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ABSTRACT

VIBRATION CONTROL OF CONTINUOUS SYSTEMS

USING BOUNDARY CONSTRAINT

By

Assaad Awad Abbass

Vibration suppression in continuous systems, namely strings and membranes, using

boundary constraints was investigated. A problem of string vibration, where the string is

subjected to a fixed boundary constraint, is studied first. The boundary constraint is in the

form of a smooth obstacle and the string is assumed to wrap and unwrap around the obstacle

during vibration. Assuming that wrapping of the string around the obstacle results in loss of

kinetic energy due to inelastic collision and unwrapping conserves energy, the behavior of the

string was investigated for different modes of oscillation and different obstacle shapes. The

loss of energy is found to be greater for higher modes of oscillation and for obstacles that

induce greater length of wrapping. Next, the vibration of the string subjected to a moving

constraint near one boundary is investigated. The constraint is applied by a scabbard, which

moves a small distance along the mean position of the string. The constraint is removed by

moving the scabbard back to its original position and the change in energy of the string is

investigated for different values of scabbard travel distance and time of application of the

constraint. Unlike the fixed obstacle at the boundary, simulation results show that the energy

of the string can increase or decrease depending on the time of application of the constraint.

Based of this finding, a semi-active control strategy is proposed for vibration suppression.

The control strategy is verified experimentally by substituting the scabbard-like actuator by

a pair of solenoids. The experimental results show good match with results obtained through

simulations. The control strategy developed for the string is extended to a circular



membrane. It is assumed that the membrane is fixed at its outer boundary and a zero dis-

placement circular areal constraint is sequentially applied and removed. To investigate the

effect of constraint application and removal on the energy of the membrane, the dynamics

of constrained membranes is investigated. For arbitrary size and location of the constraint,

the orthogonality of distinct modes is mathematically established and a procedure for accu-

rate computation of the eigenfrequencies and mode shapes is presented. Assuming that the

constraint is applied and removed instantaneously at arbitrary time intervals, the change in

total energy is investigated for different sizes and locations of the constraint and for different

times of application of the constraint. Similar to the vibrating string with the scabbard-like

actuator, the results show that energy of the membrane can decrease or increase depending

on the time of application of the constraint. Three different semi-active control strategies

are presented to the vibration suppression of circular membrane. These control strategies

have the potential for use in large space structures where high dimensional tolerances are

required.



“ The wind gasps with the midday heat,
Like a nightmare in the late afternoon

And on the masts, it continues to fold, to spread for departure
The gulf is crowded with them–laborers roaming the seas

Barefoot, half-naked
And on the sand, by the gulf

A stranger sat–a baffled vision wanders the gulf
Destroying the pillars of light with the rising wail

Higher than the torrents roaring foam, than the clamor
A voice thunders in the abyss of my bereaved soul: Iraq
Like the crest rising, like a cloud, like tears to the eyes

The wind cries to me: Iraq
The wave howls at me: Iraq. Iraq. Nothing but Iraq
The sea is as wide as can be, and you are as distant

The sea is between you and me: Oh Iraq“

A Stranger by the Gulf: by Badr Shakir Al-Sayyab (1953)

To my family and my home country Iraq
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Chapter 1

Introduction

1.1 Motivation and Objectives

The suppression of undesired vibration in industrial and engineering applications has been a

fertile field of research for decades. Vibration occurs in structures when they are subjected

to disturbances, regardless of the size of the structure. Some structures are huge such as

bridges and skyscrapers whereas others structures are tiny such as MEMS devices and nano

scale systems. To study vibration in mechanical systems, the systems are often modeled as

discrete systems with finite degrees of freedom. For some other applications, the mechanical

vibration occurs in systems that have infinite degrees of freedom, such systems are called

continuous systems. Examples of continuous systems are strings, beams, plates and mem-

branes which are widely used in many engineering applications such as space structures. In

space applications, the weight and size play a crucial role in the cost of transportation and

deployment. For this reason, aerospace companies prefer to use light weight flexible contin-

uous systems as a substitute to heavier and rigid elements. For instance, the regular space
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telescope rigid mirrors are now substituted by thin deployable membrane mirrors that are

much lighter in weight. The same is true for satellite antennas where large and lightweight in-

flatable antennas, as shown in Fig. 1.1, are replacing regular antennas. The new lightweight

antennas are functionally efficient and can be folded into significantly smaller volume [4].

Although lightweight deployable structures have low cost transportation and deployment,

they are prone to disturbances.

In general, vibration in continuous systems can be suppressed passively by changing the

mass or stiffness in the systems, or actively, by sensing the states of the system and using

feedback control. Passive control methods are not very effective and are not well suited

for many applications. Active control methods are effective but they require many sensing

and actuators complicated sensing and actuating mechanisms and complex mathematical

models to compute the control effort. In this work, we present semi-control strategies to

suppress the vibration in continuous systems namely, strings and circular membranes using

boundary constraints. First, we investigate the energetics of string wrapping and unwrapping

around fixed obstacle located at one of the boundaries where the obstacle represents a passive

mechanism. Second, we present semi-active control strategy to suppress the vibration in

string using a scabbard-like actuator that interacts with string near one of its boundaries. We

present experimental verification to the control strategy based on the scabbard-like actuator

control strategy. Third, we extend our semi-active control strategy to vibrating circular

membranes. We use a small circular areal constraint that is applied sequentially on the

membrane to suppress the vibration. We present the complete mathematical solution of

the dynamic and energetics of circular membrane subjected to eccentric areal constraint and

different control strategies are presented to the vibration suppression of circular membrane.

2
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Figure 1.1: The spartan 207 inflatable antenna, NASA [4] “For interpretation of the refer-

ences to color in this and all other figures, the reader is referred to the electronic version of

this dissertation“

1.2 Vibration Control of Strings

1.2.1 Passive Control of Vibrating Strings

The dynamics of vibrating strings has been a subject of study for a very long time but the

motion of strings vibrating against obstacles appeared in the technical literature relatively

recently. Early work on this problem can be credited to Citrini [5] who considered point-

shaped obstacles. The element of string that comes in contact with point-shaped obstacles

can be assumed to be massless and hence the energy of the string, in the absence of damping,

was assumed to remain conserved. Amerio [6] investigated the motion of a string vibrating

against a rigid wall, parallel to the position of the string at rest. The motion of the string in
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the presence of the unilateral constraint was posed as a problem in impact. The nature of

the impact was assumed to be elastic and the problem was formulated based on conservation

of energy of the string. A number of other researchers have also based their work on the

premise of energy conservation of the string. These include Schatzman [7], who investigated

the existence and uniqueness of solutions for concave obstacles and Haraux and Cabannes

[8], who established almost-periodic nature of solutions for straight and fixed obstacles.

In 1982, Burridge et al. [9] investigated the vibration of the sitar, an Indian stringed in-

strument. The sitar differs from the Western stringed instruments in that the bridge across

which the strings pass form a broad support, rather than a well-defined edge. During vibra-

tion, the sitar string wraps and unwraps around the gentle slope of the bridge and the length

of the vibrating part of the string varies during oscillation [9]. Burridge et al. [9] modeled

the impact of the string with the bridge as perfectly inelastic, discarding the assumption of

energy conservation of the string. Subsequently, Bamberger and Schatzman [10] proved the

existence of solutions which do not conserve energy with arbitrary obstacles and Ahn [11]

claimed energy loss of the string vibrating against flat obstacles. In conformity with earlier

work by Citrini [5], Ahn [11] also showed that energy remains conserved for highly-peaked

obstacles. Other work on string vibration against obstacles includes discretization [12] and

finite difference methods [13] for numerical simulation, and study of nonlinear effects of

varying amplitude and gravity [14] on extensible and non-extensible cables. In our work we

investigate the vibration of a string against an obstacle located at its boundary. Similar

to the work by Burridge, et al. [9], we assume the string to wrap and unwrap around the

obstacle during each oscillation. The impact of the string during wrapping is assumed to

be perfectly inelastic and the obstacle is implicitly assumed to be convex. The assumption
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of convexity of the obstacle is both convenient and practical. Assuming that the string vi-

brates in a single mode at all times, it is shown that energy loss is higher for higher modes

of oscillation.

1.2.2 Active Control of String vibration

Several methods have been proposed in the literature for actively controlling string vibra-

tion. Some of these methods involve direct physical interaction with the string, using point

or distributed forces, for example. Other methods are less intrusive and are based on tension

variation or boundary control. In our work we propose to use a scabbard-like actuator that

imposes a zero-displacement constraint over some length of the string from one boundary.

Although this particular approach has not been proposed earlier, several papers in the lit-

erature have explored fundamentally similar ideas. Early work by Dutt and Ramakrishna

[15] investigated the application of a distributed control force to minimize the energy of a

part of the string while maintaining the energy of the uncontrolled part at a desired level.

The work was later extended [16] to investigate optimal positions and magnitudes of the

control forces. In our approach, the scabbard is intended to reduce the energy of the overall

system while dissipating the energy of a short length of the string. When the scabbard

is removed, the energy of the uncontrolled portion of the string is redistributed over the

entire length and thus cyclic application and removal of the scabbard can lead to gradual

dissipation of the total energy of the string. This idea is derived from earlier work on finite

degree-of-freedom systems [17, 18] and has similarities with the work by Hebrard and Henrot

[19], where exponential decay in the total energy is achieved by subjecting a portion of the

string to constant damping. The zero-displacement constraint enforced by the scabbard can
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be viewed as impulsive actuation and in this regard our approach is similar to the approach

proposed by Myshkis [20].

The scabbard-like actuator proposed in this study essentially moves one boundary of

the string in the axial direction. Although vibration control using a scabbard has not been

proposed earlier, the effect of moving the boundary and varying the length of the string has

been investigated [21]. It has been shown that reducing the length of the string can increase

its energy through compression of the propagating waves. Many researchers have also inves-

tigated transverse boundary control of vibrating strings. Shahruz and Kurmaji [22] designed

a controller for a nonlinear model of axially moving strings using vertical control forces at

one support. Fung, et al. [23] proposed an exponentially stabilizing mass-damper-spring con-

troller and Li, et al. [24] proposed boundary velocity feedback to stabilize a nonlinear model

obtained using Hamilton’s principle. Do and Pan [25] studied boundary control of flexible

marine risers; the controller was designed using Lyapunov’s direct method and backstepping

[26], and implemented using a hydraulic actuator. Zhang, et al. [27] designed boundary

controllers for a general class of nonlinear string-actuator systems; a nonlinear distributed

parameter model was used to account for large amplitude displacement and the associated

variation in tension. Other boundary control methods include, for example, wave control

[28, 29], wave cancellation [30, 31], and active sinks [32]. While wave control is a general

methodology, wave cancellation refers to control using a boundary force that prevents reflec-

tion of the wave and active sinks is a strategy to make vibration modes inactive by applying

a control force at some distance from the source of excitation. Our method is fundamentally

different in that a zero displacement constraint is applied at the boundary.

Although there are many theoretical studies on the active control of vibrating strings, exper-
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imental results on control of string vibration have been scarce. This can be partly attributed

to the fact that traditional strings have high internal damping and do not lend themselves

well to vibration control experiments. Another challenge in performing vibration control ex-

periments with strings relates to actuator placement. Unlike a beam, to which piezoelectric

actuators can be easily mounted, it is inconvenient to mount actuators on a string. Many pa-

pers in the literature present experimental results, but they primarily consider axially moving

strings; few papers consider strings that are not translating between supports. Baicu, et al.

[33] developed an active boundary controller for the nonlinear model of an elastic cable; the

angle of the cable at one boundary was sensed and its position was controlled to asymptoti-

cally decay modal vibration. A wave absorption strategy was developed by Saigo, et al. [29];

a voice-coil actuator was placed near a fixed boundary of the string to suppress vibration.

For the experimental verification of scabbard like actuator method, we present a control

methodology in which energy reduction is achieved through cyclic application and removal

of a constraint. In our method, a zero-displacement constraint is enforced at one point on

the string, close to one of its boundaries. This effectively results in two vibrating strings,

one of which is much shorter in length than the other. The vibration of the shorter length

string decays rapidly due to high internal damping and when the constraint is released, the

remaining energy of the string is redistributed over its entire length; this allows the cycle of

constraint application and removal to be repeated for vibration suppression.

1.3 Dynamics and Vibration Control of Membrane

The dynamics of a membrane is a classical problem in mechanical vibrations. Among the dif-

ferent types of membranes, circular membranes are the most commonly studied due to their
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large number of applications. From the study of musical notes of percussion instruments,

circular membranes have been used to design diaphragms for condenser microphones, model

the dynamics of the human ear [34], understand the vibration characteristics of membrane

mirrors and gossamer structures [35], measure surface tension [36], and design ink-jet print-

ers [37]. For a majority of these applications, unconstrained membrane models have been

used. A constrained membrane is one in which a portion of the membrane does not undergo

vibration, and an application where constrained membrane models have been used is waveg-

uides. Early work on this subject dates back to the 1960’s and 70’s. Yee and Audeh [38], [1]

used the point-matching method to determine eigenfrequencies of waveguides with eccentric

cross-section. Davies and Muilwyk [39] and Steele [40] used the finite difference method to

compute eigenvalues of waveguides with arbitrary cross-section. The Helmholtz equation,

which describes the dynamics of waveguides, was solved by Arlett, et al. [41] and Gass [42]

using finite element methods, by Laura [43] and Hine [44] using the Galerkin method, and

by Bulley and Davies [45] using the Rayleigh-Ritz method.

The similarity between the differential equations of membranes and waveguides motivated

the study of circular membranes with constraints in the 1970’s and 80’s. The eigenvalues of

a circular membrane with an internal eccentric circular areal constraint were first computed

by Nagaya [2] using Fourier series. Another solution to this problem was presented by Lin

[46], who used Graf’s addition theorem to transform the Bessel functions from one set of

polar coordinates to another. Lin [46] missed a term in the final expression, which affected

the results of calculation. The missing term was identified by Singh and Kothari [47] and

Singh, et al. [3], who used Nagaya’s approach together with Graf’s addition theorem. Later,

Nagaya and Hai [48] studied composite membranes with arbitrarily shaped inner and outer
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boundaries. S. Noga [49] presented numerical simulation for the free transversal vibrations

of a systems of two annular and circular membranes connected by a Winkler elastic layer.

Arokiasamy, A. [50] presented work for vibrating rectangular membrane by using computer

graphics. E. Alvarado-Anell and et al. [51] presented simulation and animation of circular,

rectangular and elliptical membranes by using computer MAPLE software. The circular

membrane is also used for the modelling of human tympanum, where computer simulations

are presented [52, 53].

The vibration of membranes remains an active subject of research with recent work

focusing on complex boundary conditions and shapes, inhomogeneities, accuracy of solu-

tions, and applications. Investigations of membranes with complex boundary conditions and

shapes include the work by Laura and Gutierrez [54], Yu and Wang [55], Kang and Lee [56],

and Chen, et al. [57]. Investigations of non-homogeneous membranes include the work by

Cortinez and Laura [58] and Cap [59], and that of accuracy of solutions include the work by

Zhao and Stevens [60]. Applications of membranes are diverse and membrane vibrations have

been investigated in the context of micro-air vehicle wings [61], [62], [63], energy harvesting

[64, 65]. Wang, O. [66] presented a study about the wave propagation in a piezoelectric

coupled cylindrical membrane shell. Furthermore, membrane structures are used in many

different applications such as concentrators, planar configurations, solar sails and optical ap-

plications [67]. Although many theoretical works in the literature investigated the vibration

of membranes in general, only handful of studies are conducted to the experimental study

of vibration in membranes, a thorough literature review about membrane experiments can

be found in [67].

Some studies in the literature are conduct for the vibration control of membranes using
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different active control schemes. Grosso, Ronald P. and Yellin, Martin [68] investigated the

vibration control of a membrane mirror assembly by using electrostatic actuators. Joo, I.

[69] and [70] presented a study on the control of circular and rectangular membranes by

reachability of movement states in fixed time. James D. Moore [71] presented a design and

testing of a one-meter membrane mirror with active boundary control. Mauro V. Aguanno

and et al. [72] presented an experimental work on investigation to demonstrate a full-field

laser vibrometer system that could replace electro-mechanical scanning with electronic scan-

ning within a programmable stand-alone and relatively low-cost digital camera. Recently, a

study on the active vibration control of thin and flexible disc is presented by [73], where the

thin disc is equipped with two piezoelectric circular patches: one of them works as a sensor

and the other is used as an actuator for damping of the most vibrating modes in a specified

bandwidth. Another recent work on the vibration suppression of membrane is presented

by P. A. Tarazaga and et al. [74], who investigated the using of vibro-acoustic technique to

suppress the vibration in a pressurized optical membrane mirror.

In our work we use a small areal circular boundary constraint that interacts actively with the

membrane during its motion and suppresses the vibration through sequential applications

and removals of the constraint. Application and removal of constraint requires a complete

and accurate solution for dynamics of the membrane with and without constraint. As we

have seen, a thorough review of the literature indicates that investigations of constrained

membranes have been limited to computing the eigenfrequencies of vibration. Although

accurate computation of the eigenfrequencies may be sufficient for many applications, it

is not sufficient for accurate computation of the mode shapes and/or modal coefficients of

a constrained membrane. Simulation of the dynamics requires computation of the modal
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coefficients using orthogonality property of the modes. The orthogonality property of modes

is well-known but it has not been established mathematically for constrained membranes. We

establish the orthogonality property of all modes of a circular membrane with an internal

circular areal constraint for the first time in this work. The computation of the modal

coefficients require accurate computation of the mode shapes and this requires proper choice

of the number of angular modes. We present an algorithm that determines the appropriate

number of angular modes for arbitrary size and location of the constraint. In addition to

this algorithm, which computes the mode shapes, we provide an algorithm for computation

of the modal coefficients for arbitrary initial conditions. Also, we investigate the effect of

application and removal of the constraint on the energetics of the vibrating membrane and

provide semi-active control strategies to suppress the vibrating in the membrane through

cyclic application and removal of the constraint.

Our entire work in this dissertation is organized as follows; in Chapter 2 we present

a passive control strategy for the string vibration by subjecting the string to an obstacle

located at one boundary. A semi-active control strategy for the string vibration is presented

in Chapter 3, where a scabbard-like actuator is used near one boundary to suppress the

string vibration. In Chapter 4 ,we present experimental verification to the control strategy

based on the scabbard-like actuator control strategy. Chapter 5 presents accurate dynamics

and simulation of constrained membrane under arbitrary initial conditions. In Chapter 6 we

use the analysis presented in Chapter 5 to investigate the energetics of the application and

removal of the areal boundary constraint and three different control strategies are presented.

Chapter 7 includes the concluding remarks and the future work.
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Chapter 2

Vibration of a String Wrapping and

Unwrapping Around an Obstacle

2.1 Introduction

In this chapter we investigate the vibration of a string against an obstacle located at its

boundary. Similar to the work by Burridge, et al.[9], we assume the string to wrap and

unwrap around the obstacle during each oscillation. The impact of the string during wrap-

ping is assumed to be perfectly inelastic and the obstacle is implicitly assumed to be convex.

The assumption of convexity of the obstacle is both convenient and practical. The obstacle

constrains the motion of the string and in this regard the mechanism for energy loss is a

continuous-system version of the energy dissipation methodology proposed for finite degree-

of-freedom systems by Issa, et al.[18]. Since the energy of the string decreases even in the

absence of damping, the obstacle can be regarded as a passive mechanism for vibration sup-

pression and control. This chapter is organized as follows. A formal problem statement
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and a list of the assumptions made in our analysis is provided in Section 2.2. The analytical

model for computing the geometry of the string as it wraps and unwraps around the obstacle

during oscillation is presented in Section 2.3. In Section 2.4 we provide simulation results for

percentage energy loss and length of wrapping during each cycle of oscillation for different

modes with circular- and elliptic-shaped obstacles. Using numerical simulations, we show

in Section 2.5 that percentage energy loss can be increased significantly by changing the

orientation of the obstacle.

2.2 Problem Statement and Assumptions

Consider a string vibrating against an obstacle placed at one of its boundaries, as shown in

Fig. 2.1. We investigate energy dissipation in the string under the following assumptions:

A1. The obstacle is rigid and has the following geometry

y = f(x), y(0) = 0,

[

dy

dx

]

x=0
= 0 (2.1)

A2. The string is homogeneous and has a constant mass per unit length denoted by ρ.

The tension in the string is equal to T and remains constant at all times. The string

undergoes transverse vibration in the xy plane and is not affected by gravity.

A3. The amplitude of oscillation of the string is small and therefore the equation of motion

of the string can be expressed by the standard relation [75]

∂2y

∂x2
=

1

c2
∂2y

∂t2
, c ,

√

T/ρ (2.2)
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where y(x, t) is the displacement of the string at a distance x from the origin at time

t.

A4. The string wraps around the obstacle during vibration. Over each time step during

wrapping, a small element of the string comes to rest on the obstacle through perfectly

inelastic collisions. The wrapping process continues till the freely vibrating portion of

the string has no more kinetic energy.

A5. The surface of the obstacle is not sticky and the string unwraps from the obstacle

without any loss of energy.

A6. At the initial time t = 0, the string has no contact with the obstacle. It is in its mean

position with zero potential energy and kinetic energy equal to E0.

A7. The string continues to vibrate in the mode in which it started its vibration at the

initial time. This implies that each point of the string, not in contact with the obstacle,

has the same frequency of vibration1 at any instant of time, and the number of nodes2

in the vibrating string remains constant.

A8. The string has no internal damping, i.e., the energy of the string will remain conserved

during free vibration.

1The frequency of the string is not constant; it varies with time and amplitude when the string
wraps and unwraps around the obstacle.

2A node is a point with zero displacement. As the string wraps or unwraps around the obstacle,
the location of the node(s) change and therefore node(s) have nonzero horizontal velocity.
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(a)

y = f(x)
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y = f(x)
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y(x, t)

(b)

(c)

(x̄, ȳ)

l

Figure 2.1: A string vibrating against an obstacle is shown in three configurations: (a) the

string has both potential and kinetic energy and is not in contact with the obstacle, (b) the

string has kinetic energy but no potential energy and is not in contact with the obstacle, (c)

the string has both potential and kinetic energy and has wrapped around the obstacle. In

a wrapped configuration, (x̄, ȳ) denotes the coordinate where the string breaks contact with

the obstacle
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2.3 Analytical Model

2.3.1 Boundary conditions and general solution

A general solution to the partial differential equation in Eq. (2.2) can be written as [75]

y(x, t) = (α1 sinλx+ α2 cosλx) (α3 sinωt+ α4 cosωt) (2.3)

where αi, i = 1, 2, 3, 4 are constants, ω is the circular frequency and λ is the wave length

and it is related to ω by the relation

ω , cλ (2.4)

At time t = 0, the string is at the mean position, i.e. y(x, 0) ≡ 0, per assumption A6. This

implies α4 = 0. The solution in Eq. (2.3) can now be written as

y(x, t) = (A sinλx+B cosλx) sinωt, A = α1α3, B = α2α3 (2.5)

At the right boundary, the string satisfies the relation y(l, t) = 0 for all t. Using Eq. (2.5)

we get

A sin λl +B cosλl = 0 =⇒ B = −A tanλl (2.6)

Substitution of Eq. (2.6) into Eq. (2.5) gives the solution

y(x, t) = A (sin λx− tanλl cos λx) sinωt (2.7)

We now consider the boundary conditions at the contact break point. From Fig. 2.1 we
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have

f(x̄) = y(x̄, t) =⇒ f(x̄) = A (sinλx̄− tanλl cos λx̄) sinωt (2.8)

Also, the string is tangential to the obstacle at the contact break point x = x̄, i.e.,

f ′(x̄) =
∂y(x̄, t)

∂x
=⇒ f ′(x̄) = λA (cosλx̄+ tanλl sinλx̄) sinωt (2.9)

From Eqs. (2.8) and (2.9) we get

tanλ(l − x̄) = −λ
f(x̄)

f ′(x̄)
(2.10)

which indicates that λ can be computed from the value of x̄. The solution of Eq. (2.10) is

however not unique - each non-trivial value of λ corresponds to a mode of vibration of the

string. Since λ is an implicit function of x̄, we can rewrite Eq. (2.9) as follows

A sinωt = g(x̄), g(x) ,
f ′(x)

λ (cosλx+ tanλl sinλx)
(2.11)

Equation (2.11) can be used to compute t from the value of x̄. The existence of the solution,

however, depends on the magnitude of A. We now discuss the procedure for computing A.

Let the total energy of the string at any time t be denoted by E. Then,

E = Epe + Eke = Eobspe + Evibpe + Eke (2.12)

where Eobspe is the potential energy of the string wrapped around the obstacle, Evibpe is the

potential energy of the freely vibrating string, Epe is the total potential energy, and Eke is
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the kinetic energy of the string. The total potential energy of the string is computed as the

product of the tension T (which is assumed constant) and elongation of the string [76]. The

elongation of the string is computed by integrating the strain of the string along the length

wrapped around the obstacle and along the length of string vibrating freely. Thus, the total

potential energy can be written as

Epe = T

∫

dl = T

∫

(ds− dx) = T

∫

(

√

dx2 + dy2 − dx) = T

∫ l

0
(

√

1 + (dy/dx)2 − 1)dx

and Eobspe and Evibpe can be written as

Eobspe = T

∫ x̄

0
(

√

1 + (dy/dx)2 − 1)dx

Evibpe = T

∫ l

x̄
(

√

1 + (dy/dx)2 − 1)dx

Since the string conforms to the shape of the obstacle, (dy/dx) = f ′(x) for x ∈ [0, x̄]. By

expressing (dy/dx) = y′(x, t) for x ∈ [x̄, l] and simplifying using Eqs. (2.7) and (2.11), we

get

Eobspe = T

∫ x̄

0

[
√

1 +
[

f ′(x)
]2 − 1

]

dx (2.13)

Evibpe = T

∫ l

x̄

[
√

1 +
[

y′(x, t)
]2 − 1

]

dx

≈
T

2

∫ l

x̄

[

y′(x, t)
]2
dx
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then

Evibpe =
T

2
λ2A2 sin2 ωt

∫ l

x̄
[cos λx+ tanλl sin λx]2 dx

=
1

8
TλA2 sin2 ωt sec2 λl

{

2λ(l − x̄) + sin[2λ(l − x̄)]
}

=
1

8
Tλ sec2 λl

{

2λ(l − x̄) + sin[2λ(l − x̄)]
}

[

g(x̄)
]2 (2.14)

An element of string of length dx has a mass of ρ dx and velocity is ẏ(x, t). Thus, the kinetic

energy of the freely vibrating string can be written and simplified as follows

Eke =
1

2

∫ l

x̄
ρ
[

ẏ(x, t)
]2dx

=
ρ

2
ω2A2 cos2 ωt

∫ l

x̄
[sin λx− tanλl cosλx]2 dx

=
1

8λ
ρω2A2 cos2 ωt sec2 λl

{

2λ(l − x̄)− sin[2λ(l − x̄)]
}

=
1

8λ
ρω2 sec2 λl

{

2λ(l − x̄)− sin[2λ(l − x̄)]
}{

A2 −
[

g(x̄)
]2
}

(2.15)

From Eqs. (2.12), (2.13), (2.14) and (2.15) it is easy to verify that the energy expression has

the form

E = h(x̄, A) (2.16)

For a configuration in which the string is wrapped around the obstacle, the complete

solution can be determined from the values of x̄ and E using the four-step algorithm below:

1. Use Eq. (2.10) to determine the value of λ. Since Eq. (2.10) provides multiple non-

trivial solutions that correspond to different modes of vibration, the solution corre-

sponding to the initial mode of vibration should be chosen - see assumption A7.
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x̄j x̄j+1

Dx
Dx
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C

Figure 2.2: Small string segment ∆x wraps around obstacle after perfectly inelastic collision.
In the magnified image, AB denotes the small string segment of length ∆x that wraps around
the obstacle over the region AC

2. Use Eq. (2.4) to compute ω.

3. Compute A from Eq. (2.16) using the values of x̄, E, λ and ω.

4. Compute the time t from Eq. (2.11) by substituting in the values of x̄, A and λ.

The complete solution can now be described using Eqs. (2.1) and (2.7) as follows:

y(x, t) =











f(x) : x ∈ [0, x̄]

A (sin λx− tanλl cosλx) sinωt : x ∈ [x̄, l ]

(2.17)

2.3.2 Wrapping of the string

From our discussion in the last section we know that the geometry of the string can be

determined from the values of x̄ and E. In this section we discuss the method for computing

these values at regular intervals of time. Let {x̄i, Ei} denote the values of x̄ and E at time

t = ti, i = 0, 1, 2, · · · , k. We assume t0 = 0. Then, from assumption A6, x̄0 = 0 and the

value of E0 is known. We will discuss the method for determining the value of tk which

denotes the time after which the string begins to unwrap.

