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ABSTRACT 

ASSESSING THE IMPACTS OF CLIMATE CHANGE ON  
BEST MANAGEMENT PRACTICE IMPLEMENTATION STRATEGIES 

By 

Sean Alexander Woznicki 

The effects of climate change on future water availability and water quality are 

not well understood, making the development of watershed management plans difficult 

for decision-makers. Agricultural best management practices (BMPs) are commonly 

implemented to mitigate non-point source (NPS) pollution, but future effectiveness is 

unknown due to climate change. To address these problems, the following research 

objectives were developed: (1) quantify the impacts of climate change on water quantity 

and water quality, (2) assess BMP effectiveness in current and future climate scenarios, 

and (3) determine the reliability of BMPs in future climates by performing a sensitivity 

analysis. The Soil and Water Assessment Tool (SWAT), a physically-based watershed 

model, was coupled with climate change data from the National Center for Atmospheric 

Research (NCAR) Community Climate System Model (CCSM-3) for the Tuttle Creek 

Lake watershed of Kansas and Nebraska. Eight agricultural BMPs were represented 

within the SWAT model framework: conservation tillage, contour farming, filter strips, 

grazing management, native grass, no-tillage, porous gully plugs, and terraces. Results 

indicate that water quantity and pollutant yields will likely increase in future climates. 

Native grass, terraces, and contour farming were determined to have the highest mean 

annual reduction efficiencies for all pollutants in current and future scenarios, while 

porous gully plugs were least efficient. Native grass, filter strips and grazing management 

were the least reliable under all climate scenarios due to high sensitivity.  
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1 INTRODUCTION 

The earth’s climate is changing. Due to increased atmospheric greenhouse gases 

(GHGs) from intensive fossil fuel use, the earth has experienced a warming effect (IPCC, 

2007). According the to the Intergovernmental Panel on Climate Change (IPCC), global 

average surface temperatures have increased by 0.13°C per decade since 1950 (IPCC, 

2007). Furthermore, the IPCC (2007) hypothesizes that global average surface 

temperatures could increase from 1.8°C to 4°C by the end of the 21
st

 depending on the 

extent of future GHG emissions. The potential impacts of these changes on the well-

being of society and the environment are far reaching. Although the extent of the impacts 

of climate change on humanity and the natural world are not completely known, many 

predictions have been made as to its effects. The scale of climate change and its influence 

on society is great: human health, ecosystem health and biodiversity, food production, 

economic growth, tourism, and water resources are among the potential issues impacted 

by climate change in the United States and worldwide (Kovats et al. 2005; Ebi et al. 

2006; Arnell 2004).  

Climate change impacts on human health are generally negative, while low 

income countries are most vulnerable because of their relative inability to adapt and 

implement public health programs (Patz et al., 2002; Haines et al., 2006). As 

temperatures rise, heat waves are expected to increase mortality related to exposure 

during extreme events (Patz et al., 2005). Infectious disease transmission is related to 

climatic factors, including temperature, precipitation and humidity (Haines et al., 2006). 

Changing climate may induce changes in incidence of disease transmission as well as 

geographic distribution of disease vectors (Haines et al., 2006). Ecosystem dynamics 
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have been affected by recent changes in climate. Biodiversity is expected to be negatively 

impacted through reduced habitat suitability and reproduction performance (Hulme 

2005). Many organisms in various geographic regions have been affected and common 

changes are related to timing of spring activities: earlier breeding of birds, spawning of 

amphibians, and flowering of plants (Walther et al., 2002). Species interaction has been 

negatively affected, including predator-prey and plant-insect relationships (Parmesan et 

al., 2006). Climate change has also impacted species distribution, populations, and may 

lead to increased probability of extinction by the mid-21
st

 century (Thomas et al., 2004). 

Food production is expected to be greatly affected by climate change and 

variability. Agriculture is highly sensitive to climatic variations, including temperature, 

precipitation, and carbon dioxide (Howden et al., 2007). Changes in rainfall may lead to 

drought or flooding, while temperature changes alter the growing season; these two 

extreme weather scenarios may result in decreased crop yields, affecting the global food 

security through increasing food prices (Easterling and Apps 2005; Gregory et al. 2005; 

Slingo et al. 2005). Food production is affected by climate change through alterations of 

crop yields and land suitability (Schmidhuber and Tubiello, 2007). Warming may benefit 

crop and pasture yields in temperate regions and decrease yields in tropical and arid 

regions (Tubiello et al., 2007). 

Economic growth and tourism are also affected by future climate changes. It is 

predicted that for most climate change scenarios and most countries, negative climate 

change impacts are likely to reduce the rate of economic growth (Fankhauser and Tol 

2005). Changing lengths and quality of the tourism season has implications for demand 

and seasonality, which may negatively affect profitability of some destinations (Scott et 
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al. 2004). Tourism is very sensitive to climatic variations, and popular destinations may 

become too hot, while other destinations with predominantly cool climates may warm 

and become more desirable globally (Berritella et al., 2004). 

Fresh water is the most important resource in the world to humans, flora, and 

fauna. As global climate change and its effects become a pressing issue, it is important to 

understand the consequences it will have on water quality and quantity issues. Human life 

and well-being depends on having clean water to use for drinking, food production, 

industrial uses, transportation, and recreation, while ecosystems rely on clean water to 

provide life and habitat. The IPCC (2008) predicts that higher water temperatures and 

changes in extremes, such as flood and droughts, are projected to affect water quality and 

intensify forms of water pollutants, including sediments and nutrients (Bates et al. 2008). 

For example, in the United States, the western Great Plains are expected to experience 

decreased streamflows while this area is heavily dependent on regional water supplies for 

sustaining agriculture (Rosenberg et al. 2003). Already rising temperatures in the western 

United States have lead to earlier melting of snow and changing of the timing and amount 

of runoff, which is critical to water resources in the region (Karl et al., 2009). Surface 

water and groundwater quality are expected to be affected by a changing climate (Karl et 

al. 2009).  

Based on the implications changing climate may have on water quantity and 

quality, the goal of this project is to determine the impacts of climate change on water 

quantity and quality in the Tuttle Creek Lake watershed of Kansas and Nebraska. 

Additionally, the project will investigate the effectiveness of agricultural conservation 

practices in current and future climate projections through analysis of their pollution 
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reduction capabilities and sensitivity to change in temperature, precipitation, and 

atmospheric CO2 concentration. 

There are four specific problems (knowledge gaps) that must be addressed when 

planning for future climate change and its impact on water quality and quantity 

1) Uncertainty of water quantity and availability. It is known that climate change 

will affect water quantity and availability on the watershed scale in varying ways for 

different basins. Availability of water for consumption and other economic uses is 

variable and not well understood in detail on a case-by-case basis for individual 

watersheds under future climate scenarios, and research is in its infancy (Jackson et al. 

2001; Hurd et al. 2004; Marshall and Randhir 2008)  

2) Changing magnitudes of NPS pollution. Degradation of water quality is an 

important issue because of predicted changes in hydrologic regimes. Storm events are the 

driving force of nonpoint source (NPS) pollution, and increases or decreases in 

precipitation (annual average and variability) will affect the quantity of pollutants 

entering lakes and rivers. Meanwhile, the type of NPS pollution that is affected by 

climate change will vary from watershed to watershed (Meyer et al. 1999; Murdoch et al. 

2000; Senhorst and Zwolsman 2005; Ficklin et al. 2009). Climate change impacts on 

water quality are poorly understood, and research must be enhanced in this area 

Kundzewicz et al., 2007). 

3) Uncertainty of BMP effectiveness. Current best management practices (BMPs) 

may not be applicable for future climate scenarios. As climate changes, magnitude of 

NPS pollutants may be more extreme within a watershed and current BMPs may not be 

appropriate to treat these conditions (Wilby et al. 2006). The IPCC (2008) has concluded 
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with very high confidence that current water management practices may not be able to 

cope with the impacts of climate change on water supply and water quality (Bates et al. 

2008).  

4) Lack of a decision making tool. There is a need for a decision-making tool to 

understand climate change and its impact on agricultural watersheds (National Research 

Council 2009). Assessments of NPS pollution within a watershed are important for 

implementing effective management strategies (Parajuli et al. 2008; Behera and Panda 

2006; Gitau et al. 2006).  

Therefore, the specific objectives of this project located in the Tuttle Creek Lake 

watershed are as follows: 

1) Determine the impacts of climate change on water quantity and water quality 

2) Assess the effectiveness of BMPs in current and future climate scenarios 

3) Perform a sensitivity analysis of BMP implementation in current and future 

climate scenarios 
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2 LITERATURE REVIEW 

2.1 OVERVIEW 

This literature review describes climate change, its affects on water resources, 

mitigation methods, and the integration of climate models and hydrological models for 

climate change impact assessment studies. The first section describes climate change over 

various geographic scales, development of future global emissions scenarios by the 

IPCC, and methods of integration of climate change data into hydrological models. The 

next section outlines various hydrological models and their applications. Next, the effects 

of climate change on water quantity and water quality are discussed, respectively. 

Finally, methods for mitigating the effects of climate change on water resources are 

detailed. 

2.2 CLIMATE CHANGE 

Humans alter global climate not by the generation of heat in energy usage, but by 

interfering with natural energy flow through changing atmospheric composition (Karl et 

al., 2003). Atmospheric composition is altered by humans through the emission of 

greenhouse gases such as carbon dioxide (CO2) and methane (CH4) due to the burning of 

greenhouse gases (GHGs), known as anthropogenic forcing of the climate system. Global 

concentration of carbon dioxide has increased 31% since the industrial revolution, and 

half of this increase has been since 1965 (Karl and Trenberth, 2003). Anthropogenic 

greenhouse gases affect the natural flow of energy by trapping outgoing radiation 

produced by the earth leaving the atmosphere, which creates a warming effect that is 



 
 

7

observed as an increase in global temperatures (Karl and Trenberth, 2003, National 

Academies 2008). Solomon et al. (2009) has concluded that anthropogenic climate 

change taking place due to increases in CO2 concentration is irreversible for at least one 

thousand years after emissions stop. 

Climate responds to local, regional, and global factors, and climate variability 

generally increases as scale decreases (e.g. the United States climate varies more than the 

average global climate does) (Karl et al., 2009). Therefore, it is important to examine the 

effects of increasing atmospheric concentrations of greenhouse gases on climate at three 

scales before examining watershed scale climate change: globally, nationally (USA), and 

regionally (the Great Plains).  

Additionally, Nackicenovic et al. (2000) developed future greenhouse gas 

emissions scenarios based on how the global economy, environment, and population may 

change to understand how the climate change in the future. These scenarios provide 

alternative futures about the direction that society and the climate may move and are used 

as the driving force behind global climate models (GCMs) that attempt to simulate future 

climate. 

The following sections discuss climate change on the global scale, in the United 

States, and in the Great Plains (which contains the project study area). In addition, future 

greenhouse gas emissions scenarios and approaches for performing climate change 

impact assessments are presented. This section lays the framework for integration of 

climate change projection data into hydrologic models to determine the impacts of 

climate change on water resources. 
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2.2.1 Global Climate Change 

Globally, the IPCC predicts that continuing GHG emissions at or above current 

rates will further warm the Earth and induce many changes in the global climate system 

of the 21
st

 century that are very likely to be larger than those experienced in the previous 

century (Meehl et al., 2007). Heat waves are expected to be more intense and extend over 

larger time periods, while cold spells are projected to decrease in a warmer global climate 

(Meehl et al., 2007). On a daily cycle, daily minimum temperatures are expected to 

increase faster than daily maximum temperatures (Meehl et al., 2007). 

Model outputs regarding global precipitation project that tropical areas around the 

equator will become wetter, midlatitude areas will generally observe decreases in 

precipitation, and conversely, high latitudes will become wetter (Meehl et al., 2007). 

Currently, atmospheric CO2 concentration is about 385 ppm as of 2008, measured at the 

National Oceanic and Atmospheric Administration (NOAA) Mauna Loa Observatory in 

Hawaii, USA (Tans, 2010). As CO2 concentrations in the atmosphere rise to 450-650 

ppm over the next 100 years, dry season- rainfall is expected to decrease significantly 

(20%) for a global mean warming of 2°C in many regions of the world, including 

northern Africa, southern Europe, and western Australia (Solomon et al., 2009). Dry-

season rainfall is also expected to decrease to a lesser extent (10%) for the same global 

mean warming in southwestern North America, eastern South America, and southern 

Africa (Solomon et al., 2009). 
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2.2.2 Climate Change in the United States of America 

Changes in temperature and precipitation in the United States have already been 

observed in the past half-century, likely due to increased greenhouse gas emissions.  In 

the past 50 years, average air temperatures in the U.S. have increased by more than 1°C, 

which has amplified drought severity and extent; annual average precipitation has 

increased by about 5% in that same time period, and about 20% more precipitation has 

fallen in extreme storm events (Karl et al., 2009).  

All of North America is very likely to warm in the 21
st

 century and it is expected 

to exceed the global mean warming (Christensen et al., 2007). At the same time, climate 

responses to increased greenhouse gases are expected to vary greatly by region within the 

United States. Warming is likely to be largest in the winter for the northern United States, 

while summer temperatures are likely to experience the greatest increase in the 

southwest. Depending on GHG emissions throughout the 21
st

 century, average U.S. 

temperature could increase by 2-6°C (Karl et al., 2009). Increases in summer maximum 

temperatures may be as high as 7°C for the southeastern United States (Mearns et al., 

2003). 

In regards to precipitation, projections indicate that the northern United States will 

likely receive more precipitation by the end of the 21
st

 century, while the southwest 

United States will be come drier, although higher confidence exists for winter and spring 

than for summer and fall (Karl et al., 2009). Increases in northern precipitation is due to 

projections foreseeing warm, moist air  from the southeast traveling further north than it 

has in the past, while cold and dry air from the north may not extend as far south as it has 
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previously (Gutowski et al., 2007; Karl et al., 2009). In the southeastern United States, 

climate models have projected significant decreases of 20-30% in summer precipitation 

(Mearns et al., 2003).  

2.2.3 Climate Change in the Great Plains 

Climate change in the Great Plains (consisting of North Dakota, South Dakota, 

Nebraska, Kansas, Oklahoma, Wyoming, Montana, and parts of Colorado, Texas, and 

New Mexico) as defined by the United State Global Research Program (USGCRP) is 

expected to vary widely due to strong seasonal and regional variations in climate (Karl et 

al. 2009).  Currently, climate in the Great Plains is characterized by uniform topography 

and steep gradients in temperature and precipitation:  mean temperatures increase from 

north to south, while annual precipitation increases from south to north and from east to 

west. The Great Plains have experienced increases in average temperature of about 0.8°C 

since the 1960-1979 baseline period (Karl et al. 2009).  

By 2100, temperature increases are expected to be more severe, ranging from 

1.4°C to 7.2°C, depending on future GHG emissions (Karl et al. 2009). Winter 

temperatures are expected to have smaller increases than summer temperatures 

throughout the region (Christensen et al., 2007). Precipitation increases are expected 

mostly in the winter and spring of the northern half of the Great Plains, while 

precipitation decreases are expected for the already arid southern half of the Great Plains 

(Karl et al. 2009). In addition to these changes, variability and extremes of temperature 

and precipitation are expected to increase. Heat waves, droughts, and heavy rainfall are 

projected to be the major factors in future climate change of the 21
st

 century that will 
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adversely affect water resources, agricultural production, and natural resources (Karl et 

al., 2009). 

2.2.4 Emissions Scenarios 

Evolution of GHG emissions in the future is uncertain due to the complexities and 

somewhat ill-understood nature of their driving forces. Influences on atmospheric GHG 

concentrations include population growth, socio-economic development, land use change 

and agricultural productivity, and advancement of technology (Nakićenović et al. 2000). 

In 2001, the IPCC published the Special Report on Emissions Scenarios (SRES) 

developed for the Third Assessment Report by Nakićenović et al. (2000) to provide 

alternative futures of how society and climate may unfold, as well as for use as the 

driving force behind GCMs to develop scenarios for climate change. Climate change 

scenarios created from GCMs are then used for studies that assess the impacts of climate 

change and look for ways to adapt and mitigate climate change. 

Scenarios are snapshots of alternative futures; they cannot be considered 

predictions, but are simply ways in which the future may unfold regarding the global 

economy, social system, and climate. Due to the complexity of the causes of GHG 

emissions, accurate prediction of emissions is impossible (Nakićenović et al., 2000). 

Therefore, a set of scenarios is used to understand future developments of GHG 

emissions. 

SRES scenarios have two main components: a narrative storyline and various 

quantitative scenarios for each storyline. There are four storylines: A1, A2, B1, and B2, 

which all detail different directions in which society, the economy, technology, the 

environment, and policy will progress (Arnell, 2004). 
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2.2.4.1 A1 Storyline 

The A1 storyline and family of scenarios consists of rapid economic development 

and prosperity (Nakićenović et al. 2000; Arnell, 2004; Abbaspour et al., 2009). At the 

same time, population growth is relatively low and technology efficiency increases (Joos 

et al., 2001). Economic relationships change, as distinctions between poor and rich 

countries are minimized. Demographically, A1 suggests smaller families due to a lower 

mortality rate and lower fertility rate. Population will peak at nine billion people around 

the mid-21
st

 century and decline to seven billion by the end of the century. Technology 

change is variable for each scenario within the A1 storyline to depict how energy source 

uncertainty is represented in the future (Arnell, 2004). The global population regards 

environmental issues to be important: environmental quality shifts from a conservation 

focus to management of natural resources and ecosystems services. There are three 

scenarios within this family: A1F1 (fossil fuel intensive energy use), A1B (balance 

between all energy sources), and A1T (extensive use of non-fossil fuel and renewable 

energy technologies). The A1F1 scenario has the highest GHG emissions of any 

storyline/scenario. For the period of 1990-2100, cumulative carbon dioxide emissions for 

the A1F1, A1B, and A1T is projected to be 2189 gigatonnes carbon (GtC), 1499 GtC, 

and 1038 GtC, respectively (Nakićenović et al. 2000). 

2.2.4.2 A2 Storyline 

The A2 storyline and its family of scenarios describe a more divided world than 

the A1 storyline (Nakićenović et al. 2000). Underlying themes include self-reliance and 

local and regional focus regarding economic and environmental issues (Maurer, 2007; 



 
 

13

Githui et al., 2009). Economic development is divided regionally due to lack of trade 

growth and cooperation between nations (Maurer, 2007; Abbaspour et al., 2009). 

Subsequently, per capita economic growth is slow and social and cultural interactions are 

less prevalent on an international scale, which leads to segmented technological 

advancement when combined with slow economic development. Family life is highly 

valued, leading to higher fertility rates and the highest projected population of any SRES 

storyline (Arnell, 2004). In A2, global population reaches 15 billion people by 2100 

(more than double that of the A1 storyline). Capacity for food production must increase 

in the A2 storyline, therefore agricultural production is a substantial focus. High yield 

agriculture reduces soil erosion and water resource pollution that was initially very high. 

Environmental concerns vary by country, and are more prevalent on local and regional 

scales. Energy development is based on the needs and resources of each country: low-

income, resource-rich countries develop more resource-intensive economy and food 

production technology, while high-income, resource-poor countries focus on 

advancement of alternative technology (nuclear or renewable). For the period of 1990-

2100, cumulative carbon dioxide emissions for the A2 scenario are projected to be 1862 

GtC (Nakićenović et al. 2000). 

2.2.4.3 B1 Storyline 

The B1 storyline depicts an ecologically friendly, socially conscious, and 

convergent world (Nakićenović et al. 2000). In the B1 storyline, the world achieves an 

environmentally sustainable economy by the middle of the 21
st

 century (Arnell, 2004). 

Individual life is based on renewable-resource dependency based on clean technology. 
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Economic growth is rapid, but is based on information and services rather than material 

resources (Joos et al., 2001; Maurer, 2007). Internationally, global solutions are used to 

achieve economic, social, and environmental sustainability. Population growth is similar 

to the A1, scenario where global population is at its maximum (nine billion) by 2050 and 

decreases to seven billion by 2100. Low mortality and low fertility is a characteristic of 

B1 due to social and environmental concerns. Industry, governments, the public, and the 

media are more environmentally conscious in regards to economic development 

(Abbaspour et al., 2009). This leads to high environmental quality: pollution prevention 

and material reuse and recycling occurs on every scale, from local to global (Nakićenović 

et al. 2000). Land use change is managed to prevent further ecological damage. Lower 

food requirements allow for low-impact agriculture, while less meat is consumed due to 

increased forested land. Cities are compact and allow for increased public transport; 

wilderness areas are increased as management becomes more important and less 

agricultural land is necessary. Alternative energy is dominant as oil and gas resources 

decline globally and environmental concerns increase (Maurer, 2007; Abbaspour et al., 

2009). Conventional and unconventional gas becomes the cleanest fossil in use during the 

transition between intensive fossil fuel use and renewable energy prevalence. For the 

period of 1990-2100, cumulative carbon dioxide emissions for the B1 scenario are 

projected to be 983 GtC (Nakićenović et al. 2000). 

2.2.4.4 B2 Storyline 

The B2 storyline depicts a divergent world that emphasizes economic, social, and 

environmental sustainability on a local and regional scale (Nakićenović et al. 2000; 

Githui et al., 2009). Decision-making structures are implemented locally rather than 
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internationally (Joos et al., 2001). Economic development is considered intermediate in 

this storyline. Per capita income increases globally and income disparity decreases 

between nations due to community scale focus. Population growth is moderate, reaching 

ten billion people by the end of the 21
st

 century as fertility and mortality slightly decrease 

(Joos et al., 2001; Arnell, 2004). Technological growth is less rapid than in the A1 and 

B1 storylines, although it is greater than in the A2 storyline (Joos et al., 2001). Due to a 

more divergent world, technological research and development is regionally based and 

disparate internationally. Environmental issues are a priority globally, but national 

governments are not as successful as local governments in implementing solutions. Land 

use management is important at the local level, reducing urban sprawl while increasing 

public transportation and decreasing car usage (Nakićenović et al. 2000). Locally grown 

produce is significant, decreasing meat consumption in countries with large populations 

(Nakićenović et al. 2000). Energy type is a function of the natural resources of each 

country. Fossil-fuel technology is abandoned in favor of renewable energy in countries 

that need to use resources more efficiently. By 2100 most countries are still using fossil-

fuel based technology although transition to other sources of energy begins, reducing 

GHG emissions. For the period of 1990-2100, cumulative carbon dioxide emissions for 

the B2 scenario are projected to be 1164 GtC (Nakićenović et al. 2000). 

2.2.5 Climate Impact Assessment Approaches 

To study the impacts of climate change and water resources, construction of 

climate change scenarios is necessary. As defined by Githui et al. (2009), there are four 

general techniques available to accomplish this: (1) climate models, (2) temporal and 
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spatial analogues, (3) incremental scenarios, and (4) extrapolation of historical trends and 

empirical relationships between regional climate and projected global changes. Each 

approach has both advantages and disadvantages, which are explored, along with 

examples of implementation in climate impact assessments, in the following sections. 

2.2.5.1 GCM Approach 

The climate model based approach uses Global Climate Models (GCMs), to 

simulate the response of the global climate system based on changes in atmospheric 

composition (Githui et al., 2009). GCMs, which are the primary tools for predicting 

future climate, are mathematical, computer-based models of the physics, chemistry, and 

biology of the atmosphere, land surface, oceans, and cryosphere and their interactions 

with each other and the sun (Karl and Trenberth, 2003). The difficulty in using GCM 

output is that the coarse resolution of GCMs is often not adequate for the fine spatial 

scale of impact assessments, including hydrology (Stone et al., 2003). Therefore, GCM 

data is often downscaled. Downscaling refers to using fine spatial scale numerical 

atmospheric models (dynamical downscaling) or statistical relationships (statistical 

downscaling) to produce detailed regional or local atmospheric data (Castro et al., 2005). 

Another method of dealing with GCM inadequacies is the delta change method. 

Dynamical downscaling nests a higher resolution regional climate model (RCM) 

within a coarser resolution GCM (Giorgi and Mearns, 1999; Wilby et al., 2002). RCMs 

use a GCM to define atmospheric boundary conditions around a finite domain, within 

which physical dynamics of the atmosphere are modeled at a fine spatial resolution 

(Wilby et al., 2002). Advantages of RCMs is that they can model small scale atmospheric 

features and can explore significance of external forcings such atmospheric-chemistry 
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changes, while disadvantages include high computational demands (restraints on domain 

size, number of experiments, and duration of simulations), and sensitivity to selected 

boundary conditions (such as soil moisture) that initiate experiments (Wilby et al., 2002). 

Statistical downscaling of GCMs fall into three major categories: regression 

methods, stochastic weather generators, and weather typing schemes (Dibike and 

Coulibaly, 2005). Regression-based downscaling techniques use empirical relationships 

between local-scale climate variables (predictands) and large-scale climate variables 

(predictors) to develop regression functions (Dibike and Coulibaly, 2005; Wilby et al., 

2002). Advantages of regression is that it is easy to apply, but it suffers from only being 

able to explain a fraction of observed climate variability (especially when using 

precipitation as the predictand) (Dibike and Coulibaly, 2005; Wilby et al., 2002). 

Stochastic weather generators are statistical models of observed sequences of weather 

variables, otherwise known as complex random number generators that produce output 

that resembles daily weather at a specific location (Dibike and Coulibaly, 2005). 

Advantages of stochastic weather generators include its ability to reproduced observed 

climate statistics and the fact that it has been widely used, while disadvantages are related 

to the arbitrary methods used to define model parameters for future climate conditions 

(Wilby et al., 2002). Weather typing groups local meteorological variables in relation to 

classes of atmospheric circulation, where future regional climate scenarios are 

constructed from samples of the observed variable distributions or by generating 

synthetic sequences of weather patterns using Monte Carlo simulation (Wilby et al., 

2002). Advantages of this method are it logically connects climate at the large scale and 

weather at the local scale, while disadvantages include inadequacy in simulation extreme 
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events and that weather patterns generated rarely agree with the parent GCM (Wilby et 

al., 2002). 

The delta change method computes differences between current and future GCM 

simulations, which are applied to observed time series weather data (Hay et al., 2000). 

This commonly used method adds an expected temperature increase to the observed 

temperature record to obtain a future time series, while precipitation is changed using a 

fraction (Lenderink et al., 2007). The delta change method does not include future 

changes in variability because it adjusts observed time series data, and therefore, the 

number of wet days remains unchanged (Graham, et al., 2007). 

The GCM approach and downscaling methods to developing climate change 

scenarios have been used frequently in watershed scale water quantity and quality 

studies, which are presented in the following.  

Eckhardt and Ulbrich (2003) used the GCM approach to determine the impacts of 

climate change on water quantity in a mountainous German watershed. Using A2 and B1 

SRES scenarios from five GCMs, mean winter and summer temperature and precipitation 

changes on a grid were calculated for 2070-2099. Using a sinusoidal function, annual 

cycles of monthly average temperature and precipitation changes were calculated to 

adjust observed daily time series data.   

Stone et al. (2003) compared two climate change scenarios at different scales 

using a GCM and RCM to asses water yield in the Missouri River basin. The 

Commonwealth Scientific and Industrial Research Organization (CSIRO) GCM was 

used,, which has a spatial scale of 400 km by 500 km. The National Center for 

Atmospheric Research (NCAR) RegCM2 model was used for the RCM, which was 
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driven by CSIRO initial and boundary conditions, where the output grid spacing was 50 

km. Precipitation was found to be more spatially variable for the RCM than for the GCM 

model output. Both simulations were run under a doubling of atmospheric CO2 

concentration. Maximum and minimum temperature change scenarios were created by 

adding the differences between the current climate and future climate projects to 

observed records. Daily precipitation was adjusted by the ratio of the future climate 

projections to the observed records. The authors concluded that using high resolution 

RCM climate change scenarios produced significantly different results regarding water 

yield than those found using coarse scale GCMs. 

