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ABSTRACT

DISCOVERING FUNCTIONAL ANNOTATION THROUGH DATA MINING OF LARGE
SCALE PHENOMICS IN ARABIDOPSIS THALIANA

By

Shannon Marie Bell

To address society’s biotechnology needs in agriculture, medicine, and beyond, a
better understanding of the flow of information from gene to protein to phenotype is
needed. However, despite the increasing amount of genome-scale (omic) data, the lack of
annotation providing insight into gene function remains a challenge for researchers. The
lack of functional annotation can hinder progress from targeted metabolic engineering to
foundational biological research. Vague annotations coming from an expression profile or
sequence similarity make it hard to design experiments to characterize the gene and can
lead researchers down the wrong path. Using large-scale phenomics will provide more
useful information to help guide researchers in the characterization of under-annotated
genes. Unfortunately, many of the tools needed to carry out analyses of large-scale

phenotypic data are lacking.

This work presents a suite of software tools developed to address this need.
MIPHENO introduces a workflow to enable the post hoc analysis of screening data from
quality control to normalization to prediction of individuals likely to show a response. The
NetComp suite features an algorithm, SimMeasure, to calculate the similarity between

individuals in the presence of missing data. SimMeasure also works with datasets that have



been thresholded to remove values under/above a given response value. It also features

several additional functions aimed at data integration and network comparisons.

Results of these methods applied to a large phenotypic screen of gene disruption
lines in Arabidopsis thaliana demonstrate the utility of these tools in the analysis of large-
scale datasets. They show that phenotypic data can be successfully used in an analogous
manner to other high throughput data to build models of gene function. This work presents
a novel use of high throughput phenotypic data in higher organisms to build models for
functional annotation. Together this work presents the next step in the analysis of omics

data and moves the field closer to improving annotation quality.
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Chapter 1

Introduction



Data explosion, a lack of functional annotation, and a role for high throughput

screening

A better understanding of information flow from DNA to RNA to protein to
phenotype is needed to address a whole host of challenges in the 21st century. Advances in
personalized medicine, food security and nutrition, and mitigating the impact of industrial
demands on the environment depend on our ability to gather, interpret, and anchor cellular
data to biological processes. Ideally, this information will aid in predictive and targeted
metabolic manipulation strategies, through genetic engineering of plants and microbes and,
through gene and drug therapies. The post-genomic era of science and the ability to
conduct big-data science have opened doors, providing data at a resolution not available

before.

Unfortunately, the genome for many organisms is far from complete. While the DNA
sequence of model organisms is available, the function of many genes is not. Genomics
studies using the sequence information have improved with better structural and
bioinformatic modeling tools and by using information from other species on structurally
similar genes and proteins. However, some aspects of biology are not universal and using
sequence similarity alone can lead to misannotation that complicates interpretation and
experiments if they rely too heavily on these annotations (Furnham et al., 2009).
Transcriptomics and co-expression studies using annotation enrichment have provided
insight on the putative function of many transcripts (Horan et al., 2008). These expression-

based studies lack the ability to reveal the definitive function of a gene and provide limited
2



information to aid in follow-up experiments. This is because the expression profile cannot
necessarily be tied directly back to an effect (phenotype), making it challenging to design a
follow-up experiment to probe the effect. Proteomics has been critical in assigning
subcellular location and protein interaction networks provide information on interacting
partners and protein complexes, with an expansion of resources making it easier to
leverage these datasets (Wang et al., 2012). Unfortunately, neither helps with follow-up
experiments, unless the protein of interest partners or clusters with other proteins that are
well described functionally. What is missing is a biological phenotype that can provide

insight as to the role of a gene within its system.

Phenotypic studies, particularly broad-spectrum metabolomics, which measure
many different types of metabolites, have the potential to provide information needed to
identify genes that affect the biochemistry within the organism. Even in the relatively
simple plant model species Arabidopsis thaliana, researchers must look for traits in the
context of whole genome duplication, large gene families, promiscuous enzymes, and
complex metabolic feedback loops (Ober, 2010; The Arabidopsis Genome Initiative, 2000).
Knockout mutants often have no phenotype due to genetic redundancy, lack of the right
environmental conditions to observe a phenotype, or measuring for the wrong phenotype
(Bouché and Bouchez, 2001). As the costs of high throughput technology decreases,

metabolite screens are becoming more accessible to researchers.

The hypothesis that underlies this dissertation project is that metabolic data from
less-targeted screens surveying multiple measurements may be used in an analogous

fashion to transcriptomic or proteomics data. In particular, that data from gene disruption
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lines (where a specific gene is knocked out or over expressed) can provide insight into that
gene’s role within the plant (Thorneycroft et al., 2001). By building from methods
developed for analyzing other high-throughput datasets, for example using gene ontology
or annotation enrichment, it will be possible to characterize phenotypically similar gene
disruption lines by their common phenotype and by enriched annotation of the group. This
approach should facilitate the design of follow-up experiments. If high-throughput
metabolite screening data can be treated like other high-throughput datasets such as
transcriptomics, data integration from disparate sources might be used to aid in functional

gene annotation (Yuan et al., 2008).

Based on the hypotheses outlined above, there are three major challenges to this
work. First, a dataset containing a large set of gene disruption lines from both annotated
and unannotated genes as well as diverse metabolic measurements is needed. Measuring
several different metabolite types, ideally in different tissues, is important for capturing
tissue-specific metabolism and because members of gene families sometimes have
preferential tissue expression. Having some level of annotation is key to testing a proof of
concept (things we know are behaving as expected), as well as to help inform the
generation of hypotheses for unannotated genes that behave similarly. Second, the dataset
must be in a useful format for analysis, which is one where the information can be
adequately compared across all samples and observed or predicted changes reflect the
metabolic phenotype of the individual. Measurements that relationships are built upon
must be connected to an underlying perturbation in the metabolic network (ideally

resulting from a disruption in the gene of interest). If not, then the data will not be any
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more informative for designing follow-up experiments than transcriptomic data. Lastly, the
ability to build a correlation-type matrix or adjacency matrix is desiarable to facilitate the
downstream processing typically used in transcriptomics (e.g. cluster enrichment
calculations), as well as to allow data integration with other omics datasets. These matrices
describe the relationship between one individual (for example, gene distribution line) to

another and are a common tool for large data analysis, as will be described later.

High throughput phenomics dataset: Chloroplast 2010

The Chloroplast 2010 project is a high throughput screen of over five thousand
Arabidopsis thaliana mutants, including T-DNA insertion lines (Alonso et al., 2003) and
characterized mutants, most of which have been predicted to be chloroplast targeted (Lu et
al., 2008; Lu et al.,, 2011b; Lu et al,, 2011c). A wide range of primary metabolites were
surveyed through this study: leaf and seed free amino acids, leaf free fatty acids, and the
seed carbon and nitrogen levels. The major goal of the Chloroplast 2010 project is to
further characterize the genes of the chloroplast; as the chloroplast carries out
photosynthesis and is involved in de novo fatty acid biosynthesis as well as the production
of many amino acids. These measurements provide a wealth of diverse information about
the behavior of the putative knockout and are hypothesized to provide functional

information about the function of the missing gene.

This dataset has the potential to provide insight into the function of under-
annotated genes. Similar to most high-throughput screening studies, it has features that
make it challenging to use the data for developing broader hypotheses about the

individuals being screened, beyond simply identifying which individuals should be
5



prioritized for further study. These types of screening studies typically have data collected
over the course of many years, and lack the replication and explicit controls necessary to
carry out traditional variance-normalization methods used in small-scale experiments and
some large-scale studies, such as microarrays. These aspects tend to be inherent to
screening studies because the researcher is often interested in large changes that may be
easily observable by comparing individuals within a group (Jander et al., 2004), and to keep
the costs down while screening as many candidates as possible. However, these aspects
make it difficult to perform cross-dataset comparisons of the data: hence a processing

method is needed to overcome these issues.

Development of analysis methods

1.3.1 Normalization

Data normalization is a process that removes technical variance while preserving
the biological variance of interest. Very few normalization methods for screening of high-
throughput datasets exist, but there is a large body of literature focused on normalization
of microarrays (Eckel et al.,, 2005; Quackenbush, 2002). The biggest limitation with many
screening studies, including the Chloroplast 2010, is the lack of a common control line or
replication between sample runs that would allow for an estimation of the technical
variance. Fortunately, some concepts for high-throughput screening studies that facilitate
their analysis may be utilized. Chiefly, most observations should be in a ‘normal’ range,
such as the assumption in transcript studies that expression levels of most genes are
constant. For the Chloroplast 2010 data, this means that most of the observed responses

will be in the background or wild type range, which is supported by prior findings
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(Barbaric et al.,, 2007; Bouché and Bouchez, 2001; Jander et al., 2004). Additionally, the
same individuals are not in each sample set and many individuals die (plants fail to
germinate), but algorithms dealing with some of these issues in expression sets have been
published, which can be built upon to address the issues in screening datasets (Mar et al.,

2009).

It is proposed that a method be developed, built on methods for expression data,
facilitating the use of the Chloroplast 2010 dataset while being extendable to other high
throughput datasets. Currently there is no published normalization method that addresses
the needs of these large screening studies characterized by little/no replication, uneven
sample sizes/missing data, and lack of controls. Further, a way to quantify the ‘response’ of
an individual (for example, which ones are likely high metabolite accumulators versus
those which are likely behaving as wild-type) is also necessary. Quantifying the assay
response aids in prioritizing individuals for follow-up studies and for making comparisons
between individuals in terms of the magnitude of assay response. The development of
these tools will open up high-throughput screening datasets and drive integration with

other omic data which is not currently possible using existing methodologies.

1.3.2 Correlation calculations with missing data

High-throughput screens are often carried out under the assumption that few
measured responses are going to be changing or different from the bulk of the observed
responses. The implication of this assumption is that relationships, for example
correlations between individuals, may be based purely upon having a wild type or

background level response. Relationships like these are counterproductive to the aim of
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functional characterization of a gene as they do not highlight the traits that are altered
when the gene is missing. Furthermore, building a relationship only based on the cases
where both individuals have observations (i.e. pairwise complete observation) could bias
results in which one individual had many responses above a threshold (pleiotropic) and

the other only had one.

Another aspect that needs to be addressed is that these datasets may also be prone
to missing data. Data in this case may be missing completely at random (MCAR; events
leading to the missing data are statistically independent of the individual and the
unobserved attribute), missing at random (MAR; statistically independent of the missing
value itself, but after controlling for some external factor), or missing not at random
(MNAR; lack of an observation depends on the value of that observation) (Schlomer et al.,
2010). This is a hierarchy, where if conditions for MCAR are not met then MAR is
considered and so on. If one considers the Chloroplast 2010 dataset, data may be missing
because a sample was not available for that analysis (e.g. the plant died; MCAR), or it failed
some quality control parameter (MAR). Additionally, if one were to remove data that was

within the range for background signal, this would add missing values that are MNAR.

While methods concerning missing data for microarray analysis and other omics
data do exist (Aittokallio, 2010), many are not aimed at handling missing data of the type
described. Simple methods for dealing with missing data include omitting the missing pairs
when calculating the value, referred to as using pair-wise complete observations, or
replacing the missing value with a zero or the row/column mean. There are also more

sophisticated methods that have been shown far superior and tend to fall into two general
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categories (Liew et al., 2011) applicable to the discussion here: global and local. Global
methods use information on the entire dataset and include methods like Bayesian principle
component analysis (BPCA), which incorporates prior information (generally
uninformative prior distribution) into the model and does not require model parameters to
be specified by the user (Oba et al., 2003). Local methods, in contrast, use a subset of the
data that is similar to the individual with missing data such as K-nearest neighbor and local
least squares. K-nearest neighbor and similar clustering approaches use information from
K-closely related genes to obtain the missing value (Liew et al., 2011). This approach works
well if values in the dataset share a high amount of similarity (or correlation). It also
requires some advanced determination of the parameter K. When employing local least
squares, and other least square regression methods, a linear model is assumed between the
gene with missing values and those with similar values (e.g., K most correlated genes). The
least squares estimate can be calculated from each of the similar genes and combined for a
final estimate (Liew et al., 2011; Stacklies et al., 2007). This method also requires the user

to provide K and potentially the correlation parameter to use.

The methods described above all seek to impute a missing value such that the
downstream analyses can be carried out. For gene expression these analyses are typically
differential expression, clustering, or classification. In theory, imputing of the missing
values is not needed provided the downstream product can be produced. In this case, the
downstream process is clustering as the desired outcome is to identify what gene
disruption lines behave similarly. Typically, clustering uses a correlation matrix. A

correlation matrix is a matrix where the rows and columns represent a gene and the value
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represents correlation between the two genes. These values will range from -1 (oppositely
correlated) to +1 (perfectly correlated). A weighted adjacency matrix is a means of
representing a graph (network) where the edges connecting the gene-nodes represent the
values in the matrix. If one were to build a graph based on a correlation matrix, then those
edges would be the correlation coefficient. Thus, a weighted adjacency matrix would enable

the desired downstream analyses.