Let us assume that for some i = j, {x̄j , Ej} is known. We outline the method for
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computing {x̄j+1, Ej+1} from the values of {x̄j , Ej}. Choose a small segment of the

vibrating string that is expected to wrap around the obstacle over a small interval of time.

Let the projection of this string segment AB on the x axis be ∆x as shown in Fig. 2.2. The

kinetic energy of this string segment, which will be lost due to inelastic collision, can be

computed from Eq. (2.7) as follows

Elost =
ρ

2

∫ x̄j+∆x

x̄j

[

ẏ(x, t)
]2dx

=
ρ

2
ω2jA

2
j cos

2 ωjtj

∫ x̄j+∆x

x̄j

[

sinλjx− tanλjl cosλjx
]2
dx (2.18)

where Aj , ωj , λj and tj denote values of A, ω, λ and t, respectively, derived for the pair

{x̄j , Ej}. Using Eq. (2.18), Ej+1 can be computed as follows

Ej+1 = Ej −Elost, j = 1, 2, · · · , k − 1 (2.19)

To compute x̄j+1, j = 1, 2, · · · , k − 1, we make the following general assumption:

A9. With reference to Fig. 2.2, the potential energy of the vibrating string segment AB

at time tj is equal to the potential energy of the string segment AC wrapped on the

obstacle at time tj+1.

Using Eqs. (2.13) and (2.14) assumption A9 can be mathematically expressed as follows

∫ x̄j+1

x̄j

[
√

1 +
[

f ′(x)
]2 − 1

]

dx =

∫ x̄j+∆x

x̄j

[
√

1 +
[

y′(x, t)
]2 − 1

]

dx

≈
1

2

∫ x̄j+∆x

x̄j

[

y′(x, t)
]2
dx =⇒
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1

2

∫ x̄j+∆x

x̄j

[

y′(x, t)
]2
dx =

1

2
λ2jA

2
j sin

2 ωjtj

∫ x̄j+∆x

x̄j

[

cosλjx+ tanλjl sinλjx
]2
dx

(2.20)

Equation (2.20) can be used to determine x̄j+1. The values of Aj+1, ωj+1, λj+1 and tj+1

are computed from the values of x̄j+1 and Ej+1. The iterative process is terminated when

the kinetic energy of the vibrating string segment becomes approximately equal to zero. At

this time, which is denoted as tk, the string stops wrapping and begins to unwrap.

2.3.3 Unwrapping of the string

Similar to wrapping, the geometry of the string during unwrapping is computed from the

values of x̄ and E. The string begins to unwrap at t = tk ; at this time the values of

x̄ = x̄k and E = Ek are known. Let {x̄i, Ei} denote the values of x̄ and E at time

t = ti, i = k, k + 1, k + 2, · · · , l, where tl denotes the time when the string has unwrapped

completely. We outline the method for computing {x̄j+1, Ej+1} from the values of {x̄j , Ej}

for k ≤ j ≤ l−1. One chooses a small segment of the string that is expected to unwrap over

a small interval of time. Then we let the projection of this string segment on the x axis be

∆x. Then,

x̄j+1 = x̄j −∆x, j = k, k + 1, · · · , l − 1 (2.21)

Since there is no loss of kinetic energy during unwrapping (see assumption A5), we have

Ej+1 = Ej, j = k, k + 1, · · · , l − 1 (2.22)

The values of Aj+1, ωj+1, λj+1 and tj+1 are computed iteratively from the values of

x̄j+1 and Ej+1. The iterative process is terminated at t = tl when the potential energy of
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the string is equal to its value at the mean position.

2.4 Numerical Simulations

Consider a string with

T = 1 N, ρ = 0.025 kg/m, l = 4 m (2.23)

The obstacle is assumed to be a circle of radius R and center coordinates (x, y) ≡ (0, R),

i.e.,

y = f(x) = R−

√

R2 − x2, 0 ≤ x ≤ R (2.24)

It can be verified that f(x) in Eq. (2.24) satisfies the boundary conditions in Eq. (2.1). For

R = 1 m and ∆x = 0.001 m, we compute the percentage loss of energy over one cycle of

string oscillation for three different values of initial energy E0 and for oscillation in the first,

second, and third modes, respectively. These values are shown in table 2.1 together with

the values of x̄k , which is a measure of the length of wrapping around the obstacle. For the

special case of E0 = 0.5 J , we plot the percentage loss of energy for three consecutive cycles

of string vibration in the first two modes. These plots are shown in Fig. 2.3. Figure 2.6 plots

Table 2.1: Percentage energy loss over one cycle of oscillation and x̄k for different values of
E0 and three modes of oscillation, all with R = 1m

Mode 1 Mode 2 Mode 3

E0 = 1.00 J 0.491%, 0.729 m 1.598%, 0.696 m 2.752%, 0.654 m
E0 = 0.50 J 0.256%, 0.596 m 0.861%, 0.569 m 1.547%, 0.537 m
E0 = 0.25 J 0.113%, 0.461 m 0.402%, 0.445 m 0.766%, 0.424 m
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the decay in energy as a function of time for vibration in the first four modes with E0 = 0.5

J . The following observations can be made from the plots in Figs. 2.3 and 2.6, and the data

in table 2.1

• For any mode of oscillation, it can be seen that the percentage energy loss is higher for

higher values of E0. This is not surprising since higher values of E0 results in higher

kinetic energy and greater length of wrapping, as evident from the values of x̄k in table

2.1, and consequently more energy loss through inelastic collision. The same argument

can explain the reduction in the percentage loss of energy over consecutive cycles of

vibration in Fig. 2.3.

• The percentage energy loss is higher for higher modes of oscillation for the same value

of E0. This is true for the same number of cycles (see Fig. 2.3) as well as for the same

length of time (see Fig. 2.6) and is due to the fact that the velocities of the string

associated with higher frequencies are higher in higher modes, and as a consequence

the loss upon impact is higher. The value of x̄k is less for the higher modes but this

does not have a significant effect on the percentage of energy loss.
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Figure 2.3: Plot of percentage energy content of the string over three consecutive cycles of vibration in (a) Mode 1, and (b)
Mode 2. For both cases, the initial energy of the string was E0 = 0.5 J
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Figure 2.4: Exponential decay in the energy of a string wrapping and unwrapping around
an obstacle. The plots show energy decay for single-mode vibration in the first four modes
with E0 = 0.5 J

The geometry of the string at different points in time during one cycle of oscillation is shown

in Fig. 2.5 for Mode 1 and Mode 2 with initial energy E0 = 0.5 J . It can be seen from these

plots that a fixed point on the string moves in the y direction only when the string is not

in contact with the obstacle but moves in both the x and y directions during wrapping and

unwrapping. From the plot for Mode 2, it is also clear that a node is not a fixed point on

the string. It is a point of zero displacement but has nonzero velocity during wrapping and

unwrapping.
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Figure 2.5: A string vibrating against a circular obstacle in (a) Mode 1 (b) Mode 2, and (c) Mode 3



To study the effect of the shape of the obstacle on percentage energy loss, we fix the value

of the initial energy to E0 = 0.5 J and study the following four cases where the obstacle is:

(a) a circle with R = 0.5 m

(b) a circle with R = 1.0 m

(c) a circle with R = 1.5 m

(d) an ellipse with semi-major and semi-minor axes lengths of 1.2 m and 1.0 m, respec-

tively, and with the major axis aligned with the x axis

and satisfy the boundary conditions in Eq. (2.1). The results are shown in Table 2.2. It is

clear from the results that for circular obstacles the percentage energy loss increases with

increase in radius and vice versa. This is in agreement with the results expected for the

limiting cases, namely, percentage energy loss is zero when the radius of the circle is zero

and is equal to 100% when the radius is infinity. The ellipse in case (d) circumscribes the

circle in case (b) and provides a lower slope for the wrapping curve. A comparison of the

data for cases (b) and (d) indicates that a slight decrease in slope of the obstacle results in

significantly higher percentage of energy loss.

Table 2.2: Percentage energy loss over one cycle of oscillation and x̄k for obstacles of different
shapes and sizes, all with E0 = 0.50 J

Case Mode 1 Mode 2 Mode 3

(a) 0.029%, 0.295 m 0.113%, 0.291 m 0.237%, 0.286 m
(b) 0.256%, 0.596 m 0.861%, 0.569 m 1.547%, 0.537 m
(c) 0.915%, 0.897 m 2.549%, 0.815 m 3.887%, 0.737 m
(d) 0.665%, 0.803 m 2.021%, 0.750 m 3.278%, 0.692 m
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2.5 Effect of Change in Slope of Obstacle

We consider the obstacle in Fig. 2.6 where the curve y = g(x) is obtained by rotating the

curve y = f(x) in Fig. 2.1 clockwise by angle θ about point O. To deal with this problem,

we modify assumptions A1 and A6 as follows:

A1. The obstacle is rigid and has the following geometry

y = f(x), y(0) = 0,

[

dy

dx

]

x=0
= − tan θ (2.25)

y

O
(x̄, ȳ)

x

y(x, t)

string wrapped around obstacle

initial configuration of the string

θ

y = g(x)

Figure 2.6: A string vibrating against an obstacle. The obstacle is identical to the one in

Fig. 2.1 but rotated clockwise by angle θ about point O

A6. At the initial time t = 0, the string has no contact with the obstacle. It has zero kinetic

energy and potential energy equal to E0. The displacement of the string at the initial

time corresponds to a single mode of free vibration as shown in Fig. 2.6.
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The remaining assumptions, A2 through A5 and A6 through A9, are not changed. In table

2.3 we present simulation results for a string with

T = 1 N, ρ = 0.025 kg/m, l = 4 m, E0 = 0.50 J (2.26)

and a circular obstacle of radius R = 1 m. A comparison of the results indicates that

percentage energy loss is significantly higher for higher values of θ.

Table 2.3: Percentage energy loss over one cycle of oscillation and x̄k for two modes of

oscillation with different values of θ

θ Mode 1 Mode 2

0 ◦ 0.256%, 0.596 m 0.861%, 0.569 m

15 ◦ 1.486%, 0.866 m 3.478%, 0.841 m

30 ◦ 9.233%, 1.095 m 13.72%, 1.080 m

In this chapter, the string was assumed to have no damping. In reality, the string will

have damping and this will enhance the rate of energy decay. The rate of energy decay will

however not be constant even if the damping ratio of the string is constant. As the string

wraps around the obstacle, its effective length decreases and frequency of vibration increases

- this will increase the rate of energy decay which depends on the product of damping ratio

and natural frequency.
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Chapter 3

Vibration Control of a String Using A

Scabbard-Like Actuator

3.1 Introduction

In this chapter, we investigate the dynamics and energetics of vibrating string with fixed ends

subjected to moving constraint at one boundary. The constraint is applied by a scabbard

that moves a small distance along the mean position of the string. The scabbard is moved

instantaneously such that the position and velocity of the string outside the scabbard is

unaffected immediately after application of the constraint, whereas the length of the string

covered by the scabbard is brought to rest. The constraint is removed by moving the scabbard

back to its original position and the change in energy of the string is investigated for different

values of scabbard travel distance and time of application of the constraint. This chapter is

organized as follows. A formal problem statement and a list of assumptions are provided in

Section 3.2. Assuming that the string is vibrating in its fundamental mode, we use analytical
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methods in Section 3.3 to study the dynamics of the string and change in its energy after

application of the constraint. The dynamics of the string and change in its energy after

removal of the constraint is studied in Section 3.4. In Section 3.5 we present numerical

simulation results for one cycle of constraint application and removal - these results indicate

that the energy of the string can increase or decrease depending on the time of application

of the constraint. In Section 3.6 we repeat the analyses of Sections 3.3 and 3.4 for arbitrary

initial conditions of the string and develop a control strategy to reduce the energy of the

string for every cycle of constraint application and removal. Numerical simulation results

are then presented to demonstrate the efficacy of the control strategy.

3.2 Problem Statement and Assumptions

Consider the vibrating string in Fig. 3.1 (a), that passes through a scabbard located at its

left boundary. At time t = tc, the scabbard is moved instantaneously to the right by distance

x0 along the mean position of the string. This is shown in Fig. 3.1 (b). At some future time

t = tr, tr > tc, the scabbard is moved back to its original position. To investigate the

effect of application and removal of the scabbard on the vibration of the string, we make the

following simplifying assumptions:

A1. The string is homogeneous and has a constant mass per unit length denoted by ρ.

The tension in the string is equal to T and remains constant at all times. The string

undergoes transverse vibration in the xy plane and is not affected by gravity.

A2. The string is initially vibrating in its fundamental mode. This assumption will be

removed and a general displacement profile of the string will be assumed in Section
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3.6.

A3. The amplitude of oscillation of the string is small and therefore the equation of motion

of the string can be expressed by the standard relation [75]

(

∂2y

∂x2

)

=
1

c2

(

∂2y

∂t2

)

, c ,
√

T/ρ (3.1)

where y(x, t) is the displacement of the string at a distance x and time t.

A4. The string has no internal damping, i.e., the energy of the string will remain conserved

for free vibration.

scabbard

scabbard

(a)

approximate deformation

expected real deformation

(b)

x

x

y

y

t ≃ tc

t ≃ tc

l

l

x0

Figure 3.1: (a) A vibrating string (b) A zero-displacement constraint is applied to the string

at time t = tc over the length segment x ∈ [0, x0) using a scabbard
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A5. At time t = tc, the scabbard is moved instantaneously to the right by a distance

x0 along the mean position of the string. The movement of the scabbard imposes a

zero-displacement constraint over the length interval x ∈ [0, x0). The displacement

and velocity of the string over the remaining interval x ∈ [x0, l] remains unchanged

immediately after movement of the scabbard.

A6. The distance x0 is small compared to the length of the string. Consequently, the

discontinuity1 in the displacement of the string at x0 at time tc, shown in Fig. 3.1 (b),

will be small.

A7. At time t = tr, tr > tc, the scabbard is instantaneously moved back to its original

position, i.e., to the left by a distance x0 along the mean position of the string. The

displacement and velocity of the string over the interval x ∈ [x0, l] remains unchanged

immediately after movement of the scabbard.

3.3 Effect of Applying Constraint on the Dynamics of

the String

3.3.1 Equation of motion after application of the constraint

The motion of the string prior to application of the constraint is shown in Fig. 3.1 (a) and

is described by the equation

y0(x, t) = A0 sin λ0x sinω0t, λ0 = (π/l), ω0 = cλ0 (3.2)

1In reality, there will be no discontinuity in the string displacement. The same is true for the
dynamic model since a finite number of Fourier coefficients will be used.
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where A0 is the amplitude, ω0 is the circular frequency, and c is defined in Eq. (3.1).

To obtain the equation of motion of the string after the constraint has been applied, we

solve Eq. (3.1) subject to initial and boundary conditions consistent with the constraint. A

general solution to the partial differential equation in Eq. (3.1) is first written as [75]

y(x, t) = f(x) g(t) (3.3)

where

f(x) = A sinλx+B cosλx

g(t) = C sinωt+D cosωt

, ω = cλ (3.4)

where A, B, C andD are constants, and ω is the circular frequency. The boundary conditions

for the constrained string, shown in Fig. 3.1 (b), give us the following relations

y(x0, t) = 0

⇒ (A sinλx0 +B cos λx0) (C sinωt+D cosωt) = 0

⇒ B = −A tanλx0 (3.5)

y(l, t) = 0

⇒ (A sinλl +B cosλl) (C sinωt+D cosωt) = 0

⇒ B = −A tanλl (3.6)

From Eqs. (3.5) and (3.6) we get

tanλx0 = tanλl ⇒ sin λ(l − x0) = 0 ⇒ λn =
nπ

l − x0
, n = 1, 2, · · · (3.7)

35



By substituting the expressions for B and λn from Eqs. (3.6) and (3.7) in the expression for

f(x) in Eq. (3.4), we get

f(x) = A (sinλnx− tanλnl cosλnx) = −
A

cos λnl
sinλn(l − x) (3.8)

The general solution to Eq. (3.1) is obtained by substituting Eqs. (3.4) and (3.8) into Eq. (3.3):

y(x, t) =



















0 : x ∈ [0, x0)
∞
∑

n=1

sinλn(l − x)
[

Cn sin cλnt+Dn cos cλnt
]

: x ∈ [x0, l]
(3.9)

The constants Cn and Dn, n = 1, 2, · · · , are determined from initial conditions. Without

loss of generality, the time is first reset from t = tc to t = 0. Using assumption A5 in relation

to the displacement and velocity of the string over the interval x ∈ [x0, l], we get

y(x, 0) = y0(x, tc) = A0 sinλ0x sinω0tc, x ∈ [x0, l]

⇒

∞
∑

n=1

Dn sin λn(l − x) = A0 sinλ0x sinω0tc, x ∈ [x0, l]

⇒ Dn =
2A0

(l − x0)
sinω0tc

∫ l

x0
sinλ0x sin λn(l − x) dx

= (−1)n
2A0λn

(l − x0)(λ
2
0 − λ2n)

sin λ0x0 sinω0tc (3.10)

and,
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ẏ(x, 0) = ẏ0(x, tc) = A0ω0 sinλ0x cosω0tc, x ∈ [x0, l]

⇒

∞
∑

n=1

cλnCn sin λn(l − x) = A0ω0 sin λ0x cosω0tc, x ∈ [x0, l]

⇒ Cn =
2A0ω0
ncπ

cosω0tc

∫ l

x0
sinλ0x sinλn(l − x) dx

= (−1)n
2A0ω0λn

ncπ(λ20 − λ2n)
sinλ0x0 cosω0tc (3.11)

It is clear from Eqs. (3.10) and (3.11) that the values of the coefficients Cn and Dn, n =

1, 2, · · · , depend on the values of x0 and tc. The motion of the string after application of the

constraint is described by Eq. (3.9), and with the knowledge of these coefficients the motion

is completely defined.

3.3.2 Energetics of constraint application

In this section we compute the change in the energy of the string due to application of the

constraint. The energy of the string prior to application of the constraint is computed as

follows [75]

E0 =
T

2

∫ l

0

[

∂y0(x, t)

∂x

]2
dx+

ρ

2

∫ l

0

[

∂y0(x, t)

∂t

]2
dx (3.12)

By differentiating the expression for y0(x, t) in Eq. (3.2) with respect to x and t and substi-

tuting the relations in Eq. (3.12), we get

E0 =
T

2

l

2
A20λ

2
0 sin2 ω0t+

ρ

2

l

2
A20ω

2
0 cos2 ω0t (3.13)

Substituting the expressions for λ0 and ω0 from Eq. (3.2), λn from Eq. (3.7) and c from
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Eq. (3.1) into Eq. (3.13), we get

E0 =
Tπ2A20

4l
(3.14)

After the constraint has been applied, the energy of the string is given by the relation

Ec =
T

2

∫ l

x0

[

∂y(x, t)

∂x

]2
dx+

ρ

2

∫ l

x0

[

∂y(x, t)

∂t

]2
dx (3.15)

If we define the time functions pn, qn, n = 1, 2, · · · , as

pn(t) = Cn sin cλnt+Dn cos cλnt

qn(t) = Cn cos cλnt−Dn sin cλnt (3.16)

Eq. (3.15) can be rewritten as follows

Ec =
T

2

∫ l

x0





∞
∑

n=1

pnλn cosλn(l − x)





2

dx+
ρ

2

∫ l

x0





∞
∑

n=1

qnωn sin λn(l − x)





2

dx

=
T

2

∫ l

x0





∞
∑

n=1

p2nλ
2
n cos2 λn(l − x)



 dx+
ρ

2

∫ l

x0





∞
∑

n=1

q2nω
2
n sin

2 λn(l − x)



 dx

+
T

2

∫ l

x0











∞
∑

m=1

∞
∑

n=1
n6=m

pm pn λm λn cosλm(l − x) cosλn(l − x)











dx

+
ρ

2

∫ l

x0











∞
∑

m=1

∞
∑

n=1
n6=m

qm qn ωm ωn sinλm(l − x) sin λn(l − x)











dx

(3.17)

Using the relation (p2n + q2n) = (C2n +D2
n), which can be easily shown from Eq. (3.16), the
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expression for λn in Eq. (3.7), and the identities

∫ l
x0

cos2 λn(l − x)dx = (l − x0)/2,
∫ l
x0

cosλn(l − x) cosλm(l − x)dx = 0

∫ l
x0

sin2 λn(l − x)dx = (l − x0)/2,
∫ l
x0

sinλn(l − x) sinλm(l − x)dx = 0

Eq. (3.17) is simplified to the form

Ec =
T

4
(l − x0)

∞
∑

n=1

λ2n(p
2
n + q2n) =

Tπ2

4(l − x0)

∞
∑

n=1

n2(C2n +D2
n) (3.18)

The work done by the constraint is equal to the change in energy of the string, and is given

by the relation

Wc = (Ec − E0) =
Tπ2

4(l − x0)

∞
∑

n=1

n2(C2n +D2
n)−

Tπ2A20
4l

(3.19)

From the expression for Wc in Eq. (3.19) and the expressions for Cn and Dn, n = 1, 2, · · · ,

in Eqs. 3.10) and (3.11), it is clear that the work done by the constraint depends on the

values of x0 and tc. Through numerical simulations, it will be shown in Section 3.5 that the

work done can be positive or negative, depending on the time of application of the constraint

tc.

3.4 Effect of Removing Constraint on the Dynamics of

the String

Assume the constraint is removed during the string vibration at an arbitrary time t = tr.

In this section we investigate the effect of the constraint removal on the dynamics of the
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string and change in its energy. When the scabbard is removed instantaneously back, the

string configuration which represents the initial displacement and velocity, will have two

regions as shown in Fig. 3.2. The first region was covered by the scabbard and has zero

velocity and displacement, and the second region is the configuration of the string at the

instance of scabbard removal where the displacement and velocity are given by y(tr) and

ẏ(tr) respectively.

scabbard
x

y

t = tr

l

Figure 3.2: At time t = tr, the scabbard is instantaneously moved back to its original

position

3.4.1 Equation of motion after removal of the constraint

To obtain the equation of motion of the string after the constraint has been removed, we

start from the general solution to the partial differential equation in Eq. (3.1), namely

yr(x, t) = (α sin Λx+ β cos Λx) (γ sin Ωt + δ cosΩt), Ω = cΛ (3.20)

where x ∈ [0, l], α, β, γ and δ are constants, and Ω is the circular frequency. The boundary
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conditions for the string, shown in Fig. 3.2, give us the following relations:

yr(0, t) = 0 ⇒ β = 0

yr(l, t) = 0 ⇒ sin Λl = 0 ⇒ Λk = (kπ/l), k = 1, 2, · · ·

(3.21)

Substituting the relations in Eq. (3.21) into Eq. (3.20), we get

yr(x, t) =

∞
∑

k=1

sin Λkx
[

γk sin cΛkt + δk cos cΛkt
]

, x ∈ [0, l] (3.22)

The constants γk and δk, k = 1, 2, · · · , are determined from initial conditions. Without loss

of generality, the time is first reset from t = tr to t = 0. Using assumption A7 in relation to

the displacement and velocity of the string over the interval x ∈ [0, l], we get

yr(x, 0) = y(x, tr)

⇒
∞
∑

k=1

δk sin Λkx =



















0 : x ∈ [0, x0)
∞
∑

n=1

sin λn(l − x)
[

Cn sin cλntr +Dn cos cλntr
]

: x ∈ [x0, l]

⇒ δk =
2

l

∫ l

x0

∞
∑

n=1

sinΛkx sinλn(l − x)
[

Cn sin cλntr +Dn cos cλntr
]

dx

=
2

l
sin Λkx0

∞
∑

n=1

(−1)n
λn

Λ2
k
− λ2n

[

Cn sin cλntr +Dn cos cλntr
]

(3.23)

and,

ẏr(x, 0) = ẏ(x, tr) ⇒
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similarly,

∞
∑

k=1

cΛk γk sin Λkx =
∞
∑

n=1

cλn sinλn(l − x)
[

Cn cos cλntr −Dn sin cλntr
]

: x ∈ [x0, l]

⇒ γk =
2

lΛk

∫ l

x0

∞
∑

n=1

λn sin Λkx sin λn(l − x)
[

Cn cos cλntr −Dn sin cλntr
]

dx

=
2

kπ
sin Λkx0

∞
∑

n=1

(−1)n
λ2n

Λ2
k
− λ2n

[

Cn cos cλntr −Dn sin cλntr
]

(3.24)

The equation of motion of the string after removal of the constraint is given by Eq. (3.22),

where δk and γk are defined by Eqs. (3.23) and (3.24), respectively.

3.4.2 Energetics of constraint removal

The change in energy of the string due to removal of the constraint can be computed in the

same way as we computed the change in energy due to application of the constraint. The

energy of the string after removal of the constraint is given by the relation

Er =
T

2

∫ l

0

[

∂yr(x, t)

∂x

]2
dx+

ρ

2

∫ l

0

[

∂yr(x, t)

∂t

]2
dx (3.25)

Using Eqs. 3.22), (3.23) and (3.24) to compute the derivatives of yr(x, t) with respect to x

and t, and substituting them in Eq. (3.25) and simplifying, we get the final expression

Er =
Tπ2

4l

∞
∑

k=1

k2(γ2k + δ2k) (3.26)
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The change in energy due to removal of the constraint is computed as

Wr = (Er − Ec) =
Tπ2

4

∞
∑

k=1

k2

[

(γ2k + δ2k)

l
−

(C2k +D2
k)

(l − x0)

]

(3.27)

In the next section we will use numerical simulations to show that the change in energy

due to constraint removal is zero, i.e., Wr = 0. This result is intuitive because removal of

the constraint simply results in redistribution of the energy from its constrained length of

(l − x0) to its original length l.

3.5 Simulation of One Cycle of Constraint Application

and Removal

We consider a string of length l = 4 m, mass per unit length ρ = 0.25 kg/m, and tension

T = 1 N, vibrating in its first mode with unit amplitude A0 = 0.1 m. At t = 0 the string is

assumed to pass through its mean position, and the equation of motion of the string is

y0(x, t) = 0.1 sin(
π

4
x) sin(

π

2
t) (3.28)

The time period of oscillation of the string is 4 sec and Fig. 3.3 (a) shows the shape of

the string at different instants of time over the interval t ∈ [1.0, 3.0] sec. The string is in

its maximum potential energy configuration at t = 1.0 sec and t = 3.0 sec, and maximum

kinetic energy configuration at t = 2.0 sec.

We first present simulation results for percentage change in energy due to constraint

application for x0 ∈ {0.0l, 0.01l, 0.02l, · · · , 0.09l, 0.10l} and tc ∈ [1.7, 2.3] sec. The results,
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shown in Fig. 3.3 (b), indicate that the energy of the string increases if the constraint is

applied when the string is far away from the mean position, and decreases if the constraint

is applied when the string is near its mean position, irrespective of the value of x0. This

can be explained as follows. Upon application of the constraint, the potential energy of the

string increases. This increase is large when the string is far away from its mean position,

and although the constraint removes the kinetic energy of a portion of the string, there is

a net gain in energy. When the string is near its mean position, the increase in energy

due to change in potential energy is small compared to the loss of kinetic energy and as a

result the net change in energy is negative. When the string is at its mean position, there

is no change in potential energy upon application of the constraint and consequently the

energy loss is maximum in this configuration. For the same value of tc, a larger value of

x0 results in a larger increase in potential energy and a larger decrease in kinetic energy.

