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ABSTRACT

NONLINEAR DYNAMICS OF SHAFTS ROTATING

AT NONCONSTANT SPIN RATES

By

Chih-Kao Ma

This study investigates both theoretically and experimentally the effects of

nonconstant spin rates upon the nonlinear dynamics of a shaft rotating about its longitudinal

axis. It is assumed that the spin rate can be written as the sum of a steady-state part and a

small periodic fluctuation. In particular, the spin rate is taken to be of the form

Q=O,+eQAsin(tot). The fluctuating component gives rise to time dependent

coefficients in the system's governing equations and thus a variety of resonant responses

result which depend on the relationship between (28, 89A, 0) and the system's natural

frequencies a)l and (02.

Both pro-buckled and post-buckled behavior of two main classifications, a

cantilevered beam and a simply supported shaft, are considered in this study. The

theoretical investigation involves obtaining approximate solutions to the governing

nonlinear differential equations by application of the method of multiple scales. A variety

of resonant conditions, including parametric resonance, main resonance, subharmonic

resonance and combination resonance, are investigated in detail. The influence which an

additional constraint of (02 ~ 3 to, has on the pre-buckled behavior of the simply supported

shaft is of predominant interest. Numerous numerical examples of these steady-state



solutions are presented which highlight a variety of phenomena such as non-existence of

steady-state motions, coexistence of steady-state motions and amplitude modulate motions,

and re-stabilization of trivial solutions. For the cantilevered beam case, Melnikov's method

is used to show that chaotic motions may exist.

Results from an experimental study on a spinning cantilevered beam is used to

confirm the presence of a variety of phenomena which were theoretically predicted to exist.

Finally, numerical simulations are employed to check a number of the approximate

solutions obtained by the method of multiple scales. They are also used to investigate non-

steady-state responses.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In the design of turbomachinery one will always encounter rotating components.

The shaft is a common example among these components and often they spin at high

speeds. It is well known that high rotational speeds can induce Vibrations Via forces from

mass imbalances and from instabilities caused by destabilizing forces such as internal

damping, dry friction, hydrodynamic bearings, aerodynamic forces, magnetic, and

electrodynamic forces. These Vibrations will greatly limit the performance of the design

and can even lead to failure. Therefore, the study of the dynamic behavior of shafts and the

associated instabilities is an important consideration in turbomachine design.

A great deal of research has been undertaken in the general area of rotating shafts.

Attention has focused on such topics as support stiffness, shaft alignment and mass

unbalance, non-symmetric stiffness, internal and external damping, and bearing Stability.

The literature on these topics is immense (e.g., see the books : Dimentberg [1961], Bolotin

[1963], Tondl [1965], Vance [1987] and the references contained therein). Past Studies

have investigated the dynamics of the system during run-up and run-down conditions, i.e.,

when the speed of rotation changes, monotonically, from zero to its final rotation speed (or

Vice-verse) (see, Lewis [1932], Iwatsubo et a1. [1972], Nonami and Miyashita [1978,

1979], Victor and Ellyin [1981] and Ishida et al. [1987]). Other studies have been

concerned with the dynamics when the rotational speed is held constant. However, in

practice, the rotational speed of a shaft can only be kept approximately constant due to

1
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external perturbations upon the system. Often, the fluctuating component of the rotational

speed is sufficiently small (as compared to the mean value of the rotational speed ) and the

rotating shafts will run at, or close to, a constant speed. However, even small fluctuations

can have large effects which may give rise to various types of resonances, such as two-

mode internal resonance phenomena, sub, super, and combination resonances, and

parametric instabilities.

The aim of this thesis is to report on the influence of an unsteady spin rate, fl(t),

on the nonlinear dynamic behavior of a flexible shaft rotating about its longitudinal axis. A

range of cross sections will be considered, varying from rectangular, in which the shaft is

assumed to be infinitely stiff in one direction, to circular. In particular, the spin rate is

taken to be of the form Q(t) - Q" + 8 9A sin((t)t), i.e., a constant spin rate, (2,, which

has a small sinusoidal fluctuation superimposed upon it. The fluctuating component gives

rise to time dependent coefficients in the system's governing equations (i.e., parametric

excitation) and thus a variety of resonant responses result which depend on the relationship

between (2., 89A, (0 and the system's natural frequencies. In this study, attention is

focused on the parametric resonances and the effect of the internal resonance (i.e.,

(02 ~ 3 0),, where (01 and (112 are the linear natural frequencies of the system).

1.2 Literature Review

It is well beyond the scope of this inuoduction to review the current literature

regarding rotating shafts in general and so only studies which are considered to have been

most relevant to this thesis shall be cited. _ For more general information, the reader is

refereed to the texts cited in Section 1.1.



1.2.1 Rotating Beams

The dynamics of rotating elastic beams have been the subject of many investigations

over the past years. Most describe the case in which the beam lies in the plane of rotation

(e.g., turbine blades and propellers). These are classed as radially rotating beams. Fewer

studies have been concerned with the dynamics of beams rotating about their longitudinal

axis. Amongst these are works by Shaw [1988] who showed, by using a version of

Melnikov's method, that chaotic motions exist for a slender beam rotating about its

longitudinal axis, acted on by pulsating torques. Wang [1982] investigated the bifurcation

branches of a fixed-free beam rotating at a constant rate. Odeh and Tadjbakhsh [1965] and

Atanackovic [1984, 1986] also considered axially rotating fixed-free beams whereas a

work by Bauer [1980] studied the linear dynamic behavior of a beam rotating with constant

spin about its longitudinal axis for a wide variety of end conditions. He also presented the

response to harmonically forced oscillations of the beam. Laurenson [1976] used finite

element techniques to determine the modal characteristic of rotating beams. Krousgrill and

Bajaj [1987] studied a single degree-of-freedom dynamic system rotating at a prescribed

rate about a vertical axis. The form of the prescribed rotation rate is given by a constant

spin rate which has a small sinusoidal fluctuation superimposed upon it. They found

chaotic motions resulting from period-doubling bifurcations.

In the early part of the last decade, spacecraft missions and satellites began to

require the use of long flexible appendages to accommodate spin stabilization and for other

reasons e.g., antennas and booms. These flexible appendages can be accurately modeled

as beams and/or shafts. Generally, the dimensions of these rotating appendages are very

large. The flexibility of these rotating appendages, therefore, could no longer be ignored.

The determination of the nonlinear dynamic behavior became and remains a subject of

prime importance. The effect of booms oriented along the axis of rotation has been neared
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by Meirovitch and Nelson [1966]. Robe and Kane [1967] investigated the effects of elastic

deformation on the stability of a rotating satellite composed of two elastically connected

rigid bodies. They found the performance of the system can be highly sensitive to

dimension and spin rate changes. Kulla [1972] studied flexible satellite booms under

fixed-free boundary conditions in connection with the dynamic behavior of such a satellite.

1.2.2 Rotating Shafts

As long ago as Rankine [1869], problems were being studied regarding shaft

vibrations. Jeffcott [1919] proposed a linear model in order to analyze the response of high

speed rotating machines to rotor unbalance. Stodola [1924] made theoretical and

experimental studies of many fundamental phenomena (e.g., gyroscopic effect, secondary

resonance and stability, etc.) of rotating shafts. The critical speeds of shafts with

distributed mass were examined by Grammel [1929]. Kimball [1924] and Newkirk and

Taylor [1925] were the first to show the possibility of shaft instability in the post-critical

range due to nonconservative loads. Kimball found that the cause of instability was

internal hysteresis, whereas Newkirk and Taylor identified oil films in journal bearings as

another source of instability. Shaw [1989] used methods from dynamical systems and

bifurcation theories to investigate the instabilities and resonances of rotors caused by

internal hysteresis, fluid film bearing forces, and mass unbalance.

A book by Tondl [1965] presents an extensive collection of experimental results

and detailed theoretical analyses associated with the subject of rotor dynamics. Nonlinear

and internal resonance conditions are both treated. Yamamoto and his colleagues have been

very active over the years, dealing experimentally and theoretically with problems of

rotating shafts arising from nonlinear, parametric, combination, and internal resonances.
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Lengthy reports have been presented, for example, Yamamoto [1960,1961], Yamamoto

and Hayashi [1963] and Ishida et al. [1986,1989,1990].

Parametric instabilities can be induced in rotating systems due to pulsating speeds

and torques. Eshleman [1967] developed the equation of motion and the corresponding

' boundary conditions of this problem, but he did not succeeded in solving the equations.

Unger and Brull [1981] presented an analytical and numerical investigation to determine the

stability regions of the shaft due to a pulsating torque applied at its ends. They investigated

cases of principal and combination parametric resonances and found that the most common

and dangerous parametric instabilities arise as a result of combination resonances.

Ariaratnam and Namachchivaya [1986] used the method of averaging to examine the

bifurcation behavior of parametrically perturbed rotating systems with nonlinear

characteristics. A paper by Kammer and Sehlack [1987] reported on the effects of

nonconstant spin rate on the linear dynamics of rotating shafts. They found that parametric

resonances exist for shafts whose cross sections have unequal principal area moments of

inertia. However, when the two moments of inertia are equal, the shaft cannot be

parametrically excited.

A book by Bolotin [1963] presents an extensive summary of the instabilities of a

rotating shaft due to the effects of nonconservative loads. Ehrich [1964] investigated the

instability in rotating systems induced by internal damping in the rotor and gave a stability

boundary defined in terms of the ratio of external damping of the system to the internal

damping in the shaft. Gunter [1967] and Gunter and Trumpler [1969] evaluated the

stability Of high speed rotors with internal friction on damped, anisotropic supports and

attempted to theoretically explain many of the experimental observations of Newkirk [1924]

concerning stability due to internal rotor friction. Genin and Maybee [1970] have used

energy methods and presented results in the form of boundedness and growth theorems for
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the problem of whirl motions of a linear Viscoelastic continuous shaft. Crandall [1980]

gives detailed physical explanations of the destabilizing effects ofdamping in rotating parts.

The instability phenomena of asymmetric rotating shafts (caused either by the shaft

having a non-circular cross section or by slots on key ways) are significantly different from

those shafts which have symmetrical cross sections. The first extensive investigation of the

Vibration of asymmetric shafts was made by Smith [1933], who discussed the cases in

which the shaft, or the bearings, or both were asymmeuic. Taylor [1940] and Foote et al.

[1943] investigated the effect of an asymmetric cross section on the whirling characteristics

of high speed rotors. Brosens and Crandall [1961] investigated the motion of the

elastically supported rotors having unequal diametral moments of inertia. Crandall and

Brosens [1961] studied the stability of a rotating system whose rotor and shaft both are

asymmetric. Hull [1961] experimentally investigated the whirling for three shafts with

different cross sections in combination with uniform or asymmeuic stiffness bearing

supports. Ariaratnam [1965] studied the effect of both external and internal damping on the

transverse Vibration of unsymmetrical rotating shafts. Inagaki et a1. [1980] presented an

analytical method for the evaluation of the synchronous response of a general asymmetric

rotor-bearing system. Genta [1988] derived the equations of motion for a general (an

asymmetric rotor running on an asymmetric supporting structure), multi—degree of freedom

rotor, based on the finite element method. He then used a series solution to solve these

equations. Day [1987] used numerical simulations and the method of multiple scales to

investigate the nonlinear Jeffcott model which considered nonlinearities arising from

deadband, side forces and rubbing. Mazzilli [1989] used the method of multiple scales to

study the effect of a geometric imperfection on the large amplitude vibrations of a

horizontal, rotating shaft.
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1.3 Scope and Organization of the Thesis

The main task of this study is to investigate by means of analyses, numerical

simulations, and experimentation, the dynamic response of a flexible shaft rotating at

nonconstant speeds. Particular attention will be focused on the nonlinear behavior of the

shaft.

There are two main classifications in this study:

(1) In which the shaft is assumed very stiff in one direction, i.e., we have a

beam with a rectangular cross section.

(2) In which the shaft is (a) exactly circular or (b) close to circular.

The general approach adopted to study both of these classifications is to first derive

the equations of motion. This is accomplished using Hamilton's principle, and the

resulting pair of coupled nonlinear, partial differential equations are reduced to two

ordinary differential equations by assuming that the first mode dynamics dominate the

shaft's response. The method of multiple scales (Nayfeh and Mook [1979] and Nayfeh

[1981]) is then employed to find approximate solutions to these equations. The accuracy of

these approximate solutions are then checked by direct numerical integration of the

equations of motion.

An important part of the overall study is the inclusion of a physical model. It is

used to obtain a realistic range of values for the parameters used in the mathematical model.

Moreover, the results obtained from the experimental part of the work will, it is hoped, add

credence to the simplifying assumptions used in the theoretical component of the study.

Experimental results may also uncover responses that the theory did not predict. Hence the

experimental work can be used to refine the theoretical approach. It is also believed that
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working with the experimental set up will give better insight into the physics of the

problem

In particular, the arrangement of the thesis is as follows:

In Chapter 2, a mathematical model which characterizes the rotating shaft is

derived. Three partial differential equations are obtained using Hamilton's principal which

are then reduced to two nonlinear ordinary differential equations in terms of the first modal

amplitudes. These equations are the basis for all subsequent analyses.

The nonlinear dynamics of a cantilevered beam rotating at a nonconstant spin rate about

its longitudinal axis are investigated in Chapters 3 and 4. In Chapter 3 we restrict our

investigation to a mean spin rate Q. less than 90 (where 90 is the flexural vibration

frequency of small oscillations of the first mode of the non-rotating shaft). The equation of

motion is homogeneous with time dependent coefficients and cubic nonlinearities. The

principal parametric resonance is studied (i.e., (0 ~ 2 (00 where 0’0 is the natural frequency

of the beam as it rotates). If the mean rotating speed (28 is greater than 520, the beam will

buckle to a non-zero equilibrium position. This is the case discussed in Chapter 4. Using

a coordinate uansformation, the equations of motion governing the shaft's motions about

the buckled position are obtained and are found to be nonhomogeneous, containing

quadratic and cubic nonlinearities and time dependent coefficients. Attention is focused on

two resonances, to ~ 2 (1)0 and 00 ~ 0)., , and approximate solutions are obtained for

oscillations around the buckled position. Numerical simulation are employed to track the

beam's behavior as the motion changes from oscillating about one buckled position, to a

motion that encompasses both buckled positions. Bifurcated and chaotic motions are

observed in this instance and so use is made of Melnikov's method to determine the

parameter conditions for the possible existence of chaos.

= .....l
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In Chapters 5 and 6 we deal with the dynamics of a shaft with circular and close to

circular cross section. The problem now involves two, coupled, nonlinear ordinary

differential equations, and hence there exists the possibility of an internal resonances

between the two rotating natural frequencies (01 and (02. Chapter 5 examines the pre-

critical behavior of the rotating shaft. In particular, four cases of external resonance are

studied: to a 2(01, (0 a... 2012, (0 = 011+ (02 and (r) 2012- (01, both in the presence of, and

the absence of, internal resonance. Chapter 6 is concerned with the post-critical behavior

of the shaft. When the shaft is buckled, low order internal resonances did not exist.

However, there is the added complication of the possibility of chaotic motions. This is

studied using numerical simulations.

Chapter 7 describes the experimental setup and presents the results obtained from

experiments completed on a cantilevered beam. These are compared, qualitatively, with the

theoretical results of Chapters 3 and 4. Finally, conclusions and recommendations for

future work are presented in Chapter 8.



CHAPTER 2

MATHEMATICAL MODELLING OF THE SYSTEM

2.1 General

This chapter is concerned with the mathematical modelling of the system which is

illustrated in Figure 2.1. The general configuration investigated in this study consists of a

long slender shaft of length I, rotating about its longitudinal axis at a nonconstant rate,

9(t), executing motions which can be described by deflections (u,v,w) measured relative

to a rotating coordinate frame (x,y,z) which is also rotating at Q(t). In the analysis the

following assumptions are made: (a) the effects of applied forces, torques and gravity are

negligible, (b) the thickness of the shaft is so small compared to the length, that the effects

of shearing deformation and rotatory inertia of the Shaft can be neglected, (c) the bearings

are rigid and axially symmetric, (d) the frequency of excitation is far below the first axial

and torsional resonances, and (e) that plane sections remain plane and so we may neglect

inertial torsional and axial effects. Hence, the shaft can be mathematically modeled using

Bernoulli-Euler beam theory. Having found the kinetic and potential energy of the shaft,

the equations of motion are derived using Hamilton's principle and the resulting coupled

nonlinear, partial differential equations are reduced to ordinary differential equations by

assuming that the first mode dynamics dominate the shaft's response. The equations of

motion contain nonlinearities up to order three. Two classifications of boundary condition

will be investigated in this study: (a) cantilever and (b) simply supported.

Employing the above beam theory assumptions, the displacement of an arbitrary

point in the cross section is given by

10
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Y!v ‘¢
 

x,u

  

Figure 2.1 The coordinate system

fi(X. y. 2.t)=U(z.t) (2.1)

V (X. y. L!) = V(Zrt) (2.2)

WK. y. AI) = W(z,t)- X<P(z.t)- y¢(2.t) +862

=nr(2.t)+112(z.t)-xcp(z.t)-y¢(z.t)+eoz (2.3)
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where the z-axis is the neutral axis of the shaft and the x, y-axes are axes of symmetry for

the cross-section (the principal centroidal axes of the shaft's cross-section); 11, V and w are

the displacement components of a point on the neutral axis in the x,y and 2 directions,

respectively; tp and 0 are the angles of rotation of an element of the shaft about the y and x

axes, respectively. Note that the axial displacement W(x, y, z,t) is composed of five

components: (a) displacement, 1] 1(2, t) , which is defined as being associated with uniform

elastic extension of the neutral axis; (b) displacement, 11 2(z,t), which is defined as being

associated with the "foreshortening effect", i.e., the axial displacement of the shaft due to

large transverse displacements; (c and d) displacements, xtp and y0, associated with fiber

strain of "plane sections" bending; (e) initial strain 802.

We assume 30 = 0 in this study. The displacement of an arbitrary particle in the

crosssectionoftheshaftcanthenbewrittenas

'r' = fix, y. z,t) i+V(x. y. z,t) i+W(X. y. z,t) E

= u(z,t) 'i'+v(z,t) j+[w(z,t)- x<P(Z.t)- y¢(z,t)] E (2.4)

where (1,], E ) are the usual unit vectors.

The velocity of this particle is given by

Vc=f+f2xf

=(u-vn)i+(y+no)'j+(w-x¢-yq’r)i€ (2.5)

where {2:9 k.

The kinetic energy per unit length of the shaft AT can be written as
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(2.6)

In the modelling, we are not including the effects of rotary inertia and hence the total kinetic

energy of the shaft T is found to be

12%]; Asz

I , . -

=ipA l. [(u-v 9>2+<v+u m’W’] dz (2.7)

In the next two sections we will find the potential energy of the shaft and then use

Hamilton's principle to derive the equations of motion for two different systems, a

cantilevered beam and a simply supported shaft.

2.2 The Case of a Rotating Cantilever Beam

For this case the shaft is assumed to be infinitely stiff in one direction (i.e., a

beam). We also use the following assumptions: (a) If the beam is kept relatively short

(e.g., less than 20 beam width), the transverse vibration is purely planar (i.e., V = 0); (b)

The axial deformation of the neuual axis is negligible; (0) the beam has a moderately large

curvature.

