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ABSTRACT

DEVELOPMENT AND APPLICATIONS OF COUPLED-CLUSTER
METHODS AND POTENTIAL ENERGY SURFACE EXTRAPOLATION

SCHEMES

By

Jesse J. Lutz

The generation of highly accurate potential energy surfaces (PESs) for reactive processes

represents a difficult challenge for modern electronic structure theory. Since chemical reac-

tions often involve breaking and forming bonds or intermediate and transition state species,

one must employ a methodology that provides a balanced and highly accurate description

of varying levels of electronic degeneracy, but that is also practical enough to be applied

to a wide range of chemical problems. Using small to medium sized systems, we examine

the performance of two classes of coupled-cluster (CC) methods which are capable of ac-

counting for the diverse electron correlation effects encountered in the majority of ground-

and excited-state PES considerations. The first class of methods are the size-extensive com-

pletely renormalized (CR) CC approaches for ground-states and their equation of motion

(EOM) CC extensions for excited-states, in which noniterative corrections due to higher-

order excitations are added to the energies obtained with the standard CC and EOMCC

approximations, such as CCSD (CC with singles and doubles) or EOMCCSD (EOMCC with

singles and doubles), respectively. In particular, we focus on the left-eigenstate CR-CC(2,3)

and CR-EOMCC(2,3) methods, in which a noniterative correction due to triple excitations is

added to the CCSD or EOMCCSD energy, respectively, and, when necessary, a noniterative

correction for quadruple excitations is also included via the CR-CC(2,3)+Q approach. A new

variant of the CR-EOMCC(2,3) method, abbreviated as δ-CR-EOMCC(2,3), that can pro-



vide a size-intensive treatment of excitation energies, is discussed as well. The second class

of methods considered here is the active-space variants of the electron-attached (EA) and

ionized (IP) EOMCC theories, which utilize the idea of applying a linear electron-attaching

or ionizing operator to the correlated, ground-state CC wave function of an N -electron

closed-shell system in order to generate the ground and excited states of the related (N ±1)-

electron radical species of interest. These approaches use a physically motivated set of active

orbitals to a priori select the dominant higher-order correlation effects to be included in the

calculation, which significantly reduces the costs of the high-level EA- and IP-EOMCC ap-

proximations needed for obtaining accurate results for open-shell species without sacrificing

accuracy. We have also developed a general extrapolation strategy for reducing the cost of

generating PESs with correlated electronic structure methods using the concept of correla-

tion energy scaling. Benchmark studies were performed to demonstrate typical accuracies

for two types of PES extrapolation schemes, namely, the single-level PES extrapolation

schemes, in which the essential quantity, the correlation energy scaling factor, is generated

using only the quantum chemistry method of interest, and the dual-level PES extrapolation

schemes, where lower-order approaches are used to estimate the correlation energy scaling

factor corresponding to the method of interest. Unifying features of these PES extrapolation

techniques are discussed, including the role of pivot geometries and base wave functions, and

PES extrapolation to the complete basis set limit is examined as well. Finally, the most

essential details of the new open-shell EOMCCSD and EA- and IP-EOMCC computer codes

for the GAMESS software package, developed as part of this thesis research, are described.
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Chapter 1

Introduction

Potential energy surfaces (PESs) play a central role in the theoretical description of molecular

structures, properties, and reactivities, making them of great utility in many areas of chemi-

cal research, including spectroscopy and kinetics, investigations of reaction mechanisms, and

the design of force fields for biological and materials science applications. Unfortunately,

obtaining a molecular PES is typically very difficult due to the enormous mathematical

complexity one faces when trying to solve the electronic Schrödinger equation. Development

efforts in quantum chemistry have focused on the design of computationally manageable, yet

reliable, approximation methods for the generation of energies and properties that can be ap-

plicable to a wide range of molecular systems. In the interest of reducing mathematical com-

plexity some simplifying approximations are introduced from the outset, including the neglect

of relativistic effects, which are small in systems with light atoms [1], and the decoupling

of the nuclear and electronic wave functions, accomplished under the Born-Oppenheimer

approximation [2], which allows the electronic energy of a molecule to be expressed as a

function of its geometry, thus providing the conceptual basis for a PES. Despite these and
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other commonly employed simplifications, the electronic Schrödinger equation remains too

formidable to be solved exactly for any system with two or more electrons [3]. One of the

principal challenges in the conventional determination of a PES, in which one is required

to solve the electronic Schrödinger equation point-by-point for each fixed nuclear geometry

of interest, is the development, implementation, and benchmarking of new approximate ab

initio electronic structure methods that can provide suitably accurate results for the wide

variety of chemical species commonly encountered when studying reactive PESs, while re-

quiring only modest computational resources. Thus, the first goal of this dissertation is

to make a significant contribution toward the development and benchmarking of leading

modern methods of electronic structure theory.

It is difficult at the outset to determine what characteristics are important when de-

veloping new ab initio methods of electronic structure theory. One of the ultimate goals

of quantum chemistry is to provide a predictive tool which can guide experimental efforts.

In order to be considered a quantitatively predictive model, an ab initio method must be

able to reliably produce numerical values for reaction energies which are accurate to within

≃ 1 kcal/mol of widely acknowledged benchmark data, a threshold often called “chemical

accuracy”. It should also be clear what cases a method is and is not appropriate for, and,

when necessary, it should be clear what to do to improve a poor result. A shortcoming of

many ab initio methods is that they do not offer a balanced treatment of the short-range

or “dynamical” and long-range or “non-dynamical” electronic interactions and therefore are

unreliable for applications involving chemically reactive processes, since the relative impor-

tance of these competing effects can vary rapidly moving from one region to another on the

corresponding PES. The goal is to develop a method which can give a balanced treatment
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of both types of electronic interactions, while also having a straightforward and logical way

of improving the result in the case that the predictions are shown to be inadequate.

The starting point for single-reference (SR) electronic structure methods is the indepen-

dent particle model (IPM), usually Hartree-Fock (HF), approximation [4–7], and the more

practical discretized algebraic form of the resulting equations based on the linear combina-

tion of atomic orbitals (LCAO) self-consistent field (SCF) formalism, which is the origin of

the basis set approximation defining ab initio models [8]. The HF method produces the best

single determinant description of the electronic wave function of interest and although it is

by now well established that the HF approximation yields over 99% of the total energy, its

ability to provide a reliable description of chemical phenomena is very limited due to the

need to describe relatively small energy differences in characterizing chemical processes. The

inadequacies of HF have been shown time and again, but as an outstanding early example,

Wahl’s study of the F2 molecule demonstrated that an SCF description predicts that F2

is unbound [9]. Despite the completely unphysical relative energetics often produced by

the HF approximation, the LCAO SCF formalism is still a valuable tool as it provides the

HF model, a critical element to our conceptual understanding of electronic structure and

chemical reactivity. To retain the HF picture and be able to make predictive calculations,

methods which improve upon the basic molecular orbital approximation must be developed.

The focus of these so-called ’post-HF methods’ is to accurately recover the small amount of

energy neglected at the HF level, a quantity which is known as the correlation energy. The

most popular ab initio post-HF approaches can be grouped into the variational and pertur-

bative classes. Variational approaches provide an upper bound to the exact energy, as in

the configuration interaction (CI) theory [10–14], while perturbative approaches, such as the

3



many-body perturbation theory (MBPT) [15–22] and coupled cluster (CC) methods [23–27],

have other advantages which will be discussed shortly. To understand how these approaches

may be utilized to produce powerful new ab initio electronic structure approaches, their

individual strengths and weaknesses must first be understood.

The CI method is the most straightforward way of accounting for electronic correlation.

The CI wave function is a linear combination of the reference (usually HF) determinant and

Slater determinants obtained by exciting electrons from occupied to unoccupied orbitals. If

this determinantal expansion is complete (full CI), the correlation energy and total energy of

the molecular system will be exact within whatever basis set approximation was used used

in the calculation. Due to the fact that the number of Slater determinants grows factorially

with the size of the system, full CI calculations are impractical for systems of more than a few

electrons. Approximations are commonly made in order to reduce this expense, for example,

by truncating the CI expansion to include only the simplest classes of excitations, singles

and doubles (SD), which is called the CISD method. A particularly appealing feature of

the CI methods is that, by systematically adding classes of excitations, e.g., CI with singles,

doubles, and triples, CI with singles, doubles, triples, and quadruples, and so on, one may

obtain a series of increasingly accurate energies approaching the full CI value. Without this

systematically improvable nature, it is difficult to claim a particular level of convergence in

electronic structure calculations unless there is benchmark data available for comparison.

Unfortunately, truncated CI methods lack size-extensivity, i.e., the correct linear scaling

with the number of electrons, and the hierarchy converges slowly with the rank of excitation

included. While the lack of size-extensivity can be approximately accounted for at the CISD

level by adding Davidson corrections [28, 29], the slow convergence with level of excitation
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to the full CI limit makes the CI method comparatively inefficient in the context of other

modern electronic structure methods.

Perturbation theory offers another systematically improvable hierarchy of methods for

determining the correlation energy. Although these methods are not variational, they are

strictly size-extensive at every level. In the SR-MBPT approach, the electronic Hamiltonian

is divided into an unperturbed part, corresponding to a single-determinantal reference de-

scription, usually the HF determinant, and a perturbation part, which usually describes the

electronic correlation. In this form of MBPT, introduced by Møller and Plesset (MP) [15],

the perturbation corrections to the reference wave function and energy are then calculated

using the Rayleigh-Schrödinger perturbation theory. Systematic improvements in the elec-

tronic energy may be made by considering perturbative corrections of increasing orders, i.e.,

second-order MP (MP2), third-order MP (MP3), and so on. Additionally, comparisons of

each order of perturbation with various CI ranks have made possible further division within

levels of perturbation, allowing for the selection of certain classes of excitations. As an

example, one may choose to calculate only certain components within the fourth-order of

MP theory, e.g., MP4 with only contribution from doubles (MP4D), doubles and quadru-

ples (MP4DQ), singles, doubles, and quadruples (MP4SDQ), or singles, doubles, triples, and

quadruples (full MP4). This allows for certain computationally inexpensive higher-order

corrections to be included without significantly increasing time requirements. In general,

if the unperturbed HF determinant describing the molecular system is close to the exact

wave function for that system, the convergence of the MBPT series is usually very rapid;

however, when chemical bonds are stretched, the MBPT series becomes divergent. Thus,

MBPT produces very good energies near the equilibrium geometries of molecules; however,
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unlike CI, in regions of PESs where bonds are broken or formed MBPT energies become

unphysical, making them inadequate for describing reactive PESs.

The conventional SR coupled-cluster (CC) theory is currently considered the preeminent

ab initio method for ground-state calculations of modest-sized molecular systems. Contrary

to the CI approach, which is characterized by a linear expansion of configuration state

functions, the CC approach uses an exponential ansatz for the wave function, inherently

assures that truncated forms of CC theory remain size-extensive, and produces a much

faster convergence to the full CI wave function. It can be shown using a perturbation theory

analysis that the improved convergence of CC as compared with the same level of truncation

in CI theory is due to higher-order excitations being folded in as products of lower-order

excitations by the exponential form of the CC ansatz. At the same time, thanks to the use of

diagram factorization techniques commonly employed in efficient computer implementations

of CC methods, the computer costs of CC calculations are similar to those characterizing

the CI approaches truncated at the same excitation levels. This is why CC methods can

offer higher accuracy at relatively lower costs as compared with CI or MBPT methods and

even though the energies produced are not variational, they are typically considerably more

accurate than those produced by CI at the same level of truncation. Excited states may also

be accessed in CC theory through the equation-of-motion (EOM) CC formalism [30–34] or

its symmetry-adapted-cluster configuration-interaction (SAC-CI) [35–39] or linear-response

CC analogs [40–44]. The most appealing electronic structure methods come as a result of

combining the different abovementioned approaches. EOMCC, for example, is just a CI-

like expansion starting from an approximate ground-state wave function obtained using CC

theory. Approaches based on the CC and EOMCC formalisms which utilize perturbation
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theory to obtain inexpensive corrections due to higher-order correlation effects also exist and

will be discussed in more detail shortly.

All of these appealing features of CC theory make it the most promising electronic struc-

ture approach of those considered so far, but there are still open problems yet to be com-

pletely addressed in CC theory. For instance, the most widely used and computationally

practical CC approximation, the CC with singles and doubles (CCSD) method [45–48], fails

completely when applied to describe a PES involving bond breaking. The CCSD method,

which is based on an iterative procedure with central processing unit (CPU) steps scaling

as n2
on

4
u, where no and nu are the numbers of occupied and unoccupied orbitals in the refer-

ence model, respectively, or as N 6, where N is the size of the system expressed as the sum

of the exponents of the basis functions, neglects the important triply excited, quadruply

excited, and other higher-order clusters needed to describe bond breaking. Unfortunately,

the CC method with singles, doubles, and triples (CCSDT) [49, 50] and the CC approach

with singles, doubles, triples, and quadruples (CCSDTQ) [51–54] which include these clus-

ters are prohibitively expensive for anything but small molecules, as they require iterative

steps that scale as n3
on

5
u (N 8), and n4

on
6
u (N 10), respectively. A parallel problem exists

in the case of the EOMCC or response CC methods where the basic singles and doubles

approximation (EOMCCSD) [31–33], which is characterized by iterative n2
on

4
u (N 6) scaling

steps, fails to describe excited states dominated by two-electron and other many-electron

transitions out of the ground state. Again, the EOMCC theory with singles, doubles, and

triples (EOMCCSDT) [55–58] and the EOMCC approach with singles, doubles, triples, and

quadruples (EOMCCSDTQ) [59], which can describe such states, do not offer a suitable al-

ternative in the majority of applications because of their prohibitively expensive iterative N 8
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and N 10 scaling steps, respectively. The massive success of the SRCC theories in molecu-

lar applications [60–66], particularly for nondegenerate ground-states of molecules near their

equilibrium geometry and electronically excited states dominated by one-electron transitions,

in addition to substantial progress in recent years in code parallelization [67–77], and in the

development of various local correlation CC techniques (see, e.g., Refs. [78–83]), including,

for example the cluster-in-molecule CC method developed by the Piecuch group [84–86], con-

tinues to stimulate parallel effort toward the extension of CC theory to handle quasidegerate

states characterizing bond breaking and many-electron excitations with the same or close to

the same level of computational effort as that required by CCSD.

The most natural way to handle quasi-degenerate electronic states is to either turn to

one of the variants of multi-reference (MR) perturbation theory, such as the popular MC-

QDPT2 [87,88] and CASPT2 [89] methods, which are designed to handle large nondynamical

correlation effects and low-order dynamical correlation effects, the MRCI approaches, such

as the popular MRCI(Q) approximation [90, 91], or the genuine MRCC methods, which, in

analogy to the previously discussed SR analogs, offer a better treatment of the dynamical

correlation effects as compared with the MRMBPT or MRCI methods. The genuine MRCC

methods can be categorized into two types. The first is the hierarchy of the Fock-space or

valence-universal methods [92, 93], in which a single valence-universal wave operator oper-

ates on the system of interest and its ions which are obtained by removing one, two, etc.

active electrons from active orbitals. This is a convenient formalism when one is interested

in ionization potentials and electron affinities, however, these methods are unfavorable when

a wide range of geometries must be considered, as is the case in the generation of reactive

PESs. The other category of genuine MRCC methods, the Hilbert-space or state-universal
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(SU) approaches [94], employ the Jeziorski-Monkhorst wave function ansatz in conjunction

with the multi-root Bloch wave-operator formalism. The SU-MRCC approaches have been

shown to produce very accurate results for the ground and excited states of systems un-

dergoing severe geometrical transformations (see, e.g., Refs. [95–100]), making them a very

attractive choice within the context of PES generation. However, their routine use for such

applications is complicated by many factors. First, a model space of reference states must be

pre-defined by the user, which often contains many states irrelevent to a given problem, and

then a truncation scheme must be chosen which is compatible with the model space. This

requires expert-level decisions on a case-by-case basis for each molecular problem. Then,

even when appropriate choices are made, intruder states may appear [95–97], which can

severely complicate interpretation of results. The aforementioned ambiguous parameters

become even more undesirable when considered in the context of practical implementation.

The need to accomodate such general choices in combination with the massive number of

cluster amplitudes which must be computed make writing general SU-MRCC computer pro-

grams excessively difficult. While widespread routine use of genuine MRCC methods seems

unlikely in the near future, these methods have provided great insight into ways to improve

existing SRCC formalisms and inspired activity toward MRCC approaches dealing with a

single quantum state. We refer the reader to Ref. [101], and references therein for further

detailed discussion.

Due to the difficulties with implementing practical, user-friendly MRCC methods and the

prohibitive computational expenses characterizing the SR CCSDT and CCSDTQ approaches

and their EOM analogs, substantial research effort has been directed toward developing ap-

proximate approaches for including higher-order correlation effects within a SRCC formal-

9



ism. This led to both approximate iterative approaches, such as CCSDT-n [102–104], and

CCSDTQ-1 [105], as well as the more popular non-iterative approaches, such as CCSD[T]

[104,106] and CCSD(T) [107], where triply excited T3 clusters are approximated using per-

turbative arguments which take the form of a relatively inexpensive non-iterative n3
on

4
u (N 7)

scaling step in addition to the cost of the underlying CCSD calculation. Methods were also

derived for cases when quadruple excitations should not be disregarded, where perturbative

noniterative corrections for both triples and quadruples are added, e.g., the CCSD(TQf )

method [108], characterized by a n2
on

5
u (N 7) scaling step. These and other noniterative

perturbative CC approaches have become extremely popular because they efficiently ac-

count for most of the important connected triple or triple and quadruple excitations in a

user-friendly (“black-box”) fashion, while avoiding the steep iterative N 8 or N 10 scaling

steps required by full CCSDT or CCSDTQ. Unfortunately, their applicability is limited to

molecules near the equilibrium geometries, since the perturbative arguments used to de-

rive the noniterative corrections of CCSD(T) and similar approaches fail when bonds are

streched or broken. A parallel challenge is found within the development of the standard

response CC and EOMCC approximations for excited states, in which the effects of triply

or triply and quadruply excited configurations are estimated using arguments originating

from MBPT (see, e.g., Refs. [109–114]). The perturbatively corrected EOMCC methods,

such as, for example, EOMCCSD(T̃) [110], where the basic EOMCCSD approximation is

corrected for triples via a noniterative n3
on4

u or N 7 scaling correction, break down for excited

states having larger contributions due to doubly excited configurations, which is particularly

common for excited-state PESs along bond breaking coordinates (see, e.g., Ref. [115]).

Quite a few approaches have been suggested in recent years which attempt to overcome
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the failures of the conventional perturbative SR CC and EOMCC methods at larger inter-

nuclear separations and for excited states dominated by many-electron transitions, while

avoiding the complexity of the genuine MRCC approaches. Examples which will be consid-

ered here include the externally corrected CC methods, such as the reduced MRCC (RMR-

CC) approaches [116–122], the completely renormalized (CR) CC methods [65,115,123–132],

and the active-space CC theories [54–57, 133–149] (see Ref. [101] for a recent review). All

of these methods are related in that they are concerned with improving the description of

bond-breaking processes and other cases involving electronic quasidegeneracies, while relying

on a SR-like formulation. Each of these methods will now be discussed, paying particular at-

tention to the strengths of each approach and making mention of selected recent applications

in the literature.

The externally corrected SRCC methods represent an alternative to the perturbatively-

derived corrections in which the CCSD equations corrected for terms containing the triply

(T3) and quadruply (T4) excited clusters are solved after replacing T3 and T4 amplitudes

by their values obtained in the cluster analysis of some non-CC wave function which ex-

hibits good behavior at large internuclear separations, such as the projected unrestricted

HF [150, 151], valence bond [152–154], multiconfigurational SCF or complete active-space

SCF (CASSCF) [155–157], or MRCI wave functions [116–121]. Although all of these meth-

ods help in bond breaking situations, the latter, MRCI-corrected CCSD approach, referred

to as RMR-CCSD, and its RMR-CCSD(T) extension [121, 122], have shown the most sub-

stantial improvements in the CCSD results. Unfortunately, the generation of the MRCISD

wave function is very expensive when compared to the CCSD approach and MRCI is not size-

extensive, which limits the applicability of the RMR-CC approaches to smaller systems. One
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can partly address these deficiencies by turning to the so-called (N ,M)-CCSD methods [158].

This notation implies that an M -reference general-model-space (GMS) SU-MRCCSD calcu-

lation [99,100] is corrected for higher-order clusters by drawing the relevent information from

M pertinent wave functions [159] produced by an N -reference MRCISD calculation. Exten-

sive benchmarking and testing have shown the RMR-CCSD method and its aforementioned

extension with a perturbative correction for triples, RMR-CCSD(T) [121, 122, 160–172], as

well as the (N ,M)-CCSD methods [158,173–181] to be quite accurate in practice, although

all of these approaches are very complex and require a lot of expertise.

The ground-state CR-CC [65, 123–131] and excited-state CR-EOMCC [65, 115, 123, 126,

129, 132] methods represent another class of approaches which were developed with the in-

tention of removing the pervasive failings of the conventional CC/EOMCC perturbative

methods. These approaches are based on the more general formalism of the method of

moments of CC equations (MMCC) [65, 123–125, 127–129, 131, 182, 183]. In analogy to the

conventional perturbative methods, the CR-CC and CR-EOMCC methods allow one to cal-

culate noniterative state-specific energy corrections corresponding to selected higher-order

excitations which are added to the energies obtained from conventional CC/EOMCC cal-

culations, such as CCSD or EOMCCSD. These CR-CC and CR-EOMCC corrections are

based on the asymmetric energy expressions and resulting moment expansions which form

the underlying framework for all MMCC methods. The original CR-CC approaches, such as

CR-CCSD(T) [124,125] suffered from small errors due to a lack of strict size-extensivity [65],

but these issues were addressed in the more recent left-eigenstate CR-CC approaches, in-

cluding CR-CC(2,3), which are based on yet another form of the of the moment expansion

of the full CI energy that defines the biorthogonal MMCC formalism [127–132]. The main
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advantage of the CR-CC, CR-EOMCC, and other MMCC approaches is that the resulting

ground- and excited-state energies are not dependent on any choice of active orbitals or

other subjective parameters that one has to choose in MR calculations. Another advan-

tage is the computational expense of the CR-CC and CR-EOMCC methods, which is on

the order of the conventional perturbative SRCC methods. For example, the noniterative

triples correction in the CR-CC(2,3) approach scales as n3
on

4
u or N 7, in analogy to the scal-

ing of CCSD(T). The CR-CC(2,3) method has already been proven to be very accurate and

robust, particularly in applications involving single bond breaking [127–130,184–188], mech-

anistic studies involving biradicals [127, 128, 130, 131, 189–193], and singlet-triplet gaps in

biradical/magnetic systems [130,131,192]. Similar successes have been reported for the CR-

EOMCC(2,3) method [129, 132] and its CR-EOMCCSD(T) predecessor [65, 115, 123, 126],

where noniterative, n3
on

4
u or N 7 scaling corrections for triples are added to the underly-

ing EOMCCSD energies. For example, the CR-EOMCC(2,3) method has recently been

shown to accurately reproduce adiabatic excitation energies for various closed- and open-

shell molecules which are believed to be dominated by two-electron transitions out of the

ground-state [132].

The third and final effort toward constructing a SR formalism capable of handling

stronger non-dynamical correlations which will be considered here are the active-space CC

and EOMCC methods [54, 133–149] (see Ref. [101] for a recent review). By specifically

targeting the higher-order cluster and excitation amplitudes which become large in such

situations by assigning a small subset of active orbitals defining these excitations, highly

accurate results may be obtained while avoiding much of the expense of the higher-order

parent methods. For example, the CCSDt and CCSDtq methods are based on the idea of
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selecting T3 and T4 clusters within the CCSDT and CCSDTQ systems of equations using

active orbitals [54,133–146]. When properly implemented, the most expensive CPU steps of

the full CCSDt and CCSDtq approaches scale as NoNun2
on

4
u and N2

o N2
un2

on
4
u, respectively,

where No and Nu are the numbers of active occupied and unoccupied orbitals, respectively.

All active-space approaches have a few distinct advantages over competing methods. As

an example, take again the CCSDt and CCSDtq approaches. These methods recover the

exact results of their parent CCSDT and CCSDTQ approaches, respectively, in the limit

that all orbitals are assigned as active. They are also systematically improvable, approach-

ing the CCSDT and CCSDTQ limits as the number of active orbitals is increased. Given

an appropriate selection of a usually small number of active orbitals, the active-space CC

results are typically virtually perfect when compared to the values produced by the parent

methods. Another advantage is the fact that all active-space CC methods are characterized

by relatively low computational scalings, which are small prefactors times the n2
on

4
u steps

of the CCSD type. Naturally, following the development of the ground-state CCSDt and

CCSDtq active-space approaches, the EOMCCSDt and EOMCCSDtq methods were devel-

oped, with the first implementation of EOMCCSDt and the proposal for all such EOMCC-

based methods occurring in the Piecuch group [55–58]. In addition to the EOMCCSDt

approach, another class of the active-space EOMCC methods was also developed by the

Piecuch group, namely the active-space electron attached (EA) and ionized (IP) EOMCC

approaches [147–149], which may be used to generate ground and excited states of valence

open-shell systems out of a related closed-shell ground-state, as in radical species. Generally,

the EA- and IP-EOMCC methods (see Refs. [66,147–149] and references therein for informa-

tion) have the distinct advantage over the traditional open-shell EOMCC approaches based
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on restricted open-shell HF (ROHF) or unrestricted HF (UHF) references in the fact that

they automatically generate orthogonally spin-adapted wave functions (a difficult thing to

accomplish in CC theory). For comparison, traditional ROHF- or UHF-based open-shell

CC/EOMCC methods introduce spin-contamination to the resulting wave functions. Spin-

contamination can have non-negligible effects on the energy of the states generated, but,

more importantly, it prohibits the designation of the spin-symmetry of a given state, causing

the identification of a particular state to become most inconvenient. This is an important

issue, particularly when the excited states of open-shell systems are examined, which will be

returned to periodically throughout this dissertation.

While promising electronic structure approaches have been and continue to be developed,

many of which provide a highly accurate and balanced description of chemical species typ-

ically encountered while scanning molecular PESs, reliable methods are still prohibitively

expensive when one faces the calculation of the hundreds or thousands of points which are

typically needed to sample these PESs. Electronic structure methods could certainly benefit

from an auxiliary approach for predicting points on the PES based on inexpensive calcula-

tions with either less expensive quantum chemistry approaches or smaller basis sets, which

would ameliorate the staggering computational expense of generating hundreds or thousands

of points using high levels of electronic structure theory. To address this problem, an ab initio

extrapolation scheme has been proposed that predicts the PES corresponding to expensive

high-level calculations from the results of a series of comparatively inexpensive lower-level

calculations using the concept of correlation energy scaling. The PES extrapolation scheme

of this type was originally suggested in Ref. [184] and was designed such that it can be

used in conjunction with any typical post-HF or post-CASSCF electronic structure method.
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Thus, the second principal goal of this dissertation is to develop and perform benchmark

studies on the PES extrapolation schemes based on correlation energy scaling ideas, which

allow one to generate chemically reactive molecular PESs with very little or almost no infor-

mation from high-level calculations while retaining the desired accuracy that high-level ab

initio electronic structure methods provide.

Finally, after new methods are developed and shown to be useful in benchmark studies,

general-purpose computer programs should be written and distributed based on the success-

ful theories to give scientists and engineers around the world a tool for interpreting, or even

predicting, experimental results. The third and final goal in this dissertation is to outline

the key details for the computer implementations of the open-shell EOMCCSD and EA-

and IP-EOMCC methods which which were written for the GAMESS electronic structure

software package [194], a freely available suite of computer codes with tens of thousands

of registered users. The three goals of this dissertation, summarized in Chapter 2, are ad-

dressed in this thesis, with a chapter being devoted to each. Thus, Chapter 3 is devoted to

the development and application of new ground and excited-state CC/EOMCC methods for

chemically reactive systems including the CR-CC/EOMCC methods and the active-space

EA- and IP-EOMCC approaches. Chapter 4 begins with a discussion motivating the need

for auxiliary methods to aid in the generation of molecular PESs and moves toward a presen-

tation of the theory and various applications which help demonstrate various ways the PES

extrapolation schemes based on correlation energy scaling may be used. Chapter 5 covers

the development of computer codes for the GAMESS software package in detail, presenting

programmable equations for a few of the theories implemented in this work as well as a brief

discussion of how they are solved in practice.
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Chapter 2

Project Objectives

The main objectives of this work are:

A. Performing benchmark calculations using the new generations of CR-CC approaches,

including barrier heights of hydrogen transfer, heavy-atom transfer, nucleophilic sub-

stitution, and unimolecular and association reactions, and PESs for addition and iso-

merization reactions involving species with varying degrees of electronic degeneracy in

order to demonstrate what levels of theory are appropriate in different situations.

B. Developing and performing benchmark applications for the new generations of CR-

EOMCC approaches, including the calculations of vertical excitation energies and

environment-induced spectral shifts of organic chromophores and the calculation of

excited-state PESs along bond-breaking channels.

C. Performing benchmark applications for the EA- and IP-EOMCC methods including

geometry optimizations and the calculation of adiabatic excitation energies of small

open-shell molecules.
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D. Developing the PES extrapolation schemes based on correlation energy scaling and

performing benchmark applications to demonstrate the full range of capabilities offered

and typical accuracies which should be expected in practice.

E. Outlining the key details of computer implementations of the ROHF-based EOM-

CCSD and RHF- or ROHF-based EA- and IP-EOMCC programs recently developed

for GAMESS.
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Chapter 3

Applications of Coupled-Cluster and

Equation-of-Motion Coupled-Cluster

Methods

3.1 Theory

As explained in the Introduction, the SR CC and EOMCC methods are the preeminent

methods for the determination of electronic energies and properties in chemistry. The ma-

jority of this dissertation is concerned with the new generations of the CC and EOMCC

methods which are useful in situations where the conventional CC and EOMCC approxima-

tions fail. We begin by reviewing the conventional CC and EOMCC theories in Sects. (3.1.1)

and (3.1.2), respectively. The CR-CC and CR-EOMCC approaches and the active-space CC

and EOMCC methods, with special emphasis on their EA- and IP-EOMCC extensions are

discussed afterwards, in Sects. (3.1.3) and (3.1.4), respectively.
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3.1.1 Single-Reference Coupled-Cluster Theory for Ground States

In the SRCC theory, the ground-state wave function |Ψ0〉 of an N -electron system is ex-

pressed using the exponential ansatz,

|Ψ0〉 = eT |Φ〉, (3.1)

where T is the cluster operator and |Φ〉 is an IPM reference configuration, e.g., the HF

determinant (throughout this thesis, the RHF or ROHF determinant). Typically, we truncate

the many–body expansion of T at a conveniently chosen excitation level mT , to obtain an

approximate T , i.e., T ≃ T (A), hoping that one can reach the desired accuracies with

mT << N . The truncated cluster operator T (A) defining the approximate CC method A is

given by

T (A) =

mT
∑

n=1

Tn, (3.2)

with

Tn =
∑

i1<···<in,a1<···<an

t
i1...in
a1...an aa1 · · · aanain · · · ai1

, (3.3)

where Tn is the n-body component of T (A), t
i1...in
a1...an are the cluster amplitudes, i1, i2, i3,. . . or

i, j, k,. . . (a1, a2, a3,. . . or a, b, c,. . . ) are the spin-orbitals occupied (unoccupied) in the refer-

ence determinant |Φ〉, and ap (ap) are the creation (annihilation) operators associated with

the orthonormal spin-orbital basis set {|p〉}. In Eq. (3.2), mT defines the maximum many–

body component included in the truncated cluster operator T (A), returning the exact, full

CI ground-state wave function when mT = N (recall that N is the number of electrons in

the system of interest). When the cluster operator is truncated such that mT < N , Eq.
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(3.1) leads to the well-known hierarchy of standard CC approximations: CCSD when T is

truncated at doubly excited clusters (T ≃ T (CCSD) = T1 + T2,mT = 2); CCSDT when T is

truncated at triply excited clusters (T ≃ T (CCSDT) = T1+T2+T3,mT = 3), CCSDTQ when

T is truncated at quadruply excited clusters (T ≃ T (CCSDTQ) = T1 +T2 +T3 +T4,mT = 4),

etc.

The SRCC equations are formally obtained by inserting the CC wave function |Ψ0〉, Eq.

(3.1), into the electronic Schrödinger equation,

H|Ψ0〉 = E0|Ψ0〉, (3.4)

premultiplying both sides of Eq. (3.4) on the left by e−T (A)
to obtain the connected cluster

form of the Schrödinger equation [25–27],

H̄(A)|Φ〉 = E0|Φ〉, (3.5)

with

H̄(A) = e−T (A)
HeT (A)

= (HeT (A)
)C , (3.6)

and projecting Eq. (3.5) onto the excited determinants |Φ
a1...an
i1...in

〉 = aa1 . . . aanai1
. . . ain |Φ〉

corresponding to the many-body compoenents Tn included in T (A). Here, the subscript

C indicates the connected part of a given operator expression. Eq. (3.6) is known as the

similarity-transformed Hamiltonian of the CC theory. The resulting system of equations for

cluster amplitudes t
i1...in
a1...an defining T (A) has the following general form:

〈Φ
a1...an
i1...in

|H̄(A)|Φ〉 = 0, i1 < · · · < in, a1 < · · · < an, (3.7)
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where n = 1, . . . ,mT and |Φ
a1...an
i1...in

〉 are the n-tuply excited determinants relative to the

reference determinant |Φ〉. As an example, the CCSD amplitude equations are obtained by

projecting Eq. (3.5), where T (A) = T (CCSD) = T1 + T2, onto all singly and doubly excited

determinants, |Φa
i 〉 and |Φab

ij 〉, respectively, such that

〈Φa
i |H̄

(CCSD)|Φ〉 = 0,

〈Φab
ij |H̄

(CCSD)|Φ〉 = 0, (3.8)

where

H̄(CCSD) = e−(T1+T2)He(T1+T2) = (HNeT1+T2)C (3.9)

is the similarity-transformed Hamiltonian of the CCSD approach. These equations are solved

for the one- and two-body cluster amplitudes, tia and t
ij
ab, respectively, which appear in the

definitions of the one- and two-body cluster operators,

T1 =
∑

i,a

tiaa
aai (3.10)

and

T2 =
∑

i<j,a<b

t
ij
aba

aabajai. (3.11)

As explained in the Introduction, the most expensive CPU steps of the CCSD calculations,

based on Eq. (3.8) scale as n2
on

4
u or N 6, where N is a measure of the system size.

Once the general system of nonlinear, energy-independent equations for cluster ampli-

tudes, Eq. (3.7), is solved for T (A), the energy E
(A)
0 corresponding to the standard SRCC
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method A is calculated by projecting Eq. (3.5) onto the reference determinant |Φ〉 such that

E
(A)
0 = 〈Φ|(HeT (A)

)C |Φ〉. (3.12)

By introducing the normal product form of the Hamiltonian, HN = H − 〈Φ|H|Φ〉, this

equation can be rewritten as

∆E
(A)
0 = 〈Φ|(HNeT (A)

)C |Φ〉, (3.13)

where ∆E
(A)
0 is the total energy of the system relative to reference energy, i.e., ∆E

(A)
0 =

E
(A)
0 − 〈Φ|H|Φ〉, which is equivalent to the correlation energy when |Φ〉 is the HF state.

For CCSD and all higher-order CC methods it is interesting to note that, at least for the

quantum-chemistry Hamiltonians of interest in this dissertation, which include only two-

body electron-electron interactions, the SRCC energy expression is

E
(A)
0 = 〈Φ|H|Φ〉 + 〈Φ|[HN (T1 + T2 + 1

2T 2
1 )]C |Φ〉 (3.14)

or

∆E
(A)
0 = 〈Φ|[HN (T1 + T2 + 1

2T 2
1 )]C |Φ〉. (3.15)

From Eq. (3.15) it can be seen that ∆E
(A)
0 depends only on T1 and T2 clusters, independent

of the excitation level mT defining SRCC method A as long as mT ≥ 2. It follows then

that the T1 and T2 clusters obtained at the level of the basic CCSD approximation are

already sufficient to calculate the CC energy in a complete manner. This does not make

the CCSD approach the exact theory. Adding higher-than-doubly excited clusters in the
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cluster expansion can significantly improve the quality of the CC energy through coupling

of higher-order clusters with the T1 and T2 amplitudes in the SRCC equations, Eq. (3.7).

This suggests, however, an approximate treatment of higher-than-doubly excited cluster

amplitudes may be sufficient to improve the quality of the CC energy in a satisfactory way.

As a final note about the ground-state CC theory, it should be mentioned that spin-

contamination can become an issue depending on the choice of method used to generate

the reference determinant. For example, if one is interested in describing a closed-shell

molecule, the RHF reference |Φ〉 may be employed, which is itself a spin eigenfunction,

Ŝ2|Φ〉 = S(S + 1)~̄2|Φ〉, where Ŝ is the total spin operator, as is any approximate CC wave

function produced from it through Eq. (3.1). In this case, spin-contamination is not a

problem in the ground-state wave function or for any wave functions derived from it, since T

and eT commute with Ŝ2. However, if instead one wishes to describe an open-shell system,

i.e., a radical or a system with even number of electrons of non-singlet multiplicity, the

restricted open-shell HF (ROHF) or unrestricted HF (UHF) references may be employed,

but one must then be careful when doing so. While the ROHF wave function is spin-adapted

(UHF wave functions are not), in contrast to the RHF closed-shell case, a CC wavefunction

constructed from an ROHF reference determinant |Φ〉 will not be automatically spin-adapted

due to the nonlinear nature of CC theory. The spin-contamination can introduce small

errors in energies and present other difficulties when UHF-based and ROHF-based CC wave

functions are employed. This issue will be further discussed in the next section of this

dissertation which addresses the generation of electronically excited, electron-attached, and

ionized states out of ground-state CC wave functions.
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3.1.2 Equation-of-Motion Coupled-Cluster Theory for Electroni-

cally Excited, Electron-Attached, and Ionized States

The ground-state CC theory, described in Sect. (3.1.1), can be extended to excited, electron-

attached, and ionized states by application of a linear excitation operator Rµ to the CC

ground state, |Ψ0〉. This leads to the EOMCC formalisms. Many different EOMCC meth-

ods may be formulated by modifying the basic definition of Rµ. In this dissertation, the

particle-conserving excitation energy (EE) EOMCC as well as the particle-nonconserving

electron-attatched (EA) EOMCC and ionized (IP) EOMCC theories are considered. While

discussions of the EA- and IP-EOMCC models are constrained to schemes where only one

electron is added or removed, other approaches in these catagories can easily be imagined

with more than one electron added or removed. In the remainder of this section, an overview

is presented introducing important concepts common to all EOMCC theories, while the spe-

cific details defining the EE-EOMCC and the EA- and IP-EOMCC theories are outlined in

Sections (3.1.2.1) and (3.1.2.2), respectively.

In general, an ansatz may be written expressing the exact excited-state, electron-attached,

or ionized wave function |Ψµ〉 corresponding to state µ of interest as a linear excitation

operator Rµ applied to the ground-state SRCC wave function, i.e.,

|Ψµ〉 = Rµ|Ψ0〉, (3.16)

where |Ψ0〉 is defined by Eq. (3.1). In the exact EOMCC theory, the cluster operator T

and the exciting, electron-attaching, or ionizing operator Rµ are sums of all relevant many-

body components needed to generate the system of interest. To obtain Rµ one must solve
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the eigenvalue problem resulting from the substitution of Eq. (3.16) into the Schrödinger

equation, H|Ψµ〉 = Eµ|Ψµ〉, to obtain

(H̄N,open Rµ,open)C |Φ〉 = ωµRµ|Φ〉, (3.17)

in the subspace spanned by all determinants corresponding to the many-body components

included in Rµ. Here, H̄N,open = (HNeT )C,open = e−T HNeT − (HNeT )C,closed is the

similarity-transformed Hamiltonian of the CC theory in the normal-ordered form relative

to the Fermi vacuum |Φ〉, where the subscripts “open” and “closed” refer to the open (i.e.,

having external lines) and closed (i.e., having no external lines) parts of a given operator ex-

pression, obtained by solving the corresponding ground-state CC equations for T as described

in the previous section, and ωµ = Eµ −E0 is the vertical excitation (or electron-attachment

or ionization) energy.