Consequently, a larger value of x0 results in a larger percentage change in the energy. This

can be verified from Fig. 3.3 (b). It should be noted that increase in energy due to movement

of the boundary that reduces the length of the string was also observed by Zhu and Zheng

[21].

Table 3.1: Comparison of values of Ec and Er for x0 = 0.1l and tr = 0.8 sec

No. of Fourier coefficients Ec (J) Er (J) error %

50 0.6124 0.6096 0.4723
100 0.6127 0.6110 0.2694
1000 0.6128 0.6123 0.0853

We next investigate the change in energy of the string due to removal of the constraint.

Instead of computing the value of Wr in Eq. (3.27), we compute the values of Ec and Er,

which equal the energy of the string before and after removal of the constraint. Using
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Eqs. (3.18) and (3.26), Ec and Er are computed for varying number of Fourier coefficients.

From this data (see Table 3.1) it is clear that Ec and Er approach each other as the number of

Fourier coefficients increase. Although the data corresponds to the specific case of x0 = 0.1l

and tr = 0.8 sec, the same trends can be observed for all values of x0 and tr.

Although constraint removal does not change the energy of the system, it resets the

system for a new cycle of constraint application. In the next section we investigate the effect

of application of the constraint on the dynamics of the string with arbitrary initial conditions

such that sequential application and removal of constraints can be explored as a strategy for

vibration suppression.
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Figure 3.3: (a) Position of the string at different time instants (b) Percentage change in energy of the string due to application
of the constraint for different values of x0 and tc



3.6 Sequential Application and Removal of Constraints

3.6.1 Dynamics of string with arbitrary initial conditions

In this section we relax assumption A2 and allow the string to have arbitrary initial conditions

and then repeat the analysis of sections 3.4.2 and 3.5. Prior to application of the constraint,

the equation of motion of the string has the form

y0(x, t) =

∞
∑

k=1

sin Λkx
[

γ̄k sin cΛkt + δ̄k cos cΛkt
]

, x ∈ [0, l] (3.29)

which is similar to Eq. (3.22) and satisfies the boundary conditions y0(0, t) = y0(l, t) = 0.

In Eq. (3.29), the values of the coefficients γ̄k, δ̄k, k = 1, 2, · · · , are known. The energy of

the string at the initial time is given by the relation

E0 =
Tπ2

4l

∞
∑

k=1

k2(γ̄2k + δ̄2k) (3.30)

which is similar to Eq. (3.26). After application of the constraint, the equation of motion of

the string has the form

y(x, t) =



















0 : x ∈ [0, x0)
∞
∑

n=1

sin λn(l − x)
[

C̄n sin cλnt + D̄n cos cλnt
]

: x ∈ [x0, l]
(3.31)

which is identical to Eq. (3.9) except that the coefficients Cn and Dn, n = 1, 2, · · · , have

been replaced by C̄n and D̄n. The constants C̄n and D̄n, n = 1, 2, · · · , are determined

from initial conditions by repeating the procedure used in section 3.3.1. Without loss of

generality, the time is reset from t = tc to t = 0, and the displacement and velocity of the
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string given by Eqs. (3.29) and (3.31) are compared over the interval x ∈ [x0, l]:

y(x, 0) = y0(x, tc) =
∞
∑

k=1

sinΛkx
[

γ̄k sin cΛktc + δ̄k cos cΛktc
]

, x ∈ [x0, l]

⇒
∞
∑

n=1

D̄n sinλn(l − x) =
∞
∑

k=1

sinΛkx
[

γ̄k sin cΛktc + δ̄k cos cΛktc
]

, x ∈ [x0, l]

⇒ D̄n =
2

l − x0

∫ l

x0

∞
∑

k=1

sinΛkx sinλn(l − x)
[

γ̄k sin cΛktc + δ̄k cos cΛktc
]

dx

=
2

l − x0

∞
∑

k=1

(−1)n
λn

Λ2
k
− λ2n

sin Λkx0
[

γ̄k sin cΛktc + δ̄k cos cΛktc
]

(3.32)

and,

ẏ(x, 0) = ẏ0(x, tc) =
∞
∑

k=1

cΛk sin Λkx
[

γ̄k cos cΛktc − δ̄k sin cΛktc
]

, x ∈ [x0, l]

⇒

∞
∑

n=1

cλnC̄n sin λn(l − x) =

∞
∑

k=1

cΛk sin Λkx
[

γ̄k cos cΛktc − δ̄k sin cΛktc
]

, x ∈ [x0, l]

⇒ C̄n =
2

l − x0

∫ l

x0

∞
∑

k=1

Λk
λn

sin Λkx sin λn(l − x)
[

γ̄k cos cΛktc − δ̄k sin cΛktc
]

dx

=
2

nl

∞
∑

k=1

(−1)n
kλn

Λ2
k
− λ2n

sin Λkx0
[

γ̄k cos cΛktc − δ̄k sin cΛktc
]

(3.33)

The total energy of the system after application of the constraint is given by the expression

Ec =
Tπ2

4(l − x0)

∞
∑

n=1

n2(C̄2n + D̄2
n) (3.34)

which is similar to the expression in Eq. (3.18). Using Eqs. (3.30) and (3.34), the change in
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energy due to constraint application can be expressed as

Wc = (Ec −E0) =
Tπ2

4

∞
∑

n=1

n2

[

(C̄2n + D̄2
n)

(l − x0)
−

(γ̄2n + δ̄2n)

l

]

(3.35)

When the constraint is removed at t = tr > tc, the equation of motion of the string is

described by Eq. (3.22), namely

yr(x, t) =

∞
∑

k=1

sin Λkx
[

γk sin cΛkt + δk cos cΛkt
]

, x ∈ [0, l] (3.36)

where γk, δk, k = 1, 2, · · · , can be computed from Eqs. (3.23) and (3.24) after replacing Cn

and Dn, n = 1, 2, · · · , with C̄n and D̄n, respectively, i.e.,

δk =
2

l
sin Λkx0

∞
∑

n=1

(−1)n
λn

Λ2
k
− λ2n

[

C̄n sin cλntr + D̄n cos cλntr
]

γk =
2

kπ
sin Λkx0

∞
∑

n=1

(−1)n
λ2n

Λ2
k
− λ2n

[

C̄n cos cλntr − D̄n sin cλntr
]

(3.37)

The energy of the string after removal of the constraint is given by Eq. (3.26), namely

Er =
Tπ2

4l

∞
∑

k=1

k2(γ2k + δ2k) (3.38)

Similar to section 3.5, we rely on simulation results to claim Wr = (Er −Ec) = 0. The net

change in energy due to one cycle of constraint application and removal is therefore equal to

∆W = (Wc +Wr) = Wc =
Tπ2

4

∞
∑

n=1

n2

[

(C̄2n + D̄2
n)

(l − x0)
−

(γ̄2n + δ̄2n)

l

]

(3.39)
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The effect of sequential application and removal of constraints can be investigated by defining

γ̄k = γk, δ̄k = δk, k = 1, 2, · · · , and y0(x, t) = yr(x, t), and repeating the procedure outlined

above.

3.6.2 Control strategy for vibration suppression

From our simulation results in section 3.5, we have seen that maximum reduction in energy

is achieved if the constraint is applied when the displacement of the string is zero over

the interval [0, x0). Since the string was assumed to be vibrating in its first mode, greater

reduction in energy was achieved by simply choosing larger values of x0. For arbitrary initial

conditions, the displacement of the string can be uniformly zero only over a small length

segment at some given time, and therefore, energy reduction can be ensured by choosing a

small value of x0. A small value of x0 will result in less energy reduction but greater reduction

in energy can be achieved by applying the constraint incrementally N times, for a total

distance of Nx0. Figure 3.4 shows a sensing scheme that can be employed to determine the

time when the scabbard can move incrementally. The removal of the constraint will involve

moving the scabbard to its original configuration after N applications of the constraint.

x

y

(p+ 1)x0

x0
2x0

px0

sensor

scabbard

Figure 3.4: The sensor measures the displacement of the string at a distance x0 from the
tip of the scabbard. When this displacement is zero, the scabbard moves incrementally by
distance x0
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In the sequel we provide the equations needed to describe the vibration of the string

during the process of N applications and removal of the constraint. The initial conditions of

the string are assumed to be arbitrary and hence its equation of motion is given by Eq. (3.29),

namely

y0(x, t) =
∞
∑

k=1

sin Λkx
[

γ̄k sin cΛkt + δ̄k cos cΛkt
]

, x ∈ [0, l] (3.40)

We assume that the constraint is applied N times at t = t
(1)
c , t

(2)
c , · · · , t

(N)
c , and removed

at t = tr, where t
(1)
c < t

(2)
c < · · · < t

(N)
c < tr. After the first application of the constraint,

the equation of motion of the string has the form

y1(x, t) =



















0 : x ∈ [0, x0)
∞
∑

n=1

sinλ
(1)
n (l − x)

[

C̄
(1)
n sin cλ

(1)
n t + D̄

(1)
n cos cλ

(1)
n t

]

: x ∈ [x0, l]
(3.41)

The above equation is identical to Eq. (3.31) with the only difference that C̄n and D̄n,

n = 1, 2, · · · , and λn now have the superscript (1), which indicates that the constraint was

applied at t = t
(1)
c . Using the same procedure as before, y0(x, t) and y1(x, t) in Eqs. (3.40)

and (3.41) are compared over the interval x ∈ [x0, l] to determine C̄
(1)
n and D̄

(1)
n

D̄
(1)
n =

2

l − x0

∞
∑

k=1

(−1)n
λ
(1)
n

Λ2
k
− (λ

(1)
n )2

sin Λkx0
[

γ̄k sin cΛkt
(1)
c + δ̄k cos cΛkt

(1)
c
]

(3.42)

and

C̄
(1)
n =

2

nl

∞
∑

k=1

(−1)n
kλ

(1)
n

Λ2
k
− (λ

(1)
n )2

sin Λkx0
[

γ̄k cos cΛkt
(1)
c − δ̄k sin cΛkt

(1)
c
]

(3.43)
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where

λ
(p)
n =

nπ

l − px0
, p = 1, 2, · · · , N (3.44)

After the second application of the constraint, the equation of motion of the string has the

form

y2(x, t) =



















0 : x ∈ [0, 2x0)
∞
∑

n=1

sin λ
(2)
n (l − x)

[

C̄
(2)
n sin cλ

(2)
n t+ D̄

(2)
n cos cλ

(2)
n t

]

: x ∈ [2x0, l]

(3.45)

By comparing y1(x, t) and y2(x, t) in Eqs. (3.41) and (3.45) over the interval x ∈ [2x0, l],

C̄
(2)
n and D̄

(2)
n , n = 1, 2, · · · , are obtained as follows

D̄
(2)
n =

1

l − 2x0

∞
∑

k=1

[

C̄
(1)
k

sin cλ
(1)
k

t
(2)
c + D̄

(1)
k

cos cλ
(1)
k

t
(2)
c
]

U(k, 1) (3.46)

C̄
(2)
n =

1

cnπ

∞
∑

k=1

cλ
(1)
k

[

C̄
(1)
k

cos cλ
(1)
k

t
(2)
c − D̄

(1)
k

sin cλ
(1)
k

t
(2)
c
]

U(k, 1) (3.47)

where

U(k, i) =
{sin[(λ

(i+1)
n − λ

(i)
k

)(l − (i+ 1)x0)]

λ
(i+1)
n − λ

(i)
k

}

−
{sin[(λ

(i+1)
n + λ

(i)
k

)(l − (i+ 1)x0)]

λ
(i+1)
n + λ

(i)
k

}

(3.48)

The behavior of the string hereafter can be iteratively described by the relation

yp(x, t) =



















0 : x ∈ [0, px0)
∞
∑

n=1

sinλ
(p)
n (l − x)

[

C̄
(p)
n sin cλ

(p)
n t+ D̄

(p)
n cos cλ

(p)
n t

]

: x ∈ [px0, l]

(3.49)
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where p = 2, 3, · · · , N , and C̄
(p)
n and D̄

(p)
n , n = 1, 2, · · · , are given by the expressions

D̄
(p)
n =

1

l − px0

∞
∑

k=1

[

C̄
(p−1)
k

sin cλ
(p−1)
k

t
(p)
c + D̄

(p−1)
k

cos cλ
(p−1)
k

t
(p)
c
]

U(k, p− 1)

C̄
(p)
n =

1

cnπ

∞
∑

k=1

cλ
(p−1)
k

[

C̄
(p−1)
k

cos cλ
(p−1)
k

t
(p)
c − D̄

(p−1)
k

sin cλ
(p−1)
k

t
(p)
c
]

U(k, p− 1)

(3.50)

The scabbard is moved back to its original configuration after it reaches its maximum travel

distance Nx0, and this completes one cycle of constraint application and removal. The

equation of motion of the string after constraint removal is given by Eq. (3.36), namely

yr(x, t) =
∞
∑

k=1

sin Λkx
[

γk sin cΛkt + δk cos cΛkt
]

, x ∈ [0, l] (3.51)

where γk, δk , k = 1, 2, · · · , are defined in terms of C̄
(N)
n and D̄

(N)
n as follows

δk =
2

l
sin ΛkNx0

∞
∑

n=1

(−1)n
λ
(N)
n

Λ2
k
− (λ

(N)
n )2

[

C̄
(N)
n sin cλ

(N)
n tr + D̄

(N)
n cos cλ

(N)
n tr

]

(3.52)

and

γk =
2

kπ
sin ΛkNx0

∞
∑

n=1

(−1)n
(λ
(N)
n )2

Λ2
k
− (λ

(N)
n )2

[

C̄
(N)
n cos cλ

(N)
n tr − D̄

(N)
n sin cλ

(N)
n tr

]

(3.53)

Similar to Eq. (3.39), the work done in one cycle of constraint application and removal can
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be shown to be

∆W = (Wc +Wr) = Wc =
Tπ2

4

∞
∑

n=1

n2





{(C̄
(N)
n )2 + (D̄

(N)
n )2}

(l −Nx0)
−

{γ̄2n + δ̄2n}

l



 (3.54)

Since the sensing scheme in Fig. 3.4 allows negative work to be done each time the scabbard

is moved incrementally, the net work done in each cycle of constraint application and removal

will be negative.

We define the work done after a number of constraint applications as the cost function, where

J =
N
∑

k=0

Ek+1 − Ek (3.55)

where, Ek+1 is total energy after k constraint application and Ek is the total energy before

k constraint application. And the cost is J = (E1 − E0) + (E2 − E1) + · · · + (EN−1 −

EN−2) + (EN − EN−1), then

J = EN − E0 (3.56)

To perform the control, we sense the states during the motion by the mean of a sen-

sor. Where the sensor reads the displacement at x = (p + 1)x0 i.e ŷ = y((p + 1)x0, t) and

˙̂y = ẏ((p+ 1)x0, t) as shown in Fig. 3.4, and the control strategy becomes

uk =











x0 : |ŷk| ≃ 0, | ˙̂yk| > 0, t = tk

0 : t = tk + tr

(3.57)

The condition of |ŷk| ≃ 0 guarantees the potential energy is minimum in the controlled

segment, and | ˙̂yk| > 0 guarantees the kinetic energy Ke > 0 where Ke will be the reduction
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in total system energy. tr is the time of constraint removal.

3.6.3 Numerical simulations

Similar to our example in section 3.5, we consider a string of length l = 4 m, mass per unit

length ρ = 0.25 kg/m, and tension T = 1 N, vibrating in its first mode with amplitude

A0 = 0.1 m. At t = 0 the string is assumed to pass through its mean position, and the

equation of motion of the string is therefore

y0(x, t) = 0.1 sin(
π

4
x) sin(

π

2
t)

We simulate 12 cycles of constraint application and removal with constraint application

occurring incrementally in each cycle with x0 = 0.05l and N = 3, as discussed in section

3.6.2. In each cycle, the constraints are applied at the earliest instant of time, when the

string displacement is zero at the sensor2 location. For the first cycle, this is illustrated with

the help of Fig. 3.5, which shows the displacement and percentage energy loss of the string

at different time instances.

The constraint can be removed at any time tr, tr > t
(3)
c , and there is flexibility in

choosing tr. In Table 3.2 and Fig. 3.6, we present simulation results for the two cases:

(A): the constraint is removed when the sensor measures zero displacement, and

(B): the constraint is removed when the sensor records the maximum displacement.

From the data in Table 3.2, it is clear that case (B) results in significantly higher reduction

in energy in comparison to case (A). Although constraint removal does not change the

2The sensor measures the displacement of the string at a distance x0 from the scabbard - see Fig.
3.4. Since x0 is small, a zero sensor reading implies that the string has almost zero displacement
over the entire interval x ∈ [0, x0).
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overall energy of the string, the configuration of the string at the time of constraint removal

determines how energy of the constrained string is redistributed over the entire length;

and this has a significant effect on the rate of energy reduction in subsequent cycles of

constraint application. Beginning with the last plots in Fig. 3.5 and Fig. 3.6 shows the

configuration of the string at the instant of time when the constraint is removed in the first

cycle for cases (A) and (B). It also shows the maximum displacement of the string after the

completion of 12 cycles for the two cases. The maximum displacement plots corroborate

that the energy content of the string for case (B) is much less than that of case (A). The

plots in Fig. 3.6 can explain why case (B) results in higher reduction in energy. In case (B),

the constraint is removed when the string has the maximum deformation. This effectively

results in plucking of the string (without addition of energy), which excites the high-frequency

modes of the string and transfer of energy into these modes. When a significant fraction of

energy is funneled into the high-frequency modes, the scabbard is more effective in energy

reduction since these modes have higher energy density than the low-frequency modes for

the same amplitude of vibration. It can be verified from Fig. 3.6 that the string, after 12

cycles, predominantly vibrates in its first mode for case (A) but has many high-frequency

components for case (B).

Table 3.2: Comparison of percentage energy loss of the string for cases (A) and (B) over 12
cycles of constraint application and removal

No. 1 2 3 4 5 6 7 8 9 10 11 12
(A) 0.88 5.52 9.83 15.94 16.33 16.37 16.46 16.50 16.54 16.58 16.60 16.64
(B) 0.88 3.78 9.07 17.14 23.56 31.42 44.14 46.19 46.95 47.25 56.32 57.25
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Chapter 4

Vibration Control of a String

Through Cyclic Application and

Removal of Constraints:

Experimental Verification

4.1 Introduction

In Chapter 3 we presented a control strategy for the vibration control of string by using

scabbard-like actuator. The scabbard-like actuator is difficult to implement in hardware

and an alternate actuation mechanism is therefore proposed in this chapter. In this chapter

we present an experimental control methodology that verifies the idea of the scabbard-

like actuator method in which energy reduction is achieved through cyclic application and

removal of a constraint. In our method, a zero-displacement constraint is enforced at one
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point on the string, close to one of its boundaries. This effectively results in two vibrating

strings, one of which is much shorter in length than the other. The vibration of the shorter

length string decays rapidly due to high internal damping and when the constraint is released,

the remaining energy of the string is redistributed over its entire length; this allows the cycle

of constraint application and removal to be repeated for vibration suppression. This chapter

is organized as follows. In Section 4.2 we present the mathematical model of the effect of

constraint application and removal, including change in energy of the string. This modeling

effort is similar to the one presented in Chapter 3 but includes damping; the addition of

damping allows us to compare simulation and experimental results. We use a stretched coil

extension spring as a string in our experiments. A coil extension spring can easily store

potential energy during stretching, and as a consequence has low damping - this makes it

well-suited for vibration control experiments. Although a stretched coil extension spring was

used earlier by Kashy, et al [77], we present experimental results to justify its use as a string.

These results are presented in Section 4.3. Section 4.3 also contains experimental results that

are used to identify the damping coefficient of the spring-string. Simulation and experimental

results of vibration suppression are presented in Section 4.4 - these results establish the

feasibility of vibration suppression through application and removal of constraints.

4.2 Cyclic Application and Removal of Constraint

4.2.1 Actuation and Sensing Mechanism

We propose the mechanism in Fig. 4.1 for constraint application and removal. It is comprised

of a pair of solenoids that can impose a zero velocity constraint at one point on the string,
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located at a distance of x0 from the boundary. An optical sensor, located at a distance of η

from the solenoids, measures the distance of the string from its mean position. The solenoids

are activated when the sensor indicates that the string is passing through its mean position,

i.e. y(x0+η) = 0. Since η is a small distance by design, the solenoids impose the zero velocity

constraint when y(x0) ≈ 0, i.e., the solenoids impose a zero displacement constraint. This

is necessary to ensure that the constraint does not alter the equilibrium configuration of the

string. The zero displacement constraint virtually results in two vibrating strings over the

intervals x ∈ [0, x0) and x ∈ (x0, l]. The distance x0 is a small fraction of the total length l

by design and consequently the string vibrating over the interval x ∈ [0, x0) will have a much

higher natural frequency and damping. This implies that the energy of the shorter string

will dissipate quickly and naturally, and subsequent de-activation of the solenoids will result

in redistribution of the remaining energy of the string over its entire length. Each cycle of

solenoid activation and de-activation (constraint application and removal) will reduce the

energy of the string and eventually result in vibration suppression.

The actuation mechanism in Fig. 4.1 is fundamentally similar to the scabbard-like actu-

ator in Chapter 3. By applying a zero displacement constraint over a small length of string

that is passing through its mean position, the scabbard proposes to remove kinetic energy

of the small string segment through impact. In contrast, the mechanism in Fig. 4.1 imposes

a zero displacement constraint at one point of the string. This point is proximal to one

fixed support and therefore the energy trapped in the string between the point of applica-

tion of the constraint and the proximal support is dissipated naturally. The time required

for natural dissipation depends on the distance of the point of application of the constraint

and the proximal boundary - a smaller distance results in faster dissipation and vice versa.
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The scabbard proposes to dissipate the energy of the small string segment instantaneously

through impact, but it is difficult to implement.

x

x

y

z

x0

η

ℓ

top view

solenoid

plunger

stator
optical sensor

optical sensor

vibrating string

side view

distance measured

Figure 4.1: Actuation and sensing mechanism for application and removal of constraint

4.2.2 Mathematical Modeling

4.2.2.1 Linear model of vibrating string with damping

In this section we consider a mathematical model of the string and compute the change

in energy of the string due to constraint application and constraint removal. To include

damping, we consider the mathematical model from [78]

T
∂2y

∂x2
= ρ

∂2y

∂t2
+ C

∂y

∂t
(4.1)

62



where T is the tension, ρ is the mass per unit length, and C is the damping coefficient of

the string. Through separation of variables y(x, t) = X(x)φ(t), we get

1

X

∂2X

∂x2
=

1

φ

1

c2

[

∂2φ

∂t2
+K

∂φ

∂t

]

= −λ2, K , C/ρ, c ,
√

T/ρ

where λ is constant. The above equation gives

∂2X

∂x2
+ λ2X = 0 ⇒ X(x) = {α cosλx+ β sinλx}

∂2φ

∂t2
+K

∂φ

∂t
+ c2λ2φ = 0 ⇒ φ(t) = e−ζωt

{

A cos(ω

√

1− ζ2)t+B sin(ω

√

1− ζ2)t

}

and leads to the general solution

y(x, t) = e−ζωt {α cosλx+ β sinλx}

{

A cos(ω

√

1− ζ2)t +B sin(ω

√

1− ζ2)t

}

(4.2)

where

ω , cλ, ζ , K/(2cλ)

Assuming the string to be of length ℓ and applying the boundary conditions y(0, t) = y(ℓ, t) =

0 or X(0) = X(ℓ) = 0, we get

X(x) = βn sinλnx, λn =
nπ

ℓ
, n = 1, 2, · · · ,∞

The general solution then takes the form

y(x, t) =

∞
∑

n=1

φn(t) sinλnx (4.3)
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where

φn(t) = e−ζnωnt
{

An cos(ωn

√

1− ζ2n)t +Bn sin(ωn

√

1− ζ2n)t

}

and

ωn , cλn, ζn , K/(2cλn)

The total energy of the string is the sum of its potential and kinetic energy

E(t) =
ρ

2

∫ ℓ

0

[

∂y(x, t)

∂t

]2
dx+

T

2

∫ ℓ

0

[

∂y(x, t)

∂x

]2
dx (4.4)

Substituting Eq. (4.3) into Eq. (4.4), we get

E(t) =
ρ

2

∫ ℓ

0





∞
∑

n=1

φ̇n(t) sinλnx









∞
∑

m=1

φ̇m(t) sinλmx



 dx

+
T

2

∫ ℓ

0





∞
∑

n=1

λn φn(t) cosλnx









∞
∑

m=1

λm φm(t) cosλmx



 dx

Using the orthogonality property of the modes and simplifying, we get

E(t) =
ρℓ

4

∞
∑

n=1

φ̇2n(t) +
Tℓ

4

∞
∑

n=1

λ2n φ
2
n(t) (4.5)

4.2.2.2 Effect of constraint application

To obtain the equation of motion of the string after the constraint is applied, we solve

Eq. (4.1) subject to initial and boundary conditions consistent with the constraint. Assuming

the solution to be of the form yc(x, t) = X̄(x) φ̄(t), where

X̄(x) =
{

ᾱ cos λ̄x+ β̄ sin λ̄x
}
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and

φ̄(t) = e−ζ̄ ω̄t
{

Ā cos(ω̄

√

1− ζ̄2)t+ B̄ sin(ω̄

√

1− ζ̄2)t

}

application of the boundary conditions yc(x0, t) = yc(ℓ, t) = 0 or X̄(x0) = X̄(ℓ) = 0 yields

X̄(x) = β̄m sin λ̄m(ℓ− x), λ̄m =
mπ

ℓ− x0
, m = 1, 2, · · · ,∞

The constrained solution then takes the form

yc(x, t) =

∞
∑

m=1

φ̄m(t) sin λ̄m(ℓ− x) (4.6)

where

φ̄m(t) = e−ζ̄mω̄mt
{

Ām cos(ω̄m

√

1− ζ̄2m)t+ B̄m sin(ω̄m

√

1− ζ̄2m)t

}

and

ω̄m , cλ̄m, ζ̄m , K/(2cλ̄m)

If the constraint is applied at time t = tc, we have the following conditions:

A1. yc(x, 0) = y(x, tc). From Eqs. (4.3) and (4.6) we can write

∞
∑

m=1

Ām sin λ̄m(ℓ− x) =

∞
∑

n=1

φn(tc) sinλnx (4.7)

where φn(t) was defined after Eq. (4.3). Multiplying both sides by sin λ̄m(ℓ− x) and
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integrating with respect to x from x0 to ℓ, we get

Ām =
2

ℓ− x0

∞
∑

n=1

φn(tc)

∫ ℓ

x0
sin λ̄m(ℓ− x) sinλnx dx

=
2

ℓ− x0

∞
∑

n=1

(−1)mφn(tc)
λ̄m

λ2n − λ̄2m
sin λnx0 (4.8)

A2. ẏc(x, 0) = ẏ(x, tc). From Eqs. (4.3) and (4.6) we can again write

∞
∑

m=1

ω̄m

(
√

1− ζ̄2m B̄m − ζ̄mĀm

)

sin λ̄m(ℓ− x) =
∞
∑

n=1

φ̇n(tc) sinλnx (4.9)

Multiplying both sides by sin λ̄m(ℓ − x), integrating with respect to x from x0 to ℓ,

we get

B̄m =
1

ω̄m

√

1− ζ̄2m



ζ̄m ω̄mĀm +
2

ℓ− x0

∞
∑

n=1

(−1)mφ̇n(tc)
λ̄m

λ2n − λ̄2m
sin λnx0





(4.10)

where Ām is defined by Eq. (4.8).

