THE COMMONALITY OF NUMERICALLY DOMINANT DENITRIFIER STRAINS ISOLATED FROM VARIOUS HABITATS

> Thesis for the Degree of M. S. THOMAS NELSON GAMBLE 1976

LIBRARY Michigan State University

ABSTRACT

THE COMMONALITY OF NUMERICALLY DOMINANT DENITRIFIER STRAINS ISOLATED FROM VARIOUS HABITATS

Ву

Thomas Nelson Gamble

Soils, fresh-water lake sediments, and a nitrified poultry manure, were examined for predominant denitrifier species. The samples were from eight countries and included rice, crop, rainforest, desert, acid, organic, and wastetreated environments. Denitrifier populations were generally 10^5 to 10^6 organisms per gram dry weight. The ratio of population densities of denitrifiers to organisms which reduce nitrate only to nitrite to total organisms which can grow anaerobically was fairly constant among samples; the average ratio was 0.26 : 0.68 : 1.

A total of 1500 isolates which grew on nitrate agar incubated in an anaerobic glove box were tested for the ability to denitrify. Following purification, 147 isolates were confirmed as denitrifiers by the production of N_2O and/or N_2 during growth in nitrate broth. The remaining isolates either produced nitrite, ammonia, or could not be maintained in culture. The denitrifier isolates were characterized using 52 properties appropriate for the Pseudomonas - Alcaligenes group. Pseudomonas was the

dominant genus, whereas Alcaligenes faecalis was the most commonly isolated species. Other denitrifiers isolated included: Pseudomonas fluorescens biotype II, Pseudomonas fluorescens biotype IV, Pseudomonas aeruginosa, Pseudomonas stutzeri, Pseudomonas aureofaciens, and Pseudomonas solanacearum. Strains of a denitrifying Flavobacterium species were isolated which is the first report of denitrification by a member of this genus. A few denitrifying bacteria in the genera Corynebacterium and Bacillus were also isolated. About one-third of the isolates do not appear to be closely related to any recognized species though many do conform to the genus Pseudomonas. These were grouped according to common characters into 25 identifiable types. No isolates similar to Pseudomonas denitrificans were recovered. A high correlation between temperature of isolate growth and temperature of habitat was noted. All isolates from tropical areas (mean annual temperature < 20 C) failed to grow at 4 C while 67% grew at 41 C. In comparison 68% of the isolates from temperate soils grew at 4 C and only 9% grew at 41 C.

In conclusion, members of the <u>Pseudomonas</u> and closely related <u>Alcaligenes</u> genera were found to be numerically dominant since they represent 89% of the total denitrifying isolates. The species of greatest importance appear to be <u>Pseudomonas fluorescens</u> biotype II and <u>Alcaligenes faecalis</u> which were found in 58% of the samples and comprised 41% of the isolates.

THE COMMONALITY OF NUMERICALLY DOMINANT DENITRIFIER STRAINS ISOLATED FROM VARIOUS HABITATS

Ву

Thomas Nelson Gamble

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Microbiology and Public Health

to my grandmothers

.

ACKNOWLEDGMENTS

I am especially grateful to Dr. James M. Tiedje for his advice and patience throughout the course of this study. I also wish to extend my appreciation to the members of my guidance committee, Dr. Michael J. Klug and Dr. John Breznak.

Special thanks are due to all of the sample contributors. I also appreciate the assistance of Noorjeham Bhimji, Judy Benedict, Marshal Brulez, and William Caskey.

These investigations were supported in part by grants from the EPA - International Joint Commission, the Rockefeller Foundation, USDA Regional Research, and the Michigan Agriculture Experiment Station.

iii

TABLE OF CONTENTS

	Page
LIST OF TABLES	vi
LIST OF FIGURES	vii
INTRODUCTION	1
MATERIALS AND METHODS	4
Description Of Samples	4
Sample Collection, Handling, And Storage	5
Sample Characterization	6
Isolation And Enumeration	7
Methods	10
Denitrifier Characterizations	11
Effect Of Phosphate In Media	16
Effect Of Tween 80	17
Comparison Of Nitrate Broth With Soil Extract-	
Yeast Extract Broth	18
RESULTS	19
Sample Information And Physical Measurements .	19
Medium Selection	19
Effect Of Tween 80 As A Soil Dispersing Agent	24
Effect Of Phosphate	24
Quantitation Of Total Anaerobes, Denitrifiers, And Nitrite Accumulators	27
The Ability Of Isolates To Utilize Nitrate	31
Identification Of Isolated Denitrifying Bac-	
teria	33
Temperature Relationship	37

Page

DISCUSSION	43
Development Of A Medium And Method For the Isolation And Enumeration Of Denitrifying Bacteria	43
	40
Commonality Of Denitrifier Isolates	46
Correlation Between Samples, And MPN's And	
Isolates	49
Improvements	50
LITERATURE CITED	51
APPENDIX	55

LIST OF TABLES

Table		Page
1	Characters Examined for Each Denitrifier Isolate	12
2	Summary of Information on the Samples Provided by Contributors or Determined Experimentally	20
3	The Effect of Phosphate Buffer on the Growth and Gas Production of Selected Soil and Sedi- ment Organisms	25
4	Population Densities and Ratios of Denitrifiers, Nitrite Accumulators, and Total Anaerobes	28
5	Percent of Isolates Utilizing Nitrate and Producing the Following Nitrogen Compounds	32
6	Denitrifiers Isolated From Samples	38
7	Major Genera Recovered	40
8	Major Species Recovered	41
9	Samples from Tropical and Temperate Locations .	41
10	Percentages of Sand, Silt, and Clay in the Soil Samples as Determined by the Hygrometer Method	55
11	Results of 52 Properties Tested	58
12	Names of the Denitrifiers	67
13	Number and insertion of Flagella of Selected Denitrifiers	69
14	Samples, Contributors, and Their Addresses	70

LIST OF FIGURES

Figur	e	Page
1	Scheme Utilized for MPN, Isolation, and Confirmation of Denitrifying Bacteria	8
2	Characterization Scheme for the Identification of Soil and Sediment Denitrifiers	35

.

INTRODUCTION

Denitrification is one of the most important processes in the nitrogen cycle since it is the means by which combined nitrogen is lost to the biosphere. It is defined as the biological reduction of inorganic forms of nitrogen (nitrate and nitrite) to volatile gases, nitrous oxide and/or molecular nitrogen. It is an enzymatic process accomplished by certain bacteria capable of using nitrate in place of oxygen as the terminal electron acceptor. Payne (1973) states that there are species in 15 genera of bacteria that have been reported to denitrify (32). These include Achromobacter, Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Halobacterium, Hyphomicrobium, Micrococcus, Moraxella, Nitrosomonas, Propionibacterium, Pseudomonas, Spirillum, Thiobacillus, and Xanthomonas. The most prominent denitrifying bacteria previously reported in soils were Bacillus spp., especially Bacillus cereus. In soils where nitrate fertilizers were added, these forms were replaced by Pseudomonas, Achromobacter, and Bacillus macerans (23).

Denitrification was first recognized in 1886 by Gayon and Dupetit (19). They observed that certain soil bacteria were capable of reducing nitrate to molecular nitrogen and nitrous oxide. With the work of Ferguson and Fred (1908),

it was well established that denitrification in soils was enhanced by the addition of manure (16). Kluyver and Donker (1926) discovered that nitrate served as the hydrogen acceptor in enzymatic dehydrogenation of organic or inorganic substrates (28). However, even with all that was known about denitrification at that time, scientists were not convinced that there was any economic or health significance to the process. Little interest was paid to the subject until 1946. It was then that the astronomer Adel observed that the concentration of nitrous oxide was greater near the surface of the earth than at higher altitudes. He suggested that this was due to a biological decomposition of nitrogen compounds in soil (2,3). Although the enhancement of denitrification is desired for the removal of nitrate from waste treatment systems and from groundwater, present concern centers around the detrimental effects of the process. Denitrification losses of nitrogen from fertilizers added to soils have been reported to vary between 1 and 75% of that applied. However, many soil scientists feel that on the average 10 to 15% of the applied nitrogen is lost due to denitrification (9). With the recent increased cost and world shortage of nitrogen fertilizers, such a loss results in a financial loss to the farmer as well as reduced food production. Furthermore, the denitrification intermediate, N₂O, apparently diffuses into the stratosphere and photo-decomposes to N_2 and small amounts of NO and NO2, which react with O3 to

form O_2 . Since ozone attentuates the UV light from the sun, such a depletion of O_3 by N_2O means more UV light will reach the Earth's surface and therefore pose a hazard to both plants and animals. Recently, McElroy has hypothesized that the increased global use of nitrogen fertilizer has increased the amount of N_2O eminating from soil thus enhancing ozone destruction. In 1974, almost 40 million metric tons of nitrogen fertilizers were used (11).

There is little known about denitrification in natural ecosystems due to the absence of a sensitive, convenient, and specific assay for the process. Because of such technical problems, one must rely more on ecological information obtained with pure cultures. However, one must have some indication of the importance of the culture in actual denitrification in the environment. Therefore, isolating and quantifying numerically dominant denitrifiers from a wide variety of habitats was a primary objective of this study. From this information, the degree of commonality of the genera and species with apparent ecological significance was determined. Secondary objectives included the development of an effective isolation and identification system for denitrifiers, the determinations of environmental factors which control population density and species composition, and the estimation of general population structure between organisms capable of anaerobic growth, those organisms which convert nitrate only to nitrite, and denitrifiers.

MATERIALS AND METHODS

Description Of Samples

Nineteen soils, three fresh-water sediments, and a poultry manure liquor from a fermenter which was undergoing nitrification and denitrification were used. Samples were collected from locations where loss of nitrogen by denitrification had been measured or was expected. Soils were obtained from seven countries under a permit which allowed entry of untreated samples.

The Connecticut soil, No. 1, was a sample obtained from an experimental soil column which was incubated with glucose and actively denitrifying (39). The Connecticut soil, No. 2, was from the same soil column after the completion of the experiment, at which time denitrification was no longer being measured. Michigan Ponds 1 and 4 are two ponds of a four pond secondary effluent sewage treatment system known as the Water Quality Management Project presently in operation at Michigan State University. Pond 1 is the first pond in the system, thus receives the greatest organic load and Pond 4 is the last pond in the system, and has the lowest organic load. The pond retention times in the summer months are approximately 30 days. Ponds 1 and 4 were both sampled in November 1974 and May 1975.

The nitrified poultry manure liquor was obtained from a nitrified mixed liquor, deoxygenated by bubbling N_2 through it to stimulate denitrification. The incubation temperature of the liquor was 20 C (34).

Contributors of the other samples (all soils) were asked to provide information on crop grown, previous crops, soil type, approximate location where sample was taken, and any other information thought to be useful. A summary of this information is listed in Table 2. Also, a listing of the contributors and their mailing addresses can be found in the Appendix. Contributors were asked to collect and ship the sample as described below.

Sample Collection, Handling, And Storage

Each composited soil sample of approximately 0.5 kg was made up from six subsamples freshly collected from the Ap (plow) horizon in a 10 m^2 homogeneous soil area. The composited sample was then sealed in a plastic bag and placed in a sturdy container for immediate shipment by air. When received, each sample was refrigerated at 1 C until use. No sample was stored more than four weeks before use except for the Minnesota, California, Connecticut, and Kansas samples which were stored until the methods for the isolation and enumeration were standardized.

The three sediments were collected with a plexiglass gravity corer. For Ponds 1 and 4, a composite sample was made from the top 1 cm of each core from three sites for

each pond. The composite samples were stored at 1 C until use.

Sample Characterization

The soil classification is according to the 7th Approximation. For non-U.S. samples, the classification is only approximate. With the help of Dr. E. P. Whiteside, Michigan State University, and using FAO Soil Maps, information supplied by the cooperator, and the soil sample, an approximate equivalent for the 7th Approximation was determined. Soil and sediment pH was obtained by mixing 15.0 g of a sample with 15.0 ml of distilled water. After allowing the suspension to settle for approximately 30 min, the mixture was again stirred and the pH reading taken on an Ionalyzer Model 801/Digital pH Meter (Orion Research Inc., Cambridge, Mass.). The pH meter was calibrated at 4.0, 7.0, and 10.0. A direct pH measurement was taken on the nitrified poultry manure sample. Soil conductivity was done according to the method of the U.S. Salinity Laboratory Staff (6). Soil texture measurements were done according to the manual ribbon method by Dr. D. Mokma, Michigan State University, and by the hygrometer (appendix data only) method. Organic matter composition of the samples was done by the wet combustion method of Allison (7). Approximately 10 g of soil was used for percent moisture determinations. Soils were dried overnight at 110 C and then weighed. Mean annual precipitation and mean annual

temperature of the sample sites were obtained from maps (20,24).

