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ABSTRACT 
 

DISCOVERING FUNCTIONAL ANNOTATION THROUGH DATA MINING OF LARGE 
SCALE PHENOMICS IN ARABIDOPSIS THALIANA 

 
By 

 
Shannon Marie Bell 

 

To address society’s biotechnology needs in agriculture, medicine, and beyond, a 

better understanding of the flow of information from gene to protein to phenotype is 

needed. However, despite the increasing amount of genome-scale (omic) data, the lack of 

annotation providing insight into gene function remains a challenge for researchers. The 

lack of functional annotation can hinder progress from targeted metabolic engineering to 

foundational biological research. Vague annotations coming from an expression profile or 

sequence similarity make it hard to design experiments to characterize the gene and can 

lead researchers down the wrong path. Using large-scale phenomics will provide more 

useful information to help guide researchers in the characterization of under-annotated 

genes.  Unfortunately, many of the tools needed to carry out analyses of large-scale 

phenotypic data are lacking. 

This work presents a suite of software tools developed to address this need. 

MIPHENO introduces a workflow to enable the post hoc analysis of screening data from 

quality control to normalization to prediction of individuals likely to show a response. The 

NetComp suite features an algorithm, SimMeasure, to calculate the similarity between 

individuals in the presence of missing data. SimMeasure also works with datasets that have 



been thresholded to remove values under/above a given response value. It also features 

several additional functions aimed at data integration and network comparisons. 

Results of these methods applied to a large phenotypic screen of gene disruption 

lines in Arabidopsis thaliana demonstrate the utility of these tools in the analysis of large-

scale datasets. They show that phenotypic data can be successfully used in an analogous 

manner to other high throughput data to build models of gene function. This work presents 

a novel use of high throughput phenotypic data in higher organisms to build models for 

functional annotation. Together this work presents the next step in the analysis of omics 

data and moves the field closer to improving annotation quality. 
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1.1 Data explosion, a lack of functional annotation, and a role for high throughput 

screening 

A better understanding of information flow from DNA to RNA to protein to 

phenotype is needed to address a whole host of challenges in the 21st century. Advances in 

personalized medicine, food security and nutrition, and mitigating the impact of industrial 

demands on the environment depend on our ability to gather, interpret, and anchor cellular 

data to biological processes. Ideally, this information will aid in predictive and targeted 

metabolic manipulation strategies, through genetic engineering of plants and microbes and, 

through gene and drug therapies. The post-genomic era of science and the ability to 

conduct big-data science have opened doors, providing data at a resolution not available 

before. 

Unfortunately, the genome for many organisms is far from complete. While the DNA 

sequence of model organisms is available, the function of many genes is not. Genomics 

studies using the sequence information have improved with better structural and 

bioinformatic modeling tools and by using information from other species on structurally 

similar genes and proteins. However, some aspects of biology are not universal and using 

sequence similarity alone can lead to misannotation that complicates interpretation and 

experiments if they rely too heavily on these annotations (Furnham et al., 2009). 

Transcriptomics and co-expression studies using annotation enrichment have provided 

insight on the putative function of many transcripts (Horan et al., 2008). These expression-

based studies lack the ability to reveal the definitive function of a gene and provide limited 
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information to aid in follow-up experiments. This is because the expression profile cannot 

necessarily be tied directly back to an effect (phenotype), making it challenging to design a 

follow-up experiment to probe the effect. Proteomics has been critical in assigning 

subcellular location and protein interaction networks provide information on interacting 

partners and protein complexes, with an expansion of resources making it easier to 

leverage these datasets (Wang et al., 2012). Unfortunately, neither helps with follow-up 

experiments, unless the protein of interest partners or clusters with other proteins that are 

well described functionally. What is missing is a biological phenotype that can provide 

insight as to the role of a gene within its system. 

Phenotypic studies, particularly broad-spectrum metabolomics, which measure 

many different types of metabolites, have the potential to provide information needed to 

identify genes that affect the biochemistry within the organism. Even in the relatively 

simple plant model species Arabidopsis thaliana, researchers must look for traits in the 

context of whole genome duplication, large gene families, promiscuous enzymes, and 

complex metabolic feedback loops (Ober, 2010; The Arabidopsis Genome Initiative, 2000). 

Knockout mutants often have no phenotype due to genetic redundancy, lack of the right 

environmental conditions to observe a phenotype, or measuring for the wrong phenotype 

(Bouché and Bouchez, 2001). As the costs of high throughput technology decreases, 

metabolite screens are becoming more accessible to researchers.  

The hypothesis that underlies this dissertation project is that metabolic data from 

less-targeted screens surveying multiple measurements may be used in an analogous 

fashion to transcriptomic or proteomics data. In particular, that data from gene disruption 
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lines (where a specific gene is knocked out or over expressed) can provide insight into that 

gene’s role within the plant (Thorneycroft et al., 2001). By building from methods 

developed for analyzing other high-throughput datasets, for example using gene ontology 

or annotation enrichment, it will be possible to characterize phenotypically similar gene 

disruption lines by their common phenotype and by enriched annotation of the group. This 

approach should facilitate the design of follow-up experiments. If high-throughput 

metabolite screening data can be treated like other high-throughput datasets such as 

transcriptomics, data integration from disparate sources might be used to aid in functional 

gene annotation (Yuan et al., 2008). 

Based on the hypotheses outlined above, there are three major challenges to this 

work. First, a dataset containing a large set of gene disruption lines from both annotated 

and unannotated genes as well as diverse metabolic measurements is needed. Measuring 

several different metabolite types, ideally in different tissues, is important for capturing 

tissue-specific metabolism and because members of gene families sometimes have 

preferential tissue expression. Having some level of annotation is key to testing a proof of 

concept (things we know are behaving as expected), as well as to help inform the 

generation of hypotheses for unannotated genes that behave similarly. Second, the dataset 

must be in a useful format for analysis, which is one where the information can be 

adequately compared across all samples and observed or predicted changes reflect the 

metabolic phenotype of the individual. Measurements that relationships are built upon 

must be connected to an underlying perturbation in the metabolic network (ideally 

resulting from a disruption in the gene of interest). If not, then the data will not be any 
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more informative for designing follow-up experiments than transcriptomic data. Lastly, the 

ability to build a correlation-type matrix or adjacency matrix is desiarable to facilitate the 

downstream processing typically used in transcriptomics (e.g. cluster enrichment 

calculations), as well as to allow data integration with other omics datasets. These matrices 

describe the relationship between one individual (for example, gene distribution line) to 

another and are a common tool for large data analysis, as will be described later. 

1.2 High throughput phenomics dataset: Chloroplast 2010 

The Chloroplast 2010 project is a high throughput screen of over five thousand 

Arabidopsis thaliana mutants, including T-DNA insertion lines (Alonso et al., 2003) and 

characterized mutants, most of which have been predicted to be chloroplast targeted (Lu et 

al., 2008; Lu et al., 2011b; Lu et al., 2011c). A wide range of primary metabolites were 

surveyed through this study: leaf and seed free amino acids, leaf free fatty acids, and the 

seed carbon and nitrogen levels.  The major goal of the Chloroplast 2010 project is to 

further characterize the genes of the chloroplast; as the chloroplast carries out 

photosynthesis and is involved in de novo fatty acid biosynthesis as well as the production 

of many amino acids. These measurements provide a wealth of diverse information about 

the behavior of the putative knockout and are hypothesized to provide functional 

information about the function of the missing gene. 

This dataset has the potential to provide insight into the function of under-

annotated genes. Similar to most high-throughput screening studies, it has features that 

make it challenging to use the data for developing broader hypotheses about the 

individuals being screened, beyond simply identifying which individuals should be 
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prioritized for further study. These types of screening studies typically have data collected 

over the course of many years, and lack the replication and explicit controls necessary to 

carry out traditional variance-normalization methods used in small–scale experiments and 

some large-scale studies, such as microarrays. These aspects tend to be inherent to 

screening studies because the researcher is often interested in large changes that may be 

easily observable by comparing individuals within a group (Jander et al., 2004), and to keep 

the costs down while screening as many candidates as possible. However, these aspects 

make it difficult to perform cross-dataset comparisons of the data: hence a processing 

method is needed to overcome these issues.  

1.3 Development of analysis methods 

1.3.1 Normalization 

Data normalization is a process that removes technical variance while preserving 

the biological variance of interest. Very few normalization methods for screening of high-

throughput datasets exist, but there is a large body of literature focused on normalization 

of microarrays (Eckel et al., 2005; Quackenbush, 2002). The biggest limitation with many 

screening studies, including the Chloroplast 2010, is the lack of a common control line or 

replication between sample runs that would allow for an estimation of the technical 

variance. Fortunately, some concepts for high-throughput screening studies that facilitate 

their analysis may be utilized. Chiefly, most observations should be in a ‘normal’ range, 

such as the assumption in transcript studies that expression levels of most genes are 

constant. For the Chloroplast 2010 data, this means that most of the observed responses 

will be in the background or wild type range, which is supported by prior findings 
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(Barbaric et al., 2007; Bouché and Bouchez, 2001; Jander et al., 2004). Additionally, the 

same individuals are not in each sample set and many individuals die (plants fail to 

germinate), but algorithms dealing with some of these issues in expression sets have been 

published, which can be built upon to address the issues in screening datasets (Mar et al., 

2009).  

It is proposed that a method be developed, built on methods for expression data, 

facilitating the use of the Chloroplast 2010 dataset while being extendable to other high 

throughput datasets. Currently there is no published normalization method that addresses 

the needs of these large screening studies characterized by little/no replication, uneven 

sample sizes/missing data, and lack of controls. Further, a way to quantify the ‘response’ of 

an individual (for example, which ones are likely high metabolite accumulators versus 

those which are likely behaving as wild-type) is also necessary. Quantifying the assay 

response aids in prioritizing individuals for follow-up studies and for making comparisons 

between individuals in terms of the magnitude of assay response. The development of 

these tools will open up high-throughput screening datasets and drive integration with 

other omic data which is not currently possible using existing methodologies.  

1.3.2 Correlation calculations with missing data 

High-throughput screens are often carried out under the assumption that few 

measured responses are going to be changing or different from the bulk of the observed 

responses.  The implication of this assumption is that relationships, for example 

correlations between individuals, may be based purely upon having a wild type or 

background level response. Relationships like these are counterproductive to the aim of 
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functional characterization of a gene as they do not highlight the traits that are altered 

when the gene is missing. Furthermore, building a relationship only based on the cases 

where both individuals have observations (i.e. pairwise complete observation) could bias 

results in which one individual had many responses above a threshold (pleiotropic) and 

the other only had one.  

Another aspect that needs to be addressed is that these datasets may also be prone 

to missing data. Data in this case may be missing completely at random (MCAR; events 

leading to the missing data are statistically independent of the individual and the 

unobserved attribute), missing at random (MAR; statistically independent of the missing 

value itself, but after controlling for some external factor), or missing not at random 

(MNAR; lack of an observation depends on the value of that observation) (Schlomer et al., 

2010).  This is a hierarchy, where if conditions for MCAR are not met then MAR is 

considered and so on. If one considers the Chloroplast 2010 dataset, data may be missing 

because a sample was not available for that analysis (e.g. the plant died; MCAR), or it failed 

some quality control parameter (MAR). Additionally, if one were to remove data that was 

within the range for background signal, this would add missing values that are MNAR.   

While methods concerning missing data for microarray analysis and other omics 

data do exist (Aittokallio, 2010), many are not aimed at handling missing data of the type 

described. Simple methods for dealing with missing data include omitting the missing pairs 

when calculating the value, referred to as using pair-wise complete observations, or 

replacing the missing value with a zero or the row/column mean. There are also more 

sophisticated methods that have been shown far superior and tend to fall into two general 



9 

 

categories (Liew et al., 2011) applicable to the discussion here: global and local. Global 

methods use information on the entire dataset and include methods like Bayesian principle 

component analysis (BPCA), which incorporates prior information (generally 

uninformative prior distribution) into the model and does not require model parameters to 

be specified by the user (Oba et al., 2003).  Local methods, in contrast, use a subset of the 

data that is similar to the individual with missing data such as K-nearest neighbor and local 

least squares. K-nearest neighbor and similar clustering approaches use information from 

K-closely related genes to obtain the missing value (Liew et al., 2011). This approach works 

well if values in the dataset share a high amount of similarity (or correlation). It also 

requires some advanced determination of the parameter K. When employing local least 

squares, and other least square regression methods, a linear model is assumed between the 

gene with missing values and those with similar values (e.g., K most correlated genes). The 

least squares estimate can be calculated from each of the similar genes and combined for a 

final estimate (Liew et al., 2011; Stacklies et al., 2007). This method also requires the user 

to provide K and potentially the correlation parameter to use.    

 The methods described above all seek to impute a missing value such that the 

downstream analyses can be carried out. For gene expression these analyses are typically 

differential expression, clustering, or classification. In theory, imputing of the missing 

values is not needed provided the downstream product can be produced. In this case, the 

downstream process is clustering as the desired outcome is to identify what gene 

disruption lines behave similarly. Typically, clustering uses a correlation matrix.  A 

correlation matrix is a matrix where the rows and columns represent a gene and the value 
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represents correlation between the two genes. These values will range from -1 (oppositely 

correlated) to +1 (perfectly correlated). A weighted adjacency matrix is a means of 

representing a graph (network) where the edges connecting the gene-nodes represent the 

values in the matrix. If one were to build a graph based on a correlation matrix, then those 

edges would be the correlation coefficient. Thus, a weighted adjacency matrix would enable 

the desired downstream analyses. 