Because many correlations calculations (such as Pearson’s product-moment
correlation or Spearman’s rank correlation) require a complete data set, one must either
impute the missing values or use pair-wise complete observations. There are other
methods besides correlation that describe a relationship between two sets of observations,
such as similarity and distance measures. For numerical data these can range from a simple
calculation of distance between the two sets of observations (for example, Euclidian
distance), to calculation of the angle between the two vectors (cosine similarity). Because
this type of measure makes direct comparisons between sets of values, it might be more
amenable to control for the missing data without disregarding it completely. As long as the
output is still between -1 and 1, it is in the same numerical range as a correlation
coefficient. This implies that the value can be used to make an adjacency matrix and
comparable to other omics data in a similar format. Thus a method is needed that would
calculate the similarity between two observations, is tolerant to missing values, and takes

into account instances where one individual has an observation while the other does not.
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Moving from screening data to hypothesis generation

The main objective for this work is to provide a model for functional gene
annotation. Methods for normalization and similarity calculations can be used to generate
communities of individuals with shared phenotypes. The Chloroplast 2010 dataset can be
used as a test case because of the diversity of phenotypic information. The definition of
community here refers to a group of individuals that are more similar to each other, across
the community, than they are to individuals outside of the community. Because the dataset
includes individuals with some annotation, enrichment calculations such as gene ontology
(Ashburner et al., 2000) enrichment, can be used to develop the hypotheses. Furthermore,
as all communities are driven by a phenotypic signature or a set pattern of phenotypes, this
information can be used in characterizing the insertion line. As the data is from a high-
throughput screen, it is possible to have high levels of false positives (responses that
appear significantly different but are not). Being able to compare the phenotypic signature
of known genes in the cluster to literature-established phenotypes can provide an
additional check. Additionally, the phenotypes may be attributable to a second insertion or
mutation other than the gene initially thought to be disrupted (Ajjawi et al., 2010).
Alternatively, these observed phenotypes, while they may not be previously published,

could lead to novel discoveries of the role of the characterized genes (Lu et al., 2008).

The work presented in this dissertation aims at leveraging high-throughput data to
understand the biological system. Chapter 2 presents MIPHENO, an open-source R (R
Development Core Team, 2011) package normalization method for high-throughput

screening data. This package includes a workflow enabling researchers to take advantage
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of high throughput data to determine what individuals may be responsive to a treatment. It
was used here to transform the data gathered in the Chloroplast 2010 project into
something that could be analyzed on a cross-dataset basis. Chapter 3 introduces the R
package NetComp and the SimMeasure algorithm. SimMeasure calculates the weighted
adjacency matrix, tolerates missing data, and facilitates using thresholds to remove the
impact of background responses in calculating the similarity between individuals. Other
features of the NetComp package are aimed at facilitating network comparison such as
intersections and unions, desirable to those seeking to integrate different omics datasets.
Chapter 4 presents results from the analysis of the Chloroplast 2010 data. The final chapter

discusses further directions for the research.
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MIPHENO: data normalization for high throughput metabolite analysis

Bell, Shannon M, Burgoon, Lyle D, Last, Robert L. (2012). MIPHENO: data

normalization for high throughput metabolic analysis. BMC Bioinformatics 1.3, 10.

For those conducting post hoc data analysis (i.e., analyses of data after the
experiment has been carried out, which were not specified a priori), there are few tools for
normalizing data if the experiment was not conducted with the standard controls and
replication most methods require. Controls and replication are often limited or omitted
entirely from screening studies as the goal is to maximize the number of individuals
screened, and there is typically an anticipation of very few individuals showing the
attribute of interest. With screening studies it is expected that a follow-up will be carried
out on individuals that show an interesting response. The goal is to identify and prioritize,

versus quantify how different an individual is from the control.

In large-scale studies there are often multiple factors at play including the time over
which the data were collected, how the samples were grouped, and who conducted the
analyses. Furthermore, metadata describing the experimental details is typically limited so
one may not have knowledge of how to model these issues appropriately. MIPHENO was
developed to address these aspects of high throughput screening studies. Designed for use
in high throughput screens, it uses the principle that the majority of the signals will be
within the background range, and conducts normalization to remove technical variance
based on scaling to a global median. The developed software package and workflow

includes a quality control measure, which is important for removing groups that appear to
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be behaving differently than others and could bias the normalization. There is also a
method for identifying individuals that are likely to exhibit a response, useful for

prioritizing individuals for follow-up.

While MIPHENO is an admittedly simplistic approach, it is demonstrated to
outperform the standard approach of looking at individuals within a sample group.
Additional features of the software package address several needs in the analysis of
screening data. It can be used to go from the raw data to a prioritized list of candidates for
follow-up or onto other analyses such as clustering. The real significance of this method is
that it facilitates the use of poorly designed experiments and enables comparisons to be

made over the course of a multi-year experiment.
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Abstract

2.1.1 Background

High throughput methodologies such as microarrays, mass spectrometry and plate-
based small molecule screens are increasingly used to facilitate discoveries from gene
function to drug candidate identification. These large-scale experiments are typically
carried out over the course of months and years, often without the controls needed to
compare directly across the dataset. Few methods are available to facilitate comparisons of
high throughput metabolic data generated in batches where explicit in-group controls for

normalization are lacking.

2.1.2 Results

Here we describe MIPHENO (Mutant Identification by Probabilistic High
throughput-Enabled Normalization), an approach for post-hoc normalization of
quantitative first-pass screening data in the absence of explicit in-group controls. This
approach includes a quality control step and facilitates cross-experiment comparisons that
decrease the false non-discovery rates, while maintaining the high accuracy needed to limit
false positives in first-pass screening. Results from simulation show an improvement in
both accuracy and false non-discovery rate over a range of population parameters (p < 2.2
x 10-16) and a modest but significant (p < 2.2 x 10-16) improvement in area under the
receiver operator characteristic curve of 0.955 for MIPHENO vs 0.923 for a group-based
statistic (z-score). Analysis of the high throughput phenotypic data from the Arabidopsis

Chloroplast 2010 Project (http://www.plastid.msu.edu/) showed ~ 4-fold increase in the
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ability to detect previously described or expected phenotypes over the group based

statistic.

2.1.3 Conclusions

Results demonstrate MIPHENO offers substantial benefit in improving the ability to
detect putative mutant phenotypes from post-hoc analysis of large data sets. Additionally, it
facilitates data interpretation and permits cross-dataset comparison where group-based
controls are missing. MIPHENO is applicable to a wide range of high throughput screenings
and the code is freely available through an R package in CRAN (http://cran.r-

project.org/web/packages/MIPHENO/index.html).

Background

High-throughput screening studies in biology and other fields are increasingly
popular due to ease of sample tracking and decreasing technology costs. These
experimental setups enable researchers to obtain numerous measurements across multiple
individuals in parallel (e.g. gene expression and diverse plate-based assays) or in series
(e.g. metabolomics and proteomics platforms). The large number of measurements
collected often comes at the cost of measurement precision or the overall power of
detection. For many large-scale studies, the experimental design aims to maximize the
number of compounds or individuals tested, resulting in limited replication and few to no
controls. In the case of microarray studies, several methods for normalizing arrays have
been developed (Ballman et al., 2004; Eckel et al., 2005; Quackenbush, 2002) with no

universal method adopted as the standard. Quantitative PCR faces the same issues as it is
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used more frequently in high throughput platforms, with analysis methodologies being

developed paralleling those for expression arrays (Mar et al., 2009).

Metabolite profiling is a rapidly expanding area of high throughput measurements,
where samples having large amounts of biological variability and diverse physical
properties makes quantification of large numbers of structurally diverse metabolites
challenging (Last et al., 2007). Few strategies exist for normalization in metabolite analysis
to control for run-to-run variance other than to include negative and positive controls. For
large-scale screens involving mutagenized populations (plant, bacteria) or crosses (plant
breeding), the goal is to identify putative hits, or individuals that are likely to be different
from the bulk of the samples for subsequent follow-up (e.g. (Jander et al., 2004)). In these
conditions, properties of the sample cohort serve as controls with the measure of
differences between an individual and its cohort used to identify samples differentially
accumulating a metabolite (Jander et al., 2004). This strategy can streamline sample
processing and maximize throughput when the expected effects are large and easily

observable.

For studies where comparisons are sought across an experiment conducted over the
course of several months or in different sample batches, normalizing factors are necessary,
especially given typically high levels of biological and technical variability (Fiehn et al.,
2000; Miron and Nadon, 2006; Rocke, 2004). Ideal experiments include technical and
biological replication within each set as well as controls facilitating comparisons between
sample batches, but these are often limited or omitted entirely due to likely increases in

experimental costs or the negative impacts on throughput. However, absence of these
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experimental controls limits the ability to handle variability between sample groups (e.g.
remove batch effects) making it a greater challenge to identify individuals within the range
between normal and aberrant phenotypes. Without the ability to normalize the data
provided by experimental controls, some of the benefits of high throughput screens are

lost, yet the desire to maximize throughput places constraints on the experimental design.

The motivation for algorithm development came from the Arabidopsis thaliana
Chloroplast 2010 Project large-scale reverse genetic phenotypic screen [Chloroplast 2010,

http://www.plastid.msu.edu/, (Ajjawi et al., 2010; Lu et al.,, 2008; Lu et al., 2011b; Lu et al,,

2011c)]. This project leverages the collection of T-DNA insertion lines and genomic
sequence for the plant model species A. thaliana to screen large numbers of putative gene
knockouts with the aim of functionally characterizing chloroplast-targeted genes. The
presence of a large T-DNA insertion can block or reduce expression of the gene it lands in,
and altered phenotypes can provide insights into the normal function of the gene and its

protein or RNA product(s).

In addition to qualitative and semi-quantitative measures of physiological and
morphological characteristics, the levels of leaf fatty acids and leaf and seed free amino
acids, important outputs of chloroplast metabolism. The pipeline assays were performed
on groups of individual plants planted in units of up to thirty-two per tray and three trays
of plants per assay group. Two assay groups were grown concurrently under controlled
environment plant growth conditions. Individuals representing T-DNA insertion events in
different locations within the same gene (alleles) are present in the dataset, and it is of

interest to compare the assay responses of these individuals as well as to identify other
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individuals with similar responses. Because the experimental design lacked cross-group
controls (e.g. designated WT), the ability to make even semi-quantitative cross-dataset

comparisons was not possible using existing methodology.

Developing phenotypic annotation for un- and under- annotated genes is a primary
goal for the Chloroplast 2010 project and identification of individuals with like phenotypes
(phenotypic clustering) is a way to achieve that goal. Thus, a method that would allow
cross-dataset comparisons and identify putative mutants was needed to achieve the goal.
The resulting method, MIPHENO (Mutant Identification by Probabilistic High throughput-
Enabled Normalization), is aimed at improving first-pass screening capabilities for large
datasets in the absence of defined controls. Algorithm performance was tested using a
synthetic data set and the Chloroplast 2010 high throughput phenotypic dataset. The
executable code and data for the Chloroplast 2010 analysis are available as a CRAN package

(MIPHENO, http://cran.r-project.org/web/packages/MIPHENO /index.html).

The following describes a quality control process for identifying aberrant groups
followed by a data normalization method, which aims to bring samples into the same
distribution allowing for dataset-wide comparisons. Additionally, we describe a hit
detection function based on the cumulative distribution function (CDF) to identify samples
with putative, non-normal’ phenotypes. For clarity, the terms normal and wild type (WT)
are used to describe the typical response of the population. Generally, this could be the
untreated (chemically or genetically) population or the base level of the system (e.g.
background response). Non-wild type responses, a hit or mutant, refer to a response that is

distinct from the normal response distribution, with a putative hit/putative mutant
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referring to a sample that is predicted to have a response different from the normal
response distribution but has yet been confirmed. In high throughput screens, the objective
is to identify putative hits balancing the false positive rate (FPR), or the number of WT
samples that are called hits, with the false non-discovery rate (FNDR), the number of true
hits that are missed. Results are presented from analysis of the synthetic dataset and

biological data.

Results

2.3.1 Inputdata characteristics and structure

MIPHENO is specifically designed for the analysis of first pass screening data where
the majority of measured responses are from the WT or normal class and the number of
responses not in this group (putative hits) is quite small. Examples of experiments yielding
appropriate data are non-targeted protein binding/activator assays, reporter gene assays,
or population screens, where there are either no defined classes or very unbalanced classes
such that a large majority of responses fall in the WT class. Data coming from a treatment
vs control experiment would not meet the criteria if there were large numbers of ‘non-WT’
responses expected. Additionally, the approach is tolerant to repetition of both individual
samples and sample groups across the course of the experiment so long as the portion of
individuals showing a WT response in any sample group is over 50%. As the portion of WT
individuals in a sample group decreases, there will be a reduction in accuracy and a
corresponding increase in false non-discovery rate (FNDR) due to the assumptions of the
algorithm, as demonstrated in the Testing section below. Additionally, while some

measured responses may not be independent (ex, metabolite measures of branch chain
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amino acids), the method treats these attributes (e.g., metabolites) as independent to
increase the flexibility of the analysis. For instance, the results for attribute 1 (including
normalization and downstream analyses) do not impact the results for attribute 2. This is
beneficial in post hoc analysis where the individual performing the analysis has limited

knowledge of the relationship between measures.

Input data for analysis by MIPHENO assumes that multiple attributes are measured
for each individual. The data structure treats each row as an individual sample, whose
relationship to other samples can be described by one or multiple factor variables
represented in columns (grouping factor). For example, the assay group representing the
identification number for a 96-well plate containing up to 96 individuals. Subsequent
columns describing the response of the individual to some assay (attribute response) are
quantitative, continuous values. Information must be present that enables association of a
grouping factor to the attribute responses, but a single data object may include the
responses for different attributes as long as the appropriate grouping factor is present. For
example, a ‘LC_ID’ column might provide the grouping factor for ten columns of LC-MS
amino acid data, while ‘HPLC_ID’ might provide the grouping factor for five columns of
HPLC-derived responses on the same set of samples. This structure is aimed at simplifying

situations where multiple measurements are taken on the same individual.