Isolation And Enumeration

After preliminary testing of media and procedures for the recovery of bacteria from soil had yielded a satisfactory procedure, denitrifiers were isolated and enumerated according to the scheme shown in Figure 1. The first dilution was prepared by blending 10.0 g of sample in a Waring blender for 2 min with 90 ml distilled water and a final concentration of 0.1% Tween 80. Isolations were accomplished by spread plating 1.0 ml inocula of appropriate dilutions onto nitrate agar. The agar plates had been pre-dried for 3 to 5 days, thus allowing rapid absorbtion of the inocula. Two dilution series were done for each sample and four plates were prepared for each dilution in the 10^{-4} to 10^{-6} range, unless unusual numbers were anticipated. The plates were then incubated for 3 to 5 days at room temperature in an anaerobic glove box (4), with 90% N2: 10% H2 as the atmosphere. After incubation, all of the isolated colonies (approximately 15 to 60) from at least one plate of each series were transferred to nitrate broth (Difco, Detroit, Mi.) tubes containing an inverted (Durham) tube and incubated anaerobically for two weeks. In addition, colonies of different morphology from other plates were also transferred. Gas producers were purified on nitrate agar incubated anaerobically and then transferred

10.0 g of soil blended for 2 min in 90.0 ml of water with 0.1 % Tween 80; dilutions made Nitrate broth tubes 1.0 ml inocula of approinoculated with appropriate dilutions spread priate dilutions; plated on pre-dried nitubes incubated for trate agar; plates incu-2 weeks bated for 3 to 5 days Colonies picked and trans-Broth assayed for NO3 and NO₂; MPN determined ferred to Durham nitrate broth tubes; incubated for 2 weeks Gas producers noted; Stocks made of colonies broth of non-gas producers tested for NO2, NO_2^- , and NH_4^+ Gas producers streaked for purity Nitrate broth, with Durham Stocks made of purified gas producers inserts with septa, inoculated with purified gas producers; incubated for 2 weeks Gas producers analyzed for N_2 , N_2O , and CO_2 ; broth tested for NO_3 , NO_2 , and NH Gas producers confirmed as denitrifiers Scheme Utilized for MPN, Isolation, and Confirma-Figure 1.

tion of Denitrifying Bacteria.¹

¹All incubations were in an anaerobic glove box, except stocks made of pure gas producers were incubated aerobically.

again to nitrate broth tubes but containing Durham tubes with septa on the upper end. After a two or more week anaerobic incubation, the broth of those that did not produce gas was assayed qualitatively for nitrate, nitrite, and ammonia. Gas produced by the purified isolates was analyzed for N_2 , N_2O , and CO_2 by gas chromatography. Confirmed denitrifiers were those organisms able to produce N_2 and/or N_2O after purification.

The method of Focht and Joseph was used for MPN determinations for denitrifiers (18). The method was modified by utilizing an anaerobic glove box for incubations. Five tubes of nitrate broth per dilution were used. In most cases, the dilution range was 10^{-5} to 10^{-8} . For each sample the same two dilution series described above were used to inoculate the MPN broth tubes. After 14 days incubation, the broth of each tube was observed for turbidity and assayed qualitatively for nitrate and nitrite. Tubes in which no nitrate or nitrite was detected were positive for the presence of a denitrifying organism. Tubes in which nitrite was found were positive for the presence of a nitrite accumulating organism. Turbidity indicated the presence of an anaerobe. (In this thesis "anaerobe" is defined as any organism capable of growth under anaerobic incubations.) For the soils and sediments, MPN's and plate counts are expressed as mean organisms per gram dry weight. The population for the nitrified poultry manure is reported as organisms per ml.

Methods

Nitrate and nitrite were determined qualitatively according to the method of Focht and Joseph (18). Quantitative measurements for nitrate were done potentiometrically with a Ionalyzer Model 801/ digital pH meter equipped with a nitrate ion electrode (Orion Research Inc., Cambridge, Mass.). Quantitative measurements for nitrite were done by the Griess-Ilosvay method (7) using a Turner Spectrophotometer Model 350 (G.K. Turner Associates, Palo Alto, Cal.) for the colorimetric readings. Ammonia was detected qualitatively with Nessler's reagent (37).

Nitrogen, nitrous oxide, and carbon dioxide were quantitated using a Carle Model 8000 gas chromatograph (Carle Instruments, Inc., Fullerton, Cal.) equipped with poropak Q and molecular sieve 5A columns and a microthermister detector. The limit for detection of N₂O was 0.5 % of a 50 μ l sample. All anaerobic incubations were done at room temperature in an atmosphere of 90% N2: 10% H, contained in a vinyl glove box (Coy Manufacturing, Ann Arbor, Michigan). The methods used in setting up the glove box were those of Aranki et al. (4). The atmosphere of the glove box was sufficient to maintain reduced resazurin, (Eh < -50 mV). The modified Durham inserts consisted of 7.6 cm pieces of glass tubing with an inner diameter of 5 mm. A serum septum (Arthur H. Thomas Company, Philadelphia, Pa.) in one end allowed for the insertion of a 25 gauge needle. Thus, gas collected could be removed and

assayed by gas chromatography.

Denitrifier Characterizations

The confirmed denitrifier isolates were characterized by examining the 52 properties identified in Table 1. All cellular characteristics were examined on early exponential phase cells grown aerobically on nitrate broth or agar at 28 C, unless otherwise indicated. Gram stains were done according to the Kopeloff modification (25). Cellular morphology, cell groupings, and motility were determined by hanging drop observations (1). Cells were measured under phase contrast microscopy after mounting on slides containing a thin film of dried water-agar (12). To obtain the range of dimensions, the smallest and largest cells of several fields were measured. For poly- β -hydroxybutyrate formation, cells were grown on Difco nutrient agar supplimented with 2.0 % glycerol and 1.0 % glucose (filter-sterilized separately). Cells were stained by Burdon's method (13).

Colonial characteristics of size, form, elevation, margin, surface, texture, and light refraction and catalase and oxidase reactions were all observed on 3 day-old cultures grown aerobically on nitrate agar at 28 C (13). Taxo Differentiation Discs for <u>Neisseria</u> and <u>Pseudomonas</u> (BBL, Division of Becton, Dickinson and Company, Cockeysville, Maryland) were used for the oxidase test.

The presence of arginine dihydrolase was determined

Table 1. Characters Examined for Each Denitrifier Isolate.

I.	Cellular characteristics:	VII.	Growth as sole carbon source:
	gram stain		
	morphology		acids
	cell groupings		acetate
	motility		propionate
	PHB inclusions		citrate
	cell length		ρ-hydroxybenzoate
	cell width		
			alcohols
II.	Colonial characteristics:		ethanol
			geraniol
	size		
	form		<u>amino acids</u>
	elevation		L-asparagine
	margin		DL-arginine
	surface		β-alanine
	texture		sarcosine
	light refraction		
			Carbohydrates and
III.	Enzyme production:		sugar derivatives
			D-glucose
	catalase		sucrose
	oxidase		D(+)trehalose
	oxidation of arsenite		L-arabinose
	arginine dihydrolase		D-fructose
			D-arabinose
IV.	Hydrolytic capabilities:		D-xylose
			D-ribose
	gelatin		maltose
	starch		D(+)cellobiose
	casein		2-keto gluconate
			saccharate
v.	Temperature for growth:		
	_		Polyalcohols and
	4 C		glycols
	28 C		D-sorbitol
	41 C		meso-inositol
			propylene glycol
VI.	Pigment production:		
	fluonaccin from		
	fluorescein (UV)		
	general pigment (diffusible	9	
	and non-diffusible)		
	insoluble blue phenazine		

pigment

by the method of Thornley (41). Two tubes of Thornley's medium "2A" were inoculated for each isolate. One of the two tubes was incubated aerobically at 28 C for 4 days. The method was modified by incubating the other tube in an anaerobic glove box, instead of covering with vaseline, at room temperature for 4 days. An alkaline reaction in both tubes was positive for arginine dihydrolase. The ability to oxidize arsenite was determined by the method of Turner (42), after incubating the medium aerobically at 28 C for one week.

The ability to grow at 4 C and 41 C was determined by turbidity after aerobic incubation in nitrate broth. The incubation period for 4 C was 10 days, while that of 41 C was 2 days.

Tests for hydrolytic capabilities, pigment production, and growth on sole carbon sources were performed after aerobic incubations at 28 C for 4 days. Geraniol medium was incubated 7 days.

The media and methods of analysis used to determine the hydrolytic capabilities for starch was that of Colwell and Wiebe (13); for gelatin, Frazier (30); and for casein, Gordon and Mihm (21).

The ability to produce three types of pigment was examined. Medium B (27) was used for the enhancement of fluorescein production. Medium A (27) was used for description of general diffusible and non-diffusible nonfluorescent pigment production. A peptone-glucose medium (38) was used for the enhancement of the production of an insoluble blue phenazine pigment characteristically produced by <u>Pseudomonas fluorescens</u> biotype IV. For Medium A and the peptone-glucose medium, pigments were examined under white light. For Medium B, plates were examined under long wave ultraviolet light.

Every isolate was tested for the ability to grow at the expense of 25 different organic compounds. The test media were prepared by adding each organic compound, at the appropriate concentration, to the standard mineral base of Colwell and Wiebe (13), with the addition of .001 % phenol red (Sigma Chemical Co., St. Louis, Mo.). The pH indicator aided in evaluation of growth since the metabolism of most of the compounds produced a pH change. The final pH of all media were 7.2. Oxoid Ionagar no. 2 (Colab laboratories, Inc., Chicago Heights, Ill.) was used as the solidifying agent. The media were contained in Quad petri dishes. A control plate, without an added organic compound, was inoculated with each isolate. Growth on plates with the carbon sources compared to the control plates was read as positive for the ability to utilize the sole carbon source. Geraniol media was prepared by adding a drop of the water-insoluble geraniol to 10.0 ml of the mineral base of Tiedje and Mason (40), and adding the phosphate buffer which had been autoclaved separately. Turbidity in excess of the uninoculated control was considered positive for the ability to utilize geraniol as a

sole carbon source. The organic compounds tested as substrates and the concentrations used were:¹

- (a) Acids: 0.1 % acetate (A), 0.1 % propionate (A),
 0.1 % citrate (B).
- (b) Alcohols: 1.0 % ethanol (G), geraniol (C).
- (c) Amino acids: 0.1 % L-asparagine (D), 0.1 % DLarginine (D), 0.1 % β-alanine (D).
- (d) Carbohydrates and sugar derivatives: 1.0 % D-glucose (B), 1.0 % sucrose (B), 1.0 % D(+)trehalose (D), 1.0 % L-arabinose (D), 1.0 % D-fructose (D), 1.0 % D-arabinose (D), 1.0 % D-xylose (D), 1.0 % D-ribose (D), 0.1 % maltose (F), 0.1 % D(+)cellobiose (D), 0.1 % 2-keto gluconate (D), 0.1 % saccharate (D).
- (e) Polyalcohols and glycols: 1.0 % D-sorbitol (D),

1.0 % meso-inositol (D), 0.1 % propylene glycol (D).

(f) Miscellaneous: 0.1 % ρ-hydroxybenzoate (C), 0.1 %
 sarcosine (E).

The following organic compounds were filter-sterilized: ethanol, D-glucose, sucrose, D(+)trehalose, L-arabinose, D-fructose, D-arabinose, D-xylose, D-ribose, maltose,

¹The following designations are used to indicate the source of the sole carbon sources: A) J.T. Baker Chemical Co., Phillipsburg, N.J.; B) Mallinckrodt Chemical Works, St. Louis, Mo.; C) Aldrich Chemical Co., Inc., Milwaukee, Wis.; D) Sigma Chemical Co., St. Louis, Mo.; E) Columbia Organic Chemical Co., Inc., Columbia, S.C.; F) Difco, Detroit, Mi.; G) Commercial Solvents Corporation, Terre Haute, Ind.

D(+)cellobiose, 2-keto gluconate, D-sorbitol, and mesoinositol.

In addition to the characterization of the isolated denitrifiers, the same characters were examined for nine known denitrifiers. They were: <u>Pseudomonas denitrificans</u> ATCC 13867, <u>Pseudomonas aureofaciens</u> ATCC 13985, <u>Pseudomonas mendocino</u> ATCC 25411, <u>Alcaligenes faecalis</u> ATCC 8750, <u>Pseudomonas fluorescens</u> II ATCC 17822, <u>Pseudomonas aeruginosa, <u>Paracoccus denitrificans</u> ATCC 2008, <u>Pseudomonas stutzeri</u> ATCC 17588, and <u>Pseudomonas perfectomarinus</u> from <u>Spartina salt marsh</u> (isolated by W.J. Payne).</u>

Effect Of Phosphate In Media

Nitrate broth, autoclaved with the molar concentrations of 0.02, 0.015, 0.01, 0.005, and 0.0 phosphate buffer, pH 7.2, was tested for the ability to support growth and gas production of selected sediment isolates. Twenty-one isolates were obtained from Pond 1 in November. Durham broth tubes containing the five phosphate concentrations were inoculated with each of the 21 isolates. After a two week anaerobic incubation, turbidity and the gas volumes in the Durham tubes were recorded.

The effect of filter-sterilized phosphate buffer on the growth and gas production of known denitrifiers was also observed. Nitrate broth tubes with Durham inserts with septa were prepared with final molarities of 0.025, 0.02, 0.015, 0.01, 0.005, and 0.0 phosphate buffer. A tube of each of the five phosphate buffer concentrations was inoculated with each of the ten confirmed or known denitrifying bacteria. The denitrifiers were <u>Pseudomonas fluorescens</u> (DMS 19), <u>Pseudomonas perfectomarinus</u>, <u>Hyphomicrobium</u> sp. (WC 24 R), <u>Pseudomonas dentrificans</u> (ATCC 13867), <u>Paracoccus denitrificans</u> (ATCC 2008), <u>Pseudomonas stutzeri</u> (ATCC 17588), <u>Alcaligenes eutrophus</u>,¹ and isolates 4, 15, and 49 (confirmed denitrifiers by the author). After a terminal incubation period, the volume of gas produced in each tube was measured. The gas was analyzed for N₂ and N₂O by gas chromatography.

Effect Of Tween 80

Tween 80 has been used by other workers (36) to aid in the recovery from soil of bacteria imbedded in organic matter films. To test the efficacy of this method, a comparison test was done using three concentrations of Tween 80 SC-15608 (Sargeant-Welch Scientific Co., Skokie, Ill.). Ten grams of Minnesota soil were blended in a Waring blender for 2 min with 90.0 ml distilled water with a final concentration of either 0.1%, 0.05 %, or no Tween 80. Antifoam A spray (Dow Corning Corp., Midland, Mi.) was used after blending. Nitrate broth tubes autoclaved with 0.02 M phosphate buffer, pH 7.2, were inoculated with appropriate

¹The named denitrifiers were from the collection of W.J Payne. The ATCC numbers were the original numbers and not directly obtained by us from the American Type Culture Collection. <u>Pseudomonas fluorescens</u> was originally from Dr. Clarke Gray, Dartmouth Medical School. <u>Hyphomicrobium</u> sp. was originally from Dr. G.T. Sperl. The <u>Alcaligenes eutro-</u> phus (strain H 16) was originally from Dr. H. Kaltwasser.

dilutions. After a two week anaerobic incubation, the broth of each tube was qualitatively assayed for nitrate and nitrite to obtain the MPN of denitrifiers.

