB Assembly Developed in ABAQUS 

     The axial stress was calculated at the centroid of each element at the incidence face. It was 

osbserved that there is a variation of stresses in the specimen owing to stress concentration at the 

sharp edges when using non-circular specimens. In a study by Pankow et.al. [2.14], it was shown 

that the non-uniformity of stresses along the specimen cross-section due to the presence of sharp 

edges is small in magnitude. If the standard deviation of the stresses of all the elements in the 

cross-section of the specimen is calculated to quantify the amount of variation of stress along the 

specimen cross-section, it can is found that not only is this value small (within 10% of the flow 

stress of the material), but also the variation of stresses in the specimen is temporal and 

diminishes with time. In Figure 2.7, the axial stress-distribution in the incidence-face 8 

microseconds after the incidence wave has reached the specimen is shown.  
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Figure 2.7. Axial Stress Distribution in the Specimen with Cross-Section of (a) Hexagon,  (b) 

Rectangle, (c) Square, and (d) Circular 8 microseconds after the incident wave has reached the 

sample 

(a) (b) 

(c) 
(d) 
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      Thus, the condition of uniaxially uniform specimen stress is satisfied not instantly but after a 

certain time. It was further observed that in the case of non-cylindrical specimen, the time for the 

stress-uniformity along the sample cross-section (referred to as the lateral equilibrium time) is 

dependant on the specimen cross-section’s /J A  value. This relationship is plotted in Figure 2.8 

(a)  

(b)  

Figure 2.8 (a) Standard Deviation of Stresses in the Incident Face of the Specimen for Different 

Types of Specimens and, (b) Lateral Equilibrium Time v/s Specimen Cross-section Property in a 

Kolsky Bar Experiment 

     The above shows that the time for lateral equilibrium of stresses in a specimen increases with 

an increase of the specimen’s /J A  value of the cross-section. The higher the /J A  value, the 

more is the time needed for the specimen to attain lateral equilibrium. 
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2.5 Conclusion 

In the current investigation, the feasability of using non-cylindrical specimens in a Split-

Hopkinson Pressure Bar was discussed. A general characteristic specimen cross-sectional 

dimension, /J A  , was shown to be a prudent choice and a critical slenderness ratio was 

established as an extension of the slenderness ratio established for cylindrical specimens. It was 

shown that if the specimen slenderness ratio is as dictated by the established criterion, there is 

negligible effect of specimen cross-section or length on the dynamic stress-strain curve. It was 

also shown that in a specimen with sharp edges, the effects of stress-concentration is temporary 

and diminishes with time.  
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CHAPTER 3 

ON THE DETERMINATION OF DYNAMIC 

STRENGTH OF SINGLE LAP JOINTS USING 

THE SPLIT HOPKINSON PRESSURE BAR 
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3.1 INTRODUCTION 

The use of adhesive bonded lap joints has gained increasing attraction due to their increasing use 

in aerospace structures, civil engineering applications, automotive industries, marine 

applications. These joints are easy to manufacture, cost-effective and compared to bolted joints, 

suffer lesser stress-concentration. An excellent summary of the relative advantages of adhesive 

bonded lap joints over other methods of structural joining is given in a recent publication by 

Osnes and McGeorge [3.1].     

     Due to the variety of loads that a structural joint may be subjected to in different applications, 

the understanding and determination of the dynamic strength of adhesive bonded lap joints has 

been an active field of study. A dynamic wave propagation study on adhesive bonded lap joints 

has been conducted by Zachary and Burger [3.2] using photoelastic analysis.  The failure of lap 

joints under transverse impact has been studied by Park and Kim [3.3], where the total damage 

energy was estimated by firing a projectile onto the center of the target using a gas gun. A 

computational analysis of the process, together with experimental investigation suggested the 

existence of threshold energy after which sudden failure was observed. Their investigation 

focused on simulating a joint subjected to ice impact. A study of transverse impact of adhesive 

joints using a computational model by Vaidyaa et. al. [3.4] revealed that under transverse impact 

due to excessive deflection of the bonded area, failure occurred from the edges. The failure was 

attributed to peeling of the adhesive bond from the ends. In similar wave-propagation studies 

was by Higuchi et. al. [3.5,3.6], the effect of Young’s Modulus of the adherends, overlap length 

and adherend thickness on the maximum stress of the adhesive was investigated. The study of 

adhesive failure due to in-plane loading under low velocity impact has been studied by Rao et. 
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al.[3.7] In their study, a finite element modal analysis was used to predict the vibration 

frequencies of the adhesive layer. In a study of adhesive bonded joints using an instrumented 

impact pendulum, Goglio and Rosetto [3.8] reported the increase in strength of adhesives under 

impact loading. In a wave-propagation study by Sato and Ikegami [3.9], the impact behaviour of 

lap joints and scarf joints under impact load was studied by proposing a viscoelastic model for 

the cured adhesive. Their study reflected that there was considerable stress-concentration at the 

edges.  

     The determination of the impact strength of adhesive bonded lap joints is described in ASTM 

D-950 03 [3.10]. The standard recommends the use of a pendulum impact test for the 

determination of the same. A critical analysis of this was performed by Adams and Harris [3.11] 

and it was concluded that such a method was more suitable for giving only a comparative 

estimate.  

     For determining the impact strength of adhesive bonded lap joints, a commonly used loading 

device is the Split Hopkinson Pressure Bar (Kolsky Bar).  For determining the strength of 

adhesive lap-joints using a Kolsky Bar, the specimen is designed such that the one-dimensional 

axial forces in the incidence bar give a pure shear force to the adhesive-bonded test assembly. It 

is further assumed that the only compliance in the test-assembly is due to the adhesive bond 

between the substrates and force is transmitted onto the transmission bar only as long as the 

adhesive bond does not fail. A variety of different specimen designs have been adopted by 

various researchers for determination of the strength of adhesive bonded joints. Srivastava et. al. 

[3.12] used a split cylinder lap joint specimen to investigate the dynamic strength of adhesive 

bonded lap joints. Yokoyama and Shimizu [3.13] determined the strength of an adhesive bonded 

lap joint using a pin and collar specimen. Yokoyama and Nakai [3.14] used a hat-shaped 
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specimen sandwiched between an incidence bar and a hollow transmission bar, where the 

diameter of the transmission bar was larger than that of the incidence bar. For elevated 

temperature tests on adhesive-bonded single lap joints, Adamvalli and Parameswaran [3.15] used 

two short plates which were bonded by adhesive and the test-assembly was sandwiched between 

the incidence and transmission bar. The maximum force, as calculated from the strain gage on 

the transmission bar, was used to estimate the failure strength of the adhesive joint at different 

temperatures. Similar specimen and test method was used by Chen and Li [3.16] to study the 

strength degradation of adhesive bonded single lap joints with temperature, using a tensile Split 

Hopkinson Bar.  Raykhere et. al. [3.17] used a torsional Split Hopkinson Bar to study the impact 

strength of adhesive butt joint.   

      Closed form solutions for adhesive bonded lap joints under quasi-static loading was first 

developed in a classical work by Volkersen [3.18], which have been extended subsequently by 

Goland and Reissner [3.19] and de Bruyne [3.20] to include peel effects, Hart-Smith to include 

the effects of inelastic adhesive deformation [3.21], Tsai et. al [3.22] to include the effects of 

shear deformation of the adherend, Osnes and McGeorge [3.1] to combine the effects of both 

inelastic deformation of the adhesive and shear deformation of adherends and by Chataigner et. 

al. [3.23] to propose a non-linear failure criterion for adhesive bonded double lap joints. Other 

detailed studies on this have been conducted by various researchers [3.24-3.46], however, the 

research has been limited to quasi-static cases. 

     In a research by Srivastava et. al., [3.47] the effect of the bonding length and thickness on the 

strength of adhesive bonded lap joint has been reported using the split cylinder lap joint. The aim 

of the current research is to investigate and report the drastic effect of the bonding area on the 

dynamic strength of adhesive bonded lap joints using the split cylinder lap joint specimen for 
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experiments in a Split Hopkinson Pressure Bar and develop a mathematical rationale for the 

same. In a Kolsky Bar experiment, an adhesive bonded lap joint is subjected to different rates of 

loading. In the current research, the proposed model of Osnes and McGeorge has been extended 

to include the effects of strain acceleration as well as out-of-plane adherend thickness in a single 

lap joint, thereby enabling direct comparison of the proposed model with the experimental results 

obtained from a Kolsky Bar. The theory can easily be extended to the case of a double lap joint. 

3.2 Dynamic Experiments       

3.2.1 Description of Samples and Experimental Procedure 

     The split cylinder sample suggested by Srivastava et. al.  [3.12] comprises two cylinders 

which were cut along the longitudinal axis of symmetry. The cut faces were used for bonding the 

specimens with a thin layer of Loctite Fixmaster® High Performance Epoxy (99393), which is a 

two-part epoxy adhesive with a mix-ratio of 1:1. The shear modulus of the adhesive being not 

provided by the manufacturer, an estimate of the shear modulus of the same was obtained from 5 

different two-part epoxy adhesives of the same family and was estimated to be 1200 MPa. The 

bonding faces of adherends were polished using a 600 SiC grit, followed by 1300 SiC grit, 

cleaned with a phosphoric acid surface cleaner, followed by neutralizing with ammonia water. 