The energy of the string after application of the constraint is given by the relation

Ec(t) =
ρ

2

∫ ℓ

x0

[

∂yc(x, t)

∂t

]2
dx+

T

2

∫ ℓ

x0

[

∂yc(x, t)

∂x

]2
dx (4.11)

Substituting Eq. (4.6) and simplifying using orthogonality property of the modes, we get

Ec(t) =
ρ(ℓ− x0)

4

∞
∑

m=1

˙̄φ
2
m(t) +

T (ℓ− x0)

4

∞
∑

m=1

λ̄2m φ̄2m(t) (4.12)
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The work done by application of the constraint can be simply computed as

Wc = Ec(tc)− E(tc) (4.13)

4.2.2.3 Effect of constraint removal

After removal of the constraint, the equation of motion of the string will be described by the

relation

yr(x, t) =
∞
∑

n=1

e−ζnωnt
{

µn cos(ωn

√

1− ζ2n)t+ νn sin(ωn

√

1− ζ2n)t

}

sinλnx (4.14)

where

ωn , cλn, ζn , K/(2cλn)

If the constraint is applied at time t = tr, we have the following conditions:

A1. yr(x, 0) = yc(x, tr). From Eqs. (4.6) and (4.14) we can write

∞
∑

n=1

µn sinλnx =
∞
∑

m=1

φ̄m(tr) sin λ̄m(ℓ− x) (4.15)

where φ̄m(t) was defined after Eq. (4.6). Multiplying both sides by sinλnx and inte-

grating with respect to x from 0 to ℓ, we get

µn =
2

ℓ

∞
∑

m=1

φ̄m(tr)

∫ ℓ

x0
sin λ̄m(ℓ− x) sin λnx dx

=
2

ℓ

∞
∑

m=1

(−1)mφ̄m(tr)
λ̄m

λ2n − λ̄2m
sinλnx0 (4.16)
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A2. ẏr(x, 0) = ẏc(x, tr). From Eqs. (4.6) and (4.14) we can again write

∞
∑

n=1

ωn

(
√

1− ζ2n νn − ζn µn

)

sin λnx =
∞
∑

m=1

˙̄φm(tr) sin λ̄m(ℓ− x) (4.17)

Multiplying both sides by sinλnx, integrating with respect to x from 0 to ℓ, we get

νn =
1

ωn

√

1− ζ2n



ζn ωn µn +
2

ℓ

∞
∑

m=1

(−1)m ˙̄φm(tr)
λ̄m

λ2n − λ̄2m
sin λnx0



 (4.18)

where µn is defined by Eq. (4.16).

Once the values of µn and νn have been determined, we update the values of An and Bn

as follows

An = µn, Bn = νn, n = 1, 2, · · · ,∞

The change in the energy of the string due to constraint removal can now be computed as

Wr = E(tr)− Ec(tr) (4.19)

The update in the values of An and Bn also allow us to repeat the process of constraint

application and removal.

4.3 Experimental Setup

4.3.1 Coil Extension Spring - A Substitute for the String

A traditional string has high damping and is not well-suited for vibration control experiments.

As a substitute for the string, we used a stretched coil extension spring which has low
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damping. The material and geometric specifications of the spring [79] used in experiments

are provided in Table 4.1:

Table 4.1: Specifications of coil extension spring

Material Outside diameter Inside diameter Wire diameter

Steel 2.032 mm 1.016 mm 0.508 mm

A sample spring of free length 2.286 m (90 in) was found to have a mass of 0.034 kg. The

mass per unit length of the spring is therefore ρs = 0.0149 kg/m. Using a known load, the

stiffness of the spring in tension was computed to be ks = 150.42 N/m. The experimental

setup is shown in Fig. 4.2. In this setup, the distance between the fixed supports is ℓ = 1.64

m. The spring clamped between these supports had a free length of 1.525 m; the tension

in the spring is therefore T = ks∆ = 150.42 × (1.64 − 1.525) = 17.29 N. The spring was

given an arbitrary initial displacement and the sensor was used to measure the displacement

of one point on the string - see Fig. 4.2. The sensor data was recorded for 100 sec at 1000

samples/sec. The natural frequencies of free vibration of the spring were computed from the

FFT of the sensor data and are shown in Table 4.2. The data indicates ω2 ≈ 2ω1, ω3 ≈ 3ω1

and ω4 ≈ 4ω1. This is characteristic of vibrating strings and therefore the coil extension

spring is a good substitute for the string.
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Figure 4.2: (a) Experimental setup showing the string between two fixed supports and the actuation mechanism, (b) A close-up
view of the actuation mechanism and sensor



Treating the spring as a string, the mass per unit length of the string was computed from

the first natural frequency in Table 4.2, using the relation

ρ = T

(

π

ℓ ω1

)2
= 0.0164 kg/m (4.20)

This is higher than the mass per unit length of the spring, ρs = 0.0149 kg/m. In our

simulations, we will use the value of mass per unit length of the equivalent string, ρ = 0.0164

kg/m.

Table 4.2: Experimentally determined natural frequencies of the spring/string in rad/s

Units ω1 ω2 ω3 ω4

rad/s 62.07 124.15 186.29 248.37

Hz 9.88 19.76 29.65 39.53

4.3.2 Internal Damping of the String

4.3.2.1 Estimation of Damping Ratio

In order to compare simulation and experimental results on vibration suppression, it is neces-

sary to determine the internal damping of the string. To this end, we collected experimental

data on the string vibrating freely in the first mode and computed the damping ratio ζ using

the method of logarithmic decrement

ζ =
[

1 + (2π/δ)2
]−1/2

, δ =
1

k
ln

(

xi
xk+i

)
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Figure 4.3: Free vibration of a string: (a) Experimental results for the string in Fig. 4.2 (b)
Simulation results obtained using a damping ratio computed from the experimental results
in (a)

The experimental data is shown in Fig. 4.3 (a). For this data, we had xi = 3.088 × 10−3

m, xk+i = 1.194 × 10−3 m and k = 591; this gives ζ = 2.56 × 10−4. Using this value of

ζ and values of T and ρ obtained experimentally, we simulated free vibration of the string

in its first mode. The results are shown in Fig. 4.3 (b); they match quite well with the

experimental results in Fig. 4.3 (a) and provide confidence in our mathematical model.

4.3.2.2 Variation of Damping Coefficient with Length

The damping ratio ζ = 2.56× 10−4 was determined experimentally for the string vibrating

in its first mode. The product of the damping ratio and the natural frequency is therefore

ζω = 2.56× 10−4 × 62.07 = 0.0159 rad/s
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The product ζω was assumed to be constant in our mathematical model since it is pro-

portional to the damping coefficient C (ζω = C/2ρ). To investigate the validity of this

assumption, we present experimental results on variation of the product ζω with change in

length of the string. The results, shown in Fig. 4.4, indicate that ζω initially remains con-

stant but increases rapidly thereafter as the length is decreased. The trend is consistently

observed with three different strings, namely:

(1) string described in Section 3.1 with stiffness ks = 150.42 N/m and tension T = 17.29

N;

(2) string with spring coil diameter smaller than that of string (1) but of higher stiffness

ks = 284.90 N/m and with higher tension T = 34.50 N; and

(3) string with spring coil diameter similar to that of string (1) and same tension as that

of string (1) but of lower stiffness ks = 47.5 N/m.

Percentage of length ℓ (ℓ = 1.64 m)

ζ
ω
ra
d
/s

0.20

0.15

0.10

0.05

0.00

20 40 60 80 100

(3)

(1)

(2)

Figure 4.4: Effect of changing the length of the string on the product ζω for three different
strings
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4.4 Simulation and Experimental Results on Vibration

Suppression

For simulations, we used the mathematical model in Eq. (4.3) with the following parameter

values

ℓ = 1.64 m, T = 17.29 N, ρ = 0.0164 kg/m, ζ = 2.56× 10−4

which were obtained experimentally. To be consistent with our experimental setup, we used

x0 = 0.1 ℓ = 0.164 m, η = 0.04 m

The string was given the displacement shown in Fig. 4.5 with d = ℓ/2 = 0.82 m and h =

0.01 m, and released from rest at the initial time. This initial condition, which can be

mathematically described as follows

y(x, 0) = f(x) =























−
h

d
x 0 ≤ x ≤ d

−
h

ℓ− d
(ℓ− x) d ≤ x ≤ ℓ

, ẏ(x, 0) = g(x) = 0

excites all modes of vibration. The modal coefficients can be determined from the expression

for y(x, t) in Eq. (4.3) and its derivative, as follows

∞
∑

n=1

An sin λnx = f(x)

⇒ An = −
2

ℓ

[

h

d

∫ d

0
x sin

nπ

ℓ
x dx+

h

ℓ− d

∫ ℓ

d
(ℓ− x) sin

nπ

ℓ
x dx

]

=
2hℓ2

n2π2d(ℓ− d)
sin

nπ

ℓ
d
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Figure 4.5: Initial displacement of the string used for both simulations and experiments.
The guide for generating repeatable initial conditions in experiments can be seen in Fig. 4.2

∞
∑

n=1

[

ωn

√

1− ζ2n Bn − ζnωn An

]

sin λnx = g(x) = 0

⇒ Bn =
ζn

√

1− ζ2n

An (4.21)

The constraint was applied when the sensed point on the string passes through its mean

position, i.e., y(x0 + η) ≈ 0. The constraint was released exactly 0.5 sec after the constraint

was applied. The time interval of 0.5 sec is provided to allow vibration of the string over

the interval [0, x0) to dissipate naturally. In Fig. 4.6 (a), we present simulation results for

N = 12 cycles of constraint application and removal with a time interval of 0.5 sec between

cycles and with n = 3 modes. The experimental results are shown in Fig. 4.6 (b). The initial

condition used in our experiment was identical to that used in simulations and facilitated by

the guide for generating repeatable initial conditions shown in Fig. 4.2.

The following observations can be made from the simulation and experimental results in

Fig. 4.6:

• The time duration of active control is almost identical in simulations and experiments,

slightly greater than 12 sec. It includes 12 cycles of constraint application and removal

with a minimum duration of 1.0 sec per cycle.
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Figure 4.6: Results of vibration suppression obtained from (a) simulations and (b) experi-
ments

• For the period of time that the constraint is active, the amplitude of vibration is

significantly lower than when the constraint is not active. This is due to the fact that

constraint application results in a temporary boundary at x = x0 and Fig. 4.6 plots

the displacement of the string at x = x0 + η, i.e., at a small distance η from this

boundary.

• In simulations, the constrained string vibrates about the mean position of the uncon-

strained string - see plot (a), but in experiments it has a positive or a negative offset

- see plot (b). This is because it is possible to apply the constraint exactly when

the string is passing through its mean position in simulations; the same is difficult to

achieve in experiments due to reaction time of the solenoids. It may be noted that

the solenoids fail to keep the string completely constrained during the first cycle of
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experiments. At this time the string has a large amount of energy and the friction

forces between the string and the solenoid plungers are insufficient to prevent some

slipping.

• At the initial time, we had d = 0.82 m, h = 0.01 m, x0 = 0.164 m and η = 0.04 m.

This corresponds to y(x0 + η) = 2.48× 10−3 m - see Fig. 4.5. The initial amplitudes

of vibration in Fig. 4.6 matches well with this number.

• The ratio of the initial amplitude of vibration to the amplitude of vibration immediately

after active control is terminated is 4.29 for simulation results in plot (a) and 4.98 for

experimental results in plot (b). Assuming only the first mode of vibration to be

present, these numbers correspond to ≈ 94.5% and ≈ 95.9% of energy dissipation for

simulations and experiments, respectively. The large percentage of energy dissipation

is indicative of the effectiveness of the control strategy.

• The simulation results in plot (a) indicate the presence of higher modes after termina-

tion of active control. The experimental results in plot (b) indicate that only the first

mode is present and the higher modes have dissipated. This suggests that the damp-

ing ratio ζ may not be constant across modes; a higher damping ratio for the higher

modes may have contributed to higher energy dissipation in experiments compared to

simulations.
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4.5 Additional Investigations

4.5.1 Efficacy of Vibration Suppression - A Parametric Study

The efficacy of vibration suppression through constraint application and removal depends on

several parameters. In this section, we present a parametric experimental study to illustrate

the effect of three specific parameters, namely:

A1. (x0/ℓ): Location of constraint from proximal boundary

A2. tr: Duration of time for which the constraint is applied, and

A3. N : Number of times the constraint is applied and removed

on the settling time. We define the settling time as the time required for the amplitude of

vibration to decay to 20% of its initial value. For a string vibrating predominantly in its

first mode, this corresponds to the time required for dissipation of ≈ 96% of the energy.

The results of settling time are presented in Table 4.3. These results indicate that larger

number of cycles of constraint application and removal (higher value of N) results in smaller

settling time, i.e., faster vibration suppression, independent of the values of (x0/ℓ) and tr.

Also, larger values of (x0/ℓ) require proportionately longer time of application tr, for the

shortest settling time. It can be seen that independent of the value of N , tr = 0.5 results

in the the shortest settling time for (x0/ℓ) = 0.05, tr = 1.0 results in the the shortest

settling time for (x0/ℓ) = 0.10, and tr = 1.5 results in the the shortest settling time for

(x0/ℓ) = 0.15. This because a larger value of x0 lowers the frequency of vibration of the

constrained string segment and increases the time required for natural dissipation of energy

in this segment. From the above discussion, it is clear that tr = 0.5 and N = 12 provides the
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Table 4.3: Effect of three different parameters: (x0/ℓ), tr, and N on the settling time

(x0/ℓ)=0.05 (x0/ℓ)=0.10 (x0/ℓ)=0.15

tr (sec) N = 6 N = 12 N = 6 N = 12 N = 6 N = 12
0.5 51.61 43.44 64.52 38.12 72.21 65.32
1.0 57.42 46.63 54.70 30.43 70.46 53.18
1.5 60.32 47.44 63.66 43.22 62.44 28.07

optimal settling time for (x0/ℓ) = 0.05; tr = 1.0 and N = 12 provides the optimal settling

time for (x0/ℓ) = 0.10; and tr = 1.5 and N = 12 provides the optimal settling time for

(x0/ℓ) = 0.15. These three cases are highlighted in Table 4.3. Among them, (x0/ℓ) = 0.15

has the shortest settling time. Simulation and experimental results for shaded results in

table 4.3 are presented in Figs. 4.7, 4.8 and 4.9 respectively. These figures show good match

in reduction of vibration amplitude and settling time ts.
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Figure 4.7: Results of vibration suppression obtained from (a) simulations and (b) experiments, with (x0/ℓ) = 0.05, tr = 0.5
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4.5.2 Excitation of Higher Modes

The energy dissipation mechanism proposed in this chapter relies on trapping energy in a

short segment of the string, which is dissipated naturally due to high internal damping. The

energy of the string is also dissipated through excitation of high-frequency modes in the

longer segment of the string. The high-frequency modes are excited each time the constraint

is applied or removed; this can be explained mathematically by the mapping between Fourier

coefficients describing the motion of the string in the constrained and unconstrained states.

The high-frequency modes also have high rates of damping, and although they do not decay

out as quickly as the vibration in the short string segment, energy transfer to these modes

facilitate vibration suppression.

3.0
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1.0

0.0

0.40

0.30

0.20
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0.00
0 20 40 60 80

unconstrained string

constrained string

frequency (Hz)
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(b)

Figure 4.10: Fast Fourier-Transform results showing multiple modes of vibration of the (a)

unconstrained string and (b) constrained string
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We present results of fast Fourier-Transform (FFT) of the string vibration collected over

3 sec, both after application and after removal of the constraint. These plots shown in

Fig. 4.8 indicate that at least six higher modes are excited. The FFT plots indicate that

the frequencies of the constrained string are slightly higher than those of the unconstrained

string. This is because of the shorter length of the constrained string. The amplitudes of the

constrained string in the FFT plot are however lower than those of the unconstrained string.

This is because the sensor is located closer to the boundary when the string is constrained

than when it is unconstrained.
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Chapter 5

Dynamics of a Circular Membrane

with an Eccentric Circular Areal

Constraint: Analysis and Accurate

Simulations

The studies on vibration of constrained circular membrane are restrict to the determination

of the eigenfrequencies where most of the results in the literature typically compute the first

few eigenfrequencies of vibration but they do not provide a method to simulate the dynamics

accurately. The simulation of the dynamics requires computation of modal coefficients using

orthogonality properties of the modes. Although orthogonality properties of modes are

well-known, they have not been established mathematically for constrained membranes. We

present orthogonality properties of all modes of a circular membrane with an internal circular

areal constraint for the first time in this chapter. The computation of the modal coefficients
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require accurate computation of the mode shapes and this requires proper choice of the

number of angular modes. This chapter is organized as follows. A formal problem statement

and a list of assumptions are provided in Section 5.1. The expression for the symmetric and

antisymmetric modes are derived in Section 5.2 using Lin’s analysis [46]. In Section 5.3,

we establish orthogonality between the symmetric modes, the antisymmetric modes, and

between symmetric and antisymmetric modes. In Section 5.4 we provide the algorithm for

accurate computation of the mode shapes, and in Section 5.5 we provide the algorithm for

computation of modal coefficients. The dynamics of a constrained membrane is simulated

at the end of Section 5.5.

5.1 Problem Statement and Assumptions

Consider the circular membrane of radius R and outer boundary Γo, shown in Fig. 5.1. A

circular area of radius a and boundary Γi, located at a distance d from the center of the

membrane, has zero displacement at all times; this constrains the dynamics of the mem-

brane. To study the vibration of the active region of the membrane, we make the following

assumptions:

A1. The membrane is homogeneous and has a constant mass per unit area equal to µ.

The tension in the membrane is equal to T and remains constant at all times. The

membrane undergoes transverse vibration and it is not affected by gravity.

A2. The amplitude of oscillation of the membrane is small and its motion can be expressed
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by the standard relation in polar coordinates [75]:

∂2Z

∂r2
+

1

r

∂Z

∂r
+

1

r2
∂2Z

∂θ2
=

1

c2
∂2Z

∂t2
, c =

√

T/µ (5.1)

where Z = Z(r, θ, t) is the transverse displacement. The distance of any point P is

measured from the center of the inner circle O and is denoted by r; θ denotes the angle

that vector r makes with the x-axis.

A3. The transverse displacement of all points in the area enclosed by the inner circle is

zero, i.e., Z(r, θ, t) = 0 for r ∈ [0, a], θ ∈ [0, 2π]. The displacement of the membrane is

also zero along the outer boundary Γo.

x

y

ρ r

a

θ
ψ

R

d

P

Γo

Γi

O

Figure 5.1: A circular membrane with an inner circular areal constraint
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5.2 Background - Modes of Vibration

5.2.1 General Solution

A general solution to Eq. (5.1) is obtained by separation of variables. Assuming Z(r, θ, t) =

ϕ(r, θ)F (t) and rearranging terms, we get

1

ϕ
{
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2
} =

1

c2
1

F

∂2F

∂t2
(5.2)

Let −k2 be the separation constant. Then, the right-hand side of Eq. (5.2) gives

1

c2
1

F

∂2F

∂t2
= −k2, or

∂2F

∂t2
+ c2k2F = 0

If we define the natural frequency ω , ck1, we get

F (t) = A cosωt+B sinωt (5.3)

where A and B are constants whose values depend on initial conditions. Equating the

left-hand side of Eq. (5.2) to −k2 and rearranging terms, we get

r2
∂2ϕ

∂r2
+ r

∂ϕ

∂r
+ k2r2ϕ = −

∂2ϕ

∂θ2
(5.4)

To separate the radial and angular terms in Eq. (5.4), we substitute ϕ(r, θ) = U(r) V (θ);

1The separation constant k is related to the natural frequency by the relation k = ω/c and has
the unit of rad/m. Since c is a constant, the value of k is proportional to the frequency. In the
sequel we will refer to k as the eigenfrequency.

88



this yields

1

U
{r2

∂2U

∂r2
+ r

∂U

∂r
+ k2r2} = −

1

V

∂2V

∂θ2
(5.5)

By choosing m2 to be the separation constant, we get

1

V

∂2V

∂θ2
= −m2, ⇒ V (θ) = Cm cosmθ +Dm sinmθ (5.6)

where Cm and Dm are constants whose values depend on initial conditions. Since we have

V (π) = V (−π),
∂V

∂θ
(π) =

∂V

∂θ
(−π)

it can be shown that m2 takes integer values 0, 1, 2, · · · . From the left-hand side of Eq. (5.5)

we get

r2
∂2U

∂r2
+ r

∂U

∂r
+ (k2r2 −m2)U = 0 (5.7)

For any integer value of m, the general solution to Eq. (5.7) is as follows:

U(r) = βm Jm(kr) + γm Ym(kr)

where βm and γm are constants, and Jm(kr) and Ym(kr) are Bessel functions [75] of the

first and second kind, respectively. The general solution to the equation of motion of the

2The integer m is the number of angular nodes. For an unconstrained membrane, it is equal to
the number of diametrical lines along which the membrane has zero displacement
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circular membrane can now be written as

Z(r, θ, t) =
∞
∑

m=0

{βm Jm(kr) + γm Ym(kr)} ×

{Cm cosmθ +Dm sinmθ} {A cosωt+B sinωt} (5.8)

The solution in Eq. (5.8) can be rewritten as

Z(r, θ, t) =
{

ϕs(r, θ) + ϕc(r, θ)
}

{A cosωt+B sinωt} (5.9)

where

ϕs(r, θ) =

∞
∑

m=1

{β1mJm(kr) + γ1mYm(kr)} sinmθ

ϕc(r, θ) =
∞
∑

m=0

{β2mJm(kr) + γ2mYm(kr)} cosmθ (5.10)

and β1m = βmDm, γ1m = γmDm, β2m = βmCm and γ1m = γmCm. The constants

in Eq. (5.9), namely, k, A, B, m, β1m, γ1m, β2m, γ2m, can be determined by applying

boundary conditions and initial conditions.

5.2.2 Boundary Conditions

The circular membrane is assumed to be fixed from the outer boundary and with presence of

the internal circular constraint, the outer boundary of the constraint is assumed to be fixed.

The boundary conditions can be written as:
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A1. The membrane has zero displacement for r = a. From Eq. (5.9) we get

Z(a, θ, t) =
{

ϕs(a, θ) + ϕc(a, θ)
}

{A cosωt+B sinωt} = 0

This implies {ϕs(a, θ) + ϕc(a, θ)} = 0, or

∞
∑

m=1

{β1mJm(ka) + γ1mYm(ka)} sinmθ

+
∞
∑

m=0

{β2mJm(ka) + γ2mYm(ka)} cosmθ = 0 (5.11)

A2. The membrane has zero displacement for all r values for which ρ = R. This implies

∞
∑

m=1

{

β1mJm(kr|ρ=R) + γ1mYm(kr|ρ=R)
}

sinmθ +

∞
∑

m=0

{

β2mJm(kr|ρ=R) + γ2mYm(kr|ρ=R)
}

cosmθ = 0 (5.12)

The solutions to Eqs. (5.11) and (5.12) were investigated by several researchers [2], [46],

[47], [3] and the eigenfrequencies were determined for the even (symmetric) and the odd

(antisymmetric) modes3.

5.2.3 Even or Symmetric Modes

The symmetric modes are associated with the cosine term cosmθ in Eq. (5.10) and are

denoted by ϕc(r, θ). The superscript “c” is used to represent the cosine terms. Since the

3A background about simple circular unconstrained membrane can be found in appendix A.2
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symmetric modes satisfy the differential equation independently, the boundary conditions in

Eqs. (5.11) and (5.12) give

∞
∑

m=0

{β2mJm(ka) + γ2mYm(ka)} cosmθ = 0

∞
∑

m=0

{

β2mJm(kr|ρ=R) + γ2mYm(kr|ρ=R)
}

cosmθ = 0 (5.13)

Equation (5.13) cannot be solved directly for k since the second equation contains r|ρ=R,

which is a function of θ. From Fig. 5.1, we can show

r|ρ=R = r(θ) =

√

R2 + d2 − 2Rd cosψ =

√

R2 − d2 sin2 θ − d cos θ (5.14)

To solve Eq. (5.13) analytically, Lin [46] used Graf’s addition formula [80] to transform the

Bessel functions from (r, θ) coordinates to (ρ, ψ) coordinates. This transformation is given

below

Jm(kr) eimθ =
∞
∑

q=−∞

Jm+q(kρ) Jq(kd) e
i(m+q)ψ

Ym(kr) eimθ =

∞
∑

q=−∞

Ym+q(kρ) Jq(kd) e
i(m+q)ψ (5.15)

Using the expressions in Eq. (5.15), Eq. (5.13) is rewritten as follows

∞
∑

m=0

{β2mJm(ka) + γ2mYm(ka)} cosmθ = 0

∞
∑

m=0

∞
∑

q=−∞

{

β2mJm+q(kR) + γ2mYm+q(kR)
}

Jq(kd) cos(m+ q)ψ = 0 (5.16)

92



Expanding the inner summation and using the property of Bessel functions, we get4

∞
∑

n=0

{β2n Jn(ka) + γ2n Yn(ka)} cos nθ = 0

∞
∑

m=0

∞
∑

n=0

ǫn {β2mJn(kR) + γ2mYn(kR)}
{

Jn−m(kd) + (−1)mJn+m(kd)
}

cosnψ = 0

(5.17)

where ǫn is defined as

ǫn =











1/2 if n = 0

1 if n > 0

Expanding Eq. (5.17) from m = 0 to N horizontally and from n = 0 to N vertically, gives

the matrix equation

PcXc = 0 (5.18)

where Pc ∈ R(2N+2)×(2N+2) and A ∈ R(2N+2) are given by the relations

P c =















































J0(ζ1) Y0(ζ1) 0 0 · · · 0 0

1
2J0(ζ2)H

c

00
1
2Y0(ζ2)H

c

00
1
2J0(ζ2)H

c

01
1
2Y0(ζ2)H

c

01 · · · 1
2J0(ζ2)H

c

0N
1
2Y0(ζ2)H

c

0N

0 0 J1(ζ1) Y1(ζ1) · · · 0 0

J1(ζ2)H
c
10 Y1(ζ2)H

c
10 J1(ζ2)H

c
11 Y1(ζ2)H

c
11 · · · JN (ζ2)H

c

1N YN (ζ2)H
c

1N

...
...

...
...

. . .
...

...

0 0 0 0 · · · JN (ζ1) YN (ζ1)

JN (ζ2)H
c

N0 YN (ζ2)H
c

N0 JN (ζ2)H
c

N1 YN (ζ2)H
c

N1 · · · JN (ζ2)H
c

NN
YN (ζ2)H

c

NN















































Xc =

[

β20 γ20 β21 γ21 · · · β2N γ2N

]T

4See appendix B
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and where ζ1 = ka, ζ2 = kR, and Hcnm =
{

Jn−m(kd) + (−1)mJn+m(kd)
}

. Equation

(5.18) is used to solve for the eigenfrequencies kci and eigenvectors Xci for i = 1, 2, · · · . Using

Eq. (5.10), the symmetric modes can be subsequently obtained as follows:

ϕci (r, θ) = β20,i

N
∑

m=0

[

β2m,i

β20,i
Jm(kci r) +

γ2m,i

β20,i
Ym(kci r)

]

cosmθ (5.19)

where the terms (β2m,i/β20,i), (γ2m,i/β20,i), m = 0, 1, · · · , N are entries of the i-th eigen-

vector Xci , and β20,i is a scaling factor for the i-th symmetric mode.

5.2.4 Odd or Antisymmetric Modes

The antisymmetric modes are associated with the sine term sinmθ in Eq. (5.10) and are

denoted by ϕs(r, θ); the superscript “s” is used to represent the sine terms. For the symmetric

modes, the boundary conditions in Eqs. (5.11) and (5.12) give

∞
∑

m=1

{β1mJm(ka) + γ1mYm(ka)} sinmθ = 0

∞
∑

m=1

{

β1mJm(kr|ρ=R) + γ1mYm(kr|ρ=R)
}

sinmθ = 0 (5.20)

Using Graf’s addition formula [80], the boundary conditions in Eq. (5.20) can be rewritten

as

∞
∑

n=1

{β1n Jn(ka) + γ1n Yn(ka)} sinnθ = 0

∞
∑

m=1

∞
∑

n=1

{β1mJn(kR) + γ1mYn(kR)}
{

Jn−m(kd)− (−1)mJn+m(kd)
}

sinnψ = 0

(5.21)
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Expanding Eq. (5.21) from m = 1 to M and n = 1 to M , M = (N + 1), gives the matrix

equation

PsXs = 0 (5.22)

where Ps ∈ R2M×2M and B ∈ R2M are given by the relations

P s =















































J1(ζ1) Y1(ζ1) 0 0 · · · 0 0

J1(ζ2)H
s
11 Y1(ζ2)H

s
11 J1(ζ2)H

s
12 Y1(ζ2)H

s
12 · · · J1(ζ2)H

s

1M Y1(ζ2)H
s

1M

0 0 J2(ζ1) Y2(ζ1) · · · 0 0

J2(ζ2)H
s
21 Y2(ζ2)H

s
21 J2(ζ2)H

s
22 Y2(ζ2)H

s
22 · · · J2(ζ2)H

s

2M Y2(ζ2)H
s

2M

...
...

