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ABSTRACT
DEVELOPMENT AND APPLICATIONS OF COUPLED-CLUSTER
METHODS AND POTENTIAL ENERGY SURFACE EXTRAPOLATION
SCHEMES
By

Jesse J. Lutz

The generation of highly accurate potential energy surfaces (PESs) for reactive processes
represents a difficult challenge for modern electronic structure theory. Since chemical reac-
tions often involve breaking and forming bonds or intermediate and transition state species,
one must employ a methodology that provides a balanced and highly accurate description
of varying levels of electronic degeneracy, but that is also practical enough to be applied
to a wide range of chemical problems. Using small to medium sized systems, we examine
the performance of two classes of coupled-cluster (CC) methods which are capable of ac-
counting for the diverse electron correlation effects encountered in the majority of ground-
and excited-state PES considerations. The first class of methods are the size-extensive com-
pletely renormalized (CR) CC approaches for ground-states and their equation of motion
(EOM) CC extensions for excited-states, in which noniterative corrections due to higher-
order excitations are added to the energies obtained with the standard CC and EOMCC
approximations, such as CCSD (CC with singles and doubles) or EOMCCSD (EOMCC with
singles and doubles), respectively. In particular, we focus on the left-eigenstate CR-CC(2,3)
and CR-EOMCC(2,3) methods, in which a noniterative correction due to triple excitations is
added to the CCSD or EOMCCSD energy, respectively, and, when necessary, a noniterative
correction for quadruple excitations is also included via the CR-CC(2,3)4+Q approach. A new

variant of the CR-EOMCC(2,3) method, abbreviated as §-CR-EOMCC(2,3), that can pro-



vide a size-intensive treatment of excitation energies, is discussed as well. The second class
of methods considered here is the active-space variants of the electron-attached (EA) and
ionized (IP) EOMCC theories, which utilize the idea of applying a linear electron-attaching
or ionizing operator to the correlated, ground-state CC wave function of an N-electron
closed-shell system in order to generate the ground and excited states of the related (N +1)-
electron radical species of interest. These approaches use a physically motivated set of active
orbitals to a priori select the dominant higher-order correlation effects to be included in the
calculation, which significantly reduces the costs of the high-level EA- and IP-EOMCC ap-
proximations needed for obtaining accurate results for open-shell species without sacrificing
accuracy. We have also developed a general extrapolation strategy for reducing the cost of
generating PESs with correlated electronic structure methods using the concept of correla-
tion energy scaling. Benchmark studies were performed to demonstrate typical accuracies
for two types of PES extrapolation schemes, namely, the single-level PES extrapolation
schemes, in which the essential quantity, the correlation energy scaling factor, is generated
using only the quantum chemistry method of interest, and the dual-level PES extrapolation
schemes, where lower-order approaches are used to estimate the correlation energy scaling
factor corresponding to the method of interest. Unifying features of these PES extrapolation
techniques are discussed, including the role of pivot geometries and base wave functions, and
PES extrapolation to the complete basis set limit is examined as well. Finally, the most
essential details of the new open-shell EOMCCSD and EA- and IP-EOMCC computer codes

for the GAMESS software package, developed as part of this thesis research, are described.
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Chapter 1

Introduction

Potential energy surfaces (PESs) play a central role in the theoretical description of molecular
structures, properties, and reactivities, making them of great utility in many areas of chemi-
cal research, including spectroscopy and kinetics, investigations of reaction mechanisms, and
the design of force fields for biological and materials science applications. Unfortunately,
obtaining a molecular PES is typically very difficult due to the enormous mathematical
complexity one faces when trying to solve the electronic Schrodinger equation. Development
efforts in quantum chemistry have focused on the design of computationally manageable, yet
reliable, approximation methods for the generation of energies and properties that can be ap-
plicable to a wide range of molecular systems. In the interest of reducing mathematical com-
plexity some simplifying approximations are introduced from the outset, including the neglect
of relativistic effects, which are small in systems with light atoms [1], and the decoupling
of the nuclear and electronic wave functions, accomplished under the Born-Oppenheimer
approximation [2], which allows the electronic energy of a molecule to be expressed as a

function of its geometry, thus providing the conceptual basis for a PES. Despite these and



other commonly employed simplifications, the electronic Schrédinger equation remains too
formidable to be solved exactly for any system with two or more electrons [3]. One of the
principal challenges in the conventional determination of a PES, in which one is required
to solve the electronic Schrodinger equation point-by-point for each fixed nuclear geometry
of interest, is the development, implementation, and benchmarking of new approximate ab
initio electronic structure methods that can provide suitably accurate results for the wide
variety of chemical species commonly encountered when studying reactive PESs, while re-
quiring only modest computational resources. Thus, the first goal of this dissertation is
to make a significant contribution toward the development and benchmarking of leading

modern methods of electronic structure theory.

It is difficult at the outset to determine what characteristics are important when de-
veloping new ab initio methods of electronic structure theory. One of the ultimate goals
of quantum chemistry is to provide a predictive tool which can guide experimental efforts.
In order to be considered a quantitatively predictive model, an ab initio method must be
able to reliably produce numerical values for reaction energies which are accurate to within
~ 1 kcal/mol of widely acknowledged benchmark data, a threshold often called “chemical
accuracy”. It should also be clear what cases a method is and is not appropriate for, and,
when necessary, it should be clear what to do to improve a poor result. A shortcoming of
many ab initio methods is that they do not offer a balanced treatment of the short-range
or “dynamical” and long-range or “non-dynamical” electronic interactions and therefore are
unreliable for applications involving chemically reactive processes, since the relative impor-
tance of these competing effects can vary rapidly moving from one region to another on the

corresponding PES. The goal is to develop a method which can give a balanced treatment



of both types of electronic interactions, while also having a straightforward and logical way

of improving the result in the case that the predictions are shown to be inadequate.

The starting point for single-reference (SR) electronic structure methods is the indepen-
dent particle model (IPM), usually Hartree-Fock (HF), approximation [4-7], and the more
practical discretized algebraic form of the resulting equations based on the linear combina-
tion of atomic orbitals (LCAO) self-consistent field (SCF) formalism, which is the origin of
the basis set approximation defining ab initio models [8]. The HF method produces the best
single determinant description of the electronic wave function of interest and although it is
by now well established that the HF approximation yields over 99% of the total energy, its
ability to provide a reliable description of chemical phenomena is very limited due to the
need to describe relatively small energy differences in characterizing chemical processes. The
inadequacies of HF have been shown time and again, but as an outstanding early example,
Wahl’s study of the Fo molecule demonstrated that an SCF description predicts that Fo
is unbound [9]. Despite the completely unphysical relative energetics often produced by
the HF approximation, the LCAO SCF formalism is still a valuable tool as it provides the
HF model, a critical element to our conceptual understanding of electronic structure and
chemical reactivity. To retain the HF picture and be able to make predictive calculations,
methods which improve upon the basic molecular orbital approximation must be developed.
The focus of these so-called "post-HF methods’ is to accurately recover the small amount of
energy neglected at the HF level, a quantity which is known as the correlation energy. The
most popular ab initio post-HF approaches can be grouped into the variational and pertur-
bative classes. Variational approaches provide an upper bound to the exact energy, as in

the configuration interaction (CI) theory [10-14], while perturbative approaches, such as the
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many-body perturbation theory (MBPT) [15-22] and coupled cluster (CC) methods [23-27],
have other advantages which will be discussed shortly. To understand how these approaches
may be utilized to produce powerful new ab initio electronic structure approaches, their

individual strengths and weaknesses must first be understood.

