II "I I d E (000‘. 0.. O. I 0 . . ’I 0.000 0 ..00 0‘.‘ III III ll. .ll‘l'" . £0 0.0I I: .0». ._ ... 0. .0 .. ’5 . - .0100. . 0050’ 04‘ .0090 . . . . .0 ”104 i000. . .. .. _ . .I 0 000. . . . . .00“ III. 00.00. :0. IIIII!00~00. ”.00 . “a.” , u. _ . us .0 0.3000930 I I. .0 ‘ 0 0f...00$ 2‘... . .. .. .0100 t.‘ .I III .. 0I 0 3.05. .0. 0‘ _ . . .0010 I... 0 s. 0.. .0900.b00 ‘hr?0.i...§0 .3037 .. 500.0% . . .I. .I....I..I.. ...... ... .I.-.I....In... ....-.,................Innr 3...... ...._..:-. . ......e. ......52 .. .... b . IQ. " . 0. _ . . 0 . _ 0- .. ... 500.00%“... III {0.0. .000 5.00.0500 no 000..., . . I 000.300 ... 0.0 ... .VII . II. .. 0‘...‘ Q. ”ti“. 0.. 0“ ' ..‘00’Qfi' . b .910 .Q 9‘00. 0. V. 0 0 II 0‘50Q0l . 0‘ I: I ...:.-1.3.3.... .2..................:....- . . . .u......... ...... ...... an}... .. ...-.... . .. ...:-... 0 0‘ 0 . .0 P . -. . . I . . . . .4 was-...... ...... ......- .......a.. ......vhfi .. . ..z....-... .... : .. ......I .. . .. .... .I .000 00... .00. 00. S... . 00 ... . - . I I. . .0... . . .I.. . ..II I ...: .- .. I. ... .. . 0a.! 0I4 0 00 0. .‘t; 0 0‘ .030 0 9‘ 000 . V 0., 0.. 00.4 0.0 .0 0 I I. I. I . .- .~ .0 .... I 0.0 I. .0 I . I. ’x 0 . I 0.0 ... . 0 0. 0.... . ...”..I...I......... I...-...........I.. 3...u.........l.......... . . . :5... .I. u. ... -. .... .. ...-... . a... . .... ......u..-....-"......- . . .L. 00 00 lb? 000.- .09 ...-0 I... 0 . _. . - . 0..... . 2 I. .. I.I¢.. I. IL...II_0IYI ... '00 0.0 ‘00-‘30 1. 2.! 0. 0 ... .. .. 0 ...: .... .I .IQ. .: 1.0.. 0 0.. ... 5-I .... o 0:0 L“. .,,0 VII. 0 009.0‘0 0.5 '0 0 0.. r .. .I O . 0.030. ..0 I. 0 0 .P I 0.. .40 . II... ... p.“ ..00 6t.....0. 0..... 9! .. I O o. 0&00. ...-000000019 0.?0.§¢.I0.0:.0’...AI . . ...-0I. . 010-. .I 0.. 0.. 0 0....0 .0... ... . ...0... .0..0........ . .- .- .. 00¢€.I00m0..0fl.. 00.000. 0.xl0h0 II‘IuIInK . . 000.00 .0 . _. ..I.I .0 .. ...-0.04.. ....I 0. 0.0. ...-w... ..-0 .u 0. ..n . r..0.0. s.) 0.. . I . .0 ....W’. .- ...I. _. I0 . . . . 0‘ 0. .0 In.) . .‘ Q‘ .- I‘t I . . 00 .II.‘ .I... .... I . . ....‘. 0 I 0‘ ... o. 00. . .. In... .0 0. .I . I.“ .II ...I 0 0 I 0.0I ..0I0 000 . .10 I .. .. 0 . .539. 0 I 0. . . 0.. . w . . .0 r8. 0 I‘0! 0 0 b.” I 0.0 0 0.0 O 00. . ... .. 0.0 0I I. . I 00. III. 0.-. I . 0 I .I 0‘ I' 0.! I 00 .. ... I .0. . . . .. - ‘0‘000 \0 0I.“ 00.10.0000 Olav. 9“ .0 000 9.00.. ...0.-0.000 ob . . . 0... .0u.0. . ...0. .I.” .. .'0 I 0 I - .I.... I 0. .0 . £0 . .I I .. 0.. I. II... I.....0...D .I.-0 0 I... t 0. .... . 0.? 0 000 0L“ I .0? 0 .05 .. .0 - . . . 0. ’ I . .I.? . ... 0 I I . . . . . .0. .00 0 .I. 00 . . 0 I. 000. ’0. 0’. I . . I L .. I . we“...- I... I. .... ..IIIII0 .... I. .I 0...." 0. 0.5.0. . .3»... ...... - ...J I . 0.....9L. .. ... v.0... ..u . .... I... - .u. .. .II .... I. I. _ ..0..... . I. 0 ......I .... . . .. ... .. . .I. 00 . II. . . .I. I . _ . .0. «\lu. .I.. I ... Q ..0. I . I a. . I.. o. . .. I .- .... ...-0 09~{-0 .00). 0 0‘ 00.. .00 00.0 ‘fi‘u 0.000 ‘0’. . ..... .. .0 00 .0 .I. V II 0.00: ..0 .0 I 0.. ... .- I . . . 0‘ 0.00 0 0. 5‘ “D. .0: . . . -. I - I I. 0 .0 0.’ .00 . 0 .... 0... ..0. 0 .0 I 4.. 0 .0 P .0 0 0 0.- 3... I . I III’INIIVI..\TN00’IQ.IIOOJ 0.1.0 {0000\Im0nn4. .gno . .. . - . - . . .I 0 I I'!.1w.0I.0I0. .p. .I.... . 00 ... I .w. .30 hf... “.004; . .0 ...:.? . .. ....III . 0. .I00 .I.“...‘LI: . ... .I .. 2’30." . 130......2 ...r I".... ”4.0 .I.... ..U ......III.I 0. ... . .p .0 . I 0.0 0 I I. ‘0' 000 I . .. 0 n I. . .0 IV . 0.0 0 . ... . 0 ..0 . Q 0 ... . 000. . I .0‘ . . II.0 0 I .I.. .-. 0 . I . .000 4.0”"000 0 VII. L0.".‘..:"I.000 .IDI'YIVHVI. 01A ...:.: . . . . _ I ... I06u9... “0.20099 M0 0%.... ..v .0N.0.0. Inc-0... 0. II. . I .00. I..." s ... . I 0...... .I 0.00“”. ... 0. . 3 ...0: 00..)0 - a .r v.0... 00:. .. 0 I .0)! :00. -I...I '0 HI . .. .n0.0 I. . .0.00 I I I 00 00. I.- 000 I). .0. 0. .0 :00 . . . I 0 .0000. I. I. . .0 .I . 0.... .0 ... . 0.. . 0 . .0 04 I.. I. II II. II . .0: ..I. 0 0 .)0 0.0..“ 0.0 {:00 . IHIII III-II 0I....I .L.0..0..0€..I00h.:... .IIIII . . . . . (I... 0 I ...-0. .4... 5:0... .I.... :0 I I 4.0... . . ... t . ....0 . .I..I . .... I0 ......0. .. : . . .. ..w .- . . .0 I. . ... . I ......I... I I I. I. IIv... .I II .\ - I 00 0;. \. ”III. or." '0 0H0. 0.0". .z9 .r090".50 . . . . . . _ . . . ”30...! 90.00. 0- 0. 0.00 . I ...0. 2.0.. 0 30.0“! . .00 I III. I . I. .0....00-. 0. .II .. \ 00..I 0. . 0.0.0 .w.....m0 I I.... ... . .I. II. I .....0 II I): 0. ”I. 0.000 .00 ...? IIIII :.0 0:0 . - I I Q t ‘1 .00 .. of: I .Q.’ - I . . . _ . 0“. I . . 0 . . ... In... .9. 0. . 0.. I - I. 00 0 I I 0’0 I '0 . :I I 0 ‘II . _\ 010.00‘000 .... I 0.1.0.00: I'd-00“.! (I... .01 ’ I I 110...,0. .5 I >3». I .00... ..D I 10.. s... . I I. «0 u ... ... I .I. 90¢. . 0. II .n It .3009 . I- II I . .I. .0. . :III 00.I...10- I. II .9 010.0 9 0.0-0{ 001 .I 000 . 0-00HI00 .II‘H 09-0 0I- . M000 I0.". 00. .I‘0300I.-.0fl..00. . . ..3300. ..qu . III'I'II. ...I-..’ . II... 0.0. I .. 000 .0... ..0-.0 .9006 I. .... . .0 I. .0 .I.. 0.. 00 . .I. I I I - .0.- 0000. 00 I.I00 .II...X00HII.0 .I.-00 5".0000I0. .mw...§l-I:u...-?-I.u hair...» ....u...3....u .....- . ...-... ...-... nu"... ... ...-.I.»? .- .... . . ...:.... .- ...-M... . ... .... .....r ....u. 3-. 1...... ...-.....I. . . . ..u. .... .... .. .- .11.... ....w..1....e.-.:... .I.-...... ...-I... ...-2..-!!!- I ‘0 .00 0 .0.‘ .00 0.- . . .00. ...-0. 00 II I Q. . 0 . I0 - .I.. . .I .0. . 00 I .I.. . . .... .I.: I... I . I. I -I. .0. .I‘ I. III :0! Is. 0.3 .0 00 I '0' ..00 0' 9‘. {2.00 0. . 0 000 9. PLI I’I. 00. .0. .0 ..0. 0. i. I I .... I I . .0 .I. \I 0 0. 00 0 .I 0 I '0 00'. 0' :00. 00.. .0. 00'001000 0.! ... VII II. -.II .0 ...... I. . , 0.0 . . 0.-.. 0‘ ... I. I: I. 0 I ..r-z-I .. . 0 . ..0 .. ... .... .I . .... I -. I . II I. 00 .I. .00 .I.. I0 .: I II 000 0.0)....- 00 ... s. 0.00.. . . .. ..0 . 09.0.00. .0-1‘. 0. . II .. ..0 .0. II I... I .III . . ...I ... .I. -00...... III.-. II. .I a I I .II I 00H I 0...00 .0 00,000.... 00.... '1! «1.0.0... I30.0.0. “.IIIUIoumpan 0P HIVb-HI "Nathan-0.0.- . I . . -. .330 0.0.0.0.. .I.... 30$...” .0”... .00.: II... 0. J .I....” . u; 0I.-.0 ... .I. I a. .0 .I. ....u... -.. I. I ...:L I... I... ...- .r. .. ...:.. .I.: I I. .; .I.. . . . . In L. .0 I II I..0I.IIIII h I :0- ...IIPunI..o. ,0 “005.0 .0003..- .-H.0610000000000. v 0..". .I. . 0 ,0 .0 .I'NHItII F» 0.00.00 0. . 0.. 2.3.. ..0 ..,.. :0. .9. . ... I- .. .I ..- .I’. I . . I. - I.. I 0.. I ...... I 8.1 0.0 .I I. .0 .0II III! 0 I I ...00 20 II. .III v.00 .II. ...I I... 00.1.“!0... 00...Iu”0....0.o 0000‘00 00 . I0...u. .0 0.0.00.0 .I. ..r.0.I..I ....N . .I... ..0..’. II . I W 0.- 0 00. 0 C o ..I I... . - .I.-I: ... .0. . .I.. 0I..‘:... 0 l. (I. 0 ....0.‘ .I0. ..00I00 .MIIIEIU‘.00’$0000.I ... . “.IP0II0IOI\ 0...0 .0... .Isl..0.I.I..III .0000). . ..II III. .000? 00»... 0. I- .I.. -I0... .0 0.... II- I 1 0... I .- I I. 00 .. I...I .. .. 0. .... ..I . I .I.-.... .I 0.0- I.. I00...0.Ir. .0000...0.00.0I00.0.0000. ...! I00 0‘ ‘0 00" 0.0" ‘07: 00."\ 6'0. .0- N 0..-.. . “‘0‘0 L . 0". 00b '00.. 00.I. 100.00 I 0 I .0... I... .0 I I C. I‘ I .0 O . l.II I I. ll .0 I . I 0 000' I .00. ‘30 ’0' ..0 0'0! 0.. 0 4 00000 "0 J0. 50‘ I I: . 0 ‘ 00 0 .I 0. 0. . 0‘ a 0, . .0. D I 0 0.0 0 I I I 00‘ 0 000 0' P 0‘. 0 ’0 0.0 .. ”000 II I I 0 ...-”£000.”...‘0r'90 .I0II. 00.0 ”0‘00; A 9.0"”..00000 . . 0..“ . 0.0.0400 0. III-0.0.0.1 . $.MI I.I 0. I: 0 0.0.... I .0? 0.. 0 ' ... ImRQII... .I. I. .P . I... . .I.I . I I I. I II. 0.0 ..0. 00... I .I II I .. I II; 0 .. .....wIIII.’ If . ..III 0 I... 00.0 .II. 0 00.0 '00:. I 0..-“000.00000 0 I 00 0,.0: 00 ’5. I0 0.? I 0 I 0:0 0 00‘: . up". 00 ... II0I «.0. .0... .....0 . .0. .0. I . .I... I: r I 00 0 I I I o .. 060 I- 0 I0 I.I.'000 00- .II0 0050,00 .30 I OIL! I 0.0- .0.000. ......) . _ . 00 I)... 01.0 0’00. .000 f . III 0 no! . .I.-{0.0. . 0.. 0. . 0. .00... I .I. I. . . . .. .. I00 0.. ..I .. I . I. . I .. .I....I (- I . 0 .-. .I I. . 0. . III II 00.0070. . 0. .I. III 0.. 7. II 0.000 I. ,0 .00.\ .0.0 0 . 9'00 .I.. .t 0 0 ‘I0 . . .00; ..— II 0.0 I0, .. II. n... ..0... 0' I. .0 I0 I 0.. 0. . ~. -. . I. I . ... 0. ’0 I . -. . ’ .- 0.00 IIII .0000 .00 ..0. IYO' l4 0’ I- l. I I: 00 .. . 0 0 000 . ..II )‘0 ‘0 I0. 0.00.0 .. 0000.? ’0: .I.-I40... P0 ‘:0 IS '.I 0.. .0. . O. (:0 0.00 0 .II It 0 I 0 ‘0 0. )0 .t I. .0. 0 I0 00 0 ... 0 .. I III I. I 000' I. I O 00 0" III .fo 0.0.0: 0. .. I 000 {II-IBIS. II 000 I... 7000 04000 00?.0 . .000 ... III. . .Iluu-IIII 0.... . 0.0 .). . I .0. . ... I... . . I ....I . f. I I. 0..» 0 I .- .. I y I . .I .. . . .00 I . . 3. ... . 0 . .I.... 00 I .III I 0 0.! '1.... I03 .00 £00 I 00 I .00 III 0.00. ‘ ou‘ufi. 0rd 0'0 00'! Q-III'I .4 ‘.. ‘0 .000!- 0-0 OA.‘ 500. I 1,! ...0.‘ ... III... .. ..0. ..00. ..I' .Ifsh .I I II. 0 .W 0 .l I. . .I.. ..0. .I. I. .0 I00 ... 00.0 .r II. 0.007. 4.. 0.--.0. 100.000 0000 III 0.. - 0 0000 O 0 0 0 - .00 ‘0‘ '0‘ 00‘ 30 0.. 0 0 .0. 00". .....- 0.00., 0. . .0 0.0.: . 0.. 03'... 0 00:. . I 0 0 90. . 0 . . . 0. 00. 0..-.0 ’0. 0 I I I 0 I I .I . I I I 0 I . .I.-.0. 0. 0:0‘9000050I III 1000 -. 1000 0 1.9.0 0 '0 0-; 0. 0 .I 0 I 0 O 7 :0. .Q' d. I '0 0. 0 100 050000 III. 00 00 0 I .00 - 00 . .3 ...I. .. ...-II .I. - 0 0 I. I I ....0. .0 . . 0 . g 0. I I '0 :0\ 4 I .. I Y . 0 0 0 I . .8 00.0 000' I 00 II 9000. .90 . II. ..I. 600. .0 $0.0 5’0 .0. 0.. .00 I I ...-00 0..: .0- . .I I I _. I0 .. 00. III II. ..0 - I. . . II 0 .II .I . I . II . I I . I .0. . I. 0.0 .00 . . ... .50 I 4 I, . ‘0 0 ‘0 0. 0. 0.. 0..? 0| . 00 \~ 00. 2‘ 0 .I.} .00" .9 .I. .000. .10.th 00. 0 .0. 0)0o .0 .... 00 0' .I..- . v I I .0000 a. I. 0' - .L 0III . ... .' 0. .0 I .I. 00 0. .. 0 I 0’ 0 0 0 .II 0 000.. I'D 0 0 0’00! 00 1' 9 I 0 D.»- 000 0000 0 00 00 0.00.0.0“ 00.00000; Va) .00 0000. 0300' is, . 001. ...-00. 0.0 ..‘ 000 .000 00 I . . 0 I II 0.0- I00 :0 ..0 I . . 0.. II I I. I .I. I 000 .900 000.0 II '00. 0000010 '0 II :00- 0 .0..- ..II. I II. .II.I \0 I 0I.. .0.‘ . ..I. I. 00... I. .0. ...00 .. .00.. .0. I... ..-. .. .... . . . . I . II ... .. ... 400. I . ... I. . .- .... I.. L. .. .0 .I....I 00 .00 ... 00-0 000 .I 0 I I 400 . I. 0.010 II0 0 0 0 000.0 -.I I... 0“ 0 0 \.000 0" .I' 4 It 0 .0. ... I . 0 II. 0. .....0 'I 0. I I. It .0... ‘ .0 0 b . I . I 3?. I'I 0 0 II 0.10 0 -0 I 0: I 0 000 II II . 0. I00. 00 P L 0.00 0. -... I - 00 . .00 -0. 0 I . 0 090 .0 000 0.0 I .0. b 00.0 O0... . ... 0.. 30.0. 0'. 0.. .. . 0 I: 0. I. I. ...0 I... I. .. 0V 0 I III . 0 0 ..0. I . 7 . .I. In 0 0 ... . - I I . I I I 0 0 0 III .050 0 0 . 9 I‘ll. . 0 P 00 I. 0.’ 000 .000 . .30 .I I0 . 000.. .0. .I.! ..II. II. I..- ...0. I I. 0 .0 .00: .0! . I: -0 . .I.. .... I .I 1 ..I. . ..I 0.0. I... I..I 0: . II! .0 . .- .. I ... -- I: . III).II I. I. ...:. ...:I .1 I. 0000”“. I. r 0 0 £90 0! . 0. , .. $d.‘ I I0 '3) 0 .0. 0I.. 0‘ I I. .‘00. -... 0.9 .0 II 0: 0 .5 .. . -. - I... 0.0 0 I .20 .0 . I 0.0- . IQ. I . I 0 .0. I 0. .1. I .0. 0.; 3.! 90 I I I I I. 0 00. 00. 0 III. II. . 0 00 0000 00 I 00-h; 00 I I 0 .0. 03.20 . I . 0 O I 00 . .0- 0 I. ’ a 0 . 00 i. 0. 0: .01 .. 0 0.0.0 I I A .0. 00. 0. . ’0. .. ‘0 . I : I 00 .I .0 0 I I. .. . . I 0 0 I II. 0 )0. .00.! I 0. 0 030 .0000. o 0 .00 I I0 I I .0 :0 I t‘ I 0 0 V 0. 0I..- 0..l 0000 I Q. 0 . 90.2 . 0I. _ I:.I0 ... 0.0 0.0.0 .0.- I0... .I. 0 III. . 000 0:0. .0 0.0 . . I. 0. .-I I. II . I .I I It, - I 0 0 I -. v 0 I} 1700 0.0 0- . 0- I.“ 000.00000- Iwr. 0'0 t 0000... [IPI 0." ' 0000.- .- -QII 000: .I.. .0003 VI II .0 I .... I .I.’ 0:0. 00 I. . _ 0. \00 .0. .. I . 90 U I . I I . .I I. I0 0:0 06.00 '00! .II 0 II 00 0.0 00.0 I. 001000. 00. 0.04 '0‘ 9:- 0 00 ? 00.5.0».- . \00 V.d:0 ‘I‘Ill..t0’ 00,000.00II III. 0.I0%0I.0..0_‘AJII I.- 0‘ 900030....0. . .. II. I t ...0. .III..00.III 00.0 .I.-.0. 0 I. 1,. .. .I..I.....II0. 0 0. ...? I: .030 I... I . I-Oll. .0 00.0‘ .00. 01' 30!.0. .0..- If. 0 . . . . . I I . I - .. I I . .OI 0. .0 00 .000 I0 0 0 :I 00:01. .0: I. . 00 .0 0 . 00... II . ...I. 03.. 3.0., 0. ... . .0 ..0 .0 x00 .00. I. I. II. 0.0. . I 0 0 0 .I . .I I .0... 0 I '0 0..: ...—S. 0* . 0 00.. 0.0 :0 ... 00 I... . 0 I . . .00 .I0 .. . . . . . .. . - III . a I 0- II I. I 0 0|- 00 000: - 0. ..0 I .. III 0.0 . I .0 . . 0 . 0.0 .00 .0 00 .10: .830 .. . .. III. . . .I. . I I 0. 0 -III. 0 I 0 . 0 I : . :0. 0 ..00 . . . I . I . I ... I... .. - ;I .00 II .0 I. IbI ...... 0 0.) I00 : ‘0 0. II ...I 0000 II .. I ’ 0 .0. 2.0.? cm. I MIII0010I 00000... 0000 0 if. 00 ."I 0.010.002 .0: 3.9.0 0. t. 30-0 I 00' . I a. .I.. .0 Q .I'.$II.I\I.3.I.I.- ...?! .... IIYI, ... . 9'0 I0. I ...0 . 0’0 I I. 0 .90... . 0 II ..000. :0 : IIOIIII . -0I.LI. I 4.. . 00‘ I III- .III 000...... .1'00050 VII... 00' I 0010 I. 0 0‘ 000 0.0 .-I 0.0" I0...‘ '0. .0. 0.0.00 0‘0 ‘0. 00“. 2.1.30 .. v 00.. '0 .0. 00 0 ... 0. I0 0 0|! . .Ih .00 .I.‘ 0. .- .0 0.. .0 I 0 .000 0.0. I ... . .00 I20 I 0. : I. II 00 I .I.. 80. I50 .I--I l I 600 0 O .9 000 .0. 000 00II ‘ I00 . 00 0 0‘000000 ."0 $0012! I 0‘ .00 000.0 7- 0.03:0 .1. I000 00. 00.0.90 ... .I .00. 0.2 0.00.. . s 0 II I. I I - 00 .. ...! . (.I- 0. I . 3 I. .I. . .0 . I. .I 0 .I.... 0 III 00 I .00 ..0 I. .. I. I - 0.00. I. I. I '0 I0 I 0I0 I. 0 01.0.00 I 00 :‘q‘ 0 0 I... I I .- 0. \QIH.“A.0I1¢.0 [0.10 0000 ““00 ...-“01.00.000.03 (“mull-I170? 1.0.0.... 0..”. .....I I. 0.0...4. 09.000.05.53”. ... .. . III“ III-30. .. -. 0..... II. I .. I .. .... . . ... I... :eoll..0n.. than-3......“ . I . .. I “I- ...0. . Io.“ ...nI- . ..h. I .I. . ...—II I - I..0 .00 I .III ... 0....000. .IIIIrI (v.0 5:000..th .00 {of III. II ' O 0.‘ ’00 I.’0!\-Q Ill-00 '7’ . 0I.-,I0“ 0, VIII 00.0. .' .. 0.0 A. .I.. .I .. 0.00 :0 II 00.. . .. 00: .I - 09.00.00 :I . ...-O .I. 0 ..I. 0 00. .II . I. .00 . 0... 0 .I.. ,. .- .00I 070' III: I II. I :0 0-0 .0. 00.0.- 6... 00‘0" I I 0.00 . .0 I I I I ...:.-III- 6 00:..0 ...... .05... 0.0 ...-0. 00.. .0 09:.0. .....0'0. .39.... II. ... .I.. . 0 I .....r. .. . . ... ... .I.. 0.9.130 .... 0.! ...I .0 ...III 4. .I..: .. .... I III. .I v.0 . I- 01.0. 0.- -.:I0-0 0.0... ...I 00.0 I .I0.0000 ..00 0001,0000 .II.00.I.,II0 00o.00 .I‘It.‘0\..I'II 0.00:... I... 0 0 null-0000 I : 0 I..00 - 0.0 III:- . .I 0 ... -0 IIIII. . 0.0. 00.0: ..0 ...-0.! .. . .I.»: .I. . ..II .000. -I.. I ..00 0.00.4.0. .....0 .0001. I III. 00...0.I0III. 0.! II: 0. I .... 0C. I - 0.... 000 ‘\ 10.30 ...... 00 3-0-03 0.000.. .00! 0..., M100 0.... 00 0.. . 0 . 00 I ..LDI . .. 0I. .I. 00.0 I .... .I..\ .0 II .0 010 0.30.. 0. .I ... ...-.8 I . -. L. . .0...-:.. a .0 I II: .. 0001-0 .00 .I.. .aII 7...“.0000000 0 030'- 0.0 ...0 00-0... 0090 ...:PI 00,-0.0.90 76.0900. ...0 .00.. P0: 0. 0.: I .-...I I 0000.0... II .I’Io. I . I .I . 0 .I. . . 1. ...0 .I.-0 I... . ... ...II. . .0. ...) I I .I. ... III II. 00 0.0 1..-I0. I'D-II 0. 0..-00:. I I I II .. II 00 0 It. 00.0 .3 I I000 00,000. I. .I. I I 0I. . I. .. ...-0 .00. I I . . .. 0.. ., . . 0.. .I .I.. I .I. -. ... I -. .I.. 0.. . 0.: ..: . I f. I\ I... . :00! 0. 00 - l‘ I}. 00...: I'IIII IIII0 .0... 090A ..0. .0V. 00 ‘0 .0 I 0.00. '0. 000 0.. 0' .0. 0 0'6: . 0.0 0 .. I .0 .00..) 0 .. I. - 0 . I. I 0 I 0. I. I 00-, 0.0.. 0 .0 .0 ilI.0 .0 '0‘ '0 -.. I . '0 0 0 ”00. . . I“ 0008'. ‘rflhhr I 001600.00 0.I.0..r-II].“I0I..04.I.. 00.2.3.8... 0...».0‘00. I-I. I Ni!0”.000‘n.-1.0 u. I ...0-0. 0...... I 0...: 800. 0 . 0 .0... ... . . 0.00 .I. ..r .. a. . .I.-H000... 0 .L-‘I- .0: ..0..\ I ..II J I .00. 05“.. II III . ..I .v 0 0 IMIII J.‘..fl.... I 0070.0" I no (0..-'0“. $0009.00 . 0.9 II...I-. ...: ... I. ...-u .. .I.-...... ...:.-101...: .n Rafi-...:.“... ... a ...-.I....»- . ...-.I.... ...... ...:.-u.- ...-.. .... ......I,-...»-.....I...... . .........-.... ...-2...... ...-...I .... :- .rr. ......- ._ .. . .. an... .I.....-.......... .........I.u........... ...I-......_.:....»..............-...:.... I 0 I V 0. '00 III .0 00:0 0.0“0 4 00.0.0 -020. 00 I 0.. 0 0‘ 00‘ II! I. "II .0 0 00. I. Y II ‘4' 00-. . .0 . D 0. 0’, 0.00 I 0 0: .II‘II. I... 000 I L. ’p 0. 0 ...:.I I ..I 0 III... 00.. 0:00..- .00 I. I 0.) IIII‘KI' .000 I... 00 .00 . r. . II! 0. l I... 0 3.00.0 0 .0 .I.. . 0. .I.... I... 0. 0. 0.0. 0 I. 0 . II .. .... I ..0 .I. I :- II. 0 .0; . I .I. 000 .. 0..II I-.. II 0 00.0000 0- 00. .0 00- 00c 0:000 0.... . II 0I.. 03 -0 v'I 00000 .I. 'I. ..III 00.0. ... 0 .0. .0. 000 )0 VP I?I.. ...0 .I. Q. .0 .70.! 00' ,9: ..I 00 .0 . .. I I I In: . I . .0 II . I 0004 0.. .0 31300 '0 ..0 .- 001300000‘ I00 0' ..., -v-II 0 0 0 0 0 00:00.0 .0 0 O\ 00 000 00 00. I 00 0004 . 0 0.00 2'0 .000 .5 0,00 I.I . 0 b 0.. I . I r I 000 . . I I II . . . I0 0. 0. . v I: x. . . . I 0.. . .0 0 0 0:00 . I III. 00 0 0 0 .00. 000 . .0 0. \ .I 00 45.. 00 0200 .I O0 .00.. 001‘ 0.0 ...-0 II ..00. II .I. 0.0.0 ....- ..00 I - . .0 Q. I II: I I0. . . .I ‘I ...-0 .I. I0: 0. I 0 I- ..0. 0.. .000 00. .000 0' 00 -00 0: IHIIII .. . I0.000I \III-I ..0: .90: 0:0... .0 .0 1.0.000 I.- ..00 ..II .90 I...- -0 I... . .. . .I. s. I . ... I . 0 .. 000 0. ...0. .0 . ,1 I. .I. .- I .I. ...I f I... ..0I .-.. 0100 .0‘00. 0 .00. 00. 0.0. .0...’ .0 ..-IIIUI I: I\ ....IIiIIIUI Ir .00.. 0. .I.:II .0ITIJII-I 0’3! ... I I0. 3.0. I. .. -- ..I. .... ..I ... III... - ... I .I .. I .I... .... I. .. .0... I0 I - 0.0 ... ... I. Ilsa . . A. I. 0.340}... I .11 I0 - II 0 . 00 .0 I 0 0.0 0 .0 0 - . 0 . . ‘ 0.0 0.0 ..I I. . J . I 00 ’ II 00 I0 0 - 0 0’ II .I. a. 0' I0 .0 III 0 I - 000 I.) .0 30000.30.- .I.... 0.0.310. 0.0 I... ....)0! . :II...0 ..J‘UII.I ..I.....0. I s I... I . II! .0. ..00 I! ..I .9 I . III I. II. .... I. III 9' 07-0.. 00 00 0. 0:00. 00.. (v. ‘00 000 I0: .0 I 00/0 '0 0 I." 00 900 I. 0 J0. .. 0 III 0.0. ’0 III 0. I :.I . .II I. I - II 0000 ...0 .0 0 0 . 0.. (II. :.0 - .. I. . .0 0 'I . - '0 ' '0' I . II I . n 00 0‘ .l r. ‘ I. .I.? 0.0. .00; i. ‘0 . o I I. 0 \00. I I 0. . 00 I 0 0 00. -. I I ... . 0 - n . I0 0 ‘ 0. 0. 0 00 0 a. . I- ' ... 0‘ 0L 0 0 000 0.I .0. .I. 0.I 0.0 . 0‘ s 0., \I 00.0. 0 I0. 0.0 I0 . .I. . 0 . . l0 0.0 K .00 0 - 0 I0 0 .I. Z . I 0 . Iv I III ... .0. 0 . I r v. . 0 II. 0 I000 0.. ‘I. I ._ .000 :I 0.01000. 0.0 00.!0..:.0?. 0I0 .0. I .- .90000\.00‘00I'0)1090' l0. 0..-’2 .0’ 10., I“.00... III, I)... .N.. . 0 0. 0.00.. 0..-I 30.000 000 .0 II 00. ..0‘.‘ L. Int ‘0. III... I .0 II I... .0 .0: ... q 0 I .- I. 0I.-010 0’0 (0900-..0000011 1’00 .I.-00. 0010 '0. .- ... 0II.I. .I I. I 0. .... II 0.0 .I.. I0. :0 0 ...0 I... I. .. - ...... .-.. .I. . 9. .00 .I.. .0... ..i 0. . . - . ...... .... .. I 00 . I... . I .I. 0.. .I .. -. I. . I .0 I0 III I..I 00..n I. 0.0 0.0 I... 0 I. 0. 0 I .. III '0 0' '1 00. I- I .‘ .0. ..0.‘ 0‘. 0. 0 I.- . I I . . ..‘I I! .00..0 ...II 0:. 0 . .6. 0.. I. 0 0’ .I .I . I .. I .0 I I: v 00. I.) 00 00.I ..0 A 0. 0"- 0'0 .10 II 0.00 - I .I.. I! . 00.. I040 I...-00. 00 .-.0 . . I. 0.. 0. 0.... 10.. .0 I.I.. .. 22+ .I 0..! o I. .. I... .. .I ..0 ... . ..0 ..I I. ... . . ... I... I . I III . 0. III. ..II I ..I III III .00 -00 III. 00. .I I 0.00:0. 0-0 0*}: 00.. 000 3.000. I8 00.? .000 .000‘00 0...Ir.,-0 ’- s.. .0 . ... I... 00 .I.. '0 00.0 . . I - 0 0 0.. .0 .. 0 . - 0000.. ..II I I. .I I. 00 0! 00. I. .0 .0 III: .I.) .0. 00. .00 .I‘. 03...:- I.0 .... IV 0 . I! -0. 0.00 NIIL 0.000 0" ..I I0 :0... 0.0.. 0.. 000%....00? .I-.I {...-.I I . 0.0 19-.0.’.I I 0 . .0... . I . 0_' 0.0 II . ... r.. I. .. ..I .0 :I I III I. r... 0.0.0 000 ...0'0090000... 30 l I 000 I 0 0 t 0‘ 0‘ ‘Is ‘ g ‘0' I... 000.- ... 0 0 Q a I ‘. 0I.. .0 . I. II 0 .a . I0 I - I .. I I . I0. 0 ' . I . . . I00 .0 . ‘ .00 I. I I I..- - ..0 l: 00 ... 00.000 0.0 ...-... “...-.....qu ...: ...-I... ....- .u.....-.-.-_......... .....-..-..“......u-. .,...a-................ .13.... n... 3.2.23.3...- .x......_.... ...-...:- ..I...-.u......... ....-. . ... ....- .-L. ...... . ._ ...... ...-....- .. .- .. ...... .. . ...-z ...:.... -. ......- I......-.:....-:... ”-..--...:.... {-...-I..." ...-......I. ...:..I.-..I....._. 0 0 II I 0 0 . 0 ..0 0 . ... o . I ' -- ..I - . . 0 . - II. . . . I .0 o 00$ .. I .0 . 0.00.. 0. . _ ....I . I 0... . ..I ..II I: 0 I . - . I. 0 a 0 I 00 . .0. I‘I.0II I0I0. . .I 00000 0 0 00L '0 I. 0“”. 0.010100. 0.: 00.0 .0 00' 0 ... 0I. 0': .0 7.0 90‘. 0.0. 0 .6- .00 .0 I I ..P .I. .00 . ... . ..I. . I. I.- I 0.0 III 00 I .0 0. 00 .I. ..III £00. I ..- 0.07:.00 '4‘.-. ’ 0I: Y III! . I0 0 I -0 0. .00 0.. . ..0 . 0 ..O .I. .. ... I... . .0 ... 0 a. ...0 .. I. 00 00: I. ...I I .I _ . . .8. II .I., I. 0:.00 I.I III. a?! 00 .0 0:, .0 I; . : :0. 0‘ I. 00f ‘00. ..0‘ .0. I -0. ‘0.0 II 1’0 0 . ’5’," CI 3 I1. 9 0.0. .0. 00.0 .000 I‘ . ... I .0 I 0 I . (I V 0 p 00 I .. I I, ‘ o It, 0- 0: 0‘ .00 V I0. I - A 0 :I. 00:. 0..-0’00 0 .0 .000. ...I 0 I0. . ’It’ . 0 I. .0' I . 0 I ... I I I 0 I . . . .. -0 I. .. 000 I. 0. .Io- \ . . 0 . . I. ' I 0. 0 00 d. 0‘ 0 ‘0 II: .. - . . .0: 000.. 0. .00 .0. 0 I.. :0 .I. II 0.. I 0I 0.. .. I. 0. 0 .. I I. .1’ . .0 I,- . I ..0. II. - I . .1 .0 I00 I .0 .0. :00 .0 100 I0. I. ' I .0 .0. ‘. 1‘00 00.0 \-.0\\0‘ 0‘. 00..“‘ .0 .V 0.0. 00.00, 9000. .‘.O 0.00 .P 0.0. 00.. I . 00' 0'0. III 0:. '0 .~. I I .“0 0.00 I00 04 I 40. I0 .I -0 . II. II 0 I .5 ’ .00 I, ” .0 'II 0'0 00 O0. .00, . . 00 . \I I. . .' I I0. 90 . 5 3.000 .003 030-0 00000. 000 0 . - ... I.‘ 0. 0 . 0 .0 0 I 0 . . I. . I .I. . .. 006 ......0 :70. I . I. 0. .I Q . . 0. I :I .. ‘ .- d.‘ I . I 0 0r II 40.. 2.00 0 00.. 000.0000. .IHII: .00.. .. .I....IquI 0300‘." 0 H 0 IIII-III. "01.0.0010”. .I..H0........IH.0.I0.5.30......0..!..000.0.I “09...... .I....0 N00. .f........p-.vr 0 .I 0 .. 0.0... . I I I000.- .. .0. . in... .. ..000.. ......w No.03 ...-.33... 0. ... I I. . _. II .I . - ... .I.. 00.0.. nu .. .I. .- . INN-I...- II0I 0..-.I....IHI. ..III0000; IIIfII IIrImSIrI-II HUI-“LII.“ I. 000. 00 I I- .0 0'- 0.0 0'0 I. LIIII 0. .IP. 00. I' .0..- .. 0.0- 0 . 0 00.? I . . . I. 0 ...I. I .010 .. - I I .5 I .I . . . 0 0 . .. .. .0... )0. .0 .0! [0| I .0 I0-.. I It. 0 00.009 0.. nan-...:- ......4~.-..-.0-1.I -....r. H... ..1..-.._ ...:.-ulna..va...-...m..i.I-........ -..-ark .....I........n.3. .....7u....m........... - .- I... ... ... .... . .. .. ...-“.I- .I.....-- ... . ...-... ...: nun-.....rI I . .... .1: ...-...... . . ...... ..I. ...v. ...............I.. ...-...“. 3.. ......o........II.:..-... ...”..n .00 0 00-... 0 II I. 000 I0..00 I 000.00.... .(031IoI0 30‘ .gIIf.I.t. 0.00 ...-p3 0..-00.0.0.1). I 0..-0.0.. . . .0. 0. I .I.... .90... I I. I 0.0 -.... .- . I: I0 ...:.. . . I I -“ .I. I VIII“. 000 II. 0 “II-0.. 0000.000 IIIIIII’IL 00': 000) '09 .01 O . I ' ‘IIfiOIII'II 000‘. 00.0.. 3‘01: 05...! 00.. II’Q’III‘ .000. 1.00 It 0.0.00. 00 ... IEI 0 I. . 0.. . 0.. .0 0 .I .10. .‘I. .0 .0. .0 I. 0.0: I III‘I 0.0. .. I0 . 0000.0. .. I ....P .000 II 01 I 0.II.I..I 00 J'QAII’0 00(50001 III .0 \II‘OPII It I 1 0“ I 00. .uoo0 00 0. ..._%.}000...0 0.0 .0- . 0' ‘00. 0.0... .0 .00. I I . .0 I ....0. 0.x. I .I .I ..0 .0 . ... 0 . . .0 .... I .0. .000 ....I I I. .I: .0 .III I. .0. 00-. ... .II . 0.0 000 .00 (I 0.. 00.0 9'. b. I. 00.00.00... 00.00. 0 00 00 “"0 II II- 0 0 1194.03.33’7900. 000'). Ivy-000.0.- 009000000000I .0 .0“x.000.0.0.0..-.0huu00 9.000. ’0 . 0.0.00.0..0_00"0.W0INI 0.0 .I.. .1. 0 .00.. 0.0 ”"0... . 0..-I. 00“ '00 .IB 00 0 0 I“ .0 “.9. vaI .I . I. 0.0. .I. .70. 0. .I.. . .IHL .. . II...‘ [I ...-MN .0000 0. .. III I- 00. I. In . I ”.00 00.: HMHIIINI 0'- II 0 0-I0I.00..Iu.-u00 _. .000 I .0000I0000 H. 0.00"! (”00-00 ‘0 00.3.0.0.0 .0 .000 00.! 0.: ‘0. 00. .0 I‘ls .0‘ 3 . .000. 0.. =0 0 ..I{ 00 ‘ I'I...I 0. .. . I I . ...II 0 \I . . 0 II. .V . .00 II. ' - . I I. 0I 0000 I I. I I0... 0 00 0' 0.0 500,- .' V'0 II .- I. 000 I 0.. I. .00 h 0.2000 ..00 .... 0.. .I.? III 0 .. I 0 0. a _ 0 . . ...I. I. .... I . II I - . II. 0 .I . I, I 0.- 00 .0 I0 I00 .I. - .I 3‘ ’0 \ 0%.... 00.00.“ 0 0M ’..!0'. -|.0 0 II. ..III} (.0000 \‘II... 030.19%..."- MI 0. I00 0|II ,..000.00._.00.II040‘\-0!..010..Iol .I0I .L.0 VIII. 00.. “0“.” 0 00‘ ...00 . .I.-0.....“ III-0v... 00 00 ... 0. ..00. .. 0.00. .I.. 0I 0,...0. . I” I .. 03.. .P .I... 0 ..H.’ .l I I I .U’ 0.- . .I.. .0" I0. I .00 .0.» . IEHQJIIHIII 0.0... -I-00 0.0.0 0 I a II60 . \IoI .. I... I 0 0I.-0; \. . I. 0 00 I; I I' II . I . . - 00 0 ' I 0 .0 0 I . J'IOi ... . 0. 0 ’I’.’ 000 \00 II .. :.II .I. 0.000 . . I00 I 2040003010... 9. 0I .00 000 I I 0:0 .I.... . 00... I 0 ... I6 0 0 I - I (I ..- . ... II .I .I I. 0.! II '0! 0....III VIC-0000.: ’0. 0'. V I. . 0‘ 0 0 .w- I. ‘0 I D I 000. .000 0“ ...OI 3". ’0 II. . V04. 0. .0 :0.0 0 . .0 . I. .‘ I ..II .00 $00 I 0 .V II“ I. I. 0: ll‘: vlo 0.0. O- 000 .0: ‘0' 0 0 0. 00 0 00 '0’ .0. 0 0 0 II. 0 II . t . 0 t -I‘I 00 .00 -3... I0 I I 90 .0 .0 .000. 00: .I. 9 .. o I ... .I. . 0‘ I 0 I . I 0 . ... I ’9 0 . V . ’ II I 0 '0‘ 0.. I h 0 If II III ..I I: I .- LI. 0. . 0.. 0 00 :0!!! '0 “It. '00.." ”.0003... .IHIJVI:.,‘0.00.00‘I 0 00.“.00.’ I 000... “‘VfiAIIU . . ’I’ Q'IMHOHQII 00‘. 00.0.!0004005.‘ .0000. . ”0.0.000 ...-.000 a $0. 00“. ..30.‘ ...-IV!- . III .0 I. 00.”. I: .1 .00 0 ..I0000. ’- 0.0 .0. 0” . .1 0'. .. .I I II 00 .0I.0'. ' I 00.1. 0.0 0.00 :0. I 000.... H I000 I. 00 0 0 0 00.00 I .0000‘k'a our.” ”’0HOIH. 0.0 .I '0. III 0. .I‘ IIII. I -I. ’00004 -00 00 .00 .0 0...!0030018 .00? 0..... .I. .01 .... 0..!!! .I.....0.-..0 .00 20.0 I- ..0 I. 0 .7 0 0. . .I. 00-: 0 . III. 0 .0.“ . I.’ .0. ...I I -p I: 0 I I ..I.0..I.,.II-0 00 III: 0.0.00I-0 I0I0.I04 .II . .0 v. .... -00 I]... . .II 00.0PIISIIIIDIII006 ..II 0.0.0.100. 0.. .. .001. .0. II... III... Ir..0. . 0. .0. ...... ...:.-0.. . I .0 .... 0. ._ P I. ... I I. .... .....I 0. v ..I - I :00.- .II0I’I II. .I.. II .00! 0‘0 (or I..- .I.. .Ill 0.0. 0.\ I 0H. :0 .000 Ion“?! 05:“! 00 .. 3.000 “HUN-“00.3.2.1. bdhhxx0I00hILL .IIIIHIIII‘III03. I ”.300 . "00...“... I. 00..\00....I.0.-\I.I. I... I... I0.- u........ .0..u. 0H0 0.0 I .0 u“. ..0- .. . .004. . .0017. .00. 0a 0.0.. ..I I 0]. ”3.000....- -.. .0.0I.'..u..".II-I.I 0.. II: In.IIIIIIIII .. no.0 0-. 00000. 00-HI0‘IIIUOIQHIMNIIvIIIM 0 0. |.- -00 I T 0 0 3" 00030.00 00..h IV 0‘ 0x00...0000 0.00. .....I 00.0 ....I . I‘. III. . I .. II. 000.... ..02. I. 0.. I I I... . . I 0.0. I. I. 0 .. . ...0. :0 ..- . .III’.IIII .. 0.1L .0000.0‘I0: .00. . III 0 0 0 I 0 I 0' ‘. .I 00 I- I ...0- I 1 I ..‘00’ I. 0 .. 0.'0. ‘301‘0‘ 000 ‘0‘. 9 . J I. 0.0“0 00;: 0 . Q..0 . b . I I 00.0..0 00 000 00 ‘....00- .30... I 00.0 I ‘ .. ‘0 .‘ . V I- 00.. ID ‘ 00 0 .00. '0 I (00 _l.0 :0 . . I . 0 I . ‘ - 000 . I 0 0 0" 0.- 0 ' (00 'III 'J‘OI'P'IO II I. 000“ I. .000. .1- :‘I' t.!‘ 0" 0-00.0.0 .000. Q .0 0 000. ..‘ 00 0.... ‘. . 000 I 0 00.. 0 0} 0 .I .0. 00. ,0 8 0.0.. I 00. I . I‘. 0.. 0 0 ,II .. I I. 00. ’04 00.. -.00.000 -II:I I0 0’0 0' .... '0 I II. . 0 00000 ' .I. 00.0 00 ..I .000. 0.0. 0. 00 0 0.. 0I. I 0. .0.- 0. I .. I . 0‘0 . .. .I.. I I ... l: I .0 I. r 00.0.. o. I I) I 00-0 00 I. . 