Define extensional strain of the neutral axis as

1 dsz-dSZ
an: - ——

2 d5” (2.8)
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where S is the undeformed arc length of the neutral axis and s is the deformed arc length of

the neutral axis. Using this definition, it can be shown (Ho, Scott and Eisley [1975]) that

the only non-zero strain component an in terms of displacement components is

eu=W’+-2‘-[u’2+w”]

= W""‘P'+iifi'z+wdi (2.9)

It is assumed that the longitudinal motions are small, i.e., w'2 a. 0- Hence we can obtain

_ I I l ’2

(2.10)

From assumption (c), it can be shown that (see Appendix A).

533 ~ 11” [1+1 u’z]

32 2 . (2.11)

The potential energy per unit length of the shaft AV can then be written as

Be 2
AV = IA —23h dA

= §[Aw’2+ Aw’u’2+ Iyy u”2 (l +lu’2) 2 +£u’4]

2 2 4 (2.12)

Note that the potential energy is composed of two components: (a) the elastic potential

energy due to bending; (b) the elastic potential energy due to stretching of the shaft.

The total potential energy of the shaft V can be found as
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V = If, AV dz

E l ’2 I ’2 n2 1 12 2 A 4

=—j [Aw +Aw 11 +1 u (l+—u ) +—u’ dz

2 ° ” 2 4 (2.13)

Hence the Lagrangian function is given by L(t) = T(t)—V(t). According to Hamilton's

principle, we must determine the functions u(z,t) and w(z,t) which render stationary

:12 L(t) dt . A straightforward application of the methods of calculus of variations yields

the equations of motion:

pAw-EAi[w'+l u'2]=0

dz 2 (2.14)

pAii +EI”. ( u""+ u””u’2+4 u’u”u’” + u"3 ) -pAQ2 u

—EA3-[ '+l u’z] u’-EA [w'+l ed] u”=0

32 2 2 (2.15)

Equation (2.14) can be simplified by the following manipulations. Integrate it to obtain

EA [w’i-lu’z]: j; pAw(§,t) d§+C(t)
2

(2.16)

where C (t) is an arbitrary time dependent function. The normal force on any shaft cross-

section is

N(z,t) = [A 0’ dA

=jAE eu(z,t)dA

= EjA[w’-xtp’+-;-u’2] dA

= E A [W'+i“'2] (2.17)

Lye-l."
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Now, since N(I,t) = 0, we may combine this with equations (2.16) and (2.17) to conclude

that

N(z,t)=—j: PAW(§.t)d§
(2. 18)

Substituting equations (2.17) and (2.18) into the equation (2. 15), we obtain

pAii + E1”, ( u””+ u””u’2+4 u’u”u”’ + u"3 ) — pAQ2 u + ueu —

pAw u'+u"]; pAw(§,t)d§ =0 (2.19)

where tie is a viscous damping term added to the equation to allow for some energy

dissipation.

The function w(z,t) can be eliminated from equation (2.19) by using the following

expression (see Appendix B)

~ _ _l_ :2

W(z,t)= 2 Eu (art) d: (2.20)

The governing integro-differential equation which determines u(z,t) is found by

substituting equation (2.20) into equation (2. 19) . The equation is:

pAii + El”. ( u"” + u””u’2+ 4U’ 11” u’” + u”3 ) — pAQzu + trail

2 a2

+%pA u’%;£ [u’2(§,t)] dt-é-pAu”£ 51—; {If [u’2(n,t)] dn }d§= 0

(2.21)
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In order to transform equation (2.21) to dimensionless form, we use the following non-

dimensional variables:

Equation (2.21) then rescales to (dropping the overbars for convenience)

fi+(“m1+um1u12+4uruuum+un3)-92u+ucfi

1,32 ,2 1”182{§,2 }_
tin Wfiu (§,‘t)d§--2-u [W jo u (11.0411 dé—O

(2.22)

where

'__3_(_)
()-81

mi).
()-82

Equation (2.22) can be reduced to a nonlinear ordinary differential equation by using

Galerkin's method. We take a first mode approximation to the solution using the

eigenfunction , ¢(z), of the linearized fixed-free beam as the coordinate function.

Let

u(z,t) = Q0!) <9(2) (2.23)
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where

Q(r) is the nondimensional modal displacement

¢(z) = cosh 912‘ cos 812- 0.7341 (sinh i312- sin [312)

51:1'8751'

Substituting equation (2.23) into equation (2.22) and applying Galerkin's method then

yields:

("2+4(Q’0+QQZ>+tt.0+bQ’+(noz-nz)Q=o (224)

where

a =1; [1; aide] 9'9 dz-li {L‘ [1582" ldfilw dz (2.25)

_l I”! ’2 l I II I» l ”3

b-joo o odz+joo<l> o Odz+joo odz (226)

93:9”.

Numerical values for the constant d and b are obtained by numerical integration of

equations (2.25) and (2.26), and they are
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2.3 The Case of a Rotating, Simply Supported Shaft

For this case we assume: (a) the longitudinal inertia force is negligible, and (b) the

curvature is small (i.e., linear curvature). As will be shown, the source of the nonlinearity

is from mid-plane stretching which arises on account of the distance between the supports

being fixed.

The potential energy per unit length of the shaft AV can be written as

2

A 2

= 13-[Aw’2+ Aw’(u’2+ v’2)+ Iyyu”2 + luv”2 +£(u’2+ v’2)2]

2 4 (2.27)

The total potential energy of the shaft V can be found as

V=j{, Ade

= g. j!) |:Aw’2+Aw’(u’2+V’2)-t-Iyyu”2 +Iuv”2 +%-(u’2+v’2)2 dz

(2.28)

The equations of motion are then obtained by applying Hamilton's principle which result in

the following

pAw-EAi[w’+l(u’2+v’2)]= 0

dz 2 (2.29)

ee m, e 2 ° rr

pAu+EIwu -2pAQv-pAQ u-pAvQ+ue(u-VQ)

—EA-a—[ ’+-l-(u’2+v'2)] u'+u,u-EA [w'+l(u'2+v'2)] u”=0

dz 2 2

(2.30)
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pAV+EIu v””+2pAQu—pAOZV+pAuO+uc(V+uQ)

—EA—a—[ ’+-1—(u’2+v’2)] v’+ uiv - EA [w’+l(u’2+v’2)]v” = 0

Oz 2 2

(2.31)

We have also simply added external and intenlal damping terms in the equations of motion

such that the external damping force is proportional to the absolute velocity, while the

internal damping force is proportional to the shaft's velocity relative to the rotating

coordinate system. The 2 component of these equations is simplified by assuming the

longitudinal inertial force pAw = 0 and by assuming that the shaft carries no initial axial

load; it is given by

1|: ’+-;—(u’2+v’2)]= 0

82 (2.32)

Integrating equation (2.32) with respect to z and using the boundary conditions w(O) = w(I)

= 0, yields

1
wr+_1_(ur2+vr2)=iJ‘0 (u’2+v’2) dz

2 21
(2.33)

The dependent function w(z,t) can be eliminated by substituting equations (2.32) and

(2.33) into equations (2.30) and (2.31) to yield

pAii+E1yy u”"-2pAQV-pA92u-pAVO-t-ucm-VQ)

. E1 9 II 1 I2 12

I ll 21 u I0 (11 ) (2.34)

pAV+EIn V”"+2pAQu-pA92v+pAuO+ue ( V+uQ)

+uiv -£-A-V”jé (u’2+v’2)dz=0

21 (2.35)
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In order to transform equations (2.34) and (2.35) to dimensionless form, we use the

following non—dimensional variables :

I 45 ryyZ 45 ryyZ

EI _

r: —17;t=l‘t, (2:2

pAI I‘

and relationships:

1,m=(1+ii)lyy

Equations (2.34) and (2.35) can then be rescaled to (dropping all the overbars for

convenience)

2

ii + u””- 20v-n2u- vO—[rT’y] u” I; (u’ 2+V’2 )dz

2 2

+2[-r:’—] u,(u-VQ)+[—rfl] Uifi=0

I (2.36)

2

V + (1+ 8)v”” +2nv - 02v+ uQ-[flfl] v” [(1, (u’ 2+v’2 )dz

22

”[511] u,(v+uO)+[51] uiv=0
1 l (2.37)
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Equations (2.36) and (2.37) can be reduced to nonlinear ordinary differential equations by

using Galerkin's method. To this end, a first mode approximation to the solution is

assumed using d>(z), the eigenfunction of the linearized simply supported shaft.

u = U(t) d>(z)
(2.38)

V = V(t) ¢(z) (2.39)

where

U(t),V(t) are unknown functions of time t

¢(z) = «(2 sin 1t 2.

Substituting equations (2.38) and (2.39) into equations (2.36) and (2.37) and applying

Galerkin's method then yields

U+(noz-n2)U-2oV-VO+2eu,(U-Vn)

+ a uiU+e 002W U2+V2) = 0 (2.40)

V+((1+5)ao2-o2)V+2QU+UQ+2ett,(V+UO)

+ cu,V+et202V(U2+V2)=0 (2.41)

2

where 8 =(51'1)
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It is important to note the definition and interpretation of a few of the terms in equations

(2.40) and (2.41):

no the flexural Vibration frequency of small oscillations of the first mode of the

non-rotating shaft.

8 the square of slendemess ratio, which is very small.

8 the difference between In and I”, In = (1+ 8) I”.

U(t) nondimensional modal displacement in the x direction.

V(t) nondimensional modal displacement in the y direction.

2.4 Summary of the Chapter

Equations of motion have been presented for a shaft rotating about its longitudinal

axis at a nonconstant rotational speed. The equations of motion were derived using

Hamilton's principle and the resulting coupled nonlinear, partial differential equations were

reduced to ordinary differential equations by assuming that the first mode dynamics

dominate the shaft's response. Two different systems were investigated in this chapter: (a)

a cantilevered beam and (b) a simply supported shaft. The equations of motion contain

nonlinearities up to order three.



CHAPTER 3

ANALYSIS OF A ROTATING CANTILEVER BEAM

WITH Os < 90

3.1 Introduction

In this chapter we investigate the nonlinear, planar motion of a uniform, initially

straight, elastic beam rotating about its longitudinal axis at a nonconstant spin rate. The

spin rate is expressed as the sum of a steady—state term (i.e., Os) and a relatively small

sinusoidal perturbation. The beam is considered to be fixed at one end and free at the

other. For a beam with these end conditions, nonlinearities can arise due to moderately

large curvatures and the longitudinal inertial forces (Atluri [1973]). We will resuict our

investigation to mean spin rates, $25, less than these required to buckle the beam, i.e.,

Q, < (20 where no is the flexural Vibration fiequency of small oscillations of mode one of

the non-rotating beam. In Chapter 4 we will analyze the case of 9, > no (i.e., post-

buckled), in which the beam stops oscillating about the static equilibrium position and

buckles to one side or the other.

The pair of coupled nonlinear, partial differential equations which were derived in

Chapter 2 are reduced to one ordinary differential equation by assuming that the motion can

be described by a single, in plane mode. Experimental work on a physical system indicate

that such an assumption is valid. Approximate solutions to the governing equation of

motion are sought using the method of multiple scales and the results are compared to these

obtained by direct numerical integration.

24
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3.2 Equations of Motion

From Chapter 2 (see Section 2.2) we know the equation of motion will have the

following form:

0+4<020+QQZ)+u.Q+bQ3+tnr’-02)Q=o (3,1)

where Q(t) is the nondimensional modal displacement of the beam.

Note that equation (3.1) describes the first mode response of the rotating beam in the x-z

plane subject to assumptions outlined in Chapter 2. It is valid for any form of rotational

speed, 9. In the remaining sections of this chapter, attention will be focused on the

solution of equation (3.1) for rotational speeds below the buckling speed, i.e., Q < (20.

Moreover, the form OfQ will be taken as

Q=Q,+EQASinm (3.2)

where

e is an arbitrary small but finite parameter

Q, is mean component of the rotational speed

(2A is amplitude of the sinusoidally oscillating part of the rotational speed

to is frequency of the sinusoidally oscillating part of the rotational speed.

3.3 Approximate Solution of the Governing Equation of Motion

The method of multiple scales will be employed to obtain an approximate solution

to equation (3.1). To this end, we first reorder the equation by introducing
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Q=e2 q
(3.3)

Substituting equation (3.3) into equation (3.1), we obtain

éi'Hid(CIC'lz'l‘qzél)‘fZ’ELH'l'l'fib<l3+(902"§12)<1=0 (34)

where [.1.3 = 2 a 11.

We now seek a first-order uniform solution of the form

9(138)=90(T02T1)+591(T02T1) (3.5)

where Tn: 6%.

In terms of Tn, the time derivatives become

1=D0+8D1+82D2+ ooooooooo

dt (3.6)

iii-D 2+2er D +ez(2D D +D2)+m------
(11:2 0 0 l 0 2 1 (3.7)

 

Substituting equations (3.2), (3.6), (3.7) and (3.8) into equation (3.4) and equating

coefficients of like powers of 8, yields
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D0290+(902'ar2)‘10=0 (33)

1302 (11+ ( Qo2 - 9:2 )91 = ‘2 DoDl‘lo ’ d [‘10 (Do‘lo)2 4' (1021302 ‘10]

.2 “Doqo-bqog‘f’zn'gASin (OT (10 (3.9)

The solution of equation (3.8) can be written as

where (00 = ‘t/ (202 — 0,2 and A is the complex conjugate of A.

Then, equation (3.9) becomes

D02 q, + (002 q, = 2 d (1102 A2 [A exp(3i(00To) +A exp(i(00To)]

— 2i 1.1010 A exp(it00To) - b A2 [A exp(3i0)oTo) + BK exp(i(00T0)]

(3.1 1)

where cc stands for the complex conjugate of the preceding terms and the prime stands for

the derivative with respect to T1. If 0) ~ 2030 we can see that additional secular producing

terms will arise in equation (3.11), i.e., a principal parametric response will occur. To

quantitatively describe the nearness of a) to the resonances, we introduce a detuning

parameter 0 defined according to

(0=2C00+80' (3.12)

Substituting equation (3.12) into equation (3.11) and setting the secular producing terms to

zero, yields
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—2imo(A’+uA)+(2d0102—3 b) AZX-iXQA o,exp(ior,)=0 (3.13)

To solve equation (3. 13), it is convenient to write A in the polar form

2 (3.14)

where a and B are real.

Substituting equation (3.14) into equation (3.13) and separating real and imaginary parts

yields

, a
(00a =-umoa--§Q,QAcosy

 

(3.15)

3 2 3

amoy’=cmoa-3:a +dm‘2’ a +aQ,QAsiny (316)

where7=oT1—ZB. (3.17)

Of particular interest are the steady-state motions resulting from a’ = 'y’ = 0. Hence we

have a trivial steady-state solution, a = 0 or

 

 

. 1 32 2

sm'Y: [-O'U)o+—(3b—2d0)0 )]

9. 9A 4 (3.18)

cosy: 1 {-2 limo]

(2,0, (3.19)

Squaring and adding equations (3.18) and (3.19), we obtain
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l

4 {a (00 :I:[(Q,QA)2- 4 112 (002] 2}

a2 = 

(3b-2d0002) (3.20)

or, rearranging this equation, we have

a2 1

E(3b-2dm02)i[(Q,QA)2—4[12610212

0': 

‘00 (3.21)

Using equations (3.3), (3.5),(3.10), (3.14) and (3.17) it is found that

I _ 2

Q = £2 a cos[912—Y] + 0(82)

(3.22)

Numerical examples of these steady-state responses will be given in Section 3.4.

Their stability can be ascertained by adding a small perturbation to the steady-state

value and checking if this perturbation grows or decays. For the trivial solution this results

in a unstable solution for ‘91 < O < 01 where

l
2 2

0'1 = [[ico‘lfi] _ 4 ”2]

0

(3.23)

The analysis to check the stability of the non-trivial steady-state value, a and 7, results in

the following inequality for a stable solution

2

-a—Q,QA sin'y [mod—32] < 0

2030 2030 (3.24)
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The figures in Section 3.4 show the results of this stability analysis. A solid line denotes a

stable solution, a dashed line indicates an unstable solution. It can be proved that the upper

branch is always stable, whereas the lower branch is always unstable.

3.4 Numerical Results

In this section we present representative solutions of the equations derived in

Section 3.3. Values for various parameters are based on a physical system which was used

in laboratory tests. The parameter values used, unless otherwise stated, are:

I): = 2.8, 89A = 0.1, e = 0.01, 90 = 3.516, b = 40.44, d = 4.60, (and hence

010 = 2.1266), and 28D = 0.00422.

Figure 3.1 shows a typical frequency response curve for a non-zero mean spin rate

(S2I = 2.8). This shows the variation of the steady-state amplitude as a function of the

oscillating component of the spin. Clearly, the overall non-linearity of the system is of the

hardening type. To the order of approximation used in the present analysis, the stable and

unstable non-trivial solutions continue to a exist as O is increased. A higher order analysis

would rectify this deficiency which of course could not occur in practice. The results

obtained from directly numerically integrating equation (3.1) are also shown on this figure

and are discussed later.

A series of results presented in Figure 3.2 show the effect of the mean spin rate,

as, on the steady-state amplitude, a. Three plots are presented for different values of 0'.

In each, when 9, approaches 12,, = 3.516 the results become invalid since the analysis

used in Section 3.3 is restricted to O, < 00. It is interesting to note that for some values

of,o (Figures 3.2b and c), the steady-state amplitude decreases as (28 is increased. There

also exist regions in which the jump phenomenon can be observed.
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I Figure 3.3 presents results showing the variation of the steady-state amplitude as a

function of 89A, the amplitude of the oscillating component of the spin. Figure 3.3a is

plotted for a detuning value of -20 and shows that there is always only one stable steady-

state, whereas Figure 3.3b shows that for a detuning value of 20, multiple steady-states are

possible.

The results obtained using the method of multiple scales can be checked by directly

numerically integrating equation (3.1). This was undertaken for a number of different

cases and the results have been plotted as "numerical simulation" on Figures 3.1 and 3.2c.

The comparison is good in all the cases tested. In situations where two stable, steady-

states exist, the solution adopted depends on the choice of the initial conditions. A few

examples of these simulations corresponding to Figure 3.1 are presented as time traces in

Figure 3.4. It should be noted that only the envelope of the solution, Q (t), is plotted in

these figures.

3.5 Summary of the Chapter

We have investigated the pre-buckled behavior of a fixed-free beam rotating about

its longitudinal axis at a nonconstant spin rate. The spin rate was expressed as the sum of a

steady-State part and a relatively small sinusoidally varying component. The approximate

analytical solutions were obtained using the method of multiple scales and it was clearly

demonstrated that a principal parametric resonance can occur at mean spin rates well below

the fast critical speed of the beam. For this type of resonance, the nonlinearities were of a

hardening type. The perturbation solutions accurately predict the amplitude of the steady-

state motions and their stability as compared to the numerical simulation results.
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CHAPTER 4

ANALYSIS OF A ROTATING CANTILEVER BEAM

WITH 0. > 90

4.1 Introduction

The nonlinear, planar motion of a uniform, initially straight, elastic beam rotating

about its longitudinal axis at a nonconstant spin rate is investigated in this chapter. In

Chapter 3 we restricted our investigation to spin rates (23 less than (20. However, in the

present chapter we will focus our investigation on (25 > no, i.e., under this condition, the

straight equilibrium position of the beam is unstable and the beam buckles to one side or the

other due to centrifugal effects.