Comparison Of Nitrate Broth With Soil Extract-Yeast Extract Broth

Several media were employed to determine which would give the greatest numbers of denitrifying bacteria. Soil extract was prepared according to the method of Lochhead The source of the soil extract was a Brookston (26). loam with an organic matter composition of 3.4 %. After the soil-water mixture was autoclaved and allowed to settle, the supernatant was removed. Lochhead's method was modified by centrifuging (instead of filtering) the supernatant to remove the clay particles. The resulting clear soil extract was used immediately for media preparation. A soil extract broth was prepared by supplementing the soil extract with 0.1 % yeast extract and 0.1 % KNO2, buffered with potassium phosphate to pH 7.2. The soil extract broth and nitrate broth with 0.02 M potassium phosphate buffer, pH 7.2, were compared for highest MPN's of denitrifying bacteria. The soil used for the inoculations was the Minnesota.

RESULTS

Sample Information And Physical Measurements

Table 2 summarizes information on the samples. The sample range included temperate agricultural, sub-tropical, tropical, rain forest, rice paddy, desert, waste treated soils, a nitrified poultry manure, and freshwater lake sediments. Major soil groups represented included mollisol, histisol, vertisol, entisol, inceptisol, aridisol, and alfisol. Most of the soils did not have crops at sampling time, but those that did had either wheat, corn, or rice. A wide range of pH values (3.8 to 8.2) was represented. Most of the samples had 1 to 5 % organic matter, which is typical of mineral soils. The Venezuelan soil was unusually high in organic matter because of the generally high water table which often reached the surface. Soil texture ranged from very heavy clay soils, eq. vertisols, to very sandy soils. An estimate of the actual percentages of sand, silt, and clay, as determined by the hygrometer method, can be found in Appendix.

Medium Selection

When comparing MPN's of denitrifiers obtained from the Minnesota soil, the nitrate broth autoclaved with 0.02 M phosphate buffer yielded a population estimate (1.66×10^6)

	Sample	Sampling Site	General Description
1	Minnesota	Lamberton	Agric soil 12" - 18"
2	California	Davis	Agric soil
3	Connecticut 1	Windsor	Agric soil
4	Connecticut 2	Windsor	Agric soil
5	Argentina (SP)	San Pedro	Agric soil
6	Argentina (B)	Balcarce	Agric soil
7	Michigan (muck)	Bath	Organic agric soil
8	Texas	Temple	Agric soil
9	Argentina (P)	Parana	Agric soil
10	Brazil	Mococa	Agric soil
11	Venezuela	San Carlos de Rio Negro	Rain forest
12	Nigeria (C)	Ibadan	Agric soil
13	Nigeria (R)	Ibadan	Rice paddy
14	Columbia	Palmira	Rice paddy
15	Philippines	Los Banos	Rice paddy
16	Taiwan	Taichung	Rice paddy
17	Louisiana	Crowley	Rice paddy
18	Utah	Snowville	Desert
19	Kansas	Pratt	Manured agric soil
20	Poultry waste	-	Poultry waste
21	Michigan (WG)	Hickory Corners	Wintergreen Lake sediment
22	Michigan (Pl)	E. Lansing	WQMP sediment,
23	Michigan (P4)	E. Lansing	pond 1 WQMP sediment, pond 4

•

Table 2.Summary of Information on the Samples Provided
by Contributors or Determined Experimentally.

Table 2. (continued)

	Classification (series)	Crop at Samp- ling Time	Previous Crops	Drainage ^l
1	Typic haplaquoll Webster		_	p
2	Typic pelloxerert Clear Lake	-	-	р
3	Entic haplorthod Merrimac	none	tobacco	Ŵ
4	Entic haplorthod Merrimac	-	-	w
5	Vertic argiudoll Ramallo	fallow	sweet corn	swp
6	Mollisol Typic argiudoll	none (plowed after wheat)	potato	W
7	Histisol-Typic medisaprist(Carlisle	-	-	-
8	Typic chromudert	-	-	р
9	Houston Argillic chromudert Febre	fallow	wheat	swp
10	Entisol	wheat	rice	p
11	Tropic fluvaquent Inceptisol	-	-	p
12	Tropaquept Agric hapustalf	corn	corn	swp
13	Agric hapustalf	rice	corn, rice	p
14	Inceptisol	rice	rice	swp
15	Andaquept	none	rice	swp
16	Entisol	rice	rice	swp/p
17	Fluvaquent Alfisol-Thermic typ-		rice	swp
18	ic albaqualf(Crowley Calcorthid	Artemisia	none	W
19	Thiocal Mollisol	' tridentata corn	corn	-
20	Aquent -	-	-	-
21	Hypereutropic	-	-	-
22	-	_	-	-
23	-	-	-	-

Table 2. (continued)

	Nitrogen Fertilizer Use in the Last Two Years	Moisture of receipt (%)		Organic Matter (%)
1	-	15.9	7.2	2.34
2	-	20.8	7.34	2.16
3	-	8.7	5.2	1.45
4	-	10.75	5.2	1.45
5	none	22.3	5.92	3.34
6	unknown	23.0	5.69	4.08
7	-	84.5	6.53	81.51
8	-	6.5 5	7.39	3.61
9	no	28.6	7.84	2.81
10	80 kg N/ha	24.7	4.42	4.94
11	-	56.4	3.84	16.15
12	yes	12.75	5.51	3.21
13	yes	17.2	6.34	1.34
14	125 kg urea/ha	32.0	7.74	3.21
15	no	31.0	6.49	3.34
16	2200 kg (NH ₄) ₂ SO ₄ /ha	19.6	5.09	1.20
17	unknown	17.5	5.66	1.07
18	no	3.7	8.21	2.34
19	320 T/ha/year animal waste	10.9	7.12	4.81
20	-	-	6.44	46.00
21	-	92.0	6.41	26.47
22	-	33.8	-	-
23	-	35.0	6.94	2.50

<u>Librar</u>	Texture	Conduc- tivity µ mhos	Mean Annual Temperature (C)	Mean Annual Rainfall (mm)	Reference
1		334	5-10	500-1000	(31)
2	sic	618	15-20	400-500	,/
3	sl	350	10	1000	(39)
4	sl	350	10	1000	(39)
5	sicl	433	15-20	500-1000	
6	sil	687	15-20	500-1000	
7	muck	225	5-10	500-1000	
8	C	2146	20-25	1000-2000	
9	С	315	15-20	500-1000	
10	sicl	303	20-25	1000-2000	
11	1	241	25-30	2000-4000	
12	sl	629	25-30	1000-2000	
13	ls	238	25-30	1000-2000	
14	sicl	398	25-30	1000-2000	
15	sicl	386	25-30	1000-2000	
16	sil	995	20-25	1000-2000	
17	sil	521	20-25	1000-2000	
18	sil	705	10-15	250-500	
19	sil	3623	10-15	500-1000	(43)
20	-	-	-	-	(34)
21	-	579	5-10	500-1000	
22	-	-	5-10	500-1000	
23	-	1031	5-10	500-1000	

org/g dry wt) similar to that of the soil extract broth supplimented with 0.1% yeast extract and 0.1 % KNO_3 (1.12 x 10⁶ org/g dry wt). This suggests that nitrate broth did not lack any growth factors essential for the growth of soil denitrifiers. Since the population estimates were approximately the same and the preparation of nitrate broth less time consuming, all subsequent experiments were done with nitrate broth or agar.

Effect Of Tween 80 As A Soil Dispersing Agent

When using 0.1 % (v/v) Tween 80 as a soil dispersing agent with the Minnesota soil, a mean MPN of 6.07×10^5 org/g dry wt for two dilution series was obtained. The values for 0.05 % and 0.0 % were 2.54 $\times 10^5$ org/g dry wt and 1.95 $\times 10^5$ org/g dry wt, respectively. Use of Tween 80 did not appear to have a bacteriocidal effect. Since the three values were within an order of magnitude, I cannot be confident whether Tween 80 aided in the recovery or had a toxic effect on soil organisms. However, it was apparent that the use of Tween 80 with the Waring blender greatly facilitated the mixing of soils high in clay content. For such soils, foaming did occur, but was reduced by the addition of antifoam A. A concentration of 0.1 % Tween 80 was used for all soil preparations.

Effect Of Phosphate

Table 3 summarizes the effect that autoclaved phosphate buffer has on growth and gas production of Pond 1

Phosphate Concentra- tion (M)	Isolates Trans- ferred	Isolates Producing Turbidity		Mean Gas Volume per Producer (µl)
autoclaved				
0.000	21 ^a	14	11	95
0.005	21	11	7	78
0.010	21	. 9	9	48
0.015	21	9	8	36
0.020	21	2	1	trace
filter-ster	ilized			
0.000	10 ^b	10	10	133
0.005	10	10	10	128
0.010	10	10	9	146
0.015	10	10	9	157
0.020	10	10	9	155
0.025	10	10	8	145

Table 3. The Effect of Phosphate Buffer on the Growth and Gas Production of Selected Soil and Sediment Organisms.

^a21 isolates from Pond 1 (November) sediment.

^b7 identified and 3 unidentified cultures of denitrifying bacteria. They were: <u>Pseudomonas fluorescens</u> (DMS 19), <u>Pseudomonas perfectomarinus</u>, <u>Hyphomicrobium</u> (WC 24 R), <u>Pseudomonas dentrificans</u> (ATCC 13867), <u>Paracoccus</u> <u>denitrificans</u> (ATCC 2008), <u>Pseudomonas stutzeri</u> (ATCC 17588), <u>Alcaligenes eutrophus</u>, and isolates 4, 15, and 49.

(November) sediment organisms. Although the organisms were not identified or confirmed as denitrifiers, the data clearly shows that the presence of autoclaved phosphate buffer is inhibitory to the growth and gas production of the 21 sediment organisms.

The effect of filter-sterilized phosphate buffer on growth and gas production can be seen in Table 3. A11 ten of the stock denitrifiers grew in all of the phosphate concentrations. However, only in .000 and .005 M buffer did all ten produce gas. The higher concentrations of buffer did affect the gas production of specific organisms. The average volume of gas produced varied insignificantly, with 99 % of the gas N_2 and traces of CO₂ and $N_{2}O$. In the broth of all 10 stock denitrifiers, for all of the phosphate molarities, no nitrate was detected. Nitrite was detected in trace quantities in the broth of Alcaligenes eutrophus at 0.01 M, 0.015 M, and 0.025 M buffer; of Hyphomicrobium at 0.02 M buffer; of Pseudomonas stutzeri at 0.015 M buffer; and of isolate 15 at 0.025 M buffer. Alcaligenes eutrophus did not produce gas in broth of phosphate concentrations greater than .005 M and isolate 4 did not produce gas at 0.025 M.

Although the effect of filter-sterilized phosphate buffer was not as pronounced as that of the autoclaved phosphate buffer, it was evident that both treatments exhibited an inhibitory effect on the growth and gas production of certain soil organisms. The media chosen for use in isolating and enumerating denitrifying bacteria was unbuffered nitrate broth and agar.

Quantitation Of Total Anaerobes, Denitrifiers, And Nitrite Accumulators

Table 4 lists the mean population estimates of total anaerobes, denitrifiers, and nitrite accumulators using both MPN and plate count methods. With few exceptions, the MPN and plate counts were in good agreement. Of the 25 samples done for MPN of denitrifiers, 72% of the values fell in the range of 10^5 to 10^7 organisms $\cdot g^{-1}$. The exceptions which fell below 10^5 organisms $\cdot q^{-1}$ were samples from Pond 4 sediment (November), Utah, Venezuela, and Texas. The Pond 1 sediment (November), nitrified poultry manure, and Connecticut 1 samples had values above 10^7 organisms $\cdot q^{-1}$ or •ml⁻¹. The MPN values of nitrite accumulators were greater than those of the denitrifiers. Of the 22 samples examined for nitrite accumulators, 59 % of the MPN's were between 10^6 and 10^7 organisms $\cdot g^{-1}$ and 91 % ranged from 10^6 to 10⁸. Only the Venezuelan soil had an MPN of less than 10⁶ nitrite accumulators per gram dry weight. For the 25 samples examined for MPN of total organisms capable of growth under anaerobic incubations, 76 % were in the range of 10^6 to 10^8 organisms $\cdot g^{-1}$. An outstanding exception was more than 10^{10} organisms \cdot ml⁻¹ for the nitrified poultry manure. In some cases, nitrite accumulator numbers were read to be higher than those of total anaerobes. This was presumably due to the greater sensitivity of the nitrite detection method compared to visual detection of turbidity.