7 0 0'. .-110 III '..000.0I..' . .0 III: .0003 0. I..- .0. 0- .109 0:0 II... ... ..I .390. ..00 .I. .0. .I .. . 0 I. ... I - .II. .. . 0.... I .. I .I I 03.. I I I .I. III. II.I: .00 III :00 II .000' 0 I I I I III-0 . I- 0.0! 0.0.0 II0 III-II I. I... .I 0.0-. I!" .03. .III 9.0 I. .000... I. . ..s. .0...- I. ...-0 .000 0.. I... III..... 0.0 ...... .9. I 0 I. I ...... III . I . III: \- .I I I0 I . 0.0 ... 00-: .I» .9...- II.: 00 «III-II: :0 I... I ..: .I.P0 r0 I. I '0 I09- .0" ‘00 I. ‘VI (0 .0, .0000 .00. 000-0 0.0 0?. 20. 0001. 050 ......000. . . 0,00 .0. 1.0 00.0 0:0 .... I. 0- 00 .0 0. .0."... ’I .00. 0..\:.‘: II II 0:r0.l 0 00I.-.0II00I00 .0 000 0. . "'0 .0' 0.0 .0000 . .-...I. ...-.... ...-... .- ..-. . I...I.u..-...:-...... .I.............-....u.- ......u. ...:....L"... ......n......-.......-z......-z-.- .v..“..,...-... ......-.........2 ...-...:....i ... .... -. . .... .-.-... u. .. . ...--I.... .. ...-...... -.. ....- -. ..- .I.-......ns..-. .. v. w ......-......I...........v....vx..-.€-...qI. II - . I II. II: ..II. . .0 0 0 0 : 00 0 0 .0. . .. I» I 0. Q I. . I . , II - .0 .0. .0 II I I 00 .0: . I 0 I L0 II. 0.0 -. 0 .I "on II .00 .0 I0 .I....I‘ 0' I “”0050. .00. 10 0.0.0000 .0 ...\ 03000.0" 000 0.0.0.. 0 0.0.0.300... ...:.»...0 0IH00 I0. .0 .I I III’.I I ...‘00 -I ...00 I... O. u. .I I. .J. . 0.01.9“...0.’ In I. I fuIQ I ... 0 ...-II I... ..I.- 0 . . II . 0 .II’I ...l.( I I. : I I.I0III III. II of 1000.0.- IID...I0I .0»! 0000!. ..0 0.000. .lOOI.CII .00: > . 00 I0. IIOL I-.. I II"... 00. I .I. 0-be 0000...}VI..10.0 . ..I-Il.0u0\. 0- 0 . 0 . 0m}. . I. IHII-Q .I.-0‘. .....00: ..u..._.._0€l. II .- AI Iv .0.. I... “00 ... ...: .0. . . ...:.; .I.. I. II. . .... 0 I 0 0.0.0.. I .- . 40... II. :0“ I . . II I... _. I I... on \Vnhb. 5.0: III... I 0. 0 0.0.0.. Y 5.... 0 .00 :00 0.00 . .0000 0.00.070'0.0.0f00 ”000 ’00:: .IIVINI '00 I . 0 '00 . 0 .00. .-. .00. .0:0 0000 0.00 0 0. ..00 :0-7 00.00. 0'. ..‘0p’ 20.- . 0 I. ...!I I0 00.0... 00 .I.. I 00.0 I. . . 0’. AI .Il_0 ... .0.0 I I .I‘. I . r .0. I!» II c 0 I00: ...0 0.0-0.0 0 0 0. IIIQI-I .9 0.0 .030. 0" 00. \I I I. II I- ..l. ..Il» I '0 ...00 10.... 0.0.000 00 I ..I. 0 I. 0' -0.. $0... I. . 5...: ...0 .:.0._.II. I . I0 0 ..0.0 ”I. ...:0 I I 0 . _ I. 0 ... 2.0. 0. I.. 0- II <0 I I0 0.0. .0‘0 0DI .0. 0.00 II! .0 -0. 00. I 0. 00 300.0 00 1’ I0l ..I. . 0.0 0.0.000 0.1., 0 0'. .0.1 .0 ..II .0 I .0. I0...- - 0) 00 . I 0.. ..0 I I 0...... I I 0 .-00 00.00 0100 IiIII: I . 0.} 0.. P .-I:.. 0- IIPI. .III ..II.II .. 0 II '0 '0 I'I.I.r.' ._ I .‘Ioh 0 0 0 0i 0 .000“. .I.. 00 00. 00000 \IIIHQI“BII‘0......:.I-... .- 0— II I .0. 0 0 I II \0 - 0 .0 0 0 I. .0. I" 00.. .. .‘I t. 07.. 0.0 .. . Idol 0 . I 0 .0 0 ... I .. .' 0. I 0 I . . .- . I .l 0 .0 I I .0.’ :' -0 0 I 0 - I. 0'- 01"“-0. ‘vl I0I 0 I -I I: I. \ L 0 0 I I 0 . 4‘. I0 . .0. 0. \I .0 :0 . 0. . 0 )I 0 . l I I 0 0 0. .0. I 0 I \0 .0 I0 . 0 0 I 0 . - III-Ix. :0. “I . 0. 0 I-.0 .\ “UN 0000.. In “.I..“ -0...0 tuna. .0000 WHO .00... . . I..." III 0. ..I......I 0-0. I! .u .0I0 Elf-0 ”0.. .I0.’I I - 00..on ... 0”“. ...0-00 bani... .0000. ...u I. 00.0.0... I . 00...... no 0 I0“ . . . I0.0.. I... . 0 If. . .0- HII .00I III-IIII.00 - .._.- 000 IIIIn0I0' II VIN-00.000?- I IIIIIO (.J'I' IIIIH'IIJHI- ‘HI .. I. III 0” 0 I00. 0 ‘.00 I . ‘Iv'... .! .900 00 300 ...-0. III 00 . - . 0. .‘00. I..I 0000.0 .0000 .I.-... 0 I . . .0. I I. 000.. I 9.00. 00.0I- :00 00.0. ,I .. 00.00 $0.0 I.000 'II.IIII 00.. 000 0000 :00- .0 II I III . 0 I I III . 0. .0 00 00000 .‘0 l000 -.. . .0. . I. 0 0.0 0 0 I. 0- 00 0N0 . :I..00 . I 0.0. I...0 0.. (0 I0. ..0 I .. - I: .‘0. ...! I 00 I . II .0 \I II. 0.90. I 0.0 '0 'P 0:0. .0 0 _ I: a A I . o . 0 I . . I0 0 0 . I . I . 0 0 - I. I I I . I.. - - I . 0. - . I .. I . I . III. [.I. nun-.....var. .. ..I. . ... u” ...-. I....... ......I..........,.-.- u. _...u..l....u...... ....- . 2...... . ...... ...-... -.I.... -. .H 1...-...... ... ..- . . ...-.-- ...-....- -- . I 33.3.... . LIZ-.... ...-...:.-.. --.-..-.......-......u.u.-.-.3-5-1.”- . .. 0.. 0 . I .. 1|- : - 0 I0 . . I 0.. - 0. 0.. 0 :I’ I I I. . . I .I . ..II0.|0 0. I . A! 00 III 0 II .00 0 00 0 I I0! I. 00 l. 0) . I 4 I000 0000 (00' 001.000.: 00 .05. 0.5.02 0 I0. .0 0 I... 0 0‘0 .... 0 II. 00. i .000 - I I. I 0 I. I -I. I 00 . :0. . I 0 00 0 III 0. .00 0 I I. . I I. I . . I .0. Q I 0 . . o .i . 04 Ill . I I i: . ... -OI ’ I I I I- ' (” OII’ 4' 0.. Ya. ‘I I' I0:...00:l 0. .‘I 0'00"- ..000000I050 .t - 00' .o70'00. ‘00 \o.{. 0 I II 00. 0..00‘1 .0 0.0 I0 ....I III 0..-0 00 0. I. I0. 0 -.0.: .II. III .1050 0.. ... 00 . I0. .- 0" I I‘ .i 0' 0. ll ' 0. . 0 It 00’ I 0' '0 «.-. I II 0.0.: ' .I (I. .0.‘ I I 0 I I l 0.0!. 0‘ .00 I I .0 I 0 I I 0 . , 0’0 J I. ..0 f 0 II I I 0‘0- 0 ‘ .I. 0' 0... 00 .0 ‘0 .‘000? I.‘ 40:00 00¢- I ..I II- 0' .I0 ’ \ 0 .0 '0 -.0 I0! '00: 00 00 - 0. 0- . II.I - II .:.. .0 L 0.. '0 0. 0 .0. .I - 0 I I 0 II 0" I. II I' ,II.. 0.00 I’Iri‘l) II0 . I I 9. . I 9. P0. 0 . 0 0 0 00' .0 . 0 I I0 0 0 . I I I. I. I . 0 ..0- .. 00 I 0- . 9 III 0. . 0. I I I I . . ... 0.. II. I: 0 . 0.0 00 , 0- ..... . a... .I.... I.......I.-. .I.-...... . .:-.-.I.I.-..: .....hI.......:I:.-u....-- .....2...a.....- . . .u. . ...........r-....... ....i...-....... 2" . . .I.... .... +8 - . .....u .. ......I _ .1. . I: ...:.-3.04.33... ”...-v.1... I .I.-.....ILWI...I3--.._.. . 0-I I I - 0 I. . 0 .00 I 0 I - k. 0 0 .0 . I I I 0 0' 00 I? . I . . . o ,0 . . . 01f I 0:- 0 I I ’ 0 . .I .I - 0 I I0. I 0. I .0 0 0. .0 0 II I. . - . 0 .. IF .0. . - I .0 0 I. . A 0. 00 I) . .000 0., . "-0.”. 000. 0. I 0.000 .. ".I.-JIM? 0.0 III-'0‘ F :00 \H.S .00 2.05.00 . ‘0 I 000 WI. 0 0 0II.-. 00001.- ....0. 000000090 0 I i... 00 0 I .0. I. ..IIII. .II’IIH :50 0k...I I I0 . 0 I e. I -I0 .. I I ’0 II I. u“ I. I... 01.00. II 0 .I.! 000.0..00. “'6". IIII I 0I . I 0] II .0 I00 00. I ILIHI. “100-0 0.0 003.0 ”I...- 0-140". IIIII-00I0 . . I I 0 I I I. 0 I . . II 00 0 I “...-a. ...:.-.... ..III ... ... ...: “ivy-......»- . ..I.....I....-....-.n..us.. ...:.-....) uni.- .-.....u.-......_.... ...I ...-.H-Infu: . . . .. .... . . .. .... ...? .. ... - ...... ... .. - ... . 1..-.5.“ . ._ .. -.H.....;.... ...-.... -. -..II..HII.I.I.§-.. In...- I. ,00 .0" 0.0.- 00 0% 0 I I III0II -: .0 00 00 1... II I 00. III .0: II 0.. 0\ .0 . I. . - I I. ..I . .I. I .00.. . I.. . .I III..-:. I I . . I.- - .0‘ .00 .0 . .00 10 ...IC .-. 00 0 I0. v...-............I RT...- .....1.....-....-.... .....- ...-II...II......- .. ....n........:..........-. ...-H... _ .- ...:.-run..- ...:.. ...-.I.. . ...". ...- -.. . . .. .. - -..... uni-.I.... .--. -..........u._..n..n.I-.. ...-.n.-L.........-. J... Luv-.....- ......- I I 0 .0 0 0. 0 III III .I .0 I 0’0 0:04 00' -0 I r '0 . '00.? . .I.-0 -0\ 00.0! I .I’I0 0 00' I1 . 0 0 I I - I.I .- I 0 I0 .0: 0 I I0 . A 0 II 0 .000 :-.II. 0 I, III I 0. '0 0'. v-o: . III 0.- 0II -:0 I I... .0. 2.00.000 '. II . .0 .I. 0... 00 .0. . 000 0 I I: . 00 .I. -I 000- 0 .. 0... . I - 0 . - . I. I I .r 0.0000 ... I-Lai .I 01.10. 0.0 -0 00.: I... . II . I _. -. '00 0I.. II ‘0 .00 0 00 I. '0 ..II Is} 00 \ I 0'. I: II: I ... 0 . ‘04:! 0 .0. 0 .I I. I0 . -0 0 0 00 . 0- IIQII ‘. .0. It. 0: I: .00 0- g 000 “I: II .. ..II I” 'III . 0.0I3.0 . 0... . 0. I 0'0 I. ..0.0 “-300.10I; 0‘. M 0....00 I IH0I.III.I0.0Ir0I0 .0...n.00 0.0. III 0I....IIJ. III . .I0 ..0...00...IU0..¢I .I I .II. ......00: I.- .0.-. III 00 00M. Jr.” 0\ I .V 0 0 “I... 0 .0 II I I. I I _ I... 0 0 .. I I... ..fII "Ind-I00:- . -.-..I...0 I . 0.0 00000! I000 INIIfOJIV! I \ _0 I00. 0 0 '00 . .ll. 00 0.. I, 0 I .00 .0!- I I I . I 0 . I. . I .0. .0 00. .II I 0. ... I 1‘ .000 0 [III .I‘ 000000- I0 .0 Y. )0 . t 0‘ . .II’ 0 V .I0 0 .0 0000 0. 0.0 0. I '0‘0 I. .000 0.I 0 0 ’0 0:00 I. .\\ 0.0,. 0 . 00 ’00 0.- 0 I s 'I II ’ l 0 0 . I 0. 0 .0. I ' 0.- ., 00 0' ' 0|)” 0 I .I . u . I I . . - . - -. . g .. I I I . . r . I I II III 0 .0 IIII100 I 00- .III\ .00 .0 .0 0.. 00 0010 00 .00.“:000 . 0 '00 II.I ..uI. 0:. 0':. I 0...... ...-I’.0 00500 I .I I I 0 I I .00. I. 0 . 00:0 ..0 .0. . II. II‘. I: I'M-III 0 I 0.6 .. ... .00 . 0 . 0 . I II... 0.00- I. .0”: .II‘ .0 . - I.N . ..0 I u. I 0:0: I. I . 0. .:.. II II..- . I . I 0 "-00 I I I.000.“ I 0 I0f0I0I0Il| 0'00- ‘0‘0.'0.I)I.t "'Ill Ire-...“... . II .I.-... I . ...-.... Id .I.“... .-.:.... I. ..I.....I.-.J . -uI... ... ...-u: ...-.....s ......- ..s.. .I .-.:.. .I.. ...... ..-:.-...: .. ... _ . . . -. I. .... . .- -..- I H.- -.: ... III-.I.- .-.-II. .I.-....- ..I II 0 II. 0 0.I . . .0 -0 I II! 'VI' 00-..» .0 ..‘00. I! 0... 0 0 0 0 . 00: I:- I. . . ...0. 0.. :0 .0 :5. -00I I, 0' III I .. 0 I I -I'I-I I .01.: .0 Y’- .I 00 ‘0‘ 00 000' 00 I . I I I I 0! 0 0 0 . C \II 0. \I .‘ .. I00 I 0.. \ .0 I . I - 0.. -I I . . I 0 0| -000I0 0. I“ )0. WI 00 0. I: I. .0‘00 I I 00 I 0.0 0 04000.00‘ . I..- . l‘IIQOIn‘ 0.0.000. 0 I5 .IIQ'. P‘. 0 ‘0 0'000 0 ..Q. '0 "III. >000 I 0‘0- 00..." 00 I”..- 0.0.. . .. H.0r00-0 III. I “I ' 00.00.. III“... I 00.00.0- 00....0 I 0:0 ‘ 0 I. I 00.0..0 I :0 I.” 0 I 0. 0.... .I. 00 .I0 0 00 0.. 0:0 I I I 9 \l' flu“ 0"”. I0 '04.. '0000’0'.”0".0|.'. 0:00" 0.:0." Ft!” 0 0‘ 'I‘ 0.0 0 I.’ .0 . . 0'0 L'. .000 - 0 I 0. 0’ 90 00: t. '0. '. . Y I 0 0 .0, 0 I . . I I ... I 00 I 000.1 I I. :0 II I 0 I I . 0P.I I - 0 '00 I 0' O ‘0 I 0 . I II .- .0 I II o I.- I0 .0 I0 I . ’I 0. I0 I. I .. I. 0. 0.0 _ III .0 I I 0 .000 I. . - o 000 II... :0' I I... 0 I. - .00 - ‘I.I 00 .0 I0 0 .0000 V .0 .0. 0001. 0‘0 II. . 0I. 0.— I700 .000 I .K .0- ..‘0 ..I- .. .. I. : I. 0- I. . II0 I. 300 0 .I. . ..II - ... 0. 0 AV\ r.- I II I III. 0 I 0 0.0. ,0 0., 0' 0 0I| 0.0 .I‘. I I'II I0 .000 0.00 000. .0 I. I000. 0-. Vol 00 .I. 0‘ .II 00 I... 0 0. 0 \I .. 0 I: I II 0'. . 2 II I 0.! 0 -.I0 I0 I - I II III. 0.. 00 .00 0000': “I :0 00.": 0.00.0..OI0. 'II0.0 o ‘0. 00000 IIII 0 ”04.0 0 0 I00 I. 000.0.‘. ‘0 0 '00:. 0 .0. “I00 IHII; .0... “£00 '0 .00....- ' 0‘00- . .00 . I“II.0"I ." 0I.H000 . . 02u0 . I I I 0..l 9 HII . 0’00. 0'. . :00 .0103 .0b 00 0 I II. 0' . 0 I 0 I 0- I00 I 0..! 0'0 .“I I .rlnl’l 0 OJ" 00'0” "I 4 '0"'0‘I00000 0. I \ I0 I- - -I. I 0 I. .: ... .0. I . I .- .Y ..00 0 II .. II .0 ..0 .8 - I.-. .P . II ..0 I or .I 0 I III- I 0. I 00. I. 0 I I|.P II. II 00 0|: III. .0 0.00 0 -0 000.. 0 l:\ I. .I.- 0 I . . .I. 0‘ 0 ...0 .0 0 . 0.. .0 0’ I.. 0 I 0I I . . ‘ .I . I ‘0 ..r I I .0. I .. I 0 II I 00.0 0.0: .0 00 000 ‘00! 0’. L 000 ‘0 .0 b' .I. I 0 0.0 :00 II'OOIQ 00 I000 0.0 0 I 0 .000- 0 ‘fil I . I,- 0.‘ I 00 II. 00. 0.0 . I 0 . 0 0.0 0 . a. I.‘ 000:0 I III 0 0 00. I ‘0 fi 0 (I ‘ .00 0 ..I. 0 I0 00. 0 ’0’0 ‘0 0000 0. LI. 0 0-00 .1 0‘ 0.. I I 10.0 0| I - 0-- '0 0000‘ I . 0 . Q I. I 0 .' . . 0 0‘ 000 I. 00 l I I \I 0. It . II. 0 D I I I 0 0. ‘ . .I o I .I. - I I ‘l 0 0.0 (’0 '0’ .0 I ' l. .000 III- I 00‘: ..00.‘.... I.I0I . 00.... . ..0 . I.. I . u. . 0 00.000 0. 00.0 II I 00.00. 000..I. II .. ’ I00 . II: IIIJI. II .I..” I.0I I0 . I. :III . I,I. 0.. I III . . . . .00" II I 000 0- I . I I. 0 I: . ...I .II b. I: r/I-IP‘. 0 00000 I: .l::00.00.00 000000 ‘00.,“ "II: .0000. 0000 III0IIIII.00 ..IIIIIQ 00.0XI0II....0- '00 . 0..I0I..\.0 I," I .0.I r.I.. III-.0000. II”.L0IIIII III.0(0 ...-I 0 0.6.0.. 0.0 III-Ii?0 I .0 I - .0”. I I - a . ...I. III 20.0 I I I ‘0.- -..I .I. IIIIIIV0.J.I ‘- IACIII II000V I 000000 .001. 090|r00vxur001 I . 0000 \IIIIIL 0:. II.II I0. I I II 0:0 . Ifllor0 .I. . I . I .0. .00. 0..I.I ~I .- I! I .0 . 0.. I .I. . . . I. .I.. I. 0 0 . II I I: - .II.0 I. 000 00 00 Pro-.0. I III I: 0‘ 0.0 000 0:. z .0 I .000 0.0 .I. .00. I I I . II\ 0- ..I ..- I .00 ... I0 .I.: .0, 0.. 0 0 I . . I I 0; I . .\ 0.. 0.. .I I0 I II). .I ‘II‘II I30 00... 00 I00'000-: ” - I I .0. OF rlfiq.- 0 “I 0 0 .\.'0 .O .00 0 .0 0.0, J". I Quci 0 a 00 0‘ 00.0. 0.. ."0 My, ..00 ‘ .t""" .(H ..0 00 :00 0.0. 0".“ 0 00 I- 0 “H.000 I 0:00“ ‘00 00.0.0. vuzn 000. 00I” .— O . ‘..3 0.. 0 I0' 0’0 0. 0 0’0 000%. I 01 :0 “I. I 0 - - 000 . IHIO0 ..00 0 ’03-, 0 - ‘ 0 I0 ha. .0. 00000000 .000 00.0 0. ‘00. - 0000005.,“ .I‘ 0000 I I O, I0IOI.‘ ‘ (.0 0 .0 0 ’0’ - 0. 0 04‘ -I. 00 '00 00 I 00 I .I.: -00 .0 . 0 0 I. 010-. ..., 00 L. :0 .. I I I ' ... 0 .. I I 00 11.0 I. 0.0 -’ 0. I 0 000000000 0'!“0 #100 0‘ ‘I'II" ‘ I I. .0000 0. ..0 - O .---.30“... .I.._0.$: - 0 0000 I0 - 0002000. 00 o'h..0 u‘.‘ 00.... 000 0I:‘..00\0I00 03.0.0.0: 0‘. ....0’0.I0.0II.IQ -. II .0 .. .I. I ..II.I. 9.0.0 00. KL...- I.\: 0000....0 _ .I . (II-0000'. .I--I... IIVIIFIIIII 00:00:00 III. 0,0000.I0. 000. .000... ' 00..l.L.|.00 .0- . I0 \I .00.: 000 0I.-0 I -..0II 0. .0000. 0.--0.:0 000 I 300. ..u‘ t I I.....0.:. 000 .3 59‘. 0...... - .000 I0 0 0.. II ”(Irto 0 I l. I ..I III II. .I II: III 0.00.0 .-.IIIIII'II [III-IIII'I I000000 0 .. - 0 ..0II.ICIIII:000 0020.00... 000 Ibo-0:0?0 ..‘IIIII 0:00 - .0. I:..I\ 000.. 0.00.0: 0.0‘.. 00- . .I.. 0:. .. 0 ..IJIIAI.II I 00.. .. 0... 00-0 .I..I. -0 I 0’ I II f0I0I.rIIIIu0 .0. IIIII. II :0. 00 00 I 00000!!! IIIIUIIKI.01”I I *I V . . I 0 0 00 I 0 0 .‘ 0 0 0 00 I I I0 I...‘ ..00 0 I0 0 O 0 0 l 90 0 0- 0 00 .0 0 . I. .. .III . 00 0 S. r‘ I 0 0 . 0 .I‘ 0 0 .: 0 I I I 0 0 I ’0’ 0 0 I I ’0 -0 'V I '0 0 ‘0 ...00~000 .0 0. 0.0. '00,.‘0‘ubb .0 00 0. 00 . ”00-. . .0 I 0 000 .00 0.h0‘ fi‘0‘. . .0 0.0.0000 . .0 . 0 I00 I 0 - I I... 0 I ‘0 0,I0-0 II- I I .0 ..000 h 000:. III .N5 . 0 If 0 0 . '0': 00? .00. 00001 00‘000 ..0'I'IO00000‘0 0'0I ‘.‘I - - ' I I 0| '0 0 V 0 . 0 . I I t 0 0 ..I 0 ll .‘ I I . 0 ' - I 4 . 0 I . NI; 0:0“- I000II. 0 I I In. ... .0I0 . . 0 0.00 .I- “II-0 III.- In I...0 . ....00. I. 0.00. 00-. 0. 0.0. . .01.: InflI III-ice... ..0u..0 I 0 .000. I. II. . 0.“.I 0.. .0 I’m. .I.. .0 .0“ I 0. I I 00.. II “.0 I I. ”I “:0. I 00. III. I.-. “II . v.0 . I 01... .I I I. I. I. I 00 II . - .90. IIIIIII Hutu-III 0.0000.- ..IMII 0 I (”HI . rII’ISI'lNIHII :I'IO ' 00 00 0. 0‘. 0 II I I 0I .. . 000$ . I .0. 00 . 0. .. 00 0 I .. 0 0 . I. 0 : 00 I I 0 .00 000.0 I. 0 I0 ,0 0 II. I .' .0. II, I. III 0.0. .0 I0. 00 I00 I .‘II III I I 000 01 -. .0 I I I I. ~ ,0 .0 0.0 00. I .I . a 00 ’ .. 0 . 00. .0 I. 0 0 .I 0 0 .0 .. 0 00.. 0 .09 .00 0 I 'I 0.0 ', a, 000 :I' .0 0 (II .. . l\ ... . I I 0 0 . ... ..0. III I . .... 0 0 .I . I I I. 0 I I? 9 . I I ‘0 I, 0 I0 00 .0.) I II ..0.I....000.0.u040I0000I.\I00I-00 II 00.00. III.- ..00 - 00000.0IH0I000.00.-1.00I0 l I 0 09000.0. 0 I.” :I’ 7.0.00 I 0 .. .... 00: . . I .0 0 0 - I- 0’ . II.\ I ,r. 0. .I0I1.._..,0IIIIII.I I IIIIOII0'I00- I .000'l‘p'00C0.0h .I.00 l0s0 -I .. .00000“ ..I.000 .. I 0.. .II-II-IIIII700 I00 ... ..l ...I..I-I0I000.I.0 II. 0. 00.: .. I.- ..0 I. Is! 0..- . 0w........ 0 .... 00.. I .0 v. . 0 I I. -I. I I II . I I I 0. ..I I .I I . 0. I H - .I.-.000? VIII 0 0.0:! :bIrlIllv. .00.! I. \0' 009I 0 0'5 0’ 00 .0 I} .0 .I 09 I o O. I‘ I 0.0 I .. 0 O. C 00 0 V . 0... . I 0: I II . I I .0 III, .00, I. 00 I 0I' III. II) 0:! i I 0 t: .04 I, .‘ 00 0 0: 00 00 O. I. 00 ‘I 00 t 00 I I . .I.0 00 0 0 0 I0. 0 I 0 I . 0. I 000 ..I '0 - ’00 DID. 0- 00 00 I I 0 I '0 0 0004 0.0 III II: ......“ II. ...-...: I: I. 00...... .. I: 000:0 . IIII 0.00.0...- . III. 00 . 00.0.”; .I I ..II . $0... .I. ...-00.. I II..0. ....I !I :2... . I 0.0 I .....I 0 “.0 II: . 0 I... or .0 I .. I.f00u0..IM..III IIIIIIIIIIIIII 300..”00hr .I.0. I00LIII|II I- 000.0. 0 0 O. 0h 0. 90. 0 .0 .I 000 .0 .I.}. .000 '. 00 IoIo- 00.04 I. ...:.00IIL.0 V. 0.0.0 .00. . I. III-0 0\.0. II. 00.000006III0 I 0. . II-I .I.-.8000 0 I II I I. 00.10 \0 . .0 I... 0000000”! . 0'0 00. 0- 000l:0-0Il0 IvI'000'000d0 III-00' .0 0 0.! 0.0.01 r I ..0III 0:0. 00 “I I. I . 0 .000 0 000I0V0 00- .00 I I...I I. . 0.00.. .0 . II .. :0000 “.0 9 P0 0... 00 . 00 I..'0‘0 0 I 00.. HI... .I.-4 0304:: I07 00 I :0 I 00.0 I 0 40.0 0 H 0 I. 10 stub... .00 .... I0 I II. . . II I III. II 0 II I 0 I! 0 :0 III“. 0.0- I .00 I .0.0 .0.“ 0.0 .PI‘I 0!.(“1000I01I0I 4-0! 0 ..0 ..I‘ 00 .0... I .I o I . 00 I I I 00 _ I .: .. .I- I 0 I ..0 I Q, . 0 T 0 0. 0. - I . 00-0 . I 0 I I 0 I. .0. 0 I . . I. . II I I I 0 II II 0 .I.. 0.0 . III .00. 00.010 I- [0" .0:4- 00:00.0...0’0 -II-I 000.....HMIII...03 00 .000I 00 J0.00 “:00- I' ‘.u. ... 9-0.. In“). .II 0H I .0800!- .1000. I ..0. 100. 00‘ 0.00 000 I. II 0..-II0 0 00” .. .0. I. I I’m.. I I 0-.I0' .hIIon: -. I. I H II; 1.00... . “I .I I I I. r I- 0. HIC'IIHI' II-0 000000 II 0 0.0 I ‘0 0‘0 0 I 00: I. 0.0 ‘- 000 ...0 00“. 0‘00 .0 I0 0‘ .0 0 I. . . I .I ' I - .. I .000 . I. ' I0 0'.- ..I .0. I I. 0 I ..I\ A I: '0 0 01:00 00.0.0-0 0 0 :‘00‘1 .I. - IIIO 0 K .00! 00 .0 000. .0000 00000.0 0:600t . II00.”II 0.0 000.030 0. . .... . . 0100600 00.}. 0H [.0 0.0.0 .000'0. 0.. I I.I.III.0. . .0 0.00. -.00 . I. . 0 . I Sou . I. . .0 .. I .‘.H. . ‘- .I . ...IVI. 0‘ . I ~ .. . . J . I 0. I ”00. I: .JIM 0.1.. - I II 00. 0.0.000 00...". H00 (0 J 000 0000 ..I 0.. .0I.0I0 ' '040‘01 | ‘0 I - I I I : 0 0. . . .. I I I 0 . a - 0 '0 .‘0 I 0 .-.I0 -0 I- :0 00.01 I. 30.04 0.0 0::.. IIIIH: . 00-00.- ..0 . ..I . I00 .I.: 00 a. 0..-II 0.... I0 .I.). 0 X . ..0 0 .. I... I 0 0r 000-. ..II . I I ..III. 0.0 I. .00 II ... I. . I II: : ... -I I. . .0!- 3.IIIOIII:-r.\0. ’II. [0.0. 00. 0'0, 0 0 .03 00 II III - .0 ... . 0 I I 0 I I I. I If... - 0 I. I. I .. I.) :0 0 .I . I. II I .0 0... .. I LI. :5 II 00.0-0- ‘\' I ..0. 0000 00 0000‘. .I.- ,‘0’. .I 00 .000. 0: 0.”- 902 I 0. 0| 0 0I.-00 10. I0 000 . 0 . I 0 .00 .0.00.- .. 0 .0 I. I ..0 (.0... 0.- .... ,00 .0 II I .0 0 00 -000I ‘00 .1" I'00 0.00. 0000 00.000. .000: I51-.. . 0 0.. 0:00 I. - 0.0I 0.0 000 00.0: .0 I ...00 0 .0.0 0.. 00 ....0 I .0300 I, ...... C... I :00 . . ..00. I ...:.-II I: .--:.. 0 00.0.1... .0 II 01 I 0.- III .000' .00 I 00: ' 0.. 000' I 0 0 I 0. 0.000 . . . . I 0. I 0 I . 0.000N90, (0 0 (00.0. I0u.00I.0 0.13... ... I I IIIII .I. II\-I 00.. I I. . ”0 0..... IIII . - 0:.I09 I I.90.... m . .... .0. I .04 :0 0 I: 0.. 0-0 ' .I.. 0 I . I I IIIIII 0:..0‘IHI‘0 0'00, .0! 0 . 0 0.0.. I00‘000.0 .- .090 ‘0 o. 'h0 I 00 00‘ '1 00. I‘l- 0 .I.“ 000 '0‘ II. I... p.000... I 0 V ‘0 0. I 0.) ‘0 -H0v0 II I . 3 00 0: .0 I O I 0 0.0 0“” I .o. I0J I I 0 II .0. I 0 f... 000 . . I0. -. I 0 0000000. I 00‘ 0 II‘ : .00 00 I v.0 00 00 ..Il ‘ 0'I PIN“ {0 . II - 0. I .0 I0 0 It, 00 LI 0 00. 0‘ . I I - I. 0I.. 0 I0. I‘ I: I 0 I . ... I . 0I. . . I I I:\ I... II. .I 0 I I 0 I I- I. II II, 9. ’0' :10 I ....000 .00 0.00 :00 0....i - II . . 00.. .0 I I to I I 00 I. I0 I I I. 0 . .. - I... 0..! .I ... . .- . .I I I 0. 4000 0. 0.0 : ’I 0.00 .. . I0 I. 0. 0 . Q 0I. I - .0 . . .. 0. - - I 0 I 0 .0 . I 0 . I . . I. ..I 0.00 . 0 II II: 03 0 I .0: 0 ’7 II . 0 . . .I.. 0 0 000.0 0' I0“; ...-00“.. I . . 000 0‘. . I.- I . . ...-....”II. 0I.“...6 ..0 III I I .I.. II. ..I I.-.0I I 0 _ I .0: I ”III 0.: II 0.I I I0. .0. I0. I. . .I....I I :0 000:“). ..I. 0 .IIH I I“ I 0 :0. “I0 ‘01"? CHI. 40:0 Ir “Hf-I0 .000I-III I IIIIIIIII .- 0|:I- I I . I ...t 0 .0 I. . 0.. 0.. 0. ... ... I . .0 I . . 0. - 0 I I 0..-I :0 I. - . 0. 0 I. . I.-I II 0 00 II I0 .0: 000 I. IIJI .0VIII\‘0 0‘0 00 I. 0.? 0. 0 00 0 .0 I0. . III 00 I 0 .- . I II . I 0 -. 'I .0 0 0 0 OIIIIO ‘0 0 0 00 ...-I 0. Q . 00 0 I I I 0 I .I 0 I. II I I I . I I . 0. I I... I0 0 II0 I0! 0"." 0 00 _ .. 0 ..II .0 0.0 . - 0 00 I0 .00 . . 0 I .0 r I . I I I 0 I - I . 0: I . I I. I I: V I III . . 0 I '0 I '0 It 0 0I 0 . 0 '0 ,7 II . I I .I. .0. .1 .0. . .I 0.0 0 I I . 0I- I .l.} - . 000 I I 0. . 0I. . | :- .. I 0 III I. 0 I ’II. 100 0.. I.0 00000 .I . . 00.0.0. I 000- 0.0I.0I.00 0. 00 00 I. .0. 00. 000 0’ I . - I0 I I. . .I. . I..- I 0. .l 00.! 00. 3 . I I I .IIIII 0;" I: ..‘ll 00.00.00.304 .0: IQIIIII'VUOCI I. . 00.0.0 0 I00.- .-.0...0 III-00.390 I 0..-0 III 0:- 0001... 0. .I I- I II0 0.00.00 III. 0 .I - I. 0: I. I 00I-:-: ' .00., .0 an: If.00.0..01"0:0I’II 'u... 0 III; I. I 0L0- . .I.. 0.2.000: :0. ‘0‘. ,III- 00" 00-0“ 00 .. I. 7.00 I:- I-0 -I00:I . 0..”. II - 0. I 0000 .0:0 I. II. I I . :30 . -: I 0.\.-.. LI’IHlf-rl. IIIICIIhlaIA .I.-If.00.. VII-III. MIMI 00 III .. ..I... ...-.... . ... -..... . . . - . . -. . - .- I.- . ... .. - -..” .-.... .- I.. .. ... ... ..... ...- ...uf .I.-..IL....-.--:-.I.I.I.--... -.. ...-S . . I 0 I . Y - 00.0 III: 0. . .0 I 0 I 0 .I. IIIOII H0. 0 ... ..I. ..I I. ’ .. 0 I 9.4 0 .. :- I!" .0 II...0l0. i'o . 000. ’Il'o. 00‘0‘000I. ’ I I ’rJI . I ..0 .00 . . I I . I ‘ . . - .I- I0 'I 0 III .0 II : I 0 ...I I I I I I .I. 50 I I 0 0 0 -0. | I I . I0 . I 0 II I . I .0 II .I 0 II I. 0.0I0 I . I III .0, 0’ II II ~.I .. . 00.0.0 .0 V. 0. 0 .- - 0 I .08. . . I 0: I I . ..II 00.0 I0 . ..J.‘ 00 .00 I0 . L. .I. 0- .II'ILII'IOI .-0 .00 00 I. 0 0.0.. 0.0: 0 0 I I. .I. 00 I I ll . 0..: III. 0 I I II I 0 0.? I0. II In: .II0I I. I... 0 0000- 'l 0 \II -I. 00.: If 0 I . .I 0 I . .- 0 I . . I . . .0 00. 0 0 I O 0 0.0 o. It! -I | .0 3:0 \4000 I V 000.0 0 b 000 0 0 I 0'. I 00 0 I 0 Y 0 I! 0000 I .. I. 0‘ 0"0“ .I 0 U'II' 0' 000k! 0-. I. .00 .I 0.... 00. .9-5 ...-0 0 0 II 0.0 . III I . I0 .I :0 ..I 0|! 0 -0 I 0.... 00- ' 0 '0. 00 . ...I ..I I I .0 I I . I I I I I .I. s . I I P I 0 II .0 I I. I. .00 - I .II III. III. I I t? 0 I . 0 .00’ .0 0. II‘ 0. 0 I I II II I .. ) I 0000! I I0 I I-IIQI 0 III.- ’0 I '0 .000 I. ~ .. I.-0 : .00 I - .0 .00 . I 00 I I ' I 000 f \ III‘ .- 0III: 9‘ I 0. ' '0 '0‘ 0' 0 - 00 '0. I. I. I II I : I 0 00 I 0' '0 ’I I, I!" I - 00 _ I 'I .0: I... .0 I- .0 .. 0.0 . I 0 I 0 0'0 ‘0 . II .IIII . I II . I’- I. III: III.’ IDIII 0’ 0.0!”.- .0 4‘ . VI . 1I... 0.00 ..0 IIIIIL - O 0 I 0 .V I. II O. P 0- 0.. 0000 I . I II D 0.. . I'D-H.000" It" '0 III 001 0".9r 01 .n I .I III.- 0.,0.u ..0.0I0..I.I -. I. 3.00 I .I.-I. I. .I.-I . I .000 I I.” III.- IIIIIII .:III. .0)... II IIIWOJIP‘IIII 0000.0 ' 0-0 0 . ‘0K .00 I a0...I0.III.. 0.0 II I 0 . .0 .0 .- -I ..II I I . 0:00. I III. I I. - .II I. III-030V I I. .' :00 IVII’ 0010000 0‘00! .I- I.0I |:.l .0. i... 0.0 I .KLII) ..u- 30.? I ..u .I. . .... . III I 000 I I III I .0 I.- ..II .0 - HI I 00. . I :0l-IIIII- lllIIvHUIIIII‘III 00.0 .000. 10".“ [OI-II”. ID I I I . 0 . I II 00. I I I0 I. 0‘ 0 -I (I 0 I "I. .fii._ 000: .I.I$.0nv.0. ...I. ... INK...- : Y- - II .I.!I 00 I IUII 0 I I 00010000100000 '0 -- .D'IEIIIILIII 0 - - 0:90: . .I. .I. 00. -00 . . 0 0 I 0. o - II- 00.0 It- ‘ 0' {’IO I;- II I .I . II I III! 0. . I .... 0..... .I I: I.-.. I I I . I- I .I. .1 o 00 0.5050 VIIIIII 00:000. 000. 0.. 40 0 s 0.0.5.... .0 09m 0 . I .I 0 I 000 I I :0 III I 0 000': .0 J‘I ..‘l'rh‘ :I'. I U ‘0'! 0} [30:0 I . _ . I 040 I 0...} '0 J 0 . . I 0..... I I. -J.. .II III.- .II. 0 0.... I 00 .I 00 AI ... .I .r' d0, '0’. 0 0. 0‘0 000.90 0", 0.0 ‘00-. I . ......EI. . . I.. - .3 ..I... . . . 1...-.... -..-.-.. ...... arr-...... III.- .. --.-II”)... ... m0 0...... - .x . I .III..|I.-.-.I-. :_ II . III III-II. I ‘00 IIIIII 0I. . ...: ’uLfid .I. . II..|0. .I..I Is. ...... .VI! [‘0 I'0II'IOII‘ 0'30: '0 .00. .0 0.0. A. I. I .0. III: 0.? 0.: I I .Ild) . 000 I P- I.) . 0 0.(f)lI- I 0 0- II .Il‘ ' .0 I I 00. a K ‘ .0 0 0 .0 0 -0 ' - 05" 0 0 [I II .0- 0.0 ’00 u . 0 I 0’. I 0‘ I 0 0 0 III I I . x - fi 0 0. .00 I 0‘ ..I’ I Iiil0" .Jl‘ ' ' 0 (A . 0 4 I I- 00 .0 I 0 . I -‘II I' II '0’ I 0 I. O-I'fYEyL-0v-‘IO 0 I I» l.. . 31““..- - 0 .000; 0 If: 0' III‘0I00‘00I 000' '00-'02 0.0. 3“ II 0105’. 0‘ 0 I000... I I '0 II\'IIII Ir-I'l"'0ll0 0-0 0 . .b '0 .0. 0I. 000 Ill-0IIO'I (00;. 00' 'I' O 0 .l .I.O00‘0...- 0 0.5+} I. I I 0‘0 VI 00.- ...I 0 .-lll'. 0 -I 00",0 .0. 000. .2 :IIIII..$I'IIIV II-. .... s-.. IIJIIDI .. II 00,0. 0 . . L0 i 0 ...-.... E. ... . I .I:.I .I..-. .I. ..-.I-I--. I II.- ...V 0000' 0‘ II. IIII..\0.00 00.... I 0050. 0... I00§w J90'.0.'.00:.IIIIIII I 0.0000. 0000.0’IIOIrtd‘ 00..." I.I I [It‘l-I 100100:- I.III . g a . 1' 00‘0”. . - I 0" I. .- I I 0' 0 0 ‘f‘ fl." . 0.0 P ENG-r - " ‘ 0 . -. '0 0I.-000 I0I . ' . : ' 0 ‘ -rI I -I 0 I. -' -.- 1 m Ignaruwga 50!”. - Q'OIIO .0 0‘ .I‘ 0. I'll. I'll. H8 IVESR ITY LIBRARIE IIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIII I 3 1293 00914004 IIIII This is to certify that the dissertation entitled A Model for Antiplasticization in Polystyrene presented by Sandie Anderson Hlatshwayo has been accepted towards fulfillment of the requirements for Ph . D . degree in CHE M Major professor Date 4V1“ q 3 MSU is an Affirmative Action/Equal Opportunity Insn'lutian 0» 12771 I LIBRARY [Michigan State g University PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. DATE DUE DATE DUE DATE DUE ————I flfifi IL IEIE ll MSU Is An Affirmative Action/Equal Opportunity Institution emana-m A MODEL FOR ANTIPLASTICIZATION IN POLYSTYRENE BY Sandie Anderson Hlatshwayo A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemical Engineering 1993 ABSTRACT A MODEL FOR ANTIPLASTICIZATION IN POLYSTYRENE BY Sandie Anderson Hlatshwayo Antiplasticization can occur when small quantities of a known "plasticizer" have been blended into a glassy polymer. Commonly, the Tg of the polymer and its free volume decrease. However, the mechanical properties of the antiplasticized polymer are altered significantly, causing the polymer to become stiffer and more brittle. Experimental results from flexural tests of polystyrene/mineral oil blends conducted at room.temperature showed that antiplasticization is molecular weight dependent, thus supporting a hypothesis that the phenomenon can be attributed to a chain-end effect. A high molecular weight polystyrene (Mw = 270,000 Daltons) exhibited plasticization only, whereas a low molecular weight (Mw = 40,000 Daltons) exhibited both antiplasticization and plasticization effects. The 40,000 MW sample showed a 2X increase in flexural moduli and flexural strengths as mineral oil concentration increased up to 6 volume percent. These moduli and strengths decreased rapidly at higher concentrations of mineral oil. Positron Annihilation Spectroscopy (PAS) data showed a 10% decrease in fractional free volume up to 6% mineral oil. 13C NMR experiments showed that there was no change in the polymer backbone dynamics during antiplasticization. 