The surface cleaner and the neutralizer were obtained from Vishay Micro-measurements. The 

bonded assembly was then cured at room temperature for 24 hours before performing 

experiments. The process resulted in near uniform adhesive layer with a thickness of 0.5 mm. 

      Two types of split cylinder specimens were taken in the current investigation, one having a 

diameter (d) exactly equal to the diameter of the incidence and transmission bars (15.9 mm) and 

the other having a slightly smaller diameter (12.7 mm). In each case, two different overlap length 

(xl) were adopted, one being 10 mm and the other being 15 mm. A small gap was left at either 
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ends of the overlap length to ensure load transfer through adhesives only. In addition, for each of 

the sample, a small flange was left for proper centering in order to minimize the effects of 

bending and associated peel stress. The flange was of the same diameter as the split cylinder, 

without the axial cut. The material for the adherend was same as that of the Hopkinson Bars. 

(Aluminum Alloy 7075). Over 50 experiments were conducted to ensure that the results had a 

well-defined error bar. Figure 3.1 shows a diagram of the specimen adopted. 

 

Figure 3.1 (a) Schematic representation of the specimen adopted in the current experiment 

(b) Specimens adopted in the current experiment 
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Table 3.1. Details of the specimen adopted 

Name Overlap Length (xl) (mm) Diameter (d)(mm) Overlap Area (A), (mm
2
) 

1 15 15.9 238.5 

2 10 15.9 159 

3 15 12.7 190.5 

4 10 12.7 127 

 

     Both quasi-static and dynamic experiments were performed for the samples adopted. The 

quasi-static experiments were performed using an MTS-810 Material Testing System with a 

cross-head speed of 0.5mm/s. The maximum load to failure was recorded, and then divided by 

the over-lap area to estimate the shear strength of the joint. For the dynamic experiments using 

the Split Hopkinson Pressure Bar, the specimens were sandwiched between two high strength 

Aluminum (Alloy 7075) bars, each of which was 1.8 m (6 ft) long and 15.9 mm (5/8 inch) in 

diameter. The responses were measured with electrical resistance strain gages, bonded to the 

middle of the incident and transmitter bars, connected to Vishay Signal Conditioning Amplifiers 

(Model 2310B); and the response from the strain gages were recorded on a LeCroy digital 

oscilloscope (Model 354A). To ensure that the samples were subjected to different loading-rates, 

different projectile lengths (ranging from 203.2 mm and 76.2 mm) were adopted and different 

pulse shapers were used for pulse-shaping. The following section discusses the calculation of 

joint-strength from the SHPB technique. 

3.2.2 Calculation of Joint Strength 

     The SHPB technique comprises a specimen, which in this case comprises two adherends with 

a thin layer of adhesive between them, sandwiched between two cylindrical bars called the 

incidence bar and the transmission bar. The cross-sectional geometry of these two bars is, in 
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general, the same and they are made of the same material.  An axial impact on the incident bar is 

caused by firing an air gun, which in turn generates a travelling compressive wave in the incident 

bar. The material and the cross-section of the specimen is not the same as that of the incidence 

bar, partially due to the presence of the thin layer of adhesive between the adherend, and partially 

due to area mismatch between the adherend and the incidence bar. Hence, due to the mismatch of 

mechanical impedance of these two, when the travelling wave hits the specimen, a part of it is 

reflected back into the striker bar and a part of it is transmitted through the specimen. The 

transmitted wave impinges on the transmission bar after travelling through the specimen and 

travels forth as a travelling wave, while a part of it is reflected back into the specimen. If the 

specimen is short enough compared to the length of the stress pulse, then it is assumed that stress 

equilibrium is achieved due to several reflections within the specimen in a time much shorter 

than the duration of the test. If , ,i r tε ε ε   denote the incidence, reflected and transmitted strain 

waves respectively, 1 2( ), ( )t tσ σ  denote the stresses at the specimen-incidence bar and the 

specimen transmission bar respectively, 1 2( ), ( )P t P t  denote the forces at the specimen-incidence 

bar and the specimen transmission bar respectively, ,b bA E be the cross-sectional area and 

Modulus of Elasticity of the transmission/incidence bar respectively and lsA  be the bonded area 

of the adhesive lap joint, then the following relations hold [3.12]: 

{ }1 1( ) ( ) ( ) ( )b b b i rP t A t A E t tσ ε ε= = +                                                                                          (3.1)                                                                              

2 2( ) ( ) ( )b b b tP t A t A E tσ ε= =                                                                                                       (3.2) 

2 max( )
s

ls

P t

A
τ =                                                                                                                                 (3.3) 
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where sτ  is the shear strength of the joint and 2 max( )P t   is the maximum transmitted load 

through the adhesive lap joint.  In the current investigation, the loading-rate,P& , is calculated 

from the slope of the transmitted force, i.e. 

 
( )2dP t

P
dt

=&                                                                                                                                 (3.4)    

     Figure 3.2 shows a representative plot of the incidence, reflected and transmission pulses 

obtained from the experiments. 

                              

Figure 3.2: Typical Pulses obtained in the Kolsky Bar Experiment 

 

3.3Analytical Model for Shear Strain in Single Lap-Joints 

3.3.1 Governing Equation 

     This section aims at deriving a mathematical model for estimating the strength of an 

adhesive-bonded single lap shear joint, by extending the recently proposed model for adhesive-

bonded double lap joints of Osnes and McGeorge [3.1] to include the effects of shear strain 

acceleration of the adhesive and out-of-plane thickness of the adherend. The adhesive is 

idealized to execute brittle, elastic behavior, as has been experimentally indentified to be the 
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typical behavior at high loading rates [3.2].  The current analysis rests on the “shear lag” theory 

of Volkersen [3.18,3.23]. The assumptions involved are as follows 

• The adherends are linear elastic 

• The axial stress is constant throughout the adherend thickness 

• Shear stress is constant throughout the adhesive thickness 

• Peeling stresses are negligible. 

      Figure 3.3 shows the schematic representation of the assembly of the adhesive bonded single 

lap joint. 

     For the split cylinder samples adopted in the current investigation, the out-of-plane adherend 

thickness is not constant. The equations of motion for the outer and inner adherend may therefore 

be written as follows. 

For the outer adherend, 

( ) 2
0 0 2

2o a oT T T r x r x a
πτ ρ +∂ − + ∂ = ∂ 
 

                                                                                                 (3.5a) 

22
2

o
a o

T
r r a

x

πτ∂  ∴ + =  ∂  
                                                                                                                              (3.5b) 

For the inner adherend, 

( ) 2
0 0 2

2o a iT T T r x r x a
πτ ρ +∂ − − ∂ = ∂ 
 

                                                                                          (3. 6a) 

22
2

i
a i

T
r r a

x

πτ∂  ∴ − =  ∂  
                                                                                                                   (3. 6b) 

     In the above equations, 0, iT T  represent the axial stress-resultant (positive in tension) of the 

outer and inner adherend respectively, ρ   is the density of the adherends, aτ  is the adhesive 
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shear stress, 0,ia a  represent the average acceleration of the cross-section of the inner and outer 

adherend respectively and  r is the radius of the split cylinder specimen adopted. 

   

Figure 3.3 (a) Schematic representation of the adhesive bonded lap joint assembly (b) Free-body 

diagram of the adherends and adhesive layer (c) variation of shear stress in the through-thickness 

direction of the adherends and (d) displacement profile in the through-thickness direction of the 

adherends 

     If 0( , , )x y zτ ′   and ( , , )i x y zτ ′′  represent the shear stress in the outer and inner adherends 

respectively, where ,z z′ ′′   are local origins as defined by figure 3.3,  aτ   is the shear stress at the 

junction of the adhesive and the adherends, and 0( ), ( )it y t y   are the thickness of the outer and 

inner adherend respectively, then from the assumption of linear variation of shear stress 

throughout the adherend thickness,  
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     Let ,o iγ γ  represent the shear strain in the outer and inner adherends respectively and G be the 

shear modulus of the adherends. Then, Equations 3.7(a) and 3.7(b) can be written as  
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                                                                                                                   (3.8b) 

     From Equations 3.8(a) and 3.8(b), the equations for horizontal displacements may be written 

as 
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                                                                                                  (3.9b) 

where ou and iu are the horizontal displacements of the outer and inner adherends respectively 

and oau  and iau are the horizontal displacements at the interface of the adhesive layer and the 

outer and inner adherend respectively. The axial strain in the outer and inner adherends, ,xo xiε ε   

thus become 
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     Noting that for a split-cylinder sample of radius r, 2 2
ot r y= −  , 2 2

it r y= −  , the axial 

stress-resultants 0T and iT  can be obtained as 

0
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′′ ′′= ∫ ∫                                                                                                          (3.11b) 

     where E is the Modulus of Elasticity of the adherend. Performing the integration in Equation 