Gosain et al. (2006) used RCM data to determine the impact of climate change on 

water resources of 12 watersheds in India. Daily weather data (temperature and 

precipitation) for 1981-2000 and 2041-2060 was generated using the HadRM2 RCM 

from the Hadley Centre and input into a watershed model.  

Jha et al. (2006) used the GCM approach and the incremental approach to perform 

a climate change sensitivity analysis on the Upper Mississippi River Basin streamflows. 

In addition to the incremental approach (detailed in the Incremental Approach below), 

future monthly temperature and precipitation data was obtained from six GCM 

projections under the A2 scenario for 2061-2090: CSIRO-RegCM2, Canadian Climate 

Model (CCC), Center for Climate Study Research (CCSR), Geophysical Fluid Dynamics 

Laboratory (GFDL), CSIRO-Mk2, and Hadley Centre for Climate Prediction and 

Research (HadCM3). Data for each GCM was used as input in the selected watershed 

model. 



 
 

20

The study by Nurmohamed et al. (2007) used both GCM output and hypothetical 

climate change scenarios to determine changes in the water balance of a large watershed 

in Suriname. Average outputs of five GCMs were used to simulate monthly change in 

temperature and precipitation: Had300 (UK Hadley Centre), ECH498 (German Climate 

Research Centre), GFDL90 (US Geophysical Fluid Dynamics Laboratory), CSI296 

(Commonwealth Scientific and Ind. Research Organization, Australia), and CCSR96 

(Japanese Centre for Climate Systems Research). Two time periods of GCM output were 

used: 2035-2064 (centered on 2050) and 2065-2094 (centered on 2080). Daily changes 

from the averaged model results were added to observed data from 1975-1983. 

Incremental scenarios used in this study are presented in the Incremental Approach 

section below. 

Marshall and Randhir (2008) used GCM data to evaluate the impacts of 

temperature increases on water quantity and quality of the Connecticut River Watershed 

in New England. Two GCMs (MRI2 and CCSR/NIES2) run under SRES A2 were 

downscaled to modify historical temperature observations. The MRI2 model results were 

selected because it predicts the lowest increase in average temperature (+1.4ºC), while 

the NIES2 model results were selected because it predicts the greatest increase (+5.8ºC). 

Warming predictions were added to daily minimum and maximum temperatures in a 

linear fashion to the 40 year baseline period. Precipitation changes were not included in 

the climate change scenarios. 

Abbaspour et al. (2009) used the Soil and Water Assessment Tool (SWAT) and 

the Canadian Global Coupled Model (CGCM 3.1) GCM to determine the impact of 

climate change on water resources in Iran for two time periods: 2010-2040 and 2070-
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2100. Three SRES scenarios were used from the GCM: A1B, A2, and B1. Climate 

change scenarios were downscaled for each weather station in the study area. 

Precipitation was downscaled using a monthly ratio between the GCM data and the 

observed data, while temperature downscaling involved the use of a nonlinear regression 

model. 

Franczyk and Chang (2009) conducted a study to determine the impacts of 

climate change and urbanization on stormwater runoff in the Portland, OR metropolitan 

area. Climate change scenarios were constructed based on GCM data from the ECHAM5 

model using the A1B emissions scenario for 2040-2059. The GCM results were 

downscaled to a 15 km resolution grid using a statistical downscaling method. Statistical 

downscaling, rather than dynamical downscaling, was used because it is computationally 

inexpensive and is applicable for small watersheds, although it does not consider the 

effect of topography on climate. Incremental scenarios were also implemented for 

comparison with the downscaled GCM (detailed in the Incremental Approach section 

below). 

Githui et al. (2009) used GCM climate change scenarios to determine the impact 

of climate change on a Kenyan watershed streamflow.  Two thirty year periods were 

studied: 2010-2039 (centered on 2020) and 2040-2069 (centered on 2050). Climate 

change data was obtained from five GCMs: CCSR, CSIRO, ECHAM4, GFDL, and 

HADCM3, which used the A2 and B2 scenarios. The models were not downscaled due to 

lack of adequate data. GCM data was incorporated into the watershed model by adjusting 

the baseline daily temperature and precipitation through change factors. 
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Nyenje and Batelaan (2009) used a statistical downscaling method to downscale 

daily GCM climate projections from the UK HadCM3 climate model to study the impacts 

of climate change on the hydrology of a Uganda watershed. A statistical downscaling 

model (SDSM) was used because downscaled data are more reliable for hydrological 

analysis at the watershed scale than GCM data, which may be too coarse (Karl et al., 

1990; Nyenje and Batelaan, 2009). Data was downscaled based on a relationship between 

large scale predictor variables (e.g. humidity) and locally observed predictants 

(temperature and precipitation) averaged over each weather station. Two scenarios (A2 

and B2) climate projections from HadCM3 were used encompassing the current climate, 

the 2020s, 2050s, and 2080s. 

Göncü and Albek (2010) used a hypothetical watershed (controlling land use and 

soil type) with weather stations located in Turkey to determine the impacts of 

temperature and precipitation changes on streamflow and reservoir volume. The climate 

change scenario was created by applying trends on daily time series weather station data 

(temperature, precipitation, relative humidity, and cloudiness). Trends were based on 

gridded GCM climate change projections from the Canadian Climate Centre model for 

the SRES A2 emissions scenario in western Turkey. Temperature trends were added to 

each day of the historical observations to create a linear increase in temperature (1.6ºC by 

2050). Precipitation trends were applied as surpluses or deficits to monthly totals, which 

led to an increase in precipitation of about one inch annually by 2050. 

Gul and Rosbjerg (2010) used GCM data to evaluate the effects of climate change 

on regional water quantity in Denmark. Climate change scenarios were based on data 

from the European continent-scale PRUDENCE project (PRUDENCE, 2005; Gul and 
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Rosbjerg 2010). Observed temperature and precipitation was changed on a seasonal basis 

(3 month intervals) using results from the GCM data. 

Rosenberg et al. (2010) coupled a watershed model with two downscaled GCM 

precipitation datasets to determine the impacts of climate change on Washington state 

stormwater infrastructure in urban areas. The global climate models used were ECHAM5 

and CCSM-3, dynamically downscaled using the Weather Research and Forecast (WRF) 

RCM developed by NCAR. Data output from the RCM was bias corrected and 

statistically downscaled for each weather station. The authors concluded that the RCM 

simulations indicated increases in extreme rainfall magnitudes by 2050, but this varied by 

model and region. 

The GCM approach has been widely used in many climate impacts assessment 

studies regarding water resources. In the studies presented both regional and global scale 

models were used that were developed by various organizations. Additionally, each 

SRES emissions scenario was featured in at least one study presented here, demonstrating 

that the choice of scenarios is largely due to preference of the author. 

2.2.5.2 Temporal and Spatial Analogue Approach 

Construction of climate scenarios using temporal and spatial analogues involves 

the use of past climates that may be similar to future climate in a region (Githui et al., 

2009). The climate change in this technique has been previously observed; therefore it is 

consistent and physically based. One drawback to this approach is that the climate change 

may not be due to changes in greenhouse gas emissions and atmospheric concentrations, 

but naturally occurring (Githui et al., 2009). 
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Parker et al. (2008) used a watershed model and the temporal analogue technique 

to determine the affect of climate change scenarios on fertilizer application rates, filter 

strips, livestock stream access, and tillage reduction in an Ontario watershed. 

Construction of climate change scenarios were based on using historical data for one year 

that could be analogous to future climate change. Using this technique, an average year, 

warm wet year, warm dry year, cold wet year, and cold dry year were selected from the 

historical data. 

2.2.5.3 Incremental Approach 

Incremental scenarios used for climate change studies are based on alteration of 

observed time series climate data by arbitrary amounts (Githui et al., 2009). The 

advantage to using this method is that scenarios are consistent and readily applicable 

between different studies and regions, leading to easy comparisons. Incremental scenarios 

can be beneficial to climate change impact studies because they give a better indication of 

the ways in which gradual temperature changes affect the hydrology of a watershed 

(Nurmohamed et al. 2007). One consequence of using incremental scenarios is that the 

scenarios may not represent a physically plausible and realistic change (Githui et al., 

2009). Changes in temperature and precipitation variability will not be captured by 

incremental scenarios. In addition, incremental changes selected are often based on 

results from GCM results for various SRES scenarios. This method has been used 

consistently in climate change impacts studies regarding water quantity and quality 

Liu et al. (2000) coupled a watershed model and a water balance model with 

IPCC HadCM2 GCM climate projections translated to incremental weather data 

adjustments to study the impacts of climate change and land use change on water quality 
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in the Ohio River basin (specifically the Cincinnati watershed and Columbus watershed). 

Climate projections were translated to incremental scenarios applied to daily temperature 

and precipitation. The wet scenario used changes of +4°C and +20% precipitation of the 

current average climatic condition, while the dry scenario applied of +4°C and -20% 

precipitation of the current average climatic condition. 

Jha et al. (2006) used incremental scenarios to perform a climate change 

sensitivity analysis on the Upper Mississippi River Basin streamflow. The climate change 

sensitivity analysis used nine distinct scenarios: 50% CO2 increase, 100% CO2 increase, 

temperature increases of +2°C, +4°C, and +6°C, and precipitation changes of ±10% and 

±20%. Temperature and precipitation scenarios altered daily data of the 30-year baseline 

period. In addition, six GCM projections were used for comparison with the incremental 

scenarios (detailed in the GCM Approach section above). 

Chaplot (2007) incrementally varied precipitation, temperature, and atmospheric 

CO2 concentrations to determine changes in water yield, nitrate, and sediments in two 

distinct agricultural watersheds: an arid Texas watershed, and a relatively wet Iowa 

watershed.  An atmospheric CO2 concentration of 970 ppm by the end of the 21
st

 century 

was used, which represents the A1F1 scenario from the 2001 IPCC Report. Under the 

A1F1 scenario, winter temperatures were increased by 3.5°C, while summer temperatures 

were increased by 0.5°C by 2100. The B1 scenario was also used, where winter 

temperature was increased by 0.5°C by 2100.  Daily rainfall was also changed by ±10%, 

±20%, and ±40%. The precipitation and temperature changes were scaled on yearly basis, 
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which led to a small incremental adjusted each year until the maximum change was 

reached in 2100. 

Nurmohamed et al. (2007) used incremental climate change scenarios in addition 

to GCM output to determine changes in the water balance of a Suriname watershed. The 

incremental scenarios were combinations of +2ºC and +4ºC and/or precipitation changes 

of ±10%, ±30%, and ±50%. 

Ficklin et al. (2009) and Ficklin et al. (2010) conducted a climate change 

sensitivity analysis for an agricultural watershed in California. The authors used a 

stochastic weather generator (LARS-WG) to develop 50 years synthetic climate change 

time series data based on the A1F1 and B1 scenarios. Precipitation was arbitrarily 

changed by ±10% and ±20%, while temperature was increased by 1.1°C (B1) or 6.4°C 

(A1F1).  The temperature ranges represent bounds on the most conservative and 

aggressive projections for 2100.  Three atmospheric CO2 concentrations were coupled 

with the temperature/precipitation scenarios: 300 ppm (present-day), 550 ppm 

(corresponds to B1 scenario by 2100), and 970 ppm (corresponds to A1F1 scenario by 

2100). 

In their study to determine the impacts of climate change and urbanization on 

stormwater runoff in Portland, OR, Franczyk and Change (2009) used incremental 

scenarios for comparison with a GCM approach (detailed in the GCM Approach section 

below).Four combinations of +2°C mean monthly temperature, +4°C mean monthly 

temperature, +10% mean monthly precipitation, and +20% mean monthly precipitation 

were used. 
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2.2.5.4 Extrapolation Approach 

Extrapolation of historical trends involves comparing model based projection to 

observed climate trends and extending them to the future (Githui et al., 2009). The 

disadvantage of this method is the assumption that the historical change trends are based 

on greenhouse gas emissions and atmospheric concentrations rather than natural 

variability (Githui et al., 2009). Finding empirical relationships between regional climate 

and projected global changes technique assumes that past relationships between the two 

are also applicable for the future climate (Githui et al., 2009). 
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2.3 WATERSHED MODELS 

To determine the possible effects of climate change on water resources, watershed 

models are required because of the prediction element involved. Many models are 

available for performing watershed scale hydrology and water quality studies. Although 

watershed model classification is subjective, there are three general categories: empirical, 

conceptual, and physically based spatially distributed models (Nurmohamed et al., 2007). 

Empirical and conceptual models do not take into account spatial distribution of 

watershed data such as soil type, land use, topography, precipitation, and air temperature. 

Subsequently, empirical and conceptual models require less parameters and data for 

operation. Conversely, physically based spatially distributed models are data intensive, 

complex, and highly parameterized. The following watershed models are generally 

physically based and spatially distributed, although some are highly complex, while some 

are designed to be used as a simple screening tools and little expertise is required. 

2.3.1 Annualized Agricultural Non-Point Source Model (AnnAGNPS) 

AnnAGNPS is daily time step continuous-simulation watershed model used to 

estimate NPS pollution generation in agricultural watersheds developed by the United 

States Department of Agriculture – Agricultural Research Service (USDA – ARS) and 

the USDA Natural Resources Conservation Service (USDA – NRCS) (Bosch et al., 

1998). The model divides a watershed into homogenous cells of land use, soil type, and 

land management (Bosch et al., 1998). For each cell, surface runoff, sediments, nutrients, 

and pesticides leaving the cell and transported throughout the watershed are simulated 
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(Bosch et al., 1998). The effect of conservation practices on pollution generation can also 

be simulated within AnnAGNPS. 

2.3.1.1 AnnAGNPS Model Components 

Model components included in AnnAGNPS are hydrology, and transport of 

sediment, nutrients, and pesticides due to snowmelt, precipitation, and irrigation (Borah 

and Bera, 2003). A daily soil water balance is maintained to determine runoff when 

precipitation events occur (Yuan et al., 2001). Surface runoff is calculated using the Soil 

Conservation Service curve number (CN) method. Channel runoff uses Manning’s 

equation assuming a trapezoidal channel shape. Lateral subsurface flow is calculated 

using Darcy’s equation and tile drain flow is calculated using Hooghoudt’s equation and 

parallel drain approximation (Borah and Bera, 2003). Sediment load delivered to the edge 

of the field is calculated using the Revised Universal Soil Loss Equation (RUSLE) (Das 

et al., 2007). The modified Einstein equation is used for channel sediment transport and 

the Bagnold stream power equation determines transport capacity of a reach. 

2.3.1.2 AnnAGNPS Applications 

AnnAGNPS has been used in a climate impacts assessment studies such as Parker 

et al. (2008). 

2.3.2 Hydrologic Simulation Program-FORTRAN (HSPF) 

HSPF is a distributed, lumped-parameter watershed model that is used to simulate 

the effects of land use change, point source pollution, NPS pollution, reservoir 

operations, and more (Bicknell et al., 1997) developed by the Environmental Protection 
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Agency (EPA) National Exposure Research Laboratory. The model integrates land and 

soil contaminant runoff processes with in-stream processes to predict runoff, flow rate, 

and water quality constituent loads at any point in the stream. Hydrology and water 

quality are predicted on time steps ranging from one minute to one day using continuous 

precipitation and records for study periods of up to hundreds of years.  

2.3.2.1 HSPF Model Components 

Model components include runoff and water quality constituents on pervious and 

impervious land areas, in-stream channel and reservoir processes (Borah and Bera, 2003). 

Subsurface flow is simulated using empirical relationships and overland flow is simulated 

using the Chezy-Manning equation. Erosion is modeled using rainfall splash detachment 

and based on transport capacity. In-stream sediment transport is different for sand and 

silt/clay: sand is modeled using the Colby (1954) or Toffaleti (1968) method, while 

silt/clay is modeled based on critical shear stress and settling velocity. Physical, 

chemical, and biological processes within the model are simulated using theoretical and 

empirical equations, which increases model complexity and the required number of 

parameters. 

2.3.2.2 HSPF Applications 

Climate impact assessments have been performed using HSPF in multiple studies 

such as Göncü and Albek (2010) and Rosenberg et al. (2010). 
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2.3.3 Long Term Hydrologic Impact Analysis (L-THIA) 

The L-THIA model developed by the College of Engineering at Purdue 

University is a tool used to determine the long-term effects of land use change on water 

resources (quantity and quality). L-THIA is a user-friendly tool for rapid assessment of 

hydrologic impacts of land use change (Bhaduri et al., 2001). Readily available data is 

used and provided by the model, including long-term climate records, soil maps, and land 

use maps. Model outputs are pollutant loads and runoff on an annual basis.  

2.3.3.1 L-THIA Model Components 

Components of the L-THIA model include estimation of runoff, recharge, and 

NPS pollution generation such as sediment and nutrients from fields. The curve number 

method is used to calculate annual surface runoff and accounts for variations in 

antecedent moisture condition in the soil (Bhaduri et al., 2000). Snowfall contributions to 

precipitation to adjust the curve number are not considered. NPS pollution is estimated 

using a build-up and wash-off calculation, which includes the dry weather processes that 

lead to pollutant accumulation and the wash-off that occurs during a storm event 

(Bhaduri et al., 2000). Build-up calculations are based on days between storm events and 

pollutant accumulation rates, while the wash off function is a nonlinear empirical 

formula.  

2.3.3.2 L-THIA Applications 

To the best knowledge of the author, there are no published climate change 

impact assessments performed using L-THIA. However, this model is reported here 
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because this model was designed to study the impacts of both landuse and climate 

changes. 

2.3.4 GIS Pollutant Load Application (PLOAD) 

The PLOAD model version 3.0, developed by CH2M HILL, is a geographic 

information systems (GIS) based tool to calculate user-specified NPS pollutant loadings 

from a watershed on an annual average basis (PLOAD, 2001). PLOAD was designed to 

be used as a generic screening tool for a variety of applications and is highly 

customizable (Nejadhashemi and Mankin, 2007). Two NPS pollution calculation 

methods are available in PLOAD: the export coefficient method (applicable for small and 

large watersheds) or EPA’s Simple Method (applicable for watersheds less than one 

square mile in size). Required data includes watershed boundary, land use maps, annual 

precipitation data, optional BMPs.  

2.3.4.1 PLOAD Model Components 

PLOAD model components include runoff and pollutant load calculations for any 

constituent. Runoff is calculated using the SCS curve number method. Event mean 

concentrations (EMCs) for each land use type are required to calculate pollutant loads 

using the EPA Simple Method, which is based on precipitation, the ratio of storms 

producing runoff, and a runoff coefficient based on land use type. 

2.3.4.2 PLOAD Applications 

Liu et al. (2000) has performed a climate change impact assessment using 

PLOAD. 
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2.3.5 Soil and Water Assessment Tool (SWAT) 

SWAT (ArcSWAT 2005) is a physically based, spatially distributed, watershed-

scale water quality model that operates on a continuous daily or sub-daily time step. The 

SWAT model was developed by the USDA – ARS (Arnold et al. 1998). This model is 

used to predict the impact of management practices on water, sediment, nutrient, and 

chemical yields in watersheds with varying soils and land use over long periods of time 

(Arnold et al. 1998). SWAT allows a watershed to be delineated into subwatersheds 

based on topography, and then divided into HRUs (area of homogenous land use, soil 

type, management practices, and slope). Analysis at the HRU level allows critical sources 

of pollution and major causes of pollution to be identified based on characteristics of the 

location.  

2.3.5.1 SWAT Model Components 

SWAT model components include hydrology, weather, soil temperature, crop 

growth, nutrients, pesticides, agricultural management practices such as fertilization, 

tillage, pesticides, and grazing, and channel and reservoir routing (Borah and Bera, 

2003). Surface runoff in SWAT is simulated using the SCS CN method based on 

antecedent soil moisture, land use, and soil type (Neitsch et al., 2005). Lateral subsurface 

flow is modeled using a kinematic storage model and groundwater flow is estimated 

using empirical equations. Stream routing is based on the variable storage coefficient 

method and flow is modeled using Manning’s equation. Erosion and sediment yield are 

calculated for each HRU using the Modified Universal Soil Loss Equation (MUSLE), 



 
 

34

while Bagnold’s stream power for bed degradation and sediment transport is used. 

Complete nitrogen and phosphorus cycles are also simulated within SWAT. 

2.3.5.2 SWAT Applications 

Various studies have used SWAT to study the impacts of climate change on water 

resources.  As of 2007, there have been at least 30 published climate change impacts 

assessments completed using SWAT (Gassman et al., 2007).Such studies have been 

performed by Eckhardt and Ulbrich (2003), Stone et al., (2003), Jha et al. (2006), Chaplot 

(2007), Marshall and Randhir (2008),  Abbaspour et al. (2009), Ficklin et al. (2009), 

Franczyk and Chang (2009), Githui et al. (2009), and Ficklin et al. (2010). 

Best management practices (BMPs) have also been modeled on the watershed 

scale using SWAT in the following studies: Behera and Panda (2006), Bracmort et al. 

(2006), Santhi et al. (2006), Arabi et al. (2007), Jha et al. (2007), Parajuli et al. (2008), 

Tuppad and Srinivasan (2008), and Tuppad et al. (2010). 

2.3.6 Water and Energy Transfer between Soil, Plants and Atmosphere (WetSpa) 

WetSpa is a physically based, semi-distributed rainfall-runoff model developed by 

the Vrije Universiteit, Belgium (Liu and De Smedt, 2004). The model runs on a daily 

time step and is applicable on the watershed scale for predicting water and energy 

transfer of the soil, plants, and atmosphere. A basin in WetSpa is comprised of five 

components: atmosphere, canopy, root zone, transmission zone, and saturation zone. The 

basin is divided into grid cells and further divided into bare soil and vegetation. A water 

and energy balance is calculated for each grid cell.  
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2.3.6.1 WetSpa Model Components 

Model components included in WetSpa are generally hydrology based, as surface 

and groundwater flow are simulated, but the model lacks simulation of water quality 

constituents. Specific hydrological processes simulated in WetSpa include surface runoff, 

evapotranspiration, percolation, interflow, groundwater flow, and a water balance for 

each model layer (Bahremand et al., 2007). Rainfall excess is calculated using the 

modified rational method, calculating a potential runoff coefficient that is a function of 

land cover, soil type, slope, rainfall magnitude, and antecedent soil moisture (Bahremand 

et al., 2007). Overland and channel flow routing is simulated using the diffusive wave 

equation. Snowmelt simulation is simulated with an energy balance linked to air 

temperature. 

2.3.6.2 WetSpa Applications 

 The WetSpa model has been used for climate impacts assessments such as 

Nurmohamed et al. (2007) and Nyenje and Batelaan (2009). 
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2.4 IMPACTS OF CLIMATE CHANGE ON WATER QUANTITY 

Climate change may have a large impact on the water resources of a watershed 

based on how elements of hydrological cycle are affected. The following sections present 

the impacts of climate change on water quantity in various watersheds, based on the 

SRES emissions scenario or incremental method used in each study. Examining 

watershed specific studies on the impacts of climate change on water quantity allows for 

determination of relationships regarding the major components of climate change 

(temperature, precipitation, and atmospheric CO2 concentration) on streamflow and 

surface runoff.  

2.4.1 A1 Storyline Impacts 

Abbaspour et al. (2009) used GCM data for the A1B emissions scenario in 2013-

2039 and 2073-2099. Precipitation increases (up to 35%) were generally projected to 

occur in the northern regions of Iran, while the southern regions may experience 

decreases in precipitation of up 40% in 2013-2039. This correlates to a decrease of up to 

100% in blue water (the sum of river discharge and deep groundwater recharge) for areas 

with precipitation decreases and up to 200% increases in blue water in areas with 

increasing precipitation.  In 2073-2099 the increases in blue water are greater (+300%) in 

wet regions but the decreases (90%) are not as severe in dry regions than in the early 21
st

 

century simulations, but are still significant. In historically “wet” regions, the number of 

days with precipitation exceeding 10 mm increases, indicating that these regions will 
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have larger and more frequent floods in the future, especially in winter and fall 

(Abbaspour et al., 2009).  

Using GCM data for the A1B emissions scenario, Franczyk and Chang (2009) 

predicted that runoff in a Portland, OR metropolitan watershed will likely see the greatest 

changes in winter. January was predicted to increase in mean monthly runoff by 12.5% in 

the 2040s. February was predicted to show the greatest decrease in mean monthly runoff 

in the same time period. These changes are likely due to the GCM predictions: the 

greatest mean monthly precipitation increase was January, while February had the 

greatest mean monthly precipitation decrease (Franczyk and Chang, 2009). Summer 

runoff experienced negligible changes from the current climate. 

2.4.2 A2 Storyline Impacts 

Eckhardt and Ulbrich (2003) predicted that streamflow increases by more than 

10% due to increased winter precipitation in the form of rain for a mountainous German 

watershed. Groundwater recharge in spring is predicted to decrease due to lack of 

snowmelt caused by temperature increases (because of less winter precipitation falling as 

snow) (Eckhardt and Ulbrich, 2003). Groundwater recharge and streamflow are reduced 

by more than 50% in the summer due to increased potential evapotranspiration and 

decreased precipitation (Eckhardt and Ulbrich). 

Jha et al. (2006) used six GCM models under the A2 storyline for the Upper 

Mississippi River basin. Results predicted a wide range of change in annual average 

streamflows, from a 6% decrease to a 51% increase. The GCM scenarios also generally 

predicted increases in spring streamflows, likely due to increased precipitation and 

snowmelt (Jha et al., 2006). Each GCM used demonstrated different patterns for future 
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streamflow trends, resulting in a conflicting picture of how future climate change will 

impact the watershed (Jha et al., 2006). 

Abbaspour et al. (2009) used GCM data to project the change in Iranian water 

resources for 2073-2099. Precipitation increases over most of the country in this scenario 

(many regions experience a 50-100% increase from the observed period of 1980-2002), 

which in turn results in increases in blue water.  Regions of Iran that experienced 

significant precipitation increases will have increases in blue water by up to and greater 

than 300%. This demonstrates that precipitation is generally the most important driving 

factor in Iran for alteration of water resources due to climate change.  

Githui et al. (2009) determined that surface runoff and baseflow in the A2 

scenario is likely to increase in 2020 and 2050 for a Kenyan watershed. Between the five 

GCMs used for climate change scenarios, annual average surface runoff was projected to 

increase between 38% (HADCM3) and 56% (ECHAM4) by 2020 and between 65% 

(HADCM3) and 115% (ECHAM4) by 2050.  Changes in annual average baseflow were 

of lesser magnitude than surface runoff: the maximum increase by 2020 was 28% using 

the ECHAM4 model, while the minimum was 8% using CCSR. In 2050, the CCSR 

model input projected a decrease by 8% in average annual baseflow, while ECHAM4 

projected a 50% increase. Streamflow response to temperature changes was determined 

to be insignificant in the A2 storyline. Conversely, average annual streamflow was 

positively correlated with increases in temperature (Githui et al., 2009).  

Marshall and Randhir (2008) predicted that annual surface runoff will decrease by 

22% (high-warming GCM) and 12% (low-warming GCM) over the 40-year study period 

in the Connecticut River watershed. On a monthly basis, surface runoff was higher than 
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the baseline scenario in winter months, likely due to a lower proportion of precipitation 

falling as snow (Marshall and Randhir, 2008). Decreases in surface runoff were predicted 

in spring months for both GCMs because of less water held in storage as snow and ice 

(less snowmelt in spring) (Marshall and Randhir, 2008). Summer and fall also were 

predicted to have less runoff due to increased evapotranspiration: for example, July was 

predicted to have decreases of 71% and 67% for the high warming and low warming 

scenarios, respectively (Marshall and Randhir, 2008). As a result of changes in surface 

runoff, water yield at the watershed outlet increased in November through February and 

decreased in the rest of the year. 