3.1.2.1 Excited States

In the particle conserving EE-EOMCC theory, excited-state energies and wave functions are

obtained for an N -electron system by the application of a linear excitation operator Rµ of

the form

R
(A)
µ = R

(A)
µ,0 + R

(A)
µ,open ≡ rµ,0 1 +

mR
∑

n=1

Rµ,n, (3.18)

where mR ≤ N and

Rµ,n =
∑

i1<···<in,a1<···<an

r
i1...in
µ,a1...an aa1 · · · aanain · · · ai1

, (3.19)
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onto the N -electron ground-state SRCC wave function |Ψ
(A)
0 〉. The EE-EOMCC method is

characterized by the linear excitation operator, R
(A)
µ , in Eq. (3.18) having exactly the same

number of creation and annihilation operators in each many-body component Rµ,n. Just

as in the cluster expansion of the ground-state wave function, in practice the many-body

expansion of R
(A)
µ in Eq. (3.18) is truncated at some excitation level mR < N (usually

the same level of excitation as in the cluster operator used in the preceding ground-state

CC calculation, i.e., mR = mT ). To determine the amplitudes r
i1...in
µ,a1...an with n > 1, we

solve the eigenvalue problem given by Eq. (3.18) by diagonalizing the similarity-transformed

Hamiltonian H̄(A), Eq. (3.6), in a space spanned by the excited determinants |Φ
a1...an
i1...in

〉,

with n = 1, ...,mR, corresponding to the many-body excitation operators included in R
(A)
µ .

In general, in order for Eq. (3.18) to hold and to obtain a size-intensive description [44,196]

of vertical excitation energies, mR should not exceed mT [34], but, as already mentioned,

one typically chooses mR = mT .

For example, in the EOMCCSD method (note that the EE-EOMCC methods are often

abbreviated as simply EOMCC), where Rµ is approximated as

R
(CCSD)
µ = Rµ,0 + Rµ,1 + Rµ,2, (3.20)

with

Rµ,1 =
∑

i,a

ri
µ,aa

aai (3.21)

and

Rµ,2 =
∑

i<j,a<b

r
ij
µ,aba

aabajai, (3.22)

we obtain the singly and doubly excited ri
µ,a and r

ij
µ,ab amplitudes and EOMCSD vertical
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excitation energies

ω
(CCSD)
µ = E

(CCSD)
µ − E

(CCSD)
0 (3.23)

by solving the system

〈Φa
i |(H̄

(CCSD)
N,open R

(CCSD)
µ,open )C |Φ〉 = ω

(CCSD)
µ ri

µ,a (3.24)

〈Φab
ij |(H̄

(CCSD)
N,open R

(CCSD)
µ,open )C |Φ〉 = ω

(CCSD)
µ r

ij
µ,ab. (3.25)

In other words, the EOMCCSD amplitudes and energies are determined by diagonalizing

the matrix representing the similarity-transformed Hamiltonian of CCSD, Eq. (3.9), in a

space of all singly and doubly excited determinants,

H̄CCSD =







H̄ SS H̄ SD

H̄ DS H̄ DD






. (3.26)

In analogy to the ground-state CCSD calculations, the most expensive CPU steps needed to

do this scale as n2
on

4
u or N 6.

While the EE-EOMCC methods can generate very accurate excited-state energetics and

properties, spin-contamination of the ground-state when open-shell systems are treated with

ROHF and UHF references can be sometimes problematic, introducing small errors into the

calculations and preventing the identification of multiplicities of excited states, which is a

useful guide when attempting to sort out states, particularly in situations involving near-

degeneracies. One way to address this issue is to employ particle-nonconserving EOMCC

approaches such as the EA- and IP-EOMCC methods, which build open-shell ground and

excited states out of a related closed-shell CC wave function generated with a RHF reference,

28



automatically assuring that the resulting ground- and excited-state wave functions are spin-

adapted. A brief description of the EA- and IP-EOMCC methods is given in the following

section.

3.1.2.2 Electron-Attached and Ionized States

In the particle-nonconserving EA- and IP-EOMCC approaches, ground- and excited-state

wave functions are generated by solving the eigenvalue problem given by

(H̄N,openR
(N±1)
µ )C |Φ〉 = ω

(N±1)
µ R

(N±1)
µ |Φ〉, (3.27)

where R
(N±1)
µ are particle-nonconserving operators, generating electronic states of (N ± 1)-

electron systems, given by

R
(N+1)
µ =

mR
∑

n=0

Rµ,(n+1)p-nh (3.28)

and

R
(N−1)
µ =

mR
∑

n=0

Rµ,(n+1)h-np, (3.29)

where

Rµ,(n+1)p-nh =
∑

i1<···<in,a<a1<···<an

r
i1...in

aa1...anaaaa1 . . . aanain . . . ai1
(3.30)

and

Rµ,(n+1)h-np =
∑

i1<···<in<i,a1<···<an

r
ii1...in
a1...anaa1 . . . aanain . . . ai1

ai, (3.31)

with mR = N in the exact case and mR < N in the approximate schemes. In the above

equations, |Φ〉 is an N -electron reference determinant (e.g., the RHF reference) and T , used to

define H̄N in Eq. (3.27) and |Ψ0〉 in Eq. (3.16), is the cluster operator of the SRCC theory, as
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applied to the N -electron reference system. If a closed-shell reference system is used to define

the wave functions |Ψµ〉 through Eq. (3.16), with Rµ being one of the R
(N±1)
µ operators,

the similarity transformed Hamiltonian defining the EA-EOMCC and IP-EOMCC methods

commutes with the S2 and Sz operators. The result is that these methods produce open-

shell eigenstates which are orthogonally spin-adapted, which means that spin-contamination

issues which plague the standard spin-orbital-based open-shell EOMCC implementations

that utilize ROHF or UHF references are avoided entirely.

In general, and in analogy to the EE-EOMCC case, when constructing approximate EA-

EOMCC and IP-EOMCC schemes, the connected form of the eigenvalue problem displayed

in Eq. (3.27) and the size intensivity of the resulting electron-attachment or ionization

energies

ω
(N±1)
µ = E

(N±1)
µ − E

(N)
0 (3.32)

are retained when mR ≤ mT [34]. The common approaches to designing the EA- and

IP-EOMCC approximations are built upon approximate N -electron CCSD reference wave

functions with R
(N±1)
µ truncated such that mR = mT − 1 or mR = mT . In the basic

EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p) methods, we use mR = 1 and mT = 2.

Thus, after solving the CCSD equations for an N -electron reference system, we diagonalize

the similarity transformed Hamiltonian H̄(CCSD) in the (N + 1)-electron subspace of the

|Φa〉 = aa|Φ〉 and |Φab
j〉 = aaabaj |Φ〉 determinants in the EA-EOMCCSD(2p-1h) case and

the (N − 1)-electron subspace of the |Φi〉 = ai|Φ〉 and |Φ b
ij 〉 = abajai|Φ〉 determinants in

the IP-EOMCCSD(2h-1p) case, obtaining the 1p amplitudes ra and the 2p-1h amplitudes

r
j

ab, along with the corresponding energies ω
(N+1)
µ , in the former case, or the 1h ampli-

tudes ri, the 2h-1p amplitudes r
ij
b, and the corresponding energies ω

(N−1)
µ in the latter
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case. While these methods provide an initial approximation, the EA-EOMCCSD(3p-2h)

and IP-EOMCCSD(3h-2p) approaches, in which mR = mT = 2, provide a much better

description by incorporating the 3p-2h and 3h-2p components in the electron-attaching and

ionizing operators, R
(N+1)
µ and R

(N−1)
µ , respectively. Unfortunately, the full inclusion of

the Rµ,3p-2h and Rµ,3h-2p terms in the EA- and IP-EOMCC calculations comes at a rather

high price, increasing the N 5-like non
4
u and n2

on
3
u operations defining the iterative diago-

nalization steps of EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p), respectively, to the

N 7-like n2
on

5
u and n3

on
4
u steps. In the EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p)

schemes, the similarity-transformed Hamiltonian H̄(CCSD), obtained in the CCSD calcula-

tions for the N -electron reference system, is diagonalized in the N + 1-electron subspace

spanned by the |Φa〉, |Φab
j〉, and |Φabc

jk〉 = aaabacakaj |Φ〉 determinants in the former case or

the N − 1-electron subspace spanned by the |Φi〉, |Φ
a

ij 〉, and |Φ ab
ijk 〉 = abacakajai|Φ〉 deter-

minants in the latter case. From these diagonalizations, the ra, r
j

ab, and 3p-2h amplitudes

r
jk

abc , along with the corresponding energies ωN+1
µ , or the ri, r

ij
b, and 3h-2p amplitudes r

ijk
bc,

along with the corresponding energies ωN−1
µ are produced, which define the results of the

EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) calculations, respectively. In many cases,

it appears that the 3p-2h and 3h-2p effects brought through the R
(N±1)
µ operators play a

much more significant role than the triply excited components of the cluster operator T . In

fact, it is usually not necessary to include the T3 clusters in T until the 4p-3h and 4h-3p effects

become important. In Sect. (3.1.4) the active-space variants of the EA-EOMCCSD(3p-2h)

and IP-EOMCCSD(3h-2p) methods are presented, which is one way to retain the accuracy

of these methods while avoiding their steep computer cost increase with no and nu described

above.
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3.1.3 The Method of Moments of Coupled-Cluster Equations

The conventional CC and EOMCC methods summarized in Sects. (3.1.1) and (3.1.2) are

useful, but one usually faces a challenge of having to correct the results of the low-level

CC/EOMCC calculations, such as CCSD or EOMCCSD, for the higher-order correlation

effects neglected by lower levels of CC/EOMCC theory without making the calculations

prohibitively expensive. One would also like to make sure that the corrections to the CCSD,

EOMCCSD, or other CC/EOMCC energies are robust in situations, such as bond breaking

or excited states dominated by two-electron transitions, where the traditional perturbative

corrections of the CCSD(T) type fail. The MMCC theory summarized below provides such

robust and computationally attractive corrections to the CCSD, EOMCCSD, and other

conventional CC/EOMCC energies.

The central focus of the MMCC theory is obtaining the non-iterative, state-specific,

energy corrections

δ
(A)
µ ≡ Eµ − E

(A)
µ , (3.33)

which recover the exact, full CI energies Eµ when added to the corresponding ground- and

excited-state energies, E
(A)
µ , obtained from the conventional CC/EOMCC approximation A.

The goal of any method based on MMCC theory is to estimate these corrections using the

underlying moment energy expansions, such that the resulting MMCC energies, defined as

E
(MMCC)
µ = E

(A)
µ + δ

(MMCC)
µ , (3.34)

are good approximations to the corresponding exact energies Eµ.

All MMCC corrections δ
(A)
µ are obtained via expansions of Eµ in terms of the general-
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ized moments of CC/EOMCC equations defining a given CC/EOMCC approximation. The

ground-state moments are simply projections of the connected cluster form of the Schrödinger

equation, Eq. (3.5), on the excited determinants, |Φ
a1...an
i1...in

〉 with n > mA disregarded in the

conventional CC calculations

M
i1...in
0,a1...an

(mA) = 〈Φ
a1...an
i1...in

|H̄(A)|Φ〉, (3.35)

where mA = mT is the maximum level of excitation included in the CC calculation being

corrected. The excited-state moments needed to correct the EOMCC energies resulting from

truncating T and Rµ at the mA-body components (so that mT = mR = mA) are projections

of the EOMCC equations on the excited determinants |Φ
a1...an
i1...in

〉,

M
i1...in
µ,a1...an(mA) = 〈Φ

a1...an
i1...in

|H̄
(A)
openR

(A)
µ,open|Φ〉. (3.36)

These moments are central to the ground- and excited-state MMCC theory and will be

shown to be crucial quantities for evaluating the desired CR-CC and CR-EOMCC energy

corrections in the following sections.

Several ways of expressing the δ
(A)
µ corrections in terms of moments M

i1...in
µ,a1...an(mA)

have been proposed to date [65,123–125,127–129,131,182,183]. The original and historically

oldest formula, obtained in [124] for the ground states and [182] for excited states has the
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following form:

δ
(A)
µ ≡ Eµ − E

(A)
µ

=
N

∑

n=mA+1

n
∑

k=mA+1

〈Ψµ|Cn−k(mA) Mµ,k(mA)|Φ〉/

〈Ψµ|R
(A)
µ eT (A)

|Φ〉. (3.37)

Here,

Cn−k(mA) = (eT (A)
)n−k (3.38)

are the (n − k)-body components of the exponential wave operator eT (A)
, defining the CC

method A, |Ψµ〉 is the full CI ground- (µ = 0) or excited- (µ > 0) state, and

Mµ,k(mA) =
∑

i1<···<ik,a1<···<ak

M
i1...ik
µ,a1...ak

(mA) aa1 · · · aanain · · · ai1
(n ≥ 1) (3.39)

where moments M
i1...ik
µ,a1...ak

(mA) are defined by Eqs. (3.35) and (3.36). Thus, Eq. (3.37)

states that one has to calculate quantities Cn−k(mA), Eq. (3.38), and moments M
i1...ik
µ,a1...ak

(mA),

with k > mA, to determine the noniterative energy correction δ
(A)
µ , Eq. (3.33). The

Cn−k(mA) terms are very easy to calculate. The zero-body term, C0(mA), equals 1; the

one-body term, C1(mA), equals T1; the two-body term, C2(mA), equals T2 + 1
2T 2

1 if mA ≥ 2;

the three-body term C3(mA) equals T1T2 + 1
6T 3

1 if mA = 2 and T3 + T1T2 + 1
6T 3

1 if mA ≥ 3,

etc. The computation of moments M
i1...in
µ,a1...an(mA) for the most interesting cases of correct-

ing the CCSD or EOMCCSD energies (mA = 2) is straightforward too, particularly if we

limit ourselves to the corrections due to triples (k = 3) or quadruples (k = 4).

As an example, if one is interested in recovering the exact ground-state energy E0 through
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the addition of the full correction δ
(CCSD)
0 to the CCSD energy E

(CCSD)
µ (where mA = 2),

one has to consider the generalized moments of the CCSD equations M
i1...ik
0,a1...ak

(2) with

k > 2. After a quick diagrammatic analysis, we can show that this seemingly long expansion

contains moments M
i1...ik
0,a1...ak

(2) with k ≤ 6 only, since the electronic Hamiltonian contains

only up to two-body interactions. Thus, all terms which make up the correction δ
(CCSD)
0

approaching the exact energy contain relatively few moments, namely,

M
i1...ik
0,a1...ak

(2) = 〈Φ
a1...ak
i1...ik

|H̄(CCSD)|Φ〉, k = 3 − 6. (3.40)

The projections of the CCSD equations on higher-than-hextuply excited configurations do

not have to be calculated, since for Hamiltonians containing up to two-body interactions

the generalized moments M
i1...ik
0,a1...ak

(2) with k > 6 vanish. Similar simplifications occur

in the case of correcting the excited-state EOMCCSD energies, where the only moments

M
i1...ik
0,a1...ak

(2) that matter are those with k = 3−8. Although this is a considerable reduction

of the computer effort, it is usually not computationally feasible to calculate up to six-body or

higher moments to obtain a given MMCC correction. The CR-CC and CR-EOMCC methods

discussed in Sects. (3.1.3.1)-(3.1.3.3) address this issue by focusing on the approximate

corrections due to triples and quadruples which use moments M
i1...ik
µ,a1...ak

(2) with k = 3 and

4 only and simplify Eq. (3.37) accordingly.

3.1.3.1 Completely Renormalized Coupled-Cluster and Equation-of-Motion Coupled-

Cluster Approaches

In general, the CR-CC and CR-EOMCC approaches are obtained by approximating |Ψµ〉

in Eq. (3.37) by a quasi-perturbative form that brings information about the desired cor-
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relation effects we want E
(A)
µ to be corrected for. In particular, the CR-CCSD(T) [124],

CR-CCSD(TQ) [124, 125] and CR-EOMCCSD(T) [115] methods, which are of interest in

this dissertation, are obtained when the wave functions |Ψµ〉 in Eq. (3.37) are approx-

imated by low-order MBPT-like expressions. In the CR-CCSD(T) method which corrects

the ground-state CCSD energy E
(CCSD)
0 for triply excited clusters, |Ψ0〉 in Eq. (3.37), where

mA = 2, is replaced by the following second-order-type, MBPT(2)[SDT]-like expression

|Ψ
CCSD(T)
0 〉 = (1 + T1 + T2 + T

[2]
3 + Z3)|Φ〉, (3.41)

where T1 and T2 are the singly and doubly excited clusters obtained in the CCSD calculations,

the

T
[2]
3 |Φ〉 = R

(3)
0 (VNT2)C |Φ〉 (3.42)

term is an approximation of the connected triples (T3) contribution, which is correct through

second order, and

Z3|Φ〉 = R
(3)
0 VNT1|Φ〉 (3.43)

is the disconnected triples correction, which distinguishes the CCSD(T) approach from its

CCSD[T] predecessor. Conventional MBPT notation is used here, in which R
(3)
0 designates

the three-body component of the MBPT reduced resolvent and VN is the two-body part

of HN . In the CR-CCSD(TQ) method (note that here and elsewhere the so-called CR-

CCSD(TQ),b variant is implied and that a discussion of the other variants, which can be

found, for example, in [65, 123], will be omitted for the sake of brevity), which corrects the

ground-state CCSD energy for the combined effect of triples and quadruples, |Ψ0〉 in Eq.

(3.37), where mA = 2, is replaced by the following second-order-type, MBPT(2)[SDTQ]-like
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expression

|Ψ
CCSD(TQ)
0 〉 = |Ψ

CCSD(T)
0 〉 + 1

2T 2
2 |Φ〉, (3.44)

where |Ψ
CCSD(T)
0 〉 is given by Eq. (3.41).

Once these approximations have been established, the following compact formulas for the

CR-CCSD(T) and CR-CCSD(TQ) energies can be written:

E
(CR-CCSD(T))
0 = E

(CCSD)
0 + NCR(T)/D(T) (3.45)

and

E
(CR-CCSD(TQ))
0 = E

(CCSD)
0 + NCR(TQ)/D(TQ), (3.46)

where the NCR(T) and NCR(TQ) numerators are defined as

NCR(T) = 〈Φ|(T
[2]
3 )†M0,3(2)|Φ〉 + 〈Φ|(Z3)†M0,3(2)|Φ〉 (3.47)

and

NCR(TQ) = NCR(T) + 1
2〈Φ|(T †

2 )2[T1M0,3(2) + M0,4(2)]|Φ〉, (3.48)

and the D(T) and D(TQ) denominators, representing the overlaps between the |Ψ
CCSD(T)
0 〉

and |Ψ
CCSD(TQ)
0 〉 wave functions, Eqs. (3.41), and (3.44), respectively, with the CCSD
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ground state, as in Eq. (3.37), are calculated as

D(T) ≡ 〈Ψ
CCSD(T)
0 |eT1+T2|Φ〉

= 1 + 〈Φ|T †
1T1|Φ〉 + 〈Φ|T †

2 (T2 + 1
2T 2

1 )|Φ〉

+〈Φ|(T
[2]
3 )†(T1T2 + 1

6T 3
1 )|Φ〉

+〈Φ|Z†
3(T1T2 + 1

6T 3
1 )|Φ〉 (3.49)

and

D(TQ) ≡ 〈Ψ
CCSD(TQ)
0 |eT1+T2|Φ〉

= D(T) + 1
2〈Φ|(T †

2 )2(1
2T 2

2 + 1
2T 2

1 T2 + 1
24T 4

1 )|Φ〉. (3.50)

The quantities M3(2) and M4(2) in Eqs. (3.47) and (3.48) are expressed in terms of the

triply and quadruply excited moments of the CCSD equations, easily calculated as in Eqs.

(3.39) and (3.40), with k set at 3 and 4, respectively. Specifically,

M0,3(2)|Φ〉 =
∑

i<k<j,a<b<c

M
ijk
0,abc(2) |Φabc

ijk〉, (3.51)

where

M
ijk
0,abc(2) = 〈Φabc

ijk |[HN (T2 + T1T2 + 1
2T 2

2 + 1
2T 2

1 T2

+1
2T1T

2
2 + 1

6T 3
1 T2)]C |Φ〉, (3.52)
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and

M0,4(2)|Φ〉 =
∑

i<k<j<l,a<b<c<d

M
ijkl
0,abcd(2) |Φabcd

ijkl 〉, (3.53)

where

M
ijkl
0,abcd(2) = 〈Φabcd

ijkl |[HN (1
2T 2

2 + 1
2T1T

2
2 + 1

6T 3
2

+1
4T 2

1 T 2
2 )]C |Φ〉. (3.54)

It is interesting to note that if we replace moments M
ijk
0,abc(2) and M

ijkl
0,abcd(2), entering

the above equations through the M3(2)|Φ〉 and M4(2)|Φ〉 quantities as shown above, by

their lowest-order estimates and the overlap denominators D(T ) and D(TQ) by 1, the CR-

CCSD(T) and CR-CCSD(TQ) approaches reduce to the standard CCSD(T) and CCSD(TQ)

methods. For example, if we replace M
ijk
0,abc(2) by the lowest-order estimate

〈Φabc
ijk |(VNT2)C |Φ〉 and D(T ) by 1, the CR-CCSD(T) energy, Eq. (3.45), simplifies to

E
(CCSD(T))
0 = E

(CCSD)
0 + E

[4]
T + E

[5]
ST, (3.55)

where

E
[4]
T = 〈Φ|(T

[2]
3 )†(VNT2)C |Φ〉 (3.56)

and

E
[5]
ST = 〈Φ|(Z3)†(VNT2)C |Φ〉, (3.57)

which is the well-known formula for the CCSD(T) energy. In other words, the CCSD(T) and

CCSD(TQ) methods can be derived through the MMCC theory and are shown to be natural

simplifications of the CR-CCSD(T) and CR-CCSD(TQ) methods, respectively. It is even
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more important to note that the assumption that D(T) and D(TQ) can be approximated

by 1 is correct only for molecules near the equilibrium geometries. As bonds are streched

or broken, D(T) and D(TQ) increase, damping the unphysical values of the conventional

(T) and (TQ) correction. This is the key idea of “renormalization” of non-iterative energy

corrections behind the CR-CC and CR-EOMCC approaches, which assume excessive values

in conventional perturbative approaches of the CCSD(T) type when bonds are broken.

The CR-EOMCC methodologies for excited-states are obtained in a similar manner to

their ground-state analogs, such as CR-CCSD(T) and CR-CCSD(TQ). For example, the

CR-EOMCCSD(T) method is obtained by replacing the wave function |Ψµ〉 in Eq. (3.37)

with perturbative expressions resulting from an analysis of the EOMCCSDT equations, such

as

|Ψµ〉 = {Rµ,0 + (Rµ,1 + Rµ,0T1) + [Rµ,2 + Rµ,1T1

+Rµ,0(T2 + 1
2T 2

1 )] + [R̃µ,3 + Rµ,2T1

+Rµ,1(T2 + 1
2T 2

1 )

+Rµ,0(T1T2 + 1
6T 3

1 )]}|Φ〉, (3.58)

where T1 and T2 are the singly and doubly excited clusters obtained in the CCSD calculations

and Rµ,0, Rµ,1, and Rµ,2 are the reference, singly excited, and doubly excited components of

the EOMCCSD excitation operator R
(CCSD)
µ . The approximate triply excited components

of the EOMCC excitation operator, which enter Eq. (3.58) and which can be determined
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through perturbative analysis of the EOMCCSDT equations, are defined as follows:

R̃µ,3 =
∑

i<j<k,a<b<c

r̃
ijk
µ,abca

aabacakajai, (3.59)

where

r̃
ijk
µ,abc = M

ijk
µ,abc(2)/D

ijk
µ,abc, (3.60)

with moments M
ijk
µ,abc(2) given by

M
abc
µ,ijk(2) = 〈Φabc

ijk |(H̄
(CCSD)
2 Rµ,2)C |Φ〉 + 〈Φabc

ijk |[H̄
(CCSD)
3 (Rµ,1 + Rµ,2)]C |Φ〉

+〈Φabc
ijk |(H̄

(CCSD)
4 Rµ,1)C |Φ〉 + r

(CCSD)
µ,0 〈Φabc

ijk |H̄
(CCSD)
3 |Φ〉, (3.61)

and the perturbative denominator D
ijk
µ,abc given by

D
ijk
µ,abc = E

(CCSD)
µ − 〈Φabc

ijk |H̄
(CCSD)|Φabc

ijk〉

= ω
(CCSD)
µ − 〈Φabc

ijk |H̄
(CCSD)
open |Φabc

ijk〉

= ω
(CCSD)
µ − 〈Φabc

ijk |H̄
(CCSD)
1 |Φabc

ijk〉

−〈Φabc
ijk |H̄

(CCSD)
2 |Φabc

ijk〉

−〈Φabc
ijk |H̄

(CCSD)
3 |Φabc

ijk〉. (3.62)

Here, ω
(EOMCCSD)
µ represents the EOMCCSD vertical excitation energy defined by Eq.

(3.23),

ω
(EOMCCSD)
µ = E

(EOMCCSD)
µ − E

(CCSD)
0 , (3.63)

H̄
(CCSD)
open is the open part of H̄(CCSD) (all diagrams of H̄(CCSD) that have external lines),
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and H̄
(CCSD)
k is a k-body component of H̄(CCSD). The variant of CR-EOMCCSD(T) de-

scribed here is variant CR-EOMCCSD(T),ID. While other variants exist [115], we do not

discuss them here for the sake of brevity. Relationships exist between the CR-EOMCC

methods and their conventional perturbative EOMCC counterparts, such as EOMCCSD(T)

or EOMCCSD(T̃), and further details can be found elsewhere [115]. It should be empha-

sized that the CR-CCSD(T), CR-CCSD(TQ), and CR-EOMCCSD(T) approaches are not

only related to the conventional CCSD(T), CCSD(TQ), and EOMCCSD(T)-type meth-

ods in a straightforward manner, as described above, but they also have similar computer

costs. For example, in analogy to CCSD(T), the CR-CCSD(T) and CR-EOMCCSD(T) ap-

proaches have CPU steps that scale as n2
on

4
u (N 6) in the CCSD/EOMCCSD part and n3

on
4
u

(N 7) in the triples correction parts. Similarly, in analogy to the factorized formulation of

CCSD(TQ) [108], the costs of CR-CCSD(TQ) scale as n2
on

4
u (N 6) in the CCSD part and

n3
on

4
u + n2

on
5
u (N 7) in the (TQ) parts.

In the next section, an alternative, biorthogonal formulation of the MMCC equations is

presented and the left-eigenstate CR-CC and CR-EOMCC approaches, specifically the CR-

CC(2,3) and CR-EOMCC(2,3) methods that result from it, are discussed. These methods

have been shown to be even more accurate than the CR-CCSD(T), CR-EOMCCSD(T),

and other CR-CC/CR-EOMCC approaches derived out of Eq. (3.37), so that much of our

benchmarking effort of the CR-CC and CR-EOMCC methods presented in this thesis focuses

on the CR-CC(2,3) and CR-EOMCC(2,3) theories discussed in the next section.
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3.1.3.2 Biorthogonal Formulation of the MMCC Equations and the CR-CC(2,3)

and CR-EOMCC(2,3) Methods

An alternative formulation of CR-CC methods that satisfies the property of size-extensivity

in the ground state, which the CR-CCSD(T) and CR-CCSD(TQ) approaches violate some-

what, was developed in Refs. [127–132]. The resulting approaches, such as CR-CC(2,3) and

CR-EOMCC(2,3) originate from the so-called biorthogonal MMCC formalism presented in

Refs. [127, 128]. The biorthogonal formulation of the MMCC formalism redefines the cor-

rection δ
(A)
µ by introducing the following ansatz for the exact bra state, 〈Ψµ|, entering Eq.

(3.37):

〈Ψµ| = 〈Φ|Lµ e−T (A)
, (3.64)

where Lµ is a deexcitation operator defined as

Lµ =
N

∑

n=0

Lµ,n, (3.65)

with

Lµ,n =
∑

i1<···<in,a1<···<an

ℓ
a1...an
µ,i1...in

ai1 · · · ainaan · · · aa1 . (3.66)

By substituting Eq. (3.64) into Eq. (3.37) [131], or by considering the appropriate asym-

metric energy expressions [127, 128], one can rewrite the δ
(A)
µ correction in the following
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way:

δ
(A)
µ =

Nµ,A
∑

n=mA+1

〈Φ|Lµ,n Mµ,n(mA)|Φ〉

=

Nµ,A
∑

n=mA+1

∑

i1<···<in,a1<···<an

ℓ
a1...an
µ,i1...in

M
i1...in
µ,a1...an(mA), (3.67)

where Mµ,n(mA) has already been defined by Eqs. (3.39). Thus, for example, when one

wishes to obtain the CR-CC corrections to CCSD/EOMCCSD energies due to triple excita-

tions, then A = CCSD and mA = 2, as before, and, the ground-state (µ = 0) CR-CC(2,3) or

excited-state (µ > 0) CR-EOMCC(2,3) energies, Eµ(2, 3), can be calculated in the following

manner:

Eµ(2, 3) = E
(CCSD)
µ + δµ(2, 3), (3.68)

where

δµ(2, 3) = 〈Φ|Lµ,3 Mµ,3(2)|Φ〉 =
∑

i<j<k,a<b<c

ℓabc
µ,ijk M

ijk
µ,abc(2), (3.69)

with M
ijk
µ,abc(2) representing the triply excited moments of the CCSD (µ = 0) or EOMCCSD

(µ > 0) equations defined by Eqs. (3.52) and (3.61), respectively.

Since the triply excited moments of the CCSD/EOMCCSD equations are already well-

defined, the determination of the three-body amplitudes ℓabc
µ,ijk entering Eq. (3.69) becomes

the primary focus. Since the exact values of these amplitudes may not be obtained with-

out solving the full CI problem for the exact bra state 〈Ψµ|, a method for the approximate

determination of the ℓabc
µ,ijk amplitudes has to be proposed. Following Refs. [127, 128], the

derivation of the ℓabc
µ,ijk amplitudes used in practical CR-CC(2,3) and CR-EOMCC(2,3) cal-

culations begins by defining the approximate form of the deexcitation operator Lµ which
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parameterizes the full CI state 〈Ψµ| as

Lµ ≈ L
(CCSD)
µ + Lµ,3, (3.70)

where Lµ,3 is the three-body component of Lµ of interest, which is expressed in the usual

way as

Lµ,3 =
∑

i<j<k,a<b<c

ℓabc
µ,ijk aiajakacabaa, (3.71)

with ℓabc
µ,ijk representing the desired triply deexcited amplitudes to be determined, and

L
(CCSD)
µ is the deexcitation operator that defines the left or bra CCSD/EOMCCSD states

via the equation [33,34]

〈Ψµ| = 〈Φ|L
(CCSD)
µ e−T1−T2 , (3.72)

where

L
(CCSD)
µ = δµ,01 + Lµ,1 + Lµ,2, (3.73)

is obtained by solving the so-called left CCSD/EOMCCSD equations [33, 34] for the cor-

responding ℓaµ,i and ℓab
µ,ij amplitudes (the µ = 0 variant of the system of the left CCSD/

EOMCCSD equations is equivalent to the system of the so-called “lambda” equations of the

analytic gradient CCSD theory [197]). The explicit, computationally tractable form of the

approximate ℓabc
µ,ijk amplitudes, which enter the CR-CC(2,3) and CR-EOMCC(2,3) correc-

tions, are then obtained by substituting the approximate expression for Lµ given by Eq.

(3.70) into the exact form of the simlarity-transformed bra eigenvalue problem for Lµ,

〈Φ|Lµ H̄(A) = Eµ 〈Φ|Lµ, (3.74)

45



where A is set at CCSD (and mA at 2), and the resulting equation is right projected onto

the triply excited determinants |Φabc
ijk〉 to obtain

〈Φ|L
(CCSD)
µ H̄(CCSD)|Φabc

ijk〉 +
∑

l<m<n,d<e<f

〈Φdef
lmn|H̄

(CCSD)|Φabc
ijk〉 ℓ

def
µ,lmn

= Eµ ℓabc
µ,ijk . (3.75)

The exact energy Eµ in Eq. (3.75) is then replaced by the corresponding CCSD/ EOMCCSD

energy E
(CCSD)
µ , and the triples-triples block of the matrix representing H̄(CCSD) in the

second term on the left-hand side of Eq. (3.75) is replaced by its diagonal, as in the Epstein-

Nesbet partitioning [198,199]. The result of all of these operations is the following formula for

the approximate ℓabc
µ,ijk amplitudes in terms of the many-body components of the similarity-

transformed Hamiltonian of CCSD, one- and two-body components of L
(CCSD)
µ , and in the

µ > 0 case, the EOMCCSD excitation energies ω
(CCSD)
µ :

ℓabc
µ,ijk = Nabc

µ,ijk/D
ijk
µ,abc, (3.76)

where the numerator Nabc
µ,ijk and denominator D

ijk
µ,abc are defined as follows:

Nabc
µ,ijk = 〈Φ|L

(CCSD)
µ H̄(CCSD)|Φabc

ijk〉

= 〈Φ|[(Lµ,1H̄
(CCSD)
2 )DC + (Lµ,2H̄

(CCSD)
1 )DC

+(Lµ,2H̄
(CCSD)
2 )C ]|Φabc

ijk〉, (3.77)
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and

D
ijk
µ,abc = E

(CCSD)
µ − 〈Φabc

ijk |H̄
(CCSD)|Φabc

ijk〉

= ω
(CCSD)
µ −

3
∑

n=1

〈Φabc
ijk |H̄

(CCSD)
n |Φabc

ijk〉. (3.78)

Note that the denominator D
ijk
µ,abc used here is the same as that of the CR-EOM-CCSD(T)

approach (see Eq. 3.62). The CR-CC(2,3) (µ = 0) and CR-EOMCC(2,3) (µ > 0) approaches

are obtained by substituting Eqs. (3.52) and (3.61) for M
ijk
µ,abc(2) and Eq. (3.76) for ℓabc

µ,ijk,

where Nabc
µ,ijk and D

ijk
µ,abc are given by Eqs. (3.77) and (3.78), respectively, into the triples

correction formula, Eq. (3.69), which is subsequently added to the CCSD/EOMCCSD energy

E
(CCSD)
µ to obtain the total energy Eµ(2, 3), as in Eq. (3.68).

In both the CR-CC(2,3) and CR-EOMCC(2,3) theories, the exact treatment of the

Epstein-Nesbet-like denominator D
ijk
µ,abc, as in Eq. (3.78), where no terms in D

ijk
µ,abc are

neglected, characterizes the most complete variant of the CR-CC(2,3) and CR-EOMCC(2,3)

approaches designated as CR-CC(2,3),D or CR-EOMCC(2,3),D, respectively. By neglect-

ing selected terms in Eq. (3.78) for D
ijk
µ,abc, we obtain approximate CR-CC(2,3) and CR-

EOMCC(2,3) schemes. Let us focus on CR-EOMCC(2,3) for this discussion, which contains

CR-CC(2,3) as a special case corresponding to µ = 0. Variant C of the CR-EOMCC(2,3) the-

ory, designated as the CR-EOMCC(2,3),C approach, is obtained by ignoring the three-body

component of H̄(CCSD) in Eq. (3.78), i.e., the 〈Φabc
ijk |H̄

(CCSD)
3 |Φabc

ijk〉 term, while keeping the

contributions to D
ijk
µ,abc from the one- and two-body components of H̄(CCSD) intact. The

CR-EOMCC(2,3),B approach is obtained by ignoring the two- and three-body components

of H̄(CCSD) in Eq. (3.78), leaving only the one-body contribution 〈Φabc
ijk |H̄

(CCSD)
1 |Φabc

ijk〉 in
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D
ijk
µ,abc. Finally, variant A of the CR-EOMCC(2,3) approach is obtained by replacing the

Epstein-Nesbet-like denominator D
ijk
µ,abc, Eq. (3.78), by the Møller-Plesset-like denominator

for triple excitations, ω
(CCSD)
µ − (ǫa + ǫb + ǫc− ǫi− ǫj − ǫk), where ǫp’s are the single-particle

energies associated with spin-orbitals p (diagonal elements of the Fock matrix). An anal-

ogous discussion may be made for the ground-state case resulting in the A, B, C, and D

variants of CR-CC(2,3).

In analogy to the CR-CCSD(T) approach discussed in the previous subsection, one can

extend the CR-CC(2,3) method to higher-than-triple excitations as in, for example, the

CR-CC(2,4) scheme [127, 128, 166]. The CR-CC(2,4) approach, when implemented fully,

combines the N 6-type steps of CCSD with the N 7 (n3
on

4
u) steps of CR-CC(2,3) needed to

determine the triples correction, and the N 9 (n4
on

5
u) steps needed to calculate the analogous

correction due to quadruples. In order to address this CPU-time increase, Piecuch et al.

proposed the so-called CR-CC(2,3)+Q method, also tested in this thesis, where one calculates

the ground-state energy as follows [186]

ECR-CC(2,3)+Q = ECR-CC(2,3) + ECR-CCSD(TQ) − ECR-CCSD(T), (3.79)

i.e., one adds the quadruples correction extracted from the CR-CCSD(TQ) calculations to

the CR-CC(2,3) energy. This has an advantage over CR-CC(2,4) in the fact that the CPU-

time costs of the CR-CCSD(TQ) calculations in the quadruples correction part scale as N 7

(n2
on

5
u) with the system size N , as opposed to the N 9 steps of CR-CC(2,4). As a result,

the CR-CC(2,3)+Q approach is almost as affordable as the CR-CC(2,3) method itself, while

bringing information about connected quadruply excited clusters that become important in

multiple bond breaking situations [186,187].
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The CR-CC(2,3) approach is capable of breaking bonds and, unlike its CR-CCSD(T)

predecessor, is size-extensive. Unfortunately, the δµ(2, 3) corrections to the EOMCCSD en-

ergies, defining CR-EOMCCSD(2,3), violate the property of size-intensivity of the EOMCC

excitation energies [44, 115, 196]. Although this violation is often unimportant, it is useful

to consider the possibility of restoring size intensivity in CR-EOMCC(2,3). This aspect is

discussed next.

3.1.3.3 A Size-Intensive Variant of CR-EOMCC(2,3): The δ-CR- EOMCC(2,3)

Method

As shown in Refs. [132, 200], although the ground-state variants of CR-CC(2,3) are size-

extensive, their excited-state CR-EOMCC(2,3) analogs do not satisfy the property of size-

intensivity [44,126,196], i.e., the vertical excitation energy of a non-interacting system A+B,

in which fragment A is excited, resulting from the CR-EOMCC(2,3) calculations, is not the

same as that obtained for the isolated system A. The lack of size intensivity of the CR-

EOMCC(2,3) excitation energies can be traced back to the presence of the size-extensive

contribution [200,201]

βµ =
∑

i<j<k,a<b<c

(rµ,0 ℓabc
µ,ijk − ℓabc

0,ijk) M
ijk
0,abc(2) (3.80)

in the CR-EOMCC(2,3) vertical excitation energy

ω
(CR-EOMCC(2,3))
µ = E

(CR-EOMCC(2,3))
µ − E

(CR-CC(2,3))
0 . (3.81)
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Using the above equations for the CR-EOMCC(2,3) energies, particularly Eq. (3.80), we

can decompose the CR-EOMCC(2,3) excitation energy as follows [200,201]:

ω
(CR-EOMCC(2,3))
µ = ω

(CCSD)
µ + αµ + βµ. (3.82)

Here, ω
(CCSD)
µ is the vertical excitation energy of EOMCCSD, Eq. (3.23),

αµ =
∑

i<j<k,a<b<c

ℓabc
µ,ijk M̃

ijk
µ,abc(2), (3.83)

where M̃
ijk
µ,abc(2) = 〈Φabc

ijk |H̄
(CCSD)(Rµ,1 + Rµ,2)|Φ〉 is the contribution to the triply excited

moment M
ijk
µ,abc(2) of EOMCCSD due to the one- and two-body components of the EOM-

CCSD excitation operator R
(CCSD)
µ , Eq. (3.20), and βµ is the quantity defined by Eq. (3.80).

Since the EOMCCSD approach is rigorously size intensive and, as shown in Refs. [132,200],

the αµ term is size intensive as well, the [ω
(CCSD)
µ + αµ(2, 3)] part of the CR-EOMCC(2,3)

excitation energy ω
(CR-EOMCC(2,3))
µ is a size-intensive quantity. Unfortunately, the βµ term

defined by Eq. (3.80), being a size-extensive contribution that does not cancel out, grows

with the size of the system [132, 200], destroying the size intensivity of ω
(CR-EOMCC(2,3))
µ .