(3.11), and re-arranging the terms, 
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     If the adhesive thickness is denoted by at and the shear strain of the adhesive by aγ  then, 

from the assumption of constant adhesive shear strain throughout the adhesive thickness,                       

ia oa
a

a

u u

t
γ −=                                                                                                                           (3.13) 

     From Equations (3.12) and (3.13), it is therefore possible to show that  
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     Again, from Equations 3.9(a) and 3.9(b),  
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where ˆoa  , ˆia   represent the accelerations of the outer and inner adherends respectively. The 

average accelerations,  0a and ia can then be obtained from Equations (15) as follows 
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     From Equations (3.13), (3.16) and (17), it is possible to show that 
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     Subtracting Equation 3.6(b) from 3.5(b) and substituting equations (3.14) and (3.18), the 

governing differential equation of the system is obtained as  

2 2

2 2 2
1 1a a

a
x c t

γ γ γ
α

∂ ∂
− =

∂ ∂
                                                                                                                                 (3.19) 

     Here, α is a parameter depending on the material properties of the adherends and the adhesive 

as well on the structural properties of the bonded-lap joint, and is defined by 
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     while c is the velocity of an elastic stress-wave of the adherend, defined by 

E
c

ρ
=                                                                                                                                      (3.21) 

     The initial conditions of the problem are given as 

0; 0
t

γγ ∂= =
∂

  at 0t =                                                                                                                          (3.22) 

     To obtain the boundary conditions of the problem, Equations (3.12) and (3.13) are combined 

to yield  
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                                                                                     (3.23) 

     At 0x =  , 0; ( )i oT T F t= = −                                                                                              (3.24a) 

At lx x=  , ( ); 0i oT F t T= − =                                                                                                 (3.24b) 

     Here, F(t) is the prescribed loading at the outer and inner adherends, the negative sign 

indicates that the nature of the load is compressive (as in the Kolsky Bar experiment), and the 

prescribed loading is taken to be equal at both the ends to ensure that the specimen is in a state of 

stress-equilibrium with minimal wave-propagation effects. lx  denotes the length of the overlap. 

Equations (3.23) and (3.24) form the boundary conditions to the governing differential equation, 

described by Equation (3.19). Equations (3.19), (3.22), (3.23) and (3.24) complete the definition 

of the current problem. 

 

3.3.2Solution of the Governing Equation and Comparison with Experimental Observations 

     To solve Equation (3.19), the loading function F(t) was determined from the incidence pulse, 

measured directly from the strain-gage readings on the incidence bar, multiplied by the area of 

the incidence bar and the modulus of the incidence bar. Thus, 
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( ) ( )b b rF t A E tψ ε= −                                                                                                                               (3.25) 

     where ψ  is the transmission coefficient, taking into account the area mismatch between the 

incidence bar and the split-cylinder sample. Equation (3.19) was then solved numerically using 

the Galerkin Weighted-residual method, with the use of linear Lagrange Interpolation Functions 

for the spatial variation of the shear-strain in the joint and an explicit half-step central difference 

scheme for obtaining the temporal variation of shear strain in the joint. A user developed 

computational code was used for the calculation. The detailed derivation is included in the 

appendix. Once the adhesive shear strain was calculated, the average displacement, avgu along 

the cross-section of the adherend was calculated by integration equation 3.9(b) along the cross-

section of the inner adherend to yield 
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π
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                                                                                              (3.26) 

     The strain in the adherend at lx x= was thus obtained as 

( ), avg
xi l

u
x x t

x
ε

∂
= =

∂
                                                                                                                 (3.27) 

     From the condition of velocity compatibility of the inner adherend-transmission bar interface, 

it can be stated that the velocity of the inner adherend, xiv   and the velocity of the transmission 

bar, tv   are equal, i.e.: 

( , )xi l tv x x t v= =                                                                                                                        (3.28a) 

( ),xi l t tc x x t cε ε∴ = =                                                                                                                   (3.28b) 

     where tc  is the velocity of stress-wave in the transmission bar. From Equation (3.28b), a 

prediction of the peak value of the strain in the transmission bar is possible . 
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3.4 Results and Discussions 

From the readings on the strain-gages at the transmission bar, if the time taken to reach the peak 

load be taken as the time for the joint to fail, then the temporal variation of the strain in the 

adhesive till failure can be determined from the mathematical model. Figure 3.4 shows that  the 

shear strain is maximum in the adhesive layer at the edges and that the strain progresses from the 

edges, straining more and more of the overlap length. Figure (3.5) shows the plot of shear strain 

distribution at failure for all the four types of specimen adopted at a loading rate of 0.65 kN/μs. 

(a) 
 

(b) 

(c) (d) 

Figure 3.4 (a) Transmitted Pulse as obtained from Strain-gage (b) Shear Strain Distribution along 

the overlap length at 10 microseconds (c) Shear Strain Distribution along the overlap length at 25 

microseconds (d) Shear Strain Distribution along the overlap length at the time of failure for 

specimen 3 at a loading rate of 0.65 kN/μs 
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(a) (b) 

 

 (c) 
(d) 

 

(e)  

Figure 3.5. Plot of Shear Strain distribution in the adhesive layer over the overlap length for (a) 

Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4 (e) Average Shear Strain at a rate of 0.65 

kN/μs 
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Some immediate conclusions can be drawn from figure 3.5. They are as follows. 

(i)Influence of overlap length for a given out-of-plane thickness: By comparing figures 3.5(a) 

and 3.5(b) or similarly figures 3.5(c) and 3.5(d), it can be seen that reducing the overlap length 

slightly increases the peak strain in the adhesive joint, however, the total length of non-zero 

strain at the time of failure remains the same. The effect on averaging the total strain over the 

entire overlap length results in an increased average value of strain for the case of reduced 

overlap length, as the fraction of area of non-zero strain over the entire overlap length is higher 

mainly due to the reduced overlap length in figures 3.5(b) and 3.5(d) in comparison to 3.5(a) and 

3.5(c) respectively. 

(ii) Influence of out-of-plane thickness for a given over-lap area: In contrast to case (i), if the in-

plane thickness is reduced for a given overlap length, the maximum strain is decreased. This is 

due to the dependence of the term α on the out-of-plane thickness (in this case, the radius of the 

split cylinder sample) in the governing differential equation of the system as predicted by 

Equations (3.19) and (3.20). Nevertheless, it can be immediately observed by comparing figures 

3.5(a) and 3.5(c) or figures 3.5(b) and 3.5(d), that as the out-of-plane thickness is reduced for a 

given overlap area, the length of non-zero strain at the time of failure increases considerably. It 

turns out that the increase in the length of non-zero strain more than compensates for the 

decrease in peak-strain value, resulting in an increase in the average strain over the overlap 

length. The net result is lower the out-of-plane thickness for a given overlap length, higher is the 

average shear-strain over the entire overlap length. 

(iii) The net cumulative result of (i) and (ii) is lower the overlap area, higher is the average strain 

in the adhesive-bonded lap joint. This can be seen in figure 3.5(e). As in a Kolsky Bar 

experiment, the average shear strength over the entire bonded assembly is measured from the 
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readings on the transmission bar, it will be found that a Kolsky Bar experiment predicts the same 

trend as discussed above, as shown in Figure 3.6 and 3.7. 

     Figure (3.6) shows the experimental observations of the influence of loading rate on the 

strength of the adhesive joints. In Figure (3.6) a comparison has also been made to the predicted 

values of the peak strain in the transmission bar as obtained from Equation 3.28(b), which was 

then post-processed using equations (3.2) and (3.3) to compare with the experimental predicted 

value of shear strength of the adhesive joint. 

 

  

Figure 3.6 Variation of Strength in Adhesive Joint with Loading Rate 

 

     From Figure (3.6), it can be seen that for all the four samples adopted, the joint strength 

increases with loading rate. There is a reasonably good agreement between the experimental 

observations and the computational values for moderately high loading rates (till a rate of 1 

kN/μs). However, at extremely high loading rates, there is considerable deviation from the 
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predicted response and the experimental observations.  It is suspected that the lack of 

information on the rate-sensitive behavior of the adhesive causes this deviation. In the current 

analysis, a representative static value of the shear modulus of the adhesive has been adopted for 

the current analysis. The development of a precise mathematical model incorporating the rate-

sensitive plastic behavior of the adhesive is left for future investigations. Nonetheless, the model 

presented here shows a reasonably accurate agreement with experimental observations for a fair 

range of loading-rates, and more importantly, it can be used to explain the apparent variation of 

joint strength with decrease in overlap area. Figure 3.7 shows the experimentally observed trend 

of over-lap area on the joint-strength at given loading rates. 

 

 

Figure 3.7 Variation of Average Shear Strength of the Adhesive Bonded Lap Joint with Overlap 

Area 

 

     It can be seen from Figure 3.7 that a larger overlap area decreases the shear-strength of the 
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averaged over the entire length of the joint, and a detailed explanation of this has been given in 

the previous section of the investigation. 