2.4.3 B1 Storyline Impacts 

Eckhardt and Ulbrich (2003) observed conflicting effects of temperature and CO2 

on groundwater recharge and streamflow, resulting in minimal changes (3% and 4% 

decrease, respectively) for a mountainous German watershed. Temperature increases 

raised potential evapotranspiration, but increasing CO2 reduces stomatal conductance of 

vegetation, which decreases evapotranspiration (Eckhardt and Ulbrich, 2003). 

Abbaspour et al. (2009) used the B1 scenario for GCM simulations regarding the 

impact of climate change on blue water in Iran.  Precipitation changes were generally 

similar to those found in the A1B scenario of this study for both time periods. In 2013-

2039 and 2073-2099, the majority of the country observes increases in precipitation by up 

40%, although most regions average less than 20% increases. Precipitation decreases in 

the southeast region were generally less than 10% for both time periods. In terms of 

change in blue water, the changes are less severe than in the A1B scenario. Both time 
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periods experience decreases in blue water of up to 90% for most of the southeast and 

east of the country, while the western part of Iran generally experiences increases in blue 

water by up to 50%, although some northern areas see increases of greater than 100%. 

Once again, this study demonstrates the importance of precipitation changes in dictating 

streamflow and deep aquifer recharge. 

2.4.4 B2 Storyline Impacts 

Githui et al. (2009) projected that changes in baseflow and surface runoff due to 

altered climates in Kenya may not be as significant for the B2 emissions scenario as they 

are projected to be for the A2 emissions scenario. Average annual surface runoff is 

projected to increase by 6% (CCSR) to 20% (ECHAM4) by 2020, while in 2050 it is 

projected to change by 11% (HADCM3), depending on the GCM used. Average annual 

baseflow changes are not as severe, although the CCSR model predicted a -15% change 

in 2020 and a -28% change in 2050, while maximum changes were projected using 

ECHAM4 (8% in 2020 and 15% in 2050). 

2.4.5 Incremental Scenario Impacts 

Liu et al. (2000) used wet and dry scenarios to determine climate change impacts 

on surface runoff of the Cincinnati and Columbus watersheds of Ohio. The wet-climate 

scenario increased surface runoff the most, primarily on high-density residential, 

commercial, and agricultural land use types for both watersheds. 

Jha et al. (2006) determined that water yield increased by up to 50% in response 

to a doubling of atmospheric CO2 concentration in the Upper Mississippi River basin, 
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with the period of July to November experiencing the greatest increases. The cause of 

increased water yield was determined to be decreased transpiration due to increased CO2, 

which resulted in higher soil moisture content (Jha et al., 2006).  In incrementally 

increased temperature scenarios, decreases in snowpack levels and increases in snowmelt 

increased winter streamflow, while decreases in streamflow were predicted otherwise 

(Jha et al., 2006). 

Nurmohamed et al. (2007) used incremental scenarios to determine the sensitivity 

of the Suriname watershed to climate change. Temperature increases accompanying no 

precipitation change led to decrease in total annual river discharge, surface runoff, and 

baseflow. Increasing precipitation by 50% leads to an increase of mean annual river 

discharge by 75% when accompanied by a 2ºC temperature increase, and a mean annual 

river discharge of 57% when accompanied by a 4ºC temperature increase, which is likely 

due to the increase in evapotranspiration (Nurmohamed et al., 2007). 

Chaplot (2007) projected that an increase in CO2 concentration from 330 ppm to 

970 ppm would increase streamflow in the Walnut Creek, Iowa watershed by 7%, while 

no significant streamflow changes are likely to occur in the Bosque River watershed of 

Texas. Higher CO2 concentrations increasing streamflow may be explained by a decrease 

in stomatal conductance of vegetation, which decreases evapotranspiration (Chaplot, 

2007). Conversely, lack of streamflow and runoff changes with increasing CO2 in the 

Texas watershed may be due to increased plant productivity associated with CO2 

increases (greater water requirements) equalizing the decrease in evapotranspiration. 

Runoff was positively correlated to precipitation in both watersheds (increasing 
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precipitation leads to runoff increases and decreasing precipitation leads to runoff 

reduction), while the magnitude of precipitation increase was also important. In Iowa, a 

20% precipitation increase leads to a 22% increase in runoff, while runoff increases by up 

to 164% in the 40% precipitation increase scenario (Chaplot, 2007). Overall, streamflow 

and surface runoff were more sensitive to precipitation changes than temperature or CO2 

changes (Chaplot, 2007). 

In developed incremental precipitation and temperature increase scenarios, 

Franczyk and Chang (2009) projected variable increases and decreases in annual, 

seasonal, and monthly runoff for the Portland, OR metropolitan watershed. All 

incremental scenarios predicted a summer monthly decrease in runoff although 

precipitation was increased (Franczyk and Chang, 2009). Winter surface runoff generally 

increased for all incremental scenarios, likely due to decreased snowfall and increased 

precipitation falling as rain (Francyzk and Chang, 2009). 

Ficklin et al. (2010) used incremental scenarios to determine the impacts of 

climate change on water yield in the highly agricultural San Joaquin watershed, 

California. Water yield increased with increasing precipitation, although increasing 

temperature affected the extent of water yield increase (Ficklin et al., 2010). For example, 

a 20% increase in precipitation coupled with a 1.1°C temperature increase led to a 20% 

water yield increase, while the same precipitation increase coupled with a 6.4°C 

temperature increase resulted in an 11.3% increase in water yield. Atmospheric CO2 

increases caused water yield to increase: in the 970 ppm CO2 scenario water yield 

increased by 23.8% from the base scenario, CO2 coupled with a 6.4°C temperature 
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increase resulted in a 24.4% water yield increase, and the coupled precipitation and CO2 

increase resulted in a 51.8% water yield increase. 

2.4.6 Miscellaneous Scenario Impacts 

Miscellaneous scenario impacts are generally studies that used GCM/RCM output 

to perform a climate impact assessment on water resources, but did not specify the 

emissions scenario or scenarios used. 

Stone et al. (2003) projected increased spring and annual water yield in the 

Missouri River basin based on doubling atmospheric CO2 GCM and RCM climate 

change scenarios. The higher resolution RCM data input into the hydrological model 

predicted more significant increases in water yield, likely due to the higher magnitude of 

precipitation increases projected by the RCM (Stone et al., 2003). Stone et al. (2003) 

concluded that using high-resolution climate change scenarios significantly affects 

estimations of water quantity compared to using GCM data. 

Gosain et al. (2006) used RCM data to quantify the impact of climate change on 

the hydrological processes of major watersheds in India. Resulting changes in water 

quantity were variable depending on the geographic location of the watershed within the 

country. In some cases, precipitation increases resulted in slight decreases in surface 

runoff, likely due to significant increases in evapotranspiration. It was projected that 

severity and frequency of droughts and floods in India may increase due to increases in 

GHG concentrations (Gosain et al., 2006). 

Nurmohamed et al. (2007) used the average of five GCMs to determine the effects 

of climate change on the hydrology of a Suriname watershed. Mean annual temperature 
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increases had a significant impact on river discharge (Nurmohamed et al., 2007). In 2050, 

mean annual precipitation and mean annual evapotranspiration increased by 12% and 8%, 

respectively, which led to a mean annual discharge reduction of 24%, surface runoff 

reduction of 15% and reduction of 40%. By 2080, a small decrease in precipitation 

(0.6%) and an increase in mean annual evapotranspiration of 17% translate to a mean 

annual river discharge reduction of 35%, while surface runoff and baseflow decrease by 

19% and 56%, respectively. 

Gul and Rosbjerg (2010) used GCM data to determine the impacts of climate 

change on a Danish watershed. It was concluded changes in temperature and precipitation 

in Denmark per degree of global warming would increase mean annual streamflow at two 

gauging stations (Gul and Rosbjerg, 2010). Although mean annual streamflow would 

increase, seasonal streamflow changes tell a different story: average winter streamflow 

increases by 8%, spring streamflow increases by 7-8%, summer streamflow decreases by 

15-16%, and fall streamflow decreases by 3-5%. 
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2.5 IMPACTS OF CLIMATE CHANGE ON WATER QUALITY 

The impacts of climate change on water quality may vary substantially based on 

the ways in which the hydrological cycle is altered. Examining watershed specific studies 

on the impacts of climate change on water quality allows for conclusions to be reached 

regarding the interaction of climate change and water quality indicators such as sediment, 

nitrogen, and phosphorus. Due to limited studies regarding the impacts of climate change 

on water quality, results are lumped together for all emissions scenarios and incremental 

scenarios.  

Liu et al. (2000) developed wet and dry climate change scenarios to determine the 

impacts of climate change on total nitrogen concentrations in the Cincinnati and 

Columbus watersheds. Changes in total nitrogen concentration were highly dependent on 

land use: commercial land was projected to have the greatest changes, while forested land 

was projected to high insignificant changes. The wet scenarios increased total nitrogen 

concentration by a maximum 50 mg (on commercial land) in Columbus and 4 mg (on 

commercial land) in Cincinnati. Minimum total nitrogen increases on forested land were 

0.08 mg in Cincinnati and 2 mg in Columbus. Conversely, the dry scenario decreased 

total nitrogen by 4 mg in Cincinnati and 50 mg in Columbus on commercial land; 

forested land was projected to have decreases in total nitrogen of 0.04 mg in Cincinnati 

and 1 mg in Columbus. 

Chaplot (2007) concluded that precipitation changes significantly affected 

sediment loads, while CO2 increases most significantly affected nitrate loadings for the 

Walnut Creek watershed in Iowa. The correlation between increased precipitation and 
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increased sedimentation is well understood: runoff and impact forces of water with the 

soil are driving forces for sedimentation (Chaplot, 2007).  Nitrate loads were most 

sensitive to increases in CO2 concentrations: elevated CO2 resulted in increases in nitrate 

loadings. The relationship between CO2 and nitrate loadings is hypothesized to be due to 

increased vegetation assimilation and soil fixation, resulting in more nitrogen in the 

system (Chaplot, 2007). 

Marshall and Randhir (2008) determined that sediment and nutrient pollution 

would significantly change in the Connecticut River watershed using two GCMs for the 

A2 emissions scenario. Sediment runoff in spring decreased with decreasing surface 

runoff, while increases in sediment runoff were predicted for September and October 

(Marshall and Randhir, 2008). Average annual yields of organic phosphorus at the 

watershed outlet decreased by 19% for the low-warming GCM, while it decreased by 

46% for the high-warming GCM). Average annual yield of organic nitrogen decreased by 

7% and 19% for the low-warming GCM and the high-warming GCM, respectively at the 

watershed outlet. Nitrogen and phosphorus loads were generally correlated with surface 

runoff (Marshall and Randhir, 2008).  

Ficklin et al. (2010) used incremental scenarios to determine the impacts of 

climate change on agricultural runoff yields including sediment, nitrate, total phosphorus, 

and pesticide (diazinon and chlorpyrifos) in the highly agricultural San Joaquin 

watershed, California. Increasing precipitation and holding temperature and CO2 constant 

generally led to an increase in all agricultural runoff components, with nitrate yield 

increasing the most by 40.2%, and chlorpyrifos decreasing the most by 31.9%. Increasing 
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temperature decreased all agricultural runoff components, and the larger temperature 

increase led to a greater projected reduction. Nitrate and total phosphorus yield decreased 

the most in increased temperature scenarios, while the pesticides only had slight 

decreases. Pollutant yield was generally correlated to precipitation increase when both 

precipitation and temperature changes were simulated. Phosphorus yields were highly 

correlated to sediment yield, and therefore precipitation and surface runoff (Ficklin et al., 

2010). Atmospheric CO2 affected agricultural runoff yields in varying ways: increases to 

970 ppm caused decreases in sediment and diazinon and increases in nitrate, total 

phosphorus, and chlorpyrifos. Increases in total phosphorus and nitrate are expected with 

increasing CO2 because these nutrients inputs to the system are greater due to plant 

assimilation and soil fixation (Ficklin et al., 2010). 
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2.6 MITIGATING THE EFFECTS OF CLIMATE CHANGE ON WATER RESOURCES 

There is a need to study the implications of various mitigation strategies to 

minimize the impacts of climate change on watershed processes (Marshall and Randhir, 

2008). 

2.6.1 Wastewater Treatment 

Wastewater treatment technologies remove contaminants from industrial, 

commercial, and residential wastewater. Rather than water pollution prevention at the 

source, a wastewater treatment plant collects polluted water, reduces the pollution in the 

water, and then discharges to surface water bodies or is reused. Water conservation is 

promoted by prevented untreated discharges to surface water, groundwater, and soils, 

which reduces pollutants and requires a smaller volume of water to be treated (Bates et 

al., 2008). Reuse of treated wastewater is most desirable for agricultural irrigation, 

aquaculture, and industrial applications. 

2.6.2 Afforestation or Reforestation 

Afforestation is the process of planting trees on land that has not previously been 

forested; reforestation is the process of reversing deforestation by planting trees on land 

that once was forested. Forested lands are generally expected to use more water through 

transpiration, evaporation, and canopy interception than cropland, grassland, or urban 

lands (Bates et al., 2008). Beneficial hydrologic effects of afforestation or reforestation 

include reduction of surface runoff and increasing stream baseflow due to greater water 

infiltration (Bates et al., 2008). Decreasing surface runoff is expected to decrease erosion 
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and nutrient transport to streams, and nutrient input into the land will be considerably less 

than on agricultural land due to lack of nitrogen and phosphorus application. Conversely, 

afforestation on some lands may have adverse effects on water resources, especially 

when planting fast growing conifers. High water demand is a characteristic of most 

conifers, and streamflow can be expected to decrease with instillation of these tree 

species and can cause water shortage in drought periods (Bates et al., 2008). 

2.6.3 Agricultural Conservation Practices 

Agricultural conservation practices, also known as BMPs, are implemented in 

order to reduce surface runoff, erosion, and nutrient transport from agricultural fields. 

BMPs are either structural or non-structural in nature. Structural BMPs, such as porous 

gully plugs, terraces, filter strips, native grass, and streambank stabilization, involve 

instillation of a structure or vegetation on or near an agricultural field to combat runoff 

and erosion problems. Non-structural BMPs are focused on altering tilling strategies on 

agricultural land to reduce surface runoff and erosion. Some common non-structural 

BMPs are contour farming, reduced-tillage farming, no-tillage farming, and grazing 

management. 

2.6.3.1 Contour Farming 

Contour farming alters the direction of runoff from downslope to around the hill 

slope through the use of ridges formed by tillage, planting, and other farming operations 

(NRCS-NHCP, CODE 330, 2007). Installation of this conservation practice is meant to 

decrease erosion by reducing erosive power of surface runoff, and therefore diminish 

sediment and other attached contaminant transport (Arabi et al., 2007). Water infiltration 
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is also increased through installation of contour farming because surface runoff is 

impounded in small depressions. 

2.6.3.2 Filter Strips 

Filter strips are an area of herbaceous vegetation designed to remove 

contaminants from surface runoff (NRCS-NHCP, CODE 393, 2010). Establishment of 

filter strips generally lies between cropland, grazing land, or disturbed land and an 

environmentally sensitive area (such as a stream). The purpose of a filter strip is to reduce 

suspended solids (and other suspended contaminants) and dissolved contaminants in 

surface runoff.  

2.6.3.3 Grazing Management 

Grazing management is defined as managing the harvest of vegetation with 

grazing animals to maintain vegetative cover and minimize soil erosion (NRCS-NHCP, 

CODE 528, 2010). Overgrazing exposes bare soil, increases soil compaction, and 

infiltration, which increases surface runoff and sediment and nutrient transport to surface 

waters (Tuppad and Srinivisan 2008). The method to control grazing involves adjustment 

of the intensity, frequency, and duration of animal grazing on rangelands to maintain 

adequate vegetative cover. Benefits of grazing management to surface water quality 

include reduced surface runoff and reduced soil erosion due to increased vegetative 

cover.  
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2.6.3.4 Native Grass 

Native grass replacement of agricultural row crops involves establishment and 

maintenance of permanent vegetative cover (NRCS-NHCP, CODE 327, 2010). Native 

tall grasses such as Indian switchgrass or big bluestem are generally used (Nejadhashemi, 

2007). Surface runoff, sediment transport, and nutrient transport are expected to be 

reduced because vegetative soil cover is increased, water infiltration is increased, and 

tillage and fertilizer are not needed because the need for tillage and fertilizer are 

eliminated. 

2.6.3.5 No-Tillage Farming 

No-tillage farming limits the amount of soil disturbing farm activities to those 

necessary to plant crops and place nutrients (NRCS-NHCP, CODE 329, 2010). By 

limiting the amount of disturbed soil while increasing vegetative cover, less sediment will 

be picked up and transported to streams by surface runoff. Additional benefits of no-

tillage farming include reduction of wind erosion, improved soil organic matter content, 

reduction of CO2 soil emissions, and increased moisture available to crops (NRCS-

NHCP, CODE 329, 2010). 

2.6.3.6 Porous Gully Plugs 

Porous gully plugs are designed to reduce the velocity of surface runoff in 

concentrated gullies using rocks or logs. These structures limit the erosive power of 

surface runoff to prevent further erosion and facilitate settling of sediment (Tuppad et al., 

2010). Debano and Schmidt (1990) note that when sufficient sediment supply is 
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available, small structures such as porous gully plugs can retain only a small portion of 

sediment. This is acceptable because the reduction in surface runoff energy due to porous 

gully plug implementation prevents further resuspension of sediment. 

2.6.3.7 Reduced-Tillage Farming 

Reduced-tillage operations result in less soil disturbances than conventional 

tillage, although some soil disturbing activities do take place prior to planting (e.g. 

chiseling, disking, mulch tillage) (Tuppad and Srinivisan, 2008). Reduction of the 

number of tillage operations will limit soil disturbances and increase vegetative cover to 

reduce sheet (broad sheets of flowing water containing sediment) and rill (small 

concentrated flow paths of water containing sediment) erosion. Additional benefits 

include decreased wind erosion, improved soil condition, and increased plant available 

moisture. 

2.6.3.8 Streambank Stabilization 

Streambank stabilization utilizes vegetation or other structures such as rocks, to 

protect banks from erosion and scouring and further loss of land (NRCS-NHCP, CODE 

580, 2010; Tuppad et al., 2010). The end result of a stabilized streambank will be 

decreased sediment deposition downstream due to prevention of bank erosion while 

maintaining the flow capacity of the stream. 

2.6.3.9 Terraces 

Terraces are an earth embankment, or combination ridge and channel, constructed 

across the field slope designed to reduce soil erosion from agricultural fields (NRCS-
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NHCP, CODE 600, 2010). Sediment reduction in runoff is achieved through decreasing 

length of the hill slope to decrease peak runoff rate, increased settling of sediments in 

surface runoff, and interception and retention of water (Arabi et al., 2007; Tuppad et al., 

2010). 
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3 INTRODUCTION TO METHODOLOGY AND RESULTS 

This thesis is in the form of two research papers that have been submitted to 

scientific journals. The first paper, entitled “Assessing Best Management Practice 

Implementation Strategies under Climate Change Scenarios”, aims to determine the 

impacts of climate change on water quantity and water quality in the Tuttle Creek Lake 

watershed. In addition, the effectiveness of BMPs in current and future climate scenarios 

are assessed. Climate model output from three SRES emissions scenarios (A1B, A2, and 

B1) were compared to historical model (20C3M) output from the NCAR CCSM-3 

climate model and input into the SWAT watershed model. The SWAT model was 

calibrated and validated for daily streamflow, sediment load, total Kjeldahl nitrogen load, 

and total phosphorus load using observed water quality and climate data. Twenty years of 

daily temperature and precipitation data from the climate model output were prepared by 

using the delta change method of adjusting observed historical climate data. In addition, 

the CO2 level was adjusted accordingly. Eight agricultural BMPs (conservation tillage, 

contour farming, filter strips, grazing management, native grass, no-tillage, porous gully 

plugs, and terraces) were physically represented within the SWAT model framework to 

quantify the effects of climate change on reduction efficiency for each climate scenario at 

the field and watershed scales. 

The objective of the second paper, entitled “Best Management Practice Sensitivity 

Analysis under Climate Change Scenarios” is to quantify the sensitivity of BMP 

implementation in current and future climate scenarios. Model setup, calibration, climate 

change scenario input, and BMP representation are performed in the same manner as the 

first paper. The BMP sensitivity analysis for sediment, total nitrogen, and total 
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phosphorus under each climate scenario was performed by randomly altering the 

parameter defining BMP implementation within an acceptable parameter range 

determined from previously published studies. A relative sensitivity index was calculated 

to quantify the sensitivity of each BMP under each climate scenario on an annual and 

monthly basis. 
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4 ASSESSING BEST MANAGEMENT PRACTICE IMPLEMENTATION 

STRATEGIES UNDER CLIMATE CHANGE SCENARIOS  

Sean A. Woznicki, A. Pouyan Nejadhashemi, Craig M. Smith 

4.1 ABSTRACT  

As climate changes, the uncertainty of water availability, changing magnitudes of 

nonpoint source pollution, and uncertainty of BMP effectiveness are issues that 

watershed managers and stakeholders must consider and plan for. The objective of this 

study was to determine how best management effectiveness will be affected by climate 

change using the Soil and Water Assessment Tool. Using downscaled monthly 

precipitation and temperature data output from the Community Climate System Model 

(CCSM-3) provided by the NCAR GIS Initiative Climate Change Scenarios, daily 

precipitation and temperature data was produced based on observed weather station data 

for the Tuttle Creek Lake watershed in Kansas and Nebraska. The A1B, A2, and B1 

SRES emissions scenarios were compared to historical CCSM-3 model output. Eight 

agricultural BMPs were physically represented within SWAT and compared across 

climate scenarios: contour farming, filter strips, grazing management, native grass, 

porous gully plugs, conservation tillage, no-tillage, and terraces. Water yield (up to 44%), 

surface runoff (up to 43%), baseflow (up to 58%) sediment load (up to 54%), nitrogen 

load (up to 37%), and phosphorus load (up to 30%) increased in all three future climate 

scenarios. Terraces, contour farming, and native grass were determined to be the most 

effective in pollution load reduction and percent efficiency at the field and watershed 

scale in future scenarios, but also observed increases in variability of pollution reduction. 
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Porous gully plugs and filter strips showed no significant changes in pollution load or 

percent reduction and had reduction efficiencies close to 0%. Grazing management, no-

tillage, and conservation tillage percent and load reduction in future scenarios varied at 

the field and watershed scale. This study demonstrates that BMP performance in terms of 

sediment, nitrogen, and phosphorus reduction significantly changes in future climate 

scenarios at the field scale, while performance generally does not change significantly at 

the watershed scale. 

4.2 INTRODUCTION  

The potential effects of climate change on the well-being of society are far-

reaching. Although the extent of the impact of climate change on humanity and the 

environment are not completely known, many predictions have been made regarding its 

effects. Water resources, human health, biodiversity, food production, and economic 

growth are among the potential areas impacted by climate change in the United States 

and worldwide (Arnell, 2004; Ebi et al., 2006; Kovats et al., 2005). For example, the 

western Great Plains of the United States are expected to experience decreased stream 

flows in the future; this area is heavily dependent on regional water supplies for 

sustaining agriculture (Rosenberg et al., 2003). Biodiversity is expected to be negatively 

impacted through reduced habitat suitability and reproduction performance (Hulme, 

2005). Food production is expected to be greatly affected by climate change and 

variability due to direct effects on crop production. Precipitation changes may lead to 

drought or flooding, while temperature changes alter the growing season; these 

possibilities may lead to decreased crop yields, affecting global food security (Easterling 

and Apps, 2005; Gregory et al., 2005; Slingo et al., 2005). Economic growth and tourism 
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are also affected by climate change. Fankhauser and Tol (2005) predicted that for most 

climate change scenarios and the majority of countries, negative climate change impacts 

are likely to reduce the rate of economic growth. 

Fresh water is an essential resource to humans, flora, and fauna. Human life 

depends on clean water for drinking, growing crops, and recreation; ecosystems rely on 

clean water to provide life and habitat. In today’s world more and more people believe 

that global climate change and its effects are becoming a reality. The Intergovernmental 

Panel on Climate Change (IPCC) has predicted that higher water temperatures and 

changes in extremes, such as flood and droughts, are projected to affect water quality and 

to intensify nonpoint source (NPS) pollution (Bates et al., 2008). Therefore, it is 

important to understand the consequences of global climate change on water quality and 

quantity. 

In planning for future climate scenarios and their impact on water resources, the 

following problems must be addressed: 

 Uncertainty of water quantity and availability. Climate change will affect water 

quantity and availability on the watershed scale in varying ways for different basins. 

Water availability is variable and not well understood in detail on a case-by-case 

basis for individual watersheds under future climate scenarios (Hurd et al., 2004; 

Jackson et al., 2001; Marshall and Randhir, 2008). 

 Changing magnitudes of nonpoint source (NPS) pollution. Degradation of water 

quality is an important issue because of predicted changes in hydrologic regimes. 

Storm events are the driving force of NPS pollution, and increases or decreases in 

precipitation (annual average and variability) will affect the quantity of pollutants 
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entering lakes and rivers, as well as how the pollution is transported. Some studies 

have suggested that surface water and groundwater quality will be affected by a 

changing climate (Karl et al., 2009). However, the type and magnitude of NPS 

pollution that is affected by climate change will vary by watershed (Ficklin et al., 

2009; Meyer et al., 1999; Murdoch et al., 2000; Senhorst and Zwolsman, 2005).  

 Uncertainty of BMP Effectiveness. Current best management practices (BMPs) may 

not be applicable for future climate scenarios. As climate changes, the magnitude of 

NPS pollutants may be more extreme within a watershed and current BMPs may not 

be appropriate to treat these conditions (Wilby et al., 2006). The IPCC has concluded 

with very high confidence that current water management practices may not be able 

to cope with the impacts of climate change on water supply and water quality (Bates 

et al., 2008). 

The objective of this study is to examine how best management practice 

efficiency will be affected by climate change in the Tuttle Creek Lake watershed of 

Kansas and Nebraska at field and watershed scales. The Soil and Water Assessment Tool 

(SWAT) was used to determine the effects of three IPCC Special Report on Emissions 

Scenarios (SRES) outputs (A2, B1, and A1B) from the CCSM-3 model on eight 

agricultural BMPs (no-tillage farming, conservation tillage farming, native grass, filter 

strips, contour farming, terraces, porous gully plugs, and grazing management).   
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4.3 MATERIALS AND METHODS 

4.3.1 Study Area 

The Tuttle Creek Lake watershed (TCLW), part of the HUC-6 Big Blue 

watershed (Figure 4-1) was selected for this study. Two major rivers (the Little Blue 

River and Big Blue River) enter the TCLW from the north. In order to incorporate these 

inputs into the model, the entire Big Blue watershed (HUC 102702) was also modeled 

(Figure 4-1). The Big Blue watershed consists of seven subwatersheds: the Upper Big 

Blue (HUC 10270201), Middle Big Blue (HUC 10270202), West Fork Big Blue (HUC 

10270203), Turkey (HUC 10270204), the Lower Big Blue (HUC 10270205), Upper 

Little Blue (HUC 10270206), and the Lower Little Blue (HUC 10270207) watersheds. 

For this project, the Big Blue was split into three sections: the upper left, upper right, and 

the TCLW. 
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Figure  4-1. Study Area. For interpretation of the references to color in this and all 
other figures, the reader is referenced to the electronic version of this thesis. 

 

The upper left watershed land use is predominantly agriculture: 66% agricultural 

row crops and 25% range land, while only 5% of land is urban. Minimum elevation is 

381 m and maximum elevation is 668 m above mean sea level (average watershed 

elevation is 530 m). 