In order to implement the rigorously size-intensive variant of CR-EOMCC(2,3), designated

as δ-CR-EOMCC(2, 3) [201], the problematic βµ term in Eq. (3.82) is simply neglected such

that the excitation energy is redefined as follows:

ω
(δ-CR-EOMCC(2,3))
µ = ω

(CCSD)
µ + αµ, (3.84)
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with αµ given by Eq. (3.83). The resulting δ-CR-EOMCC(2, 3) approach [201] provides a

size-intensive description of the excitation energies and, by defining the total energy of a

given electronic state µ, i.e., Eµ, as a sum of the size-extensive ground-state CR-CC(2,3)

energy and size-intensive excitation energy ω
(δ-CR-EOMCC(2,3))
µ , Eq. (3.84), so that

Eµ = E
(CR-CC(2,3))
0 + ω

(δ-CR-EOMCC(2,3))
µ

= E
(CCSD)
µ +

∑

i<j<k,a<b<c

ℓabc
0,ijk M

ijk
0,abc(2)

+
∑

i<j<k,a<b<c

ℓabc
µ,ijk M̃

ijk
µ,abc(2). (3.85)

While the addition of noniterative corrections is one way to correct for higher-order ex-

citations not included in lower-order CC/EOMCC approximations, in the next section yet

another inexpensive approach to account for higher-order effects in CC/EOMCC calculations

is considered.

3.1.4 The Active-Space Coupled-Cluster and Equation-of-Motion

Coupled-Cluster Approaches

In Sect. (3.1.3) methods for obtaining a partial account of the T3 and T4 clusters, and

their excited-state analogs, all based on noniterative MMCC corrections were considered.

Another practical way to account for higher-than-doubly excited clusters in the SRCC con-

siderations is by exploiting the ideas originally presented in Refs. [54, 133–136, 144], where

the CCSDt and CCSDtq active-space CC equations were explored (see, also, Refs. [137–140]

and Ref. [101] for a review). The basic language of the active-space CC and EOMCC meth-

ods follows from MRCC theory, where one subpartitions the one-electron basis of occupied
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and unoccupied spin-orbitals used in the conventional SRCC-style considerations into (i)

core or inactive occupied spin-orbitals, designated as i,j,..., (ii) active occupied spin-orbitals,

designated as I,J,..., (iii) active unoccupied spin-orbitals, designated as A,B,..., and (iv)

virtual or inactive unoccupied spin-orbitals, designated as a,b,.... The active-space methods

CCSDt and CCSDtq, for example, then restrict the higher-order cluster components, T3 or

T3 and T4, respectively, which must be calculated, to a small subset of all triples and quadru-

ples defined via active orbitals. This restriction greatly reduces the computer costs, when

compared to parent CCSDT and CCSDTQ approaches, as discussed in the Introduction.

The CPU-time determining steps of CCSDt and CCSDtq are NoNun2
on

4
u and N2

o N2
un2

on
4
u,

respectively, where No and Nu are the numbers of active occupied and active unoccupied

orbitals, i.e., the costs of CCSDt and CCSDtq calculations scale as relatively small prefactors

times the costs of the corresponding CCSD calculations.

As an example of how the equations for the active-space methods are obtained, let us

take the CCSDtq method as an example. The conventional CCSDTQ equations, which must

be solved for the tia, t
ij
ab, t

ijk
abc, and t

ijkl
abcd amplitudes by projecting the connected cluster form

of the Schrödinger equation, Eq. (3.5), in which T (A) = T1 + T2 + T3 + T4, on the singly,

doubly, triply, and quadruply excited determinants, can be written as follows:

〈Φa
i |CCSD + (HNT3)C |Φ〉 = 0, (3.86)

〈Φab
ij |CCSD + [HN (T3 + T1T3 + T4)]C |Φ〉 = 0, (3.87)

〈Φabc
ijk |CCSD + [HN (T3 + T1T3 + T4 + T1T4 + T2T3 + 1

2T 2
1 T3)]C |Φ〉 = 0, (3.88)
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〈Φabcd
ijkl | CCSD + [HN (T3 + T1T3 + T4 + T1T4 + T2T3 + 1

2T 2
1 T3

+T2T4 + 1
2T 2

3 + 1
2T 2

1 T4 + T1T2T3 + +1
6T 3

1 T3)]C |Φ〉 = 0 , (3.89)

where CCSD designates all terms that contain T1 and T2 clusters only and terms that do

not contain cluster operators at all. Once the system of equations, Eqs. (3.86) – (3.89) is

solved, the energy is obtained using Eq. (3.14). The CCSDT method could be obtained

from the CCSDTQ approach described here by simply setting T4 = 0 and solving the system

of equations formed by Eqs. (3.86) – (3.88) only.

In order to introduce the active-space CCSDtq formalism, the T3 and T4 clusters must

be restricted to the internal and semi-internal excitations of the following types:

t3 =
∑

I>j>k,a>b>C

t
Ijk
abC aaabaCakajaI, (3.90)

t4 =
∑

I>J>k>l,a>b>C>D

tIJkl
abCD

aaabaCaDalakaJaI, (3.91)

where I and J are summed over only active occupied orbitals and C and D are summed

over only active unoccupied orbitals. The CCSDtq system of equations for the relevant tia,

t
ij
ab, t

Ijk
abC, and tIJkl

abCD
amplitudes has the form of CCSDTQ equations in which T3 and T4 are

replaced by t3 and t4, respectively. We obtain

〈Φa
i |CCSD + (HN t3)C |Φ〉 = 0, (3.92)

〈Φab
ij |CCSD + [HN (t3 + T1t3 + t4)]C |Φ〉 = 0, (3.93)

〈ΦabC
Ijk |CCSD + [HN (t3 + T1t3 + t4 + T1t4 + T2t3 + 1

2T 2
1 t3)]C |Φ〉 = 0, (3.94)
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〈ΦabCD
IJkl | CCSD + [HN (t3 + T1t3 + t4 + T1t4 + T2t3 + 1

2T 2
1 t3

+T2t4 + 1
2t3

2 + 1
2T 2

1 t4 + T1T2t3 + 1
6T 3

1 t3)]C |Φ〉 = 0 , (3.95)

where t3 and t4 are defined by Eqs. (3.90) and (3.91), respectively. The CCSDt method

could be obtained from the CCSDtq equations described here by setting t4 = 0 and solving

the system of equations given by Eqs. (3.92) – (3.94) only.

The active-space methods of the CCSDt and CCSDtq types were shown to be effec-

tive for excited-state theories as well, for example, in Refs. [55–57], where the EOMCCSDt

approach, an active-space variant of EOMCCSDT was reported for the first time. While

it is rather straightforward to generalize the active-space methods to particle conserving

EOMCC theories, such as EOMCCSDT and EOMCCSDTQ, in this dissertation the focus

is on the active-space variants of particle non-conserving EOMCC theories, in particular,

the EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) methods. The full inclusion of the

Rµ,3p-2h and Rµ,3h-2p components of the R
(N+1)
µ and R

(N−1)
µ operators in the EA- and IP-

EOMCC calculations needed to obtain an accurate description of electronic excitations in

radicals comes at a high price, increasing the N 5-like non
4
u and n2

on
3
u operations defining the

iterative diagonalization steps of the base EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p)

schemes to the N 7-like n2
on

5
u and n3

on
4
u steps, respectively. One way to retain the accuracy of

the higher-order EA- and IP-EOMCC schemes with the 3p-2h and 3h-2p excitations, while

avoiding this steep computer cost increase, is to use the active-space variants of the EA/IP-

EOMCC methods with higher-than 2p-1h/2h-1p excitations described in Refs. [147–149].

In analogy to the ground-state active-space CC approaches described above, in the active-

space EA- and IP-EOMCC methods one divides the available orbitals of the N -electron
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reference system into core, active occupied, active unoccupied, and virtual categories, and

uses active orbitals to define the electron attaching and ionizing operators R
(N+1)
µ and

R
(N−1)
µ , respectively. In particular, the active-space EA-EOMCCSD(3p-2h){Nu} approach

using Nu active unoccupied orbitals is obtained by replacing the 3p-2h component Rµ,3p-2h

of the electron attaching operator R
(N+1)
µ , Eq. (3.28), by

rµ,3p-2h =
∑

j>k,A<b<c

r
jk

Abc aAabacakaj . (3.96)

The relatively small set of the unknown amplitudes r
jk

Abc defining rµ,3p-2h, Eq. (3.96), in

which at least one of the three unoccupied spin-orbital indices is active, and the remain-

ing 1p and 2p-1h amplitudes ra and r
j

ab that enter the (N + 1)-electron wave functions

of the active-space EA-EOMCCSD(3p-2h){Nu} approach are obtained by diagonalizing the

similarity-transformed Hamiltonian of CCSD, Eq. (3.9), obtained in the ground-state CCSD

calculations for the N -electron reference system, in the subspace of the (N + 1)-electron

Hilbert space spanned by the |Φa〉, |Φab
j〉, and |ΦAbc

jk〉 determinants. Similarly, the active-

space IP-EOMCCSD(3h-2p){No} approach using No active occupied orbitals is obtained by

replacing the 3h-2p component Rµ,3h-2p of the ionizing operator R
(N−1)
µ , Eq. (3.29), by

rµ,3h-2p =
∑

I>j>k,b<c

r
Ijk
bc abacakajaI, (3.97)

where the relatively small set of the unknown amplitudes r
Ijk
bc defining rµ,3h-2p, Eq. (3.97),

in which at least one of the three occupied spin-orbital indices is active, and the remaining 1h

and 2h-1p amplitudes ri and r
ij
b that define the (N−1)-electron wave functions of the active-

space IP-EOMCCSD(3h-2p){No} approach are obtained by diagonalizing the similarity-
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transformed Hamiltonian obtained in the N -electron CCSD calculations, Eq. (3.9), in the

subspace of the (N − 1)-electron Hilbert space spanned by the |Φi〉, |Φ
b

ij 〉, and |Φ bc
Ijk〉 de-

terminants. In Sect. (3.2.5) the full and active-space variants of the EA-EOMCCSD(3p-2h)

and IP-EOMCCSD(3h-2p) methods are used to optimize the geometries of the ground and

low-lying excited states of four open-shell molecules, CNC, C2N, NCO and N3, and deter-

mine the corresponding adiabatic excitation energies. The results provided in that section

will demonstrate typical accuracies of the active-space EA- and IP-EOMCC methods as

compared with their parent approaches.

3.2 Applications

In this section, typical accuracies of the methods described in Sect. (3.1) are demonstrated

using various chemically relevant benchmarks and applications. For all of the studied sys-

tems, the relevant benchmark data are provided for comparison, originating either from

experimentally measured quantities or from quantum-chemical calculations performed at

or near the full CI level. In Sect. (3.2.1), the CR-CC(2,3) method will be used to cal-

culate barrier heights for a large variety of simple chemical reactions, for which the acti-

vation barriers are well established and which are characterized by largely SR transition

states, to see if it can match the performance of CCSD(T) in cases where CCSD(T) is ac-

curate. A more MR case is presented in Sect. (3.2.2) and then an extremely biradical case

is presented in Sect. (3.2.3) to demonstrate the relative performance of the conventional

CCSD(T) and CCSD(TQ) methods, as compared with the performance of the CR-CC(2,3)

and CR-CC(2,3)+Q theories including corrections for the connected triply and quadruply

excited clusters, which are specifically designed to handle such situations. In Sects. (3.2.4)
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and (3.2.5), excited-state systems are considered in order to demonstrate accuracies of the

CR-EOMCC(2,3) method for calculating vertical excitations and the δ-CR-EOMCC(2,3)

approach for calculating adiabatic excitation energies. Finally, in Sect. (3.2.6) the advan-

tages and accuracies of various levels of EA- and IP-EOMCC methods are discussed in more

challenging cases of many-electron excitations in open-shell systems. Although the results

presented in this section are chosen to demonstrate the strengths of the CC and EOMCC

methods, with particular attention paid to our CR-CC, CR-EOMCC, and active-space EA-

and IP-EOMCC approaches, the weaknesses of each method will be pointed out as well.

3.2.1 The DBH24 Benchmark Database for Thermochemical Ki-

netics

This section provides a systematic comparison of the performance of CCSD, CCSD(T), and

variants A-D of the CR-CC(2,3) theory for a diverse collection of reaction barrier heights.

Since it is rather inconvenient to test such methods on the typical large benchmark databases

such as NHTBH38/04 [202] or Database/3 [203], as calculating the necessary chemical species

can quickly become excessively time consuming when many methods and basis sets are exam-

ined, a representative benchmark database, DBH24 [204], was developed as a more feasible

alternative to these large databases, designed specifically with computationally more in-

tensive ab initio methods in mind. DBH24 is composed of 24 barrier heights which were

determined to be the most statistically representative subset of all 38 of the forward and

reverse barrier heights of NHTBH38/04 and the 44 hydrogen-transfer barrier heights of

Database/3. DBH24 consists of four types of reactions, namely, hydrogen transfer (HT),

heavy-atom transfer (HAT), nucleophilic substitution (NS), and unimolecular and associ-
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ation (UA) reactions. There are three reactions (six barrier heights because forward and

reverse reactions are considered) for each type of reaction in the DBH24 database. The six

barrier heights of each reaction are denoted as HATBH6, NSBH6, UABH6, and HTBH6,

respectively.

When the DBH24 benchmark database was introduced in Ref. [204], the performance of

many ab initio wave function and density functional theory methods was examined along-

side some semi-empirical and composite approaches with the goal of determining the best

approaches (measured in terms of accuracy, consistency, and computational efficiency) for

the calculation of barrier heights for routine use in thermochemical kinetics. The benchmark

values in DBH24 were obtained using high-level theoretical methods, such as Weizmann-1

(W1) [205] or MRCI calculations, or, in a few cases, benchmark values were derived from

experimental data. The full list of reactions and forward and reverse barrier height bench-

mark values are given in Table (3.1). All calculations reported in Ref. [204] were based on

reactant, product, and transition structures optimized at the QCISD/MG3 level with the

spin-restricted formalism for closed-shell systems and the fully spin-unrestricted formalism

for open-shell systems. The effect of spin-orbit coupling was added to the energies of the Cl

and OH radicals, which lower their energies by 0.84 and 0.20 kcal/mol, respectively. Among

all of the single-level (i.e. not composite) wave function methods tested in Ref. [204], those

based on CC theory, especially CCSD(T), proved to be the most accurate.

Following this initial study, we extended the work reported in Ref. [204] in Ref. [206]

to see if we could objectively determine whether the CR-CC(2,3) method could statistically

outperform the CCSD(T) approach on the DBH24 benchmark set due to the improved form

of the triples correction in CR-CC(2,3). We also used the opportunity to test the depen-
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Table 3.1: Representative barrier heights database DBH24 taken from Ref. [204].

database reaction V
6=
f

a V
6=
r

a

H + N2O → OH + N2 18.14 83.22
HATBH6 H + ClH → HCl + H 18.00 18.00

CH3 + FCl → CH3F + Cl 7.43 61.01

Cl− · · · CH3Cl → ClCH3 · · · Cl− 13.61 13.61
NSBH6 F− · · · CH3Cl → FCH3 · · · Cl− 2.89 29.62

OH− + CH3F → HOCH3 + F− -2.78 17.33

H + N2 → HN2 14.69 10.72
UABH6 H + C2H4 → CH3CH2 1.72 41.75

HCN → HNC 48.16 33.11

OH + CH4 → CH3 + H2O 6.7 19.6
HTBH6 H + OH → O + H2 10.7 13.1

H + H2S → H2 + HS 3.6 17.3

a V
6=
f denotes forward barrier height and V

6=
f denotes reverse barrier height (in kcal/mol).

dence of the results on the quality of the basis set and the effect of freezing core orbitals.

Calculations were performed using the CCSD, CCSD(T), and CR-CC(2,3) approaches to cal-

culate the forward and reverse barrier heights for all of the reactions included in the DBH24

database using five different basis sets of triple-zeta quality with and without applying the

frozen core approximation. The five basis sets used in our study [206] were MG3S [207], and

four correlation consistent basis sets, namely, aug-cc-pVTZ [208–210], aug-cc-pV(T+d) [211],

aug-cc-pCVTZ [208,209, 212, 213], and aug-cc-pCV(T+d)Z. Note that MG3S is identical to

6-311+G(3d2f,2df,2p) for H-Si and is similar to 6-311+G(3d2f), but improved [214] for P-Ar.

The aug-cc-pV(T+d)Z basis set is the same as aug-cc-pVTZ except that it has a single extra

d function for the second row atoms from Al through Ar, and the other d functions of aug-

cc-pVTZ are also optimized for these atoms. The aug-cc-pCV(T+d)Z basis set is same as
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aug-cc-pCVTZ basis set except that all valence d functions are taken from aug-cc-pV(T+d)Z

plus two d functions describing inner shells are taken from aug-cc-pCVTZ. As in the original

study by Zheng et al. [204], the geometries used in our calculations [206] were optimized

using the QCISD/MG3 level and the energies of the Cl and OH radicals were corrected for

spin-orbit effects.

The entire set of reaction barrier heights for the DBH24 database, as calculated with

the CCSD, CCSD(T), and CR-CC(2,3),A-D approaches combined with the five triple-zeta

basis sets mentioned above is supplied in the Supporting Information to Ref. [206]. The

calculated mean signed errors (MSEs) and mean unsigned errors (MUEs) obtained from these

calculations, taken from Ref. [206], are reported in Tables (3.2) and (3.3), with Table (3.2)

collecting results from all-electron calculations with all orbitals are correlated and Table (3.3)

collecting results from calculations with the core orbitals frozen. It can be seen from these two

tables that the CCSD results are relatively poor, typically producing MUE values around or

above 2.0 kcal/mol, but the CCSD(T) and CR-CC(2,3),A-D methods significantly improve

the CCSD activation energies, especially in conjunction with the augmented correlation

consistent basis sets. The mean unsigned errors of CR-CC(2,3) and CCSD(T) with the MG3S

basis set are about 0.9-1.0 kcal/mol both when correlating all electrons and when correlating

only valence electrons, whereas the mean unsigned errors characterizing the CR-CC(2,3)

and CCSD(T) results for the augmented correlation consistent basis sets vary between 0.4

and 0.75 kcal/mol. We conclude from this that the MG3S basis set offers an economical

triple-zeta basis set alternative for systems which are too large for the correlation consistent

basis sets to be affordable.
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Table 3.2: Mean signed error (MSE) and mean unsigned error (MUE) of coupled cluster methods calculated with all electrons
correlated compared against the DBH24 benchmark database (in kcal/mol).

HATBH6 NSBH6 UABH6 HTBH6 DBH24

Method MSE MUE MSE MUE MSE MUE MSE MUE MUE

MG3S
CCSD(full) 4.36 4.36 2.29 2.29 1.76 1.76 2.55 2.55 2.74
CCSD(T)(full) 0.92 1.24 -0.01 0.74 0.70 0.70 0.93 1.04 0.93
CR-CC(2,3),A(full) 1.50 1.61 0.72 0.54 0.93 0.93 1.13 1.14 1.06
CR-CC(2,3),B(full) 1.72 1.77 0.47 0.57 0.96 0.96 1.19 1.19 1.12
CR-CC(2,3),C(full) 1.16 1.35 0.10 0.59 0.82 0.82 0.98 1.04 0.95
CR-CC(2,3),D(full) 1.17 1.35 0.10 0.60 0.82 0.82 0.98 1.04 0.95

aug-cc-pVTZ
CCSD(full) 2.85 2.85 1.83 1.83 1.28 1.28 1.06 1.06 1.76
CCSD(T)(full) -0.72 0.84 -0.52 0.64 0.17 0.34 -0.72 0.72 0.64

aug-cc-pCVTZ
CCSD(full) 3.61 3.61 2.12 2.12 1.13 1.13 1.75 1.75 2.15
CCSD(T)(full) -0.03 0.61 -0.26 0.46 0.01 0.28 -0.05 0.45 0.45
CR-CC(2,3),A(full) 0.55 0.84 0.04 0.34 0.23 0.38 0.14 0.54 0.52
CR-CC(2,3),B(full) 0.77 0.97 0.23 0.34 0.26 0.41 0.22 0.56 0.57
CR-CC(2,3),C(full) 0.42 0.76 -0.22 0.63 0.22 0.43 0.11 0.55 0.59
CR-CC(2,3),D(full) 0.42 0.76 -0.22 0.63 0.22 0.43 0.11 0.55 0.59

aug-cc-pCV(T+d)Z
CCSD(full) 3.60 3.60 2.15 2.15 1.13 1.13 1.76 1.76 2.16
CCSD(T)(full) -0.05 0.58 -0.24 0.44 0.01 0.28 -0.05 0.45 0.44
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Table 3.3: Mean signed error (MSE) and mean unsigned error (MUE) of coupled cluster methods calculated with frozen core
approximation compared against the DBH24 benchmark database (in kcal/mol).

HATBH6 NSBH6 UABH6 HTBH6 DBH24

Method MSE MUE MSE MUE MSE MUE MSE MUE MUE

MG3S
CCSD 4.43 4.43 2.03 2.03 1.58 1.58 2.62 2.62 2.67
CCSD(T) 1.06 1.37 -0.25 0.94 0.53 0.53 1.04 1.10 0.98
CR-CC(2,3),A 1.63 1.76 0.03 0.75 0.76 0.76 1.23 1.23 1.12
CR-CC(2,3),B 1.85 1.91 0.22 0.63 0.80 0.80 1.29 1.29 1.16
CR-CC(2,3),C 1.28 1.49 -0.17 0.83 0.66 0.66 1.08 1.10 1.02
CR-CC(2,3),D 1.29 1.49 -0.18 0.83 0.65 0.65 1.08 1.10 1.02

aug-cc-pVTZ
CCSD 3.54 3.54 1.66 1.66 1.03 1.11 1.72 1.72 2.01
CCSD(T) 0.01 0.91 -0.67 0.68 -0.06 0.40 -0.04 0.57 0.64
CR-CC(2,3),A 0.58 1.20 -0.39 0.44 0.17 0.47 0.15 0.62 0.68
CR-CC(2,3),B 0.80 1.32 -0.20 0.35 0.19 0.49 0.23 0.65 0.70
CR-CC(2,3),C 0.46 1.13 -0.70 0.77 0.16 0.48 0.11 0.64 0.75
CR-CC(2,3),D 0.46 1.13 -0.71 0.77 0.15 0.48 0.11 0.64 0.75

aug-cc-pV(T+d)Z
CCSD 3.41 3.41 1.82 1.82 1.03 1.11 1.69 1.69 2.01
CCSD(T) -0.13 0.67 -0.53 0.62 -0.06 0.40 -0.06 0.54 0.56
CR-CC(2,3),A 0.45 0.88 -0.24 0.39 0.17 0.47 0.13 0.60 0.58
CR-CC(2,3),B 0.67 1.00 -0.05 0.30 0.19 0.49 0.20 0.63 0.61
CR-CC(2,3),C 0.30 0.80 -0.53 0.60 0.16 0.48 0.09 0.62 0.62
CR-CC(2,3),D 0.31 0.80 -0.54 0.60 0.15 0.48 0.09 0.62 0.62
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Although the CCSD(T)(full)/aug-cc-pCV(T+d)Z method gives the best results among all

the tested methods, with a mean unsigned error of only 0.44 kcal/mol, it is our opinion that

this is not the best combination of method and basis set for routine applications of the type of

the benchmark study examined here. There are several reasons in support of this conclusion.

First, it is clear by a comparison of Tables (3.2) and (3.3) that all-electron CCSD(T) and

CR-CC(2,3) calculations generally give only slightly better results than those produced by

frozen-core calculations using the MG3S, aug-cc-pVTZ, or aug-cc-pV(T+d)Z basis sets. As

an example, the CR-CC(2,3),D/MG3S calculations with all electrons correlated produced

MUEs ranging from 0.60 to 1.35 kcal/mol, while the same combination of method and basis

set produced MUEs of 0.65 to 1.49 kcal/mol under the frozen-core approximation. In general,

it is not recommended to use valence-optimized basis sets when including both core and

core-valence correlations, since this is not only more expensive, but also a potential source of

problems [215]. By examining MUEs in Table (3.2) corresponding to CCSD(T) calculations

using the aug-cc-pVTZ and aug-cc-pCVTZ basis sets, which have ranges from 0.34 to 0.84

kcal/mol and 0.28 to 0.61 kcal/mol, respectively, it is clear that the accuracy systematically

increases when the core-optimized basis sets are used in all-electron calculations. However,

since the results only improve slightly it is our opinion that employing the core-optimized

basis sets is not practical due to the increase in the number of basis functions composing

these basis sets and the additional correlated orbitals required to perform the corresponding

all-electron calculations, which, taken together, make the calculations significantly more

expensive then their frozen-core analogs. It is also clear from Tables (3.2) and (3.3) that

the overall accuracy of the CR-CC(2,3),A-D approaches is practically the same as that

of CCSD(T). In particular, since CR-CC(2,3),D is shown to reproduce the high accuracy
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of CCSD(T) in the barrier height calculations for the reactions from the DBH24 database,

which are largely of the SR type, while also offering a significantly better performance in more

MR cases, as demonstrated in Sects. (3.2.2) and (3.2.3), we recommend it for applications

where an accurate treatment of triples is required, particularly when paired with the aug-

cc-pV(T+d)Z basis set in the frozen-core approximation.

Additional unpublished work was performed addressing the question of whether the MSEs

and MUEs characterizing the CR-CC(2,3) calculations could be further reduced by saturating

the basis set. The increase in accuracy observed when switching from the aug-cc-pVTZ to

aug-cc-pCVTZ basis set can be interpreted in one of two ways. Either correlating the core

electrons has a significant effect on the accuracy of these calculations, or, since there is a

large disparity between the number of basis functions in the two sets, a large portion of the

errors reported in Ref. [206] were due to basis set incompleteness. To investigate this issue,

CR-CC(2,3) energies were calculated with the aug-cc-pV(Q+d)Z basis set for all relevant

species in the DBH24 benchmark database. This basis set was chosen because it follows aug-

cc-pV(T+d)Z in the hierarchy of basis sets having the general form aug-cc-pV(X+d)Z, where

X is known as the cardinal number of the basis set, and, having obtained energies at the

aug-cc-pV(T+d)Z and aug-cc-pV(Q+d)Z basis set levels, it is then possible to extrapolate

the electronic correlation energy to the complete basis set (CBS) limit, ∆E∞, using one of

the existing empirical laws defining the dependence of the electronic correlation energy ∆E

on X, such as

∆E(X) = ∆E∞ + AX−3, (3.98)

where ∆E(X) is the correlation energy obtained with the aug-cc-pV(X+d)Z basis set and

∆E∞ and A are the parameters determined from fitting ∆E(X) to the calculated correla-

64



tion energies. Preference is always given to the aug-cc-pV(T+d)Z and aug-cc-pV(Q+d)Z

basis set data in these fits, rather than the easier to obtain aug-cc-pV(D+d)Z data, because

the aug-cc-pV(D+d)Z data are well known to produce rather poor fits to the function given

by Eq. (3.98). While the CBS-limit correlation energy can be obtained by the above ex-

trapolation technique, the reference energy, which was provided by the RHF method for

the closed-shell DBH24 species and by the ROHF method for open-shell species, was ex-

plicitly calculated using a very large, nearly complete, basis set, i.e., the aug-cc-pV(6+d)Z

basis set. This has been shown to be a more accurate approach than extrapolation for ob-

taining approximate CBS-limit reference energies [216] and the calculations do not become

prohibitively expensive even for the largest molecules of interest in this study. Both the

fast (exponential) convergence behavior of the reference energy and the unreliable nature

of correlation energies resulting from correlation consistent DZ-type basis sets with cardinal

number 2 are thoroughly discussed and well illustrated for the H2O system in Ref. [217].

Thus, the approximate CBS-limit total energy reported in this section is constructed as a

sum of the energy produced by an aug-cc-pV(6+d)Z reference calculation and a CBS-limit

correlation energy, obtained by entering the aug-cc-pV(T+d)Z and aug-cc-pV(Q+d)Z basis

set level correlation energies into the extrapolation formula given by Eq. (3.98).
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Table 3.4: Errors resulting from CR-CC(2,3) calculations of forward and reverse barrier heights, V
6=
f and V

6=
r respectively,

reported as ǫ(V
6=
f ) / ǫ(V

6=
r )) at varying basis set levels compared against DBH24 benchmark values (in kcal/mol).

HATBH6
H + N2O → OH + N2 H + HCl → HCl + H CH3 + FCl → CH3F + Cl

aug-cc-pV(D+d)Z -1.17/3.84 1.92/1.92 -2.96/-0.98
aug-cc-pV(T+d)Z -0.99/2.16 0.24/0.24 -0.48/0.69
aug-cc-pV(Q+d)Z -0.37/1.85 -0.10/-0.10 0.12/0.66
CBS-limit 0.07/1.69 -0.41/-0.41 0.48/0.85

NSBH6
Cl−...CH3Cl → ClCH3...Cl− F−...CH3Cl → FCH3...Cl− OH− + CH3F → HOCH3 + F−

aug-cc-pV(D+d)Z -1.31/-1.31 -0.79/-2.16 -2.81/-1.58
aug-cc-pV(T+d)Z -1.08/-1.08 -0.14/-1.08 0.19/-0.04
aug-cc-pV(Q+d)Z -0.93/-0.93 -0.01/-0.34 0.52/0.59
CBS-limit -0.93/-0.93 0.05/0.12 0.73/0.99

UABH6
H + N2 → HN2 H + C2H4 → C2H5 HCN → HNC

aug-cc-pV(D+d)Z 0.13/ 0.32 0.63/ 0.19 -1.92/-1.24
aug-cc-pV(T+d)Z 0.00/ 0.56 0.34/ 1.00 -0.67/-0.30
aug-cc-pV(Q+d)Z 0.08/ 0.53 0.38/ 0.86 -0.50/-0.08
CBS-limit 0.08/ 0.58 0.39/ 0.79 -0.36/ 0.04

HTBH6
OH + CH4 → CH3 + H2O H + OH → O + H2 H + H2S → H2 + HS

aug-cc-pV(D+d)Z 0.15/-1.28 -0.88/ 0.93 0.44/ 0.00
aug-cc-pV(T+d)Z 0.20/-0.83 -0.76/ 0.67 0.28/ 0.95
aug-cc-pV(Q+d)Z 0.19/-0.09 -0.24/ 0.31 0.43/ 0.74
CBS-limit 0.16/ 0.31 0.05/ 0.02 0.52/ 0.56
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The individual errors resulting from CR-CC(2,3) calculations for the various DBH24

reactions, when used in conjunction with the aug-cc-pV(X+Z)Z basis sets, the correspond-

ing CBS-limit values, and the MSE and MUE values characterizing these calculations are

collected in Tables (3.4) and (3.5). Results produced by CR-CC(2,3)/aug-cc-pV(D+d)Z

calculations are only included to emphasize the convergence with the basis set. For every

reaction considered, improvements in the quality of basis set correlate with improvements

in accuracy. For many of these reactions it is clear that the basis set truncation was the

main source of the triple-zeta-level error in the calculations reported in Ref. [206]. As shown

in Table (3.5), the MSE reduces for both the forward and reverse barrier heights to well

beyond chemical accuracy as the CBS-limit of the CR-CC(2,3) energies is approached. The

MUEs seem to be converged at the aug-cc-pV(Q+d)Z basis set level since there is almost

no difference with the CBS-limit results. Until it is explicitly proven, it can be assumed

that additional contributions from the remaining triples, quadruples, and other higher-order

connected clusters contribute minimally to the barrier heights considered here and may be

disregarded when predicting the activation energies for similar reactions to within a fraction

of 1 kcal/mol. In Sects. (3.2.2) and (3.2.3) chemical systems are examined which require at

least a partial treatment of quadruple excitations in order to attain results within chemical

accuracy. Our interest is in determining if the CR-CC methods, such as CR-CC(2,3)+Q can

be used to accurately describe such situations when they arise.

3.2.2 Addition Reactions of Ethylene and Acetylene to Ozone

In the previous section it was shown that the CR-CC(2,3) method is capable of matching

the performance of CCSD(T), where both were able to achieve chemical accuracy in con-
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Table 3.5: Mean signed errors (MSE) and mean unsigned errors (MUE) resulting from

CR-CC(2,3) calculations of all DBH24 forward and reverse barrier heights, V
6=
f and V

6=
r

respectively, reported as ǫ(V
6=
f ) / ǫ(V

6=
r )) at varying basis set levels (in kcal/mol).

MSE MUE

aug-cc-pV(D+d)Z -0.28 / 0.96 1.11 / 1.38
aug-cc-pV(T+d)Z -0.35 / 0.71 0.52 / 0.81
aug-cc-pV(Q+d)Z -0.15 / 0.54 0.32 / 0.59
CBS-limit 0.07 / 0.38 0.35 / 0.60

junction with medium basis sets when predicting simple thermochemical barrier heights of

the predominantly SR nature, and that the CR-CC(2,3) method could even achieve a sub-

chemical level of accuracy in the CBS-limit. It was thus clear that for the species included

in the DBH24 benchmark database, the correlation effects included in the CCSD(T) and

CR-CC(2,3) methods were sufficient to reproduce benchmark data with excellent accuracy.

However, not all chemical systems can be described so accurately at the CCSD(T) and CR-

CC(2,3) levels. Some systems are more MR and as such, require a balanced description of

triply and quadruply excited clusters.

Ozone is one notorious example of a MR system [218–221]. Despite its well known closed-

shell singlet electronic structure, ozone exhibits a significant biradical character estimated to

be around 33% [222–225]. Ozone is a common reagent in organic chemistry for the generation

of ketones, aldehydes, epoxides, peroxides, anhydrides, and polymers via ozonolysis of alkenes

and alkynes [226–231] The mechanism of such processes is generally accepted to proceed by

initial formation of a van der Waals (vdW) complex followed by a concerted cycloaddition

transition state (TS) before finally reaching the cycloadduct configuration. In this section,

cycloadditions of ethylene and acetylene, shown in Fig. (3.1) to the 1,3 termini of ozone
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C
2
H

2 
+ O

3 
→ vdW → TS → adduct

C
2
H

4 
+ O

3
→ vdW → TS → adduct

Figure 3.1: Stationary points along the C2H2 (top row) and C2H4 (bottom row) ozonolysis
reaction pathways. In each row, the structures from left to right represent the van der Waals
minimum (vdW), transition state (TS), and the cycloadduct, respectively. The oxygen, car-
bon, and hydrogen atoms are represented by the red, yellow, and grey spheres, respectively.
For interpretation of the references to color in this and all other figures, the reader is referred
to the electronic version of this dissertation.
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Table 3.6: Benchmark values for the C2H2 and C2H4 ozonolysis reaction pathways.

O3+C2H2 O3+C2H4

method vdW TS cycloadduct vdW TS cycloadduct

Wheeler et al.a -1.85 7.74 -63.04 -1.84 3.43 -56.43

CBS CCSDT+(2)Q
b -1.88 7.90 -63.91 -1.94 3.50 -57.15

CBS CCSD(T)+Qc -1.98 7.58 -64.46 -2.03 3.18 -57.86
average = best estimate -1.90 7.74 -63.80 -1.94 3.37 -57.15

aFrom Ref. [225], calculated as CCSDT/CBS plus corrections for core correlation (C), adi-
abatic Born-Oppenheimer terms (A), relativistic effects (R) and a correction for quadruple
excitations (+(2)Q) estimated at the cc-pVDZ basis set level for C2H2 and assumed to

be the same for C2H4. bCBS CCSDT/CBS+CAR from Ref. [225] plus quadruple excita-
tion contributions calculated at the CCSDT(2)Q/cc-pVDZ level for both C2H2 and C2H4
separately [242]. cCBS CCSD(T)/CBS+CAR from Ref. [225] plus quadruple excitation
contributions calculated at the CCSD(TQ)/aug-cc-pVDZ level for both C2H2 and C2H4
separately [242].

are considered as a more challenging set of thermochemical barrier heights, which have

reported literature values from ordinarily reliable theoretical methods ranging from 2 to 18

kcal/mol for ethylene [232–237] and 5 to 22 kcal/mol for acetylene. [238–241] When such large

discrepancies are observed between various theoretical methods, it is typical that higher-order

effects play a significant role in the description of the species involved and, indeed, work by

Wheeler et al. [225] showed that there are non-negligible contributions to the energy from

quadruply excited clusters in the ozonolysis of C2H2. Table (3.6) collects the best known

computational benchmark values for stationary points along the C2H2 and C2H4 ozonolysis

reaction pathways, as reported in Refs. [225] and [242]. Following the strategy of Ref. [242],

the averages given in Table (3.6) are the values used for comparison in this discussion.

In a joint study published by the Piecuch and Truhlar groups in 2009 [242], the effect of

quadruples on the C2H2 ozonolysis was reexamined, as treated with a larger basis set, and
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the ozonolysis of C2H4 was considered for the first time with quadruple excitations explic-

itly included. This discussion focuses on the performance of CC methods that start with an

iterative CCSD calculation and add noniterative corrections for connected higher-order exci-

tations, including CCSD(T), CCSD(TQ), CR-CC(2,3), and CR-CC(2,3)+Q, although many

other CC and non-CC results, which are not discussed here, were reported in Ref. [242] as

well. Since calculating corrections to the correlation energy corresponding to quadruples at

the aug-cc-pVTZ basis set level was computationally too demanding, a composite method

was invented which treats most of the correlation energy with the aug-cc-pVTZ basis set but

treats the part of the correlation energy corresponding to quadruples at the aug-cc-pVDZ

level. For example, a CR-CC(2,3)/aug-cc-pVTZ calculation augmented by a quadruples

correction at the aug-cc-pVDZ level is designated as CR-CC(2,3)/aug-cc-pVTZ+Q(aug-cc-

pVDZ). All CR-CC(2,3) energies discussed in this section are the variant D values. The

underlying geometries representing stationary points for the reaction pathways were opti-

mized with the M05 density functional [243] and MG3S basis set.

In Table (3.7) the selected conventional CC and CR-CC results are compared, reported

as relative energies with respect to the reactants, for each of the stationary points on the

reaction pathways. A specific subset of these results was selected to be presented here

which illustrates typical problems encountered at various levels of CC theory. We begin by

considering the CCSD-level results found using the aug-cc-pVDZ and aug-cc-pVTZ basis

sets, found in the first two rows of Table (3.7). It is clear that CCSD, when used with the

aug-cc-pVDZ and aug-cc-pVTZ basis sets, produces a proper qualitative description of the

two reaction pathways, however the overall accuracies, reported concisely as MUEs of all

considered species with respect to the benchmark values in the second to last column, are
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quite poor, with reported values of 2.4 and 3.3 kcal/mol, respectively.

The CCSD(T) and CCSD(TQ) results reported here, generated in conjunction with

the aug-cc-pVDZ basis set, improve on the overall MUEs of CCSD, producing 1.7 and 1.5

kcal/mol, respectively, but both standard perturbative CC methods fail to give the correct

qualitative description of the ethylene ozonolysis reaction pathway, placing the transition

state -0.54 and -0.21 kcal/mol below the reactants, respectively. These results, predicting

no barrier to reaction at all, are unphysical, disagreeing with high-level theory and exper-

iment [244]. In mechanistic studies such as this, the relative energetics between reactants

and the transition states are of particular interest, since the activation energy is often an

experimentally derivable quantity, so in the final column of Table (3.7) the MUEs for only

the transition states of both reactions are reported. Comparing CCSD(T) and CCSD(TQ)

to the other reported methodologies by this measure clearly shows their exceptionally poor

performance when used to describe barrier heights when either the reactants or transition

state have significant biradical character and the other species do not.