...
...

. . .
...

...

0 0 0 0 · · · JM (ζ1) YM (ζ1)

JM (ζ2)H
s

M1 YM (ζ2)H
s

M1 JM (ζ2)H
s

M2 YM (ζ2)H
s

M2 · · · JM (ζ2)H
s

MM
YM (ζ2)H

s

MM















































Xs =

[

β11 γ11 β12 γ12 · · · β1M γ1M

]T

and where ζ1 = ka, ζ2 = kR, and Hsnm =
{

Jn−m(kd)− (−1)mJn+m(kd)
}

. Equation

(5.22) is used to solve for the eigenfrequencies ksi and eigenvectors Xsi for i = 1, 2, · · · . Using

Eq. (5.10), the symmetric modes can be subsequently obtained as follows:

ϕsi (r, θ) = β11,i

M
∑

m=1

[

β1m,i

β11,i
Jm(ksi r) +

γ1m,i

β11,i
Ym(ksi r)

]

sinmθ (5.23)

where the terms (βi1m/β
i
11), (γ

i
1m/β

i
11), m = 1, 2, · · · ,M are entries of the i-th eignevector

Xsi , and β
i
11 is a scaling factor for the i-th antisymmetric mode.

From the expressions in Eqs. (5.19) and (5.23) it can be seen that each mode shape of a
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constrained membrane ϕi is a summation of terms that are a function of m, i.e., each mode

shape depends on all the angular nodes. This is different from unconstrained membranes

where each mode shape is associated with a specific angular node only and is denoted by

ϕi,m, i.e., a pair of subscripts are used to identify the mode shape. Since each mode shape

is associated with an eigenfrequency, the eigenfrequencies of unconstrained membranes are

denoted by ki,m whereas the eigenfrequencies of constrained membranes are denoted by ki.

In the literature, the subscripts for frequencies and mode shapes of unconstrained mem-

branes are numbered starting with zero, i.e., i, m = 0, 1, 2, · · · . In a slight deviation from this

tradition, the frequencies and mode shapes of constrained membranes have been numbered

starting with one in this chapter, i.e., i = 1, 2, 3, · · · .

5.3 Orthogonality of Modes

The differential equation in Eq. (5.2) is related to the eigenfrequency k as follows

1

ϕ
{
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2
} =

1

c2
1

F

∂2F

∂t2
= −k2

and can be rewritten in the form

1

r

∂

∂r

[

r
∂ϕ

∂r

]

+
1

r2
∂2ϕ

∂θ2
+ k2ϕ = 0 (5.24)

Let ki and kj be the i-th and j-th eigenfrequency associated with the modes ϕi and ϕj ,

respectively. Each of the modes ϕi and ϕj may be symmetric or anti-symmetric. For these
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two modes, Eq. (5.24) can be written as follows

1

r

∂

∂r

[

r
∂ϕi
∂r

]

+
1

r2
∂2ϕi
∂θ2

+ k2i ϕi = 0 (5.25)

1

r

∂

∂r

[

r
∂ϕj

∂r

]

+
1

r2

∂2ϕj

∂θ2
+ k2j ϕj = 0 (5.26)

Multiplying Eq. (5.25) by ϕj and Eq. (5.26) by ϕi and subtracting one from the other, we

get

1

r

{

∂

∂r

[

r
∂ϕi
∂r

]

ϕj −
∂

∂r

[

r
∂ϕj

∂r

]

ϕi

}

+
1

r2

{

∂2ϕi
∂θ2

ϕj −
∂2ϕj

∂θ2
ϕi

}

+
{

k2i − k2j

}

ϕiϕj = 0

(5.27)

Integrating Eq. (5.27) over the active region of membrane now gives

∫ 2π

0

∫ r|ρ=R

a

{

∂

∂r

[

r
∂ϕi
∂r

]

ϕj −
∂

∂r

[

r
∂ϕj

∂r

]

ϕi

}

drdθ (5.28)

+

∫ 2π

0

∫ r|ρ=R

a

1

r

{

∂2ϕi
∂θ2

ϕj −
∂2ϕj

∂θ2
ϕi

}

drdθ

+
{

k2i − k2j

}

∫ 2π

0

∫ r|ρ=R

a
ϕiϕj rdrdθ = 0

Integration of the first term by parts gives

∫ 2π

0

∫ r|ρ=R

a

{

∂

∂r

[

r
∂ϕi
∂r

]

ϕj −
∂

∂r

[

r
∂ϕj

∂r

]

ϕi

}

drdθ =

∫ 2π

0

[

r
∂ϕi
∂r

ϕj − r
∂ϕj

∂r
ϕi

]r|ρ=R

r=a

dθ −

∫ 2π

0

∫ r|ρ=R

a

[

∂ϕi
∂r

∂ϕj

∂r
−
∂ϕj

∂r

∂ϕi
∂r

]

rdrdθ

Since both ϕi and ϕj are zero for r = a and r values where ρ = R, the first term on the

right-hand side of the above equation is zero. The second term on the right-hand side of the

97



above equation is zero trivially and this implies

∫ 2π

0

∫ r|ρ=R

a

1

r

{

∂2ϕi
∂θ2

ϕj −
∂2ϕj

∂θ2
ϕi

}

drdθ +
{

k2i − k2j

}

∫ 2π

0

∫ r|ρ=R

a
ϕiϕj rdrdθ = 0

(5.29)

The first term in Eq. (5.29) is given by the expression

∫ 2π

0

∫ r|ρ=R

a

1

r

{

∂2ϕi
∂θ2

ϕj −
∂2ϕj

∂θ2
ϕi

}

drdθ (5.30)

where the limits of integration correspond to the unconstrained area of the membrane in

Fig. 5.1. In Eq. (5.30), the integration is first carried out with respect to r and then with

respect to θ. For the first integration, the upper limit of r is expressed as a function of θ;

this functional dependence of r on θ is given by Eq. (5.14) and shown in Fig. 5.2 (a). We

evaluate the expression in Eq. (5.30) by changing the order of integration. This requires θ

to be expressed as a function of r, which is obtained from the geometry in Fig. 5.1:

θ = θ(r) = cos−1

[

R2 − r2 − d2

2rd

]

, θ ∈ [0, π] (5.31)

The area of integration is redrawn in Fig. 5.2 (b) and the integral in Eq. (5.30) is expressed

as the sum of the following three terms:

∫ R−d

a

∫ +π

−π

1

r

{

∂2ϕi
∂θ2

ϕj −
∂2ϕj

∂θ2
ϕi

}

dθdr

+

∫ R+d

R−d

∫ −θ(r)

−π

1

r

{

∂2ϕi
∂θ2

ϕj −
∂2ϕj

∂θ2
ϕi

}

dθdr

+

∫ R+d

R−d

∫ +π

+θ(r)

1

r

{

∂2ϕi
∂θ2

ϕj −
∂2ϕj

∂θ2
ϕi

}

dθdr (5.32)
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where θ(r) is defined by Eq. (5.31). For each of the three terms in Eq. (5.32), the inner

(a) (b)

θ

θ r

r

r(θ)

a

0 2π a R−d R+d

+θ(r)

−θ(r)

+π

−π

0

Figure 5.2: Shaded region showing the area of integration for the two cases where the
integration is done (a) first with respect to r and then with respect to θ, and (b) first with
respect to θ and then with respect to r

integration with respect to θ by parts, gives

∫

θ

[

∂2ϕi
∂θ2

ϕj −
∂2ϕj

∂θ2
ϕi

]

dθ =

[

∂ϕi
∂θ

ϕj −
∂ϕj

∂θ
ϕi

]θu

θl

−

∫

θ

[

∂ϕi
∂θ

∂ϕj

∂θ
−
∂ϕj

∂θ

∂ϕi
∂θ

]

dθ

=

[

∂ϕi
∂θ

ϕj −
∂ϕj

∂θ
ϕi

]θu

θl

(5.33)

where θl and θu denote the lower and upper limits of θ. Using Eq. (5.33), the three terms

in Eq. (5.32) can be simplified to the form

∫ R−d

a

1

r

[

∂ϕi
∂θ

ϕj −
∂ϕj

∂θ
ϕi

]+π

−π

dr +

∫ R+d

R−d

1

r

[

∂ϕi
∂θ

ϕj −
∂ϕj

∂θ
ϕi

]−θ(r)

−π

dr

+

∫ R+d

R−d

1

r

[

∂ϕi
∂θ

ϕj −
∂ϕj

∂θ
ϕi

]+π

+θ(r)

dr

Since θ = +θ(r) and θ = −θ(r) describe the outer boundary of the membrane where ϕi =
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ϕj = 0 for all i and j, the above integrals simplify to the form

∫ R−d

a

1

r

[

∂ϕi
∂θ

ϕj −
∂ϕj

∂θ
ϕi

]+π

−π

dr

+

∫ R+d

R−d

1

r

[

∂ϕi
∂θ

ϕj −
∂ϕj

∂θ
ϕi

]+π

−π

dr

=

∫ R+d

a

1

r

[

∂ϕi
∂θ

ϕj −
∂ϕj

∂θ
ϕi

]+π

−π

dr (5.34)

Now consider the three separate cases:

A1. Modes ϕi and ϕj are both symmetric: Using Eq. (5.19), both (∂ϕi/∂θ) and (∂ϕj/∂θ)

can be expressed in the form

∂ϕi
∂θ

=
∞
∑

m=0

(.) sin mθ,
∂ϕj

∂θ
=

∞
∑

m=0

(.) sin mθ

Since their values are zero at θ = ±π, the integral in Eq. (5.34) is identically zero.

A2. Modes ϕi and ϕj are both anti-symmetric: It can be see from Eq. (5.23) that ϕi and

ϕj have the form

ϕi =
∞
∑

m=0

(.) sin mθ, ϕj =
∞
∑

m=0

(.) sin mθ

Since their values are zero at θ = ±π, the integral in Eq. (5.34) is identically zero.

A3. Mode ϕi is symmetric and mode ϕj is anti-symmetric: Using Eqs. (5.19) and (5.23) it

can be shown that both the terms (∂ϕi/∂θ)ϕj and (∂ϕj/∂θ)ϕi are zero at θ = ±π,

and therefore the integral in Eq. (5.34) is identically zero.
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This proves that the integral in Eq. (5.30) is zero for any two distinct modes ϕi and ϕj ,

irrespective of whether they are both symmetric, both antisymmetric, or one of them is

symmetric and the other is antisymmetric. From Eq. (5.29) we can now conclude

∫ 2π

0

∫ r|ρ=R

a
ϕiϕj rdrdθ = 0, i 6= j (5.35)

which is the orthogonality condition for a pair of distinct modes.

5.4 Accurate Computation of Eigenfrequencies andMode

Shapes

5.4.1 Computational Algorithm

We present an algorithm for numerical computation of the eigenfrequencies and their corre-

sponding mode shapes. The algorithm is identical for symmetric and antisymmetric modes

and therefore we discuss it here for the symmetric modes only. The algorithm first computes

all eigenfrequencies kci , i = 1, 2, · · · , that are less than a user-specified maximum eigenfre-

quency kcmax. The interval [0, kcmax] is divided into small segments of length ∆k and the

eigenfrequencies within each segment are computed separately. The number of eigenfrequen-

cies that show up within each segment depend on the value of N , which is related to the

size of the matrix Pc in Eq. (5.18). Starting from zero, increasing the value of N typically

results in larger number of zero crossings of the determinant Pc (see Fig. 5.3), and hence a

larger number of eigenfrequencies within a specific segment. Beyond a certain value of N ,

the number of eigenfrequencies in a given segment will not change. At this point, increasing
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|P |

k

kmax

large N

small N
ki

∆k
δ0 δf

Figure 5.3: The eigenfrequencies are the zero crossings of the determinant of the matrix Pc

for symmetric modes, and Ps for antisymmetric modes

the value of N produces very small changes in the values of the eigenfrequencies but such

changes can result in significant improvement or loss of accuracy of the associated mode

shapes. The flowchart shown in Fig. 5.8 provides the algorithm for computing all eigen-

frequencies in the interval [0, kcmax], and accurately computing the mode shape associated

with each eigenfrequency through proper choice of N . A brief summary of the algorithm is

provided next.

The interval [0, kcmax] is divided into small segments of length ∆k. For any given segment,

the boundaries of the segment are denoted by δ0 and δf . The value of k is changed in

increments of δ (small number) from δ0 to δf , and zero crossings of | Pc | are stored as

potential eigenfrequencies. For a given segment, this procedure is repeated by increasing

N , N ∈ {0, 1, 2, · · · , Nmax}, till no additional zero crossings occur and the mode shapes

associated with the eigenfrequencies have been computed accurately. The mode shapes are

computed using Eq. (5.19) and are checked for accuracy by verifying ϕci = 0 along the inner

and outer boundary of the membrane. The procedure is repeated for each segment till the
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maximum user-specified value of k = kmax is reached.

In the literature, several methods have been proposed for computing the eigenfrequency

and mode shapes of constrained membranes. Most of these methods are well suited to com-

puting the first few eigenfrequencies and mode shapes only. For simulation of the dynamics

of a constrained membrane, it is necessary to accurately compute many frequencies and

mode shapes; this is difficult to compute using existing methods due to singularity. For

example, Nagaya [2], Singh and Kothari [47], and Singh, et al. [3] proposed to combine the

two equations for symmetric modes in Eq. (5.13) into the following single equation

∞
∑

m=0

β2m

{

Jm(kr|ρ=R)−
Jm(ka)

Ym(ka)
Ym(kr|ρ=R)

}

cosmθ = 0 (5.36)

This procedure reduces the dimension of the coefficient matrix by a factor of two and reduces

the computational burden but presence of Bessel function of the second kind, Ym(ka), in the

denominator makes it prone to singularity. This problem become critical during computation

of higher frequencies.

The eigenfrequencies and mode shapes of the antisymmetric modes can be computed

using the algorithm in Fig. 5.4 by replacing Pc, kci , and ϕ
c
i with P

s, ksi , and ϕ
s
i , respectively,

and N with M . Ps is defined in Eq. (5.22) and ϕsi is defined in Eq. (5.23).

5.4.2 Numerical Results

We use the algorithm in Section 5.4.1 to accurately compute the eigenfrequencies and mode

shapes of a constrained membrane with R/a = 0.25 and d/a = 1.0. This problem was

considered in the literature [1], [2], [47] and the results were summarized by Singh, et al.

[3]. We compare these results with those obtained using our algorithm, implemented with
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Input membrane data
R, a, d, T , ρ

Choose
Nmax, kmax, ∆k, δ

i = 1
δ0 = 0, δf = ∆k

N = 0 kci = δ0
Calculate

Pc in Eq. (5.18)

|Pc |≈ 0 ?

Compute ϕci using

Eq. (5.19) along inner

and outer boundaries

ϕci ≈ 0 ?

repeated kci ?

Save
kci , ϕ

c
i , Ni = N

i = i+ 1

kci = kf ?

kci = kci + δ

N = Nmax?

N = N + 1

δf ≥ kmax?

δ0 = δf
δf = δf +∆k

Stop

No

No

No No No

No

Yes

Yes

Yes

Yes Yes

Yes

Figure 5.4: Algorithm for computing eigenfrequencies and mode shapes for symmetric modes

kmax = 10a and ∆k = kmax. Table 5.1 shows the non-dimensional fundamental antisym-

metric frequencies for the constrained membrane obtained using our algorithm; the value of
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Table 5.1: First eight non-dimensional frequencies of antisymmetric modes of constrained
membrane with a/R = 0.25 and d/a = 1.0. The results in parenthesis are from [1], [2],
and [3], and the star superscript indicates frequencies with accurate mode shapes computed
using our algorithm

M kc1a kc2a kc3a kc4a kc5a kc6a kc7a kc8a

1 1.1119 2.1342 - - - - - -
2 1.0636 1.4307 1.9199 - - - - -
3 1.0661 1.3811 1.6875 1.9290 2.3177 - - -
4 1.0660 1.3850 1.6557 1.9288 1.9473 2.3280 - -
5 1.0660* 1.3848 1.6591 1.9275 1.9296 2.2195 2.3292 -
6 1.0660* 1.3848 1.6589 1.9284 1.9312 2.2083 2.3288 2.4982
7 1.0660* 1.3848* 1.6589 1.9284 1.9311 2.2101 2.3288 2.4916
8 1.0660* 1.3848* 1.6589* 1.9284 1.9311 2.2099 2.3288 2.4928
9 1.0660* 1.3848* 1.6589* 1.9284* 1.9311* 2.2099 2.3288 2.4927
10 1.0660* 1.3848* 1.6589* 1.9284* 1.9311* 2.2099 2.3288* 2.4927
11 1.0660* 1.3848* 1.6589* 1.9284* 1.9311* 2.2099* 2.3288* 2.4927
12 1.0660* 1.3848* 1.6589* 1.9284* 1.9311* 2.2099* 2.3288* 2.4927*
13 1.0660* 1.3848* 1.6589* 1.9284* 1.9311* 2.2099* 2.3288* 2.4927*

40 1.0647 1.3822 1.6572 1.9272 1.9297 2.2072 2.3272 2.4922

- (1.0659) (1.3848) (1.6589) (1.9283) - - - -
- (1.0500) (1.3800) - - - - - -

M is gradually increased till all modes are accurately computed. As mentioned in Section

5.4.1, the accuracy of each mode shape is verified by computing the displacement of 100

points along the inner and outer membrane boundaries. For accuracy, the displacement of

the membrane at all these points must satisfy ǫ 6 10−4. In Table 5.1, eigenfrequencies

associated with accurate mode shapes (this depends on correct choice of M) have a star su-

perscript. The eigenfrequencies obtained from the literature are presented in separate rows

at the bottom of the table and are placed within parenthesis. The following observations

can be made from the results presented in Table 5.1:

A1. It is not possible to identify all the eigenfrequencies in an interval using a small value

ofM . Increasing the value ofM helps in identifying more eigenfrequencies and M ≥ 6
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identifies all eight eigenfrequencies in this particular example.

A2. For M = 6, all eigenfrequencies are identified but only the first eigenfrequency has an

accurate mode shape. Increasing the value of M results in a larger number of accurate

mode shapes and M = 12 results in accurate computation of all mode shapes.

A3. A large value of M is not guaranteed to result in accurate mode shapes. For example,

M = 13 gives all accurate mode shapes but none of the mode shapes are accurate for

M = 40. This is because of the sensitivity of the Bessel functions. This justifies the

need for increasing M gradually rather than choosing a pre-specified large integer.

A4. Although all the mode shapes can be accurately computed using M = 12, the compu-

tational burden can be significantly reduced by using the lowest value of M for each

eigenfrequency that gives an accurate mode shape. For example, the mode shape for

kc1a should be computed using M = 5, the mode shape for kc2a should be computed

using M = 7, and so on.

A5. The eigenfrequencies in the literature have values that are very close to those obtained

by our algorithm. However, these small errors result in large errors in the shape of

the modes, which will violate boundary and orthogonality conditions. This will be

discussed further later.

We next present results for different sizes and locations of the constraint in the membrane.

The specific values of a/R and d/a used are taken from Singh, et al. [3]. Table 5.2 presents

the first five non-dimensional frequencies of symmetric modes of the constrained membranes

and values of N used to compute the corresponding mode shapes. For a given set of a/R

and d/a values, the first row contains eigenfrequencies and N values that correspond to
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accurate mode shapes. The procedure for obtaining accurate eigenfrequencies and mode

shapes was discussed in Section 5.4.1. The second row contains eigenfrequencies that are

Table 5.2: First five non-dimensional frequencies of symmetric modes of constrained mem-
branes and values of N used to compute the mode shapes. For a given set of a/R and d/a
values, the first row contains values that correspond to accurate mode shapes. The second
row contain values that are closest to those presented in the literature - the eigenfrequencies
are underlined to indicate that the corresponding mode shapes are inaccurate. The results
from the literature [1], [2], [3] are presented in the following rows with eigenfrequencies in
parenthesis

a/R d/a kc1a N kc2a N kc3a N kc4a N kc5a N

0.5

2.7348 5 3.2374 6 3.6531 7 3.9346 8 4.2482 8

0.2 2.7348 3 3.2373 4 3.6531 5 3.9346 6 4.2482 6
(2.7348) - (3.2373) - (3.6530) - (3.9346) - (4.2482) -
(2.7520) - (3.2500) - (3.6680) - (3.9370) -
2.4053 5 3.0862 7 3.6973 9 4.2487 10 4.6704 9

0.4 2.4053 4 3.0862 5 3.6973 6 4.2487 8 4.6704 5
(2.4053) - (3.0862) - (3.6972) - (4.2487) - (4.6704) -
(2.4300) - (3.0860) - (3.6950) - (4.2500) -
2.1536 6 2.9451 8 3.6598 9 4.1455 8 4.3194 11

0.6 2.2081 1 2.9429 4 3.6505 5 4.4738 3
(2.2800) - (2.9310) - (3.6620) - (4.4320) -
1.9570 6 2.8256 8 3.5975 11 3.7439 11 4.3140 12

0.8 1.9537 2 2.8109 3 3.5779 5 4.4424 6
(1.9340) - (2.8130) - (3.5620) - (4.4250)
1.8001 7 2.7236 9 3.4187 9 3.5358 12 4.2690 13

1.0 1.8001 4 2.7239 5 3.4183 5 4.3044 7
(1.8000) - (2.7240) - (3.4180) - (4.3750) -

0.25

0.8681 5 1.2305 6 1.4817 10 1.6789 8 1.6882 8

1 0.8680 2 1.2305 4 1.4817 5 1.6789 6 1.6882 6
(0.8680) - (1.2305) - (1.4817) - (1.6788) - (1.6881) -
(0.8720) - (1.2200) - (1.4400) -
0.7456 8 1.1967 10 1.4521 8 1.5610 11 1.8897 12

2 0.7456 3 1.1966 5 1.4521 6 1.5610 7 1.8898 8
(0.7455) - (1.1966) - (1.4521) - (1.5609) - (1.8898) -
(0.7430) - (1.2040) - (1.4620) -
0.6674 9 1.1024 11 1.3636 12 1.5074 13 1.7571 12

3 0.6690 3 1.1129 3 1.3660 4
(0.6700) - (1.1230) - (1.3670) -
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closest to values presented in the literature; these eigenfrequencies are obtained by gradually

increasing N till the error between the computed value and the value in the literature is

minimum. In all cases, the error is minimum for a value of N for which the mode shape

is inaccurate - this is indicated by the underlined eigenfrequencies. The eigenfrequencies in

parenthesis are taken from the literature [3] and are presented in the third and fourth rows.

The following observations can be made from the results presented in Table 5.2 pertaining

to accurate eigenfrequencies and mode shapes:

A1. Lower values of N are required to compute lower eigenfrequencies, and vice versa. This

can also be observed from the data presented in Table 5.1.

A2. Lower values of N are required for lower values of d, i.e., constraints located farther

from the center of the membrane, and vice versa.

A3. Higher values of N are required for smaller values of a, i.e., constraints of smaller size,

and vice versa.

The effect of N on the accuracy of eigenfrequencies was first observed by Nagaya [2], who

used 8 ≤ N ≤ 12 to confine the error to ≈ 0.5%. Such choice of N may indeed result in

accurate computation of the eigenfrequency but there is no guarantee that the mode shape

will be accurate. The accuracy of the mode shape depends on the size and location of the

constraint, as discussed above, and incorrect choice of N can result in significant error in

the mode shape even when the eigenfrequency is computed accurately. This is illustrated

with the help of Fig. 5.5, which shows the accurate and inaccurate mode shapes for kc3a

for a/R = 0.5 and d/a = 0.6, 0.8, and 1.0. It should be noted that the eigenfrequencies

corresponding to these accurate and inaccurate mode shapes, shown in Table 5.2, indicate

negligible error. For example, for a/R = 0.5 and d/a = 0.8, the error in the eigenfrequency
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is only

3.5975− 3.5620

3.5975
× 100 ≈ 1%

but the mode shapes in Fig. 5.5 (b) are significantly different; and of course, the inaccurate

mode shape does not satisfy the boundary conditions. Similar observations can be made for

the cases a/R = 0.5, d/a = 0.6 and a/R = 0.5, d/a = 1.0. For these cases, the error in the

eigenfrequency is ≈ −0.06% and ≈ 0.02%, respectively but the corresponding mode shapes

are significantly different. We complete this section with numerical results for an example

where the size of the constraint is small and the location of the constraint is far away from

the center of the membrane, i.e., a/R is small and d/a is large. For such cases, it is difficult

to obtain the eigenfrequencies and mode shapes accurately because the Bessel functions are

sensitive to large values of d and small values of a. Despite this sensitivity, our algorithm

was able to compute the first twenty modes of a membrane with a/R = 0.1 and d/a = 9.0.

The first symmetric mode and the sixteenth symmetric mode of the membrane are shown

in Fig. 5.6 together with the non-dimensional eigenfrequencies and the required value of N .