The upper right watershed land use is also mostly agricultural. Agricultural row 

crops make up 79% of the land area, while range grasses are 12% of total land area. 

Urban land makes up 5% of the watershed. Minimum elevation is 363 m and maximum 

elevation is 601 m above mean sea level (average watershed elevation is 480 m). 
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Located in northeastern Kansas and southeastern Nebraska, TCLW contains the 

Lower Little Blue watershed and the Lower Big Blue watershed. Total watershed area is 

6,158 km2 with an elevation range from 305 m to 513 m. The watershed is highly 

agricultural with 40% of total area comprised of row crops and 42% consisting of range 

land. Climate data was obtained from National Climatic Data Center (NCDC) weather 

stations (Figure 4-2). Average annual precipitation from 1978-2008 in the watershed was 

839 mm. 

4.3.2 Swat Model 

SWAT is a watershed hydrology and water quality model developed by the 

United States Department of Agricultural Research – Agricultural Research Service 

(USDA-ARS) (Arnold et al., 1998). SWAT is designed to predict the impact of 

management practices on water, sediment, and agricultural chemical yields in complex 

watersheds with varying soils, land use, and land management practices over long time 

periods (Gassman et al., 2007) The model is physically based, spatially distributed, and 

operates on a daily time step. In SWAT, a watershed is divided into subwatersheds, 

which are further divided into hydrologic response units (HRUs). An HRU is an area 

consisting of homogeneous land use, soil, slope, and management practices. Overland 

flow, sediment, and NPS pollution are generated at the HRU level, aggregated at 

subbasin level, and routed through channels to the watershed outlet. 

There are two options for calculating runoff volume in SWAT: the SCS curve 

number procedure or the Green and Ampt infiltration method (Neitsch et al. 2005). The 

SCS curve number procedure is an empirical equation that calculates accumulated runoff 

with rainfall depth, initial abstraction (surface storage, infiltration, interception), and 
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retention (spatial parameter based on soil, land use, management, and slope). The Green 

and Ampt infiltration predicts infiltration assuming excess water at the surface at all time. 

This method requires sub-daily precipitation data; therefore the SCS curve number 

procedure was used in this study. 

In SWAT, soil erosion caused by rainfall and surface runoff is computed using the 

Modified Universal Soil Loss Equation (MUSLE) (Neitsch et al. 2005). MUSLE predicts 

sediment yield as a function of surface runoff volume, peak runoff rate, area, soil 

erodibility, land cover, land support practices, topography, and percent coarse fragments 

in top soil layer. 

Transport of nutrients from land areas into the stream network is modeled in 

various ways depending on the form of the nutrient (Neitsch et al. 2005). Nitrate may be 

transported with surface runoff, lateral flow, or percolation, and is a function of the 

nitrate concentration in mobile water. Organic nitrogen attached to soil particles is 

associated with sediment loading from the HRU. Diffusion is the primary mechanism of 

phosphorus movement in the soil, which is in response to a concentration gradient. 

Organic and mineral phosphorus attached to soil particles is a function of sediment 

loading from the HRU.  

Channel sediment routing in SWAT is based on the maximum amount of 

sediment that can be transported from a reach segment, which is a function of peak 

channel velocity (Neitsch et al. 2005). Sediment deposition and degradation are the 

dominant processes in sediment routing, depending on whether sediment concentration is 

less than (degradation) or greater than (deposition) the maximum amount of sediment that 

can be transported from a reach segment. Nutrient routing in SWAT is modeled using the 
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nitrogen cycle and the phosphorus cycle (Neitsch et al. 2005). Organic nitrogen and 

organic phosphorus may be removed from the stream by settling. 

4.3.3 Physiographic Characteristics 

The SWAT model requires various datasets for model setup, including 

topography, land use, and soils data. Topography was obtained from the Better 

Assessment Science Integrating point and Nonpoint Sources (BASINS) software version 

4.0 in the form of a digital elevation model (DEM) with a 90 m resolution (BASINS, 

2007).  

The National Land Cover Database 2001 (NLCD 2001) map was downloaded 

from the Multi-Resolution Land Characteristics Consortium (MRLC). NLCD 2001 has a 

resolution of 30 m and contains 21 different land use classes (Homer et al., 2007). 

Generic agricultural row crop land within the Tuttle Creek Lake watershed was split into 

six different land uses based on agricultural statistics (USDA-NASS, 2007) and common 

crop rotations in the watershed. Agricultural land use allocation was as follows: corn-

soybean (25%), continuous soybean (5%), continuous corn (15%), soybean-wheat (25%), 

continuous soybean (10%), and grain sorghum-soybean-wheat (20%). 

Soil data was obtained from the U.S. Department of Agriculture (USDA) State 

Soil Geographic (STATSGO) dataset. STATSGO data is a 1:250,000 scale map that is 

linked to tabular data containing estimated physical and chemical soil properties (Muttiah 

and Wurbs, 2002). 
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4.3.4 Observed Climate Data 

Twenty years of observed daily climate data was attained from the National 

Climatic Data Center (NCDC) cooperative weather network. Data from eight 

precipitation stations and six temperature stations were obtained within and around the 

TCLW. For upper left input watershed, 11 precipitation stations and seven temperature 

stations were used, while the upper right input watershed used 14 precipitation and 11 

temperature stations. Precipitation and temperature stations are presented in Figure 4-2. 

 

Figure  4-2. Precipitation stations, temperature stations, and model calibration 
locations 
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4.3.5 Climate Change Data 

Data for the climate change scenarios was provided by the Community Climate 

System Model (CCSM-3) project (http://www.ccsm.ucar.edu), supported by the 

Directorate for Geosciences of the National Science Foundation and the Office of 

Biological and Environmental Research of the U.S. Department of Energy. The National 

Center for Atmospheric Research (NCAR) GIS Initiative provided CCSM-3 data in a GIS 

format through GIS Climate Change Scenarios portal (http://www.gisclimatechange.org). 

Downscaled projections of monthly mean temperature and total precipitation were also 

provided through this initiative at a spatial resolution of approximately 4.5 km for the 

contiguous United States (Hoar and Nychka, 2008). Monthly temperature and 

precipitation projection outputs from the National Center for Atmospheric Research GIS 

Initiative CCSM-3 are too coarse for use on the watershed scale. Due to the scale of the 

project, the statistical downscaled monthly temperature and precipitation were used. The 

statistical downscaling method was developed and performed by Hoar and Nychka 

(2008). First, a linear model was developed for every location in the domain. The 

Parameter-elevation Regressions on Independent Slopes Model (PRISM) climate 

mapping system was used to get a prediction at every CCSM data location. The initially 

developed linear models for each location were applied to the initial model estimates to 

obtain the final downscaled estimate. 

Three SRES emissions scenarios were used in this study as defined by 

Nakicenovic et al. (2000): A2, A1B, and B1. Scenarios are not specific predictions or 

forecasts of future climate, but are plausible alternative futures. The A2 scenario is 

described by slow development of alternative fuel technologies and prominent fossil fuel 
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usage. A2 has the highest atmospheric CO2 concentration (by 2100) of the three 

scenarios used in this study. The A1B scenario is characterized by rapid economic growth 

leading to high energy demand. This scenario is “balanced”, which means that alternative 

energy is prominent and no energy technology, fossil fuel or otherwise, controls the 

market. The B1 scenario illustrates a world relying on resource conservation and 

ecologically sound solutions. Fossil fuel use decreases to slow the increase of CO2 

emissions. A fourth non-SRES scenario was also used, entitled 20C3M which is a 

historical experiment characterized by greenhouse gases increasing as observed through 

the 20
th

 century. 

4.3.6 Sensitivity Analysis 

Sensitivity analysis is a process that determines the rate of change in model output 

with respect to changes in model input parameters (Moriasi et al., 2007). A sensitivity 

analysis was performed to determine which SWAT model parameters impact output 

variability of streamflow, sediment, nitrogen, and phosphorus the most. The results of the 

sensitivity analysis conclude which model parameters should be used in calibration. 

SWAT uses the Latin Hypercube One-factor-At-a Time (LH-OAT) method of sensitivity 

analysis (van Griensven et al., 2006). In this study, a sensitivity analysis was performed 

at three separate locations: USGS gauging station #06884025, USGS gauging station 

#06882000, and the Tuttle Creek Lake US Army Corps of Engineers gauging station at 

the inlet of Tuttle Creek Lake (Figure 4-2). 
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4.3.7 Model Calibration and Validation 

Calibration is the procedure of adjusting model input parameters to allow model 

simulation output to emulate observed watershed behavior. The parameters used in 

calibration were based on the results of the sensitivity analysis. The most sensitive 

parameters were deemed acceptable for use in calibration. In the auto-calibration 

procedure, SWAT uses a Shuffled Complex Evolution search algorithm to determine 

best-fit parameters for the model compared to observed samples (Muleta and Nicklow, 

2005). Validation is performed after the calibration time step to ensure model accuracy. 

Auto-calibration was used to calibrate the two upstream watersheds and the 

TCLW using observed data from NCDC weather stations. The same locations that were 

used for the sensitivity analysis were used in manual and later for the auto-calibration. 

Calibration was performed on a daily basis for streamflow, sediment, total Kjeldahl 

nitrogen (TKN) although SWAT does not calculate the ammonia (NH3) component, and 

total phosphorus (TP).Time steps for the upper left (USGS #06884025) and Tuttle Creek 

Lake watershed (US Army Corps Gauging Station) were both from 1998-2000 for 

calibration and 2001-2000 for validation. The time step for the upper right (USGS 

#06882000) was 1986-1989 for calibration and 1990-1993. All calibrations used a one 

year model warm-up. Calibration locations are shown in Figure 4-2. Different time steps 

were used for different constituents due to data availability, especially concerning 

sediment and nutrient observations.  

Model evaluation is required to determine how well the calibrated model predicts 

observed watershed behavior. Three statistical methods were used to evaluate model 

prediction: the Nash-Sutcliffe Efficiency (NSE), coefficient of determination (R
2
), and 
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the root mean square error (RMSE). NSE indicates how well a plot of observed versus 

simulated data fits a 1:1 line (Moriasi et al., 2007) and is calculated as shown in 

Equation 1. 
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Where Yi
obs

 is the observed value for the constituent, Yi
pred is the predicted value 

of the constituent, and Y
obs, mean

 is the mean of the observed data for the constituent. 

NSE can range from negative infinity to 1, where 1 is the optimal value (perfect fit). 

The coefficient of determination describes the proportion of variance in measured 

data explained by the model (Moriasi et al., 2007). R
2
 is calculated as shown in 

Equation 2. 
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Where Y
pred, mean is the mean of the predicted values for the constituent. R

2
 

ranges from 0 to 1, where higher values indicate that the model is predicting the y 

variable with significant confidence. 

RMSE indicates the error of a prediction in the squared units of the constituent of 

interest (Moriasi et al., 2007). The method for calculating RMSE is show in Equation 3. 
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Where n is the total sample size. An RMSE equal to zero indicates a perfect fit of 

predicted data with observed data. 

4.3.8 Climate Change Scenarios 

Climate change scenarios were developed through the use of downscaled monthly 

average total precipitation and monthly mean temperature data. The future time period 

selected was 2041-2060 for each of the SRES emissions scenario model runs to gain an 

understanding of mid-century climate change. The historical model (20C3M) baseline 

time period selected was 1980-1999 for comparison with observed data from 

precipitation and temperature stations during the same time period. 

For each precipitation and temperature station, the data for the corresponding 4.5 

km by 4.5 km cell was extracted for every month of each year within the period of 

interest. Unique average values for each station in the future time period and the 

historical time period were calculated for each month using the delta change method for 

precipitation and temperature. The delta change method adjusts historical observed daily 

temperature and precipitation data on a monthly basis (Snover et al., 2003). Assumptions 

regarding the delta change method are as follows: GCMs are more accurate in simulating 

relative changes between climate scenarios than the absolute values of a future scenario, 

there are no changes in climate variability, constant spatial patterns of climate, the 

number of wet days will remain constant, and minimum and maximum values of climate 

variables are scaled (Fowler et al., 2007). The daily observed dataset was adjusted using 
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the 20C3M scenario means for each weather station. Then, the change between the 

20C3M scenario and each future scenario were determined for monthly temperature and 

precipitation. These differences were applied to the adjusted daily dataset for input into 

SWAT. Assumptions of the delta change method include 

Precipitation deltas are based on a percentage change between future time period 

monthly average and the historical model average (increase or decrease in average 

monthly precipitation) because precipitation is zero bounded (negative precipitation is not 

possible). The precipitation delta change method is shown in equation 4. 

 











obsmonthly

MCmonthly
obsdailyMCdaily P

P
PP

,

320,
,320,     (4) 

Where Pdaily, 20C3M is adjusted daily precipitation, Pdaily, obs is observed daily 

precipitation, Pmonthly, 20C3M is monthly average for 20C3M (1980-1999) precipitation, 

and Pmonthly, obs is monthly average (1980-1999) precipitation for the observed data 

from 1980-1999.  

Temperature deltas (additive) are calculated based on the difference between the 

future time period monthly average and the historical model average. The temperature 

delta change method is presented in equation 5. 

  obsmonthlyMCmonthlyobsdailyMCdaily TTTT ,320,,320,    (5) 

Where T daily, 20C3M  is adjusted mean daily temperature, T daily, obs is observed 

mean daily temperature, Tmonthly, 20C3M is monthly average temperature for 20C3M 

(1980-1999), and T monthly, obs is monthly average temperature for observed data (1980-
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1999). Monthly mean temperature deltas were applied to both minimum and maximum 

observed daily temperature. 

To develop daily precipitation and temperature data, observed weather station 

data was used from 1980-1999. Deltas were calculated between the observed weather 

data and the 20C3M scenario to obtain daily data statistically similar to the 20C3M 

monthly averages. The delta ranges between observed data and 20C3M for each weather 

station are listed in Table 4-1. The 20C3M model over predicts precipitation by up to 

116% (January) for one weather station, while under predicts precipitation by up to -

72.4% (August) for a weather station. For mean monthly change in temperature, 20C3M 

under predicts temperature by up to -0.6 °C (November) and over predicts temperature by 

up to 6.2 °C (August). 

Table  4-1. Temperature and precipitation delta ranges and CO2 concentrations 
from 20C3M to observed 

Month ΔP (%) ΔTmean (°C) CO2 (ppm) 

January 37.2 to 116.0 0.2 to 1.7 330 
February 24.4 to 52.1 0.1 to 1.8 330 
March -30.1 to -17.1 0.2 to 1.5 330 
April -27.4 to -12.9 1.2 to 2.6 330 
May -32.0 to -17.0 1.1 to 2.2 330 
June -13.5 to 26.7 -0.1 to 1.1 330 
July -32.2 to 6.1 2.0 to 3.3 330 
August -72.4 to -65.9 4.8 to 6.2 330 
September -66.9 to -56.3 2.9 to 4.1 330 
October -39.8 to -25.1 0.6 to 1.8 330 
November -17.4 to 3.4 -0.6 to 0.3 330 
December -1.0 to 13.5 0.3 to 1.4 330 

  

Using the deltas calculated between 20C3M and each emissions scenario model 

output, daily precipitation and temperature data were calculated for each model scenario 

(A1B, A2, B1). Monthly mean temperature deltas were applied to both minimum and 
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maximum daily observed temperature. Delta ranges for each precipitation station 

between 20C3M and A2, A1B, and B1 are listed in Tables 4-2, 4-3, and 4-4, respectively. 

The A2 scenario had the greatest increase in precipitation (66.2% in August), while the 

A1 and A2 scenarios had temperature increases of up to 3.6 °C (September). 

Table  4-2. Temperature and precipitation delta ranges and CO2 concentrations 
from 20C3M to A2 for weather stations 

Month ΔP (%) ΔTmean (°C) CO2 (ppm) 

January -7.3 to -2.5 2.3 to 2.4 525 
February 4.7 to 6.3 1.8 to 1.9 525 
March 4.0 to 8.3 2.1 525 
April 20.6 to 24.2 1.9 to 2.0 525 
May 16.5 to 19.8 2.1 to 2.3 525 
June 9.0 to 12.3 2.5 to 2.7 525 
July 12.1 to 16.2 2.3 to 2.4 525 
August 43.8 to 66.2 2.6 to 2.8 525 
September 7.5 to 10.3 3.4 to 3.6 525 
October -18.8 to -8.8 3.1 525 
November -9.1 to -8.4 3.1 to 3.2 525 
December 6.2 to 11.0 2.1 to 2.2 525 

Table  4-3. Temperature and precipitation delta ranges and CO2 concentrations 
from 20C3M to A1B for weather stations 

Month ΔP (%) ΔTmean (°C) CO2 (ppm) 

January 1.2 to 4.2 2.0 to 2.2 525 
February 14.9 to 17.7 2.2 525 
March 4.1 to 7.1 2.1 525 
April 15.7 to 17.8 2.1 to 2.2 525 
May 14.0 to 17.3 2.4 to 2.6 525 
June 15.4 to 19.0 2.5 to 2.8 525 
July 16.3 to 19.2 2.3 to 2.4 525 
August 23.8 to 43.1 2.8 to 3.1 525 
September 19.5 to 20.4 3.4 to 3.6 525 
October -1.3 to 0.6 3.2 to 3.3 525 
November 7.5 to 8.8 2.6 to 2.7 525 
December 10.4 to 15.6 2.2 to 2.4 525 
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Table  4-4. Temperature and precipitation delta ranges and CO2 concentrations 
from 20C3M to B1 for weather stations 

Month ΔP (%) ΔTmean (°C) CO2 (ppm) 

January -3.2 to -0.3 1.4 475 
February 3.1 to 6.0 1.8 475 
March 1.3 to 2.5 1.8 to 1.9 475 
April 3.6 to 6.9 1.8 to 1.9 475 
May 16.5 to 19.2 1.5 to 1.6 475 
June 8.1 to 10.1 1.9 to 2.0 475 
July 2.0 to 4.3 1.9 to 2.0 475 
August 30.0 to 41.9 1.9 to 2.1 475 
September 4.3 to 5.4 2.3 to 2.5 475 
October 6.0 to 9.1 2.1 475 
November -2.2 to -1.3 2.0 475 
December 15.4 to 17.4 1.3 to 1.4 475 

 

Atmospheric carbon dioxide (CO2) concentration was considered to be constant 

for each climate change scenario, based on IPCC predictions for each emissions scenario. 

The default SWAT value of 330 parts per million (ppm) CO2 was used for the historical 

model and the 20C3M scenario. Under the A2 and A1B scenario, 525 ppm CO2 was 

used. For the B1 scenario 475 ppm CO2 was used. SWAT cannot simulate increasing or 

decreasing atmospheric CO2 concentrations. Therefore, these baseline values were 

considered acceptable for each scenario run. 

4.3.9 Representation of Best Management Practices in SWAT 

Eight agricultural BMPs and a baseline scenario were implemented within SWAT 

for each climate scenario, for a total of 32 unique scenarios. The BMPs selected for 

representation were: no-tillage farming, conservation tillage farming, contour farming, 
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terraces, filter strips, porous gully plugs, grazing management, and replacement of row 

crops with native grass. The base scenario used applied conventional tillage to all 

agricultural land, depending on the crop type. 

4.3.9.1 Base Scenario (Conventional Tillage) 

The base scenario consists of conventional tillage operations throughout the 

agricultural land of the watershed, with no BMPs applied. Six conventional tillage 

operations were developed for the six designated agricultural land uses. Within SWAT, 

one operations schedule was applied to a land use type based on the crops included in the 

schedule. An example of one of six conventional tillage operations schedules (based on 

land use) is presented in Table 4-5. In scenarios with BMPs that aren’t operations based, 

the conventional tillage was applied in addition to the BMP. For example, the grazing 

management, porous gully plug, terrace, and contour farming scenarios also use 

conventional tillage on agricultural land. 
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Table  4-5. Example of a corn-soybean conventional tillage operations schedule 

Year Crop Operation Application Rate Date 
1 CORN Tillage  March 27 
1 CORN Knife anhydrous ammonia 96 kg/ha April 5 
1 CORN Tillage  April 15 
1 CORN Pesticide application 1.7 kg/ha April 15 
1 CORN Planting  April 16 
1 CORN Nitrogen fertilizer application 16 kg/ha April 16 
1 CORN Phosphorus fertilizer application 53 kg/ha April 16 
1 CORN Herbicide application 0.3 kg/ha May 20 
1 CORN Harvest and kill  October 1 
1 CORN Tillage  November 5 
2 SOYB Tillage  March 27 
2 SOYB Tillage  April 15 
2 SOYB Tillage  May 14 
2 SOYB Planting  May 16 
2 SOYB Phosphorus fertilizer application 33 kg/ha May 16 
2 SOYB Pesticide application 0.9 kg/ha June 14 
2 SOYB Harvest and kill  October 1 
2 SOYB Tillage  November 5 

4.3.9.2 No-Tillage Farming 

No-tillage farming consists of implementing field operations that limit soil-

disturbing activities to only those necessary to place nutrients, condition residue, and 

plant crops. The goal of no-tillage farming is to reduce erosion caused by disturbing the 

soil.  

No-tillage operations were developed for the six crop rotations designated to the 

agricultural land. One operations schedule was applied to a land use type based on the 

crops included in the schedule. An example of one of six no-tillage operations schedules 

(based on land use) is presented in Table 4-6. 
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Table  4-6. Example of a corn-soybean no-tillage operations schedule 

Year Crop Operation Application Rate Date 
1 CORN Knife anhydrous ammonia 96 kg/ha April 5 
1 CORN Pesticide application 1.7 kg/ha April 15 
1 CORN Planting  April 16 
1 CORN Nitrogen fertilizer application 16 kg/ha April 16 
1 CORN Phosphorus fertilizer application 53 kg/ha April 16 
1 CORN Pesticide application 0.3 kg/ha May 20 
1 CORN Harvest and kill  October 1 
2 SOYB Pesticide application 0.9 kg/ha April 30 
2 SOYB Planting  May 5 
2 SOYB Phosphorus fertilizer application 33 kg/ha May 5 
2 SOYB Pesticide application 0.9 kg/ha June 1 
2 SOYB Harvest and kill  October 1 
2 SOYB Herbicide application 0.9 kg/ha October 10 

4.3.9.3 Conservation Tillage Farming 

Conservation tillage operations result in less soil disturbance than conventional 

tillage, although they usually include some tillage practices (Tuppad and Srinivasan, 

2008). Implementing conservation tillage will reduce sheet and rill erosion while 

increasing soil moisture. An example of one of six conservation tillage operations 

schedules (based on land use) is presented in Table 4-7. 
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Table  4-7. Example of a corn-soybean conservation tillage operations schedule 

Year Crop Operation Application Rate Date 
1 CORN Knife anhydrous ammonia 96 kg/ha April 5 
1 CORN Tillage  April 15 
1 CORN Pesticide application 1.7 kg/ha April 15 
1 CORN Planting  April 16 
1 CORN Nitrogen fertilizer application 16 kg/ha April 16 
1 CORN Phosphorus fertilizer application 53 kg/ha April 16 
1 CORN Pesticide application 0.3 kg/ha May 20 
1 CORN Harvest and kill  October 1 
2 SOYB Tillage  April 15 
2 SOYB Tillage  May 14 
2 SOYB Planting  May 16 
2 SOYB Phosphorus fertilizer application 33 kg/ha May 16 
2 SOYB Pesticide application 0.9 kg/ha June 14 
2 SOYB Harvest and kill  October 1 
2 SOYB Tillage  November 5 

4.3.9.4 Contour Farming 

Contour farming makes use of ridges formed by tillage, planting, and other 

farming operations to change the direction of runoff from directly downslope to around 

the hill slope (USDA-NRCS, 2005). This practice is applied to reduce erosion and 

transport of sediment and contaminants attached to sediment by decreasing energy of 

surface runoff. Infiltration is also increased through impoundment of water in small 

depressions and retaining more water on the field (Arabi et al., 2008). 

To implement this practice in SWAT, the curve number (CN2) for agricultural 

land and the USLE practice factor (USLE_P) were adjusted using the technique 

developed by Arabi et al. (2008) and Tuppad and Srinivasan (2008). USLE_P was 

reduced from its initial value of 1.0 to 0.5 or 0.6 depending on the land slope. Curve 

number was reduced by 3 for all agricultural row crops.  
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4.3.9.5 Terraces 

A terrace is an earth embankment, or a combination ridge and channel, 

constructed across a field slope (USDA-NRCS, 2005). Terraces decrease hill-slope length 

and prevent gully formation to reduce erosion (Tuppad and Srinivasan, 2008). Surface 

runoff volume is also decreased by impoundment of water in small depressions, while 

settling of sediments is increased by reducing flow energy (Arabi et al., 2008). 

Terraces are incorporated in SWAT through adjustment of CN2 and USLE_P on 

agricultural row crop land. Curve number was reduced by 5 for agricultural land, while 

USLE_P was set to 0.12 or 0.10 based on the land slope (Arabi et al., 2008). 

4.3.9.6 Filter Strips 

Filter strips are areas of herbaceous vegetation placed between cropland, grazing 

land, or disturbed land and environmentally sensitive areas (USDA-NRCS, 2005). The 

purpose of filter strips is to reduce sediment, particulate organics, sediment absorbed 

contaminants, and dissolved contaminant loadings in runoff (Nejadhashemi and Mankin, 

2007). Filter strips may also serve as a riparian buffer along streams.  

In SWAT, filter strips were physically represented through alteration of the land 

use map. A 10 m buffer was created around all streams (identified using the National 

Hydrography Dataset) bordering agricultural row crop land. The agricultural land was 

converted to native grass to represent a filter strip between agricultural land and the 

stream. Maintenance was simulated by harvesting biomass from the filter strip once per 

year.  
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SWAT has a filter strip component to add an edge-of-field filter strip of desired 

width to an HRU (FILTERW). This was not used because the equation used is empirical 

and not physically based. The method developed here is physically based and the filter 

strips are placed on an actual location in proximity to the stream. 

4.3.9.7 Porous Gully Plugs 

Porous gully plugs are rocks or logs used to reduce overland flow velocity in 

ephemeral gullies (Tuppad and Srinivasan, 2008). The goal is to decrease surface runoff 

energy to aid in sediment settling. This BMP is represented in SWAT through adjustment 

of the Manning’s roughness coefficient (CH_N1), also known as Manning’s “n” value, 

for tributary channels on subbasins considered erodible. The initial value of CH_N1 is 

0.014 in SWAT; in the applied BMP condition it was increased to 0.05 on land with a 

subbasin slope of greater than 5 percent (Tuppad and Srinivasan, 2008). 

4.3.9.8 Grazing Management 

Grazing management is used to prevent overgrazing of range grasses through 

preventing excessive above ground biomass removal by animals. Overgrazing exposes 

bare soil and increases soil compaction. This leads to decreased infiltration and increased 

soil erosion and surface runoff, thereby increasing sediment and nutrient yields from 

range land (Tuppad and Srinivasan).  

Grazing management may be incorporated into SWAT through reduction of the 

harvest index (HVSTI) of range grass (Tuppad and Srinivasan, 2008). The HVSTI is 

defined as the percentage of biomass removed in a harvest operation (in this case animal 

grazing). Initially, HVSTI is set to 90% for range grass, while in the BMP 
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implementation scenario, HVSTI was set to 70%. Decreasing HVSTI increases biomass 

left on the field, reducing soil exposure. 

4.3.9.9 Native Grass 

Native grass replacement consists of replacing land containing agricultural row 

crops with native tall grasses such as Indian switchgrass or big bluestem (Nejadhashemi 

and Mankin, 2007). Replacing row crops with native grasses is expected to reduce 

sediment and nutrient transport to streams because it eliminates the need for tillage and 

fertilizer while increasing vegetative cover on the soil. 