The CI method is the most straightforward way of accounting for electronic correlation.
The CI wave function is a linear combination of the reference (usually HF') determinant and
Slater determinants obtained by exciting electrons from occupied to unoccupied orbitals. If
this determinantal expansion is complete (full CI), the correlation energy and total energy of
the molecular system will be exact within whatever basis set approximation was used used
in the calculation. Due to the fact that the number of Slater determinants grows factorially
with the size of the system, full CI calculations are impractical for systems of more than a few
electrons. Approximations are commonly made in order to reduce this expense, for example,
by truncating the CI expansion to include only the simplest classes of excitations, singles
and doubles (SD), which is called the CISD method. A particularly appealing feature of
the CI methods is that, by systematically adding classes of excitations, e.g., CI with singles,
doubles, and triples, CI with singles, doubles, triples, and quadruples, and so on, one may
obtain a series of increasingly accurate energies approaching the full CI value. Without this
systematically improvable nature, it is difficult to claim a particular level of convergence in
electronic structure calculations unless there is benchmark data available for comparison.
Unfortunately, truncated CI methods lack size-extensivity, i.e., the correct linear scaling
with the number of electrons, and the hierarchy converges slowly with the rank of excitation
included. While the lack of size-extensivity can be approximately accounted for at the CISD

level by adding Davidson corrections [28,29], the slow convergence with level of excitation
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to the full CI limit makes the CI method comparatively inefficient in the context of other

modern electronic structure methods.

Perturbation theory offers another systematically improvable hierarchy of methods for
determining the correlation energy. Although these methods are not variational, they are
strictly size-extensive at every level. In the SR-MBPT approach, the electronic Hamiltonian
is divided into an unperturbed part, corresponding to a single-determinantal reference de-
scription, usually the HF determinant, and a perturbation part, which usually describes the
electronic correlation. In this form of MBPT, introduced by Mgller and Plesset (MP) [15],
the perturbation corrections to the reference wave function and energy are then calculated
using the Rayleigh-Schrodinger perturbation theory. Systematic improvements in the elec-
tronic energy may be made by considering perturbative corrections of increasing orders, i.e.,
second-order MP (MP2), third-order MP (MP3), and so on. Additionally, comparisons of
each order of perturbation with various CI ranks have made possible further division within
levels of perturbation, allowing for the selection of certain classes of excitations. As an
example, one may choose to calculate only certain components within the fourth-order of
MP theory, e.g., MP4 with only contribution from doubles (MP4D), doubles and quadru-
ples (MP4DQ), singles, doubles, and quadruples (MP4SDQ), or singles, doubles, triples, and
quadruples (full MP4). This allows for certain computationally inexpensive higher-order
corrections to be included without significantly increasing time requirements. In general,
if the unperturbed HF determinant describing the molecular system is close to the exact
wave function for that system, the convergence of the MBPT series is usually very rapid;
however, when chemical bonds are stretched, the MBPT series becomes divergent. Thus,

MBPT produces very good energies near the equilibrium geometries of molecules; however,



unlike CI, in regions of PESs where bonds are broken or formed MBPT energies become

unphysical, making them inadequate for describing reactive PESs.

The conventional SR, coupled-cluster (CC) theory is currently considered the preeminent
ab initio method for ground-state calculations of modest-sized molecular systems. Contrary
to the CI approach, which is characterized by a linear expansion of configuration state
functions, the CC approach uses an exponential ansatz for the wave function, inherently
assures that truncated forms of CC theory remain size-extensive, and produces a much
faster convergence to the full CI wave function. It can be shown using a perturbation theory
analysis that the improved convergence of CC as compared with the same level of truncation
in CI theory is due to higher-order excitations being folded in as products of lower-order
excitations by the exponential form of the CC ansatz. At the same time, thanks to the use of
diagram factorization techniques commonly employed in efficient computer implementations
of CC methods, the computer costs of CC calculations are similar to those characterizing
the CI approaches truncated at the same excitation levels. This is why CC methods can
offer higher accuracy at relatively lower costs as compared with CI or MBPT methods and
even though the energies produced are not variational, they are typically considerably more
accurate than those produced by CI at the same level of truncation. Excited states may also
be accessed in CC theory through the equation-of-motion (EOM) CC formalism [30-34] or
its symmetry-adapted-cluster configuration-interaction (SAC-CI) [35-39] or linear-response
CC analogs [40-44]. The most appealing electronic structure methods come as a result of
combining the different abovementioned approaches. EOMCC, for example, is just a CI-
like expansion starting from an approximate ground-state wave function obtained using CC

theory. Approaches based on the CC and EOMCC formalisms which utilize perturbation



theory to obtain inexpensive corrections due to higher-order correlation effects also exist and

will be discussed in more detail shortly.

All of these appealing features of CC theory make it the most promising electronic struc-
ture approach of those considered so far, but there are still open problems yet to be com-
pletely addressed in CC theory. For instance, the most widely used and computationally
practical CC approximation, the CC with singles and doubles (CCSD) method [45-48], fails
completely when applied to describe a PES involving bond breaking. The CCSD method,
which is based on an iterative procedure with central processing unit (CPU) steps scaling
as ngnﬁ, where n, and n,, are the numbers of occupied and unoccupied orbitals in the refer-
ence model, respectively, or as N 6 where N is the size of the system expressed as the sum
of the exponents of the basis functions, neglects the important triply excited, quadruply
excited, and other higher-order clusters needed to describe bond breaking. Unfortunately,
the CC method with singles, doubles, and triples (CCSDT) [49, 50] and the CC approach
with singles, doubles, triples, and quadruples (CCSDTQ) [51-54] which include these clus-
ters are prohibitively expensive for anything but small molecules, as they require iterative
steps that scale as n%ng (N 8), and ngng NV 10), respectively. A parallel problem exists
in the case of the EOMCC or response CC methods where the basic singles and doubles
approximation (EOMCCSD) [31-33], which is characterized by iterative n2ni (AN6) scaling
steps, fails to describe excited states dominated by two-electron and other many-electron
transitions out of the ground state. Again, the EOMCC theory with singles, doubles, and
triples (EOMCCSDT) [55-58] and the EOMCC approach with singles, doubles, triples, and

quadruples (EOMCCSDTQ) [59], which can describe such states, do not offer a suitable al-

ternative in the majority of applications because of their prohibitively expensive iterative N8
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and N1V scaling steps, respectively. The massive success of the SRCC theories in molecu-
lar applications [60-66], particularly for nondegenerate ground-states of molecules near their
equilibrium geometry and electronically excited states dominated by one-electron transitions,
in addition to substantial progress in recent years in code parallelization [67-77], and in the
development of various local correlation CC techniques (see, e.g., Refs. [78-83]), including,
for example the cluster-in-molecule CC method developed by the Piecuch group [84-86], con-
tinues to stimulate parallel effort toward the extension of CC theory to handle quasidegerate
states characterizing bond breaking and many-electron excitations with the same or close to

the same level of computational effort as that required by CCSD.