      Finally, it must be mentioned here that the results were based on a constant thickness of the 

adhesive layer and for the bonding of similar adherends. 

 

3.5 Conclusion 

This part of the current investigation aimed at analyzing the drastic effect of overlap area on the 

prediction of the dynamic strength of an adhesive bonded single lap joint using a Kolsky Bar. A 

mathematical model for shear strain in the adhesive joint was developed by extending existing 

models for double lap joints to include the effect of strain-acceleration of the adhesive and the 

out-of-plane thickness of the adherend. A combined computational-experimental method was 

used to predict the shear strain distribution on the adhesive length at the time of failure. It was 

observed that only a part of the adhesive layer was strained at failure. Further, it was also 

observed that by changing the in-plane thickness of the adhesive layer for a given over-lap length 

of the adhesive decreased the maximum shear strain in the adhesive, but simultaneously 

increased the total length of adhesive that is subjected to non-zero strain- resulting in an 

increased average strain of the entire adhesive layer. The findings also suggested that decreasing 

the overlap length for a given out-of-plane thickness of the adhesive layer had no effect on the 

length of adhesive layer subjected to non-zero strain and the maximum strain in the adhesive 

changed slightly, as a result of which the average strain of the entire adhesive layer increased 

considerably. The net effect was found to increase the average adhesive strain by decreasing the 

overlap area of the adhesive. This was found in agreement with the Kolsky Bar experimental 

results. It was also found like many earlier researchers that increasing the loading rate increased 

the adhesive strength considerably. Reasonably good agreements were found between the 
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theoretical and experimental predictions of the bond strength over a considerable range of 

loading rate. 

     As a Kolsky Bar experiment only predicts the average value of the joint strength, it can be 

said that a Kolsky Bar gives a conservative estimate of the adhesive strength, the peak strength in 

the adhesive may be higher than that predicted value in a Kolsky Bar. In fact, it is seen that the 

most conservative estimate is given by selecting the diameter of the adherend to be equal to the 

bar diameter and by keeping the length of overlap as high as possible, so as not to affect stress-

equilibrium on either faces of the joints during the duration of the experiment. A design based on 

such experimental predictions is inevitably in the conservative limits. 

     Finally, the mathematical model presented here is valid only after the Kolsky Bar specimen 

has achieved stress-equilibrium. This has been indirectly incorporated in the current model by 

including a suitable transmission coefficient in Equation (3.25). Without this, the strain 

prediction in the transmission bar with the use of Equation (3.28) would not have been possible. 

     The task of incorporating the rate-dependant behavior of the adhesive into the existing 

mathematical model is left as a future work. In addition, the extension of the current model to 

include the case of dissimilar adherends may also be undertaken in future.  
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CHAPTER 4 

Design of a Tensile Hopkinson Bar 
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4.1 Introduction 

Since the introduction of the Split Hopkinson Pressure Bar in the form of two “split” bars acting 

as transducers by Kolsky [4.1], shear and tensile versions of SHPB has been developed as well. 

The tensile version of SHPB, described in this chapter as the Split Hopkinson Tensile Bar 

(SHTB), is necessary; as many materials like unidirectional composites behave differently in 

compression than in tension [4.2]. Other examples include ductile materials, metals for example, 

which are stronger in tension than compression. The design of SHTB is generally different than a 

conventional SHPB; the reason for this being manifold and are discussed in the subsequent 

sections of the chapter. In view of these difficulties, various designs that have been previously 

adopted and described are presented in the current investigation.   

        Broadly speaking, the design of SHTB is classified into three categories. The first of these 

involves generating a direct tensile pulse [8] by suddenly releasing stored tensile energy in an 

incident bar, hitherto loaded statically by a clamping mechanism. The second type of design 

principle involves the changing of a compressive stress wave to a tensile stress wave by allowing 

it to reflect from a free end surface. Different designs involving this principle has been developed 

[4.2, 4.3-4.11]. The third category is one which involves the modification of the compressive 

Hopkinson Bar (SHPB) in the sense that instead of altering the loading mechanism, the specimen 

geometry is changed, such that a part of the specimen is in tension, while the remaining is in 

compression [4.12-4.13].  
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4.2 Requisites of an acceptable design of a SHTB 

Before discussing the various designs adopted in a SHTB apparatus, it is imperative to look into 

some requisites of a good design. 

(1) Firstly, it is necessary to ensure that the tensile wave generated has a finite rise time. In 

fact, more the time needed for the pulse to attain a rise time, the better the progressive tensile 

properties of the material can be studied. The rise of the wave to its peak value should be smooth 

as much as possible, so that there is no unloading or load decrement in the specimen; at least till 

the peak load is attained. This means that the specimen is not subjected to a train of pulses, 

tensile-tensile or tensile-compressive. Thus, the generated tensile wave should have a trapezoidal 

profile as much as possible, with a finite, but minimal rise time with respect to the entire duration 

of the pulse. 

(2) A major assumption involved in Hopkinson Bar analysis is that the stress waves 

measured with strain gages placed at approximately half the length of the incident and 

transmittance bar is the true representative of the stress-wave at the specimen-bar interface. As a 

stress wave, when undergoes impedance mismatch in its path of travelling, is partly reflected 

back and is partly transmitted, and if dispersion effects are neglected, impedance mismatch in a 

bar of a given (homogenous) material can be caused only due to changes in cross-section (area) 

of the bar. The condition that the cross-section of the incidence/transmittance bar should be same 

in the portion between the point of measurement of the incidence and transmission pulses and the 

interface between the bars and the sample is imperative to ensure that the assumption discussed 

above is valid. Ensuring validity of the assumption is generally a daunting task, as gripping a 

tensile specimen requires the incidence/transmission bar to be threaded, which thereby causes 

changes in the cross-section of the bars and often ‘distorts’ the stress-waves and causes 
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successive reflections of the pulse in the threaded section. However, if the threaded length of the 

bar is less than the bar diameter, then the effect of the small changes in cross-section can be 

neglected [4.14]. 

(3) The testing of brittle materials often requires the use of proper pulse shaping techniques 

[4.15, 4.16]. A pulse shaper increases the rise time of the pulse and in construction, is typically a 

soft material like paper, copper etc. placed in front of the incidence bar, at the bar-striker 

interface [4.17]. A wave-generating mechanism, that allows pulse shapers to be incorporated in 

the assembly, is thus desired. 

(4) The specimen in the Split Hopkinson Tensile Bar is usually, like any other tensile test, a 

dog-bone specimen, or a specimen of a changing cross-section along its length. Trends in 

combining the Split Hopkinson Bar technique with Digital Image Correlation [4.19] requires a 

design that enables the specimen to be viewed during a SHPB/SHTB experiment using a high 

speed digital camera. 

 

4.3 Review of some of the previous designs of SHTB 

        In a method devised by Harding et al. [4.4], the input bar is made of a hollow tube in which 

the elastic bar assembly or the specimen weighbar assembly is fitted, as illustrated in Figure 4.1. 

The uniform elastic bar assembly is shown in Figure 4.1(a) without its surrounding weigh bar 

tube. This bar is used first in an impact test to determine the input condition. A second identical 

test is performed with the specimen and the inertia bar fitted into the weighbar tube as shown in 

Figure 4.1(b). The loading is achieved by firing a striker to impact the weighbar. Any alteration 

of the transmitted wave shape caused by the changes in cross-section of the tube was neglected. 

The difference between the yoke velocity and the velocity of the upper end of the specimen, as 



obtained from the strain measurements

the upper end of the specimen was assumed to be representative of the stress throughout the 

specimen, i.e. the specimen inertia was neglected. Since the load is applied to the specimen 

indirectly through the weighbar tube, any eccentricity in the impact will produce 

waves in the weighbar tube. However, due to the slower propagation velocity of 

there was a sufficiently long time for materials with a defi

stress before the arrival of flexural

introducing an instrumented input bar preceding the specimen and inertia bar and also sliding 

freely within the weighbar tube. This new 

by Harding and Welsh [4.5] for the tensile testing of fi

Figure 4.1. 
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obtained from the strain measurements, was used to construct stress–strain curves. The stress at 

the upper end of the specimen was assumed to be representative of the stress throughout the 

specimen, i.e. the specimen inertia was neglected. Since the load is applied to the specimen 

through the weighbar tube, any eccentricity in the impact will produce 

waves in the weighbar tube. However, due to the slower propagation velocity of 

ng time for materials with a definite yield point to reach the upper yield 

flexural wave components. The same method was later modi

introducing an instrumented input bar preceding the specimen and inertia bar and also sliding 

freely within the weighbar tube. This new version of the split Hopkinson pressure bar was used 

] for the tensile testing of fiber-reinforced composites. 