2.3.2 Algorithm
MIPHENO is based on invariant set normalization with three key assumptions made
of the input data. The first is that samples from the same genetic background should have a

similar assay response over time. This implies that, given a population P, the distribution of
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an observed response r from sample set p in set P should have the same distribution as the
response R from population P as p approaches P. Following this logic, the second
assumption of the data is that the observed differences between the distributions r and R
are due to technical error as opposed to biological or genetic variance as p approaches P.
The last assumption is that there will be limited observable effects of simple genetic
manipulations to an organism for any random gene. This is based on empirical evidence
from years of published studies (Barbaric et al.,, 2007; Bouché and Bouchez, 2001; Jander et
al., 2004; Van Eenennaam et al., 2003). Specifically, due to genetic redundancy and
metabolic flexibility, a given disruption in gene function will likely cause a response outside

the WT distribution in only a limited number of measured responses.

These assumptions are similar to those for microarray analysis, specifically that for
arandom or large grouping of individuals (e.g. cDNAs), changes will be observed for a
relatively small proportion (Yang et al., 2002). Other assumptions used to normalize the
data (e.g. a balance in the total amount of transcript in quantile normalization
(Quackenbush, 2002)) have the same effect of forcing the median value of a sample set
across several experiments or arrays to be equal. Similar assumptions also apply to data

from other high throughput screens, e.g. reporter gene-based assays and enzymatic assays.

An overview of the algorithm is presented in Figure 1. The algorithm requires that
input data have a grouping factor that presents a batch or process group on which the
normalization steps can be performed (see “Input Data Structure and Characteristics”
above). If multiple grouping factors are present (e.g. different sample collection,

processing, and analysis dates) it is recommended to use the factor representing the
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highest level of technical (i.e. non-biological) error for normalization. This can be
determined by familiarity with the methodology or by checking the grouping factors to see

which factor has the largest interquartile range for group medians.
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Figure 1 Flowchart of MIPHENO
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“Input Data” (1) contains data with identifiable parameters for grouping/processing the
data. The data pass through a quality control (QC) removal step (2), where groups not
meeting the cut offs are identified and removed on an attribute-by-attribute basis. Data are
normalized (3) using a scaling factor based on the data distribution. Putative hits are
identified (4) using a CDF built from the data or user defined NULL distribution and an
empirical p-value is assigned to each observation. Thresholds can be established based on
follow-up capacity and prior knowledge (e.g. ability to detect known 'gold standard' mutant
samples). For interpretation of the references to color in this and all other figures, the
reader is referred to the electronic version of this dissertation.
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Figure 1 (cont’d)
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2.3.3 Quality control method

In performing post-hoc data analysis it is often unknown if on-line quality control
(QC) was conducted or where process changes occurred that could negatively affect the
outcome of analysis. To address these issues, a quality control (QC) step prior to analysis
was included to identify samples with a high likelihood of assay or group-specific process
error. Examples of sources of these types of error include instrument malfunction (for
assay-specific error), abnormalities in growth or preparation of material (group-specific
error), or improper sample handling affecting a group of samples exposed to the same
conditions rather than an individual response. If an on-line QC step was already used to
filter the dataset this step can be omitted. Thresholds for QC are determined from the
overall distribution of the collected data with a user-defined cut off; for example groups
with group median > 3 median adjusted deviations (MAD) from the global median. The
amount of data removed will depend on the cut off used and the data distribution. A visual
inspection of the data using box and whisker plots is advised to check the data for clear
signs of drift or likely changes in protocol that may require manual QC. Examples would be
group medians steadily increasing or decreasing across dataset or a switch to a new
average median response corresponding with sample order, respectively. For post hoc
analysis on datasets where the order in which samples were assayed or collected is
unknown, it may be advisable to use a cut off of 3 MAD to permit more data passing on to

the next stage.

Data quality is assessed on an attribute-by-attribute basis with the assumption that

the measured traits are independent; with an attribute being any measured or observed
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response. Thus, if multiple attributes are measured for a group (for example, numerous
metabolites or promoter-reporter gene outputs), only attribute data for the trait that
shows high deviation would be removed and the rest of the data for the group retained. For
example, ‘HPLC_ID’ is the grouping factor for the response of metabolites, such as amino
acids. The overall response distribution of each metabolite is assumed to be independent of
the other metabolites; thus if the measured response of alanine is 10x the response of
proline it will not impact the QC step (or subsequent steps). If the median response for
alanine in HPLC_ID =1 is greater than the QC cut off, all responses for alanine in HPLC_ID =
1 are removed but the other measured responses for HPLC_ID = 1 are retained, provided
they too pass QC. While this does not control for drift, it provides a facile QC step for post-

hoc data analysis where the order of data generation is unknown.

2.3.4 Normalization

The normalization process is done on an attribute-by-attribute basis using a user-
defined grouping. A grouping factor should encompass the highest amount of non-
biological variation and may be the same factor used in the QC step, but should include as
many individuals as possible (e.g. n>10). A scaling factor is calculated to bring the median
of each group to the global median, similar to invariant set normalization (Mar et al., 2009).
The key difference from invariant set or quantile strategies is that just the median value is
used, not an explicit individual or multiple quantiles to take into account lack of replication
between groups and limited sample size. It is important that groupings represent a

selection of individuals where the frequency of non-WT behaviors approaches that of the
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overall population to avoid bias in cases when a particular group is enriched with non-WT

behaviors for a given attribute.

2.3.5 Testing

To gauge the performance of the approach, a synthetic dataset was generated
emulating characteristics of actual data (see Methods). This dataset was used initially since
the true properties of the individuals could be known, allowing for observation
classification (e.g. WT and mutant) and to evaluate the effect of population distribution on
the performance of the method. Figure 2 illustrates the population distributions used to

test the performance of MIPHENO.
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Synthetic data were
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performance of the three
different methods in a case
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Comparison of two different data analysis approaches was used to test 1) if pre-
processing steps remove high amounts of real biological variation indicative of a putative
hit and 2) whether an increased false non-discovery rate (FNDR) resulted from using
MIPHENO verses a sample-group based method (results in Figures 3, 4, and 5). The first
approach referred to as ‘Raw’, uses the raw, unprocessed data, but followed the same
process as in MIPHENO to identify putative mutants. Differences between Raw and
MIPHENO aid in illuminating the effectiveness of pre-processing in noise removal. The
second approach, referred to as ‘Z’, also utilized the raw data but used a MAD score on a
sample-group basis to identify putative mutants as described for the Chloroplast 2010 data
(Lu etal, 2008). Comparison of MIPHENO to Z aids in determining potential loss of
information due to normalizing across the data sets (e.g. whether true mutants were more
severely scaled in normalization), or if the group-based error was controlled for without
negatively impacting hit detection. In a review of performance metrics by Ferri et al., 2009,
accuracy (ACC) was found to be a better metric than area under the receiver-operating
curve (AUC) in the case of unbalanced sample size as well as misclassification noise, which
are both properties of the data under analysis. Conversely, they found AUC outperformed
ACC in probability and, to a lesser degree, ranking noise. False non-discovery rate is an
important metric when considering first-pass screens as one seeks to limit the true

positives missed, which is the situation described here.
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Figure 3 Performance of Methods on Synthetic Data: AUC

The AUC was used to evaluate classification performance of MIPHENO, the use of raw data
followed by a CDF classifier (RAW), and a group-based metric (Z) on synthetic data
described in Figure 2. MIPHENO (pink, first in set) outperforms both RAW (green, middle)
and Z (blue, left in set) across the different population parameters.
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Figure 4 Performance of Methods on Synthetic Data: Accuracy

Accuracy of classification was used to compare the performance of MIPHENO, the use of raw data followed by a CDF classifier
(RAW), and a group-based metric (Z) on synthetic data from populations described in Figure 2. The percent accuracy is plotted
along the y-axis while the false discovery rate (FDR) cut off is along the x-axis. Each population distribution tested is shown in
a separate panel. Note that MIPHENO (pink) achieved higher classification than Z (blue) (p < 2.2e-15, Wilcoxon sign rank) and
both methods outperformed Raw (green) independent of the population parameters tested.

38



FNDR

False Non-Discovery Rate vs FDR cutoff
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Figure 5 Performance of Methods on Synthetic Data: False Non-Discovery Rate

The false non-discovery rate (percent positive hits missed) was used to compare the performance of MIPHENO, the use of raw
data followed by a CDF classifier (RAW), and a group-based metric (Z) on synthetic data from populations described in Figure
2. The FNDR is plotted along the y-axis with the different false discovery rate (FDR) cut offs along the x-axis. Each population
distribution is shown in a different panel. Note that across all populations tested, MIPHENO has a lower FNDR than the other
two method, suggesting that fewer putative hits missed with MIPHENO compared to Z-score (blue) or raw data (green).
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Results of the performance trials using a combination of two population
distributions that had a high frequency of WT (P(wt) = 0.93) and low WT frequency (P(wt)
= 0.40), drawn from populations of equal standard deviation (SD) or relative standard
deviation (RSD) (Figure 2), are shown in Figures 3, 4, and 5. These results suggest that the
proportion of true WT in the sample had little effect on the performance of the methods
relative to each other, regardless of the metric used; however, the accuracy is decreased
and the false non-discovery rate is increased for all methods when the portion of data from
the mutant class is increased (Figures 4 and 5). MIPHENO showed a higher accuracy and
lower FNDR (p < 2.2 x 10-16 Wilcoxon signed rank test) across a range of FDR cut offs
compared to the other methods (Figure 5). Furthermore, the AUC of both MIPHENO and Z
outperformed an analysis of Raw (Figure 3), which performed just above what is expected
at random, highlighting the importance of controlling for group-based variability. In
summary, MIPHENO outperformed both the Raw and Z-methods across all three metrics

tested.

2.3.6 Implementation

Results from the Chloroplast 2010 Project (Ajjawi et al., 2010; Lu et al., 2008) were
used to test the performance of MIPHENO on experimentally generated high throughput
screening data. This dataset includes results for leaf protein amino acids and fatty acid
methyl esters as well as seed protein amino acids for plants run through the Chloroplast
2010 pipeline. Multiple individuals representing the same seed stock or the same gene are
present in the dataset although they were not assayed in the same group. Thus, it is of

interest to look at the consistency between individuals representing the same gene to
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identify Leaf and seed metabolite data from mutants in the Col-0 (CS60000, (Alonso et al.,
2003)) ecotype genetic background were processed using MIPHENO and z score methods
independently. Figure 6 outlines the methods for comparison. Briefly, both MIPHENO
empirical p-values and z scores were calculated for the two data measurements available in
the Chloroplast 2010 dataset (mol% and nmol/gFW). The average score per T-DNA
insertion line was calculated for each data type to avoid overemphasizing lines that were
analyzed multiple times. Aracyc (Mueller et al., 2003) and Gene Ontology (GO) (Berardini
et al,, 2004) information obtained from The Arabidopsis Information Resource (TAIR)
(Rhee et al., 2003) were used to generate a list of loci previously demonstrated to have a
biological function in Arabidopsis. Loci with phenotypes predicted by the methods were
compared to the list of literature-documented loci. The biological role and/or phenotypes
of the genes were compared to the published information to determine the accuracy of the
prediction. Results are given in Table 1. While both methods had a similar frequency of
correctly identifying mutant phenotypes at the initial level of Z cut off of 2.5, the Z method
returned fewer lines than MIPHENO. It was necessary to adjust the Z threshold to 1.3 to
recover these lines, which resulted in no additional mutants but an increase in false
positives. Overall, there was ~four-fold improvement in the ability to detect previously

described or expected phenotypes compared with the z-score.
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Figure 6 Flowchart of Performance Measures for Chloroplast 2010 Data

Metabolite data from wild-type Col-0 ecotype samples were taken from the Chloroplast
2010 dataset. MIPHENO empirical p-values and z-scores were calculated separately for
metabolite values reported as mol % and nmol/g fresh weight (nmol/gFW) and results
filtered according to criteria. Publicly available annotation (Aracyc and GO) for annotated
genes provided a basis of comparison between the two metrics
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Table 1 Lines identified by MIPHENO and Z methods

Description

Tissue

MIPHENO
Cutoff=0.1

Zscore
Cutoff= 2.5

Zscore
Cutoff=1.3

ADT6: Plastid- Seed  High: GLN, TYR High: GLN, TYR
At1g08250 localized arogenate
dehydratase Leaf
ATATP-PRT2: ATP  Seed
At1g09795 phosphoribosyl ] )
transferase Leaf High: HIS High: HIS, LEU
ADT1: Plastid- Seed
At1g11790 localized arogenate
dehydratase Leaf Low: PHE Low: PHE
At1g65960 GAD2: glutamate Seed Low: GABA
decarboxylase Leaf Low: GABA Low: GABA Low: GABA
P5CS1: deltal- Seed Low: HPRO
At2g39800 pyrroline-5-
carboxylate Leaf  Low:PRO Low: PRO
synthase
FAD7: Responsible  Seed
for the synthesis of High: 16:1D7, 16:2, S _ . High:16:1D7, 16:2, 18:1D9,
At3gl1170 16:3 and 18:3 fatty  Leaf 18:1D9, 18:2; Low: E;%\III_'1166_'32'118§'31D9' 18:2; 18:1D11, 18:2; Low: 16:3,
acids 16:3,18:3 T 18:3
High: ARG, GABA, High: ARG, GABA, HIS, High: N, ARG, GABA, HIS, ILE,
IVD: Isovaleryl- Seed HIS, ILE, LEU, MET,  ILE, LEU, TRP, VAL, MET; LEU, LYS, MET, PRO, SER,
At3g45300 CoA TRP, VAL; Low: GLU Low: GLU TRP, TYR, VAL; Low: GLU
Dehydrogenase Leaf High: 16:3; Low: High: 16:3, GABA; Low 18:2