Because many correlations calculations (such as Pearson’s product-moment 

correlation or Spearman’s rank correlation) require a complete data set, one must either 

impute the missing values or use pair-wise complete observations. There are other 

methods besides correlation that describe a relationship between two sets of observations, 

such as similarity and distance measures. For numerical data these can range from a simple 

calculation of distance between the two sets of observations (for example, Euclidian 

distance), to calculation of the angle between the two vectors (cosine similarity). Because 

this type of measure makes direct comparisons between sets of values, it might be more 

amenable to control for the missing data without disregarding it completely. As long as the 

output is still between -1 and 1, it is in the same numerical range as a correlation 

coefficient. This implies that the value can be used to make an adjacency matrix and 

comparable to other omics data in a similar format. Thus a method is needed that would 

calculate the similarity between two observations, is tolerant to missing values, and takes 

into account instances where one individual has an observation while the other does not. 
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1.4 Moving from screening data to hypothesis generation 

The main objective for this work is to provide a model for functional gene 

annotation. Methods for normalization and similarity calculations can be used to generate 

communities of individuals with shared phenotypes. The Chloroplast 2010 dataset can be 

used as a test case because of the diversity of phenotypic information. The definition of 

community here refers to a group of individuals that are more similar to each other, across 

the community, than they are to individuals outside of the community. Because the dataset 

includes individuals with some annotation, enrichment calculations such as gene ontology 

(Ashburner et al., 2000) enrichment, can be used to develop the hypotheses. Furthermore, 

as all communities are driven by a phenotypic signature or a set pattern of phenotypes, this 

information can be used in characterizing the insertion line. As the data is from a high-

throughput screen, it is possible to have high levels of false positives (responses that 

appear significantly different but are not). Being able to compare the phenotypic signature 

of known genes in the cluster to literature-established phenotypes can provide an 

additional check. Additionally, the phenotypes may be attributable to a second insertion or 

mutation other than the gene initially thought to be disrupted (Ajjawi et al., 2010). 

Alternatively, these observed phenotypes, while they may not be previously published, 

could lead to novel discoveries of the role of the characterized genes (Lu et al., 2008). 

The work presented in this dissertation aims at leveraging high-throughput data to 

understand the biological system. Chapter 2 presents MIPHENO, an open-source R (R 

Development Core Team, 2011) package normalization method for high-throughput 

screening data. This package includes a workflow enabling researchers to take advantage 
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of high throughput data to determine what individuals may be responsive to a treatment. It 

was used here to transform the data gathered in the Chloroplast 2010 project into 

something that could be analyzed on a cross-dataset basis. Chapter 3 introduces the R 

package NetComp and the SimMeasure algorithm. SimMeasure calculates the weighted 

adjacency matrix, tolerates missing data, and facilitates using thresholds to remove the 

impact of background responses in calculating the similarity between individuals. Other 

features of the NetComp package are aimed at facilitating network comparison such as 

intersections and unions, desirable to those seeking to integrate different omics datasets.  

Chapter 4 presents results from the analysis of the Chloroplast 2010 data. The final chapter 

discusses further directions for the research. 
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MIPHENO: data normalization for high throughput metabolite analysis 

Bell, Shannon M, Burgoon, Lyle D, Last, Robert L. (2012). MIPHENO: data 

normalization for high throughput metabolic analysis. BMC Bioinformatics 13, 10. 

For those conducting post hoc data analysis (i.e., analyses of data after the 

experiment has been carried out, which were not specified a priori), there are few tools for 

normalizing data if the experiment was not conducted with the standard controls and 

replication most methods require. Controls and replication are often limited or omitted 

entirely from screening studies as the goal is to maximize the number of individuals 

screened, and there is typically an anticipation of very few individuals showing the 

attribute of interest. With screening studies it is expected that a follow-up will be carried 

out on individuals that show an interesting response. The goal is to identify and prioritize, 

versus quantify how different an individual is from the control.  

In large-scale studies there are often multiple factors at play including the time over 

which the data were collected, how the samples were grouped, and who conducted the 

analyses. Furthermore, metadata describing the experimental details is typically limited so 

one may not have knowledge of how to model these issues appropriately.  MIPHENO was 

developed to address these aspects of high throughput screening studies. Designed for use 

in high throughput screens, it uses the principle that the majority of the signals will be 

within the background range, and conducts normalization to remove technical variance 

based on scaling to a global median. The developed software package and workflow 

includes a quality control measure, which is important for removing groups that appear to 



19 

 

be behaving differently than others and could bias the normalization.  There is also a 

method for identifying individuals that are likely to exhibit a response, useful for 

prioritizing individuals for follow-up. 

While MIPHENO is an admittedly simplistic approach, it is demonstrated to 

outperform the standard approach of looking at individuals within a sample group. 

Additional features of the software package address several needs in the analysis of 

screening data.  It can be used to go from the raw data to a prioritized list of candidates for 

follow-up or onto other analyses such as clustering. The real significance of this method is 

that it facilitates the use of poorly designed experiments and enables comparisons to be 

made over the course of a multi-year experiment. 
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2.1 Abstract  

2.1.1 Background 

High throughput methodologies such as microarrays, mass spectrometry and plate-

based small molecule screens are increasingly used to facilitate discoveries from gene 

function to drug candidate identification. These large-scale experiments are typically 

carried out over the course of months and years, often without the controls needed to 

compare directly across the dataset. Few methods are available to facilitate comparisons of 

high throughput metabolic data generated in batches where explicit in-group controls for 

normalization are lacking. 

2.1.2 Results 

Here we describe MIPHENO (Mutant Identification by Probabilistic High 

throughput-Enabled Normalization), an approach for post-hoc normalization of 

quantitative first-pass screening data in the absence of explicit in-group controls. This 

approach includes a quality control step and facilitates cross-experiment comparisons that 

decrease the false non-discovery rates, while maintaining the high accuracy needed to limit 

false positives in first-pass screening. Results from simulation show an improvement in 

both accuracy and false non-discovery rate over a range of population parameters (p < 2.2 

x 10-16) and a modest but significant (p < 2.2 x 10-16) improvement in area under the 

receiver operator characteristic curve of 0.955 for MIPHENO vs 0.923 for a group-based 

statistic (z-score). Analysis of the high throughput phenotypic data from the Arabidopsis 

Chloroplast 2010 Project (http://www.plastid.msu.edu/) showed ~ 4-fold increase in the 

http://www.plastid.msu.edu/
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ability to detect previously described or expected phenotypes over the group based 

statistic. 

2.1.3 Conclusions 

Results demonstrate MIPHENO offers substantial benefit in improving the ability to 

detect putative mutant phenotypes from post-hoc analysis of large data sets. Additionally, it 

facilitates data interpretation and permits cross-dataset comparison where group-based 

controls are missing.  MIPHENO is applicable to a wide range of high throughput screenings 

and the code is freely available through an R package in CRAN (http://cran.r-

project.org/web/packages/MIPHENO/index.html). 

2.2 Background  

High-throughput screening studies in biology and other fields are increasingly 

popular due to ease of sample tracking and decreasing technology costs. These 

experimental setups enable researchers to obtain numerous measurements across multiple 

individuals in parallel (e.g. gene expression and diverse plate-based assays) or in series 

(e.g. metabolomics and proteomics platforms). The large number of measurements 

collected often comes at the cost of measurement precision or the overall power of 

detection. For many large-scale studies, the experimental design aims to maximize the 

number of compounds or individuals tested, resulting in limited replication and few to no 

controls. In the case of microarray studies, several methods for normalizing arrays have 

been developed (Ballman et al., 2004; Eckel et al., 2005; Quackenbush, 2002) with no 

universal method adopted as the standard. Quantitative PCR faces the same issues as it is 
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used more frequently in high throughput platforms, with analysis methodologies being 

developed paralleling those for expression arrays (Mar et al., 2009).  

Metabolite profiling is a rapidly expanding area of high throughput measurements, 

where samples having large amounts of biological variability and diverse physical 

properties makes quantification of large numbers of structurally diverse metabolites 

challenging (Last et al., 2007). Few strategies exist for normalization in metabolite analysis 

to control for run-to-run variance other than to include negative and positive controls. For 

large-scale screens involving mutagenized populations (plant, bacteria) or crosses (plant 

breeding), the goal is to identify putative hits, or individuals that are likely to be different 

from the bulk of the samples for subsequent follow-up (e.g. (Jander et al., 2004)). In these 

conditions, properties of the sample cohort serve as controls with the measure of 

differences between an individual and its cohort used to identify samples differentially 

accumulating a metabolite (Jander et al., 2004). This strategy can streamline sample 

processing and maximize throughput when the expected effects are large and easily 

observable. 

For studies where comparisons are sought across an experiment conducted over the 

course of several months or in different sample batches, normalizing factors are necessary, 

especially given typically high levels of biological and technical variability (Fiehn et al., 

2000; Miron and Nadon, 2006; Rocke, 2004). Ideal experiments include technical and 

biological replication within each set as well as controls facilitating comparisons between 

sample batches, but these are often limited or omitted entirely due to likely increases in 

experimental costs or the negative impacts on throughput. However, absence of these 
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experimental controls limits the ability to handle variability between sample groups (e.g. 

remove batch effects) making it a greater challenge to identify individuals within the range 

between normal and aberrant phenotypes. Without the ability to normalize the data 

provided by experimental controls, some of the benefits of high throughput screens are 

lost, yet the desire to maximize throughput places constraints on the experimental design.  

The motivation for algorithm development came from the Arabidopsis thaliana 

Chloroplast 2010 Project large-scale reverse genetic phenotypic screen [Chloroplast 2010, 

http://www.plastid.msu.edu/, (Ajjawi et al., 2010; Lu et al., 2008; Lu et al., 2011b; Lu et al., 

2011c)]. This project leverages the collection of T-DNA insertion lines and genomic 

sequence for the plant model species A. thaliana to screen large numbers of putative gene 

knockouts with the aim of functionally characterizing chloroplast-targeted genes. The 

presence of a large T-DNA insertion can block or reduce expression of the gene it lands in, 

and altered phenotypes can provide insights into the normal function of the gene and its 

protein or RNA product(s).  

In addition to qualitative and semi-quantitative measures of physiological and 

morphological characteristics, the levels of leaf fatty acids and leaf and seed free amino 

acids, important outputs of chloroplast metabolism. The pipeline assays were performed 

on groups of individual plants planted in units of up to thirty-two per tray and three trays 

of plants per assay group. Two assay groups were grown concurrently under controlled 

environment plant growth conditions. Individuals representing T-DNA insertion events in 

different locations within the same gene (alleles) are present in the dataset, and it is of 

interest to compare the assay responses of these individuals as well as to identify other 

http://www.plastid.msu.edu/
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individuals with similar responses. Because the experimental design lacked cross-group 

controls (e.g. designated WT), the ability to make even semi-quantitative cross-dataset 

comparisons was not possible using existing methodology.  

Developing phenotypic annotation for un- and under- annotated genes is a primary 

goal for the Chloroplast 2010 project and identification of individuals with like phenotypes 

(phenotypic clustering) is a way to achieve that goal. Thus, a method that would allow 

cross-dataset comparisons and identify putative mutants was needed to achieve the goal. 

The resulting method, MIPHENO (Mutant Identification by Probabilistic High throughput-

Enabled Normalization), is aimed at improving first-pass screening capabilities for large 

datasets in the absence of defined controls. Algorithm performance was tested using a 

synthetic data set and the Chloroplast 2010 high throughput phenotypic dataset. The 

executable code and data for the Chloroplast 2010 analysis are available as a CRAN package 

(MIPHENO, http://cran.r-project.org/web/packages/MIPHENO/index.html). 

The following describes a quality control process for identifying aberrant groups 

followed by a data normalization method, which aims to bring samples into the same 

distribution allowing for dataset-wide comparisons. Additionally, we describe a hit 

detection function based on the cumulative distribution function (CDF) to identify samples 

with putative, ‘non-normal’ phenotypes.  For clarity, the terms normal and wild type (WT) 

are used to describe the typical response of the population. Generally, this could be the 

untreated (chemically or genetically) population or the base level of the system (e.g. 

background response). Non-wild type responses, a hit or mutant, refer to a response that is 

distinct from the normal response distribution, with a putative hit/putative mutant 
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referring to a sample that is predicted to have a response different from the normal 

response distribution but has yet been confirmed. In high throughput screens, the objective 

is to identify putative hits balancing the false positive rate (FPR), or the number of WT 

samples that are called hits, with the false non-discovery rate (FNDR), the number of true 

hits that are missed. Results are presented from analysis of the synthetic dataset and 

biological data. 

2.3 Results  

2.3.1 Input data characteristics and structure  

MIPHENO is specifically designed for the analysis of first pass screening data where 

the majority of measured responses are from the WT or normal class and the number of 

responses not in this group (putative hits) is quite small. Examples of experiments yielding 

appropriate data are non-targeted protein binding/activator assays, reporter gene assays, 

or population screens, where there are either no defined classes or very unbalanced classes 

such that a large majority of responses fall in the WT class. Data coming from a treatment 

vs control experiment would not meet the criteria if there were large numbers of ‘non-WT’ 

responses expected. Additionally, the approach is tolerant to repetition of both individual 

samples and sample groups across the course of the experiment so long as the portion of 

individuals showing a WT response in any sample group is over 50%. As the portion of WT 

individuals in a sample group decreases, there will be a reduction in accuracy and a 

corresponding increase in false non-discovery rate (FNDR) due to the assumptions of the 

algorithm, as demonstrated in the Testing section below. Additionally, while some 

measured responses may not be independent (ex, metabolite measures of branch chain 
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amino acids), the method treats these attributes (e.g., metabolites) as independent to 

increase the flexibility of the analysis. For instance, the results for attribute 1 (including 

normalization and downstream analyses) do not impact the results for attribute 2. This is 

beneficial in post hoc analysis where the individual performing the analysis has limited 

knowledge of the relationship between measures. 

Input data for analysis by MIPHENO assumes that multiple attributes are measured 

for each individual. The data structure treats each row as an individual sample, whose 

relationship to other samples can be described by one or multiple factor variables 

represented in columns (grouping factor). For example, the assay group representing the 

identification number for a 96-well plate containing up to 96 individuals. Subsequent 

columns describing the response of the individual to some assay (attribute response) are 

quantitative, continuous values. Information must be present that enables association of a 

grouping factor to the attribute responses, but a single data object may include the 

responses for different attributes as long as the appropriate grouping factor is present. For 

example, a ‘LC_ID’ column might provide the grouping factor for ten columns of LC-MS 

amino acid data, while ‘HPLC_ID’ might provide the grouping factor for five columns of 

HPLC-derived responses on the same set of samples. This structure is aimed at simplifying 

situations where multiple measurements are taken on the same individual. 

2.3.2 Algorithm  

MIPHENO is based on invariant set normalization with three key assumptions made 

of the input data. The first is that samples from the same genetic background should have a 

similar assay response over time. This implies that, given a population P, the distribution of 
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an observed response r from sample set p in set P should have the same distribution as the 

response R from population P as p approaches P. Following this logic, the second 

assumption of the data is that the observed differences between the distributions r and R 

are due to technical error as opposed to biological or genetic variance as p approaches P. 