The most natural way to handle quasi-degenerate electronic states is to either turn to
one of the variants of multi-reference (MR) perturbation theory, such as the popular MC-
QDPT2 [87,88] and CASPT?2 [89] methods, which are designed to handle large nondynamical
correlation effects and low-order dynamical correlation effects, the MRCI approaches, such
as the popular MRCI(Q) approximation [90,91], or the genuine MRCC methods, which, in
analogy to the previously discussed SR analogs, offer a better treatment of the dynamical
correlation effects as compared with the MRMBPT or MRCI methods. The genuine MRCC
methods can be categorized into two types. The first is the hierarchy of the Fock-space or
valence-universal methods [92,93], in which a single valence-universal wave operator oper-
ates on the system of interest and its ions which are obtained by removing one, two, etc.
active electrons from active orbitals. This is a convenient formalism when one is interested
in ionization potentials and electron affinities, however, these methods are unfavorable when
a wide range of geometries must be considered, as is the case in the generation of reactive

PESs. The other category of genuine MRCC methods, the Hilbert-space or state-universal



(SU) approaches [94], employ the Jeziorski-Monkhorst wave function ansatz in conjunction
with the multi-root Bloch wave-operator formalism. The SU-MRCC approaches have been
shown to produce very accurate results for the ground and excited states of systems un-
dergoing severe geometrical transformations (see, e.g., Refs. [95-100]), making them a very
attractive choice within the context of PES generation. However, their routine use for such
applications is complicated by many factors. First, a model space of reference states must be
pre-defined by the user, which often contains many states irrelevent to a given problem, and
then a truncation scheme must be chosen which is compatible with the model space. This
requires expert-level decisions on a case-by-case basis for each molecular problem. Then,
even when appropriate choices are made, intruder states may appear [95-97], which can
severely complicate interpretation of results. The aforementioned ambiguous parameters
become even more undesirable when considered in the context of practical implementation.
The need to accomodate such general choices in combination with the massive number of
cluster amplitudes which must be computed make writing general SU-MRCC computer pro-
grams excessively difficult. While widespread routine use of genuine MRCC methods seems
unlikely in the near future, these methods have provided great insight into ways to improve
existing SRCC formalisms and inspired activity toward MRCC approaches dealing with a
single quantum state. We refer the reader to Ref. [101], and references therein for further

detailed discussion.

Due to the difficulties with implementing practical, user-friendly MRCC methods and the
prohibitive computational expenses characterizing the SR CCSDT and CCSDTQ approaches
and their EOM analogs, substantial research effort has been directed toward developing ap-

proximate approaches for including higher-order correlation effects within a SRCC formal-



ism. This led to both approximate iterative approaches, such as CCSDT-n [102-104], and
CCSDTQ-1 [105], as well as the more popular non-iterative approaches, such as CCSD[T]
[104,106] and CCSD(T) [107], where triply excited Tg clusters are approximated using per-
turbative arguments which take the form of a relatively inexpensive non-iterative ngnﬁ (N 7)
scaling step in addition to the cost of the underlying CCSD calculation. Methods were also
derived for cases when quadruple excitations should not be disregarded, where perturbative
noniterative corrections for both triples and quadruples are added, e.g., the CCSD(TQy)
method [108], characterized by a n2n) (N7) scaling step. These and other noniterative
perturbative CC approaches have become extremely popular because they efficiently ac-
count for most of the important connected triple or triple and quadruple excitations in a
user-friendly (“black-box”) fashion, while avoiding the steep iterative A® or N1V scaling
steps required by full CCSDT or CCSDTQ. Unfortunately, their applicability is limited to
molecules near the equilibrium geometries, since the perturbative arguments used to de-
rive the noniterative corrections of CCSD(T) and similar approaches fail when bonds are
streched or broken. A parallel challenge is found within the development of the standard
response CC and EOMCC approximations for excited states, in which the effects of triply
or triply and quadruply excited configurations are estimated using arguments originating
from MBPT (see, e.g., Refs. [109-114]). The perturbatively corrected EOMCC methods,
such as, for example, EOMCCSD(T) [110], where the basic EOMCCSD approximation is
corrected for triples via a noniterative n3n or N7 scaling correction, break down for excited

states having larger contributions due to doubly excited configurations, which is particularly

common for excited-state PESs along bond breaking coordinates (see, e.g., Ref. [115]).

Quite a few approaches have been suggested in recent years which attempt to overcome
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the failures of the conventional perturbative SR CC and EOMCC methods at larger inter-
nuclear separations and for excited states dominated by many-electron transitions, while
avoiding the complexity of the genuine MRCC approaches. Examples which will be consid-
ered here include the externally corrected CC methods, such as the reduced MRCC (RMR-
CC) approaches [116-122], the completely renormalized (CR) CC methods [65,115,123-132],
and the active-space CC theories [54-57,133-149] (see Ref. [101] for a recent review). All
of these methods are related in that they are concerned with improving the description of
bond-breaking processes and other cases involving electronic quasidegeneracies, while relying
on a SR-like formulation. Each of these methods will now be discussed, paying particular at-
tention to the strengths of each approach and making mention of selected recent applications

in the literature.

The externally corrected SRCC methods represent an alternative to the perturbatively-
derived corrections in which the CCSD equations corrected for terms containing the triply
(T3) and quadruply (7) excited clusters are solved after replacing T3 and 7 amplitudes
by their values obtained in the cluster analysis of some non-CC wave function which ex-
hibits good behavior at large internuclear separations, such as the projected unrestricted
HF [150, 151], valence bond [152-154], multiconfigurational SCF or complete active-space
SCF (CASSCF) [155-157], or MRCI wave functions [116-121]. Although all of these meth-
ods help in bond breaking situations, the latter, MRCI-corrected CCSD approach, referred
to as RMR-CCSD, and its RMR-CCSD(T) extension [121,122], have shown the most sub-
stantial improvements in the CCSD results. Unfortunately, the generation of the MRCISD
wave function is very expensive when compared to the CCSD approach and MRCI is not size-

extensive, which limits the applicability of the RMR-CC approaches to smaller systems. One
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can partly address these deficiencies by turning to the so-called (N,M)-CCSD methods [158].
This notation implies that an M-reference general-model-space (GMS) SU-MRCCSD calcu-
lation [99,100] is corrected for higher-order clusters by drawing the relevent information from
M pertinent wave functions [159] produced by an N-reference MRCISD calculation. Exten-
sive benchmarking and testing have shown the RMR-CCSD method and its aforementioned
extension with a perturbative correction for triples, RMR-CCSD(T) [121,122,160-172], as
well as the (N,M)-CCSD methods [158,173-181] to be quite accurate in practice, although

all of these approaches are very complex and require a lot of expertise.