18:2
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Table 1 (cont’d)

Descrintion MIPHENO Zscore Zscore
p Cutoff= 0.1 Cutoff = 2.5 Cutoff = 1.3
AK-HSDK II: Seed
Bifunctional
At4gl9710  aspartate kinase, Leaf High: 18:1D11,CYS,  High: CYS, HSER, ILE,  High: 18:1D11, CYS, HSER,
homoserine HSER, ILE, THR THR ILE, THR
dehydrogenase.
Seed
FAD4: Palmitat
At4g27030% armitate High: 16:0, ALA, GLN, High: ALA; Low: High: 16:0, ALA, GLN, SER,
esaturase Leaf
L.ALA; Low: 16:1D3  16:1D3 TRP; Low: 16:1D3
LKR/SDH: Splice High: HIS, LYS; Low: . .
variant of a Seed cLy High: HIS, LYS High: HIS, LYS, PRO
At4g33150 bifunctional
enzyme for
lysine Leaf
catabolism
ASA1: Alpha Seed
At5g05730  Subunitof
anthranilate Leaf Low: TRP Low: TRP Low: TRP
synthase
GLT1: NADH- Seed High: ASN; Low: ASP High: ASN, CYS; Low: ASP
At5g53460  dependent
glutamate Leaf
synthase

*Aracyc information not updated, manually added
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Discussion

MIPHENO offers a way to control for assay variability in high throughout mutant
screening studies. It outperformed using raw data or the group-based Z method in mutant
identification on the synthetic data set (Figures 3, 4, and 5). Comparison of population
parameters including proportion of WT and the distribution shape suggest that the method
is tolerant to uneven distributions (tailing) and to higher mutant frequencies within the
population. When applied to a biological data set, MIPHENO led to identification of more
true mutants than the Z method for the Chloroplast 2010 set (Table 1) based on literature
reported phenotypes or pathways. This suggests that MIPHENO reduces the false positive
rate by decreasing the variation due to batch effects but does not directly influence the
false non-discovery rate. The method additionally offers the user the ability to utilize any a
priori information on the WT population/NULL distribution available as well as customize

a quality control step that is sensitive to the needs of their process.

One drawback of using the normalization strategy described here is that it fails to
control for the within-group variance to the degree that a quantile normalization strategy
might. Quantile normalization makes the assumption that both the median or mean and the
standard deviation of the data are all equal and would require sample sizes to be more or
less equal as well as large enough to start approximating the normal distribution. This
assumption does not always apply to post-hoc analysis; for example, the size of the sample
groups in the Chloroplast 2010 data set varied from 12 to 96. MIPHENO aims at addressing

this type of use case.
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Conclusions

The strong performance of MIPHENO on two different data sets and its ability to
permit cross-dataset comparisons of individuals without explicit controls makes it an ideal
method for processing large datasets prior to Meta analyses combining different data sets
from high-throughput experiments. Because more researchers are making their primary
data available and the number of large-scale, high-throughput experiments keeps
increasing, MIPHENO will provide a valuable processing platform that can theoretically be
applied to very diverse measurement types (e.g. gene expression, enzyme Kinetics,

metabolite amounts).

Methods

2.6.1 Data analysis

All calculations were performed in R (R Development Core Team, 2011) v 2.11.0 on
64-bit Windows 7 platform. Chloroplast 2010 Project data used in the reported analysis
was obtained on 8/18/2010. GO and Aracyc pathway information were obtained from the

TAIR FTP site, files dated 8/2/2010 and 6/21/2010 respectively.

2.6.2 Generation of synthetic test data

Synthetic data were generated by sampling from three random Gaussian
distributions representing low abundance, high abundance, and wild type levels of
‘metabolite’ (Figure 2) using a set of sampling probabilities. Distributions were created to
assess the effects of uniform variance (e.g. same standard deviation) and proportional

variance given by a relative standard deviation of 15% based on prior observations of real
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data from the Chloroplast 2010 study. Means for the distributions were set such that the
means of the ‘mutant’ populations were two standard deviations away from that of the wild
type, because this is a common cut off for identifying hits in screening assays. The
proportion of individuals sampled from each population (low, wt, high) was set prior to
generating sample groups to test how different population composition influenced
algorithm performance. To mirror the biological population structure, data were assigned
to a flat, assay, and planting group representing individuals grown in the same physical
unit, processed and assayed together, or grown over the same time course, respectively.
Classification of each observed value was done at this step, prior to adding random noise
(described below), defining a ‘low’ mutant as one that was 2 standard deviations below the
WT mean and a ‘high’ mutant as one that was 2 standard deviations above. For calculating

performance metrics, only the WT and mutant class were considered.

To simulate the non-biological variance, random uniform noise was added first at
the level of planting group then at the level of assay group as empirical evidence suggested
a greater assay effect than planting group effect. The resulting synthetic dataset was

defined as raw data for use in the Z and raw data methods.

2.6.3 Method performance using the Chloroplast 2010 data

An overview of the data analysis approach is depicted in Figure 6. Data from the
Chloroplast 2010 for mol% and nmol/g FW fatty acid methyl esters and amino acids were
used to calculate both MIPHENO empirical p-values and z-scores. Samples genotyped as
wild type or heterozygous for the T-DNA insertion were removed. The average phenotypic

score (z-score or empirical p-value) per T-DNA insertion line was calculated and this was
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used to define the phenotype for that insertion line. Next, loci where there were = insertion
lines showing the same (putative) phenotype for any attribute were identified based on
either the empirical p-value or z-score and data from these line was combined across the
‘mol %’ and ‘nmol/g FW’ datasets. Loci from this list were analyzed and loci where >50% of
the sampled lines showed a phenotype at a given cut off are considered putative mutants.
To identify lines out of the putative mutants where phenotypic information is known, loci
were cross-referenced to information from Aracyc and Gene Ontology annotation on
biological processes (for experimentally-derived evidence codes only). Phenotypes
predicted for these loci was then compared to phenotypes or experimental evidence
reported in the literature to see if the predicted phenotype had been reported or if there
was evidence for the gene product to act in a pathway leading directly to or from the

measured metabolites.
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Chapter 3

SimMeasure: A non-imputing approach to analyzing missing data
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SimMeasure: A non-imputing approach to analyzing missing data

For many techniques used in the analysis of omics data a correlation matrix or
adjacency matrix is needed. This type of data presentation can be used to graph networks,
generate heat maps, and for clustering to identify communities of similar individuals.
Screening data and other phenotypic type data has a couple issues that make creating a
correlation matrix a challenge. First, a lot of responses are simply uninformative. These
responses are ones in the background (like wild type phenotype) or were below detection
level and are coded as zeros from the machine. Second there is a lot of missing data. This

could be because a sample died or no response was observed.

SimMeasure, a central function in the NetComp package, aims at addressing these
issues. It uses a modification of an existing distance metric and some programmatic
changes that allow it to capture both positive and opposite relations. In addition it keeps
track of the number of times one individual has a response where the other individual is
missing a value or has a response below a given threshold. This is used to penalize the
score such that pleiotropic individuals aren’t shown as highly related to individuals with
minimal responses. The resulting score describes the relationship between the two

individuals and can be used to form the adjacency matrix.

In addition to SimMeasure, NetComp includes several other functions for analysis of
large scale data, particularly adjacency matrices (coming from SimMeasure or a correlation
calculation). Three functions aimed at making network comparisons easier: netlntersect

(intersection, or what both have in common), netUnion (union, or everything from both
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datasets), and netDif (difference between the two graphs). These are useful for combining
information from two datasets or for getting an estimate of what information is lost by
altering some parameters in the upstream analysis. Additional functions are included to

facilitate thresholding of a matrix and comparing the clustering results of two graphs.
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Abstract

3.1.1 Motivation

High throughput datasets are often plagued by missing data, making it difficult to
conduct large-scale analyses and compare across datasets without data removal or
computationally-intensive imputation. Additionally, many high throughput measurements
for screening studies (e.g. metabolomics, transcriptomics, enzyme kinetics) contain sample
responses in the background range or are otherwise not of interest. Methods with a
tolerance for missing data and uninformative responses are needed to conduct cross-

dataset comparisons of high throughput data.

3.1.2 Results

SimMeasure is a method for calculating the similarity between two individuals with
a high tolerance of large amounts of missing data. We show that SimMeasure is an effective
algorithm for analyzing datasets with large amounts of missing data as it is robust to
missing data, can handle data thresholding, and requires little a priori knowledge versus
existing data imputation methods. SimMeasure is part of the NetComp R package,
developed for the analysis of high throughput phenotypic and other large-scale
quantitative data. Additional functions for adjacency matrices calculate the intersection,
union, and difference between graphs. These functions aid the exploration of high
throughput data and enable faster graph calculations to facilitate meta-analysis. Analysis of
a complex screening dataset, ToxCast, using the methods in NetComp illustrates the utility

in hypothesis generation and data integration.
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3.1.3 Availability
NetComp is distributed through the Comprehensive R Archive Network (CRAN),

http://cran.r-project.org/web/packages/NetComp/index.html

Introduction

Data from high throughput and large-scale experiments can provide a wealth of
information on the relationship between individuals (e.g., tissue samples, compounds,
mutants) and measured attributes (Ideker et al., 2001; Joyce and Palsson, 2006; Last et al.,
2007). Ideally, researchers could leverage these large datasets in hypothesis development
in much the same way that transcriptomics data are used to identify communities with
similar properties. Unfortunately, high throughput data, especially from biological
experiments, tend to be plagued by missing or uninformative data representing some basal
response (Aittokallio, 2010; Bell et al.,, 2012). For phenotypic screens in particular, the
researcher is often looking for a response signature composed of just one characteristic,
differentiating a few individuals from the group for further analysis. In this type of
situation, the small number of cases where there is a strong attribute response are more
important in establishing the communities than missing data due to a failed assay or

responses at background level.

Existing methods for calculating the correlation or similarity between two
individuals (e.g., Pearson’s correlation coefficient, Euclidean distance) do not handle these
types of data well, especially as the proportion of missing/uninformative data increases.
Imputation methods, designed to estimate the missing values have been developed for use

in large datasets, including those based on k-nearest neighbors, variations of least squares
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analyses, Bayesian PCA, and singular value decomposition (Boulesteix and Strimmer, 2007;
Brock etal.,, 2008; Oh et al.,, 2011; Troyanskaya et al., 2001; Yang et al., 2006). Data
imputation has been used with gene expression and other high throughput datasets (see
Aittokallio, 2010; Liew et al., 2011 for review) with some success. Recently, several
different data imputation methods were compared to evaluate their effectiveness on
downstream transcriptomic analyses such as differential gene expression, clustering, and
classification (Oh et al., 2011). It was found that Bayesian PCA and local least squares
outperformed other methods with respect to differential expression and clustering

analysis, but no clear imputation method stood out for classification.

While imputation may help alleviate some of the issues with missing data, its utility
depends at some level on the structure of the data. If the data have no correlation or
expected relationship between observations, these methods may not be appropriate. This
is especially true when combining different datasets, such as proteomics and
transcriptomics, to perform meta-analyses. An additional constraint is the required time
and computational resources to appropriately model the missing values, which can be

burdensome as the dataset grows.

SimMeasure is based on the Canberra distance (Lance and Williams, 1967) and
calculates the similarity between two individuals, providing a result analogous to a
correlation coefficient. It provides a way to carry out clustering and network-based
analyses on high throughput datasets with missing values. Along with SimMeasure, the
package NetComp contains a suite of adjacency-matrix based functions for meta-analysis to

quickly compare or integrate data sets. Together, NetComp is aimed at facilitating the
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generation and comparison of networks based on high throughput and large scale data

providing a framework for analyzing sparse and low information content datasets.

System and methods

3.3.1 Algorithm

SimMeasure is based on a modified version of the Canberra distance metric and
used to capture the similarity between two sets of observations. The SimMeasure
algorithm, outlined in Figure 7, is implemented in C/R to shorten computational time. User
inputs are a data matrix with rows describing individuals and columns containing the
assays/measured responses, and an optional threshold value, t, to define the background
level. Only values = t are considered in the calculation, thus removing background signal

along with missing values.