The last assumption is that there will be limited observable effects of simple genetic 

manipulations to an organism for any random gene. This is based on empirical evidence 

from years of published studies (Barbaric et al., 2007; Bouché and Bouchez, 2001; Jander et 

al., 2004; Van Eenennaam et al., 2003). Specifically, due to genetic redundancy and 

metabolic flexibility, a given disruption in gene function will likely cause a response outside 

the WT distribution in only a limited number of measured responses.  

These assumptions are similar to those for microarray analysis, specifically that for 

a random or large grouping of individuals (e.g. cDNAs), changes will be observed for a 

relatively small proportion (Yang et al., 2002). Other assumptions used to normalize the 

data (e.g. a balance in the total amount of transcript in quantile normalization 

(Quackenbush, 2002)) have the same effect of forcing the median value of a sample set 

across several experiments or arrays to be equal. Similar assumptions also apply to data 

from other high throughput screens, e.g. reporter gene-based assays and enzymatic assays. 

An overview of the algorithm is presented in Figure 1. The algorithm requires that 

input data have a grouping factor that presents a batch or process group on which the 

normalization steps can be performed (see “Input Data Structure and Characteristics” 

above). If multiple grouping factors are present (e.g. different sample collection, 

processing, and analysis dates) it is recommended to use the factor representing the 
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highest level of technical (i.e. non-biological) error for normalization. This can be 

determined by familiarity with the methodology or by checking the grouping factors to see 

which factor has the largest interquartile range for group medians. 
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Figure 1 Flowchart of MIPHENO 

“Input Data” (1) contains data with identifiable parameters for grouping/processing the 
data. The data pass through a quality control (QC) removal step (2), where groups not 
meeting the cut offs are identified and removed on an attribute-by-attribute basis. Data are 
normalized (3) using a scaling factor based on the data distribution. Putative hits are 
identified (4) using a CDF built from the data or user defined NULL distribution and an 
empirical p-value is assigned to each observation. Thresholds can be established based on 
follow-up capacity and prior knowledge (e.g. ability to detect known 'gold standard' mutant 
samples). For interpretation of the references to color in this and all other figures, the 
reader is referred to the electronic version of this dissertation. 
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Figure 1 (cont’d) 
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2.3.3 Quality control method 

In performing post-hoc data analysis it is often unknown if on-line quality control 

(QC) was conducted or where process changes occurred that could negatively affect the 

outcome of analysis. To address these issues, a quality control (QC) step prior to analysis 

was included to identify samples with a high likelihood of assay or group-specific process 

error. Examples of sources of these types of error include instrument malfunction (for 

assay-specific error), abnormalities in growth or preparation of material (group-specific 

error), or improper sample handling affecting a group of samples exposed to the same 

conditions rather than an individual response. If an on-line QC step was already used to 

filter the dataset this step can be omitted.  Thresholds for QC are determined from the 

overall distribution of the collected data with a user-defined cut off; for example groups 

with group median > 3 median adjusted deviations (MAD) from the global median. The 

amount of data removed will depend on the cut off used and the data distribution. A visual 

inspection of the data using box and whisker plots is advised to check the data for clear 

signs of drift or likely changes in protocol that may require manual QC. Examples would be 

group medians steadily increasing or decreasing across dataset or a switch to a new 

average median response corresponding with sample order, respectively. For post hoc 

analysis on datasets where the order in which samples were assayed or collected is 

unknown, it may be advisable to use a cut off of 3 MAD to permit more data passing on to 

the next stage.   

Data quality is assessed on an attribute-by-attribute basis with the assumption that 

the measured traits are independent; with an attribute being any measured or observed 
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response. Thus, if multiple attributes are measured for a group (for example, numerous 

metabolites or promoter-reporter gene outputs), only attribute data for the trait that 

shows high deviation would be removed and the rest of the data for the group retained. For 

example, ‘HPLC_ID’ is the grouping factor for the response of metabolites, such as amino 

acids. The overall response distribution of each metabolite is assumed to be independent of 

the other metabolites; thus if the measured response of alanine is 10x the response of 

proline it will not impact the QC step (or subsequent steps).  If the median response for 

alanine in HPLC_ID = 1 is greater than the QC cut off, all responses for alanine in HPLC_ID = 

1 are removed but the other measured responses for HPLC_ID = 1 are retained, provided 

they too pass QC. While this does not control for drift, it provides a facile QC step for post-

hoc data analysis where the order of data generation is unknown. 

2.3.4 Normalization 

The normalization process is done on an attribute-by-attribute basis using a user-

defined grouping. A grouping factor should encompass the highest amount of non-

biological variation and may be the same factor used in the QC step, but should include as 

many individuals as possible (e.g. n>10). A scaling factor is calculated to bring the median 

of each group to the global median, similar to invariant set normalization (Mar et al., 2009). 

The key difference from invariant set or quantile strategies is that just the median value is 

used, not an explicit individual or multiple quantiles to take into account lack of replication 

between groups and limited sample size. It is important that groupings represent a 

selection of individuals where the frequency of non-WT behaviors approaches that of the 
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overall population to avoid bias in cases when a particular group is enriched with non-WT 

behaviors for a given attribute. 

2.3.5 Testing 

To gauge the performance of the approach, a synthetic dataset was generated 

emulating characteristics of actual data (see Methods). This dataset was used initially since 

the true properties of the individuals could be known, allowing for observation 

classification (e.g. WT and mutant) and to evaluate the effect of population distribution on 

the performance of the method. Figure 2 illustrates the population distributions used to 

test the performance of MIPHENO. 
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Figure 2 Synthetic 
Populations Used in Testing 

Synthetic data were 
generated to measure the 
performance of the three 
different methods in a case 
where 'ground truth' is 
known. Samples were 
randomly drawn from a low 
abundance population (Low, 
blue line), high abundance 
population (High, red line) or 
a WT population (WT, black 
line) as shown in the upper 
panels (A, C). Two population 
structures were sampled, one 
with a low probability of WT, 
P(WT=0.4), and the other 
with a high probability of WT, 
P(WT)=0.93, shown in the 
lower panels (B, C). To test 
the effect of population shape, 
equal relative standard 
deviation (RSD=15%, A and 
B) or equal standard 
deviation (SD =5, C and D) 
were independently tested.  



35 

 

Figure 2 (cont’d) 
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Comparison of two different data analysis approaches was used to test 1) if pre-

processing steps remove high amounts of real biological variation indicative of a putative 

hit and 2) whether an increased false non-discovery rate (FNDR) resulted from using 

MIPHENO verses a sample-group based method (results in Figures 3, 4, and 5). The first 

approach referred to as ‘Raw’, uses the raw, unprocessed data, but followed the same 

process as in MIPHENO to identify putative mutants. Differences between Raw and 

MIPHENO aid in illuminating the effectiveness of pre-processing in noise removal.  The 

second approach, referred to as ‘Z’, also utilized the raw data but used a MAD score on a 

sample-group basis to identify putative mutants as described for the Chloroplast 2010 data  

(Lu et al., 2008). Comparison of MIPHENO to Z aids in determining potential loss of 

information due to normalizing across the data sets (e.g. whether true mutants were more 

severely scaled in normalization), or if the group-based error was controlled for without 

negatively impacting hit detection. In a review of performance metrics by Ferri et al., 2009, 

accuracy (ACC) was found to be a better metric than area under the receiver-operating 

curve (AUC) in the case of unbalanced sample size as well as misclassification noise, which 

are both properties of the data under analysis. Conversely, they found AUC outperformed 

ACC in probability and, to a lesser degree, ranking noise. False non-discovery rate is an 

important metric when considering first-pass screens as one seeks to limit the true 

positives missed, which is the situation described here.  
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Figure 3 Performance of Methods on Synthetic Data: AUC 

The AUC was used to evaluate classification performance of MIPHENO, the use of raw data 
followed by a CDF classifier (RAW), and a group-based metric (Z) on synthetic data 
described in Figure 2. MIPHENO (pink, first in set) outperforms both RAW (green, middle) 
and Z (blue, left in set) across the different population parameters.  
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Figure 4 Performance of Methods on Synthetic Data: Accuracy 

Accuracy of classification was used to compare the performance of MIPHENO, the use of raw data followed by a CDF classifier 
(RAW), and a group-based metric (Z) on synthetic data from populations described in Figure 2. The percent accuracy is plotted 
along the y-axis while the false discovery rate (FDR) cut off is along the x-axis. Each population distribution tested is shown in 
a separate panel. Note that MIPHENO (pink) achieved higher classification than Z (blue) (p < 2.2e-15, Wilcoxon sign rank) and 
both methods outperformed Raw (green) independent of the population parameters tested. 
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Figure 5 Performance of Methods on Synthetic Data: False Non-Discovery Rate 

The false non-discovery rate (percent positive hits missed) was used to compare the performance of MIPHENO, the use of raw 
data followed by a CDF classifier (RAW), and a group-based metric (Z) on synthetic data from populations described in Figure 
2. The FNDR is plotted along the y-axis with the different false discovery rate (FDR) cut offs along the x-axis. Each population 
distribution is shown in a different panel. Note that across all populations tested, MIPHENO has a lower FNDR than the other 
two method, suggesting that fewer putative hits missed with MIPHENO compared to Z-score (blue) or raw data (green). 
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Results of the performance trials using a combination of two population 

distributions that had a high frequency of WT (P(wt) = 0.93) and low WT frequency (P(wt) 

= 0.40), drawn from populations of equal standard deviation (SD) or relative standard 

deviation (RSD) (Figure 2), are shown in Figures 3, 4, and 5. These results suggest that the 

proportion of true WT in the sample had little effect on the performance of the methods 

relative to each other, regardless of the metric used; however, the accuracy is decreased 

and the false non-discovery rate is increased for all methods when the portion of data from 

the mutant class is increased (Figures 4 and 5). MIPHENO showed a higher accuracy and 

lower FNDR (p < 2.2 x 10-16, Wilcoxon signed rank test) across a range of FDR cut offs 

compared to the other methods (Figure 5). Furthermore, the AUC of both MIPHENO and Z 

outperformed an analysis of Raw (Figure 3), which performed just above what is expected 

at random, highlighting the importance of controlling for group-based variability. In 

summary, MIPHENO outperformed both the Raw and Z-methods across all three metrics 

tested. 

2.3.6 Implementation 

Results from the Chloroplast 2010 Project (Ajjawi et al., 2010; Lu et al., 2008) were 

used to test the performance of MIPHENO on experimentally generated high throughput 

screening data. This dataset includes results for leaf protein amino acids and fatty acid 

methyl esters as well as seed protein amino acids for plants run through the Chloroplast 

2010 pipeline. Multiple individuals representing the same seed stock or the same gene are 

present in the dataset although they were not assayed in the same group. Thus, it is of 

interest to look at the consistency between individuals representing the same gene to 
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identify   Leaf and seed metabolite data from mutants in the Col-0 (CS60000, (Alonso et al., 

2003)) ecotype genetic background were processed using MIPHENO and z score methods 

independently.  Figure 6 outlines the methods for comparison. Briefly, both MIPHENO 

empirical p-values and z scores were calculated for the two data measurements available in 

the Chloroplast 2010 dataset (mol% and nmol/gFW). The average score per T-DNA 

insertion line was calculated for each data type to avoid overemphasizing lines that were 

analyzed multiple times.  Aracyc (Mueller et al., 2003) and Gene Ontology (GO) (Berardini 

et al., 2004) information obtained from The Arabidopsis Information Resource (TAIR) 

(Rhee et al., 2003) were used to generate a list of loci previously demonstrated to have a 

biological function in Arabidopsis. Loci with phenotypes predicted by the methods were 

compared to the list of literature-documented loci. The biological role and/or phenotypes 

of the genes were compared to the published information to determine the accuracy of the 

prediction. Results are given in Table 1. While both methods had a similar frequency of 

correctly identifying mutant phenotypes at the initial level of Z cut off of 2.5, the Z method 

returned fewer lines than MIPHENO. It was necessary to adjust the Z threshold to 1.3 to 

recover these lines, which resulted in no additional mutants but an increase in false 

positives. Overall, there was ~four-fold improvement in the ability to detect previously 

described or expected phenotypes compared with the z-score. 
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Figure 6 Flowchart of Performance Measures for Chloroplast 2010 Data 

Metabolite data from wild-type Col-0 ecotype samples were taken from the Chloroplast 
2010 dataset. MIPHENO empirical p-values and z-scores were calculated separately for 
metabolite values reported as mol % and nmol/g fresh weight (nmol/gFW) and results 
filtered according to criteria. Publicly available annotation (Aracyc and GO) for annotated 
genes provided a basis of comparison between the two metrics 
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Table 1 Lines identified by MIPHENO and Z methods 

Locus Description Tissue 
MIPHENO 
Cutoff= 0.1 

Zscore 
Cutoff = 2.5 

Zscore 
Cutoff = 1.3 

At1g08250 
ADT6: Plastid-
localized arogenate 
dehydratase 

Seed High: GLN, TYR 
 

High: GLN, TYR 

Leaf 
   

At1g09795 
ATATP-PRT2: ATP 
phosphoribosyl 
transferase 

Seed 
   

Leaf High: HIS 
 

High: HIS, LEU 

At1g11790 
ADT1: Plastid-
localized arogenate 
dehydratase 

Seed 
   

Leaf Low: PHE 
 

Low: PHE 

At1g65960 
GAD2: glutamate 
decarboxylase 

Seed 
  

Low: GABA 

Leaf Low: GABA Low: GABA Low: GABA 

At2g39800 

P5CS1: delta1-
pyrroline-5-
carboxylate 
synthase 

Seed Low: HPRO 
  

Leaf Low: PRO 
 

Low: PRO 

At3g11170 

FAD7: Responsible 
for the synthesis of 
16:3 and 18:3 fatty 
acids 

Seed    

Leaf 
High: 16:1D7, 16:2, 
18:1D9, 18:2; Low: 
16:3, 18:3 

High: 16:2, 18:1D9, 18:2; 
Low: 16:3, 18:3 

High: 16:1D7, 16:2, 18:1D9, 
18:1D11, 18:2; Low: 16:3, 
18:3 

At3g45300 
IVD:  Isovaleryl-
CoA 
Dehydrogenase 

Seed 
High: ARG, GABA, 
HIS, ILE, LEU, MET, 
TRP, VAL; Low: GLU 

High: ARG, GABA, HIS, 
ILE, LEU, TRP, VAL, MET; 
Low: GLU 

High: N, ARG, GABA, HIS, ILE, 
LEU, LYS, MET, PRO, SER, 
TRP, TYR, VAL; Low: GLU 

Leaf 
High: 16:3; Low: 
18:2 

 High: 16:3, GABA; Low 18:2 
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Table 1 (cont’d) 

Locus Description Tissue 
MIPHENO 
Cutoff= 0.1 

Zscore 
Cutoff = 2.5 

Zscore 
Cutoff = 1.3 

At4g19710 

AK-HSDK II: 
Bifunctional 
aspartate kinase, 
homoserine 
dehydrogenase. 