1H NMR Goldman-Shen experiments showed that antiplasticization occurs when the average diameter of the mineral oil domains is less than the average size of the free volume voids. One mineral oil molecule was associated with each polystyrene chain end during antiplasticization. These results are consistent with the hypothesis that antiplasticization is due to a decrease in fractional free volume at the chain ends. Sandie Hslatshwayo Copyrighted by 1993 i I" " “cw r~~y L 2x39: A’r .p‘l‘ ‘- H‘\::eu 1 I .’5‘ ‘I w_ «II ‘Ir ACKNOWLEDGEMENTS Many peOple contributed to the success of this project and I am.extremely grateful. I thank the members of the Designed Thermoplastics Laboratory and the Analytical Laboratory of The Dow Chemical Company, especially, Patrick Smith, William Kocher, Brian Landes, Karen Quinn, Phil Kuch, Julie Smith and Brian Maurer, for their generous support. I also thank Gary Krook and Kerry Kelly. To my advisors, Dr. Eric Grulke and Dr. Phillip DeLassus, I extend my sincerest gratitude for their technical assistance and guidance. They believed in me and had the utmost confidence in my abilities. Finally, I am indebted to my wonderful husband, Simphiwe Hlatshwayo, my mother, Marie Anderson, and children, Mfundo and Sandile, who offered much encouragement and sacrifice. Their efforts were not in vain and I thank them very much. ..N— ...:. ”m J. ...:. A?" u do .i‘ .1 d TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS CHAPTER 1: CHAPTER 2: CHAPTER 3: INTRODUCTION 1-1. Introduction 1-2. References SURVEY OF RELEVANT LITERATURE 2-1. Plasticizers and Plasticization 2-1.l Mechanisms of Plasticization 2-l.2 Free Volume and Plasticization 2-2. Antiplasticization 2-2.1 Review of Previous Work Done 2-2.2 Summary of Past Reasearch 2-3. References MECHANICAL BEHAVIOR DURING ANTIPLASTICIZATION 3-1. Introduction vi xi xii xiv ll 11 12 12 13 14 27 29 34 34 CHAPTER 4: 3-2. 3-3. 3-5. 3-6. vfi Flexural Properties Experimental Section 3-3.1 Materials and Blending 3 3 2 Gel Permeation Chromatography 3 3 3 Gas Chromatography 3 3 4 Compression Molding 3-3.5 Mineral Oil Concentrations 3 3 6 Differential Scanning Calorimetry 3 3 7 Flexural Properties Results and Discussion 3-4.1 Molecular Weight Distribution 3-4.2 Gas Chromatogram of Mineral Oil 3-4.3 Solubility of Mineral Oil 3-4.4 Glass Transition Temperatures 3-4.5 Flexural Properties of Polystyrene/ Mineral Oil Blends Conclusions References INVESTIGATION OF THE HOLE FILLING MECHANISM 4‘1. 4'2. Introduction Positron Annihilation Spectroscopy 4-2.1 Background 4-2.2 Determination of Average Hole Size from PAS Lifetimes 4-2.3 Fractional Free Volume and Number Densities of Holes Experimental Section 4-3.1 Positron Annihilation Spectroscopy Results and Discussion 4-4.1 Determination of Fractional Free Volume .2 Free Volume Hole Sizes .4 Effect of Mineral Oil on Hole NUmber Densities 4-4.5 Effect of Mineral Oil on Fractional Free Volume 4-4 4-4 34 35 35 36 36 36 37 37 38 38 38 38 40 4O 43 49 49 51 51 52 52 54 54 56 56 57 57 59 59 64 .5. v .0 Ca. one. .Ig - n h CHAPTER 5: CHAPTER 6: vfii 4-5. Hole Filling Mechanism 4-6. Conclusions 4-7. References SOLID STATE NMR INVESTIGATION OF POLYMER AND DILUENT DYNAMICS DURING ANTIPLASTICIZATION 5-1. Introduction 5-2. NUclear Magnetic Resonance 5-3. Experimental Section 5-3.1 Polymer Dynamics 5-3.2 Mineral Oil Domains 5-4. Results and Discussion 5-4.1 Polymer Chain Dynamics 5-4.2 1H NMR and Mobility of Mineral Oil 5-4.3 Mineral Oil Domain Sizes 5-4.4 Comparison of Mineral Oil Domains with Hole Sizes 5-5. Conclusions 5-6. References MODEL FOR ANTIPLASTICIZATION IN POLYSTYRENE 6-1. Introduction 6-2. Development of Antiplasticization Model 2.1 Comparison of Chain End Holes 2.2 Comparison of Hole Sizes with Mineral Oil Domains 6-2.3 Interaction of Mineral Oil Molecules with Polymer Chain Ends 6.. 6- 6-3. Model For Antiplasticization 6-4. Conclusions 6-5. References 64 67 68 70 70 70 73 73 75 75 76 79 81 83 85 85 87 87 87 87 91 94 96 100 100 T131": '1 I hung-... . 'I ‘1‘ 4 I ...; rl ‘ 1': “‘J 1 ‘ I 1 n D . ‘H «X3 CHAPTER 7: CHAPTER 8: ix CONCLUSIONS AND PROPOSALS FOR FUTURE RESEARCH 7-1. Conclusions 7-2. Proposals for Future Research ADDENDUM: BEHAVIOR OF BLENDS ABOVE Tg 8-1. Introduction 8-2. Experimental Section 8-3. Results 8-4. Conclusions 8-5. References Appendix A: MOlecular Weight Distributions A-l. Molecular Weight Distribution of 40,000 MW Polystyrene A-2. Molecular Weight Distribution of 128,000 MW Polystyrene A-3. Molecular Weight Distribution of 270,000 MW Polystyrene Appendix B: GC Determination of Mineral Oil Concentrations B-1. Nominal and Actual Mineral Oil Concentrations in 40,000 MW PS B-2. GC Analysis of Mineral Oil in 40,000 MW Blends B-3. Nominal and Actual Mineral Oil Concentrations in 40,000 MW PAS Samples B-4. GC Analysis of Mineral Oil in 40,000 MW PAS Blends B-S. Nominal and Actual Mineral Oil Concentrations in 128,000 MW Blends B-6. GC Analysis of Mineral Oil in 128,000 MW Blends B-7. Nominal and Actual Mineral Oil Concentrations in 270,000 MW Blends B-8. GC Analysis of Mineral Oil in 270,000 MW Blends 102 102 103 105 105 105 105 111 112 113 114 118 120 122 123 124 130 131 138 139 145 146 “WI-«pk H hath-cod- \, e. ‘WN-AJ ‘ h '5 ”r:- .....x ._ ‘I n. age-n X , ‘A “Q“ r I M ‘ ’?v2"~£ ‘ ‘ “‘“x {.1 Appendix Appendix Appendix Appendix Appendix C: Glass Transition Temperatures C-l. Glass Transition Temperatures of 40,000 MW Blends C-2. Glass Transition Temperatures of 128,000 MW Blends C-3. Glass Transition Temperatures of 270,000 MW Blends Flexural Properties D-1. Flexural Properties of 40,000 MW Blends D-2. Flexural Properties of 270,000 MW Blends Torque Data E-l. Torque Data for 40,000 MW Blends E-2. Torque Data for 128,000 MW Blends E-3. Torque Data for 270,000 MW Blends Positron Annihilation Spectroscopy F-1. 0% Mineral Oil PAS Spectrum for 40,000 MW PS F 2. PAS Data for 40,000 MW Blends F-3. PAS Data for 128,000 MW Blends F 4. PAS Data for 270,000 MW Blends : NUclear Magnetic Resonance G-l. Data and.Decay Curves for TumiAnalysis G-2. Data and Decay Curves for Ian and TCH Analysis G-3. 1H NMR Spectra of 40,000 MW Blends 154 155 161 167 174 175 181 187 188 189 190 191 192 193 199 205 211 212 218 227 LI ST OF TABLES Table 1-1. Abbreviated List of Antiplasticization Research 3-1. Molecular Weight Distribution of Polystyrenes 5-1. NMR Spin-Lattice Relaxation Times (msec) 5-2. Recovery Factors as a Function of Diffusion Time 5-3. Comparison of Mineral Oil Domains with Hole Sizes 6-1. Comparison of Relative Chain End Densities 6-2. Free Volume Holes Associated with Chain Ends 6-3. Effect of Mineral Oil Concentration on Mineral Oil Domain Sizes in 40,000 MW Polystyrene Blends 8-1. Activation Energies for the Polystyrene Blends 39 78 82 84 88 90 93 110 3-4a. 4-2a. LIST OF FIGURES Gas Chromatogram of Mineral Oil Effect of Mineral Oil Concentration on Tg Effect of Mineral Oil Concentration on Flexural Modulus of 270,000 MW Polystyrene Effect of Mineral Oil Concentration on Flexural Strength of 270,000 MW Polystyrene Effect of Mineral Oil Concentration on Flexural Modulus of 40,000 MW Polystyrene Effect of Mineral Oil Concentration on Flexural Strength of 40,000 MW Polystyrene Effect of Mineral Oil Concentration on o-Ps Lifetimes Effect of Mineral Oil Concentration on Hole Size Effect of Mineral Oil Concentration on o-Ps Intensities Effect of Mineral Oil Concentration on Hole Densities xfi 41 42 44 45 46 47 60 61 62 63 ....wu v7,“ *- Via. I. v .. a. ”Hm 1‘ .4 Ah.— IB .- I .B. ..r .... s ‘I‘ - .4 I A It I. . . . . T .3 F P 7'“, 5‘! bowl “I t; Dv 0“ R nn~ Kiln -... lxhri I Cc : Q. I C4 nib t. 00 4 1 c1 ... ML 10W h: I... “JIM. ‘ntii - E D: )(iii 4-3. Effect of Mineral Oil on Fractional Free 65 Volume 5-1. 13C NMR Spectrum of 40,000 MW Polystyrene 77 Blend 5-2. 1H NMR Spectra of 40,000 MW polystyrene 8O Blends 6-1a. Schematic of an Amorphous High Molecular 98 Weight Polymer/Diluent Blend 6-1b. Schematic of a Proposed Model For 99 Antiplasticization in an Amorphous Low Molecular Weight Polymer/Diluent Blend 8-1. Effect of Mineral Oil Concentration on 106 270,000 MW Blends Above Tg 8-2. Effect of Mineral Oil Concentration on 107 128,000 MW Blends Above Tg 8-3. Effect of Mineral Oil Concentration on 108 40,000 MW Blends Above Tg 3 Hip‘ \ "'5‘: 9" hi 0. BPA BBP CP DBS DCD ps DCS DMA INDIE; DNBP 13(35; IEEPIqu LIST OF ABBREVIATIONS Acrylonitrile American Standard Test Method Bis-phenol A Butyl Benzyl Phthalate Cross-Polarization Dibutyl Sebacate Dichlorodiphenyl Sulfone Differential Scanning Calorimetry Dynamic Mechanical Analysis Dynamic Mechanical Spectroscopy Dinitrobiphenol Dioctyl Phthalate Dioctyl Sebacate Graft Copolymer of Ethylenepropylene-1:4 Hexadiene xw 4 3 I, n- o e ...-4'. ”onw‘ :- s $ 34 ”MW up. W \fldw W \mm-NV EPPHAA EVOH FTIR HPLC DIAS DJEBIQ IRPXES IPCZ XV 4-(2-hydroxy-3-phenoxy-propyloxy) acetanilide Ethylene Vinyl Alcohol Copolymer Fourier Transform Infrared Spectroscopy Gas Chromatography High Performance Liquid Chromatography Magic Angle Spinning Number Average Molecular Weight Molecular Weight Weight Average Molecular Weight Acrylonitrile Butadiene Rubber Nuclear Magnetic Resonance Ortho-positronium Positron Annihilation Spectroscopy Polycarbonate Poly-e-caprolactone Poly(methyl methacrylate) Poly(phenylene oxide) p-PS PS PVAC PVC TCP QHHF 113E) xfi Para-Positronium Polystyrene Poly(vinyl acetate) Poly(vinyl chloride) Tricresyl Phosphate Glass Transition Temperature Tetrahydofuran Thermally Stimulated Depolarization .O-e M4. CHAPTER 1 INTRODUCTION 1-1. Introduction In the last twenty-five years or so, there has been documented evidence of antiplasticization, an unusual phenomenon that occurs when small quantities of a known "plasticizer" have been blended into a glassy polymer [1,2] . Although the glass transition temperature (Tg) of a polymer may be lowered upon addition of these plasticizers, the modulus and tensile strength increase significantly, and ultimate elongation decreases, causing the polymer to become stiffer and more brittle. This behavior is opposite to that eXpected of a plasticized material - rather the material behaves as though motions in the polymer chains are restricted. In addition, the transport properties are affected [3] . Antiplasticization has been observed in many polymer-diluent sEr'Stems e.g. polycarbonate and dibutyl phthalate, polyvinyl Chloride and tricresyl phosphate, polystyrene and mineral Oil . Mechanical property tests, differential scanning calorimetry (DSC) , dynamic mechanical spectroscopy (DMS) , C1‘lelectric loss studies, nuclear magnetic resonance (NMR) , 1 n :nn 4A“- I‘M! “too: tapas & a A. I. A. \A C). {kw (f as; r d t t 3. and density measurements collectively infer that antiplasticization results from one or more of the following: (a) a decrease in free volume upon the addition of the diluent - perhaps the polymer chains have some small degree of mobility that allows them to align themselves in a more ordered, densely packed state or that the diluents fill the excess volume of the polymer glass [3.4]. (b) suppression of the secondary relaxation transitions at the temperature of interest [5]. (<2) polymer-diluent interactions which create steric hindrance and decrease segmental mobility of the polymer [6,7]. ((3) reduced mobility of the diluent - perhaps solid diluents with higher glass transition temperatures near the temperature of mechanical testing, have a greater tendency of promoting antiplasticization [4]. T'Eilblel-l lists, in detail, researchers that have observed at111:..iplasticization in polymers. The table shows the polymer/diluent system studied, the types of mechanical or atIlEquytical tests performed, and major observations. The nnéiljcoxity of these authors relied solely on either a . “r ...:..t‘ " altar“ . ate 9: v r , l a“ . v I w— n t ‘4 l " "rlr ‘5 ‘1 4"")4 Table 1-1. Abbreviated List of Antiplasticization Research Polymer Di luent Mechanical Ana lyt ica l Conclus ion Ref erence Too 1 Too 1 Polycarbon- Chlori- Tensile - - - - Higher Jacksonll 2 ate (PC) nated Modulus . Biphaayls Interaction and Terphenols Polystyrene Benzophe- Tensile - - - - Higher Litte (PS) none Modulus PC Arochlor, Torsion - - - - Elimination Robesons' 9 Polysul f one dichloro- Pendulum of secondary diphmyl loss peaks . sulfone Decrease in water vapor di f fusion rates. PS Aroclor Dynamic - - - - Antiplasti - petrielo PC and Mechanical cization is Phthlates Studies temperature (DIVE) dependent PC Arochlor Tensile - - - - Free changes Robert sonll for antiplasti- cization differ from that of annealing PC Arochlor & Tensile - - - - Higher wyzgoski 12 Dibutyl and DMS Modulus and Phthalate Suppression of 13 Poly (vinyl Tricresyl Tensile - - - - Higher Kinj 013 . 14: Chl oride Phosphate Dynamic Modulus ( PVC) (TCP) Mech. Suppression Spectroscopy of S (DMS) PC Ester Tensile - - - - Influenced Makarukls . Derivative Free Volume by polar 16 of Calculations groups . Bisphenol Tight A filling of free volume Table 1-1 (cont'd). List of Antiplasticization Research Polymer Di luent Mechanical Analyt ical Conc lus ion Reference T001 T001 PVC Acryloni - Creep - - - - Interact ion Bergman” . trile 18 butadiene rubber (NBR) PVC graft Dioctyl DMS - - - - Antiplasti - (311811919 . 20 copolymer phthalate ci zation temperature dependent PC Charge Tensile Thermally Interactions Kryszewski transfer stimulated 21. 22 complex depolariza- tion Poly (methy Phthalates Tensile - - - - Interactions clayeniz 3 methacry- late) PC Diphmyl - - - - Nuclear Interactions Belfiore24 ' Phthalate Magnetic 27 Spectroscopy (NMR) PVC TCP Permeability NMR Lower Sefcikze Diffusion . Reduced chain motion PC Dinitro- Stress- NMR Interaction Gupta29 bipheiyl strain Fourier Transform Infrared Spectroscopy (FTIR) Pm Cholestery Dielectric - - - - Increase in Deshpande30 ls Tg Polystyrme Mineral Permeability - - - - Lower Maeda3l ' 34 POIYsulfme OIl Permeability Poly (phenyl TCP, Dichlo “ etle oxide) ro- diphalyl sulfone, phthalates Poly (arylen 4, 4- - - - - NMR Suppression Dumais35 e eCher dichlorodi of S 811.1 fones) phenyl Reduct ion in sulfone phenyl f lips Table 1-1 (cont'd). List of Antiplasticization Research Polymer Di luent Mechani ca 1 Ana lyt ica l Conc lus ion Ref erence Too 1 Too 1 Phanxy Hydroxy- - - - - Infrared Hydrogen Stevenson36 phenoxy- Spectroscopy bonding rmqwhww UR) acetani- lide (EPPHAA) PC DBP - - - - NMR Interaction Roy6 PC Dibutyl - - - - NMR Interact ion Liu and Phthalate Decreased Roy7 (DBP) mobility of PC Polystyraie TCP,Dichlo Free volume - - - - High Tg Vrentas4 Polysulfme ro- calculations dilueits Poly (phenyl diphenyl cause a - ene oxide) sulfone, decrease in phthalates hole free , dioctyl volume sebacate PVC TCP Tensi 1e WAXS Crystallin - Guerrero37 ity enhances antiplastici zation Polyimides EPPHAA Tensile, - - - - Decrease in Shockey38 Water free volume absorption PC Diphaiyl - Density - - - - Brittleness Cais39 hydrazones Tensile Suppression [MS of S. Abrasion Increase in abrasion L resistance . m... I an: ‘4": §&“ mechanical or an analytical test to verify antiplasticization and then speculated on a mechanism for antiplasticization. No one has related the microscopic physical behavior of the diluent to the local molecular motions of the polymer, and then extend that information to explain the bulk mechanical behavior of the polymer. The most predominant hypothesis given for antiplasticization is that it is due to hole- filling by the diluent, and hence results in a decrease in the free volume of the polymer. Attributing antiplasticization to a decrease in free volume was based, lintil now, solely on density measurements and theoretical cxalculations. No prior published report describes the hole- filling mechanism of the diluent. The purpose of this research is to study the hole-filling mechanism and propose a model for antiplasticization. Polystyrene/mineral oil blends were studied. The selection of tzlleese blends is based on the simple nature of the polymer fiLraxrolved. The experimental approach is to measure directly t211£3 changes in free volume, including hole sizes and hole nl—IIn'berdensities, using Positron Annihilation Spectroscopy, Eilldi then relate those results to polymer chain dynamics data Obtained via solid state NMR techniques. Potential applications for antiplasticization include thin photographic plates where rigidity is important, durable charge-transport layers for organic photoconductors made from polymer binders blended with antiplasticizers to reduce wear in electrophotographic copiers, and packaging plastics or separation membranes for moderate improvement of the barrier properties. Research in this area could also be used to describe conditions where addition of a liquid additive is not likely to yield the expected monotonic change in physical properties. 1-2. References 1. W.J. Jackson Jr., and J.R. Caldwell, J. Applied Polymer Science, 11(2), 211-226, 1967. W.J. Jackson Jr., and J.R. Caldwell, J. Applied Polymer Science, 11(2), 227-44, 1967. Y. Maeda and D.R. Paul, J. Polymer Science Part B: Polymer Physics Edition, 25, 1005, 1987. J.S. Vrentas, J.L. Duda, and H.C. Ling, Macromolecules, 21, 1470-1475, 1988. L.M. Robeson and J.A. Faucher, J. Polymer Science:Part B: Polymer Letters, 7(1), 35-40, 1969. A.K. Roy, P.T. Inglefield, J.H. Shibata, and A.A. Jones, Macromolecules, 20, 1434, 1984. Y. Liu, A.K. Roy, A.A. Jones, P.T. Inglefield, and P. Ogden, Macromolecules, 23, 968-977, 1990. 10. 11. 12. 13. 14. 15. 16. 17. 18. M.H. Litt and A.V. Tobolsky, J. Macromolecular Science - Physics, 8193, 433-443, 1967. L.M. Robeson, Polymer Engineering and Science, 9(4), 277-281, 1969. S.E.B. Petrie, R.S. Moore, and J.R. Flick, J. Applied Polymer Science, 43(11), 4318-4326, 1972. R.E. Robertson and C.W. Joynson, J. Applied Polymer Science, 16, 733-738, 1972. M.G. Wyzgoski and G.S.Y. Yeh, Polymer J., 4(1), 29-34, 1973. N. Kinjo and T. Nakagawa, Polymer J., 4(2), 143-153, 1973. N. Kinjo, Japan Plastics, 6, 6-28, 1973. L. Makaruk, H. Polanska, and E. Staros, J. Applied Polymer Science, 20, 60-70, 1976. L. Makaruk, H. Polanska, and T. Mizerski, J. Applied Polymer Science, 23(7),1935-42. G. Bergman, H. Bertilsson, and Y. Shur, J. Applied Polymer Science, 21, 2953-2961. N. Sundgren, G. Bergman, and Y. Shur, J. Applied Polymer Science, 22, 1255-1265, 1978. "fl ‘uo ‘5 bk. ‘3, q ‘ PA V‘ I; pr N c" In 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. E.P. Chang, R. Kirsten, and R. Salovey, J. Applied Polymer Science, 24, 827-836, 1979. E.P. Chang, R. Kirsten and E.L. Slagowski, J. Applied Polymer Science, 21, 2167-2180, 1977. M. Kryszewski, J. Ulanski, and A. Galeski, J. Applied Polymer Science, 23, 1271-1278, 1979. M. Kryszewski and J. Ulanski, J. Applied Polymer Science: Applied Polymer Symposium, 35, 553-562, 1979. J.Y. Olayemi and N.A. Oniyangi, J. Applied Polymer Science, 26, 4059-4067, 1981. L. Belfiore and S.L. Cooper, J. Polymer Science: Polymer Physics Edition, 21, 2135-2157, 1983. L.A. Belfiore, P.M. Henrichs, D.J. Massa, N. Zumbulyadis, W.P. rothwell, and S.L. Cooper, Macromolecules, 16, 1744-1753, 1983. L.A. Belfiore, P.M. Henrichs, and S.L. Cooper, Polymer, 25, 452-458,1984. L. Belfiore, J. Elastomers and Plastics, 19, 238-251, 1987. M.D. Sefcik, J. Schaefer, and F.L. May, J. Polymer Science: Polymer Physics Edition, 21, 1041-1054, 1983. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 10 M.K. Gupta, J.A. Ripmeester, D.J. Carlsson, and D.M. Wiles, J. Polymer Science: Polymer Letters Edition, 21, 211-215, 1983. D.D. Deshpande, N.R. Kandaswamy, and V.K. Tiwari, J. Applied Polymer Science, 30, 2869-2882, 1985. Y. Maeda and D.R. Paul, Polymer, 26, 2055-2063, 1985. Y. Maeda and D.R. Paul, J. Polymer Science:Part B: Polymer Physics, 25, 957-1016, 1987. Y. Maeda and D.R. Paul, J. Membrane Science, 30, 1-9, 1987. P.T. DeLassus, in Styrene Polymers, Encyclopedia_gfi W 2nd Ed., 16, 1989. J.J. Dumais, A.L. Cholli, L.W. Jelinski, J.L. Hedrick, and J.E. McGrath, Macromolecules, 19, 1884-1889, 1986. W.T.K. Stevenson, A. Garton, and D.M. Wiles, J. Polymer Science: Part B: Polymer Physics, 24, 717-722, 1986. S.J. Guerrero, Macromolecules, 22, 3480-3485, 1989. E. Shockey and A. Garton, American Chemical Society, Polymeric Materials Science and Engineering, 65, 257- 258, 1991. R.E. Cais, M. Nozomi, M. Kawai, and.A. Miyake Macromolecules, 25, 4588-4596, 1992. 3150 10.“.92 ..II w: ‘1: i. 3L, U‘ CHAPTER 2 COMPARISON OF ANTIPLASTICIZATION STUDIES 2-1. Plasticizers and Plasticization Plasticizers, low molecular weight miscible substances, are usually added to polymers to improve processibility of the polymer and/or to modify the final product [1]. As processing aids, plasticizers may lower the processing temperature and also lower the hot melt viscosity. Regarding the effect on the end-use properties, plasticizers soften the resin, lower the glass transition temperature (Tg), lower the tensile modulus and tensile strength, increase the ultimate elongation and flexibility, increase toughness, and, in addition, raise the diffusion coefficient of penetrant molecules. Plasticization can occur unintentionally. For example, a liquid stabilizer when added to a polymer may plasticize that polymer; some hydrophilic polymers like ethylene vinyl alcohol (EVOH) copolymer and certain nylons become plasticized by water in humid environments. There are basically two modes of adding a plasticizer to a polymer. First, there is the internal mode, where the plasticizer may be added during polymerization; for example, copolymerization of a second monomer. Second, there is the external addition, 11 1 n p-«I'JV’QY \ Unlflvht U ‘ trends or. ...-‘4'... R P.::;1t.2c “I30?” 6.}- uh"! p H. 3.... .' ,. NEH-ta.“ as a lubri \ F . A . actor; 2r» 5' h. . “END: SI “Ce «L;' ‘. \. “Cl“ Ih'w . :Llilty r ‘ 12 polymer. Sometimes both modes of additions are used - this depends on the end-use properties of the product desired. Several theories have been proposed for the mechanisms of plasticization [1,2,3]. These are notably the Lubrication Theory, the Gel Theory, and the Free Volume Theory. The Lubrication Theory basically claims that the plasticizer acts as a lubricant to facilitate movement of the polymer chains over each other. The Gel Theory assumes that the polymer is a three-dimensional network, with 'loose points of attachment' between the polymer chains closely resembling that of a gel. According to the Gel Theory, plasticizers will selectively disrupt some points of attachment. The structure then becomes less rigid and thus more flexible. Both the Lubrication and the Gel theories were developed in the early 1900's and are considered to be inadequate in terms of explaining all aspects of plasticization. Many researchers rely on the Free volume Theory, which asserts that plasticizers increase the free volume of the polymer, thereby increasing chain m0bility, and ultimately decreasing Tg. 2_] 2 E M J 3 E] . . . In the simplest terms, free volume is often defined as the difference between the specific volume of the polymer at any temperature T and the specific volume of the equilibrium ‘o'qn-l r: Hf omid.‘ ab 7.311 of ' I :‘ RC NTAQI" on“. buuuz. P 9 I“. . F A 1 4‘ bole va' ‘ QIPya A; ~40.” \ “" Uhno‘l ‘ "FVF- l3 liquid at 0 K [4]. Free volume is a direct consequence of motion of the polymer including the polymer backbone, the side groups, and the chain ends. In other words by increasing the motion of the polymer, one can increase the free volume of the polymer. This may be accomplished in several ways: increasing the number of end groups (lower molecular weight); increasing the number or length of side chains (internal plasticization); inclusion of groups with lower steric hindrance (internal plasticization); inclusion of compatible material with lower molecular weight (external plasticization); increasing temperature (plastication) [1]. 2-2. Antiplasticization As mentioned earlier antiplasticization has some opposite behaviors to those observed with plasticization. Antiplasticized blends are stiffer than expected; the blends exhibit negative deviation from the additivity rule in the specific volwme of the blend components i.e. show a decrease in the free volume. Furthermore, antiplasticization and plasticization can be observed in the same system, with antiplasticization occurring at low concentrations of aditive. Cf h‘ sr‘rc‘ fiwtdLA...