Consider individuals, X and Y, and their responses i = N. The algorithm first
considers each response pair and evaluates if one individual had a response that was
greater than the threshold while the other was missing. If this is the case, the counter nm
(no match) is increased. In the event that both responses are greater than t and of the same
sign, the value pm (positive match) is increased by the percent similarity of the two
responses. If the value t is not provided and both individuals have a response of 0, pm is
increased by 1. In the event that the responses are of opposite sign (i.e. one is a positive
value and the other negative), the value om (opposite match) is increased instead. Once all
responses are evaluated, the similarity score is calculated using a weighted approach. This

approach uses nm to penalize for the number of instances where one individual had a
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response of interest and the other did not. Responses where both individuals have missing

values are omitted.
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Consider samples X, Y
For each response i
If one response is missing and the other is above threshold
Increase NM
If both responses have the same sign
If both are ZERO, pm=pm+1, increase pcnt

[1xil - 1vil|

Elsepm = pm + 1 — X[ 1]y, ncrease pent

If responses have opposite sign

[1xil - vl

om=om+1-— s increase ocnt
[Xi| + |Yil

pm — om

SimMeasure = i

pcent + ocnt + nm

pent + ocnt +

Figure 7 SimMeasure Algorithm
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3.3.2 Datasets

Three datasets were used to evaluate SimMeasure: a yeast gene expression dataset
(Causton et al,, 2001), ToxCast, a high throughput chemical screening dataset (Judson et al.,
2010), and ToxRef, a physiological-based throughput chemical screening dataset (Knudsen
et al., 2009; Martin et al., 2009). The yeast data were preprocessed by removing any values
below the Affymetric detection call. ToxCast data consists of quantitative high throughput
screening in vitro assay responses to a given chemical, including gene expression, cell-
based and cell free, receptor, and cytotoxicity assays. ToxRef is a complementary dataset to
ToxCast, and provides in vivo toxicological and pathophysiological measurements such as
tumor counts and developmental abnormalities corresponding to the chemicals assayed in
ToxCast. Values in ToxRef represent the lowest dose of chemical at which the endpoint
such as tumor was observed, with 'no value' recorded when no effect was observed in the
study. Chemicals (based on Chemical Abstracts registry number; CASRN) that were
replicated in the study had a letter amended to the CASRN such that this could serve as a
unique identifier. This had the additional benefit of being able to identify internal
consistency as replicates of the same chemical are expected to have highly similar

responses.

3.3.3 Method evaluation
To evaluate the performance of SimMeasure (SM) against existing data imputation
techniques, missing values were introduced at random into the yeast dataset (from 0.1% to

90% missing values) and the ability of the downstream method to generate a correlation
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coefficient or clusters as the original dataset was evaluated. Bayesian principle component
analysis (BPCA) and Local Least Squares (LLS) were used in the comparison based on their
performance across a wide range of datasets (Brock et al,, 2008; Oh et al., 2011). Pearson’s
Correlation Coefficient (PC) with pairwise complete observations was used to represent
the case of no intervention as it simply evaluates instances where observations from both
individuals are present. Analyses were all performed in R statistical software (R
Development Core Team, 2011) with missForest (Stekhoven and Biihlmann, 2011) used to
generate the test datasets and pcaMethods (Stacklies et al., 2007) for the imputation

functions.

For each level of missing values (0.1 to 90%), 200 iterations were run comparing
the missing value (MV) data matrix to the complete (CV) data matrix. As the percentage of
missing values increased, data sparsity increased such that there were whole rows with
missing data in the MV matrix. These rows were removed from both MV and CV to carry
out the downstream analyses. After the MV imputation step (for BPCA and LLS only), the
weighted adjacency matrix for each of the methods tested (BPCA, LLS, PC, and SM) were
evaluated for rows containing all missing values. Again, only individuals present in the MV

and CV matrix were used for method evaluation.

To evaluate the ability of the methods to reconstruct the appropriate adjacency
matrix (and thereby clusters) from the MV matrix, the root mean square error (RMSE),
Adjusted Rand Index (ARI) and balanced accuracy (BA) were measured (Oh etal.,, 2011).

Equations are detailed in Figure 8.
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Figure 8 Equations used for Evaluating Method Performance

TP= True Postive, TN= True Negative, FP= False Postive, FN=False Negative
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Balanced accuracy represents the arithmetic mean of sensitivity and specificity and
is useful for imbalance classes, as expected in the clustering. The adjacency matrices were
used for the RMSE to generate an estimate of how different the correlations derived from
missing data compared to those from the complete dataset. If thresholding is used when
generating the communities (e.g., removing correlations below 0.5), then the accuracy of
the correlation coefficient becomes an important consideration. Balanced accuracy and ARI
were used to evaluate the communities to obtain an estimate of the ability to obtain the
same structure from the MV data as the CV. Communities, or groups of individuals with
shared properties, were built from hierarchical clustering using Ward’s minimum variance.
Ward’s minimum variance minimizes the within-cluster variance. A cutoff of 500 (500

communities) was chosen to keep the average cluster size small.

3.3.4 Application to complex dataset

The ToxCast (‘Cast’) and ToxRef (‘Ref’) datasets were analyzed using the
SimMeasure and netlntersect functions in NetComp to illustrate NetComp’s utility in
analysis of datasets with large numbers of missing data (as few as one observation noted
per chemical). Note that missing data in this set is often due to no response measured at
the levels of chemical assayed, in which case imputing the missing value would be
inappropriate. Rows and columns were removed from both datasets (Ref and Cast) where
the number of observations fell below the median for that dataset; this had the effect of
reducing the dataset by almost half. This was done to remove data-poor assays and

physiological measures. Datasets were converted into adjacency matrixes using
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SimMeasure with a threshold = 0 (no data excluded), and edge weights represent the

similarity measure.

To find instances where evidence supported a community from each graph (Ref and
Cast), the network intersection was determined using the NetComp function netIntersect
with an edge weight threshold of 0.5. This enables capture of strong edges from the Ref
network, i.e. those with a weight of 1; this is desirable given the high false-negative rate of
the ToxCast screening study. Ten communities were designated from the intersection
graph using hierarchical clustering with Ward’s minimum variance. Communities were

analyzed to identify the driving assays from both input datasets (ToxCast and ToxRef).

Results and discussion

3.4.1 Network generation with missing values

The four methods were evaluated over a wide range of missing data for their ability
to generate a network/community structure similar to the complete dataset. The RMSE
describes the error in correlation values (e.g. edge weights) between CV matrix and the MV
matrix (Figure 9, A). All methods perform well at low missing values (0.1-10%), but
SimMeasure consistently outperforms the other methods at all levels of missing data and
appears stable up to 50% missing data. Interestingly, Local Least Squares shows a sharp
increase in RMSE between 20-40% missing values with correspondingly large interquartile

ranges.

The quality of clustering based was measured by the Adjusted Rand Index (AR],

Figure 9, B) (Oh et al,, 2011)and Balanced Accuracy (BA, Figure 9, C) clustering which
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measures the similarity between clusters (adjusted for chance) and the averaged accuracy
of each class, respectively. Note that the methods perform similarly across both
performance measures, with the SimMeasure outperforming the other methods. Of interest
is the point at which the methods begin to give cluster results at random (BA=0.5). Local
Least Squares performance fails with over 20% missing values while Bayesian PCA and
Pearson’s fail with over 40% missing values and SimMeasure with over 50%. These results
demonstrate that SimMeasure is able to reconstruct the network structure of a dataset with

a high portion of missing values.
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Figure 9 Method Performance verses Missing Values

The performance (y-axis) is shown across the portion of missing values (x-axis). BPCA=
Bayesian Principle Component Analysis, LLS= Local Least Squares, P= Pearson’s
Correlation with pairwise-complete observations, SM= SimMeaure. Graphs represent the
median value and inter quartile range of 200 trials. (A) Root Mean Square Error measures,
(B) Adjusted Rand Index, and (C) Balanced Accuracy.

68



Figure 9 (cont’d)
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Figure 9 (cont’d)
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3.4.2 NetComp workflow: complex dataset

ToxCast is a complex high throughput chemical screen with a high portion of
missing data. The goal with the analyses is to see how well the results in ToxCast match up
with the physiological endpoints for the same chemicals in ToxRef. Because of the data
sparsity, none of the other methods tested in the evaluation could work without error on
the dataset (data not shown). Cluster analysis of the intersection between the ToxCast and
ToxRef datasets (clustering Figure 10, results Table 2) shows the ability of this approach to
categorize chemicals based on toxicity. The yellow cluster, for example, contains a group of
chemicals across a range of pesticide categories, many of which are organophosphates and
organochlorines, although they are structurally diverse. The signature for this group is
driven by liver assays (based on both ToxCast and ToxRef), but the ToxCast fails to
highlight the potential reproductive effects of these chemicals noted in the ToxRef dataset
(a false negative result). The red cluster, on the other hand, shows high levels of maternal
and reproductive toxicity in addition to liver toxicity. These factors are well captured in the
ToxCast data by the activation of receptors for progesterone and androgen as well as
androgen and testosterone metabolizing enzymes. The hypoxia response could be
hypothesized to contribute to both the liver toxicity and the reproductive toxicity in this

case.
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Figure 10 Heatmap of the Intersection between ToxCast and ToxRef

Row and column colors represent the clusters described in Table 2. Color reflects edge
weights.
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Table 2 Results of intersection between ToxRef and ToxCast Networks

Cluster ToxRef ToxCast
Yellow Reproductive, Liver  Liver
Magenta  Liver, Maternal Nuclear Receptor,
Hormone Receptor,
Genotoxic
Pink Maternal, Androgen Receptor,
Developmental, Cytotoxic
Thyroid, Adrenal,
Liver, Kidney
Green Liver, Tumor, Cytotoxic
Maternal
Black Liver, Tumor, Serotonin, Opiate,
Reproductive, Pregnane X Receptor
Development
Blue Liver, Maternal Hypoxia Response, PXR
Activation, CYP2C19
Activation
Red Liver, Maternal, Progesterone/Androgen
Reproductive Receptor, Hypoxia
Response, Steroid and
Drug Metabolism
Purple Maternal Steroid Metabolism,
CYP2C19 Activation
Turquoise Tumor, Maternal, CYP2C19 Activation
Developmental
Brown Liver Tumor, CYP2C19 Activation
Maternal
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Conclusions

NetComp provides a critical set of tools for those dealing with high throughput or
other large numerical datasets with missing or uninformative vales within the R statistical
software suite (R Development Core Team, 2011). SimMeasure enables researchers to
calculate the similarity between observations in their dataset and leverage the resulting
adjacency matrix to perform Meta analyses with other datasets. SimMeasure was able to
outperform other missing-value imputation methods, requires minimal parameter
optimization, and corrects the output for the number of missing observations. Results of
applying functions in the NetComp package to a complex dataset of low density (ToxCast)
suggest that the approach is useful for analysis of high throughput data and can aid in
hypothesis development. Further, these tools will facilitate analyses and enable the

integration of diverse datasets to overcome lack low information content.
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Phenotypic enrichment from large scale phenomics of Arabidopsis thaliana

The main objective of the dissertation was to test the hypothesis that high
throughput phenotypic data could be leveraged in building models of gene function. This
chapter applies the methods developed in the first two chapters to the Chloroplast 2010
dataset with that aim in mind. Using the normalization strategies and other tools from the
MIPHENO package, the Chloroplast 2010 data was converted to values comparable across
the dataset and reflective of their likelihood of being a mutant phenotype. These values
were zero centered such that values approaching 0 had a high likelihood of being wild type,
while those approaching -1 or 1 had a high likelihood of being mutant. The reflexive
distribution could be used with SimMeasure to calculate the similarity score between

individuals and generate the adjacency matrix facilitating community analysis.

Community analysis is a tool commonly used in large-scale data analysis. The
purpose is to look at the members of the community to see if there are any common
features. For example, enrichment in a specific gene ontology term or metabolic pathway
(relative to the background) can serve as the basis for developing the hypothesis that the
under annotated genes might also participate in that process or pathway. A community is a
group of individuals that are more closely related to each other than to those outside the
community, either by the number of edges (if defining graphically) or some similarity
value. Communities can be defined based on many different things, but generally they are
defined by using a clustering method (such as k means or hierarchical clustering) and

specifying the number of communities or the distance on the tree (for the hierarchical
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methods). This analysis uses a hierarchical clustering method that minimizes the variance
between individuals in the branches of the tree called Ward’s minimum variance. It is
important to note that with many methods, including this method, not all individuals in a
community are highly correlated with each other. It is the overall cohesion of the

community that is actually considered.

These results support the hypothesis that phenomics data will improve models of
gene function. They show that with minor modification approaches used for analyzing gene
expression data can work with screening data and we believe that the results are more
useful in the design of follow-up experiments because they are tied to a metabolic
phenotype. The overall workflow presented in this paper is one of the first to leverage
phenotypic data of this type for such a purpose and can serve as an example for future

analyses.
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Abstract

Functional gene annotation provides insight to the role a gene plays within the
organism. Despite the growing amount of genome sequence available, gene annotation lags
behind, even in model species. Large-scale high throughput experiments such as
transcriptomic studies have helped develop hypotheses for under-annotated genes;
however, transcript information is often lacking in its ability to describe the function of a
gene. Technological advances have made using metabolic profiling for large scale
phenomics increasingly possible and opens up a new data source from which genes might
be characterized. Hypotheses of gene function and relationships between metabolic sub-
networks were built using a large-scale high throughput phenomic screening study of
Arabidopsis thaliana mutants. Methods explored in this work pave the way for using other

high throughput datasets to build models of gene function.

Introduction

High-throughput experiments such as transcriptomics and proteomics have
provided important information that enable researchers to better understand gene
function and the effect of environment on cellular physiology. Furthermore, they have
advanced our ability to develop hypotheses of a gene’s role in the biology of an organism
based on the response profile of transcripts or proteins. Even with all the terabytes of
sequence, transcript and proteome data available, many model species have un- or under-
annotated genomes and a small fraction of the genome is well annotated even for the best
studied organisms. In the plant model species, Arabidopsis thaliana, almost half of the genes

have no known or inferred function (The Arabidopsis Information Resource, 2010). These
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missing pieces of information pose a challenge for metabolic engineering and developing a
holistic understanding of biology in general. Unfortunately, sharing a similar transcript
profile does not always mean that genes are involved in related physiological processes or
the relationship may be driven by unclear patterns (false positives). Conversely, genes
involved in related processes do not always have similar transcription profiles (Vandepoele
et al.,, 2009; Williams and Bowles, 2004). Thus it is important to test for function by a

variety of different approaches.