To implement native grass within SWAT, all agricultural row crop land was 

converted to range grass, which represents a mixture of native tall grasses. Row crop 

management operations are not applicable in the native grass scenario, because row crops 

are replaced with native grass. 

4.4 RESULTS AND DISCUSSION 

The results and discussion section details the TCLW sensitivity and  calibration 

results, impacts of climate change on long term water quantity, impacts of climate change 

on long term water quality, effectiveness of BMPs in the current climate, effectiveness of 

BMPs in future climate scenarios, and assessing the impacts of climate change on BMP 

effectiveness. 

4.4.1 Sensitivity Analysis 

Sensitivity analysis was performed on all three sections of the Big Blue watershed 

(TCLW, upper left, upper right) for flow sediment, TKN, and TP. The ten most sensitive 
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parameters for flow and sediment for each watershed and are presented in Table 4-8, 

while Table 4-9 lists results for TKN and TP. CN2, Esco, Alpha_bf, and Sol_awc were 

all highly sensitive flow in each watershed. For sediment, Spcon, Spexp, Ch_N2, and 

surlag were the most sensitive. In the case of TKN, CN2, Surlag, and Ch_K2 were the 

most sensitive. Surlag, Alpha_Bf, and Ch_K2 were the most sensitive for TP. 

Table  4-8. Sensitivity analysis results for flow and sediment 

 Streamflow Sediment 
Rank TCLW Upper 

Left 
Upper 
Right 

TCLW Upper 
Left 

Upper  
Right 

1 CN2 CN2 CN2 Spcon Spcon Spcon 
2 Esco Esco Esco Ch_N2 Ch_N2 Ch_N2 
3 Alpha_Bf Sol_Awc Alpha_Bf Spexp Surlag Spexp 
4 Ch_K2 Alpha_Bf Sol_Awc Ch_K2 Spexp Surlag 
5 Sol_Awc Blai Blai Surlag CN2 CN2 
6 Blai Sol_Z Sol_Z CN2 Ch_K2 Ch_K2 
7 Canmx Surlag Ch_K2 Alpha_Bf Blai Blai 
8 Sol_Z Ch_K2 Timp Usle_P Esco Esco 
9 Ch_N2 Canmx Canmx Esco Usle_P Alpha_Bf 
10 Epco Rchrg_Dp Surlag Blai Usle_C Usle_P 

Table  4-9. Sensitivity analysis results for TKN and TP 

 TKN TP 
Rank TCLW Upper 

Left 
Upper 
Right 

TCLW Upper 
Left 

Upper 
Right 

1 CN2 Surlag Surlag Surlag Surlag Alpha_Bf 
2 Ch_K2 CN2 CN2 CN2 Alpha_Bf Surlag 
3 Surlag Blai Usle_P Esco CN2 CN2 
4 Ch_N2 Usle_P Blai Ch_K2 Ch_K2 Ch_K2 
5 Sol_Awc Alpha_Bf Esco Alpha_Bf Timp Esco 
6 Usle_P Timp Alpha_Bf Timp Canmx Ch_N2 
7 Esco Canmx Biomix Ch_N2 Esco Blai 
8 Blai Esco Timp Sol_Awc Blai Biomix 
9 Canmx Sol_Awc Sol_Z Sol_Z Sol_Alb Sol_Z 
10 Alpha_Bf Biomix Sol_Awc Rchrg_Dp Rchrg_Dp Sol_K 
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4.4.2 Model Calibration 

The model was calibrated for flow, sediment, TKN, and TP. The calibrated model 

performed well in reproducing streamflow, sediment load, and TP load. Final calibration 

parameter values are presented in Table 4-10. Calibration results of TKN load were less 

satisfactory, especially in the validation period. Poor performance in reproducing TKN 

load is likely due to lack of observation data, unknown manure applications on 

agricultural lands, and lack of NH3 output provided by SWAT. Ten observations of TKN 

were available over the 20 year study period, while specific manure applications on 

agricultural fields and septic system usage in the watershed were not modeled. In daily 

calibration, this volume of observed data is inadequate for satisfactory calibration results. 

Although the TKN calibration results were unsatisfactory, relative comparisons between 

model scenarios can still be made. Calibration and validation results for streamflow, 

sediment load, TKN load, and TP load are presented in Table 4-11 and figures 8-1, 8-2, 

8-3, and 8-4 in the appendix. 

Table  4-10. TCLW calibrated model parameters 

Parameter Method Calibrated Value 
Alpha_Bf Replace default with 0.9886 
Biomix Multiply default by 1.4385 
Ch_K2 Replace default with 111.1000 
Cn2 Multiply default by 1.0323 
Esco Replace default with 0.4976 
Sol_Awc Multiply default by 1.1881 
Spcon Replace default with 0.0015 
Spexp Replace default with 1.8594 
Surlag Replace default with 0.9454 
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Overall, the results show that the calibrated model is under predicting sediment, 

TKN, and TP loads for high flow conditions. Under low flow conditions, the model is 

over predicting for TP, while performing well for flow, sediment, and TKN. 

Table  4-11. TCLW calibration results 

  Calibration Validation Combined 

Flow 

NSE 0.65 0.58 0.63 

R
2
 0.68 0.59 0.63 

RMSE 68.4 67.9 68.2 

Sediment 

NSE 0.57 0.55 0.56 

R
2
 0.86 0.99 0.91 

RMSE 9531 10027 9782 

TKN 

NSE 0.16 -2.53 0.26 

R
2
 0.98 0.14 0.77 

RMSE 221443 31894 151143 

TP 

NSE 0.87 0.67 0.76 

R
2
 0.94 0.85 0.87 

RMSE 5400 9759 7887 

4.4.3 Impact of Climate Change on Water Quantity 

The impact of different climate scenarios on water quantity (long-term average) 

under conventional tillage operations (base scenario) is presented in Table 4-12. The 

study showed that surface runoff, baseflow, and water yield all increased with increasing 

precipitation for each climate change scenario. Long term average yearly precipitation 

increases from the current climate scenario were 97.7 mm (3.8 in) for the A1B scenario, 

74.2 mm (2.9 in) for the A2 scenario, and 56.7 mm (2.2 in) for the B1 scenario.  

The A1B scenario has the greatest impact on water quantity because of has the 

largest increase in precipitation, while the B1 scenario had the smallest impact on water 

quantity because it has the smallest increase in precipitation. For example, surface runoff, 

baseflow, and water yield increased by 43%, 58%, and 44%, respectively, for the A1B 
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scenario. In the A2 scenario, surface runoff increased by 30%, baseflow increased by 

45%, and water yield increased by 31% from the current climate. Finally, the B1 scenario 

demonstrated that surface runoff increased by 18%, baseflow increased by 26%, and 

water yield increased by 19% from the current climate, which corresponds with the 

lowest precipitation increase of the three future climate scenarios. 

Table  4-12. Impacts of climate change on water quantity in the TCLW 

Scenario Precipitation 
(mm) 

ET (mm) Surface Runoff   
(mm) 

Baseflow 
(mm) 

Water Yield 
(mm) 

20C3M 667.2 622.0 56.8 2.6 59.0 
A1B 764.9 692.3 81.2 4.2 85.0 
A2 741.3 677.2 73.7 3.8 77.1 
B1 723.9 667.0 67.2 3.3 70.1 

4.4.4 Impact of Climate Change on Water Quality 

The impact of different climate scenarios on water quality (sediment, total 

nitrogen, and total phosphorus) at the watershed outlet (long-term average) under 

conventional tillage operations is presented in Figure 4-3. This allows for analysis of how 

climate change affects pollution generation at the watershed scale. In all three future 

climate scenarios sediment load, nitrogen load, and phosphorus load at the watershed 

outlet increased from the current climate levels. This may be due to precipitation 

increases in each scenario. Increase in precipitation generates more runoff and water 

yield from the field, which leads to an increase in NPS transport to the reach.  



 
 

86

0

200000

400000

600000

800000

1000000

1200000

Sediment (1000 kg) Nitrogen (10 kg) Phosphorus (kg)

Pollutant

P
o

ll
u

ta
n

t 
L

o
ad

 a
t 

W
at

er
sh

ed
 O

u
tl

et
 (

kg
)

20C3M A1B A2 B1
 

Figure  4-3. Impact of climate change on sediment, nitrogen, and phosphorus load at 
the watershed outlet (20-year average) 

The A1B scenario observed the greatest increases in sediment, nitrogen, and 

phosphorus loads at the watershed outlet, while the B1 scenario experienced the smallest 

increases. These results correlate with the increases in precipitation, and consequently 

runoff, in each scenario. The A1B scenario had the greatest increase in precipitation from 

the climate and the greatest increase in pollutant loads at the watershed outlet. The B1 

scenario had the smallest precipitation increase from the current climate and showed the 

smallest increase in pollutant loads.  In terms of percent increase in pollution generation, 

the A1B scenario had a 54% increase in sediment load, a 37% increase in nitrogen load, 

and a 30% increase in phosphorus load from the current climate. In the A2 scenario, 

sediment, nitrogen, and phosphorus loads increased by 36%, 27%, and 22%, respectively. 

Finally, for the B1 scenario, smaller increases of 20%, 11%, and 12% in sediment load, 

nitrogen load, and phosphorus load were observed, respectively. 
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4.4.5 Effectiveness of BMPs in the Current Climate 

BMP efficiency was analyzed in the current climate. Nutrient reduction 

efficiencies from conventional tillage to BMP are presented in Figure 4-4 (TN) and 

Figure 4-5 (TP), while sediment reduction is shown in Figure 4-6. Native grass, terraces, 

and contour farming show the best performance out of the BMPs at the field scale, while 

porous gully plugs, no-tillage, conservation tillage, and filter strips show limited 

reduction. Native grass has median percent reductions of 52%, 56%, and 70% for 

sediment, nitrogen, and phosphorus, respectively. Terraces have a median sediment 

reduction of 51%, total nitrogen reduction of 54%, and phosphorus reduction of 63%. 

Contour farming is also performs well, with median reduction efficiencies of 36%, 34%, 

and 41% for sediment, total nitrogen, and total phosphorus, respectively. Grazing 

management was the fourth most efficient BMP, with 14% median sediment reduction, 

8% median total nitrogen reduction, and 6% median total phosphorus reduction. Filter 

strips had median reduction of 1% for all three pollutants, while porous gully plugs had 

almost no reduction. Conservation tillage had median reduction efficiencies of less than 

5% for all three pollutants, while no-tillage had an 8% mean sediment reduction 

efficiency, a -1% median total nitrogen reduction efficiency, and -7% median total 

phosphorus reduction efficiency.  
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Figure  4-4. BMP TN efficiency at the field scale for the 20C3M scenario 
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Figure  4-5. BMP TP efficiency at the field scale for the 20C3M scenario 
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Figure  4-6. BMP sediment reduction efficiency at the field scale for the 20C3M 
scenario 

Contour farming, terraces, and native grass likely had the best performance 

because of the intensive nature and large scale of the BMPs. Porous gully plugs had 

limited reduction because of their small scale (suitable only in areas with gully erosion 

and large slope). Due to the way in which porous gully plugs were defined here, they 

were implemented in few situations. Filter strips also showed limited reduction because 

they were only implemented in agricultural fields bordering reaches, which was less than 

0.7% of the watershed area. If implemented in more areas (for example, bordering all 

agricultural fields), it is expected that load reduction would increase. Although erosion 

decreases in the no-tillage scenario, nitrogen loading from the field to the reach increased 

because of increased infiltration and transport of nitrate in groundwater. 
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Variability in pollutant reduction for the BMP scenarios is also an important 

consideration.  BMPs with low variability are more reliable because their efficiency is 

more predictable in the long-term. Filter strips, grazing management, porous gully plugs, 

and conservation tillage BMPs have the lowest variability in percent reduction. Native 

grass, terraces, contour farming, and no-tillage have the greatest variability in percent 

reduction. The BMPs with highest variability are also the large scale, intensive practices. 

Due to their large scale, their reduction efficiency at the field scale is related to 

precipitation.  

For example, in the native grass scenario, as yearly precipitation increases, 

reduction efficiency of each pollutant decreases. Decreased pollutant reduction efficiency 

in years with relatively higher precipitation is likely due to increased runoff and overland 

flow rate, where the native grass is unable to trap as much sediment and particulate 

nutrients. Similar results were seen in a study by Abu-Zreig et al. (2004) where sediment 

trapping efficiency of native grass generally increased with decreasing overland flow 

rate. 

BMPs with low variability in percent reduction are generally less efficient and 

smaller scale. In these scenarios, the minimum and maximum predicted reduction was 

similar to the median reduction. This was the case for filter strips, porous gully plugs, and 

conservation tillage. This is likely due to the small scale nature of the BMPs, and lack of 

reduction efficiency at the field scale. 

4.4.6 Effectiveness of BMPs in Future Climate Scenarios 

Each BMP was compared to the conventional tillage operation (base scenario) in 

terms of sediment, nitrogen, and phosphorus load reduction and percent reduction 
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efficiency from the field and at the watershed outlet for each climate scenario. Sediment 

reduction efficiency from the field for all climate scenarios are presented in Figure 4-6 

(20C3M), Figure 4-7 (A1B), Figure 4-8 (A2), and Figure 4-9 (B1). Similar trends were 

observed for TN and TP. In general, median efficiency is similar for each scenario, while 

variability increases for some BMPs in the climate change scenarios. For example in the 

20C3M scenario for native grass, the maximum and minimum sediment reduction 

efficiencies were 78% and 25%, respectively, while in the A2 scenario the maximum was 

77% and the minimum was 9% over the 20 year study period. Increased variability may 

be attributed to increases in extreme precipitation events and average yearly precipitation. 

For example, in 2054 above average precipitation is magnified by precipitation increases 

in future climate scenarios. In these extreme events native grass only partially slows 

down surface runoff and is not as effective as in low flow conditions in reducing 

sediment and phosphorus. This is due to runoff passing above the height of the native 

grass. 
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Figure  4-7. BMP sediment reduction efficiency at the field scale for the A1B 
scenario 



 
 

94

 

Figure  4-8. BMP sediment reduction efficiency at the field scale for the A2 scenario 
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Figure  4-9. BMP sediment reduction efficiency at the field scale for the B1 scenario 

Porous gully plugs, conservation tillage, and filter strips were the least efficient in 

reduction for all scenarios and pollutants, but were also experienced a minimal change in 

effectiveness in the future. Contour farming, native grass, and terraces all performed well 

at reducing pollutants from the field, although their variability was often increased in the 

A1B, A2, and B1 scenarios. Therefore, it can be concluded that these three BMPs are the 

most effective at NPS pollutant reduction, but their high variability in current and future 

climate makes them less dependable. Varying efficiencies between BMPs are likely due 

to the manner in which the BMPs were physically represented in SWAT due to their 

characteristics. Porous gully plugs, filter strips, and conservation tillage are less intensive 
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BMPs, while terraces, contour farming, and native grass are meant for large scale 

reduction in pollution transport and erosion. 

Sediment, nitrogen, and phosphorus load reduction at the field and watershed 

scale were compared for all BMPs under all climate scenarios. Sediment, nitrogen, and 

phosphorus load reduction for contour farming at the field (HRU) and watershed (outlet) 

scale is displayed in Figure 4-10, 4-11, and 4-12, respectively.  
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Figure  4-10. Contour farming sediment reduction at the field (HRU) and watershed 
(outlet) scale 
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Figure  4-11. Contour farming TN reduction at the field (HRU) and watershed 
(outlet) scale 
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Figure  4-12. Contour farming TP reduction at the field (HRU) and watershed 
(outlet) scale 

Figure 4-10 shows that while very effective at the field scale for sediment 

reduction, contour farming is about ten times less effective for sediment reduction at the 

watershed scale, due to channel processes such as deposition, although the field and 

watershed scale reduction follow a similar reduction trend (when load reduction at the 

field increases, load reduction at the watershed outlet increases). Contour farming also 

increases sediment load reduction for all three future climate scenarios at both the field 

and watershed scale.  

Figure 4-11 and Figure 4-12 demonstrate that the difference between field and 

watershed reduction in nutrients is negligible in most years for contour farming. Field and 

watershed load reduction follow a similar trend, with the exception being in years of 

higher precipitation (such as year 14: 1993/2054). In these situations watershed reduction 

decreases while field reduction is increasing, which may be attributed to increased 

nitrogen and phosphorus in surface runoff. 
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4.4.7 Assessing the Impacts of Climate Change on BMP Effectiveness 

Two methods can be used to evaluate the effectiveness of BMPs: percent 

reduction and load reduction. The percent reduction method measures the difference in 

load reduction divided by the original load reduction, while the load reduction is a 

measure of the difference in mass pollutant reduction from the base scenario to the BMP 

scenario. In order to determine if BMP performance changes between current climate and 

future climate scenarios in terms of percent reduction and load reduction at the field and 

watershed scale, t-tests were performed. A p-value of 0.05 to determine significance was 

used. Results of the t-tests are presented in Tables 4-13 and 4-14 for the A1B scenario, 

while the results for the A2 and B1 scenarios are presented in Tables 8-1, 8-2, 8-3, and 8-

4. An up arrow represents a significant increase in percent or load reduction with the 

application of a BMP between the current and future climate scenarios, while a down 

arrow represents a significant decrease in percent or load reduction with the application 

of a BMP between current and future climate scenarios. The p-value is also presented in 

the tables. 
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Table  4-13. Significant difference (p-value) in BMP performance at the field scale 
between 20C3M and A1B.  

 Sediment Total Nitrogen Total Phosphorus 
BMP % Load % Load % Load 

Contour Farming 
↑ 

0.01 
↑ 

<0.01 
0.79 

↑ 
<0.01 

0.78 
↑ 

<0.01 

Filter Strips 
↑ 

<0.01 
↑ 

<0.01 
0.06 

↑ 
<0.01 

↑ 
0.01 

↑ 
0.00 

Grazing Management 
↓ 

<0.01 
0.71 

↓ 
0.01 

0.36 
↓ 

<0.01 
0.32 

Native Grass 
↓ 

<0.01 
0.31 

↓ 
<0.01 

0.39 
↓ 

<0.01 
↑ 

0.03 

No-Tillage 0.21 
↑ 

<0.01 
↑ 

<0.01 
↑ 

<0.01 
↑ 

0.02 
↑ 

0.17 

Porous Gully Plugs 0.08 
↑ 

0.01 
0.20 

↑ 
0.01 

0.07 
↑ 

0.00 

Conservation Tillage 0.17 
↑ 

<0.01 
↑ 

<0.01 
↑ 

<0.01 
0.08 

↑ 
<0.01 

Terraces 
↑ 

<0.01 
↑ 

<0.01 
0.04 

↑ 
<0.01 

0.01 
↑ 

<0.01 

Table  4-14. Significant difference (p-value) in BMP performance at the watershed 
scale between 20C3M and A1B. 

 Sediment Total Nitrogen Total Phosphorus 
BMP % Load % Load % Load

Contour Farming 
↑ 

<0.01 
↑ 

<0.01 
0.30 0.98 0.36 0.39 

Filter Strips 0.09 
↑ 

<0.01 
0.07 0.15 0.15 0.30 

Grazing 
Management 

0.94 0.96 
↓ 

0.02 
0.27 

↓ 
<0.01 

0.72 

Native Grass 
↑ 

<0.01 
↑ 

<0.06 
0.19 0.44 0.28 0.79 

No-Tillage 
0.10 

 
0.06 0.42 0.33 0.23 0.19 

Porous Gully Plugs 0.34 0.27 0.11 0.09 0.12 0.15 
Conservation Tillage 0.34 0.15 0.06 0.25 0.20 0.30 

Terraces 
↑ 

<0.01 
↑ 

<0.01 
0.05 0.50 0.08 0.59 

 

The most notable results of the t-tests show that individual BMP performance has 

more occurrences of significant difference in load and percent reduction between current 
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and future climate at the field scale than the watershed scale. This is consistent between 

all three future climate scenarios, which is likely due to in-stream channel processes 

(such as channel deposition and bank erosion) causing less reduction at the watershed 

scale although there are reductions at the field. 

For example, there are statistically significant changes between scenarios in 

performance of conservation tillage farming in sediment, total nitrogen, and total 

phosphorus load reduction at the field scale, while there are no statistically significant 

changes in performance at the watershed scale. This difference is prevalent even though 

the conservation tillage practice shows a consistent reduction trend at the field and 

watershed levels. In addition, the sediment load reduction on the watershed scale is much 

less than the load reduction at the field scale. A graphical comparison of conservation 

tillage sediment reduction at the field scale between 20C3M and A1B is presented in 

Figure 4-13. A similar graph for sediment reduction at the watershed scale is presented in 

Figure 4-14. 
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Figure  4-13. Conservation tillage sediment reduction at the field scale 

-5000

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (years)

S
ed

im
en

t 
Lo

ad
 R

ed
uc

tio
n 

(m
et

ric
 t

on
s)

20C3M A1B
 

Figure  4-14. Conservation tillage sediment reduction at the watershed scale 

Porous gully plugs do not show any significant change in performance under any 

climate change scenario for any pollutant. The lack of change in performance is likely 

due to the nature of these BMPs and their implementation in SWAT. Porous gully plugs 

are less intensive than other BMPs, and therefore do not have a great impact on reduction 

and are not effective under any future climate scenario. 
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Terraces and contour farming consistently show the greatest increases in 

efficiency and load reduction at both the field and watershed scale in future climate 

scenarios. This is due to the manner in which they are physically represented in SWAT, 

including a large reduction in both runoff curve number and the USLE practice factor. In 

large slope areas, the USLE_P factor becomes a significant factor for increasing pollutant 

reduction. 

Native grass resulted in a significant decrease in sediment load reduction at the 

field between the current and future climate scenarios, while there was a significant 

increase in sediment load reduction at the outlet when applied. Decreases in sediment 

load reduction at the field is likely due to increased runoff in future climate scenarios, 

which allows for less sediment to be trapped by the grass in extreme precipitation events. 

Although sediment load reduction at the outlet was increased in the future climate 

scenario, it was still an overall decrease from the conventional tillage (base) scenario.    

Grazing management shows significant decreases in percent reduction for 

sediment and nitrogen in all three future climate scenarios. Significant decreases in 

percent reduction were observed at the watershed scale in future climate scenarios. With 

an increase in precipitation, decreasing biomass removal from range land may not have 

enough of a large scale impact to enhance performance in future climate scenarios. 

No-tillage in future climate scenarios generally showed an increase in sediment 

and total nitrogen load reduction. An increase was also observed in sediment and total 

nitrogen reduction efficiency at the field scale in future climate scenarios. At the 

watershed scale there was no significant difference in performance of the no-tillage BMP. 
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Conservation tillage in future climate scenarios increased load reduction at the 

field scale for sediment, total nitrogen, and total phosphorus. In some future scenarios 

increases in sediment and total nitrogen percent reduction at the field scale was observed. 

At the watershed outlet there was no significant difference in reduction for any future 

climate scenario.  

Filter strips observed a significant increase in load reduction and efficiency for all 

pollutants at the field scale in future climate scenarios. Filter strip performance did not 

change on the watershed scale much, only sediment load reduction efficiency increased 

in future climate scenarios. 

4.5 CONCLUSION 

This study examined the effects of climate change on best management practice 

efficiency in the Tuttle Creek Lake watershed in Kansas and Nebraska. Using SWAT, the 

effects of three SRES emissions scenario outputs (A1B, A2, and B1) of the CCSM-3 

model on the performance eight agricultural BMPs was determined. 

The Tuttle Creek Lake watershed is projected to experience an increase in 

precipitation of up to 66% and an increase in mean daily temperature of up to 3.6 °C by 

the middle 21
st

 century according to CCSM-3 model runs for the A1B, A2, and B1 SRES 

emissions scenarios provided by NCAR. As precipitation and temperature increase in this 

watershed, the effectiveness of BMPs for mitigation of NPS pollution is uncertain. The 

SWAT model was coupled with CCSM-3 statistically downscaled temperature and 

precipitation data to assess the impact of climate change on BMP implementation 

strategies. 
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The impacts of climate change on water quantity were observed in the 

conventional tillage scenario. All three water quantity (runoff, baseflow, and water yield) 

increased in each future climate scenario, which is likely due to the substantial increases 

in precipitation. The A1B scenario showed the greatest increase and B1 showed the 

smallest increase from the 20C3M scenario. 

Water quality impacts of climate change in the current climate were also studied 

in the conventional tillage scenario. Sediment, nitrogen, and phosphorus load at the 

watershed outlet increased in all three future climate scenarios. Similar to the observed 

changes in water quantity, pollutant load increases were the largest in the A1B scenario 

and the smallest in the B1 scenario. 

In the current climate, the most effective BMPs at the field scale to reduce 

sediment, nitrogen and phosphorus are terraces, contour farming, and native grass. 

Porous gully plugs, filter strips, and conservation tillage had the least effect on pollution 

reduction, while in some cases no-tillage had actually increased pollution generation at 

the field scale. Grazing management was moderately effective at the field scale. Native 

grass, terraces, contour farming, and no-tillage had highly variable reduction efficiencies, 

reducing confidence in these BMPs. 

Under future climate, variability in native grass and no-tillage reduction 

efficiency at the field scale increased. Terraces, contour farming, and native grass were 

the most effective in pollution reduction at the field scale. Once again, porous gully plugs 

and filter strips were ineffective in field scale, with reduction efficiencies close to zero. 

At the watershed scale, terraces, contour farming, and native grass increased in pollutant 
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load reduction from current to future climate. All other BMPs did not significantly 

change performance consistently at the watershed scale. 

Finally, significant change in BMP performance between the current climate and 

future climate scenarios was determined using t-tests. There were more significant 

changes in BMP performance at the field scale than at the watershed scale. Contour 

farming and terraces showed significant increases in reduction at both the field and 

watershed scale. Porous gully plugs showed no significant change in performance under 

any scenario, which is likely due to how they were represented within SWAT. Grazing 

management and no-tillage showed significant decreases in performance at the field scale 

in future scenarios. At the watershed scale, native grass increased sediment reduction.  

The results of this study demonstrate that changing climate affects BMP 

performance in terms of percent reduction and load reduction of sediment, nitrogen, and 

phosphorus. Significant changes in performance were more commonly observed at the 

field scale, while most BMPs did not affect pollution reduction at the watershed outlet. 
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5 BEST MANAGEMENT PRACTICE SENSITIVITY ANALYSIS UNDER 

CLIMATE CHANGE SCENARIOS 

Sean A. Woznicki, A. Pouyan Nejadhashemi 

5.1 ABSTRACT 

As global climate changes, its effect on water resources and nonpoint source 

(NPS) pollution is uncertain. To mitigate the effects of climate change on water 

resources, agricultural best management practices (BMPs), such as reduced tillage 

operations or structural BMPs such as porous gully plugs, may be used to reduce NPS 

pollution. The reduction capabilities of BMPs in future climates are unknown partially 

because the extent and impact of climate change and its affects on water resources are 

uncertain. Understanding the sensitivity of BMPs implementation as climate changes will 

be important for decision makers to consider what type of BMP is more reliable when 

developing implementation plans. The objective of this study was to determine how 

sensitivity of BMPs varies due to changes in precipitation, temperature, and CO2 using 

the Soil and Water Assessment Tool (SWAT). Downscaled climate change data was 

obtained from the National Center for Atmospheric Research (NCAR) Geographic 

Information System Initiative Community Climate System Model (CCSM-3) model for 

the Tuttle Creek Lake watershed in Kansas and Nebraska. Three Special Report on 

Emissions Scenarios (SRES) storylines (A1B, A2, and B1), developed by the 

Intergovernmental Panel on Climate Change (IPCC), were compared to historical model 

output from CCSM-3. Sensitivity of eight agricultural BMPs (conservation tillage, 

contour farming, filter strips, grazing management, native grass, no-tillage, porous gully 
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plugs, and terraces) was determined for each climate change scenario by estimating the 

effects on sediment, total nitrogen, and total phosphorus on an annual and monthly basis. 