The situation looks much better when the CR-CC methods are used to describe the same

reaction pathways. By using the CR-CC(2,3) method rather than CCSD(T) in the same basis

set, a lowering of the total MUE from 1.7 to 0.8 kcal/mol is observed, and an appropriate

sign is obtained for the barrier in the ethylene ozonolysis. This is already considered sub-

chemical accuracy, but not the best result yet. A logical next step toward increasing accuracy

is to increase the basis set from aug-cc-pVDZ to aug-cc-pVTZ. It is shown in Table 3.7 that

the same MUE of 0.8 kcal/mol is obtained when the aug-cc-pVTZ basis set is employed,

but the activation energies move toward the benchmark values. Further improvements are

observed when the CR-CC(2,3) results are corrected for quadruples. The incredibly small
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total MUE produced by the CR-CC(2,3),D/aug-cc-pVTZ+Q(aug-cc-pVDZ) method (0.6

kcal/mol), and an ever smaller MUE for the activation energies (0.2 kcal/mol) show the

ability of the relatively inexpensive CR-CC approaches to produce excellent energetics, even

for difficult reaction pathways. In the next section, Sect. (3.2.3), an even more difficult

reaction profile is considered.
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Table 3.7: Energetics of stationary points relative to reactants, in kcal/mol, produced at various levels of coupled-cluster
theory for the ozonolysis of ethylene and acetylene.

O3+C2H2 O3+C2H4 MUE MUE

method vdW TS cycloadduct vdW TS cycloadduct Alla BHsb

CCSD/aug-cc-pVDZ -2.00 7.47 -69.90 -2.38 2.69 -64.22 2.4 0.5
CCSD/aug-cc-pVTZ -1.76 9.34 -71.27 -1.89 4.41 -66.36 3.3 1.3
CCSD(T)/aug-cc-pVDZ -2.50 4.29 -64.21 -3.18 -0.54 -57.58 1.7 3.7
CCSD(TQ)/aug-cc-pVDZ -2.48 4.73 -63.50 -3.17 -0.21 -56.89 1.5 3.3
CR-CC(2,3),D/aug-cc-pVDZ -1.11 6.09 -63.46 -1.87 1.44 -57.10 0.8 1.8
CR-CC(2,3),D/aug-cc-pVTZ -0.58 8.08 -64.06 -0.68 3.55 -58.31 0.8 0.3
CR-CC(2,3),D/aug-cc-pVTZ+Q(aug-cc-pVDZ) -0.62 8.02 -63.29 -0.74 3.46 -57.52 0.6 0.2

Benchmark valuesc -1.90 7.74 -63.80 -1.94 3.37 -57.15 — —

aAverage mean unsigned errors for all stationary points on the ethylene and acetylene ozonolysis reaction pathways. bAverage
mean unsigned errors for the transition state barrier heights for ethylene and acetylene ozonolysis. cThe best estimates from
Table (3.6) obtained in Ref. [242].
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3.2.3 Mechanism of the Isomerization of Bicyclobutane to Buta-

diene

The pericyclic rearrangement of bicyclo[1.1.0]butane (abbreviated as bicbut) to trans-buta-

1,3-diene (abbreviated as t-but) was chosen as another test case for the CR-CC methods,

both for the intrinsic complexity of the associated isomerization pathways, which involve

polyatomic structures with a rapidly varying degree of biradical character that require an

accurate and balanced description of the dynamical and non-dynamical correlation effects,

as well as for the favorable size of the system, which has several atoms but is still not too

large, enabling calculations with larger basis sets to be performed and, in turn, allowing

convergence behavior with the size of the basis set to be examined. Let us recall that early

experimental studies suggest that the bicbut→t-but isomerization proceeds by concerted

conrotatory movement of the methylene groups [245, 246], as predicted by the Woodward-

Hoffman symmetry rules (see Figure (3.2)). Computational studies confirm this, predicting,

in addition, that near the end the reaction pathway passes through the gauche-buta-1,3-diene

configuration (abbreviated as g-but) before reaching the final t-but configuration [189,248].

Theoretical studies have also considered the concerted disrotatory [189, 248, 249] and non-

concerted [250] pathways, finding the concerted disrotatory TS to be ∼ 20 kcal/mol higher in

energy than the conrotatory TS and the non-concerted pathway to be much too high in en-

ergy to be even considered as a plausible mechanism. The conrotatory TS was found to have

a ∼ 24 % biradical character while the disrotatory TS was found to have a ∼ 90 % biradical

character, according to the high level electronic structure calculations reported in Ref. [189].

The current consensus on the mechanism for the isomerization of bicyclo[1.1.0]butane into

buta-1,3-diene is that both concerted pathways begin at bicbut and, after passing through
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the corresponding conrotatory or disrotatory TS (con TS and dis TS, respectively), they

converge at the local minimum defining the intermediate g-but configuration (see Figure

(3.2)). The g-but intermediate isomerizes via a low-energy rotational barrier, defined by

the TS structure labeled as gt TS, before the final product, t-but, is reached. The conrota-

tory and disrotatory concerted pathways describing the isomerization of bicyclo[1.1.0]butane

into buta-1,3-diene, along with their available experimental activation [251] and reaction

enthalpies (the latter based on the enthalpies of formation of bicyclo[1.1.0]butane and buta-

1,3-diene reported in Ref. [252]; cf. Ref. [189]), and the theoretical enthalpy values obtained

in this work, are illustrated in Figure (3.2).

As demonstrated in Ref. [189], the CCSD(T) approach completely fails by placing the

disrotatory pathway defined by the strongly biradical dis TS about 20 kcal/mol below the

conrotatory pathway, contradicting experiment [245,246] and accurate MR calculations [248]

which state that the conrotatory pathway represents a true mechanism. At the same time,

the CASSCF and MCQDPT2 approaches, which correctly place the conrotatory pathway

below the disrotatory one, provide relatively poor energetics when compared to the available

experimental and more accurate electronic structure data [189], although CASSCF pro-

duces reasonable geometries of the corresponding stationary points. On the other hand, as

was also shown in Ref. [189], the CR-CC(2,3) approach provides an accurate and balanced

description of the conrotatory and disrotatory pathways describing the isomerization of bicy-

clo[1.1.0]butane to trans-buta-1,3-diene, and one of the primary goals of this thesis research

was to produce CR-CC(2,3) energies for this system which were converged with the basis

set [193]. To do this, the set of nuclear geometries optimized at the CASSCF(10,10)/cc-

pVDZ level of theory were taken from Ref. [189] and additional CR-CC(2,3) calculations
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Figure 3.2: The conrotatory and disrotatory pathways describing the isomerization
of bicyclo[1.1.0]butane to trans-buta-1,3-diene, along with the enthalpy values rela-
tive to the reactant at all stationary points obtained in the explicit CR-CC(2,3)/cc-
pVQZ//CASSCF(10,10)/cc-pVDZ calculations (numbers in roman) and the enthalpy val-
ues obtained with the PES extrapolation procedure using the CR-CC(2,3)/cc-pVDZ, CR-
CC(2,3)/cc-pVTZ, and RHF/cc-pVQZ energies at all stationary points resulting from the
CASSCF(10,10)/cc-pVDZ optimizations, and the CR-CC(2,3)/cc-pVQZ correlation energy
at the reactant geometry (numbers in bold italics). The available experimental enthalpy
values are in parentheses. All enthalpies are in kcal/mol.
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Table 3.8: Relative enthalpies, in kcal/mol, with respect to reactant as calculated at various
levels of theory for the conrotatory and disrotatory bicbut → tbut isomerization pathways.

Method con TS dis TS g-but gt-TS tbut

CR-CC(2,3)/cc-pVTZa 41.1 66.1 -24.9 -22.1 -27.9

CR-CC(2,3)/cc-pVQZb 41.3 67.1 -24.8 -22.9 -27.7

CR-CC(2,3)/CBS limitb 41.5 67.5 -24.5 -21.6 -27.4

CR-CC(2,3)+Q/cc-pVTZb 40.8 67.0 -24.9 -22.1 -27.8
ACSE/6-311G**c 41.2 55.7 -23.8 — —

DMCd 40.4(5) 58.6(5) -25.2(5) -22.2(5) -27.9(5)

Experimente 40.6(± 2.5) — — — -25.9(4)

aTaken from Ref. [189]. bThe present study (CR-CC(2,3) results taken from Ref. [193]).
cResults obtained with the anti-Hermitian contracted Schrödinger equation (ACSE) ap-
proach taken from Ref. [253]. dBenchmark computational results obtained with the diffusion
Quantum Monte Carlo (DMC) approach taken from Ref. [254]. eBenchmark experimental
results taken from Ref. [252].

were performed with the cc-pVQZ basis set and, together with the cc-pVTZ energies from

Ref. [189], CBS-limit extrapolated correlation energies were obtained using Eq. (3.98). These

and other results are reported in Table (3.8).

Enthalpy values in Table (3.8) are reported relative to reactants as calculated using

a variety of approaches. Comparison of the CR-CC(2,3)/cc-pVTZ results from Ref. [189]

with the CR-CC(2,3) results obtained through calculations at the cc-pVQZ and CBS-limit

levels, as originally reported in Ref. [193], confirms that small improvements were made by

saturating the basis set. Later in 2008, a paper was published challenging the accuracy of

these calculations. Calculations performed using the anti-Hermitian contracted Schrödinger

equation (ACSE) in Ref. [253], reported for comparison in Table (3.8), showed the dis TS

barrier to be much lower then CR-CC(2,3) calculations had predicted. Since the ACSE

method is good at accounting for non-dynamical correlation effects, we calculated the +Q
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corrections at various basis set levels to assure that we were not neglecting nondynamical

correlation effects described by higher-order clusters. Since, as shown in Table (3.8), these

corrections adjusted the enthalpies by less then 1 kcal/mol, we assumed that our values for

the dis TS barrier were reliable.

An interesting recent development, which affects this discussion, came in 2010 when high-

quality diffusion Quantum Monte Carlo (DMC) results became available for the bicbut →

tbut isomerization system [254]. By comparing with this theoretical benchmark data it was

shown that CR-CC(2,3) and CR-CC(2,3)+Q enthalpy values at all reported basis sets are

within ∼ 1 kcal/mol for all stationary points except for the dis TS structure. There is a

rather large discrepancy at the dis TS stationary point with the highest quality CR-CC

data predicting a barrier of around 67 kcal/mol, while the DMC results predict a dis TS

barrier around 59 kcal/mol. At this point the issue emerged: what is behind the few kcal/mol

difference between the CR-CC and DMC results for the disrotatory transition state? Our

group finally found an answer a few weeks ago. Based on a still preliminary study using

a new theory being presently developed in our group, abbreviated CC(t;3), that represents

a merger of the active-space CCSDt approach and CR-CC(2,3) [255], it appears to be the

iterative treatment of the singly and doubly excited clusters in the presence of the leading

triple excitations which accounts for the remaining nondynamic and dynamic correlations

responsible for this energy lowering, producing a result in perfect agreement with DMC.

Thus, while species with extreme biradical character, such as dis TS, may sometimes be

difficult to describe to high accuracy, the CR-CC(2,3) method remains the key in obtaining

the desired accuracies, since CC(t;3) uses the CR-CC(2,3)-style corrections to correct the

CCSDt energies for the triples missing in the CCSDt calculations, while eliminating the
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complete failure of CCSD(T).

Excluding the exceptionally difficult dis TS stationary point, which is not part of the

energetically favorable reaction profile for the bicbut → tbut isomerization, the CR-CC(2,3)

results with or without quadruples are within 1 kcal/mol of the DMC results. It also appears

that the best CR-CC results are within the DMC error bars. Meanwhile, the ACSE results

significanly underestimate the g-but barrier and cannot claim sub-chemical accuracy. We

speculate that the ACSE method does significanly better for the dis TS barrier, which has 90

% biradical character, but underestimates the correlation energies for the closed-shell species.

This is because the method is very good for describing nondynamical correlation energy, but

is less accurate in its description of dynamical correlation effects. On the other hand, unlike

CCSD(T), which describes dynamical correlation energy well and nondynamical correlation

energy poorly, it is at least a qualitatively predictive method. Meanwhile, the CR-CC(2,3)

method and its CR-CC(2,3)+Q and CC(t;3) extensions can, unlike the ACSE approach, give

a quantitatively correct description of the energically favorable con TS reaction profile and,

unlike the CCSD(T) method, predict the correct reaction channel.

The success of the ground-state CR-CC formalism in this and previous sections motivates

an investigation of the performance of the CR-EOMCC methods for excited states. This is

done in the next two sections, with the first considering the performance of CR-EOMCC(2,3)

for the description of low-lying excited-state PESs of the water molecule, particularly along

the bond-breaking O-H coordinate (in Sect. (3.2.4)), followed by a fully size-intensive de-

scription of vertical excitation energies and spectral shifts in weakly bound complexes (in

Sect. (3.2.5)).
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3.2.4 Excited-State Potential Energy Surfaces for the Dissociation

of Water

The motivation for the work reported in the current section is to, for the first time, assess

the performance of the CR-EOMCC(2,3) approach in generating excited-state PESs along

a single-bond stretching dissociation channel. The water molecule was chosen as our target

system since, while there exist in the literature many experimental [256–264] and theoretical

[265–269] studies aimed at finding vertical excitation energies out of the ground state (see Ref.

[270] for a review of older work), fewer studies have focused on generating PESs other than

for the ground and first excited singlet states. Recently, however, a cut of the full ground-

state PES corresponding to the asymmetric O-H bond-breaking dissociation was carefully

optimized by Li and Paldus using the CCSD theory in conjunction with a relatively large

cc-pVTZ basis set and then many low-lying excited-state PES cuts were calculated at the full

CI level using a cc-pVTZ basis stripped of polarization functions (referred to as the TZ basis)

[271]. Here, we intend to use the set of high-level optimized geometries and corresponding

full CI excited-state PES cuts reported in Ref. [271] as benchmark data for testing the

performance of the CR-CC(2,3) and CR-EOMCC(2,3) methods. The main objective is

to determine whether the CR-CC(2,3) and CR-EOMCC(2,3) methods can overcome the

deficiencies of the CCSD and EOMCCSD approaches for the PES cuts of interest, including

stretched O-H bond lengths and the H2O → H + OH dissociation limit, where groups

of electronic states of water converge to become degenerate. Since values are available,

we will also take this opportunity to compare the PESs obtained in the CR-CC(2,3)/CR-

EOMCC(2,3) calculations with those produced by leading MRCC or MRCC-like methods,

as taken from Ref. [271]. These include the NR-RMR-CCSD(T), NR-GMS-SU-CCSD, and
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(N,M)-CCSD methods, all of which were mentioned in the Introduction.

Following Ref. [271], calculations were peformed using a small basis set referred to as

TZ, which, as mentioned above, is constructed by removing polarization functions from the

cc-pVTZ basis set of Dunning. The geometries associated with the asymmetric dissociation

were generated by designating the bond length of the stretched O-H bond and optimizing the

H-O-H angle and second O-H bond length at the CCSD/cc-pVTZ level. These geometrical

parameters were taken from Ref. [271]. All calculations of singlet ground and excited states

were performed using the efficient RHF-based EOMCCSD and CR-EOMCC(2,3) computer

codes developed earlier by our group and incorporated in the GAMESS program. Triplet

EOMCC calculations were performed using a new EOMCCSD code for ROHF references

developed as part of this thesis effort, to be included in a future official GAMESS distribution,

the implementation of which is discussed in Sect. (5.1.1). Open-shell ROHF-based CR-

EOMCC(2,3) calculations were performed using the spin-orbital computer codes written by

our group that are loosely interfaced with GAMESS. In all calculations electrons in the

lowest occupied molecular orbital were frozen, spherical contaminants were dropped from

the atomic orbital basis sets, and the Cs point group was enforced, distinguishing states as

either A′ or A′′ symmetry. We use the convention for numbering states where the singlet

ground state is denoted in a usual way by the symbol X and excited states belonging to the

same irreducible representation, i.e. spin and spatial symmetry, are numbered sequentially

in order of increasing energy at the equilibrium nuclear configuration.

Ground-state X1A′ PES cuts are reported in Table (3.9), with internuclear separations

given in the first column and energies corresponding to various methods given in the remain-

ing columns. The last two rows provide MUEs and non-parallelity errors (NPEs) relative
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Table 3.9: Ground-state X1A′ energies for the asymmetric single-bond breaking of H2O
at a series of the O-H bond lengths, R, in atomic units. The last two rows give the mean
unsigned errors (MUE) and non-parallelity errors (NPE) relative to the full CI PES obtained
in Ref. [271].

R (bohr) FCIa 7R-SUb 4R-RMR(T)c CCSDd CR-CC(2,3)d

1.3 -1.01567 2.87 0.08 2.84 -0.16
1.6 -1.14894 3.20 0.10 3.17 -0.16
1.809 -1.16847 3.50 0.13 3.46 -0.14
2.0 -1.16417 3.83 0.16 3.77 -0.12
2.4 -1.13058 4.65 0.20 4.59 -0.03
2.8 -1.09255 5.73 0.20 5.72 0.08
3.2 -1.06129 7.15 0.15 7.21 0.21
3.6 -1.03889 8.84 0.13 8.97 0.32
4.0 -1.02451 10.69 0.19 10.81 0.36
4.2 -1.01967 11.61 0.24 11.66 0.33
4.4 -1.01603 12.48 0.29 12.43 0.28

MUE — 6.68 0.17 6.78 0.20
NPE — 9.61 0.21 9.59 0.52

a Full CI energies (E), reported as (E + 75) hartree, taken from Ref. [271]. b 7R-GMS-SU-
CCSD energies, in millihartree, reported as differences from full CI taken from Ref. [271]
c 4R-RMR-CCSD(T) energies, reported as differences from full CI taken from Ref. [271] d

This work. Reported as differences from full CI, in millihartree

to the full CI PES of Li and Paldus [271] for each data set. Let us first consider the errors

produced by the CCSD method, which range from 2.84 to 12.43 hartree, with MUE of 6.78

millihartree and NPE of 9.59 millihartree. As expected, errors for all methods increase sig-

nificantly as the O-H bond is stretched, but it is seen that the addition of triple excitations

via the CR-CC(2,3) method reduces absolute errors relative to full CI to no greater than

0.36 millihartree for all points considered. The MUE of 0.20 millihartree and NPE of 0.52

millihartree produced by the black-box CR-CC(2,3) approach compare very well to the ex-

pert high-level 4R-RMR-CCSD(T) method, which yields a MUE of 0.17 millihartree and a

NPE of 0.21 millihartree.
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Results for the low-lying singlet and triplet excited states of the A′ symmetry are col-

lected in Tables (3.10) and (3.11), respectively. Each table is broken into three sections,

organizing results for the three reported excited states of a given symmetry under the head-

ings 11A′, 21A′, and 31A′ in Table (3.10) and 13A′, 23A′, and 33A′ in Table (3.11). In

both tables it is clear that the EOMCCSD method does well for all calculated states in the

R = 1.3 − 2.0 bohr region, i.e., near the equilibrium geometry on the ground-state PES,

but clearly fails at geometries 2.4 bohr and beyond, producing errors relative to full CI of

20-35 millihartree. The CR-EOMCC(2,3) approach improves significantly upon the EOM-

CCSD results in the stretched geometry region of each PES cut, reducing the MUEs to no

more then 3.75 millihartree. To further assess the quality of the CR-EOMCC(2,3) results,

and better appreciate the performance of the “black-box” CR-EOMCC(2,3) theory, com-

parison with the MRCC results of Ref. [271] is made. The results obtained with the expert

7R-GMS-SU-CCSD approach are worse in all cases, with only a few exceptions. For the

31A′ state, CR-EOMCC(2,3) does significantly better than 7R-GMS-SU-CCSD, while for

the 33A′ state 7R-GMS-SU-CCSD does significantly better than CR-EOMCC(2,3). Overall,

it may be concluded that the “black-box” CR-EOMCC(2,3) method performs better than

the complicated, expert 7R-GMS-SU-CCSD approach for the A′ states reported in Tables

(3.10) and (3.11).

Now, moving to results for the A′′ symmetry states, which are presented for the two

lowest-lying singlet states in Table (3.12) and for the two lowest-lying triplet states in Table

(3.13), many of the same trends arise as in the case of the A′ states, including the failure

of EOMCCSD for stretched nuclear geometries and the great improvements offered by the

CR-EOMCC(2,3) method. For the 21A′′ state results could not be obtained using the CR-
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EOMCC(2,3) method for the O-H bond length R of 4.4 bohr, so for this one state, MUEs

and NPEs for all methods are calculated using only 10 points, from the R = 1.3 − 4.2 bohr

region. For all the A′′ symmetry states, the 4R-GMS-SU-CCSD and higher-quality (8,4)-

CCSD MRCC results can be found in Ref. [271], so both types of calculations are reported

in the tables. Comparing the performance of the CR-EOMCC(2,3) method with the (8,4)-

CCSD results for the 11A′′, 21A′′, 13A′′, and 23A′′ states, it is clear that these methods

produce similar results in every case. In a few cases, CR-EOMCC(2,3) does slightly better

and in others (8,4)-CCSD is slightly better. For example, looking at the 21A′′ state, CR-

EOMCC(2,3) produces a MUE relative to full CI of 0.89 millihartree and a NPE of 2.66

millihartree, which is better than the values produced by (8,4)-CCSD, of 3.80 and 9.66

millihartree, respectively, but for the 23A′′ state the (8,4)-CCSD method produces slightly

better values, with values for MUE and NPE of 2.16 and 1.67 millihartree, respectively, as

compared with the MUE of 3.19 millihartree and the NPE of 13.64 millihartree produced

by CR-EOMCC(2,3). It may be concluded from comparison with the NR-RMR-CCSD(T),

NR-GMS-SU-CCSD, and (N ,M)-CCSD results reported in Ref. [271] that the CR-CC(2,3)

and CR-EOMCC(2,3) methods produce results of the MRCC or better quality for all of the

low-lying PESs of water examined here.

85



Table 3.10: Same as Table (3.9) for the three lowest-lying 1A′ states.

1 1A′ 2 1A′ 3 1A′

R (bohr) FCIa 7R-SUb EOMSDc (2,3)d FCIa 7R-SUb EOMSDc (2,3)d FCIa 7R-SUb EOMSDc (2,3)d

1.3 -0.62821 2.07 -0.71 0.27 -0.54185 1.97 -1.49 0.10 -0.39097 3.20 0.64 0.92
1.6 -0.77055 2.49 -0.34 0.49 -0.86730 2.25 -0.63 0.27 -0.57861 3.12 1.29 1.22
1.809 -0.79860 2.93 0.34 0.64 -0.71786 2.55 0.42 0.40 -0.63701 3.36 2.17 1.36
2.0 -0.80575 3.63 1.56 0.76 -0.72455 2.94 1.53 0.52 -0.66800 3.83 3.34 1.46
2.4 -0.81062 5.95 6.14 1.00 -0.71631 2.91 5.29 0.96 -0.69672 4.47 5.46 0.81
2.8 -0.81932 5.55 11.15 0.89 -0.72567 4.00 12.97 1.26 -0.67863 4.72 6.82 1.45
3.2 -0.82860 4.56 15.23 0.39 -0.73203 4.51 20.47 -0.46 -0.66287 8.51 27.97 2.28
3.6 -0.83618 4.17 18.42 -0.34 -0.73289 3.74 27.73 -1.91 -0.66382 19.90 26.69 8.57
4.0 -0.84172 4.04 20.79 -1.20 -0.72999 3.06 32.68 -4.57 -0.66878 28.01 32.64 8.34
4.2 -0.84379 3.98 21.69 -1.64 -0.72738 3.08 33.89 -4.98 -0.66943 29.03 34.21 7.33
4.4 -0.84546 3.92 22.40 -2.07 -0.72415 3.32 34.35 -4.92 -0.66889 28.68 -20.91 7.56

MUE — 3.94 10.80 0.88 — 3.12 15.59 1.85 — 12.44 14.74 3.75
NPE — 3.88 23.11 3.07 — 2.54 35.84 6.24 — 25.91 55.12 7.76

a Full CI energies (E), reported as (E + 75) hartree, taken from Ref. [271]. b 7R-GMS-SU-CCSD energies, reported as
differences from full CI, in millihartree, taken from Ref. [271]. c EOMCCSD energies, reported as differences from full CI, in
millihartree. d CR-EOMCC(2,3) energies, reported as differences from full CI, in millihartree.
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Table 3.11: Same as Table (3.9) for the three lowest-lying 3A′ states.

1 3A′ 2 3A′ 3 3A′

R (bohr) FCIa 7R-SUb EOMSDc (2,3)d FCIa 7R-SUb EOMSDc (2,3)d FCIa 7R-SUb EOMSDc (2,3)d

1.3 -0.65020 2.94 -0.93 0.30 -0.55577 2.92 -1.63 0.18 -0.44370 4.57 0.29 0.84
1.6 -0.79340 3.32 -0.70 0.51 -0.70872 3.76 -0.59 0.42 -0.61947 4.28 1.03 1.21
1.809 -0.82511 3.79 -0.22 0.65 -0.74823 4.68 0.62 0.67 -0.67629 4.04 1.88 1.40
2.0 -0.84272 4.50 0.91 0.81 -0.76263 5.49 1.47 0.92 -0.71482 4.82 2.87 1.30
2.4 -0.89158 5.65 3.76 1.26 -0.78565 5.68 4.85 1.22 -0.73737 7.32 5.29 1.41
2.8 -0.93780 5.57 4.75 1.41 -0.81625 4.96 8.94 1.08 -0.70581 8.02 4.51 1.46
3.2 -0.96789 5.13 4.89 1.41 -0.83261 4.26 12.71 0.82 -0.67660 7.10 -6.01 3.81
3.6 -0.98540 4.56 4.70 1.42 -0.84103 3.79 16.07 0.34 -0.65564 6.22 12.83 3.87
4.0 -0.99516 3.99 4.35 1.45 -0.84553 3.48 18.81 -0.28 -0.64297 7.09 19.65 4.77
4.2 -0.99822 3.75 4.15 1.46 -0.84693 3.37 19.91 -0.62 -0.63921 8.22 33.47 18.41
4.4 -1.00046 3.55 3.94 3.70 -0.84797 3.28 20.82 -0.97 -0.63687 9.63 34.58 17.25

MUE — 4.36 2.78 1.03 — 4.32 7.42 0.70 — 6.07 7.58 3.75
NPE — 2.71 5.82 1.16 — 2.76 21.54 1.84 — 4.18 39.48 17.57

a Full CI energies (E), reported as (E + 75) hartree, taken from Ref. [271]. b 7R-GMS-SU-CCSD energies, reported as
differences from full CI, in millihartree, taken from Ref. [271]. c EOMCCSD energies, reported as differences from full CI, in
millihartree. d CR-EOMCC(2,3) energies, reported as differences from full CI, in millihartree.
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Table 3.12: Same as Table (3.9) for the two lowest-lying 1A′′ states.

1 1A′′ 2 1A′′

R (bohr) FCIa 4R-SUb (8, 4)-SDc EOMSDd (2,3)e FCIa 4R-SUb (8, 4)-SDc EOMSDd (2,3)e

1.3 -0.70187 1.80 1.56 -0.71 0.28 -0.61400 1.89 1.53 -1.39 0.21
1.6 -0.85127 2.11 1.73 -0.54 0.53 -0.76861 2.21 1.66 -0.67 0.37
1.809 -0.88566 2.37 1.84 -0.22 0.62 -0.80694 2.46 1.77 0.18 0.44
2.0 -0.90098 2.53 1.91 0.62 0.62 -0.81992 2.78 1.88 0.88 0.47
2.4 -0.92945 2.69 1.87 4.44 0.63 -0.81008 3.50 1.98 1.01 0.41
2.8 -0.95679 2.87 1.65 8.51 0.54 -0.78177 4.47 2.03 0.70 0.40
3.2 -0.97626 3.14 1.34 11.88 0.08 -0.75430 6.21 2.75 0.78 0.58
3.6 -0.98862 3.36 0.94 14.43 -0.64 -0.73276 9.12 5.15 1.57 1.04
4.0 -0.99617 3.47 0.56 16.15 -1.48 -0.71846 13.52 8.89 3.43 2.08
4.2 -0.99870 3.48 0.47 16.73 -1.90 -0.71372 16.02 10.32 4.78 2.87
4.4 -1.00065 3.48 0.66 17.16 -2.30 -0.71037 18.04 11.19 6.35 N.C.

MUE — 2.85 1.32 8.31 0.87 — 6.22 3.80 1.54 0.89
NPE — 1.68 1.44 17.44 2.53 — 8.79 9.66 7.74 2.66

a Full CI energies (E), reported as (E+75) hartree, taken from Ref. [271]. b 4R-GMS-SU-CCSD energies, reported as differences
from full CI, in millihartree, taken from Ref. [271]. c (8,4)-CCSD energies, reported as differences from full CI, in millihartree,
taken from Ref. [271]. d EOMCCSD energies, reported as differences from full CI, in millihartree. e CR-EOMCC(2,3) energies,
reported as differences from full CI, in millihartree.
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Table 3.13: Same as Table (3.9) for the two lowest-lying 3A′′ states.

1 3A′′ 2 3A′′

R (bohr) FCIa 4R-SUb (8, 4)-SDc EOMSDd (2,3)e FCIa 4R-SUb (8, 4)-SDc EOMSDd (2,3)e

1.3 -0.72170 2.77 1.88 -0.89 0.32 -0.62356 2.75 1.81 -1.19 0.29
1.6 -0.87187 3.18 2.09 -0.73 0.56 -0.78052 3.31 2.13 -0.23 0.53
1.809 -0.90726 3.60 2.29 -0.41 0.66 -0.82109 3.98 2.45 0.80 0.67
2.0 -0.92363 4.08 2.52 0.44 0.68 -0.83571 4.68 2.70 1.61 0.79
2.4 -0.95148 4.87 2.89 4.03 0.84 -0.82785 5.83 2.68 2.02 0.92
2.8 -0.97420 4.72 2.95 7.88 1.00 -0.80175 7.33 2.36 2.59 1.36
3.2 -0.98837 4.31 3.00 11.40 0.88 -0.77863 10.70 2.26 5.19 2.92
3.6 -0.99640 4.00 3.20 14.49 0.50 -0.76634 17.79 2.03 12.44 7.31
4.0 -1.00091 3.81 3.43 16.94 -0.05 -0.76393 25.85 1.36 16.94 12.59
4.2 -1.00236 3.72 3.47 17.89 -0.34 -0.76335 27.93 1.03 26.41 13.93
4.4 -1.00345 3.61 3.25 18.68 0.50 -0.76232 28.62 0.62 29.01 14.51

MUE — 3.92 2.70 6.46 0.64 — 9.37 2.16 5.83 3.19
NPE — 2.10 1.59 18.78 1.34 — 25.18 1.67 27.60 13.64

a Full CI energies (E), reported as (E+75) hartree, taken from Ref. [271]. b 4R-GMS-SU-CCSD energies, reported as differences
from full CI, in millihartree, taken from Ref. [271]. c (8,4)-CCSD energies, reported as differences from full CI, in millihartree,
taken from Ref. [271]. d EOMCCSD energies, reported as differences from full CI, in millihartree. e CR-EOMCC(2,3) energies,
reported as differences from full CI, in millihartree.
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A particularly weak aspect of the SR methods, when used to describe bond-breaking

PES cuts, is their erratic behavior as states become degenerate at the dissociation limit. In

order to assess the quality of the CC and EOMCC PES cuts considered in this report, a few

states have been plotted in Figure (3.3). The states were carefully chosen such that they all

converge with at least one other plotted state to become degenerate at the largest internuclear

separation. In the plot, these electronic states have been identified as those resulting from

combination of the doublet S ground-state of the hydrogen radical with the lowest-energy

2Π, 2Σ+, and 2Σ− states of the hydroxyl radical. It is quite clear from visual inspection

of Figure (3.3(a)) that the CCSD/EOMCCSD curves, which should converge to become

degenerate as the dissociation occurs, are for the most part still not falling on top of one

another as the O-H distance becomes large. This is especially evident for the highest-energy

pair of curves, 21A′ and 33A′′, which are still separated by 20 millihartree at R = 4.4 bohr.

Significant improvement is seen in Figure (3.3(b)) where the CR-CC(2,3)/CR-EOMCC(2,3)

curves exhibit much better asymptotic behavior compared with the CCSD/EOMCCSD data,

and also give excellent agreement with the full CI potentials. However, the most chllenging

pair of curves for EOMCCSD, 21A′ and 33A′′, also give CR-EOMCC(2,3) trouble, as we were

not able to obtain CR-EOMCC(2,3) results for the 21A′ state at R = 4.4 bohr, although

the energies which were obtained for these two PESs showed dramatic overall improvement

over the corresponding CCSD/EOMCCSD results.

To summarize, in this section it has been shown that the CR-EOMCC(2,3) method is

capable of providing a highly accurate description of excited-state PESs of water involving

single bond-breaking. However, excited-state PESs are not directly observable quantities,

so next we move toward calculating spectroscopic properties which are observable. In the
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next section, the utility of the size-intensive δ-CR-EOMCC(2,3) method in calculations of

vertical excitation energies and spectral shifts in an organic chromophore, resulting from the

introduction of hydrogen-bonded molecular environments, is examined.

3.2.5 Excitation Energies and Hydrogen-Bonding-Induced Spec-

tral Shifts in Complexes of cis-7-Hydroxyquinoline

In spite of being relatively weak, non-covalent interactions with the environment, such as

hydrogen bonds, can qualitatively affect the electronic structure and properties of the em-

bedded molecules. Accurately predicting the effect of a hydrogen-bonded environment on

the electronic structure of embedded molecules represents a challenge for computational

chemistry. Among such properties, electronic excitation energies are of great interest in view

of the common use of organic chromophores as probes in various environments [272–275].

Typically, hydrogen bonding results in shifts in the positions of the maxima of the absorption

and emission bands anywhere between a few hundred and about 3000 cm−1 [276]. Thus,

in order to be able to use computer modeling for interpretation of experimental data, the

intrinsic errors of the calculated shifts must be very small, on the order of 100 cm−1 or less.

We became involved in a joint project with the Weso lowski Geneva group aimed at com-

paring shifts in the π → π∗ excitation energy of the cis-7-hydroquinoline (cis-7HQ) chro-

mophore resulting from the formation of hydrogen-bonded complexes between cis-7HQ and a

number of small molecules [201]. Our main role was to provide reference excitation energies

using EOMCC methods, which were subsequently used to benchmark the so-called frozen-

density embedding theory (FDET) approach, developed by Weso lowski et al. [277–281],

and the conventional supermolecular form of the time-dependent density functional theory
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Figure 3.3: Cuts of the PESs for a few ground- and excited-states of a single-bond stretching
model of H2O as obtained with (a) the CCSD/EOMCCSD and (b) the CR-CC(2,3)/CR-
EOMCC(2,3) approaches, and the TZ basis set. Lines are used to represent the CC/EOMCC
data, while the corresponding full CI values are represented by points (which are identically
replicated in (a) and (b)).
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(TDDFT), frequently used in spectral shift calculations. Since the main goal of this thesis is

to examine the performance of the CR-CC/CR-EOMCC and other CC/EOMCC approaches,

our discussion below focuses on a comparison of the EOMCCSD and CR-EOMCC(2,3)-level

results with the available experimental data for the π → π∗ excitation energies and the

corresponding environment-induced spectral shifts in the 7HQ chromophore [276]. The en-

vironment molecules constituting the eight complexes involving 7HQ that were examined in

Ref. [201] included (i) a single water molecule, (ii) a single ammonia molecule, (iii) a water

dimer, (iv) a single molecule of methanol, (v) a single molecule of formic acid, (vi) a trimer

consisting of ammonia and two water molecules, (vii) a trimer consisting of ammonia, water,

and ammonia, and (viii) a trimer consisting of two ammonia and one water molecules (see

Figure 3.2.5).

In order to establish the appropriate level of EOMCC theory to serve as a reference for the

FDET and supermolecular TDDFT calculations reported in Ref. [201], we first examined the

dependence of the vertical excitation energies ωπ→π∗ and environment-induced spectral shifts

∆ωπ→π∗ on the basis set. Table (3.14) compares the results of the EOMCCSD calculations

obtained with the 6-31+G(d), [282–284] 6-31++G(d,p), [282–284] 6-311+G(d), [284,285] and

aug-cc-pVDZ basis sets, as well as with the [5s3p2d/3s2p] basis of Sadlej [286], designated

as POL, for the two smallest complexes, 7HQ · · ·H2O and 7HQ · · ·NH3, for which we could

afford the largest number of computations. The results in Table (3.14) indicate that although

the vertical excitation energies ωπ→π∗ in the bare cis-7HQ system and its complexes with

the water and ammonia molecules vary with the basis set (for the basis sets tested here by as

much as about 600 cm−1), the environment-induced shifts ∆ωπ→π∗ are almost insensitive to

the basis set choice, varying by at most 27 cm−1 between all basis sets reported. Although we

93



cis-7HQ · · ·H2O cis-7HQ · · ·NH3

cis-7HQ · · · (H2O)2 cis-7HQ · · ·CH3OH

cis-7HQ · · ·HCOOH cis-7HQ · · · (NH3-H2O-H2O)

cis-7HQ · · · (NH3-H2O-NH3) cis-7HQ · · · (NH3-NH3-H2O)

Figure 3.4: The eight hydrogen-bonded complexes of the cis-7HQ molecule.
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Table 3.14: The basis-set dependence of the vertical excitation energies ωπ→π∗ and the
environment-induced shifts ∆ωπ→π∗ (in cm−1) obtained with the EOMCCSD approach
corresponding to the lowest π → π∗ transition in the cis-7HQ chromophore and its complexes
with the water and ammonia molecules.

ωπ→π∗ ∆ωπ→π∗

Basis set 7HQ 7HQ · · ·H2O 7HQ · · ·NH3 7HQ · · ·H2O 7HQ · · ·NH3

6-31+G(d) 35171 34643 34396 -528 -775
6-31++G(d,p) 35120 34597 34351 -523 -769
6-311+G(d) 35046 34500 34263 -546 -783
aug-cc-pVDZ 34707 34182 33923 -525 -784
POL 34596 34077 33819 -519 -777

were unable to perform a similarly thorough analysis for other complexes due to prohibitive

computer costs, we were able to obtain the EOMCCSD ωπ→π∗ and ∆ωπ→π∗ values for

all of the complexes examined in this study using the 6-31+G(d) and 6-311+G(d) basis

sets. As shown in Table (3.15), the differences between the EOMCCSD/6-31+G(d) and

EOMCCSD/6-311+G(d) values of the environment-induced shifts ∆ωπ→π∗ remain small

for all complexes of interest, ranging from 8 cm−1 in the 7HQ · · ·NH3 case to 43 cm−1 in

the case of 7HQ · · · (H2O)2, or 1–3 %. Thus, we can conclude that the choice of the basis set,

although important for obtaining the converged ωπ→π∗ values, is of little significance when

the environment-induced shifts in the vertical excitation energy corresponding to the lowest

π → π∗ transition in the cis-7HQ chromophore are considered with the EOMCC methods.

Although the EOMCCSD approach is known to provide an accurate description of excited

states dominated by one-electron transitions, such as the π → π∗ transition in cis-7HQ and

its complexes, there have been cases of similar states reported in the literature, where the

EOMCCSD level has not been sufficient to obtain high-quality results [287,288]. Moreover,

our interest in this study is in the small energy differences defining the environment-induced
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shifts ∆ωπ→π∗ , which may be sensitive to the higher-order correlation effects neglected in

the EOMCCSD calculations. For this reason, we also examined the effect of triples correc-

tions to EOMCCSD energies on the calculated ωπ→π∗ and ∆ωπ→π∗ values by performing

the δ-CR-EOMCC(2, 3) calculations with the 6-31+G(d) basis set. The results of these

calculations, shown in Table (3.15), indicate that triple excitations have a significant ef-

fect on the vertical excitation energies ωπ→π∗ , reducing the 4000-5000 cm−1 differences

between the EOMCCSD and experimental data to no more than about 800 cm−1, when

the δ-CR-EOMCC(2, 3),A/6-31+G(d) calculations are performed, and no more than about

500 cm−1 when the δ-CR-EOMCC(2, 3),D/6-31+G(d) approach is employed, while bringing

the ∆ωπ→π∗ values closer to the experimentally observed shifts when compared with EOM-

CCSD values. Although the differences between the δ-CR-EOMCC(2, 3) and EOMCCSD

values of the environment-induced shifts ∆ωπ→π∗ resulting from the calculations with the

6-31+G(d) basis set do not exceed 15–16 % of the EOMCCSD values, triples corrections

improve the EOMCCSD results and, as such, are useful for the generation of the reference

EOMCC data.
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Table 3.15: The vertical excitation energies ωπ→π∗ and the environment-induced shifts ∆ωπ→π∗ (in cm−1) obtained with
the EOMCCSD/6-31+G(d), EOMCCSD/6-311+G(d), δ-CR-EOMCC(2, 3), A/6-31+G(d), and δ- CR-EOMCC(2, 3), D/6-
31+G(d) approaches, and their composite EOMCC corresponding to the lowest π → π∗ transition in the cis-7HQ chromophore
and its various complexes.