Genetic mutants have the ability to shed light on the function of altered genes, but
phenotypes can be masked due to functional redundancy or the limited number of
phenotypes being measured (Ajjawi et al., 2010; Bouché and Bouchez, 2001). Knockout
collections, such as sequence-indexed T-DNA insertion lines (Alonso et al.,, 2003), provide
starting material for surveying the function of a gene by measuring the state of the plant in
the absence or reduced expression of the gene product. Unfortunately, the problem of
knowing what to assay to describe the gene’s function still exists. The Chloroplast 2010
project is a high throughput phenotypic screen of >5,000 Arabidopsis thaliana T-DNA
mutant lines that analyzed metabolite, physiological and morphological data from leaf and
seed defective in >3000 different loci (Lu et al., 2008; Lu et al.,, 2011b; Lu et al., 2011c).
Because it is enriched for mutants in chloroplast targeted genes, this dataset may provide
insight on the genes involved in key chloroplast processes, such as photosynthesis, de novo

fatty acid biosynthesis, and the metabolism of some amino acids.

While it includes a diverse number of measurements, the Chloroplast 2010 dataset

poses some challenges to traditional analyses for cross-dataset comparisons and
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community analysis. As with many high throughput screening datasets, it lacks the
replication and controls needed to minimize the impact of technical variance using more
traditional analysis methods that would enable using the data to address broader
questions. Furthermore, the dataset contains a fair amount of missing data (due to plants
being unavailable for analysis or assays that failed to pass quality control), and large
amounts of uninformative data where the mutant lines have no discernible phenotype in
the assays measured. MIPHENO (Bell et al., 2012), a method developed for the analysis of
large scale screening data, has been shown to minimize the technical variance in datasets

with no controls or replication.

The MIPHENO workflow transformed this dataset into one that enables cross
dataset comparison (Chapter 2). To address issues of missing and high background data,
SimMeasure (Chapter 3) can be used to calculate the similarity between individual mutant
lines. With proper processing, the Chloroplast 2010 dataset enables an omics approach to
functional gene annotation similar to the ways in which transcriptomics have been used
except that the observed characteristics (altered metabolites) are more closely related to

the changes in physiology.

Materials and methods

4.3.1 Data preparation
Data corresponding to the Col-0 ecotype from the Chloroplast 2010 project were
processed using MIPHENO (Bell et al., 2012) as described. Briefly, a post hoc quality

control step was used to identify assay groups with a median response that was three
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median adjusted deviations from the global response for that metabolite. Groups were then
normalized, based on the group median, to the global median. A cumulative distribution
function was applied to each metabolite measured to determine the probability of a
response being as or more extreme than the observation. The resulting score indicates the
probability that the observation represents a ‘mutant’ phenotype. Leaf free fatty acid and
free amino acid data along with seed free amino acid and seed percent carbon and nitrogen

data were processed separately by tissue source, treating each plant as an individual.

After calculation of the MIPHENO score (Chapter 2; Bell et al., 2012), individuals
with genotyping information indicating they were wild-type or heterozygous for the insert
were removed and remaining samples used to determine the score for that allele (e.g. SALK
line), by taking the median MIPHENO score. Metabolite data from the Chloroplast 2010
dataset were available in two forms. Mole percent (MP) is calculated as the quotient of
moles of a given attribute (e.g. a specific leaf amino acid or fatty acid methyl ester) over the
total moles for the individual in that assay set (e.g. the sum of all leaf amino acids or fatty
acid methyl esters for that individual) times one hundred. Fresh weight (FW), is calculates
as the number of moles of that metabolite per gram tissue fresh weight (Lu et al., 2008; Lu
et al,, 2011b). Data from each representation (MP or FW) were combined into separate
data frames. Seed carbon, nitrogen, and carbon to nitrogen ratio were only available as

percentage values and not as MP or FW and thus the same value is present in each dataset.

4.3.2 Community identification and characterization
MIPHENO scores were transformed from the 0 to 1 range to a -1 to 1 range to

facilitate processing; values approaching -1 are highly likely to have a decreased amount of
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metabolite compared with the median and those approaching +1 are highly likely to have
an increased amount of the metabolite (see Appendix 1, Chapter 4 supplementary files for
details). Across both datasets (MP, FW), scores between -0.6 to 0.6 made up 80% of the
data, and scores between -0.75 to 0.75 correspond to 90% of the data. Similarity scores
were then calculated using SimMeasure (Chapter 3) to identify lines with similar responses
across the measured metabolites using thresholds of 0.6 or 0.75 to remove background
responses. SimMeasure calculates the similarity between two lines, controlling for
instances where one individual has few responses while the other has many (i.e. lines that
have a simple vs. pleiotropic phenotype). Values from SimMeasure are in the same range as
correlation coefficients (-1 to 1), and can be interpreted the same way for clustering
purposes. As graphical-based clustering approaches resulted in a complex network with
loss of nodes at an edge cutoff of 0.75 (Figure 11), a hierarchical approach was used to
create more well-defined communities. Hierarchical clustering of the adjacency matrix with
Ward’s minimum variance was used to define 400 communities. Four hundred was chosen
to maximize the number of clusters having fewer than twenty individuals while minimizing

those with fewer than four members.

Gene ontology (GO) enrichment for biological processes was used to help identify
communities having characteristics that would make them more amenable to building
hypotheses on under-annotated loci. The enrichment of GO terms in communities was
calculated using a modified version of the GO enrichment functions (Horan et al., 2008). For
the Chloroplast 2010 dataset, the alleles in the dataset were used as the background in

creating the GO reference to account for cases where multiple alleles of a locus were
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present. This has the effect of controlling the expectation of a locus that has four alleles
verses the locus that has only one. Ontology libraries were built using the GO file from The
Arabidopsis Information Resource (TAIR; www.arabidopsis.org) dated January 17,2012
(Rhee et al., 2003). Phenotypes identified based on the MIPHENO scores were then

compared for clusters with significant GO term enrichment (p value > 0.5).
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Figure 11 Graphical clustering of FW data

The adjacency matrix was converted to a graph object using a threshold of 0.75. A total of
98 loci were lost as unconnected nodes. While a majority of individuals belong to the main
cluster, a few segregated out into smaller communities. These smaller communities
contained both positively and negatively connected individuals, but with little information
to drive hypothetical models of unknowns.
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Results

Comparison of the phenotypic clustering between the MP and FW datasets
highlights differences in the nature of the measurements (Figures 12, 13). Clustering based
on MP (Figure 12) results in the assays being mixed with no clear separation between
tissue (leaf or seed) on which the assay was performed. Additionally, there is no
appearance of biosynthetically-related metabolites, for example the branched chain amino
acids, clustering closer together than those metabolically distant. These two observations
suggest that the MP data may not reflect underlying metabolic relationships. One would
expect that biosynthetically-related metabolites would respond more similarly due to
metabolic control, which should be reflected in at the tissue/assay level as well as at the
metabolite level. This suggests that the MP data may not be representing the metabolite
relationships adequately enough to allow inferences on the impact of a gene knockout. By
contrast, the FW results (Figure 13) resulted in different assays being grouped together
and a clear separation between the tissues, with some minor exceptions (seed carbon and
the carbon: nitrogen ratio). Additionally, biosynthetically-related compounds are clustered

close to each other.

Based on these initial results and the goal of developing functional hypotheses
based on metabolic phenotypes, only the FW data were used for further analysis. The
clusters based on a 0.60 threshold (corresponding to 20% of the data, Figure 13) and a 0.75
threshold (corresponding to 10% of the data, Figure 14) were used in the enrichment
analyses. Terms relating to biological process were the focus as those were most easily

reconcilable with metabolic phenotypes. Ninety-one unique clusters had enrichment in GO
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biological process using a threshold of 0.60, while 94 unique clusters were identified at a
threshold of 0.75. Selected results from each of these thresholds are shown in Tables 3

through 6.
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Figure 12 Clustering of MP Data using a threshold of 0.6

Mole Percent data was processed using SimMeasure then clustered using hierarchical clustering with Wards minimum
variance by individual (y-axis) or by assay (x-axis). Color labels on y-axis correspond to the 400 different communities. Colors
within the plot reflect the accumulation of metabolites (darkest blue indicates those observations approaching -1 while
darkest red indicates observations approaching 1. White indicates values in the designated wild type range of -0.6 to 0.6), with
metabolites having an MIPHENO score between -0.6 and 0.6 removed. Observations closer to -1 have a high probability of
being a low accumulator while those closer to 1 have a higher probability of being a high accumulator of the metabolite. Note
that the similar assays (denoted with X, LF or SD) do not cluster together completely. LF=leaf, SD=seed, X=free fatty acid.
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Figure 12 (cont’'d)
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Figure 13 Clustering of FW Data using a threshold of 0.6

Fresh weight data was processed using SimMeasure then clustered using hierarchical clustering with Wards minim variance
by individual (y-axis) or by assay (x-axis). Color labels on y-axis correspond to the 400 different communities. Colors within
the plot reflect the accumulation of metabolites (darkest blue indicates those observations approaching -1 while darkest red
indicates observations approaching 1. White indicates values in the designated wild type range of -0.6 to 0.6), with metabolites
having an MIPHENO score between -.06 and 0.6 removed. Observations closer to -1 have a high probability of being a low
accumulator while those closer to 1 have a higher probability of being a high accumulator of the metabolite. Note that similar
assays appear to cluster together, which contrasts to results in Figure 11. LF=leaf, SD=seed, X=free fatty acid.
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Figure 13 (cont’'d)
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Figure 13 (cont’'d)
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Figure 14 Clustering of FW Data using a threshold of 0.75

Fresh weight data was processed using SimMeasure then clustered using hierarchical clustering with Wards minim variance
by individual (y-axis) or by assay (x-axis). Colors within the plot reflect the accumulation of metabolites (darkest blue
indicates those observations approaching -1 while darkest red indicates observations approaching 1. White indicates values in
the designated wild type range of -0.6 to 0.6) with metabolites having an MIPHENO score between -0.75 and 0.75 removed.
Observations closer to -1 have a high probability of being a low accumulator while those closer to 1 have a higher probability
of being a high accumulator of the metabolite. LF=leaf, SD=seed, X=free fatty acid.
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Figure 14 (cont'd)
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Figure 14 (cont’'d)
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Table 3 Cluster: roseybrown4, Threshold=0.6, GO: photosynthesis

Locus Insertion Line | TAIR Annotation

AT1G14150 SALK 006106 Encodes a subunit of the NAD(P)H
dehydrogenase complex located in
the chloroplast thylakoid lumen

AT1G48280 SALK 080607 Hydroxyproline-rich glycoprotein

AT1G48950 SALK 046110 C3HC zinc finger-like

AT1G75010 EMS16 Encodes ARC3 (Accumulation and
Replication of Chloroplast 3), a
chloroplast division factor
functioning in the initiation of
chloroplast division

AT2G26340 SALK 048391 Unknown protein

AT2G39470 SALK 063049 PsbP-like protein 2 (PPL2)

AT3G10470 SALK 106077 C2H2-type zinc finger family
protein

AT4G29670 SALK 028498 Encodes a member of the
thioredoxin family protein

AT5G13310 SALK_047869 Unknown protein

Table 4 Cluster: gold, Threshold=0.6, GO: branch chain amino acid family process

Locus Insertion Line | TAIR Annotation

AT3G16890 SALK 019082 Encodes a mitochondrial
pentatricopeptide repeat (PPR)
domain protein

AT3G45300 ivd1-2 Encodes isovaleryl-coenzyme a
dehydrogenase

AT5G05740 SALK_001991 S2P-like putative metalloprotease

AT5G23010 SALK 116223 Encodes a methylthioalkylmalate
synthase

AT5G65770 SALK_ 097945 LITTLE NUCLEI4 (LINC4)

AT5G65780 SALK 071486 Encodes a chloroplast branched-
chain amino acid aminotransferase

AT5G66380 SALK 011184 Encodes a folate transporter that is

located in the chloroplast envelope
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Table 5 Cluster: blue3, Threshold=0.75, GO: fatty acid metabolic process

Locus Insertion Line | TAIR Annotation

AT1G08640 SALK 032130 Chloroplast J-like domain 1 (CJD1)

AT1G08640 SALK 039694 Chloroplast J-like domain 1 (CJD1)

AT1G78110 SALK 003000 Unknown protein

AT2G28540 SALK_152456 RNA binding (RRM/RBD/RNP
motifs) family protein

AT4G13590 SALK 129037 Uncharacterized protein family
(UPF0016)

AT4G30950 SALK 027548 Chloroplastic enzyme responsible

for the synthesis of 16:2 and 18:2
fatty acids from galactolipids,
sulpholipids and
phosphatidylglycerol

Table 6 Cluster: violetred, Threshold=0.75, GO: amino acid biosynthesis

Locus Insertion Line | TAIR Annotation

AT1G47510 SALK_108673 Encodes a phosphatidylinositol
polyphosphate 5-phosphatase

AT3G04940 SALK_092696 Encodes cysteine synthase CysD1

AT4G19710 SALK 019023 Encodes a bifunctional aspartate
kinase/homoserine
dehydrogenase

AT4G19710 SALK 082155 Encodes a bifunctional aspartate
kinase/homoserine
dehydrogenase

AT5G57940 SALK 149893 Member of cyclic nucleotide gated
channel family

AT5G62140 SALK 113654 Unknown protein
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Discussion

The major aim of this work was to test the proof of concept that high throughput
phenotypic studies could be used to develop hypotheses regarding the function of un- or
under annotated genes. Because of the diversity of metabolites and genes under
investigation, a secondary aim was to see if additional hypotheses could be built regarding
new roles for genes with existing annotation or relationships between the metabolic
networks in which they function. The results indicate that for these purposes, it is best to
use measurements that are directly reflective of metabolite quantity and not a relative
quantity such as mole percent that might be artificially changed due to the change in
another measured value. While in large-scale studies there may be some quality issues in
using an absolute measurement such as fresh weight due to the amount of cellular water
and metabolite stability, these are generally small and the effects can be minimized with
normalization to remove technical error. In contrast, differences based on a percent
measurement can vary wildly due to the relative impact when a low -abundance metabolite
increases many fold or the amount of a usually high accumulating metabolite is reduced by

a large fraction. The following examples from the analysis reflect the FW data.