Figure 4.1. Set-up of the SHTB by Harding [4.5] 

strain curves. The stress at 

the upper end of the specimen was assumed to be representative of the stress throughout the 

specimen, i.e. the specimen inertia was neglected. Since the load is applied to the specimen 

through the weighbar tube, any eccentricity in the impact will produce flexural stress 

waves in the weighbar tube. However, due to the slower propagation velocity of flexural waves, 

nt to reach the upper yield 

wave components. The same method was later modified by 

introducing an instrumented input bar preceding the specimen and inertia bar and also sliding 

version of the split Hopkinson pressure bar was used 

reinforced composites.  
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        In light of the criteria discussed in the previous section, it can be concluded that pulse 

shaping is difficult to be achieved using the above configuration. 

       Hauser et. al.[4.6] proposed a different design of the tensile Hopkinson bar. In this set up, 

the specimen is threaded inside two long elastic bars- the incident and the transmitter bar and a 

tensile wave is generated in the incidence bar by attaching it by means of a transfer-connection to 

other two long bars which are impacted by a projectile at the end opposite to that, where it is 

connected to the incidence bars by transfer-connections. Thus, the rise time of the tensile stress 

in the incidence bar is determined both by the impact velocity of the projectile as well as the 

dimensions of the transfer connection. The entire assembly is shown in Figure 4.2. The amplified 

input and output signals from the strain gauges at positions 1 and 2 are used in a one-dimensional 

stress wave analysis to obtain the stress, strain and strain rate of the tensile loading. Thus, as the 

striker impacts the long bars, it generates a compressive wave in the same, which are reflected at 

the free end of the transfer connection as a tensile wave, part of which travels back through the 

long bars and the remaining passes into the incidence bar, which is used to load the specimen. 

This apparatus provides the ease of pulse shaping, viewing the specimen is also easy and the 

tensile pulse, one generated in the incidence bars, does not undergo any abrupt changes in cross-

section of the same in its path of travelling (except at the threads which connect the specimen to 

the incidence bar). The major disadvantage of the design is that it requires very long transfer 

connections, to avoid overlapping of the compressive wave, first generated by impact, and the 

tensile wave generated by reflection of the compressive wave at the free end of the transfer 

connection. In the absence of such considerations, generating a trapezoidal-like pulse is almost 

next to impossible.         



Figure 4.2 Set up by 

     The third set up, discussed here, was proposed by Lindholm and Yeakly [

comprised of  the incidence bar and the transmission bars (which was tubular in nature) to be 

equal cross-section and the specimen was sandwiched in between the two, very much alike to a 

conventional SHPB. A compressive wave was generated in the in

with a projectile fired at a known velocity. The only modification made was that the specimen 

was altered to a hat-shaped specimen. The actual gauge section of the tensile specimen has four 

equal arms, each with a length–

4.3. The applied loading and deformation of the specimen are derived from strain

measurements on the radial surfaces of the two elastic pressure bars using diametrically opposed 

strain gauges. In this analysis, the internal wave 

technique is not accurate for determining the elastic modulus and may introduce some 

uncertainty at stresses near the yield strength if this occurs before stress equilibrium is 

established. In this design, viewing

trapezoidal pulses, which undergo no abrupt change in the cross

is easy. However, it was found that the specimen strength falls below 
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Figure 4.2 Set up by Hauser et. al.[4.6] 

The third set up, discussed here, was proposed by Lindholm and Yeakly [

comprised of  the incidence bar and the transmission bars (which was tubular in nature) to be 

section and the specimen was sandwiched in between the two, very much alike to a 

conventional SHPB. A compressive wave was generated in the incidence bar by impacting it 

with a projectile fired at a known velocity. The only modification made was that the specimen 

shaped specimen. The actual gauge section of the tensile specimen has four 

–width ratio of approximately 2:1.The set-up is shown in Figure 

3. The applied loading and deformation of the specimen are derived from strain

measurements on the radial surfaces of the two elastic pressure bars using diametrically opposed 

this analysis, the internal wave reflection in the specimen is neglected. The 

technique is not accurate for determining the elastic modulus and may introduce some 

uncertainty at stresses near the yield strength if this occurs before stress equilibrium is 
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The third set up, discussed here, was proposed by Lindholm and Yeakly [4.12] which 

comprised of  the incidence bar and the transmission bars (which was tubular in nature) to be 

section and the specimen was sandwiched in between the two, very much alike to a 

cidence bar by impacting it 

with a projectile fired at a known velocity. The only modification made was that the specimen 

shaped specimen. The actual gauge section of the tensile specimen has four 

up is shown in Figure 

3. The applied loading and deformation of the specimen are derived from strain-time 

measurements on the radial surfaces of the two elastic pressure bars using diametrically opposed 

in the specimen is neglected. The 

technique is not accurate for determining the elastic modulus and may introduce some 

uncertainty at stresses near the yield strength if this occurs before stress equilibrium is 

the specimen, pulse shaping and generating nearly 

section in the path of its travel, 

that of round specimens. 

, it was found that this effect was due to geometry of 

the specimen, in that the gage section was very thin and there was a possibility of the existence 
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of a bending stress, since the line 

the centroid of the gauge section, as is the case in the round tension specimen.

Figure 4.3 Set

        A modification of the set-up described by Hauser 

Nemes [4.2] for the test of quasi

epoxy composites. This set up uses specimens that are threaded between the incidence and 

transmission bars (for metals) or are connected to the two using epoxy chambers and
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reflected as a tensile wave, portion of which would travel back into the side

while the remaining of it would go into the incidence bar, wh
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of a bending stress, since the line of load application in the ‘hat’ specimen is not coincident with 

the centroid of the gauge section, as is the case in the round tension specimen. 

Figure 4.3 Set-up of Lindholm et. al.[4.12] 

 

up described by Hauser et al.[4.6] was adopted by 

] for the test of quasi-isotropic laminate made of unidirectional piles of graphite

epoxy composites. This set up uses specimens that are threaded between the incidence and 

transmission bars (for metals) or are connected to the two using epoxy chambers and

bars for transmitting the compressive wave into a side-bar connector, where in it would be 
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while the remaining of it would go into the incidence bar, which was used for loading the 
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specimen. The modification made here was that the projectile, instead of hitting the transmitter 

bars directly, would hit another side

The details of the design are show

affected by the length of the side

approximately a two-fold increase in the length of the pulse; and due to the presence of the same, 

instead of a quasi-rectangular pulse, a quasi

also, the major disadvantage is that it requires very long side

overlapping of the compressive wave, first generated by impact, and the tensil

by reflection of the compressive wave at the free end of the side
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specimen. The modification made here was that the projectile, instead of hitting the transmitter 

bars directly, would hit another side-bar connector, which was connected only to the side

The details of the design are shown in Figure 4.4. In this design, the length of the pulse was 

affected by the length of the side-bar connectors. The influence of the connector was 

fold increase in the length of the pulse; and due to the presence of the same, 

rectangular pulse, a quasi-triangular pulse was reported to be generated. Here 

also, the major disadvantage is that it requires very long side-bar connections, to avoid 

overlapping of the compressive wave, first generated by impact, and the tensile wave generated 

by reflection of the compressive wave at the free end of the side-bar connectors. 

-up of the SHTB by Eskandari and Nemes [4.2] 

 

 

set up  was designed to generate a direct tensile wave that was generated by relea

the stored load in a part of the incidence bar by Staab and Gilat [4.3] The input and output bars 

were both 12.7mm diameter 7075-T651 aluminum, the input  bar being 3.68m long and the 
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output bar being 1.83m  long. A clamp/load reaction assembly was placed at approximately the 

midspan location of the input bar. The input load was stored in the bar by initially tightening the 

clamp and then applying direct tension at the end of the bar th

and a hydraulic pump. When the clamp was released a tensile wave of half the magnitude of the 

stored force propagated toward the specimen as a loading wave. A release wave propagated in 

the other direction toward the end o

wave fronts in the apparatus is shown in Figure 

there is no control over the profile of the wave generated, in that, pulse shaping technique is

impossible.  

Figure 4.5 A Direct Tensile Split Hopkinson Bar

     A more commonly adopted system is a modification of the 

main differences are that the input bar (bar 1) is twice the length of the transmitter bar (bar 2) 

and that the specimen is a threaded

the pressure bar is placed over the specimen and 

pressure bars. The ratios of the cross

sectional areas of the collar and the specimen to the cross

3: 4 and 1:2 respectively. When the input bar is struck by a striker that has a maximum length of 
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output bar being 1.83m  long. A clamp/load reaction assembly was placed at approximately the 

midspan location of the input bar. The input load was stored in the bar by initially tightening the 

clamp and then applying direct tension at the end of the bar through a system of cables, pulleys 

and a hydraulic pump. When the clamp was released a tensile wave of half the magnitude of the 

stored force propagated toward the specimen as a loading wave. A release wave propagated in 

the other direction toward the end of the input bar. A diagram showing the propagation of elastic 

wave fronts in the apparatus is shown in Figure 4.5. The major disadvantage of the set

there is no control over the profile of the wave generated, in that, pulse shaping technique is
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less than half that of the transmitter bar, the input compressive wave is transmitted almost 

entirely through the collar to bar 2, with little effect on the specimen. When this compressive 

pulse reaches the free end of the transmitter bar, it is reflected as a tensile pulse. This tensile 

pulse is used to load the specimen, since the collar is unable to sustain any tensile load. The 

calculation of the specimen stress and strain were done identically as in a conventional SHPB. 