‘ 1 q . ’hffl \ "A“ LWV¢JUEU In: ~a-~£sen a if EffeC. RS b‘e Cog“: mud C $1 eagle L‘Q 14 Jackson and Caldwell [5,6] were among the first researchers to report evidence of antiplasticization. They studied blends of bisphenol polycarbonates with various additives and concluded that rigidity and polarity in both the polymer and additive were necessary to effect antiplasticization. They proposed that the mechanism of antiplasticization may involve a decrease in the free volume of the polymer, polymer- antiplasticizer interactions, and physical stiffening of the polymer by the rigid antiplasticizer molecules, which reduce the flexibility of the polymer. Jackson and Caldwell [5,6] also described the characteristics of effective antiplasticizers - these were additives that were compatible with the polymer, were polar i.e. contain atoms like a halogen, oxygen, nitrogen, and sulfur, they should contain at least two nonbridged rings, had Tgs greater than -50°C, and were relatively flat molecules i.e. had one dimension less than 5.5 A0 in at least 65% of the length of the molecules. Rigidity of the polar additive was stressed, since this reduced flexibility and imparted stiffness to the polymer. These authors also found that low Tg compounds tended to act as plasticizers while higher Tg ones were antiplasticizers. '.. V L;:: et a- I v Pfl’ fifih h f“ fi-Z ufsbedl \- ' l obey-uknb Ar. fl . ,' pa‘ lob. suave» 15 Litt et a1. [7] saw a 5% increase in modulus when 3 and 6% of benzophenone was blended into polystyrene (PS). They attributed the observed 0.6% increase in density to the crystalline nature of benzophenone. They believed that since the diluent contained no excess free volume, it packed efficiently in the polymer and caused a loss in polymer free volume. Robeson and Faucher [8,9] were the first to report that antiplasticization affects secondary loss transitions. Their reasoning was based on the fact that impact strength and ultimate elongation are associated with secondary loss transitions. These authors found that antiplasticizers eliminated the secondary loss peaks in polycarbonate (PC), polysulfone, and poly(viny1 chloride) (PVC). In addition they Observed an accompanying decrease in water vapor diffusion rates, which they attributed to a decrease in free volume. They speculated that the potential sites for water were occupied by the antiplasticizer molecules. In so doing, the antiplasticizer molecules also hindered the mobility of the polymer chains and eliminated the loss transitions. Robeson and Faucher also claimed that a polymer's potential for antiplasticization depended on the magnitude of its secondary loss transitions and the ability for elimination of the transitions. For example, polystyrene, which has a very small low temperature transitions, would not be a good candidate g . .3: antzp': .h : Rue a. sport 'etrie et mail ‘1 ‘lt‘Jy a 16 for antiplasticization. They cited the work of Jackson et al. as supporting evidence. Petrie et a1. [10] disagreed with the findings of Robeson that a decrease in polymer free volume restricts polymer mObility and hence affects the low temperature 6 transition. They found that the loss in free volume had little effect on sub-Tg transitions. Petrie et al. cited the work of Pezzin [11] who studied the dynamical mechanical properties of PVC and found that the 6 peak was not affected by changes in free volume. Petrie et a1. did not believe that antiplasticization was a result of the suppression and/or elimination of the 6 peak. In fact they found that so-called plasticizers and antiplasticizers had a similar effect on the sub-Tg relaxation processes. They investigated all modes of polymer motion and studied the effects of diluent mobility over a wide temperature range. They conducted dynamic mechanical and dielectric loss studies of polycarbonate and polystyrene blended with various diluents. Petrie et a1. then concluded that the temperature ranges for plasticization and antiplasticization are distinct; in other words an antiplasticizer at one temperature may behave as a plasticizer at another temperature. Rdbertson and Joynson [12] studied the effects of annealing and antiplasticization on free volume. They found that the n‘e'enh n r u I tutu-Lbs *e. a glass E5 ' -' 5' b . .5 BLIECt-‘E. ' THOR}; a: I‘V ‘uduu.s¢ 9'- ‘V' Brat-u ‘ I until p: ‘ 904531"an 17 effects were additive, which suggested that the free volume in a glass consisted of two separate entities, one of which is affected by antiplasticization and the other by annealing. Wyzgoski and Yeh [13] found that 30% Arochlor 5442 and 10% dibutyl phthalate decreased the fractional free volume of polycarbonate glass by 0.015. They also observed a suppression of the 6 peak, which they suggested was due to the elimination of the WLF free volume. Kinjo et al. [14, 15] studied PVC blended with various diluents: tricresyl phosphate (TCP), butyl benzyl phthalate (BBP), dioctyl phthalate (DOP), dibutyl sebacate (DB3), and dioctyl sebacate (DOS). They reported that the antiplasticizing ability (increasing stiffness and rigidity) of the diluents TCP>BBP>DOP>DBS>DOS in PVC were in the reverse order of their plasticizing ability (decrease in Tg) DOS>DBS>DOP>BBP>TCP. They observed a decrease in Tg and a suppression and subsequent disappearance of the 6 peak. They also found that the suppression of the 6 peak was independent of the diluent species. Another interesting Observation was that the coefficient of the specific volume or thermal expansion coefficient, which is related to the molecular interaction or the cohesive energy density, decreased in antiplasticized blends. The magnitude of the decrease was in the order TCP>BBP>DOP>DBS>DOS, the exact order as the antiplasticizing ability. Kinjo et al. proposed 18 that antiplasticization of PC and PVC is primarily due to a disappearance of the 6 peak, thus supporting Robeson and Faucher. Makaruk et a1. [16] used calorimetric techniques to study antiplasticization in polycarbonate. They suggested that deviations from the volume additivity and differences of heats of solutions pointed to the existence of strong interactions between the antiplasticizer molecules and polycarbonate. In a later paper [17] they agreed with Jackson et al. that antiplasticization depends on the number of polar groups in the diluent, and also on the ability to fill the free volume of the polymer. Antiplasticization was also observed with high polymer blend systems. Bergman et a1. [18], in a study of PVC/NBR (acrylonitrile butadiene rubber) blends, found that antiplasticization by NBR (in high acrylonitrile content samples) resulted in non-linear viscoelastic behavior. Since antiplasticization suppressed the 5 transition, they proposed that the stress-activated mechanism causing non- linearity has a highly cooperative nature, due to coupling effects between the a- and B-transition mechanisms. The high AN levels improved PVC/NBR blend compatibility, which enhanced antiplasticization. Later experiments with the antiplasticizer poly-e-caprolactone (PCL) confirmed the 19 importance of the B relaxation in stress activated processes and support the pseudo cross-linking hypothesis for antiplasticization [19]. Chang et al. [20] found that antiplasticization was temperature dependent. They blended a graft copolymer of ethylenepropylene-1:4 hexadiene (EPDM) and PVC with 0, 5, and 10 weight percent dioctyl(di-2-ethylhexyl)phthalate (DOP). DOP increased the storage modulus between -20°C and 70°C, while decreasing the storage modulus above 100°C. The antiplasticization behavior was attributed to an increase in dipolar interaction between the DOP molecules and PVC chain segments. In earlier experiments Chang et a1. [21] also found that antimony oxide additives can antiplasticize the rubber phase in high impact polystyrene (HIPS) while acting as an inert filler in the PS phase at a temperature above the glass transition temperature of the rubber. Kryszewski et a1. studied the mechanical properties of polycarbonate antiplasticized with a charge-transfer complex [22]. Mechanical tests indicated that the diluent, teracyanoethylene-t-stilbene complex, raised the modulus in the temperature range -60 to +60°C. Using thermally stimulated depolarization (TSD) techniques they proposed that polymer diluent interactions cause "physical crosslinks" in the polymer blend, which was manifested as I .‘ «one»! ...-...:..G b- ”On p v .. s, CITES If " 1": adfhh‘ nu- UML. ? In a Sew q s d f tfi'l'; 20 antiplasticization. As the temperature was increased above 60°C, these relatively weak physical crosslinks were broken. The additive then behaved like a plasticizer and lowered the Tg. Kryszewski et al. [22] also studied the mechanical modulus of the blends containing the complex and its components as a function of cycle number and temperature. At 30°C the moduli increased up to 3 cycles. At 60°C the moduli remained constant. The authors explained that at low temperatures, when small chain segment movements occurred, stretching can cause them to rearrange their positions to favor increased interactions, which resulted in increased moduli. At higher temperatures, the large chain segments often relaxed quickly after stretching. As a result, there was no increase in the moduli. In a separate study Kryszewski et al. [23] confirmed that at low temperatures the polar complex acts as an antiplasticizer, due to interactions with the chain segments. These authors found that the most antiplasticized blends showed higher activation energies for relaxation than the pure polymer, which again suggested some interaction, possibly dipole-dipole type bonding, between the charge complex molecules and the carbonyl groups on the polymer chain. They proposed that the interaction inhibited the 31:42} a ANN-Mn» *- t- emu-u... \- 1 bmofi ya “1.3-6 a 1 “‘ ““6 cc U beey 53:33:13: ( 21 mobility of the carbonyl groups. At high complex concentrations, the equilibrium bonding formation shifted toward a lowering of the concentration of bond crosslinks, and the complex acted as a plasticizer. This plasticizing behavior was also observed at elevated temperatures. Olayemi et a1. [24] observed a three-stage interaction of dimetyl phthalate, dibutyl phthalate, and poly(vinyl acetate) with poly(methyl methacrylate) (PMMA). They saw an initial plasticization i.e. decrease in tensile strength and modulus, followed by antiplasticization, an increase in tensile strength and modulus with an anomalous increase in elongation, and finally plasticization. They proposed that in the first stage, very few additive molecules were present thus the interaction was nonspecific. As the concentration increased, polymer-additive interaction increased forming secondary bonds like hydrogen bonds and van der Waals interactions. Olayemi et a1. suggested cross-linking of the PMMA molecules by additive molecules. They believed that larger molecules would be more effective antiplasticizers. They explained the anomalous elongation as a form.of spacer effect where the additive molecules are positioned between the PMMA molecules. They described it as simple cross-linking without the extensive network, which would permit limited movement within the system. They attributed the final pasnaza: ”it.“ k‘.¢3re e l I . 71"» p1 “finer .0 ‘1 incl: anti 3. (all e :1 [.0 we“: 22 plasticization to a lubrication action of the additives on EMMA. Mubarak and Polanska [25] have suggested that polymers with stiff backbones can exhibit antiplasticization when strong polymer-additive interactions are greater than additive- additive and polymer-polymer interactions. Belfiore et a1. [26 to 29] found via NMR techniques that the higher Tg diluents dinitrobiphenyl and diphenylphthalate, which antiplasticized polycarbonate, had negligible effect on the mid-kilohertz micro-Brownian motions in the polymer chain, but significantly affected the mega-hertz mobility of the B-relaxation processes. They proposed that the intenmolecular interactions that gave rise to antiplasticization can only occur in the solid state. The relaxation rates of the aromatic groups on the polymer chain were most sensitive to the antiplasticization phenomenon. Sefcik et a1. [30] measured permeabilities and time-lag for H2 and CO in PVC-TCP blends and saw that the diffusion coefficients decreased initially and then increased beyond 15% TCP. C-13 NMR data showed that the polymer mobility decreased during antiplasticization. Using the diffusion theory of Pace and Datyner [31], they proposed that the diluent increased interaction between the polymer chains, resulting in increased interchain cohesion, which “‘b‘v $439 d 1:... a:::.... .V& h..‘:‘ Esta et a . “B I venq E V A“ y"! va‘b'v..1 .."“h- ' “cl-wont. 'A "-“A . A “H F. r UU\ a‘.u “-‘I- I225. the P I ll d 'T‘Wu “Helea t firm, i- Cup. IIID‘Mbe c E] haSt‘ n‘, ‘k'LZE ‘2 \ ‘ Q. 53:; 4 4: ‘4‘ 23 subsequently caused an increase in tensile strength. The higher interchain cohesion also raised the activation energy for diffusion. Gupta et a1. [32] studied antiplasticization in bisphenol A polycarbonate/ 2,2 dinitrobiphenol (DNBP) blends via a variety of mechanical and analytical techniques. A modulus maximum was observed at about 30% DNBP. They concluded from DSC and NMR experiments that the DNBP was intimately mixed with the PC. Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) data implied the presence of a strong PC-DNBP interaction. An increase in the a-relaxation temperature for poly(vinyl acetate) (PVAC) blended with low quantities of cholesteryl additives was observed by Deshpande et a1. [33]. Thus the glassy region was extended over a wider temperature interval. Dielectric depolarization spectroscopy and dynamic mechanical analysis results suggested antiplasticization behavior. These authors also analysed the thermal data based on the WLF (Williams-Landel-Ferry) equation [34] and found that with antiplasticized blends, the WLF reference temperature,To, or T9 was higher than that of the pure polymer PVAC. For a plasticizer, the Tg was lower than that of the pure polymer. In addition, the apparent enthalpy of activation for the dielectric relaxation, AHa, was higher for antiplasticized ' I Hanan A . “I." ivy “A.“ u: YOIHN “.46 a: free V01u 24 blends. Specific dipolar interaction between the additive molecules and the PVAC chain was the suggested cause for the antiplasticization phenomenon. Naeda and Paul [35 to 38] found that antiplasticizers decreased the permeability of polysulfone, polystyrene, and poly(phenylene oxide), but either decreased or increased the selectivity of the gas pairs through these membranes depending on the relative molecular sizes of the gases. Free volume analysis showed that the diluents caused a decrease in free volume of the blends, which led to a decrease in penetrant gas mobility. Dumais et a1. [39] found via deuterium NMR studies that the antiplasticizer, 4,4-dichlorodiphenyl sulfone (DCDPS), added at 40 weight percent decreased the rate and magnitude of 180° phenyl ring flips in poly(arlene ether sulfones). The aromatic ring flips are the primary mode of motion responsible for B relaxations and represent a broad distribution of frequencies (102 - 107 5'1) in poly(aryl ethers). Stevenson et al. [40] found via Infrared (IR) spectroscopy that antiplasticization in phenoxy blends containing the polar diluent, 4-(2-hydroxy-3-phenoxy-propyloxy) acetanilide (EPPHAA), was due to hydrogen bonding interactions between we phenoxy .. m .I- Fn' ‘1 hilt-late Su I1- (1 5;... ‘ha‘ \n t 25 the phenoxy hydroxyl groups and the amide groups on the diluent. Suppression of the 5 peak was also observed. Roy et al. [41-42] set out to look for a specific interaction between bisphenol A polycarbonate (BPA-PC) and the antiplasticizer di-n-butyl phthalate (DBP). They conducted solid-state C-13 NMR spin diffusion experiments between a labelled site on the DBP and various natural abundant sites in the BPA-PC repeat unit. They proposed that during antiplasticization ( < 10% DBP) a specific interaction existed between the carbonyl ester of DBP and the phenylene groups on the polymer chain; the carbonyl ester of DBP was closer to the phenylene groups relative to the quaternary aliphatic carbons at 10% DBP. As the DBP concentration increased, the labelled carbonyl was close to both the phenylene and the quaternary sites, and the intermolecular spatial specificity was minimized. This non-specific relative spatial positioning meant that the DBP molecules did not interact with special sites on the PC repeat units and thus led to plasticization. The conclusions of Roy et al. support those of Olayemi et al., who suggested that a non-specific diluent interaction was responsible for plasticization. A mathematical model was developed by Vrentas et a1. [43] to explain the volumetric changes that occur during antiplasticization. These authors derived a concentration dependent e and propose increase in plasticizir. specific 11: antiplasu: The effect H h . 1. 1,5: '1‘ all] ”Isiah; 1338 t. DOIymer C 111:0 a mo WEI-Ease 26 dependent equation describing the specific hole free volume and proposed that low Tg diluents will initially cause an increase in specific hole free volume and hence a plasticizing effect. High Tg diluents will decrease the specific hole free volume initially, and hence behave like antiplasticizers. The effect of crystallinity on antiplasticization in PVC/TCP blends was investigated by Guerrero [44] An effort was made to rule out aging as the primary cause for antiplasticization. Completely amorphous samples did not manifest antiplasticization. The same was true of samples, which were blended at room temperature rather than at elevated temperatures. These latter samples did not crystallize when blended at room temperature. Instead samples containing low levels of TCP that were blended at elevated temperatures showed some degree of crystallinity and manifested antiplasticization» Apparently, the additive had to be present during a critical cooling stage to cause crystallization and effect antiplasticization. One argument was that the additive may have imparted mobility to the polymer chains, such that the polymer could rearrange itself into a more densely packed crystalline state, yielding an increase in modulus. "’ ' or fAF fee, :maw‘zgj Cb iii-:11, 1:: remain: 1: (least: I“ ' FY EV 369.6 wear ”I! A 4 . . N: 27 Shockey et al. [45] studied the role of the antiplasticizer, EPPHAA, in polyimides and found a suppression of sub-Tg relaxations, a decrease in water absorption, and an increase in densities, which led them to attribute antiplasticization to a decrease in free volume. Cais et al. [46] studied the abrasion resistance of polycarbonate binder resins blended with diphenylhydrazones in organic photoconductors. They found that the diphenylhydrazones charge transport molecules antiplasticized the polycarbonate layer, stiffened the polymer, and decreased wear. The antiplasticization was manifested by a transition from.a ductile to a brittle failure mode. Dynamic mechanical analysis (DMA) and density measurements indicated decreased sub-Tg molecular mobility and a decrease in free volume upon antiplasticization. The authors attributed antiplasticization to strong charge-transfer interaction with the polycarbonate resin. 2_2 2 S E E l E 1 E I' J I' . . In summary, antiplasticization has been observed in diverse polymer-diluent systems. The major observations were that antiplasticization was observed at low diluent levels, antiplasticization is temperature dependent, it usually occurred in the glassy state, and antiplasticization is diluent specific. Mechanical property tests, differential 28 scanning calorimetry (DSC), dynamic mechanical spectroscopy (DMS), dielectric loss studies, nuclear magnetic resonance (NMR), and density measurements collectively infer that antiplasticization results from one or more of the following: (a) (b) (c) (d) a decrease in free volume upon the addition of the diluent - perhaps the polymer chains have some limited degree of mobility, which allows them to align themselves in a more ordered densely packed state or that the diluents fill the excess volume of the polymer glass. suppression of the secondary relaxation transitions at the temperature of interest, which reduces polymer flexibility. specific polymer-diluent interactions which create steric hindrance and decrease segmental mObility of the polymer Often the higher frequency motions are most affected. reduced mobility of the diluent - it has been suggested that diluents with relatively high Tgs (or Tgs very near the temperature of interest) have a greater tendency of promoting antiplasticization. v r . in; '57.," 1p‘ .. A; U in. J 1 rci nical I and then s; axe has re‘. diluent to a.” o y A ....u dyer“ Dal-1.223 3f 2". Ref e h) C4 >—3 I‘- a 5‘7 H H 29 The majority of these authors relied solely on either a mechanical or an analytical test to verify antiplasticization and then speculated on a mechanism for antiplasticization. No one has related the microscopic physical behavior of the diluent to the local molecular motions of the polymer, and then extended that information to explain the bulk mechanical behavior of the polymer. 2-4. References l. J. K. Sears, and R. J. Darby, The_Iegthngy_Qf Plasticizers, Wiley, New York, 1982. 2. J..T Lutz Jr., ed. .Wmmmdditirea; Wee Dekker New York 1989 3. JD. Ferry. 11W wiley. New York, 1980. 4. R.N. Haward, J. Macromolecular Science - Reviews of Macromolecular Chemistry, C4(2), 191-242, 1970. 5. W.J. Jackson Jr., and J.R. Caldwell, J. Applied Polymer Science, 11(2), 211-226, 1967. 6. W.J. Jackson Jr., and J.R. Caldwell, J. Applied Polymer Science, 11(2), 227-44, 1967. 7. M.H. Litt and A.V. Tobolsky, J. Macromolecular Science - Physics, 3193, 433-443, 1967. 17. - N. [(4 L.M. R B: Pol . G. Pe: A‘. ‘ F!‘ V .I. . R.E. - Scien - M G. 1973. 1973‘, 10. ll. 12. l3. 14. 15. l6. l7. 18. 30 L.M. Robeson and J.A. Faucher, J. Polymer Science:Part B: Polymer Letters, 7(1), 35-40, 1969. L.M. Robeson, Polymer Engineering and Science, 9(4), 277-281, 1969. S.E.B. Petrie, R.S. Moore, and J.R. Flick, J. Applied Polymer Science, 43(11), 4318-4326, 1972. G. Pezzin, G. Ajroldi, and C. Garbuglio, J. Applied Polymer Science, 11, 2553-2566, 1967. R.E. Robertson and C.W. Joynson, J. Applied Polymer Science, 16, 733-738, 1972. M.G. Wyzgoski and G.S.Y. Yeh, Polymer J., 4(1), 29-34, 1973. N. Kinjo and T. Nakagawa, Polymer J., 4(2), 143-153, 1973 O N. Kinjo, Japan Plastics, 6, 6-28, 1973. L. Makaruk, H. Polanska, and E. Staros, J. Applied Polymer Science, 20, 60-70, 1976. L. Makaruk, H. Polanska, and T. Mizerski, J. Applied Polymer Science, 23(7),1935-42. G. Bergman, H. Bertilsson, and Y. Shur, J. Applied Polymer Science, 21, 2953-2961. “M Lu‘. M ‘31.. Q. 4.). Pk) \) o SCie: 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 31 N. Sundgren, G. Bergman, and Y. Shur, J. Applied Polymer Science, 22, 1255-1265, 1978. E.P. Chang, R. Kirsten, and R. Salovey, J. Applied Polymer Science, 24, 827-836, 1979. E.P. Chang, R. Kirsten and E.L. Slagowski, J. Applied Polymer Science, 21, 2167-2180, 1977. M. Kryszewski, J. Ulanski, and A. Galeski, J. Applied Polymer Science, 23, 1271-1278, 1979. M. Kryszewski and J. Ulanski, J. Applied Polymer Science: Applied Polymer Symposium, 35, 553-562, 1979. J.Y. Olayemi and N.A. Oniyangi, J. Applied Polymer Science, 26, 4059-4067, 1981. L. Mubarak and H. Polanska, Polymer Bulletin, 4, 127, 1981. L. Belfiore and S.L. Cooper, J. Polymer Science: Polymer Physics Edition, 21, 2135-2157, 1983. L.A. Belfiore, P.M. Henrichs, D.J. Massa, N.Zumbulyadis, W.P. Rothwell, and S.L. Cooper, Macromolecules, 16, 1744-1753, 1983. L.A. Belfiore, P.M. Henrichs, and S.L. Cooper, Polymer, 25, 452-458,l984. II I. 4 Q ¢ I MU N. I 1 . K «I § 1 “U FM; TIN AH“ ‘ 1‘ .‘ . 11‘ hr ' I”. ... ' ‘ Mu "W «6 1h 1 C . -9. 5. E. 7. \‘J N414 ‘1‘]. ‘.\.v ‘44 a fill. «all 198 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 32 L. Belfiore, J. Elastomers and Plastics, 19, 238-251, 1987. M.D. Sefcik, J. Schaefer, and F.L. May, J. Polymer Science: Polymer Physics Edition, 21, 1041-1054, 1983. R.J. Pace and A. Datyner, J. Polymer Science: Polymer Physics Edition, 17, 437-465, 1979. M.K. Gupta, J.A. Ripmeester, D.J. Carlsson, and D.M. Wiles, J. Polymer Science: Polymer Letters Edition, 21, 211-215, 1983. D.D. Deshpande, N.R. Kandaswamy, and V.K. Tiwari, J. Applied Polymer Science, 30, 2869-2882, 1985. M.L. Williams, R.F. Landel, and J.D. Ferry, J. American Chemical Society, 77, 3701-3707, 1955. Y. Maeda and D.R. Paul, Polymer, 26, 2055-2063, 1985. Y. Maeda and D.R. Paul, J. Polymer Science:Part B: Polymer Physics, 25, 957-1016, 1987. Y. Maeda and D.R. Paul, J. Membrane Science, 30, 1-9, 1987. P. T. DeLassus, in Styrene Polymers, Engyglopedia_ofi Wines-raring. 2nd Ed 16. 1989 39. 40. 41. 42. 43. 44. 45. 46. 33 J.J. Dumais, A.L. Cholli, L.W. Jelinski, J.L. Hedrick, and J.E. McGrath, Macromolecules, 19, 1884-1889, 1986. W.T.K. Stevenson, A. Garton, and D.M. Wiles, J. Polymer Science: Part B: Polymer Physics, 24, 717-722, 1986. A.K. Roy, P.T. Inglefield, J.H. Shibata, and A.A. Jones, Macromolecules, 20, 1434-1437, 1987. Y. Liu, A.K. Roy, A.A. Jones, P.T. Inglefield, and P. Ogden, Macromolecules, 23, 968-977, 1990. J.S. Vrentas, J.L. Duda, and H.C. Ling, Macromolecules, 21, 1470-1475, 1988. S.J. Guerrero, Macromolecules, 22, 3480-3485, 1989. E. Shockey and A. Garton, American Chemical Society, Polymeric Materials Science and Engineering, 65, 257- 258, 1991. R.E. Cais, M. Nozomi, M. Kawai, and A. Miyake Macromolecules, 25, 4588-4596, 1992. 3'1. Int: his Cmp: atiplasti becomes 5: 5743! the xiiplasu Of the pol CHAPTER 3 MECHANICAL BEHAVIOR DURING ANTIPLASTICIZATION 3-1. Introduction This chapter deals with the mechanical effects of antiplasticization. During antiplasticization the polymer becomes stiffer and more brittle [1,2]. Work was done to study the effect of chain end concentration on antiplasticization. Polystyrene/mineral oil blends were used as the model. Emphasis is placed on the flexural properties of the polystyrene/mineral oil blends. 3-2. Flexural Properties Flexural mechanical tests of rectangular bars were conducted, instead of tensile tests, due to the brittle nature of the polystyrene/mineral oil blends. The three-point bending technique was used in accordance with ASTM Method D-790 procedures [3]. During the flexural test, the test bar rests on two supports, one on each end, and a load is applied via a loading nose located at the mid-point between the supports. The flexural modulus, thich is a measure of the degree of stiffness, is determined from the initial slope of the stress-strain curve. The flexural strength, which is the ability of the material to 34 35 withstand bending forces, is equivalent to the maximum stress in the outer fibers at the moment of break. In the case of materials that do not break upon bending, the flexural strength is calculated using the maximum load at which there is no longer an increase in load with increasing deflection [4.5]. 3-3. merinental Section Three different types of atactic polystyrene (MW = 270,000 and 40,000 Daltons, obtained from Scientific Polymer Products, Inc. and MW = 128,000, obtained from The Dow Chemical Company), were blended separately with different concentrations of Penreco Drakeol Supreme High Viscosity mineral oil in a Haake Buchler Rheocord System 40 mixing bowl set at 50 rpm and 200°C. Nominal mineral oil concentrations of 0 to 10 parts per hundred resin (0 to 9.09 weight percent or 0 to 10.9 volume percent) were studied. WWWM Molecular weight distributions of the pure polystyrene samples, dissolved in high performance liquid chromatography CHPLC) grade tetrahydrofuran (THF) with 500 ppm di-t-butyl benzene as an internal standard, were determined using a Ikewlett-Packard GPC. The instrument was calibrated using 36 twelve narrow anionic polystyrene standards (MW = 2.95 X 106 to 2.2 X 10 3) obtained from Polymer Laboratories, Inc. Two PLgel Sum mixed columns (each 7.5 mm X 300 mm), obtained from Polymer Labs., were used in series at 40°C to obtain separation. The injection sample volume was 50 ml of 0.25% polymer solution in THF eluent. The flow rate of the THF eluent was 1 ml/min. The samples were filtered prior to injection. A Filter Photometric Detector tuned to 254 nm was used. The support apparatus consisted of a Hewlett-Packard 1090 Liquid Chromatograph with autosampler, an HP 85-B Computer, and a 9153A Controller. .1:141_Gas_Cthmathrann¥ High temperature gas chromatography (GC) with flame ionization detection and a Quadrex aluminum clad capillary column (25 m.x 0.25 mm I.D., 0.1 mm) with split injection was used to determine the qualitative nature of the mineral oil. The temperature ramp was from 100°C to 400°C. The Chromatogram.of the mineral oil was compared to a Chromatogram of a mixture of C-7 to C-40 straight chain hydrocarbons Obtained from Polyscience Corp. (Analytical Standard Kit #21c and #26cx). 