The first example cluster at a threshold of 0.60, ‘roseybrown4’, is enriched in
mutants of genes associated with GO annotation related to photosynthesis with a
phenotypic signature of high leaf glycine and glutamine (Table 3). The GO annotation
enrichment is based on two genes, At1g14150 (PnsL2) and At2g39470 (PnsL1), which are
components of the chloroplast NADH dehydrogenase-like complex (Ifuku et al., 2011;

Suorsa et al,, 2010). The other seven genes in the cluster include ARC3, which is involved in
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chloroplast morphology, and an unknown gene, At2g26340. Other data from the
Chloroplast 2010 project shows that the insertion line corresponding to At2g26340 is
annotated as having a positive before-high-light Fv/Fm, indicative of a change in the
quantum efficiency of photosystem II. This protein is also annotated as present in the
thylakoid lumen (Friso et al., 2004; Peltier et al., 2004 ), which supports a possible
involvement with photosynthetic complexes. The lack of a known catalytic domain in
At2g26340 (Rhee et al, 2003) and the mild phenotype under normal conditions indicates it
may have a regulatory or structural role with the photosystem complexes (Figure 15),

interacting transiently or on the periphery.
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Figure 15 Hypothetical model for At2g26340

The unknown protein, At2g26340, is proposed to play a structural or regulatory role with
respect to the photosystem complexes. The similarity of At2g26340’s phenotype to two of
the proteins in the NDH complex and the weak high before high light FV/FM measurements
could indicate that it interacts with PSII or with NDH. PSII = photosystem II, NDH =
chloroplast NADH dehydrogenase-like complex, PSI = photosystem I
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Gold, the second cluster example using a threshold of 0.60, is enriched in genes
involved in branched-chain amino acid family processes (Table 4). Two genes, At5g65780
(ATBCAT-5) and At3g45300 (IVD1) are involved in the degradation of branched-chain
amino acids (Diebold et al., 2002; Gu et al., 2010). The T-DNA insertion line Salk_097945 is
annotated to a third gene in the cluster, At5g65770. This insertion line actually lies in
between At5g6770 and At5g65780, suggesting that it is likely disrupting the function of the
downstream locus. Another member of this community is At5g23010 (MAM1) a
methylthioalkylmalate synthase, which is involved in methionine chain elongation and is
similar to 2-isopropylmalate synthase involved in leucine biosynthesis (Field et al., 2004;
Kroymann et al., 2001). Possible hypotheses for the apparent phenotype is altered activity
of MAM3 (Textor et al., 2007) caused by the disruption of MAM1, or a role for MAM1 in the

biosynthesis of branched-chain amino acid derived glucosinolates.

Using the more stringent threshold of 0.75, the cluster blue3 stands out as an
example of a community driven by a free fatty acid phenotype (Table 5). The GO annotation
of fatty acid metabolic process is driven by At4g30950 (Fad6) and two alleles of At1g08640
(CJD1), both localized to the chloroplast envelope (Ajjawi et al., 2011; Nandi et al., 2003;
Schmidt et al,, 1994). The cluster phenotype of increased 16:1d7C and decreased 16:2,
16:3, and 18:3 fatty acids are consistent with a defect in fatty acid metabolism and
published phenotypes for knockouts of these genes. The other three members of this
cluster are largely unknown. At4g13590, is located to the inner chloroplast membrane

(Ferro et al., 2003). Its location within the cell puts it near At1g08640 and At4g30950
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suggesting that it may have a role in fatty acid metabolism, likely that of a regulatory or
structural protein (Figure 16) due to the lack of evidence for a catalytic domain but support

for a transmembrane domain (Rhee et al, 2003).

Violetred, Table 6, is a cluster also found using the threshold of 0.75, is enriched in
genes involved in amino acid biosynthesis. It includes two alleles of At4g19710 (encoding
the bifunctional aspartate kinase-homoserine dehydrogenase II) which is involved in the
synthesis of threonine, isoleucine and methionine from homoserine (Curien et al., 2005;
Ghislain et al., 1994) and one of At3g04940 (CYSD1), which catalyzes the synthesis of
cysteine (Hatzfeld et al., 2000; Yamaguchi et al., 2000). This cluster has the phenotypic
signature of high leaf cysteine, glutamate, homoserine, and threonine. Part of the
phenotype seen may be due to the allosteric regulation of the proteins (or those upstream
in the case of CYSD1) and genetic redundancy compensating for the loss of a dominate
enzyme. The other three loci in the cluster have no evidence for their involvement in amino
acids (phosphatidylinositol polyphosphate 5-phosphatase, At1g47510; cyclic-nucleotide-
gated-channel-family protein, At5g57940; unknown protein, At5g62140). For a completely
unknown protein such as At5g62140, analyses such as this may serve as a starting point in
trying to characterize the locus, for example by carrying out a more precise measurement

of leaf amino acids.
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Figure 16 Hypothetical model for At4g13590

Given the lack of known domain for catalysis, it is hypothesized that At4g13590 serves as a regulatory role either in the
transport of mono-unsaturated lipids or in conjuncture with At4g30950 (FAD®6). It is likely positioned at or within the inner
membrane based on predictions for transmembrane domains. From this position it is hypothesized to interact with other
proteins involved in the biosynthesis of desaturated fatty acids.
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Multiple insertion lines targeting genes involved in branched-chain amino acid
degradation are present in the Chloroplast 2010 dataset. These include two alleles for a
hydroxymethylglutaryl-CoA lyase (At2g26800), an isovaleryl-CoA dehydrogenase
(At3g45300), a member of the branched-chain amino acid transferase family, BCAT5
(At5g65780), and MCCA/MCCB (At1g03090 and At4g34030, respectively), which are the
subunits of the methylcrotonoyl-CoA carboxylase. While they all show a similarity in their
phenotype, specifically increases in branched-chain amino acids, they cluster to different
groups (phenotypes using a 0.75 threshold shown in Table 7). This difference is likely due
to the pleiotropic nature of the phenotype and the complex nature of the metabolism

(Figure 17).

This work presents one of the first examples of using high throughput phenomics to
develop hypotheses about gene function. Initial results provide examples of how large-
scale analyses of knockouts can help develop hypotheses about gene function
(roseybrown4, blue3) or suggest relationships between metabolic sub networks (gold,
violetred). As the prevalence of high throughput experiments increases, it may be possible
to combine phenotypic information across several datasets to help answer questions about
biology in a way that researchers have been able to using transcriptomics data.
Additionally, integration of transcriptomics data with the phenotypic data may help expand
the communities and provide information on redundant genes or genes that were not

assayed in one of the datasets.
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Table 7 Phenotype and cluster assignment for branched-chain amino acid degradation loci*

At5g65780  At3g45300  At1g03090 At4g34030 At2g26800(A) At2g26800(B)

orangered orangered

Cluster cyanl cyanl lightcyan lightcyan

Step 1 2 3 3 4 4
Nitrogen NA
Alanine
Arginine

Asparagine
Aspartate -0.76 NA NA NA 0.82 NA
Cysteine

GABA
Glutamine
Glutamate
Glycine
Hydroxy proline
Homo serine

*Cluster refers to the clustering based on a threshold of 0.75. Step refers to the step highlighted in Figure 17. Values are the
MIPHENO score, shaded to project the magnitude of the phenotype (red= high probability of a high accumulator phenotype,
blue= high probability of alow accumulator phenotype).

110



Table 7, (cont’d)

At5g65780  At3g45300  At1g03090 At4g34030 At2g26800(A) At2g26800(B)

orangered orangered
4 4

Step 1 2 3 3 4 4
Histidine
Isoleucine

Cluster cyanl cyanl lightcyan lightcyan

Leucine

Lysine
Methionine
Phenyl-alanine
Proline

Serine
Threonine
Tryptophan
Tyrosine

Valine
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Figure 17 Schematic of branched-chain amino acid metabolism

Steps 1-4 correspond to the loci in Table 7. Minus (-) indicates feedback inhibition whereas
positive (+) indicates feedback activation. a-KG= alpha ketoglutarate, GLU=glutamate ILE=
isoleucine, IPMS=isopropylmalate synthase, LEU=leucine, THR=threonine, VAL= valine
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Chapter 5

Conclusions
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Despite the information available for the plant model species Arabidopsis thaliana, a
larger portion of the genome is un- or under annotated. This creates challenges for
researchers as they try to understand processes within the organism and engineer or breed
plants to address new needs. One possible source for annotation is leveraging the
information from large-scale studies, such as mutant screens. To date, there have been no
such studies in any organism that have looked at the use of phenotypic mutant screens to

build models for gene annotation.

The key objective of the work presented in the dissertation was to test the
hypothesis that large-scale, high-throughput phenotypic screening data could be used in
developing functional gene annotation. To achieve the objective, novel methods were
needed to use screening data for community analysis. This is because large-scale screens
tend to not meet the requirements for standard normalization and cross-dataset

comparison methods.

Major accomplishments

The key objective of the dissertation was to test the hypothesis that large-scale,
high-throughput phenotypic screening data could be used in developing functional gene
annotation. Several methods were developed in support of this hypothesis. These methods
include the normalization approach presented as part of the MIPHENO software package
and the ability to calculate similarity from missing/sparse data included in the NetComp
software package. Additionally, these two software suites offer tools to the data analysis
community that can be used with diverse datasets, as demonstrated in the preceding

chapters.
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5.1.1 MIPHENO

To address the need for a normalization procedure that could be extended to
datasets with no replication or controls, I developed the MIPHENO software package.
MIPHENO uses the properties of the dataset and the assumption that the majority of
responses will be in the wild type or background range to conduct normalization in the
absence of more traditional controls. This software package was developed to be
extendable to a variety of high throughput datasets, includes a post-hoc quality control
step, a normalization step, and a method for giving the probability an observed response is
not wild-type. This software package provides much needed community resources that

facilitate cross-dataset comparisons of high throughput screening data.

5.1.2 NetComp

While many methods are available to tackle datasets with missing data, most
require parameter optimization, do not allow for thresholding, and are computationally
intensive. SimMeasure addresses these issues and calculates an adjacency matrix that is
analogous to a correlation matrix, an important feature for conducting downstream
analyses. It deals with the issue of missing data (either randomly occurring or do to
thresholding) by calculating the similarity using pairwise complete observations and
penalizing the final similarity value by the number of instances where data was missing in
only one individual. The similarity calculation used is based on the Canberra distance
metric, providing a straightforward calculation that considers each pair of observations
independently. The output structure of an adjacency matrix makes the result useable for

many other downstream processes, such as community enrichment, and makes the result
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accessible to existing graph-based analysis strategies that are commonly used in systems
biology. SimMeasure is part of the NetComp software package. NetComp was created as a
way to easily integrate and compare large scale datasets. Functions created as part of
NetComp are designed to work with large scale datasets such as microarray and screening
data. A set of functions that utilize the adjacency matrix structure are useful for performing
data integration and network comparisons quickly while maintaining edge values.
Currently, there are no software packages available for R, a commonly used and free
platform for large data analysis, that incorporate these types of functions in one cohesive
package that can easily work with other packages given the input and output structures. As
a whole, this software package can be integrated into existing workflows to facilitate

analyses within the R analysis environment.

5.1.3 Analysis of high throughput data and hypothesis generation

Using the developed methods on the data generated through the Chloroplast 2010
project, I was able to perform several analyses that were not possible before. Data is now
comparable across the datasets, rather than just being comparable within an assay group.
MIPHENO enables interpretations of the data beyond one assay group, which is
demonstrated in Chapter 2, leading to a lower false negative rate. The cumulative
distribution function used in MIPHENO means that individual insertion lines can be
prioritized for follow-up based on the likelihood of phenotype, without the need for explicit
controls. The ability to compare across the dataset means that lines with similar mutant

phenotypes are identifiable and can now be clustered.
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The method I developed for calculating similarity in the presence of missing and
uninformative data, SimMeasure, enables the use community enrichment methods
commonly used in gene expression data. This community enrichment information, when
combined with the phenotypic information driving the community formation, is useful to
researchers in guiding experiments to determine gene function. The workflow I developed
made it possible to develop hypotheses of gene function based on phenotypic information

with low statistical power that previously would not be possible using existing methods.