Figure 4.6 shows the details of the set-up. 

 

 

 

 

 

Figure 4.6 A Tensile Hopkinson Bar [4.9] 

     A commonly used set-up of the Tensile Hopkinson Bar involves a tubular striker, which 

strikes a transfer flange, fixed at the end of the incidence bar [4.10,4.11]. The striker strikes the 

transfer flange and generates a compressive wave there in, which is reflected at the free end of 

the flange as a tensile pulse and travels through the incidence bar. This is used to load the 

specimen, which is typically threaded on between the incidence bar and the transmitter bar. The 

schematic representation of the same is shown in Figure 4.7. The strain gages locate at 
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approximately the mid-span of the two bars record the stress-history and are used to calculate the 

stress and strain in the specimen. 

 

 

Figure 4.7 A Tensile Hopkinson Bar using a transfer flange [4.10] 

              The last two set-ups described here  satisfy most of the requisites of a good design of the 

Hopkinson bar- the tensile pulse once generated undergoes no changes in cross-section in its 

path, generation of a clean tensile pulse is relatively easy, and specimen viewing is also easily 

achievable. The only consideration with the design described in Figure 4.6 is that a part of the 

initial compressive pulse generated is inevitably taken up by the specimen, while as the collar 

cannot take up tensile pulse, it has a tendency to collapse onto the specimen, while the latter 

undergoes tension. In the design described by Figure 4.7, pulse shaping is achieved only 

indirectly, by placing the pulse shaper on the transfer flange.  

     Although small, distortion on the tensile pulse once generated is almost inevitable in all the 

designs discussed here, due to the threaded connection between the elastic bars and the 

specimens. The use of M-Shaped specimens in a SHPB apparatus has therefore been suggested 

by Mohr and Gary [4.13]. The M-specimen was designed to transform a compressive loading at 

its boundaries into tensile loading of its two gage sections. The specimen suggested by them and 

its Finite Element Stress contour is Figure 4.8. Some important considerations to be adopted 

while designing the specimen was suggested as follows: 

(1) Limit plastic deformation to the gage section. 
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(2) Minimize bending deformation at the gage section 

(3) Prevent buckling of the segment at the boundaries as they are relatively thin 

        Based on the above considerations, is was concluded that the gage section should be as thin 

and short as possible for optimal specimen performance in terms of field uniformity within the 

gage section and of maximum strain rate. The disadvantage with the method is that many classes 

of specimens are difficult to be machined into an M Shaped specimen, examples of which 

include biological specimens like tissues, muscles, composite fibers like strands of Kevlar® , etc. 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 4.8 (a) Details of the M Shaped Specimen (b) Structural and (c) Finite Element 

Analysis of the Specimen (d) The Sandwiched M Shaped Specimen between the 

Incidence and Transmission Bars [4.13] 
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4.4 The Design of the Split Hopkinson Tension Bar 

The tensile bars developed at the Composite Vehicle Research Center employs the use of a 

transfer flange for generating a tensile pulse. A schematic representation of the bar is shown in 

Figure 4.9. 

 

 

Figure 4.9 Schematic of the Kolsky Bar developed in CVRC 

 

     The Kolsky bar developed here rests on the principle that a compressive stress-wave reflects 

from a free end as a tensile wave. A tubular striker with the outside diameter same as that of the 

flange impinges on the flange to generate a compressive wave in the same. The compressive 

wave is reflected at the free end of the flange as a tensile wave and travels through the flange. A 

part of it is transmitted into the incidence bar and a part of it is reflected as a travelling 
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compressive wave in the flange itself.  A momentum trap is provided at the end of the flange 

with the diameter exactly the same as the flange. The second compressive wave travels through 

this momentum trap and after being reflected again as a tensile wave at the free end of the bar, 

causes separation of the flange and the momentum trap, thus preventing a train of pulses to be 

incident on the specimen. Bonded-resistance strain gages installed at the incidence and 

transmission bars allow recording of the pulses therein and the data analysis is exactly the same 

as that of the Split Hopkinson Pressure Bar. Figure 4.10 shows the Split Hopkinson Tensile Bar 

developed. 

      The incidence bar, transmission bar, transfer flange, momentum trap and projectiles are made 

of high yield strength aluminum (Alloy 7075). The incidence bar and transmission bar are 15.9 

mm in diameter and the length of these are 3m and 1.2 m. The momentum trap is a solid 

aluminum bar of diameter 50.8 mm and 1.8 m long. The flange is also of 50.8 mm diameter and 

is 50.8 mm thick. Different projectiles of length 127mm, 102 mm, 76mm and 50.8 mm have 

been prepared each with an outside diameter of 50.8 mm and an inside diameter of 15.8 mm. For 

attaching specimens, the ends of the incidence and transmission bars were threaded to a standard 

size of ½-20 threads.  

     In another variation of the set-up, the incidence bar was threaded into the momentum trap 

itself, without the flange. This may be regarded as a Kolsky Bar with a long flange, where the 

flange length is 1.8 m.  
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 Figure 4.10 (a)-(g) Various views of the Tensile Hopkinson Bar 

 

4.5 Calibration of the Tensile Hopkinson Bar 

This section of the chapter aims to explore the general design characteristics of the Tensile 

Hopkinson Bar, i.e. to show the effect of threading the incidence bar for specimen grip, and to 

show the effect of coupling a flange, which in general does not have the same cross-sectional 

area as the striker – the former being one with a solid cross-section and the latter being one with 
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an annular cross-section. At this point, the reader is reminded that in the current design, two 

alternatives were explored with respect to the flange; one flange (length 50.8 mm) was shorter 

than the striker (length 127 mm), designated hereby as the short flange and the other where the 

length of the flange was 1.8 m, hereby referred to as the long flange. 

(i) The first calibration of the tensile Hopkinson bar involves the determination of the length 

of the pulse. From the theory of elastodynamics, if the projectile and the bar where the projectile 

impacts are of the same cross-sectional area, then the length of the pulse generated is twice the 

length of the projectile. Here, however, this is not the case, as the projectile is of an annular 

cross-section, while the transfer flange has a circular cross-section. In case of the long flange, the 

entire pulse is allowed to attain its full length, while in case of the short flange, even before the 

whole pulse is generated, there will be reflections from the free end of the flange. Thus, the 

length of the pulse is not equal to twice the striker length. In addition to this, for a striker of a 

given length, the pulse generated by coupling the incidence bar with the short flange be expected 

to be equal to that generated by coupling the incidence bar with the striker.  Figure 4.11 shows a 

typical incidence pulse for a striker of length 127 mm, which in a case where the cross-sectional 

areas of the striker and the flange are same would give a pulse of duration approximately 51 μs. 

In Figure 4.11, however, the duration of the pulse is 150 μs for the long flange and 

approximately 220 μs for the short flange. 
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Figure 4.11. Incident pulse for a striker of length 127 mm 

(ii)  The second step in calibrating the Tensile Hopkinson Bar involves the task of ensuring 

that the incidence and the reflected pulses are the reflections of each other along the time-axis in 

the absence of a specimen. This is independent of the loading mechanism (i.e. the choice of 

flange); this check is crucial to ensure that the thread distorts the incidence pulse to a minimum. 

For this, the specimen was detached from the incidence bar, a striker of known length (127 mm) 

was fired from the gas gun and the incidence and reflected pulses, so generated, were measured 

from the strain-gage readings. A typical incidence and reflected pulse is shown in figure 4.12. 

 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 50 100 150 200 250

V
ol

ts

Time (µs)

Long Flange Short Flange



82 

 

 

4.12 (a) 

 

4.12 (b) 

Figure 4.12. Comparison of the Incidence and Reflected Pulses 

     From Figure 4.12, it can be seen that the incidence and reflected pulse, though not exact 

mirror images of each other, are very similar in profile, i.e. their amplitude are almost exactly the 

same and the duration of both of them are also almost the same. The small mismatch in the 
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profile is due to the threads on the downstream end of the incidence bar, which causes some 

pulse distortion; however, as the threaded length (12.6 mm) is less than the bar-diameter (15.9 

mm), this distortion is negligibly small and can be conveniently ignored. 

(iii)The final calibration involved determination of the dynamic stress-strain properties of a 

known material using the tensile Hopkinson Bar. For this, OFHC Copper was selected as the 

material. The copper specimen had a diameter of 2.5 mm and a length of 7.62 mm at the gage 

section, while the ends of the specimen were threaded using a standard thread size of ½”-20 

threads. The length of the threaded portion of the copper was 12.7 mm. Figure 4.13 shows the 

copper specimens that were adopted for the current calibration. 