EOMCCSD/ EOMCCSD/ δ-CR-EOMCC(2, 3), A/ δ-CR-EOMCC(2, 3), D/

Environment 6-31+G(d) 6-311+G(d) 6-31+G(d) 6-31+G(d) EOMCC,Aa EOMCC,Db Exp.c

ωπ→π∗

None 35171 35046 31103 30711 30977 30586 30830
H2O 34643 34500 30558 30199 30415 30056 30240
NH3 34396 34263 30291 29922 30157 29788 29925
2H2O 33867 33699 29700 29378 29532 29210 29193
CH3OH 34830 34695 30717 30428 30582 30293 30363
HCOOH 34505 34371 30368 30056 30235 29922 29816
NH3-H2O-H2O 33381 33218 29171 28863 29008 28701 28340
NH3-H2O-NH3 33542 33385 29355 29036 29197 28879 28694
NH3-NH3-H2O 33302 33136 29088 28812 28922 28646 28348

∆ωπ→π∗

H2O -528 -546 -544 -512 -562 -530 -590
NH3 -775 -783 -812 -789 -820 -797 -905
2H2O -1304 -1347 -1403 -1333 -1446 -1376 -1637
CH3OH -341 -351 -386 -283 -396 -292 -467
HCOOH -666 -675 -734 -655 -743 -664 -1014
NH3-H2O-H2O -1790 -1828 -1932 -1847 -1969 -1885 -2490
NH3-H2O-NH3 -1629 -1661 -1748 -1675 -1780 -1707 -2136
NH3-NH3-H2O -1869 -1910 -2014 -1899 -2055 -1940 -2482

a Defined by Eq. (3.99), in which variant A of CR-EOMCC(2,3) is employed. b Defined by Eq. (3.99), in which variant D of
CR-EOMCC(2,3) is employed. c Obtained with the laser resonant two-photon ionization UV spectroscopy [276].
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Ideally, one would like to perform the δ-CR-EOMCC(2, 3) calculations for basis sets

larger than 6-31+G(d), such as 6-311+G(d), but complexes of cis-7HQ examined in this

study were too large for performing such calculations on our computers. Thus, in the ab-

sence of the δ-CR-EOMCC(2, 3) larger basis set data and considering the fact that the

triples corrections to the environment-induced shifts ∆ωπ→π∗ are relatively small when com-

pared to the EOMCCSD ∆ωπ→π∗ values, we have decided to combine the EOMCCSD/6-

311+G(d) results with the triples corrections to EOMCCSD energies extracted from the

δ-CR-EOMCC(2, 3)/6-31+G(d) calculations. The final EOMCC values of the vertical exci-

tation energies ωπ→π∗ were obtained using a composite approach, in which we augment the

EOMCCSD/6-311+G(d) results by the triples corrections to EOMCCSD energies extracted

from the δ-CR-EOMCC(2, 3)/6-31+G(d) calculations, as in the following formula:

ωπ→π∗(EOMCC) = ωπ→π∗(EOMCCSD/6-311+G(d))

+ [ωπ→π∗(δ-CR-EOMCC(2,3)/6-31+G(d))

− ωπ→π∗(EOMCCSD/6-31+G(d))] .

(3.99)

As shown in Table (3.15), the resulting composite EOMCC,A and EOMCC,D approaches

provide vertical excitation energies ωπ→π∗ that are in excellent agreement with the experi-

mental excitation energies, while offering further improvements in the environment-induced

shifts ∆ωπ→π∗ when compared with the EOMCCSD/6-311+G(d) and δ-CR-EOMCC(2, 3)/6-

31+G(d) calculations. Indeed, the EOMCC,A approach, which adds the triples correction

extracted from the δ-CR-EOMCC(2, 3),A/ 6-31+G(d) calculation to the EOMCCSD/6-

311+G(d) energy, gives errors in the calculated excitation energies ωπ→π∗ relative to ex-

periment that range between 147 cm−1 in the case of the bare cis-7HQ system and 668
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cm−1 in the case of the 7HQ · · · (NH3-H2O-H2O) complex, never exceeding 2 % of the

experimental excitation energies. The EOMCC,D approach, which adds the triples cor-

rection obtained in the δ-CR-EOMCC(2, 3),D/6-31+G(d) calculation to the EOMCCSD/6-

311+G(d) energy, gives errors in the calculated excitation energies ωπ→π∗ relative to exper-

iment that range between 17 cm−1 in the case of the 7HQ · · · (H2O)2 complex and 361 cm−1

for 7HQ · · · (NH3-H2O-H2O), or no more than 1 % of the experimental values. These results

should be compared to the much larger differences between the EOMCCSD/6-311+G(d)

and experimental excitation energies that range between 14 and 17 %. The complexation-

induced spectral shifts ∆ωπ→π∗ resulting from the EOMCC,A and EOMCC,D calculations

agree with their experimental counterparts to within 5–27 % or 15 % on average in the case

of EOMCC,A and 10–37 % or 22 % on average in the EOMCC,D case. The EOMCC,D

approach, while bringing the excitation energies ωπ→π∗ to a closer agreement with exper-

iment than the EOMCCSD/6-311+G(d) calculations, does not offer improvements in the

calculated shifts ∆ωπ→π∗ . The composite EOMCC,A approach provides additional small

improvements in the calculated ∆ωπ→π∗ values, reducing the 7–33 % errors relative to ex-

periment obtained in the EOMCCSD/6-311+G(d) calculations to 5–27 %. The EOMCC,A

data, which was generated in this study, served as a computational benchmark for the

TDDFT and FDET results and it was successfully shown that the non-relaxed FDET model

represents a reasonable alternative to EOMCC methods for calculating environment-induced

spectral shifts of excitation energies, but with a much more favorable computational scal-

ing than the EOMCC-type approaches. The non-relaxed FDET results for the π → π∗

shifts reported in Refs. [201] agree with our best EOMCC,A and EOMCC,D data to within

about 100 cm−1 on average. This should be contrasted with the poor performance of the

99



supermolecular TDDFT appraoch that gives average errors in the calculated ∆ωπ→π∗ values

relative to EOMCC,A or EOMCC,D on the order of 700 cm−1 [201]. In the next section the

performance of the EA- and IP-EOMCC methods for open-shell systems is considered.

3.2.6 Geometries and Adiabatic Excitation Energies of CNC, C2N,

N3, and NCO

The accurate determination of geometries and energetics of ground- and excited-state radi-

cals is very difficult, both experimentally, as open-shell species are usually characterized by

short lifetimes, and computationally, due to the complexity of the many-electron correlation

problem in open-shell systems. This is particularly true for the SR CC and EOMCC methods.

Among the main reasons is the fact that the low-lying excited-states of radicals and other

open-shell species are often dominated by two-electron and other multi-electron transitions.

The goal of this section is the examination of the performance of the full and active-space

EA- and IP-EOMCC approaches with up to 3p-2h/3h-2p excitations in the calculations of

the ground and low-lying excited states of the challenging open-shell CNC, C2N, NCO, and

N3 molecules [132, 289], as well as the prediction of the corresponding nuclear geometries

and adiabatic excitation energies, which was carried out jointly with Mr. Jared Hansen from

our group [290]. A series of EA-EOMCCSD(2p-1h), active-space EA-EOMCCSD(3p-2h){4},

and full EA-EOMCCSD(3p-2h) calculations were performed for the CNC and C2N molecules

using the CCSD ground states of the CNC+ and C2N+ closed-shell cations to provide the

reference wave functions. In addition to the DZP basis, [291] which was employed in a

previous study, [132, 289] the cc-pVDZ (all three methods), cc-pVTZ (all three methods),

and cc-pVQZ [the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} approaches] ba-
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sis sets were used. The full EA-EOMCCSD(3p-2h) calculations using the largest cc-pVQZ

basis set could not be performed due to the large computer costs of the relevant numeri-

cal geometry optimizations [the analytic gradients of the EA-EOMCCSD(3p-2h) approach

are not available]. The active orbital spaces for the EA-EOMCCSD(3p-2h){4} calculations

for CNC and C2N consisted of the two lowest-energy pairs of unoccupied π molecular or-

bitals of CNC+ and C2N+, respectively. A series of IP-EOMCCSD(2h-1p), active-space

IP-EOMCCSD(3h-2p){2}, and full IP-EOMCCSD(3h-2p) calculations were performed for

the NCO and N3 molecules using the CCSD ground states of the NCO− and N3
− closed-

shell anions to provide the reference wave functions. Again, in addition to the previously

employed [132, 289] DZP basis, the cc-pVDZ (all three methods), cc-pVTZ (all three meth-

ods), and cc-pVQZ [the IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2} approaches]

basis sets were used, and the full IP-EOMCCSD(3h-2p)/cc-pVQZ calculations were not

performed due to the large computer costs of the corresponding numerical geometry opti-

mizations [the analytic gradients of the IP-EOMCCSD(3h-2p) method are not available].

The active orbital spaces for the IP-EOMCCSD(3h-2p){2} calculations for NCO and N3

consisted of the highest-energy pair of occupied orbitals of NCO− and N3
−, respectively.

Unlike in earlier work [132, 289], where the nuclear geometries of the ground and ex-

cited states of the CNC, C2N, NCO, and N3 species were optimized using only one method

(SAC-CI-SDT-R/PS [292–294]) and one basis set (DZP), in each molecular case and for

each electronic state and basis set considered in the present work, the nuclear geometries

were optimized at the same level of the EA/IP-EOMCC theory and with the same basis

set as those used to evaluate the corresponding total and adiabatic excitation energies. The

geometry optimizations using the cc-pVXZ (X = D, T, and Q) basis sets were constrained
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to linear geometries, since the analogous unconstrained optimizations using the DZP ba-

sis set and bent initial structures showed that the optimum geometries of the calculated

states of CNC, C2N, NCO, and N3 are linear. The unconstrained optimizations with the

DZP basis set demonstrated that we can assume the D∞h (in practice, D2h) symmetry for

each of the calculated states of CNC and N3, and that we can use the C∞v (in practice,

C2v) symmetry in the geometry optimizations for C2N and NCO. In all post-RHF (CCSD

and EA/IP-EOMCC) calculations, the lowest-energy core orbitals correlating with the 1s

orbitals of the C and N atoms were kept frozen and the spherical components of the d, f ,

and g functions were employed throughout. In addition to the results of the finite basis

set calculations, the total and excitation energies obtained in the EA- and IP-EOMCC cal-

culations for the CNC, C2N, NCO, and N3 molecules were extrapolated to the CBS limit.

The CBS extrapolations were limited to the EA-EOMCCSD(2p-1h), IP-EOMCCSD(2h-1p),

active-space EA-EOMCCSD(3p-2h){4}, and active-space IP-EOMCCSD(3h-2p){2} calcula-

tions, since full EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) computations including

geometry optimizations were too expensive to be run using the cc-pVQZ basis set that would

be required to obtain reliable CBS-limit values. In all of the remaining cases, the complete

data sets corresponding to the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets were available,

enabling reasonably meaningful CBS extrapolations. To verify the numerical stability of

our CBS extrapolations, two different extrapolation schemes, referred to as the CBS-A and

CBS-B approaches, were utilized.

In the CBS-A scheme, the CBS limit of the ground-state CCSD correlation energy of

the closed-shell N -electron reference system relevant to the EA/IP-EOMCC calculations

for the (N ± 1)-electron target species was determined using the well-known extrapolation
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formula [217] given in Eq. (3.98) and the cc-pVTZ and cc-pVQZ data. Here, ∆E(X) in

Eq. (3.98) is the CCSD correlation energy obtained with the cc-pVXZ basis set, where

X represents the cardinal number of the basis set (X = 3 for cc-pVTZ and X = 4 for

cc-pVQZ), and ∆E∞ is the CCSD correlation energy in the CBS limit. The resulting

extrapolated CBS correlation energy ∆E∞ was then added to the RHF/cc-pV6Z energy

of the N -electron reference system, computed at the optimized geometry of the state of

interest resulting from the appropriate EA- or IP-EOMCC/cc-pVQZ calculations. Recalling

the well-known and previously discussed fact that the RHF energies converge exponentially

with the basis set, it is usually best to simply perform the calculations at the RHF level

with a very large correlation consistent basis set, such as cc-pV6Z, if such calculations are

affordable. As a check, the level of basis-set convergence was verified by comparing the

RHF/cc-pV5Z and RHF/cc-pV6Z data, obtaining differences of about 0.2 millihartree in all

of the examined cases. Once the CBS values of the RHF total and CCSD correlation energies

of the N -electron reference system were determined, the desired CBS limits of the ground-

and excited-state energies of the (N ± 1)-electron target species corresponding to the EA-

or IP-EOMCC calculations of interest were computed using the formula

E
EA/IP-EOMCC
µ,∞ (N ± 1) = ERHF

6Z (N) + ∆ECCSD
0,∞ (N)

+E
EA/IP-EOMCC
µ,QZ (N ± 1) − ECCSD

0,QZ (N), (3.100)

where E
EA/IP-EOMCC
µ,∞ (N ± 1) is the final extrapolated energy of the (N ± 1)-electron

state |Ψ
(N±1)
µ 〉, ERHF

6Z (N) is the ground-state RHF energy of the closed-shell N -electron

reference system obtained with the cc-pV6Z basis set, ∆ECCSD
0,∞ (N) is the extrapolated

CCSD correlation energy of the N -electron reference system obtained using Eq. (3.98),
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E
EA/IP-EOMCC
µ,QZ (N ± 1) is the total EA/IP-EOMCC energy of the (N ± 1)-electron state

|Ψ
(N±1)
µ 〉 obtained with the cc-pVQZ basis set, and ECCSD

0,QZ (N) is the total CCSD energy of

the N -electron reference system obtained using the cc-pVQZ basis set. This method of esti-

mating the CBS values of the total electronic energies of the ground and excited states of the

CNC, C2N, NCO, and N3 radicals is based on the assumption that the electron-attachment

or ionization energies ω
(N±1)
µ obtained with the cc-pVQZ basis set are essentially converged

with respect to the basis set, so all one has to do is obtain the CBS limit of the CCSD

ground-state energy of the N -electron reference system and add the cc-pVQZ values of the

electron-attachment or ionization energies to estimate the CBS energies of the ground and

excited states of the corresponding (N ± 1)-electron target species.

In the second basis set extrapolation method, referred to as the CBS-B approach, the

total CBS energy of each (N ± 1)-electron target state of interest was directly determined

using the formula [212]

E(X) = E∞ + Be−(X−1) + Ce−(X−1)2 , (3.101)

and the cc-pVDZ, cc-pVTZ, and cc-pVQZ data. As in Eq. (3.98), the X variable number

entering Eq. (3.101) is again the cardinal number of the cc-pVXZ basis set (X = 2 for

cc-pVDZ, X = 3 for cc-pVTZ, and X = 4 for cc-pVQZ), E(X) is the total EA/IP-EOMCC

energy computed with the cc-pVXZ basis set, and E∞ is the desired CBS limit of the total

EA/IP-EOMCC energy for a given electronic state of the (N ± 1)-electron species. The

difference between the CBS-A and CBS-B extrapolation schemes lies in the fact that the

latter scheme extrapolates the total EA- or IP-EOMCC energy of each electronic state of the

(N ± 1)-electron target species separately, using Eq. (3.101), whereas the former approach
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extrapolates the ground-state correlation energy of the N -electron reference system only

using Eq. (3.98) while making an assumption that the electron-attachment and ionization

energies resulting from the EA- and IP-EOMCC calculations converge faster with the basis

set than the total energies of the (N ± 1)-electron target species, as reflected in Eq. (3.100).

The results of our EA- and IP-EOMCC calculations, along with the available experi-

mental data [295–297], are reported in Tables (3.16)-(3.21). The EA-EOM-CCSD(2p-1h),

EA-EOMCCSD(3p-2h){4}, and full EA-EOMCCSD(3p-2h) results for the CNC and C2N

molecules are reported in Tables (3.16) and (3.17) for the total and adiabatic excitation en-

ergies, and (3.18) for the geometries. The IP-EOMCCSD(2h-1p), IP-EOMCCSD(3h-2p){2},

and full IP-EOMCCSD(3h-2p) results for the NCO and N3 molecules are reported in Tables

(3.19) and (3.20) for the total and adiabatic excitation energies, and (3.21) for the geometries.

Our discussion is divided into two parts.

We begin with the CNC molecule (see Tables (3.16) and (3.18)). For CNC, the EA-

EOMCC optimizations employing the DZP basis set produced results that deviate from

the previously reported [289] SAC-CI-SDT-R/PS optimized geometries and previously cal-

culated [132, 289] EA-EOMCC adiabatic excitation energies using the SAC-CI-SDT-R/PS

geometries, all obtained with the same DZP basis, by 0.001-0.009 Å and 0.002-0.003 eV,

respectively, for all states and all methods considered here. Seeing that our present EA-

EOMCC optimizations employing the DZP basis set were able to reproduce the analogous

results of the SAC-CI-SDT-R/PS geometry optimizations and the EA-EOMCC excitation

energies at the SAC-CI-SDT-R/PS geometries reported in Ref. [289], the effect of the use

of the correlation-consistent basis sets of the cc-pVXZ quality on the calculated excitation

energies and geometries was investigated.
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The ground X2Πg state of CNC is dominated by 1p excitations out of the ground state

of the closed-shell reference CNC+ ion but, the A2∆u and B2Σ+
u excited states of the

same molecule exhibit a significant two-electron excitation character relative to the X2Πg

state. As shown in Table (3.16), the basic EA-EOM-CCSD(2p-1h) optimizations produced

adiabatic excitation energies that deviate from the experimental values by 3.379-4.022 eV for

the A2∆u and B2Σ+
u states, demonstrating the same characteristically large errors compared

to experiment that are typically seen when the EA-EOMCCSD(2p-1h) approach is applied to

the excited states of radicals dominated by two-electron transitions [147–149,298]. The full

EA-EOMCCSD(3p-2h) method improves these poor results, reducing the deviations from

experiment to 0.336-0.451 eV for both the A2∆u and B2Σ+
u states, when the cc-pVDZ and

cc-pVTZ basis sets are employed. The reason for this considerable improvement in the data

over the EA-EOMCCSD(2p-1h) method is the explicit inclusion of the 3p-2h terms in the

R
(N+1)
µ operator in the EA-EOMCCSD(3p-2h) calculations.

The inclusion of all 3p-2h components in the R
(N+1)
µ operator is computationally de-

manding, particularly when one is interested in numerical gradient optimizations, such as

those performed in this work. Thus, it is of great significance to note that the active-space

EA-EOMCCSD(3p-2h){4} optimizations using the cc-pVDZ and cc-pVTZ basis sets, with

only four unoccupied orbitals in the active-space, which are only a few times more expensive

than the corresponding ground-state CCSD calculations and which require a small fraction

of the CPU time, disk, and memory when compared to the parent EA-EOMCCSD(3p-2h)

calculations, reproduce the full EA-EOMCCSD(3p-2h) optimization results to within 0.019-

0.039 eV for the adiabatic excitation energies and 0.8-3.2 millihartree for the total energies

of the ground and excited states of CNC examined in this study (see Table (3.16)). The
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deviations of the EA-EOMCCSD(3p-2h){4} results from experiment are 0.312-0.422 eV for

all three correlation consistent basis sets used in the EA-EOMCCSD(3p-2h){4} optimiza-

tions. It is interesting and somewhat surprising to note the deviations from experiment

increase slightly with the size of the cc-pVXZ basis set for all three EA-EOMCC methods

exploited in this work. To help understand this behavior, the EA-EOMCCSD(2p-1h) and

EA-EOMCCSD(3p-2h){4} results were extrapolated to the CBS limit.

Examining the total energies of the ground and excited states of CNC shown in Ta-

ble (3.16), it is clear that they are converging with the basis set in a systematic manner.

The CBS-A extrapolation scheme is based on the simplifying assumption that the electron-

attachment (or, in the IP case, ionization) energies are reasonably well converged with the

basis set, when the cc-pVQZ basis set is employed. The data in Table (3.16) show that this

is indeed a valid assumption, as the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4}

excitation energies do not significantly change when moving from the cc-pVTZ to cc-pVQZ

basis, the largest change being 0.109 eV for the less accurate EA-EOMCCSD(2p-1h) method

and only 0.003 eV for the active-space EA-EOMCCSD(3p-2h){4} approach. Moreover, the

CBS extrapolations resulting from the CBS-A and CBS-B schemes produce results that are

in good agreement with each other, especially for the higher-order EA-EOMCCSD(3p-2h){4}

method, where the differences in total energies do not exceed 1.3 millihartree, regardless of

the electronic state of CNC considered (recall that the CBS-B scheme extrapolates the total

energy of each state separately, without any simplifying assumptions). The CBS limits of

the excitation energies resulting from the CBS-A and CBS-B extrapolations obtained with

the EA-EOMCCSD(3p-2h){4} approach are essentially identical, deviating by 0.001 eV and

0.005 eV for the A2∆u and B2Σ+
u states, respectively. Thus, it may be safely concluded that
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the CBS EA-EOMCCSD(3p-2h){4} results are stable to approximately 1 millihartree for the

total energies and 0.005 eV for the adiabatic excitation energies, and can be regarded as con-

verged with the basis set. This suggests that the 0.3–0.4 eV error relative to experiment

resulting from the full and active-space EA-EOMCCSD(3p-2h) calculations for CNC are due

to either 4p-3h excitations neglected in these calculations or errors in the experimental data.

In analogy to CNC, the ground X2Π state of C2N is dominated by 1p excitations out of

the ground state of the closed-shell reference C2N+ ion, but the low-lying A2∆, B2Σ−, and

C2Σ+ excited states have significant 2p-1h contributions demonstrating the rather complex

MR nature of their corresponding wave functions. The B2Σ− state also has non-negligible

3p-2h contributions, which make this state extremely difficult to describe by the meth-

ods used in this study. All of this causes major problems in the EA-EOMCCSD(2p-1h)

calculations. As shown in Table (3.17), even with a large cc-pVQZ basis set, the EA-

EOMCCSD(2p-1h) method incorrectly orders the excited states of C2N, describing the C2Σ+

state as being lower in energy than the B2Σ− state. The errors in the EA-EOMCCSD(2p-1h)

results for the adiabatic excitation energies of C2N relative to experiment are huge. Indeed,

our geometry optimizations using the EA-EOMCCSD(2p-1h) approach produce errors in

the calculated adiabatic excitation energies of C2N relative to experiment of 3.507-3.969 eV

for the A2∆ state, 4.956-5.511 eV for the B2Σ− state, and 3.422-3.836 eV for the C2Σ+

state. As with CNC, the full inclusion of the 3p-2h components in the electron attaching

operator RN+1
µ significantly improves the adiabatic excitation energies relative to the disas-

trous EA-EOMCCSD(2p-1h) results, reducing the errors relative to experiment to at most

0.418 eV for the A2∆ state, at most 0.915 eV for the B2Σ− state, and at most 0.524 eV for

the C2Σ+ state when the cc-pVDZ and cc-pVTZ basis sets are employed, but the full EA-
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EOMCCSD(3p-2h) are computationally demanding, particularly when larger basis sets have

to be examined. Thus, it is important to examine how well the considerably less expensive

active-space EA-EOMCCSD(3p-2h) approach works for the low-lying excited states of C2N,

when the cc-pVxZ basis sets are employed.

As shown in Table (3.17), the results of the active-space EA-EOMCCSD(3p-2h){4} cal-

culations are almost identical to those obtained with the parent EA-EOM-CCSD(3p-2h)

approach. The adiabatic excitation energies obtained with the full and active-space EA-

EOMCCSD(3p-2h) methods, where the latter approach uses only four unoccupied orbitals

in the active-space, calculated using the cc-pVDZ and cc-pVTZ basis sets, differ by 0.023-

0.053 eV for all states of C2N examined here. The total energies obtained in the full EA-

EOMCCSD(3p-2h) and active-space EA-EOMCCSD(3p-2h){4} calculations employing the

cc-pVDZ and cc-pVTZ basis sets differ by 1.6-2.9 millihartree for the X2Π state, 0.5-1.1 milli-

hartree for the A2∆ state, 0.5-0.9 millihartree for the B2Σ− state, and 0.7-1.4 millihartree for

the C2Σ+ state. Comparing the EA-EOMCCSD(3p-2h){4} results with experiment, it can

be seen that the adiabatic excitation energies resulting from the EA-EOMCCSD(3p-2h){4}

calculations using the cc-pVQZ basis set differ from the available experimental data by 0.340

eV, 0.844 eV, and 0.454 eV for the A2∆, B2Σ−, and C2Σ+ states, respectively, which is a

huge error reduction when compared to the corresponding EA-EOMCCSD(2p-1h)/cc-pVQZ

calculations that give the 3.969 eV, 5.511 eV, and 3.836 eV errors for the same three states,

in addition to wrong state ordering. The full EA-EOMCCSD(3p-2h) and active-space EA-

EOMCCSD(3p-2h){4} calculations produce the correct state ordering and relatively small

errors for the A2∆ and C2Σ+ states, but the discrepancy between the full and active-space

EA-EOMCCSD(3p-2h) results on the one hand and experiment on the other hand for the
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B2Σ− state, on the order of 0.9 eV independent of the basis set, is a problem that needs to

be addressed.

The larger deviations with experiment observed in the full EA-EOMCCSD(3p-2h) and

active-space EA-EOMCCSD(3p-2h){4} calculations for the B2Σ− state, which do not seem

to be decreasing with the basis set and careful geometry optimizations performed in this

work, must be related to the presence of the non-negligible 3p-2h contributions in the B2Σ−

wave function, which indicate a highly MR character of this state that the EA-EOMCC

methods used in the present study cannot capture without incorporating higher-than-3p-2h

contributions in the EA-EOMCC considerations. As explained in Ref. [298], the presence

of significant 3p-2h contributions in the wave function requires an explicit consideration of

the 4p-3h and, perhaps, higher-than-4p-3h components of the R
(N+1)
µ operator in the EA-

EOMCC calculations, neglected at the EA-EOMCCSD(3p-2h) level. The highly MR char-

acter of the B2Σ− state becomes clear when we examine the CASPT2 and CASSCF-based

MRCI calculations reported in Ref. [299]. These calculations are in reasonable agreement

with the results of our full and active-space EA-EOMCCSD(3p-2h) calculations for the A2∆

and C2Σ+ states, producing a 0.238 eV error for the A2∆ state and 0.219 eV error for the

C2Σ+ state when the CASPT2 approach is employed, but the CASPT2 and MRCI results

obtained in Ref. [299] for the B2Σ− state are considerably more accurate than those ob-

tained here with the EA-EOMCCSD(3p-2h) theory levels. Indeed, the CASPT2 and MRCI

calculations for the B2Σ− state reported in Ref. [299] give errors of 0.225 eV and 0.250

eV, respectively, relative to experiment, as opposed to ∼ 0.9 eV obtained with the full EA-

EOMCCSD(3p-2h) and active-space EA-EOMCCSD(3p-2h){4} methods. Interestingly, the

MRCI approach improves the CASPT2 results for the A2∆ and C2Σ+ states as well, reduc-
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ing the 0.238 eV and 0.219 eV errors obtained in the CASPT2 calculations to 0.060 eV and

0.058 eV, respectively [299], which suggests that the incorporation of the 4p-3h and, per-

haps, some other higher-order excitations in the EA-EOMCC calculations may be necessary

to further improve the description of all three excited states of C2N examined in this work.

Since the calculations reported in the present paper exclude the possibility that the basis

set or geometry optimizations may help the EA-EOMCCSD(3p-2h) results, the next logical

step is to examine the role of 4p-3h excitations in the EA-EOMCC calculations. One may

also have to examine whether the use of the full CCSDT approach rather than the CCSD

method in providing the ground-state wave function for the reference C2N+ ion plays a role

here. These will be the topics of our group’s future work.

As shown in Table (3.17), the adiabatic excitation energies resulting from the EA-

EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} calculations with the cc-pVQZ basis set

are reasonably well converged with the basis and, although the total energies of the individ-

ual electronic states of C2N are not converged when the cc-pVQZ basis set is employed, they

behave in a systematic manner as we go from the cc-pVDZ to cc-pVQZ basis sets, facilitat-

ing the CBS extrapolations. Indeed, when going from the cc-pVTZ to the cc-pVQZ basis

sets, the changes in the EA-EOMCCSD(3p-2h){4} excitation energies are very small, at most

0.018 eV. The analogous changes in the EA-EOMCCSD(2p-1h) excitation energies are some-

what larger (at most 0.120 eV), but can still be viewed as reasonably stable considering the

complicated nature of the C2N excited states that the EA-EOMCCSD(2p-1h) approach has

significant problems with. Overall, the simplifying assumption of the CBS-A extrapolation

scheme that one can treat the electron-attachment energies resulting from the EA-EOMCC

calculations with the cc-pVQZ basis set as essentially converged values remains valid for
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C2N, so we expect the CBS-A scheme to provide meaningful results. This can be verified

by comparing the CBS-A and CBS-B extrapolations. Comparing the EA-EOMCCSD(2p1h)

CBS-A and CBS-B values, the total energies differ by 1.9 millihartree for the X2Π state, 0.1

millihartree for the A2∆ state, 0.5 millihartree for the B2Σ− state, and 0.2 millihartree for

the C2Σ+ state. The adiabatic excitation energies resulting from the CBS-A and CBS-B

extrapolations of the EA-EOMCCSD(2p1h) data differ by 0.054 eV for the A2∆ state, 0.066

eV for the B2Σ− state, and 0.047 eV for the C2Σ+ state. The CBS-A and CBS-B results for

the EA-EOMCCSD(3p-2h){4} total energies differ by 6.0 millihartree for the X2Π state, 7.5

millihartree for the A2∆ state, 8.2 millihartree for the B2Σ− state, and 7.6 millihartree for

the C2Σ+ state. The differences in the adiabatic excitation energies obtained with the two

CBS extrapolation schemes, as applied to the EA-EOMCCSD(3p-2h){4} data, are 0.042 eV,

0.062 eV, and 0.045 eV for the A2∆, B2Σ− and C2Σ+ states, respectively. We can conclude

that our CBS EA-EOMCC results for the C2N molecule are generally stable to within about

8 millihartree for the total energies and 0.060 eV for the adiabatic excitation energies. The

deviations of the CBS-A extrapolated EA-EOMCCSD(3p-2h){4} results from experiment

are 0.371 eV for the A2∆ state, 0.893 eV for the B2Σ− state, and 0.491 eV for the C2Σ+

state. The analogous CBS-B calculations employing the EA-EOMCCSD(3p-2h){4} data

give errors of 0.329 eV, 0.831 eV, and 0.446 eV, respectively. These results indicate once

again that higher-than-3p-2h excitations and, perhaps, methods better than CCSD for the

description of the ground state of the reference C2N+ ion may have to be included in the

EA-EOMCC calculations for the low-lying states of the C2N molecule, particularly in the

case of the B2Σ− state.

Having demonstrated the significance of higher than 2p-1h contributions for an accurate
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description of the excitation energies in the CNC and C2N molecules and having established

the ability of the active-space EA-EOMCCSD(3p-2h) approach to capture the most signif-

icant 3p-2h contributions with only a few active orbitals, independently of the basis set,

we turn now to the effectiveness of the EA-EOMCC schemes in describing the equilibrium

geometries of the ground and excited states of CNC and C2N. As seen in Table (3.18), the

EA-EOMCCSD(2p-1h) level of theory gives the C–N bond lengths in CNC designated as

RC-N, which deviate from the corresponding experimental values by 0.003-0.015 Å for the

X2Πg state, 0.004-0.009 Å for the A2∆u state, and 0.001-0.016 Å for the B2Σ+
u state, when

the cc-pVXZ basis sets with X = D, T, and Q are employed. The full EA-EOMCCSD(3p-2h)

approach employing the cc-pVDZ and cc-pVTZ basis sets produces RC-N values that de-

viate from experiment by 0.001-0.017 Å, 0.003-0.012 Å, and 0.004-0.011 Å for the X2Πg,

A2∆u, and B2Σ+
u states, respectively, i.e., results that are of equally high quality and not

much different than the low-order EA-EOMCCSD(2p-1h) data. The analogous active-space

EA-EOMCCSD(3p-2h){4} calculations give RC-N bond lengths that differ from experiment

by 0.001-0.017 Å in the case of the X2Πg state, 0.003-0.012 Å in the case of the A2∆u

state, and 0.005-0.014 Å when the B2Σ+
u state is examined. All of this shows that not

only is the EA-EOMCCSD(3p-2h){4} approach able to reproduce the more computationally

demanding EA-EOMCCSD(3p-2h) results for the nuclear geometries of the low-lying states

of CNC, but that the high-level EA-EOMCCSD(3p-2h) values of RC-N and those obtained

with the the inexpensive EA-EOMCCSD(2p-1h) method differ only by 0.002-0.004 Å for the

X2Πg state and 0.001-0.003 Å for the A2∆u and B2Σ+
u states, at least when the cc-pVDZ

and cc-pVTZ basis sets are employed. The active-space EA-EOMCCSD(3p-2h){4} approach

and the EA-EOMCCSD(2p-1h) method give RC-N values that differ by at most 0.004 Å for
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all states of CNC and all basis sets examined in this work, confirming the observation that

it is sufficient to use the low-level EA-EOMCCSD(2p-1h) approach to obtain an accurate

description of the equilibrium geometries of the low-lying states of CNC.

Similar, but not entirely identical, remarks apply to the C2N molecule. As shown in

Table (3.18), the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} approaches em-

ploying the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets give C–C and C–N bond lengths,

RC-C and RC-N, respectively, that differ by at most 0.065 Å when we compare the EA-

EOMCCSD(2p-1h) and the corresponding EA-EOMCCSD(3p-2h){4} data for all electronic

states of C2N examined in this work, mostly because of the inability of the EA-EOM-

CCSD(2p-1h) approach to provide a highly accurate description of the excited-state geome-

tries [the differences between the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} ge-

ometries of the C2N’s ground state are less than 0.004 Å]. On the other hand, the differences

between the active-space EA-EOM-CCSD(3p-2h){4} and full EA-EOMCCSD(3p-2h) values

of RC-C and RC-N obtained with the cc-pVDZ and cc-pVTZ basis sets do not exceed 0.001 Å,

confirming our earlier remarks about the ability of the active-space EA-EOMCCSD(3p-2h)

approach to capture essentially all correlation effects that are included in the full EA-EOM-

CCSD(3p-2h) calculations. We could not find any experimental data for the geometries of the

ground and excited states of C2N, so we cannot comment on the accuracy of our RC-C and

RC-N values resulting from the EA-EOMCC calculations in any definitive manner, but, judg-

ing by the high quality of the EA-EOMCC results for the geometries of the low-lying states

of CNC, we can conclude that the geometries resulting from the full EA-EOMCCSD(3p-2h)

and active-space EA-EOMCCSD(3p-2h){4} calculations using the cc-pVTZ or cc-pVQZ ba-

sis sets are of the similarly high quality. The low-level EA-EOMCCSD(2p-1h) calculations
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seem less accurate than in the CNC case, particularly when the excited states of C2N are

examined, but they are still in reasonable agreement with the high-level full and active-space

EA-EOMCCSD(3p-2h) results.

The above discussion provides us with an important insight about the performance of the

EA-EOMCC methods. The EA-EOMCCSD(2p-1h) approach, while generally inadequate for

an accurate description of the excitation energies in open-shell systems, such as the CNC and

C2N molecules examined in this work, is capable of providing reasonably accurate equilibrium

geometries, even for excited states that have a significant MR character. On the other hand,

it seems to be generally safer to use the active-space EA-EOMCCSD(3p-2h) approach in

geometry optimizations, particularly since it provides results that are virtually identical to

the corresponding full EA-EOMCCSD(3p-2h) data, both for the excitation energies and

nuclear geometries.

We now turn to the IP-EOMCC calculations for the NCO and N3 molecules, which

are summarized in Tables (3.19)–(3.21). For both molecules, the IP-EOMCC optimizations

employing the DZP basis set, carried out in the present work, produced results that are

very similar to the previously reported [132, 289] IP-EOMCC adiabatic excitation energies

calculated at the SAC-CI-SDT-R/PS optimized geometries, all obtained with the same DZP

basis as that used here. For example, the deviations between the adiabatic excitation energies

of NCO and N3 obtained in the present IP-EOMCC/DZP optimizations and the analogous

excitation energies reported in Refs. [132,289], which used the geometries obtained with the

SAC-CI-SDT-R/PS approach, are 0.001-0.078 eV for all states and all methods considered

in this study. As in the case of the EA-EOMCC calculations, after seeing that our present

IP-EOMCC optimizations for the ground and excited states of NCO and N3 employing the
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DZP basis set were able to reproduce the analogous results calculated at the geometries

obtained in the SAC-CI-SDT-R/PS calculations, reported in Refs. [132, 289], we moved to

the examination of the effect of the use of the correlation-consistent basis sets of the cc-pVXZ

quality on the calculated excitation energies and geometries.

Unlike the CNC and C2N molecules, which are characterized by the presence of low-

lying excited states with a significant MR character in their respective electronic spectra,

the low-lying states of NCO and N3 have a predominantly 1h excitation character relative to

the corresponding NCO− and N−
3 reference ions, with only small contributions from higher-

than-1h excitations. As a result, it is much easier to describe the low-lying states of NCO

and N3 by the IP-EOMCC methods and already the basic IP-EOMCCSD(2h-1p) approach

performs quite well. For example, as shown in Table (3.19), the deviations from experiment

for the adiabatic excitations in NCO resulting from the IP-EOMCCSD(2h-1p) calculations

are only 0.007-0.098 eV for the A2Σ+ state and 0.336-0.381 eV for the B2Π state when

the cc-pVXZ basis sets with X = D, T, and Q are employed. Inclusion of higher-order

(3h-2p) correlation effects through the full IP-EOMCCSD(3h-2p) method offers additional

improvements, reducing the overall deviations from experiment to 0.018-0.072 eV in the

A2Σ+ case and 0.044-0.085 eV in the B2Π case, when the cc-pVDZ and cc-pVTZ basis sets

are employed.

The inexpensive active-space variant of IP-EOMCCSD(3h-2p) using only two active oc-

cupied orbitals, IP-EOMCCSD(3h-2p){2}, yields similar excitation energy values to those

from its more expensive parent scheme, with somewhat larger deviations from experiment

of 0.207-0.312 eV for the A2Σ+ state and very small 0.063-0.139 eV deviations for the B2Π

state, confirming that one can essentially use any IP-EOMCC approach and obtain a reason-
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able description of the low-lying states of NCO, but the deviations between the results of the

full and active-space IP-EOMCCSD(3h-2p) calculations for NCO are somewhat larger than

those observed in the EA-EOMCCSD(3p-2h) computations for CNC and C2N. This is par-

ticularly true for the A2Σ+ state, where they are 0.240 eV for the adiabatic excitation energy

and 11.0 millihartree for the total energy when the cc-pVDZ basis set is employed and 0.218

eV and 10.7 millihartree when the cc-pVTZ basis set is used. As pointed out in previous

work [289], these larger differences between the full and active-space IP-EOMCCSD(3h-2p)

results for the A2Σ+ state of NCO are likely due to the small active-space used in the latter

calculations, which consists of only one pair of highest-energy occupied π orbitals of NCO−,

and/or from changes in the character of molecular orbitals when going from the NCO− ref-

erence ion to the NCO target species. On the other hand, the overall agreement between

the full and active-space IP-EOMCCSD(3h-2p) results for NCO is rather good. For exam-

ple, the differences between the full and active-space IP-EOMCCSD(3h-2p) results for the

adiabatic excitation energies corresponding to the B2Π state are only 0.019 eV when the

cc-pVDZ basis set is employed and 0.023 eV when the cc-pVTZ basis set is used. The differ-

ences between the total energies obtained in the full IP-EOMCCSD(3h-2p) and active-space

IP-EOMCCSD(3h-2p){2} calculations for the X2Π and B2Π states range between 2.1 and

3.5 millihartree when the cc-pVDZ and cc-pVTZ basis set are used, which is an excellent

agreement.