Table 4 also illustrates numerical relationships of

	Comple	Denitr	ifiers ^a	Nitrite Aco	cumulators
	Sample	MPN	Plate	MPN	Plate
1	Minnesota	2.88x10 ⁶	1.38x10	⁶ 6.48x10 ⁶	1.38x10 ⁶
2	California	2.38x10 ⁶	2.08x10	⁶ 1.58x10 ⁷	2.92x10 ⁶
3	Connecticut 1	1.37x10 ⁷	1.08x10	⁶ 1.37x10 ⁷	2.98x10 ⁶
4	Connecticut 2	1.42x10 ⁵	<1.11x10	⁶ 1.31x10 ⁶	4.16x10 ⁶
5	Argentina(SP)	1.40x10 ⁶	1.47x10	⁶ 7.58x10 ⁶	1.72x10 ⁶
6	Argentina(B)	3.20x10 ⁵	<1.29x10	⁵ 8.79x10 ⁶	2.06x10 ⁶
7	Michigan(muck)	7.03x10 ⁶	1.94x10	⁶ 1.44×10 ⁷	1.61x10 ⁷
8	Texas	1.24x10 ⁴	5.35x10	⁴ 1.35x10 ⁶	1.02x10 ⁶
9	Argentina(P)	1.59x10 ⁶	1.56x10	⁶ 2.55x10 ⁶	2.69x10 ⁶
10	Brazil	6.17x10 ⁵	4.02x10	⁵ 4.22x10 ⁶	1.41x10 ⁶
11	Venezuela	<4.54x10 ⁴	<2.27x10	⁵ 8.51x10 ⁵	9.08x10 ⁵
12	Nigeria(C)	3.12x10 ⁵	4.54x10	⁵ 3.35x10 ⁶	1.70x10 ⁶
13	Nigeria(R)	5.86x10 ⁵	4.27x10	⁵ 1.49x10 ⁶	1.22x10 ⁶
14	Columbia	2.48x10 ⁵	3.68x10	⁶ 3.64x10 ⁶	1.47x10 ⁷
15	Philippines	2.19x10 ⁶	8.78x10	⁵ 2.93x10 ⁷	2.56x10 ⁶
16	Taiwan	5.67x10 ⁵	2.46x10	⁵ 1.70×10 ⁷	8.00x10 ⁵
17	Louisiana	1.67x10 ⁶	4.78x10	⁵ 7.11x10 ⁶	1.31x10 ⁶
18	Utah	8.12x10 ²	<1.03x10	⁴ >1.10x10 ⁵	2.00x10 ⁵
19	Kansas	2.28x10 ⁵	2.22x10	⁵ 1.04x10 ⁷	1.00x10 ⁶
20	Poultry waste	3.50x10 ¹⁰) 2.00x10	8 _	1.38x10 ⁸

Table 4.Population Densities and Ratios of Denitrifiers,
Nitrite Accumulators, and Total Anaerobes.

^aNumbers expressed as organisms $\cdot g^{-1}$ except for poultry waste which is expressed as organisms $\cdot ml^{-1}$.

Table 4. (continued)

	01-	Denitri	lfiers	Nitrite Aco	cumulators
	Sample	MPN	Plate	MPN	Plate
21	Michigan(WG)	3.44x10 ⁵	3.75x10	⁵ 1.17x10 ⁶	1.56x10 ⁶
22	Michigan(Pl) November	3.45x10 ⁷	2.05x10	7 _	-
23		3.70x10 ⁶		⁶ 1.19x10 ⁷	
24	Michigan(P4)	5.23x10 ⁴		5 _	
25		3.77x10 ⁶	7.55x10	⁵ 3.16x10 ⁶	7.55x10 ⁵
	Anaerobes (MPN) ^a	N:A ^b	D:A ^b	D:N ^b	
1	6.36x10 ⁶	1.00 : 1 ^C	.44 :	1 ^C .44 : 1	
2	3.69x10 ⁷	.43 : 1	.06 :	1 .15 : 1	
3	>1.37x10 ⁷	<1.00 : 1	<1.00 :	1 1.00 : 1	
4	7.10x10 ⁶	.18 : 1	.02 :	1.11:1	
5	1.01x10 ⁷	.75 : 1	.14 :	1 .18 : 1	
6	8.15x10 ⁶	1.00 : 1 ^c	.03 :	1 ^c .03 : 1	
7	1.83x10 ⁷	.79 : 1	.38 :	1 .49 : 1	
8	7.81x10 ⁵	1.00 : 1 ^c	.009 :	1 ^c .009 : 1	
9	8.25x10 ⁶	.31 : 1	.19 :	1 .62 : 1	
10	3.22x10 ⁶	1.00 : 1 ^c	.15 :	1 ^c .15 : 1	
11	1.35x10 ⁶	.63 : 1	<.03 :	1 <.05 : 1	

^DN-nitrite accumulators, A-anaerobes, D-dentrifiers ^CN counts used as A counts because of greater number ^dD counts used as A counts because of greater number

Table 4.	(continued)
----------	-------------

	Anaerobes (MPN)a	N :	A	2	D :	A	b	D :	N	0
12	4.71x10 ⁵	1.00	:	ıc	.09	:	ıc	.09	:	1
13	1.79x10 ⁶	.83	:	1	.33	:	1	. 39	:	1
14	6.78x10 ⁶	.54	:	1	.04	:	1	.07	:	1
15	8.32x10 ⁶	1.00	:	ıc	.07	:	ıc	.07	:	1
16	1.13x10 ⁷	1.00	:	ıc	.03	:	ıc	.03	:	1
17	6.52x10 ⁶	1.00	:	lc	.23	:	ıc	.23	:	1
18	>1.30x10 ⁵	>.85	:	1 <	<.006	:	1	.007	:	1
19	1.20x10 ⁷	.87	:	1	.02	:	1	.02	:	1
20	4.45×10^{10}		-		. 79	:	1		-	
21	2.88x10 ⁶	.41	:	1	.12	:	1	.29	:	1
22	1.11x10 ⁸		-		.31	:	1		-	
23	1.43x10 ⁷	.83	:	1	.26	:	1	.31	:	1
24	3.53x10 ⁵		-		.15	:	1		-	
25	2.00x10 ⁶	.84	:	1 ^d	1.00	:	ıď	1.19	:	ı ^d

nitrite accumulators and denitrifiers to anaerobes and denitrifiers to nitrite accumulators. In most cases, nitrite accumulators were within an order of magnitude of total anaerobes. In some instances, nitrite accumulator values were greater than those of anaerobes. Since this is not possible, when calculating ratios in these instances, the nitrite accumulator numbers were used as total anaerobe numbers. Denitrifier numbers were generally within an order of magnitude of both the anaerobe and nitrite accumulator counts. The Utah soil had the lowest number of denitrifiers relative to nitrite accumulators of all of the soils - .007 : 1. Whereas, Pond 4 sediment (May) had a greater than 1 : 1 ratio of denitrifiers to nitrite accumulators. Excluding the Utah and Venezuela soils because of their extreme pH and the poultry manure sample and Connecticut soils because of their laboratory incubations, a mean population relationship for denitrifiers to nitrite accumulators to anaerobes of soils and sediments was calculated to be 0.24 : 0.68 : 1.

The Ability Of Isolates To Utilize Nitrate

From the 25 samples, 1553 isolates were tested for denitrification and 16.2 % of these were gas producers (Table 5). For each sample, the range for isolates producing gas was from 0.0 % to 50.0 %. Samples from which no gas producers were isolated were Connecticut No. 2, Utah, and the Venezuela soils. Pond 1 sediment (November) and Minnesota soil had the highest percentages of gas producers. The Pond 1 sediment (May) was next with 39.1 % of its isolates producing gas. Those organisms able to reduce nitrate to nitrite comprised 38.5 % of the 1531 isolates from 24 samples. The range of those reducing nitrate to nitrite was 4.5 % for the Pond 4 sediment (November) to 71.8 % for the Argentina(B) soil.

After observing that the spent broth of certain

in de							
	Sample	Number Tested	Gasŧ	NO28	NH4*8	Nothing From NO ₃ %	No N de- tected%
1	Minnesota	87	40.2	29.9	16.1	20.7	2.3
2	California	75	12.0	17.3	12.0	65.3	1.3
3	Connecticut 1	81	7.4	14.8	-	-	-
4	Connecticut 2	73	0.0	35.6	26.0	58.9	1.4
5	Argentina(SP)	87	26.4	32.2	24.1	31.0	4.6
6	Argentina(B)	39	2.6	71.8	41.0	20.5	0.0
7	Michigan(muck)	84	9.5	61.9	8.3	25.0	1.2
8	Texas	84	2.4	22.6	5.9	75.0	0.0
9	Argentina(P)	69	15.9	27.5	11.6	43.5	8.7
10	Brazil	54	20.4	37.0	31.5	22.2	0.0
11	Venezuela	45	0.0	33.3	26.7	66.7	0.0
12	Nigeria(C)	79	12.7	43.0	25.3	43.0	0.0
13	Nigeria(R)	48	18.8	50.0	45.8	27.1	0.0
14	Columbia	41	17.1	58.1	36.6	19.5	4.9
15	Philippines	124	9.8	30.6	41.1	25.8	1.6
16	Taiwan	40	15.0	50.0	37.5	35.0	0.0
17	Louisiana	42	16.7	47.6	23.8	42.9	0.0
18	Utah	66	0.0	69.7	10.6	30.3	0.0
19	Kansas	22	9.1	40.9	31.8	50.0	0.0
20	Poultry waste	67	34.3	17.9	-	-	-
21	Michigan(WG)	67	8.9	40.3	14.9	47.8	0.0
22	Michigan(Pl) November	22	50.0	-	-	-	-
23	Michigan(Pl) May	69	39.1	33.3	11.6	18.8	7.2
24	Michigan(P4) November	66	9.1	4.5	-	-	-
25	Michigan(P4) May	22	27.3	54.5	40.9	27.3	0.0

Table 5. Percent of Isolates Utilizing Nitrate and Producing the Following Nitrogen Compounds.

isolates did not contain nitrate or nitrite, or produced gas, assays were done for ammonia. From 21 samples with a

total of 1317 isolates, 24.9 % showed increased ammonia in the medium. For the individual samples, the range was from 5.9 % for the Texas sample to 45.8 % for the Nigeria(R) soil. Even after assaying for ammonia, certain isolates were discovered that were able to deplete the broth of nitrate without subsequent gas, nitrite, or ammonia formation. Although their numbers were few, they did represent 1.6 % of 1317 isolates tested. From the 21 soils, they were found in 9. The Argentine(P) soil had the highest percentage of this group with 8.7 %.

The next most prevalent group of isolates were those unable to utilize nitrate. That is, nitrate was detected without the formation of gas, nitrite, or ammonia. These isolates represented 37.9 % of 1317 tested from 21 samples and ranged from 18.8 % of the isolates for Pond 1 sediment (May) to 75.0 % for the Texas soil. Many of these organisms did not appear to grow in the nitrate broth after transfer from agar.

Identification Of Isolated Denitrifying Bacteria

Over 250 organisms were isolated that initially produced gas (Table 5). However, many of these isolates were no longer viable after short anaerobic incubation periods or else lost the ability to produce gas after purification. Of the original gas producers, 147 denitrified after purification; they were isolated from 19 of the 25 samples.

These 147 confirmed denitrifiers, as well as nine stock

cultures were characterized by examining 52 properties for The results are recorded in the Appendix. Many of each. the organisms were identified to the species level by the current taxonomic criteria of Bergey's Manual of Determinative Bacteriology, 8th edition (10), appropriate supplimentary literature (38, 14, 33)), and comparison to known denitrifiers. Approximately one-third of the isolates were not identified to the species level and several were not identified to the genus level. Such isolates which appeared to be related based on the 52 properties tested, were given type numbers in the order in which they were isolated. Figure 2 illustrates a simplified characterization scheme used for the identification of the denitrifiers. Table 6 lists the identity of the organisms and their numbers for each sample.

Gram negative rods comprised 93.2% of the 147 denitrifiers and gram negative motile rods, mostly oxidase and catalase positive, represented 86.4% of the total. Other groups were: gram variable rods, 4.8 % pleomorphic strains 1.4 %; and gram positive cocci, < 1.0 %. Some samples were represented by a single species, such as the nitrified poultry manure, and the Brazilian, Kansan, and Michigan (muck) soils. However, from most soils several species were isolated. The greatest diversity was found in the Argentina (SP) soil where 10 different species were recovered. The species composition and number of species

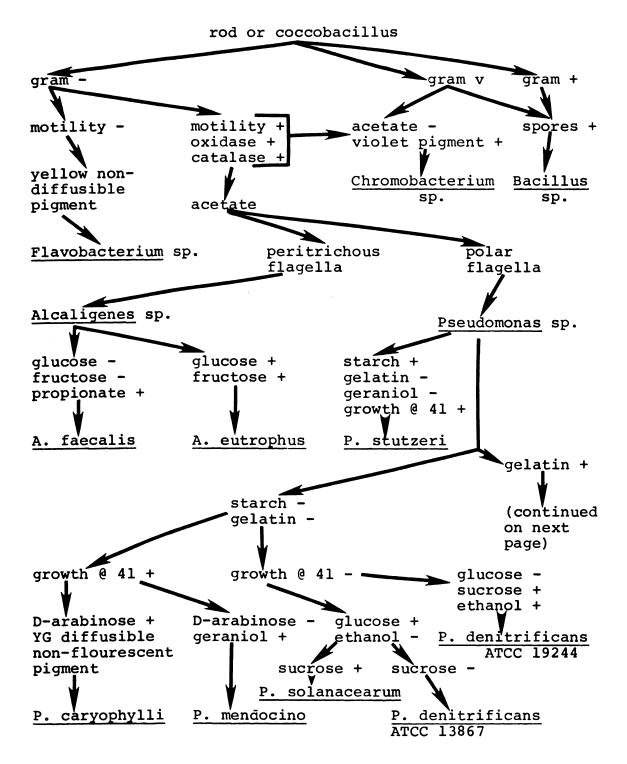
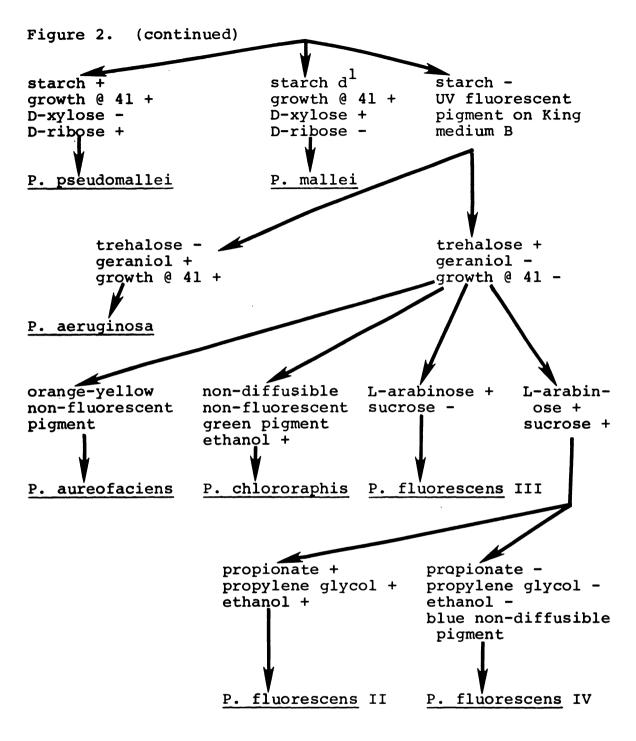



Figure 2. Characterization Scheme for the Identification of Soil and Sediment Denitrifiers.

d = positive for more than 10 % but less than 90 % of all strains studied (10).

varied among samples (Table 6). No two samples were identical in both.