Seed    

Leaf 
High: 18:1D11, CYS, 
HSER, ILE, THR 

High: CYS, HSER, ILE, 
THR 

High: 18:1D11, CYS, HSER, 
ILE, THR 

At4g27030* 
FAD4: Palmitate 
desaturase 

Seed    

Leaf 
High: 16:0, ALA, GLN, 
L.ALA; Low: 16:1D3 

High: ALA; Low: 
16:1D3 

High: 16:0, ALA, GLN, SER, 
TRP; Low: 16:1D3 

At4g33150 

LKR/SDH: Splice 
variant of a 
bifunctional 
enzyme for 
lysine 
catabolism 

Seed 
High: HIS, LYS; Low: 
GLU 

High: HIS, LYS High: HIS, LYS, PRO 

Leaf    

At5g05730 

ASA1: Alpha 
subunit of 
anthranilate 
synthase 

Seed 
   

Leaf Low: TRP Low: TRP Low: TRP 

At5g53460 

GLT1: NADH-
dependent 
glutamate 
synthase 

Seed High: ASN; Low: ASP 
 

High: ASN, CYS; Low: ASP 

Leaf 
   

*Aracyc information not updated, manually added 
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2.4 Discussion  

MIPHENO offers a way to control for assay variability in high throughout mutant 

screening studies. It outperformed using raw data or the group-based Z method in mutant 

identification on the synthetic data set (Figures 3, 4, and 5). Comparison of population 

parameters including proportion of WT and the distribution shape suggest that the method 

is tolerant to uneven distributions (tailing) and to higher mutant frequencies within the 

population. When applied to a biological data set, MIPHENO led to identification of more 

true mutants than the Z method for the Chloroplast 2010 set (Table 1) based on literature 

reported phenotypes or pathways. This suggests that MIPHENO reduces the false positive 

rate by decreasing the variation due to batch effects but does not directly influence the 

false non-discovery rate. The method additionally offers the user the ability to utilize any a 

priori information on the WT population/NULL distribution available as well as customize 

a quality control step that is sensitive to the needs of their process. 

One drawback of using the normalization strategy described here is that it fails to 

control for the within-group variance to the degree that a quantile normalization strategy 

might. Quantile normalization makes the assumption that both the median or mean and the 

standard deviation of the data are all equal and would require sample sizes to be more or 

less equal as well as large enough to start approximating the normal distribution. This 

assumption does not always apply to post-hoc analysis; for example, the size of the sample 

groups in the Chloroplast 2010 data set varied from 12 to 96. MIPHENO aims at addressing 

this type of use case. 
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2.5 Conclusions  

The strong performance of MIPHENO on two different data sets and its ability to 

permit cross-dataset comparisons of individuals without explicit controls makes it an ideal 

method for processing large datasets prior to Meta analyses combining different data sets 

from high-throughput experiments. Because more researchers are making their primary 

data available and the number of large-scale, high-throughput experiments keeps 

increasing, MIPHENO will provide a valuable processing platform that can theoretically be 

applied to very diverse measurement types (e.g. gene expression, enzyme kinetics, 

metabolite amounts).  

2.6 Methods 

2.6.1 Data analysis 

All calculations were performed in R (R Development Core Team, 2011) v 2.11.0 on 

64-bit Windows 7 platform. Chloroplast 2010 Project data used in the reported analysis 

was obtained on 8/18/2010. GO and Aracyc pathway information were obtained from the 

TAIR FTP site, files dated 8/2/2010 and 6/21/2010 respectively. 

2.6.2 Generation of synthetic test data 

Synthetic data were generated by sampling from three random Gaussian 

distributions representing low abundance, high abundance, and wild type levels of 

‘metabolite’ (Figure 2) using a set of sampling probabilities.  Distributions were created to 

assess the effects of uniform variance (e.g. same standard deviation) and proportional 

variance given by a relative standard deviation of 15% based on prior observations of real 
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data from the Chloroplast 2010 study. Means for the distributions were set such that the 

means of the ‘mutant’ populations were two standard deviations away from that of the wild 

type, because this is a common cut off for identifying hits in screening assays. The 

proportion of individuals sampled from each population (low, wt, high) was set prior to 

generating sample groups to test how different population composition influenced 

algorithm performance. To mirror the biological population structure, data were assigned 

to a flat, assay, and planting group representing individuals grown in the same physical 

unit, processed and assayed together, or grown over the same time course, respectively. 

Classification of each observed value was done at this step, prior to adding random noise 

(described below), defining a ‘low’ mutant as one that was 2 standard deviations below the 

WT mean and a ‘high’ mutant as one that was 2 standard deviations above. For calculating 

performance metrics, only the WT and mutant class were considered. 

To simulate the non-biological variance, random uniform noise was added first at 

the level of planting group then at the level of assay group as empirical evidence suggested 

a greater assay effect than planting group effect. The resulting synthetic dataset was 

defined as raw data for use in the Z and raw data methods. 

2.6.3 Method performance using the Chloroplast 2010 data 

An overview of the data analysis approach is depicted in Figure 6. Data from the 

Chloroplast 2010 for mol% and nmol/g FW fatty acid methyl esters and amino acids were 

used to calculate both MIPHENO empirical p-values and z-scores. Samples genotyped as 

wild type or heterozygous for the T-DNA insertion were removed. The average phenotypic 

score (z-score or empirical p-value) per T-DNA insertion line was calculated and this was 
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used to define the phenotype for that insertion line. Next, loci where there were ≥ insertion 

lines showing the same (putative) phenotype for any attribute were identified based on 

either the empirical p-value or z-score and data from these line was combined across the 

‘mol %’ and ‘nmol/g FW’ datasets. Loci from this list were analyzed and loci where >50% of 

the sampled lines showed a phenotype at a given cut off are considered putative mutants. 

To identify lines out of the putative mutants where phenotypic information is known, loci 

were cross-referenced to information from Aracyc and Gene Ontology annotation on 

biological processes (for experimentally-derived evidence codes only). Phenotypes 

predicted for these loci was then compared to phenotypes or experimental evidence 

reported in the literature to see if the predicted phenotype had been reported or if there 

was evidence for the gene product to act in a pathway leading directly to or from the 

measured metabolites. 
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3 Chapter 3 

SimMeasure: A non-imputing approach to analyzing missing data 
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SimMeasure: A non-imputing approach to analyzing missing data 

For many techniques used in the analysis of omics data a correlation matrix or 

adjacency matrix is needed. This type of data presentation can be used to graph networks, 

generate heat maps, and for clustering to identify communities of similar individuals. 

Screening data and other phenotypic type data has a couple issues that make creating a 

correlation matrix a challenge. First, a lot of responses are simply uninformative. These 

responses are ones in the background (like wild type phenotype) or were below detection 

level and are coded as zeros from the machine. Second there is a lot of missing data. This 

could be because a sample died or no response was observed. 

SimMeasure, a central function in the NetComp package, aims at addressing these 

issues. It uses a modification of an existing distance metric and some programmatic 

changes that allow it to capture both positive and opposite relations. In addition it keeps 

track of the number of times one individual has a response where the other individual is 

missing a value or has a response below a given threshold. This is used to penalize the 

score such that pleiotropic individuals aren’t shown as highly related to individuals with 

minimal responses. The resulting score describes the relationship between the two 

individuals and can be used to form the adjacency matrix. 

In addition to SimMeasure, NetComp includes several other functions for analysis of 

large scale data, particularly adjacency matrices (coming from SimMeasure or a correlation 

calculation). Three functions aimed at making network comparisons easier: netIntersect 

(intersection, or what both have in common), netUnion (union, or everything from both 
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datasets), and netDif (difference between the two graphs). These are useful for combining 

information from two datasets or for getting an estimate of what information is lost by 

altering some parameters in the upstream analysis.  Additional functions are included to 

facilitate thresholding of a matrix and comparing the clustering results of two graphs.  
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3.1 Abstract 

3.1.1 Motivation 

High throughput datasets are often plagued by missing data, making it difficult to 

conduct large-scale analyses and compare across datasets without data removal or 

computationally-intensive imputation. Additionally, many high throughput measurements 

for screening studies (e.g. metabolomics, transcriptomics, enzyme kinetics) contain sample 

responses in the background range or are otherwise not of interest. Methods with a 

tolerance for missing data and uninformative responses are needed to conduct cross-

dataset comparisons of high throughput data.   

3.1.2 Results 

SimMeasure is a method for calculating the similarity between two individuals with 

a high tolerance of large amounts of missing data. We show that SimMeasure is an effective 

algorithm for analyzing datasets with large amounts of missing data as it is robust to 

missing data, can handle data thresholding, and requires little a priori knowledge versus 

existing data imputation methods. SimMeasure is part of the NetComp R package, 

developed for the analysis of high throughput phenotypic and other large-scale 

quantitative data. Additional functions for adjacency matrices calculate the intersection, 

union, and difference between graphs. These functions aid the exploration of high 

throughput data and enable faster graph calculations to facilitate meta-analysis. Analysis of 

a complex screening dataset, ToxCast, using the methods in NetComp illustrates the utility 

in hypothesis generation and data integration. 
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3.1.3 Availability 

NetComp is distributed through the Comprehensive R Archive Network (CRAN), 

http://cran.r-project.org/web/packages/NetComp/index.html  

3.2 Introduction  

Data from high throughput and large-scale experiments can provide a wealth of 

information on the relationship between individuals (e.g., tissue samples, compounds, 

mutants) and measured attributes (Ideker et al., 2001; Joyce and Palsson, 2006; Last et al., 

2007). Ideally, researchers could leverage these large datasets in hypothesis development 

in much the same way that transcriptomics data are used to identify communities with 

similar properties. Unfortunately, high throughput data, especially from biological 

experiments, tend to be plagued by missing or uninformative data representing some basal 

response (Aittokallio, 2010; Bell et al., 2012). For phenotypic screens in particular, the 

researcher is often looking for a response signature composed of just one characteristic, 

differentiating a few individuals from the group for further analysis. In this type of 

situation, the small number of cases where there is a strong attribute response are more 

important in establishing the communities than missing data due to a failed assay or 

responses at background level.  

Existing methods for calculating the correlation or similarity between two 

individuals (e.g., Pearson’s correlation coefficient, Euclidean distance) do not handle these 

types of data well, especially as the proportion of missing/uninformative data increases. 

Imputation methods, designed to estimate the missing values have been developed for use 

in large datasets, including those based on k-nearest neighbors, variations of least squares 

http://cran.r-project.org/web/packages/NetComp/index.html
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analyses, Bayesian PCA, and singular value decomposition (Boulesteix and Strimmer, 2007; 

Brock et al., 2008; Oh et al., 2011; Troyanskaya et al., 2001; Yang et al., 2006). Data 

imputation has been used with gene expression and other high throughput datasets (see 

Aittokallio, 2010; Liew et al., 2011 for review) with some success. Recently, several 

different data imputation methods were compared to evaluate their effectiveness on 

downstream transcriptomic analyses such as differential gene expression, clustering, and 

classification (Oh et al., 2011). It was found that Bayesian PCA and local least squares 

outperformed other methods with respect to differential expression and clustering 

analysis, but no clear imputation method stood out for classification.  

While imputation may help alleviate some of the issues with missing data, its utility 

depends at some level on the structure of the data. If the data have no correlation or 

expected relationship between observations, these methods may not be appropriate. This 

is especially true when combining different datasets, such as proteomics and 

transcriptomics, to perform meta-analyses. An additional constraint is the required time 

and computational resources to appropriately model the missing values, which can be 

burdensome as the dataset grows.  

SimMeasure is based on the Canberra distance (Lance and Williams, 1967) and 

calculates the similarity between two individuals, providing a result analogous to a 

correlation coefficient. It provides a way to carry out clustering and network-based 

analyses on high throughput datasets with missing values. Along with SimMeasure, the 

package NetComp contains a suite of adjacency-matrix based functions for meta-analysis to 

quickly compare or integrate data sets. Together, NetComp is aimed at facilitating the 
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generation and comparison of networks based on high throughput and large scale data 

providing a framework for analyzing sparse and low information content datasets.  

3.3 System and methods 

3.3.1 Algorithm 

SimMeasure is based on a modified version of the Canberra distance metric and 

used to capture the similarity between two sets of observations. The SimMeasure 

algorithm, outlined in Figure 7, is implemented in C/R to shorten computational time. User 

inputs are a data matrix with rows describing individuals and columns containing the 

assays/measured responses, and an optional threshold value, t, to define the background 

level. Only values ≥ t are considered in the calculation, thus removing background signal 

along with missing values.  

Consider individuals, X and Y, and their responses i → N. The algorithm first 

considers each response pair and evaluates if one individual had a response that was 

greater than the threshold while the other was missing. If this is the case, the counter nm 

(no match) is increased. In the event that both responses are greater than t and of the same 

sign, the value pm (positive match) is increased by the percent similarity of the two 

responses. If the value t is not provided and both individuals have a response of 0, pm is 

increased by 1.  In the event that the responses are of opposite sign (i.e. one is a positive 

value and the other negative), the value om (opposite match) is increased instead. Once all 

responses are evaluated, the similarity score is calculated using a weighted approach. This 

approach uses nm to penalize for the number of instances where one individual had a 
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response of interest and the other did not. Responses where both individuals have missing 

values are omitted.  
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Consider samples X, Y 

For each response i 

If one response is missing and the other is above threshold 

Increase NM 

If both responses have the same sign 

If both are ZERO, pm=pm+1, increase pcnt 

Else         
||  |   |  ||

|  |   |  |
; increase pcnt 

If responses have opposite sign 

        
||  |   |  ||

|  |   |  |
; increase ocnt 

            
       

           
  

            

 

 

Figure 7 SimMeasure Algorithm 
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3.3.2 Datasets 

Three datasets were used to evaluate SimMeasure: a yeast gene expression dataset 

(Causton et al., 2001), ToxCast, a high throughput chemical screening dataset (Judson et al., 

2010), and ToxRef, a physiological-based throughput chemical screening dataset (Knudsen 

et al., 2009; Martin et al., 2009). The yeast data were preprocessed by removing any values 

below the Affymetric detection call. ToxCast data consists of quantitative high throughput 

screening in vitro assay responses to a given chemical, including gene expression, cell-

based and cell free, receptor, and cytotoxicity assays. ToxRef is a complementary dataset to 

ToxCast, and provides in vivo toxicological and pathophysiological measurements such as 

tumor counts and developmental abnormalities corresponding to the chemicals assayed in 

ToxCast. Values in ToxRef represent the lowest dose of chemical at which the endpoint 

such as tumor was observed, with 'no value' recorded when no effect was observed in the 

study. Chemicals (based on Chemical Abstracts registry number; CASRN) that were 

replicated in the study had a letter amended to the CASRN such that this could serve as a 

unique identifier. This had the additional benefit of being able to identify internal 

consistency as replicates of the same chemical are expected to have highly similar 

responses. 