When the mean rotational speed (2‘ is greater than {20, the linear stiffness term in

equation (2.24) will become negative with the consequence that small oscillations around

Q = 0 become unstable. To investigate the oscillations around the buckled position, we

transfer the coordinate of the equation of motion such that the new coordinate describes the

motion about the buckled position. The form ofQ will be taken as Q = Q, + 829A sinan .

As in the previous chapter, we focus our attention on the principal parametric resonance

(0 ~ 2 (no where (no is the natural frequency of the beam as it vibrates about the buckled

position. However, as will be shown in the subsequent sections, the coordinate

transformation gives rise to a nonhomogeneous term and so we will also investigate the

case of a main resonance, (1) ~ (00. The accuracy of the approximate solutions will be

checked by direct numerical integration of the original equation of the motion. We also

investigate the possibility of chaotic motion which can arise since the system is essentially a
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double-well potential problem. We use Melnikov's method to find the regions in the

parameter space where chaotic motion may exist. The results are then checked by

numerical simulations.

4.2 Equation of Motion

As in Chapter 3, we begin with the one mode equation of motion as it was obtained

inChapterZ.

Q+d(QZQ+QQZ)+2€uQ+bQ3+(Qoz-92)Q=0 (4.1)

where Q=Q,-I~£2§2A sinwt.

Before using the method of multiple scales to obtain an approximate solution about the

buckled position, we first transfer the coordinate of the equation of motion to the buckled

position. The buckled position, 5, is obtained by setting 9 = (2' and all time derivatives in

equation (4.1) equal to zero. Hence we have

(4.2)

Let the new coordinate be q, such that

Q = S '1' q (4.3)

Substituting equations (4.2) and (4.3) into equation (4.1), we obtain



4o

q+ar(2qq+qz)+az(q2q+qq2)+281151+°302q+71 c12'1’72 Q3

=ez(g,+g2q)sin(ut +154 (g3-1-g4 q)(sin (1)102 (4 4)

where (no, 7i, ori and gi are defined in Appendix C.

It is important to note that the equation (4.4) governs the beam's motion about the

buckled position. Comparing equation (4.1) with equation (4.4) we can observe that the

coordinate transformation has resulted in the addition of quadratic nonlinearities and a direct

forcing term.

4.3 Method of Solution

The method of multiple scales will be employed to obtain an approximate solution

to equation (4.4). We express the solution in the form

(1(T38) = 3 ‘11 (T0911, T2) '1' 82‘12 (T0,T1,T2) '1’ £3‘13 (T0,T1,T2)+° ' ° (45)

Substituting equations (4.5), (3.6) and (3.7) into equation (4.4) and equating coefficients

of like powers of 8 yields

Do2 ‘11 + (002% = 0 (4.6)

Do2 ‘12 '1' (002% = '2 D0 Dr ‘11“ 2 a! (111302 ‘11- “1(DOQr )2

'2 11l Do ‘11 - 71 Q12 ‘1' 8131“ (”To (4,7)
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Do2 Q3 ‘1' ‘002Q3 = ‘2 D0 D1%‘ 2 ‘11Q1Do2 Q2 ’ ‘12 Q1(DoQ1)2

- ( Dr2 ‘1' 2 130132 ) Q1 ‘ 4 arQrDoD1Q1" 0‘2 Q12 Do2 Q1

'2 ‘11 Q2 Donr’2 'Y1Q1Q2-3z 72 Q13

- 2 1»1 D1 Q1 '1' 82 Q1 sin ‘DTo (4.8)

The solution of equation (4.6) can be expressed in the complex form

ql = A( T1,T2 ) Cl (DOTO '1' K( 1‘sz ) c-l (”OTC (4.9)

where A is the complex conjugate of A.

Then equation (4.7) becomes

Dozqz-i-(uozqz =-2 i (no ( DlA+uA ) emoTO

+(3011moz-71 )r‘kzeiz‘°°T°—(onlcuozwy1 )AX+g—‘,e"°T°+cc

21 (4.10)

where cc stands for the complex conjugate of the preceding terms.

Depending on the inter-relationships between a) and (00, various conditions for

elimination of secular terms may be extracted from equations (4.8) and (4.10). In the next

sections we will consider two cases: (a) (0 == 2 (00 and (b) (0 == (00.
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4.4 The Case of m— 2010

4.4.1 Steady-State Solutions

Eliminating secular producing terms from equation (4.10) yields

D1A=— 11A. (4.11)

Consequently, the solution of equation (4.7) becomes

 

2 2

01m - — 3am - ° T
q2=[ 1 02 YI]AA_[ 1302 YI]A26120)0 0

m0 030

__ igl HDTO

2(m02_m2)6 '1' CC

(4.12)

To investigate the resonance to ~ 2 (00, we introduce the detuning parameter 6 defined

according to

m=2mo+ezo
(4.13)

Substituting equations (4.9), (4.12) and (4.13) into (4.8) and eliminating the terms that

lead to secular terms yields

_ 2

-2imoD2A-DfA—2uD,A+i(-6a,p,m02_§22+2y,ps)A Ce oTo

+[2a2w02-372-6a1F2C002+271( Fz‘F1)+2a1‘°ozF1]A2-K=O (4.14)

where
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_ 2 (“13102-71 )
F1 (002

2
= 3 “1‘00 ‘71

F

2 3 (002

 

F=2§L

3 60),}.

At this stage we have to employ the technique of reconstitution to continue with the

analysis. This involves recalling that

A=1AL=DOA+e D1A+82D2A

d ‘t (4.15)

 

and noting that DOA = 0 and an expression for DlA has already been found (see equation

(4.11)). From equations (4.15) and (4.11), we thus have

D2A=A+eztrA

8 (4.16)

Substituting equations (4.11) and (4.16) into equation (4.14) yields

. ._ 2

-2im0(A + euA) + 2211 (- 6 01,13, (002 - %1 + 2 71E, ) A e 8 0 TO + 112A

+ (2 a2 (1102- 3 72 -6 01le (0024-2 71(F2 -Fl )+2 (111(1102F)A2A}=(:4 17)
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To solve equation (4.17), it is convenient to express A in the polar form given in equation

(3.14). Substituting equation (3.14) into equation (4.17) and separating real and imaginary

parts yields

é=-€ua-82[3a1F3moa+§12---YJ-§—a]cosy

41110 (no

 

 

(4.18)

2

a7=ez[u-+oa+2(3a1F3cooa+gJa-71F3a)siny]

010 41:30 (no

2 3 1 1 3Y2 NFL-F1) 3

-e ——orFo)+—aFco+—or0)- +
[(21202110220‘“Do 2000 a

(4.19)

where7=8201-2|3. (4.20)

Periodic motions of the rotating beam correspond to the constant solutions of equations

(4.18) and (4.19), which in turn corresponds to a = "y = 0. Hence we have a trivial steady-

state solution, a = O, or

c...) = -4.
e G (4.21)

2

siny=-1—[- o-E—+Haz]

2 G “’0 (4.22)

where

82 _ 71F:
 

G=3aFm+

‘3 ° 4a)0 coo
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3 1 1 37 “HF-F)
H=-orF(o--aFm-—a(o+ 2+11 2

212 0 2110 2 0 4030 2‘00

2

Squaring and adding equations (4.21) and (4.22), we obtain

2 2

a2=i[o+"_12"02_117]

H (00 8

Substituting equations (4.9), (4.12) and (4.20) into equation (4.5), the steady-state

(4.23)

 

 

solutionhastheform

q=eacos(mt_7)

2

+82 a2 “1m02'71_3°‘1°’°2"71cosmic-7) +—§1fi-sinwt +O(e3)

20302 60102 (002—0)

(4.24)

Note that the last term in the above approximate steady-state solution comes from the direct

forcing terms 22 g1 sin an and does not depend on "a" .

4.4.2 Stability of the Steady-State Solutions

To investigate the stability of the trivial steady-state solutions, we will first convert

equation (4.17) from polar form into an autonomous Cartesian form. To this end we

introduce the complex coefficient, B, such that

iezot)
A = B cx

1" 2 (4.25)

 



where B=B,+iB,.

Substituting equation (4.25) into equation (4.17) and separating real and imaginary parts,

we obtain

2

B,=-euB,+r-:2[ —1’l—Bi+E-—G—B,-—PLBi Bf)

2100 2 (00 (00 (4.26)

2

2010 2 mo (00 (4.27)

To determine the stability of the steady-state solutions, we can add an infinitesimal

perturbation to the steady-state solution and check to see if this perturbation grows or

decays.

In vector form, this may be expressed as

9=$+y «am

where q) = ( 13,, Bi )7, e is the steady-state solution, and M << 1.

Substituting equation (4.28) into equations (4.26) and (4.27) and linearizing the resulting

equations, one obtains

:7 = M Y (4.29)

where
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-e Ll _ 82 G 82 112

M = (no 2 (no

_ £2 112 —e 11 + 82 G

_ 2 (00 o, . (4.30)

The stability of the trivial steady-state solution is governed by the stability of y in equation

(4.29) and thus by the eigenvalues ofM . The steady-state solution is stable, if and only if

the real parts of all eigenvalues are less than zero. For the trivial solution this result in an

unstable solution for a, < o < 02, where

2 I 2

“’0 E (4.31)

2 i 2

oz=—-u—+2 Gz-u—z

(no 8 . (4.32)

To investigate the stability of the non-trivial steady-state solutions we can follow the

same procedure. However, it is not necessary to first convert equation (4.17) into

Cartesian forms: the stability analysis may be completed directly on equations (4.18) and

(4.19).

InthiscasewefindtheJacobianmatrixMtobe

M- [4511- £26 cos? £265 sin'Y]

-282H 5 2226 cos? (4.33)

where the overbar denotes a steady-state value.

The results of this stability analysis are shown in subsequent figures of this chapter.
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4.4.3 Numerical Results of Approximate Solutions

In this section we present representative solutions of the equations derived in

Section 4.4.1. Values for the various parameters are based on a physical system that has

been used in laboratory tests. Results from the experimental investigation will be reported

in Chapter 7. The parameter values used, unless otherwise stated, are:

as= 3.7, 1:212A =0.05, 2 e u = 0.00422, (20: 3.516 and e = 0.1.

Figure 4.1 shows a typical frequency response curve for a non-zero mean spin rate

of Q, = 3.7. Note that in this and subsequent figures, we plot ea which is the magnitude

of the first order term in the approximation of q (see equation (4.24)). Clearly, we can

observe that the overall nonlinearity of the system is of a softening type, whereas in pre-

buckling case (i.e., (2‘ < $20) the overall nonlinearity was of a hardening type. As before,

a stable solution is denoted by a solid line whereas a unstable solution is denoted by a

chained line. It can be shown that the upper branch is always stable, whereas the lower

branch is always unstable.

Figures 4.2a-b present results showing the variation of the steady-state amplitude as

a function of 820” Figure 4.2a shows a case for which there is only one stable steady-

state solution, i.e., o = 0.0, whereas Figure 4.2b shows a case where multiple steady-state

solutions are possible, i.e., o = -28.0. Figure 4.3 shows the effect of the mean spin rate,

(2., on the steady-state solutions, for three different values of a. For clarity, only the

stable steady-state solutions are shown. Because of the post-buckled condition, starting

points of all the curves in Figure 4.3 are slightly above the point co = 3.516 (since the

equation are not valid for Q, < (20). It is interesting to note that for o = 0.0 and 10, the

steady-state amplitude decreases as (2‘ increases. The overall effect on the response may
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be better visualized by considering the response surface in the (a, o, (2‘) space. A three-

dimensional representations of this for both stable and unstable solutions are shown in

Figure 4.4a and 4.4b, respectively, for fixed values of 11 and 829A.

In Figure 4.4, to move along a constant 0 line, we need to continually adjust to

(since (00 is a function of Q8 and 0) = 2mo+ 820’). However, in practice we would be

more likely to hold a) fixed and not try to constrain 0. Hence, Figure 4.5 has been plotted

to show contours of constant 0) values. Again, for clarity, only stable solutions have been

shown.

Figure 4.6 represents a bifurcation diagram which dictates which type of steady-

state solution exists in the (u- ezflA parameter space. This space is divided into three

regions by the curves: (3:112[2(002im and 11 = e G. Note that the

boundaries of these regions are dependent on the coefficients of the quadratic nonlinear

terms and independent of the coefficients of the cubic nonlinear terms. In region I, only the

stable trivial solution exists. In region II, two solutions exist: the unstable trivial solution

and a stable non-trivial one. In region 111, there are three solutions: the stable trivial one

and two non-trivial solutions, one stable, the other unstable. Figure 4.7 shows the effect

of Q, on these regions. We observe that the region 11 decreases as Q, increases.

In order to check the results obtained by using the method of multiple scales,

equation (4.1) is numerically integrated. The results have been plotted as "numerical

simulation" on Figure 4.1 and represent one half of the peak to peak value of Q, obtained

by the numerical integration. The comparison is qualitatively good in all the cases tested.

Figures 4.8a-b present time traces of the steady-state soluu'on Q of the numerical integration

results for o = -28. Figure 4.8a results from one set of initial conditions from which the

solution is attracted to the trivial solution (i.e., a = 0). Note that even when a = 0, we
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Mulituaee of the unstable steady-state solutions
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Figure 4.5 ea, (0, {25 - Plot for Stable Steady-State Solutions, (3-D representations).
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would expect to see a small component of Q which arises from the direct forcing term

12’ gl sin (or (see equation (4.4)). The frequency of the response depicted in Figure 4.8a is

that of the excitation term, (0. Figure 4.8b shows the results for the same parameter values

as in Figure 4.8a, but using a different set of initial conditions. The solution is now

attracted toward the non-trivial solution set, corresponding to a at O . The main frequency

of thrs solutron rs -2- (1.e., subharmomc motion), which is cons1stentw1th the method of

multiple scales prediction of equation (4.24). The corresponding phase portraits of these

two time traces are shown in Figtu'e 4.9.

It is interesting to note that for yet another set of initial conditions, a third type of

steady-state solution can be found. In contrast to the preceding two, which were associated

with oscillation about the buckled position, we may also observe a large orbit which

encompasses both buckled positions (i.e., Q=:l:s). The period of this oscillation is twice

that of the forcing period (i.e., period 2 motion). The time trace of the steady-state solution

Q of this case is shown in Figure 4.10. If we decrease the a value further (e.g., down to -

30), numerical simulations can only find this type of motion, i.e., non-uivial oscillations

centered around a buckled position are no longer possible (but, of course, the small,

directly forced response can be found). Numerical simulations results for different 0

values are shown in Figure 4.11. From Figure 4.11 we observe that the snap-through

motion of the beam is of hardening type.

We also present the numerical simulations of equation (4.1) in terms of non-rotating

(i.e., laboratory) coordinates. Figure 4.12a shows a trajectory of the beam as it vibrates

about one of the buckled positions. The trace represents approximately 67 revolutions of

the beam. Figure 4.12b shows a trajectory associated with a motion that encompasses both

buckled positions.
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4.5 The Case of (oi-st!)0

In this section the frequency to is taken to be close to (no and the proximity of co to

(00 is quantified by the external detuning parameter, 0, which will be defined by

m=mo+ezo (434)

The secular terms and small-divisor terms are now eliminated from equation (4.10) if

DlA = - 11 A - —1—g ei‘m'mm’

4‘00 (4.35)

Then, the solution of equation (4.7) becomes

2_ _ 2_ ,
q2=[alm92 71JAA—[3a1m0 2 7,]Azctzmo'ro + cc

“’0 3‘90 (4.36)

Substituting equations (4.9), (4.36) and (4.34) into equation (4.8) and eliminating secular

producing terms yields

-21(DODzA-Dle-ZtlDlA-i-[2112C002-3‘Yz—GGIF20302

+ 2 y,( Fz-F, )+ 2 alm02F1]A2 K = 0 (4.37)

As in Section 4.4.1, to proceed we use the technique of reconstitution. Substituting

equations (4.35) and (4.16) into equation (4.37) yields
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. 2
-2i0130(A-1-1811A+t:F,,e15 0T0)

+ezl-u2A-uF4C€26T0+F5Ale=o (4.38)

where

4 (no

F5=(-2a2w02+372+6alF2m02-271(F2-F1)-2(110)02F1.

Substituting equation (3.14), the polar form of A, into equation (4.38) and separating the

results into real and imaginary parts, yields

2

 

é=-Eua-28F4COS‘Y+-e—u§siny

“’0 (4.39)

2 2 2 2 3

a’y=r~:zoa+2eF,,siny-1-a1’121+8 ”F4005? fl

”’0 ‘°° 80’0 (4.40)

where 7 = 82 o r-B. (4.41)

Again, it is possible to simplify these equations should only the steady-state responses be

sought. For such a case, equations (4.39) and (4.40) reduced

2

-28F4cosy+£—1‘-l-l—:‘-siny=eua

“’0 (4.42)

2 2 3 2 2
e F e F a e a

_ll‘cosy=-ezoa+ 5 - 11

(Do 8 ‘00 2 ‘90 (4.43)

 

28F4Sin’Y-l-
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Squaring and adding (4.42) and (4.43) gives

c3 a6+cz a4+cl a2+co=0 (4.44)

where

C3=F5

c2='8F5(112'*"°0‘5)

2 2

c,=—16(4tooot12+4030202+u‘+411820)") 

4 12,2
2

(0

co=-64(—?—9-+112F42).

Given a set of values for the parameters, the steady-state amplitude "a" may be found

directly from equation (4.44). Since this equation is a 6th order polynomial in "a" with

only even powers present, it may have up to three non-negative real roots. Also, because

On it 0, no trivial solutions exist. Reconstructing the approximate solution to q, we find

q=eacos[tut-'y]

01012-7 301012—7
+132 [a2[ ‘zfooz 1' 151302 ‘60s12(m—1)]]]+0(23) 
 

(4.45)

The stability of this case may be investigated by adopting the same procedure as

was used in Section 4.4.2. In this instance, the Jacobian matrix M obtained from

equations (4.39) and (4.40) is
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' 2 —2'

-eu _825(6+_11__F5a)

M: 2 2 2 2030 8010

e 11 3F55'

— o+ - —e

_5( 2010 8000) ll _  

where the overbar denotes the steady-state value.

The results of this investigation indicate that the steady-state motions are unstable when

 

2 2 -2 2-4

£2[(0+—E—)2-(O’+ ll )(FSa )+3F2 a2 ]+u2<0

2 000 2 (00 2 (00 64 000 (4.46)

and are otherwise stable.

A typical frequency response curve is shown in Figure 4.13. The parameter values

used are:

12,: 3.7.8212A =0.02, 2 e 11 = 0.1, oo= 3.516 and e = 0.1.