3_3 l 2 . H 1:. Compression bars (approximately 0.076 X 0.012 X 0.0016 m or 3 :x 1/2 X 1/16 inch) were molded in an electrically heated 37 hydraulic press set at 2000C and 100 to 5000 psi for 3 minutes. The mineral oil concentration in the molded bars was determined by gas chromatography (GC) using polystyrene samples dissolved in methylene chloride. The analyses were performed with a Waters 510 HPLC Pump, a Spectrwm 1021A Filter and Amplifier, an ACS Mass Detector Model 750/14, and a Hewlett Packard 3396A Integrator. A DuPont ZORBAX SIL 4.6 mm x 25 cm column with a Brownlee Labs Silica 4.6 mm x 3 cm guard column was used. HPLC Grade hexane was the mobile phase. The injection size was 20 microliters. The flow rate was 1.5 ml per minute. The analyses were conducted at room temperature. Calibration was accomplished using standards containing 0.5 weight % to 10 weight % mineral oil dissolved in methylene chloride. 3_3 5 E'EE . J S . 2 J . Glass transition temperatures of the blends (after molding) were determined by differential scanning calorimetry using lDuPont 9900 Computer/ Thermal Analyser calibrated with indiwm. Scanning rates were 10°C/min from room temperature to 200°C. All samples were run in air. 38 .l:1;L_Elexnral_EIQDerLies Flexural moduli and flexural strengths of the compression molded bars were determined at room temperature using an Instron Universal Testing Instrument Model 4201. The test were done at room temperature a few days after molding according to the ASTM Method #D790 for a 3-point bend test. Tensile property testing could not be performed due to the extremely brittle nature of most of the bars. All of the bars broke during the flexural tests except the 270,000 MW blends containing 8% mineral oil. 3-4 Results and.Discussion The molecular weight distributions for the polystyrene samples are shown in Table 3-1. The 40,000 MW sample was bimodal. All of these materials were synthesized by free- radical polymerization. 3_ 2 3i :3 E 1 H' J :'1 Figure 3-1 shows the high temperature gas Chromatogram, which indicated that the mineral oil sample was comprised of primarily C-28 to C-46 hydrocarbons. 39 Table 3-1. Molecular Weight Distribution of Polystyrenes 270,000 MW 128,000 Mw Bi- Modal 40,000 MW Mn 111, 700 58, 420 56,970 850 Mw 274, 400 127,900 103, 900 1, 058 M2 448, 100 216, 400 164,700 1, 343 Mp 244, 200 87, 930 109, 300 751 PD“ 2.455 2.190 1.824 2.190 PD - Polydispersity 40 GC analysis of the 270,000 MW, 128,000 MW, and 40,000 MW polystyrene test bars indicated a maximum concentration of approximately 8, 9, and 10 volume percent of absorbed mineral oil respectively, compared to the nominal 11 % concentration that was added to the polystyrene in the HAAKE mixing bowl. Blends containing greater than 8% mineral oil were opaque at room temperature i.e. phase separation occured as temperature was decreased. This was indicative of Upper Critical Solution Temperature (UCST) behavior. Figure 3-2 shows that the glass transition temperatures decreased with mineral oil concentration. There was a 21°C, a 33°C and a 15°C decrease in glass transition temperatures for the 270,000, 128,000 and 40,000 molecular weight blends respectively, at the highest mineral oil concentrations. While the T9 of the 270,000 MW and 128,000 blends decreased linearly, there was a change in slope or discontinuity in the Tg of the 40,000 MW blends at 6% mineral oil. At concentrations less than 6% mineral oil the Tg decreased linearly, whereas above 6% mineral oil the T9 of the 40,000 MW blends remained constant. This change in slope at 6% <:orresponds to the work of Braun et a1. and Pezzin et al., vfhere they describe a singularity in the Tg versus 41 OH.) 1112 '1 287 W ‘38—} In: 11 ‘22-) ““-————=- 01-3 8'" r 32:0 9211 692:3) tru ! _ St?) "'11 “Q it) ”s L __ Zt-D “1 i 1: (23-3161 F __ 01-313“: I C E") 21‘: E I 3;.) 12‘s I do 9'1 __ I f h“) 93‘: I 1;: SL’) “1! m '2': 5'- ?l-) 28‘ L: j. II~< 1 1 ’1 Figure 3-1. Gas Chromatogram of Mineral Oil Glass Transistion Temperature (0 C) 42 110 El 270,000 14w C) 128.000 MW 100- A 40,000Mw 90- 80-: 7.3 ‘ 60" 1 50‘ A a _A 40 - l t I ' I T I O 4 6 8 1O 12 Mineral Oil Concentration (Volume %) Figure 3-2. Effect of Mineral Oil Concentration on Tg 43 concentration data of poly(vinyl chloride) with dibutyl phthalate and dicyclohexyl phthalate [6,7]. This singularity occurs when the diluent eliminates the WLF free volume. According to Boyer the plasticizer is more efficient at lowering the free volume once this singularity is achieved [8]. A similar deviation in Tg from linearity was observed by Cais et al. with polycarbonate diluent blends [9]. - -.q . ' oo- '- e 'o -o- 00‘ ., 0' : -66 Figures 3-3a and 3-3b illustrate the effect of mineral oil concentration on the flexural properties of the 270,000 MW polystyrene blends. As mineral oil was added to the 270,000 MW system, the flexural modulus remained constant and then decreased significantly at concentrations greater than 5%; whereas, there was an immediate decrease in flexural strength. This was indicative of plasticization of the high molecular weight polystyrene by the mineral oil. The error bars on the graphs represent a 95% confidence interval. Figures 3-4a and 3-4b show the effect of the mineral oil concentration on the flexural properties of the 40,000 MW polystyrene blends. Here one observed about a 2X increase in flexural modulus up to about 6% mineral concentration, followed by a rapid decrease in flexural modulus with higher concentrations of mineral oil. The same behavior was seen with the flexural strength. There was a 1.7x increase in 44 600000 I 1- \ :3 . 1 m500000 8* 0) J. :5 H :1 . '8 a H (U H gmoooo- a) ...; £14 300000.......,..... 012 3 4 5 6 7 Mineral Oil Concentration ( Volume %) Figure 3-3a. Effect of Mineral Oil Concentration on Flexural Modulus of 270,000 MW Polystyrene 45 12000 11000-I 10000- Flexural Strength (psi) ; ' I I I ‘ I ' 6000 'l'fiifi 2 3 4 5 6 7 Mineral Oil Concentration (Volume %) Figure 3-3b. Effect of Mineral Oil Concentration on Flexural Strength of 270,000 MW Polystyrene 46 800000 700000- 73 . U) 8‘ m 600000- :3 '3 “C . O 2 H 6 500000- LI :5 x (D H [11 4ooooo-' ‘ 300000F . . . . . . . , . o 2 4 6 8 1o Mineral Oil Concentration (Volume %) Figure 3-4a. Effect of Mineral Oil Concentration on Flexural MOdulus of 40,000 MW Polystyrene 47 2400 (psi) Flexural Strength 10 Mineral Oil Concentration (Volume %) Figure 3-4b. Effect of Mineral Oil Concentration on Flexural Strength of 40,000 MW Polystyrene 48 flexural strength up to about 8% mineral oil concentration followed by'a rapid drop in flexural strength at higher mineral oil concentrations. The increase in flexural modulus and strength is indicative of antiplasticization. This apparent stiffening of the blend below Tg resulted when small quantities of mineral oil (less than 6%) were blended into 40,000 MW atactic polystyrene. This behavior was not observed in the 270,000 MW polystyrene blends. Possibly antiplasticization occurs only below a critical molecular weight. These results are consistent with the hypothesis that antiplasticization is primarily attributed to a chain end effect. The 40,000 MW bimodal sample had a significantly greater concentration of chain ends than the 270,000 MW material. Using a basis of 1,000,000 grams, one determines that the 270,000 MW sample had approximately 18 moles of chains ends, whereas the 40,000 MW bimodal sample had 1,426 moles (14 and 1,412 moles for the high and low molecular weight fractions respectively). There are two orders of magnitude more "voids" available at the chain ends in the low molecular weight material for the mineral oil to occupy and hinder the mobility and realignment of the polymer chain. 49 3-5 Conclusions Antiplasticization, as evidenced by a stiffening of the blends below Tg, resulted when small quantities of mineral oil (less than 6%) were blended into the 40,000 MW polystyrene samples. It is speculated that measureable antiplasticization occurs only above a critical concentration of chain ends. These observations also support our hypothesis that antiplasticizaton is primarily due to a chain end effect. The 40,000 MW bimodal sample had a significantly greater concentration of chain ends, than the 270,000 MW polystyrene sample, approximately a 83:1 ratio. This means that there were more chain end voids available for the mineral oil to occupy in the 40,000 MW sample. In polystyrene, the chain ends are the most mobile units. Thus by filling the voids, mobility of the chain ends is hindered, and antiplasticization is manifested. 3-6 References 1. W.J. Jackson Jr. and J.R. Caldwell, J. Applied Polymer Science, 11, 211-226, 1967. 2. W.J. Jackson, Jr. and J.R. Caldwell, J. Applied Polymer Science, 11, 227- 244, 1967. 50 American Standard Test Method for Flexural Properties of Plastics and Electrical Insulating Materials, ASTM D790-71, Annual Book of ASTM Standards, 1987. V. Shah. Handbook_Qf_Elastics_Testins_Technolog¥. John Wiley and Sons, New York, p 23, 1984. M-D- Baijal. Elastics_Bclymer_Science_and_IechnongY. John Wiley and Sons, New York, p 809, 1982. G. Braun, and A.J. Kovacs, C.R. Acad. Sci., 260, 2217, 1965. G. Pezzin, A. Omacini, and F. Zilio-Grandi, La Chimica E. L'Industria, 50, 309, 1968. R. Boyer, Transitions and Relaxations in Amorphous and Semicrystalline Organic Polymers and Copolymers, in E J 3' E E J 3 . i I 1 1 Supplement, John Wiley and Sons, Inc, New York, Vol II, p 797, 1977. R.E. Cais, M. Nozomi, M. Kawai, and A. Miyaki, Macromolecules, 25, 4588, 1992. CHAPTER 4 AN INVESTIGATION OF THE HOLE FILLING MECHANISM VIA POSITRON ANNIHILATION SPECTROSCOPY 4-1 Introduction Antiplasticization [1,2] has been attributed to a decrease in free volume upon addition of the diluent. Several researchers have inferred that the diluents fill the excess free volume of the polymer glass or that the polymer chains have some small degree of mobility, which allows them to align themselves into a more ordered densely packed state [3,4]. These inferences have been made indirectly through theoretical calculations and density measurements. Positron Annihilation Spectroscopy (PAS) was used to determine changes in free volume. The results of this research will be related to a hole-filling mechanism of the diluent during antiplasticization. PAS is a valuable tool for studying defects/holes in solids. It relies on the affinity of ortho-positronium (o-Ps) for domains with low electron densities. From information about their lifetimes and intensities, one can determine independently the hole size and hole densities [5]. 51 52 4-2. Positron Annihilation Spectroscopy Wham Positrons, which are the conjugate antimatter of electrons, are emitted with high energy (~ 0.54 Mev) from a radioactive isotope such as 22Na and thermalize quickly (picoseconds) upon entering a condensed sample. They can exist in several states, each having a characteristic lifetime Ti and intensity Ii. Typically, PAS spectra are resolved into three exponentially decaying components corresponding to the specific state of the positron. The spectrum is expressed as a series of negative exponential functions of time t: n N(t) = X Ii e-Ait + B (4-1) 1:1 where N (t) is the count at time t, n is the number of exponential terms, 11 is the number of positrons (intensity), A1 is the positron annihilation rate for the ith state, and B is the background count. The positron lifetime , Ti, is the reciprocal of the annihilation rate, Ai, which is the overlap integral of the positron density, p+, and the electron density, p- , at the site of annihilation. 53 A = k! p— (r) 9+ (r) dr <4-2) The parameter k is a normalization constant related to the number of electrons. Thus the annihilation rate is dependent on the electron density experienced by the positron species. The electron density is inversely proportional to the free volume hole sizes. Positrons may annihilate with free electrons in condensed media resulting in photon emission. A positron may also combine with an electron to form a positronium.(Ps), which can exist in either the singlet i.e. para state, or triplet i.e. ortho state, depending on the spin state of the bound electron. Para-positronium (p-Ps) has the shortest lifetime of about 0.1 ns, corresponding to 11. In condensed media free positrons and positron-molecular complexes have intermediate lifetimes of about 0.4 to 0.8 ns, corresponding to 12. The longest lifetime component, T3 of 1 to 10 ns, attributed to ortho-positronium (o-Ps) "pick-off decay" by electrons, is used to study free volume changes, since the 0- Ps lifetimes are more sensitive to the changes in free volume. The o-PS lifetime, 13, is proportional to the average hole size, while the intensity, I3, of the o-Ps component of the lifetime spectra is proportional to the number density of holes. An approximate measure of the relative free volume can 54 be obtained from the product of the lifetime and the relative intensity. - l- ‘0110q'00 0 1 - ..0‘ 00 - " 011" ' ‘ '11- Tao and Nakanishi, using the particle-in-a-spherical-box theory, have shown that that the o-Ps lifetime, T3, in nanoseconds, can be related to the average hole radius, r, in nanometers, in the following way [6,7]. T3 = 0.5[1-r/(r+0.166)+(2 n)'l(sin(2 1Tr/(r+0.166))]'l Several researchers have observed excellent agreement between measured o-Ps lifetimes and average hole radii for materials with known hole sizes. The model is valid for radii of less than 0.2 nm to greater than 0.6 nm [7]. The average hole volume, , is then derived from: = 4 nr3/3 Brandt et al. have shown that the o-Ps intensity, I, is a measure of the number density of holes or free volume sites [8]. Given that n(v)dv is the number density of holes having volumes between v and (v+dv), then the number of holes per unit volume, N, is the integral I'n(v)dv. 55 The fractional free volume, fv, is given as fv = In(V) v dv = N (4-5) c I, where N =c I (4-6) fv The parameter c is a proportionality constant relating o-Ps intensity , I, to the total number density of holes, N. The constant c, which depends on the type of polymer, can be determined from a calculated or known value of the fractional free volume of pure polystyrene, as will be shown now. The free volume, Vf, of a polymer at any temperature T is typically explained as the difference between the specific volume of the polymer, VT, and the specific volume of the equilibrium liquid or occupied volume, V0, at 0 K. vf = VT - v0 (4-7) According to Bondi [9], v0 ~ 1.3 vw (4-8) where vw is the van der Waals specific volume determined from group contributions. 56 fv = Vf / VT = (VT ‘ V0)/ VT (4'9) VT = V273K exp [ (lg (T‘273)] (4‘10) where ag = d ln V/dT is the coefficient of thermal expansion of the glass at constant pressure. 423 Experimental Section PAS experiments were conducted at 23°C in air using a 22Na source (50 mCi) deposited on a 0.1 mil thick Mylar film and sandwiched between two layers (each approximately 1 mm thick) of compression molded nearly identical 1 inch diameter polymer discs. PAS spectra were acquired using a standard fast-fast coincidence spectrometer from EG&G Ortec. The birth gamma and annihilation gamma rays were detected by two detectors, one set at 1.28 MeV and the other set at 0.511 MeV radiation respectively. Each detector consisted of a photomultiplier (RCA 8835) and a fast plastic scintillator (Pilot U). Approximately 3 million counts were accummulated during a three-hour to eight-hour period. The lifetime spectra were resolved into three exponentially decaying components using PCPFIT, which is a PC version of POSITRONFIT EXTENDED [10] . 57 4-4. Results and Discussion A;41l_IEErununation_of_EractiQnal_Eree_leume Zoller et al. found that the specific volume of the polystyrene glass at 273 K was 0.9508 cm3/g or 98.97 cm3/mol [11]. According to Ougizawa et al. the equation of state parameters for polystyrene were independent of molecular weight above 34,000 Daltons [12]. This behavior was confirmed by comparing pressure-volume-temperature (PVT) data obtained by Zoller using a 120,000 MW polystyrene with those obtained by researchers at The Dow Chemical Company using a 300,000 MW and 200,000 MW polystyrene; there was good agreement between the Zoller and Dow data within experimental error [13]. The Fox and Loshoek relationship also shows that the fractional free volume of polystyrene (a value of 0.116) is independent of the number average molecular weight above 10,000 Daltons [14]. It is difficult to determine an overall representative number average molecular weight for the bi-modal 40,000 MW sample. However, a comparison of ATg-values i.e. (Tga.- Tg) with Boyer's ATg plots of V-T data for thermal polystyrene fractions, shows that a Tg of 63°C for the 40,000 MW bimodal sample, hence a ATg of 40°C, corresponds to a "nominal" fractional free volume of about 0.112 [15]. Using Equation 4-10, a value for ag of 2.86x10‘4 (°C'l), and a value for V273K of 98.97 cm3/mol, the specific volume of polystyrene at 23°C (296 K) was calculated to be 99.6 cm3/mol 58 [11]. V0, obtained from the literature, is 88.4 cm3/mol [9]. Therefore the fractional free volume, fv, is 0.112. This value is in agreement with the Simha and Boyer value of 0.113 derived from their empirical relationship for the fractional free volume of a polymer glass [16], (a1 - Gg) Tg ~ 0.113 (4-11) where 01 is the thermal expansion coefficient for the polymer above Tg. For the pure 40,000 MW polystyrene, T3 is 1.97 ns, which corresponds to an average hole diameter of 0.566 nm and an average hole volume, , of 0.095 nm3 (Equations 4-3 and 4- 4). The o-Ps intensity, I3, is 0.453. Therefore the proportionality constant c as defined in Equation 4-6 is 2.60 nm'3. The number density of holes, N, is calculated to be 1.18 nm‘3 or one hole every 0.85 nm3. The number density of holes and fractional free volume of the blends were then determined using: N = 2.60 I (4-12) fv 2.60 I (4-13) 59 WW Figures 4-1a and 4-1b show the effect of mineral oil concentration on the o-Ps lifetimes and average hole sizes for the polystyrene blends respectively. Mineral oil had no effect on the average hole size of the 270,000 MW blends. There was a slight increase in the average hole size of the 128,000 MW blends from 0.107 nm3 to 0.110 nm3 with mineral oil addition. The lifetimes of the 40,000 MW blends increased steadily with increasing mineral oil concentration. This corresponds to an increase in the average hole volume from 0.095 nm3 to 0.101 nm3. Apparently, in the case of the 128,000 MW and 40,000 MW blends, the mineral oil filled the smaller holes first. The remaining larger holes contributed to the increased average o-Ps lifetimes. I-I l EEE E H' J :.J H J I . . Figures 4-2a and 4-2b show the effect of mineral oil concentration on the ortho-Positronium intensities and number densities of holes for the polystyrene blends respectively. The o-Ps intensities of the 270,000 MW blends remained constant. There was a 7% decrease in number density of holes for the 128,000 MW blend. With the 40,000 MW sample, the 60 2,114 2.09 '- ...-1!. '1 ’5 (D U) 5 4 2% 2.05- -r-l 3 1 Q4 -.—1 a 4 2.03- U) (:4 . O 2.01 . El 270,000 MW II 128,000 MW -t- 40,000 MW Figure 4-1a. .5 O):- (D .—L 0 Mineral Oil Concentration (Volume %) Effect of Mineral Oil Concentration on o-Ps Lifetimes 12 61 0J11- I 270,000 11w 8,000 0.109. CI 12 14w 4 -I- 40,000 1411 0.107-1 (nm**3) Q) 12 0.1051 $ :5 v1 . 8 - .I.. .. 0.10. T 1—1 0 1 :I‘. a) d m 0.101 (U H d C:‘>’ <1 0.099 - .1 0161 ~ ' 4 0.095 V l V l ' I I ' l ' 0 2 4 6 8 1 0 1 2 Mineral Oil Concentration (Volume %) Figure 4-1b. Effect of Mineral Oil Concentration on Hole Size 62 0.46 ’ 0.45 1' % o-Ps Intensities I 270,000 14w "D‘ 128, 000 MW 'i' 40,000 MW 0.40 . l ' I V l ' ' l 0 2 4 6 1 0 1 2 Mineral Oil Concentration (Volume %) Figure 4-2a. Effect of Mineral Oil Concentration on o-Ps Intensities (nm**-3) Hole per Unit Volume Figure 4-2b. 1.084 1.06- 1.04“ 1.02- 1.00- 1 63 I 270,000 11w {1" 128,000 MW + 40,000 MW 0.98 Mineral Oil Concentration (Volume %) Effect of Mineral Oil Concentration on Hole Densities 1O 64 number of holes per unit volume decreased by 10% at the maximum.degree of antiplasticization (6% mineral oil) and increased with higher levels of mineral oil. Figure 4-3 shows that addition of 3.5% mineral oil caused a 3.6% decrease in fractional free volume in the 128,000 MW sample. There was a 9% decrease in fractional free volume at 6% mineral oil for the antiplasticized 40,000 MW polystyrene. There was no change in the free volume of the 270,000 MW sample, which was plasticized. 4-5. Hole Filling Mechanism During Antiplasticization PAS elucidates the hole-filling mechanism of the mineral oil. The data suggest that in the 40,000 MW and 128,000 MW polystyrene, initially most of the mineral oil filled the smaller holes at the chain ends, leaving the larger holes along the polymer backbone relatively deficient in mineral oil. At a certain critical mineral oil concentration, where phase separation of the mineral oil occurs, these larger holes become sufficiently filled to allow easier slippage between longer chain lengths and effect plasticization. There is other evidence that the smaller holes are filled first. Researchers have observed a suppression and then disappearance of the 6 peak in antiplasticized materials 65 0.115 ‘P a) :. .I. "' E 3 0110- I ' o ' ‘ > \ a) d m E - ‘. F‘ . (0 Ik :1 o ...-l - U 8 1.. 0.1054 m II 270,000 uw ' -E}-128.000 uw + 40,000 MW 1 0.100 ' l U I I I I I v ' v 0 2 4 6 8 10 12 Mineral Oil Concentration (Volume %) Figure 4-3. Effect of Mineral Oil on Fractional Free Volume 66 [17]. According to Boyer, the 6 transition involves torsional or rotational motion of 1 to 3 monomer repeat units or 1 to 10 consecutive atoms. Our argument is consistent with that of Boyer [18]. The 5 peak is suppressed and shifted to lower temperatures because the smaller holes are filled first. Evidently, the mineral oil occupying voids at the chain ends contributed directly to antiplasticization, while the mineral oil residing along the polymer backbone was responsible for the accompanying plasticization behavior. In polystyrene the chain ends are the most mobile units on the polymer chain, and hence the mobility of the chain ends would be hindered upon antiplasticization. In the 270,000 MW very few chain ends exist compared to the 128,000 MW and the 40,000 MW polystyrene (a ratio of 1:2:83). Thus a large proportion of the mineral oil will occupy voids along the polymer backbone in the 270,000 MW sample. Those voids along the backbone are larger in volume than voids at the chain ends, and hence never become sufficiently filled with mineral oil to effect antiplasticization. The phenonenon of antiplasticization therefore is directly related to a decrease in free volume, in that the diluent fills the excess free volume of the glass. In cases where there may be a significantly large concentration of chain 67 ends e.g. bi-modal systems, a greater decrease in free volume can occur. The PAS data suggest that the decrease in free volume in the 128,000 MW antiplasticized polystyrene was solely due to hole-filling by the mineral oil - blending 3.5 volume % mineral oil resulted in a 3.6% decrease in fractional free volume. However, in the case of the 40,000 MW sample, a 9% decrease in free volume was observed after blending with only 6% mineral oil. Perhaps, in addition to hole-filling by the mineral oil, the 40,000 MW polymer may be realigning itself into a more densely packed state thus causing a greater decrease in free volume than expected. Possibly, in blends that manifest antiplasticization, antiplasticization is dominant below a certain critical diluent level, whereas above that critical concentration, plasticization dominates. In addition a polymer may manifest antiplasticization depending on its concentration of chain ends. 4-6. conclusions PAS elucidates the hole-filling mechanism of the mineral oil during antiplasticization. The data show that initially most of the mineral oil filled the smaller holes at the chain ends, leaving the larger holes along the polymer backbone relatively deficient in mineral oil. At concentrations greater than 6% mineral oil, these larger holes become sufficiently filled to effect plasticization. 10. 68 References W.J. Jackson Jr.and J.R. Caldwell, J. Appl. Polym. Sci., 11, 211, 1967. W.J. Jackson Jr. and J.R. Caldwell, J. Appl. Polym. Sci., 11, 227, 1967. Y. Maeda and D.R. Paul, J. Polym. Sci. Phys., 25, 1005, 1987. Part B: Polym. J.S. Vrentas, H.C. Ling, J.L. Duda, Macromolecules, 21, 1470, 1988. Y.C. Jean, and D.M. Schrader, Experimental Techniques in Positron and Positronium Chemistry, in Positron_and W Elsevier. New York. Ch 3. 1988. S.J. Tao, J. Chem. Phys., 56, 5499, 1972. H. Nakanishi, S.J. Wang, and Y.C. Jean, Proceedings_of in_Elnidsi_A£lingLQn1_IX; ed. S.C. Sharma; World Scientific Publishing: Singapore, p 292, 1987. W. Brandt,S. Berko, 1289, 1980. and W.W. Walker, Phys. Rev., 120, A.J. Bondi, J. Polym. Sci., A2, 3159, 1964. P. Kirkegard, and M. Eldrup, Comp. Phys. Commun., 7, 401, 1984. ll. 12. 13. 14. 15. 16. 17. 18. 69 P. Zoller, and H.H. Hoehn, J. Polym. Sci., Polym. Phys. Ed., 20, 1385, 1982. T. Ougizawa, G.T. Dee, and D.J. Walsh, Polymer, 30, 1675, 1989. L.F. Whiting, The Dow Chemical Company Personal Communication, 1991. T.G. Fox Jr., S.J. Loeshek, Polym. Sci., 15, 371, 1955. R. Boyer, Transitions and Relaxations in Amorphous and Semicrystalline Organic Polymers and Copolymers, in W Supplement: John Wiley and Sons, Inc: New York, Vol II, p 775, 1977. R. Simha and R.F. Boyer, J. Chem .Phys. 37, 1003, 1962. J.J. Dumais, A.L. Cholli, L.W. Jelinski, J.L. Hedrick, and J.E. McGrath, Macromolecules, 19, 1884, 1986. R. Boyer, Transitions and Relaxations in Amorphous and Semicrystalline Organic Polymers and Copolymers, in E J i' E E J 3 . i E 1 1 Supplement, John Wiley and Sons, Inc: New York, Vol II, p 761, 1977. CHAPTER 5 A SOLID STATE NMR INVESTIGATION OF POLYMER AND DILUENT DYNAMICS DURING ANTIPLASTICIZATION 5-l. Introduction In many polymer systems antiplasticization suppresses the rate and amplitude of the chain dynamics [1,2]. This chapter summarizes the results of a solid state NMR study of the 40,000 MW polystyrene blends, and addresses the issue of how the mineral oil is interacting with the polymer chain. 