The ground-state CR-CC [65,123-131] and excited-state CR-EOMCC [65, 115,123,126,
129,132] methods represent another class of approaches which were developed with the in-
tention of removing the pervasive failings of the conventional CC/EOMCC perturbative
methods. These approaches are based on the more general formalism of the method of
moments of CC equations (MMCC) [65,123-125,127-129,131,182,183]. In analogy to the
conventional perturbative methods, the CR-CC and CR-EOMCC methods allow one to cal-
culate noniterative state-specific energy corrections corresponding to selected higher-order
excitations which are added to the energies obtained from conventional CC/EOMCC cal-
culations, such as CCSD or EOMCCSD. These CR-CC and CR-EOMCC corrections are
based on the asymmetric energy expressions and resulting moment expansions which form
the underlying framework for all MMCC methods. The original CR-CC approaches, such as
CR-CCSD(T) [124,125] suffered from small errors due to a lack of strict size-extensivity [65],
but these issues were addressed in the more recent left-eigenstate CR-CC approaches, in-
cluding CR-CC(2,3), which are based on yet another form of the of the moment expansion

of the full CI energy that defines the biorthogonal MMCC formalism [127-132]. The main
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advantage of the CR-CC, CR-EOMCC, and other MMCC approaches is that the resulting
ground- and excited-state energies are not dependent on any choice of active orbitals or
other subjective parameters that one has to choose in MR calculations. Another advan-
tage is the computational expense of the CR-CC and CR-EOMCC methods, which is on
the order of the conventional perturbative SRCC methods. For example, the noniterative
triples correction in the CR-CC(2,3) approach scales as n%nﬁ or N7, in analogy to the scal-
ing of CCSD(T). The CR-CC(2,3) method has already been proven to be very accurate and
robust, particularly in applications involving single bond breaking [127-130,184-188], mech-
anistic studies involving biradicals [127, 128,130, 131, 189-193], and singlet-triplet gaps in
biradical /magnetic systems [130,131,192]. Similar successes have been reported for the CR-
EOMCC(2,3) method [129,132] and its CR-EOMCCSD(T) predecessor [65, 115, 123, 126],
where noniterative, n%n% or N7 scaling corrections for triples are added to the underly-
ing EOMCCSD energies. For example, the CR-EOMCC(2,3) method has recently been
shown to accurately reproduce adiabatic excitation energies for various closed- and open-

shell molecules which are believed to be dominated by two-electron transitions out of the

ground-state [132].

The third and final effort toward constructing a SR formalism capable of handling
stronger non-dynamical correlations which will be considered here are the active-space CC
and EOMCC methods [54, 133-149] (see Ref. [101] for a recent review). By specifically
targeting the higher-order cluster and excitation amplitudes which become large in such
situations by assigning a small subset of active orbitals defining these excitations, highly
accurate results may be obtained while avoiding much of the expense of the higher-order

parent methods. For example, the CCSDt and CCSDtq methods are based on the idea of
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selecting T3 and T} clusters within the CCSDT and CCSDTQ systems of equations using
active orbitals [54,133-146]. When properly implemented, the most expensive CPU steps of
the full CCSDt and CCSDtq approaches scale as NoNyn2na and NZN2n2ni, respectively,
where N, and N, are the numbers of active occupied and unoccupied orbitals, respectively.
All active-space approaches have a few distinct advantages over competing methods. As
an example, take again the CCSDt and CCSDtq approaches. These methods recover the
exact results of their parent CCSDT and CCSDTQ approaches, respectively, in the limit
that all orbitals are assigned as active. They are also systematically improvable, approach-
ing the CCSDT and CCSDTQ limits as the number of active orbitals is increased. Given
an appropriate selection of a usually small number of active orbitals, the active-space CC
results are typically virtually perfect when compared to the values produced by the parent
methods. Another advantage is the fact that all active-space CC methods are characterized
by relatively low computational scalings, which are small prefactors times the ngnﬁ steps
of the CCSD type. Naturally, following the development of the ground-state CCSDt and
CCSDtq active-space approaches, the EOMCCSDt and EOMCCSDtq methods were devel-
oped, with the first implementation of EOMCCSD¢t and the proposal for all such EOMCC-
based methods occurring in the Piecuch group [55-58]. In addition to the EOMCCSDt
approach, another class of the active-space EOMCC methods was also developed by the
Piecuch group, namely the active-space electron attached (EA) and ionized (IP) EOMCC
approaches [147-149], which may be used to generate ground and excited states of valence
open-shell systems out of a related closed-shell ground-state, as in radical species. Generally,

the EA- and IP-EOMCC methods (see Refs. [66,147-149] and references therein for informa-

tion) have the distinct advantage over the traditional open-shell EOMCC approaches based
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on restricted open-shell HF (ROHF) or unrestricted HF (UHF) references in the fact that
they automatically generate orthogonally spin-adapted wave functions (a difficult thing to
accomplish in CC theory). For comparison, traditional ROHF- or UHF-based open-shell
CC/EOMCC methods introduce spin-contamination to the resulting wave functions. Spin-
contamination can have non-negligible effects on the energy of the states generated, but,
more importantly, it prohibits the designation of the spin-symmetry of a given state, causing
the identification of a particular state to become most inconvenient. This is an important
issue, particularly when the excited states of open-shell systems are examined, which will be

returned to periodically throughout this dissertation.

While promising electronic structure approaches have been and continue to be developed,
many of which provide a highly accurate and balanced description of chemical species typ-
ically encountered while scanning molecular PESs, reliable methods are still prohibitively
expensive when one faces the calculation of the hundreds or thousands of points which are
typically needed to sample these PESs. Electronic structure methods could certainly benefit
from an auxiliary approach for predicting points on the PES based on inexpensive calcula-
tions with either less expensive quantum chemistry approaches or smaller basis sets, which
would ameliorate the staggering computational expense of generating hundreds or thousands
of points using high levels of electronic structure theory. To address this problem, an ab initio
extrapolation scheme has been proposed that predicts the PES corresponding to expensive
high-level calculations from the results of a series of comparatively inexpensive lower-level
calculations using the concept of correlation energy scaling. The PES extrapolation scheme
of this type was originally suggested in Ref. [184] and was designed such that it can be

used in conjunction with any typical post-HF or post-CASSCF electronic structure method.
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Thus, the second principal goal of this dissertation is to develop and perform benchmark
studies on the PES extrapolation schemes based on correlation energy scaling ideas, which
allow one to generate chemically reactive molecular PESs with very little or almost no infor-
mation from high-level calculations while retaining the desired accuracy that high-level ab
1mitio electronic structure methods provide.