For all BMPs, NPS pollution was greatest under the A1B scenario, likely because this 

scenario had the largest annual average precipitation increase compared to current 

climate. Using a relative sensitivity index, native grass, grazing management, and filter 

strips were determined to be the most sensitive for all climate change scenarios, while 

porous gully plugs, no-tillage, and conservation tillage were the least sensitive on an 

annual basis. The monthly sensitivity analysis revealed that BMP sensitivity varies 

largely on a seasonal basis for all climate change scenarios. Meanwhile, grazing 

management, filter strips, and porous gully plugs were the only BMPs with sensitivities 

that did not significantly change in climate change scenarios. The results of this research 

suggest that majority of agricultural BMPs tested in this study are sensitive to climate 

change, and caution should be exercised in the decision making processes. 

5.2 INTRODUCTION 

The Intergovernmental Panel on Climate Change (IPCC, 2007) has determined 

that the global climate system is changing. Increases in atmospheric greenhouse gas 

(GHG) concentration, primarily due to fossil fuel use, have resulted in a global average 

net warming effect of the earth (IPCC, 2007). Global surface temperature has increased 

by 0.76°C in the past 100 years, and in the latter half of the 20
th

 century the earth has 

warmed by 0.13°C per decade (IPCC, 2007). As GHG emissions continue to increase, 

global average surface temperature is predicted to increase anywhere from 1.8°C to 4.0°C 

by 2100, along with changes in rainfall volume and intensity (IPCC, 2007). This change 
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will greatly depend on future GHG emissions and technological development (Ficklin et 

al., 2009). 

The potential effects of changing climate are far reaching: human health, 

ecosystem health and biodiversity, food production and global food supply, economic 

growth, tourism, and water resources all can be affected. As temperatures rise, heat 

waves are expected to increase mortality related to exposure during extreme events (Patz 

et al., 2005). Changing climate may induce changes in incidence of disease transmission 

as well as geographic distribution of disease vectors (Haines et al., 2006). Ecosystem 

dynamics have been affected by recent changes in climate. Many organisms in various 

geographic regions have been affected and common changes are related to timing of 

spring activities: earlier breeding of birds, spawning of amphibians, and flowering of 

plants (Walther et al., 2002). Food production is affected by climate change through 

alterations of crop yields and land suitability (Schmidhuber and Tubiello, 2007). 

Warming may benefit crop and pasture yields in temperate regions and decrease yields in 

tropical and arid regions (Tubiello et al., 2007). Economically, climate change is likely to 

reduce the rate of economic growth, although per capita income is likely to continue to 

increase (Fankhauser and Tol, 2005). Tourism is very sensitive to climatic variations, and 

popular destinations may become too hot, while other destinations with predominantly 

cool climates may warm and become more desirable globally (Berritella et al., 2004). 

Finally, climate change coupled with population growth and consumption needs will 

severely alter the hydrological cycle in most regions of the world (Jackson et al., 2001). 

Fresh water is the most important resource in the world for humans: it is used for 

drinking, food production, industrial applications, transportation, and recreation. 
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Ecosystems also require fresh water to function properly: this essential resource provides 

life and habitat to numerous organisms. However, changes in the hydrologic cycle due to 

alterations in regional and seasonal patterns in temperature and precipitation are not well 

understood (Ficklin et al., 2009).  

Therefore, the potential affects of climate change on watershed processes are of 

great concern to watershed managers (Marshall and Randhir, 2008). 

Water Quantity. Many studies have explored the interaction between climate 

change and watershed hydrology. Precipitation, temperature, and atmospheric CO2 

changes have been predicted to affect streamflow and surface runoff in varying ways. 

Increases in atmospheric CO2 have been shown to increase water yield and surface runoff 

(Chaplot 2007; Eckhardt and Ulbrich, 2003; Jha et al., 2006). This is likely due to 

decreases in plant stomatal conductance, which decreases transpiration and leaves more 

water available for runoff (Ficklin et al., 2009). Alteration in magnitudes and variability 

of precipitation are expected to have the greatest effect on watershed hydrology. Marshall 

and Randhir (2008) concluded for the Connecticut River watershed that surface runoff 

may increase in winter months due to increases in liquid precipitation, while spring 

surface runoff will likely decrease in spring due to less snowmelt. Chaplot (2007) 

determined that watershed hydrology in Iowa and Texas watersheds was more sensitive 

to changes in precipitation than temperature or CO2.  Streamflow in the Upper 

Mississippi River basin was predicted widely vary based on GCM predicted precipitation 

patterns, from a 6% decrease to a 51% increase (Jha et al., 2006). Franczyk and Chang 

(2009) predicted that winter surface runoff increases in an Oregon watershed due to 
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increased precipitation falling as rain. Stone et al. (2003) concluded that a higher 

resolution Regional Climate Models (RCM) predicted significantly greater increases in 

water yield than a GCM due higher magnitude of precipitation increases in projections of 

the Missouri River Basin. Temperature changes are also expected to alter the 

hydrological cycle, mostly through changes in evapotranspiration. Using high and low 

warming global climate model (GCM) scenarios, July surface runoff was predicted to 

decrease by 71% and 67%, respectively, due to increases in evapotranspiration attributed 

to temperature increases in the Connecticut River watershed. Eckhardt and Ulbrich 

(2003) determined that temperature increases caused increases in evapotranspiration in a 

mountainous German watershed, but the effects were minimal on groundwater recharge 

(3% decreases) and streamflow (4% decrease). Ficklin et al. (2010) determined that with 

precipitation held constant, as temperature increases, annual water yield decreases due to 

evapotranspiration increases. 

Water Quality. Determining the impacts of climate change on water quality has 

been the focus of various studies. As climate change affects watershed hydrology, NPS 

pollution is also likely to be affected. Chaplot (2007) determined that sediment loads 

were most significantly affected by changes in precipitation, because runoff is a driving 

force of sedimentation. Increases in nitrate loads were attributed to increases in 

atmospheric CO2, which was attributed to increased vegetation assimilation and soil 

fixation (Chaplot, 2007). The impacts of climate change on agricultural runoff yields in a 

California watershed were studied by Ficklin et al. (2010). Temperature, precipitation, 

and atmospheric CO2 increases were predicted to increase nitrate yield by up to 40% and 

decrease chlorpyrifos pesticide yields by 32%. Ficklin et al. (2010) concluded that nitrate 
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and total phosphorus yield decreased the most in increased temperature scenarios without 

precipitation changes, while total phosphorus was highly correlated to sediment yield, 

and subsequently, precipitation and surface runoff. Marshall and Randhir (2008) 

observed that climate change caused significant alterations to the timing and runoff of 

sediment loading (20-40% increases in October and 50% decreases in March) in the 

Connecticut River watershed. Average annual organic nitrogen and organic phosphorus 

yield were predicted to decrease by up to 19% and 46%, respectively (Marshall and 

Randhir, 2008). 

As described above, results from climate change impacts studies conclude that 

alterations in precipitation, temperature, and atmospheric CO2, whether it be in 

magnitude, timing, or both, have a significant impact on water quantity and quality of 

watershed systems. In order to counter the effects of climate change, mitigation strategies 

have been developed. Mitigation strategies reduce the impacts of climate change through 

managing land use to increase resiliency of the watershed (Marshall and Randhir, 2008). 

For example, agricultural best management practices (BMPs) are a series of mitigation 

techniques designed to reduce surface runoff and pollution (sediment, nutrients, and 

pesticides) that reach water bodies through targeting sensitive areas of a watershed and is 

widely used in modeling studies by Arabi et al. (2007), Behera and Panda (2006), 

Bracmort et al. (2006), Jha et al. (2007), Parajuli et al. (2008), Santhi et al. (2006), 

Tuppad and Srinivasan (2008), and Tuppad et al. (2010). In many cases, BMP 

implementation by farmers is encouraged through incentive programs such as cost-

sharing, tax breaks, and monetary compensation (Marshall and Randhir, 2008).  
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Assessing the sensitivity of BMP performance in scenarios of possible climate 

change will provide insight into the future pollution reduction capabilities of mitigation 

strategies. Sensitivity analysis provides a comprehensive understanding of the 

relationship between the model and the physical processes being modeled, and may be 

defined as the ratio of change in model output to change in a model parameter (McCuen, 

1973). Performing a sensitivity analysis allows for a better understanding and estimating 

model parameters, which leads to reduced model uncertainty (Lenhart et al., 2002). There 

are two general methods of sensitivity analysis: local and global. Local sensitivity 

determines the impact of changes in a parameter value on model output, while global 

sensitivity analyzes the complete parameter space simultaneously (van Griensven et al., 

2006). Lenhart et al. (2002) performed local sensitivity analysis through variation of 

hydrological parameters by developing ranges based on initial values and entire 

parameter ranges centered on the parameter mean, and concluded that both methods 

produced similar results. Through development of a combination local-global sensitivity 

analysis to limit model runs, van Griensven et al. (2006) determined the most sensitive 

hydrologic and water quality parameters through ranking. Sensitivity analysis is an 

important tool in BMP modeling to establish appropriate parameter ranges for proper 

representation in a watershed model (Tuppad et al., 2010). Luo and Zhang (2009) 

performed a management oriented sensitivity analysis using parameters related to BMP 

implementation through relative random sampling of parameter values in a one-at-a-time 

method. The need was identified to determine sensitivity of other pollution reduction 

parameters in terms of BMPs such as contour farming, terraces, cover crops, and strip-

cropping (Luo and Zhang, 2009). A similar BMP sensitivity analysis was performed by 
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Tuppad et al. (2010) on physically realistic ranges of parameters related to conservation 

practice implementation.  

The objective of this study was to perform a sensitivity analysis of BMPs across 

future climate change scenarios for the Tuttle Creek Lake watershed (TCLW) of Kansas 

and Nebraska using SWAT2009 model. Determining how sensitivity of BMPs may 

change with climate will allow for watershed managers and planners to determine, which 

BMPs may be relied on for future implementation while understanding the possible 

consequences of employing others. 

5.3 MATERIALS AND METHODS 

5.3.1 Study Area 

The TCLW is part of the 6-digit hydrologic unit (HUC-6) Big Blue watershed and 

is comprised of two HUC-8 subwatersheds: the Lower Big Blue (HUC 10270205) and 

the Lower Little Blue (HUC 10270207). The five other HUC-8 subwatersheds of the Big 

Blue are the Upper Big Blue (HUC 10270201), Middle Big Blue (HUC 10270202), West 

Fork Big Blue (HUC 10270203), Turkey (HUC 10270204), and the Upper Little Blue 

(HUC 10270206). Two major rivers (the Little Blue River and Big Blue River) enter the 

TCLW from the north. In order to incorporate these inputs into the model, the entire Big 

Blue watershed (HUC 102702) was split into three sections for modeling, called the 

upper left, upper right, and TCLW in this study (Figure 5-1).  
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Figure  5-1. Study Area 

The upper left watershed land use consists primarily of agricultural and range 

lands. Agricultural row crops make up 66% of the watershed, 25% of the watershed is 

designated as range land, and 5% is urban. Minimum and maximum elevations are 381 m 

and 668 m above mean sea level, respectively. The average watershed elevation is 530 m. 

The upper right watershed has similar land use characteristics to the upper left. 

Agricultural row crops cover 79% of the land area, while range land takes up 12% of the 

watershed and urban is 5%. Minimum elevation is 363 m and maximum elevation is 601 

m above mean sea level and the average watershed elevation is 480 m. 

The TCLW is the focus of this study and is predominantly agricultural, with 40% 

of the watershed area devoted to agricultural row crops and 42% consisting of range land. 
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Total area of the TCLW is 6,158 km2. Elevation in the TCLW ranges from 305 m to 513 

m. 

5.3.2 SWAT Model  

SWAT is a watershed hydrology and water quality model developed by the 

United States Department of Agricultural Research – Agricultural Research Service 

(USDA-ARS) (Arnold et al., 1998). The model is physically based, spatially distributed, 

and designed to predict the impact of management practices on water, sediment, and 

agricultural chemical yields in complex watersheds with varying soils, land use, and land 

management practices over long time periods on a daily time-step (Gassman et al., 2007). 

In SWAT, a watershed is divided into subwatersheds based on elevation and river 

network. The subwatersheds are further divided into hydrologic response units (HRUs), 

which are areas consisting of homogeneous land use, soil type, slope, and management 

practices. Surface runoff, sediment, nutrients, and pesticides are generated at the HRU 

level, aggregated to the subbasin levels, and routed through the river network to the 

watershed outlet. 

The user has two options for runoff volume calculations: the SCS curve number 

procedure and the Green and Ampt infiltration method (Neitsch et al., 2005). ). The SCS 

curve number procedure is an empirical equation that calculates accumulated runoff with 

rainfall depth, initial abstraction (surface storage, infiltration, interception), and retention 

(spatial parameter based on soil, land use, management, and slope). 

There are two options for calculating runoff volume in SWAT: the SCS curve 

number procedure and the Green and Ampt infiltration method (Neitsch et al. 2005). The 

SCS curve number procedure is an empirical equation that calculates accumulated runoff 
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with rainfall depth, initial abstraction (surface storage, infiltration, interception), and 

retention (spatial parameter based on soil, land use, management, and slope). Curve 

number drops as soil approaches wilting point and increases as the soil approaches 

saturation. The Green and Ampt infiltration method predicts infiltration assuming excess 

water at the surface at all time. Infiltration is calculated as a function of porosity, matric 

potential, and hydraulic conductivity. Water that does not infiltrate becomes surface 

runoff. The Green and Ampt infiltration method requires sub-daily precipitation data; 

however, this data is not available within the study area. Therefore, the SCS curve 

number procedure was used in this study. 

In SWAT, soil erosion caused by rainfall and surface runoff is computed using the 

Modified Universal Soil Loss Equation (MUSLE) (Neitsch et al. 2005). MUSLE predicts 

sediment yield as a function of surface runoff volume, peak runoff rate, area, soil 

erodibility, land cover, land support practices, topography, and percent coarse fragments 

in top soil layer. 

Channel sediment routing in SWAT is based on the maximum amount of 

sediment that can be transported from a reach segment, which is a function of peak 

channel velocity (Neitsch et al. 2005). Sediment routing is dominated by two processes: 

deposition and degradation. Degradation occurs when sediment concentration is less than 

maximum amount of sediment that can be transported from a reach segment, while 

deposition occurs when sediment concentration is greater than the maximum amount. In-

stream nutrient processes are defined by the nitrogen and phosphorus cycle (Neitsch et 

al., 2005). The nitrogen cycle is a transformation of organic nitrogen to ammonia, nitrite, 

and finally to nitrate in aerobic water, which is a function of algal biomass that is 
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nitrogen and algal respiration rate. The in-stream phosphorus cycle is similar to the 

nitrogen cycle, where organic phosphorus is converted to soluble phosphorus available 

for uptake by algae or removed from the stream by settling (Neitsch et al., 2005). 

Sediment deposition and degradation are the dominant processes in sediment 

routing, depending on whether sediment concentration is less than (degradation) or 

greater than (deposition) the maximum amount of sediment that can be transported from 

a reach segment. Nutrient routing in SWAT is modeled using the nitrogen cycle and the 

phosphorus cycle (Neitsch et al. 2005). Organic nitrogen and organic phosphorus may be 

removed from the stream by settling. 

5.3.3 Observed Climate Data 

Observed daily climate data from 1980-2002 was obtained from the National 

Climatic Data Center (NCDC) cooperative weather network. Average annual 

precipitation from 1978-2008 in the watershed was 839 mm. In TCLW, eight 

precipitation and six temperature stations were used. The upper left watershed contained 

11 precipitation stations and seven temperature stations, while 14 precipitation and 11 

temperature stations were used in the upper right watershed. Precipitation and 

temperature station locations are presented in Figure 5-2. 
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Figure  5-2. Precipitation stations, temperature stations, and model calibration 
locations (Right) 

5.3.4 Climate Change Data 

Data for the climate change scenarios was provided by the Community Climate 

System Model (CCSM-3) project (http://www.ccsm.ucar.edu), supported by the 

Directorate for Geosciences of the National Science Foundation and the Office of 

Biological and Environmental Research of the U.S. Department of Energy. The National 

Center for Atmospheric Research (NCAR) GIS Initiative provided CCSM-3 data in a 

geographic information system (GIS) format through GIS Climate Change Scenarios 

portal (http://www.gisclimatechange.org). The original monthly temperature and 

precipitation projection outputs from the National Center for Atmospheric Research 

(NCAR) GIS Initiative CCSM-3 are too coarse for use on the watershed scale. However, 
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the NCAR GIS Initiative also provided downscaled monthly temperature and 

precipitation at a scale of 4.5 km, which was used in this study (Hoar and Nychka, 2008).  

Three Special Report on Emissions Scenarios (SRES) emissions scenarios were 

used in this research, as defined by Nakicenovic et al. (2000): A2, A1B, and B1. SRES 

scenarios are plausible alternative futures rather than specific predictions of future 

climate. The A2 scenario features prominent fossil fuel usage by developing countries 

and slow development of alternative fuel technologies by developed nations. By 2100, 

A2 has the highest atmospheric CO2 concentration of the three scenarios used in this 

study. The A1B scenario is characterized by rapid economic growth and low population 

growth, while alternative energy and fossil fuel technologies have relatively equal market 

shares. The B1 scenario illustrates a world relying on resource conservation and 

environmental sustainability. Alternative energy dominates the market and fossil fuel use 

declines globally, leading to a slower increase in atmospheric CO2 concentrations. A 

fourth non-SRES scenario was also used, entitled 20C3M. This scenario is a historical 

experiment characterized by greenhouse gases increasing as observed through the 20
th

 

century. 20C3M was used to compare results with the A1B, A2, and B1 climate change 

scenarios. 

5.3.5 Model Setup 

The SWAT model requires various spatial datasets for model setup, including 

elevation, land use, and soils data. Land use data was obtained from the Multi-Resolution 

Land Characteristics Consortium (MRLC) in the form of the National Land Cover 

Database 2001 (NLCD 2001) map. NLCD 2001 has a resolution of 30 m and contains 21 
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different land use classes (Homer et al., 2007). The NLCD 2001 does not subdivide 

agricultural lands to specific crops such as corn, soybean, or wheat. However, based on 

information obtained from the agricultural statistics (USDA-NASS, 2007) and 

stakeholder knowledge from common crop rotations in the watershed, the generic 

agricultural land within TCLW was split into six different land uses: corn-soybean 

(25%), continuous soybean (5%), continuous corn (15%), soybean-wheat (25%), 

continuous soybean (10%), and grain sorghum-soybean-wheat (20%). 

Soil data was obtained from the U.S. Department of Agriculture (USDA) State 

Soil Geographic (STATSGO) database. STATSGO data is a 1:250,000 scale map that is 

linked to tabular data containing estimated physical and chemical soil properties (Muttiah 

and Wurbs, 2002). Elevation data (90 m resolution) was obtained from the Better 

Assessment Science Integrating point and Nonpoint Sources (BASINS) software version 

4.0 (BASINS, 2007). 

The SWAT model was setup separately for three sections of the Big Blue 

watershed (the upper left, upper right, and the TCLW). Twenty-three years (1980-2002) 

of daily observed climate data along with digital elevation model, land use maps, and soil 

maps were used to set up each model. A threshold value of 40 hectares was selected to 

define the HRU area. Five slope classes were used in HRU definition: 0-2%, 2-4%, 4-6%, 

6-8%, and 8-99%.  

5.3.6 Model Calibration and Validation 

The TCLW, upper right, and upper left SWAT models were previously calibrated 

and validated for streamflow, sediment, total Kjeldahl nitrogen (TKN), and total 

phosphorus (TP) loads using historical observed climate data (Woznicki et al., 2010). 
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Daily calibration (1998-2000) and validation (2001-2002) was performed for the upper 

left at USGS #06884025 and TCLW at the US Army Corps Gauging Station. For the 

upper right, the daily calibration (1986-1989) and validation (1990-1993) location was 

USGS gage station number 06882000. A one year model warm up period was used prior 

to calibration. Calibration/validation locations are presented in Figure 2. Time steps vary 

for different constituents and watersheds due to limited data availability, particularly 

regarding sediment and nutrient observations.   

Evaluation of model prediction capability was completed using the Nash-Sutcliffe 

Efficiency (NSE) (Nash and Sutcliffe, 1970) and coefficient of determination (R
2
). NSE 

values can range from negative infinity to 1, where 1 indicates a perfect fit between 

observed data and model output data. Daily NSE values (combined calibration and 

validation) for the TCLW were 0.625 for streamflow, 0.563 for sediment, 0.256 for TKN, 

and 0.756 for TP. TCLW calibration and validation compared to observed data is 

presented in Figure 5-3. 
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Figure  5-3. TCLW Calibration and Validation 

According to performance ratings for NSE defined by Moriasi et al. (2007), 

streamflow and sediment can be considered satisfactory, TP can be considered very good, 

and TKN is unsatisfactory. Problems with TKN calibration and validation were likely 

due to lack of data for daily calibration (ten observations over the 20 year study period). 

In daily calibration, this quantity of observed data is inadequate for satisfactory 

calibration results. In addition, septic system usage and manure applications on 

agricultural land were not modeled. Although TKN calibration results were 

unsatisfactory, relative comparisons between model scenarios can still be made. 

Complete details regarding calibration and validation methods and results can be found in 

Woznicki et al. (2010). 

5.3.7 Climate Change Scenarios 

Downscaled monthly average total precipitation and monthly mean temperature 

data from the NCAR GIS Initiative were used to develop climate change scenarios. 

Monthly precipitation and temperature from the historical model (20C3M) spatial layer 

was extracted from each 4.5 km by 4.5 km cell containing a weather station with 

observed data. The 20C3M baseline time period selected was 1980-1999 for comparison 

of climate model data with observed temperature and precipitation data from the same 

time period. Future climate scenarios (A1B, A2, and B1) time periods were selected to be 

middle of the 21
st

 century (2041-2060) centered on 2050. Observed average monthly 

precipitation and temperature data was then calculated for the period of study (1980-

1999). The delta change method was used to generate daily precipitation and temperature 
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data from 20C3M for input into SWAT. Using differences in mean monthly temperature 

and precipitation between climate scenarios, the delta change method adjusts historical 

observed daily temperature and precipitation data on a monthly basis (Snover et al., 

2003). Assumptions of the delta change method include: GCMs are more accurate in 

simulating relative changes between climate scenarios than the absolute values of a future 

scenario, there are no changes in climate variability, there are constant spatial patterns of 

climate, the number of wet days will remain constant, and minimum and maximum 

values of climate variables are scaled (Fowler et al., 2007). 

Precipitation deltas (ratio) are calculated based on a percentage change between 

monthly 20C3M average and the monthly observed average and applied to daily observed 

data. Precipitation is not additive because precipitation is zero bounded (negative 

precipitation is not possible). The precipitation delta change method is described in 

equation 6. 

 











obsmonthly

MCmonthly
obsdailyMCdaily P

P
PP

,

320,
,320,  (6) 

Where Pdaily, 20C3M is adjusted daily precipitation, Pdaily, obs is observed daily 

precipitation, Pmonthly, 20C3M is monthly average for 20C3M (1980-1999) precipitation, 

and Pmonthly, obs is monthly average (1980-1999) precipitation for the observed data 

from 1980-1999.  

Temperature deltas (additive) are calculated based on the difference between 

monthly 20C3M average and the monthly observed average and applied to daily observed 

data. The temperature delta method is presented in equation 7. 
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  obsmonthlyMCmonthlyobsdailyMCdaily TTTT ,320,,320,   (7) 

Where T daily, 20C3M  is adjusted mean daily temperature, T daily, obs is observed 

mean daily temperature, Tmonthly, 20C3M is monthly average temperature for 20C3M 

(1980-1999), and T monthly, obs is monthly average temperature for observed data (1980-

1999). Monthly mean temperature deltas were applied to both minimum and maximum 

observed daily temperature. 

Six temperature and eight precipitation stations were used to estimate delta 

change values between observed historical data and 20C3M for TCLW. The minimum 

and maximum deltas over all weather stations are presented in Figure 5-4. The 20C3M 

scenario over predicts by up to 116% in January and under predicts by about -72% in 

August. November and December precipitation is simulated most accurately by 20C3M, 

while January, August, and September are not reproduced well. Mean monthly 

temperature is under predicted by up to -0.6 °C in November and over predicted by up to 

6.2 °C in August. Observed mean monthly temperature is simulated best by 20C3M in 

June and November and worst in July, August, and September. 
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Figure  5-4. Minimum and maximum temperature deltas between observed 
historical and 20C3M 

The delta change method was repeated using deltas calculated between observed 

data and each SRES emissions scenario (A1B, A2, B1). Delta ranges for each 

precipitation station between 20C3M and the future climate scenarios are presented in 

Figure 5-5. The A2 scenario had the greatest increase in precipitation (66.2% in August), 

while the A1B and A2 scenarios had the greatest temperature increases at 3.6 °C 

(September). Overall, B1 showed the smallest magnitude of changes from 20C3M. 

Based on IPCC predictions for each emission scenario, atmospheric carbon 

dioxide (CO2) concentration was considered to be constant. The atmospheric carbon 

dioxide concentration of 330 parts per million (ppm) CO2 was used for the historical 

model and the 20C3M scenario. For year 2050, under the A2 and A1B scenario 525 ppm 

CO2 was used and for the B1 scenario 475 ppm CO2 was used (Houghton et al., 2001). 
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Figure  5-5. Minimum and maximum temperature deltas between 20C3M and A1B, 
A2, and B1 
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5.3.8 Representation of Best Management Practices in SWAT 

Eight agricultural BMPs and a baseline scenario were implemented within SWAT 

for each climate scenario, for a total of 32 unique climate/BMP scenarios. No-tillage 

farming, conservation tillage farming, contour farming, terraces, filter strips, porous gully 

plugs, grazing management, and replacement of row crops with native grass were 

selected for representation within SWAT. The base scenario applied conventional tillage 

operations to each agricultural row crop. 

5.3.8.1 Base Scenario (Conventional Tillage) 

Conventional tillage operations on agricultural land were considered to represent 

the base scenario. One conventional tillage operations schedule was developed for each 

agricultural land use. An example of the soybean-winter wheat conventional tillage 

schedule is presented in Table 5-1. BMP applications that are not tillage operation based 

had conventional tillage applied in addition to the BMP. For example, the grazing 

management, porous gully plugs, filter strips, terraces, and contour farming scenarios 

also use conventional tillage on agricultural land. 
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Table  5-1. Example of a soybean-winter wheat conventional tillage operations 
schedule 

Year Crop Operation Application Rate Date 
1 SOYB Tillage  March 27 
1 SOYB Tillage  April 15 
1 SOYB Tillage  May 14 
1 SOYB Planting  May 16 
1 SOYB Phosphorus fertilizer application 33 kg/ha May 16 
1 SOYB Pesticide application 0.9 kg/ha June 14 
1 SOYB Harvest and kill  October 1 
1 WWHT Tillage  October 10 
1 WWHT Nitrogen fertilizer application 65 kg/ha October 15 
1 WWHT Phosphorus fertilizer application 31 kg/ha October 15 
1 WWHT Planting  October 16 
2 WWHT Harvest and kill  July 1 
2 WWHT Tillage  August 1 
2 WWHT Tillage  September 1 

5.3.8.2 No-Tillage Farming 

No-tillage farming limits soil-disturbing activities of field operations to those 

necessary for planting crops and applying nutrients. No-tillage farming aims to reduce 

erosion caused by soil disturbing activities. 