 

Figure 4.13 Copper Specimens 

     For the determination of the dynamic properties of copper, experiments were conducted in 

two configurations, once using the short flange and then using the short flange. Figure 4.14 

shows the typical response obtained in the experiment. 
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(a) 
 

(b) 

Figure 4.14 (a) Representative Pulses generated in determination of the dynamic properties of 

OFHC Copper (b) Stress-strain curve for OFHC copper 

 

     Compared to the stress-strain curve obtained by Gilat [4.18], the stress-strain curve obtained 

in the current SHTB shows an over-estimation of stress values by approximately 10%. This is 

because of the use of point-wise measurement (strain-gages) to calculate the stress-values and 

arises due to the negligence of the threaded length of the specimen. Nonetheless, the current 

SHTB is found to give a reasonably good stress-strain characteristic of the material whose 

dynamic properties are to be determined.  

(iv) Based on Figure 4.11 and 4.14 some immediate conclusions can be drawn from the two 

variants of the SHTB developed at CVRC, viz. SHTB with a short flange and SHTB with a long 

flange. They are as summarized below 
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Table 4.1 Comparison of the Features of an SHTB with the long flange and short flange 

Feature SHTB with Short Flange SHTB with Long Flange 

Post-Impact 

Analysis 

The SHTB, when used with a 

momentum-trap prevents successive 

train of pulses from impinging on the 

specimen. The specimen is thus 

amenable to post-impact analysis of its 

micro-structure. 

The SHTB with the long flange 

causes successive train of pulses to 

impinge on the specimen. Post-

impact analysis of the 

microstructural details of the 

specimen is thus not relevant to the 

first set of pulses that impinge on 

the specimen, unless the specimen 

is loaded till failure by the first set 

of pulses. 

Amplitude of 

Pulses 

Given a striker length and striker 

velocity, the SHTB with short flange 

generates higher amplitude of pulses 

compared to the one with long flange. 

Thus, higher strain-rate investigation 

is facilitated by this configuration of 

the design. The maximum stress 

developed in the material is also 

higher and this configuration is more 

suitable for materials with higher 

yield/ultimate stress like ductile 

materials, ceramics etc. 

Given a striker length and striker 

velocity, the SHTB with long 

flange generates lower amplitude of 

pulses compared to an SHTB with a 

flange shorter than the length of the 

pulse. This configuration is thus 

suitable for investigating the 

material characteristics at relatively 

lower strain-rates. The maximum 

stress developed in the specimen is 

also lower and thus, this 

configuration is more suitable for 
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experiments with materials of lower 

yield/ultimate stress like composite 

fibers, biological materials like 

tissues etc. 

Length of 

the  pulse 

Given a striker and a striker velocity, 

this configuration generally facilitates 

the generation of pulses of larger 

length. This is because the length of 

the flange is shorter than the width of 

the pulse generated in a semi-infinite 

flange (i.e. a very long flange), which 

results in successive internal 

reflections of the pulse generated by 

the first impact of the projectile.  

The flange in this configuration 

may be considered semi-infinite 

with respect to the length of the 

projectile. This allows for the 

development of the full pulse length 

and there is no successive overlap 

resulting from internal reflections. 

The resultant pulse generated is 

thus of shorter magnitude as 

compared to the configuration with 

the flange being lesser than the 

striker length. 

Shape of the 

pulses 

With a given striker length and 

velocity, this generates a relatively 

less “cleaner” pulse shape as 

compared to the configuration with a 

long flange. Nonetheless, the shape of 

the pulse starts distorting only in the 

falling section of the pulse.  

This configuration of the SHTB 

generates a cleaner tensile pulse. 

The pulse is smooth throughout its 

length. 

Table 4.1 Continued 
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     It may thus be said that the choice of an SHTB with long flange v/s an SHTB with short 

flange depends on the discretion and requirements of the engineer. This is case specific and the 

requirements of final yield/ultimate stress of the material, desired strain-rate and the need for 

post-impact microstructural investigations govern the choice for selection of the appropriate 

experimental configuration of the SHTB developed at CVRC. 

          As a final remark, it may also be pointed out that the experimental determination of 

dynamic stress-strain properties of a material requires judicious design of the specimen in order 

to get a smooth reflected pulse and ensure that threading the specimen distorts the reflected pulse 

to a minimum. Like a Split Hopkinson Pressure Bar experiment, the tensile Hopkisnon Bar 

experiment also involves a series of trial specimen designs, before final determination of 

appropriate specimen dimensions for obtaining the stress-strain curve of the material. It must be 

ensured that the deformation is limited to the gage section and does not occur at the edges. At 

this point, it is worthy to note that apart from the above-mentioned copper specimens, another set 

of copper specimens, with a gage length of 5 mm was also machined. However, in such 

specimens, the deformation was found to occur at the edges rather than at the gage-section. 

 

 

4.6 Conclusion 

In this chapter, a newly developed Split Hopkinson Tensile Bar was described. Different existing 

designs were evaluated and the design adopted a principle of transfer flange used for generation 

of tensile wave by reflecting a compressive wave from the free end. Copper was selected as the 

model material and its dynamic properties were determined. 
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Conclusion 
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5.1 Conclusion 

 The research work showed the effects of specimen size and shape in case of non-cylindrical 

specimens in a Kolsky Bar. A simple model for radial inertia was proposed and a design criterion 

for the judicious choice of non-cylindrical specimen was proposed and found to work reasonably 

well for the determination of the dynamic stress-strain properties of materials. The need for 

lubricating the specimen-bar interfaces appropriately was also emphasized and the need for 

maintaining proper test-conditions to avoid spurious results in a Kolsky Bar experiment was 

shown. The second part of the research comprised of studying the drastic effect of overlap area 

on the strength of adhesive bonded single lap joints. A combined experimental-numerical 

technique was employed to predict the strain distribution in the adhesive at the time of failure. 

This showed that there were significant stresses at the edges, while a large part of the adhesive 

layer was strain-free. The prima facie effect of overlap area on Kolsky bar prediction of the joint 

strength was found to arise as an effect of averaging the strain in the adhesive. Overall, the 

Kolsky Bar was found to give a conservative estimate of the joint strength under high loading 

rates. In addition to this, a Tensile Split Hopkinson Pressure bar was also developed and 

calibrated in the current thesis. 

 

5.2 Scope for Future Work 

In the study on non-circular specimens, the material was assumed to be a homogenous and 

isotropic material. As a future work, an estimate for inertia in anisotropic composites can be 

made by extending the proposed model for the same. As another extension of the current work, a 

design criterion can be established for foam-like materials as the design criterion suggested in the 

current research may be found to be impractical for testing of non-metallic foams. This is 
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because, testing of foam with larger void size requires a longer length of the sample to be tested 

in order for continuum assumptions to hold good. The second part of the research comprised of 

addressing the factor of determination of the dynamic strength of adhesive bonded single lap 

joints. While the development of precise mathematical models taking into account the rate-

sensitive plasticity of the adhesive may has already been pointed out as a scope for future work, 

similar models can be developed taking into account the viscoelasticity or viscoplasticity of the 

adhesive, while simultaneously retaining the strain-acceleration term.   
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Appendix A 

 

 

Radial Inertia for Non-Cylindrical Specimens 

In this section, a derivation for the inertial stresses in a non-cylindrical specimen is shown. The 

analysis follows that for cylindrical specimens from Samanta [2.15].  

If the rate of deformation tensor, ijd ,  is a function of time only, then using the Eulerian frame of 

reference defined by [ ]1 2 3, ,x x x  as the independent spatial coordinates, with 3x  giving the axial 

direction of the specimen,  

( ), ,
1

( )
2 i j j i ijv v d t+ =                                                                                                                 (A.1) 

If the material is incompressible, 

, 0i iv =                                                                                                                                        (A.2)  

In the cylindrical coordinates,                                                                                                           

( )z
zz

v
d t

z

∂ =
∂

                                                                                                                              (A.3) 

and following (A.2) 

2 ( )r
zz

v
d t

r

∂ = −
∂

                                                                                                                         (A.4)  

If h be the current height of the specimen and ( )u t− is the axial velocity acting on the specimen’s 

end, then following Samanta [2.15] it can be shown that 
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z
u

v z
h

= −                                                                                                                                  (A.5) 

2r
u

v r
h

=                                                                                                                                             (A.6) 

Observing that 0vθ =  , the following relations hold: 

cos( ); sin( )x r y rv v v vθ θ= =                                                                                                      (A.7) 

2 2tan( ) ;
y

r x y
x

θ = = +                                                                                                                                 (A.8) 

From (A.6), (A.7) & (A.8), 

2x
u

v x
h

=                                                                                                                                                             (A.9) 

2y
u

v y
h

=                                                                                                                                (A.10) 

From the first-law of thermodynamics, denoting the kinetic energy by K, the internal-energy by 

W, and the surface traction by jF acting over the surface S, 

( ) j j
S

D
K W F v dS

Dt
+ = ∫                                                                                                            (A.11) 

where 
D

Dt
 denotes the material derivative. 