The nonlinear inertia terms bend the frequency response curve to the left (i.e., softening

type). Comparing the approximate solutions with the numerical simulations shows

qualitative agreement. Figure 4.13 shows, over certain regions, the response curves

become multi-valued. This gives rise to the well documented jump phenomenon. This

means the steady-state amplitudes can undergo spontaneous jumps due to an infinitesimal

change in 0'. Figures 4.14a-b show time traces of the steady-state solution of Q obtained

from numerical integration of equation (4.1) for a = ~35. Two different sets of initial

conditions are used. The corresponding phase portraits of these two time traces are shown

in Figure 4.15. These figures clearly demonstrate that the frequency response curve is

multi-valued. Once more, it is interesting to note that for yet another set of initial
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conditions, a subharmonic motion which encompasses both buckled positions can be

found. The corresponding time trace and phase portrait of such a case are shown in Figure

4.16a and 4.16b, respectively.

4.6 Simulation and Observations of Chaotic Motions

In this section we will use an analytical method and numerical simulations to

explore the chaotic motions of a rotating buckled beam. A chaotic motion is a non-periodic

but bounded motion with a broadband spectrum and a high degree of sensitive to initial

condition. As a system parameter is varied, a periodic motion may undergo a series of

bifurcations. This series of bifurcations, if it continues, will lead to a chaotic motion. In

the simulations, we will concentrate on two regions: (a) primary resonance 0) ~ (00 and (b)

subharmonic resonance to ~ 2 (no. The parameter values used in the simulations, unless

otherwise stated, are: (23 = 3.7, 2 e p. = 0.1. Before using the digital computer to simulate

equation (4.1), we apply the Melnikov's method to provide a necessary condition of

chaotic motions.

4.6.1 Melnikov's method

Melnikov's method provides a measure of the separation between the stable and

unstable manifolds along the unperturbed homoclinic orbit (Guckenheimer and Holmes

[1987], Wiggins [1988]). It involves the computation of the Melnikov function Mao); if

Mao) has simple zeros the stable and unstable manifolds may intersect an infinite number

of times and chaotic motions may exist.

Following the procedure of this method, equation (4.1) is written in the form
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i=f(2)+eg(2.t)+82h(2.t). z=[9]=[x‘] 9- R2 (4.47)

where

 

f1(x,,x2) 2 $2 2 2
{(z)=[f ]= _dx,x2 +bx1+(flo —£2L):51

20‘1””) 1+ d x,2

O

g(z.t) = [8109. 19,10] = _ 2n x2 — 2 9.9;. sin(t01) xl

82(7‘1’7‘2") 1+ (1 x12

‘ 0
h(z,‘t) = [hl(xlax29t)] =[ (RA Sin m)2 x1]

h2(Xl, X2,1) 1 + d xlz

The Melnikov function is given by the formula (Guckenheimer and Holmes [1987], page

187)

Mao) = I;[f1(x10’ x20) 82 (x10, xat» T + To) " f2 (X10, x20) 81(x10’ x20, 7 + 10)] d‘

(4.48)

where (X10. X20) is the unperturbed homoclinic orbit.

For the system presently being studied, it is impossible to find an analytical solution

of the unperturbed homoclinic orbit. Therefore, we use the Runge-Kutta method to find an

approximation to the unperturbed homoclinic orbit by setting a = 0 in equation (4.47) with

an initial condition very near to (0, 0).

Equation (4.48) can be written as

Mao) = —2u 11+ 2 Q, 9,, [ 12(0)) cos mg+ 13(0)) sin mo 1 (4,49)
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where

2

“I" 1+ d x10
(4.50)

 

~ sinan x x

12(44):]; ( 1+d)x1::)2j£dT (451)

 

0050’: X X

1300):]; ( 1+c1)x1:,g Edi (4 52)

Then we numerically integrate the equations (4.50) and (4.51) by using Simpson's rule. It

is found that II > 0 and 13(0)) = 0 (since the integrand in equation (4.52) is an odd

function). Obviously, when 2 Q, 9A12(c0)> 2 [111, M(to) has simple zeros (i.e., the

stable and unstable manifolds intersect transversely). The ratio of I, and 12(0)) is plotted

as a function of 0) in Figure 4.17 for a value of Q, = 3.70. The regions above the curve in

Figure 4.17 are the parameter values where a homoclinic tangle exists. The influence of the

mean spin rates, (2,, on this curve can be seen in Figure 4.18. We observe that the

possible chaotic motion regions and the lower limit of the curves increase as (28 increases.

To add confidence to the results predicted by the Melnikov analysis, we numerical

obtain a number of the stable, W3, and unstable,W“, manifolds associated with the saddle

point of equation (4.47). To generate portion of W“, points on a small segment along the

unstable eigendirection centered at the saddle point are mapped forward in time in the

Poincare section. The W8 can be generated in a similar way, with time running backward

For the fixed parameter values 26}; = 0.1 and 0) = 1.54 ~ (00, Figure 4.19a-c show the

stable and the unstable manifolds of the saddle point (0,0) for three different values of

93A. As shown in Figure 4.1%, w8 just intersects w“ tangentially at 3th = 1.036, in

comparison with a theoretical value of 1.073. Figure 4.203-c shows the result for another
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set of the fixed parameter values 2811 = 0.1 and 0) = 2.79 z 2 (00. Note that the first

tangency (see Figure 4.20b) appears to occur about 3'34 = 2.22, compared with the

predicted value of 2.54. We conclude that the results obtained by Melnikov's method are

good. The slight disagreement between the analytical method and numerical Simulations

are possibly because the Melnikov's method is a first-order approximation.

In the next two sub-sections, we will vary the value of 8 9A to see what happens to

the solution Q (t) as one crosses the homoclinic bifurcation curve shown in Figure 4.17.

To this end equation (4.1) is simulated on a digital computer. After transient motions

decayed, the steady-State solution is recorded. The initial conditions used for the

simulation, unless otherwise stated, are Q (t) = 0.1 and Q(t) = 0.0. The time step size

equal to %, where T = 2;! is the forcing period. Note that, for small values of 8 9A , the

rotating, buckled beam will vibrate about one of the two buckled positions and the initial

conditions determine which buckled position the beam will vibrate.

4.6.2 The Primary Resonance: cos-000

Equation (4.1) was simulated on a digital computer for fixed values of (2s = 3.70,

2811 = 0.1 and 0) = 1.54. We present here only the effect of varying the amplitude,

22 9A ,of the small sinusoidal fluctuation of the rotational Speed. The results are shown in

Figures 4.21-23 and summarized in Table 4.1.

For values of 89A between 0.045 and 0.4605, we see a period doubling

sequence. This ends in an almost periodic motion ate 0A = 0.04657. Between 0.0467

and 0.4685 there exists an island of periodic motion motions (12T and 6T) before one

again encounter an almost periodic motion at a (2A = 0.0469.
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Table 4.1 Summary of Bifurcated and Chaotic Motions for to = 1.54.

 

    

£9 . . Initial Conditions
A Figure Type of Motion (Q(0), (2(0))

0.035 Figure 4.21a 1T (0.10, 0.0)

0.045 Figure 4.21b 3T (0.10, 0.0)

0.046 Figure 4.21c 6T (0.10, 0.0)

0.04605 Figure 4.21d 12T (0.10, 0.0)

0.04657 Figure 4.21c almost periodic (0.10, 0.0)

0.0467 Figure 4.21f 12T (0.05, 0.0)

0.0468 Figure 4.21g 61‘ (0.10, 0.0)

0.04685 Figure 4.21b 12T (0.15, 0.0)

0.0469 Figure 4.21i almost periodic (0.15, 0.0)

0.047 Figure 4.22s 21‘ (0.10, 0.0)

0.0915 Figure 4.22b 61‘ (0.10, 0.0)

0.115 Figure 4.22c 3T (0.10, 0.0)

0.12 Figure 4.23 chaotic (0.10, 0.0)
 

Increasing the value of 6 0A further, as one might anticipate, the beam will not

vibrate about only one of the buckled positions but will snap-through and adopt an orbit

enclosing the two buckled positions. A period 2T snap-through motion is easily seen by

the time c QA= 0.047 in Figure 4.22a. Once again, as we continuously increase 8 52A

beyond some critical value, a period demultiplying bifln'cation occurs with period 6T and

period 3T, as Shown in Figures 4.22b and 4.22c. In these two figures we observe that the

beam vibrates in a complex manner, first vibrates about one buckled position and then

snap-through between the two buckled positions. It should be stressed that this is a

periodic motion. Finally, a chaotic motion occurs with a 9,, = 0.12, as shown in Figure

4.23. The simulations indicate that as the value of 8 (IA is varied, period doubling

bifurcations, demultiplying bifurcations and chaotic motions occur.
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Another way of showing the results just presented is to use a Poincare map. If the

response is periodic, then its Poincare map will only show a finite number of points.

However, when the motion becomes chaotic, its Poincare map will contain an infinite

number of points and reveal a fractal pattern (i.e., strange attractor). It is also known that

the Poincare map of an almost periodic motions is represented by line segments. Figure

4.24h-i depict the Poincare maps corresponding to a selection of the response shown in

Figures 4.21, 4.22 and 4.23.

4.6.3 The Subharmonic Resonance: (0"2010

In this sub-section we consider the case of subharmonic resonance (i.e., (0 = 2 (00) .

As in Sub-section 4.6.2, as we continuously change the parameter 8 9A , a period doubling

bifurcation occurs. For fixed values of (2s = 3.70, 2611 = 0.1 and 0) = 2.79, the results

from the numerical Simulation are shown in Figures 425-26 and summarized in Table 4.2.

Table 4.2 Summary of Bifurcated and Chaotic Motions for 0) = 2.79.

 

     
, Initial Conditions

T of Motion .

”'3 (Q(0).Q(0))
  

     

0.07 Figure 4.25a 2r (0.10, 0.0)

0.08 Figure 4.25b 41‘ (0.10, 0.0)

0.0832 Figure 4.25c 81* (0.10, 0.0)

0.0833 Figure 4.25d 16T (0.10, 0.0)

0.0834 Figure 4.25c 321‘ (0.10, 0.0)

0.0835 Figure 4.26 chaotic (0.10, 0.0)
 

Figures 4.25a-e Show the phase portraits of the rotating, buckled beam with

different values of a 9A . These figures indicate that, as the value of 8 52A is varied, from
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EQA= 0.07 to 8 52A: 0.0834, the beam undergoes a succession of period doubling

bifurcations (from period 2 motion to period 32 motion). Figure 4.26 shows a phase

portrait of a chaotic motion with 8 0A: 0.0835. The corresponding Poincare map of

Figures 4.25 and 4.26 are shown in Figure 4.27. Plots of the displacement versus time for

period 4 and chaotic motions are Shown in Figures 4.28 and 4.29.

Figure 4.30 shows a summary of the preceding numerical results. Clearly, chaos

was observed to occur well above the curve obtained by Melnikov's method. However,

this is consistent with the analysis since Melnikov's method gives a necessary, but not

sufficient, condition for steady-state chaotic motion to occur. It is also interesting to note

that for the resonance (1) = 1.54 an (00 we found almost periodic motions. No such motion

were found for the (0 = 2.79 as 2 too.case. Moreover, the sequence of period doubling

bifurcations is different in the two cases as is the strange attractor depicted in the Poincare

maps of Figure 4.24i and 4.27f.

4.7 Summary of the Chapter

The method of multiple scales was used to obtain a uniform second order expansion

for the response of a rotating buckled beam subjected to subharmonic and primary

resonances. For sufficiently small 8 Q, values, the beam was found to vibrate about one

of the buckled positions with a softening-type, nonlinear behavior. AS we increased the

a (2,, value beyond some critical value, the beam's orbit encompassed both buckled

positions. In the vicinity of the critical value of a 0A , a region was found where the beam

will displayed bifurcated and chaotic motions.

Melnikov‘s method was applied to predict the regions where chaotic motions might

exist. Numerical simulations were used to find bifurcated and chaotic motions in the region
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of primary and subharmonic resonances. The values of 8 9A for which chaotic motions

occurred are much above the homoclinic bifurcation curve, indicating that Melnikov's

method gives a lower bound in the parameter space.



CHAPTER 5

ANALYSIS OF A ROTATING, SIMPLY SUPPORTED SHAFT

WITH 0, < a,

5.1 Introduction

In this chapter we investigate the nonlinear, non-planar motion of a uniform,

initially straight, elastic shaft rotating about its longitudinal axis at a nonconstant spin rate.

The Shaft is considered to be Simply supported and has immovable ends. For a shaft with

these and conditions, nonlinearities arise due to mid-line stretching. Two classifications of

cross section will be investigated: (a) exactly circular and (b) close to circular. We restrict

our investigation to mean spin rates, (2,, less than no (i.e., pre-critical). The post-critical

behaviors of the shaft will be studied in Chapter 6.

The derivation of approximate solutions to the system's nonlinear governing

equations of motion are presented in this chapter for the four cases of parametric

resonances, viz. 0) ~ 200,, 0) ~ 2012, 0) manna2 and 0) arm-0),. Each case is analyzed

firstly in the absence of internal tuning (i.e., (02 is assumed to be well removed from 30)!)

and secondly in the presence of internal tuning (i.e., 032 is assumed to be closed to 3011).

We also presents a stability analysis of the steady-state solutions which were obtained by

the method of multiple scales for each case. The accm'acy of the approximate solutions will

be checked by direct numerical integration of the original equations of the motion. The

choice of parameters for numerical simulation is based upon an experimental model. The

case of (0 ~ 2 (01 with (02 ~ 3 (01 will be given a more detailed discussion.
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5.2 Approximate Solutions

Approximate solutions to equations (2.40) and (2.41) are obtained by the method of

multiple scales. These approximate solutions will remain uniformly valid for all T when a

is small. Before beginning the analysis we note that for rotational rates below (20, the

internal and external damping terms have the same influence on the Shaft and so, with no

loss of generality, we will set it; = 0. (Note, however, when the rotational speed of the

Shaft is above (20, internal damping has a destabilizing effects (Tondl [1965]).

Consider equations (2.40) and (2.41) derived in Chapter 2, we seek a first-order

solution for small but finite amplitudes in the form

U(t; e) = uo(To,T,) + e u1(To.Tr) + 82 112(To.Tr) + (5,1)

V(t; e) = vo(To,T,) + e v1(To.Tr)+ £2 V2(TorT1) + (5.2)

Where Tn = 8n 1.

Note that the small parameter, c, has a physical interpretation (see Section 2.3 in Chapter 2)

and is the square of the slenderness ratio. Unlike the beam case, it is therefore dependent

on the system's parameters.

Substituting equations (5.1), (5.2), (3.6) and (3.7) into equations (2.40) and (2.41) and

equating coefficients of like powers of e, we obtain

8°:

D02 “0 +( Q02 - (282)110 - 2 QsDovo = O (5.3)
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D02v0+((1+5)Qoz-QSZ)VO+ZQsDouo=O

81:

D02 111+ ( 902 "" 9‘2 ) 111 ‘—' 2 Q.Dovl = -2D0Dluo — 902u03

+29Afl,uo sin (in + 9A0) v0 cos an +2£2Asin (m: Dovo

D02V1+((1+ 8 ) 902 — (2,2)V1-i- 2 9.130111 = .2D0D1Vo-Qoz V03

“902 Vouoz‘ 2 QrDIUO‘2 a! lle u0 ”zlleDoVo

+29Afl,vo sin (01 — 9A0) uo cos (m: —29Asin an D0110

The solution of equations (5.3) and (5.4) can be expressed in the form

1.10 = A1(T1) cxp( 1601 To) '1' A2(T1) cxp( 1012 To) '1' CC

V0 = A1A1(Tl) cxp( 10.11 To) + A2A2(Tl) CXp( iszo) + CC

where

1

c0 _[2 902+2QSZ+9028-003[16 032+89828+QOSZJE
I-

 

 

2

l

m _[2902+2932+9028+Qoi16952+89528+§20282J5
2-

 

 

2

_ .=__ 2“)le

“’1‘" ((l+ii)t2,,2-r2,2)-to,2

i

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)



101

. 20) as .
A = =_ 2

2 R2! ((l+5)flo’-Qs’)-w;’1 (5.12)

i = «/—1

cc denotes the complex conjugate of the preceding terms

Al and A2 are arbitrary complex functions of T1 which will be determined at the

next level of approximation.

In this section we focus on the shaft's behavior close to a main parametric response (i.e.,

(0 =- 2 (01) in the presence of the internal resonance, to; ~ 3 (.01. To this end we introduce

two detuning parameters.

OJ=2031+861 (5.13)

and

(02:30.11-1-80'2 (5.14)

where 01 is known as the external detuning parameter and 02 as the internal detuning

parameter. We note that (0 is an independent variable and that we can control 02 by

varying Q, (see equations (5.9) and (5.10)).

Next, in order to determine the solvability conditions of equations (5.5) and (5.6), we

express the form of their particular solution as

ul=Pucxp(i(DlTo)-I~Pu cxp(i(02To) (5.15)
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v, = P21 exp( i co,T0 ) + Pm exp( i 662T0 ) (5.16)

and substitute equations (5.7), (5.8), (5.13), (5.14), (5.15) and (5.16) into equations (5.5)

and (5.6), equate the coefficients of exp( i (ulTo) and exp( i (112T0 ) to obtain

floz-QSZ-wlz -i293031 {Pll}_{Rll}

902 - 982 "' (1)22 — i 2 as (02 P12 _ R12

i2flsto2 (1+5)Qo2—Qsz-(l)22 P22 R22

where Rij are defined in Appendix D.

(5.17)

(5.18)

Since the determinant of the coefficient matrices of (5.17) and (5.18) are zero (this is how

(01 and (.02 were originally found), then for there to exist a non-trivial solution of the Pij we

  

musthave

Rn -129,0)‘

R (1+5) 2-92-(02 =021 Qo . 1 (5.19)

R12 -iZQ,(02

R 1+5 2-92- 2 =022 ( )00 s 032 (5,20)  

At this stage it is convenient to consider two distinct cases, viz., 6 = 0 and 8 at O (i.e.,

symmetrical and unsymmetrical). In the former case the analysis can proceed by

considering equations (5.9) to (5.12) from which we find

Al=-i
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A2: i

031:90“).

w2=Qo+Q.

l l

Qs=EQO+ZEOZ

Substituting (D1), (D2), (D3) and (D4) in Appendix D into (5.19) and (5.20), we obtain

the reduced equations

iA,'+ itteA,+2r20 A,2 Kr+ 4 floArAr 32= 0 (5.21)

iA2’+itch2+2 90 A22 K2‘1'490‘51‘3‘2;=0 (5.22)

where the prime denotes a partial derivative with respect to T1. The only steady-State

solution of equations (5.21) and (5.22) is Al: A2: 0. Hence for a perfectly circular shaft,

it is impossible to excite a main parametric resonance. This is consistent with Kammer and

Schlack [1987]. Moreover, the reduced equations are independent of the internal detuning

parameter and the above result also hold in the absence of internal resonance. For the other

cases of the parametric resonances (i.e., a) a 2 012, to ~ a)l + (02 and 0) ~ 012— 0),), it can

also be Shown that no non-trivial steady-state solutions exist.