Finally, after new methods are developed and shown to be useful in benchmark studies,
general-purpose computer programs should be written and distributed based on the success-
ful theories to give scientists and engineers around the world a tool for interpreting, or even
predicting, experimental results. The third and final goal in this dissertation is to outline
the key details for the computer implementations of the open-shell EOMCCSD and EA-
and IP-EOMCC methods which which were written for the GAMESS electronic structure
software package [194], a freely available suite of computer codes with tens of thousands
of registered users. The three goals of this dissertation, summarized in Chapter 2, are ad-
dressed in this thesis, with a chapter being devoted to each. Thus, Chapter 3 is devoted to
the development and application of new ground and excited-state CC/EOMCC methods for
chemically reactive systems including the CR-CC/EOMCC methods and the active-space
EA- and TP-EOMCC approaches. Chapter 4 begins with a discussion motivating the need
for auxiliary methods to aid in the generation of molecular PESs and moves toward a presen-
tation of the theory and various applications which help demonstrate various ways the PES
extrapolation schemes based on correlation energy scaling may be used. Chapter 5 covers
the development of computer codes for the GAMESS software package in detail, presenting
programmable equations for a few of the theories implemented in this work as well as a brief

discussion of how they are solved in practice.
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Chapter 2

Project Objectives

The main objectives of this work are:

A. Performing benchmark calculations using the new generations of CR-CC approaches,
including barrier heights of hydrogen transfer, heavy-atom transfer, nucleophilic sub-
stitution, and unimolecular and association reactions, and PESs for addition and iso-
merization reactions involving species with varying degrees of electronic degeneracy in

order to demonstrate what levels of theory are appropriate in different situations.

B. Developing and performing benchmark applications for the new generations of CR-
EOMCC approaches, including the calculations of vertical excitation energies and
environment-induced spectral shifts of organic chromophores and the calculation of

excited-state PESs along bond-breaking channels.

C. Performing benchmark applications for the EA- and IP-EOMCC methods including
geometry optimizations and the calculation of adiabatic excitation energies of small

open-shell molecules.
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D. Developing the PES extrapolation schemes based on correlation energy scaling and
performing benchmark applications to demonstrate the full range of capabilities offered

and typical accuracies which should be expected in practice.

E. Outlining the key details of computer implementations of the ROHF-based EOM-
CCSD and RHF- or ROHF-based EA- and IP-EOMCC programs recently developed

for GAMESS.
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Chapter 3

Applications of Coupled-Cluster and
Equation-of-Motion Coupled-Cluster

Methods

3.1 Theory

As explained in the Introduction, the SR CC and EOMCC methods are the preeminent
methods for the determination of electronic energies and properties in chemistry. The ma-
jority of this dissertation is concerned with the new generations of the CC and EOMCC
methods which are useful in situations where the conventional CC and EOMCC approxima-
tions fail. We begin by reviewing the conventional CC and EOMCC theories in Sects. (3.1.1)
and (3.1.2), respectively. The CR-CC and CR-EOMCC approaches and the active-space CC
and EOMCC methods, with special emphasis on their EA- and IP-EOMCC extensions are

discussed afterwards, in Sects. (3.1.3) and (3.1.4), respectively.
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3.1.1 Single-Reference Coupled-Cluster Theory for Ground States

In the SRCC theory, the ground-state wave function |¥q) of an N-electron system is ex-

pressed using the exponential ansatz,

W) = "), (3.1)

where T' is the cluster operator and |®) is an IPM reference configuration, e.g., the HF
determinant (throughout this thesis, the RHF or ROHF determinant). Typically, we truncate
the many-body expansion of T" at a conveniently chosen excitation level mp, to obtain an
approximate 7', ie., T" ~ T (A), hoping that one can reach the desired accuracies with

mp << N. The truncated cluster operator 7(4) defining the approximate CC method A is

given by
mr
7(4) — Z T, (3.2)
n=1
with
T, = Z tilll.-‘:.ign a®l .. .aanam cagy, (3.3)

11 <-<ip,a1<-<an
where T), is the n-body component of T(A), tzll','f,ign are the cluster amplitudes, 71,19, 13,...0r
i,7,k,...(a1,a9,as,...0r a,b,c,...) are the spin-orbitals occupied (unoccupied) in the refer-
ence determinant |®), and a” (ap) are the creation (annihilation) operators associated with
the orthonormal spin-orbital basis set {|p)}. In Eq. (3.2), mp defines the maximum many—
body component included in the truncated cluster operator T(A), returning the exact, full
CI ground-state wave function when mp = N (recall that N is the number of electrons in

the system of interest). When the cluster operator is truncated such that mp < N, Eq.
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(3.1) leads to the well-known hierarchy of standard CC approximations: CCSD when T is
truncated at doubly excited clusters (7" ~ T(CCSD) — T + Ty, mp = 2); CCSDT when T is
truncated at triply excited clusters (7" ~ T(CCSDT) — 7y +To+T3,mp = 3), CCSDTQ when
T is truncated at quadruply excited clusters (1" ~ T(CCSDTQ) — Ty +To+T5+Ty,mp =4),

ete.

The SRCC equations are formally obtained by inserting the CC wave function |¥), Eq.

(3.1), into the electronic Schrédinger equation,
H|Wo) = Ep|¥p), (3.4)

A
premultiplying both sides of Eq. (3.4) on the left by e_T( ) to obtain the connected cluster

form of the Schrodinger equation [25-27],

aW|@) = Fo|P), (3.5)
with
_ A A A
AW = T gt gt (3.6)
and projecting Eq. (3.5) onto the excited determinants |(I>f11;2”> =a"...a"a; ... a;,|®)

corresponding to the many-body compoenents T;, included in 74, Here, the subscript
C' indicates the connected part of a given operator expression. Eq. (3.6) is known as the

similarity-transformed Hamiltonian of the CC theory. The resulting system of equations for

(4)

cluster amplitudes tf}lzgfn defining T'“*) has the following general form:

<q)a1...an|H(A)|q)> — O, il < e & im a; < -+ < ap, (3.7)

i1.in
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aj...an

i1 ) are the n-tuply excited determinants relative to the

where n = 1,...,mp and |®
reference determinant |®). As an example, the CCSD amplitude equations are obtained by

projecting Eq. (3.5), where 7(4) = 7(CCSD) — T1 + T, onto all singly and doubly excited

determinants, |®¢) and @%’), respectively, such that

(@4 ACSD)|g) = 0,

(@2 7(CCSD)jg) = o, (3.8)

where

A(CCSD) _ o~(T+Ty) [ (T +T2) — (py T1HT2) (3.9)

is the similarity-transformed Hamiltonian of the CCSD approach. These equations are solved
for the one- and two-body cluster amplitudes, tz and tijé), respectively, which appear in the

definitions of the one- and two-body cluster operators,

T, = thlaaai (3.10)
1,0
and
Ty = Z t;jbaaabajai. (3.11)
1<j,a<b

As explained in the Introduction, the most expensive CPU steps of the CCSD calculations,

based on Eq. (3.8) scale as ngnﬁ or N6, where A is a measure of the system size.