Many of the above observations remain valid when the IP-EOMCC methods are applied

to N3. As shown in Table (3.20), the adiabatic excitation energies corresponding to the B2Σ+
u

state obtained with the IP-EOMCCSD(2h-1p) optimizations employing the cc-pVXZ basis

sets with X = D, T, and Q differ from the corresponding experimental value by 0.056-0.110
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eV. Again, as in the NCO case, the full IP-EOMCCSD(3h-2p) approach reduces the already

small errors in the IP-EOMCCSD(2h-1p) results for the B2Σ+
u state of N3 to the even smaller

0.023-0.049 eV range. The much less expensive active-space IP-EOMCCSD(3h-2p){2} cal-

culations using the cc-pVXZ basis sets with X = D, T, and Q produce errors of 0.174-0.200

eV, which are larger than those obtained with full IP-EOMCCSD(3h-2p), but the general

agreement between the full and active-space IP-EOMCCSD(3h-2p) data is reasonable. In-

deed, the total energies resulting from the full IP-EOMCCSD(3h-2p) and active-space IP-

EOMCCSD(3h-2p){2} calculations differ by only 1.4-1.7 millihartree in the X2Πg case and

6.9-7.3 millihartree in the case of the B2Σ+
u state. The adiabatic excitation energies cor-

responding to the B2Σ+
u state obtained in the full and active-space IP-EOMCCSD(3h-2p)

calculations with the cc-pVDZ and cc-pVTZ basis sets differ by 0.151 eV, which is a reason-

able agreement. Again, the somewhat larger differences between the full and active-space

IP-EOMCCSD(3h-2p) data for the B2Σ+
u state compared to the analogous EA-EOMCC cal-

culations for CNC and C2N are likely due to the reasons cited above for the NCO molecule.

We now turn our attention to the numerical stability of our IP-EOMCC results for the

NCO and N3 molecules in the CBS limit. As in the EA-EOMCC calculations for CNC and

C2N, the IP-EOMCC total energies of each state of NCO and N3 shown in Tables (3.19)

and (3.20) behave in a systematic manner, as we go from the cc-pVDZ to cc-pVQZ basis

sets, showing the initial signs of convergence; and the excitation energies obtained in the IP-

EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2} calculations with the cc-pVQZ basis set

can be regarded as reasonably well converged, which helps the validity of the CBS-A extrapo-

lations. Indeed, the differences between the adiabatic excitation energies calculated with the

cc-pVTZ and cc-pVQZ basis sets at the IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2}
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levels of theory are 0.028-0.029 eV for the A2Σ+ state of NCO, 0.020-0.031 eV for the B2Π

state of NCO, and 0.003 eV for the B2Σ+
u state of N3. It is, therefore, not surprising that

the CBS-A and CBS-B extrapolations for the ground and excited states of the NCO and N3

molecules summarized in Tables (3.19) and (3.20) are in good agreement. Indeed, the CBS-A

and CBS-B total energies obtained with the IP-EOMCCSD(2h-1p) data for NCO differ by

only 1.5 millihartree for the X2Π and A2Σ+ states and 2.7 millihartree for the B2Π state.

The corresponding excitation energies resulting from both CBS extrapolations differ by 0.001

eV for the A2Σ+ state and 0.034 eV for the B2Π state. In consequence, the CBS-A- and CBS-

B-extrapolated IP-EOMCCSD(2h-1p) excitation energies obtained for NCO differ from the

corresponding experimental values by 0.009-0.010 eV in the A2Σ+ case and 0.393-0.427 eV in

the case of the B2Π state. Similar remarks apply to the IP-EOMCCSD(3h-2p){2} approach,

where the corresponding CBS-A- and CBS-B-extrapolated total energies differ by 2.5, 4.1,

and 3.0 millihartree for the X2Π, A2Σ+, and B2Π states, respectively, so that the differences

in the resulting CBS-A and CBS-B IP-EOMCCSD(3h-2p){2} excitation energies are 0.045

eV for the A2Σ+ state and 0.014 eV for the B2Π state. As a consequence, the CBS-A- and

CBS-B-extrapolated IP-EOMCCSD(3h-2p){2} adiabatic excitation energies for NCO differ

from experiment by 0.189-0.234 eV for the A2Σ+ state and 0.159-0.173 eV for the B2Π state.

Much of the above analysis applies to N3. Indeed, although the CBS-A and CBS-B extrap-

olations applied to the IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2} total energies

produce somewhat larger differences than in the case of NCO (7.6-8.4 millihartree in the case

of the X2Πg state and 6.6-8.6 millihartree in the case of the B2Σ+
u state), the adiabatic exci-

tation energies resulting from both CBS extrapolations are very stable, to within 0.003 eV for

the IP-EOMCCSD(2h-1p) approach and 0.002 eV for the IP-EOMCCSD(3h-2p){2} method.
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The CBS-A- and CBS-B-extrapolated IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2}

adiabatic excitation energies corresponding to the B2Σ+
u state of N3 are within 0.107-0.194

eV from experiment.

To conclude this discussion, we examine the performance of the IP-EOMCC methods

in describing the equilibrium geometries of the ground and low-lying excited states of the

NCO and N3 species. The results of our geometry optimizations for NCO and N3 are

summarized in Table (3.21). In the case of the X2Π state of the NCO molecule, the basic

IP-EOMCCSD(2h-1p) approach produces results that deviate from experiment by 0.016-

0.031 Å for the N–C bond length (designated as RN-C) and 0.018-0.033 Å for the C–O

bond length (designated as RC-O) when the cc-pVXZ basis sets with X = D, T, and Q

are employed. The same approach applied to the A2Σ+ state of NCO gives errors of 0.014-

0.031 Å for RN-C and 0.018-0.031 Å for RC-O. The IP-EOMCCSD(3h-2p) results exhibit

very similar trends and accuracies, confirming the small role of higher-order contributions

neglected in IP-EOMCCSD(2h-1p) and present in IP-EOMCCSD(3h-2p). The differences

between the IP-EOMCCSD(3h-2p) and experimental values of RN-C are 0.024-0.038 Å for

the X2Π state and 0.021-0.035 Å for the A2Σ+ state. The analogous differences for RC-O

are 0.015-0.025 Å for the X2Π state and 0.012-0.022 Å for the A2Σ+ state. Although it may

very well be that higher-than-3h-2p contributions neglected in the IP-EOMCCSD(3h-2p)

calculations and high angular momentum functions that are not present in the cc-pVTZ

(or cc-pVQZ) basis sets are the sources of the above errors, it is also possible that the

experimental geometries of the X2Π and A2Σ+ states of NCO reported in Ref. [295] might

be in some error too, since none of the states of NCO examined here is as challenging as

some of the states of CNC and C2N. While there are unexplained differences between the
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experimentally N–C and C–O bond lengths in the X2Π and A2Σ+ states of NCO and our

theoretical predictions, it is of great interest to note that the differences between the results of

the geometry optimizations using the full and active-space IP-EOMCCSD(3h-2p) approaches

are virtually none. Indeed, there is no difference (to within 0.001 Å) between the full IP-

EOMCCSD(3h-2p) and active-space IP-EOMCCSD(3h-2p){2} results for the N–C bond

length in the X2Π state and the corresponding C–O bond lengths differ by 0.002 Å only,

when the cc-pVDZ and cc-pVTZ are employed. In the case of the A2Σ+ state, the differences

between the full IP-EOMCCSD(3h-2p) and active-space IP-EOMCCSD(3h-2p){2} values

of RN-C and RC-O are 0.004 Å and 0.001-0.002 Å, respectively. In the case of the B2Π

state, these differences are 0.003 Å for RN-C and 0.006-0.008 Å for RC-O. The active-

space IP-EOMCCSD(3h-2p){2} calculations are clearly capable of reproducing the parent

IP-EOMCCSD(3h-2p) data for the N–C and C–O bond lengths in the ground and excited

states of NCO to very high accuracy.

Much of the above discussion applies to N3. The nearest-neighbor N–N bond lengths, des-

ignated as RN-N, resulting from the IP-EOMCCSD(2h-1p) calculations with the cc-pVXZ

basis sets with X = D, T, and Q, differ from the corresponding experimental data by

0.003-0.020 Å for the X2Πg state and 0.001-0.015 Å for the B2Σ+
u state. The higher-order

IP-EOMCCSD(3h-2p) optimizations with the cc-pVDZ and cc-pVTZ basis sets produce sim-

ilar results, errors of 0.002-0.013 Å for the X2Πg state and 0.007 Å for the B2Σ+
u state. The

active-space IP-EOMCCSD(3h-2p){2} approach, for which we could also afford the calcu-

lations with the cc-pVQZ basis set, produces RN-N values that deviate from experiment

by 0.002-0.016 Å for the X2Πg state and 0.004-0.012 Å for the B2Σ+
u state. Again, there

is a virtually perfect agreement between the expensive full IP-EOMCCSD(3h-2p) and in-
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expensive active-space IP-EOMCCSD(3h-2p){2} calculations, where there is no difference

(to within 0.001 Å) between the two sets of data in the case of he X2Πg state and a very

small, 0.002-0.003 Å, difference between the full IP-EOMCCSD(3h-2p) and active-space IP-

EOMCCSD(3h-2p){2} values of RN-N in the case of the B2Σ+
u state. As in the case of the

NCO molecule, the origin of the deviations between the IP-EOMCC calculations employing

basis sets as large as cc-pVQZ, which seem numerically quite stable, and experimental RN-N

values could lie in the higher-than-3h-2p correlations that we do not consider in this work

or in the significance of the high angular momentum functions absent in the cc-pVTZ and

cc-pVQZ bases, but one cannot exclude the possibility that the experimental data reported

in Ref. [295] may need to be revisited. As in the EA-EOMCC calculations for the CNC and

C2N, it seems to us that the basic IP-EOMCCSD(2h-1p) method is capable of producing

optimized geometries of the ground- and excited-state NCO and N3 molecules that are com-

parable to those obtained with the computationally more demanding IP-EOMCCSD(3h-2p)

methods, which is a useful observation from the point of view of other applications of such

methods to geometry optimizations in other open-shell species.
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Table 3.16: Total and adiabatic excitation energies for the ground and low-lying excited states of CNC, as obtained with the
different EA-EOMCC approaches using the DZP [4s2p1d] and cc-pVXZ (X = D, T, Q) basis sets and extrapolating to the
CBS limit.

Total Energy (hartree) Adiabatic Excitation Energy (eV)

Method Basis X 2Πg A 2∆u B 2Σ+
u A 2∆u -X 2Πg B 2Σ+

u -X 2Πg

EA-EOMCCSD(2p-1h) DZP -130.406718 -130.141822 -130.125873 7.208 7.642
x=D -130.402813 -130.136443 -130.120048 7.248 7.694
x=T -130.502669 -130.220645 -130.204320 7.674 8.118
x=Q -130.534268 -130.248264 -130.232033 7.783 8.224
CBS-A -130.551020 -130.264878 -130.248586 7.786 8.230
CBS-B -130.552172 -130.264020 -130.247849 7.841 8.281

EA-EOMCCSD(3p-2h) DZP -130.411686 -130.260720 -130.238177 4.108 4.721
x=D -130.408191 -130.257611 -130.234329 4.097 4.731
x=T -130.510334 -130.358548 -130.335201 4.130 4.766

EA-EOMCCSD(3p-2h){4} DZP -130.409784 -130.259560 -130.236779 4.088 4.708
x=D -130.406511 -130.256819 -130.233332 4.073 4.712
x=T -130.507154 -130.356797 -130.333074 4.091 4.737
x=Q -130.538435 -130.388104 -130.364472 4.091 4.734
CBS-A -130.554997 -130.404664 -130.380953 4.091 4.736
CBS-B -130.556095 -130.405806 -130.382242 4.090 4.731

Experimenta 3.761 4.315

a Taken from Refs. [295,296].
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Table 3.17: Total and adiabatic excitation energies for the ground and low-lying excited states of C2N, as obtained with the
different EA-EOMCC approaches using the DZP [4s2p1d] and cc-pVXZ (X = D, T, Q) basis sets and extrapolating to the
CBS limit.

Total Energy (hartree) Adiabatic Excitation
Energy (eV)

Method Basis X 2Π A 2∆ B 2Σ− C 2Σ+ A 2∆- B 2Σ−- C 2Σ+-

X 2Π X 2Π X 2Π

EA-EOMCCSD(2p-1h) DZP -130.400501 -130.176452 -130.117500 -130.156651 6.097 7.701 6.635
x=D -130.400086 -130.174345 -130.115824 -130.152828 6.143 7.735 6.728
x=T -130.499176 -130.259914 -130.198940 -130.240134 6.511 8.170 7.049
x=Q -130.530280 -130.287558 -130.225643 -130.267832 6.605 8.290 7.142
CBS-A -130.546521 -130.303831 -130.241794 -130.283903 6.604 8.292 7.146
CBS-B -130.548409 -130.303738 -130.241271 -130.284090 6.658 8.358 7.193

EA-EOMCCSD(3p-2h) DZP -130.405260 -130.292989 -130.270231 -130.265181 3.055 3.674 3.812
x=D -130.404842 -130.292610 -130.270337 -130.264086 3.054 3.660 3.830
x=T -130.506456 -130.394642 -130.370688 -130.366299 3.043 3.694 3.814

EA-EOMCCSD(3p-2h){4} DZP -130.403651 -130.292385 -130.269696 -130.264361 3.028 3.645 3.791
x=D -130.403260 -130.292089 -130.269870 -130.263371 3.025 3.630 3.807
x=T -130.503555 -130.393547 -130.369756 -130.364858 2.993 3.641 3.774
x=Q -130.533052 -130.423692 -130.399922 -130.394864 2.976 3.623 3.760
CBS-A -130.543559 -130.433071 -130.408605 -130.404035 3.007 3.672 3.797
CBS-B -130.549517 -130.440555 -130.416854 -130.411633 2.965 3.610 3.752

Experimenta 2.636 2.779 3.306

aTaken from Refs. [295,297].
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Table 3.18: Comparison of the optimized equilibrium geometries for the low-lying states of CNC and C2N, as obtained with
the EA-EOMCC and SAC-CI-SDT-R/PS approaches using the DZP[4s2p1d] and cc-pVXZ (X = D, T, Q) basis sets.

CNCa C2Nb

Method Basis X 2Πg A 2∆u B 2Σ+
u X 2Π A 2∆ B 2Σ− C 2Σ+

SAC-CI-SDT-R/PS DZP 1.253 1.256 1.259 (1.400, 1.185) (1.315, 1.207) (1.302, 1.223) (1.311, 1.214)
EA-EOMCCSD(2p-1h) DZP 1.259 1.258 1.260 (1.412, 1.196) (1.372, 1.186) (1.372, 1.190) (1.365, 1.192)

x=D 1.260 1.258 1.260 (1.412, 1.193) (1.376, 1.182) (1.376, 1.186) (1.375, 1.188)
x=T 1.242 1.245 1.247 (1.389, 1.178) (1.363, 1.166) (1.361, 1.170) (1.356, 1.171)
x=Q 1.239 1.241 1.243 (1.385, 1.174) (1.362, 1.162) (1.360, 1.166) (1.356, 1.167)

EA-EOMCCSD(3p-2h) DZP 1.261 1.262 1.264 (1.410, 1.198) (1.329, 1.217) (1.308, 1.241) (1.322, 1.224)
x=D 1.262 1.261 1.263 (1.409, 1.195) (1.332, 1.212) (1.313, 1.234) (1.325, 1.220)
x=T 1.246 1.246 1.248 (1.388, 1.180) (1.316, 1.196) (1.297, 1.215) (1.308, 1.203)

EA-EOMCCSD(3p-2h){4} DZP 1.262 1.262 1.264 (1.411, 1.197) (1.329, 1.217) (1.308, 1.241) (1.322, 1.224)
x=D 1.262 1.261 1.264 (1.408, 1.195) (1.332, 1.212) (1.313, 1.234) (1.325, 1.220)
x=T 1.246 1.246 1.249 (1.389, 1.180) (1.316, 1.196) (1.297, 1.216) (1.308, 1.203)
x=Q 1.242 1.243 1.245 (1.387, 1.175) (1.315, 1.190) (1.295, 1.210) (1.307, 1.197)

Experimentc 1.245 1.249 1.259

aThe RC-N bond lengths in Å. The D2h symmetry was employed. bThe numbers in parentheses report the RC-C and RC-N
bond lengths, respectively, in Å. The C2v symmetry was employed. cTaken from [295–297].
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Table 3.19: Total and adiabatic excitation energies for the ground and low-lying excited states of NCO, as obtained with the
different IP EOMCC approaches using the DZP [4s2p1d] and cc-pVXZ (X = D, T, Q) basis sets and extrapolating to the CBS
limit.

Total Energy (hartree) Adiabatic Excitation Energy (eV)

Method Basis X 2Π A 2Σ+ B 2Π A 2Σ+-X 2Π B 2Π-X 2Π

IP EOMCCSD(2h-1p) DZP -167.581951 -167.475380 -167.427707 2.900 4.197
x=D -167.576116 -167.468912 -167.419125 2.919 4.273
x=T -167.718401 -167.613444 -167.560443 2.856 4.298
x=Q -167.763112 -167.659168 -167.604432 2.828 4.318
CBS-A -167.786913 -167.683604 -167.626529 2.811 4.364
CBS-B -167.788412 -167.685072 -167.629275 2.812 4.330

IP EOMCCSD(3h-2p) DZP -167.591701 -167.486508 -167.448441 2.862 3.898
x=D -167.587630 -167.481331 -167.441319 2.893 3.981
x=T -167.732789 -167.628442 -167.584981 2.839 4.022

IP EOMCCSD(3h-2p){2} DZP -167.589579 -167.476255 -167.446490 3.081 3.891
x=D -167.585489 -167.470340 -167.438481 3.133 4.000
x=T -167.730109 -167.617771 -167.581463 3.057 4.045
x=Q -167.775958 -167.664698 -167.626155 3.028 4.076
CBS-A -167.799482 -167.687223 -167.648439 3.055 4.110
CBS-B -167.801944 -167.691316 -167.651415 3.010 4.096

Experimenta 2.821 3.937

aTaken from Ref. [295].
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Table 3.20: Total and adiabatic excitation energies for the ground and low-lying excited states of N3, as obtained with the
different IP EOMCC approaches using the DZP [4s2p1d] and cc-pVXZ (X = D, T, Q) basis sets and extrapolating to the CBS
limit.

Total Energy (hartree) Adiabatic Excitation Energy (eV)

Method Basis X 2Πg B 2Σ+
u B 2Σ+

u -X 2Πg

IP EOMCCSD(2h-1p) DZP -163.716374 -163.545829 4.641
x=D -163.712083 -163.542627 4.611
x=T -163.848768 -163.677460 4.662
x=Q -163.891293 -163.719861 4.665
CBS-A -163.923747 -163.752426 4.662
CBS-B -163.915306 -163.743856 4.665

IP EOMCCSD(3h-2p) DZP -163.729782 -163.560803 4.598
x=D -163.726673 -163.558437 4.578
x=T -163.865416 -163.696218 4.604

IP EOMCCSD(3h-2p){2} DZP -163.728362 -163.554434 4.733
x=D -163.725315 -163.551533 4.729
x=T -163.863766 -163.689041 4.755
x=Q -163.907325 -163.732710 4.752
CBS-A -163.939566 -163.764109 4.747
CBS-B -163.931977 -163.757469 4.749

Experimenta 4.555

aTaken from Ref. [295].
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Table 3.21: Comparison of the optimized equilibrium geometries for the low-lying states of N3 and NCO, as obtained with the
IP EOMCC and SAC-CI-SDT-R/PS approaches using the DZP [4s2p1d] and cc-pVXZ (X = D, T, Q) basis sets.

N3
a NCOb

Method Basis X 2Πg B 2Σ+
u X 2Π A 2Σ+ B 2Π

SAC-CI-SDT-R/PS DZP 1.188 1.185 (1.230, 1.193) (1.191, 1.190) (1.220, 1.309)
IP EOMCCSD(2p-1h) DZP 1.195 1.191 (1.232, 1.196) (1.197, 1.192) (1.225, 1.318)

x=D 1.185 1.181 (1.231, 1.188) (1.196, 1.184) (1.223, 1.313)
x=T 1.171 1.169 (1.219, 1.177) (1.182, 1.175) (1.206, 1.306)
x=Q 1.168 1.165 (1.216, 1.173) (1.179, 1.171) (1.202, 1.304)

IP EOMCCSD(3p-2h) DZP 1.200 1.196 (1.240, 1.198) (1.200, 1.198) (1.235, 1.328)
x=D 1.190 1.187 (1.238, 1.191) (1.200, 1.190) (1.233, 1.322)
x=T 1.175 1.173 (1.224, 1.181) (1.186, 1.180) (1.216, 1.312)

IP EOMCCSD(3p-2h){2} DZP 1.200 1.194 (1.240, 1.196) (1.196, 1.196) (1.239, 1.319)
x=D 1.190 1.184 (1.238, 1.189) (1.196, 1.189) (1.236, 1.314)
x=T 1.175 1.171 (1.224, 1.179) (1.182, 1.178) (1.219, 1.306)
x=Q 1.172 1.168 (1.222, 1.174) (1.179, 1.174) (1.214, 1.303)

Experimentc 1.188 1.180 (1.200, 1.206) (1.165, 1.202)

aThe RN-N bond lengths in Å. The D2h symmetry was employed. bThe numbers in parentheses report the RN-C and RC-O
bond lengths, respectively, in Å. The C2v symmetry was employed. cTaken from Ref. [295].
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Chapter 4

Potential Energy Surface

Extrapolation Schemes

4.1 Motivation

The primary goal of this dissertation so far has been the examination of ab initio electronic

structure methods which allow for the efficient generation of highly accurate molecular PESs

or chemical reaction pathways. Unfortunately, under the constraints of current computing

capabilities and algorithms, the range of applicability of the electronic structure methods

discussed in Sect. (3) is limited to small- to medium-sized systems if local correlation, frag-

mentation, or other similar techniques are not exploited, and those have additional intrinsic

errors. This is not only because of characteristic steep scalings of computer costs of typical

high-accuracy ab initio methods with the system size, but also because of the enormous num-

bers of points typically associated with PESs of larger molecules. Under the conventional

procedure, one usually follows to obtain a PES, the calculation of mτ points is required,
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where m is the number of nuclear geometries required to represent a one-dimensional PES

cut (typically, m is on the order of 10) and τ is the PES dimension (for the one-dimensional

PES cuts along the relevant intrinsic reaction coordinates, τ = 1; for the global multidimen-

sional PESs, τ = 3M− 6, where M is the number of atomic nuclei in the molecular system

of interest). Meanwhile, the CPU time associated with the accurate ab initio electronic

structure calculation of a single point of the PES scales at least as kn4
u, where the prefactor

k is a polynomial function of the number of occupied orbitals no. For most medium to large

systems this can cause even a single point energy calculation to become prohibitively expen-

sive when using a basis set of realistic size. The total CPU time required to generate a PES

for a given molecular system scales as kmτn4
u, a scaling so poor that studies involving larger

polyatomic systems must be limited to small basis sets and small numbers of points on the

PES for the calculations to remain computationally feasible. The focus of this chapter is to

develop and test numerical techniques which can help reduce the enormous computer costs

associated with the conventional procedure for generating PESs.

Considerable progress has been made toward alleviating these large computer costs with

the proposal of an ab initio extrapolation scheme, described in Ref. [184], that predicts a PES

corresponding to a larger basis set from the results of smaller basis set calculations by scal-

ing electron correlation energies. In the PES extrapolation scheme suggested in Ref. [184], a

universal correlation energy scaling factor is determined at a single nuclear geometry, called

a pivot geometry, over a series of basis sets of growing size. The scaling factor is then applied

to electron correlation energies calculated using smaller basis sets at the remaining geome-

tries to obtain the entire PES at the desired (larger) basis set level. The original work [184],

as well as more recent effort by us [193, 300], and Varandas [301, 302] have demonstrated
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the effectiveness of this procedure, where in each studied case one could generate the target

PESs to within, on average, fractions of a millihartree of the true calculated energies, while

effectively reducing the number of points which must be calculated on the high-level PES

of interest from mτ to one or a few. The general principles behind the PES extrapolation

methodology of Refs. [184, 193, 300] are outlined in Sect. (4.2), while Sect. (4.3) elaborates

on the the so-called single-level PES extrapolation schemes based on the ideas laid down

in Refs [184, 193, 300]. In Sect. (4.3.1) the details of the single-level PES extrapolation

scheme are described, while Sect. (4.3.2) deals with an extension allowing one to perform

PES extrapolations to the CBS-limit in an inexpensive way. Section (4.3.4) surveys a few

of the user-defined parameters, which must be chosen using the PES extrapolation schemes

examined in this work, and Sect. (4.3.3) demonstrates the performance of a few different

single-level PES extrapolation schemes in the first-ever practical application involving a com-

plex polyatomic system reported in Refs. [193,300], namely the bicbut→t-but isomerization

examined in Sect. (3.2.3).

Despite the significant improvements in computational expense offered by the single-level

PES extrapolation schemes of Refs. [184, 193, 300], performing even a single high-level ab

initio calculation with a larger basis set may sometimes be too taxing. In all such cases, the

PES extrapolation scheme of Refs. [184,193,300] that requires one large-basis set high-level

ab initio calculation cannot be of much help. Rather then be forced to resort to using less

accurate methods to describe the associated PESs, an additional flexibility can be utilized

within the framework of the PES extrapolation scheme of Refs. [184,193,300] which enables

one to predict the correlation energy scaling factor for calculations using a higher-order

methodology from scaling factors calculated with lower-order methods. Using this so-called
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dual-level PES extrapolation scheme, introduced for the first time in Sect. (4.4), one can

obtain a surface at the quality of a very accurate method and large basis set without having to

calculate even a single point at the target ab initio level of interest. This new approach allows

results to be obtained much more affordably for larger systems, as any explicit calculation

at the desired level of theory is completely circumvented. To demonstrate the potential

cost savings this implies, relative computational costs associated with performing typical

calculations at the HF and selected MBPT and CC levels are collected in Table (4.1). The

utility of replacing a CR-CC(2,3) calculation by, say, a CCSD or MP4SDQ calculation is

immediately apparent after examination of Table (4.1), as the computational effort can be

reduced by a factor of 7 or 40, respectively. If the dual-level PES extrapolation scheme could

be used to produce a PES which is virtually identical to the results of explicit large basis set

CR-CC(2,3) calculations using only the calculations performed with lower-level methods,

such as CCSD or MP4SDQ and small basis set CR-CC(2,3) computations, it would offer

incredible savings in the required computational effort.

To test the accuracy of the dual-level PES extrapolation scheme proposed in this thesis,

where a number of different lower-order ab initio methodologies combined with small basis

set CR-CC(2,3) calculations are used to approximate large basis set CR-CC(2,3) results,

several chemical systems were chosen for benchmark studies. The systems considered here

include the asymmetric stretch of the H2O molecule, the bond stretching of the F2 and HCl

molecules, and, once again, the bicbut→t-but isomerization of Sect. (3.2.3). The three

single-bond breaking potential energy curves have been well studied and serve our purposes

particularly well because they have regions clearly dominated by dynamical correlation effects

near the equilibrium bond lengths and regions with significant nondynamical correlation
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Table 4.1: Computer costs of typical ab initio wave function calculations at the aug-cc-pVTZ
basis set level, taken from Ref. [204]

Scalings of CPU stepsa

Method Iterative Noniterative CPU timeb

CR-CC(2,3) N 6 N 7 574c

CCSD(T) N 6 N 7 287

CCSD N 6 — 86

MP4SDQ — N 6 15

MP3 — N 6 12

MP2 — N 5 3

HF N 4 — 1

a N is a measure of the system size. b The CPU time for each method is reported as the time
required by an energy gradient calculation for phosphinomethanol divided by the computer
time characterizing the corresponding HF/aug-cc-pVTZ energy gradient calculation with
the same software on the same computer. Although such costs depend to some extent (for
example, 15%) on the machine, the program, and the computer load, they still provide a
useful indication of computer resource demand. c The cost of the CR-CC(2,3) method was
not measured explicitly, but rather approximated by doubling the CPU time of the CCSD(T)
calculation (the most expensive steps of CR-CC(2,3) are approximately twice as expensive
as those of CCSD(T)).
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effects as relevant bond lengths approach the fully dissociated limits. The bicbut→t-but

isomerization is also reexamined, as it provides a good example of a reaction profile for a

polyatomic molecule which is composed of stationary points with strongly varying biradical

character. The general theory associated with the dual-level PES extrapolation scheme is

presented in Sect. (4.4.1) and results of the applications for the various di- and tri-atomic

systems and the isomerization pathways of bicyclo[1.1.0]butane to trans-butadiene are given

in Sects. (4.4.2) and (4.4.3), respectively. Finally, in Sect. (4.4.4), comparisons are made

regarding relative cost and accuracy under a number of different combinations of user-defined

choices required by the PES extrapolation schemes considered in this work.

4.2 Theory

The PES extrapolation scheme proposed in Ref. [184] and further developed in Refs. [193,

300–302] focuses on extrapolating the difference ∆E(A) between the total electronic energy,

E(A) obtained with some correlated approach A, and the base energy, E(base), that one

should be able to calculate with any basis set. For most applications discussed in this

dissertation the base energy E(base) is set equivalent to the RHF reference energy E(RHF),

so that the extrapolated energy component ∆E(A) is the total correlation energy, but one

can envision other ways of decomposing the total energy E(A) into E(base) and ∆E(A). For

example, E(base) could be the CASSCF energy and E(A) the MRCI energy, in which case we

describe the non-dynamical correlation effects exactly within the CASSCF approximation

and extrapolate the difference ∆E(A) = E(A) − E(base) describing dynamical correlations.

In this chapter, we focus on two specific choices of E(base) and ∆E(A) both related to the

choice of target method A as CR-CC(2,3), namely, (i) E(base) = E(RHF) and ∆E(A) =
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E(CR-CC(2,3))−E(RHF) ≡ ∆E(CR-CC(2,3)), so that E(base) is the RHF energy, which is easy

to calculate, and ∆E(A) is the CR-CC(2,3) correlation energy, which is the expensive part we

want to extrapolate, and (ii) E(base) = E(CCSD) and ∆E(A) = E(CR-CC(2,3)) − E(CCSD) ≡

δ(2, 3), so that E(base) is the CCSD energy, which we can often calculate even when large

basis sets are employed, and ∆E(A) is the triples correction of CR-CC(2,3), which is the most

expensive component for the CR-CC(2,3) energy that we want to extrapolate. In addition to

the target method A, we introduce the auxiliary correlated approach B, which in single-level

PES extrapolation techniques of Refs. [184,193,300–302] equals A, and in dual-level schemes

is some other correlated method, less expensive than A. We use the auxiliary approach B

to determine the approximate correlation energy scaling factor, allowing us to rescale the

desired ∆E(A) energy part from smaller to larger basis sets, as described below.

Suppose a set of correlated PES calculations are performed with correlated methods A

and B, as described below, using smaller basis sets indexed by formal numbers m − 1 and

m. Let us designate the resulting PESs obtained for basis sets m − 1 and m using method

A as E
(A)
m−1(R) and E

(A)
m (R), respectively, and using method B as E

(B)
m−1(R) and E

(B)
m (R),

respectively. Using the PES extrapolation scheme that interests us here, the extrapolated

PES for the E
(A)
m+1(R) target (m + 1)-th basis set is obtained as

E
(A)
m+1(R) = E

(base)
m+1 (R) + χ

(B)
m+1,m(R) ∆E

(A)
m (R). (4.1)

Here, E
(base)
m+1 (R) is the energy of the base method calculated with the (m + 1)-th basis set,

∆E
(A)
m (R) = E

(A)
m (R)−E

(base)
m (R), R denotes the τ -dimensional vector of the nuclear space

coordinates defining the PES, and the scaling factor χ
(B)
m+1,m(R) is defined as [184,193,300–
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302]

χ
(B)
m+1,m(R) = 1 +





S(R)
(B)
m,m−1 − 1

S(Re)
(B)
m,m−1 − 1



 [S(Re)
(B)
m+1,m − 1], (4.2)

with

S(R)
(B)
m,m−1 = ∆E

(B)
m (R)/∆E

(B)
m−1(R). (4.3)

Thus, the desired high-level PES E
(A)
m+1(R), obtained with the largest basis set m + 1, is

extrapolated from the PESs E
(B)
m−1(R) and E

(B)
m (R) obtained in smaller basis set calculations,

the base energies E
(base)
m−1 (R), E

(base)
m (R), and E

(base)
m+1 (R), and a single correlated energy,

E
(B)
m+1(Re), calculated at the pivot geometry Re.

It is easy to see that Eq. (4.1) represents the simplest mathematical expression one

can propose to extrapolate the energies E
(A)
m+1(R) from the smaller basis sets (m − 1) and

m to the larger basis set (m + 1). Indeed, the scaling function χ
(B)
m+1,m(R) satisfies the

following desirable properties: (i) χ
(B)
m+1,m(R) → 1 for all values of R when m → ∞, and

(ii) χ
(B)
m+1,m(Re) =E

(B)
m+1(Re)/E

(B)
m (Re), so that when B = A, E

(A)
m+1(Re)=E

(base)
m+1 (Re) +

∆E
(A)
m+1(Re), as one would like to have. Of course, we hope that χ

(B)
m+1,m(R) determined

using the information obtained with smaller basis sets (m− 1) and m, and the “correlation”

energy ∆E
(B)
m+1(Re) obtained with target basis set (m + 1) at a reference (pivot) geometry

Re only is universal enough to extrapolate the ∆E
(A)
m+1(R) values at the remaining points

R on the PES, even when method B is an approximation to the target approach A.
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4.3 Single-Level Potential Energy Surface Extrapola-

tion Schemes

In the original proposal of the PES extrapolation scheme of Ref. [184], it was assumed that

the scaling factor χ
(B)
m+1,m(R) and the correlation energy it is applied to, ∆E

(A)
m (R), were

required to be generated using the same electronic structure method. While this constraint,

i.e., that A = B in Eqs. (4.1)–(4.3), will be a helpful simplifying assumption for the initial

discussion of the PES extrapolation scheme considered here, it will be eventually shown

in Sect. (4.4), that the theory can work equally well with A 6= B, where B is only an

approximation to A, resulting in the so-called dual-level PES extrapolation scheme. In

this section, we begin a discussion of several ways to employ the basic equations defining

the PES extrapolation scheme, Eqs. (4.1)–(4.3), with the single-level PES extrapolation to

larger basis sets and to the CBS-limit in Sects. (4.3.1) and (4.3.2), repectively. Following

this, a discussion of the role of pivot geometries, Re, and base wave functions, Ψ(base),

which are behind base energies E(base), is given in Sect. (4.3.3), and an application to the

bicyclobutane isomerization pathways of Sect. (3.2.3) is shown in Sect. (4.3.4).

4.3.1 Potential Energy Surface Extrapolation to Larger Basis Sets

Beginning with a simple example to demonstrate how the PES extrapolation scheme is

typically used, consider a case where A = B and E(base) = E(RHF), in which a PES cor-

responding to the cc-pVQZ basis set (previously m + 1) is to be extrapolated from PESs

obtained from cc-pVDZ (m − 1) and cc-pVTZ (m) basis set calculations. In this example,

the following quantities must be collected to perform a single-level PES extrapolation: cor-
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relation energies for every point calculated at the cc-pVDZ and cc-pVTZ basis set levels

using method A, base energies for every point calculated at the cc-pVDZ, cc-pVTZ, and

cc-pVQZ basis set levels, and a single correlated energy calculated with the cc-pVQZ basis

set at the pivot geometry Re. For simplicity, in all discussions in this dissertation except

for those involving CBS-limit extrapolation, the cc-pVDZ, cc-pVTZ, and cc-pVQZ or the

aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis set series are employed, meaning that

for all finite basis set extrapolations considered here, the index m used in Eqs. (4.1)–(4.3)

may be equated with the cardinal number 3 of the cc-pVXZ basis sets, corresponding to

cc-pVTZ or aug-cc-pVTZ, and thus m−1 and m+1 correspond to cc-pVDZ or aug-cc-pVDZ

and cc-pVQZ or aug-cc-pVQZ, respectively. Although PES extrapolations in this disserta-

tion focus on extrapolating CR-CC(2,3) correlation energies across the (aug-)cc-pVXZ basis

sets of Dunning and co-workers, which are very systematic in terms of the dependence of

the angular momentum functions on the cardinal number X, it must be emphasized that

the PES extrapolation method is not tailored to fit any single class of electronic structure

approaches nor is it limited to any specific family of basis sets. This was demonstrated in

the original study, Ref. [184], using the MRCI approach and a series of Pople-type basis sets.

4.3.2 Potential Energy Surface Extrapolation to the Complete Ba-

sis Set Limit

The theory for PES extrapolation schemes presented in Sect. (4.2) is not limited to basis

sets immediately sequential in size either, as in, for example, the cc-pVDZ, cc-pVTZ, and

cc-pVQZ sequence. In fact, the target basis set m + 1 in Eqs. (4.1)–(4.3) could be of infinite

size enabling us to extrapolate the PES E
(A)
m+1(R), where (m + 1) represents the CBS limit,
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from the finite basis set calculations. This requires knowledge of the CBS limits of the base

energies, E
(base)
m+1 (R) ≡ E

(base)
∞ (R), at each point R on the PES of interest and the CBS-limit

of the correlation energy at the pivot geometry Re, ∆E
(base)
m+1 (R) ≡ ∆E

(base)
∞ (R), which is

needed to define the χm+1,m(R) scaling factor in a situation where (m + 1) represents the

infinite basis set.

As an example, consider the PES extrapolation for a sequence of basis sets of cc-pVXZ

quality to the CBS-limit in a situation where the target method A is CR-CC(2,3) and where

the base energy originates from RHF calculations. The CBS-limit base PES E
(base)
m+1 (R)

needed in Eq. (4.1) can be determined via relatively inexpensive RHF/cc-pV6Z level cal-

culations (recall from Sect. (3.2.1) that at the RHF level, cc-pV6Z results are an excellent

approximation to the corresponding CBS limit). One can then determine the CBS limit

of the correlation energy ∆E
(A)
∞ (Re) at the pivot geometry Re using, for example, corre-

lation energies obtained with the cc-pVTZ and cc-pVQZ basis sets and one of the CBS

extrapolation laws, such as Eq. (3.98). The resulting CBS-limit value of ∆E
(A)
∞ (Re) can be

used as ∆E
(A)
m+1(Re) to determine the S(Re)

(A)
m+1,m ratio and, ultimately, the scaling factor

χ
(A)
m+1,m(R) (recall that B = A here). Thus, the necessary quantities for extrapolation of

the CR-CC(2,3) PES to the CBS-limit are the RHF/cc-pVDZ and RHF/cc-pVTZ values

at all points R of interest, the CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ values at

all points R of interest, the CBS-limit base energies E
(base)
m+1 (R) at all points R of interest,

obtained, for example, in the RHF/cc-pV6Z calculations, and a CBS-limit extrapolated cor-

relation energy ∆E
(A)
∞ (Re) corresponding to a single pivot geometry Re, which serves as

the ∆E
(A)
m+1(Re) value in Eqs. (4.1)–(4.3). We could carry out a similar CBS PES extrapo-

lation procedure for methods other than CR-CC(2,3) and other sequences of the correlation
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consistent basis sets. An actual application of this procedure, as applied to the CR-CC(2,3)

approach, will be discussed in Sect. (4.3.4), but before we do this, we examine the role of

pivot geometries Re and base wave functions used to define E
(base)
m+1 (R) in Eq. (4.1).

4.3.3 The Role of Pivot Geometries and Base Wave Functions in

Single-Level PES Extrapolations

A few inherent flexibilities of the PES extrapolation scheme should be be discussed before

moving on to applications. First, the pivot geometry, which appears in Eq. (4.2) as Re, can

be chosen as the equilibrium geometry, as the geometry corresponding to the reactants or

products, or in principle, as any other single point on the PES of interest. It is even possible to

choose more than one pivot geometry in PES extrapolations [301,302], although the benefits

of doing so may be minimal since, as was shown in Ref. [193], the accuracy of results does

not depend on the choice of the pivot geometry Re. This fact will be illustrated in the next

section. One also has a choice of generalizing Eqs. (4.1)–(4.3) to several pivots Re that may

provide an adequate sampling of the PES of interest for performing an extrapolation. The

idea of multiple pivots Re has been explored with considerable success, in Refs. [301,302].