At least five genera were represented in the total number of denitrifiers, as shown in Table 7. <u>Pseudomonas</u> spp. dominated by comprising 65.3 % of the total isolated. There appeared to be 37 distinct species or strains among the 147 isolates characterized. A complete list of these can be found in Appendix. Table 8 lists the major species represented along with their occurrence in the 19 samples. Although <u>Pseudomonas</u> was the predominant genera, <u>Alcaligenes faecalis</u> was the predominant species, and occurred in the most samples. <u>Pseudomonas fluorescens</u> II also occurred in high numbers. Identified species found in fewer numbers than those listed in Table 8 included <u>Pseudomonas aureofaciens</u>, and <u>Pseudomonas solanacearum</u>.

Temperature Relationship

From Table 2, soil and sediment samples obtained directly from the environment can be divided into two main groups based on mean annual temperature. One group is described as temperate, representing samples with a mean annual temperature of 20 C and below, and the other tropical, representing samples with a mean annual temperature of 20 C and above (Table 9). By observing the ability of denitrifying isolates to grow at 4 C and 41 C, a relationship was determined between the mean annual temperature of the sampling location and the temperature at which the

Sample	Organisms Isolated	Number that Den- itrified After Purification
Michigan(P4) November	Alcaligenes faecalis Pseudomonas fluorescens Pseudomonas sp. type 1 Pseudomonas sp. type 2	$ \begin{array}{cccc} 1 \\ 1 \\ 2 \\ 7 \\ 1 \\ 2 \\ 7 \\ \end{array} $
Poultry manure	<u>Alcaligenes</u> <u>faecalis</u>	14
Connecticut 1	Alcaligenes faecalis unknown type 3	3 2 5
California	Alcaligenes faecalis Pseudomonas fluorescens Corynebacterium sp. Flavobacterium sp.	11 5 1 <u>1</u> 8
Minnesota	Alcaligenes Pseudomonas Pseudomonas Pseudomonas Pseudomonas Pseudomonas Pseudomonas Pseudomonas Pseudomonas Pseudomonas pseud	1 3 16 5 1 4 2 1 33
Brazil	<u>Pseudomonas</u> sp. type 18	4
Kansas	Pseudomonas fluorescens	1
Argentina(P)	Pseudomonas fluorescens Flavobacterium sp. Pseudomonas sp. type 19	IV 3 5 <u>1</u> 9

Table 6. Denitrifiers Isolated from Samples.

Table 6. (continued)

Sample	Organisms Isolated	Number that Den- itrified After Purification
Argentina(SP)	Alcaligenes faecalis Pseudomonas fluorescens Pseudomonas fluorescens Pseudomonas stutzeri Bacillus sp. Pseudomonas sp. type 11 Pseudomonas sp. type 23 unknown type 21 unknown type 22 unknown type 24	?) 2 1 2
Michigan(Pl) May	Alcaligenes Pseudomonas Pseudomonas Pseudomonas Pseudomonas Pseudomonas Pseudomonas Pseudomonas pseud	
Philippine	<u>Pseudomonas</u> aeruginosa <u>Pseudomonas</u> sp. type ll	6 _1 7
Michigan(muck)	<u>Pseudomonas</u> stutzeri	2
Michigan(P4) May	Pseudomonas fluorescens(Pseudomonas sp. type 12 Pseudomonas sp. type 13 unknown type 3	?) 1 1 1 <u>1</u> 4
Nigeria(C)	Alcaligenes faecalis Alcaligenes eutrophus Corynebacterium sp. Pseudomonas sp. type 11 Pseudomonas sp. type 19 Pseudomonas sp. type 20	1 1 1 2 <u>1</u> 7

Table	6.	(continued)
TUNTO	••	(concanaca)

Sample	Organisms Isolated	Number that Den- itrified After Purification
Nigeria(R)	Alcaligenes faecalis Pseudomonas solanacearum Pseudomonas sp. type 11 Pseudomonas sp. type 16 Pseudomonas sp. type 17	1 1 1 1 1 5
Taiwan	Alcaligenes faecalis Pseudomonas sp. type 16 Pseudomonas sp. type 14	1 2 1 4
Michigan(WG)	<u>Pseudomonas</u> <u>stutzeri</u> <u>Alcaligenes</u> <u>faecalis</u>	2 _1 _3
Texas	<u>Pseudomonas</u> sp. type 11 <u>Pseudomonas</u> sp. type 25	$\frac{1}{2}$
Louisiana	Pseudomonas sp. 14 Pseudomonas sp. 16 unknown type 15	1 1 1 3

Table 7. Major Genera Recovered.

Genera	Percent of Total
Pseudomonas Alcaligenes Flavobacterium Bacillus Corynebacterium unknown others	65.3 23.8 4.1 1.4 1.4 4.1

Table 8. Major Species Recovered.

Species	Percent of Total	Occurrence in 19 Samples
Alcaligenes faecalis	23.1	11
Pseudomonas fluorescens II	17.7	5
Pseudomonas sp. type 2	4.8	2
<u>Pseudomonas</u> sp. type ll	4.1	6
Flavobacterium sp.	4.1	2
Pseudomonas aeruginosa	4.1	1
Pseudomonas fluorescens IV	3.4	3
Pseudomonas stutzeri	3.4	3
<pre>Pseudomonas fluorescens(?)</pre>	2.7	3
Pseudomonas sp. type 16	2.7	3
<u>Pseudomonas</u> sp. type 5	2.7	1
Pseudomonas sp. type 18	2.7	1

Table 9. Samples from Tropical and Temperate Locations.¹

Soils From Locations	Soils From Locations
With Mean Annual Tem-	With Mean Annual Tem-
peratures of 20 C	peratures of 20 C and
And Above	Below
Nigeria(R) Nigeria(C) Philippines Louisiana Brazil Taiwan Texas	Argentina(SP) Argentina(P) Minnesota California Michigan(muck) Michigan(WG) Michigan(P1) May Michigan(P4) May Michigan(P4) November Kansas

¹Samples were excluded which were incubated under unnatural conditions or of which denitrifiers were not isolated.

isolates from the samples can grow. Of the 95 denitrifiers isolated from the temperate samples, 68.4 % grew at 4 C, 9.5 % grew at 41 C, and 22.1 % grew only at 28 C. Of the 33 denitrifiers isolated from the tropical soils, none grew at 4 C, 66.7 % grew at 41 C, and 33.3 % grew only at 28 C. No denitrifiers were isolated that could grow at both 4 C and 41 C.

A species relationship can also be observed with <u>Pseudomonas fluorescens</u> II and <u>Alcaligenes faecalis</u>, which grow at 4 C and 28 C, but not at 41 C. Of the total number of both species isolated from the two temperature groups, all of the <u>Pseudomonas fluorescens</u> II isolates and 85.0 % of the <u>Alcaligenes faecalis</u> isolates were from the temperate samples.

DISCUSSION

Development Of A Medium And Method For The Isolation And Enumeration Of Denitrifying Bacteria

Before actual isolations were attempted, it was desirable to know that the medium chosen for use would give the highest possible counts and yet be as selective as possible for denitrifying bacteria. The importance of soil extract for the enumeration of soil bacteria has been emphasized by many soil microbiologists (29). A broad range of heat-stable soil nutrients is provided in small amounts by soil extract. Yet the amount of carbon is low enough to prevent perceptible antibiotic and organic acid production and the growth of spreaders. However, the use of soil extract has been criticized by many. Küster found the greatest numbers appeared on soil extract prepared from the soil that was being examined (22). Thus, a soil extract medium prepared from one soil may not be suitable for the growth of bacteria from another soil. Bacteriocidal substances have also been reported in extracts of soil (22). In this study the soil extractyeast extract media did not yield as high a population of denitrifiers as did nitrate broth and thus it was not used.

On agar, diffusibility of metabolites away from colonial growth is limited. The metabolism of an organism

may produce a pH change that is toxic and lowers the organisms viability. The process of denitrification generates OH⁻ ions. In unbuffered broth cultures of denitrifying bacteria, I observed pH increases from 7.2 to 8.9 for certain isolates, which resulted in their death. The need for a buffer to neutralize such an effect is evident. However, my testing on the use of phosphate buffer demonstrated that it had an inhibitory effect on denitrification. When autoclaved, the buffer may have precipitated trace divalent cations, needed by the nitrate reductase (32).

The medium and method of inoculation excluded growth of many unwanted microorganisms. Since inoculations were carried out under aerobic conditions, the death of some non-sporeforming obligate anaerobes would occur. Incubations under anaerobic conditions would not permit the growth of aerobes incapable of anaerobic growth with nitrate. Since the medium was carbohydrate free, carbohydrate fermenters could not grow. Because no reducing agent was added to the medium, the redox would not be low enough to permit the growth of many spore-forming obligate anaerobes. Therefore, the medium was considered selective for organisms capable of respiring with nitrate. However, 37.9 % of the isolates tested were unable to utilize the nitrate in the broth after isolation on agar. Many of these produced only pinpoint colonies on agar and were thought possibly to be microaerophiles capable of growing on trace

amounts of 0, trapped in the agar.

Although the medium and method for denitrifier isolations seemed satisfactory, there are problems. The incubation period was limited to a five day maximum because of the over-growth of certain organisms. Yet, the possibility does exist that slow-growing organisms would not be visible in five days. Such denitrifiers would be missed. Because of their slow growth, their contribution to denitrification would likely be minimal. Many organisms that grew on agar would not grow in broth. Such organisms could have been microaerophilic, as discussed earlier. It is also possible that such organisms which were able to grow well on agar but not in broth, were inhibited by volatile fatty amines released from the polyurethane foam stoppers during autoclaving (5) or needed H₂ (present in glove box atmosphere), which is insoluble in broth.

An unresolved troublesome problem was the loss of the denitrifying ability by certain isolates after purification. Most of the organisms were still able to grow anaerobically with nitrate, reducing it to nitrite, but were unable to form gas. This suggests a lack of nitrite reductase. Another possibility is an alternate dissimilatory pathway after nitrite formation. Fewson and Nicholas (17) state that hydroxylamine and ammonia can be formed during nitrate dissimilation. This could be an explanation for the observation that certain organisms depleted the broth of nitrate, yet produced neither nitrite, ammonia, or gas. Isotopic

studies with ¹⁵N nitrate could prove the existence of such an alternate pathway. An unsuitable medium or an unstable genetic character could also explain the loss of denitrifying ability.

Commonality Of Denitrifier Isolates

Four of the 14 known genera of denitrifying bacteria (32) were identified among the 147 types isolated and characterized from 25 samples examined. Since Propionibacterium spp. are only found in dairy products or the skin and intestinal tract of man and animals, Moraxella spp. are parasitic on the mucous membranes of warm-blooded animals and man, Halobacterium spp. require very high salt concentrations for survival, and Achromobacter spp. are now in other genera, these genera were not expected to be isolated. Also, since culturing conditions eliminated the possibility of autotrophs, Thiobacillus spp. were not expected. Therefore, the following genera were possibilities for the identification of denitrifiers isolated: Alcaligenes, Bacillus, Chromobacterium, Corynebacterium, Hyphomicrobium, Micrococcus, Pseudomonas, Spirillum, and Xanthomonas. However, only Alcaligenes, Bacillus, Corynebacterium, and Pseudomonas were identified of those known genera of denitrifiers. A Flavobacterium sp. was also identified as a denitrifier, which has not previously been reported.

<u>Flavobacterium</u> spp., however, have been reported to reduce nitrate to nitrite (32). The high proportion of

the isolates being Pseudomonas spp. was not surprising because of their ability to utilize such a great number of carbon sources and their well-known prevalence in soils. The prevalence of Alcaligenes was surprising since members of this genus had not been thought to be common soil denitrifiers. Although they are defined as separate genera, Alcaligenes and Pseudomonas are very similar. Almost all members of both genera are gram negative rods, obligate respirers, oxidase and catalase positive, able to use acetate as a sole carbon source, motile, and have a G + C content of DNA from 58 to 70 moles % (10). They are differentiated on the number and location of flagella - for Pseudomonas, single polar, and for Alcaligenes, peritrichous. However, Bergey's Manual (10) describes Alcaligenes as possessing one to four (occasionally up to eight) peritrichous or degenerate flagella. The possibility of an Alcaligenes sp. having a single subpolar flagella would make it virtually impossible to distinguish from a pseudomonad.

Almost two-thirds of the denitrifier isolates were identified to the species level. Nine separate species were identified. Most of the 16 described strains of denitrifiers recognized in Bergey's Manual (10) in the genera of <u>Pseudomonas</u> and <u>Alcaligenes</u> were represented. However, <u>Pseudomonas fluorescens</u> biotype II and <u>Alcaligenes faecalis</u> were numerically dominant and were most frequently observed from the samples. <u>Pseudomonas fluorescens</u> II is

found in soil and water and generally considered to be saprophytic (10). Some strains of <u>Pseudomonas fluorescens</u> are known to be common inhabitants of the rhizosphere (35). The presence of denitrifying strains in anaerobic microsites of the rhizosphere may greatly affect plant productivity by causing a localized depletion of nitrogen.

The <u>Alcaligenes faecalis</u> strains isolated were very similar to the strain described by Pichinoty et al. (33). The major differences observed were the inability of my strains to utilize D-saccharate, ethanol, and citrate as sole carbon sources. The high occurrence of <u>Alcaligenes</u> <u>faecalis</u> leads one to question its source. It is a species of a genus widely distributed in decomposing organic matter and also found in the intestinal tract of vertebrates. Its origin could have been fecal because of its wide distribution in these agricultural and natural soils. However, it is more likely an indigenous soil inhabitant.