3.3.3 Method evaluation 

To evaluate the performance of SimMeasure (SM) against existing data imputation 

techniques, missing values were introduced at random into the yeast dataset (from 0.1% to 

90% missing values) and the ability of the downstream method to generate a correlation 
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coefficient or clusters as the original dataset was evaluated. Bayesian principle component 

analysis (BPCA) and Local Least Squares (LLS) were used in the comparison based on their 

performance across a wide range of datasets (Brock et al., 2008; Oh et al., 2011). Pearson’s 

Correlation Coefficient (PC) with pairwise complete observations was used to represent 

the case of no intervention as it simply evaluates instances where observations from both 

individuals are present. Analyses were all performed in R statistical software (R 

Development Core Team, 2011) with missForest (Stekhoven and Bühlmann, 2011) used to 

generate the test datasets and pcaMethods (Stacklies et al., 2007) for the imputation 

functions.  

For each level of missing values (0.1 to 90%), 200 iterations were run comparing 

the missing value (MV) data matrix to the complete (CV) data matrix. As the percentage of 

missing values increased, data sparsity increased such that there were whole rows with 

missing data in the MV matrix. These rows were removed from both MV and CV to carry 

out the downstream analyses. After the MV imputation step (for BPCA and LLS only), the 

weighted adjacency matrix for each of the methods tested (BPCA, LLS, PC, and SM) were 

evaluated for rows containing all missing values. Again, only individuals present in the MV 

and CV matrix were used for method evaluation. 

To evaluate the ability of the methods to reconstruct the appropriate adjacency 

matrix (and thereby clusters) from the MV matrix, the root mean square error (RMSE), 

Adjusted Rand Index (ARI) and balanced accuracy (BA) were measured (Oh et al., 2011). 

Equations are detailed in Figure 8. 
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Figure 8 Equations used for Evaluating Method Performance 

 TP= True Postive, TN= True Negative, FP= False Postive, FN=False Negative 
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Balanced accuracy represents the arithmetic mean of sensitivity and specificity and 

is useful for imbalance classes, as expected in the clustering. The adjacency matrices were 

used for the RMSE to generate an estimate of how different the correlations derived from 

missing data compared to those from the complete dataset. If thresholding is used when 

generating the communities (e.g., removing correlations below 0.5), then the accuracy of 

the correlation coefficient becomes an important consideration. Balanced accuracy and ARI 

were used to evaluate the communities to obtain an estimate of the ability to obtain the 

same structure from the MV data as the CV. Communities, or groups of individuals with 

shared properties, were built from hierarchical clustering using Ward’s minimum variance. 

Ward’s minimum variance minimizes the within-cluster variance.  A cutoff of 500 (500 

communities) was chosen to keep the average cluster size small.  

3.3.4 Application to complex dataset 

The ToxCast (‘Cast’) and ToxRef (‘Ref’) datasets were analyzed using the 

SimMeasure and netIntersect functions in NetComp to illustrate NetComp’s utility in 

analysis of datasets with large numbers of missing data (as few as one observation noted 

per chemical). Note that missing data in this set is often due to no response measured at 

the levels of chemical assayed, in which case imputing the missing value would be 

inappropriate. Rows and columns were removed from both datasets (Ref and Cast) where 

the number of observations fell below the median for that dataset; this had the effect of 

reducing the dataset by almost half. This was done to remove data-poor assays and 

physiological measures. Datasets were converted into adjacency matrixes using 
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SimMeasure with a threshold = 0 (no data excluded), and edge weights represent the 

similarity measure. 

To find instances where evidence supported a community from each graph (Ref and 

Cast), the network intersection was determined using the NetComp function netIntersect 

with an edge weight threshold of 0.5. This enables capture of strong edges from the Ref 

network, i.e. those with a weight of 1; this is desirable given the high false-negative rate of 

the ToxCast screening study. Ten communities were designated from the intersection 

graph using hierarchical clustering with Ward’s minimum variance. Communities were 

analyzed to identify the driving assays from both input datasets (ToxCast and ToxRef).  

3.4 Results and discussion 

3.4.1 Network generation with missing values 

The four methods were evaluated over a wide range of missing data for their ability 

to generate a network/community structure similar to the complete dataset. The RMSE 

describes the error in correlation values (e.g. edge weights) between CV matrix and the MV 

matrix (Figure 9, A). All methods perform well at low missing values (0.1-10%), but 

SimMeasure consistently outperforms the other methods at all levels of missing data and 

appears stable up to 50% missing data. Interestingly, Local Least Squares shows a sharp 

increase in RMSE between 20-40% missing values with correspondingly large interquartile 

ranges.  

The quality of clustering based was measured by the Adjusted Rand Index (ARI, 

Figure 9, B) (Oh et al., 2011)and Balanced Accuracy (BA, Figure 9, C) clustering which 
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measures the similarity between clusters (adjusted for chance) and the averaged accuracy 

of each class, respectively. Note that the methods perform similarly across both 

performance measures, with the SimMeasure outperforming the other methods. Of interest 

is the point at which the methods begin to give cluster results at random (BA=0.5). Local 

Least Squares performance fails with over 20% missing values while Bayesian PCA and 

Pearson’s fail with over 40% missing values and SimMeasure with over 50%. These results 

demonstrate that SimMeasure is able to reconstruct the network structure of a dataset with 

a high portion of missing values. 
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Figure 9 Method Performance verses Missing Values  

The performance (y-axis) is shown across the portion of missing values (x-axis). BPCA= 
Bayesian Principle Component Analysis, LLS= Local Least Squares, P= Pearson’s 
Correlation with pairwise-complete observations, SM= SimMeaure. Graphs represent the 
median value and inter quartile range of 200 trials.  (A) Root Mean Square Error measures, 
(B) Adjusted Rand Index, and (C) Balanced Accuracy. 
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Figure 9 (cont’d) 
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Figure 9 (cont’d) 
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3.4.2 NetComp workflow: complex dataset 

ToxCast is a complex high throughput chemical screen with a high portion of 

missing data. The goal with the analyses is to see how well the results in ToxCast match up 

with the physiological endpoints for the same chemicals in ToxRef. Because of the data 

sparsity, none of the other methods tested in the evaluation could work without error on 

the dataset (data not shown). Cluster analysis of the intersection between the ToxCast and 

ToxRef datasets (clustering Figure 10, results Table 2) shows the ability of this approach to 

categorize chemicals based on toxicity. The yellow cluster, for example, contains a group of 

chemicals across a range of pesticide categories, many of which are organophosphates and 

organochlorines, although they are structurally diverse. The signature for this group is 

driven by liver assays (based on both ToxCast and ToxRef), but the ToxCast fails to 

highlight the potential reproductive effects of these chemicals noted in the ToxRef dataset 

(a false negative result). The red cluster, on the other hand, shows high levels of maternal 

and reproductive toxicity in addition to liver toxicity. These factors are well captured in the 

ToxCast data by the activation of receptors for progesterone and androgen as well as 

androgen and testosterone metabolizing enzymes. The hypoxia response could be 

hypothesized to contribute to both the liver toxicity and the reproductive toxicity in this 

case. 
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Figure 10 Heatmap of the Intersection between ToxCast and ToxRef 

Row and column colors represent the clusters described in Table 2. Color reflects edge 
weights.  
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Table 2 Results of intersection between ToxRef and ToxCast Networks 

Cluster ToxRef ToxCast 

Yellow Reproductive, Liver Liver 

Magenta Liver, Maternal Nuclear Receptor, 
Hormone Receptor, 
Genotoxic 

Pink Maternal, 
Developmental, 
Thyroid,  Adrenal, 
Liver, Kidney  

Androgen Receptor, 
Cytotoxic 

Green Liver, Tumor, 
Maternal  

Cytotoxic 

Black Liver, Tumor, 
Reproductive, 
Development 

Serotonin, Opiate, 
Pregnane X Receptor 

Blue Liver, Maternal Hypoxia Response, PXR 
Activation, CYP2C19 
Activation 

Red Liver, Maternal, 
Reproductive 

Progesterone/Androgen 
Receptor, Hypoxia 
Response,  Steroid and 
Drug Metabolism 

Purple Maternal Steroid Metabolism, 
CYP2C19 Activation 

Turquoise Tumor, Maternal, 
Developmental 

CYP2C19 Activation 

Brown Liver Tumor, 
Maternal 

CYP2C19 Activation 

 

  



74 

 

3.5 Conclusions 

NetComp provides a critical set of tools for those dealing with high throughput or 

other large numerical datasets with missing or uninformative vales within the R statistical 

software suite (R Development Core Team, 2011). SimMeasure enables researchers to 

calculate the similarity between observations in their dataset and leverage the resulting 

adjacency matrix to perform Meta analyses with other datasets. SimMeasure was able to 

outperform other missing-value imputation methods, requires minimal parameter 

optimization, and corrects the output for the number of missing observations. Results of 

applying functions in the NetComp package to a complex dataset of low density (ToxCast) 

suggest that the approach is useful for analysis of high throughput data and can aid in 

hypothesis development. Further, these tools will facilitate analyses and enable the 

integration of diverse datasets to overcome lack low information content. 
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Phenotypic enrichment from large scale phenomics of Arabidopsis thaliana 

The main objective of the dissertation was to test the hypothesis that high 

throughput phenotypic data could be leveraged in building models of gene function. This 

chapter applies the methods developed in the first two chapters to the Chloroplast 2010 

dataset with that aim in mind. Using the normalization strategies and other tools from the 

MIPHENO package, the Chloroplast 2010 data was converted to values comparable across 

the dataset and reflective of their likelihood of being a mutant phenotype. These values 

were zero centered such that values approaching 0 had a high likelihood of being wild type, 

while those approaching -1 or 1 had a high likelihood of being mutant. The reflexive 

distribution could be used with SimMeasure to calculate the similarity score between 

individuals and generate the adjacency matrix facilitating community analysis. 

Community analysis is a tool commonly used in large-scale data analysis. The 

purpose is to look at the members of the community to see if there are any common 

features. For example, enrichment in a specific gene ontology term or metabolic pathway 

(relative to the background) can serve as the basis for developing the hypothesis that the 

under annotated genes might also participate in that process or pathway. A community is a 

group of individuals that are more closely related to each other than to those outside the 

community, either by the number of edges (if defining graphically) or some similarity 

value. Communities can be defined based on many different things, but generally they are 

defined by using a clustering method (such as k means or hierarchical clustering) and 

specifying the number of communities or the distance on the tree (for the hierarchical 
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methods). This analysis uses a hierarchical clustering method that minimizes the variance 

between individuals in the branches of the tree called Ward’s minimum variance. It is 

important to note that with many methods, including this method, not all individuals in a 

community are highly correlated with each other. It is the overall cohesion of the 

community that is actually considered. 

These results support the hypothesis that phenomics data will improve models of 

gene function. They show that with minor modification approaches used for analyzing gene 

expression data can work with screening data and we believe that the results are more 

useful in the design of follow-up experiments because they are tied to a metabolic 

phenotype. The overall workflow presented in this paper is one of the first to leverage 

phenotypic data of this type for such a purpose and can serve as an example for future 

analyses. 
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4.1 Abstract 

Functional gene annotation provides insight to the role a gene plays within the 

organism. Despite the growing amount of genome sequence available, gene annotation lags 

behind, even in model species. Large-scale high throughput experiments such as 

transcriptomic studies have helped develop hypotheses for under-annotated genes; 

however, transcript information is often lacking in its ability to describe the function of a 

gene. Technological advances have made using metabolic profiling for large scale 

phenomics increasingly possible and opens up a new data source from which genes might 

be characterized. Hypotheses of gene function and relationships between metabolic sub-

networks were built using a large-scale high throughput phenomic screening study of 

Arabidopsis thaliana mutants. Methods explored in this work pave the way for using other 

high throughput datasets to build models of gene function. 

4.2 Introduction 

High-throughput experiments such as transcriptomics and proteomics have 

provided important information that enable researchers to better understand gene 

function and the effect of environment on cellular physiology. Furthermore, they have 

advanced our ability to develop hypotheses of a gene’s role in the biology of an organism 

based on the response profile of transcripts or proteins. Even with all the terabytes of 

sequence, transcript and proteome data available, many model species have un- or under- 

annotated genomes and a small fraction of the genome is well annotated even for the best 

studied organisms. In the plant model species, Arabidopsis thaliana, almost half of the genes 

have no known or inferred function (The Arabidopsis Information Resource, 2010). These 
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missing pieces of information pose a challenge for metabolic engineering and developing a 

holistic understanding of biology in general. Unfortunately, sharing a similar transcript 

profile does not always mean that genes are involved in related physiological processes or 

the relationship may be driven by unclear patterns (false positives). Conversely, genes 

involved in related processes do not always have similar transcription profiles (Vandepoele 

et al., 2009; Williams and Bowles, 2004). Thus it is important to test for function by a 

variety of different approaches.  

Genetic mutants have the ability to shed light on the function of altered genes, but 

phenotypes can be masked due to functional redundancy or the limited number of 

phenotypes being measured (Ajjawi et al., 2010; Bouché and Bouchez, 2001). Knockout 

collections, such as sequence-indexed T-DNA insertion lines (Alonso et al., 2003), provide 

starting material for surveying the function of a gene by measuring the state of the plant in 

the absence or reduced expression of the gene product. Unfortunately, the problem of 

knowing what to assay to describe the gene’s function still exists. The Chloroplast 2010 

project is a high throughput phenotypic screen of  >5,000 Arabidopsis thaliana T-DNA 

mutant lines that analyzed metabolite, physiological and morphological data from leaf and 

seed defective in >3000 different loci (Lu et al., 2008; Lu et al., 2011b; Lu et al., 2011c). 