If A be the cross-sectional area of the material, ijσ  the Cauchy stress-tensor, V the volume of the 

specimen, Dσ  the average yield-stress then  
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 ( ) ij ij D
V

D
W d dV uA

Dt
σ σ= = −∫                                                                                                  (A.12) 

Again, as the tractions act only on the cross-section of the specimens at the end, 

j j inc
S

F v dS uAp=∫                                                                                                                     (A.13) 

where incp   is the mean traction acting at the face of the specimen in contact with the incidence 

bar, where the velocity is u.            

The kinetic energy of the specimen is  

( )2 2 21

2 x y z
V

K v v v dVρ= + +∫                                                                                                 (A.14) 

( ) 1
2 2 2

2 x x y y z z
V

D D D D
K v v v v v v dV

Dt Dt Dt Dt
ρ  ∴ = + + 

 
∫       

( ) ( )2 2 2 2 2
3

2 3 2
3

84V

x y x ydu z du
u u dV

dt dth h h
ρ

 + + = + + 
 
 

∫                                                                            (A.15) 

The polar moment of inertia of a body is defined as 

( )2 2

A

J x y dA= +∫                                                                                                                   (A.16) 

Further, 

( ) ( )2 2 2 2

V z A

x y dV x y dAdz Jh+ = + =∫ ∫ ∫                                                                                                (A.17) 
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3
2 2

3
V A z

Ah
z dV z dzdA= =∫ ∫ ∫                                                                                                                          (A.18) 

Combining (A.15), (A.17) and (A.18) 

( ) 3
2

3

4 8 3

D J du J Ah du
K u u u

Dt h dt dth
ρ  = + + 
 

                                                                             (A.19) 

Substituting (A.12), (A.13), (A.19) into (A.11), 

2
2

3

4 8 3D mu
J du J h du

p u
Ah dt dtAh

σ ρ  = − + + + 
 

                                                                                     (A.20) 

Due to the absence of shear-forces, the equation of motion in the axial direction is given by 

( )z
z

D
v

z Dt

σ ρ∂ =
∂

                                                                                                                     (A.21) 

2z mu ml
h du

p p
dt

ρσ∴ = − + = −                                                                                                                    (A.22) 

where mlp   is the surface traction at the transmission bar-specimen interface. 

Combining (A.20) and (A.22), 

2
2

3

4 8 6D ml
J du J h du

p u
Ah dt dtAh

σ ρ  = − + + − 
 

                                                                        (A.23) 

From the definition of natural axial strain,  

u

h
ε = −&                                                                                                                                                (A.24) 
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(A.20) and (A.23) can be written as 

2 2
2

4 3 8 3D mu
J h J h

p
A A

σ ρ ε ρ ε
   

= − − + + −   
   
   

&& &                                                                                    (A.25) 

2 2
2

4 6 8 6D ml
J h J h

p
A A

σ ρ ε ρ ε
   

= − − − + +   
   
   

&& &                                                                                     (A.26)  

Thus, 

( )
2 2

21

2 4 12 8 12D mu ml
J h J h

p p
A A

σ ρ ε ρ ε
   

= − + − + + −   
   
   

&& &                                                       (A.27) 

(A.25) through (A.27) are the model for stresses in a non-cylindrical specimen including the 

effects of inertia. For a cylindrical specimen of radius a,  

2

2

J a

A
=                                                                                                                                                  (A.28) 

(A.25) through (A.27) reduce to 

2 2 2 2
2

8 3 16 3D mu
a h a h

pσ ρ ε ρ ε
   

= − − + + −   
   
   

&& &                                                                                     (A.29) 

2 2 2 2
2

8 6 16 6D ml
a h a h

pσ ρ ε ρ ε
   

= − − − + +   
   
   

&& &                                                                                       (A.30) 

( )
2 2 2 2

21

2 8 12 16 12D mu ml
a h a h

p pσ ρ ε ρ ε
   

= − + − + + −   
   
   

&& &                                                                 (A.31) 
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     It can be seen that the inertial stresses in (A.26) comprise two terms; an extra axial stress 

occurring due to the effects of strain-acceleration and the other which occurs due to the effects of 

strain-rate. For a sample calculation of inertial stresses, consider an aluminum sample (

32700kgmρ −=  ), with a rectangular cross-section of dimensions 6 mm by 6 mm, and length 3.5 

mm. The strain-rate as obtained from experiments using (2) is shown in Figure A.1 (a). The 

inertial stresses arising due to the strain-acceleration term and due to the strain-rate terms are 

shown in Figure A.1 (b) and Figure A.1 (c) respectively. The net inertial stress as calculated 

from (A.26) is then plotted in Figure A.1 (d).  
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(a) (b) 

(c) (d) 

 

Figure A.1 Sample Calculation of Inertial Stresses (a) Strain-rate v/s time as obtained from 

experiments (b) Inertial Stress arising due to Strain-rate term (c) Inertial Stress arising due to the 

Strain-acceleration term (d) Total Inertial Stress 

It can thus be seen from (A.1) that the inertial stresses during the period of constant strain-rate is 

extremely small, while the inertial stresses during the period if strain-acceleration is larger than 

during the constant strain-rate phase.  
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Appendix B 

 

 

Solution of the Governing Equation for the Adhesive Strength of Lap Joints 

     For the problem of the adhesive strength of split-cylinder samples in a Kolsky Bar, the 

governing differential equation, from Equation (3.19), is as follows 

( )
2 2

2 2 2
( , ) ( , )1 1

,a a
a

x t x t
x t

x c t

γ γ γ
α

∂ ∂
− =

∂ ∂
                                                                                    (B.1) 

where aγ  is the shear strain of the adhesive, c  is the wave-velocity of the adherend, and α  is a 

parameter, depending on the mechanical properties of the adherends, adhesive as well as the 

diameter of the split-cylinder sample and the adhesive thickness. For a finite element defined by

a bx x x≤ ≤ , the weighted residual statement is given by 

2 2

2 2 2

( , ) ( , )1 1
( , ) 0

xb
a a

a
xa

x t x t
W x t x

x c t

γ γ γ
α

 ∂ ∂ − − ∂ = 
∂ ∂  

∫                                                                  (B.2) 

where W is a suitable weighting function. The weak-form is obtained by integrating (B.2) by 

parts to obtain 

 
( ) 2

2 2

, ( , ) ( , ) ( , )1 1
( , ) 0

xb
a a a a

a
x x x xb axa

x t x t x t x tW
W x t W x W W

x x x xc t

γ γ γ γγ
α = =

 ∂ ∂ ∂ ∂∂ − − − ∂ + − = ∂ ∂ ∂ ∂∂  
∫                                                                                                                                        

                                                                                                                                                   (B.3) 

     The exact shear strain is replaced by an approximate shear strain, ˆaγ  , defined by 

2

1

ˆ ( ) ( )e e
a j j

j

t N xγ γ
=

= ∑                                                                                                                             (B.4) 
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     where e
jγ  is the shear strain at the j-th node and e

jN   is the first order Lagrange Interpolation 

Function for the e-th element. For a Galerkin weighted residual approach, the weighting function 

is selected the same as the interpolation function, i.e. 

, 1,2iW N i= =                                                                                                                            (B.5) 

     On substituting (B.4) and (B.5) into (B.3) the semi-discretized set of equations for each finite 

element is written as 

{ } { } { }ˆ ˆe e e e eγ γ   + =
   
K M f&&                                                                                                  (B.6) 

where  

1je i
ij i j

NN
K N N

x x α
∂∂= +

∂ ∂
                                                                                                               (B.7a) 

2
1e

ij i jM N N
c

=                                                                                                                            (B.7 b) 

{ } 1 2

T

Te a a

x xa x xb

f f
x x

γ γ

= =

 
∂ ∂ = = −    ∂ ∂

  

f                                                                      (B.7c) 

     The elemental systems are then assembled together to obtain the global set of semi-discretized 

equations given by 

[ ]{ } [ ]{ } { }ˆ ˆγ γ+ =K M f&&                                                                                                                 (B.8) 

     For time-integration, a half-step central difference scheme was adopted. The details can be 

found in Cook et. al. [3.48]. Here however, only the key steps are summarized. 

1 1
2 2 2

1 2 1
ˆ ˆ ˆ[ ]{ } { } [ ] [ ] { } [ ]{ }n n n n

t t t
γ γ γ+ − = − − − ∆ ∆ ∆ 

M f K M M                                                         (B.9)  

{ }( )00 1 0ˆ ˆ{ } [ ] [ ]{ }γ γ−= −M f K&& &&                                                                                                                    (B.10)  
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{ }
201 0 0ˆ ˆ ˆ ˆ{ } { } { }

2

t
tγ γ γ γ− ∆= − ∆ +& &&                                                                                            (B.11) 

     In the above, the superscript n denotes the time-step at which the value of the nodal shear 

strain vector, ˆ{ }γ   is evaluated.   A convergence study, with respect to the shear strain at the mid-

point of the adhesive layer was conducted for each case by varying the element size for a time-

increment of 1μs. It was found that by choosing an element size between 0.0375-0.05 mm in 

resulted in converged solution for the given time-stepping.   
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