The other inherent flexibility which will be investigated numerically in the next section is

the choice of base wave function defining the base energies in Eqs. (4.1)–(4.3). In the specific

case of the PES calculations performed in Sect. (4.3.4), where the total electronic energies of

interest are those obtained using the CR-CC(2,3) approach, two alternative definitions of the

base energy E(base) are considered, E(base) = E(RHF) and E(base) = E(CCSD). In the former

case, as already alluded to above, we decompose the CR-CC(2,3) energy inttoo the RHF base

energy and the CR-CC(2,3) total correlation energy, which we want to extrapolate across
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the entire PES. In the latter case, the CR-CC(2,3) energy is decomposed into the CCSD

base energy and the triples correction of CR-CC(2,3) which we want to extrapolate across

the entire PES. The relative performance of the PES extrapolation procedure based on Eqs.

(4.1)–(4.3) under each of these two definitions of the base wave function is reported in the

next section.

4.3.4 Application to the Isomerization of Bicyclobutane to Buta-

diene

Since the excellent performance of the single-level PES extrapolation scheme had already

been established for di- and tri-atomic molecular PESs in Ref. [184], in 2008 we published a

study aimed at assessing the potential usefulness of the PES extrapolation scheme in studies

of chemical reaction pathways involving polyatomic molecules [193]. In that work, the PES

extrapolation scheme was applied to the stationary points defining the conrotatory and disro-

tatory paths characterizing the isomerization of bicyclo[1.1.0]butane to buta-1,3-diene, which

we discussed earlier in Sect. (3.2.3). There were a number of reasons for conducting the study

in Ref. [193]. The first reason was to examine the basis set dependence of the CR-CC(2,3)

results for both isomerization pathways, The second reason was to examine whether the PES

extrapolation scheme was capable of recovering the results of the laborious point-wise CR-

CC(2,3)/cc-pVQZ calculations from the PESs obtained in the CR-CC(2,3)/cc-pVDZ and

CR-CC(2,3)/cc-pVTZ calculations, the base energies (RHF or CCSD) obtained in the cc-

pVDZ, cc-pVTZ, and cc-pVQZ calculations, and a single CR-CC(2,3) energy obtained with

the cc-pVQZ basis set at the pivot geometry Re on the relevant polyatomic reaction pathway.

Finally, the third reason for the study in Ref. [193] was to demonstrate the effectiveness of
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our PES extrapolation procedure to the CBS-limit.

As already mentioned, two choices of the base wave function for defining the ∆E values

that enter Eqs. (4.1)–(4.3) were considered, namely, the RHF energy (E(base) = E(RHF))

and the CCSD energy (E(base) = E(CCSD)). The results obtained with both choices of the

reference energy and for the pivot geometry defined by the bicbut reactant are collected

in Table (4.2). Different choices of the pivot geometry, Re, were also considered, each

corresponding to one of the stationary points that define the two isomerization pathways.

These results are shown in Tables (4.3)–(4.7). It can be seen in Tables (4.2)–(4.7) that

the resulting maximum differences between the calculated and extrapolated CR-CC(2,3)/cc-

pVQZ energies characterizing both pathways are virtually independent of the choice of the

pivot geometry Re. For this reason, in the following discussion we mainly focus on one

specific choice of Re, namely, the geometry of the bicbut reactant (see Figure 3.2), as

shown in Table (4.2), while mentioning numerical results produced using other choices of Re

very briefly.

As one can see in Table (4.2), independent of the choice of the base energies (RHF

or CCSD), there is virtually no difference between the calculated and extrapolated CR-

CC(2,3)/cc-pVQZ energies. The differences between the calculated and extrapolated CR-

CC(2,3)/cc-pVQZ energies characterizing both isomerization pathways do not exceed 0.631

millihartree when E(base) = E(RHF), and 0.277 millihartree when E(base) = E(CCSD), when

the geometry of the bicbut reactant is used as the pivot geometry Re. To appreciate the

small magnitude of these extrapolation errors, the changes in the total electronic energies

when going from the cc-pVTZ to cc-pVQZ basis sets are also included in Table (4.2), which

are values on the order of 42–44 millihartree. Similar remarks are true for the other pivot ge-
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Table 4.2: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut→t-but isomerization.
The bicbut reactant defines the pivot geometry for the PES extrapolations.

RHF Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695497 -44.149 0.000
con TS -155.424792 -155.581666 -155.625392 -155.625147 -43.727 0.245
dis TS -155.388352 -155.540034 -155.582481 -155.581850 -42.447 0.631
g-but -155.533086 -155.689327 -155.733236 -155.732754 -43.909 0.482
gt TS -155.528145 -155.684308 -155.728073 -155.727663 -43.764 0.410
t-but -155.537788 -155.694080 -155.738043 -155.737480 -43.963 0.563

CCSD Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695497 -44.149 0.000
con TS -155.424792 -155.581666 -155.625392 -155.625212 -43.727 0.180
dis TS -155.388352 -155.540034 -155.582481 -155.582364 -42.447 0.117
g-but -155.533086 -155.689327 -155.733236 -155.732971 -43.909 0.265
gt TS -155.528145 -155.684308 -155.728073 -155.727894 -43.764 0.179
t-but -155.537788 -155.694080 -155.738043 -155.737766 -43.963 0.277

aTotal energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E2), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (E4) levels. bTotal CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
cDifferences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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Table 4.3: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut→t-but isomerization.
The con TS transition state defines the pivot geometry for the PES extrapolations.

RHF Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695750 -44.149 -0.253
con TS -155.424792 -155.581666 -155.625392 -155.625392 -43.727 0.000
dis TS -155.388352 -155.540034 -155.582481 -155.582077 -42.447 0.404
g-but -155.533086 -155.689327 -155.733236 -155.733001 -43.909 0.235
gt TS -155.528145 -155.684308 -155.728073 -155.727908 -43.764 0.164
tbut -155.537788 -155.694080 -155.738043 -155.737726 -43.963 0.317

CCSD Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695698 -44.149 -0.202
con TS -155.424792 -155.581666 -155.625392 -155.625392 -43.727 0.000
dis TS -155.388352 -155.540034 -155.582481 -155.582510 -42.447 -0.029
g-but -155.533086 -155.689327 -155.733236 -155.7323159 -43.909 0.077
gt TS -155.528145 -155.684308 -155.728073 -155.728082 -43.764 -0.009
tbut -155.537788 -155.694080 -155.738043 -155.737954 -43.963 0.090

aTotal energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E2), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (E4) levels. bTotal CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
cDifferences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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Table 4.4: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut→t-but isomerization.
The dis TS transition state defines the pivot geometry for the PES extrapolations.

RHF Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.696200 -44.149 -0.704
con TS -155.424792 -155.581666 -155.625392 -155.625828 -43.727 -0.436
dis TS -155.388352 -155.540034 -155.582481 -155.582481 -42.447 0.000
g-but -155.533086 -155.689327 -155.733236 -155.733439 -43.909 -0.203
gt TS -155.528145 -155.684308 -155.728073 -155.728345 -43.764 -0.272
tbut -155.537788 -155.694080 -155.738043 -155.738163 -43.963 -0.120

CCSD Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695659 -44.149 -0.162
con TS -155.424792 -155.581666 -155.625392 -155.625357 -43.727 0.036
dis TS -155.388352 -155.540034 -155.582481 -155.582481 -42.447 0.000
g-but -155.533086 -155.689327 -155.733236 -155.733122 -43.909 0.114
gt TS -155.528145 -155.684308 -155.728073 -155.728045 -43.764 0.028
tbut -155.537788 -155.694080 -155.738043 -155.737917 -43.963 0.127

aTotal energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E2), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (E4) levels. bTotal CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
cDifferences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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Table 4.5: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut→t-but isomerization.
The g-but intermediate defines the pivot geometry for the PES extrapolations.

RHF Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695992 -44.149 -0.495
con TS -155.424792 -155.581666 -155.625392 -155.625626 -43.727 -0.234
dis TS -155.388352 -155.540034 -155.582481 -155.582294 -42.447 0.187
g-but -155.533086 -155.689327 -155.733236 -155.733236 -43.909 0.000
gt TS -155.528145 -155.684308 -155.728073 -155.728142 -43.764 -0.070
tbut -155.537788 -155.694080 -155.738043 -155.737960 -43.963 0.083

CCSD Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695781 -44.149 -0.285
con TS -155.424792 -155.581666 -155.625392 -155.625467 -43.727 -0.074
dis TS -155.388352 -155.540034 -155.582481 -155.582570 -42.447 -0.089
g-but -155.533086 -155.689327 -155.733236 -155.733236 -43.909 0.000
gt TS -155.528145 -155.684308 -155.728073 -155.728159 -43.764 -0.086
tbut -155.537788 -155.694080 -155.738043 -155.738031 -43.963 0.012

aTotal energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E2), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (E4) levels. bTotal CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
cDifferences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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Table 4.6: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut→t-but isomerization.
The gt TS transition state defines the pivot geometry for the PES extrapolations.

RHF Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695920 -44.149 -0.423
con TS -155.424792 -155.581666 -155.625392 -155.625557 -43.727 -0.164
dis TS -155.388352 -155.540034 -155.582481 -155.582229 -42.447 0.252
g-but -155.533086 -155.689327 -155.733236 -155.733166 -43.909 0.070
gt TS -155.528145 -155.684308 -155.728073 -155.728073 -43.764 0.000
tbut -155.537788 -155.694080 -155.738043 -155.737891 -43.963 0.153

CCSD Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695689 -44.149 -0.192
con TS -155.424792 -155.581666 -155.625392 -155.625384 -43.727 0.009
dis TS -155.388352 -155.540034 -155.582481 -155.582503 -42.447 -0.022
g-but -155.533086 -155.689327 -155.733236 -155.733150 -43.909 0.086
gt TS -155.528145 -155.684308 -155.728073 -155.728073 -43.764 0.000
tbut -155.537788 -155.694080 -155.738043 -155.737945 -43.963 0.099

aTotal energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E2), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (E4) levels. bTotal CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
cDifferences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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Table 4.7: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut→t-but isomerization.
The t-but product defines the pivot geometry for the PES extrapolations.

RHF Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.696077 -44.149 -0.580
con TS -155.424792 -155.581666 -155.625392 -155.625709 -43.727 -0.316
dis TS -155.388352 -155.540034 -155.582481 -155.582370 -42.447 0.110
g-but -155.533086 -155.689327 -155.733236 -155.733319 -43.909 -0.083
gt TS -155.528145 -155.684308 -155.728073 -155.728225 -43.764 -0.152
tbut -155.537788 -155.694080 -155.738043 -155.738043 -43.963 0.000

CCSD Base

E2
a E3

a E
(calc)
4

a E
(extr)
4

b ∆E43
c ǫ4

d

bicbut -155.493284 -155.651348 -155.695497 -155.695795 -44.149 -0.298
con TS -155.424792 -155.581666 -155.625392 -155.625479 -43.727 -0.086
dis TS -155.388352 -155.540034 -155.582481 -155.582579 -42.447 -0.099
g-but -155.533086 -155.689327 -155.733236 -155.733248 -43.909 -0.013
gt TS -155.528145 -155.684308 -155.728073 -155.728172 -43.764 -0.099
tbut -155.537788 -155.694080 -155.738043 -155.738043 -43.963 0.000

aTotal energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E2), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (E4) levels. bTotal CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
cDifferences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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ometries examined in Tables (4.3)–(4.7), which correspond to the remaining stationary points

along the conrotatory and disrotatory pathways defining the bicbut→t-but isomerization.

As shown in Tables (4.3)–(4.7), the differences between the calculated and extrapolated CR-

CC(2,3)/cc-pVQZ energies characterizing both isomerization pathways do not exceed 0.704

millihartree, when E(base) = E(RHF), and 0.298 millihartree, when E(base) = E(CCSD), and

are often much smaller, independent of the choice of the pivot geometry Re. Thus, the single-

level PES extrapolation procedure, originally proposed in Ref. [184] and further developed

in Refs. [193,300], reproduces changes in the total energies when going from the cc-pVTZ to

cc-pVQZ basis sets to within 1.5 %, when the RHF energies are used as the base energies,

and 0.6 %, when the CCSD energies are employed instead to define the base energies E(base).

As one might expect and as shown in Tables (4.2)–(4.7), the use of the CCSD wave function

in determining the base energies reduces the observed differences between the calculated and

extrapolated CR-CC(2,3)/cc-pVQZ energies. However, this is to be expected since the use

of the correlated base energies, such as those obtained in the CCSD calculations, reduces

the fraction of the correlation energy to be extrapolated, which in turn decreases the mag-

nitude of the extrapolation errors. On the other hand, it is quite remarkable that the use of

uncorrelated RHF base energies in determining the ∆E values that enter Eqs. (4.1)–(4.3)

leads to extrapolated CR-CC(2,3)/cc-pVQZ PESs which are identical to the calculated CR-

CC(2,3)/cc-pVQZ PESs to within ∼ 0.7 millihartree, independent of the choice of Re. These

small differences between the calculated and extrapolated CR-CC(2,3)/cc-pVQZ electronic

energies are also reflected in the small differences between the calculated and extrapolated

CR-CC(2,3)/cc-pVQZ enthalpy values characterizing the six stationary points along the con-

rotatory and disrotatory pathways that define the isomerization of bicyclo[1.1.0]butane to
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buta-1,3-diene, shown in Figure (3.2), which are on the order of 1 kcal/mol or, in most cases,

even less.

Returning now to the third reason for the study of the bicbut→t-but reaction published

in Ref. [193], this system was used to test the accuracy which may be obtained using single-

level PES extrapolation techniques to obtain a PES at the CBS-limit. In the case in Ref.

[193], the cc-pVDZ basis set was chosen as basis level m−1, the cc-pVTZ basis set was chosen

as basis level m, and the infinite basis set limit was chosen as basis set m + 1 in Eqs. (4.1)–

(4.3). Thus, results of CR-CC(2,3) calculations at the cc-pVTZ and cc-pVQZ basis set levels

were used to determine the CBS limit of the CR-CC(2,3) correlation energy at Re using Eq.

(3.98), and the resulting CBS value of the CR-CC(2,3) correlation energy was subsequently

used to define ∆E
(A)
m+1(Re) in Eqs. (4.1)–(4.3) (recall again that A = B in the present

considerations). Then, the ∆E
(A)
m+1(Re) correlation energy at Re determined in this way and

the CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ correlation energies, ∆E
(A)
m−1(R) and

∆E
(A)
m (R), respectively, at all geometries R of interest were used to obtain the scaling factor

χ
(A)
m+1,m(R) from the cc-pVTZ basis set to the CBS limit according to Eqs. (4.2) and (4.3).

Once the scaling factor χ
(A)
m+1,m(R) at each R was established, we used it to determine the

CBS limit of the CR-CC(2,3) PES, E
(A)
m+1(R), at all geometries of interest by multiplying

the CR-CC(2,3) correlation energies ∆E
(A)
m (R) obtained with the cc-pVTZ basis set by

χ
(A)
m+1,m(R) and by adding the resulting energies to the base energies E

(base)
m+1 (R) obtained

in the RHF/cc-pV6Z calculations which, as already explained, are practically equivalent to

the RHF energies in the CBS limit. By avoiding the point-wise CBS extrapolations of the

CR-CC(2,3) correlation energies from the cc-pVTZ and cc-pVQZ basis sets at all geometries

R (we had to perform the CBS extrapolation of the CR-CC(2,3) energy only at the pivot
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geometry Re) and by using the cc-pV6Z values of the RHF energies, we saved a lot of CPU

cycles, while producing the smooth CR-CC(2,3)-level PESs corresponding to the CBS limit,

since the base RHF PESs obtained with a large, cc-pV6Z basis set and the scaling factor

χ
(A)
m+1,m(R) are smooth functions of R.

Indeed, as shown in Table 4.8, the differences between the energies resulting from the

CBS extrapolation scheme that combines Eqs. (4.1)–(4.3) with Eq. (3.98) and the energies

resulting from the conventional point-wise CBS extrapolations using the CR-CC(2,3)/cc-

pVTZ and CR-CC(2,3)/cc-pVQZ data at each stationary point defining the conrotatory and

disrotatory pathways shown in Figure (3.2) do not exceed 1.092 millihartree, i.e., they are

on the same order as the intrinsic error of the CBS extrapolations based on Eq. (3.98). This

method provides a significant advantage over conventional CBS-limit extrapolation of PESs

when it is considered that combining Eqs. (4.1)–(4.3) with Eq. (3.98) requires only one CR-

CC(2,3)/cc-pVQZ calculation (at the pivot geometry), whereas the conventional point-wise

CBS extrapolation method requires the CR-CC(2,3)/cc-pVQZ calculations at each point on

the PES of interest, which represents an enormous increase in computer cost.
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Table 4.8: The calculated CR-CC(2,3)/cc-pVDZ, CR-CC(2,3)/cc-pVTZ, and CR-CC(2,3)/cc-pVQZ energies and the CBS
values of the CR-CC(2,3) energies obtained using the point-wise extrapolations exploiting Eq. (3.98) and the CBS extrapolation
procedure combining Eqs. (4.1)–(4.3) with Eq. (3.98) discussed in the text at the stationary points defining the conrotatory
and disrotatory pathways characterizing the bicbut→t-but isomerization. The bicbut reactant was used to define the pivot
geometry for the PES extrapolations based on Eqs. (4.1)–(4.3).

E2
a E3

a E
(calc)
4

a E
(calc)
∞

b E
(extr)
∞

c ∆E∞,3
d ǫ∞

e

bicbut -155.493284 -155.651348 -155.695497 -155.723202 -155.723202 -71.854 0.000
con TS -155.424792 -155.581666 -155.625392 -155.652777 -155.652353 -71.112 0.424
dis TS -155.388352 -155.540034 -155.582481 -155.608902 -155.607810 -68.868 1.092
g-but -155.533086 -155.689327 -155.733236 -155.760795 -155.759962 -71.468 0.833
gt TS -155.528145 -155.684308 -155.728073 -155.755491 -155.754781 -71.182 0.710
t-but -155.537788 -155.694080 -155.738043 -155.765622 -155.764647 -71.541 0.975

aTotal energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E2), CR-CC(2,3)/cc-pVTZ (E3), and CR-CC(2,3)/cc-
pVQZ (E4) levels. bTotal energies, in hartree, obtained by adding the RHF/cc-pV6Z energies to the CBS correlation energies
resulting from the point-wise CBS extrapolations employing the CR-CC(2,3)/cc-pVTZ and CR-CC(2,3)/cc-pVQZ calcula-
tions and Eq. (3.98). cTotal energies, in hartree, obtained by adding the RHF/cc-pV6Z energies to the CBS values of the
correlation energy resulting from the extrapolation procedure combining Eqs. (4.1)–(4.3) with Eq. (3.98), as discussed in the
text. dDifferences, in millihartree, between the CR-CC(2,3)/CBS energies resulting from the point-wise CBS extrapolations
employing Eq. (3.98) and the corresponding CR-CC(2,3)/cc-pVTZ energies. eDifferences, in millihartree, between the CR-
CC(2,3)/CBS energies resulting from the point-wise CBS extrapolations employing Eq. (3.98) and the CBS PES extrapolation
combining Eqs. (4.1)–(4.3) with Eq. (3.98).
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4.4 Dual-Level Potential Energy Surface Extrapolation

Schemes

The main idea of the PES extrapolation scheme is to scale the difference, ∆E, between the

total electronic energy E, and the energy of some base wave function E(base). The difference,

∆E, representing the correlation energy or some fraction of it, is scaled to the quality of

a larger basis set by applying a scaling factor which predicts the change in the correlation

energy with the size of the basis set at a particular nuclear configuration. Since the basis set

dependence of the correlation energy may be similar for related electronic structure methods,

after the original PES extrapolation scheme was proposed in Ref. [184] and further developed

and tested in Ref. [193], additional flexibility was introduced by allowing the scaling factor

to be generated using a method different from the method used to calculate the surface of

interest. This is reflected in Eqs. (4.1) – (4.3) by the designation of method A, corresponding

to the desired level of theory of the target PES, and method B, corresponding to the level

of theory used in the generation of the scaling factor, χ
(B)
m+1,m(R). A discussion of the ideas

behind the dual-level PES extrapolation scheme is given in Sect. (4.4.1). This is followed

by a few applications in Sects. (4.4.2) and (4.4.3), where the CR-CC(2,3) method is used to

calculate the PESs of interest using smaller basis sets, where computer costs remain low, in

combination with the dual-level PES extrapolation scheme, in which the correlation scaling

factor χ
(B)
m+1,m(R) is generated with lower-order methods, to obtain the PESs corresponding

to the massively more expensive large basis set CR-CC(2,3) calculations. The resulting PESs

are obtained using only a fraction of the computational resources required by the single-level

PES extrapolation scheme, not to mention the point-by-point CR-CC(2,3) computations
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using larger bases. A detailed analysis of the huge computational savings which the single-

and dual-level PES extrapolation schemes can offer will be presented in Sect. (4.4.4).

4.4.1 Using Lower-Order Methods to Produce Correlation Energy

Scaling Factors in High-Level Calculations

The dual-level extrapolation scheme presented here closely follows the original procedure,

proposed in Ref. [184] and described in Sect. (4.3), differing only in the definition of the

scaling factor χ
(B)
m+1,m(R), which may now be obtained with a different, less expensive,

methodology, B, than the target methodology A of interest. By allowing A and B to

differ, the approximate high-level PES E
(A)
m+1(R) can be generated by extrapolating the PES

E
(A)
m (R) obtained with smaller basis set m, using the base surfaces E

(base)
m−1 (R), E

(base)
m (R),

and E
(base)
m+1 (R), the correlated surfaces E

(B)
m−1(R) and E

(B)
m (R), and a single correlated

energy calculated at the pivot geometry, E
(B)
m+1(Re), all obtained with method B, which is,

by choice, less expensive than the target method A. The most significant advantage over the

original PES extrapolation scheme, where χ
(A)
m+1,m(R) was used, is that the calculation of

the single high-level energy E
(A)
m+1(Re), which accounts for the majority of the expense of the

original procedure of Ref. [184], is avoided entirely and replaced instead by the calculation

of E
(B)
m+1(Re), using a quantum-chemistry method B which is less expensive than A.

The conventional low-order MBPT or CC approximations are among the approaches

which may be considered as lower-order methods for the extrapolations of the high-level

PESs resulting from higher-order CC calculations. The systematically improvable hierarchy

of MBPT approaches is especially appealing in this study because it provides a series of “built

in” lower-order methods that can facilitate an investigation of the lowest levels of correlation
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treatment required to properly reproduce the correlation scaling factors for the higher-level

CC methodology, CR-CC(2,3). The lowest-level MBPT methods, including MP2, MP3, and

MP4X (X = D, DQ, and SDQ), are all much less expensive than the CR-CC(2,3) theory,

with formal noniterative scaling steps of only N 5 for MP2 and N 6 for MP3 and MP4SDQ.

For comparison, the CPU-time determining steps of CR-CC(2,3) scale as N 6 in the iterative

CCSD part and N 7 in the triples correction part. In fact, even CCSD offers considerable

savings compared to CR-CC(2,3), so this would be another candidate for determining the

correlation energy scaling factor for extrapolating the CR-CC(2,3) PES.

As an example, if, say A = CR-CC(2,3) and B = CCSD, a CR-CC(2,3)/cc-pVQZ

PES ∆E
(CR-CC(2,3))
4 (R) may be obtained by extrapolating a CR-CC(2,3)/cc-pVTZ PES

∆E
(CR-CC(2,3))
3 (R) by applying χ

(CCSD)
4,3 (R), a correlation energy scaling factor constructed

from CCSD/cc-pVDZ energies, CCSD/cc-pVTZ energies, and a single CCSD/cc-pVQZ en-

ergy at the pivot geometry Re (rather than from the analogous set of energies obtained with

CR-CC(2,3), as would be the case in the previously discussed single-level PES extrapolation

scheme) and adding the resulting χ
(CCSD)
4,3 (R)∆E

(CR-CC(2,3))
3 (R) term to an explicitly cal-

culated RHF/cc-pVQZ PES that provides the base E
(base)
4 (R) term in Eq. (4.1). Similarly,

if A = CR − CC(2, 3) and B = MP4SDQ, we can determine the CR-CC(2,3)/cc-pVQZ-

level PES E
(CR-CC(2,3))
4 (R) by adding the χ

(MP4SDQ)
4,3 (R)∆E

(CR-CC(2,3))
3 (R) term, where

χ
(MP4SDQ)
4,3 (R) is a correlation energy scaling factor obtained from the MP4SDQ calculation

using the cc-pVDZ and cc-pVTZ basis sets and a single MP4SDQ/cc-pVQZ point calcu-

lated at Re, to the RHF/cc-pVQZ base energy E
(base)
4 (R). Other examples of the auxiliary

method B used in determining the correlation energy scaling factor for extrapolating the

CR-CC(2,3) PES examined in this work include the MP2, MP3, MP4D, and MP4DQ ap-
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proaches. We apply the dual-level PES extrapolation procedure, as described above, to

predict the CR-CC(2,3)/cc-pVQZ or CR-CC(2,3)/aug-cc-pVQZ PESs characterizing a few

single-bond dissociations (Sect. (4.4.2)) and the previously examined bicyclobutane isomer-

ization pathways (Sect. (4.4.3)).

4.4.2 Application to Single Bond-Breaking Potential Energy Curves

In this section, single bond-breaking potential energy curves of the H2O, HCl, and F2

molecules are considered as benchmark cases to test the accuracy of the dual-level PES

extrapolation procedure. In all PES extrapolations discussed in this section, the pivot ge-

ometry Re is taken to be the equilibrium geometry, the base wavefunction is chosen to be the

RHF wavefunction, and the CR-CC(2,3)/aug-cc-pVTZ PESs are extrapolated to the CR-

CC(2,3)/aug-cc-pVQZ level by applying a correlation energy scaling factor generated from

the following quantities: RHF/aug-cc-pVDZ, RHF/aug-cc-pVTZ and RHF/aug-cc-pVQZ

base surfaces, B/aug-cc-pVDZ and B/aug-cc-pVTZ surfaces, and a single B/aug-cc-pVQZ

energy at the pivot geometry Re, where the lower-order method B is MP2, MP3, MP4X (X

= D, DQ, SDQ), or CCSD.

In Table (4.9), extrapolation errors are collected for selected points on the H2O→ OH+H

dissociation curve. In the first two columns of this table, benchmark CR-CC(2,3)/aug-cc-

pVQZ energies, E
(CR-CC(2,3))
4 (R) are given for selected points R on the potential energy

curve, along with the energy differences, ∆E4,3(R), between E
(CR-CC(2,3))
4 (R) and the CR-

CC(2,3)/aug-cc-pVTZ energies E
(CR-CC(2,3))
3 (R). In the following columns, extrapolation

errors are reported, in millihartree, relative to the corresponding true E
(CR-CC(2,3))
4 (R) val-

ues, organized according to the correlation energy scaling χ
(B)
4,3 (R) that was used in their
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generation. Each set of extrapolation errors should be compared to those reported in the

far right column of Table (4.9), which represent the errors found using the single-level for-

mulation of the PES extrapolation scheme, appropriately designated by the scaling factor

χ
(CR-CC(2,3))
4,3 (R) found in the corresponding column heading. While not all lower-order

methods can be used to accurately reproduce all points on the CR-CC(2,3)/aug-cc-pVQZ

PES, it is notable that relatively small extrapolation errors are observed when all of the

lower-order methods (except for MP2) are employed to generate the near-equilibrium region

of the H2O→OH+H curve. This implies that MP3, the various variants of MP4, and CCSD

yield corrleation energies which have a very similar correlation energy scaling to the CR-

CC(2,3) energies in this region. If one is only concerned with the near-equilibrium region

of this bond-stretching curve, all of these methods except MP2 can be used successfully to

scale a CR-CC(2,3) correlation energy to the quality of a larger basis sets. Unfortunately,

the MP3 and various MP4X methods fail to produce the proper scaling at the largest in-

ternuclear distances, shown by steeply rising extrapolation errors beyond 2Re. As a specific

example, when χ
(MP4SDQ)
4,3 (R) is used, the largest reported error in the extrapolation of the

CR-CC(2,3)/aug-cc-pVQZ PES in the region from 0.75Re − 2Re is only 0.338 millihartree,

which represents a recovery of about 98% of the correlation energy change when going from

aug-cc-pVTZ to aug-cc-pVQZ, identified in Table (4.9) as ∆E
(CR-CC(2,3))
4,3 . However, at 4Re,

the same error rises sharply to 4.798 millihartree, which is 26% of ∆E
(CR-CC(2,3))
4,3 at this

geometry. It is quite remarkable, though, to observe such tiny errors while extrapolating

the CR-CC(2,3)/aug-cc-pVQZ PES in the relatively large R = 0.75Re − 2Re region, on the

order of small fractions of a millihartree, particularly when we realize that the CPU time of

the MP4SDQ calculations is approximately the same as the cost of a single CCSD iteration.
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To predict an accurate PES at the highly stretched geometries, it is clear from the

extrapolation errors reported in Table (4.9) that CCSD is the only lower-order method

which accurately and consistently predicts the correct correlation energy scaling in both

the equilibrium and bond-breaking regions of the CR-CC(2,3) surface. When χ
(CCSD)
4,3 (R)

is used, the maximum reported deviation from the true CR-CC(2,3)/aug-cc-pVQZ curve

in the R = 0.75Re − 4Re region is only 1.124 millihartree, with extrapolation errors in

the R = 0.75Re − 2Re region not exceeding 0.394 millihartree. For comparison, when the

CR-CC(2,3) methodology is used to generate the correlation energy scaling factor, as in

the single-level scheme, the largest error found for the extrapolated CR-CC(2,3)/aug-cc-

pVQZ H2O PES is 0.760 millihartree in the R = 0.75Re − 2Re regioin and 0.314 milli-

hartree when R does not exceed 2R. From these results it is clear that for the H2O system,

χ
(CCSD)
4,3 (R) and χ

(CR-CC(2,3))
4,3 (R) are virtually identical for all reported geometries. The

final observation from Table (4.9) is that the MP2 method is found to consistently overesti-

mate χ
(CR-CC(2,3))
4,3 (R), producing relatively large negative extrapolation errors on the order

of (-4)–(-2) millihartree, even in the near-equilibrium region. Thus, the MP2 method should

not be used in conjunction with the dual-level PES extrapolation scheme to describe the

scaling of CR-CC(2,3) with the basis set.

Analogous sets of extrapolation errors for the HCl and F2 bond-stretching surfaces are

reported in Tables (4.10) and (4.11), respectively, and similar trends are observed therein.

For both the HCl and F2 systems the MP3 and MP4X methods are again shown to provide

the proper correlation energy scaling in the equilibrium region, where large percentages

(between 93–100%) of ∆E
(CR-CC(2,3))
4,3 (R) are consistently recovered and errors relative to

true CR-CC(2,3)/aug-cc-pVQZ calculations are on the order of a millihartree or less. Also,
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as before, extrapolation errors grow rapidly as the internuclear separation approaches the

R > 2Re region, with CCSD appearing to be the only lower-order method which may be

used successfully at all internuclear separations. This is especially evident for the F2 curve

where results based on correlation energy scaling factors obtained with MP2, MP3, MP4D,

MP4DQ, and MP4SDQ diverge badly at 4Re from the true CR-CC(2,3)/aug-cc-pVQZ curve,

and while the use of CCSD instead leads to reasonable behavior. In fact, the maximum

reported extrapolation errors are again found to be very close at all internuclear distances

when the CCSD and CR-CC(2,3) correlation energy scaling factors are used to scale the CR-

CC(2,3)/aug-cc-pVTZ HCl and F2 PESs. For HCl, they are 1.891 and 1.664 millihartree,

respectively, each corresponding to a recovery of about 90% of ∆E
(CR-CC(2,3))
4,3 (R). For F2,

extrapolation errors found using χ
(CCSD)
4,3 (R) show a recovery of 93–99% of the corresponding

∆E
(CR-CC(2,3))
4,3 (R) values, which may be compared to 95–100% obtained with χ

(CR-CC(2,3))
4,3 .
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Table 4.9: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies of the H2O molecule in which
one of the two O-H bonds (R) is stretched, while keeping the other O-H bond at the equilibrium length and the H-O-H angle
fixed at 104.5 ◦. The equilibrium geometry defines the pivot geometry Re and RHF defines the base wave function for the
PES extrapolations. In all post-RHF calculations, the lowest orbital, correlating with the 1s shell of the oxygen atom was kept
frozen.

ǫ4(χ
(B)
4,3 )d

R/Re
a E4

b ∆E4,3
c MP2 MP3 MP4D MP4DQ MP4SDQ CCSD CR-CC(2, 3)

0.75 -76.259133 -22.676 -2.993 -0.763 -0.611 -0.257 -0.073 -0.186 -0.140
0.90 -76.351620 -21.605 -2.759 -0.573 -0.425 -0.046 0.121 0.031 0.012
1.00 -76.363051 -21.059 -2.742 -0.576 -0.428 -0.033 0.131 0.054 0.000
1.10 -76.355931 -20.641 -2.723 -0.580 -0.430 -0.019 0.145 0.085 0.009
1.25 -76.329620 -20.278 -2.624 -0.509 -0.349 0.080 0.253 0.225 0.133
1.50 -76.276456 -19.952 -2.639 -0.513 -0.316 0.130 0.338 0.394 0.314
2.00 -76.199626 -19.168 -3.613 -1.217 -0.788 -0.359 -0.071 0.294 0.244
3.00 -76.162662 -18.479 -4.086 -0.601 0.729 0.774 1.450 0.912 0.744
4.00 -76.161060 -18.303 -2.232 1.965 3.688 2.953 4.798 1.124 0.760

aThe equilibrium value of R used here is Re = 0.95785 Å. bThe calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. cDifferences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, where the latter

energies were generated by applying the correlation energy scaling factors χ
(B)
4,3 (R) obtained with B = MP2, MP3, MP4D,

MP4DQ, MP4SDQ, CCSD, and CR-CC(2,3). The choice of B = CR-CC(2,3) is equivalent to the single-level PES extrapolation
scheme.
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Table 4.10: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies for several internuclear separa-
tions RH-Cl of the HCl molecule. The equilibrium geometry defines the pivot geometry Re and RHF defines the base wave
function for the PES extrapolations. In all post-RHF calculations, the lowest five orbitals, correlating with the 1s, 2s, and 2p
shells of Cl, were kept frozen.

ǫ4(χ
(B)
4,3 )d

R/Re
a E4

b ∆E4,3
c MP2 MP3 MP4D MP4DQ MP4SDQ CCSD CR-CC(2, 3)

0.75 -460.245772 -22.053 -4.017 -1.415 -1.254 -0.834 -0.854 -0.896 -1.273
0.90 -460.351216 -20.979 -3.055 -0.537 -0.387 0.033 0.022 -0.003 -0.410
1.00 -460.364178 -20.704 -2.610 -0.127 0.017 0.439 0.437 0.427 0.000
1.10 -460.356856 -20.550 -2.330 0.128 0.268 0.692 0.703 0.713 0.270
1.25 -460.329720 -20.327 -2.178 0.261 0.407 0.834 0.868 0.926 0.469
1.50 -460.277589 -19.823 -2.429 0.065 0.276 0.697 0.793 0.991 0.580
2.00 -460.212229 -18.747 -3.755 -0.828 -0.293 0.055 0.456 0.966 0.730
3.00 -460.192428 -18.345 -2.889 0.849 2.050 1.675 4.602 1.891 1.664
4.00 -460.192532 -17.809 -0.558 2.958 3.966 1.670 9.747 1.573 1.049

aThe equilibrium value of R used here is Re = 1.27455 Å. bThe calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. cDifferences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, where the latter

energies were generated by applying scaling factors χ
(B)
4,3 (R) obtained with B = MP2, MP3, MP4D, MP4DQ, MP4SDQ,

CCSD, and CR-CC(2,3). The choice of B=CR-CC(2,3) is equivalent to the single-level extrapolation scheme.
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Table 4.11: A comparison of calculated and extrapolated CR-CC(2,3)/aug-ccpVQZ energies for several internuclear separations
RF-F of the F2 mole- cule. The equilibrium geometry defines the pivot geometry Re and RHF defines the base wave function
for the PES extrapolations. In all post-RHF calculations, the lowest two orbitals, correlating with the 1s shells of the F atoms,
were kept frozen.

ǫ4(χ
(B)
4,3 )d

R/Re
a E4

b ∆E4,3
c MP2 MP3 MP4D MP4DQ MP4SDQ CCSD CR-CC(2, 3)

0.75 -199.196897 -56.537 -5.098 -2.516 -1.915 -1.208 -0.689 -1.120 -1.011
0.90 -199.349657 -53.009 -3.991 -1.752 -1.132 -0.444 0.065 -0.197 -0.258
1.00 -199.364732 -51.743 -3.835 -1.737 -1.028 -0.378 0.191 0.036 0.000
1.10 -199.356794 -51.172 -3.871 -1.793 -0.929 -0.349 0.284 0.236 0.227
1.25 -199.333764 -50.464 -4.209 -2.010 -0.775 -0.389 0.313 0.396 0.455
1.50 -199.307123 -49.741 -4.370 -1.655 0.587 0.339 1.119 0.944 0.965
2.00 -199.296727 -49.300 -1.232 3.454 8.189 5.241 6.107 2.453 2.146
3.00 -199.297648 -49.368 6.748 13.398 18.543 0.429 4.979 3.239 2.460
4.00 -199.297985 -49.422 12.149 18.901 22.880 30.269 31.933 3.585 2.673

aThe equilibrium value of R used here is Re = 0.988351 Å. bThe calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. cDifferences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, where the latter

energies were generated by applying the correlation energy scaling factors χ
(B)
4,3 (R) obtained with B = MP2, MP3, MP4D,

MP4DQ, MP4SDQ, CCSD, and CR-CC(2,3). The choice of B=CR-CC(2,3) is equivalent to the single-level PES extrapolation
scheme.
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In summary, MP2 consistently fails to predict the proper information about the CR-

CC(2,3) correlation energy scaling, while MP3 typically does much better. This leads to the

conclusion that at least third-order correlation energy effects must be included for the proper

description of the correlation energy scaling in the near-equilibrium PES regions. In regions

further away from equilibrium, the third and even the partial fourth-order perturbative

corrections still cannot produce the proper correlation energy scaling factors that would be

compatible with those of CR-CC(2,3), which is a consequence of the inability of MBPT to

describe bond-breaking, but one can use the CCSD approach instead, which is qualitatively

correct at larger internuclear separations in single-bond breaking situations, providing a

reasonable estimate of the CR-CC(2,3) correlation energy scaling with the basis set.

4.4.3 Application to the Isomerization of Bicyclobutane to Buta-

diene

The results of dual-level PES extrapolations on the reaction profiles for the isomerization

of bicyclobutane to butadiene are given in Table (4.12). The format of this table is similar

to that of Tables (4.9)–(4.11), except that here the geometries of interest are the station-

ary points along the conrotatory and disrotatory pathways shown in Figure (3.2) and the

cc-pVXZ rather than aug-cc-pVXZ basis sets are employed throughout. From the results

presented in Table (4.12) it can be seen that the MP3 and various MP4 methods may be

successfully used to probe the CR-CC(2,3) correlation energy scaling for the energetically

favored conrotatory reaction profile, which consists entirely of species with correlation en-

ergy dominated by lower-order excitations, but in every case the MBPT methods produce a

significantly larger error for the highly biradical dis TS geometry. On the other hand, when

163



χ
(CCSD)
4,3 (R) is used to extrapolate the CR-CC(2,3)/cc-pVQZ PES, the reported extrapo-

lation errors remain within a millihartree of the explictly calculated CR-CC(2,3)/cc-pVQZ

energy values at every stationary point, rivaling the sub-millihartree accuracies found using

the single-level PES extrapolation scheme where χ
(CR-CC(2,3))
4,3 (R) is employed instead. This

is another case where a quasi-degeneracy, in this case resulting from the biradical nature of

the dis TS configuration, inhibits the MBPT methods from producing the correct correla-

tion energy scaling information. It is clear, of the methods considered here, that only the

CCSD approach can offer a correlation energy scaling factor compatible with CR-CC(2,3),

although the extrapolation errors obtained with MP4SDQ, which are 1.950 millihartree or

∼ 1.5 kcal/mol for the strongly biradical dis TS structure (located over 60 kcal/mol above

the reactant) and less than 1 millihartree for the remaining structures, are excellent as well.

Also, once again, MP2 correlation energies do not contain sufficient information to model

the CR-CC(2,3) correlation energy scaling at any geometry.
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Table 4.12: A comparison of calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining the
conrotatory and disrotatory pathways characterizing the bicbut→t-but isomerization. The bicbut reactant defines the pivot
geometry Re and RHF defines the base wave function for the PES extrapolations. In all post-RHF calculations, the lowest
four orbitals, correlating with the 1s shells of the carbon atoms, were kept frozen.