Because it is enriched for mutants in chloroplast targeted genes, this dataset may provide 

insight on the genes involved in key chloroplast processes, such as photosynthesis, de novo 

fatty acid biosynthesis, and the metabolism of some amino acids. 

While it includes a diverse number of measurements, the Chloroplast 2010 dataset 

poses some challenges to traditional analyses for cross-dataset comparisons and 
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community analysis. As with many high throughput screening datasets, it lacks the 

replication and controls needed to minimize the impact of technical variance using more 

traditional analysis methods that would enable using the data to address broader 

questions. Furthermore, the dataset contains a fair amount of missing data (due to plants 

being unavailable for analysis or assays that failed to pass quality control), and large 

amounts of uninformative data where the mutant lines have no discernible phenotype in 

the assays measured. MIPHENO (Bell et al., 2012), a method developed for the analysis of 

large scale screening data, has been shown to minimize the technical variance in datasets 

with no controls or replication.  

The MIPHENO workflow transformed this dataset into one that enables cross 

dataset comparison (Chapter 2). To address issues of missing and high background data, 

SimMeasure (Chapter 3) can be used to calculate the similarity between individual mutant 

lines. With proper processing, the Chloroplast 2010 dataset enables an omics approach to 

functional gene annotation similar to the ways in which transcriptomics have been used 

except that the observed characteristics (altered metabolites) are more closely related to 

the changes in physiology. 

4.3 Materials and methods 

4.3.1 Data preparation 

Data corresponding to the Col-0 ecotype from the Chloroplast 2010 project were 

processed using MIPHENO (Bell et al., 2012) as described.  Briefly, a post hoc quality 

control step was used to identify assay groups with a median response that was three 



86 

 

median adjusted deviations from the global response for that metabolite. Groups were then 

normalized, based on the group median, to the global median. A cumulative distribution 

function was applied to each metabolite measured to determine the probability of a 

response being as or more extreme than the observation. The resulting score indicates the 

probability that the observation represents a ‘mutant’ phenotype. Leaf free fatty acid and 

free amino acid data along with seed free amino acid and seed percent carbon and nitrogen 

data were processed separately by tissue source, treating each plant as an individual.  

After calculation of the MIPHENO score (Chapter 2; Bell et al., 2012), individuals 

with genotyping information indicating they were wild-type or heterozygous for the insert 

were removed and remaining samples used to determine the score for that allele (e.g. SALK 

line), by taking the median MIPHENO score. Metabolite data from the Chloroplast 2010 

dataset were available in two forms. Mole percent (MP) is calculated as the quotient of 

moles of a given attribute (e.g. a specific leaf amino acid or fatty acid methyl ester) over the 

total moles for the individual in that assay set (e.g. the sum of all leaf amino acids or fatty 

acid methyl esters for that individual) times one hundred. Fresh weight (FW), is calculates 

as the number of moles of that metabolite per gram tissue fresh weight (Lu et al., 2008; Lu 

et al., 2011b). Data from each representation (MP or FW) were combined into separate 

data frames. Seed carbon, nitrogen, and carbon to nitrogen ratio were only available as 

percentage values and not as MP or FW and thus the same value is present in each dataset. 

4.3.2 Community identification and characterization 

MIPHENO scores were transformed from the 0 to 1 range to a -1 to 1 range to 

facilitate processing; values approaching -1 are highly likely to have a decreased amount of 
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metabolite compared with the median and those approaching +1 are highly likely to have 

an increased amount of the metabolite (see Appendix 1, Chapter 4 supplementary files for 

details). Across both datasets (MP, FW), scores between -0.6 to 0.6 made up 80% of the 

data, and scores between -0.75 to 0.75 correspond to 90% of the data. Similarity scores 

were then calculated using SimMeasure (Chapter 3) to identify lines with similar responses 

across the measured metabolites using thresholds of 0.6 or 0.75 to remove background 

responses. SimMeasure calculates the similarity between two lines, controlling for 

instances where one individual has few responses while the other has many (i.e. lines that 

have a simple vs. pleiotropic phenotype). Values from SimMeasure are in the same range as 

correlation coefficients (-1 to 1), and can be interpreted the same way for clustering 

purposes.  As graphical-based clustering approaches resulted in a complex network with 

loss of nodes at an edge cutoff of 0.75 (Figure 11), a hierarchical approach was used to 

create more well-defined communities. Hierarchical clustering of the adjacency matrix with 

Ward’s minimum variance was used to define 400 communities. Four hundred was chosen 

to maximize the number of clusters having fewer than twenty individuals while minimizing 

those with fewer than four members. 

Gene ontology (GO) enrichment for biological processes was used to help identify 

communities having characteristics that would make them more amenable to building 

hypotheses on under-annotated loci.  The enrichment of GO terms in communities was 

calculated using a modified version of the GO enrichment functions (Horan et al., 2008). For 

the Chloroplast 2010 dataset, the alleles in the dataset were used as the background in 

creating the GO reference to account for cases where multiple alleles of a locus were 
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present. This has the effect of controlling the expectation of a locus that has four alleles 

verses the locus that has only one. Ontology libraries were built using the GO file from The 

Arabidopsis Information Resource (TAIR; www.arabidopsis.org) dated  January 17, 2012 

(Rhee et al., 2003).  Phenotypes identified based on the MIPHENO scores were then 

compared for clusters with significant GO term enrichment (p value > 0.5). 
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Figure 11 Graphical clustering of FW data 

The adjacency matrix was converted to a graph object using a threshold of 0.75. A total of 
98 loci were lost as unconnected nodes. While a majority of individuals belong to the main 
cluster, a few segregated out into smaller communities. These smaller communities 
contained both positively and negatively connected individuals, but with little information 
to drive hypothetical models of unknowns. 
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4.4 Results 

Comparison of the phenotypic clustering between the MP and FW datasets 

highlights differences in the nature of the measurements (Figures 12, 13). Clustering based 

on MP (Figure 12) results in the assays being mixed with no clear separation between 

tissue (leaf or seed) on which the assay was performed. Additionally, there is no 

appearance of biosynthetically-related metabolites, for example the branched chain amino 

acids, clustering closer together than those metabolically distant. These two observations 

suggest that the MP data may not reflect underlying metabolic relationships. One would 

expect that biosynthetically-related metabolites would respond more similarly due to 

metabolic control, which should be reflected in at the tissue/assay level as well as at the 

metabolite level. This suggests that the MP data may not be representing the metabolite 

relationships adequately enough to allow inferences on the impact of a gene knockout. By 

contrast, the FW results (Figure 13) resulted in different assays being grouped together 

and a clear separation between the tissues, with some minor exceptions (seed carbon and 

the carbon: nitrogen ratio). Additionally, biosynthetically-related compounds are clustered 

close to each other.  

Based on these initial results and the goal of developing functional hypotheses 

based on metabolic phenotypes, only the FW data were used for further analysis. The 

clusters based on a 0.60 threshold (corresponding to 20% of the data, Figure 13) and a 0.75 

threshold (corresponding to 10% of the data, Figure 14) were used in the enrichment 

analyses. Terms relating to biological process were the focus as those were most easily 

reconcilable with metabolic phenotypes. Ninety-one unique clusters had enrichment in GO 
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biological process using a threshold of 0.60, while 94 unique clusters were identified at a 

threshold of 0.75. Selected results from each of these thresholds are shown in Tables 3 

through 6. 
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Figure 12 Clustering of MP Data using a threshold of 0.6 

Mole Percent data was processed using SimMeasure then clustered using hierarchical clustering with Wards minimum 
variance by individual (y-axis) or by assay (x-axis). Color labels on y-axis correspond to the 400 different communities. Colors 
within the plot reflect the accumulation of metabolites (darkest blue indicates those observations approaching -1 while 
darkest red indicates observations approaching 1. White indicates values in the designated wild type range of -0.6 to 0.6), with 
metabolites having an MIPHENO score between -0.6 and 0.6 removed. Observations closer to -1 have a high probability of 
being a low accumulator while those closer to 1 have a higher probability of being a high accumulator of the metabolite. Note 
that the similar assays (denoted with X, LF or SD) do not cluster together completely. LF=leaf, SD=seed, X=free fatty acid. 
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Figure 12 (cont’d)
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Figure 12 (cont’d) 
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Figure 13 Clustering of FW Data using a threshold of 0.6 

Fresh weight data was processed using SimMeasure then clustered using hierarchical clustering with Wards minim variance 
by individual (y-axis) or by assay (x-axis). Color labels on y-axis correspond to the 400 different communities. Colors within 
the plot reflect the accumulation of metabolites (darkest blue indicates those observations approaching -1 while darkest red 
indicates observations approaching 1. White indicates values in the designated wild type range of -0.6 to 0.6), with metabolites 
having an MIPHENO score between -.06 and 0.6 removed. Observations closer to -1 have a high probability of being a low 
accumulator while those closer to 1 have a higher probability of being a high accumulator of the metabolite. Note that similar 
assays appear to cluster together, which contrasts to results in Figure 11. LF=leaf, SD=seed, X=free fatty acid. 
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Figure 13 (cont’d)  
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Figure 13 (cont’d)  
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Figure 14 Clustering of FW Data using a threshold of 0.75 

Fresh weight data was processed using SimMeasure then clustered using hierarchical clustering with Wards minim variance 
by individual (y-axis) or by assay (x-axis). Colors within the plot reflect the accumulation of metabolites (darkest blue 
indicates those observations approaching -1 while darkest red indicates observations approaching 1. White indicates values in 
the designated wild type range of -0.6 to 0.6) with metabolites having an MIPHENO score between -0.75 and 0.75 removed. 
Observations closer to -1 have a high probability of being a low accumulator while those closer to 1 have a higher probability 
of being a high accumulator of the metabolite. LF=leaf, SD=seed, X=free fatty acid. 
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Figure 14 (cont’d) 
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Figure 14 (cont’d)
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Table 3 Cluster: roseybrown4, Threshold=0.6, GO: photosynthesis 

Locus Insertion Line TAIR Annotation 
AT1G14150 SALK_006106 Encodes a subunit of the NAD(P)H 

dehydrogenase complex located in 
the chloroplast thylakoid lumen 

AT1G48280 SALK_080607 Hydroxyproline-rich glycoprotein 
AT1G48950 SALK_046110 C3HC zinc finger-like 
AT1G75010 EMS16 Encodes ARC3 (Accumulation and 

Replication of Chloroplast 3), a 
chloroplast division factor 
functioning in the initiation of 
chloroplast division 

AT2G26340 SALK_048391 Unknown protein 
AT2G39470 SALK_063049 PsbP-like protein 2 (PPL2) 
AT3G10470 SALK_106077 C2H2-type zinc finger family 

protein 
AT4G29670 SALK_028498 Encodes a member of the 

thioredoxin family protein 
AT5G13310 SALK_047869 Unknown protein 

 

 

Table 4 Cluster: gold, Threshold=0.6, GO: branch chain amino acid family process 

Locus Insertion Line TAIR Annotation 
AT3G16890 SALK_019082 Encodes a mitochondrial 

pentatricopeptide repeat (PPR) 
domain protein 

AT3G45300 ivd1-2 Encodes isovaleryl-coenzyme a 
dehydrogenase 

AT5G05740 SALK_001991 S2P-like putative metalloprotease 
AT5G23010 SALK_116223 Encodes a methylthioalkylmalate 

synthase 
AT5G65770 SALK_097945 LITTLE NUCLEI4 (LINC4) 
AT5G65780 SALK_071486 Encodes a chloroplast branched-

chain amino acid aminotransferase 
AT5G66380 SALK_011184 Encodes a folate transporter that is 

located in the chloroplast envelope 
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Table 5 Cluster: blue3, Threshold=0.75, GO: fatty acid metabolic process 

Locus Insertion Line TAIR Annotation 
AT1G08640 SALK_032130 Chloroplast J-like domain 1 (CJD1) 
AT1G08640 SALK_039694 Chloroplast J-like domain 1 (CJD1) 
AT1G78110 SALK_003000 Unknown protein 
AT2G28540 SALK_152456 RNA binding (RRM/RBD/RNP 

motifs) family protein 
AT4G13590 SALK_129037 Uncharacterized protein family 

(UPF0016) 
AT4G30950 SALK_027548 Chloroplastic enzyme responsible 

for the synthesis of 16:2 and 18:2 
fatty acids from galactolipids, 
sulpholipids and 
phosphatidylglycerol 

 

 

Table 6 Cluster: violetred, Threshold=0.75, GO: amino acid biosynthesis 

Locus Insertion Line TAIR Annotation 
AT1G47510 SALK_108673 Encodes a phosphatidylinositol 

polyphosphate 5-phosphatase 
AT3G04940 SALK_092696 Encodes cysteine synthase CysD1 
AT4G19710 SALK_019023 Encodes a bifunctional aspartate 

kinase/homoserine 
dehydrogenase 

AT4G19710 SALK_082155 Encodes a bifunctional aspartate 
kinase/homoserine 
dehydrogenase 

AT5G57940 SALK_149893 Member of cyclic nucleotide gated 
channel family 

AT5G62140 SALK_113654 Unknown protein 
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4.5 Discussion 

The major aim of this work was to test the proof of concept that high throughput 

phenotypic studies could be used to develop hypotheses regarding the function of un- or 

under annotated genes. Because of the diversity of metabolites and genes under 

investigation, a secondary aim was to see if additional hypotheses could be built regarding 

new roles for genes with existing annotation or relationships between the metabolic 

networks in which they function. The results indicate that for these purposes, it is best to 

use measurements that are directly reflective of metabolite quantity and not a relative 

quantity such as mole percent that might be artificially changed due to the change in 

another measured value. While in large-scale studies there may be some quality issues in 

using an absolute measurement such as fresh weight due to the amount of cellular water 

and metabolite stability, these are generally small and the effects can be minimized with 

normalization to remove technical error. In contrast, differences based on a percent 

measurement can vary wildly due to the relative impact when a low -abundance metabolite 

increases many fold or the amount of a usually high accumulating metabolite is reduced by 

a large fraction.  The following examples from the analysis reflect the FW data.  