Note that N = 18 was required for computing the sixteenth mode accurately. Figure 5.7

shows more mode shapes with d/a = 2.0.
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(a) (b) (c)

kc3a = 3.6505, N = 5

kc3a = 3.6598, N = 9

kc3a = 3.5779, N = 5 kc3a = 3.4183, N = 5

kc3a = 3.5975, N = 11 kc3a = 3.4187, N = 9

Figure 5.5: Mode shapes kc3a for constrained membranes in Table 5.2 with a/R = 0.5 and (a) d/a = 0.6 (b) d/a = 0.8 (c)
d/a = 1.0. For each of these three cases, the inaccurate mode shapes are shown above the accurate mode shapes
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(a) (b)

kc1a = 0.24927, N = 6 kc16a = 1.17795, N = 18

Figure 5.6: First symmetric mode and sixteenth symmetric mode of a constrained membrane with a/R = 0.1 and d/a = 9.0.
For both these cases, the isometric view is placed above the top view and the value of N required for accuracy is shown



(a) (b)

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)

Figure 5.7: First five modes of a membrane with a/R = 0.1 and d/a = 2.0 (a) Antisymmetric

modes (b) Symmetric modes. For both, the isometric view is placed next the top view
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5.5 Simulation of Constrained Membrane Dynamics

5.5.1 Computation of Modal Coefficients

From the general form of the dynamics of the membrane given in Eq. (5.9), the complete

solution can be written as follows

Zc(r, θ, t) =

∞
∑

i=0

ϕci (k
c
i r, θ)(A1i cosω

c
i t+B1i sinω

c
i t)

+
∞
∑

j=1

ϕsj(k
s
jr, θ)(A2j cosω

s
i t+B2j sinω

s
j t) (5.37)

where ϕci , ϕ
s
i are defined in Eqs. (5.19) and (5.23), respectively, and ωci = ckci , ω

s
j = cksj ,

i, j = 1, 2, · · · . The initial conditions are assumed to be

Z(r, θ, 0) = G(r, θ), Ż(r, θ, 0) = H(r, θ)

Applying the displacement initial conditions to Eq. (5.37), we get

∞
∑

i=1

Aci ϕ
c
i +

∞
∑

j=1

Asj ϕ
s
j = G(r, θ) (5.38)

Multiplying Eq. (5.38) by ϕci , integrating both sides over the unconstrained area of the

membrane, and using the orthogonality condition in Eq. (5.35), we get

Aci =

[

∫ 2π

0

∫ r|ρ=R

a
G(r, θ)ϕci rdrdθ

]

/

[

∫ 2π

0

∫ r|ρ=R

a
(ϕci )

2 r drdθ

]

, i = 1, 2, · · ·

(5.39)
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Multiplying Eq. (5.38) by ϕsi , integrating both sides over the unconstrained area of the

membrane, and using the orthogonality condition in Eq. (5.35), we get

Asj =

[

∫ 2π

0

∫ r|ρ=R

a
G(r, θ)ϕsi rdrdθ

]

/

[

∫ 2π

0

∫ r|ρ=R

a
(ϕsi )

2 r drdθ

]

, j = 1, 2, · · ·

(5.40)

Applying the velocity initial conditions to Eq. (5.37), we get

∞
∑

i=1

Bci ω
c
i ϕ

c
i +

∞
∑

j=1

Bsj ω
s
j ϕ

s
j = H(r, θ) (5.41)

By repeating the same procedure as above, the remaining modal coefficients can be obtained

as

Bci =
1

ωci

[

∫ 2π

0

∫ r|ρ=R

a
H(r, θ)ϕci rdrdθ

]

/

[

∫ 2π

0

∫ r|ρ=R

a
(ϕci )

2 r drdθ

]

, i = 1, 2, · · ·

(5.42)

Bsj =
1

ωsi

[

∫ 2π

0

∫ r|ρ=R

a
H(r, θ)ϕsi rdrdθ

]

/

[

∫ 2π

0

∫ r|ρ=R

a
(ϕsi )

2 r drdθ

]

, j = 1, 2, · · ·

(5.43)

The integrals in Eqs. (5.39), (5.40), (5.42) and (5.43) are of the form

∫ 2π

0

∫ g(θ)

a
f(r, θ)drdθ

where g(θ) = r|ρ=R =
√

R2 − d2 sin2 θ − d cos θ. Through change of variables x = θ and
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r = [(1− y)a+ yg(x)] the integrals are changed to the form

∫ 2π

0

∫ 1

0
f [(1− y)a+ yg(x), x] [g(x)− a]dydx =

∫ 2π

0

∫ 1

0
h(y, x) dy dx

The integrations are performed numerically using a n-point Gaussian quadrature rule as

follows

∫ 2π

0

∫ 1

0
h(y, x) dy dx =

π

2

∫ 1

−1

∫ 1

−1
h(ζ, η) dη dζ =

π

2

n
∑

i=1

n
∑

j=1

wiwj h(ζi, ηj) (5.44)

where x = π(η+1), y = (ζ+1)/2, wi and wj are the weights, and ζi and ηj are the integra-

tion points respectively. Since Bessel functions are very sensitive to numerical integration,

accurate computation of the modal coefficients requires correct choice of the number of inte-

gration points in Eq. (5.44). An algorithm for properly choosing n and accurately computing

the modal coefficients is described by the flow chart in Fig. 5.8, which is self-explanatory.

115



116

Stack all modes: symmetric and antisymmetric

ϕi, i = 1, 2, · · · , ℓ

i = 1

Choose ϕi

Select n

Check for orthogonality
Iij =

∫∫

ϕi ϕj rdrdθ

∀j 6= i

Iij = 0 ?

Increase n

Mode ϕi
symmetric ?

i = ℓ ?i = i+ 1

Compute modal coefficients

using Eqs. (5.40) and (5.43)

Compute modal coefficients

using Eqs. (5.39) and (5.42)

Stop

No

No

No

Yes

YesYes

Figure 5.8: Algorithm for computing modal coefficients



5.5.2 Numerical Results Verifying Orthogonality

In Section 5.4.2 we showed that results in the literature provide reasonably accurate eigen-

frequencies but the associated mode shapes are inaccurate and as such do not satisfy the

boundary conditions. In this section we show that these inaccurate modes do not satisfy the

orthogonality condition; the accurate modes satisfy the orthogonality conditions but requires

proper choice of the number of integration points n. The number of integration points can

be chosen properly by following the algorithm described by the flowchart in Fig. 5.8. We

consider constrained membranes with a/R = 0.5 and d/a = 0.6, 0.8, 1.0; these cases were

presented in Table 5.2. For this membrane, the third symmetric mode ϕc3 and fourth sym-

metric mode ϕc4 are used to check for orthogonality. In particular, we check the orthogonality

of ϕc4 (accurate mode shape) with both ϕc3 (accurate mode shape) and ϕc3 (inaccurate mode

shape). The results are presented in Table 5.3.

Table 5.3: Checking orthogonality between the accurate and inaccurate third symmetric
mode and the accurate fourth symmetric mode of constrained membranes with a/R = 0.5
and d/a = 0.6, 0.8, 1.0. The inaccurate third symmetric mode is underlined

d/a 0.6 0.8 1.0

n < ϕc3, ϕ
c
4 > < ϕc3, ϕ

c
4 > < ϕc3, ϕ

c
4 > < ϕc3, ϕ

c
4 > < ϕc3, ϕ

c
4 > < ϕc3, ϕ

c
4 >

4 0.0091 0.0149 -0.0221 -0.0465 0.0560 -0.3005
8 -0.0366 -0.0821 -0.0621 -0.1769 -0.0171 0.1715
12 0.0142 -0.0080 -0.0069 -0.0514 0.0107 0.0327
16 0.0056 0.0081 0.0187 0.0427 0.0026 0.0222
20 -0.0013 0.0011 -0.0080 0.0184 0.0030 0.0244
24 -0.0015 0.0000 -0.0061 0.0025 0.0019 0.0058
28 -0.0016 0.0000 -0.0068 0.0002 0.0021 0.0006
32 -0.0016 0.0000 -0.0067 0.0000 0.0022 0.0000

To show the orthogonality between symmetric-symmetric and symmetric-antisymmetric

modes, we consider a membrane with a/R = 0.1 and d/a = 0, 4, 8. The results are shown in

Table 5.4. It is clear that accurate computation of the mode shapes require proper choice of
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the number of integration points n. The number of integration points depends on the size

and location of the constraint and can be chosen using the flowchart in Fig. 5.8. It may be

mentioned that symmetric-antisymmetric modes are orthogonal for small values of n and

higher values of n are required to satisfy orthogonality between symmetric-symmetric and

antisymmetric-antisymmetric modes.

Table 5.4: Number of integration points n required to achieve orthogonality between
symmetric-symmetric and symmetric-antisymmetric modes of constrained membranes with
a/R = 0.1 and d/a = 0, 4, 8

d/a 0 4 8

n 〈ϕc4, ϕ
c
5〉 〈ϕc4, ϕ

s
5〉 〈ϕc4, ϕ

c
5〉 〈ϕc4, ϕ

s
5〉 〈ϕc4, ϕ

c
5〉 〈ϕc4, ϕ

s
5〉

4 -0.0013 0.0000 -0.3009 0.0000 -0.0746 0.0000
8 0.0013 0.0000 0.2686 0.0000 0.0215 0.0000
12 0.0000 0.0000 -0.1659 0.0000 0.0293 0.0000
16 0.0000 0.0000 -0.0741 0.0000 0.0182 0.0000
20 0.0000 0.0000 -0.0086 0.0000 0.0224 0.0000
24 0.0000 0.0000 -0.0004 0.0000 0.0100 0.0000
28 0.0000 0.0000 0.0000 0.0000 0.0020 0.0000
32 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5.5.3 Simulation of Free Vibration

In this section, we simulate the motion of a constrained membrane subjected to an initial

condition for different cases. The membrane is assumed to have the following specifications

R = 1 m,

µ = 0.25 kg.m−2,

T = 1 N.m−1
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• Case 1 : a/R = 0.12 and d/R = 0.88 and the initial conditions are represented as

H(r, θ) = 0, G(r, θ) = 0.1(r − a)8(r − r(θ)), r ≥ a

where r(θ) =
√

R2 − d2 sin2 θ − d cos θ

y

x x

z z

(a) (b)

Figure 5.9: Initial displacement of the membrane described in case 1

y

x x

z z

(a) (b)

Figure 5.10: Initial displacement of the membrane described in case 2

• Case 2 : a/R = 0.12 and d/R = 0.66 and the initial conditions are represented as

H(r, θ) = 0, G(r, θ) =
3

5
(r − a)(r − r(θ))8, r ≥ a

• Case 3 : In this case, the membrane is assumed to be unconstrained and vibrating in
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its first mode. As it passes through the mean position, the constraint is applied and

held fixed for all future time with a/R = 0.1 and d/R = 0.4. The position and velocity

of the unconstrained membrane are given by the expressions

Z(r, θ, t) = J0(k
c
1ρ) cosω

c
1 t, Ż(r, θ, t) = −ωc1 J0(k

c
1ρ) sinω

c
1 t

where ρ ,
√

r2 + d2 + 2rd cos θ is defined in Fig. 5.1, kc1R = 2.405 and is obtained

from the first zero of the Bessel function J0, ω
c
1 ,

√

T/ρ kc1, and t = 0 denotes the

initial time when the membrane is released from rest. At t = π/2ωc1, the membrane

passes through the mean position and the constraint is applied. The initial conditions

for the constrained membrane are therefore

G(r, θ) = 0, H(r, θ) =











−ωc1 J0(k
c
1ρ) : a < r ≤

√

R2 − d2 sin2 θ − d cos θ

0 : 0 ≤ r ≤ a

The dynamics of the membrane was simulated using 16 symmetric and 16 antisymmetric

modes. Fig. 5.11 shows the evolution of the motion for the membrane in case 1, where the

isometric and side views are showed for each snapshot and the beginning of the motion is

showed in Fig. 5.11 (a) and continues in Fig. 5.11 (b). The simulation of membrane in case

2 is shown in Fig. 5.12, where the motion starts in Fig. 5.12 (a) and continues in Fig. 5.12

(b) and Fig. 5.12 (c) respectively. Fig. 5.13 shows the evolution in motion of the membrane

described in case 3 over one cycle of its motion . It is clear from the snapshots that both

internal and external boundary conditions are satisfied and this is indicative of the accuracy

of the simulations.
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xx
y yy y

z zz z

(a) (b)

Figure 5.11: Snapshots of the membrane described in case 1 during one second of its vibration
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yyy

zzz

(a) (b) (c)

Figure 5.12: Snapshots of the membrane described in case 2 during one second of its vibration
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y
y

x
x

z zz

Figure 5.13: Snapshots of the membrane described in section case 3 during one cycle of its

vibration
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Chapter 6

Vibration Control of a Circular

Membrane Using An Areal Constraint

6.1 Introduction

In this chapter we use the accurate dynamics analysis and simulation procedure presented in

Chapter 5 to investigate the effect of constraint application and removal on the energetics of

a vibrating membrane. The constraint is assumed to be circular and applied suddenly at an

arbitrary time during free vibration of the membrane, which is vibrating in its fundamental

mode. The energetics of the membrane due to constraint application is investigated for

different sizes and locations of the constraint. This chapter is organized as follows: A formal

problem statement and a list of assumptions are provided in Section 6.2. Assuming that the

membrane is vibrating in its fundamental mode, we use analytical methods in Section 6.3

to study the dynamics of the membrane and change in its energy after application of the

constraint. The dynamics of the membrane and change in its energy after removal of the
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constraint is studied in Section 6.4. In Section 6.5 we present numerical simulation results for

one cycle of constraint application and removal - these results indicate that the energy of the

membrane can increase or decrease depending on the time of application of the constraint.

In Section 6.6 we repeat the analyses of Sections 6.3 and 6.4 for arbitrary initial conditions

of the membrane and develop different control strategies to suppress the vibration of the

membrane. Numerical simulation results are then presented to demonstrate the efficacy of

the control strategies.

6.2 Problem Statement and Assumptions

Consider a circular membrane of radius R initially vibrating freely in its fundamental mode

as shown in Fig. 6.2 (a). Assume a circular areal constraint of radius a to be applied instan-

taneously near the boundary of the membrane as shown Fig. 6.2 (b) at some arbitrary time

t = tc during the motion of the membrane. The constraint is assumed to be applied during

membrane motion at a distance d from the center of the membrane as shown in Fig. 6.2 (c).

We investigate the effect of applying the constraint on the total energy under the following

simplifying assumptions:

A1. The membrane is homogeneous and has a constant mass per unit area denoted by µ.

The tension in the membrane is equal to T and remains constant at all times.

A2. The membrane is initially vibrating in its fundamental mode. This assumption will

be removed and a general displacement profile of the membrane will be assumed in

Section 6.6.

A3. The amplitude of oscillation of the membrane is small and therefore the equation of
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motion of the membrane can be expressed by the standard relation in polar coordinates

[75]

∂2Z0
∂ρ2

+
1

ρ

∂Z0
∂ρ

+
1

ρ2
∂2Z0
∂ψ2

=
1

c2
∂2Z0
∂t2

(6.1)

where Z0 = Z0(ρ, ψ, t) is the transversal displacement of the freely vibrating membrane

and c2 = T/µ. The distance ρ is measured from the center of the membrane, and ψ is

the angle that ρ makes with the x-axis as shown in Fig. 6.1.

x

y

ρ

ψ

P

R

Figure 6.1: Circular membrane with radius R .

A4. The membrane has no internal damping, i.e., the energy of the membrane will remain

conserved during free vibration.

A5. At time t = tc, the areal constrained is applied instantaneously as shown in Fig. 6.2

(b), at a distance d from the center of the membrane. The application of the constraint

imposes an areal zero-displacement over a small region of the vibrating membrane. The

displacement and velocity of the membrane over the remaining region of the membrane

remains unchanged immediately after application of the constraint.
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A6. At time t = tr, tr > tc, the constraint is instantaneously moved back to its original

position, i.e., the constraint is removed to the outside of the membrane. The displace-

ment and velocity of the membrane over the unconstrained region of the membrane

remains unchanged immediately after removal of the constraint.

x

x

y

y

ρ r

a
θψ

R

d

P

Γo

Γi

O

(a)

(b)

(c)

z

moving constraint

t = tc

Figure 6.2: (a) A vibrating membrane (b) A zero-displacement circular constraint is applied

to the membrane at time t = tc over a small region of the membrane (c) Geometry of the

membrane and the applied constraint after constraint application
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6.3 Effect of Applying Constraint on the Dynamics of

the Membrane

6.3.1 Equation of motion after application of the constraint

The geometry of the membrane and the constraint is shown in Fig. 6.2 (c). To investigate

the dynamics of the constrained membrane, we transform the coordinates of membrane from

(ρ, ψ) to (r, θ) where both of the coordinates systems are shown in Fig. 6.2 (c), and the

governing differential equation can be written as

∂2Zc

∂r2
+

1

r

∂Zc
∂r

+
1

r2
∂2Zc

∂θ2
=

1

c2
∂2Zc

∂t2
(6.2)

where Z = Z(r, θ, t) is the transversal displacement. The distance r is measured from the

center of the inner circle, O, and θ is the angle that r forms with the x-axis as shown in

Fig. 6.2. The accurate dynamics analysis of the constrained membrane in (r, θ) coordinates

is discussed in detail in Chapter 5 and the general solution is obtained in Eq. (5.37) as:

Zc(r, θ, t) =
∞
∑

i=0

ϕci (k
c
i r, θ)(A1i cosω

c
i t+B1i sinω

c
i t)

+

∞
∑

j=1

ϕsj(k
s
jr, θ)(A2j cosω

s
i t+B2j sinω

s
j t) (6.3)

where ϕci (k
c
i r, θ) and ϕ

s
j(k

s
jr, θ) are the symmetric and antisymmetric shape functions, which

are presented in Eqs. (5.19) and (5.23). Also, kci and k
s
j are the symmetric and antisymmetric

eigenfrequencies of the constrained membrane. The model coefficients A1i, B1i, A2j and B2j

are to be determined by applying the initial conditions.
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6.3.2 Initial Conditions

The membrane is initially vibrating in the its first mode as:

Z0(ρ, ψ, t) = A0J0(k00ρ) cosω00t (6.4)

where A0 is the maximum amplitude of oscillation. The constraint is applied at an arbitrary

time tc and therefore the initial conditions are

A1. The displacement of the membrane can be written as follows

Zc(r, θ, 0) =











A0 J0(k00ρ) cosω00 tc : a < r ≤
√

R2 − d2 sin2 θ − d cos θ

0 : 0 ≤ r ≤ a

(6.5)

Applying the initial conditions to Eqs. (6.3) and (6.4), we get

∞
∑

i=0

A1iϕ
c
i (k

c
i r, θ) +

∞
∑

j=1

A2jϕ
s
j(k

s
j r, θ) = A0J0(k00ρ) cosω00tc (6.6)

To obtain the coefficients A1j and A2j , we use the orthogonality conditions between

modes, where the orthogonality conditions between distinct modes are obtained in

Eq. (5.35). By multiplying Eq. (6.6) with ϕci and integrating both sides over the effec-

tive membrane surface and using the orthogonality condition presented in Eq. (5.35),

we get

A1i =
A0 cosω00tc

κc

∫ 2π

0

∫ r(θ)

a
J0(k00ρ) ϕ

c
i r dr dθ (6.7)
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where

κc =

∫ 2π

0

∫ r(θ)

a
(ϕci )

2r dr dθ (6.8)

Multiplying Eq. (6.6) with ϕsj and integrating both sides over the effective membrane

surface and using the orthogonality conditions in Eq. (5.35), gives

A2j =
A0 cosω00tc

κs

∫ 2π

0

∫ r(θ)

a
J0(k00ρ) ϕ

s
j r dr dθ (6.9)

where

κs =

∫ 2π

0

∫ r(θ)

a
(ϕsj)

2r dr dθ (6.10)

A2. The velocity of the membrane can be written as follows

∂Zc(r, θ, 0)

∂t
=











∂Z0(ρ, ψ, tc)

∂t
: a < r ≤

√

R2 − d2 sin2 θ − d cos θ

0 : 0 ≤ r ≤ a

(6.11)

⇒

∞
∑

i=0

B1iω
c
i ϕ
c
i +

∞
∑

j=1

B2jω
s
jϕ
s
j = −ω00A0 J0(k00ρ) sinω00tc (6.12)

By multiplying Eq. (6.12) with ϕci and integrating both sides over the membrane sur-

face and using the orthogonality conditions in Eq. (5.35), we get

B1i =
−ω00A0 sinω00tc

ωci κc

∫ 2π

0

∫ r(θ)

a
J0(k00ρ) ϕ

c
i r dr dθ (6.13)
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By multiplying Eq. (6.12) with ϕsi and integrating both sides over the effective mem-

brane surface and using the orthogonality condition presented in Eq. (5.35), we get

B2j =
−ω00A0 sinω00tc

ωsjκs

∫ 2π

0

∫ r(θ)

a
J0(k00ρ) ϕ

s
j r dr dθ (6.14)

6.3.3 Membrane Energy Before Application of Constraint

The total energy of the circular membrane in polar coordinates can be written as1

E =
µ

2

∫∫

A

(

∂Z(r, θ, t)

∂t

)2
r dr dθ

+
T

2

∫∫

A

{

(

∂Z(r, θ, t)

∂r

)2
+

1

r2

(

∂Z(r, θ, t)

∂θ

)2
}

r dr dθ (6.15)

Where µ is the mass per unit area of the membrane and T is the tension per unit length.

The initial energy of membrane can be given by rewriting Eq. (6.15) in (ρ, ψ) coordinates

and with integrating over the membrane area as follows:

E0 =
µ

2

∫ 2π

0

∫ R

0

(

∂Z0(ρ, ψ, t)

∂t

)2
ρ dρ dψ

+
T

2

∫ 2π

0

∫ R

0

{

(

∂Z0(ρ, ψ, t)

∂ρ

)2
+

1

ρ2

(

∂Z0(ρ, ψ, t)

∂ψ

)2
}

ρ dρ dψ (6.16)

1See appendix C
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By differentiating Eq. (6.4) with respect to t, ρ and ψ, we get

∂Z0(ρ, ψ, t)

∂t
= −A0ω0J0(koρ) sinω0t

∂Z0(ρ, ψ, t)

∂ρ
= −A0koJ1(koρ) cosω0t

∂Z0(ρ, ψ, t)

∂ψ
= 0 (6.17)

Inserting Eqs. (6.17) in Eq. (6.16) leads to

E0 =
µ

2

∫ 2π

0

∫ R

0
(−A0ω0J0(koρ) sinω0t)

2 ρ dρ dψ

+
T

2

∫ 2π

0

∫ R

0
(−A0koJ1(koρ) cosω0t)

2 ρ dρ dψ

Note that

∫ R

0
J2n(kρ) ρ dρ =

R2

2

{

J2n(kR)− Jn−1(kR)Jn+1(kR)
}

(6.18)

and J−1(koR) = −J1(koR), ω0 = ck0, T = c2µ, and J0(koR) = 0. Then the total energy

before the constraint application is

E0 =
Tπ

2
(A0k0J1(koR))

2 (6.19)

6.3.4 Membrane Energy After Application of Constraint

In this section we investigate the energy of the membrane after the application of the con-

straint. The equation of membrane motion after the constraint application is obtained by

Zc(r, θ, t) in Eq. (6.3), hence, the total energy of the membrane after constraint application
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can be given by using Eq. (6.15), and integrating over the constrained membrane area as

follows

Ec =
T

2

∫ 2π

0

∫ r(θ)

a

{

(

∂Zc(r, θ, t)

∂r

)2
+

1

r2

(

∂Zc(r, θ, t)

∂θ

)2
}

r dr dθ

+
µ

2

∫ 2π

0

∫ r(θ)

a

(

∂Zc(r, θ, t)

∂t

)2
r dr dθ (6.20)

By differentiating Eq. (6.4) with respect to t, r and θ, we get

∂Zc(r, θ, t)

∂t
=

∞
∑

i=0

ωciϕ
c
i (k

c
i r, θ)(−A1i sinω

c
i t +B1i cosω

c
i t)

+

∞
∑

j=1

ωsjϕ
s
j(k

s
jr, θ)(−A2j sinω

s
i t+B2j cosω

s
j t)

∂Zc(r, θ, t)

∂r
=

∞
∑

i=0

∂ϕci (k
c
i r, θ)

∂r
(A1i cosω

c
i t +B1i sinω

c
i t)

+
∞
∑

j=1

ϕsj(k
s
jr, θ)

∂r
(A2j cosω

s
i t+B2j sinω

s
j t) (6.21)

where,

∂ϕci (k
c
i r, θ)

∂r
=
N+1
∑

m=0

[

βi2m
∂Jm(kci r)

∂r
+ γi2m

∂Ym(kci r)

∂r

]

cosmθ

ϕsj(k
s
jr, θ)

∂r
=

N
∑

m=1

[

β
j
1m

∂Jm(ksjr)

∂r
+ γ

j
1m

∂Ym(ksjr)

∂r

]

sinmθ (6.22)

133



where, in general,

∂Jm(kr)

∂r
=
k

2

[

Jm−1(kr)− Jm+1(kr)
]

∂Ym(kr)

∂r
=
k

2

[

Ym−1(kr)− Ym+1(kr)
]

(6.23)

Also,

∂Zc(r, θ, t)

∂θ
=

∞
∑

i=0

∂ϕci (k
c
i r, θ)

∂θ
(A1i cosω

c
i t+B1i sinω

c
i t)

+
∞
∑

j=1

∂ϕsj(k
s
jr, θ)

∂θ
(A2j cosω

s
i t+B2j sinω

s
j t)

(6.24)

where

∂ϕci (k
c
i r, θ)

∂θ
=

N
∑

m=0

−m
[

βi2mJm(kci r) + γi2mYm(kci r)
]

sinmθ

∂ϕsj(k
s
jr, θ)

∂θ
=

N+1
∑

m=1

m
[

β
j
1mJm(ksjr) + γ

j
1mYm(ksjr)

]

cosmθ (6.25)

The total energy of the membrane after the application of the constraint Ec can be calculated

by inserting the equations (6.21-6.25) into Eq. (6.20) and integrating numerically. The work

done by the constraint Wd and the percentage change in energy are expressed as:

Wd = Ec − E0 (6.26)

%Change in Energy =
Ec − E0
E0

× 100 (6.27)
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6.4 Effect of Removing Constraint on the Dynamics of

the Membrane

6.4.1 Equation of motion after removal of the constraint

We analyse the dynamics of the membrane after constraint removal. Assume the constraint is

removed at an arbitrary time t = tr after application of the constraint, such that tr > tc > 0.