We now return to equations (5.19) and (5.20) and consider the cross section of the

shaft to be close to circular (i.e., 8 at 0 and the shaft possesses unequal principal moments

of inertia). For clarity we will further subdivide the study by first investigating parametric
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response in the absence of the internal detuning and then investigating the influence of the

internal resonance.

5.3 Assuming 012 Well Separated from 3011

In this sub-section we assume (1)2 is well removed from 3ml (i.e., no internal

tuning). The approximate solutions are obtained by the method of multiple scales for four

cases, viz. 0)~20),, (0~2(.02, cot-«001+c02 andm-scoz—(ol.

5.3.1 The case of cot-=20),

Following the same procedure as was used in Section 5.2., we obtain the reduced

equations

i A1, + i 613 CialTl K1 ‘1' i 615 “C A1+ GIG A12 3.1+ 617 Al A2 X2 = O (5.23)

iAz +i (323 “'6 A2 + 025 A22 X2 ‘1' 624 Al A2 X1: 0 (5.24)

where Gij are defined in Appendix E.

To solve equations (5.23) and (5.24), we write Al and A2 in the polar form

1 e

A1=—a,e“31
2 (5.25)

(5.26)
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where 31,32,131 and 82 are real.

Substituting equations (5.25) and (5.26) into equations (5.23) and (5.24) and separating

real and imaginary parts yields

317’ = alO'I + 2 613 31 81117 -% 0‘6 813 - % GI? a] a22
(5.28)

a3 = - Gas it. as (5.29)

a; 132: 7 G24 31 a2 + - G25 323
(5 30)

Where 7:01'1‘1-261'

(5.31)

Of particular interest are the Steady-state solutions which correspond to

3;: a; = 7’: 0. This gives rise to two solution sets: a1= 0 and a2 = 0, age 0 and a2 = 0.

In the second set we can evaluate 81 by noting that

613
(5-32)

 

13
(5-33)

Squaring and adding equations (5.32) and (5.33), we obtain

1

2 [011 2 (6132- uezfi ]

312 =
 

Gm (5.34)
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Reconstructing the first order approximate solutions of equations (2.40) and (2.41), using

equations (5.7), (5.8), (5.25), (5.26) and (5.31), we have

 

(tn-7

 

V0 = — kl a1 8111((012-7)

(5.36)

The parameter values used for numerical results in this and subsequent sections,

unless otherwise stated, are:

0A = 5760,11e = 250, 8 = 1.0. flo= 1:2 and e = (2+0)?

Figure 5.1 shows a typical frequency response curve for a mean spin rate Q, = 7.0. This

shows the variation of the steady-state amplitude al as a function of the frequency of the

oscillating component of the spin. Both Stable and unstable solutions are shown. Dashed

lines denote unstable solutions and solid lines indicate stable solutions. The stability of the

steady-state solutions can be ascertained by adding small perturbation to the steady—state

solutions and checking if this perturbation grows or decays. For the trivial solution this

results in an unstable solution for -ou < o < 0“ where

l

on = 2[ G132 " 11:2 F (5.37)

It can be proved that the upper branch of the non-trivial solution is always stable,

whereas the lower branch is always unstable. The general form of this curve is the same as

would be obtained by an analysis of Duffing‘s equation with a parametric forcing term.



 

 

 
 

 

35
D

a a a 0 nautical emulation

30 l'" stable

—--- unstable

25 l—

20 _
’./

ell

’/

U
/’

15 '—
/

10 -- /

5 - /

l' 6 ' ‘ °

0. -1_.-_L--__..L_-__L.--_l_ l. l. l.

-4000 —3000 -2000 —1000 0 1000 2000 3000 4000 5000 6000

01

Figure 5.1 Variation of the Steady-State Amplitude, al, with (31;!)s =7.0, 8 = 1.0.

 

 
 
 

 
 

35

—— stable

300—‘"" unstable

25 '—

20 t—

d

15 ‘—

10 l-

5 ‘- /’,

l
6 1' 0 . 2

l

o l 1 1 _-L l 1 1 A‘ ‘1 '

4000 -3000 -2000 -1000 O 1000 2000 3000 4000 5000 6000

0'1

Figure 5.2 Variation of the Steady-State Amplitude, a1, with 01; (2, =7.0, 8 = 0.2.



108

Figure 5.2 shows another frequency response curve with 8 equal to 0.2. Comparing

Figure 5.1 with Figure 5.2, we observe that the width of the instability region of the trivial

solution and the amplitude 81 both increase as the 8 value increases.

The results obtained using the method of multiple scales can be checked by

numerically integrating the original equations (2.40) and (2.41). The results of such an

integration are also shown in Figure 5.1 and the comparison is very good in all the cases

tested. The response of the rotating shaft can be shown in various projections of the five

dimensional (U,U,V,V,t) extended Space. Hence, we plot the motion of the shaft in a

(U,V) projection to get a better visualization, as shown in Figure 5.3. The result is a

relatively simple elliptic orbit. Later, in Section 5.4, we will see how the structure of this

orbit becomes much more complex when the condition of internal resonances is added.

5.3.2 The case of 0) ~ 2 a),

In this sub-section the frequency a) is taken to be closed to 2(1)2 and hence the

external detuning parameter, 02, is redefined as

Following the procedure used in Section 5.2, the solvability conditions of equations (5.5)

and (5.6) are now

i Al +i (3,, u. A, + Gr. A12 Kr + Gr) Ar Ar K2 = 0 (5.39)

iA,'+i a,3 u, A,+o,, A12K2+i 0,, ei°lT1X2+Gu A1A1A2=0

(5.40)
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To solve equations (5.39) and (5.40) for Al and A2 , it is again convenient to introduce the

polar forms given in equations (5.25) and (5.26). Substituting equations (5.25) and (5.26)

into equations (5.39) and (5.40) and separating the result into real and imaginary parts, it

follows that

a; = _ (3,5 u, a1
(5.41)

, l

at Bt= Gas 313 + Z 01781 a22 (5 42)

a; = _ (323 ll. a2 — (322 a2 cosy (5.43)
, . 1 l

a271 = 3101"" 2 622 a2 Sln'y - 5 62432 312 — E 025 323 (5 44)

Where 7 = 61 Tl "' 2 61' (5.45)

Once more, it is possible to simplify these equations should only the Steady-state responses

be sought. For such a case, equations (5.41) to (5.44) reduced to

Grs it. at = 0 (5.46)

aIBf = G“; 313 '1'; G1731 a22
(5.47)

623 ll: a2 + G22 32 cosy = 0
(5.48)

3101+ 2 Ga 82 sin ‘y - $— 62432 812 ":7 G25 a23 = 0 (5.49)

For non-zero damping there are two possible solution sets to these equations: either a1 = 0

and a2 =0 or a1 = 0 and a2 at 0. In the second set we can evaluate a2 by noting that

922 (5.50)
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sin'y: filazs 2122—201]

 

22 (5.51)

Squaring and adding equations (5.50) and (5.51), we obtain

1

2 [0121: 2 ((3222- fl¢2)-2- J

3.22 =

(325 (5.52)

Then the first approximations to the solutions of the original equations of motion have the

form

 

 

A typical frequency response curve is shown in Figure 5.4 with as: 7.0. Once again,

numerical simulations show very good agreement with the approximate solutions.

5.3.3 The case of m- (02+(ol

In this sub-section we investigate the combination resonance and hence the external

detuning parameter will be defined by

CD= (01+(02 +8 61
(5.53)

The solvability conditions are
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1A,' noun, A1441“5 A3 K,+iG,,c‘°lT1X,+GnA, A2K2=o

(5.54)

i A,'+i oz, 11. A2 + (1,5 A,2 K2+ i (322 (2‘61'1’1K,+(324 A1 'A', A2 = o

(5.55)

Substituting the usual polar forms (5.25) and (5.26) of A1 and A2 into equations (5.54)

and (5.55) and following the normal procedure, yields

a; = ‘ C‘15 “e 31" 613 a2 00571 (5.56)

, . l 3 1 2
a = — G + — G + - G151 13 a2 srn 71 4 16 a! 4 1731 a2 (5,57)

33 = ' (323 ll: a2 - G22 a160571 (5.53)

, . 1 1
a2 [32: — Gzz a1s1ny,+ -4- (32432 312 + 3 G25 2123 (5 59)

Where 7] = 01 T1 "‘ fll - B2. (5.60)

For the steady-state motions (i.e., a; = a; = y; = 0) we find

615 ”e 31"” G13 a2 00571: 0 (5-61)

623 11,, a2 + 622 a, cosy, = 0 (5.62)

014432231 Sin'Yt‘lGu a12"'1'st a22‘*'(-"13 £2 SinYl

a2 4 4 a1

_ 1 l 2 _
7; Gus a, 4 G17 32 - 0 (5.63)

By eliminating cosy, in equations (5.61) and (5.62), one obtains the following linear

relationship between a1 and 32

a2 = K al (5-64)
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l

2

where K = [922.].

13

Substituting equation (5.64) into equations (5.61) and (5.63) yields

1

4 mic, 1-[KWT

622

C1

 

2-
a1— 

where

C1=Gz4+Gm+K2(G,5+Gn)

C2=Gan+G13 K.

Hence, the steady-state solution has the form

no = a1 cos[((1)l +8 EM -91]+ a2 cos[(co2 + 8 RM —02]

vo=—k1a,sin[((o,+e§,)r—01]-k2 a2 sin[(o)2+e [Em-9,]

where

— a . l 2 1 2

fi=’Gta-2‘31071+;G1631+zGt7az

31

(5.65)

(5.66)

(5.67)
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- __ a . l 2 l 2

52— -0224811171'1’262431 +-4'Gfiaz

a,

7, = 91+ 02 , 01 and 92 are constants depending on the initial conditions.

A typical frequency response plot (equation (5.65)) is shown in Figure 5.5. This curve is

similar to the two cases already presented in Sections 5.3.1 and 5.3.2.

When (02 and (01 are incommensurate, the resulting response is non-periodic. A clear way

to demonstrate this is to plot the trajectory of the steady-state response obtained by

numerically integrating equations (2.40) and (2.41) in a (U,V) projection, this is shown in

Figure 5.6a and the corresponding result obtained by the method of multiple scales

(equations (5.66) and (5.67)) is shown in Figure 5.6b. A comparison between these two

figures shows remarkable agreement.

5.3.4 The case of 0)~ (oz—to,

In this subsection we consider (0 near to be the difference between (01 and (02 and

we introduce the external detuning parameter as

The solvability conditions of this case are

iA,’ +1 6,511, A, +0“, A12 K,+iG,,e"“lT1A,+G,,A, A, K,=o

(5.69)
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iA,’+iG,,p,A,+G,,A,2K,+io,,ci°lTlA,+G,,A,X,A,=o

To solve equations (5.69) and (5.70) it is convenient to express the Al and A2 terms in

their polar form as defined in equations (5.25) and (5.26). Separating the resulting

equations into real and imaginary parts, yields

’-

31" ’ G15 “e 31‘ C'12 a2 30571

_ . l 3 1 2

3151- ' C‘12 a, 3197 '3 Gus a, ’ z G173132

I —

a, - " Gza lie a, .622 a1‘30571

. l l

a, [33: ~G22 a, any, + 7 624a, a,2 +2» 6,, a,3

where 71: 5111" 31-52-

For the steady-state motions (i.e., a; = a; = 7; = 0) we find

Grs “e 31+ 612 a2 00571: 0

623 11, a2 + 622 a1cosyl= 0

a . 1 1

61-1-an1- srn71+sz4 31217625322

2

a . l 2 l 2_

+Gu-zsm‘yl-2-Gmal ‘anaz -0

a1

Following the same procedure as was employed in Sub-section 5.3.3, a linear relationship

between a1 and a2 is found in the form

a2=Kal

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)

(5.79)
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l

2

where K = [922 .

G12

It can be found that G22 always less than zero. Hence the trivial solution is the only steady-

state solution for this case of resonance.

5.4 Assuming a), = 3 to,

The condition of internal tuning is now introduced. The nearness of (1)2 to 3m, is

quantified by a, and this is controlled primarily by changing (I, (see equations (5.9) and

(5.10)). For example, if 5 equal to 1 and (25 equal to 5.46309, to, will be very close to

30),. This section comprises three cases, two for the case of principal parametric resonance

and one for the case of combination resonance. Since many of the points discussed and

techniques utilized are common to all three cases, the first is presented in most detail.

5.4.1 The case of (Ir-2m,

Following the method of the multiple scales, the reduced equations for this case are

found to be

. A I . i(02-01)T1 - 101T] - G iO2T1 X 2 A

l l+lzeC A2+IGI3C Al+ 146 1 2

+ iG15 11¢ A14“ G16 A12 X1 + G1‘7 A1A2 X2 = 0 (5.30)

I . .

i A, + i (3,, tam-“9T1 A, + 6,6 6‘"le A,3 + i (3,, p, A,

+625 A22 K2‘*'Gz4 A1A2K1=0 (5.81)



120

To solve equations (5.80) and (5.81), it is again convenient to introduce the polar forms

given in equations (5.25) and (5.26). Substituting equations (5.25) and (5.26) into

equations (5.80) and (5.81) and separating the result into real and imaginary parts yields

I l 2 .

a1=‘Giaat‘305‘Y1.615111131’61211200572‘3614 a, a2 s1n(y,+y,)

(5.82)

317;=alol+2613aISinYl-%616313+2 61232 Sin‘Yz

-';' GM a12 a2 00“ 71+72 ) ' % G17 81822 (5.33)

I l .

a2=—Gzza,cosh—6231.16a2+-4—G,6a,351n(‘y,+y,) (584)

32(75‘%Yi)=32(°2’%°1)+C'22315in72+%62431232

1 1
+—G a3+-G a3cos +
4 25 2 4 261 (71 72) (5.85)

where

71=°1T1"231 (5.86)

72=(01-°2)T1+Bz‘fit (5.87)

The steady-state solutions of equations (2.40) and (2.41) correspond to the fixed points of

the reduced equations (5.84) to (5.87), which result from a; = a; = 7; = 73 = 0. Once

again we have two possible solution sets: a trivial set a1: 0 and a2 = 0 and a non-trivial set

a, at 0 and a, at 0. The nonlinear transcendental equations governing the non-trivial set are

I .

C‘13 51100371" 615 lie 31+ C'12 a2 90572 + 2 G14 312 a, SIM 71+ 72 ) = 0

(5.88)
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a,o, + 2 6,, al sin 'y, -% Gm 3,3 + 2 6,, a2 sin 7,

-%G14 31232°°S(71+72)‘%G1131322=0 (5'89)

1 .

Gnalcos'y2+G23 peaz-zGual3s1n(y,+y,)=0 (5.90)

a2 ( 02-% o, )+G,2 al sin72+%Gz4a,2 a,

1 1
+-G a3+-G a3cos + =0
4 25 2 4 26 l (71 72) (5.91)

Equations (5.88) to (5.91) can be solved numerically to determine the non-trivial steady

state solutions a,, a2, 7, and 72. The first order approximate solutions to the equations

(2.40) and (2.41) can now be reconstructed using equations (5.25), (5.26), (5.86), (5.87),

(5.13),(5.14), (5.7) and (5.8) to yield

u0=aICOS( 2211-121)+32003(%0’1+72-'72—1) (5 92)

vo=—k1aisin(gT—lzl)‘kzazsm(%t+YZ-12L)
(5 93)

Figure 5.7 shows the variation of the steady-state modal amplitudes, al and a2, as

functions of the external detuning parameter a, (i.e., frequency response curve).

Parameters were chosen to be representative of a physical system and a value of

Q, = 5.46309 was chosen such that we have perfect internal tuning (02 = 0). The results

of a stability analysis are also shown on this figure. Stable solutions are denoted by a solid

line, unstable solutions by a dotted or chained line.
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In Figure 5.7, it is interesting to note that there is a region in the vicinity of 0, equal

to 2000 over which neither the trivial nor the non-trivial unstable solutions are stable. By

investigating the form of the eigenvalues we find that the non-trivial solutions have

undergone a Hopf bifurcation. Hence, the amplitudes and phases are not constant but vary

with time (i.e., quasi-periodic motions). To better demonstrate this point, we have

numerically integrated the equations of motion (2.40) and (2.41) for a value of 01= 1300

and compared this to the results obtained for the value of 61= 1500. Based on the

predictions of the approximate solution (see Figure 5.7) the former should yield a stable

steady state solution where the latter should give rise to a quasi-periodic motion. The

results are presented in Figures 5.8a and 5.8b respectively, in the form of an orbit plots of

U versus V. Both figures show the solutions after all transients have decayed and are

plotted for a length of time corresponding to 100 cycles of the forcing term. Clearly the

orbit in Figure 5.8a is periodic whereas the orbit depicted in Figure 5.8b shows a slow

amplitude variation. If this orbit where plotted for a longer period of time, more of the

(U,V) space would become populated. This is typical of quasi-periodic motions.

With reference to Figure 5.7, it was initially thought that the trivial solutions were

unstable for values of [0,] < 2360. However, upon closer inspection we find that the

solutions re-stabilize over regions of 320< IOJ < 620. Moreover, at IOJ < 320 the trivial

solutions undergo a Hopf bifurcation and so we can predict the motion between IOJ < 320

will be quasi-periodic. Hence, there is a region in the vicinity of 01 equal to 0 over which

non-trivial steady-state motions and amplitude modulated motions are coexist. The motion

adopted depends on the choice of the initial conditions. Figures 5.9a and 5.9b show the

orbits corresponding two different initial conditions with 01 equal to 0.

Next, we present a collection of results which show how the steady state solutions

vary as a function of the system parameters. For clarity, we have not shown the stability of
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the solutions. Figures 5.10a and 5.10b show the frequency response curves for two

different QA values. For a small (2, value (Figure 5.10a), the four branches in the

frequency response curve are well separated from each other. In Figure 5.10b the value of

Q, has been increased slightly and a more complex combination of solutions exists, many

of which have been checked by direct numerical integration of equations (2.40) and (2.41).

Figures 5.11a-h show the trends association with changing the internal tuning. Clearly we

see that as the magnitude of the detuning, 02, becomes large the form of the response curve

reverts to that of Figure 5.1. This is to be expected as large I02] corresponds to a lack of

internal resonance, hence the case described in Section 5.3.1 is recovered. Figures 5.12a-c

show frequency response curves with different 5 values (at a small 113: 40 ). Obviously,

both the amplitude, a1 and a2, increase as the 5 value increases. It should be note that no

distinction is made between stable and unstable solutions in Frgures 5.10 to 5.12.