5-2. nuclear Magnetic Resonance Three relaxation times are used to characterize the relaxation of nuclear spins in NMR experiments [3,4,5]. These are T1, the spin-lattice relaxation time, T2, the spin-spin relaxation time, and TM“ the spin-lattice relaxation time in the rotating frame. Tl describes molecular dynamics on the megahertz frequency scale, which is usually observed in mobile systems like low viscosity fluids. Relaxation processes are slow in polymers, typically mid-kilohertz range. Thus polymer dynamics are characterized by TH“ which describes molecular dynamics on the kilohertz scale. Since these polymer motions are slower than the NMR frequency or Larmor frequency, an increase in. 130 indicates a decrease in the relaxation rate. In more mobile systems such as low 70 71 viscosity liquids, an increase in T1, or "hp indicates faster molecular motions. h ’7 IL —_- __X21_6_Y_'5: (J(wS‘wI)+3J(ws)+6J(ws+wI)) (5-1) 1 40nh where, h is Planck's constant n is the magnetogyric ratio for the abundant spins I Ys is the magnetogyric ratio for the rare spins S J is the spectral density function w is the nuclear precession frequency r is the radius of gyration J(w) is determined from: J(w) = —3°——— (5-2) 1+w3£ where Q is the correlation time. 2 TL = $%(4J(wSI)+J(wS-wI)+3J(wS)+6J(ws+wl)+6J(wI" In (5-3) 2 _L .-.-. hylzyS (4TC+J(wS-w1) +3J(ws) +6J(ws+wI) +6J(wI)) (5‘4) To 8011216 72 Magic angle spinning (MAS) and cross-polarization (CP) make it possible to overcome the resolution and sensitivity enhancement problems of the signal in solid state NMR experiments [6]. With MAS the sample is spun at 54.7° with respect to the direction of the applied magnetic field. This averages all anisotropic interactions such as dipole-dipole couplings, which would otherwise cause significant NMR line broadening [7]. In CP experiments, 90° pulses are applied separately to the lH and 13C spins along the Y-axis, with spin-locking, allowing them to precess in the XY plane, for a given contact time, Tc. The polarization of the 13C spins is increased, which increases their sensitivity. Magnetization is transferred from the 1H coupled to the 13C at a time constant, Tc-H, which is the time constant for the build-up of the 13c signal [8]. The intensity, I, of the 13C signal depends on TC-H and 1H T11) according to the following equation: 1} T1 pa'l) = _ Ton Ht) Io (1 T1p(H))(exP( )-exp_(_"r_§_» '1 (5'5) Tb+1 Studies of domain sizes in polymers can be conducted via 1H NMR experiments since mobile domains exhibit significantly different T2 relaxation times when compared to rigid domains. A Goldman-Shen pulse sequence: 73 [ (fl/2)x - to - ( H/2)x — t - ( fl/2)x ] is applied to destroy selectively the magnetization of the rigid domains [9,10]. This then facilitates the transfer of magnetization from the mobile to the rigid domains. By monitoring the recovery of magnetization in the rigid domains, one can determine the size and shape of the mobile domains from the following equations. R(t) = M(t)/ M(t -:°°) (5-6) R(t) = l-l/exp(D t / b2) (5-7) D = 0.13 a2 / T2 (5-8) where : M(t) is the magnetization in the rigid phase R(t) is the recovery factor D is the spin diffusion coefficent in the rigid domain b is the mobile domain size a is the H-H bond distance = 0.2 nm T2 is the spin-spin relaxation time 5-3. Rxperinental Section 5;311__IEUAmmn;1harmnics The blend samples were ground in a mortar and loaded into 4mm zirconium rotors. The analysis was done using a Bruker MSL- 200 NMR spectrometer. Cross-polarization, magic angle 74 spinning 13C NMR spectroscopy was performed at 50.3 MHz. The rotor was spun at about 7 KHz. The relaxation delay was 8 seconds, the proton 90° pulse width was 6 msec, the contact time was 1 msec, the acquisition time was 80 msec, the sweep width was 20 KHz, the data size was 8K, and the apodisation was exponential with 10 Hz line broadening. 13C NMR T11) values were determined in the conventional way [10]. The CP pulse sequence was as follows. A 90° pulse was applied to the 1H spins, and the Hartmann-Hahn technique used to cause spin-locking along the X-axis. Another 90° pulse was applied on-resonance to the 13C spins. Both spins then precessed at the same frequency in the XY plane, allowing polarization of the 13C spins. The contact time, TC, was the time during which polarization transfer occurred. The 1H radio-frequency field was turned off and the free induction decay of the 13C magnetization was measured to determine Tu“ The whole process was repeated after a time of approximately 5 1100- 119 values were determined by fitting the data to the following equation: I(t)=Ae*‘/11'o)+ B (5-9) where A and B are constants. 75 {PCB and 1H T11) values were determined from contact time experiments and Equation 5-5. )-exp-<—~°—»1l<5"5> I(t) = I HTTC 0 ( -—-—"—-T)(6XP( T311) 111 1T1p(H) E;312_Mineral_Qil_DQmainS Goldman-Shen spin diffusion experiments were conducted to determine the domain sizes of the mineral oil [9,10] The experiments were performed using the same spectrometer at 200.14 MHz for 1H NMR. The relaxation delay was 8 seconds, the proton 90° pulse width was 6 msec, the acquisition time was 80 msec, the sweep width was 200 KHz, the data size was 4K, and the apodisation was exponential with 10 Hz line broadening. The delay between the first two 90° pulses to allow the T2 relaxation of the rigid phase was 200 sec. lH Tl values were determined from: :1 I (t) = Io (1261—5)) (5-10) where T is the delay time. 76 5-4. Results and Discussion Figure 5-1 shows the 13C NMR spectrum of the 40,000 MW 6% mineral oil blend with peak assignments. The resonance positions are reported in terms of chemical shifts (ppm) with respect to tetramethylsilane (TMS). The backbone carbons were Observed at 40 ppm. The methylene carbons on the backbone are sometimes distinguished as a shoulder at approximately 42 ppm. The quaternary carbon on the aromatic ring was observed at 145 ppm. The other five carbons on the aromatic ring show up as the intense signal at 127 ppm. As aforementioned, three relaxation times are used to characterize the relaxation of nuclear spins in NMR experiments. These are T1, the spin-lattice relaxation time, T2, the spin-spin relaxation time, and TM“ the spin-lattice relaxation time in the rotating frame. Tl describes molecular dynamics on the megahertz frequency scale, whereas T”, describes molecular dynamics on the kilohertz scale. The frequency of molecular motions in polymers is often observed on the kilohertz scale. Typically, because relaxation processes are slow in polymers, i.e. slower than the NMR frequency or Larmor frequency, an increase in 13p would indicate a decrease in the relaxation rate. 77 1 2 -fCHJ3Hj: 3 4 4 4 4 4 4 2 0 3n 1 I I I I I I I I I ITI 180 160 140 120 100 80 60 40 20 PPM Figure 5-1. 13C NMR Spectrum of 40,000 MW polystyrene Blend 78 Table 5-1. NMR Spin-Lattice Relaxation Times (msec) for the 40,000 MW Polystyrene Blends 0% 4% 6% 8% 0.4 10.3 9.6 0.07 10.8 8.5 0.08 8.4 8.3 0.3 8.0 8.5 0.08 9.6 5.0 0.08 7.8 2.9 9.1 5.9 3.6 0.3 11.5 9.6 0.08 10.7 8.6 0.09 8.8 7.1 11.0 8.7 7.9 0.6 11.5 26.0 0.09 11.6 9.9 0.10 9.4 5.2 36.0 10.6 5.2 at 110 th Do 79 Table 5-1 shows the results of the relaxation experiments of the polystyrene/mineral oil blends in the rotating frame at room temperature. The relaxation times (msec) for the blends remain approximately the same as those of the virgin polymer regardless of whether the sample was antiplasticized or plasticized (greater than 6% mineral oil). These data imply that the mineral oil did not change the mobility of the polymer backbone, which supports our hypothesis of a chain end effect. It is believed that antiplasticization would affect the rate and/or amplitude of the chain end dynamics. LLLlW The 1H NMR spectra of the mineral oil blends are shown in Figure 5-2. The sharp resonance peak at 1.6 ppm is due to mineral oil. As expected no mineral oil peak was observed in the pure polystyrene sample. Although there was a sharp peak, attributable to mineral oil, in both the 6% and 8% blends, none was observed in the 4% blend. This indicates that at 4%, the mineral oil was microscopically dissolved in the polystyrene. The NMR data provide additional evidence that plasticization becomes dominant only at concentrations of greater than 6% mineral oil - where phase separation of the mineral oil OCCUI‘S . K K 8% MO 6% MO 4% MO 0% MO I I I I I j I W I I um “W a“ un- . Jone «no “a “H V.“ Hertz Figure 5-2. 1H NMR Spectra of 40,000 MW Polystyrene Blends 81 Analysis of the 1H NMR relaxation curves of the mineral oil peaks gave Tl values of 0.5 sec and 1.5 sec respectively for the 6% and 8% blends. Since in more mobile systems such as low viscosity liquids, an increase in T1 indicates faster molecular motions, the higher Tl values at 8% mineral oil indicated increased mobility of the mineral oil at higher concentrations as expected. 5_| 3 I . . E . J :.J E . 5' Table 5-2 shows the recovery factors as a function of spin- diffusion time for the 6% and 8% blends. The data are plotted in Figure 5-3 and fitted to Equation (5-7). The domain size will now be calculated using the 6% blend as an example. 15 can be determined from: T) = 1/(n A1) . (5-11) where Al is the line width. The polystyrene line width was 2 34 kHz, thus 1} was 9.4 x 10‘6 seconds. D calculated from Equation 5-8 was 5.6 x 10'12 cmZ/sec. The value for D/b2 determined by fitting the recovery factors to Equation 5-7 was 12.17 msec'l or 1.22 x 104 sec'l. Thus b was calculated to be 2.16 x 10‘8 cm or 0.2 nm. Ta C) (3 82 Table 5-2. Recovery Factors as a Function of Diffusion Time Time (msec) Recovery Factor Recovery Factor (6% Mineral Oil) (8% Mineral Oil) 0.01 0.09 0.02 0.18 0.03 0.26 0.04 0.33 0.05 0.44 0.06 0.48 0.07 0.61 0.08 0.67 0.09 0.70 0.10 0.74 1.00 0 02 5.00 0 06 10.00 0.11 15.00 0.15 20.00 0.17 25.00 V 0.17 30.00 0.19 35.00 0.20 40.00 0.22 83 Fitting the 8% recovery factors in Table 5-2 to Equation 5-7 yielded a value for D/b2 of 0.00728 msec‘l. The domain size of the mdneral oil in the 8% blends was calculated to be approximately 8.8 nm. The 1H NMR data confirmed that during the process of antiplasticization (6% mineral oil and less) the mineral oil was intimately mixed with the polystyrene matrix i.e. there was no phase separation of the mineral oil. At concentrations above the solubility limit of the mineral oil, where phase separation occurred, plasticization was dominant. Table 5-3 compares the average hole sizes obtained via PAS experiments in the 40,000 MW blends with the mineral oil domain sizes determined by NMR. At the critical domain size of about 9 nm (8% mineral oil) where significant phase separation occurred, plasticization was dominant. The data showed that at concentrations greater than 6% mineral oil, the size of mineral oil domains was 1 order of magnitude larger than the average size of the holes. Thus it can be deduced that antiplasticization is manifested only when the mineral domains approximate the average hole sizes. The data imply that at concentrations greater than 6% mineral oil, the mineral domains become much larger than the size of 84 Table 5-3. Comparison of Mineral Oil Domains with Hole Sizes % Mineral Oil Hole Diameter from PAS (nm) Mineral Domain from NMR (nm) 0.566 0.567 0.568 0.572 85 a mineral oil molecule (approximately 1 nm). This indicates that instead of being microscopically mixed in the polystyrene matrix, pooling of the mineral oil molecules occurred and plasticization was dominant. 5-5. Conclusions The fact that the 13C NMR relaxation times of the polymer backbone were unaffected by the presence of mineral oil directly supports our hypothesis that antiplasticization in polystyrene is primarily attributable to a chain end effect. The data suggested that during antiplasticization the mineral oil was intimately mixed with the polystyrene matrix. At concentrations above the solubility limit of the mineral oil, pooling of the mineral oil occured. This led to phase separation of the mineral oil and plasticization became dominant. 5-6. References 1. A.K. Roy, P.T. Inglefield, J.H. Shibata, and A.A. Jones, Macromolecules, 20, 1434, 1984. 2. Y. Liu, A.K. Roy, A.A. Jones, P.T. Inglefield, and P. Ogden, Macromolecules, 23, 968-977, 1990. 3. E D BeckerJuhjeWeomandflemical Annlications, Academic Press, Inc. New York, 1984. 10. ll. 86 I. Solomon, Physical Reviews, 99, 559, 1955. CA Fyfe._Solid_State_Hm_fon_Chemis_t5, C.F.C. Press, Ontario, 1983. B. C. Gerstein and C. R. Dybrowki, Transient_meghniqngs in_NMR_Qfi_SQlids, Academic Press, London, 1985. J. Schaefer and E. Stejskal, in IQpig§_in_gathn;ll W. 3. Chapter 4. 1979. SM. Homans, W Oxford Science Publications, Oxford Press, New York, 1989. M. Goldman and L. Shen, Phys. Rev., 144, 321, 1966. T.T.P. Cheung and B.C. Gerstein, J. of Appl. Phys., 52, 5517, 1981. J. Schaefer, E.O. Stejskal, T.R. Steger, M.D. Sefcik, and R.A. McKay, Macromolecules, 13, 1121, 1980. CHAPTER 6 MODEL FOR ANTIPLASTICIZATION IN POLYSTYRENE 6-1. Introduction This section deals with development of a model for antiplasticization. In the preceding chapters, it was determined that antiplasticization is dependent on the concentration of chain ends. During antiplasticization, the mineral oil is intimately mixed with the polystyrene matrix, filling the smaller holes at the chain ends first, thus restricting mobility of the chain ends. The decrease in mobility of the chain ends is manifested in increased stiffness and brittleness. NMR results showed that beyond the solubility limit (6 %) of the mineral oil in polystyrene, pooling or clustering of the mineral oil occurs, which effects plasticization. This chapter integrates the above information into a model using balances on holes and mineral molecules. 6-2. Development of Antiplasticization Model 51 1 2 . E :1 . E 3 H 1 Table 6-1 compares the relative chain end densities (number of chain ends per nm3) for the various polystyrene samples. 87 88 Table 6-1. Comparison of Relative Chain End Densities MW Mn Chain End Bulk Chain End *Ratio of Concentra Density Density Chain End tion from (g/cm3) (number Densities PAS per nm3) (moles/g) 40,000 650 1.43 X 1.058 0.911 83 56,970 10'3 128,000 58,420 3.42 x 1.047 0.022 2 10‘5 270,000 117,000 1.79 x 1.047 0.011 1 10'5 * Ratio of chain end concentration in sample to that in 270,000 MW polystyrene. 89 The chain end concentration was calculated using the following equation: C.E. = (2/Mn) NA P 10'21 cm3/nm3 (6-1) II] II where C. Chain end concentration (molecules/nm3) Mn = Number average molecular weight (9) NA = Avogadro's number 6.023 X 1023 molecules/mole D = density of polystyrene g/cm3 Table 6-1 shows that there was a significantly greater concentration of chain ends in the 40,000 MW sample than in the 270,000 MW sample - the ratio of chain end concentration was 83:1 . Table 6-2 compares the relative number densities of holes associated with the chain ends and backbone. As molecular weight was increased, the total number densities of holes decreased. However, if one associates each chain end with a hole, then one can determine the number of holes not associated with the chain ends (backbone holes) from the 90 Table 6-2. Free Volume Holes Associated with Chain Ends MW Chain End Total Hole Backbone Percent Density Density Hole Chain Ends (number per (number per Density Holes (%) nm3) nm3) (number per m3) 40,000 0.911 1.18 0.269 77.2 128,000 0.022 1.07 1.048 2.1 270,000 0.011 1.08 1.069 1.0 91 difference between the total number density of holes and the concentration of chain ends. The table shows that as molecular weight increases, the number of backbone holes increases significantly. In other words, the percentage of the holes associated with the chain ends decreases as the molecular weight is increased. In the case of the 40,000 MW sample, 77% of the holes are associated with the chain ends. In the case of the 128,000 MW and 270,000 MW samples, 2% and 1% of the holes are associated with the chain ends respectively. 5_2 2 : . E H J 3' . 1 H' J :‘J Domainjizes Table 6-3 shows how the size and number of mineral oil molecules vary with the mineral oil concentration in the 40,000 MW blends. The mineral oil domains were calculated from Goldman-Shen NMR experiments as discussed earlier. GC experiments showed that the mineral oil consisted primarily of C-28 to C-46 straight chain alkanes, with a nominal average of C-36. The volume of a C-36 alkane calculated using group contribution values is 605 cm3/mol or 1 nm3/molecule [1]. If one assumes spherical mineral oil domains, then the average diameter of a mineral oil molecule is 1.2 nm. 92 The Goldman-Shem technique measures the mobile mineral oil domain sizes. No mineral oil was detected at 4% mineral oil concentration. Thus it can be deduced that at 4% concentration, during antiplasticization, in addition to being intimately mixed with the polystyrene matrix, the mineral oil was immobile in the chain end holes. Table 6-3 shows that the average size of mobile mineral domain at 6% detemined by NMR was 0.2 nm. This represents the average of a distribution of domain sizes. At 6% mineral oil concentration, each mobile domain site represented less than 1% of a mineral oil molecule. As more mineral oil was blended into the polystyrene, phase separation, due to pooling of the mineral oil, occurred outside of the chain end resulting in a larger average domain size. This larger domain size is consistent with the earlier observations of higher T1 values for the mineral oil, which reflected increased mobility of the mineral oil molecules at 8% concentration. Arnould's and Laurence's work suggest that the effective volume of mineral oil may be less than calculated [2]. At 6 % mineral concentration no more than one mineral oil molecule was associated with each chain end. 93 Table 6-3. Effect of Mineral Oil Concentration on Mineral Oil Domain Sizes in 40,000 MW Polystyrene Blends % Mineral Oil Hole Diameter Mineral Oil Number of MO (nm) Domain (nm) Molecules 0 0.566 0 0 4 0.567 < 0.2 < 1 6 0.568 0.2 1 8 0.572 8.8 357 94 .- p - . 'oo o 09-- 0' 00 - . - '1 '0 m‘ 9...! The question then becomes - How does the mineral oil molecule interact with the chain end hole? Obviously, the volume of the mineral oil molecule (1 nm3) is much larger than the average size of the holes (0.095 nm3) in the 40,000 MW sample. Bendler claimed that the average free volume of polystyrene chain ends is 0.08 nm3 [3]. This is approximately 80% of the average size of the holes (0.095 nm3) as determined from PAS experiments in this study. Earlier in this chapter, it was shown that 77% of the holes in the 40,000 MW sample are associated with the chain ends. It is reasonable to assume that the mineral oil molecule will enter the hole head first i.e. with the CH3 end. The volume of a CH3 unit is 22.8 cm3/mole or 0.038 nm3/ molecule, which results in a diameter of 0.42 nm [1]. Using the value of 80% of the average free volume of the holes (based on agreement with Bendler's data) gives a value of 0.076 nm3, which corresponds to a diameter of 0.52 nm. A comparison of the hole diameter of 0.52 nm with the diameter of a CH3 unit (0.42 nm) suggests that each hole can accomodate the CH3 end of a mineral oil chain . This supports the earlier deduction that each polymer chain end has one udneral oil molecule associated with it during antiplasticization (i.e. at concentrations of 6% mineral oil 95 and less). Arnould's and Laurence's work suggest that the effective volume of mineral oil may be less than calculated [2]. Conceivably, the chain end hole may be able to accomodate an additional mineral oil end through expansion. Since the polymer chain ends are relatively mobile compared to the polymer backbones, the chain end voids may fluctuate to fit additional mineral oil segments. The chain ends are then compressed into a smaller volume, which can result in greater densification of the polymer than expected. For example, it was reported previously, Figure 4-3, that the free volume decreased by 9% when 6% of mineral oil was added to the 40,000 MW polymer. The increased densification further restricts the mobility of the PS chain end, increases stiffness, and causes embrittlement. The value of 0.42 nm for the diameter of the mineral oil head is also in agreement with Jackson's and Caldwell's conclusions [4,5]. They stated that one necessary characteristic of an antiplasticizer is that it should have one dimension less than 0.55 nm. In the 270,000 MW sample only 1% percent of the holes are associated with the chain ends. This means that 99% of the holes are along the polymer backbone, which is relatively rigid compared to the mobile chain ends. The small concentration of holes at the chain ends is not enough to 96 effect any detectable or measurable antiplasticization. At low concentrations, any mineral oil entering the larger holes does not quite fill the holes. Blending additional mineral oil into the 270,000 MW sample results in pooling or clustering of the mineral oil, which is then observed as haziness or phase separation in the PS blend. In fact, this phase separation of the mineral oil has been observed to be as low as 1% by other researchers using NMR techniques with 300,000 MW polystyrene blends containing mineral oil [6]. 6-3. lbdel for Antiplasticization Figures 6-la and 6-1b are schematics of amorphous polymers having very low and very high chain end concentrations respectively. These figures are adaptations of the Flory random coil model [7]. When a diluent is blended into a polymer, if the average size of the dispersed domains is less than or equal to the average diameter of the free volume voids, the diluent occupies position 1, that is, the diluent fills the smaller holes at the chain ends first. When larger quantities of diluent are added, the average domain size increases, and depending on the domain size, the diluent will occupy position 2 along the polymer backbone. 97 In a high molecular weight polystyrene sample (approximate Mn of 100,000 Daltons) as shown in Figure 6-1a, about 1% of the free volume holes are associated with the chain ends compared to a low molecular weight sample (Mn s 1000 Daltons), shown in Figure 6-1b, where approximately 80% of the free volume holes are associated with the chain ends. Thus in the high molecular weight sample the effects of antiplasticization would not be measured. In the low molecular weight after the chain end holes are filled the effects of antiplasticization would be significant. With a diluent such as mineral oil, the CH3 head fills the hole at position 1. After the chain end holes are filled, as more mineral oil is added, clustering or pooling of the mineral oil occurs. The large difference (greater than 0.9 (cal/cm3)0-5 ) in solubility parameters, 7.6 (cal/cm3)0-5 versus 9.1 (cal/cm3)0-5 for mineral oil and polystyrene respectively, suggests stronger diluent-diluent attractive forces than polymer-diluent forces, leading to phase separation of the mineral oil [8]. Position 2 represents clustering of the diluent at high concentraions, where phase separation occurs. In some polymers, such as polycarbonate, where there is significant main chain mobility, diluent occupation of position 2 may lead to antiplasticization. In fact, 98 A 98 g“ x? Figure 6-1a. Schematic of an Amorphous High Molecular Weight Polymer/Diluent Blend 99 Figure 6-1b. Schematic of an Amorphous Low Molecular Weight Polymer/Diluent Blend 100 Cais et al. have observed antiplasticization in polycarbonate blends containing as much as 40 weight percent diluent [9]. They speculated that antiplasticization at these high diluent concentrations may be due to interaction between the diluent molecules and the polymer backbone. This interaction would in turn restrict mobility of the main chain segments. 6-4. Conclusions A model has been proposed for antiplasticization in polystyrene. At low concentrations of mineral oil, when the mineral oil domains approximate the average polystyrene free volume hole diameters, antiplasticization is dominant. One mineral oil molecule is associated with each chain end during antiplasticization. At mineral oil concentrations above the solubility limit 6 %, the average mineral oil domain is 1 order of magnitude greater than the average hole size in polystyrene. This is due to clustering or pooling of the mineral oil, which leads to phase separation and eventual plasticization. 6-5. References l. D.W. Van Krevelen and P.J. Hoftyzer, Properties_gfi Polymersl Chapter 4, Elsevier, New York, 1976. 2. D. Arnould and R.L. Laurence, Industrial Engineering and Chemistry Research, 31, 218, 1992. 101 J.T. Bendler, Transitions and Relaxations, in W. Vol 17, Wiley, New York, 1989. W.J. Jackson Jr., and J.R. Caldwell, J. Applied Polymer Science, 11, 211, 1967. W.J. Jackson Jr. and J.R. Caldwell, J. Applied Polymer Science, 11, 227, 1967. P.J. Smith and A.S. Ellaboudy, The Dow Chemical Company Personal Communication, 1992. F.W- Billmeyer. Jr., W. Interscience Publishers Ltd., New York, 1957. E.A. Grulke, Solubility Parameter Values, in Polymer Handbook; Wiley, New York, 1989. R.E. Cais, M. Nozomi, M. Kawai,and A. Miyaki, Macromolecules, 25, 4588, 1992. CHAPTER 7 CONCLUSIONS AND PROPOSALS FOR FUTURE RESEARCH 7-1. Conclusions Antiplasticization in polystyrene is molecular weight and diluent concentration dependent. The results support a hypothesis that the phenomenon can be attributed to a chain end effect. The PAS data showed a decrease in fractional free volume in antiplasticized blends. 