Many of the most commonly studied denitrifying bacteria were not isolated or isolated in very small numbers. <u>Paracoccus</u> (formerly <u>Micrococcus</u>) <u>denitrificans</u> and <u>Pseudomonas denitrificans</u> (ATCC 19244) and <u>Pseudomonas denittrificans</u> (ATCC 13867) were not identified from any of the 25 samples. Such an observation leads one to believe that they play a minor role in the environment.

Douderoff et. al. (14) examined many previously isolated strains of pseudomonads to determine the validity of <u>P</u>. <u>denitrificans</u> as a species and found no other

organisms related to either of these two dissimilar species. Due to the absence of other related strains, he proposed that the name <u>Pseudomonas</u> <u>denitrificans</u> be abandoned. Since no new isolates from diverse samples were found in this study which were related to either of the <u>P</u>. <u>denitri-</u> <u>ficans</u>, the proposal of Douderoff (14) is supported.

Correlations Between Samples, And MPN's And Isolates

There appears to be very little correlation between sample environmental parameters, population densities, and identity of organisms isolated. Only the environmental extremes--desert, acid rain forest--had any effect on population densities. Almost all of the MPN's for denittrifiers ranged from 10^5 to 10^6 organisms·g⁻¹ when pH values were between 4.42 and 7.84. Only at 3.84 and 8.21 were MPN's less than 10^4 organisms·g⁻¹. Certain isolates did appear only in particular pH ranges, e.g. <u>Pseudomonas fluorescens</u> II was mainly isolated in samples with a pH range of 6.94 to 7.34. <u>Alcaligenes faecalis</u> was isolated from samples representing a broad pH range.

The most dramatic correlation observed was between the mean annual temperatures of the sample locations and the ability of isolates to grow at certain temperatures. Either the temperatures of the environment select for certain organisms or the organisms themselves adapt to a particular temperature range. The fact that none of the isolates from the tropical samples were able to grow at

4 C is reasonable, since there is no advantage in adapting to a temperature the organism will never encounter. Whereas, there is a competitive advantage for temperate isolates to be able to grow at 4 C, since they are exposed to 4 C but not 41 C.

Improvements

It is probable that the media and isolation procedure used in this study could be further improved. For higher counts and possibly more representative isolates, a soil extract medium made from the soil in which enumerations and isolations are to be done could be employed. Also, adjusting the pH of the medium to the same pH as the soil would best mimic the actual environment, therefore allowing the growth of those denitrifiers unable to grow at neutral pH. However, the incubation period would have to be much longer, since growth would be much slower under such circumstances. The use of nitrite, instead of nitrate, in the initial isolation medium, would eliminate the organisms able to reduce nitrate to nitrite but no further. This approach would only work if a concentration of nitrite could be found that would not be toxic to the soil denitrifiers. One might also be able to use N_0^0 as the electron acceptor and thus only recover denitrifiers.

LITERATURE CITED

LITERATURE CITED

- 1. Aaronson, S. 1970. Experimental Microbial Ecology. Academic Press. New York.
- Adel, A. 1946. A possible source of atmospheric N₂O. Science 103: 280.
- 3. Adel, A. 1951. Vertical distribution and origin of atmospheric nitrous oxide. Astron. J. 56: 33-34.
- Aranki, A., S.A. Syed, S.B. Kenney, and R. Freter. 1969. Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. Appl. Microbiol. 17: 568-576.
- Bach, J.A., R.J. Wnuk, and D.G. Martin. 1975. Inhibition of microbial growth by fatty amine catalysts from polyurethane foam test tube plugs. Appl. Microbiol. 29: 615-620.
- 6. Black, C.A. 1965. Methods of Soil Analysis, Part 1, Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. American Society of Agronomy, Inc. Madison, Wis.
- Black, C.A. 1965. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties. American Society of Agronomy, Inc. Madison, Wis.
- Breed, R.S., E.G.D. Murray, and N.R. Smith. 1957. Bergey's Manual of Determinative Bacteriology. 7th Ed. Williams and Wilkins Co., Baltimore.
- 9. Broadbent, F.E., and F. Clark. 1965. Denitrification, p. 347-379. <u>In</u> Soil Nitrogen. Bartholomew, W.V. and F.E. Clark. American Society of Agronomy, Madison, Wis.
- 10. Buchanon, R.E., and N.E. Gibbons. 1974. Bergey's Manual of Determinative Bacteriology. 8th Ed. Williams and Wilkins Co., Baltimore.
- 11. Burns, R.C., and R.W. Hardy. 1975. Nitrogen Fixation in Bacteria and Higher Plants. Springer-Verlag, New York, Heidelberg, and Berlin.

- 12. Caldwell, D.E., and J.M. Tiedje. 1975. A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can. J. Microbiol. <u>21</u>: 362-376.
- 13. Colwell, R.R., and W. J. Wiebe. 1970. "Core" characteristics for use in classifying aerobic, heterotrophic bacteria by numerical taxonomy. Bull. Ga. Acad. Sci. 28: 165-185.
- 14. Doudoroff, M., R. Contopoulou, R. Kunisawa, and N.J. Palleroni, 1974. Taxonomic validity of <u>Pseudomonas</u> <u>denitrificans</u> (Christensen). Init. J. Syst. Bacteriol. 24: 294-300.
- 15. FAO UNESCO. 1971. Soil Map of the World (converted to the 7th Approximation). Paris.
- 16. Ferguson, M., and E.B. Fred. 1908. Denitrification: The effect of fresh and well-rotted manure on plant growth. Virginia Agr. Exp. Sta. Ann. Rep. 1908: 134-150.
- 17. Fewson, C.A., and D.J.D. Nicholas. 1961. Utilization of nitrate by micro-organisms. Nature 190: 2-7.
- Focht, D.D., and H. Joseph. 1973. An improved method for the enumeration of denitrifying bacteria. Soil Sci. Soc. Amer. Proc. 37: 698-699.
- 19. Gayon, E., and G. Dupetit. 1886. Resherches sur la réduction des nitrates par les infiniments petits. Soc. Sci. Phys. Nat. Bordeaux, Sér. 3, 2, 201-307.
- 20. Geiger, R. Mean Annual Precipitation Map. Justus Perthes. Darmstadt, Germany.
- 21. Gordon, R.E., and J.M. Mihm. 1959. A comparison of four species of mycobacteria. J. gen. Microbiol. <u>21</u>: 736-748.
- 22. Gray, T.R.G., and D. Parkinson. 1968. The Ecology of Soil Bacteria. University of Toronto Press. Toronto.
- 23. Gray, T.R.G., and S.T. Williams. 1971. Soil Microorganisms. Hafner Publishing Co., Inc. New York.
- 24. Haak, H. Physikalischer Wandatlas I. Abteilung: Klima und Wetter l. Linien gleighen Wärme im Jahr. Gotha: Justus Perthes.

- 25. Holdeman, L.V., and W.E.C. Moore. 1973. Anaerobe Laboratory Manual 2nd Ed. Virginia Polytechnic Institute and State University Anaerobe Laboratory, Blacksburg, Va.
- 26. Johnson, L.F., and E.A. Curl. 1972. Methods for Research of Soil-Borne Plant Pathogens. Burges Publishing Co., Minneapolis, Minn.
- 27. King, E.O., M.K. Ward, and D.E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab & Clin. Med. 44: 301-307.
- Kluyver, A.J. and H.J.L. Donker. Die Einheit in der Biochemie. Chem. Zelle u. Gewebe 13, 134-190.
- 29. Lochhead, A.G., and M.O. Burton. 1956. Importance of soil extract for the enumeration and study of soil bacteria. 6th Int. Congr. Soil Sci. C, 157.
- 30. Manual of Microbiological Methods. 1957. Society of American Bacteriologists. McGraw-Hill Book Co., Inc. New York.
- 31. Nelson, W.W. and J.M. MacGregor. 1973. Twelve Years of Continuous Corn Fertilization With Ammonium Nitrate or Urea Nitrogen. Soil Sci. Soc. Amer. Proc. 37: 583-586.
- 32. Payne, W.J. 1973. Reduction of nitrogenous oxides by microorganisms. Bact. Rev. 37: 409-452.
- 33. Pichinoty, F., M. Mandel, B. Greenway, et J. Garcia. 1975. Isolement à partir du sol et étude d'une bactérie dénitrifiante appartenant au genre <u>Alcal-</u> igenes. C.R. Acad. Sc. Paris, t. 281.
- 34. Prakasam, T.B.S. 1972. Microbial nitrification and denitrification in concentrated wastes. Wat. Res. 6: 859-869.
- 35. Sands, D.C., and A.D. Rovira. 1971. <u>Pseudomonas</u> <u>fluorescens</u> Biotype G, the dominant fluorescent pseudomonad in South Australian soils and wheat rhizospheres. J. appl. Bact. 34(1): 261-275.
- 36. Schmidt, E.L. 1974. Quantitative autecological study of microorganisms in soil by immunofluorescence. Soil Sci. 11: 141-149.
- 37. Standard Methods for the Examination of Water and Wastewater. 1971. Amer. Public Health Assoc. 13th Ed. Washington, D.C.

- 38. Stanier, R.Y., N.J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: a taxonomic study. J. gen. Microbiol. 43: 159-271.
- 39. Starr, J.L., and J.Y. Parlange. 1975. Nonlinear denitrification kinetics with continuous flow in soil columns. Soil Sci. Soc. Amer. Proc. 39: 875-880.
- 40. Tiedje, J.M., and B.B. Mason. 1974. Biodegradation of nitriloacetate (NTA) in soils. Soil Sci. Soc. Amer. Proc. 38: 278-283.
- 41. Thornley, M.J. 1960. The differentiation of Pseudomonas from other gram negative bacteria on the basis of arginine metabolism. J. Appl. Bact. 23: 37-52.
- 42. Turner, A.W. 1954. Bacterial oxidation of arsenite I. Description of bacteria isolated from arsenical cattle-dipping fluids. Aust. J. Biol. Sc. 7: 452-478.
- 43. Wallingford, G.W., L.S. Murphy, W.L. Powers, and H.L. Manges. 1975. Effects of Beef-Feedlot Manure and Lagoon Water on Iron, Zinc, Manganese, and Copper Content in Corn and DTPA Soil Extracts. Soil Sci. Soc. Amer. Proc. 39: 482-487.

APPENDIX

Soil	% Sand	% Silt	۶ Clay
Minnesota	30	55	15
California	35	47	18
Argentina(SP)	42	39	19
Argentina(B)	33	54.5	12.5
Texas	43	27	30
Argentina(P)	38	41	21
Brazil	40	29.5	30.5
Nigeria(C)	15	76	9
Nigeria(R)	10	85	5
Columbia	36	42	22
Philippines	27	58	15
Taiwan	32	57	11
Louisiana	41	44	15
Utah	37	50.5	12.5
Kansas	28	64	8

Table 10. Percentages of Sand, Silt, and Clay in the Soil Samples as Determined by the Hygrometer Method.*

* The hygrometer method depends on complete dispersion of soil particles. Due to the extreme diversity of the soils studied, this could not be achieved by a standard method for all cases. Therefore, some of the above percentages are probably incorrect.

Explanation of Table 11

Table 11 contains the data of the 52 properties examined for the identification of the denitrifying isolates. Positive and negative designations were + and 0 respectively; 3 means the test was not done. Test were coded by number as follows: 1 gram reaction 2 motility 3 oxidase 4 catalase 5 acetate gelatin hydrolysis 6 7 starch hydrolysis 8 casein hydrolysis 9 fluorescein (medium B) blue phenazine (peptone-glucose) 10 11 D-glucose 12 sucrose 13 D(+)trehalose 14 L-arabinose 15 D-fructose 16 D-arabinose 17 ethanol 18 growth at 41 C 19 propionate 20 propylene glycol 21 L-asparagine 22 D-sorbitol 23 geraniol 24 D-xylose 25 DL-arginine 26 D-ribose 27 maltose 28 D(+)cellobiose 29 meso-inositol sarcosine 30 31 β-alanine p-hydroxybenzoate (base) 32 33 p-hydroxybenzoate (acid) 34 2-keto-gluconate 35 saccharate 36 growth at 4 C 37 arginine dihydrolase 38 arsenite oxidation PHB granules 39 40 citrate

Pigment color abbreviations were: unpig - unpigmented, pale yel - pale yellow, YG - yellow-green, BG - blue-green, and d - diffusible. The pigments without the d designation were not diffusible. Cell dimension were in µm. For colonial characteristics, column 1 was size in mm, with p for pinpoint; 2, form, where c - circular and i - irregular; 3, elevation, where c - convex, u - umbonate, p - pulvinate, r - raised, and f - flat; 4, margin, where u - undulate, en - entire, * - not describable, and er - erose; 5, surface, where s - smooth, ru - ruffled, and ro - rough; 6, texture, where b - buttery, d - dry, and m - mucoid; 7, light refraction, where g - glistening, t - translucent, d - dense, and o - opaque. The number 8 designates cell groupings, with s - singular and c - chains.