When the constraint is removed, the membrane vibrates freely according to the equation of

motion of an unconstrained membrane. The equation of motion of simple unconstrained

membrane can be obtained by solving the PDE in Eq. (6.1). Assume Z̄f (ρ, ψ, t) is the

transverse displacement of the membrane after the removal of the constraint, and the gov-

erning differential equation becomes

∂2Z̄f

∂ρ2
+

1

ρ

∂Z̄f

∂ρ
+

1

ρ2

∂2Z̄f

∂ψ2
=

1

c2

∂2Z̄f

∂t2
(6.28)

The general solution of Eq. (6.28) is given by using the separation of variables and it can be

written as2

Z̄f (ρ, ψ, t) =

∞
∑

q=0

∞
∑

i=0

Jq(kqiρ)(Cqi cosωqit+Dqi sinωqit) cos qψ

+
∞
∑

q=1

∞
∑

i=1

Jq(kqiρ)(Eqi cosωqit + Fqi sinωqit) sin qψ (6.29)

where kqi represents the eigenfrequencies of the unconstrained membrane and ωqi = c kqi

and the model coefficients Cqi,Dqi, Eqi and Fqi are constants to be determined by applying

2See Appendix A.2
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the initial conditions. When the constraint is removed at t = tr, previous motion of the

constrained membrane represents the initial conditions for the upcoming membrane motion

after constraint removal. Thus, the initial conditions can be written as:

x

y

(a)

(b)

Zc(r, θ, t), t < tr

Z̄f (ρ, ψ, t), t ≥ tr

z

constraint is removed

t ≃ tr

Figure 6.3: (a) A vibrating constrained membrane (b) The circular constraint is removed

from the membrane at time t ≃ tr

A1. The displacement of the membrane can be obtained by applying the initial conditions

to Eqs. (6.3) and (6.29) as follows

Z̄f (ρ, ψ, 0) =











Zc(r, θ, tr) : a < r ≤
√

R2 − d2 sin2 θ − d cos θ

0 : 0 ≤ r ≤ a

(6.30)
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then

Zc(r, θ, tr) = C00J0(k00ρ) +
∞
∑

q=1

∞
∑

i=1

Jq(kqiρ)
(

Cqi cos qψ + Eqi sin qψ
)

(6.31)

Note that the orthogonality conditions for unconstrained membrane are:

∫ R

0
Jq(kqiρ)Jq(kqjρ)ρdρ = 0, i 6= j

∫ 2π

0
sinmψ sin qψ dψ =

∫ 2π

0
cosmψ cos qψ dψ = 0, q 6= m

∫ 2π

0
cosmψ sin qψ dψ = 0, ∀q,m (6.32)

By multiplying Eqs. (6.31) by J0(k00ρ) and integrating both sides over the membrane

surface and using the orthogonality condition presented in Eq(6.32), we get

C00 =
1

2π △00

∫ 2π

0

∫ R

0
Zc(r, θ, tr)J0(k00ρ) ρ dρ dψ (6.33)

where △00=

∫ R

0
J20 (k00ρ) ρ dρ, and note that from Eq. (6.18) we can write

△qi=

∫ R

0
J2n(kqiρ) ρ dρ =

R2

2

{

J2n(kqiR)− Jn−1(kqiR)Jn+1(kqiR)
}

(6.34)

By repeating the procedure above after multiplying Eq. (6.31) by Jq(kqjρ) cosmψ and
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Jq(kqjρ) sinmψ respectively, and integrating over the membrane area, we get

Cqi =
1

π △qi

∫ 2π

0

∫ R

0
Zc(r, θ, tr)Jq(kqiρ) cos qψ ρ dρ dψ

Eqi =
1

π △qi

∫ 2π

0

∫ R

0
Zc(r, θ, tr)Jq(kqiρ) sin qψ ρ dρ dψ (6.35)

A2. The velocity of the membrane can be written as

∂Z̄f (ρ, ψ, 0)

∂t
=











∂Zc(r, θ, tr)

∂t
: a < r ≤

√

R2 − d2 sin2 θ − d cos θ

0 : 0 ≤ r ≤ a

(6.36)

this gives

D00 ω00 J0(k00ρ) +

∞
∑

q=1

∞
∑

i=1

ωqiJq(kqiρ)
(

Dqi cos qψ + Fqi sin qψ
)

=
∂Zc(r, θ, tr)

∂t

(6.37)

Following the procedure in which the coefficients in Eqs. (6.33) and (6.35) were ob-

tained, we get

D00 =
1

2πω00 △00

∫ 2π

0

∫ R

0

∂Zc(r, θ, tr)

∂t
J0(k00ρ) ρ dρ dψ

Dqi =
1

πωqi △qi

∫ 2π

0

∫ R

0

∂Zc(r, θ, tr)

∂t
Jq(kqiρ) cos qψ ρ dρ dψ

Fqi =
1

πωqi △qi

∫ 2π

0

∫ R

0

∂Zc(r, θ, tr)

∂t
Jq(kqiρ) sin qψ ρ dρ dψ (6.38)

One can note that the variables in the integrations in Eqs. (6.33), (6.35),and (6.38) are

different (ρ, ψ and r, θ ). In addition, the integrations should be performed by excluding the
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area covered by the constraint because it has zero displacement and zero velocity. Excluding

the constrained area by using (ρ, ψ ) coordinates is quite challenging. Therefore, we change

the order of the integrations and the variables of the integration will be (r, θ) coordinates

system only. We can unify the integrations variables by using the relationships between (ρ, ψ

and r, θ ), where from Fig. 6.2 we can write

ρ =
√

d2 + r2 + 2 r d cos θ, ψ = cos−1
(

d+ r cos θ

ρ

)

(6.39)

The area of the membrane is constant and can be obtained by

Area =

∫ 2π

0

∫ r(θ)

0
r dr dθ =

∫ 2π

0

∫ R

0
ρ dρ dψ

Using Eq. (6.39) and integrating over the area with (r dr θ) instead of (ρ dρ dψ) we can get

∫ 2π

0

∫ R

0
h(r, θ, tr) J0(k00ρ) ρ dρ dψ +

∫∫

Ac

0 J0(k00ρ) ρ dρ dψ

=

∫ 2π

0

∫ r(θ)

a
h(r, θ, tr) J0(k00ρ(θ)) r dr dθ

where h(r, θ, tr) could be Zc(r, θ, tr) or
∂Zc(r, θ, tr)

∂t
.
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6.4.2 Membrane Energy After Removal of Constraint

The total energy of the membrane after constraint removal can be obtained by using Eq. (6.15),

and integrating over the unconstrained membrane area

Er =
T

2

∫ 2π

0

∫ R

0







(

∂Z̄f (ρ, ψ, t)

∂ρ

)2

+
1

ρ2

(

∂Z̄f (ρ, ψ, t)

∂ψ

)2






ρ dρ dψ

+
µ

2

∫ 2π

0

∫ R

0

(

∂Z̄f (ρ, ψ, t)

∂t

)2

ρ dρ dψ (6.40)

The derivatives of Z̄f (ρ, ψ, t) with respect to ρ ,ψ and t are obtained from Eq. (6.29) as

follows

∂Z̄f (ρ, ψ, t)

∂ρ
=

∞
∑

q=1

∞
∑

i=1

∂Jq(kqiρ)

∂ρ

{

fcqi(t) cos qψ + fsqi(t) sin qψ
}

∂Z̄f (ρ, ψ, t)

∂ψ
=

∞
∑

q=1

∞
∑

i=1

qJq(kqiρ)
{

−fcqi(t) sin qψ + fsqi(t) cos qψ
}

∂Z̄f (ρ, ψ, t)

∂t
=

∞
∑

q=1

∞
∑

i=1

Jq(kqiρ)

{

dfcqi(t)

dt
cos qψ +

dfsqi(t)

dt
sin qψ

}

(6.41)

where

∂Jm(kqiρ)

∂ρ
=

kqi

2

[

Jm−1(kqiρ)− Jm+1(kqiρ)
]

fcqi(t) = Cqi cosωqit+Dqi sinωqit

fsqi(t) = Eqi cosωqit + Fqi sinωqit

dfcqi(t)

dt
= ωqi

(

−Cqi sinωqit+Dqi cosωqit
)

dfsqi(t)

dt
= ωqi

(

−Eqi sinωqit+ Fqi cosωqit
)

(6.42)
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By inserting Equations (6.43) and (6.42) in Eq. (6.40), and using the numerical integration

described in Eq. (5.44), the total energy of the membrane after constraint removal can be

obtained.

6.5 Simulation of One Cycle of Constraint Application

and Removal

In this section we present numerical simulations for the circular vibrating membrane sub-

jected to a sudden areal constraint for different time of constraint applications tc and con-

straint sizes and locations. Consider a circular membrane oscillating in the first mode as

follows:

Z0(ρ, ψ, t) = A0J0(k00 ρ) cos(ω00)t (6.43)

where the specifications of the membrane are :

R = 1 m, µ = 0.25 kg/m2, T = 1 N/m

and k00 = 2.4048 m −1, A0 = 0.1 m and ω00 = 4.8096 rad/sec

From ω00 we can obtain the time period which is 1.3064 sec and Fig. 6.3 (a) shows the

shape of the membrane at different instants of time over the interval t ∈ [0, 0.6532] sec. The

membrane is in its maximum potential energy configuration at t = 0 sec and t = 0.6532 sec,

and maximum kinetic energy configuration at t = 0.3266 sec when the membrane passes

through the mean position.

We first present simulation results for percentage change in energy due to constraint of
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size a/R = 0.1 and locations d/R ∈ {0.0, 0.6, 0.9} and tc ∈ [0.24, 0.42] sec as shown in

Fig. 6.4 (b). The simulation is performed using 16 symmetric and 16 antisymmetric modes.

The results, shown in Fig. 6.4 (b), indicate that the energy of the membrane increases if the

constraint is applied when the membrane is far away from the mean position, and decreases

if the constraint is applied when the membrane is near its mean position, irrespective of

the value of d. Same result can be observed for different constraint size (a/R = 0.12)

and locations d/R ∈ {0.0, 0.44, 0.88} as shown in Fig 6.4 (c). The results also show that

larger constraint causes more change (increase/decrease) in the total energy, as expected.

Similar observation were made in our previous work on vibration suppression of string using

a scabbard-like actuator, presented in Chapter 3.

The results can be explained as follows. When the constraint is applied and an area

of the membrane is brought to rest, the kinetic energy of the seized membrane is removed.

However, the potential energy in the membrane is increased due to sudden change in the

slope adjacent to the constraint. The potential energy increases more as the constraint is

applied when the membrane is far away form the mean position, and hence, the total energy

is increased. When the constraint is applied as the membrane passes through the mean

position, the change in potential energy is almost zero and the kinetic of the area seized by

the constraint is lost, hence the total energy of the membrane is reduced. In addition, the

kinetic energy is proportional to the area of the membrane which is covered by the constraint,

and therefore, larger constraint size causes higher energy reduction when the constraint is

applied as the membrane passes through the mean position. That is because the velocity of

the constrained area is higher when the it is located close to the center of the membrane. For

the same value of tc, a smaller value of d results in a higher decrease in total energy when
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the constraint is applied as the membrane passes through the mean position. The general

statement of energy reduction condition can be stated as: The maximum energy reduction

occurs when the constraint is applied as the membrane passes through its mean position .

The energy loss due to the loss of kinetic energy of the membrane area which is covered by

the constraint . We can use this condition to apply and remove the constraint sequentially,

or move the constraint over the membrane area to reduce the total energy of the membrane.

Next we investigate the change in energy of the membrane due to removal of the con-

straint. We compute the values of Ec and Er, which equal the energy of the membrane

before and after removal of the constraint respectively. Using Eqs. (6.20), Ec is computed

for 16 symmetric and 16 antisymmetric modes. We fix the value of the energy before the con-

straint removal Ec and we compute Er from Eq. (6.40) with varying the number of Fourier

coefficients. From this data (see Table 6.1) it is clear that Ec and Er approach each other

as the number of Fourier coefficients increase. Although the data corresponds to the specific

case of d/R = 0.88, a/R = 0.12 and tr = 0.4 sec, the same trends can be observed for all

values of d/R, a/R and tr. In the next section we investigate the effect of application of

the constraint on the dynamics of the membrane with arbitrary initial conditions such that

sequential application and removal of constraints can be explored as a strategy for vibration

suppression.

Table 6.1: Comparison of values of Er with a fixed value of Ec = 2.4455 J for constrained
membrane with d/R = 0.88, a/R = 0.12 and tr = 0.4 sec

No. of Fourier coefficients Er (J) error %

10 2.4176 -1.1428
30 2.4335 -0.4903
64 2.4365 -0.3683
80 2.4391 -0.2604
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6.6 Sequential Application and Removal of Constraints

6.6.1 Dynamics of membrane with arbitrary initial conditions

The analysis in this chapter thus far is based on a membrane that initially vibrates in its

the fundamental mode. We extend the analysis to include arbitrary initial vibration of the

membrane. The equation of motion of unconstrained membrane that includes all possible

initial conditions can be written as

Zo(ρ, ψ, t) =

∞
∑

q=0

∞
∑

i=0

Jq(kqiρ)(αqi cosωqit+ βqi sinωqit) cos qψ

+
∞
∑

q=1

∞
∑

i=1

Jq(kqiρ)(Γqi cosωqit+ δqi sinωqit) sin qψ (6.44)

which is similar to Eq(6.29) and satisfies the boundary conditions of unconstrained mem-

brane, and the coefficients αqi, βqi, Γqi and δqi are known. By using Eq. (6.15), the initial

energy of the membrane can be written as

Ēo =
T

2

∫ 2π

0

∫ R

0

{

(

∂Zo(ρ, ψ, t)

∂ρ

)2
+

1

ρ2

(

∂Zo(ρ, ψ, t)

∂ψ

)2
}

ρ dρ dψ

+
µ

2

∫ 2π

0

∫ R

0

(

∂Zo(ρ, ψ, t)

∂t

)2
ρ dρ dψ (6.45)

where it is identical to Er in Eq. (6.40), and the same calculation procedure for Er can be

used to obtain Eo. The equation of motion of the membrane after constraint application

can be written as

Z̄c(r, θ, t) =
∞
∑

i=0

ϕ̄ci (k
c
i r, θ) f

c
i (t) +

∞
∑

j=1

ϕ̄sj(k
s
jr, θ) f

s
j (t) (6.46)
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where fci (t) = Ā1i cosω
c
i t + B̄1i sinω

c
i t and fsj (t) = Ā2j cosω

s
i t + B̄2j sinω

s
j t. Equation

(6.46) is identical to Eq. (6.3) except that ϕci , ϕ
s
j , A1i, A2i, B1j , and B2j are replaced by

ϕ̄ci , ϕ̄
s
j , Ā1i, Ā2i, B̄1j , and B̄2j . The coefficients Ā1i, Ā2i, B̄1j , and B̄2j are determined

from the initial conditions by repeating the procedure used in Section 6.3.1. Without loss of

generality, the time is reset from t = tc to t = 0, and the displacement and velocity of the

membrane given by

Z̄c(r, θ, 0) = Zo(ρ, ψ, tc)

∂Z̄c(r, θ, 0)

∂t
=

∂Zo(ρ, ψ, tc)

∂t
(6.47)

By using Eqs. (6.44), (6.46) and (6.47) and following the same procedure used in Section

6.3.1, we can write

Ā1i =
1

κc

∫ 2π

0

∫ r(θ)

a
Zo(ρ, ψ, tc) ϕ̄

c
i r dr dθ

Ā2j =
1

κs

∫ 2π

0

∫ r(θ)

a
Zo(ρ, ψ, tc) ϕ̄

s
j r dr dθ

B̄1i =
1

ωci κc

∫ 2π

0

∫ r(θ)

a

∂Zo(ρ, ψ, tc)

∂t
ϕ̄ci r dr dθ

B̄2j =
1

ωsj κs

∫ 2π

0

∫ r(θ)

a

∂Zo(ρ, ψ, tc)

∂t
ϕ̄sj r dr dθ (6.48)

The total energy of the membrane after constraint application is

Ēc =
T

2

∫ 2π

0

∫ r(θ)

a

{

(

∂Z̄c(r, θ, t)

∂r

)2
+

1

r2

(

∂Z̄c(r, θ, t)

∂θ

)2
}

r dr dθ

+
µ

2

∫ 2π

0

∫ r(θ)

a

(

∂Z̄c(r, θ, t)

∂t

)2
r dr dθ (6.49)
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6.6.2 Control strategies for vibration suppression

Similar to the vibrating string subjected to a constraint applied by a scabbard-like (see

Chapter 3), the simulation results in Section 6.5 show that the maximum reduction in en-

ergy of the membrane is achieved if the constraint is applied when the displacement of the

membrane is zero over the area r ≤ a. For arbitrary initial conditions, the displacement of

the membrane can be uniformly zero over a small area adjacent to the constraint at some

given time, and therefore, energy reduction can be ensured by choosing a small distance

that the constraint moves. We investigate three different control strategies for the vibration

suppression of a circular membrane. These different control strategies are presented in next

three sections.

6.6.3 Simple Application and Removal of Constraint

In this section we investigate energy dissipation due to simple application and removal of the

areal constraint. The constraint is applied at a distance d from the center of the membrane

during its motion, and then removed to its original location outside the membrane as shown

in Fig 6.5 (b). We use the energy reduction condition from Section 6.5 to compute the

total energy of the vibrating membrane through sequential application and removal of the

constraint. Assume that the membrane is initially vibrating freely with arbitrary initial

conditions as in Eq. (6.44). A set of sensors are mounted on the mechanism applying the

constraint to sense the displacements of the membrane of the circular area Ω̄ to which the

constraint will be applied, see Fig. 6.5 (b). When the displacement of the sensed area Ω̄ is

approximately zero, the constraint is applied, and after some arbitrary time tr the constraint

is removed and the procedure will be repeated.
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Figure 6.5: Sensing mechanism for simple application and removal of constraint (a) side view. (b) top view



The procedure of simple application and removal of the constraint can be summarized as

follows:

A1. The membrane initially vibrates freely and its equation of motion is given by Zp(ρ, ψ, t) =

Zo(ρ, ψ, t), where Zo(ρ, ψ, t) is presented in Eq. (6.44) and p denotes the number of

times the constraint has applied. The initial energy E0 of the membrane is computed

by using Eq. (6.16).

A2. When the displacement of sensed area Ω̄ is ≈ 0, then t = t
(p)
c and the constraint is

applied.

A3. Reset the time t = 0 and find the equation of the motion of the membrane after con-

straint application Z̄c(r, θ, t) which is presented in Eq. (6.46). The procedure presented

in Section 6.6.1 is used to obtain the model coefficients as follows :

Ā
(p)
1i =

1

κc

∫ 2π

0

∫ r(θ)

a
Zp(ρ, ψ, t

(p)
c ) ϕ̄ci r dr dθ

Ā
(p)
2j =

1

κs

∫ 2π

0

∫ r(θ)

a
Zp(ρ, ψ, t

(p)
c ) ϕ̄sj r dr dθ

B̄
(p)
1i =

1

ωci κc

∫ 2π

0

∫ r(θ)

a

∂Zp(ρ, ψ, t
(p)
c )

∂t
ϕ̄ci r dr dθ

B̄
(p)
2j =

1

ωsjκs

∫ 2π

0

∫ r(θ)

a

∂Zp(ρ, ψ, t
(p)
c )

∂t
ϕ̄sjr dr dθ

where κc and κs are presented in Eqs. (6.8) and (6.10) respectively.

A4. Compute the total membrane energy after constraint application Ē
(p)
c by using Eq. (6.49)
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and then compute the energy reduction by

E% =
Eo − Ē

(p)
c

Eo
× 100 (6.50)

A5. Let the constrained membrane vibrate freely (starting from t = 0 ) and let the con-

straint be removed after some arbitrary time t = t
(p)
r .

A6. Reset the time t = 0, and use the previous displacement and velocity of the con-

strained membrane Z̄c(r, θ, t
(p)
r ) as initial conditions to find the equation of motion

after constraint removal Z̄
(p+1)
f

(ρ, ψ, t), which is presented in Eq. (6.29). The proce-

dure presented in Section 6.4.1 is used to calculate the modal coefficients, as follows

C
(p+1)
00 =

1

2π △00

∫ 2π

0

∫ R

0
Z̄
(p)
c (r, θ, t

(p)
r ) J0(k00ρ) ρ dρ dψ

C
(p+1)
qi =

1

π △qi

∫ 2π

0

∫ R

0
Z̄
(p)
c (r, θ, t

(p)
r ) Jq(kqiρ) cos qψ ρ dρ dψ

E
(p+1)
qi =

1

π △qi

∫ 2π

0

∫ R

0
Z̄
(p)
c (r, θ, t

(p)
r ) Jq(kqiρ) sin qψ ρ dρ dψ

D
(p+1)
00 =

1

2πω00 △00

∫ 2π

0

∫ R

0

∂Z̄
(p)
c (r, θ, t

(p)
r )

∂t
J0(k00ρ) ρ dρ dψ

D
(p+1)
qi =

1

πωqi △qi

∫ 2π

0

∫ R

0

∂Z̄
(p)
c (r, θ, t

(p)
r )

∂t
Jq(kqiρ) cos qψ ρ dρ dψ

F
(p+1)
qi =

1

πωqi △qi

∫ 2π

0

∫ R

0

∂Z̄
(p)
c (r, θ, t

(p)
r )

∂t
Jq(kqiρ) sin qψ ρ dρ dψ

A7. Update the equation of the unconstrained membrane motion by setting Zp(ρ, ψ, t) =

Z̄
(p+1)
f

(ρ, ψ, t) and increase the counter , where p = p+ 1 and go to step 2.
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Figure 6.6: Flowchart for simple application and removal of constraint strategy



Note that simple constraint application and removal requires computing the eigenfrequencies

and mode shapes for only one time and storing it and using it offline during sequential

application and removal of constraint. A flowchart for the procedure described in this section

is shown in Fig 6.6.

6.6.4 Radial Constraint Application

In this section we study effect of moving the constraint radially on the energy of the mem-

brane. The constraint is first applied near the membrane, boundary at a distance d1 from the

center of the membrane and then moved towards the center of the membrane at a distance

d2, where d2 < d1 and so on till the constraint reaches a prescribed distance dp such that

dp < · · · < d2 < d1 as shown in Fig. 6.7 (b). Thereafter, the constraint is moved back to a

distance dp−1 and then dp−2 and so on till the constraint comes back to its original location

at a distance d1. The sensing mechanism for this case is shown in Fig. 6.7, where the sensors

record the displacement of the area Ω̄ which lies on the path of the constraint movement (on

X-axis). The case of radial constraint motion is more complicated than the simple constraint

application and removal case. The change of the constraint location implies computation

of eigenfrequencies and mode shapes for each application distance d during the constraint

movement. When the constrained is moved from its location at d1 to its location at d2, the

coordinate system changes, see Fig. 6.8. As a result, computation of modal coefficients of the

new location requires integration over the entire membrane area excluding both constraint

areas Ω̄1 and Ω̄2 . This is because Ω̄1 represents an area of zero initial displacement and

velocity for the new constraint location at d2 and the upcoming motion is restricted to the

area outside Ω̄2.
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It is quite difficult to exclude both Ω̄1 and Ω̄2 mathematically, and therefore we use

an alternative method by storing the initial conditions of the previous motion (d1 location

with r1, θ1 coordinates system) in the (ρ, ψ) coordinates system then transfer the initial

conditions into new coordinates r2, θ2 which are associated with the new constraint location

d2. The procedure of the constraint movement can be summarized as follows:

A1. The membrane is initially vibrates freely and the equation of motion Zo(ρ, ψ, t) is

presented in Eq. (6.44). The initial energy E0 of the membrane is computed by using

Eq. (6.16).

A2. When the displacement of sensed area Ω̄1 is ≈ 0, then t = t
(1)
c and the constraint is

applied.

A3. Reset the time t = 0 and find the equation of the motion of the membrane after

constraint application Z̄c(r1, θ1, t) which is presented in Eq. (6.46) with replacing (r, θ)

by (r1, θ1). The procedure presented in Section 6.6.1 is used to obtain the model

coefficients at constraint location d1 as follows

Ā
(1)
1i =

1

κ
(1)
c

∫ 2π

0

∫ r(θ1)

a
Zo(ρ, ψ, t

(1)
c ) (ϕ̄ci )

(1) r1 dr1 dθ1

Ā
(1)
2j =

1

κ
(1)
s

∫ 2π

0

∫ r(θ1)

a
Zo(ρ, ψ, t

(1)
c ) (ϕ̄sj)

(1) r1 dr1 dθ1

B̄
(1)
1i =

1

(ωci )
(1)κ

(1)
c

∫ 2π

0

∫ r(θ1)

a

∂Zo(ρ, ψ, t
(1)
c )

∂t
(ϕ̄ci )

(1) r1 dr1 dθ1

B̄
(1)
2j =

1

(ωsj )
(1)κ

(1)
s

∫ 2π

0

∫ r(θ1)

a

∂Zo(ρ, ψ, t
(1)
c )

∂t
(ϕ̄sj)

(1) r1 dr1 dθ1

Where the subscript (1) indicates that the calculations are associated with constraint
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location d1. Set the counter p = 1.

A4. Compute the total membrane energy after constraint application Ē
(p)
c by using Eq. (6.49)

and then compute the energy reduction by using Eq. (6.50).

A5. Let the constrained membrane vibrate freely and when the displacement of sensed

area Ω̄p+1 is ≈ 0, then t = t
(p)
r and the constraint is removed. The initial conditions

are stored in the (ρ, ψ) coordinates system by setting the time t = 0, and finding

the equation of motion after constraint removal Z̄
(p)
f

(ρ, ψ, t) which is presented in

Eq. (6.29). By using similar procedure to that presented in Section 6.4.1, the modal

coefficients of the unconstrained motion can be obtained as

C
(p)
00 =

1

2π △00

∫ 2π

0

∫ R

0
Z̄
(p)
c (rp, θp, t

(p)
r ) J0(k00ρ) ρ dρ dψ

C
(p)
qi =

1

π △qi

∫ 2π

0

∫ R

0
Z̄
(p)
c (rp, θp, t

(p)
r ) Jq(kqiρ) cos qψ ρ dρ dψ

E
(p)
qi =

1

π △qi

∫ 2π

0

∫ R

0
Z̄
(p)
c (rp, θp, t

(p)
r ) Jq(kqiρ) sin qψ ρ dρ dψ

D
(p)
00 =

1

2πω00 △00

∫ 2π

0

∫ R

0

∂Z̄
(p)
c (rp, θp, t

(p)
r )

∂t
J0(k00ρ) ρ dρ dψ

D
(p)
qi =

1

πωqi △qi

∫ 2π

0

∫ R

0

∂Z̄
(p)
c (rp, θp, t

(p)
r )

∂t
Jq(kqiρ) cos qψ ρ dρ dψ

F
(p)
qi =

1

πωqi △qi

∫ 2π

0

∫ R

0

∂Z̄
(p)
c (rp, θp, t

(p)
r )

∂t
Jq(kqiρ) sin qψ ρ dρ dψ

where △qi is presented in Eq. (6.34).

A6. Transfer the initial conditions stored in (ρ, ψ) coordinates system (from step 5) to

(rp+1, θp+1) which represents the coordinates system of the new constraint location

at dp+1. Reset the time t = 0 and find the equation of the motion of the membrane
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after constraint application Z̄c(rp+1, θp+1, t) which is presented in Eq. (6.46) with

replacing (r, θ) by (rp+1, θp+1). The procedure presented in Section 6.6.1 is used to

obtain the model coefficients at constraint location dp+1, except the initial conditions

are considered at t = 0 instead of t = tc as follows

Ā
(p+1)
1i =

1

κ
(p+1)
c

∫ 2π

0

∫ r(θp+1)

a
Z̄
(p)
f

(ρ, ψ, 0) (ϕ̄ci )
(p+1) rp+1 drp+1 dθp+1

Ā
(p+1)
2j =

1

κ
(p+1)
s

∫ 2π

0

∫ r(θp+1)

a
Z̄
(p)
f

(ρ, ψ, 0) (ϕ̄sj)
(p+1) rp+1 drp+1 dθp+1

B̄
(p+1)
1i =

1

Σc

∫ 2π

0

∫ r(θp+1)

a

∂Z̄
(p)
f

(ρ, ψ, 0)

∂t
(ϕ̄ci )

(p+1) rp+1 drp+1 dθp+1

B̄
(p+1)
2j =

1

Σs

∫ 2π

0

∫ r(θp+1)

a

∂Z̄
(p)
f

(ρ, ψ, 0)

∂t
(ϕ̄sj)

(p+1) rp+1 drp+1 dθp+1

Where Σs = (ωsj )
(p+1)κ

(p+1)
s and Σc = (ωci )

(p+1)κ
(p+1)
c . The subscript (p + 1)

indicates the calculations of mode shapes and eigenfrequencies are performed when the

constraint at dp+1.

A7. Update last equation of the constrained membrane motion to be initial motion for the

next constraint location by setting Z̄c(rp, θp, t) = Z̄c(rp+1, θp+1, t) and define the

new constraint location dp+2 and go to step 4. Note that for each constraint location,

the integrations require the following relationship

ρ =
√

d2p + r2p + 2 r2p d
2
p cos θp, ψ = cos−1

(

dp + rp cos θp

ρ

)

A flowchart for the procedure described in this section is shown in Fig. 6.9.

157



158

Start

t = 0

t = 0simulate Zo(ρ, ψ, t)

Yes

Yes

No

No

ZΩ̄o ≃ 0 ?

t = t+∆t

t = t+∆t

tc = t

set initial conditions

set initial conditions

set initial conditions
Zo(ρ, ψ, tc) and Żo(ρ, ψ, tc)
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6.6.5 Circumferential Constraint Application

In this section we study vibration suppression in the membrane due to circumferential motion

of the constraint. The constraint is first applied on the X-axis near the membrane boundary

at a distance d from the center of the membrane and then the constraint is moved along

a circular path around the membrane center at location of (d, φ1) from the center of the

membrane, where φ1 > 0. Thereafter, the constraint is moved further to new location on the

circular path at (d, φ2) such that φ2 > φ1 till the constraint reaches a prescribed location at

(d, φp) such that φp > · · · > φ2 > φ1 as shown in Fig. 6.11. When the constraint location

is at (d, φ1), the eigenfrequencies and the mode shapes of symmetric and antisymmetric

modes should be computed according to the inclined coordinates system (x1, y1) as shown

Fig. 6.11.

Similar to the case of radial constraint motion, the case of circumferential constraint motion

is more complicated than the simple constraint application and removal method. When the

constraint is moved from location (d, 0) to the new location (d, φ1),the coordinate system

changes as shown in Fig. 6.11. As a result and similar to radial constraint motion, computing

of modal coefficients of the new location requires integration over the entire membrane area

while excluding the two constraints areas Ω̄0 and Ω̄1 . That is because Ω̄0 represents an

area of zero initial displacement and velocity for the new constraint location at (d, φ1) and

the upcoming motion is restricted to the area outside Ω̄1. Similar to the radial motion case,

we use an alternative method by storing the initial conditions of the previous motion (d, 0

location with r0, θ0 coordinates system) in the (ρ, ψ) coordinates system then transfer it to

the new constraint location ( d, φ1 location with r1, θ1 coordinates system).
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The procedure of the constraint movement can be summarized as follows

A1. The membrane is initially vibrates freely and the equation of motion Zo(ρ, ψ, t) is

presented in Eq. (6.44). The initial energy E0 of the membrane is computed by using

Eq. (6.16).

A2. When the displacement of sensed area Ω̄0 is ≈ 0, then t = t
(0)
c and the constraint is

applied.