Figure 5.13 shows an orbit with 01 equal to 900. Because of the presence of

internal resonance, the orbit is no longer an ellipse (c.f. the form of Figure 5.3). The

corresponding time histories of the steady-state solution in x and y directions obtained by

directly numerically integrating equations (2.40) and (2.41) are shown in Figures 5.14a

and 5.14b. Figure 5.15 shows the corresponding spectrum of the time history of the U

coordinate, which is obtained by using the Fast Fourier Transform (FFI’) algorithm. In all

the cases we checked, the numerical simulation results were indistinguishable from the

results obtained using the method of multiple scales.
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5.4.2 The case of (ID-I202

The solvability conditions of this case are

1A,, + G,4 (9°le X} A, + i 6,, u, A,

+ G16 A12 1K1+ G17 A1A2 X2 = 0 (5.94)

I . _ _. .

i A, + i (3,, 61°11”! A, + (3,6 e '°2"‘1A,3 + 1 (3,, 11, A,

4' st Az2 76:2 + G24 A1A2 K1: 0 (5.95)

Substituting equations (5.25) and (5.26), the polar forms of A, and A2, into equation

(5.94) and (5.95) and separating the results into real and imaginary parts, yields

I_ l 2 .

a,--G,5 “'e a, “'76“ a, a, srn 71
(5.96)

a,(2'y{+yg)=a,(2 01-1-02 )‘%Gl6 a13

_;G,, a,2 a, cos 11,-; (317 211422 (5.97)

a; = - C122 a, 00872 " 623 He 32 + '1' G26 313 Sin 71 (5.98)

I_ - l 2 l 3 __l 3

3.2 72—82 01-1-62232811172-3-6243, 3.2-362631 COS Y, 562532

(5.99)

where

71=02T1+132~3131 (5.100)

72=01T1-2132. (5.101)
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These are the reduced equations for the case of (1) ~ 2 a), with (0, ~ 3 (0,. Of particular

interest are the steady-state case which correspond to a; = a; = y; = 7; = 0. Equations

(5.96) to (5.99) then reduce to

a, (615 "e +11? GM 31 a, sin 71) = 0
(5.102)

311(2 01+ 0, )‘% C'16 a12 "$014 a12 a2 cos 71-5617 322] = 0 (5.103)

(1,,a200372+G,3|.1e a,—-1-G,6a13 sin 71:0 (5104)

a, 01+ 2 02, a, sin‘y2 - % 024 a,2 a2 -% 626 a13 COS 71";st a23 = 0 (5.105)

This gives rise to three possible sets of solutions to these equations:

(1) a,=0anda,=0

(2) a,=0anda,¢0

(3) a1¢0anda2¢0

We first consider possibility (2) viz. a, = 0 and a, at 0_ For this case equation (5.104) and

(5.105) reduce to

62311. a2+(322 32 00871=0 (5.106)

. l 1

a101+2622azsmyl-EGuazalz-563823=O (5.107)



138

Equations (5.106) and (5.107) are exactly equal to equations (5.48) and (5.49) (i.e., the no

internal resonance case) and so are not discussed again here.

For possibility (3), we solved the roots (i.e., non-trivial steady-state solutions) of

equations (5.102) to (5.105) using numerical routine DNEQNF from the IMSL library.

This routine use a modified Powell hybrid method to find the roots. Although a great many

initial estimates of the solutions were used. The routine only found the trivial solutions.

The reason may be because the basin of attraction of the non-trivial steady-state solutions is

extremely small and/or irregular. This is consistent with the results obtained by directly

numerically integrating the original equations (2.40) and (2.41) in which all trajectories of

the cases tested eventually approach the trivial solution or possibility (2).

5.4.3 The case of m~ m,+at,

The solvability conditions of this case are

I . _ - _

iA, +i(3,,c“’1T1 A,+ (3,,6‘“2T1 A,2 A,

+ i 615 “e A1+Glé A12 K1+G17 A1 A2 K2= 0 (5-103)

i A,’ + i (3,, 6“!“ K, + (3,,S 0-“le A,3 +1 (3,, 11, A,

1’6qu: Xz'l'Gu A1A2K1=0 (5.109)

Substituting the usual polar forms of A, and A2 into equation (5.108) and (5.109) and

following the normal procedure, yields

a1: - (313 82 00871 " 015 “e 31"":6“ 8‘2 a: sin 72 6'1“»
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31(71+72)=31(01+02)-Gr6313+613 a2 sin‘y,

-614 3'12 a2 00872- 61731322
(5.111)

I_ l 3 -

a,--G,, a, 09571'623111: 32+]‘Gz6 a, 311172
(5.112)

3 , l , 3 l . l

a,(Evy-44y,)=a,(10,-3-0,)+G,,a,s1n‘y,—ZG,4a,2a,

__1_ 3-1 346,5 a, 4 625a, cosy, (5,1,3)

where

71:01T1‘l32' Br (5.114)

72=02T1-3131+ Bz, (5.115)

Two possibilities of the steady-state solutions exists: either a, and a, are zero, or neither

one is zero. The steady-state solution has the form

  u0 = a, cos|:(M - (11+ 72)]4- a, cosl:30M - (72 — 371)]

4 (5.116)

  

v0 = -k1a1 s,n[cor - (71+ 72)]_ ,2 32 si“[301 - (72- 371)]

4
4 (5.117)

Figure 5.16 shows a typical frequency response curve obtained by finding the roots

of the steady-state form of equations (5.110) to (5.113). The approximate solutions to the

full equations of motion can be checked by directly numerically integrating equations (2.40)

and (2.41). The comparison is good in all the cases tested. Figures 5.17a and 5.17b show

the orbits of the shaft obtained by numerical integration of equations (2.40) and (2.41) and

by the method of multiple scales (equations (5.116) and (5.117)), respectively. Note that,
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because of the condition of perfect internal resonance (i.e., (01 and (02 are commensurate),

the orbits are fixed in the rotating frame.

The final resonance case to ~ (1)2 - (0,, with internal resonance, reduces to the case

of 0) ~ 2(1),, which has covered in Section 5.4.1.

5.5 Summary of the Chapter

This chapter has been concerned with a theoretical investigation of the nonlinear

dynamics of a perfectly balanced shaft rotating at a nonconstant speed. The nonconstant

speed gives rise to time-dependent coefficients in the equations of motion. Four cases of

parametric resonances, viz. (0 ~ 2 cu, , to ~ 2 (02, (.0 ~ (01+ (1)2 and 0) ~ 032 - (01 were

considered. Each case was analyzed firstly in the absence of internal tuning (i.e., (02 is

assumed to be well removed from Mn) and secondly in the presence of internal tuning

(i.e., m2 is assumed to be closed to 3001). The investigation was restricted to the pre-

buckled case (i.e., Q, < 00) and approximate solutions were obtained using the method of

multiple scales.

No parametric resonances were possible in the case of a perfectly balanced

symmetrical shaft either with or without internal resonances. However, for a shaft that is

close to circular, it was found that parametric resonances occur. In the absence of internal

resonance we observed a single frequency response with a period twice that of the

excitation. This resulted in an elliptic orbit of the shaft in the rotating frame. When the

internal resonance is present, the response of the shaft contains two frequencies and the

frequency response curve is much more complex than that of the former case. In the later

case, we found the existence of such phenomena as non-existence of steady-state motions,
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coexistence of steady-state motions and amplitude modulate motions and re-stabilization of

the trivial solutions.



CHAPTER 6

ANALYSIS OF A ROTATING, SIMPLY SUPPORTED SHAFT

WITH 0, > a,

6.1 Introduction

The source of the nonconservative forces which act on rotating shafts becomes

particularly important as one passes beyond the critical speed. These forces can be divided

into two categories. The first category contains forces defined as external frictional forces.

These are caused by contact of the rotating shaft with fixed components. The second

category contains forces defined as internal frictional forces. These have two fundamental

components: hysteresis forces and structural damping forces. The former arise as a result

of the rate of deformation in the elastic shaft, whereas the latter arise as a result of micro-

shifts between individual parts of the rotor structtu'e. As was pointed out by Tondl [1965],

when the r0tational speed of the shaft is above 90, internal frictional forces, under certain

circumstances, can cause instabilities, whereas external frictional forces always assist in

damping the vibrations.

The influence of the internal damping on the shaft's response is one of the effects

we shall study in this chapter. A number of the results are based on numerical integration

studies since it is extremely hard to obtain even a first order approximate solution to the

complex differential equations which govern the shaft's motion. However, some analytical

results have been obtained for the post buckled behavior of a perfectly circular shaft

subjected to a nonconstant spin rate. The analysis begins by converting the governing

equations from Cartesian coordinates to polar coordinates. This allows one to find the

144
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buckled, or equilibrium position that the shaft will adopt when it is spun at a constant rate.

It is motions about this buckled position which we then go on to investigate. A shift in the

coordinate system is undertaken and approximate solutions are sought to the resulting

coupled, differential equations, under the influence of the small speed fluctuations. In

particular, we look at the frequency, a), of speed fluctuations being close to the whirl

speed, 6.

We also report on findings related to almost circular shafts. Unlike the pre-buckled

case, where as could be altered in order to obtain an internal resonance condition of

(02 ~ 3(01, this can not be accomplished for the post-buckled case. This results from the

fact that (02 >> 0),, for all as > (20. A limited amount of analysis is reported which shows

the type of response that might be expected and numerical simulations are completed to

investigate period doubling bifurcations and chaotic motions for the case of (o as to, and

m~2mp

6.2 Exactly Circular Cross Section

In this section we investigate the post-critical behavior of shafts with exactly

circular cross section (i.e., 5 = 0). The influence of internal damping will be considered at

two different orders of magnitude.

6.2.1 Equilibrium Position

In order to find the buckled positions of the shaft, it is convenient to introduce the

polar coordinates R and 4), defined by the relation

U+iV=Rei¢ (6.1)
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where U and V are nondimensional modal displacements.

Substituting equation (6.1) and 8 = 0 into equations (2.40) and (2.41) and separating real

and imaginary parts yields '

iii-2211,11“:uiR+(Qoz-Qz)R-Zflké-R‘iu'ifloz R3=0 (6.2)

R$+RQ+28u,(QR+Ro)+euiR¢+29R+2R¢=0 (6.3)

Defining Ii and 5 to be the equilibrium solution set of equations (6.2) and (6.3), they can

be found by noting that Q = Q, and by setting all time derivatives equal to zero. Hence we

have

(Qoz—Q,2)§+efloz'§3=0 (6.4)

2euenj=o (6.5)

The trivial solution '1? = 0 corresponds to the undeformed configuration of the shaft and is

always a solution. The non-trivial solution exists only when as > 00 and 115 = 0

(i.e., no external damping) and is given by

1

i - (a 2 _ 8 2) 5

— 3 902 (6.6)

However, in practice there will always be damping and in such a case there is another

possible solution set in which it = {1:0, R = fi and i=0, $=-ai, where a is defined
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to represent the fact that the shaft whirls at a speed different from the rotational speed of the

shaft (i.e., nonsynchronous whirling).

Equations (6.2) and (6.3) now become

((202—(2,2)§+29,§6-§62+8002§'3=0 (6.7)

2eu,(EQ,-§o')-eu,'fi'a3=0 (6.8)

From equation (6.8), we have

65-—i—2“9' (new)

2 lie 4’ lli (6.9)

Substituting equation (6.9) into equation (6.7), we have

I

R- : [(Q'-6)2-902]
3

8902
(6.10)

Noting that we want Ti to be real, we can solve equation (6.10) to find the value of Q, at

which a non-trivial value of i just appears. Calling this value of (2‘, 0: , it is found to be

o:=oo+—&J2“a

“i (6.11)

This is the first critical speed at which the trivial solution loses its stability and bifurcates

into a stable periodic solution which whirls at a speed different from the rotational speed of

the shaft (for stability details see, for example, Tondl [1965], page 20). Also, from
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equation (6.11), we found that if pi = 0, then 9:-> °°. This means that, for a symmetrical

and perfectly balanced shaft, if we assume pi = O, whirling motions will never occur.

6.2.2 Coordinate Transformation

Before employing the method of multiple scales to obtain approximate solutions for

the motion about the buckled position, we first transfer the coordinates of equations (6.2)

and (6.3) such that the new coordinates describe the motion about the buckled position.

Let the new coordinates be q and (i) , such that

R=R+q
(6-12)

¢=—Et+q>+¢o (6.13)

where 410 is a constant depending on the initial conditions.

Substituting equations (6.12) and (6.13) into equations (6.2) and (6.3) and setting

(I: Q,+EQASin0fl , we obtain

éi+2[(n.-'c3)’—flo’]q-2((2.—'c6)(q+i)ri>—(q+i)<i>2

+3600qu§+eflozq3+e(2u,+ui)q=28(q+§)QAq'>sinm

+28(Q,-53)QA(§+q)sinon+ezflA2(q+-§)sin (m2

(6.14)
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(Q+§)¢+2Q¢+2(9.-5)Q+8(Q+§)¢(lee‘l'lli)

+28ueq(Q,—Eu')-euiqfi =-eQAco(q+§)costot

—2£QAQSinan—2£2ueQA(q+'§)sinort (6°15)

Note that these equations describes the response of a shaft about the buckled positions to

combined parametric and external excitations.

We will now seek a first order approximate solution to the two equations. Before

presenting this, we note that when the shaft operates above the first critical speed

(i.e., 9. > 9: ), internal damping has a destabilizing effect (i.e., it acts as a source of

energy to the system). We therefore might expect the internal damping to play a very

important role in the final form of the approximate solutions. This is indeed the case and it

is necessary to assume two different orderings for the size of pi. In the analysis to follow

we will consider two cases: (a) the internal damping appears at the same order as

nonlinearity and (b) the internal damping appears in the lowest order of the perturbation

equations.

6.2.3 A First-order Approximate Solution with [1,: O (1)

In this sub-section we assume the internal damping will appear when the

nonlinearities appear. We seek a first-order uniform expansion by using the method of

multiple scales in the form

Q(T; 8) = 8 (110031) + 82 (120.031) + ‘53 q3 (TO’T1)+' ' " ' " " (6.16)

W138): 3 iPi(To’Tr) "' 52 ‘Pz (T031) + 53 ‘Pa (TmTr)+' """"" (6.17)
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Substituting equations (6.16), (6.17), (3.6) and (3.7) into equations (6.14) and (6.15) and

equating coefficients of like powers of e, we obtain

Doqu—Z(Q,—E)§D02(pl+2[(9,-5)2‘Qoz] q:

:2 (Q.-'d)')QA§sinun
(6.18)

fiD02¢1+2(Q,-E)Doql=-QA(DfiCOSGYC . (6.19)

The solutions of equations (6. 18) and (6.19) can be expressed in the form

q, =‘hh “In: (6.20)

§¢1=P1=P11+Pip (6.21)

where

q“I = A,(Tl) + A2(T1) exp( iculTo) + cc (6.22)

P111 = A1A1(Tl) + A2Azai) ¢XP( i(”11.0) + CC (6.23)

qip=0 (6.24)

plp = 25—1: coswt

a) (6.25)
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m,=[6(n,-'oi)2—2noz]i

 

= (Q'-E)2-Qoz 1

A1 _.
(2.-(u

A2 = 2(as - (n) i

(02

cc stands for the complex conjugate of the preceding terms.

In equations (6.13) and (6.14), the excitation comes from two parts: (a) parametric and (b)

direct forcing. If the analysis is continued to the next order we can shown that the Al and

A2 decay to zero and thus the direct forcing term only influences plp which in turn only

effects the whirling speed of the shaft, and not the radius of the whirl. Therefore, for a

perfectly circular shaft with a very small value of internal damping ui, the orbit of the

whirling cannot be parametrically excited.

1

6.2.4 A First-order Approximate Solution with u. = O (E)

In this sub-section we investigate the effect of internal damping on the response of a

perfectly circular shaft rotating at nonconstant speed. We first order the internal damping

so that it will appear in the lowest-order perturbation equations. To this end we introduce

11,, such that iii = e 11,.
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Substituting equations (6.16), (6.17), (3.6) and (3.7) into equations (6.14) and (6.15) and

equating coefficients of like powers of e, we obtain

Dozch-z(91-5)iDo‘Pfi'fiiDoQ1+2[(Qs’-‘5)2‘902] ‘11

=2 (Q,-fi)')QA§-sinon (6.26)

§D02¢,+2(Q,-E)Doql+fii§Dotpl-fiiq,'(6=-QAtoIicosm

(6.27)

The solutions of equations (6.26) and (6.27) can be expressed in the form

(11 =CI1h +qu
(6.28)

fi‘Pr: Pr =plh +P1p (6.29)

By investigating the eigenvalues of equations (6.26) and (6.27) we find that the

homogeneous solutions will be damped out (i.e., q", and p“, -)O). The particular

solutions can be found as follow

clip" Alp sin((m:+al) (6.30)

Pip: A2,, cos("""""2) (6.31)

where
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A“, = (/H,2 + H22, a, = tan"-111

[_— _ H

A2p= H32+H42, (12';'tanli1

4

and

H1, H2, H3 and H4 are defined in Appendix F.

Hence, the steady state solutions have the form

_ A

U = Rcos¢ = [ R + eAlpsin(tm +010] cos[-Et + e -..—.2."- cos((ut — a2) + (1)0

R (6.32)

_ A

V = Rsintb = [ R + eAlpsin((ur +010] sin -'tBt + (ht—.21 cos((ot —112)+t|>0

R (6.33)

where (1)0 depends on the initial conditions. Note that both the amplitude and frequency

parts in equations (6.32) and (6.33) have a small oscillation term with frequency 0) and the

amplitudes A1p and A2" which depend on iii, 11¢, 05, {2A and to.

6.2.5 Numerical Results

In this sub-section we present the numerical results using the set of parameter

values: 0. = 10.1, 11¢ = 173 and e = (513?. The original differential equations (2.40) and

(2.41) are simulated on a digital computer. After transient motions decay, the steady-state

solutions are recorded and compared to those predicted by the method of multiple scales

(equations (6.32) and (6.33)).
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We first demonstrate the effect of internal damping pi on the symmetrical shaft

response. Figures 6.1a-c show the orbits of the shaft for three different values of pi with

(o = 63. From Figure 6.1a we observe that the shaft has a nonsynchronous whirling

motion with a circular orbit if the value of pi is very small (note that U and V are rotating

coordinates). However, for larger values of pi, this circular orbit will change to a

"circular" orbit with a overhang. Note that the the size of the overhang and the radius of

the orbit increase as the value of pi increases.

Figures 6.2a—i depict the results from both the numerical simulations and the

method of multiple scales for a selection of different to values, viz. co = n 6)“, n = 1, in 2,

3. From these figures, we observe that the approximate solutions and the numerical

solutions are in close agreement. It should be noted that the phase angle constant (pa in

equations (6.32) and (6.33) depends on the initial conditions, which in turn fixes the

orientation of the overhang. Also, from these figures we observe that if n is a integer, the

number of overhangs is equal to It. If n is a irrational number, then the response of the

shaft is non-periodic. The corresponding results for such a case are shown in Figures

6.3a-b where a) = 42 E. In this case the simulations represent approximately 10 cycles of

a).

6.3 Close to Circular Cross Section

In this section we consider the shaft to have close to a circular section (i.e., 8 at 0) .

Employing the same procedure as was used in the Section 6.2, the post-critical behavior of

the shaft is investigated.
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6.3.1 Equilibrium Position

We first transform the equations (2.40) and (2.41) into polar form, by substituting

equation (6.1) into equations (2.40) and (2.41) and separating real and imaginary parts to

find

fi+2£peR+epiR+(?202-Qz)R—ZQR<i>-R¢2

+6902 113+ O‘Rc032¢=0 (6.34)

R$+RQ+Zeuc(QR+Ro)+epiRq')+2QR

 

+2Ro—Odasin2¢=o (6.35)

where

-- 2 2+8 2

.. O
90 2 0 (6.36)

and

-8
9d =7 902.