The first example cluster at a threshold of 0.60, ‘roseybrown4’, is enriched in 

mutants of genes associated with GO annotation related to photosynthesis with a 

phenotypic signature of high leaf glycine and glutamine (Table 3). The GO annotation 

enrichment is based on two genes, At1g14150 (PnsL2) and At2g39470 (PnsL1), which are 

components of the chloroplast NADH dehydrogenase-like complex (Ifuku et al., 2011; 

Suorsa et al., 2010). The other seven genes in the cluster include ARC3, which is involved in 
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chloroplast morphology, and an unknown gene, At2g26340.  Other data from the 

Chloroplast 2010 project shows that the insertion line corresponding to At2g26340 is 

annotated as having a positive before-high-light Fv/Fm, indicative of a change in the 

quantum efficiency of photosystem II.  This protein is also annotated as present in the 

thylakoid lumen (Friso et al., 2004; Peltier et al., 2004), which supports a possible 

involvement with photosynthetic complexes. The lack of a known catalytic domain in 

At2g26340 (Rhee et al, 2003) and the mild phenotype under normal conditions indicates it 

may have a regulatory or structural role with the photosystem complexes (Figure 15), 

interacting transiently or on the periphery. 
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Figure 15 Hypothetical model for At2g26340 

The unknown protein, At2g26340, is proposed to play a structural or regulatory role with 
respect to the photosystem complexes. The similarity of At2g26340’s phenotype to two of 
the proteins in the NDH complex and the weak high before high light FV/FM measurements 
could indicate that it interacts with PSII or with NDH. PSII = photosystem II, NDH = 
chloroplast NADH dehydrogenase-like complex, PSI = photosystem I 
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Gold, the second cluster example using a threshold of 0.60, is enriched in genes 

involved in branched-chain amino acid family processes (Table 4). Two genes, At5g65780 

(ATBCAT-5) and At3g45300 (IVD1) are involved in the degradation of branched-chain 

amino acids (Diebold et al., 2002; Gu et al., 2010). The T-DNA insertion line Salk_097945 is 

annotated to a third gene in the cluster, At5g65770. This insertion line actually lies in 

between At5g6770 and At5g65780, suggesting that it is likely disrupting the function of the 

downstream locus. Another member of this community is At5g23010 (MAM1) a 

methylthioalkylmalate synthase, which is involved in methionine chain elongation and is 

similar to 2-isopropylmalate synthase involved in leucine biosynthesis (Field et al., 2004; 

Kroymann et al., 2001). Possible hypotheses for the apparent phenotype is altered activity 

of MAM3 (Textor et al., 2007) caused by the disruption of MAM1, or a role for MAM1 in the 

biosynthesis of branched-chain amino acid derived glucosinolates. 

Using the more stringent threshold of 0.75, the cluster blue3 stands out as an 

example of a community driven by a free fatty acid phenotype (Table 5). The GO annotation 

of fatty acid metabolic process is driven by At4g30950 (Fad6) and two alleles of At1g08640 

(CJD1), both localized to the chloroplast envelope (Ajjawi et al., 2011; Nandi et al., 2003; 

Schmidt et al., 1994). The cluster phenotype of increased 16:1d7C and decreased 16:2, 

16:3, and 18:3 fatty acids are consistent with a defect in fatty acid metabolism and 

published phenotypes for knockouts of these genes. The other three members of this 

cluster are largely unknown. At4g13590, is located to the inner chloroplast membrane 

(Ferro et al., 2003). Its location within the cell puts it near At1g08640 and At4g30950 
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suggesting that it may have a role in fatty acid metabolism, likely that of a regulatory or 

structural protein (Figure 16) due to the lack of evidence for a catalytic domain but support 

for a transmembrane domain (Rhee et al, 2003).  

Violetred, Table 6, is a cluster also found using the threshold of 0.75, is enriched in 

genes involved in amino acid biosynthesis. It includes two alleles of At4g19710 (encoding 

the bifunctional aspartate kinase-homoserine dehydrogenase II) which is involved in the 

synthesis of threonine, isoleucine and methionine from homoserine (Curien et al., 2005; 

Ghislain et al., 1994) and one of At3g04940 (CYSD1), which catalyzes the synthesis of 

cysteine (Hatzfeld et al., 2000; Yamaguchi et al., 2000). This cluster has the phenotypic 

signature of high leaf cysteine, glutamate, homoserine, and threonine. Part of the 

phenotype seen may be due to the allosteric regulation of the proteins (or those upstream 

in the case of CYSD1) and genetic redundancy compensating for the loss of a dominate 

enzyme. The other three loci in the cluster have no evidence for their involvement in amino 

acids (phosphatidylinositol polyphosphate 5-phosphatase, At1g47510; cyclic-nucleotide-

gated-channel-family protein, At5g57940; unknown protein, At5g62140). For a completely 

unknown protein such as At5g62140, analyses such as this may serve as a starting point in 

trying to characterize the locus, for example by carrying out a more precise measurement 

of leaf amino acids. 
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Figure 16 Hypothetical model for At4g13590  

Given the lack of known domain for catalysis, it is hypothesized that At4g13590 serves as a regulatory role either in the 
transport of mono-unsaturated lipids or in conjuncture with At4g30950 (FAD6). It is likely positioned at or within the inner 
membrane based on predictions for transmembrane domains. From this position it is hypothesized to interact with other 
proteins involved in the biosynthesis of desaturated fatty acids. 
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Multiple insertion lines targeting genes involved in branched-chain amino acid 

degradation are present in the Chloroplast 2010 dataset. These include two alleles for a 

hydroxymethylglutaryl-CoA lyase (At2g26800), an isovaleryl-CoA dehydrogenase 

(At3g45300), a member of the branched-chain amino acid transferase family, BCAT5 

(At5g65780), and MCCA/MCCB (At1g03090 and At4g34030, respectively), which are the 

subunits of the methylcrotonoyl-CoA carboxylase. While they all show a similarity in their 

phenotype, specifically increases in branched-chain amino acids, they cluster to different 

groups (phenotypes using a 0.75 threshold shown in Table 7). This difference is likely due 

to the pleiotropic nature of the phenotype and the complex nature of the metabolism 

(Figure 17). 

This work presents one of the first examples of using high throughput phenomics to 

develop hypotheses about gene function. Initial results provide examples of how large-

scale analyses of knockouts can help develop hypotheses about gene function 

(roseybrown4, blue3) or suggest relationships between metabolic sub networks (gold, 

violetred). As the prevalence of high throughput experiments increases, it may be possible 

to combine phenotypic information across several datasets to help answer questions about 

biology in a way that researchers have been able to using transcriptomics data. 

Additionally, integration of transcriptomics data with the phenotypic data may help expand 

the communities and provide information on redundant genes or genes that were not 

assayed in one of the datasets. 
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Table 7 Phenotype and cluster assignment for branched-chain amino acid degradation loci* 

Locus At5g65780 At3g45300 At1g03090 At4g34030 At2g26800(A) At2g26800(B) 

Cluster cyan1 cyan1 
orangered

4 
orangered

4 
lightcyan lightcyan 

Step 1 2 3 3 4 4 

Nitrogen 0.94 0.89 -0.67 NA -0.91 NA 

Alanine NA 0.9 NA -0.96 0.97 0.86 

Arginine 0.99 1 0.66 NA 0.99 1 

Asparagine NA -0.96 -0.88 -0.92 0.95 NA 

Aspartate -0.76 NA NA NA 0.82 NA 

Cysteine 0.83 0.97 NA -0.91 0.99 0.64 

GABA 0.84 0.96 NA NA 0.85 0.97 

Glutamine 0.99 0.98 NA NA 0.9 0.86 

Glutamate -0.69 -0.99 -1 -1 NA 0.72 

Glycine NA 0.99 NA -0.93 0.98 0.82 

Hydroxy proline 0.98 NA NA NA 0.87 NA 

Homo serine 1 0.89 NA NA NA 0.68 
 

*Cluster refers to the clustering based on a threshold of 0.75. Step refers to the step highlighted in Figure 17. Values are the 
MIPHENO score, shaded to project the magnitude of the phenotype (red= high probability of a high accumulator phenotype, 
blue= high probability of a low accumulator phenotype). 

  



111 

 

Table 7, (cont’d) 

Locus At5g65780 At3g45300 At1g03090 At4g34030 At2g26800(A) At2g26800(B) 

Cluster cyan1 cyan1 
orangered

4 
orangered

4 
lightcyan lightcyan 

Step 1 2 3 3 4 4 

Histidine 1 1 0.99 0.98 1 1 

Isoleucine 1 1 1 1 1 1 

Leucine 1 1 1 1 1 1 

Lysine 0.99 1 0.71 NA 0.98 0.95 

Methionine 0.99 1 0.95 NA 1 0.98 

Phenyl-alanine 0.91 1 0.88 NA 0.84 NA 

Proline 1 0.95 NA NA 0.61 0.66 

Serine 0.99 0.99 0.95 0.95 0.99 0.97 

Threonine 0.74 0.92 NA -0.91 NA NA 

Tryptophan 0.73 1 NA NA 1 0.94 

Tyrosine 0.94 1 0.6 NA 1 0.97 

Valine 1 1 1 0.99 1 1 
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Figure 17 Schematic of branched-chain amino acid metabolism 

Steps 1-4 correspond to the loci in Table 7. Minus (-) indicates feedback inhibition whereas 
positive (+) indicates feedback activation. α-KG= alpha ketoglutarate, GLU=glutamate ILE= 
isoleucine, IPMS=isopropylmalate synthase, LEU=leucine, THR=threonine, VAL= valine 
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Despite the information available for the plant model species Arabidopsis thaliana, a 

larger portion of the genome is un- or under annotated. This creates challenges for 

researchers as they try to understand processes within the organism and engineer or breed 

plants to address new needs. One possible source for annotation is leveraging the 

information from large-scale studies, such as mutant screens. To date, there have been no 

such studies in any organism that have looked at the use of phenotypic mutant screens to 

build models for gene annotation.  

The key objective of the work presented in the dissertation was to test the 

hypothesis that large-scale, high-throughput phenotypic screening data could be used in 

developing functional gene annotation. To achieve the objective, novel methods were 

needed to use screening data for community analysis. This is because large-scale screens 

tend to not meet the requirements for standard normalization and cross-dataset 

comparison methods. 

5.1 Major accomplishments 

The key objective of the dissertation was to test the hypothesis that large-scale, 

high-throughput phenotypic screening data could be used in developing functional gene 

annotation. Several methods were developed in support of this hypothesis. These methods 

include the normalization approach presented as part of the MIPHENO software package 

and the ability to calculate similarity from missing/sparse data included in the NetComp 

software package. Additionally, these two software suites offer tools to the data analysis 

community that can be used with diverse datasets, as demonstrated in the preceding 

chapters. 
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5.1.1 MIPHENO 

To address the need for a normalization procedure that could be extended to 

datasets with no replication or controls, I developed the MIPHENO software package. 

MIPHENO uses the properties of the dataset and the assumption that the majority of 

responses will be in the wild type or background range to conduct normalization in the 

absence of more traditional controls. This software package was developed to be 

extendable to a variety of high throughput datasets, includes a post-hoc quality control 

step, a normalization step, and a method for giving the probability an observed response is 

not wild-type. This software package provides much needed community resources that 

facilitate cross-dataset comparisons of high throughput screening data. 

5.1.2 NetComp 

While many methods are available to tackle datasets with missing data, most 

require parameter optimization, do not allow for thresholding, and are computationally 

intensive. SimMeasure addresses these issues and calculates an adjacency matrix that is 

analogous to a correlation matrix, an important feature for conducting downstream 

analyses. It deals with the issue of missing data (either randomly occurring or do to 

thresholding) by calculating the similarity using pairwise complete observations and 

penalizing the final similarity value by the number of instances where data was missing in 

only one individual. The similarity calculation used is based on the Canberra distance 

metric, providing a straightforward calculation that considers each pair of observations 

independently. The output structure of an adjacency matrix makes the result useable for 

many other downstream processes, such as community enrichment, and makes the result 
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accessible to existing graph-based analysis strategies that are commonly used in systems 

biology. SimMeasure is part of the NetComp software package. NetComp was created as a 

way to easily integrate and compare large scale datasets.  Functions created as part of 

NetComp are designed to work with large scale datasets such as microarray and screening 

data. A set of functions that utilize the adjacency matrix structure are useful for performing 

data integration and network comparisons quickly while maintaining edge values. 

Currently, there are no software packages available for R, a commonly used and free 

platform for large data analysis, that incorporate these types of functions in one cohesive 

package that can easily work with other packages given the input and output structures. As 

a whole, this software package can be integrated into existing workflows to facilitate 

analyses within the R analysis environment. 

5.1.3 Analysis of high throughput data and hypothesis generation 

Using the developed methods on the data generated through the Chloroplast 2010 

project, I was able to perform several analyses that were not possible before. Data is now 

comparable across the datasets, rather than just being comparable within an assay group. 

MIPHENO enables interpretations of the data beyond one assay group, which is 

demonstrated in Chapter 2, leading to a lower false negative rate. The cumulative 

distribution function used in MIPHENO means that individual insertion lines can be 

prioritized for follow-up based on the likelihood of phenotype, without the need for explicit 

controls. The ability to compare across the dataset means that lines with similar mutant 

phenotypes are identifiable and can now be clustered.  
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The method I developed for calculating similarity in the presence of missing and 

uninformative data, SimMeasure, enables the use community enrichment methods 

commonly used in gene expression data. This community enrichment information, when 

combined with the phenotypic information driving the community formation, is useful to 

researchers in guiding experiments to determine gene function. The workflow I developed 

made it possible to develop hypotheses of gene function based on phenotypic information 

with low statistical power that previously would not be possible using existing methods.  

The workflow I created brings all of these software and analysis pieces into one 

cohesive whole. Altogether, this information creates a useful launch pad for future 

investigators that was not possible without the creation of the software developed as part 

of the dissertation research. 

Research presented in this dissertation supports the hypothesis that high 

throughput phenotypic data enable gene function predictions using gene disruption lines. 

Using gene disruption lines is an important feature in this work even though it creates 

challenges regarding the quality of the disruption and confidence in the genes link to the 

phenotype. While there may be some false associations, the strategy of screening insertion 

lines offered novel data that made it possible to identify phenotypic associations.  

5.2 Questions to be addressed 

Several questions still need to be addressed, chiefly the accuracy of the predictions 

made and if the predictions are more helpful than those with other omic resources. An easy 

way to explore the comparison of the phenotypic-derived annotation and, for example, 
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transcriptomics would be to compare the networks generated with expression data to 

those from the phenotypic data. Measuring the accuracy of the predictions is a bit harder, 

given the high level of noise coming from the input data, but beginning the follow-up 

process with verification of the phenotype is a start. Some suggestions for follow-up on the 

predictions mentioned in the fourth chapter are detailed below.  