ǫ4(χ
(B)
4,3 )c

Structure E4
a ∆E4,3

b MP2 MP3 MP4D MP4DQ MP4SDQ CCSD CR-CC(2, 3)

bicbut -155.695497 -44.149 -9.521 -0.860 -0.397 0.845 0.760 0.582 0.000
con TS -155.625392 -43.727 -10.169 -1.578 -0.993 0.292 0.397 0.466 0.245
dis TS -155.582481 -42.447 -13.436 -4.643 -3.890 -2.671 -1.950 0.096 0.631
g-but -155.733236 -43.909 -9.730 -0.879 -0.325 0.899 0.906 0.927 0.482
gt TS -155.728073 -43.764 -9.815 -0.934 -0.374 0.844 0.837 0.876 0.410
t-but -155.738043 -43.963 -9.614 -0.786 -0.234 0.972 0.987 1.008 0.563

aThe calculated CR-CC(2,3)/cc-pVQZ total energies in hartree. bDifferences, in millihartree, between the actual CR-
CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-pVTZ energies. cDifferences, in millihartree, between the calculated and extrapolated
CR-CC(2,3)/cc-pVQZ energies, where the latter energies were generated by applying the correlation energy scaling factors

χ
(B)
4,3 (R) obtained with B = MP2, MP3, MP4D, MP4DQ, MP4SDQ, CCSD, and CR-CC(2,3). The choice of B = CR-CC(2,3)

is equivalent to the single-level extrapolation scheme.
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4.4.4 The Role of Pivot Geometries and Base Wave Functions in

Dual-Level PES Extrapolations

In Tables (4.9)–(4.12) it was clear that regardless of the correlation energy scaling factor

used in the PES extrapolation scheme based on Eqs. (4.1) – (4.3), the extrapolation errors

are largest in regions where the nature of the electron correlation effects differ most from

those found at the pivot geometry. To see how much the reported errors could be reduced by

employing additional pivot geometries, the same sets of PES extrapolations were considered,

but this time with all nuclear configurations treated as pivot geometries. In addition to

introducing a new extrapolation method which should yield improved accuracies, this ap-

proach provides a direct measure of the error introduced when lower-order correlation energy

scaling factors are employed to predict the results of higher-order calculations with a larger

basis set, since any error due to the earlier assumption of the approximate transferability

of the scaling factor from one geometry to another is eliminated. Additional calculations

required to perform these extrapolations, when compared to those required for the extrapo-

lations of the previous section (done with a single pivot geometry), consist of the remaining

calculations required to obtain each PES using the aug-cc-pVQZ basis for the bond-breaking

curves or the cc-pVQZ basis for the bicbut→t-but isomerization pathways using the lower-

level methodology B. This is still relatively inexpensive, since we never have to perform the

high-level CR-CC(2,3) calculation with the largest basis set employed at any geometry.

A comparison of Tables (4.9) and (4.13), (4.10) and (4.14), (4.11) and (4.15), and (4.12)

and (4.16) demonstrates the full extent of the accuracy which may be gained by using

additional pivot geometries for each of the systems considered in this study. The most

interesting detail to note in these comparisons is that when the same method is used to
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predict the correlation energy scaling factor, increasing the number of pivot geometries does

not necessarily result in an overall improvement in the quality of the extrapolated surface.

Extrapolation errors are, for the most part, improved when the number of pivot geometries

is increased, especially when MP4SDQ and CCSD are used to generate χ, but there are no

significant benefits from switching from the previously discussed single-point approach to its

multi-point analog.

As stated before, the many options inherently included in the PES extrapolation scheme

based on Eqs. (4.1) – (4.3) allow one to tailor it to make it more accurate or more affordable,

as required by a given application. To demonstrate clearly and concisely the different levels

of accuracy and savings in the computer effort which may be obtained using different tiers

of the PES extrapolation scheme, the results of four different PES extrapolations examined

here, using the bicbut→t-but isomerization as an example, are collected in Table (4.17). We

recall that the goal of each extrapolation in this case is to predict the CR-CC(2,3)/cc-pVQZ

PES (as represented by six structures on the corresponding conrotatory and disrotatory

pathways) from the results of lower-level calculations. The most efficient PES extrapolation

considered for this table, where a lower-order MP4SDQ scaling factor is used to extrapolate

the CR-CC(2,3)/cc-pVTZ PES to the level of CR-CC(2,3)/cc-pVQZ calculations using one

pivot geometry (bicbut) and RHF base energies, requires only 5% of the CPU time of the

conventional method and the mean unsigned error (MUE) is slightly below 1 millihartree.

The MUE is reduced by 0.314 millihartree when the correlation energy scaling factor obtained

with MP4SDQ is replaced by that produced by CCSD, but the required CPU time is also

increased to 10% of that required by the conventional CR-CC(2,3)/cc-pVQZ calculations.

The results obtained with the original single-level PES extrapolation procedure are also
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presented, where the time required to perform these calculations is 22% of that required

conventionally, but the mean unsigned error falls to below 0.4 millihartree. Finally, when

the base energy is obtained in CCSD calculations and χ
(CR-CC(2,3))
4,3 (R) is used to scale

the remaining correlation energy, an MUE of 0.170 is attained, but now the computational

time savings amounts only to about one third of the conventional procedure. It can be seen

in Table (4.17) that regardless of the PES extrapolation approach used, the MUE remains

below 1 millihartree, which is a relatively insignificant loss in accuracy compared to the

conventional, point-wise CR-CC(2,3)/cc-pVQZ calculations. By using the dual-level PES

extrapolation scheme to extrapolate CR-CC(2,3)/cc-pVQZ energies, we have reduced the

time required to accurately construct a PES for this problematic polyatomic isomerization

by more than an order of magnitude. These computational savings would only grow larger

if another system were considered which contained a greater number of electrons or a larger

number of points on the PES were considered.
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Table 4.13: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies of the H2O molecule, in which
one of the two O-H bonds R is stretched, while keeping the other O-H bond at the equilibrium length and the H-O-H angle
fixed at 104.5 ◦. Each geometry serves as its own pivot geometry and RHF defines the base wave function for the PES
extrapolations. In all post-RHF calculations, the lowest orbital, correlating with the 1s orbital of the oxygen atom, was kept
frozen.

ǫ4(χ
(B)
4,3 )d

R/Re
a E4

b ∆E4,3
c MP2 MP3 MP4D MP4DQ MP4SDQ CCSD

0.75 -76.259133 -22.676 -2.766 -0.504 -0.360 -0.014 0.129 0.059
0.90 -76.351620 -21.605 -2.737 -0.534 -0.391 -0.016 0.138 0.063
1.00 -76.363051 -21.059 -2.742 -0.576 -0.428 -0.033 0.131 0.054
1.10 -76.355931 -20.641 -2.769 -0.636 -0.475 -0.060 0.114 0.041
1.25 -76.329620 -20.278 -2.835 -0.733 -0.538 -0.096 0.097 0.034
1.50 -76.276456 -19.952 -3.072 -0.951 -0.668 -0.190 0.033 0.021
2.00 -76.199626 -19.168 -4.107 -1.651 -1.073 -0.591 -0.301 -0.080
3.00 -76.162662 -18.479 -5.201 -1.501 0.009 0.207 0.856 0.101
4.00 -76.161060 -18.303 -3.619 1.054 3.143 2.604 4.400 0.164

aThe equilibrium value of R used here is Re = 0.95785 Å. bThe calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. cDifferences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, with the latter

energies generated by applying the correlation energy scaling factors χ
(B)
4,3 (R) obtained with B = MP2, MP3, MP4D, MP4DQ,

MP4SDQ, and CCSD.
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Table 4.14: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies for several internuclear separa-
tions R of the HCl molecule. Each geometry serves as its own pivot geometry and RHF defines the base wave function for
the PES extrapolations. In all post-RHF calculations, the lowest five orbitals, correlating with the 1s, 2s, and 2p shells of Cl,
were kept frozen.

ǫ4(χ
(B)
4,3 )d

R/Re
a E4

b ∆E4,3
c MP2 MP3 MP4D MP4DQ MP4SDQ CCSD

0.75 -460.245772 -22.053 -2.707 -0.044 0.123 0.516 0.491 0.447
0.90 -460.351216 -20.979 -2.625 -0.087 0.056 0.466 0.453 0.424
1.00 -460.364178 -20.704 -2.610 -0.127 0.017 0.439 0.437 0.427
1.10 -460.356856 -20.550 -2.680 -0.220 -0.062 0.373 0.384 0.401
1.25 -460.329720 -20.327 -2.885 -0.404 -0.204 0.249 0.284 0.362
1.50 -460.277589 -19.823 -3.370 -0.739 -0.426 0.046 0.146 0.386
2.00 -460.212229 -18.747 -5.151 -1.906 -1.204 -0.736 -0.265 0.336
3.00 -460.192428 -18.345 -5.225 -0.655 0.927 0.985 4.375 0.933
4.00 -460.192532 -17.809 -2.748 2.016 3.643 1.988 11.510 0.533

aThe equilibrium value of R used here is Re = 1.27455 Å. bThe calcuated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. cDifferences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, with the latter

energies generated by applying the correlation energy scaling factors χ
(B)
4,3 (R) obtained with B = MP2, MP3, MP4D, MP4DQ,

MP4SDQ, and CCSD.
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Table 4.15: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies for several internuclear sepa-
rations R of the F2 molecule. Each geometry serves as its own pivot geometry and RHF defines the base wave function for
the PES extrapolations. In all post-RHF calculations, the lowest two orbitals, correlating with the 1s orbitals on the fluorine
atoms, were kept frozen.

ǫ4(χ
(B)
4,3 )d

R/Re
a E4

b ∆E4,3
c MP2 MP3 MP4D MP4DQ MP4SDQ CCSD

0.75 -199.196897 -56.537 -3.415 -1.068 -0.764 -0.128 0.310 0.190
0.90 -199.349657 -53.009 -3.570 -1.389 -0.877 -0.215 0.290 0.149
1.00 -199.364732 -51.743 -3.835 -1.737 -1.028 -0.378 0.191 0.036
1.10 -199.356794 -51.172 -4.116 -2.030 -1.063 -0.466 0.176 0.009
1.25 -199.333764 -50.464 -4.758 -2.539 -1.062 -0.646 0.107 -0.115
1.50 -199.307122 -49.741 -5.496 -2.676 -0.019 -0.237 0.664 -0.119
2.00 -199.296727 -49.300 -3.680 1.008 6.381 3.741 4.751 0.250
3.00 -199.297648 -49.368 4.354 11.655 18.778 -4.021 2.203 0.723
4.00 -199.297985 -49.422 9.504 17.002 22.892 30.905 32.328 0.876

aThe equilibrium value of R used here is Re = 0.988351 Å. bThe calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. cDifferences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, with the latter

energies generated by applying scaling factors χ
(B)
4,3 (R) obtained with B = MP2, MP3, MP4D, MP4DQ, MP4SDQ, and

CCSD.
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Table 4.16: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut→t-but isomerization. Each geometry serves as its own
pivot geometry and RHF defines the base wave function for the PES extrapolations. In all post-RHF calculations, the lowest
four orbitals, correlating with the 1s orbitals of the carbon atoms, were kept frozen.

ǫ4(χ
(B)
4,3 )c

Structure E4
a ∆E4,3

b MP2 MP3 MP4D MP4DQ MP4SDQ CCSD

bicbut -155.695497 -44.149 -9.521 -0.860 -0.397 0.845 0.760 0.582
con TS -155.625392 -43.727 -10.455 -1.614 -1.036 0.322 0.373 0.295
dis TS -155.582481 -42.447 -14.074 -4.825 -4.164 -2.824 -2.131 -0.529
gbut -155.733236 -43.909 -10.245 -1.009 -0.473 0.781 0.728 0.699
gt TS -155.728073 -43.764 -10.366 -1.085 -0.548 0.702 0.652 0.641
tbut -155.738043 -43.963 -10.220 -1.007 -0.472 0.776 0.729 0.703

aThe calculated CR-CC(2,3)/cc-pVQZ total energies in hartree. bDifferences, in millihartree, between the actual CR-
CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-pVTZ energies. cDifferences, in millihartree, between the calculated and extrapolated

CR-CC(2,3)/cc-pVQZ energies, with the latter energies generated by applying the correlation energy scaling factors χ
(B)
4,3 (R)

obtained with B = MP2, MP3, MP4D, MP4DQ, MP4SDQ, and CCSD.
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Table 4.17: A summary of the necessary calculations and the corresponding computer resources required to utilize different
tiers of the PES extrapolation scheme based on Eqs. (4.1) – (4.3) to scale the bicyclobutane isomerization pathway from the
CR-CC(2,3)/cc-pVTZ level of theory to the CR-CC(2,3)/cc-pVQZ level, along with the corresponding extrapolation errors.
The bicbut structure is used to provide the pivot geometry.

Base Correlation Energy cc-pVQZ Calculations Required c CPU Time Mean Unsigned

Energya Scaling Factorb RHF CCSD CR-CC(2,3) (t/tconv)d Error (millihartree)e

RHF MP4SDQ 6 0 0 0.05 0.973
RHF CCSD 6 1 0 0.10 0.659
RHF CR-CC(2, 3) 6 1 1 0.22 0.389
CCSD CR-CC(2, 3) 6 6 1 0.63 0.170

Conventional Calculationf 6 6 6 1 —

aThe method used to generate the base energy. bThe method B used to generate the correlation energy scaling factor χ
(B)
4,3 (R)

in Eq. (4.1). cThe number of cc-pVQZ basis set calculations which must be performed using a given base wave function and
a given correlation energy scaling factor to extrapolate the CR-CC(2,3)/cc-pVQZ PES. dThe CPU time needed to perform
the necessary calculations for each PES extrapolation type relative to the time needed to generate the true CR-CC(2,3)/cc-
pVQZ PES. eThe mean unsigned error representing an extrapolated CR-CC(2,3)/cc-pVQZ reaction pathway generated using
the designated base energy and correlation energy scaling factor. f Characteristics of the true PES calculation, in which
each stationary point on the conrotatory and disrotatory pathways of the bicbut→t-but isomerization is calculated at teh
CR-CC(2,3)/cc-pVQZ level.
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Chapter 5

Development of Computer Codes for

the GAMESS software Package

A large portion of the current doctoral effort was devoted to writing EOMCC computer

codes for the GAMESS software package. In this section, we discuss the highly efficient

GAMESS implementations of the open-shell EOMCCSD and IP-EOMCCSD(2h-1p) methods

developed as part of this thesis project, based on theory discussed in Sect. (3.1.2) and the

corresponding factorized equations, in terms of recursively generated intermediates that lead

to the vectorized computer codes through the use of fast matrix multiplication rountines

from the BLAS library. The open-shell EOMCCSD and IP-EOMCCSD(2h-1p) codes were

interfaced with previously existing ROHF and RHF/ROHF integral routines, respectively,

available in the GAMESS software package [194], as well as the CC programs and routines

for the generation of matrix elements of the similarity-transformed Hamiltonian of CCSD

originally developed for GAMESS by the Piecuch group at Michigan State University. In

Sect. (5.1), we begin our discussion of the implementation of these programs, with specific
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details outlined for the open-shell EOMCCSD and IP-EOMCCSD(2h-1p) methods in Sects.

(5.1.1) and (5.1.2), respectively.

5.1 Key Details of Efficient Computer Implementations

Both the open-shell EOMCCSD and IP-EOMCCSD(2h-1p) codes must begin by solving the

usual CCSD equations for the ground-state of the N -electron reference system in order to

obtain the singly and doubly excited cluster amplitudes, tia and t
ij
ab, respectively. In both

cases, this is done using the general ROHF-based CCSD codes included in GAMESS that

work for closed- and open-shells, developed by the Piecuch group and described in [130].

Following the CCSD calculation, the converged tia and t
ij
ab amplitudes are used to contruct

the one- and two-body matrix elements of the CCSD similarity-transformed Hamiltonian

H̄
(CCSD)
N,open , h̄

q
p and h̄rs

pq, respectively, which define the one- and two-body components of

H̄
(CCSD)
N,open within the second quantized formalism,

H̄
(CCSD)
1 = h̄

q
pa

paq, (5.1)

and

H̄
(CCSD)
2 = 1

4 h̄rs
pqN [apaqasar], (5.2)

respectively. N [. . .] is the normal product of the operators between the brackets and the

Einstein summation convention over repeated upper and lower indices is assumed through-

out. The explicit equations defining these matrix elements in terms of the matrix elements

of the Hamiltonian in the normal-ordered form f
q
p = 〈p|f |q〉 and vrs

pq = 〈pq|v|rs〉− 〈pq|v|sr〉,

and CCSD cluster amplitudes tia and t
ij
ab, are given in Table (5.1). Once these common

175



initial steps are complete, the appropriate expressions for solving the EOMCCSD and IP-

EOMCCSD(2h-1p) eigenvalue problems have to be constructed. These steps, which are

specific to the open-shell EOMCCSD and IP-EOMCCSD(2h-1p) codes considered here, are

outlined in Sects. (5.1.1) and (5.1.2), respectively. Once the suitable EOMCCSD and IP-

EOMCCSD(2h-1p) equations are constructed, another common feature in our implementa-

tion of the EOMCCSD and IP-EOMCCSD(2h-1p) approaches is that we rely on the Hirao-

Nakatsuji generalization [303] of the Davidson diagonalization algorithm [304] to solve the

resulting non-Hermitian eigenvalue problems, Eqs. (3.24) and (3.25) in Sect. (3.1.2.1).

5.1.1 Standard Equation-of-Motion Coupled-Cluster Theory with

Singles and Doubles for Open-Shell Systems

The left-hand sides of the EOMCCSD equations are calculated by projecting [H̄
(CCSD)
N,open

(Rµ,1 + Rµ,2)]C |Φ〉 onto the subspace of all singly- and doubly-excited determinants, 〈Φaα
iα

|,

〈Φ
aβ
iβ

|, 〈Φaαbα
iαjα

|, 〈Φ
aβbβ
iβjβ

|, and 〈Φ
aαbβ
iαjβ

|, to obtain the following expressions:

〈Φaα
iα

|[H̄
(CCSD)
N,open (Rµ,1 + Rµ,2)]C |Φ〉 = h̄eα

aαriα
eα − h̄iα

mαrmα
aα + h̄eα

mαriαmα
aαeα

+h̄
eβ
mβ

riαmα
aβeβ

+ h̄iαeα
aαmαrmα

eα + h̄
iαeβ
aαmβ

r
mβ
eβ

−1
2 h̄

iαfα
mαnαrmαnα

aαfα
+ 1

2 h̄
eαfα
aαnαriαnα

eαfα

−h̄
iαfβ
mαnβ

r
mαnβ
aαfβ

+ h̄
eαfβ
aαnβ

r
iαnβ
eαfβ

, (5.3)
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Table 5.1: Explicit algebraic expressions for the one- and two-body matrix elements of

H̄
(CCSD)
N,open (h̄

q
p and h̄rs

pq, respectively) taken from Refs. [126,132].

Intermediate Expressiona

h̄a
i fa

i + vae
imtme

h̄
j
i f

j
i + v

je
imtme + 1

2v
ef
mit

mj
ef + h̄e

i t
j
e

h̄b
a Ib

a − h̄b
mtma

h̄bc
ai vbc

ai − vbc
mit

m
a

h̄ka
ij vka

ij + vea
ij tke

h̄cd
ab vcd

ab + 1
2vcd

mntmn
ab − h̄cd

amtmb + vcd
bmtma

h̄kl
ij vkl

ij + 1
2v

ef
ij tkl

ef − h̄le
ijt

k
e + vke

ij tle

h̄
jb
ia I

′jb
ia − veb

imt
jm
ea − h̄

jb
imtma

h̄ic
ab vic

ab + vec
abt

i
e − h̄ic

mbt
m
a + I ′icmat

m
b − h̄c

mtimab +

h̄ce
bmtimae − vce

amtimbe + 1
2 h̄ic

nmtnm
ab

h̄
jk
ia v

jk
ia + h̄

jk
mit

m
a − vke

ia t
j
e + A jkh̄

je
imtkm

ae

+h̄e
i t

jk
ea + I

′je
ia tke − 1

2v
ef
ai t

jk
ef

I ′ba fb
a + vbe

amtme

Ib
a I ′ba − 1

2veb
mntmn

ea

I
′jb
ia v

jb
ia + veb

iat
j
e

a Summation over repeated upper and lower indices is assumed. f
q
p = 〈p|f |q〉 and vrs

pq =
〈pq|v|rs〉 − 〈pq|v|sr〉 are the one- and two-body matrix elements of the Hamiltonian in the

normal-ordered form (one- and two-electron integrals), and the tia and t
ij
ab are the singly

and doubly excited cluster amplitudes defining the ground-state CCSD wave function of the
N -electron reference system. The antisymmetrizer Apq = 1 − (pq) operator is also used,
where (pq) is the transposition of indices p and q.

177



〈Φ
aβ
iβ

|[H̄
(CCSD)
N,open (Rµ,1 + Rµ,2)]C |Φ〉 = h̄

eβ
aβ

r
iβ
eβ

− h̄
iβ
mβ

r
mβ
aβ

+ h̄
eβ
mβ

r
iβmβ
aβeβ

+h̄eα
mαr

iβmα
aβeα + h̄

iβeβ
aβmβ

r
mβ
eβ

+ h̄
iβeα
aβmαrmα

eα

−1
2 h̄

iβfβ
mβnβ

r
mβnβ
aβfβ

+ 1
2 h̄

eβfβ
aβnβ

r
iβnβ
eβfβ

−h̄
iβfα
mβnαr

mβnα

aβfα
+ h̄

eβfα
aβnαr

iβnα

eβfα
, (5.4)

〈Φaαbα
iαjα

|[H̄
(CCSD)
N,open (Rµ,1 + Rµ,2)]C |Φ〉 = −Aiαjα h̄iα

mαr
mαjα
aαbα

+ Aaαbα h̄eα
aαr

iαjα
eαbα

−Aaαbα h̄
iαjα
mαbα

rmα
aα + Aiαjα h̄

eαjα
aαbα

riα
eα

+1
2 h̄

eαfα
aαbα

r
iαjα
eαfα

+ 1
2 h̄

iαjα
mαnαrmαnα

aαbα

−AiαjαAabh̄
iαeα
mαaαr

mαjα
eαbα

+AiαjαAabh̄
iαeβ
aαmβ

r
mβjα

eβbα

−h̄
iαeαjα
mαaαbα

rmα
eα + h̄

iαjαeβ
aαbαmβ

r
mβ
eβ

−1
2Aaαbα h̄

iαjαfα
mαbαnα

rmαnα
aαfα

−Aaαbα h̄
iαjαfβ
mαbαnβ

r
mαnβ
aαfβ

+1
2Aiαjα h̄

eαjαfα
aαbαnα

riαnα
eαfα

−Aiαjα h̄
eαjαfβ
aαbαnβ

r
iαnβ
eαfβ

, (5.5)
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〈Φ
aβbβ
iβjβ

|[H̄
(CCSD)
N,open (Rµ,1 + Rµ,2)]C |Φ〉 = −Aiβjβ

h̄
iβ
mβ

r
mβjβ
aβbβ

+ Aaβbβ
h̄

eβ
aβ

r
iβjβ
eβbβ

−Aaβbβ
h̄

iβjβ
mβbβ

r
mβ
aβ

+ Aiβjβ
h̄

eβjβ
aβbβ

r
iβ
eβ

+1
2 h̄

eβfβ
aβbβ

r
iβjβ
eβfβ

+ 1
2 h̄

iβjβ
mβnβ

r
mβnβ
aβbβ

−Aaβbβ
Aiβjβ

h̄
iβeβ
mβaβ

r
mβjβ
eβbβ

+Aaβbβ
Aiβjβ

h̄
iβeα
aβmαr

mαjβ
eαbβ

−h̄
iβeβjβ
mβaβbβ

r
mβ
eβ

+ h̄
iβjβeα

aβbβmα
rmα
eα

−1
2Aaβbβ

h̄
iβjβfβ
mβbβnβ

r
mβnβ
aβfβ

−Aaβbβ
h̄

iβjβfα

mβbβnα
r
mβnα

aβfα

+1
2Aiβjβ

h̄
eβjβfβ
aβbβnβ

r
iβnβ
eβfβ

−Aiβjβ
h̄

eβjβfα

aβbβnα
r
iβnα

eβfα
, (5.6)
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and

〈Φ
aαbβ
iαjβ

|[H̄
(CCSD)
N,open (Rµ,1 + Rµ,2)]C |Φ〉 = −h̄iα

mαr
mαjβ
aαbβ

− h̄
jβ
nβ

r
iαnβ
aαbβ

+ h̄eα
aαr

iαjβ
eαbβ

+h̄
fβ
bβ

r
iαjβ
aαfβ

− h̄
iαjβ
mαbβ

rmα
aα − h̄

iαjβ
aαnβ

r
nβ
bβ

+h̄
eαjβ
aαbβ

riα
eα + h̄

iαfβ
aαbβ

r
jβ
fβ

+h̄
eαfβ
aαbβ

r
iαjβ
eαfβ

+ h̄
iαjβ
mαnβ

r
mαnβ
aαbβ

−h̄
eαjβ
aαnβ

r
iαnβ
eαbβ

− h̄
iαfβ
mαbβ

r
mαjβ
aαfβ

+h̄
iαfβ
aαnβ

r
nβjβ
fβbβ

+ h̄
eαjβ
mαbβ

rmαiα
eαaα

−h̄
iαeαjβ
mαaβbβ

rmα
eα − h̄

iαjβfβ
aαnβbβ

r
nβ
fβ

−h̄iαeα
mαaαr

mαjβ
eαbβ

− h̄
fβjβ
bβnβ

r
iαnβ
aαfβ

+h̄
iαjβeα

aαbβmα
rmα
eα + h̄

iαjβfβ
aαbβnβ

r
nβ
fβ

−1
2 h̄

iαjβfα

mαbβnα
rmαnα
aαfα

− h̄
iαjβfβ
mαbβnβ

r
mαnβ
aαfβ

−h̄
iαjβeα
aαnβmαr

mαnβ
eαbβ

− 1
2 h̄

iαjβeβ
aαnβmβ

r
mβnβ
eβbβ

+1
2 h̄

eαjβfα

aαbβnα
riαnα
eαfα

+ h̄
eαjβfβ
aαbβnβ

r
iαnβ
eαfβ

+h̄
iαfβeα

aαbβmα
r
jβmα

fβeα

+1
2 h̄

iαfβeβ
aαbβmβ

r
jβmβ
fβeβ

, (5.7)
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where the antisymmetrizer Apq = 1 − (pq) is used, with (pq) designating the transposition

of indices p and q, and

h̄
iαjβfα

mαbβnα
= v

eαfα
mαnαt

iαjβ
eαbβ

,

h̄
iαjβfβ
mαbβnβ

= v
eαfβ
mαnβ

t
iαjβ
eαbβ

,

h̄
iαjβeα
aαnβmα = v

eαfβ
mαnβ

t
iαjβ
aαfβ

,

h̄
iαjβeβ
aαnβmβ

= v
eβfβ
mβnβ

t
iαjβ
aαfβ

,

h̄
eαjβfα

aαbβnα
= v

eαfα
mαnαt

mαjβ
aαbβ

,

h̄
eαjβfβ
aαbβnβ

= v
eαfβ
mαnβ

t
mαjβ
aαbβ

,

h̄
iαfβeα

aαbβmα
= v

eαfβ
mαnβ

t
iαnβ
aαbβ

,

and

h̄
iαfβeβ
aαbβmβ

= v
eβfβ
mβnβ

t
iαnβ
aαbβ

, (5.8)

where the µ subscript was dropped from the r amplitudes for clarity. By substituting the

three-body components of the similarity transformed Hamiltonian of CCSD given in Eq.

(5.8) and factorizing the resulting equations, the open-shell EOMCCSD equations projected

on doubly excited determinants, Eqs. (5.5), (5.6), and (5.7), may be rewritten in the following
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way:

〈Φaαbα
iαjα

|[H̄
(CCSD)
N,open (Rµ,1 + Rµ,2)]C |Φ〉 = AiαjαAaαbα(−1

2 h̄iα
mαr

mαjα
aαbα

+ 1
2 h̄eα

aαr
iαjα
eαbα

−1
2 h̄

iαjα
mαbα

rmα
aα + 1

2 h̄
eαjα
aαbα

riα
eα

+1
8 h̄

eαfα
aαbα

r
iαjα
eαfα

+ 1
8 h̄

iαjα
mαnαrmαnα

aαbα

−h̄iαeα
mαaαr

mαjα
eαbα

+ h̄
iαeβ
aαmβ

r
mβjα

eβbα

−1
2χmα

iα
t
mαjα
aαbα

+ 1
2χeα

aαt
iαjα
eαbα

) (5.9)

〈Φ
aβbβ
iβjβ

|[H̄
(CCSD)
N,open (Rµ,1 + Rµ,2)]C |Φ〉 = Aaβbβ

Aiβjβ
(−1

2 h̄
iβ
mβ

r
mβjβ
aβbβ

+ 1
2 h̄

eβ
aβ

r
iβjβ
eβbβ

−1
2 h̄

iβjβ
mβbβ

r
mβ
aβ

+ 1
2 h̄

eβjβ
aβbβ

r
iβ
eβ

+1
8 h̄

eβfβ
aβbβ

r
iβjβ
eβfβ

+ 1
8 h̄

iβjβ
mβnβ

r
mβnβ
aβbβ

−h̄
iβeβ
mβaβ

r
mβjβ
eβbβ

+ h̄
iβeα
aβmαr

mαjβ
eαbβ

−1
2χ

iβ
mβ

t
mβjβ
aβbβ

+ 1
2χ

eβ
aβ

t
iβjβ
eβbβ

) (5.10)
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and

〈Φ
aαbβ
iαjβ

|[H̄
(CCSD)
N,open (Rµ,1 + Rµ,2)]C |Φ〉 = −h̄iα

mαr
mαjβ
aαbβ

− h̄
jβ
nβ

r
iαnβ
aαbβ

+ h̄eα
aαr

iαjβ
eαbβ

+h̄
fβ
bβ

r
iαjβ
aαfβ

− h̄
iαjβ
mαbβ

rmα
aα − h̄

iαjβ
aαnβ

r
nβ
bβ

+h̄
eαjβ
aαbβ

riα
eα + h̄

iαfβ
aαbβ

r
jβ
fβ

+h̄
eαfβ
aαbβ

r
iαjβ
eαfβ

+ h̄
iαjβ
mαnβ

r
mαnβ
aαbβ

−h̄
eαjβ
aαnβ

r
iαnβ
eαbβ

− h̄
iαfβ
mαbβ

r
mαjβ
aαfβ

+h̄
iαfβ
aαnβ

r
nβjβ
fβbβ

+ h̄
eαjβ
mαbβ

rmαiα
eαaα

−h̄iαeα
mαaαr

mαjβ
eαbβ

− h̄
fβjβ
bβnβ

r
iαnβ
aαfβ

−χiα
mαt

mαjβ
aαbβ

+ χeα
aαt

iαjβ
eαbβ

−χ
jβ
nβ

t
iαnβ
aαbβ

+ χ
fβ
bβ

t
iαjβ
aαfβ

(5.11)

where

χiα
mα = −v

iαfα
nαmαrnα

fα
+ v

iαfβ
mαnβ

r
nβ
fβ

− v
eαfα
nαmαrnα

fα
tiαeα

+v
eαfβ
mαnβ

r
nβ
fβ

tiαeα + 1
2v

eαfα
mαnαriαnα

eαfα
+ v

eαfβ
mαnβ

r
iαnβ
eαfβ

, (5.12)

χeα
aα = −v

fαeα
aαnαrnα

fα
+ v

eαfβ
aαnβ

r
nβ
fβ

+ v
eαfα
nαmαrnα

fα
tmα
aα

−v
eαfβ
mαnβ

r
nβ
fβ

tmα
aα − 1

2v
eαfα
mαnαrmαnα

aαfα
− v

eαfβ
mαnβ

r
mαnβ
aαfβ

, (5.13)
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χ
iβ
mβ

= −v
iβfβ
nβmβ

r
nβ
fβ

+ v
iβfα
mβnαrnα

fα
− v

eβfβ
nβmβ

r
nβ
fβ

t
iβ
eβ

+v
eβfα
mβnαrnα

fα
t
iβ
eβ

+ 1
2v

eβfβ
mβnβ

r
iβnβ
eβfβ

+ v
eβfα
mβnαr

iβnα

eβfα
, (5.14)

and

χ
eβ
aβ

= −v
fβeβ
aβnβ

r
nβ
fβ

+ v
eβfα
aβnαrnα

fα
+ v

eβfβ
nβmβ

r
nβ
fβ

t
mβ
aβ

−v
eβfα
mβnαrnα

fα
t
mβ
aβ

− 1
2v

eβfβ
mβnβ

r
mβnβ
aβfβ

− v
eβfα
mβnαr

mβnα

aβfα
, (5.15)

which is the final form of the open-shell EOMCCSD equations used in the efficient vectorized

GAMESS code. Once the singly and doubly excited amplitudes defining the EOMCCSD

excitation operator, ri
µ,a and r

ij
µ,ab, respectively, and the vertical excitation energy ω

(CCSD)
µ

have been determined by solving Eqs. (3.24) (3.25), rµ,0 is calculated a posteriori from the

following expression:

rµ,0 = 〈Φ|[H̄
(CCSD)
N,open (R

(CCSD)
µ,1 + R

(CCSD)
µ,2 )]C |Φ〉/ω

(CCSD)
µ . (5.16)

5.1.2 Electron-Attached and Ionized Equation-of-Motion Coupled-

Cluster Theories

The key difference between the open-shell EOMCC theory and EA- or IP-EOMCC is the sec-

tor of the Fock space the similarity-transformed Hamiltonian of CCSD is diagonalized within.

As an example, in the IP-EOMCC approaches we diagonalize the similarity-transformed

Hamiltonian obtained in calculations for an N -electron reference system in the sector of

the Fock space corresponding to (N − 1) electrons. Thus, the left-hand sides of the IP-
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EOMCCSD(2h-1p) eigenvalue problem,

(H̄
(CCSD)
N,open R

(2h-1p)
µ )C |Φ〉 = ω

(2h-1p)
µ R

(2h-1p)
µ |Φ〉 (5.17)

are obtained by projecting Eq. (5.17) onto all 〈Φiβ
|, 〈Φ

bβ
iβjβ

|, and 〈Φ bα
iβjα

| determinants. In

this way the following equations are obtained:

〈Φiβ
|(H̄

(CCSD)
N,open R

(2h-1p)
N,open)C |Φ〉 = −h̄

iβ
mβ

r
mβ + h̄eα

mαr
iβmα
eα + h̄

eβ
mβ

r
iβmβ
eβ

−h̄
iβfα
mβnαr

mβnα

fα
− 1

2 h̄
iβfβ
mβnβ

r
mβnβ
fβ

, (5.18)

〈Φ
bβ

iβjβ
|(H̄

(CCSD)
N,open R

(2h-1p)
N,open)C |Φ〉 = −Aiβjβ

h̄
jβ
nβ

r
iβnβ
bβ

+ h̄
fβ
bβ

r
iβjβ
fβ

−h̄
iβjβ
mβbβ

r
mβ + Aiβjβ

h̄
eβjα

mβbα
r
iβmα
eα

−Aiβjβ
h̄

eβjβ
bβmβ

r
iβmβ
eβ

+ 1
2 h̄

iβjβ
mβnβ

r
mβnβ
eβ

−1
2v

eβfβ
mβnβ

t
iβjβ
eβbβ

r
mβnβ
fβ

−v
eβfα
mβnαt

iβjβ
eβbβ

r
mβnα

fα
, (5.19)
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and

〈Φ bα
iβjα

|(H̄
(CCSD)
N,open R

(2h-1p)
N,open)C |Φ〉 = −h̄

jα
nαr

iβnα

bα
+ h̄

fα
bα

r
iβjα

fα

−h̄
iβ
mβ

r
mβjα

bα
− h̄

iβjα

mβbα
r
mβ

−h̄
eβbα
mβjα

r
iβmβ
eβ

− h̄
eαjα
bαmα

r
iβmα
eα

−h̄
iβeα

mβbα
r
mβjα
eα + h̄

iβjα
mβnαr

mβnα

bα

−1
2v

eβfβ
mβnβ

t
iβjα

eβbα
r
mβnβ
fβ

−v
eβfα
mβnαt

iβjα

eβbα
r
mβnα

fα
. (5.20)

As in the case of EOMCCSD, the IP-EOMCCSD(2h-1p) equations are solved using the

Hirao-Nakatsuji algorithm [303].
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Chapter 6

Summary and Concluding Remarks

In this dissertation, we addressed the problem of generating highly accurate potential energy

surfaces (PESs) for reactive processes by introducing and demonstrating the performance of

electronic structure methodologies that can provide a balanced description of chemical species

with varying levels of electronic degeneracy, but are also practical enough to be applied to a

wide range of chemical problems, as well as extrapolation techniques which facilitate the gen-

eration of PESs corresponding to high-level electronic structure calculations in a much more

efficient manner than that offered by conventional and laborious point-wise computations.

In particular, we examined the performance of two classes of coupled-cluster (CC) methods

which are capable of accounting for the diverse electron correlation effects encountered in the

majority of ground- and excited-state PES considerations. The first class of methods con-

sisted of the size-extensive completely renormalized (CR) CC approaches for ground states

and their equation-of-motion (EOM) CC extensions for excited states, in which noniterative

corrections due to higher-order correlation effects are added to the energies obtained with

the standard CC and EOMCC approximations, such as CCSD or EOMCCSD, respectively.
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We showed that the left-eigenstate CR-CC(2,3) and CR-EOMCC(2,3) methods that belong

to this category offer excellent performance for a diverse range of applications, including

a benchmark database of barrier heights for thermochemical kinetics, a pair of bimolecu-

lar association mechanisms involving the ozone molecule, competing intramolecular reaction

mechanisms describing the isomerization of bicyclobutane to butadiene, and the ground- and

excited-state PES cuts for the water molecule. When necessary, corrections for quadruple

excitations were also included via the CR-CC(2,3)+Q method which usually improved the

performance of the CR-CC(2,3) methods from chemical to sub-chemical accuracies for many

of the studied systems. A new variant of the CR-EOMCC(2,3) method was also presented

and discussed, namely, the δ-CR-EOMCC(2,3) approach that can provide a size-intensive

treatment of excitation energies. This method was applied to describe excitation energies

and hydrogen-bonding-induced spectral shifts in complexes of 7-Hydroxyquinoline with con-

siderable success, helping to explain problems with time-dependent density functional theory.

The second class of methods considered here were the active-space variants of the electron

attached (EA) and ionized (IP) EOMCC theories. The EA- and IP-EOMCC approaches

were shown to be an excellent alternative to open-shell CC and EOMCC methods and their

perturbative extensions for describing open-shell molecular systems, providing spin-adapted

results while their active-space variants proved to be extremely efficient, significantly reduc-

ing the costs of the high-level parent EA- and IP-EOMCC approximations without sacrificing

accuracy. We also developed a general strategy for reducing the cost of generating PESs with

correlated electronic structure methods via the concept of correlation energy scaling. In order

to demonstrate typical accuracies one may expect when using the two types of PES extrap-

olation schemes presented here, namely, the single-level and dual-level schemes, a number
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of benchmark applications were presented, such as the previously mentioned bicyclobutane

isomerization and single-bond breaking potential energy curves for the H2O, HCl, and F2

molecules. The single-level extrapolation schemes were shown to reproduce PESs obtained

in laborious high-level point-by-point computations to within fractions of a millihartree in

most cases, even when used to extrapolate the PES to the CBS-limit. Meanwhile, the dual-

level PES extrapolation schemes were shown to be capable of producing similar accuracies

at a tiny fraction of the computational cost of their single-level analogs. The insensitivity of

the results to the choice of pivot geometry and improvements in accuracy available when a

higher-order base wave function is chosen were also demonstrated. Finally, the development

of new open-shell EOMCCSD and IP-EOMCCSD(2h-1p) computer codes for the GAMESS

software package, along with the corresponding programmable equations, was discussed.
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[26] J. Č́ıžek, Adv. Chem. Phys. 14, 35 (1969).
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