(6.37)

Setting (2 = Q, and all time derivatives in equation (6.34) and (6.35) equal to zero, we find

the equations govern the steady-states 1? and 6 to be

(mz-a})R‘+e902§3=-Odficos2$ (6.38)

ZEUC§Q,=Qd§sin 25 (6.39)
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Three equilibrium positions can be found, either Pi = 0 or

I

2_—2 2_ 2 2

"' [as (’0 i491! (2811139.) I, §1>§2

 

R”: c Q 2

° (6.40)

 

- _ -2£11 Q

¢=ml[ 2 ‘2 c I2:2]

Note that Em and 6 are independent of the value of pi.

Again, we can find the values of (2', say Oh, where equation (6.40) just begins to

generate real, positive values of K. They are

-1
n;_,=[r-roz_2e2n,=r,/(mi-2c2ttJY—(fiotarbl2 and 0:42;

(6.42)

 

For 9, < 9; only one stable trivial solution exists. For 9; < 0, < 9; , two solutions exist:

the unstable trivial solution and a single stable non-trivial solution. For 9; < 9., there are

three solutions: one stable non-trivial solution (i.e., l-il), one non-trivial solution (i.e., B2)

and one trivial solution. The stabilities of the latter two depend on pi and 11e (see

Ariaratnam [1965] for details). For 0, sufficiently close to no, we only need to consider

one stable non-trivial solution (i.e., 11,).
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6.3.2 Coordinate Transformation

Once more, we transfer the coordinates of equations (6.36) and (6.37) such that the

new coordinates describe the motion about the buckled position (i.e., 15 = E ) .

Let the new coordinates be q and (1), such that

R = R + q (6-43)

and

¢ = 5 + (1 (6.44)

Substituting equations (6.43) and (6.44) into equations (6.36) and (6.37), we obtain

{1+8(lee'i‘nozlliNI-ZQ.(Q+§)¢-(q+i)¢2

+2[123-'15,,247()dz-(214512,)2 ]q+t-: 1202 q2(q+3'fi)

 

2 3

+Qd(q+§)[cos2$ (-£-2—(2p—)-+-----)—sin2$ (2tp—Q§-)—-+------ ):|

= 2 eflAfl, (q +fi) sinon+2 13 9A4) ( q+§ ) sinan-l- 82 9A2 (q-1--li)sin(1)vt2

(6.45)

1

(q+§)0+29rq+2¢‘1+€(2|¢e+ui)(Q+i)¢‘2[962'(2€ueflr)2]5(fi‘l'QN’

2 3

+Qd(q+§) [sinZE (—-(3(2P—)-+-----)+cos2$ (.S%fl+.....):|=

— 6 9A 0) (q+§)coswt-2£ QAq sinan-Z czpenA(q+§)sinon

(6.46)
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6.3.3 Approximate Solutions

Assume a first-order expansion in the form

‘1“; 8) = 5 ‘11(T0rT1)+ 82 ‘12 (T031) ‘1' e3 ‘13 (T0511) + ' (6.47)

‘P("i£)=€‘P1(T0rT1)+€2 <12<Tam+63 ¢r<TeTr>+m~~~ (gag)

Substituting equations (6.47) and (6.48) into equations (6.45) and (6.46) and equating

coefficients of like powers of e, we obtain

 

D0291 ' 2 as R- Do‘Pr+2[ Q‘2_§oz+‘/ 9112- (2611.901 ‘11

= 2 QA Q, i sinan (6.49)

l

§D021p1+29, Doq1+2[QdZ-(28uefl,)2]5 no, =- OAEtn cosan

(6.50)

The solutions of equations (6.49) and (6.50) can be expressed in the form

‘11 =‘111: +‘11p (6.51)

i‘Pr= P1 =Prb +P1p (6.52)

where

qtt = At(Tt) CXP( imtTo) + A2(Tt) cxP( in); To) + cc
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P11. = A1A1(Tl) CXP( in); To) + A2A2(Tl) exp( iszo) + cc

qlp = A1" sin an

p1‘, = A2" costm:

A _ ZQSmL

“- l

2[Qd2-2(tsrrefzs)2 ]2-0)12

 

 

2128(1)2

2[ Q(12.2(81'leas )2 12 “(022

1
_

6982+4[Qd2—(28uefls)2]2(1-8QSZ)_2§OZ_(6QSZ_2£—202)2

(01:
2

1
l

6Qsz+4lfld2—(2 eper:12(1+3QSZ)_2-Qoz+(6982_2§02)2
2

(02:
.. 

2

A1p and Azp are depend on (2,, Q , (0, (Id, T20, '13 and tie and cc stands for the

complex conjugate of the preceding terms.

Notc that A1 and A2 are arbitrary complex functions of T1 which can be determined

at the next level of approximation. However, due to the complexity of these equations it
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was found impossible to proceed with analysis beyond this point. Instead, we employed

numerical simulation techniques to explore the bifurcated and chaotic motions of this case.

6.3.4 Numerical Results

Equations (2.40) and (2.41) were simulated on a digital computer. The parameter

values used, unless otherwise stated, were:

as = 9.9, 5 = 1.0, .116 = 256, 11; = 200a2 and e = (51.79.

Before investigating the shaft's response to a parametric excitation, we calculate the

buckled positions of the unperturbed case (i.e., 89A = O). From equation (6.1) we can

express these positions as

U- = R1 cos¢
(6.53)

and

V= R1 sin 4) _ (6.54)

Substituting the above parameter values into equations (6.40), (6.41), (6.53) and (6.54),

we find '17 = :1: 18.8489 and V = $0.017. Obviously, there is a big difference between '17

and V. Hence, we next try another value of 8 = 0.01 (i.e., the shaft has very slight

asymmetry) and we find U = :1: 18.6468 and V = :1: 1.69855. The value of U is still much

larger than the value of V. This suggests that, for an unsymmetrical, buckled shaft, its

post-buckled behavior may be similar to that of a rotating buckled beam. We will see that

this is the case in some of the numerical simulations to follow.
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We now use numerical integration to find the trajectory of the free response of the

rotating, unsymmetrical shaft by setting 80A = 0 in equations (2.40) and (2.41). Figures

6.4a-b show trajectories of the free response depicted in a (U,V) projection for two

different 11, values with 8 = 0.5. In both cases the orbits approach the right hand buckled

position. A different choice of the initial conditions would cause the trajectory to go to the

other buckled position. Comparing Figure 6.4a with Figure 6.4b, we observe that the rate

at which the trajectory of the fiee response approaches the buckled position depends on u, .

We will next consider 89A at O and show that the shaft will vibrate about one of

the buckled positions or encompass the two buckled positions. The following sub-sections

will consider the cases ofu) =1 2(1), and (1) ~ (1),.

6.3.4.1 The Case of mat-20),

We first use numerical simulation to observe the trend of the frequency response

curve. Equations (2.40) and (2.41) are simulated on a digital computer for fixed I), = 9.9,

nA = 5760, tte = 256, tti = 200, 5 = 1.0, e = (5159 (and hence (1), = 0.4885) and to is

varied. The results are depicted in a (U,V) projection in Figure 6.5. From this figure we

observe that the magnitudes of the displacement U and V increase as 0) decreases. That

means the nonlinearities are of a softening type.

Next, instead of varying a), we present the effect of varying (2,, on the shaft's

response with (t) = 0.947 48 2(1),. The results of the numerical simulation are shown in

Figures 6.6 and 6.7 and are summarized in Table 6.1.



 

e
n
e
n
t

 

V
d
i
s
p
l
a
c

 
'5 _ t

"1'11'1’w1'111"
~60 ~40 ~2LO 0 20 4O 60

  
 

U Displacement

Figure 6.4a Trajectory of the Free Response in (U,V) Projection; ti, = 201:2, 8 = 0.5.

 

  

10

s 1.—

‘c'

g

a 0 ' C
n

.6

>

-5 —

-10 1 l l 1 J

~50 ~40 ~20 0 20 40 60

 

U Displacement

Figure 6.4b Trajectory of the Free Response in (U,V) Projection; 1,1, = 2001:2 , 8 = 0.5.



169

 
0.75

 

  
 

U

I 576

2 288

J 0

0.5 - 4 -un

5 ~57!

G ~064

7 -1t$2

O ~144O

0.251.. 9 ~172l

E

u

3 _
a 0

D

:6

>

~0.25 _

~0.5 —

-o.75 ‘ 1

~24 ~20 ~16 ~12

U displacement

Figure 6.5 Orbit obtained by Numerical Simulation in (U,V) Projection;

0) = 2 (t),+e o, o from 576 to -1728.

 

0.8 '-

V
d
i
s
p
l
a
c
e
m
e
n
t

  . . .1 . 1
~30 ~25 ~20 ~l 5 -l 0 ~5
 

U Displacenent

Figure 6.6a Orbit of Period 2 Motion in (U,V) Projection; (2,, = 864, (1) =0.947.



170

 

0.8 T

V
d
i
s
p
l
a
c
e
m
e
n
t

  
 

_,'2 1 21, 1 1

-30 -25 ~20 -13 ~10 -s

U Displacsnent

Figure 6.6b Orbit of Period 4 Motion in (U,V) Projection; (2A =1296, (1) =0.947.

 

V
d
i
s
p
l
a
c
e
m
e
n
t

   
 

'-30 -2s -20 -1s -10 -s

l

U Displacenent

Figure 6.6c Orbit of Period 8 Motion in (U,V) Projection; 0A = 1340, (1) =0.947.



171

 

   

1.2

0.8 —

0.4 -

E
0

O

a o

O

'0

>

-o.4 -

-o.s —

-1.2 1 L 1 1

-sa -2:1 -20 ~15 -10 -s
 

U Displacement

Figure 6.6d Orbit of Period 16 Motion in (U,V) Projection; (2,, = 1350, 0) =0.947.

 

 

V
d
i
s
p
l
a
c
e
m
e
n
t

   p
-

p
—

I
-

 

l

2—30 ~20 ~10 0 1 O 20 30

U Displacement

Figure 6.7 Orbit of Chaotic Motion in (U,V) Projection; 0,, = 1440, a) =0.947.



172

Table 6.1 Summary of Bifurcated and Chaotic Motions for 0) = 0.947.

 

  

 

   

Type of Motion

 

Initial Conditions

(U(0).U(0); V(0).V(0>) ,

864 Figure 6.6a 2r (1.0, 0.0; 1.0, 0.0)

1296 Figure 6.6b 4T (1.0, 0.0; 1.0, 0.0)

1340 Figure 6.6c 8T (1.0, 0.0; 1.0, 0.0)

1350 Figure 6.6d 16T (1.0, 0.0; 1.0, 0.0)

1440 Figure 6.7 chaotic (1.0, 0.0; 1.0, 0.0)
  

Figures 6.6a-d show a period doubling bifurcation depicted on a (U,V) projection.

This series of bifurcations, if continued, would lead to chaos. The simulation indicates that

at 9A = 1440, a chaotic motion occurs as shown in Figure 6.7. In this case it is convenient

to describe the response of the shaft by projecting the trajectories on to the (U,U) and

(V, V) planes and sample the values once per forcing period (as in a Poincare map).

Figures 6.8a-b depict the points in the (U,U) and (V,V) planes corresponding to the

motion shown in Figure 6.7. Note that Figure 6.8a is similar to Figure 4.24b in Chapter 4,

and the motion in the U direction dominates the shaft's response.

6.3.4.2 The Case of open),

In this sub-section, we consider the case of 0) = a), = 0. 4885. A period doubling

bifurcation can occur as one varies the value of 9A. The results of numerical simulation

are summarized in Table 6.2 and plotted in Figures 6.9-13.

For a small value of QA, the shaft vibrates about one of the buckled positions.

Figure 6.9 shows the limit-cycle attractor around the left buckled position with S2,, = 288.
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Table 6.2 Summary of Bifurcated and Chaotic Motions for a) = 0.4885.

 

 

Type of Motion Initial Conditions

(U(0).U(0); V(0).V(0))

288 Figure 6.9 1T (10.0, 0.0; 20.0, 0.0)

576 Figure 6.10a 21‘ (10.0, 0.0; 20.0, 0.0)

1100 Figure 6.1% 4T (10.0, 0.0; 20.0, 0.0)

1110 Figure 6.10c 8T (10.0, 0.0; 20.0, 0.0)

1116 Figure 6.10d 16T (10.0, 0.0; 20.0, 0.0)

1120 Figure 6.11 almost periodic (10.0, 0.0; 20.0, 0.0)

1152 Figure 6.12 chaotic (10.0, 0.0; 20.0, 0.0)

1440 Figure 6.13 chaotic (10.0, 0.0; 20.0, 0.0)      
However, for larger values of DA, this attractor becomes unstable and gives rise to yet

another new, larger limit-cycle attractor that encircles both buckled positions, as shown in

Figure 6.10a. As we continue to increase the value of the 9A, this large outer trajectory

bifurcates, as shown in Figures 6.10b-d. This cascading of period-doubling bifurcations

will ultimately lead to a chaotic motion. However, before chaos is observed an almost

periodic motion is found for a Q, = 1120, see Figure 6.11 which represents approximately

100 forcing periods. The trajectories of the chaotic motion associated with (2,, = 1152 and

1440 are shown in Figures 6.12 and 6.13, respectively. Clearly the chaos in Figure 6.12

is not as well developed as in Figure 6.13, but it is certainly more than simple quasi-

periodic motion. Again, the trajectories in Figures 6.12 and 6.13 are projected on to the

(U,U) and (V,V) planes and sampled once per forcing period. The results are shown in

Figures 6.14a-b and 6.15a-b, respectively. Note that the points in Figures 6.14a-b appear

to lie on a set of curves. However, the points in Figures 6.15a-b reveal a fractal-like

pattern (i.e., strange attractor) and Figure 6.15a is similar to Figure 4.27f of the rotating

beam case.
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6.4 Summary of the Chapter

In Chapter 6, we have investigated the post-critical behavior of a perfectly balanced

shaft by applying the method of the multiple scales and employing numerical simulations.

When the rotational speed of a symmetrical shaft is over the first critical speed, the shaft

will whirl with a circular orbit at a speed different from the rotational speed. The radius of

the orbit depends on (2', 1,1,, and 1,1,. No parametric resonances about the orbit of the

whirling were possible in the case of a symmetrical shaft with small internal damping.

However, the orbit of the whirling will be distorted (i.e., a circular orbit with a overhang)

in the case of a larger value of internal damping.

When the rotational speed of an unsymmetrical shaft is greater than the

corresponding first critical speed, the straight equilibrium position is unstable and the shaft

buckles. Due to the complexity of the equations, no approximate solution were found for

this case. However, bifurcated and chaotic motions were found numerically to exist in

unsymmetrical, buckled shafts. The motions in the U direction dominated the shaft's

response. Therefore, for an unsymmetrical, buckled shaft, its post-buckled behavior

seems to be similar to that of a rotating, buckled beam.



CHAPTER 7

EXPERIMENTAL WORK

7.1 Introduction

The purpose of this chapter is to present an experimental investigation of a physical

model (i.e., a rotating beam) whose motion is governed by the differential equations which

have been analyzed in Chapters 3 and 4. The results of this experimental study confirm the

presence of the majority of the phenomena which were theoretically predicted to exist.

In Section 7.2, the details for developing the experimental apparatus are described.

Attention is focused on the measurement techniques of the motor's speed and beam's

response. The experimental procedures and corresponding results of both pre-buckled and

post-buckled cases are described in Section 7.3 and 7.4, respectively.

7.2 Experimental Setup

The laboratory test equipment consisted of:

1. AND AD-3525 FFI‘ Analyzer.

2. WAVETEK 2M Hz Variable Phase Synthesizer, Model 650.

3. PM6666 Philips 120Mhz Programmable Timer/Counter.

4. Stanford Dual Channel Low-Pass Filter, Model SR640.

5. PM 3365 Philips Oscilloscope.

6. Measurement Group Signal Conditioning Amplifier, Model 2210.
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7. ALLEN-BRADLEY Bulletin 1326 AC Servo Motor.

8. Wendon Slip Ring, Part Number WSD-l750—102.

9. Analog Devices AD-650 Frequency-to-Votlage Converter.

10. Hewlett-Packard 6235A Triple Output Power Supply.

11. MASSCOMP 5550 Lab. Workbench 2.1.

The instrumentation schematic is shown in Figm'e 7.1.

The experimental model consisted of a spring steel beam with a length of 175 mm.

and 0.508 mm. x 12.7 mm. cross section rigidly clamped at one end which is driven by an

AC servo motor. The beam's first natural frequency was experimentally found to be 13.50

Hz by simply striking the beam and Studying the frequency at which it responded. The

damping ratio of the beam was found to be approximately 0.01 from a transient decay test.

The experimental system was rigidly mounted on an aluminum plate which was vertically

hung on the wall in order to negate the effect of gravity. Details of the mechanical

construction of the experimental system is shown in Figure 7.2.

The experimental model was driven by an AC servo motor. The speed of the motor

was precisely controlled by a feedback system. The speed of the motor, (2 (t), was set by

the voltage output from a high accuracy signal generator. In all the experiments, the value

of the DC offset of the signal generator was set equal to 8 Vdc. An encoder attached to the

motor generated pulses at a rate of 1,000 per revolution. We then used two techniques to

monitor the rotational speed. Firstly, we used a counter to measure the frequency of the

pulses from the encoder and hence to measure the mean spin rate, (2‘. A control box was

used to adjust the voltage of the DC signal to obtain a desired mean spin rate. After

obtaining the desired mean spin rate, we superposed a small sinusoidal signal on the DC

signal to generate a periodic perturbation in the spin rate. Next, a Frequency-to-Votlage
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Figure 7.2 Mechanical Construction of the Experimental System .
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converter was designed and built to convert the frequency of the pulse from the encoder

into an analog voltage signal. This analog signal was monitored on an oscilloscope and a

PET analyzer.

The amplitude of the beam's response was measured by a strain gage which was

cemented near the clamped end of the beam and wired to form a half-bridge for the signal

conditioning amplifier. The signal of the strain gage was transmitted to the amplifier by

slip rings. Low-pass filters were used to filter out noise of the signals. The cut-off

frequency was set equal to 30 Hz for all the experiments. A two-channel FFI‘ analyzer was

used to monitor and record the response of the beam and the rotational speed of the motor

in the time and frequency domain .

We now present the experimental results of the two cases: (a) Q, < 00 and (b)

(2, > a, in the following sections.

7.3 The Case of 0. < 1),

Based on the theoretical work described in Chapter 3, we would expect an

instability to occur close to a) = 2(00. Using the result of Chapter 3, this will be in the

neighborhood of 2" 002 ~ (2,2 where (20 is experimentally found to be 13.50 Hz.

Figures 7.3a-c present the results obtained by completing an incremental frequency

sweep over the range 2000, while holding the mean rotational speed as constant at 9.04

Hz, 10.55 Hz, and 11.0 Hz, respectively. The amplitude, 89A, for all cases was set equal

to 0.0250,. The "amplitude" term as it was plotted in Figures 7.3arc corresponds to the

root mean square value of the signal from the strain gage. Representative examples of the
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time traces obtained from the strain gage and from the signal representing the fluctuating

part of the motor speed, are shown in Figure 7.4 along with their associated Fourier

transforms in Figure 7.5, respectively.