Aside from the obvious biological questions regarding the workflow, a few 

computational questions remain. For example, are there limitations to the types or ranges 

of data suitable for SimMeasure? While it was inappropriate to do data imputation on the 

Chloroplast 2010 data given the nature of the missing data, it would be interesting to 

measure the success of using some data imputation methods on the unthresholded data. 

For individuals that had missing data due to quality control it might be useful, especially as 

the values could be compared to any replicates of that individual or for other lines 

annotated to the same locus. Thresholded values could then be used with SimMeasure to 

calculate the adjacency matrix to overcome the bias that occurred using the whole dataset. 

5.3 Future work 

5.3.1 Verification and follow-up on biological predications 

A few examples were given in Chapter 4 to support the use of phenomics in building 

hypotheses of gene function. Two of the genes described were unannotated except for 

proteomics information to suggest localization. These are At2g26340 (Salk_048391), 

suggested to be involved with the photosynthetic complexes and At4g13590 

(Salk_129037), an inner chloroplast membrane protein that exhibits a fatty acid phenotype. 
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Initial characterization of the two genes is similar and has to do with verification of the 

phenotype and the phenotype’s link to the gene. Pipeline experiments that showed a 

phenotype need to be repeated with a higher biological replication, and include additional 

alleles as well as a couple members of their community. 

The first gene, At2g26340 has another allele in the Chloroplast 2010 dataset, 

Salk_099844, which is in approximately the same position and direction as the allele noted 

and exhibits a more severe phenotype than Salk_048391. It is likely that it did not cluster 

with the other allele due to other phenotypes (similarity score between alleles is 0.66). 

Quantifying both seed and leaf amino acid changes using a higher statistical powered 

design is suggested changes in both datasets are observed. Both alleles show a weak 

positive response in the before high light Fv/Fm and an inconsistent weak positive in 

recovery. This gene is highly expressed in photosynthetic tissues (Winter et al., 2007) , 

consistent with its localization and proposed role in photosynthesis. If the phenotypes 

seem stable, then checking to see if this unknown protein was directly involved with any of 

the photosystem complexes would be a logical next step. The lack of a catalytic domain and 

mild phenotype suggest that the function is a regulatory or structural one, which 

depending on the strength of interactions could pose a challenge and methods need to be 

chosen that minimize disturbance of fragile interactions. Unfortunately, most localization 

methods require an antibody or protein tag, which might inhibit protein-protein 

interactions. One could consider the stability of the different photosystems in the two 

insertion lines relative to the wild type similar to the work done by (Lu et al., 2011) to 
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characterize LQY1’s association with photosystem II using blue native gels. These 

experiments should provide enough starting material to move forward. 

For the second gene, At4g13590, there is also another allele, SALK_011783, where 

the insertion maps to the 300 base pair region in the 5’ UTR of the gene (Salk_129037 

insertion maps to an intron). Both show a fatty acid phenotype, but the second allele has a 

decrease in 18:2, 18:3, and 16:1d7C, among others. The alleles have a similarity score of 0.6 

and the similarity between SALK_011783 and the other members of the blue3 cluster are 

below 0.2. Aside from fatty acid phenotypes, this second allele has a few other amino acid 

phenotypes likely contributing to the low similarity scores. The only other SALK line 

available for this particular locus is SALK_148315, located in the promoter region. Due to 

the lack of a strong candidate for a second allele, it might be worthwhile first step to obtain 

homozygous lines from all three alleles and look at the expression of the gene to see if it is 

actually decreased. The higher powered fatty acid profiling can be carried out on along 

with other fatty acid biosynthetic mutants (possibly more than Fad6 and CDJ1). If 

At4g13590 expression is not significantly decreased in the other two alleles then 

complementation of the SALK_129037 is needed to be sure that the phenotype is tied to the 

At4g13590 locus.  

The lack of a known catalytic domain in the At4g13590 gene and the presence of a 

computationally predicted transmembrane domain suggest a structural or regulatory role 

for the gene. In the event that the phenotype can be confirmed, identification of the 

interacting partners is the next logical step. Tagging or development of an antibody is 

needed, with epitopes likely/predicted to be located on the stromal side. Comparisons to 



125 

 

other proteins known to affect the transport of phospholipids in and out of the chloroplast 

may be good candidates for partners as well as the biosynthetic proteins.   

5.3.2 Data integration using NetComp 

One advantage of having data in the adjacency matrix format is that it facilitates data 

integration. An initial hypothesis going into the dissertation work was that data integration 

would help to build better models of gene function because of the additional information 

and a potentially larger dataset as some individuals are not included in both. This was tried 

using the Arabidopsis arrays from MetNetDB (Mentzen and Wurtele, 2008). This set of 

arrays covers the developmental series, biotic and abiotic stresses and is thus quite diverse. 

The intersection between the Pearson correlation of the MetNetDB data and the phenotypic 

matrix was used to identify communities with strong support for a relationship in each. 

The results were worse in quality than using the phenotypic data alone, based on the 

number of clusters with enriched ontology terms that were related to the phenotype of the 

community. Increasing the stringency of the phenotype did not resolve this. 

Based on these results, a better approach to the data integration may be to use 

tissue-specific gene expression. For example, using transcriptomic data that is seed specific 

and combining it with seed-specific phenotypic data. It might be worth comparing the 

whole dataset to the seed-specific dataset as well, just to better detect traits that have 

relationships in both seed and leaf material. If the overlap between the two datasets shows 

promise, then the union might be considered to bring in those connections that are specific 

to one data type. Consideration will be needed in considering the edge weights (correlation 

or similarity score) in the integration. Based on earlier trials with a different dataset, taking 
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the intersection (which uses the average edge weight) and then incorporating the 

additional edges using the weight from that dataset seems to give favorable results. 

One last consideration for integration with transcript data is anchoring data to the 

genome. The insertion lines were anchored to the locus using the information provided in 

the Chloroplast 2010 dataset. There are many examples for which this information isn’t the 

most accurate because the insertion lays between two genes or possible targets a single 

splice form. With the transcript data, there might be many probes for a single gene 

(corresponding to different parts of the transcript as well as different isoforms) in addition 

to probes mapping to multiple genes. All these factors complicate the data integration and 

several different approaches should to be tested to see how to minimize the impact on 

overall data interpretation. 

5.4 Final comments 

This work represents a first step in using large-scale data for building annotation of 

gene function. The methods developed are aimed at facilitating analysis of sparse datasets 

and screening studies, but are extendable to other data types. As more datasets are made 

publically available, these types of tools should facilitate additional post hoc analyses and 

data integration, hopefully lending itself to better design of follow-up experiments leading 

to improved gene annotation. 

Improvements in data quality could advance this type of work. Small improvements, 

like expanding the experimental annotation to give details about what was studied, why it 

was studied, and how the measurements were taken, can go a long way in orientating 



127 

 

someone to a dataset. Even when conducting high throughput experiments, including small 

levels of replication (for example, two trays with the same individuals, or one cell devoted 

to a control) can go a long way in improving the power of an analysis but don’t add 

considerably to the overall cost. Finally, making data available, freely, completely, and 

without restrictions, is important to moving the field forward as a whole. If data is kept in 

silos, it cannot be used in further analyses and new knowledge cannot be realized. 
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6 Appendix A 

Software is available on the Comprehensive R Archival Network at the following locations: 

MIPHENO: http://cran.r-project.org/web/packages/MIPHENO/index.html 

NetComp: http://cran.r-project.org/web/packages/NetComp/index.html 

Data and methods used to carry out the analyses as well as the results for Chapter 2 can be 
found at: 

http://www.biomedcentral.com/1471-2105/13/10/additional 

Data and methods used to carry out the analyses as well as the results for Chapter 3 can be 
found at: 

http://www.plastid.msu.edu/links/Dissertation%20Supplemental%20Materials/Chapter
%203%20supplementary%20materials/ 

Data and methods used to carry out the analyses as well as the results for Chapter 4 can be 
found at: 

http://www.plastid.msu.edu/links/Dissertation%20Supplemental%20Materials/Chapter

%204%20supplementary%20materials/ 

  

http://cran.r-project.org/web/packages/MIPHENO/index.html
http://cran.r-project.org/web/packages/NetComp/index.html
http://www.biomedcentral.com/1471-2105/13/10/additional
http://www.plastid.msu.edu/links/Dissertation%20Supplemental%20Materials/Chapter%203%20supplementary%20materials/
http://www.plastid.msu.edu/links/Dissertation%20Supplemental%20Materials/Chapter%203%20supplementary%20materials/
http://www.plastid.msu.edu/links/Dissertation%20Supplemental%20Materials/Chapter%204%20supplementary%20materials/
http://www.plastid.msu.edu/links/Dissertation%20Supplemental%20Materials/Chapter%204%20supplementary%20materials/
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7 Appendix B 

The code for the SimMeasure algorithm is included for reference. Code for all 

software and analyses can be found in the links provided in Appendix A. 

From SimMeasure.R, the wrapper function that calls SimMeasure from the R environment 

SimMeasure<-function(data, threshold=NULL, ...){ 

    x<-.Call("SimMeasure",data, threshold, pkg="NetComp" ) 

    if(!is.null(row.names(data))){ 

row.names(x)<-colnames(data); colnames(x)<-

colnames(data) 

    } 

    x 

} 

From SimMeasure.c 

#include "Rdefines.h" 

#include "Rinternals.h" 

#include "R_ext/Rdynload.h" 

#include "math.h" 

 

SEXP SimMeasure(SEXP data_matrix, SEXP thresh){ 

 // data_matrix is a matrix 

 // thresh is a double 

 

 int num_cols, num_rows; 

 double *rx = REAL(data_matrix), *rans, t; 

 SEXP retval; 
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//Check to make sure that everything is of the proper type 

//before going further... 

 if (isMatrix(data_matrix)){ 

  num_cols = ncols(data_matrix); 

  num_rows = nrows(data_matrix); 

 } 

 else{ 

  Rprintf("invalid matrix.\n"); 

  return R_NilValue; 

 } 

 if (isNull(thresh)){ 

Rprintf("warning, setting threshold to 0 by 

default.\n"); 

  t = 0; 

 } 

 else{ 

  t = REAL(thresh)[0]; 

 } 

 

 //Check to see if the matrix has any null values 

 if (isNull(data_matrix)){ 

  Rprintf("matrix must not be NULL.\n"); 

  return R_NilValue; 

 } 

 

 PROTECT(retval = allocMatrix(REALSXP, num_cols, num_cols)); 

 rans = REAL(retval); 
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 for(int i = 0; i < num_cols; i++){ 

  for(int q = 0; q < num_cols; q++){ 

   double cor_val = 0.0; 

   int count_row_nas = 0; 

   for(int wi = 0; wi < num_rows; wi++){ 

    //Rprintf("row_nas: %d\n", row_nas[wi]); 

//Check to see if we need to skip this row 

//b/c BOTH of the elements are NA 

if(ISNAN(rx[i * num_rows + wi]) && 

ISNAN(rx[q * num_rows + wi])){ 

     count_row_nas++; 

     continue; 

    } 

//Check to see if we need to skip this row 

//b/c BOTH of the elements are <hit 

//this is for cases where the 'non-hits' 

//werent removed 

if(fabs(rx[i * num_rows + wi]) < t && 

fabs(rx[q * num_rows + wi]) < t){ 

     count_row_nas++; 

     continue; 

    } 

   } 

   //Calculate the parts of the similarity function 

double nm = 0.0; double pm = 0.0; double om = 

0.0; 

   double pcnt = 0.0; double ocnt = 0.0; 

   for(int wi = 0; wi < num_rows; wi++){ 
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    //Check to see if one of the elements are NA 

if(ISNAN(rx[i * num_rows + wi]) && 

ISNAN(rx[q * num_rows + wi])){ 

     continue; 

    } 

else if(fabs(rx[i * num_rows + wi]) < t && 

fabs(rx[q * num_rows + wi]) < t){ 

     continue; 

    } 

//one value missing, the other above 

//threshold 

else if((ISNAN(rx[i * num_rows + wi]) && 

fabs(rx[q * num_rows + wi]) >= t) || 

(ISNAN(rx[q * num_rows + wi]) && fabs(rx[i * 

num_rows + wi]) >= t)){ 

     nm++; 

    } 

//one value below threshold, other value 

//above 

else if((fabs(rx[i * num_rows + wi]) < t && 

fabs(rx[q * num_rows + wi]) >= t) || 

(fabs(rx[q * num_rows + wi]) < t && 

fabs(rx[i * num_rows + wi]) >= t)){ 

     nm++; 

    } 

    //both are duds 

else if((ISNAN(rx[i * num_rows + wi]) && 

fabs(rx[q * num_rows + wi]) < t) || 

(ISNAN(rx[q * num_rows + wi]) && fabs(rx[i * 

num_rows + wi]) < t)){ 

     continue; 

    } 
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    else{ 

if(rx[i * num_rows + wi] * rx[q * 

num_rows + wi] >= 0){ 

if(rx[i * num_rows + wi]==0 && 

rx[q * num_rows + wi]==0){ 

       pm = pm +1; 

       pcnt++; 

      } 

      else{ 

pm = pm + 1-(fabs(fabs(rx[i * 

num_rows + wi]) - fabs(rx[q * 

num_rows + wi]))/(fabs(rx[i * 

num_rows + wi]) + fabs(rx[q * 

num_rows + wi]))); 

       pcnt++; 

      } 

     } 

     else{ 

om = om + 1-(fabs(fabs(rx[i * 

num_rows + wi]) - fabs(rx[q * 

num_rows + wi]))/(fabs(rx[i * 

num_rows + wi]) + fabs(rx[q * 

num_rows + wi]))); 

      ocnt++; 

     } 

    } 

   } 

 

//Calculate the correlation, and the correlation 

//matrix 

   if(num_rows - count_row_nas < 1){ 
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    cor_val = NA_REAL; 

   } 

   else{ 

cor_val = (pm - om) / (pcnt + ocnt + 

nm/(pcnt+ocnt+nm)); 

   } 

   rans[i * num_cols + q] = cor_val; 

  } 

 } 

 UNPROTECT(1); 

 return retval;   //return the correlation matrix 

} 

 

 

 