13C NMR experiments indicated that there was no change in the polymer backbone dynamics during antiplasticization. As seen from the 1H NMR Goldman-Shen experiments, antiplasticization occurs when the average diameter of the mineral oil domains approximates the average size of the free volume voids. One mineral oil molecule was associated with each chain end during antiplasticization. At concentrations above the solubility limit of the mineral oil, where the mineral oil domain sizes are significantly larger than the average free volume hole diameter, phase separation occurs, and plasticization is dominant. The PAS and NMR results are consistent with the hypothesis that antiplasticization is due to a decrease in fractional free volume at the chain ends. This paper discussed the hole-filling mechanism of the diluent and proposed a model for antiplasticization. The diluent initially fills the smaller holes at the chain ends. 102 103 Mobility of the chain ends is restricted and thus result in higher moduli and strength, which is usually accompanied by embrittlement of the polymer. The antiplasticization model could be used to specify and design appropriate plasticizers and/or antiplasticizers for polystyrene if the average free volume hole size relative to the size of the diluent molecule is known apriori. In other words, the behavior of polystyrene blend systems could be predicted. As aforementioned, if the average domain size of the dispersed diluent phase approximates the average free volume hole size, antiplasticization would be dominant. A good plasticizer would have domain sizes significantly larger than the average polystyrene hole size. 7-2. Proposals for Future Research Additional research should be conducted to further study the chain end dynamics of polystyrene during antiplasticization. Low molecular weight (aproximately Mn = 1,000 to 10,000) polystyrene with a high concentration of chain ends could be synthesized with labelled chain ends using labelled initiators. The chain end dynamics could be then be studied via NMR techniques. 104 The effects of chain end chemical functionality should also be studied since this would affect the degree of interaction between the mineral oil molecule and the polystyrene chain end. Finally, the effect of varying the chemical functionality along the polystyrene backbone e.g. use of copolymers such as styrene-acrylonitrile (SAN) or styrene-alkylstyrene copolymers should be studied. CHAPTER 8 ADDENDUM: BEHAVIOR OF POLYSTYRENE BLENDS ABOVE Tg 8-1. Introduction According to De Gennes, reptation of polymer chains above Tg is inversely proportional to the square of molecular weight. Theoretical analysis suggests that lower molecular weight polymers should relax at a faster rate than higher molecular weight polymers. It was wondered whether antiplasticization would have any effect on rheological properties above Tg. This chapter summarizes the rheological behavior of the blends above Tg. 8-2. Experimental Section Torque data at different temperatures were collected for these materials after homogeneity was achieved in the HAAKE mixing bowl set at 50 rpm. 8-3. Results Figures 8-1 to 8-3 show the Arrhenius plot of Ln torque versus reciprocal temperature for the different blends. As expected the 270,000 MW blends showed a decrease in torque with increasing mineral oil concentrations. However, it was rather surprising to discover what appeared to be antiplasticization of the 128,000 and the 40,000 MW 105 106 3.2 ‘ O 0% Mineral Oil D 5% Mineral Oil 3.0- A 8% Mineral 011 O D . 2.8‘ E E 3 H 2.6- O E1 C I s—J 2.4- 2.2-i 181.5 C 135.2 C 2.0 . . . . . . , . 0.0020 0.0021 0.0022 0.0023 0.0024 0.0025 Reciprocal Temperature (l/K) Figure 8-1. Effect of Mineral Oil Concentration on 270,000 MW Blends Above Tg 107 3 2 u E E . 3 8 1- E4 C1 .4 o - O 0% Mineral 011 U 2% Mineral Oil I 4% Mineral Oil . A 8% Mineral Oil 192.1 C 161.8 C -‘l . I . . . 0.0021 0.0022 0.0023 0.0024 Reciprocal Temperature (l/K) Figure 8-2. Effect of Mineral Oil Concentration on 128,000 MW Blends Above Tg 108 2 C) 0% Mineral 011 . El 6% Mineral Oil I 6% Mineral Oil 1 J A 8% Mineral Oil E E 0- o 5 o . s o 9 c . a ..J 1 .A .2- D k . 181.5 c 143.7 c -3 1 I I I I ' I I i 0.0021 0.0022 0.0023 0.0024 0.0025 Reciprocal Temperature (l/K) Figure 8-3. Effect of Mineral Oil Concentration on 40,000 MW Blends Above Tg 0.0026 109 polystyrene blends even above Tg. With the 128,000 MW blends the torque increased up to 4% mineral oil and then decreased at higher concentrations. In the case of the 40,000 MW blends, between 140°C and 180°C the torque increased from 0% to 6% mineral oil and then decreased at 8%. Below 140°C, the phenomenon was reversed. This behavior was confirmed in duplicate experiments. Furthermore, Table 8-1 shows that the activation energies for the 128,000 MW and 40,000 MW molecular weight polystyrene samples were much higher than those typically observed for high molecular weight general purpose polystyrenes (Ea = 12 to 22 kJ/mole). In studying the reptation of polymer chains above Tg, De Gennes found that the diffusion coefficient of a chain, D, is inversely proportional to the square of the molecular weight, M [1]: D a M'2 (8-1) while the relaxation time, 1', is proportional to the cube of the molecular weight, M. T a M3 (8‘2) Doi and Edwards extended this theoretical work to study the mechanical properties of reptating chains and related viscosity, n, to molecular weight as follows [2]. 110 Table 8-1. Activation Energies for the Polystyrene Blends Molecular Weight Mineral Oil (Vol %) Activation Energy (KJ/mole) 270,000 0 17 6 20 8 22 128,000 0 42 2 40 4 45 8 39 40,000 0 188 6 60 6 67 8 94 111 n a M3 (8-3) De Gennes described reptation using the tube model in the following way - as the polymer reptates, the chain ends are the first to leave the tube-like confinement and assumes new confirmations, while the rest of the polymer backbone remains in a confined state. As the chain moves, the other parts of the chain become unrestricted. This suggests that lower molecular weight polymers should relax at a faster rate than higher molecular weight polymers. Perhaps, the same argument could be used to explain antiplasticization of the 40,000 and 128,000 MW above and below Tg. In both temperature regimes, shorter chain lengths would exhibit higher frequency motions. It is hypothesized that antiplasticization is manifested therefore by a slowing down of these faster motions above Tg. 8-3. Conclusions Antiplasticization above Tg, manifested by an increase in torque, was evident in the 128,000 MW and 40,000 MW blends containing less than 6% mineral oil. This is the first published report of antiplasticization in polymer blends above Tg. As mentioned earlier, research has shown that antiplasticization affects the higher frequency motions in glassy polymers. Possibly, the same argument applies in 112 polymers above Tg. In both temperature regimes, shorter chain lengths would exhibit higher frequency motions. Antiplasticization is manifested by a slowing down of these faster motions. Like the glassy state, measurable antiplasticization possibly occurs only above a critical concentration of chain ends. 8-4. References l. P.J. De Gennes, J. Chem. Phys., 55, 572, 1971. 2. M. Doi and SR Edwards, We: . . J 5 . El! 1 EHYSiCS_;;Zl. Oxford University Press, New York, 1989. APPENDICES 113 APPENDIX A MOLECULAR WEIGHT DISTRIBUTIONS 114 Appendix Arl. Molecular Weight Distribution of 40,000 MW Polystyrene 115 HP 10908 GPC SYSTEM 438 ELDG MIDLfiNO L88 104 H6858 81 SRHPLE : RNOERSON PS4SK CONCENTRfiTION = 0.252 SOLUENT' = THF OfiTE = MAR/2611891 TIME = 11:48:56 GFCDRTA FILE = 6P01101001:0701 V16L8 = 11 ENJECTIONJ = 1 CRLIBRRTION NUMERIC PflRflHETERS CALIBJJME = 03—18-91. PNTS SELECTED AUTOMATICALL! STANDARD NAME = 1683 NOISE NINOON = 3.00 T0= 6.00 «:0 CURVE TYPE = a'x“3+b'x‘2fc¢x+d POLYMER 111N000 = 9.20 T0= 17.60 mm COEFFICIENT a 5 0.00000E+000 BASELINE FROM = 10.63 TO= 17.63 Min COEFFICIENT b = 0.00000E+000 SUNHATION MIND. = 10.68 T0= 17.61 min COEFFICIENT c = -.49067E+000 RT-ISTO = 17.775 3 COEFFICIENT d = 1.10089E'1‘001 '¢¢**"**OoeeeeeeeeeeeeeeeeeoeoeoocooO LOG(flLPHA) = 3.020386-001 UARN1N6(S)! SEE CRI SMP 86-60 BETA = 9.414066-001 STOP PT: 10,11,12 RT-ISTD/CAL = 17.886 OTHERS: 21 CHROMATOGRAPHY: 33 {OCCQOQQQQOOOGQCOfiQOQOOCGIOQOOOQQOOG' RESULTS Mn = 552 Mm = 42980 M2 = 169600 Np = 88880 745 POLYDISPERSITY = 65.888 SUBRfiTIO 1_ .= _Q.0006+000__ (Nut; 0:01 . SUBRATIO l =‘ 7.8866+001 ~ (Hut: 99920:STOPHHT) SUBRATIO 3 = 5.254E+001 (Hut: 34840:STOPMUT) CHROHRTOGRHN full scale = 53.103 [n01 f7 1' 1 1' 11 :1 I .. 1 I“! 411 .1! ’ 1 x”\ ,9-3 Inf 1 .1-” \\/' /. 6 7T 12 T :6 tlne [nan] 1113 SAMPLE : ANDERSON PS4SK CONCENTRATION = 0.252 SOLVENT _ = THF DATE -= MAR/ZE/ISSI TIME ' 1 13:10:60 GPCOATA FILE = GPC1101002:D701 U1AL3 = 11 INJECTION! = 1 CALIBRATION NUMERIC PARAMETERS CALIB.OATE = 03-18-91 PNTS SELECTED AUTOMATICALLY STANDARD NAME = 1683 NOISE UINOOU = 3.00 TO= 6.00 min CURUE TYPE = asx“3+b'x“2+c'x+d POLYMER UINDOU = 8.20 TO= 15.60 min COEFFICIENT a = 0.00000E+000 BASELINE FROM = 10.28 TO= 14.78 min COEFFICIENT b = 0.00000E+000 SUMMATION UINO. = 10.33 T0= 14.76 n1n COEFFICIENT c = -.49067E+000 RT-ISTO = 17.783 COEFFICIENT d = 1.10089E+00I scocoeoocoeeeeeeeeeeeeeeceoococoocccoo LOG(ALPHA) = 3.020386-001 UARNING(S)1 SEE CR1 SMP 86-60 BETA = 9.414066-001 CHROMATOGRAPHY: 33 RT—ISTD/CAL = 17.896 eoooceooeeeoceeeeeeeoeeeeeqoeooeooeced RESULTS Mn = 56970 Mu = 103900 ‘M:-~ - - . = 164700 ‘ M0 = 87930 POLYOISPERSITY = 1.824 SUBRATIO 1 = 0.000E+000 (Mut: 0:0) SUBRATIO 2 = 6.002E+001 (Hut: 100500:STOPMUT) SUBRATIO 3 = 8.3286+000 (Mut: 2600035TOPMUT) CHROMATOGRAM full scale = 52.896 [mUI 1117 HP 1090A GPC SYSTEM 438 BLDG MIDLAND LAB 104 HPBSB :1 SAMPLE : ANDERSON P545K CONCENTRATION ; 0.252 SOLVENT - = THE DATE = MAR/26/1991 TIME = 13:10:50 GPCDATA FILE = GPC1101002zD701 UIALE = 11 INJECTIONu = l CALIBRATION NUMERIC PARAMETERS CALIB.0ATE = 03-18-91 PNTS SELECTED AUTOMATICALLY STANDARD NAME = 1683 ' NOISE UINDOU = 3.00 TO= 6.00 min CURVE TYPE = a'x”3+b'x‘2+c-x+d POLYMER UINDOU = 14.75 TO= 17.55 nln COEFFICIENT a = 0.00000E+000 BASELINE FROM = 15.05 TO= 17.42 N1" COEFFICIENT b = 0.00000E+000 SUMMATION MIND. = 15.09 T0= 17.39 min COEFFICIENT c = -.49067E+000 RT-ISTD = 17.783 COEFFICIENT d = 1.10089E+001 ...................................... LOG(ALPHA) = 3.02038E‘001 UARNINGCSI‘ SEE CRI SMP 86-60 BETA = 9.41406E-001 START PT: 3 RT-ISTD/CAL = 17.896 STOP PT: 10,12 CHROMATOGRAPHY: 33 RESULTS Mn. . _= 850 Mu " ’ ' '=" "' 1058 HI = 1343 M9 = 751 POLYOISPERSITY = 1.245 SUBRATIO 1 ' *=.-0.000E+000 .(th:.0:0). 7 . SUBRATIO 2 — 2.105E+002 (Mut: 10050035T0PMUT) SUBRATIO 3 = 1.254E+007 (Mutt 35000:STOPMUT) CHROMATOORAM full scale = 52.896 InUI /‘ 1 / 1 1 :d NH )1 1 ,- i ' /“\ {'l/ /I “\J’ 118 Appendix A-2. Molecular Weight Distribution of 128,000 MW Polystyrene CALIBRATION CALI8.0ATE STANDARD NAME CURUE TYPE COEFFICIENT COEFFICIENT COEFFICIENT COEFFICIENT LOG(ALPHA) BETA RT-ISTO/CAL CHROMATOGRAM full scale 0.000! 119 SAMPLE 2 DALKE 136K CONCENTRATION = 0.252 SOLVENT = THE DATE = OCT/:4/1991 TIME = 14:53:35 GPCDATA FILE = 6PC1701000:D701 UIAL8 = 17 INJECTIONfl = 1 NUMERIC PARAMETERS 10-09-91 PNTS SELECTED 1683 NOISE HINDOU = a'x”3+b'x”2+5‘x+d POLYMER UINDOU = 0.00000E+000 BASELINE FROM = 0.00000E+000 SUMMATION MIND. = -.49062E+000 RT-ISTD = 1 ‘.!0353E+001 ‘ 2.23066E-001 9.492196-001 17.761 RESULTS Mn = 58420 Mu = 127900 M: = 216400 Mp = 109300 POLYDISPERSITY = 2.190 SUBRATIO 1 = 8.8656-003 (th: SUBRATIO 2 = 5.097E+001 (Mutt SUBRATIO 3 = 7.279E+000 (Hut: 36.717 [HUI /\ .__-- ~‘-. I _ M ._.___.q “m- L1 \JLDLDOTJ AUTOMATICALLY .00 TO= 6.00 Min .20 TO= 17.60 m1n .82 TO= 16.53 min .86 TO= 16.51 n1n .799 STARTMUTII006000) 100800:STOPMUT) 25090zSTOPMwT) 120 Appendix A—3. Molecular Weight Distribution of 270,000 MW Polystyrene 121 G P C R E P O R T HP 1090A GPC SYSTEM 438 BLDG MIDLAND LAB 104 HPBSB 31 SAMPLE : ANDERSON PS Z70K CONCENTRATION = 0.251' SOLVENT = THF DATE = MAR/26/1991 TIME = 11:17:57 GPCDATA FILE = GPCI001001:D701 UIALt = 10 INJECTION: = 1 CALIBRATION NUMERIC PARAMETERS CALIB.DATE = 03-18-91 PNTS SELECTED AUTOMATICALLY STANDARD NAME = 1683 NOISE UINDOU = 3.00 T0= 6.00 min CURVE TYPE = a'x‘3+b*x‘2+c¢x+d POLYMER HINDOU = 8.20 TO= 17.60 nIn COEFFICIENT a = 0.00000E+000 BASELINE FROM 9.38 T0= 16.575m1n COEFFICIENT b = 0.00000E+000 SUMMATION UINO. = 9.43 TO= 16.54 min COEFFICIENT c = —.49067E+000 RT-ISTD = 17.763 COEFFICIENT d = 1.10089E+001 LOG(ALPHA) = 3.020386-001 BETA = 9.414066-001 RT—ISTD/CAL = 17.896 RESULTS Mn = 111700 Mu = 274400 M: = 448100 Mo = 244200 POLYDISPERSITY = 2.495 SUBRATIO 1 = 1.097E+000 (th: STARTMUT3992400) SUBRATIO 2 = 2.092E4001‘--1Mut}-100900&STQPMHT)g SUBRATIO 3 = 2.59SE+000 (th: 2506035T0PMUT) CHROMATOGRAM full scale = 38.135 [MU] / A / I , I , / " ’ = _ \E:::;___§’~j r: ssh‘ - é " E2 3“ Es tIme InInI 122 APPENDIX B GC DETERMINATION OF MINERAL OIL CONCENTRATIONS 123 Appendix B-l. Nominal and Actual Mineral Oil Concentrations Nominal wt% Actual wt% Actual vol% 0 0.05 0.06 2.5 3.11 3.93 5.0 4.8 6.17 7.5 6.1 7.95 10.0 6.72 8.81 124 Appendix B-2. GC Analysis of Mineral Oil in 40,000 MW Blends 125 SAMPLE NAME?11 START PENDING RUN U 488 AUG 14. 1991 12:35:22 START ‘ 2.236 3.102 5.746 6.654 ST P RUN“ 488 AUG 14! 1991 12 35:22 METHOD NAME: N:NINOIL.NET AREAZ RT AREA TYPE UIOTH AREAZ 2.236 38964 PV .25? 4.63656 3.102 233342 PV .378 27.76674 5.746 42503 PV .249 5.05768 6.654 525556 VV .443 62.53'02 TOTAL AREA= 840365 MUL FACTOR=1.0000E+00 SAMPLE:11 PEAK NUMBERS?1.3 MT POLYMER IN M67206.6 MINERAL OIL= 6.65 MINERAL OIL= 6.65 2 M018 6.65 RT1+ 2.236 M02= 6.65 RT2= M02: 0.05 RT2= 5.746 126 SAMPLE NAME?20 'START PENDING RUN I 492 AUG 14. 1991 13:12:56 START 0.380 3.120 5.855 ST P RUNO 492 AUG 14. 1991 13:12:56 METHOD NAME: MiMINOIL.MET AREAX RT AREA TYPE NIDTH AREAZ .380 51574 PV .328 .21701 2.186 10407384 P8 .248 43.79094 3.120 1725513 BP .405 7.26041 4.939 10383976 P8 .246 43.69245 5.855 1197627 BP .471 5.03923 TOTAL AREA=2.3766E+07 MUL FACTOR=1.00006+00 SAMPLE:20 PEAK NUMBERS?2-4 UT POLYMER IN MG7200.7 MINERAL OIL= 3.11 MINERAL OIL= 3.11 2 MOl= 3.11 RT1+ 2.186 M02= 3.11 RT2= M02= 3.11 RT2= 4.939 SAMPLE NAME?STOP DONE AUG 14. 1991 13: [\1 p U! p-h 2.186 4.939 127 SAMPLE NAME?12 rnar PENDING _ s 1991 12346=°3 START ' —.- 0.468 ._————-——-"""-—""——-_'-—T;:= 2.189 3.109 4. 800 5.744 5T0 RUNR 439 AUG 14’ 1991 12846808 METHOD NAME: M:MINOIL.MET AREAZ RT AREA TYPE HIDTH AREAZ .408 24052 8V .254 .06052 2.189 18310832 8H8 .280 46.07603 3.109 810558 T88 .414 2.03963 4.800 19022528 ISBN .291 47.86690 5.744 1572496 TBV .489 3.95692 TOTAL AREA=3.9740E+07 MUL FACTOR=1.0000E+00 SAMPLEIIZ PEAK NUMBERS?2.4 UT POLYMER IN MG?199.7 MINERAL 01L= 4.8 MINERAL OIL= 4.8 2 M01= 4.74 RT1+ 2.189 M02: 4.87 RT2= M02= 4.87 RT2= 4.8 128 SAMPLE NAME719 START PENDING ‘—:3 2.193 RUN I 491 AUG 14. 1991 13:04:57 START 0.456 3.092 5.485 STO RUN“ 491 AUG 14. 1991 13:04:57 METHOD NAME: M:MINOIL.MET AREAZ RT AREA TYPE HIDTH AREAZ .456 30361 PV .198 .05527 2.193 26033520 SHH .335 47.39093 3.092 1313661 TBP .330 2.39136 4.588 25659248 ISHH .322 46.70962 5.485 1896769 T88 .364 3.45284 TOTAL AREA=5.4934E+07 MUL FACTOR=1.0000E+00 SAMPLE:19 PEAK NUMBERS?2.4 NT POLYMER IN MG?199.8 MINERAL OIL= 6.1 MINERAL OILB 6.1 2 MOl= 6.13 RT1+ 2.193 MOZ= 6.07 RT2= M02: 6.07 RT2= 4.588 3 4.588 129 SAMPLE NANE?5 START PENDING RUN o 481 auc 14. 1991 11:24:53 srnar 1 2.190 3.023 ”’1 4.605 sro RUN. 481 QUG 14. 1991 11:24:53 METHOD NAME: N:MINOIL.MET AREAZ RT AREA TYPE UIDTH AREAZ 2.190 29488320 SPH .327 49.86403 3.023 40062 T88 .200 .06774 4.605 29609088 ISHH .324 50.06824 TOTAL AREA=5.9137E+07 MUL FACTDR=1.0000E+00 SAMPLE35 PEAK NUMBERS?1.3 HT POLYMER IN M67200.0 MINERAL OIL= 6.72 MINERAL OIL= 6.72 2 M018 6.71 RT1+ 2.19 M02= 6.73 RT2= M02= 6.73 RT2= 4.605 130 Appendix B-3. Nominal and Actual Mineral Oil Concentrations in 40,000 PAS Samples Nominal wt% Actual wt% Actual vol% 0 0, 0 2.5 2.41 2.93 5 5.05 6.11 7.5 7.67 8.04 10 8.63 10.36 131 Appendix B-4. GC Analysis of Mineral Oil in 40,000 MW PAS Blends 132 Graft Analysis Sat Nov 23 08:51:57 1991 Page *1— —.—_._._._._—...._..-.._.-_—._—.4.._.________—..._—_..__.__—.__~___—.__-..._.__-——-— -——-.—.—--._.._____._.—_~._.____ ..__-.—_..._—..._ ——-*~—_ —_—-.— b.__————_--__—~—_—_————_--.———_—.___—__—— .____...___—_—__—__.—____.._.___.__—_.______——_——._ Data File Name : C:\HPCHEM\1\DATA\003-—0101.D Operator : PHIL KUCH Instrument : HP35900C Acquired on : Sat Nov 23 08:47:40 1991 Vial Number : 3 Sample Name : 0% MO Injection Number: 1 Run Time Bar Code: Sequence_Line : 1 Instrument Method: MINOIL.M Sample Amount 0 Analysis Method : MINOIL.M Multiplier : 1 Last Recalib : 03 Oct 91 11:08 AM ANDERSON ADC CHANNEL A Ret Time Area Type Width Ref! PERCENT Name ___________________ ---- ----_ ---__ ________ _______________-__-___________I 2.149 * not found * l-R MINERAL OIL Time Reference Peak Expected RT Actual RT Difference 1 2.149 * not found * Could not find time reference peak: No peak of Number 1's description at 2.149 + 0.107 - 0.107 min. Not all time reference peaks were found Area Percent Report ADC CHANNEL A Pkf Ret Time Area Height Type Width Area % Total amount = 0 —————__..__._——._————__—._—__._____—__————————___—_____._.7‘_.__——._...__-_._——._._“_—. ._ _._._____._.—. ———«-— ————__.__——.———_—_——_—_____—_____—__—__—._—__——_._____._.._._..__..—._—_.__.._#_h__. ___._. -_ _.———— ___. A Graft Analysis 133 Sat Nov 23 08:51:57 1991 Page —2- EAU 132* 4 J 131.8— 131.6~ 1 4 131.4- J 131.2: 1 131- 130.8« 1 Time ->O. 000 Y 1 7‘ I 0.5 00 V 1 Ti ‘1 1 003—0101.o: ADC CHANNEL A-hnflg ~ I j 1 1 1 Y 1 T V 1 1 T 1.50 2.000 2.500 1"! r'fl'r '11 T I 3.000 3.500 1.000 134 Graft Analysis Sat Nov 23 09:03:02 1991 Page -1— External Standard Report Data File Name C:\HPCHEM\l\DATA\005-0101.D Operator : PHIL KUCH Instrument : HP359OOC Acquired on : Sat Nov 23 08:58:43 1991 Vial Number : 5 Sample Name : 2.5% MO Injection Number: 1 Run Time Bar Code: Sequence Line : 1 Instrument Method: MINOIL.M Sample Amount : 0 Analysis Method MINOIL.M Multiplier : 1 Last Recalib 03 Oct 91 11:08 AM ANDERSON ADC CHANNEL A Ret Time Area Type Width Ref! PERCENT Name 2 207 5986.388 88 0.198 l-R 2.405 MINERAL OIL Time Reference Peak Expected RT Actual RT Difference 1 2.149 2.207 2.7 Graft Analysis Sat Nov 23 09:03:02 1991 Page ~2— rum ””7”” ““77"”'_"doSIOTTTBY'Ffic—HANN’EL71'7"V ‘ ‘— 7 "I I] 1 i 650 n n O 0% 6001 N 550: 5001 450- 400« J 3501 300.: I 2501 i 1 1 i ‘ 200< y I 150- . q i \s.-. ,Crr—efé—f— . 1 y I 1 1 1%: 1| 1—T T 1 1 1 T 1 1 I r 1 1 1 1 I 1— 7 fj " (l_ i time ->0.000 0-500 1.099234;:99122;9031-“2:209 ____3..,,OO_O_ “3410, I I 135 Graft Analysis Sat Nov 23 09:14:04 1991 Page -1~ ___.______._-______.__-.._—_..____._._.____-___.__—._—___.__...—___...___.________.__________._.__~___-_ Data File Name : C:\HPCHEM\1\DATA\OO7-0101.D Operator PHIL KUCH Instrument : HP35900C Acquired on . Sat Nov 23 09:09:46 1991 Vial Number , : 7 Sample Name : 5% MO Injection Number: 1 Run Time Bar Code: ‘ Sequence Line : 1 Instrument Method: MINOIL.M, Sample Amount : 0 Analysis Method : MINOIL.M Multiplier : 1 Last Recalib : 03 Oct 91 11:08 AM ANDERSON ADC CHANNEL A Ret Time Area Type Width Ref} PERCENT Name 2.211 13640.359 88 0.227 l-R 5.053 MINERAL OIL Time Reference Peak Expected RT Actual RT Difference 1 2.149 2.211 2.9% Graft Analysis Sat Nov 23 09:14:04 1991 Page ’2‘ _i_._.---_ _,__V_"_I_k__lll__ ~2_m~.--~_.uc._j mAUW” *‘"“"fl"”"”’ 007—0101.D: ADC CHANNEL A 1 100- ;\, 1000< 900 800— 700‘ 600* I_ 500- s 1 400 1 . I l ‘ l 300 1 1 i j 1 E 0. 1 20 L I] \_ . ‘ #fl—T—Yfil-r -~.—"' 1 " 1 1 1 _'.‘;_»—..r___7__?__‘ ‘ 1 a 1" " j’ 1‘—1"“I" ‘1‘”1'”-T-T_ 7 ‘ |‘_T—I' ' l I . r . ‘7“ hime -> 0.509”_u l;000 iflll;500 _giQpQ, , 2-300 7_339007 3.210 136 Graft Analysis Sat Nov 23 09:25:08 1991 . Page -1- ___—___-_____._._.....__-.____—___..—._._—__..____—___-..____.—.——.—.——-—-—~———.————————-..___~____-__~____ ___-___ ___—___—______.__.__._____———_—___—__—_.__________._._-____——___—___-___—___—____“_-___ Data File Name : C:\HPCHEM\1\DATA\OO9—0101.D _Operator : PHIL KUCH Instrument : HP35900C 'Acquired on : Sat Nov 23 09:20:48 1991 Vial Number : 9 Sample Name : 7.5% MO Injection Number: 1 Run Time Bar Code: Sequence Line : 1 Instrument Method: MINOIL.M Sample Amount : 0 Analysis Method : MINOIL.M Multiplier : 1 Last Recalib : 03 Oct 91 11:08 AM ANDERSON ADC CHANNEL A Ret Time Area Type Width Ref# PERCENT Name 2.215 18318.580 BV 0.246 l-R 6.672 MINERAL OIL Time Reference Peak Expected RT Actual RT Difference 1 2.149 2.215 3.1% Graft Analysis Sat Nov 23 09:25:08 1991 Page -2— PU '_‘*i_fi ___ _ 777-7009-9071fi .BTADE_C_1TXNNEL Amlwm If - ' -_ _ _ 1400i .2 03 . (\J 1300~ 1200§ 1100} 1000: 9001 i 8001 l 1 1 700~ 1 600: i i 1 5004 i 4oo~ i 3004 I 200~ {L“f—T-—T"7‘__‘x—‘I"‘T'—T'u-T —T—" "TTM'Y"'T_”T_""fi—_1"—T-‘ ' 1 Y—“ WT’j-‘+;':V ‘|‘_LT~#‘ 7 -" : ' Hime -> 0.500 1:99922_1;500_.22-099_,23-5002 3.000 ;.g1» 1517 Graft Analysis Sat Nov 23 09:36:14 1991 Page —1~ Data File Name : C:\HPCHEM\1\DATA\011-0101.D Operator : PHIL KUCH Instrument : HP35900C Acquired on : Sat Nov 23 09:31:54 1991 Vial Number : 11 Sample Name : 10% MO Injection Number: 1 Run Time Bar Code: Sequence Line : 1 Instrument Method: MINOIL.M Sample Amount : 0 Analysis Method : MINOIL.M Multiplier : 1 Last Recalib : 03 Oct 91 11:08 AM ANDERSON ADC CHANNEL A Ret Time Area Type Width Ref# PERCENT Name I ------- I ------------ I————I ----- I ----- I -------- I —————————————————————————————— I 2.218 23983.946 BV 0.262 1-R 8.633 MINERAL OIL Time Reference Peak Expected RT Actual RT Difference 1 2.149 2.218 3.2% Graft Analysis Sat Nov 23 09:36:14 1991 Page -2— EAUWW—"—_v—WI IIITI~Iflfiwflu7“”7011:0161.DE ADC CHANNEL A ——————— —7 i 1600« :j fl :1 I 1 1400. g ‘ I 1200- g 1000. f I 800~ i . i \ 6004 I 400« i 1 I 200~ J l . I\‘ ,. . L‘f'fi “‘1 “1“‘r—1fi‘fi—‘1—j“ YA‘T—T_Y—I ‘f—7~W——r’ I 5’ ' ’ '1 1 | 1" v ~‘f JY—rfi“ r—fs ' ' ' 1 - - ' ‘ ElPe -> __ __0;§09___1;000 ..l-5OQ-,23;QQO 72.000 3.000 3.500 138 Appendix B-5. Nominal and Actual Mineral Concentrations in 128,000 MW Blends Nominal wt% Actual wt% Actual vol% 0 0° 0 2.5 1.92 2.3 5 2.98 3.56 7.5 2.9 3.46 10 7.84 9.26 139 Appendix B-6. GC Analysis of Mineral Oil in 128,000 MW Blends -__-___....__.._____---_._-._--____.____...____—___........._______.__._____—___._____-_.____._—_...——————_—_......-. ________..__—.___—-_...—:2:-___._—:::-_=:-_—_::::-_..__.._.._—_::—___.—-=__—-.._..________...___.____._“___._____.__.___.=_—_—— Data File Name : C:\HPCHEM\1\DATA\OOl-0101.D Operator : PHIL KUCH Instrument : HP35900C Acquired on : Sat Feb 08 09:17:27 1992 Vial Number : 1 Sample Name : 0% min oil Injection Number: 1 Run Time Bar Code: Sequence Line : 1 Instrument Method: MINOIL.M Sample Amount : 0 Analysis Method : MINOIL.M Multiplier : 1 Last Recalib : 03 Oct 91 11:08 AM ADC CHANNEL A Ret Time Area Type Width Ref: PERCENT Name I ------- I ------------ I-———I ————— I ----- I -------- I —————————————————————————————— I 2.149 * not found * 1-R MINERAL OIL Time Reference Peak Expected RT Actual RT Difference 1 2.149 * not found * Could not find time reference peak: No peak of Number 1's description at 2.149 + 0.107 — 0.107 min. Not all time reference peaks were found Area Percent Report ADC CHANNEL A Pk! Ret Time Area Height Type Width Area % I—-—I ---------- I -------------- I -------------- I---—I --------- I ---------- I Total amount = 0 236 ___—___.—_____—————._——_____———_—-———-_—__—— ———_____.__._—.————— _—_—_—__ —_——_—_——_____—__——__._—__—__——____-___.__._._. EXU“"' ‘" 001—0101.D: ADC CHANNEL A—'m— F— H U N O A 14. .._.. J "’ m. ... H U H N U a N N .L 1 _‘rtm 131.8« 3 ‘ ‘ 1 .fii I i; 131.6] 131.4- -—-— _—. ...- -- r__._.—'__- I~ ‘ w. . P «LT-I.— x -..—-'.: .M ...—.... .- 131.24 ,I ' . " ,' 1 ’1 ~ -~ ‘ 7- : — <~< Egmg_-> _nw_”_a 0.500 1.000 .m_£;599.__,2:090 2.5007 3-000 1.:xn “’1 fir fi T I Yfifi' ‘F I 1 1 I 1 T TY“'1'—‘! "‘ 1"" Data File Name Operator : Acquired on - Sample Name Run Time Bar Code: Instrument Method: Analysis Method : Multiplier : Last Recalib : ADC CHANNEL A Ret Time Area 2.149 * not found * Time Reference Peak 1 ---—..-_._.__—_.__--__.__-__-_.———_.____ _ _ ___—____.—_......_.___.___—._____H._..__.__..._._ _ C:\HPCHEM\1\DATA\002-0101.D PHIL KUCH Instrument . HP35900C Sat Feb 08 09:22:47 1992 Vial Number : 2 2.5% minoil Injection Number: 1 Sequence Line : 1 MINOIL.M Sample Amount 0 MINOIL.M- 1 03 Oct 91 11:08 AM Type Width Reff PERCENT Name --I————I ————— I ----- I -------- I —————————————————————————————— l—R MINERAL OIL Expected RT Actual RT Difference 2.149 * not found * Could not find time reference peak: No peak of Number 1's description at 2.149 + 0.107 — 0.107 min. Not all time reference peaks were found ADC CHANNEL A Pk! Ret Time 1 2.486 Total amount = ——————_——.—_--._.—..—_-—— i 500% I 450- 400. 3501 300- 250« 200. 1 150- 5209.34 -.....—._.—_—H-—..-— Area Percent Report Area Height Type Width Area % 5209.336 426.836 BB 0.189 100.0000 \\ ' "0 6‘2”10.171171375721135”'CIIA'III’I‘EIT A 7 — ~~““‘rwuas —‘ ‘-——-—-—.....___. “___—- __P’. ti;— V 1' I T ‘ Time L___.._.-.__ .:§;999u222;§99. i: Wfo. _H._________—__—..__-.___..-.-—-——_._-____....—__—_.__._____...._ ___ ___ _..--__.__._...._... -_____ -____._.-.____._....__- __.________—___..______.____———.—————____—-_.___—.__——._____—____-_.__ __—.____.__-_--._..__.__—_.._.__.____ ’— _—_.-—_—u‘——__—-.—_—--——-——————————___.————___-..———_———.—.—.—_—.—....—.-_—...—__._._—.————_——~~___ " Data File Name C:\HPCHEM\1\DATA\003-0101.D Operator : PHIL KUCH Instrument : HP35900C Acquired on : Sat Feb 08 09:28:19 1992 Vial Number : 3 Sample Name : 5.0% min oil Injection Number: 1 Run Time Bar Code: Sequence Line : l Instrument Method: MINOIL.M Sample Amount : 0 Analysis Method : MINOIL.M Multiplier : 1 Last Recalib : 03 Oct 91 11:08 AM results x2 ADC CHANNEL A Ret Time Area Type Width Ref! PERCENT Name I ------- I ------------ I---—I ————— I ————— I ———————— I ------------------------------ 2.149 * not found * l-R MINERAL OIL Time Reference Peak Expected RT Actual RT Difference 1 2.149 * not found * Could not find time reference peak: No peak of Number 1's description at 2.149 + 0.107 - 0.107 min. Not all time reference peaks were found Area Percent Report ADC CHANNEL A Pk} Ret Time Area Height Type Width Area % 1 2.444 3908.367 335.187 BV 0 180 100.0000 \ Total amount = 3908.37 \ ’5‘ -0 14% I l ‘ ‘ 9767570 :W‘U H _I— "F _.-_-i______.___ -003‘—0_101—.75?_7\DC__CHANN'ELNA ' ‘ M 7 ‘ ’ — 500< . v i { V 3 v t ‘ OJ 450~ I I 400~ l 3501 I J 300- 250- i i 200- i I , 5 I l 150« \ I. T 1 1 T I 1 1 1 1 T qu 1T 11. ; . :1— ‘ .1"*““""""‘"*‘"‘H'”‘ ’ Ej.ttfl?_-)_ ___Q_’__§92__ __]_- 909 ___l--§OO 2.000 2.501) _E.IIIMI _____-____ __ _fi -. ,., -.__ _-__.__..._-_.__.._._..___..__.-~._-._‘ -..—-.. ,, ___¢—___._._.-_____._.__..‘_________._‘___—....__.___._.._.__-____'_._.____-.-.. -——-——-——-—~———--o——-——«_._ ___—.--. ---—“.--__'_ External Standard Report Data File Name : C:\HPCHEM\1\DATA\004-0101.D Operator : PHIL KUCH Instrument : HP359OOC Acquired on : Sat Feb 08 09:33:52 1992 Vial Number : 4 Sample Name : 7.5% min oil Injection Number: 1 Run Time Bar Code: Sequence Line : 1 Instrument Method: MINOIL.M Sample Amount : 0 Analysis Method : MINOIL.M Multiplier : 1 Last Recalib : 03 Oct 91 11:08 AM results x2 ADC CHANNEL A Ret Time Area Type Width Ref} PERCENT Name 2.149 * not found * 1-R MINERAL OIL Time Reference Peak Expected RT Actual RT Difference 1 2.149 * not found * Could not find time reference peak: No peak of Number 1's description at 2.149 + 0.107 - 0.107 min. Not all time reference peaks were found Area Percent Report ADC CHANNEL A Pk# Ret Time Area Height Type Width Area % 1 2.377 3795.189 328.556 BB 0.179 100.0000 \'\ Total amount = 3795.19 0 "z“ ”We 1,32 ..z/M» ___—___—_—_——_—_———_——._.