No-tillage operations were developed for the six crop rotations (corn-soybean, 

continuous corn, grain sorghum-soybean-winter wheat, continuous soybean, soybean-

wheat, and continuous winter wheat) designated to agricultural land. One operations 

schedule was applied to a land use type based on the crops included in the schedule. An 

example of one of six no-tillage operations schedules (soybean-winter wheat) based on 

land use is presented in Table 5-2. The tillage operation that occurs on the day of planting 

is a no-till planter with a 5% mixing efficiency (EFTMIX). Mixing efficiency defines the 

fraction of materials (residue, nutrients, and pesticides) on the soil surface that are mixed 

through the soil depth specified by the tillage operation (Tuppad et al., 2010). 
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Table  5-2. Example of a soybean-winter wheat no-tillage operations schedule 

Year Crop Operation Application Rate Date 
1 SOYB Pesticide application 0.9 kg/ha April 30 
1 SOYB Tillage  May 5 
1 SOYB Planting  May 5 
1 SOYB Phosphorus fertilizer application 33 kg/ha May 5 
1 SOYB Pesticide application 0.9 kg/ha June 1 
1 SOYB Harvest and kill  October 1 
1 WWHT Nitrogen fertilizer application 65 kg/ha October 15 
1 WWHT Phosphorus fertilizer application 31 kg/ha October 15 
1 WWHT Planting  October 16 
2 WWHT Harvest and kill  July 1 
2 WWHT Pesticide application 0.9 kg/ha August 1 
2 WWHT Pesticide application 0.9 kg/ha October 15 

5.3.8.3 Conservation Tillage Farming 

Conservation tillage operations reduce soil disturbing activities to increase surface 

residue, but usually include some tillage practices (Tuppad and Srinivisan, 2008). 

Implementation of this BMP will reduce sheet and rill erosion while increasing soil 

moisture. Mixing efficiency for tillage operations in conservation tillage is specified to be 

30% (Tuppad et al., 2010). An example of one of six conservation tillage operations 

schedules (soybean-winter wheat) is presented in Table 5-3. 
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Table  5-3. Example of a corn-soybean conservation tillage operations schedule 

Year Crop Operation Application Rate Date 
1 SOYB Tillage  April 15 
1 SOYB Tillage  May 14 
1 SOYB Planting  May 16 
1 SOYB Phosphorus fertilizer application 33 kg/ha May 16 
1 SOYB Pesticide application 0.9 kg/ha June 14 
1 SOYB Harvest and kill  October 1 
1 WWHT Nitrogen fertilizer application 65 kg/ha October 15 
1 WWHT Phosphorus fertilizer application 31 kg/ha October 15 
1 WWHT Planting  October 16 
2 WWHT Harvest and Kill  July 1 
2 SOYB Tillage  August 1 

5.3.8.4 Contour Farming 

Contour farming changes runoff direction from downslope to around hill slopes 

through utilization of ridges formed by tillage and planting (USDA-NRCS, 2005). 

Sediment and contaminant transport is expected to be reduced by decreasing surface 

runoff energy, impounding water in depressions, and retaining more water on the field 

(Arabi et al., 2007). 

To implement this practice in SWAT, the curve number (CN2) was reduced by 

three for agricultural land and the USLE practice factor (USLE_P) was reduced from its 

initial value of 1.0 to 0.5 or 0.6 based on slope. This method has previously been used in 

Arabi et al. (2007), Tuppad and Srinivasan (2008), and Tuppad et al. (2010).  

5.3.8.5 Terraces 

A terrace is an earth embankment, or a combination ridge and channel, 

constructed across a field slope (USDA-NRCS, 2005). Gully formation is limited and hill 

slope length is decreased to reduce erosion (Tuppad and Srinivasan, 2008). Surface 

runoff volume is also decreased by impoundment of water in small depressions (Arabi et 
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al., 2007). Sediment settling is increased by decreasing surface runoff energy (Arabi et 

al., 2007). 

Terraces are incorporated in SWAT through adjustment of CN and USLE_P on 

agricultural row cropland in a similar manner to contour farming. CN value was reduced 

by five for agricultural land, while USLE_P was set to 0.12 or 0.10 based on the land 

slope (Arabi et al., 2007; Tuppad et al., 2010). 

5.3.8.6 Filter Strips 

Filter strips are areas of herbaceous vegetation placed between cropland, grazing 

land, or disturbed land and environmentally sensitive areas (USDA-NRCS, 2005). The 

purpose of filter strips is to reduce sediment, particulate organic nutrients, sediment 

absorbed contaminants, and dissolved contaminant loadings in runoff (Nejadhashemi and 

Mankin, 2007). Filter strips may also serve as a riparian buffer along streams.  

SWAT has a built-in filter strip component (FILTERW) to add an edge-of-field 

filter strip of desired width to an HRU. Filter strip trapping efficiency for sediment, 

nutrients, and pesticides in surface runoff is calculated using an empirical equation based 

on the width of the filter strip (Neitsch et al., 2005). Filter strips were applied to all 

agricultural land in this study. 

5.3.8.7 Porous Gully Plugs 

Porous gully plugs are rocks or logs used to reduce surface runoff energy in 

ephemeral gullies and induce sediment settling (Tuppad and Srinivasan, 2008). This 

BMP is represented in SWAT through adjustment of the Manning’s roughness coefficient 

(CH_N1), also known as Manning’s “n” value, for tributary channels on subbasins 
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considered erodible. The CH_N1 value for BMP implementation was 0.05 on land with a 

subbasin slope greater than 0.05, while the initial CH_N1 value is 0.014 in SWAT 

(Tuppad and Srinivasan, 2008; Tuppad et al., 2010). 

5.3.8.8 Grazing Management 

Grazing management is used to prevent overgrazing of range grasses through 

reducing excessive biomass removal by animals. Sediment and nutrient yields are 

increased when land is overgrazed due to exposure of bare soil and increased soil 

compaction because of decreased infiltration and increased soil erosion and surface 

runoff (Tuppad and Srinivasan, 2008).  

Grazing management is incorporated into SWAT through reduction of the harvest 

index (HVSTI) of range grass (Tuppad and Srinivasan, 2008). The harvest index is 

defined as the percentage of biomass removed in a harvest operation (in this case animal 

grazing). Remaining biomass is converted to residue on the soil surface, which protects 

soil from rain (reducing erosion) and decreases soil compaction (increasing infiltration). 

Initially, HVSTI is set to 90% for range grass, while in the initial BMP implementation 

scenario, HVSTI was set to 70%. A HVSTI greater than 100% results in the harvesting of 

below-ground biomass. 

5.3.8.9 Native Grass 

Native grass replacement consists of replacing land containing agricultural row 

crops with native tall grasses such as Indian switchgrass or big bluestem (Nejadhashemi 

and Mankin, 2007). Reduced sediment and nutrient transport to streams is expected 

because tillage and fertilizer needs are eliminated, while vegetative cover on the soil is 
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increased. To implement native grass (representing a mixture of native tall grass species) 

within SWAT, all agricultural row cropland was converted to range grass.  

5.3.9 BMP Sensitivity Analysis 

A BMP sensitivity analysis was performed under the four climate scenarios 

(20C3M, A1B, A2, and B1) to determine the range of possible impacts of BMP 

implementation on sediment and nutrient yields in the TCLW. The sensitivity analysis 

was performed on the calibrated model, which means that results presented in this study 

are “actual” sensitivities of the BMPs rather than theoretical sensitivity of the model by 

performing a global sensitivity analysis of all model parameters (Luo and Zhang, 2009). 

Parameters selected for the sensitivity analysis were obtained from previous studies 

regarding BMP implementation in SWAT (Behera and Panda 2006, Bracmort et al. 2006, 

Santhi et al. 2006, Arabi et al. 2007, Jha et al. 2007, Parajuli et al. 2008, Tuppad and 

Srinivasan 2008, and Tuppad et al. 2010). Ranges of sensitivity were determined by 

considering a reasonable range of the BMP implementation parameter obtained from 

published studies. Based on the type of studied parameters, variation may include entire 

defined parameter range, while in others it may be a percentage of the parameter range or 

a percentage of the initial BMP parameter value. Lenhart et al. (2003) performed a one-

at-a-time sensitivity analysis by varying parameters by defining the variation range as a 

percentage of the parameter initial value or as a percentage of the entire parameter range 

and found that the results of each sensitivity analysis were not significantly different. For 

each BMP, one parameter that physically defines the process was altered randomly 

within the selected range of variation (Table 4) 50 times (Luo and Zhang, 2009). 

Therefore, eight BMPs were varied 50 times each for four climate scenarios, resulting in 
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1600 simulations. For each simulation, one input parameter was changed at a time while 

all other model parameters were kept constant. Relative sensitivity index was calculated 

for each BMP using equation 8: 

o

o

oi

oi
y

x

xx

yy
S




      (8) 

Where S is the relative sensitivity index, xi is the ith BMP parameter value, xo is 

the initial BMP parameter value, yi is the model prediction of specific pollution resulting 

from the ith BMP parameter value, and yo is the initial model prediction of specific 

pollution resulting from the initial BMP parameter value. BMP sensitivity was evaluated 

in terms of sediment, total nitrogen, and total phosphorus yields under each climate 

scenario. Greater magnitude of relative sensitivity index indicates higher sensitivity of the 

BMP. A positive relative sensitivity index indicates that increasing the parameter value 

increases the pollution yield relative to base scenario (initial parameter value used for a 

BMP), while a negative number indicates that increasing the parameter decreases the 

pollution yield relative to base scenario. 
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Table  5-4. BMP sensitivity analysis parameters 

BMP Parameter 
Initial BMP 
Value 

Range 
Range Selection 
Method 

No-tillage EFTMIX 0.05 0.01 – 0.15  10% of entire range 
Conservation 
tillage 

EFTMIX 0.30 0.20 – 0.40 10% of entire range 

Contour Farming CN2 
-3 from 
default 

-1.5 – (-4.5) 50% of initial value 

Terraces CN2 
-5 from 
default 

-7.5 – (-2.5) 50% of initial value 

Filter Strips FILTERW 0 0 – 50 Entire range 
Porous Gully 
Plugs 

CH_N1 0.05 0.025 – 0.075 50% of initial value 

Grazing 
Management 

HVSTI 0.7 0 – 1.25 Entire range 

Native Grass CN2 Variable -10% – 10% 10% of initial value 

5.4 RESULTS AND DISCUSSION 

5.4.1 BMP Relative Sensitivity 

The results from long-term (twenty year) SWAT modeling showed that under the 

conventional tillage (base BMP) scenario, sediment, total nitrogen (TN), and total 

phosphorus (TP) yields increase in future climate scenarios (Table 5-5). The A1B 

scenario exhibits the greatest yields since it is experiencing the largest changes in 

climatological variables (precipitation, temperature, and carbon dioxide).  

Annual sensitivity of BMPs allows us to make general inferences regarding how 

propagation of input variances (within the reasonable range) for BMPs will affect spatial 

planning and development decisions regarding water quality protection under future 

climate scenarios. Trends present in the BMP sensitivity analysis across climate change 

scenarios for sediment, TN, and TP are shown in Figures 5-6 through 5-9, 9-1 through 9-

4, and 9-5 through 9-8, respectively. In addition, these figures tell us how BMP 

effectiveness may vary under future climate scenarios. For most BMPs, the annual 
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sensitivity indices for sediment, TN, and TP are relatively small across climate scenarios, 

although grazing management and native grass have sensitivities considerably greater 

than zero. The grazing management median sediment sensitivity index is 0.25 for 20C3M 

and 0.21 for the future climate scenarios, while native grass median sediment sensitivity 

is 1.70 for 20C3M and 3.00, 3.18, and 3.69 for A1B, A2, and B1, respectively. 

Conversely, no-tillage and porous gully plugs have the smallest median sensitivities for 

all pollutants. Therefore, it is expected that the native grass performance will be 

improved but more uncertain under future climate scenarios. We also observed that as we 

move from 20C3M to future climate scenarios, relative sensitivity index increases from 

A1B (lowest) to B1 (highest). 

Table  5-5. Sediment, TN, and TP from the field for the base scenario 

 20C3M A1B A2 B1 
Sediment (metric tons) 1908000 2609000 2422000 2177000 
TN (metric tons) 5762 7516 6982 6403 
TP (metric tons) 1032 1384 1287 1180 
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Figure  5-6. 20C3M sediment BMP sensitivity indices: conservation tillage (CT), 
contour farming (CF), filter strips (FS), grazing management (GM), native grass 

(NG), no-tillage (NT), porous gully plug (PG), and terraces (TR) 
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Figure  5-7. A1B sediment BMP sensitivity indices 
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Figure  5-8. A2 sediment BMP sensitivity indices 
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Figure  5-9. B1 sediment BMP sensitivity indices 

5.5 RELATIVE SENSITIVITY IMPACTS ON POLLUTION REDUCTION 

Sediment, TN, and TP yields from the field at the watershed scale as a function of 

parameter variation for each BMP application and climate scenario are presented in 

figures 5-10 through 5-17, and 9-9 through 9-24. These figures provide a visual 

representation of sensitivity trend and how it may change with changing climate. In the 

case of filter strips, variation in BMP performance is presented in the form changes in the 

filter strip width. Overall, some BMPs are revealed to be more sensitive than others. 

Within a certain climate scenario, as the physical parameters defining conservation 

tillage, porous gully plugs, no-tillage, and terraces change, graphically there is little 

change in sediment, TN, and TP produced from agricultural fields. However, for native 
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grass, filter strips, contour farming, and grazing management, the reverse is true: the 

relationship between input parameters and pollution generation is profound across the 

parameter range, which represent higher sensitivities. Sediment, TN, and TP reduction 

efficiency ranges are presented in Table 5-9. Greater efficiency ranges indicate that the 

BMP is less reliable across its implementation range. Meanwhile, higher efficiency 

values indicate that the BMP is more effective at sediment and nutrients reduction. In the 

following section, BMP variability is discussed in more detail across and within each 

climate scenario:  



 
 

143

Table  5-6. Sediment, TN, and TP reduction efficiency ranges 

 BMP 20C3M A1B A2 B1 
S

ed
im

en
t R

ed
uc

ti
on

 
Conservation 
Tillage 

5.0 – 6.0% 4.5 – 5.6% 4.9 – 6.0% 4.9 – 6.1% 

Contour 
Farming 

32.1 – 39.5% 33.6 – 40.2% 34.0 – 41.0% 34.2 – 41.7% 

Filter Strips 31.3 – 57.5% 33.6 – 61.6% 33.7 – 61.9% 33.6 – 61.7% 
Grazing 
Management 

-11.5 – 32.1% -8.8 – 28.1% -7.8 – 27.8% -9.0 – 28.6% 

Native Grass 46.0 – 56.1% 4.3 – 51.4% 2.1 – 51.8% 0.7 – 52.5% 
No Tillage 10.0 – 10.2% 10.2 – 10.4% 10.6 – 10.8% 10.3 – 10.5% 
Porous Gully 
Plug 

0.1 – 0.3% 0.1 – 0.3% 0.1 – 0.3% 0.1 – 0.3% 

Terraces 53.0 – 54.9% 56.6 – 58.2% 56.9 – 58.6% 56-8 – 58.7% 

T
N

 R
ed

uc
ti

on
 

Conservation 
Tillage 

2.5 – 3.4% 2.6 – 4.1% 2.6 – 4.0% 2.6 – 3.8% 

Contour 
Farming 

25.5 – 34.7% 25.4 – 33.1% 25.8 – 34.0% 26.3 – 35.2% 

Filter Strips 32.5 – 60.2% 33.9 – 62.8% 33.9 – 62.9% 33.9 – 62.8% 
Grazing 
Management 

-5.9 – 24.1% -4.3 – 19.6% -3.8 – 19.3% -4.6% - 20.8%

Native Grass 44.7 – 56.4% 17.0 – 50.2% 15.2 – 50.6% 12.6 – 51.4% 
No Tillage 1.1 – 2.2% 4 – 5.8% 3.3 – 4.9% 2.1 – 3.5% 
Porous Gully 
Plug 

0.0 – 0.2% 0.0 – 0.2% 0.0 – 0.2% 0.1 – 0.2% 

Terraces 49.0 – 52.8% 51.2 – 53.8% 51.3 – 54.2% 51.6 – 54.7% 

T
P

 R
ed

uc
ti

on
 

Conservation 
Tillage 

1.0 – 1.3% 1.3 – 1.3% 1.2 – 1.3% 1.1 – 1.2% 

Contour 
Farming 

31 – 41.5% 30.6 – 39.7% 31.0 – 40.7% 31.6 – 41.9% 

Filter Strips 38.2 – 70.1% 40.2 – 73.7% 40.2 – 73.7% 40.0 – 73.4% 
Grazing 
Management 

-4.6 – 19.2% -3.2 – 15.0% -2.9 – 14.7% -3.4 – 16.0% 

Native Grass 59.4 – 68.0% 39.9 – 64.6% 38.5 – 64.8% 36.3 – 65.1% 
No Tillage -9.7 – (-6.7%) -6.1 – (-3.8%) -7.2 – (-4.7%) -9.0 – (-6.3%) 
Porous Gully 
Plug 

0.1 – 0.2% 0.1 – 0.2% 0.0 – 0.1% 0.0 – 0.2% 

Terraces 59.5 – 63.8% 61.5 – 65.2% 61.7 – 65.6% 61.8 – 65.9% 
 

Filter strips: Median filter strip sensitivity increases in future climate scenarios 

for sediment, TN, and TP (Figures 5-6 through 5-9, 9-1 through 9-4, and 9-5 through 9-

8). The scenario with the greatest precipitation (A1B) has the highest sensitivity and the 
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lowest sensitivity is in the scenario with the least precipitation (20C3M). As it shown in 

Figures 5-10, 9-11, and 9-19, for all climate scenarios, as width of the filter strips was 

increased, sediment, TN, and TP from agricultural fields was reduced. At about 30 m, 

filter strips reached 99% of their possible reduction capabilities. The trend followed the 

empirical equation, Trapping Efficiency= 0.367(width of filter strip in meters)
0.2967

 

(Neitsch et al., 2005), that is used to represent sediment, TN, and TP trapping efficiency 

in SWAT. Therefore, it can be concluded that filter strips were more sensitive at smaller 

widths, while sensitivity was greatly decreased if the width was increased to 30 m or 

greater. Across climate change scenarios, sensitivity slightly increases from 20C3M to 

A1B, A2, and B1. There is slight maximum reduction efficiency increases in future 

climate scenarios from conventional tillage (no-BMP scenario): 58% for 20C3M, 62% 

for A1B, 62% for A2, and 62% for B1 (sediment), but range of reduction (maximum 

minus minimum) increases: 26% for 20C3M, 28% for A1B, 28% for A2, and 28% for B1 

(Table 5-9). Similar trends are present for TN and TP, although maximum TP reduction 

is greater than sediment and TN (Table 5-9). 
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Figure  5-10. Filter strip sediment yield versus filter strip width 

Grazing management: Grazing management on rangeland within TCLW was the 

second most sensitive BMP in all climate scenarios (Figures 5-6 through 5-9, 9-1 through 

9-4, and 9-5 through 9-8) for sediment and TN, and third for TP. For example, the 

median sediment sensitivity was greatest for 20C3M (0.25) and smallest for A1B (0.21) 

and A2 (0.21). This trend among the climate scenarios suggests that as climate variables 

increases, grazing management becomes less sensitive to input variation. Maximum 

reduction efficiencies under all climate scenarios are around 30% for sediment, while 

they are close to 20% for TN and TP (Table 5-9). Meanwhile, smaller ranges of reduction 

efficiencies for sediment, TN, and TP in future climates were observed, as presented in 

Table 5-9. Grazing management reduction efficiency for sediment is 44% for 20C3M, 
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37% for A1B, 36% for A2, and 38% for B1. Therefore, grazing management may be 

more reliable for BMP implementation in future climate, but less effective in overall 

pollution reduction. Figures 5-11, 9-12, and 9-20 depict two specific trends regarding 

changes in grazing management performance. As the harvest index increases from 0% to 

100%, pollutants yield increases due to residue losses, which protect the soil from 

erosion. When the parameter is increased to greater than 40% of its initial value (100% of 

harvest index), sediment, TN, and TP generation from agricultural fields dramatically 

decreases. At this point, all above-ground biomass has been harvested and below-ground 

biomass is now removed from the system. It is expected that sediment and nutrient yields 

would further increase due to increases in harvest index greater than 100%, however 

model results show this is not the case. Poor representation of this BMP within the model 

or a model artifact may cause this problem.  
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Figure  5-11. Grazing management sediment yield versus percent parameter change 

Native Grass: Conversion of agricultural lands to native grass or conservation 

reserve program is highly effective at sediment, TN, and TP reduction in the TCLW 

(Table 5-9). Meanwhile, the sensitivity index increases for all three future climate 

scenarios from 20C3M (Figures 5-6 through 5-9, 9-1 through 9-4, and 9-5 through 9-8). 

Native grass is also highly sensitive to changes in its manner of implementation 

(especially large increases in curve number) and climate, as shown in Figures 5-12, 9-13, 

and 9-21. As curve number is increased by 4% or more, the slope of the input/output 

graph increases significantly, indicating increased sensitivity with greater curve numbers 

on native grass. Increases in sensitivity with changing climate suggest that increasing 

precipitation on native grass has a large impact on pollution generation due to increased 
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runoff. Similarly, increasing curve number of native grass has a large effect on NPS 

pollution generation. Maximum reduction efficiencies for native grass are high for all 

climate scenarios: sediment and TN are about 50% and TP is about 65%. Range of 

reduction efficiency changes as in sediment: 10% for 20C3M, 47% for A1B, 50% for A2, 

and 53% for B1. Similar trends were observed for TN and TP. Although reduction 

efficiency of native grass is highest of any BMP, the highly variable magnitudes of 

sediment, TN, and TP reduction ranges  with changing climate indicates the application 

of native grass on agricultural lands will be more effective but less reliable under future 

climate scenarios. 
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Figure  5-12. Native grass sediment yield versus percent parameter change 

Conservation tillage: Conservation tillage does not exhibit much change in 

sensitivity between climate scenarios (Figures 5-6 through 5-9, 9-1 through 9-4, and 9-5 

through 9-8). This is supported by the small range of pollution reduction within 

acceptable level of parameter changes that control conservation tillage. Sediment 

reduction from conventional tillage (no BMP scenario) ranges between 5-6% for each 

climate scenario, indicating that sensitivity and performance do not change much in 

future climate (Table 5-9). Reduction efficiency for conservation tillage ranges are about 

3-4% for TN and 1% for TP (Table 5-9). Figures 5-13, 9-10,and 9-18 depict the lack of 

changes in sediment, TN, and TP yields from agricultural fields due to implementation of 

conservation tillage (altering mixing efficiency in tillage operations). Slightly higher 



 
 

150

reduction efficiencies occur as the mixing efficiency decreases. This indicates that while 

the BMP does not have high reduction efficiency, if implementation deviates from 

recommended mixing efficiency, performance will change little in current and future 

climate scenarios. 

 

Figure  5-13. Conservation tillage sediment yield versus percent parameter change 

No-Tillage: The no-tillage BMP is very similar to conservation tillage; there is 

little change in sensitivity between climate scenarios (Figures 5-6 through 5-9, 9-1 

through 9-4, and 9-5 through 9-8). The difference between minimum and maximum 

reduction efficiency for each climate scenario is 0.2% for sediment and TN, indicating 

that the BMP is insensitive to changes in climate (Table 5-9). Figures 5-14, 9-14, and 9-

22 demonstrate the lack of changes in sediment yield, TN, and TP from agricultural fields 
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due to implementation of no-till practice (altering mixing efficiency of tillage operations). 

Maximum sediment and phosphorus reduction efficiencies occurred at the lowest mixing 

efficiencies while maximum nitrogen reduction efficiency occurred at the highest mixing 

efficiency. Meanwhile, small changes for sediment, TN, and TP yields were estimated 

across climate scenarios: 10.2% in 20C3M, 10.4% in A1B, 10.8% in A2, and 10.5% in 

B1. Overall, compared to other BMPs, reduction efficiency of no-till practices are 

limited; however, the relative low sensitivity allows for dependable implementation in 

current and future climates. 

 

Figure  5-14. No-tillage sediment yield versus percent parameter change 

Porous gully plugs: Relative sensitivity for porous gully plugs was the lowest 

among studied BMPs across all climate scenarios (-0.005 for sediment, -0.002 for TN, 
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and 0.001 for TP). Minimum and maximum reduction efficiency range with change in 

BMP implementation is relatively small across climate change scenarios: 0.3% for 

20C3M, 0.2% for A1B, 0.2% for A2, and 0.3% for B1. This suggests that porous gully 

plugs effectiveness is not sensitive and limited to climate changes. Figures 5-15, 9-15, 

and 9-23 show that changes in the physical parameter that defines porous gully plugs 

(CH_N1) does not have a large effect on sediment, TN, and TP yields from agricultural 

fields. Luo and Zhang (2009) reported similar results for sediment load, where Manning’s 

roughness for the tributary channel had an average sensitivity of 0.01, while TN and TP 

sensitivities were not reported in their study. Visually, the slopes in Figures 5-15, 9-15, 

and 9-23 are close to zero, confirming the low sensitivity. Maximum sediment, TN, and 

TP reduction (0.3%, 0.2%, and 0.2%, respectively) occurred with maximum increase in 

the BMP parameter. Although the BMP may be reliable in future climate scenarios, low 

reduction efficiency of porous gully plugs makes this BMP a less attractive alternative for 

pollution control in this watershed. However, this BMP can be very useful in areas that 

gully erosion is the primary source of pollution. 
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Figure  5-15. Porous gully plug sediment yield versus percent parameter change 

Contour farming: Contour farming annual sediment, TN, and TP sensitivity is 

relatively constant across climate scenarios (Figures 5-6 through 5-9, 9-1 through 9-4, 

and 9-5 through 9-8). This BMP is the third most sensitive for sediment and TN, only 

native grass and grazing management are higher, while it is the second most sensitive for 

TP. Range between maximum and minimum reduction efficiency are mixed between 

different climate scenarios. For example, sediment reduction efficiency is 7.4% for 

20C3M, 6.6% for A1B, 7% for A2, and 7.5% for A1B. This makes it difficult to reach a 

solid conclusion about overall impact of climate change on this BMP. Visually there is 

little slope in the sediment/TN/TP versus percent change in BMP implementation, as 

shown in Figures 5-16, 9-9, and 9-17. As curve number increases, the sediment, TN, and 
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TP from agricultural fields increases. This is expected due to increased runoff and 

therefore, increased sediment and nutrient transport. The effect of increasing curve 

number is not as severe as for the native grass scenario, which is due to the added 

implementation of the USLE practice factor (USLE_P) for both terraces and contour 

farming. Maximum reduction efficiency was relatively high under all climate scenarios: 

for sediment, it was 40% for 20C3M, 40% for A1B, 41% for A2, and 42% for B1. 

Similar trends were observed for TN and TP. These results demonstrate that contour 

farming is very effective at NPS pollution reduction from the field, and in future climates, 

deviation from recommended implementation as described in SWAT will have little 

effect on reduction outcomes. 
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Figure  5-16. Contour farming sediment yield versus percent parameter change 

Terraces: Terraces have comparable sensitivity trends across climate scenarios; 

although the sensitivity is relatively lower (Figures 5-6 through 5-9, 9-1 through 9-4, and 

9-5 through 9-8). Ranges of minimum and maximum reduction with changes in 

parameter are small and similar across all for sediment, TN, and TP: 2%, 3%, and 4%, 

respectively for all climate scenarios. These small ranges indicate that terraces have a 

relatively high reliability in performance compared to other BMPs. Figures 5-17, 9-16, 

and 9-24 demonstrate the small changes in sediment, TN, and TP across parameter 

changes for terraces. With increasing curve number, reduction efficiency is lower, but the 

lower efficiency is mitigated by the implementation of the USLE practice factor, similar 

to contour farming. Maximum reduction efficiencies are high for terraces, as sediment is 
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55% (20C3M), 58% (A1B), 57% (A2), and 59% (B1);TN is 53% (20C3M), 54% (A1B), 

54% (A2), and  55% (B1);TP is 64% (20C3M) 65% (A1B), 66% (A2), and 66% (B1). 