Tests 1111111112222222233333333334
1234567890123456789012345678901234567890
1234307090123430709012343070901234307090
0++++000000000000000+00000000+0000+000+00+0
0++++00000+00++0+0+0++0+++00+++00+++00++
0++++00000+00++0+0+0++0+++00+++00+++000+
0+++++0++0++++++0++++++++++0++0++0++++++
0+++++0+00+00++0+0+0+00+0+0000+0+0+0+0+0
0+++++0++0++++00+0+0+0+0+++++++0+++++00+
0+++++0++0++++++0+++++++0+++0++0+++++00+
0++++0000000000000000000000000000000000
0++++0000000000000+00000000000000000000
0++++0000000000000000000000000000000000
0++++0000000000000++0000000000000000000
0++++0000000000000++0000000000000000000
0++++0000000000000000000000000000000000
0++++0000000000000000000000000000000000
0++++0000000000000000000000000000000000
0++++0000000000000000000000000000000000
0++++0000000000000000000000000000000000
0++++0000000000000000000000000000000000
0++++0000000000000000000000000000000000
0++++0000000000000000000000000000000000
0++++0000000000000000000000000000000000
v+++0+0000000000+000000000000000000000
0+++00000000000000000000000000000000000
v++00000000000000000000000000000000000
0+++000000+0000000000000000000000000000
0++++0000000+0+000000000000000000000000
0+++++0++++++++0+++++++0+++++0+++++0++++
0++++000000000000+0+0000000000000++000+
0+++++0+++++++0++++++0+++++0+++++0+++++00+
0+++++00+++++++0++++++0+++++0+++++0+++++
00+++++000+++++0000000++00++0000000+0000
0+++++0++0+++++0++++0++++00+0++0+++++00+
000++00000+00+0+0000+00000000000000000+0
0+++++0+++0++++0++++0++++0++++0++++00+
0++++00000+0++++0++++0++++00+++00+++00+++
0+++++0++0++++++0+++++++00+0++++++00+
0+++++0++0+++++0+0+++++++0+++++0+++++00+
0++++00000+00++0+0++++++++00+++00+++000+

Table 11. Results of 52 Properties Tested.

Table 11. (continued)

		Tests
Sample	Isolate Number	11111111122222222233333333333 1234567890123456789012345678901234567890
Minneso	ta	
(contin	ued) 55	0++++000+0+0+++++0+++00+++00+0+00++++00+
-	56	0++++00000+0++++0+0+0+++00+++00+++00++
	57	0++++000+0+0+++++0+++00+++00+0+00++++00+
	58	0++++000+0+0+++++0+++0++++000++00+++00+
	59	0+++++0++0+++++0+0++++++++00+0+++0+++++00+
	<i>6</i> 0	0+++++0++0+++++0+0+++++++00+0+++0+++++00+
	61	0+++++00+0+++++000+++++++00+0+++0+++++00+
	62	0+++++0++0+++++++++++++++++++++++++++++
	63	0+++++0++0+++++0+0+++++++00+0+++0++++00+
	64	0+++++0++0+++++0++++0++++00+0++++++00+
	65	0++++00000000000000+00000000000000000
	66	0+++++0++0+++++0+0++++0++++00+0++++++00+
	67	0+++++0++0+++++0++++0++++0++++0++++0++++
	68	0+++++0++0+++++0+0+++++++0+++++0+++++0++++
	69	0+++++0+00+++++0+0++++00+0++0++++00++
	70	0+++++0++0++++++0+++++++00+0++0+++++00+
	71	0+++++0+00+++++0+0+++++++00+0+++0+0+++000+
	72	0+++++0++0+++++0++++0++++00+0++0+++++00+
	73	0+++++0++0++++++0++++++0+++++0+++++00+
	74	0+++++0+00+++++0+0+++++++00+0+++0++++0++
	75	0+++++0+0++++++0+0+++++++0+++++0+++++0++++
	78	0++++00000+0++++0+++0++++0++0++00++++00+
	79	0+++++0++0+++++++0+++++++0++0++0++0++0+
	80	0++++000+0++++0++++0++++0++++0++++000+
	81	0++++00000++0++0+0+++++++0++++00+++00+++00++
	82	0+++++0+0++++++0+0++++++++00+0+++00++++0+++0+++0++++
	83	0++++00000+0++++0+0+++++++++0+++00++++00+++
	84	0+++++0++0++++++0++++++++++++++++++++++
	85	0+++++0+00+0++++++0+++0++++0++++0++++00+++
Lake l		
May	86	0++0+0000000000000000000000000000000000
1	87	0++++00000+00+00+00++++0+00000+0000++000
	89	0+++++0+0+0++++++++++++++++++++++++++++
	90	0++0+0000000000000000000000000000000000
	91	0+++00000000000000000000000000000000000
	97	0+0+0+0+000+0000+00+0000000000000000000
	98	0++++000+0++++++++0+++++0++000000+00000+
	99	0++++0000000000000000000000000000000000
	101	0++++000000000000+00+0+0000000000000000
	102	0++++000000000000000+000000000000000000

Tests 11111111122222222333333333334 Sample Isolate Number 1234567890123456789012345678901234567890 Lake 1 (continued) 103 0++0+0000000+00+00++0+0+00++0+0000+0000104 105 0+++++0++++++++0+++++++0+++0++0+++00++106 107 0++++00000++++++0++++0+++++++000000++881 Lake 4 108 May 110 111 882 0+++++0000++0++000+0++0+++++++0000+0+00+++Louisiana 114 0++0+00000+++0+00++0+000+0+000000++000+0115 1181 0+++++0000+0+++00++0+0000000++0++000++Brazil 126 0+++++0000+0+++00+00++0+000+0+++0+000+++129 133 0+++++0000+0+++00+00++0+000+00++0++000++135 0++0++0000+0++++00++0++0+000+00++0++000++137 Nigeria(R) 000++00000000+0+0+++0++++000+++0++000++141 0+00+00000+0+++00++0+0++000+0+++0+000+143 0++++00000++++++00++++0+++++0+00000+0144 145 03+3000000++00+00+0030+0000000000003333 Nigeria(C) 1471 00000++000++0000000000+++++++0000++000+0148 0+0++0000000000+0+0+00000000+0+00+000++ 149 0++++00000++++++0000++0++++++00000+0151 153 154 0++++00000+00++000+++0+00000++0000+00+155 0++++00000+000+0+++++000000000+0+00000+0Philippines 156 162 163 0++++00000++++++0++++0+++++++000000++

		Tests
Sample	Isolate Number	1111111112222222223333333333 1234567890123456789012345678901234567890
Philipp		
(contin		0.0
	164 165	0+0+++0++0+0+++++++++00+++000+++0+00+00
	165	0+++++0++0+0++++++++00+++000+++0+00+00+
	167	0+++++0++0+0++++++++++++00++++000+++0+0000
Taiwan	171	00000++000000000+000000000000000000000+0
	172	0++++00000+0++++00++0+0+++0000+++0++000++
	173	0++0000000+++0+00000+000+03333333333333
	174	0++0++0000+0++++00++0+00+00000+++0++000++
Argenti	na(P)	
-	175	00++0++000++0++0000000++00++0000000+0000
	176	00++0++000++0++0000000++00++0000000+0000
	177	00++0++000++0++00000000+00++0000000+0000
	178	00++0++000++0++00000000+00++0000000+0000
	179	0++++00000000+000000000000++000+00+00000
	180	00++0++000++0++00000000+00++0000000+0000
	183	0+0+++0+++++++000+0++++++00+0+++0+++++0++
	184	0+0+++0+++++++000+0++++++00+0+++0++++0++
	185	0+0+++0++++++++0+0+++++++++0++0++++0+++0+++
Argenti		
	188	0++++00000+++++++0++++0+++++0++000000+0
	189	00000++0000000+000000+000000000000000+0+
	190	0++++000+0+00++++0++++++++0000+00+++++0++
	191	0+++000000000000000000000000000000000+000++
	192	v00000000+++++000000+0+0+++0+00000000+0
	193	v0000+0000000+000000+0+0+00+000000000+0
	195	0++++0+000+00++0++00000++0+000+0+000000
	196	0++++000+0+00++++0+++0++++0000+00+++++0++
	199	v00+0++000++0++00000+++00++0+00000+000+
	202	00000++000++0++00000++00++000000000000+0
	204	0+0000+000+++++00+00000+00+000000000000
	205	0+++++0++0+++++0+0++++++++00+0++++++00+
Kansas	206	0+++++0+++++0++++++++++++++++++++++++++
Michiga		
_	220	0++++0+000+00++0++0++00+0++00+0+0000000
	221	0++++0+000+00++0++0++00+0++00+0+0000000
	223	0+++++000000000000+00000000000000000000

		Tests
Sample	Isolate	11111111122222222233333333334
F	Number	1234567890123456789012345678901234567890
Michiga	n	
(muck)	224	0++++0+000+00++0++00+0++0++00+0+0+000000
、 ,	2312	0++++0+000+00++0++0++00+0++00+0+0000000
Texas	232	0+0++000000000+00++0+00000000++000+000++
	233	0+0++000000000+00++0+00000000++000+000++
	234	0++++00000+++++++000++0++++++0+0+0000+0
Stock C	ultures	•
	991	0++++00000+000++00+0+0+0+0+00000++0000+00+
	992	0+0+++0++0+++++000+0+00+++00+0+0+0+++00+
	993	0++0+0+000+00++0+++++00++0000++00000000
	994	0++++00000000000+000+00000000+00000000+
	995	0+++++00+0+++++++0+++++++00+0+0+++0++++00+
	996	0+++++00+0+00+++++++++0+++000+++0+0000++
	997	00+++00000+++++0+0++++00+++0+0++0+000000
	998	0++++0+000+000+00+0000++00+00+000000000
	999	0++++0+000+0000+00++00+00+00+00000000+

T = 1 = 4 =	0-11						ial			
Isolate	Cell	Pigment Cell	_	Cha					-	
Number	Morphology	Color Dimension	ns l	2	3	4	5	6	7	8
4	rod	unpig .8 x. 2.	5	1 c	С	en	s	b	g	s
6	rod	white .8 x 4.0		2 C	С	en	S	b	g	
12	rod	cream .8-1.2x2.5	-3.3	2 c	С	en	S		ġ	
13	rod	cream .8 x 1.7.	-3.3'	1 c	С	en	S		g	
14	rod	cream .8 x 3.3	-4.1	4 c	С	en	S		ġ	
15	rod	cream .8 x 2.5		5 i	С	en	S		ġ	
16	rod	cream .8 x 1.7	-3.3	4 i	С	en	S		ġ	
17	rod	unpig .8 x 2.0	-2.9	3 c	u	er	ru	b	t	S
18	rod	unpig .8 x 2.5				en		b	-	
19	rod	unpig .8 x 2.0					ru		t	
20	rod	unpig .8 x l.7			С	er	S	b	g	S
21	rod	unpig .8 x 2.0				en		b	g	S
22	rod	unpig .8 x 1.7					ru		t	S
24	rod	unpig .8 x 1.7	-2.0				ru		t	S
25	rod	unpig .8 x 3.3			u	er	ru	b	t	S
26	rod	unpig <88x1.7-2			u	\mathbf{er}	ru	b	t	S
27	rod	unpig .8 x 2.5		3 c	u	er	ru	b	t	S
28	rod	unpig .8 x 2.9		l c	С	en	S	b	g	S
29	rod	unpig .8 x l.7	-2.5	2 C	С	en	S	b	g	S
30	rod	unpig 1.2 x 2.9		1 c	С	er	S	b	g	S
31	rod	unpig .8-1.2x2.5	-3.0	3 c	С	en	S	b	g	S
36	rod	cream .8-1.2x2.5				en			g	s
37	rod	unpig 1.2x2.5-2					ro			
39	rod	unpig .8x2.9-4.1					ro		-	S
40	rod	unpig <88x2.5-2	2.9			en		b	-	S
41	rod	unpig .8 x 2.0	• •	p c	С	en	S	b	g	S
42	rod	cream .8 x 2.0						b	g	
43	rod	unpig .8 x 1.7			С			-	g	
44	rod	pale yel .8 x 2.0							g	
45	rod	pale ye1<88x2.5-		lc					g	
46	rod	yel .4 x 3.7		l c					g	
47	rod	pale yeld.8 x 1.7		4 C					g	
48	pleomorph	cream -		рс					g	
49	rod	white .8-1.2x2.9	-4.1	3 C	С	en	S	b	g	S
51	rod	gray 1.7 x 3.		2 c					g	
52	rod	tan .8-1.2x2.0		4 i					g	
53	rod	pale yel .8x2.5-3		2 C					g	
54	rod	cream 1.2x2.0-	3.3	2 C	С	en	S	b	g	S

-

	0-11	D :	6-11				lon				
Isolate	Cell	Pigmer					cte				0
Number	Morpholo	ogy Color	Dimensions	T	2	3	4	5	6	7	8
55	rod	tan	.8x1.7-2.9	4	С		en	S	b	g	S
56	rod	gray	$1.2 - 1.7 \times 4.1 - 4.5$	2	С		en	S	b	g	S
57	rod	tan	.8x1.7-2.9	2	С	-	en	S	b	g	S
58	rod	gray	.8-1.2x1.7-3.7	5	С		en	S	b	g	S
59		orange d	.8x2.0-3.3	2	С		en	S	b	g	S
60		orange d	.8x2.0-3.3	3	С		en	S	b	g	S
61	rod	tan	1.2x2.0-3.7	7	С		en	S	b	g	S
62	rod	orange d	.8 x 2.5	2	С		en	S	b	g	S
63	rod	cream	.8x2.0-3.3	2	С		en	S	b	g	S
64		pale yel		3	С		en	S	b	g	S
65	rod	unpig	.8 x 2.0	2	С		en	S	b	g	S
66	rod	tan	1.2x2.0-2.5	7	С	С	en	S	b	g	S
67	rod	YG d	.8-1.2x2.0-2.9	4	С	С	en	S	b	g	S
68	rod	YG d	.8x2.5-3.7	3	С	С	en	S	b	g	S
69	rod	white	.8x 2.0-2.9	3	С	С	en	S	b	g	S
70	rod	YG d	. 8x2 . 5-3.3	3	С	С	en	S	b	g	S
71	rod	white	<88x1.7-2.0	4	С	С	en	S	b	g	S
72	rod	YG d	.8x1.7-2.5	3	С	С	en	S	b	g	S
73	rod	YG d	<88x2.0-4.1	3	С	С	en	S	b	g	S
74	rod	white	1.2x2.5-3.7	5	С	С	en	S	b	g	S
75	rod	YG d	.8x1.7-3. 3	3	С	С	en	S	b	g	S
78	rod	gray	.8 x 2.9	5	С	С	en	S	b	g	S
79	rod	YG d	.8x2.9-3.7	4	С	С	en	S	b	g	S
80	rod	white	1.2x2.9-4.1	6	С	С	en	S	m	g	S
81	rod	white	1.2x2.9-3.3	3	С	С	en	S	b	g	S
82	rod	white	.8 x 2.5	4	С	С	en	S	b	g	S
83	rod	white	.8-1.2x2.0-3.7	2	С	С	en	S	b	g	S
84	rod	YG d	.8x2.9-3.3	3	С	С	en	S	b	g	S
85	rod	white	.8-1.2x2.0-4.5	3	С	С	en	S	b	g	S
86	rod	cream	.8-1.2x2.5	1	с	q	en	S	b	g	S
87	rod	white	.8x2.0-2.9	~	c	_	en	-		g	
89	rod	orange	.8x2.0-3.7	2			en			g	
90	rod	white	.8 x 2.5		c		en			g	
91	rod	white	-	_	_	_	-	_	-	-	_
97	rod	yellow	<88x2.5-3.3	2	С	С	en	ro	b	g	S
98	rod	gray	<88x1.7-2.5	3	c		en	s	ñ	g	
99	rod	white	.8 x 2.5	2	c		en		ñ	g	
101	rod	cream	.8x2.5-2.9	ĩ	c		en		ñ	g	
102	rod	cream	1.2×2.5	ī	c		en		b	g	
102	rod	cream	.8 x 2.5	2	c		en		Ď	g	
103	rod	cream	•• • • • • •	2	c		en		Ď	g	_
105	rod	BG d	.8x2.0-2.9	7	c		en			g	S
T 4 2	TOR	20 u		,	č	<u> </u>	~11	-		3	-