__-————————————————————-—___._—————_—-———————_———-_—___—_- AU 5”“ “DO—411710120:TDCHCHANNEL A 450.1 1 400~ -..—.. 350« 3001 . \ 250« 1 . 200* ‘ \ 150« T I T ' 1' T . ‘ I ' I ' I , 1 [Lime —x3.ggg___g._§~00_ 1. 00 1.500 2.0-"'3 hymn ‘ A .‘) . (‘H' .....- .... -..- .. ..-. External Standard Report Data File Name : C:\HPCHEM\1\DATA\OOS~0101.D Operator : PHIL KUCH Instrument : HP35900C Acquired on : Sat Feb 08 09:39:26 1992 Vial Number : 5 Sample Name : 10% min oil: Injection Number: 1 Run Time Bar Code: Sequence Line : 1 Instrument Method: MINOIL.M Sample Amount 0 Analysis Method : MINOIL.M Multiplier : 1 Last Recalib : 03 Oct 91 11:08 AM results x2 ADC CHANNEL A Ret Time Area Type Width Ref! PERCENT Name I ——————— I ———————————— I—--—I ----- I ----- I ———————— I —————————————————————————————— 2.149 * not found * 1—R MINERAL OIL Time Reference Peak Expected RT Actual RT Difference 1 2.149 * not found * Could not find time reference peak: No peak of Number 1's description at 2.149 + 0.107 — 0.107 min. Not all time reference peaks were found Area Percent Report ADC CHANNEL A Pk# Ret Time Area Height Type Width Area % l--- ______________________________________ ---- ___________________ 1 2.514 11211.423 830.507 88 0.211 100.0000 \ Total amount = 11211.4 \ 113110 H 5 ‘4 " 605:0'131’76?fibé' CHANNEL" Am— i, (\J 900: 800« 700 600~ 500‘ 400 3004 200. 7 I'd‘u—‘r' Y “'T‘“ ..... [_1mhe_-_>pp._000 0.5700 1.000 1.500 2.01“.» :‘.‘,-IH". j‘,_IIIr. 145 Appendix B-7. Nominal and Actual Mineral Oil Concentrations in 270,000 MW Blends Nominal wt% 0 2.5 5 7.5 7.5 10 10 Actual wt% Actual vol% 0.2 0.242 2.82 3.5 4.38 5.53 5.2 6.63 6.21 8 6.05 7.78 6.18 7.96 146 Appendix B-8. GC Analysis of Mineral Oil in 270,000 MW Blends 147 SAMPLE NAME28 START PENDING RUN 8 484 AUG 14. 1991 11:56:33 START 1.682 2.187 3.185 4.981 5.856 ST P RUN‘ 484 AUG 14. 1991 11:56:33 METHOD NAME: M1MINOIL.NET AREAZ RT AREA TYPE HIOTH AREAZ 1.682 53338 VV .479 3.17118 2.187 328868 VV .282 19.55558 3.185 794791 VP .388 47.26888 4.981 179769 PV .218 18.68966 5.856 324952 VV .411 19.32271 TOTAL AREA=1681718 MUL FACTOR=1.8888E+88 SAMPLE:8 PEAK NUMBERS?2.4 UT POLYMER IN MG?281.5 MINERAL OILc 8.2 MINERAL OIL= 8.2 2 14018 8.24 RT1+ 2.187 N028 8.16 RT?!B N02= 8.16 RT2= 4.981 148 SAMPLE NAME?18 START PENDING RUN 4 485 AUG 14. 1991 12:86:18 START 3.861 5.796 STOP RUN“ 485 AUG 14. 1991 12:06:18 METHOD NAME: M:MINOIL.MET AREAZ RT AREA TYPE HIDTH AREAZ 2.189 8983528 P8 .231 48.58198 3.861 78778 88 .275 .38272 4.922 9272768 P8 .237 58.14614 5.796 164438 BP .239 .88926 TOTAL AREA=1.8491E+87 MUL FACTOR=1.8888E+88 SAMPLE818 PEAK NUMBERS?1.3 UT POLYMER IN MG?281.3 MINERAL OIL= 2.82 MINERAL OIL= 2.82 X M013 2.78 RT1+ 2.189 M02= 2.85 RT2= MO2= 2.85 RT2= 4.922 2.189 149 SAMPLE NAHE77 START PENDING RUN I 482 AUG 14. 1991 11:33:17 START 2.193 3.032 5.945 5.861 6 728 STOP RUN“ 482 AUG 14. 1991 11:33:17 METHOD NAME: M:MINOIL.MET AREAZ RT AREA TYPE UIDTH AREAZ 2.183 16322368 SP8 .265 49.43838 3.832 56579 T88 .218 .17134 3.945 15988 SP .225 .84818 5.861 16491288 SP8 .268 49.94187 6.728 134824 T88 .249 .48838 TOTAL AREA=3.3821E+87 MUL FACTOR=1.8888E+88 SAMPLE:7 PEAK NUMBERS?1.4 HT POLYMER IN MG?199.8 MINERAL OIL= 4.38 MINERAL OIL= 4.38 2 M01= 4.37 RT1+ 2.183 M02= 4.4 RT2= M02= 4.4 RT2= 5.861 150 START PENDING RUN I 488 AUG 14. 1991 11114313 START 5.424 —“ 2.193 STOP RUNQ 488 AUG 14. METHOD NAME: M:MINOIL.MET AREAZ RT AREA TYPE 2.193 28898568 SP8 4.424 19881 8V 6.338 28742848 SP8 7.165 77327 T88 TOTAL AREA=4.1731E+87 MUL FACTOR=1.8888E+88 SAMPLE14 PEAK NUMBERS?1.3 UT POLYMER IN MG?288.8 MINERAL OIL= 5.2 MINERAL OIL= 5.2 Z MD1= 5.21 RT1+ 2.193 M02: 5.18 RT2= M02= 5.18 RT2= 6.33 UIDTH .297 .235 .276 .289 1991 11:14:13 AREAZ 58.86861 .84745 49.78666 .18538 _j 6. 338 151 SAMPLE NAME?15 START PENDING RUN c 496 nun 14. 1991 12:54:35 START ‘ I 6.117. L4 843 ‘t3 2.196 3.139 _3 4.949 5.851 8T0 RUN! 496 auc 14. 1991 12:54:35 METHOD NAME: M:MINOIL.MET AREAZ RT AREA TYPE MIDTH AREAZ .197 4671 PV .675 .66637 .466 96466 vv .422 .16571 1.643 172663 vn .631 .29715 2.196 25646764 SHH .331 44.66712 3.139 2753122 TBP .464 4.73265 4.949 27561312 [sun .357 47.41259 5.651 1917625 T88 .367 3.29642 TOTAL AREA=5.8173E+87 MUL FACTOR=1.8888E+88 SAMPLE115 PEAK NUMBERS?4.6 UT POLYMER IN MG?288.5 MINERAL OIL= 6.21 MINERAL OIL= 6.21 2 MOI= 6.84 RT1+ 2.19 M02= 6.37 RT2= M02= 6.37 RT2= 4.949 152 START PENDING RUN I START 3 2.198 479 AUG 14. 1991 11882534 3.874 ST P RUN“ 479 AUG 14. 1991 11382134 METHOD NAME: M:MINOIL.MET AREAZ RT AREA TYPE HIDTH AREAZ 2.198 26473888 888 .321 58.13158 3.874 122591 T88 .311 .23214 6.951 26212336 SP8 .319 49.63637 TOTAL AREA=5.2889E+87 MUL FACTOR=1.8888E+88 SAMPLE:3 PEAK NUMBERS?1.3 HT POLYMER IN MG?199.9 MINERAL OIL¢ 6.18 MINERAL OIL8 6.18 2 M01= 6.2 RT1+ 2.19 M02= 6.16 RT2= M02= 6.16 RT2= 6.951 _j 6.951 153 GET NOSAM >RUN STARTING AUG 14. 1991 18845128 MINERAL OIL ANALYSIS BY HPLC 438 BUILDING MIDLAND SLOPE?I.36884 INTERCEPT?13.6655 SAMPLE NANE?2 START PENDING 3 2.283 3 4.915 RUN O 478 AUG 14. 1991 18153141 START 5 STOP RUN! 478 METHOD NAME: M:MINOIL.MET AREAZ RT AREA TYPE 2.283 25885296 4.915 25258144 TOTAL AREA=5.1135E+87 MUL FACTOR=1.8888E+88 SAMPLE=2 PEAK NUMBERS?1.2 HT POLYMER IN MG?199. MINERAL OIL= 6.85 MINERAL OIL= 6.85 2 M01= 6.1 RT1+ 2.283 M02= 5.99 RT2= M02= 5.99 RT2= 4.915 18:53:41 AREAZ 58.62186 49.37896 154 APPENDIX C GLASS TRANSITION TEMPERATURES 155 Appendix C-l. Glass Transition Temperatures of 40,000 MW Blends 156 (H/g) Heat‘Flow mmBUHm” Dc: % an F3: on 10 Umm wwwm“ mumF>owmmmp.oH mMNmu Bo.wnoo an oumdmnowu m. pzamwmo: :mnjoa” nan >aoamoo @p0o0\zw: Dc: Dmnmu owxmm\m» gauge noaamanu zm Uc1um pcno pm: 0 Old11 -- 1. 3 Li : t, : L, A I L _ :o.mr L U mm.mmooAHv L 10.0mmhmz\c L mm.mmo L Lo.sL L L L i. 2 L I IO.m~r . ._ 4 ~ . q . . q 1 . mo no mo mo poo Hmo HAO qwaumwmnc1m Aonv mmnmwmu ac1moo muco0\zwa 3c: Umnm” ou\mm\mp pp mo noaaman” zm nc1mm >cno nm: 0.0 ao.m1 r mm.msoo / mu.no.oAHv Io.onopmz\m mu.mmoo 10.2; IO.@ 1 fi I141 4 4 q . a . 1 q a mo no mo mo poo pmo HAO amaumamncwo “cow mmjmde acumoo m»0o0\2w3 mc: omwm” ou\mw\mp Hm mm ooaamanu zm ncamm >cno nm: 0.0 L L. L L ..0.muL / M I L L Ls.mm Lm.mm.niH0 Io.ommumz\m to.AL IO.@ 11! 4111 11 q . A . a . [4| 4 — m0 no mo mo poo Hmo “no «maumumncwm 2°00 mmzmwmy 0ummwu0n mwNmu “N.RNwo an oumwmnou” m. >3am1mo: Kmnjoa” man >acsmoo mucon\zun 3:: Dana” ouxmmxmu mm mm ooaamanu zm ncvom pcno nm: 0.0 d L LL _ 10.91 L . lO.N1 L LL.mmo Lm.mw.oLHv .ouwwm2\m 10.wL L to.LL L -O.m . a 1 A . _ . _ . _ . a . q . . 1 mo no mo mo poo umo ”no “mo pmo moo amauoamncum Aoov mmumwmp 3am1mo: zmwjoa” nan »acumoo @uOoosz: 3:: Dana” M\mm\mp pw mm ooaamnn” zm ncwno >cno has 0.0 L :o.pL L IO.NI. 1 La.mm 0 Aw.mmonfiH0 10.0uwmnz\m no.mL 3.8. 11:1}..- L -9: L IO.w 4 _ . a 4 . 4 _ _ 4 4 me no mo mo ”00 ”No ”no amaumwmnc1a fionv mmnmwmu OCUOJn @000 161 Appendix C-2. Glass Transition Temperatures of 128,000 MW Blends 162 magnum” ummooozznm on :0 mooo Hum U m m 3.92 13003393 muum" u».mmmo an oumumnouu 3.2.ucrronx amazon” mauauoon\z»: use I moon mc: canon o»\ou\mw pm mm 0.041;!«15: :gsu;::s::a:;. L 90.51 L ‘m -o.mL w _ L n" L _ H % Lno.w.L H L pom.mm.oAHO _ zo.omaamz\o ! ..“L o. mu.wmoo L Hom.mu.n Io.m H 1 14‘ 4 u 14 1111 l. 0 mo 900 a 0 moo aoaumamncum “cow mmamwmp ocposn mwoo 163 magnum" nmmooozz‘um m.ma :0 @000 Ham D m D v.50” zzoosummbm munmu n».mmmo an . onowmnowu 2.x.0crroox zmnsoa” maunuooO\zua mac 1 moon 3:: Dana“ cg\ou\mm pmumm 0.0 1! 1 20.u1 My .o.»1 m 1 L n. L m -o.an L mm.moonflH0 Io.oaomm1\n :0 ....L 8.8.0 . mm.mwoo I /I, 10.0. . lql . _ 1 . 1 T . 7 . IJI . 7 1 T . mo 50 mo mo uoo umo “no “mo umo moo amaumumncuo Aoov magnum“ ocnosn wmoo 164 mmaugn ammooozzum mu :0 mooo :6 Q m D 35" 56338.0... mama“ pa.maro an w ouaaanou" 1.x. ucrroox Imnjoa” manmuoon\zu: mac 1 moon mc: Guam" cu\ou\wm um mm o o; -:-1:I;!(2;!| fl. ..0 .mL 6393 ..l 1* fl ‘ . . ”r ._ O . J. \— flea ma.mo.aflH0 L so.oummmz\n :o.L- mm.mo.o L mm . mmoo T 111 11111 11 . :1 Al JI a mo so we we poo ”mo Lao “mo “mo moo aoauauancaa “one magnum” canon" mmo 166 ' l- r183 L mmaowm” ammooozznm now 30 mooo Hum U m 0 mwum" zzUoPoumwom mwNm” um.ommo an . onmwmnown 2.1. ocrroox zmnjoau mauouoo0\zp3 mac : moon was omnmu 0u\ou\wm Mu mo 0 . O ...u..1a.ii..l.:.11.11.111.11 1.1 11.1.1111110 11.. rl1-...1..1.|1!111.-1.1.1:.I.:J. 10.“: o.m1 , L , mm.um.o . mm.»wooAHO o.ooaauaz\n o.m1 . . mm.mmon 30.1.1 [Ill/1111’ .L ..O.U.L1.... 1 4 1 L1 1 14 1 1 1 1 1 J 4 l4 .. . 1 . mo no mo mo poo umo uno pmo pmo moo amauoduncwa “coo masoumu ocuoan wwoo 167 Appendix C-3. Glass Transition Temperatures of 270,000 MW Blends (H/g) 168 Heat Flow mmauHm” 3:: a 0 II: 0.0» :0 WU MW MU npymu m mrpoumwmp.om mwum” no.mmoo so . oumdmnonu m. >3amwmos zmnjoau nan >aolmoo opoo0\zw: 3c: omnm” ou\mm\m» unuom ooaamjn” zm ncaom >cno Um: 0.0 L L L L L L :o.mL M L L I4 . Loo.maonLHL . 10.0mHLmi\© to LL L Hom.am. L L L :o.m 4| 1. J! a . . L. :41 1 a1 1 ‘4 mo no mo mo 900 nmo HBO amaumamncam Loco mmgmumw aunmoo oHooO\KH3 ooaamsn” zm ncwom >cno om: WU mm flu npwm” m mrpoummmp.ou oumjmnoon m. pjamwmon Dc: Omnm“ ou\mm\mp ”a mu 0.0 L -o.mL 1 L mm.mmoOAHL . no.0mmnoz\o -o.LL 900.9600 L lO.@ 1 a . 1 . _ 1 J . _ m0 no mo mo poo Hmo ”no amaumdmncum AooL mmamwmw aalmoo muco0\zu: 2m ncuom >Cno nm3 _.--- .I.-— Um mw.omoofiHL .oawamz\o C J mwomu mHmF>0umwmu.om oooomnonu m. pagowmo: 3:: Oman” ou\mw\mp pm on AC mo mo ”mo amaumumncwm - umo “onL 9A0 ”mo mmo moo mmnmjmu aclmoo @90o0\zu3 ooaamnnu 2m nc1om >cno nm3 o.m o m J_ 1 O I). L . .L _JL Q m m. 30m“ m“ mrpoummmpom _. . oumjmn01“ m. pnomdmoa 2:: Oman” ouxmmxwp Hm no mm.mmooLHL uo.onommz\m ww.mmon l O 0') fl.) C no mo L We . ”mo . ..m.o amaumdmncwm AooL HLo mmnmamo osnonn @moc 172 (W/g) Heat Flow mmaupm” mHNm” zmnjoa” nan >aoumoo ouoo0\z»3 ooaamanu o.o 3:: o m I3: no.0x zo um.mmmo an zm ocanm >cno nm3 U m 0 3pm“ m” mrpoummmub- oomjmnow” m. pnamjmon Dc: omnm” ouxmm\mu um no k m L _L .LTL mm.muoofiHL _ 10.0wmmaz\o mw.umon no mo 1 a ”mo who mmjmwmu oummmp.po mme" u».momo an oumamnovu m. >3am1mo: zmnjoa” man paclmoo oaoo0\zw: Dc: omnm” ou\mm\mp Hm LL ooaaman” zm venom >cno nm3 o.o L L L. , L 10.»; L ..o.m1 / L L L -0.an mm.NVoOAHL :o.oapum2\u mm.mmoo mo .6 . mo . a m10 So amanmamncwm A000 gmo u — so mmgmamp rOCr>AmO _ d 4.. 30300000300 0; 0030.03 0 _ o\ 0 \O ..mhdflhw - ..2, .. 0.080980 00.00.00 .. 3.0000980 00,000.... .l . . .. J. . if J . 341...... j ....Ix...D(.. $;.&-\l\f\\t} i./l.0\c... 0 _ 0 G 0 3 jam. zéommoozom >....H.bk. .. .5... . ......Or..P.. ..... ..r.. . .. ...\ ..I’.” ..O ...... W.P.. \b...... “0).. ..s ..\. .. .b . >. . .... .1.. ..1. . ... .. . ¢.....q.. .3..W..u1N ... ..1...u .... $.u ..I. .. 1. . ..\ f .... .I. .I. .... .. . ..5 . 0 .. ... .. 5. . . . . .. .. . . .. .. t . .. .. 193 Appendix F-Z. PAS Data for 40,000 MW Blends 194 10-30-1991 XXXXXXXXXXXXXXXXXXXX LMN PS OZ MINERAL OIL - HAAKE EXTRUDER 100001.DAT *XXtXXXXXXXXXXXXXXXXXXX**#*¥**X***X*#XXXXXXXXXXXXX TIME SCALE = 0.0500 NSEC/CHANNEL PROMPT CURVE FNHM(NSEC) 0.195 0.297- INTENSITIES($) 55.400 44.600' SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 307 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = 0 NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.048 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1,0.087) EXCESS PROBABILITY = 28.77 PCT LIFETIMES IN NSEC 0.143 0.412 1.969 STANDARD DEVIATIONS 0.008 0.009 ‘ 0.008 RELATIVE INTENSITIES IN PCT 19.14 35.60 45.26 STANDARD DEVIATIONS 1.15 0.96 0.27 BACKGROUND 89.99 STANDARD DEVIATION 1.72 TIME—ZERO CHANNEL NUMBER 30.942 STANDARD DEVIATION 0.070 AREA CHECK AREA FROM FIT = 0.17816E+07 AREA FROM TABLE = 0.18679E+07 195 11- 5~1991 *XXXXXXXXXX*X¥*****X - LMW PS 2.5% MINERAL OIL 500001.DAT *XXXXtXXXXXXXXXXXXXXXX##tttlttkt*XXXXXXXXXXXXXXXXX TIME SCALE = 0.0500 NSEC/CHANNEL PROMPT CURVE FNHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 307 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = 0 NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.325 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.087) EXCESS PROBABILITY = 0.01 PCT LIFETIMES IN NSEC 0.170 0.428 1.982 STANDARD DEVIATIONS 0.007 0.011 0.008 RELATIVE INTENSITIES IN PCT 22.56 33.74 43.09 STANDARD DEVIATIONS 1.44 1.27 0.24 BACKGROUND 109.30 STANDARD DEVIATION 1.93 TIME—ZERO CHANNEL NUMBER 31.679 STANDARD DEVIATION 0.033 AREA CHECK AREA PROM FIT 0.21725E+07 AREA FROM TABLE 0.22496E+07 196 10-30—1991 *XXXKXXXXXXXXXXXXXXX LMW PS 5% MINERAL OIL 400001.DAT XXXXXXXXXXXXXXXXXXXXXXtXXXXXXXXXXXXX*X*******X*¥** TIME SCALE = 0.0500 NSEC/CHANNEL T PROMPT CURVE PNHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 307 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = 0 NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.120 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.087) EXCESS PROBABILITY = 8.26 PCT LIFETIMES IN NSEC 0.151 0.414 1.983 STANDARD DEVIATIONS 0.007 0.007 0.008 RELATIVE INTENSITIES IN PCT 19.05 40.16 40.79 STANDARD DEVIATIONS 1.10 0.95 0.21 BACKGROUND 119.87 STANDARD DEVIATION 1.98 TIME-ZERO CHANNEL NUMBER 31.324 STANDARD DEVIATION 0.044 AREA CHECK AREA FROM FIT 0.23419E+07 AREA FROM TABLE 0.24112E+07 197 11—10—1991 *XXIXXXXXXXXXXXXXXXX LMN PS 7.5% MINERAL OIL 600001.DAT *XXXXXXXXXXXXXXXXXXXXX*XXXXXXXXXXXXXXXX*XXXXXXXXXi TIME SCALE = 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 307 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = 0 NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.216 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.087) EXCESS PROBABILITY = 0.62 PCT LIFETIMES IN NSEC 0.153 0.415 1.997 STANDARD DEVIATIONS 0.008 0.010 0.008 RELATIVE INTENSITIES IN PCT 20.09 35.26 44.65 STANDARD DEVIATIONS 1.35 1.15 0.27 BACKGROUND 92.09 STANDARD DEVIATION 1.78 TIME~ZERO CHANNEL NUMBER 31.002 STANDARD DEVIATION 0.064 AREA CHECK AREA FROM FIT = 0.17807E+07 AREA FROM TABLE 0.18553E+07 198 10-30—1991 *XXXXXXXXXX***X***** LMW PS 10% MINERAL OIL - RUN #13 300001.DAT XXXXXXXXXXXXXXXXXXX************XX***X*XXXXXXXXXXXX TIME SCALE = 0.0500 NSEC/CHANNEL PROMPT CURVE FNHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 307 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.182 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.087) EXCESS PROBABILITY = 1.77 PCT LIFETIMES IN NSEC 0.154 0.423 2.030 STANDARD DEVIATIONS 0.007 0.009 0.008 RELATIVE INTENSITIES IN PCT 20.18 36.90 42.92 STANDARD DEVIATIONS 1.16 1.00 0.23 BACKGROUND 104.66 STANDARD DEVIATION 1.97 TIME—ZERO CHANNEL NUMBER 31.416 STANDARD DEVIATION 0.043 AREA CHECK AREA FROM FIT = 0.20753E+07 AREA FROM TABLE 0.21378E+07 C) 199 Appendix F—3. PAS Data for 128,000 MW Blends 200 THIS IS DATA SET 128KOA1 THE ACQUISITION DATE AND TIME WAS 06FEB92 AT 1329 THE REAL TIME WAS 3 HOURS, 0 MINUTES, AND O SECONDS. THE LIVE TIME WAS 2 HOURS. 59 MINUTES, AND 17 SECONDS. 2— 6—1992 ******************** 128,000 MW PS 0% MINERAL OIL (MOLDED @ 3000 LBS) ************************************************** TIME SCALE 2 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 309 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = D NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.183 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.086) EXCESS PROBABILITY = 1.71 PCT LIFETIMES IN NSEC 0.141 0.400 2.075 STANDARD DEVIATIONS 0.005 0.006 0.007 RELATIVE INTENSITIES IN PCT 18.60 36.82 44.58 STANDARD DEVIATIONS 0.84 0.74 0.17 BACKGROUND 345.42 STANDARD DEVIATION 3.07 TIME—ZERO CHANNEL NUMBER 32.657 STANDARD DEVIATION 0.020 AREA CHECK AREA FROM FIT AREA FROM TABLE O.28722E+O7 O.29249E+O7 20] THIS IS DATA SET 128K2A1 THE ACQUISITION DATE AND TIME WAS O6FE892 AT 0946 THE REAL TIME WAS 3 HOURS. 0 MINUTES, AND O SECONDS. THE LIVE TIME WAS 2 HOURS. 59 MINUTES. AND 20 SECONDS. 2- 6-1992 ******************** 128,000 MW P8 2.5% MINERAL OIL (MOLDED @ 3000 LBS) xx************************************************ TIME SCALE = 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 309 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = D NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME—ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.101 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.086) EXCESS PROBABILITY = 12.08 PCT LIFETIMES IN NSEC 0.153 0.419 2.086 STANDARD DEVIATIONS 0.005 0.007 0.008 RELATIVE INTENSITIES IN PCT 20.24 36.36 43.39 STANDARD DEVIATIONS 0.93 0.81 0.18 BACKGROUND 318.18 STANDARD DEVIATION 3.02 TIME-ZERO CHANNEL NUMBER 33.001 STANDARD DEVIATION 0.016 AREA CHECK AREA FROM FIT AREA FROM TABLE O.26964E+O7 O.27379E+O7 202 THIS IS DATA SET 128K5A1 THE ACQUISITION DATE AND TIME WAS 07FEB92 AT 1046 THE REAL TIME WAS 3 HOURS, 0 MINUTES. AND 0 SECONDS. THE LIVE TIME WAS 2 HOURS, 59 MINUTES. AND 13 SECONDS. 2— 7—1992 *****x************** 128,000 MW PS 5% MINERAL OIL (MOLDED @ 3000 LBS) *******x****************************************** TIME SCALE 2 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 309 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS :50 NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT 2 1.176 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.086) EXCESS PROBABILITY = 2.05 PCT LIFETIMES IN NSEC 0.153 0.427 2.099 STANDARD DEVIATIONS 0.004 0.007 0.008 RELATIVE INTENSITIES IN PCT 21.24 36.04 42.72 STANDARD DEVIATIONS 0.83 0.71 0.18 BACKGROUND 364.04 STANDARD DEVIATION 3.27 TIME-ZERO CHANNEL NUMBER 32.737 STANDARD DEVIATION 0.017 AREA CHECK AREA FROM FIT AREA FROM TABLE O.30995E+07 0.31553E+07 203 THIS IS DATA SET 128K7Al THE ACQUISITION DATE AND TIME WAS 07FEB92 AT 1412 THE REAL TIME WAS 3 HOURS. 0 MINUTES. AND O SECONDS. THE LIVE TIME WAS 2 HOURS. 59 MINUTES. AND 16 SECONDS. 2- 7—1992 ******************** 128,000 MW P8 7.5% MINERAL OIL (MOLDED @ 3000 LBS) ************************************************** TIME SCALE 2 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 309 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = D NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME—ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.259 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.086) EXCESS PROBABILITY = 0.13 PCT LIFETIMES IN NSEC 0.152 0.416 2.086 STANDARD DEVIATIONS 0.005 0.007 0.008 RELATIVE INTENSITIES IN PCT 19.83 37.59 42.58 STANDARD DEVIATIONS 0.91 0.79 0.17 BACKGROUND 347.18 STANDARD DEVIATION 3.13 TIME-ZERO CHANNEL NUMBER 32.802 STANDARD DEVIATION 0.017 AREA CHECK AREA FROM FIT AREA FROM TABLE 0.29287E+07 0.29774E+07 204 THIS IS DATA SET 128K1A1 THE ACQUISITION DATE AND TIME WAS 06FEB92 AT 1640 THE REAL TIME WAS 3 HOURS. 0 MINUTES. AND 1 SECONDS. THE LIVE TIME WAS 2 HOURS, 59 MINUTES. AND 13 SECONDS. 2— 6—1992 ******************** 128,000 MW PS 10% MINERAL OIL (MOLDED @ 3000 LBS) *************************x************x******x**** TIME SCALE = 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 309 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS ; 0 NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT 2 1.218 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.086) EXCESS PROBABILITY = 0.57 PCT LIFETIMES IN NSEC 0.153 0.419 2.098 STANDARD DEVIATIONS 0.004 0.007 0.008 RELATIVE INTENSITIES IN PCT 21.23 36.01 42.76 STANDARD DEVIATIONS 0.86 0.76 0.17 BACKGROUND 372.64 STANDARD DEVIATION 3.28 TIME-ZERO CHANNEL NUMBER 33.030 STANDARD DEVIATION 0.015 AREA CHECK AREA FROM FIT AREA FROM TABLE O.31071E+07 O.31528E+07 205 Appendix F-4. PAS Data for 270,000 MW Blends 206 1-15-1992 ******************** HMW PS 0% MINERAL OIL H00001.DAT7 ************************************************** TIME SCALE = 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 307 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = 0 NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.264 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1,0.087) EXCESS PROBABILITY = 0.12 PCT LIFETIMES IN NSEC 0.156 0.416 2.069 STANDARD DEVIATIONS 0.006 0.009 0.007 RELATIVE INTENSITIES IN PCT 20.76 34.49 44.75 STANDARD DEVIATIONS 1.13 0.99 0.20 BACKGROUND 124.77 STANDARD DEVIATION 2.25 TIME-ZERO CHANNEL NUMBER 31.568 STANDARD DEVIATION 0.036 AREA CHECK AREA FROM FIT AREA FROM TABLE 0.24898E+07 O.25546E+07 207 THIS IS DATA SET H251 THE ACQUISITION DATE AND TIME WAS 14JAN92 AT 0938 THE REAL TIME WAS 3 HOURS, 0 MINUTES, AND O SECONDS. THE LIVE TIME WAS 2 HOURS, 59 MINUTES, AND 33 SECONDS. 1—14-1992 ******************** HMW P8 2.5% MINERAL OIL ***********************************************xxx TIME SCALE 2 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 309 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS =.o NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES : 0 FREE BACKGROUND FREE TIME_ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.094 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.086) EXCESS PROBABILITY = 13.68 PCT LIFETIMES IN NSEC 0.155 0.406 2.060 STANDARD DEVIATIONS 0.008 0.010 0.010 RELATIVE INTENSITIES IN PCT 18.57 36.33 45.09 STANDARD DEVIATIONS 1.40 1.24 0.23 BACKGROUND 230.09 STANDARD DEVIATION 2.47 TIME-ZERO CHANNEL NUMBER 32.318 STANDARD DEVIATION 0.029 AREA CHECK AREA FROM FIT AREA FROM TABLE 0.17490E+07 0.17894E+07 208 THIS IS DATA SET H051 THE ACQUISITION DATE AND TIME WAS 14JAN92 AT 1615 THE REAL TIME WAS 3 HOURS, 0 MINUTES. AND 0 SECONDS. THE LIVE TIME WAS 2 HOURS. 59 MINUTES. AND 25 SECONDS. 1—14-1992 xxxxxxxxxxxxxxxxxxxx HMW PS 5% MINERAL OIL *xxxxxxxxxxxxx*******************xx*************xx TIME SCALE 2 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 309 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS ==&> NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES = 0 FREE BACKGROUND FREE TIME-ZERO . NO SOURCE CORRECTION VARIANCE OF THE FIT : 1.276 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.0860 EXCESS PROBABILITY = 0.07 PCT LIFETIMES IN NSEC 0.162 0.416 2.067 STANDARD DEVIATIONS 0.007 0.010 0.009 RELATIVE INTENSITIES IN PCT 20.35 34.69 44.96 STANDARD DEVIATIONS 1.32 1.17 0.22 BACKGROUND 295.60 STANDARD DEVIATION 2.83 TIME-ZERO CHANNEL NUMBER 32.127 STANDARD DEVIATION 0.027 AREA CHECK AREA FROM FIT AREA FROM TABLE 0.22685E+07 0.23240E+07 209 THIS IS DATA SET H751 THE ACQUISITION DATE AND TIME WAS 15JAN92 AT 0822 THE REAL TIME WAS 3 HOURS, 0 MINUTES, AND O SECONDS. THE LIVE TIME WAS 2 HOURS, 59 MINUTES, AND 28 SECONDS. 1—15—1992 **************x*x*** HMW PS 7.5% MINERAL OIL x***xxxxxxxxxxxxxxxx*xxxxxxxxxxx****************xx TIME SCALE = 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 309 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS :30 NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES : 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.036 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.086) EXCESS PROBABILITY = 33.92 PCT LIFETIMES IN NSEC 0.137 0.403 2.060 STANDARD DEVIATIONS 0.007 0.008 0.009 RELATIVE INTENSITIES IN PCT 17.64 37.32 45.04 STANDARD DEVIATIONS 0.96 0.82 0.21 BACKGROUND 273.68 STANDARD DEVIATION 2.65 TIME-ZERO CHANNEL NUMBER 31.694 STANDARD DEVIATION 0.042 AREA CHECK AREA FROM FIT AREA FROM TABLE 0.20783E+07 0.21488E+07 210 THIS IS DATA SET H101 THE ACQUISITION DATE AND TIME WAS 15JAN92 AT 1449 THE REAL TIME WAS 3 HOURS, 0 MINUTES. AND 0 SECONDS. THE LIVE TIME WAS 2 HOURS, 59 MINUTES, AND 26 SECONDS. 1—15-1992 ******************** HMW PS 10% MINERAL OIL ************************************************** TIME SCALE 2 0.0500 NSEC/CHANNEL PROMPT CURVE FWHM(NSEC) 0.195 0.297 INTENSITIES($) 55.400 44.600 SHIFT(NSEC) 0.000 0.026 SPECTRUM ANALYSIS STARTS IN CH. 33 AND ENDS IN CH. 309 NUMBER OF TERMS = 3 NUMBER OF LIFETIME CONSTRAINTS = 0 NUMBER OF CONSTRAINTS FOR RELATIVE INTENSITIES : 0 FREE BACKGROUND FREE TIME-ZERO NO SOURCE CORRECTION VARIANCE OF THE FIT = 1.352 ITS DISTRIBUTION SHOULD BE APPROXIMATELY NORMAL (1.0.086) EXCESS PROBABILITY = 0.00 PCT LIFETIMES IN NSEC 0.143 0.400 2.065 STANDARD DEVIATIONS 0.007 0.008 0.008 RELATIVE INTENSITIES IN PCT 17.89 37.27 44.84 STANDARD DEVIATIONS 1.08 0.94 0.21 BACKGROUND 294.59 STANDARD DEVIATION 2.76 TIME-ZERO CHANNEL NUMBER 31.726 STANDARD DEVIATION 0.038 AREA CHECK AREA FROM FIT AREA FROM TABLE 0.22141E+07 0.22772E+O7 211 APPENDIX G NUCLEAR MAGNETIC RESONANCE 212 Appendix G-l. Data and Decay Curves for 6% Mineral Oil Blend 213 pm 500001: mu :0 pmaunxo uxxN PPM :25? . 1191 2 .mo 1 - _ “mo “50 \ m -D v>q.00» y? «a nun” nnnc” <0 urn” onnc” am muuuumo quzm ”Anon mm moo.»no op Imunmm.umu mH Loom «0 Boom m: mooooo.ooo xN\p4 mu.mmm <0 wooo.oooc mm mo zm Cw 2m mAm no mam» «m mmu ox m.m m: mooooo om u»»mom.umo on war oo oo m.ooom o“ m.oooc cm ”0.000: ow ”o.oooc 0E uo.oooc om wooo.oooc om p.oooc cu mo.ooox . om p.oooc op» w.oooc rm mo.ooo om o.o ox No.00 n< o.o mm umommo.mm 14 d W 1. 4 J 4 a 4 L moooo o Imoooo ImeN 4 L a A L L L @0000 moooo soooo Isoooo nmoooo umoooo upooooo 229 um Aoooxx m.ux Io L moooo 4 L moooo '4‘ _ 50000 L moooo o ImDAN L Imoooo J) 110000 L nmoooo L -moooo nvm” ozmncrmm.uo spam mu-u-mo «Lxm ”L mm mm moo.on op -mLAmw.qu mH homo Lo homo m: mooooo.ooo IN\vq mu.mmm <0 pooo.oooc no mo zm Lu 2m mm no mam“ 4m mwu or m_m n: mooooo om upmmom.umm on pm: 00 oo m.ooom op o.oooc om “o.oooc ow “o.oooc Ox mo.oooc om wooo.oooc om p.oooc ow mo.ooox om “.oooc 0”» 0.000 r mo.ooo om o.o nx mo.oo n4 o.o mm -mommo.mm C 230 pm noooozx ma :0 4 moooo 1..llfi @0000 14 L Aoooo L moooo (4 o ImnaN L Imoooo U A I;oooo L Imoooo L sooooo J L u»ooooo who” ozmncrmm.nn o»4m mq-u-mo LLxm Lu Lu mm moo.LRo op -anmm.umu mL Roam «0 Room mx mooooo.ooo I~\na mu.mmm <0 Loco.ooor no mo zm Lu zm Log no mum» «m may or m.m m: mooooo om uuumom.umo on um: 00 oo m.ooom 0» m.oooc om Lo.oooc ow ”o.oooc 0A mo.oooc ow uooo.oooc om ”.00 c on mo.ooox om L.oooc on» m.oooc rm mo.ooo om o.o ox mo.oo n< 0.0 mm umowmo.mm 231 um no.oooxz u.ux zo ozmucrmm.nn 0.4m NU-U-mo Anzm 1. mm mm moo.pn on umunmw.um mm nomm «0 Boom m1 mooooo.o IN\U« mu.m <0 “000.00 no uo 'JCTLM \JOOOM I) N to ( :1 .1 (3 (30 canon; \l (:1 LG OOOOOOOC)O O 00 OOOOO(DOOOO IU' MD‘O (De-O IU'IC) OOOOO CC)TIU AUNMO "UNIX C) 0' w 0 m OUlr-s- “Or-0000010) ICZCCXZCCIM r. (I) I'D 00 (J‘- OOOO()OOC)O c ooc O O 0 X N O O O n< o.o mm umommo.mm '4" Id _ « woooo @0000 4 14 41 A d1 (d L L moooo o umoooo ImDaN (4 L L L L L 50000 whoooo umoooo amoooo nuooooo