A3. Reset the time t = 0 and find the equation of the motion of the membrane after

constraint application Z̄c(r0, θ0, t) which is presented in Eq. (6.46) with replacing (r, θ)

by (r0, θ0). The procedure presented in Section 6.6.1 is used to obtain the model

coefficients at constraint location (d, φ0)=(d, 0) as follows

Ā
(0)
1i =

1

κ
(0)
c

∫ 2π

0

∫ r(θ0)

a
Zo(ρ, ψ, t

(0)
c ) (ϕ̄ci )

(0) r0 dr0 dθ0

Ā
(0)
2j =

1

κ
(0)
s

∫ 2π

0

∫ r(θ0)

a
Zo(ρ, ψ, t

(0)
c ) (ϕ̄sj)

(0) r0 dr0 dθ0

B̄
(0)
1i =

1

(ωci )
(0)κ

(0)
c

∫ 2π

0

∫ r(θ0)

a

∂Zo(ρ, ψ, t
(0)
c )

∂t
(ϕ̄ci )

(0) r0 dr0 dθ0

B̄
(0)
2j =

1

(ωsj )
(0)κ

(0)
s

∫ 2π

0

∫ r(θ0)

a

∂Zo(ρ, ψ, t
(0)
c )

∂t
(ϕ̄sj)

(0) r0 dr0 dθ0

Where the subscript (0) indicates that the calculations are performed at the location

(d, φ0) where φ0 = 0. Set the counter p = 1.

A4. Compute the total membrane energy after constraint application Ē
(p)
c by using Eq. (6.49)
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and then compute the energy reduction by using Eq. (6.50)

A5. When the displacement of sensed area Ω̄p is≈ 0, the constraint is removed and t = t
(p)
r .

and the initial conditions are stored in (ρ, ψ) coordinates system by setting the time

t = 0, and finding the equation of motion after constraint removal Z̄
(p)
f

(ρ, ψ, t) which

is presented in Eq. (6.29). By using similar procedure to that presented in section

6.4.1, the modal coefficients of the unconstrained motion can be obtained as

A6. Transfer the initial conditions stored in (ρ, ψ) coordinates system (from step 5) to

(rp+1, θp+1) which represents the coordinates system of the new constraint location

at (d, φp+1).

A7. Reset the time t = 0 and find the equation of the motion of the membrane after

constraint application Z̄c(rp+1, θp+1, t) which is presented in Eq. (6.46) with replacing

(r, θ) by (rp+1, θp+1). The procedure presented in Section 6.6.1 is used to obtain

the model coefficients at constraint location d, φp+1, except the initial conditions are

considered at t = 0 instead of t = tc as follows

Ā
(p+1)
1i =

1

κ
(p+1)
c

∫ 2π

0

∫ r(θp+1)

a
Z̄
(p)
f

(ρ, ψ, 0) (ϕ̄ci )
(p+1) rp+1 drp+1 dθp+1

Ā
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2j =

1

κ
(p+1)
s

∫ 2π

0

∫ r(θp+1)

a
Z̄
(p)
f

(ρ, ψ, 0) (ϕ̄sj)
(p+1) rp+1 drp+1 dθp+1

B̄
(p+1)
1i =

1

Σc

∫ 2π

0

∫ r(θp+1)

a

∂Z̄
(p)
f

(ρ, ψ, 0)

∂t
(ϕ̄ci )

(p+1) rp+1 drp+1 dθp+1

B̄
(p+1)
2j =

1

Σs

∫ 2π

0

∫ r(θp+1)

a

∂Z̄
(p)
f

(ρ, ψ, 0)

∂t
(ϕ̄sj)

(p+1) rp+1 drp+1 dθp+1

where Σs = (ωsj )
(p+1)κ

(p+1)
s and Σc = (ωci )

(p+1)κ
(p+1)
c .
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A8. Update last equation of the constrained membrane motion to be initial motion for the

next constraint location by setting Z̄c(rp, θp, t) = Z̄c(rp+1, θp+1, t) and define the

new constraint location (d, φp+1) and go to step 4. A flowchart for the procedure

described in this section is shown in Fig 6.12. Note that for each constraint location,

the integrations require the following relationship

ρ =
√

d2 + r2p + 2 r2p d
2 cos θp, ψ = cos−1

(

d+ rp cos θp

ρ

)

+ φp

6.6.6 Numerical simulations

In this section we present numerical simulations for the three control strategies presented in

Sections (6.6.3), (6.6.4) and (6.6.5). For all of the three control strategies we assume that

the membrane is initially vibrating in its fundamental mode and the equation of motion is

Z0(ρ, ψ, t) = A0J0(k00 ρ) cos(ω00)t, where, k00 = 2.4048 m −1, A0 = 0.1 m and ω00 =

4.8096 rad/sec and the specifications of the membrane and constraint are :

a

R
= 0.12, R = 1 m, µ = 0.25 kg/m2, T = 1 N/m

We simulate 10 cycles of constraint application and removal for all of the three control

strategies with 16 symmetric and 16 antisymmetric modes. First, we simulate one cycle of

constraint application and removal for the simple application and removal of the constraint

strategy presented in Section 6.6.3 with d/R = 0.88, i.e the constraint is adjacent to the

boundary. The constraint is applied when the sensed area Ω̄p passes through the mean

position and removed when Ω̄p at its maximum amplitude.
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Figure 6.12: Flowchart for circumferential application of constraint strategy, for each p increment, new constraint location
(angle φp) is defined and the eigenfrequencies and mode shapes are calculates at this location



In the redial constraint application strategy discussed in Section 6.6.4, the constraint is

moved radially forward (toward the membrane center) and backward (toward the outer

boundary). At the beginning, the constraint is applied at the earliest instant of time adjacent

to the outer membrane boundary i.e. at a distance d/R = 0.88 when the forward sensors

record approximately zero displacements and the constrained membrane continues vibrating

freely. Next earliest instant of time when the forward sensors record zero displacements, the

constraint is moved forward to a distance d/R = 0.66 (the previous location is adjacent to

the next location) and process is repeated till the constraint reaches a distance d/R = 0.44

and then the constraint is moved backward gradually till it reaches the outer boundary

at a distance d/R = 0.88 in similar way by using the records of backward sensors. The

circumferential constraint application strategy discussed in Section 6.6.5 is simulated with

an angular increments of φ = 2 tan−1(a/d) with d/R = 0.88 and a/R = 0.12, where the

constraint moves circumferentially adjacent to the outer boundary of the membrane. At

the beginning, the constraint is applied at the earliest instant of time adjacent to the outer

membrane boundary i.e. at a distance d/R = 0.88 then the constraint is moved counter-

clockwise incrementally, that is the next constraint location is adjacent to the previous

constraint location whereφ = 15.53◦.

Figure 6.14 shows displacement and percentage energy loss E% of the membrane at the end of

the first cycle, 6 cycles and after completion of 10 cycles of constraint application and removal

for the three control strategies. Table 6.2 shows comparison between the three constraint

application strategies. It is clear form the data that the simple constraint application and

removal strategy results in significantly higher reduction in energy in comparison to radial

and circumferential constraint application. Although constraint removal does not change
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the overall energy of the membrane, the configuration of the membrane at the time of

constraint removal determines how energy of the constrained membrane is redistributed over

the entire membrane area; and this has a significant effect on the rate of energy reduction in

subsequent cycles of constraint application. Figure 6.13 shows the snapshots of the first cycle

of constraint application and removal. It can be seen clearly that the removal of constraint as

the the membrane in its maximum displacement, generates a bump that implies excitation of

higher modes similar to our observation in the case of string vibration presented in Chapter

3. Exciting higher modes implies increasing of the velocities distribution over some small

areas that is implicitly included on the area of the membrane. The energy lost is proportional

to the kinetic energy of constrained area Ω, and the kinetic energy is proportional to the

velocity of Ω, therefore, exciting higher modes increases the velocity over the area Ω which

implies increasing in the kinetic energy and, hence, the energy lost is higher.

Table 6.2: Comparison of percentage energy loss of the membrane for the three different
constraint applications strategies (A) simple (B) radial (C) circumferential, over 10 constraint
applications

No. 1 2 3 4 5 6 7 8 9 10

(A) 0.305 2.247 4.425 6.000 8.110 10.278 12.102 14.035 16.834 17.180

(B) 0.305 1.203 2.236 2.945 3.289 5.479 6.692 7.182 9.292 11.548

(C) 0.305 0.498 0.606 0.844 0.867 1.251 1.158 1.295 1.3635 1.483

The energy reduction in radial constraint application is less than the simple application

strategy but higher than the circumferential motion strategy. This can be explained as

follows; in the radial and circumferential motion, the removal time tr can not be chosen

arbitrary like the simple application and removal case. Rather, in radial and circumferential

constraint motion the constraint is moved when the sensor record zero displacement on the

adjacent area, in fact each constraint motion step in these two cases represents application to
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the new constraint location and removal for the previous constraint location simultaneously.

Hence, exciting higher modes is not guaranteed in these two cases, as a result the total

energy reduction will depend on the kinetic energy stored in constrained part. Furthermore,

the velocity over the area Ω increases inherently when the constraint approaches toward

the center of the membrane. Hence, in the radial constraint application case the energy is

reduced due to velocity increasing over the constrained area. In the circumferential motion

case the amount of kinetic energy removed by the constraint applications is small for two

reasons. First, the velocity over the area to be constrained Ω near the boundary is inherently

low, as a result, the amount of the kinetic energy of Ω is small. Second, the choosing of the

constraint removal time tr is not arbitrary like the simple case, i.e the constraint is moved

when the membrane is at the minimum deformation and therefore higher modes are not

excited.

168



t = 0 sec
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Figure 6.13: Snapshots of one cycle for simple constraint application and removal strategy
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E%= 0.0 s t = 0.0

E%= 0.305 t = 0.34 s

E%= 10.278 t = 3.67 s

E%= 17.180 t = 6.25 s

E%= 5.479 t = 4.03 s
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E%= 1.251 t = 4.11 s
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Figure 6.14: Displacement and percentage energy loss E% of the membrane at the end of the
first cycle, 6 cycles and after completion of 10 cycles of constraint application and removal
for cases; simple, radial and circumferential applications of constraint
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Chapter 7

Conclusion Remarks and Future Work

In this dissertation, we investigated the vibration control of continuous systems, namely

string and circular membrane, using boundary constraint. The problem of vibrating string

subjected to fixed constraint represented by a rigid obstacle located at one boundary is in-

vestigated first. The energy dissipation in the string due to wrapping around the obstacle is

investigated and it is shown that the energy dissipation can be increased by changing the ori-

entation of the obstacle, where the obstacle is considered as passive mechanism. Second, the

problem of vibrating string subjected to moving constraint is investigated. The constraint

is represented by a scabbard that is applied and removed at one of the string boundaries.

The effect of application and removal of the constraint on the total energy of the string is

investigated. The results show that the total energy can be reduced based on the time of

constraint application. Based on energy reduction condition, a semi-active control strategy

is presented to suppress the string vibration by applying and removing the constraint se-

quentially. The semi-active control strategy is verified experimentally and the results from

experiment and simulation matched well.
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The vibration control of circular membrane using areal constraint is investigated third in

two parts. The first part includes investigating the accuracy of the dynamics of circular

membrane with the presence of eccentric areal constraint for arbitrary initial conditions.

The second part includes investigation of the effect of application and removal of the areal

constraint on the energy of the membrane. The results show that the total energy can be re-

duced by applying the constraint as the membrane passes through the mean position. Based

on energy reduction condition, three different semi-active control strategies are presented

and efficacy of each strategy is investigated. In the next sections we discuss the entire work

with details.

7.1 Vibration of a String Wrapping and Unwrapping

Around an Obstacle

In Chapter 2 we investigated the problem of a string vibrating against a smooth obstacle.

The obstacle is located at one of the boundaries and the string is assumed to wrap and

unwrap around the obstacle during vibration. Assuming linear behavior of the string, an

analytical model was developed for computing its geometry at each time step by bookkeeping

the energy. The wrapping of the obstacle is modeled by a series of perfectly inelastic collisions

between the obstacle and adjacent segments of the string and unwrapping is assumed to be

energy conserving. The geometry of the string is determined iteratively starting from an

initial configuration where the string is vibrating in a single mode and is not in contact with

the obstacle. The obstacle can be regarded as a passive mechanism for vibration suppression

in which the energy lost during each cycle of oscillation depends on the energy content of
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the string at the beginning of the cycle. Numerical simulation results are provided for the

string vibrating in different modes for circular- and elliptic-shaped obstacles. The loss of

energy is found to be greater for higher modes of oscillation and for obstacles that induce

greater length of wrapping.

Since the energy dissipation is proportional to the length of string wrapping around the

obstacle, the energy dissipation can be increased by adding another obstacle at the boundary

of the string. Also, the obstacle geometry can have potential non-linear effect on the vibration

of the string. Another non-linearity effect can be presented due to the large amplitude of the

string vibration or due to inhomogeneity of the mass distribution along the string. Further

investigation on the non-linearity effect lies in the scope of our future work.

7.2 Semi-Active Control for String Vibration

The dynamics of a vibrating string subjected to a constraint at one boundary is investigated

in Chapter 3. The constraint is applied by a scabbard that moves a small distance along the

mean position of the string. The scabbard is moved instantaneously such that the position

and velocity of the string outside the scabbard is unaffected immediately after application

of the constraint, whereas the length of the string covered by the scabbard is brought to

rest. The constraint is removed by moving the scabbard back to its original position and the

change in energy of the string is investigated for different values of scabbard travel distance

and time of application of the constraint. Analytical and numerical simulation results are

first provided for the string vibrating in the first mode, and then for a more general case

where the string has arbitrary initial conditions. The results show that the energy of the

string can increase or decrease depending on the time of application of the constraint for
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a given distance of travel of the scabbard. This provides the opportunity for semi-active

control of vibration of the string through direct physical interaction, using the scabbard

as an actuator. A simple feedback control strategy is proposed and numerical simulation

results are presented. These results indicate that although removal of the constraint does

not change the energy of the string, the effectiveness of the control strategy depends on the

time of removal of the constraint.

In Chapter 4 we presented an experimental verification to the idea of the scabbard-like

actuator method. The control strategy relies on sequential application and removal of a

zero displacement constraint at one point on the string near its boundary. Application of

the constraint results in rapid dissipation of vibration energy of the string segment that lies

between the point of application of the constraint and the proximal boundary. Removal of

the constraint redistributes the energy of the string over its entire length and allows the

cycle of constraint application and removal to be repeated for suppression of vibration. A

linear model of the string with damping was used to simulate the effect of constraint ap-

plication and removal; the damping in the model was based on experimentally-determined

values. Simulation results showed that a few cycles of constraint application and removal

can suppress the vibration of the string rapidly. This result was corroborated by experiments

using an extension coil spring which behaves like a lightly damped string. The displacement

of the string was sensed using an optical sensor and the constraint was applied by a pair of

solenoids. Both simulation and experimental results establish the efficacy of our simple con-

trol strategy. This simple semi-active control strategies can be used for vibration suppression

of strings and tendons used in space applications such as tensegrity structures where rigid

pre-compressed members (usually bars) are connected by pre-tensioned cables or strings or
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tendons [81].

7.3 Dynamics and Vibration Control of Membrane

Chapter 5 presented investigation on the dynamics of a circular membrane with an internal

eccentric circular areal constraint. The membrane is assumed to be fixed at its outer bound-

ary and the areal constraint is assumed to impose zero displacement over the entire internal

circular area. This problem has been investigated by several researchers but prior efforts

have been limited to solving for the first few eigenfrequencies; the orthogonality property of

the modes have not been established and the procedure for computing the mode shapes or

simulating the dynamics has not been presented. In this chapter we establish the orthog-

onality property of the symmetric and antisymmetric modes of the constrained membrane

and provide a systematic method for computing the eigenfrequencies and mode shapes ac-

curately. It is shown that the number of terms in the series expansion plays a critical role

in accurate computation of the mode shapes. While fewer terms result in truncation errors,

too many terms lead to numerical errors due to high sensitivity of the Bessel functions. An

algorithm is presented to choose the appropriate number of terms and the importance of the

algorithm is demonstrated through examples where fewer or more terms result in accurate

eigenfrequencies but inaccurate mode shapes. The orthogonality conditions established in

this chapter are used to determine modal coefficients for dynamics simulations. This how-

ever requires proper choice of the number of numerical integration points. An algorithm

is presented to determine the appropriate number of numerical integration points which is

shown to depend on the size and location of the areal constraint. Using the two algorithms

for determination of the mode shapes and computation of the modal coefficients, the dy-
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namics of a constrained membrane is accurately simulated; the accuracy of the simulations

can be verified from the boundary conditions. The tools developed for simulation of con-

strained membrane dynamics, presented in this chapter, can be used to study the vibration

of membrane structures and the efficacy of control methodologies for vibration mitigation.

The energetics of circular membrane subjected to eccentric areal constraint is investi-

gated in Chapter 6 . The constraint of radius a is assumed to be applied at a distance d

form the center of the membrane arbitrary time to during the membrane motion. Under the

assumptions of small displacements and linearity, it was shown that application of the con-

straint can increase or decrease the total energy of the membrane depending on the time of

application of the constraint. It was shown that the maximum energy reduction occurs when

the constraint is applied as the membrane passes through the mean position. Furthermore,

larger constraint size causes higher increasing/decreasing in total energy, and higher value of

eccentricity d leads to less energy reduction and vice versa. Cyclic application and removal

of constraint will result in vibration suppression when the constraint is always applied at

times when it removes energy from the membrane.

Since the problem of vibrating membrane is two dimensional problem, the constraint can

be moved in many different directions. Three different constraint movement directions are

investigated for the optimal vibration suppression for the membrane. The three directions

of constraint movement are ; (1) simple application and removal of constraint (2) radial

constraint motion (3) circumferential constraint motion. Among the three constraint mo-

tion strategies, the simple application and removal of constraint is the best strategy where

the energy is reduced significantly with comparison to radial and circumferential constraint

motion. Radial constraint motion reduces energy more than the circumferential constraint
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motion. The methodology can be used for vibration control of membranes and other contin-

uous structures through physical interaction with a relatively small section of the structure

near the boundary. The control mechanisms of our control strategies for the vibrating strings

and membranes are simple and do not require complicated feedback control design, thus, our

semi-active control strategies can be used in many different applications such as large mem-

brane mirror and antennas used in space application. The semi-active control strategies

presented in this work can be modified to be used in some non-linear problems in vibration

of continuous systems and such studies are in the scope of out future work.
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Appendix A

Vibration of Circular Membrane:

Preliminary

A.1 Bessel Functions

One of the varieties of special functions which are encountered in the solution of physical

problems is the class of functions called Bessel functions. They are solutions to a very

important differential equation, the Bessel equation [80] :

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2) = 0 (A.1)

Where n could be any integer (the order of the Bessel function). The Bessel function

could have the following forms:
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Bessel functions of the first kind Jn(x)

Jn(x) =
∞
∑

m=0

(−1)m

m!Γ[m+ n + 1]
(
1

2
x)2m+n (A.2)

Jn(x) =
1

π

∫ π

0
cos(nτ − x sin(τ))dτ. (A.3)

Bessel functions of the second kind Yn(x)

Yv(x) =
Jv(x) cos(vπ)− J−v(x)

sin(vπ)
(A.4)

Where v is not an integer, and for v is an integer n we have

Yn(x) = −
(
1

2
x)−n

π

n−1
∑

k=0

(n− k − 1)!

k!
(
1

4
x2)k +

2

π
ln(

1

2
x)Jn(x)

−
(
1

2
x)n

π

n−1
∑

k=0

[ϕo(k + 1) + ϕo(n+ k + 1)]
(−

1

4
x2)k

k!(n + k)!
(A.5)

Where ϕo is the digamma function.

The first and second kind Bessel function have the following properties

J−n(x) = (−1)nJn(x) (A.6)

Y−n(x) = (−1)nYn(x) (A.7)
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A.2 Vibration of Circular Membranes

Consider a circular membrane of the radius R as shown in Fig. A.3

x

y

ρ

ψ

P

R

Figure A.3: Circular membrane with radius R .

The governing differential equation for the vibrating membrane is given as [75]

∂2Z

∂ρ2
+

1

ρ

∂Z

∂ρ
+

1

ρ2
∂2Z

∂ψ2
=

1

c2
∂2Z

∂t2
(A.8)

Where Z = Z(ρ, ψ, t) is the transversal displacement (perpendicular to the page in Fig. A.3,

and c2 = T/µ. Where T is the tension in the membrane and µ is the mass density per unit

area.

General Solution

The solution for Eq. (A.8) can be obtained by applying separation of the variables.
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Z(ρ, ψ, t) =

∞
∑

m=0

{βm Jm(kρ) + γm Ym(kρ)} {Cm cosmψ +Dm sinmψ} {A cosωt+B sinωt}

(A.9)

Boundary conditions

The boundary conditions are associated with the spatial variables r and ψ, therefore, we

apply the boundary conditions to V (ρ, ψ) only.

A1. At r = 0, V (0, ψ) = {βJm(0) + γYm(0)}{Cm cosmψ +Dm sinmψ}, but Ym(0) = ∞

and it is not suitable because there is finite value for V (0, ψ), which requires that γ = 0.

A2. The membrane is fixed at r = R or V (R,ψ) = {βJm(kR)}{Cm cosmψ+Dm sinmψ} =

0

Now, the only term left to satisfy V (R,ψ) = 0 is the zeros of the Bessel function

Jm(kR). There will be many zeros (intersections with x-axis), let the value of the first

intersection of the Jm(γ) occurs at γm1 and the second intersection at γm2 and so

on. Then knmR = γnm =⇒ knm =
γnm
R .

Then

V (ρ, ψ) =

∞
∑

m=0

∞
∑

n=1

Jm(γmn
ρ

R
){Cmn cosmψ +Dmn sinmψ} (A.10)

and the form of Z(ρ, ψ, t) becomes

Z(ρ, ψ, t) =

∞
∑

m=0

∞
∑

n=1

Jm(γmn
ρ

R
){Tcmn(t) cosmψ + Tsmn(t) sinmψ} (A.11)

where

Tcmn(t) = Amn cosωmnt+Bmn cosωmnt (A.12)
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and

Tsmn(t) = Cmn cosωmnt+Dmn cosωmnt (A.13)

The coefficients Amn, Bmn ,Cmn and Dmn are to be determined by apply the initial con-

ditions and ωmn = cγmn
r

R
. Equation (A.11) represents the eigenfunction of the membrane,

and the eigen frequencies ωnm in Eq. (A.12) can be obtained by ωnm = cknm = cγmn
r

R
,

where γmn can be obtained form the zeros of the Bessel function and table (A.1) shows

some values for γmn.

Figure A.4 shows some different possible shape modes. And it is clear that there are angular

Table A.1: Some values for γmn which is zeros for Bessel function Jm(γnm).

n\m 0 1 2 3 4

1 2.4048 3.8317 5.1356 6.3802 7.5883
2 5.5201 7.0156 8.4172 9.7610 11.0647
3 8.6537 10.1735 11.6198 13.0152 14.3725
4 11.7915 13.3237 14.7960 16.2235 17.6160

and redial nodes, where m refers to number of angular nodes and n refers to number of redial

nodes.
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(a) (b)

(n,m) = (1, 0)

(n,m) = (2, 0)

(n,m) = (3, 0)

(n,m) = (4, 0)

(n,m) = (1, 1)

(n,m) = (2, 1)

(n,m) = (3, 1)

(n,m) = (4, 1)

Figure A.4: Fundamental modes of circular membrane with (a) First four redial nodes and
no angular nodes (b) First four redial nodes and one angular nodes .
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(a) (b)

(n,m) = (1, 2)

(n,m) = (2, 2)

(n,m) = (3, 2)

(n,m) = (4, 2)

(n,m) = (1, 3)

(n,m) = (2, 3)

(n,m) = (3, 3)

(n,m) = (4, 3)

Figure A.5: Fundamental modes of circular membrane with (a) First four redial nodes and
two angular nodes (b) First four redial nodes and three angular nodes .
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Appendix B

Change of Summation Indices

We have the following double summation

∞
∑

m=0

∞
∑

q=−∞

{

β2mJm+q(kR) + γ2mYm+q(kR)
}

Jq(kd) cos(m+ q)ψ = 0 (B.1)

we define n = m+ q, the

∞
∑

m=0

∞
∑

n=−∞

{β2mJn(kR) + γ2mYn(kR)} Jn−m(kd) cos(n)ψ = 0 (B.2)

note that

∞
∑

n=−∞

Hn =

∞
∑

n=0

Hn +

−1
∑

n=−∞

Hn =

∞
∑

n=0

ǫn(Hn +H−n) (B.3)
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where ǫn is defined as

ǫn =











1/2 if n = 0

1 if n > 0

using Eq. (B.5) in Eq. (B.2) leads to

∞
∑

m=0

∞
∑

n=0

{β2mJn(kR) + γ2mYn(kR)} Jn−m(kd) cos(n)ψ

+
{

β2mJ−n(kR) + γ2mY−n(kR)
}

J−n−m(kd) cos(−n)ψ (B.4)

From the properties of Bessel functions, we have

J−ν(x) = (−1)ν Jν(x), Y−ν(x) = (−1)ν Yν(x)

Then Eq. (B.1) finally becomes

∞
∑

m=0

∞
∑

n=0

ǫn {β2mJn(kR) + γ2mYn(kR)}
{

Jn−m(kd) + (−1)mJn+m(kd)
}

cosnψ = 0

(B.5)

For the double summation with sine term, we can use the same procedure to prove that

∞
∑

m=1

∞
∑

q=−∞

{

β1mJm+q(kR) + γ1mYm+q(kR)
}

Jq(kd) sin(m+ q)ψ = 0 (B.6)

can be written as

∞
∑

m=1

∞
∑

n=1

{β1mJn(kR) + γ1mYn(kR)}
{

Jn−m(kd)− (−1)mJn+m(kd)
}

sinnψ = 0

(B.7)
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Appendix C

Energy of Circular Membrane

The total energy of the membrane in Cartesian coordinates is obtained as [82]

E =

∫∫

A

{

µ

2

(

∂Z(x, y, t)

∂t

)2
+
T

2

(

∂Z(x, y, t)

∂x

)2
+
T

2

(

∂Z(x, y, t)

∂y

)2
}

dx dy (C.1)

We have

∂z

∂x
=
∂z

∂r

∂r

∂x
+
∂z

∂θ

∂θ

∂x
=
∂z

∂r
cos θ −

∂z

∂θ

sin θ

r
∂z

∂y
=
∂z

∂r

∂r

∂y
+
∂z

∂θ

∂θ

∂y
=
∂z

∂r
sin θ +

∂z

∂θ

cos θ

r
(C.2)

where r =

√

x2 + y2 and

∂r

∂x
= cos x,

∂r

∂y
= cos y,

∂θ

∂x
= −

sin θ

r
,

∂θ

∂y
=

cos θ

r
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By squaring the equations in Eq. (C.1), we get

(

∂z

∂x

)2
=

(

∂z

∂r

)2
cos2 θ −

1

r

∂z

∂r

∂z

∂θ
cos θ sin θ +

(

∂z

∂θ

)2 sin2 θ

r2
(

∂z

∂y

)2
=

(

∂z

∂r

)2
sin2 θ +

1

r

∂z

∂r

∂z

∂θ
cos θ sin θ +

(

∂z

∂θ

)2 cos2 θ

r2
(C.3)

By adding the equations in Eq. (C.3) we get

(

∂z

∂x

)2
+

(

∂z

∂y

)2
=

(

∂z

∂r

)2
+

1

r2

(

∂z

∂θ

)2

Note that dx dy = r dr dθ, then the energy expression in Eq.(C.1) becomes

E =
µ

2

∫∫

A

(

∂Z(r, θ, t)

∂t

)2
r dr dθ

+
T

2

∫∫

A

{

(

∂Z(r, θ, t)

∂r

)2
+

1

r2

(

∂Z(r, θ, t)

∂θ

)2
}

r dr dθ (C.4)
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