Once the general system of nonlinear, energy-independent equations for cluster ampli-

tudes, Eq. (3.7), is solved for T(A), the energy E(()A) corresponding to the standard SRCC
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method A is calculated by projecting Eq. (3.5) onto the reference determinant |®) such that

A (4)
B = @|(H ) o), (3.12)
By introducing the normal product form of the Hamiltonian, Hy = H — (®|H|®), this

equation can be rewritten as

ABgY = @ty ) |o), (3.13)

where AE(SA) is the total energy of the system relative to reference energy, i.e., AE(A) =

4) _ (®|H|P), which is equivalent to the correlation energy when |®) is the HF state.

(
EO
For CCSD and all higher-order CC methods it is interesting to note that, at least for the

quantum-chemistry Hamiltonians of interest in this dissertation, which include only two-

body electron-electron interactions, the SRCC energy expression is

ENY = (| H|®) + (B|[Hy (T1 + Ty + 3T2)] | ®) (3.14)
or
AESY = (@|[Hy(T) + Ty + §T2)|0|®). (3.15)

From Eq. (3.15) it can be seen that AE(()A) depends only on 77 and T5 clusters, independent
of the excitation level mp defining SRCC method A as long as mp > 2. It follows then
that the 77 and Th clusters obtained at the level of the basic CCSD approximation are
already sufficient to calculate the CC energy in a complete manner. This does not make

the CCSD approach the exact theory. Adding higher-than-doubly excited clusters in the
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cluster expansion can significantly improve the quality of the CC energy through coupling
of higher-order clusters with the 77 and T amplitudes in the SRCC equations, Eq. (3.7).
This suggests, however, an approximate treatment of higher-than-doubly excited cluster

amplitudes may be sufficient to improve the quality of the CC energy in a satisfactory way.

As a final note about the ground-state CC theory, it should be mentioned that spin-
contamination can become an issue depending on the choice of method used to generate
the reference determinant. For example, if one is interested in describing a closed-shell
molecule, the RHF reference |®) may be employed, which is itself a spin eigenfunction,
S2|®) = S(S + 1)h%|®), where S is the total spin operator, as is any approximate CC wave
function produced from it through Eq. (3.1). In this case, spin-contamination is not a
problem in the ground-state wave function or for any wave functions derived from it, since T
and el commute with S2. However, if instead one wishes to describe an open-shell system,
i.e., a radical or a system with even number of electrons of non-singlet multiplicity, the
restricted open-shell HF (ROHF) or unrestricted HF (UHF) references may be employed,
but one must then be careful when doing so. While the ROHF wave function is spin-adapted
(UHF wave functions are not), in contrast to the RHF closed-shell case, a CC wavefunction
constructed from an ROHF reference determinant |®) will not be automatically spin-adapted
due to the nonlinear nature of CC theory. The spin-contamination can introduce small
errors in energies and present other difficulties when UHF-based and ROHF-based CC wave
functions are employed. This issue will be further discussed in the next section of this
dissertation which addresses the generation of electronically excited, electron-attached, and

ionized states out of ground-state CC wave functions.
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3.1.2 Equation-of-Motion Coupled-Cluster Theory for Electroni-

cally Excited, Electron-Attached, and Ionized States

The ground-state CC theory, described in Sect. (3.1.1), can be extended to excited, electron-
attached, and ionized states by application of a linear excitation operator R, to the CC
ground state, |Wg). This leads to the EOMCC formalisms. Many different EOMCC meth-
ods may be formulated by modifying the basic definition of ;. In this dissertation, the
particle-conserving excitation energy (EE) EOMCC as well as the particle-nonconserving
electron-attatched (EA) EOMCC and ionized (IP) EOMCC theories are considered. While
discussions of the EA- and IP-EOMCC models are constrained to schemes where only one
electron is added or removed, other approaches in these catagories can easily be imagined
with more than one electron added or removed. In the remainder of this section, an overview
is presented introducing important concepts common to all EOMCC theories, while the spe-
cific details defining the EE-EOMCC and the EA- and IP-EOMCC theories are outlined in

Sections (3.1.2.1) and (3.1.2.2), respectively.

In general, an ansatz may be written expressing the exact excited-state, electron-attached,
or ionized wave function |¥,) corresponding to state p of interest as a linear excitation

operator I, applied to the ground-state SRCC wave function, i.e.,

(W) = Ru|Wo), (3.16)

where |¥q) is defined by Eq. (3.1). In the exact EOMCC theory, the cluster operator T
and the exciting, electron-attaching, or ionizing operator I, are sums of all relevant many-

body components needed to generate the system of interest. To obtain R, one must solve
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the eigenvalue problem resulting from the substitution of Eq. (3.16) into the Schrédinger

equation, H|¥,) = E,[¥,), to obtain

(HNppen Ru,Open)C’q)> = WuRu‘q)% (3.17)

in the subspace spanned by all determinants corresponding to the many-body components
included in Ry. Here, Hy gpen = (HNGT)C',Open = e THyel — (HNGT)C,closed is the
similarity-transformed Hamiltonian of the CC theory in the normal-ordered form relative
to the Fermi vacuum |®), where the subscripts “open” and “closed” refer to the open (i.e.,
having external lines) and closed (i.e., having no external lines) parts of a given operator ex-
pression, obtained by solving the corresponding ground-state CC equations for T" as described
in the previous section, and w, = E;, — Ey is the vertical excitation (or electron-attachment

or ionization) energy.