Isolate Number	Cell Morphology	Pigment Color	Cell Dimensions			lon: cte: 4			cs 7	8
106 107 881	rod	ellow gray white	.8x1.7-2.5 .8x2.0-2.5 -	3	с и с с с с	u en en	s S S	m	a a a	s s I
108 110 111 882	rod cr rod	unpig eam d gray < cream	.8x1.7-2.9 1.2x2.0-2.9 <88x1.7-2.5 1.2x2.5-3.7	3	c c c c c c c c	u en en u	s s s ro	b	a a a	s S
114 115 1181		- unpig cream	.8x1.7-2.5 1.2 .8 x 1.7	р	с с с с с с	en	s S S	b	g g	đ
126 129 133 135	rod rod	cream < cream cream e yel	<pre><88x1.7-2.0 .8 x 2.0 .8x1.7-2.0 .8x1.7-2.0 .8x1.7-2.0</pre>	2 2	с с с с с с с с	en	s S S	b b	a a a	s S
137 141 143 144 145	rod rod rod	ellow cream gray cream unpig	1.2 x 2.5 .8x1.7-2.0 .8 x 2.9 .8x2.0-2.5	2 2	с с с с с с с с с с с -	en en en -		b b m b -	a a a a	s S
1471 148 149 151 153 154 155	rod rod rod rod pal rod	cream cream white cream e yel cream white .	- .8 x 2.5 .8 x 2.0 .8x2.0-3.3 .8 x 3.7 .8 x 2.0 .8-1.2x1.7-3.3	2 4 1 5	u c c c c c c c c c c c c c c c c c c c	er en en er en	S	りりょう	a a a a a a a a a a a	
156 162 163 164 165 166 167	rod b rod b rod b rod b rod b	white lue d	.8 x 2.5 <88x2.5-3.3 .8x1.7-2.5 .8x1.7-2.5 <88x2.0-2.5 .8x2.0-2.5 1.2x2.9-3.7	5 4 5 4 3	c u c u c p c u c u i u	er en er er	ro ro ro ro ro ro	b m b b b	a a a a a a a a	S S S S S S
171 172 173 174	rod rod	cream cream unpig cream	1.7x3.3-5.0 .8 x 2.5 1.2x2.9-3.3 .8 x 1.7	1 2	с с с с с р с с	u en en	ru	b b	g	s S

Isolate Number	Cell Morpholog	Pigment y Color	Cell Dimensions		Cha 2	ara	lon: cte: 4			cs 7	8
175 176	rod rod	yellow yellow	.8x4.1-6.6 .8 x 4.1	2 2	-	с с	u u	ro ro			S S
177	rod	yellow	.8 x 3.7	3	С	С	u	ro	b	ο	S
178	rod	yellow	.8x3.3-5.8	1	С	С	u	ro	b	ο	S
179	rod	cream	.8x2.5-2.9	1	С	С	en	S	b	g	S
180	rod	yellow	.8x2.5-4.1	2	С	С	u	ro	b	g	S
183	rod	cream	.8x2.0x2.5	5	С	С	en	S	b	d	
184	rod	cream	.8x2.5-4.1	4	С	С	en	S	b	d	
185	rod	cream	.8-1.2x2.9	5	С	С	en	S	b	d	S
188	rod	cream	.8x1.7-2.5	2	С	с	en	S		ο	s
189	rod	cream	.8 x 3.3	2	С	С	en	S	b		С
190	rod	cream	.8x2.5-2.9	2	-	С	en	S	b	0	S
191	rod	cream	1.2 x 2.9	2	-	С	en	S	b	g	S
192	rod	cream	.8-1.2x2.9-3.3	2		С	en		b	g	С
193	rod	cream	.8-1.2x5.0-6.6	2	-	С	en	S	b	g	С
195	rod	yellow	.8x1.7-2.0	2	i	С	en		b	g	S
196	rod	cream	.8-1.2x2.5-3.7	2		С	u	S	b	g	S
199	rod	cream	1.2 x 5.3	2	С	С	en	S	b	g	С
202	rod	cream	.8 x 2.0	3		С		ru		g	С
204	rod	white		10	С	f	*	ro	b	С	S
205	rod	cream	.8x2.0-2.9	2	С	С	en	S	b	g	S
206	rod	cream	.8x1.7-2.9	3	i	u	u	s	b	d	S
220	rod	yellow	.8x2.0-2.9		С		u	S		g	S
221	rod	yellow	.8x2.9-4.1	2		С	en		b	g	S
223	rod	-	.8 x 2.0	1	С	С	en	S	b	g	S
224	rod	yellow	.8 x 2.5		С		u	ro			s
2312	rod	gray	.8 x 3.3	2	С	u	er	ro	đ	g	S
232	rod	gray	.8 x 3.3		С		en			g	
233	rod	gray	.8-1.2x1.7-2.5				en	S	b	g	S
234	rod	gray	.8-1.2x2.0-2.9	4	С	С	en	S	m	g	S
991	rod	white	.8x2.5-3.7		С		er	ro	b	ο	S
992	rod	orange d	.8x3.7-4.1	_	С		en	S		g	
993	rod	yellow	.8x2.0-3.3	-	С	-	u			ο	
994	rod	white	.8-1.2x1.7-2.0		С		er	ro			
995	rod	gray	.8x2.5-4.1	3			en			g	
996	rod	blue d	.8x1.7-2.5	3	С	С		ro			
997	coccus	cream	.8 x 1.2	1	С		en	S		g	
998	rod	yellow	.8x2.5-3.3	2	С		u	S		g	
999	rod	yellow	.8x1.7-2.9	3	С	С	en	S	b	g	S

solate	Isolate Name	Isolate Number	Isolate Name
4	A. faecalis	61	P. fluorescens II
6	P. type 2	62	P. aureofaciens
12	P. type 2	63	P. fluorescens II
13	P. fluorescens II	64	P. fluorescens II
14	P. type 1	65	A. faecalis
15	P.fluorescens (?)	66	P. fluorescens II
16	P.fluorescens II	67	P. fluorescens II
17	A. faecalis	68	P. fluorescens II
18	A. faecalis	69	P. type 5
19	A. faecalis	70	P. fluorescens II
20	A. faecalis	71	P. type 5
21	A. faecalis	72	P. fluorescens II
22	A. faecalis	73	P. fluorescens II
24	A. faecalis	74	P. type 5
25	A. faecalis	75	P. fluorescens II
26	A. faecalis	78	P. type 6
27	A. faecalis	79	P. fluorescens II
28	A. faecalis	80	P. fluorescens II
29	A. faecalis	81	P. type 2
30	A. faecalis	82	P. type 5
31	A. faecalis	83	P. type 2
36	unknown type 3	84	P. type 6
37	A. faecalis	85	P. type 7
39	unknown type 3	86	A. faecalis
40	A. faecalis	87	P. type 8
41	A. faecalis	89	P. fluorescens II
42	P. fluorescens II	90	A. faecalis
43	A. faecalis	91	A. faecalis
44	P. fluorescens II	97	P. type 9
45	P. fluorescens II	98	P. fluorescens II
46	Flavobacterium sp.	99	A. faecalis
47	P. fluorescens II	101	A. faecalis
48	Corynebacterium sp.	102	A. faecalis
49	P. fluorescens II	103	P. type 10
51	P. type 2	104	A. faecalis
52	P. fluorescens II	105	P. fluorescens II
53	P. fluorescens II	106	A. faecalis
54	P. type 2	107	P. type 11
55	P. type 4	881	A. faecalis
56	P. type 2	108	unknown type 3
57	P. fluorescens II	110	P. type 12
58	P. fluorescens II	111	P. fluorescens(?)
59	P. aureofaciens	882	P. type 13
60	P. aureofaciens	114	P. type 14

Table 12. Names of the Denitrifiers.

Isolate Number	Isolate Name	Isolate Number	Isolate Name
115 1181	unknown type 15	195 196	P. stutzeri
126	P. type 16	198	P. fluorescens(?) unknown type 22
129	P. type 18 P. type 18	202	
133	P. type 18	202	P. type 23 unknown type 24
135	P. type 18	204	P. fluorescens II
137	P. type 17	205	P. fluorescens IV
141	P. type 16	220	
143	P. type 11	221	
144	A. faecalis	223	
145	P. solanacearum	224	
1471	Corynebacterium sp.	2312	
148	A. faecalis	232	P. type 25
149	P. type 11	233	P. type 25
151	P. type 19	234	P. type 11
153	P. type 19	991	P. denitrificans ATCC 1386
154	A. eutrophus	992	P. aureofaciens ATCC 13985
155	P. type 20	993	P. mendocino ATCC 25411
156	P. aeruginosa	994	A. faecalis ATCC 8750
162	P. aeruginosa	995	P. fluorescens II ATCC 178
163	P. type 11	996	P. aeruginosa
164	P. aeruginosa	997	Pa. denitrificans ATCC 2008
165	P. aeruginosa	998	
166	P. aeruginosa	999	P. perfectomarinus
167	P. aeruginosa		
171	A. faecalis		
172	P. type 16		
173	P. type 14		
174	P. type 16		
175	Flavobacterium sp.		
176	Flavobacterium sp.		
177	Flavobacterium sp.		
178	Flavobacterium sp.		
179	P. type 19		
180	Flavobacterium sp.		
183	P. fluorescens IV		
184	P. fluorescens IV		
185	P. fluorescens IV		
188	P. type 11		
189	unknown type 21		
190	P. fluorescens(?)		
191	A. faecalis		
192	Bacillus sp.		
193	Bacillus sp.		

Isolate	Number of Flagella	Insertion of Flagella
4	1	polar or subpolar (based on 1 cell)
17	1	polar
21	l, some 2	polar
43	3 - 4	side attachment
62	1 and 2	polar
65	3 - 4	side attachment
107	1	polar or subpolar (based on 2 cells)
154	1	polar
156	1	polar
174	1	polar
191	1, some more	side attachment
Alcaligenes faecalis ATCC 8750	<u>3</u> 1	side attachment (based on l cell)
Pseudomonas fluorescens ATCC 17822		polar
Pseudomonas perfectomai		polar or subpolar

Table 13. Number and Insertion of Flagella of Selected Denitrifiers.

-	
Sample	Contributors and Their Addresses
Minnesota	Dr. Robert G. Gast Dept. of Soil Science Univ. of Minnesota St. Paul, Minn. 55101
California	Dr. Francis E. Broadbent Dept. of Soils and Plant Nutrition College of Agriculture Davis, Cal. 95616
Connecticut 1 and Connecticut 2	Dr. James L. Starr Dept. of Soil and Water, Connecticut Agricultural Experiment Station Box 1106 New Haven, Conn. 06504
Argentina (SP)	Ing. Arg. Adolfo Amma INTA Est. Exp. San Pedro Bs.As. Argentina
Argentina(B)	Dr. Ana Garay Departmento de Scielos Escuela de Agronomic INTA - Balcarce Argentina
Argentina(P)	In. Agr. O. Moresco INTA Est. Exp. Parana Entre Rios Argentina
Brazil	Ing. Eli Sidney Lopez Instituto Agronomico Avenido Barao de Itapuro, 1481 Caixa Postal 28 13100 Campinus Est. de Sao Paulo Brasil
Michigan(muck), Michigan(Pl), and Michigan(P4)	Dr. James M. Tiedje Dept. of Crop and Soil Science M.S.U. East Lansing, Michigan 48824

Table 14. Samples, Contributors, and Their Addresses.

70

Sample	Contributors and Their Addresses
Nigeria(C) and Nigeria(R)	Dr. A. Ayanaba International Institute of Tropical Agriculture OYO Road P.M.B. 5320 Ibadan, Nigeria
Columbia	Romeo Martinez CIAT Cali, Columbia
Philippines	Dr. Nyle C. Brady, Director International Rice Research Institute P.O. Box 1300 Makati Commercial Center Makati, Rizal D-708 The Philippines
Taiwan	Prof. M. H. Wu Dept. of Soil Science National Chung-Hsiang Univ. Taichung, Taiwan Rep. of China
Louisiana	Dr. W. H. Patrick, Jr. Dept.of Agronomy Louisiana State Univ. Baton Rouge, Louisiana 70803
Utah	Dr. John J. Skujins Dept. of Biology-UMC 55 Utah State Univ. Logan, Utah 84322
Kansas	Dr. Larry Murphy Dept. of Agronomy Waters Hall Manhatten, Kansas 66506
Poultry waste	Dr. Tata D.S. Prakasam Dept.of Agricultural Engineering Cornell Univ. Ithaca, New York 14850
Michigan(WG)	Dr. Michael Klug Kellogg Biological Station Hickory Corners, Michigan

•