Therefore, terraces are an effective BMP for sediment, TN, and TP reduction in current 

and future climate and their reliability of implementation is high as well due to low 

relative sensitivity. 

 

Figure  5-17. Terrace sediment yield versus percent parameter change 

5.5.1 Monthly Sensitivity 

Monthly BMP sensitivity demonstrates how seasonal changes in precipitation and 

temperature affect sediment, TN, and TP yields, and therefore, which months are likely to 

be more susceptible to future climates. Average monthly sensitivity for each BMP across 

four climate scenarios is presented in Figures 5-18 through 5-25 for sediment and Figures 
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9-25 through 9-32 (TN) and 9-33 through 9-40 (TP) in the appendix. Analyzing monthly 

trends also reveals tendencies that are not evident in the annual sensitivity data. 

Conservation tillage (Figures 5-18, 9-25, 9-33) and no-tillage (Figures 5-19, 9-30, 

9-38) have similar trends of higher sensitivities in wetter months and lower sensitivities 

in drier months. The wetter months (May and June) are also when planting and tillage 

occurs for most of the crop rotations. Therefore, altering the mixing efficiency of tillage-

based BMPs has a greater impact on pollution generation from agricultural lands during 

wetter months. For conservation tillage and no-tillage, as mixing efficiency is increased, 

TP from the field decreases. As a result, applied phosphorus is more evenly distributed 

through the shallow soil layers in which the phosphorus is bound to soil particles, 

reducing transport ability.  Meanwhile, across climate scenarios, there is modest change 

in sensitivity, indicating that there is little uncertainty about performance of these BMPs 

in plausible future climates. Furthermore, the low sensitivity indicates small changes in 

mixing efficiency of tillage operations may have little impact on BMP performance under 

future climate scenarios. 
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Figure  5-18. Conservation tillage average monthly sediment sensitivity 
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Figure  5-19. No-tillage average monthly sediment sensitivity 

Contour farming (Figure 5-20, 9-26, 9-34) and terraces (Figures 5-21, 9-32, 9-40) 

have a similar monthly trend. Due to the similarity of their representation in SWAT 

(changes in curve number and USLE practice factor), the trends and sensitivities are 

similar. August has the highest magnitude sensitivity, which is similar to what was 

observed in native grass, likely because curve number is a factor in the implementation of 

native grass, contour farming, and terraces. The 20C3M scenario has the greatest 
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sensitivity each month for both contour farming and terraces, while the scenario with the 

most precipitation (A1B) has the lowest magnitude sensitivity.  
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Figure  5-20. Contour farming average monthly sediment sensitivity 
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Figure  5-21. Terrace average monthly sediment sensitivity 

Filter strip sensitivity is highly variable for all climate scenarios on a monthly 

basis (Figures 5-22, 9-27, 9-35). Sensitivity was determined to be greatest (about -0.16) 

in the months with the most precipitation (May-July), which suggests that filter strip 

width has a greater effect on NPS pollution in months with greater precipitation. In 



 
 

160

months with less precipitation, filter strip width does not have a comparatively large 

average sensitivity (about -0.04) because of decreased NPS yield. This conclusion is 

supported by Lee et al. (2003), where it was determined that trapping effectiveness of 

filter strip and total rainfall are negatively correlated. Across climate scenarios, the 

monthly trends and sensitivity indices are very similar. Therefore, filter strip performance 

with respect to width impacts on pollution reduction is likely to undergo insignificant 

changes in future climate scenarios. 
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Figure  5-22. Filter strip average monthly sediment sensitivity 

Grazing management sensitivity is largely consistent with the growing season and 

biomass fluctuations (Figures 5-23, 9-28, 9-36). As biomass accumulates in the spring 

until August, sensitivity decreases. As the range grass is harvested, and there is less 

biomass on the field, sensitivity increases to a peak in November and December. This 

suggests that sensitivity is highest when there is less biomass on the ground, indicating 

that changing the harvest index plays a larger role in pollution reduction after harvest. In 

the A1B, A2, and B1 scenarios the time to maturity of range grass is reached one month 

earlier (July) than in 20C3M (August), which results in an earlier harvest. Therefore, 
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20C3M lags behind A1B, A2, and B1 in magnitude of sensitivity and carries on into the 

beginning of the growing season. This lag is likely due to the increased temperatures in 

future climate scenarios, causing the beginning of the growing season and harvest date to 

shift forward one month. 
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Figure  5-23. Grazing management average monthly sediment sensitivity 

Native grass monthly sensitivity trends are similar for sediment, TN, and TP 

(Figures 5-24, 9-29, 9-37). Between climate scenarios, 20C3M monthly sensitivity is 

significantly lower than the future climate scenarios, which is consistent with the annual 

sensitivity in Figure 5-6 through 5-9 This suggests that native grass becomes more 

sensitive as temperature and precipitation increase. Monthly sensitivity trends are 

generally consistent with sensitivity of surface runoff and water yield for the future 

climate scenarios: beginning in March, sensitivity decreases with time into the growing 

season. As harvest takes place at the end of the growing season, sensitivity increases to a 

local maximum in October and then decreases again until February. The peak sensitivity 

in March also coincides with beginning of snowmelt and increased water yield, where 

combined with lack of biomass, results in high sensitivity of the native grass curve 
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number. Conversely, the local minimum sensitivity in winter months (November through 

February) is likely due to snow cover limiting runoff combined with lack of biomass on 

the field, meaning that changes in biomass cover do not affect sediment, TN, and TP 

yield during the winter months as much as March and October. The 20C3M scenario 

generally follows this trend, although the magnitudes of sensitivity are not as extreme, 

except for the peak in sediment and TP sensitivity in August. August in 20C3M has the 

lowest precipitation of any climate scenario, which results in a relatively small pollutant 

yield. For example, when curve number is reduced by 5% from the initial BMP value in 

20C3M August, sediment yield is reduced from 277 tons to 237 tons (14% reduction), 

whereas for August in A1B sediment yield is reduced from 2967 tons to 2916 tons (2% 

reduction). Although load reduction is more for A1B (51 tons) than for 20C3M (40 tons), 

percent reduction is considerably greater for 20C3M. Therefore, in August 20C3M, 

changing curve number has a much greater impact on sensitivity because of the large 

percent reduction due to limited sediment and TP yield. This suggests that although 

reduction efficiency is higher in August for 20C3M than A1B, A2, or B1, native grass is 

less reliable in August because of the high reduction variation with respect changes in 

implementation. 
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Figure  5-24. Native grass average monthly sediment sensitivity 

 Porous gully plug monthly sensitivity stays close to zero for most of the year, 

with peaks in March and November for sediment, TN, and TP under all climate scenarios 

(Figures 5-25, 9-31, 9-39). Between climate scenarios, A1B is the most sensitive, 

followed by A2 and B1, while 20C3M is the least sensitive. This indicates that porous 

gully plugs is relatively more sensitive to precipitation and temperature increases during 

these months. 
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Figure  5-25. Porous gully plug average monthly sediment sensitivity 

5.5.2 Significant Differences of BMP Sensitivity between Climate Scenarios 

To determine significant differences of sediment, TN, and TP sensitivities for 

each BMP across climate scenarios, a one-way analysis of variance (ANOVA) was 

performed at a 0.05 level of significance. The p-values for each BMP pair-wise 

comparison of climate change scenario sensitivity is presented in Table 5-10 for 

sediment, Table 9-1 for TN, and Table 9-2 for TP, where significant differences between 

scenarios are highlighted. Filter strips, grazing management, and porous gully plugs do 

not show significant differences between climate scenarios for all three pollutants. 

Contour farming and terraces generally have statistically significant differences in 

sensitivity across all climate scenarios for sediment, TN, and TP, except under terraces 

for sediment and TP between 20C3M and A2. Under the native grass scenario, 20C3M is 

shows statistically significant differences from the future climate scenarios for all 

pollutants, which is expected, based on the annual and monthly sensitivity results. 

Finally, conservation tillage and no-tillage generally have statistically significant 
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differences between climate change scenarios, especially TN and TP. These results 

suggest that climate change plays a significant role in determining BMPs performance in 

regards to pollution control. 

Table  5-7. ANOVA sediment p-values (highlighted cells indicate significance) 

Conservation Tillage Contour Farming 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  0.89 <0.01 <0.01 20C3M  <0.01 <0.01 0.02 
A1B 0.89  <0.01 <0.01 A1B <0.01  <0.01 <0.01
A2 <0.01 <0.01  0.97 A2 <0.01 <0.01  <0.01
B1 <0.01 <0.01 0.97  B1 0.02 <0.01 <0.01  

Filter Strips Grazing Management 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  0.17 0.15 0.18 20C3M  0.30 0.19 0.36 
A1B 0.17  0.96 0.98 A1B 0.30  0.79 0.91 
A2 0.15 0.96  0.94 A2 0.19 0.79  0.71 
B1 0.18 0.98 0.94  B1 0.36 0.91 0.71  

Native Grass No-Tillage 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  <0.01 <0.01 <0.01 20C3M  0.17 <0.01 <0.01
A1B <0.01  0.434 0.03 A1B 0.17  <0.01 <0.01
A2 <0.01 0.44  0.18 A2 <0.01 <0.01  0.26 
B1 <0.01 0.03 0.18  B1 <0.01 <0.01 0.26  

Porous Gully Plug Terraces 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  0.57 0.24 0.11 20C3M  <0.01 0.76 0.01 
A1B 0.57  0.54 0.29 A1B <0.01  <0.01 <0.01
A2 0.24 0.54  0.66 A2 0.76 <0.01  <0.01
B1 0.11 0.29 0.66  B1 0.01 <0.01 <0.01  

 

5.6 CONCLUSION 

This study evaluated the sensitivity of eight agricultural BMPs with respect to 

sediment, TN, and TP pollution from the field under various climate change scenarios. 

Three SRES emissions scenarios (A.1B, A.2, and B.1) and a 20
th

 century simulation 

(20C3M) from the CCSM-3 GCM were used in the comparison in the Tuttle Creek Lake 
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watershed (TCLW) located in Kansas and Nebraska. By changing model parameters 

related to the physical implementation of conservation tillage, contour farming, filter 

strips, grazing management, native grass, no-tillage, porous gully plugs, and terraces, 

annual and monthly sensitivities were calculated for each climate scenario.  

Using the delta method, daily precipitation and temperature data were constructed 

for future climate scenarios (A1B, A2, and B1) and the 20C3M model from observed 

data to be used for the sensitivity analysis. With respect to the 20C3M scenario, A1B was 

determined to have the greatest increase in temperature, while A2 had the greatest 

precipitation increase by the middle 21
st

 century.  

Results of conventional tillage (considered the no BMP applied scenario) across 

climate change scenarios determined that A1B produced the greatest amount of sediment, 

TN, and TP yields from the field at the watershed scale, while 20C3M produced the least. 

In terms of sediment, TN, and TP reduction efficiency, filter strips, contour farming, 

terraces, and native grass were most effective, while porous gully plugs and conservation 

tillage were the least effective for all climate scenarios 

The sensitivity analysis was performed by using a one-at-a-time parameter 

perturbation method to determine the sensitivity of each BMP with respect to sediment, 

TN, and TP within the TCLW under each climate scenario. Native grass replacement of 

agricultural row crops was determined to be the most sensitive BMP under all climate 

scenarios, while grazing management and filter strips were also highly sensitive on an 

annual and monthly basis. The least sensitive BMPs were determined to be porous gully 

plugs, no-tillage, and conservation tillage. Comparing BMP sensitivity across climate 

scenarios, it was determined that filter strips, grazing management, and porous gully 
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plugs do not experience significant sensitivity differences in future climate scenarios for 

sediment, TN, and TP. All other BMPs exhibited at least some significant differences 

between climate scenarios. 

Comparing monthly and annual sensitivity, it was determined that analyzing 

sensitivity on a monthly basis reveals more regarding BMP performance and uncertainty. 

Most BMPs had highly variable sensitivity depending on the month, which was attributed 

to variation in seasonal precipitation, temperature and time of the growing season across 

all climate scenarios. Therefore, it is recommended caution should be exercised in the 

decision-making processes for developing future BMP implementation strategies.  

This study provides valuable information to watershed managers and decision-

makers regarding BMP implementation in current and possible future climates. Through 

use of sensitivity analysis, variations in BMP performance can be determined, which 

ultimately, affect spatial planning and development decisions regarding water quality 

protection under future climate scenarios. In addition, determining sensitivity of BMPs 

allow us to understand the reliability, risk, and uncertainty involved in both modeling and 

real world implementation of BMPs at the watershed scale to mitigate the negative 

impacts of climate changes on water resources. 
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6 CONCLUSION 

This research examined the effects of climate change on water quantity, water 

quality, BMP effectiveness, and BMP reliability in the Tuttle Creek Lake watershed 

located in Kansas and Nebraska. A physically-based watershed model (SWAT) was used 

in conjunction with downscaled climate change data of three SRES emission scenario 

outputs (A1B, A2, and B1) from the National Center for Atmospheric Research CCSM-3 

climate model. Eight agricultural BMPs were modeled within SWAT: conservation 

tillage, contour farming, filter strips, grazing management, native grass, no-tillage, porous 

gully plugs, and terraces. In the first study, sediment and nutrient load reduction and 

percent reduction efficiency of each BMP was determined at the field and watershed 

scales for all climate scenarios. In the second study, a sensitivity analysis was performed 

across all climate scenarios for each BMP. Initial BMP implementation parameters were 

adjusted based on reasonable ranges, and a relative sensitivity index was calculated to 

quantify sensitivity. Annual and monthly relative BMP sensitivity indices were 

determined for sediment, total nitrogen, and total phosphorus. The following general 

conclusions were made: 

 Water quantity (surface runoff, baseflow, and water yield) increased in future 

climate scenarios within the study area. 

 Water quality parameters (sediment, total nitrogen, and total phosphorus) 

increased in magnitude in future climate scenarios, which was mainly attributed to 

increases in surface runoff and water yield. 

 Under both current and future climate scenarios, efficiency was determined to be 

greatest for more intensive BMPs, such as native grass, terraces, and contour 
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farming. Conversely, porous gully plugs and conservation tillage had lower 

efficiencies. 

 Under future climate scenarios, most BMPs experienced decreased efficiencies 

for sediment or nutrients, particularly grazing management and native grass. 

 Native grass, grazing management, and filter strips were determined to be the 

most sensitive among studied BMPs under all climate scenarios and therefore, the 

least reliable for implementation in future climates. Therefore, a slight change 

from predefined implementation conditions may increase uncertainty in 

performance. Porous gully plugs, no-tillage, and conservation tillage were the 

least sensitive among studied BMPs.  

 In terms of significant changes in sensitivity between climate change scenarios, 

filter strips, grazing management, and porous gully plugs were the only BMPs 

that did not change for sediment and nutrient loads. 
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7 FUTURE RESEARCH 

This study provides valuable insight into the manner in which future climate 

change may affect hydrology and NPS pollutant transport in agricultural watersheds. In 

addition, the impacts of climate change on BMP efficiency and sensitivity to method of 

implementation were determined. However, there is significant research to be done to 

enhance our understanding of the relationship between climate change, watershed 

dynamics, and BMP implementation strategy. Suggestions for future research include: 

 Quantifying the uncertainty of BMP implementation in current and future 

climates: while a BMP sensitivity analysis allows for understanding of how 

reduction efficiency changes to different sources of variation in the input of the 

model, more research must be completed to include uncertainty of BMP 

efficiency and associated risk under future climate scenarios to aid watershed 

decision makers in developing implementation plans. 

 Exploring additional climate scenarios, models, and downscaling methods: this 

study used three SRES emissions scenarios from one climate model. Introducing 

more plausible future SRES emissions scenarios under a wide array of climate 

models will allow for further understanding of the possibilities of change in water 

resources. 

 Determining optimal resolution of climate change data for water resources 

studies: climate change data is often available for various spatial and temporal 

resolutions, usually in forms not acceptable for watershed impacts studies. 

Exploration of optimal spatial and temporal resolutions will allow for 
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standardized approaches to integration of climate change data and watershed 

models in future studies. 



 
 

172

 

 

 

 

 

 

 

 

APPENDICES 

 



 
 

173

8 APPENDIX A 
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Figure  8-1. Observed versus calibrated streamflow 
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Figure  8-2. Observed versus calibrated sediment load 
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Figure  8-3. Observed versus calibrated TKN load 
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Figure  8-4. Observed versus calibrated TP load 
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Table  8-1. Significant difference (p-value) in BMP performance at the field scale 
between 20C3M and A2. 

 Sediment Total Nitrogen Total Phosphorus 
BMP % Red Load Red % Red Load Red % Red Load Red 

Contour Farming 
↑ 

<0.01 
↑ 

<0.01 
0.36 

↑ 
<0.01 

0.33 
↑ 

<0.01 

Filter Strips 
↑ 

<0.01 
↑ 

<0.01 
↑ 

0.02 
↑ 

<0.01 
↑ 

<0.01 
↑ 

<0.01 

Grazing Management 
↓ 

<0.01 
↓ 

0.01 
↓ 

<0.01 
↓ 

0.01 
↓ 

<0.01 
↓ 

0.01 

Native Grass <0.01 0.08 <0.01 
↓ 

0.05 
<0.01 

↓ 
0.65 

No-Tillage 0.10 
↑ 

0.01 
↑ 

<0.01 
↑ 

<0.01 
0.07 0.13 

Porous Gully Plugs 0.29 0.11 0.64 0.22 0.36 0.08 

Conservation Tillage 
↑ 

0.05 
↑ 

<0.01 
↑ 

<0.01 
↑ 

<0.01 
0.09 

↑ 
0.01 

Terraces 0.02 
↑ 

<0.01 
0.83 

↑ 
0.04 

0.90 
↑ 

<0.01 

Table  8-2. Significant difference (p-value) in BMP performance at the watershed 
scale between 20C3M and A2. 

 Sediment Total Nitrogen Total Phosphorus 
BMP % Red Load Red % Red Load Red % Red Load Red 

Contour Farming 
↑ 

<0.01 
↑ 

<0.01 
0.84 0.19 0.71 0.21 

Filter Strips 
↑ 

0.05 
↑ 

<0.01 
0.16 0.70 

↓ 
0.01 

0.17 

Grazing Management 0.72 0.57 
↓ 

0.01 
0.19 

↓ 
0.01 

0.17 

Native Grass 
↑ 

<0.01 
↑ 

<0.01 
0.54 0.49 0.54 0.61 

No-Tillage 
↑ 

0.05 
↑ 

0.03 
0.81 0.91 0.82 0.82 

Porous Gully Plugs 0.32 0.26 0.11 0.21 0.07 0.12 

Conservation Tillage 
↑ 

0.04 
0.05 0.30 0.52 0.98 0.37 

Terraces 
↑ 

<0.01 
↑ 

<0.01 
0.61 

↑ 
0.03 

0.77 
↑ 

0.01 
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Table  8-3. Significant difference (p-value) in BMP performance at the field scale 
between 20C3M and B1. 

 Sediment Total Nitrogen Total Phosphorus 
BMP % Red Load Red % Red Load Red % Red Load Red 

Contour Farming 
↑ 

<0.01 
↑ 

<0.01 
0.07 

↑ 
<0.01 

0.05 
↑ 

<0.01 

Filter Strips 
↑ 

<0.01 
↑ 

<0.01 
↑ 

<0.01 
↑ 

<0.01 
↑ 

<0.01 
↑ 

<0.01 

Grazing Management 
↓ 

<0.01 
↓ 

0.04 
↓ 

0.01 
0.08 

↓ 
<0.01 

0.08 

Native Grass 
↓ 

<0.01 
↓ 

0.01 
↓ 

<0.01 
↓ 

0.01 
↓ 

<0.01 
0.29 

No-Tillage 0.14 
↑ 

0.02 
↑ 

<0.01 
↑ 

<0.01 
0.18 0.21 

Porous Gully Plugs 0.43 0.22 0.31 0.75 0.18 0.48 

Conservation Tillage 
↑ 

0.04 
↑ 

0.01 
↑ 

<0.01 
↑ 

<0.01 
0.06 

↑ 
0.02 

Terraces 0.47 0.09 0.51 0.39 0.61 0.16 

Table  8-4. Significant difference (p-value) in BMP performance at the watershed 
scale between 20C3M and B1. 

 Sediment Total Nitrogen Total Phosphorus 
BMP % Red Load Red % Red Load Red % Red Load Red 

Contour Farming 
↑ 

0.01 
↑ 

<0.01 
0.65 0.27 0.40 0.15 

Filter Strips 0.53 
↑ 

<0.01 
↓ 

0.02 
0.11 0.08 0.20 

Grazing Management 0.97 0.70 
↓ 

<0.01 
0.24 

↓ 
<0.01 

0.22 

Native Grass 
↑ 

<0.01 
↑ 

<0.01 
0.50 0.70 0.67 0.98 

No-Tillage 0.21 0.09 0.68 0.91 0.75 0.84 
Porous Gully Plugs 0.34 0.31 0.28 0.31 0.05 0.21 
Conservation Tillage 0.14 0.31 0.62 0.33 0.54 0.63 

Terraces 
↑ 

<0.01 
↑ 

<0.01 
0.06 

↑ 
0.05 

↑ 
<0.01 

↑ 
0.02 
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9 APPENDIX B 

 

Figure  9-1. 20C3M total nitrogen BMP relative sensitivity indices 
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Figure  9-2. A1B total nitrogen BMP relative sensitivity indices 
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Figure  9-3. A2 total nitrogen BMP relative sensitivity indices 
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Figure  9-4. B1 total nitrogen BMP relative sensitivity indices 
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Figure  9-5. 20C3M total phosphorus BMP relative sensitivity indices 
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Figure  9-6. A1B total phosphorus BMP relative sensitivity indices 
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Figure  9-7. A2 total phosphorus BMP relative sensitivity indices 
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Figure  9-8. B1 total phosphorus BMP relative sensitivity indices 
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Figure  9-9. Contour farming TN yield versus percent parameter change 
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Figure  9-10. Conservation tillage TN yield versus percent parameter change 
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Figure  9-11. Filter strip TN yield versus filter strip width 
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Figure  9-12. Grazing management TN yield versus percent parameter change 
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Figure  9-13. Native grass TN yield versus percent parameter change 
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Figure  9-14. No-tillage TN yield versus percent parameter change 
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Figure  9-15. Porous gully plug TN yield versus percent parameter change 
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Figure  9-16. Terrace TN yield versus percent parameter change 
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Figure  9-17. Contour farming TP yield versus percent parameter change 
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Figure  9-18. Conservation tillage TP yield versus percent parameter change 
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Figure  9-19. Filter strip TP yield versus filter strip width 
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Figure  9-20. Grazing management TP yield versus percent parameter change 
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Figure  9-21. Native grass TP yield versus percent parameter change 
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Figure  9-22. No-tillage TP yield versus percent parameter change 
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Figure  9-23. Porous gully plug TP yield versus percent parameter change 
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Figure  9-24. Terrace TP yield versus percent parameter change 
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Figure  9-25. Conservation tillage average monthly TN sensitivity 
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Figure  9-26. Contour farming average monthly TN sensitivity 
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Figure  9-27. Filter strip average monthly TN sensitivity 
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Figure  9-28. Grazing management average monthly TN sensitivity 
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Figure  9-29. Native grass average monthly TN sensitivity 
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Figure  9-30. No-tillage average monthly TN sensitivity 
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Figure  9-31. Porous gully plug average monthly TN sensitivity 
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Figure  9-32. Terrace average monthly TN sensitivity 
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Figure  9-33. Conservation tillage average monthly TP sensitivity 
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Figure  9-34. Contour farming average monthly TP sensitivity 
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Figure  9-35. Filter strip average monthly TP sensitivity 
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Figure  9-36. Grazing management average monthly TP sensitivity 
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Figure  9-37. Native grass average monthly TP sensitivity 
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Figure  9-38. No-tillage average monthly TP sensitivity 
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Figure  9-39. Porous gully plug average monthly TP sensitivity 



 
 

208

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

JA
N

FEB
M

AR
APR

M
AY

JU
NE

JU
LY

AUG
SEPT

O
CT

NO
V

DEC

R
el

at
iv

e 
S

en
si

ti
vi

ty
 I

n
d

ex

20C3M A1B A2 B1
 

Figure  9-40. Terrace average monthly TP sensitivity 
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Table  9-1. ANOVA TN p-values (highlighted cells indicate significance) 

Conservation Tillage Contour Farming 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  <0.01 <0.01 <0.01 20C3M  <0.01 <0.01 <0.01
A1B <0.01  0.04 <0.01 A1B <0.01  <0.01 <0.01
A2 <0.01 0.04  <0.01 A2 <0.01 <0.01  <0.01
B1 <0.01 <0.01 <0.01  B1 <0.01 <0.01 <0.01  

Filter Strips Grazing Management 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  0.39 0.39 0.42 20C3M  0.36 0.31 0.45 
A1B 0.39  0.99 0.96 A1B 0.36  0.9225 0.88 
A2 0.39 0.99  0.97 A2 0.31 0.92  0.80 
B1 0.42 0.96 0.97  B1 0.45 0.88 0.80  

Native Grass No-Tillage 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  <0.01 <0.01 <0.01 20C3M  <0.01 <0.01 <0.01
A1B <0.01  0.189 0.0004 A1B <0.01  <0.01 <0.01
A2 <0.01 0.19  0.0223 A2 <0.01 <0.01  <0.01
B1 <0.01 0.0004 0.0223  B1 <0.01 <0.01 <0.01  

Porous Gully Plug Terraces 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  0.87 0.37 0.23 20C3M  <0.01 <0.01 <0.01
A1B 0.87  0.46 0.29 A1B <0.01  0.02 <0.01
A2 0.37 0.46  0.75 A2 <0.01 0.02  0.01 
B1 0.23 0.29 0.75  B1 <0.01 <0.01 0.01  
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Table  9-2. ANOVA TP p-values (highlighted cells indicate significance) 

Conservation Tillage Contour Farming 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  <0.01 <0.01 <0.01 20C3M  <0.01 <0.01 0.0180
A1B <0.01  <0.01 <0.01 A1B <0.01  <0.01 <0.01 
A2 <0.01 <0.01  <0.01 A2 <0.01 <0.01  <0.01 
B1 <0.01 <0.01 <0.01  B1 0.0180 <0.01 <0.01  

Filter Strips Grazing Management 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  0.26 0.27 0.32 20C3M  0.15 0.09 0.25 
A1B 0.26  0.99 0.89 A1B 0.15  0.81 0.78 
A2 0.27 0.99  0.91 A2 0.09 0.81  0.60 
B1 0.32 0.89 0.91  B1 0.25 0.78 0.60  

Native Grass No-Tillage 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  <0.01 <0.01 <0.01 20C3M  <0.01 <0.01 <0.01 
A1B <0.01  0.18 0.0006 A1B <0.01  <0.01 <0.01 
A2 <0.01 0.18  0.0320 A2 <0.01 <0.01  0.01 
B1 <0.01 0.0006 0.0320  B1 <0.01 <0.01 0.01  

Porous Gully Plug Terraces 
 20C3M A1B A2 B1  20C3M A1B A2 B1 
20C3M  0.79 0.42 0.27 20C3M  <0.01 0.11 0.0202
A1B 0.79  0.58 0.39 A1B <0.01  <0.01 <0.01 
A2 0.42 0.58  0.76 A2 0.11 <0.01  <0.01 
B1 0.27 0.39 0.76  B1 0.0202 <0.01 <0.01  
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