In general, the form of the experimental response curves depicted in Figures 7.3a-b

agree well with the theoretical predictions, as presented in Figure 3.1. The trivial solution,

an amplitude of zero, becomes unstable over a region close to 20)0 and the resulting

response is of a nonlinear hardening type. There is also a range over which we can

observe multi-valued solutions. However, the type of behavior in the vicinity of the point

where the trivial solutions go unstable, is slightly different from that predicted by the

theory. The theory is based on a perfectly balanced, initially straight beam. In practice this

is hard to achieve and the introduction of small imperfections lead to imperfect bifurcations

(see, for example, Golubitsky and Schaeffer [1984], page 6).

To better explain the results depicted in Figure 7.3a, consider the points A, B, C,

D, E, F, G, H, I, and J as shown on this figure. First, we sweep the frequency, 0), up.

The experiment is started at a frequency corresponding to point A on Figure 7.3a. As a) is

increased, the trivial attractor is stable through point B until point C is reached. As a) is

increased further, the beam jump from point C to point D (i.e., the beam moves to the non-

trivial attractor), after which the amplitude of the beam's motion is increased with

increasing 0) until point B is reached. As 0) is increased further, the beamjump from point

B to point F (i.e., the beam returns to the trivial atu'actor again). Next, we sweep a) down.

The experiment is started at point G, the beam stay at the trivial attractor through point P

until point H is reached. As a) is decreased further, a small amplitude motion takes place

until point I is reached. As a) is decreased further, a jump of the beam takes place from

point I to point J, after which the amplitude is decreased with decreasing 0) until point B is

reached. As a) is decreased further, the beam returns once more to the trivial attractor. The



190

 

 
 

 

  
 

100m Speedoftthotor 12,3113;

(11:15.61-lz

TIME

V

~100m

0 Timelsec) 800.0m

5 . 000 ResponseoftheBeam

TIME

V

-5.000

0 Time1sec) 800.0m

Figure 7.4 Time Traces of the Fluctuation of Motor Speed and Beam Displacement.

 

100m SpeedcrtheMotcr 1),-11H:

mar-15.6112

SPCTFIM

AMP

VP

(1)

0.000 ii

0 Frequz) 20.0

5 . 000 ResponseoftheBesrn

 
 

 

SPCTFIM

N
I
B

AMP

VP

  0.000

 

L

O Freq (Hz) 20.0

Figure 7.5 Spectrum of the Fluctuation of Motor Speed and Beam Displacement.



191

maximum amplitude corresponding to point B is attainable only when approached by

sweeping up. Figures 7.3b and 7.3c show the same trends, but the influence of the

imperfect bifurcation decreases as the spin rate, (2,, increases.

Figure 7.6 presents the results from measuring the rms value of the strain gage

while slowly varying the amplitude 6.0,, of the small fluctuation. The mean spin rate, 9,,

for this experiment was set equal to 9.04 Hz and 0) was fixed at 20.1 Hz. Once again, the

general trends as predicted by the theory are the same (cf. Figure 7.6 to Figure 3.3b). We

also note the influence of the imperfect bifurcation.

7.4 The Case of 0, > 0,,

In this section we investigate the post-buckled behavior (i.e., O, > (20) of the

experimental model. For this case the straight equilibrium position of the beam is unstable

and the beam buckles due to centrifugal effects.

We present the results of two experiments which were canied out on the physical

model. These experiments investigate the beam's response as functions of the frequency 0)

of the small sinusoidal oscillation. The mean rotational speed (2, is held constant at: (l)

13.58 Hz and (2) 13.70 Hz. It is hard to experimentally measure 0),,, the natural frequency

of the beam vibrating about the buckled position. However, we do have experimental

values for 0,, and, of course 0,, and therefore we can use the equations in Appendix C to

obtain a "theoretical" value of 0),, based on experimental measurements. Hence, we find

0),, = 4.4 Hz when S2, = 13.58 Hz and 0),, = 4.9 Hz when 9, = 13.70 Hz. We complete

experiments over the range of 0) = 2 Hz to 12 Hz and thus we will cover resonances at 0),,

and 20),,.
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The results of the experiments are presented as amplitude frequency plots in Figures

7.7a-b. In Figures 7.8-7.17 we present a selection of both the time trace and its

corresponding spectrum for different values of 0) with Q, = 13.58 Hz.

The theory and the numerical simulations presented in Chapter 4 predict that for

forcing frequencies, to, well above 20),, we will only see a small amplitude, directly forced

response, i.e., the beam will respond at 0). Figure 7.8, which shows the time trace of the

beam response at a value of 0) = 11 Hz, is consistent with this. To theoretical make a

comparison with the results obtained using the method of multiple scales we have plotted

the response depicted in Figure 7.8 as a trivial response i.e., zero amplitude, on Figures

7.6. At first this may seem contradictory, however, it is the resonant response at 523 that we

are interested in. As is often the case in nonlinear studies, it is difficult to plot a standard

response curve (i.e. amplitude of response verse forcing frequency) since the response may

contain many frequencies in addition to the forcing frequency. As stated, we have chosen

to plot the amplitude of the 923 component on Figures 7.6a-b. This will then be consistent

with, for example Figure 4.1, as presented in the theoretical section.

As we decrease the forcing frequency, we reach a bifurcation point at 10 Hz (see

Figure 7.7a), below which a subharmonic response is found. Figure 7.9 depicts the time

trace and its spectrum for the case where 0) = 8 Hz. When we decrease the frequency

below this value we find a period four motion is introduced (see Figure 7.10). This was

not predicted by the method of multiple scales but it was by the numerical simulations of

the equation of motion, see, for example, Figure 4.28 in Chapter 4.

Further decreasing the value of 0) below 7.8 Hz we enter into a region of chaotic

response. Time traces and spectrums recorded in this region are presented in Figure 7.11.
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To better demonstrate the chaotic motions, another two time traces also presented for a) =

7.1 Hz and 7.0 Hz, as shown in Figures 7.12. Once again this is consistent with the

numerical simulation completed in Chapter 4.

For values of to below 7 Hz a period two motion remains but now the motion

encompasses both buckled positions. This motion was described as "snap-through" in

Chapter 4 and, as was found in the numerical simulations, is of a hardening type of

nonlinear response. This can be seen in Figure 7.7a which clearly shows the amplitude of

the snap-through motion decreases as a) is decreased, but increases if we increase (0.

Hence, for 10 Hz > a) > 7 Hz multiple steady-states exist. Time trace and its spectrum, are

presented for such a case with (o = 8.0 Hz in Figure 7.13. Comparing this with Figure

7.9, which was also obtained at (o = 8 Hz; clearly shows the existence of multiple

solutions.

The system having adopted the snap-through motion, can maintain this type of

response over a very wide range of to. Indeed the motion was recorded right down to

approximately a a) of 2.65 Hz, at which time the motion changed to having a period of one.

Figures 7.14 and 7.15 show time traces and spectrums associated with the transition.

From these figures, we also observed that the third and fourth harmonics appeared The

period one motion was found to exist over a region of (o = 2.5 Hz to 2.71 Hz, at which

point the period two motion was then once more adopted.

One other type of motion was found to exist for a) = 2 Hz, as shown in Figures

7.16. This corresponds to a main resonance response, i.e., 0) ~ (00. It was extremely

difficult to experimentally obtain more data for this type of response as the snap-through

motion would intermittently occur. Indeed some chaotic motion was also observed in this

region. Figure 7.17 shows time trace and spectrum of a chaotic motion for a) = 2.64 Hz.
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7.5 Summary of the Chapter

We have conducted a series of experiments on a rotating cantilever beam for two

cases: (a) (28 < (20 and (b) (2. > no. The results of the experiments of both cases show

qualitative agreement with the perturbation solutions and/or the numerical simulations. For

the pre-buckled case, we observed regions of imperfect bifurcations. For the post-buckled

case, we observed biftn'cated and chaotic motions.



CHAPTER 8

SUMMARY AND CONCLUDING REMARKS

8.1 Summary of the Dissertation

The effects of a nonconstant spin rate on the nonlinear dynamic response of shafts

has been investigated. The analytical study was based on equations of motion which were

derived in Chapter 2. These partial differential equations were quite general in nature, but

were reduced to ordinary differential equations for two particular cases, upon which the

remainder of the dissertation was based. The first case investigated the behavior of a

cantilevered beam rotating about its longitudinal axis, the motion in this case being modeled

by a single, second order, nonlinear differential equation with time dependent coefficients.

The second case was concerned with the dynamics of a circular shaft, simply supported at

either end. For this case, two coupled, nonlinear, second order differential equations were

used to model the behavior. Time dependent coefficients were once again present.

In each of the two cases the investigation focused firstly on the system's behavior

for spin rates below the critical speed and secondly, on their behavior above the critical

speed. The general approach was to seek approximate solutions to the governing equations

of motion using the method of multiple scales. The accuracy of these solutions was

checked using direct numerical integration

In Chapter 3, the pre-buckled behavior of a fixed-free beam was investigated. It

was clearly demonstrated that a principal parametric resonance can occur at mean spin rates

well below the first critical speed of the beam. For this type of resonance, the
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nonlinearities were of a hardening type. In Chapter 4 the post-buckled behavior of a

cantilevered beam was investigated. For sufficiently small a (2,, values, the beam was

found to vibrate about one of the buckled positions with a softening-type, nonlinear

behavior. As we increased the 8 9A value beyond some critical value, the beam's orbit

encompassed both buckled positions. In the vicinity of the critical value of 8 (2A , a region

was found where the beam displayed bifurcated and chaotic motions. Melnikov's method

was applied to predict the regions where chaotic motions might exist. Numerical

simulations were used to find bifurcated and chaotic motions in the regions of primary and

subharmonic resonances. The values of a (2A for which chaotic motions occurred were

found to be much above the homoclinic bifurcation curve, indicating that in this case,

Melnikov's method gave a very conservative lower bound for the transition to chaos.

The case of the pre-buckled shaft was consider in Chapter 5. Four cases of

parametric resonances, viz. to ~ 2 0),, to ~ 2 0),, to ~ (01+ (02 and to ~ (02 - at)l were

considered. Each case was analyzed firstly in the absence of internal tuning (i.e., «)2 was

assumed to be well removed from 30),) and secondly in the presence of internal tuning

(i.e., (02 was assumed to be closed to 30),). It was shown that no parametric resonances

exist for the case of a perfectly balanced, symmetrical shaft. However, for a shaft that is

close to circular, it was found that parametric resonances can occur. In the presence of an

internal resonance, the shaft's behavior became much more complex. Such phenomena as

non-existence of steady-state motions, coexistence of steady-state motions, amplitude

modulate motions, and re-stabilization of the trivial solutions were all found to exist. They

were confirmed by direct numerical integration of the full equations of motion.

In Chapter 6 the case of the post-buckled shaft was studied. The analysis began by

finding the equilibrium position assuming a constant spin rate. The conditions for

nonsynchronous whirl were obtained and it was shown that even when a nonconstant spin
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rate was imposed on the perfectly circular shaft, no resonances occurred if the internal

damping was small. However, the orbit of the whirling will become distorted (i.e., a

circular orbit with a overhang) for larger values of internal damping. In the case of the

almost circular shaft, no approximate solutions to the governing equations were found, on

account of the complexity of the problem. However, numerical studies showed the

existence of bifurcated and chaotic motions for the case of to ~ to, and to ~ 2 to, .

The results from an experimental investigation of the cantilevered beam case were

presented in Chapter 7. The results of the experiments showed good qualitative agreement

with the perturbation solution for all the cases tested. When the beam buckled, bifurcated

and chaotic motions were observed.

8.2 Discussion and Future Work

(1) The coupled nonlinear, partial differential equations derived in Chapter 2 were

reduced to ordinary differential equations by assuming that the first mode motion

dominated the shaft's motion. At least for the case of a rotating beam, the experimental

results indicate that such an assumption is valid. Preliminary experimental results, not

reported in this thesis, show that a similar assumption would seem to be valid for the shaft

case.

(2) Although the approximate steady-state solutions obtained by the method of multiple

scales have been shown to be very accurate in a number of cases, the method does have its

limitations. For example, when a steady-state motion is found to loss its stability, the

method of multiple scales gives no indication as to the specific details of the resulting

motion, although the manner that the eigenvalues pass into the positive half plane do give

an indication of the type of response we might expect. Related to this is that no information
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regarding domains of attraction can readily be obtained from the method. Also, close to

regions where degenerate bifurcations occur, the method of multiple scales can not give

details of the motion likely to be observed. A possible qualitative approach (e.g.,

bifurcation theories) might be an alternate way to gain insight into these problems.

Another practical weakness of this, and other perturbation methods, is that carrying

out the expansion to higher orders is very cumbersome, especially for multiple degree of

freedom systems. In practice one seldom goes beyond the third order unless the algebraic

manipulations are performed by a computer. Even then, there are limitations.

(3) In this thesis, the spin rate was expressed as the sum of a steady-state part and a

relatively small sinusoidally varying component. However, from an engineering viewpoint

a more complex periodic spin rate would be more physically realistic. If this were modeled

as a summation of sinusoidal terms (e.g., by a Fourier series), there would be the

possibility of multiple resonances occurring simultaneously. This would be an interesting

extension to the current work.

(4) In Section 4.6 we observed that Melnikov's method was very conservative in

predicting the transition to chaos. Moon [1987] used a different criterion based on the

heuristic idea that chaos may occur when periodic orbits become large enough to touch the

homoclinic orbit. It would be interesting to apply his ideas to the current problem.

(5) The mathematical models used in the present study did not incorporate the effect of

mass unbalance. Since this is a practical consideration, it would be useful to extend the

analysis to include this and thus study the interaction between nonconstant spin rates and

mass unbalance. Indeed, the experimental results presented in Chapter 7 show that

imperfect biftu'cation occurred. It is believed that this could be explained by incorporating
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mass unbalance and other imperfections in general.

(6) The straight equilibrium position of a rotating beam is stable when £23 < no and

unstable when (28 > no. However, when 9' is very close to no, the straight equilibrium

position is marginally stable. The stability of the straight equilibrium position will change

periodically if we superpose a relatively small sinusoidally varying component on as. This

corresponds to the problem of a system with a periodically disappearing separatrix. The

method of the multiple scales cannot capture the nonlinear dynamics of the beam under this

condition. This may be investigated by using averaging and elliptic functions (see

Coppola and Rand [1990]).

(7) Chapter 7 reported on the experimental investigations completed on a cantilevered

beam. This work should be extended to cover the shaft case.
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Appendix A

If (p is the rotation of an element of the beam about the y axis, then the slope of the

rotation can be expressed as

ul

tan =

(p 1+w’

 

a)
where (Y =— and S is the undeformed arc length.

BS

Differentiating equation (A.l) we obtain

,_ (1+w’) u"—u’w”

1+u’2+w’2

 

The elongation rate

I

e( S,t)=[(l+w’)’+u’2]5-1

(A.l)

(A.2)

(A.3)

is the measure of the axial deformation of the neutral axis. For a beam with a movable end

(e.g., cantilevered beam) the axial deformation of the neutral axis is negligible, i.e.,

e(S,t) = 0. Hence
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(A.4)
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Substituting equation (A.4) into equation (A.2) yields

II 1 I2 I

_u (1+2!) )3. ”(1+1 ’2)

-1+u’2+lu" u 2 u
4

I
 

(A.5)



Appendix B

Here we want to determine the function w(z,t) so that it can be eliminated from

equation (2.19). Note that

ds2= dx12+ dx,2
(13.1)

x1 (2, t) = u (z,t)
(B.2)

x2(z,t) = z+w(z,t)
(B.3)

therefore,

.,2=[(;y-gay] .2
z z (3.4)

2

as

An expression for (5;) is obtained from equation (2.8) by rearranging terms to get

a 2

{—5) = 1+2 eu(z,t)
82

(35)

Assuming eu(z,t) << %, we can get

(a. )2
— El

31 (3.6)
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The use of equation (3.6) in equation (BA) and integrating with respect to z shows that

l

x2(z,t)5]; [1-u’2(t.t)]5dt+C1(t)
(13.7)

The end displacement condition is that x2(0,t) = 0, hence

I

x2(z,t) s I; [1- u’2(t.t)]5 dz (B.8)

Finally, we combine equations (B.3) and (8.8) to obtain the formula for w(z,t):

l

w(z. t) s- j; [1 - u'2(§.t)] 5 dz - z (3.9)

In keeping with the first order approximation policy used herein, we expand the integrand

of equation (B9) in a binomial series, to obtain

1

I - 1 ’

[1- 11 2(ml2 “‘30 2“")1 ‘ """" (BJO)

This shows that

w(z,t)s —;1;[u'2<e.o]da . (13.11)



Appendix C

0, _._ds_
‘ 1+ds2 '

_ c

26(l+dsz) ’

 tr

_ 3bs

1 1+ds2

 

1: ZQIQES ’

1+ds2

. _ 035

& ua?’

 

 

a _ d

2 1+ds2

(02- 2bs2

° 1+ds2

‘Y _ b

2 l+ds2

_299

2 1+ds2

_ 9A2

g4 l+dsi '
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Appendix E

K11=K15=(2im,-2A,9,)(Qoz—m12)+2£2,2(im1+1\10,)

+2 9028(iw1-A1 Q‘)

K12=2A2019A(002-(012)+iQA Q‘(Q'2-Qoz-3 (012)

HQ,2 9, (2,5

+2iflozm,Q,(A2+2X1+3X12A2)

K1,S = ( (20‘ + 90‘ 5— 902 (012—9020,: )( 3+X12+ 2 X1Al)

+2i§202m1 Q,(K,+2A1+3A12X1)

K21=K23=2ic02(002-022)-2A20,(002-14022)

+2 of(ico,+A,o,)+2ao’8(ico,-A2a,)

192:»:- A, 022 a, ((202-0122)+%QA a, ( 3002+ (1)22)

-QAQ,2(%A1m2+iQ,)- r202 0A8(%A1w2—ifl,)

K24: 2 ( 904+Qo48-902m22-Q020.2 )(3+A1-A-1+A1A2+_A-1A2)

+4iflozmzfl,(A,+A2+X1+3A,A2-K1)

K25: (904+90‘8-nozm22-0020‘2)( 3+A22+2X2 A2)

+2i0020),Q,(X2+2A2+3A22X2)
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and

Appendix F

Let

11,=2[(Q,—'a‘))2-Q,,2]-m2

h2=fiw

h3=2(Q,—fo')o)

h4=(1)2

h5=fii5

h6=29A(Q,—'t6)§

H5 = (11111,)2 + 113013 + 1122) + 201,113)2 + 1124 + 1134+ 211,1141132

_ 1171130122 + 1132 + 11111,) + 1150111122 + 1132114 + 11,113)

H5

 

H1

___ h7halh(h1‘ 1'4) ' "611201;2 + 1132 + 1142)

H5

 

H2

= 1171120112 + 1122 + 1132) + 11611211101, — 11,)
H

3 H5
 

 

_ -h7(hlh3z + 1112 114 + 1122114) + h6h3(h22 + [‘32 + h1h4)

H
4 H5
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