The workflow I created brings all of these software and analysis pieces into one
cohesive whole. Altogether, this information creates a useful launch pad for future
investigators that was not possible without the creation of the software developed as part

of the dissertation research.

Research presented in this dissertation supports the hypothesis that high
throughput phenotypic data enable gene function predictions using gene disruption lines.
Using gene disruption lines is an important feature in this work even though it creates
challenges regarding the quality of the disruption and confidence in the genes link to the
phenotype. While there may be some false associations, the strategy of screening insertion

lines offered novel data that made it possible to identify phenotypic associations.

Questions to be addressed
Several questions still need to be addressed, chiefly the accuracy of the predictions
made and if the predictions are more helpful than those with other omic resources. An easy

way to explore the comparison of the phenotypic-derived annotation and, for example,
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transcriptomics would be to compare the networks generated with expression data to
those from the phenotypic data. Measuring the accuracy of the predictions is a bit harder,
given the high level of noise coming from the input data, but beginning the follow-up
process with verification of the phenotype is a start. Some suggestions for follow-up on the

predictions mentioned in the fourth chapter are detailed below.

Aside from the obvious biological questions regarding the workflow, a few
computational questions remain. For example, are there limitations to the types or ranges
of data suitable for SimMeasure? While it was inappropriate to do data imputation on the
Chloroplast 2010 data given the nature of the missing data, it would be interesting to
measure the success of using some data imputation methods on the unthresholded data.
For individuals that had missing data due to quality control it might be useful, especially as
the values could be compared to any replicates of that individual or for other lines
annotated to the same locus. Thresholded values could then be used with SimMeasure to

calculate the adjacency matrix to overcome the bias that occurred using the whole dataset.

Future work

5.3.1 Verification and follow-up on biological predications

A few examples were given in Chapter 4 to support the use of phenomics in building
hypotheses of gene function. Two of the genes described were unannotated except for
proteomics information to suggest localization. These are At2g26340 (Salk_048391),
suggested to be involved with the photosynthetic complexes and At4g13590

(Salk_129037), an inner chloroplast membrane protein that exhibits a fatty acid phenotype.
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Initial characterization of the two genes is similar and has to do with verification of the
phenotype and the phenotype’s link to the gene. Pipeline experiments that showed a
phenotype need to be repeated with a higher biological replication, and include additional

alleles as well as a couple members of their community.

The first gene, At2g26340 has another allele in the Chloroplast 2010 dataset,
Salk_099844, which is in approximately the same position and direction as the allele noted
and exhibits a more severe phenotype than Salk_048391. It is likely that it did not cluster
with the other allele due to other phenotypes (similarity score between alleles is 0.66).
Quantifying both seed and leaf amino acid changes using a higher statistical powered
design is suggested changes in both datasets are observed. Both alleles show a weak
positive response in the before high light Fv/Fm and an inconsistent weak positive in
recovery. This gene is highly expressed in photosynthetic tissues (Winter et al., 2007) ,
consistent with its localization and proposed role in photosynthesis. If the phenotypes
seem stable, then checking to see if this unknown protein was directly involved with any of
the photosystem complexes would be a logical next step. The lack of a catalytic domain and
mild phenotype suggest that the function is a regulatory or structural one, which
depending on the strength of interactions could pose a challenge and methods need to be
chosen that minimize disturbance of fragile interactions. Unfortunately, most localization
methods require an antibody or protein tag, which might inhibit protein-protein
interactions. One could consider the stability of the different photosystems in the two

insertion lines relative to the wild type similar to the work done by (Lu et al., 2011) to
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characterize LQY1’s association with photosystem II using blue native gels. These

experiments should provide enough starting material to move forward.

For the second gene, At4g13590, there is also another allele, SALK_011783, where
the insertion maps to the 300 base pair region in the 5’ UTR of the gene (Salk_129037
insertion maps to an intron). Both show a fatty acid phenotype, but the second allele has a
decrease in 18:2, 18:3, and 16:1d7C, among others. The alleles have a similarity score of 0.6
and the similarity between SALK_011783 and the other members of the blue3 cluster are
below 0.2. Aside from fatty acid phenotypes, this second allele has a few other amino acid
phenotypes likely contributing to the low similarity scores. The only other SALK line
available for this particular locus is SALK_148315, located in the promoter region. Due to
the lack of a strong candidate for a second allele, it might be worthwhile first step to obtain
homozygous lines from all three alleles and look at the expression of the gene to see if it is
actually decreased. The higher powered fatty acid profiling can be carried out on along
with other fatty acid biosynthetic mutants (possibly more than Fad6 and CD]J1). If
At4g13590 expression is not significantly decreased in the other two alleles then
complementation of the SALK_129037 is needed to be sure that the phenotype is tied to the

At4g13590 locus.

The lack of a known catalytic domain in the At4g13590 gene and the presence of a
computationally predicted transmembrane domain suggest a structural or regulatory role
for the gene. In the event that the phenotype can be confirmed, identification of the
interacting partners is the next logical step. Tagging or development of an antibody is

needed, with epitopes likely/predicted to be located on the stromal side. Comparisons to
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other proteins known to affect the transport of phospholipids in and out of the chloroplast

may be good candidates for partners as well as the biosynthetic proteins.

5.3.2 Data integration using NetComp

One advantage of having data in the adjacency matrix format is that it facilitates data
integration. An initial hypothesis going into the dissertation work was that data integration
would help to build better models of gene function because of the additional information
and a potentially larger dataset as some individuals are not included in both. This was tried
using the Arabidopsis arrays from MetNetDB (Mentzen and Wurtele, 2008). This set of
arrays covers the developmental series, biotic and abiotic stresses and is thus quite diverse.
The intersection between the Pearson correlation of the MetNetDB data and the phenotypic
matrix was used to identify communities with strong support for a relationship in each.
The results were worse in quality than using the phenotypic data alone, based on the
number of clusters with enriched ontology terms that were related to the phenotype of the

community. Increasing the stringency of the phenotype did not resolve this.

Based on these results, a better approach to the data integration may be to use
tissue-specific gene expression. For example, using transcriptomic data that is seed specific
and combining it with seed-specific phenotypic data. It might be worth comparing the
whole dataset to the seed-specific dataset as well, just to better detect traits that have
relationships in both seed and leaf material. If the overlap between the two datasets shows
promise, then the union might be considered to bring in those connections that are specific
to one data type. Consideration will be needed in considering the edge weights (correlation

or similarity score) in the integration. Based on earlier trials with a different dataset, taking
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the intersection (which uses the average edge weight) and then incorporating the

additional edges using the weight from that dataset seems to give favorable results.

One last consideration for integration with transcript data is anchoring data to the
genome. The insertion lines were anchored to the locus using the information provided in
the Chloroplast 2010 dataset. There are many examples for which this information isn’t the
most accurate because the insertion lays between two genes or possible targets a single
splice form. With the transcript data, there might be many probes for a single gene
(corresponding to different parts of the transcript as well as different isoforms) in addition
to probes mapping to multiple genes. All these factors complicate the data integration and
several different approaches should to be tested to see how to minimize the impact on

overall data interpretation.

Final comments

This work represents a first step in using large-scale data for building annotation of
gene function. The methods developed are aimed at facilitating analysis of sparse datasets
and screening studies, but are extendable to other data types. As more datasets are made
publically available, these types of tools should facilitate additional post hoc analyses and
data integration, hopefully lending itself to better design of follow-up experiments leading

to improved gene annotation.

Improvements in data quality could advance this type of work. Small improvements,
like expanding the experimental annotation to give details about what was studied, why it

was studied, and how the measurements were taken, can go a long way in orientating
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someone to a dataset. Even when conducting high throughput experiments, including small
levels of replication (for example, two trays with the same individuals, or one cell devoted
to a control) can go a long way in improving the power of an analysis but don’t add
considerably to the overall cost. Finally, making data available, freely, completely, and
without restrictions, is important to moving the field forward as a whole. If data is kept in

silos, it cannot be used in further analyses and new knowledge cannot be realized.
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Appendix A

Software is available on the Comprehensive R Archival Network at the following locations:

MIPHENO: http://cran.r-project.org/web/packages/MIPHENO /index.html

NetComp: http://cran.r-project.org/web/packages/NetComp/index.html

Data and methods used to carry out the analyses as well as the results for Chapter 2 can be
found at:

http: //www.biomedcentral.com/1471-2105/13/10/additional

Data and methods used to carry out the analyses as well as the results for Chapter 3 can be
found at:

http: //www.plastid.msu.edu/links/Dissertation%20Supplemental%20Materials/Chapter

%203%20supplementary%20materials/

Data and methods used to carry out the analyses as well as the results for Chapter 4 can be
found at:

http://www.plastid.msu.edu/links/Dissertation%20Supplemental %20 Materials/Chapter

%204%20supplementary%20materials/
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Appendix B
The code for the SimMeasure algorithm is included for reference. Code for all

software and analyses can be found in the links provided in Appendix A.

From SimMeasure.R, the wrapper function that calls SimMeasure from the R environment

SimMeasure<-function (data, threshold=NULL, ...){
x<-.Call ("SimMeasure",data, threshold, pkg="NetComp" )
if(!is.null (row.names (data))) {

row.names (x)<-colnames (data); colnames (x)<-
colnames (data)

}
From SimMeasure.c
#include "Rdefines.h"
#include "Rinternals.h"
#include "R ext/Rdynload.h"

#include "math.h"

SEXP SimMeasure (SEXP data matrix, SEXP thresh) {
// data matrix is a matrix

// thresh is a double

int num cols, num rows;
double *rx = REAL(data matrix), *rans, t;

SEXP retval;
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//Check to make sure that everything is of the proper type
//before going further...

if (isMatrix(data matrix)) {

num cols = ncols(data matrix);

num rows = nrows (data matrix);

}

else/
Rprintf ("invalid matrix.\n");
return R NilValue;

}

if (isNull (thresh)) {

Rprintf ("warning, setting threshold to 0 by

default.\n");
t = 0;
}
else(
t = REAL(thresh) [0];

//Check to see if the matrix has any null values
if (isNull (data matrix)) {
Rprintf ("matrix must not be NULL.\n");

return R NilValue;

PROTECT (retval = allocMatrix (REALSXP, num cols, num _cols));

rans = REAL (retval):;
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for(int 1 = 0; 1 < num cols; i++) {
for(int g = 0; g < num cols; gt++) {
double cor val = 0.0;
int count row nas = 0;
for(int wi = 0; wi < num rows; wit+) {
//Rprintf ("row nas: %d\n", row nas[wi]);

//Check to see if we need to skip this row
//b/c BOTH of the elements are NA

1f (ISNAN (rx[1i * num rows + wi]) &&
ISNAN (rx[qg * num rows + wi])) {

count row nas++;
continue;

}

//Check to see if we need to skip this row
//b/c BOTH of the elements are <hit

//this 1s for cases where the 'non-hits'
//werent removed

if(fabs(rx[1i * num rows + wi]) < t &&
fabs (rx[g * num rows + wi]) < t){

count row nas++;

continue;

}

//Calculate the parts of the similarity function

double nm = 0.0; double pm = 0.0; double om =
0.0;

double pcnt = 0.0; double ocnt = 0.0;

for(int wi = 0; wi < num rows; wit+) {
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//Check to see if one of the elements are NA

1f (ISNAN(rx[1i * num rows + wi]) &&
ISNAN (rx[g * num rows + wi])) {
continue;
}
else if (fabs(rx[i * num rows + wi]) < t &&
fabs (rx[g * num rows + wi]) < t){
continue;

}

//one value missing, the other above
//threshold

else 1f ((ISNAN(rx[i * num rows + wi]) &&
fabs (rx[g * num rows + wi]) >= t) ||
(ISNAN(rx[g * num rows + wi]) && fabs(rx[i *
num rows + wi]) >= t)){

nm++;

}

//one value below threshold, other value
//above

else if ((fabs(rx[i * num rows + wi]) < t &&
fabs (rx[g * num rows + wi]) >= t) ||
(fabs(rx[g * num rows + wi]) < t &&
fabs (rx[i * num rows + wi]) >= t)){

nm++;

}
//both are duds

else if ((ISNAN(rx[i * num rows + wi]) &&
fabs (rx[g * num rows + wi]) < t) ||
(ISNAN(rx[g * num rows + wi]) && fabs(rx[i *
num rows + wi]) < t)){

continue;
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else{

if(rx[1i * num rows + wi] * rx[qg *
num rows + wi] >= 0) {

if(rx[1i * num rows + wi]==0 &&
x[g * num rows + wi]==0) {

pm = pm +1;

pcnt++;
}
else{
pm = pm + 1-(fabs (fabs(rx
num rows + wi]) - fabs(rx
num_rows + wil]))/ (fabs(rx
num rows + + fabs (rx
num _rows + wil)));
pcnt++;
}
}
else{
om = om + 1-(fabs (fabs(rx[1i *
num rows + wi]) - fabs(rx[g *
num rows + 11))/ (fabs (rx[1 *
num rows + 1) + fabs(rx[g *
+ 1))) 7

num_rows

ocnt++;

//Calculate the correlation, and the correlation

//matrix

if (num rows - count row nas < 1) {
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cor val NA REAL;
}

else{

cor val = (pm - om) / (pcnt + ocnt +

nm/ (pcnt+ocnt+nm) ) ;

}

rans[i * num cols + g] = cor val;

}
UNPROTECT (1) ;

return retval; //return the correlation matrix

137