3.1.2.1 Excited States

In the particle conserving EE-EOMCC theory, excited-state energies and wave functions are

obtained for an N-electron system by the application of a linear excitation operator R, of

the form
A A A X
B R i = 01+ 5 P 15
n=1
where mp < N and
Bun= > ki ey eaag, gy, (3.19)

11 <-<ip,a1<--<an
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onto the N-electron ground-state SRCC wave function |\If(()A)). The EE-EOMCC method is
characterized by the linear excitation operator, RLA), in Eq. (3.18) having exactly the same
number of creation and annihilation operators in each many-body component R, ,. Just
as in the cluster expansion of the ground-state wave function, in practice the many-body
expansion of RLA) in Eq. (3.18) is truncated at some excitation level mp < N (usually
the same level of excitation as in the cluster operator used in the preceding ground-state
CC calculation, i.e., mp = mp). To determine the amplitudes rL%&'lifL.an with n > 1, we
solve the eigenvalue problem given by Eq. (3.18) by diagonalizing the similarity-transformed

.an,
in )

Hamiltonian H ), Eq. (3.6), in a space spanned by the excited determinants |(I>?11
with n =1, ..., mp, corresponding to the many-body excitation operators included in RELA).
In general, in order for Eq. (3.18) to hold and to obtain a size-intensive description [44,196]
of vertical excitation energies, mp should not exceed mp [34], but, as already mentioned,
one typically chooses mp = myp.

For example, in the EOMCCSD method (note that the EE-EOMCC methods are often

abbreviated as simply EOMCC), where R, is approximated as

(CCSD)

Ry, =R,0+ Ru1+ Ryu2, (3.20)
with
Ry1= Zrz,aaaai (3.21)
2,0
and
Ry2= Z Tziabaaabajai, (3.22)
1<j,a<b

we obtain the singly and doubly excited rfl’a and TLjab amplitudes and EOMCSD vertical
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excitation energies

CCSD) CCSD)

B iy (3.23)
by solving the system
—(CCSD CCSD CCSD)
<®g| (HEV’open) R/(t,open ))C’(D> = w,L(L )TL7(1 (324)
(CCSD) ,(CCSD) CCSD) 34
<(Dab|( Hy; .open R,SL open )C’|(I)> /S )Tiiab‘ (3.25)

In other words, the EOMCCSD amplitudes and energies are determined by diagonalizing
the matrix representing the similarity-transformed Hamiltonian of CCSD, Eq. (3.9), in a

space of all singly and doubly excited determinants,

(3.26)

In analogy to the ground-state CCSD calculations, the most expensive CPU steps needed to

do this scale as n 5 or NO. 6

While the EE-EOMCC methods can generate very accurate excited-state energetics and
properties, spin-contamination of the ground-state when open-shell systems are treated with
ROHF and UHF references can be sometimes problematic, introducing small errors into the
calculations and preventing the identification of multiplicities of excited states, which is a
useful guide when attempting to sort out states, particularly in situations involving near-
degeneracies. One way to address this issue is to employ particle-nonconserving EOMCC
approaches such as the EA- and IP-EOMCC methods, which build open-shell ground and

excited states out of a related closed-shell CC wave function generated with a RHF reference,
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automatically assuring that the resulting ground- and excited-state wave functions are spin-
adapted. A brief description of the EA- and IP-EOMCC methods is given in the following

section.

3.1.2.2 Electron-Attached and Ionized States

In the particle-nonconserving EA- and IP-EOMCC approaches, ground- and excited-state

wave functions are generated by solving the eigenvalue problem given by

(Hyopen Bt )|y = WV RVED @), (3.27)

where R,SNil) are particle-nonconserving operators, generating electronic states of (N 4 1)-

electron systems, given by

m
N+1
Rl(L = Z Ru,(n+1)p—nh (3.28)
n=0
and
(N-1) _
N—-1
Ry - Z Ru,(n—&—l)h—np’ (3.29)
n=0
where
Ry, (ni1ypnh = > Fady ana®a® .. a"a, .. a; (3.30)
1< <ip,a<ay<--<ap
and

Z’Llln a a
Ru,(n+1)h-np = Z Ty ap@ . a"Mag, . - Qjq ag, (3.31)
1 < <ip<i,a]<--<ap

with mp = N in the exact case and mp < N in the approximate schemes. In the above
equations, |®) is an N-electron reference determinant (e.g., the RHF reference) and 7', used to

define Hy in Eq. (3.27) and |¥g) in Eq. (3.16), is the cluster operator of the SRCC theory, as
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applied to the N-electron reference system. If a closed-shell reference system is used to define
the wave functions |¥,) through Eq. (3.16), with R, being one of the RELNil) operators,
the similarity transformed Hamiltonian defining the EA-EOMCC and IP-EOMCC methods
commutes with the S2 and S, operators. The result is that these methods produce open-
shell eigenstates which are orthogonally spin-adapted, which means that spin-contamination

issues which plague the standard spin-orbital-based open-shell EOMCC implementations

that utilize ROHF or UHF references are avoided entirely.

In general, and in analogy to the EE-EOMCC case, when constructing approximate EA-
EOMCC and IP-EOMCC schemes, the connected form of the eigenvalue problem displayed
in Eq. (3.27) and the size intensivity of the resulting electron-attachment or ionization
energies

WNED _ gNED) _ ) (3.32)

are retained when mp < mqp [34]. The common approaches to designing the EA- and
IP-EOMCC approximations are built upon approximate N-electron CCSD reference wave
functions with RELNil) truncated such that mp = mp — 1 or mp = myp. In the basic
EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p) methods, we use mp = 1 and mp = 2.
Thus, after solving the CCSD equations for an N-electron reference system, we diagonalize
the similarity transformed Hamiltonian H(CCSD) in the (N + 1)-electron subspace of the
|®%) = a%|®) and |(I>a?> = aaabaj|<1>> determinants in the EA-EOMCCSD(2p-1h) case and
the (N — 1)-electron subspace of the |®;) = a;|®) and \@é’) = abajai\CID} determinants in
the IP-EOMCCSD(2h-1p) case, obtaining the 1p amplitudes r, and the 2p-1h amplitudes
(N+1)

Ta‘g, along with the corresponding energies w, , in the former case, or the 1h ampli-

tudes r;, the 2h-1p amplitudes ri]é, and the corresponding energies w/(lel) in the latter

30



case. While these methods provide an initial approximation, the EA-EOMCCSD(3p-2h)
and IP-EOMCCSD(3h-2p) approaches, in which mp = mp = 2, provide a much better
description by incorporating the 3p-2h and 3h-2p components in the electron-attaching and
ionizing operators, RLNJFD and RELN_U, respectively. Unfortunately, the full inclusion of
the R, 3,0, and R, 3, 9, terms in the EA- and IP-EOMCC calculations comes at a rather
high price, increasing the .4 °-like noné and ngn% operations defining the iterative diago-
nalization steps of EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p), respectively, to the
A Tlike n2nd and nind steps. In the EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p)
schemes, the similarity-transformed Hamiltonian H (CCSD), obtained in the CCSD calcula-
tions for the N-electron reference system, is diagonalized in the N 4+ 1-electron subspace
spanned by the |®%), |<I>a§?>, and |<I>a%> = aaabacakaj@) determinants in the former case or
the NV — l-electron subspace spanned by the |®;), ](I)i]@), and ]@Z]‘LIS) = abacakajai@) deter-
minants in the latter case. From these diagonalizations, the rq, rai, and 3p-2h amplitudes

ijk

Ik , or the 7%, TZ%, and 3h-2p amplitudes 7, ,

abe » along with the corresponding energies w

N+1
r [

N-1
1

along with the corresponding energies w are produced, which define the results of the

EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) calculations, respectively. In many cases,
it appears that the 3p-2h and 3h-2p effects brought through the RELNil) operators play a
much more significant role than the triply excited components of the cluster operator T'. In
fact, it is usually not necessary to include the T3 clusters in 7" until the 4p-3h and 4h-3p effects
become important. In Sect. (3.1.4) the active-space variants of the EA-EOMCCSD(3p-2h)
and IP-EOMCCSD(3h-2p) methods are presented, which is one way to retain the accuracy

of these methods while avoiding their steep computer cost increase with n, and n, described

above.
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3.1.3 The Method of Moments of Coupled-Cluster Equations

The conventional CC and EOMCC methods summarized in Sects. (3.1.1) and (3.1.2) are
useful, but one usually faces a challenge of having to correct the results of the low-level
CC/EOMCC calculations, such as CCSD or EOMCCSD, for the higher-order correlation
effects neglected by lower levels of CC/EOMCC theory without making the calculations
prohibitively expensive. One would also like to make sure that the corrections to the CCSD,
EOMCCSD, or other CC/EOMCC energies are robust in situations, such as bond breaking
or excited states dominated by two-electron transitions, where the traditional perturbative
corrections of the CCSD(T) type fail. The MMCC theory summarized below provides such
robust and computationally attractive corrections to the CCSD, EOMCCSD, and other

conventional CC/EOMCC energies.

The central focus of the MMCC theory is obtaining the non-iterative, state-specific,
energy corrections

0 = By — B, (3.33)

which recover the exact, full CI energies E), when added to the corresponding ground- and

(4)

excited-state energies, EHA , obtained from the conventional CC/EOMCC approximation A.

The goal of any method based on MMCC theory is to estimate these corrections using the

underlying moment energy expansions, such that the resulting MMCC energies, defined as

E/SMMCC) _ E/SA) N 5/SMMCC)’ (3.34)

are good approximations to the corresponding exact energies L),

All MMCC corrections 5£LA) are obtained via expansions of E, in terms of the general-
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ized moments of CC/EOMCC equations defining a given CC/EOMCC approximation. The
ground-state moments are simply projections of the connected cluster form of the Schrédinger
equation, Eq. (3.5), on the excited determinants, |<I>?11;;n) with n > m 4 disregarded in the
conventional CC calculations

A (my) = <(I)a1...an’P—[(A)‘(p>7 (3.35)

0,(11...an ’L]_’Ln

where m 4 = m7p is the maximum level of excitation included in the CC calculation being
corrected. The excited-state moments needed to correct the EOMCC energies resulting from

truncating T’ and Ry, at the m 4-body components (so that mp = mp = m 4) are projections

of the EOMCC equations on the excited determinants |(I)?11......i?1n>’
112000 —(A A
mi},allﬁan (ma) = <q)?11_,_i2n‘H(gpgnRL,C))pen‘q)>- (3.36)

These moments are central to the ground- and excited-state MMCC theory and will be
shown to be crucial quantities for evaluating the desired CR-CC and CR-EOMCC energy

corrections in the following sections.

Several ways of expressing the 5,814) corrections in terms of moments m@{gfﬁan(m 4)

have been proposed to date [65,123-125,127-129,131,182,183]. The original and historically

oldest formula, obtained in [124] for the ground states and [182] for excited states has the
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following form:

s = EM—ELA)

LYY Bk Mgl

n=mg+1 k=m 4+1

A) 6T(A)

(W, RS |B). (3.37)

Here,

Cp—r(ma) = (e " )p_i (3.38)

A
are the (n — k)-body components of the exponential wave operator eT( ), defining the CC

method A, |¥,,) is the full CI ground- (1 = 0) or excited- (> 0) state, and

My, (my) = > ml{afkak(m/ﬂ “M.a"a, -cay (n>1)  (3.39)
i< <ig,ay <<y,

where moments szl’éf.]?_ak(mA) are defined by Egs. (3.35) and (3.36). Thus, Eq. (3.37)
states that one has to calculate quantities C),_j.(m 4), Eq. (3.38), and moments m,’}gf}?@k (my),
with k& > my, to determine the noniterative energy correction (5/8‘4), Eq. (3.33). The
Ch—_r(m4) terms are very easy to calculate. The zero-body term, Cy(my), equals 1; the
one-body term, C'(my), equals T7; the two-body term, Cy(my4), equals Th + %Tf ifmy > 2;
the three-body term C5(m4) equals T1To + §T5 if my = 2 and T3+ Ty To + T3 if my > 3,
etc. The computation of moments Qﬁz{afnan(m 4) for the most interesting cases of correct-

ing the CCSD or EOMCCSD energies (my = 2) is straightforward too, particularly if we

limit ourselves to the corrections due to triples (k = 3) or quadruples (k = 4).

As an example, if one is interested in recovering the exact ground-state energy F( through
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CSD)

the addition of the full correction 5(()0 to the CCSD energy ELCCSD) (where my = 2),

one has to consider the generalized moments of the CCSD equations ngalzk a (2) with

k > 2. After a quick diagrammatic analysis, we can show that this seemingly long expansion

contains moments ?)ﬁf)lallk a (2) with £ < 6 only, since the electronic Hamiltonian contains

only up to two-body interactions. Thus, all terms which make up the correction (5(()CCSD)
approaching the exact energy contain relatively few moments, namely,

170 - aj-.-ag, 7(CCSD .
Mok, (2) = (@7 TR ACSP ), k=36 (3.40)

The projections of the CCSD equations on higher-than-hextuply excited configurations do
not have to be calculated, since for Hamiltonians containing up to two-body interactions

i1,

0.1 ... ak(2) with £ > 6 vanish. Similar simplifications occur

the generalized moments 901
in the case of correcting the excited-state EOMCCSD energies, where the only moments
zmglal% a (2) that matter are those with £ = 3—8. Although this is a considerable reduction

of the computer effort, it is usually not computationally feasible to calculate up to six-body or
higher moments to obtain a given MMCC correction. The CR-CC and CR-EOMCC methods
discussed in Sects. (3.1.3.1)-(3.1.3.3) address this issue by focusing on the approximate
corrections due to triples and quadruples which use moments Smj}’&f_]?_ak@) with £ = 3 and

4 only and simplify Eq. (3.37) accordingly.

3.1.3.1 Completely Renormalized Coupled-Cluster and Equation-of-Motion Coupled-

Cluster Approaches

In general, the CR-CC and CR-EOMCC approaches are obtained by approximating |V )

in Eq. (3.37) by a quasi-perturbative form that brings information about the desired cor-
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relation effects we want E/SA) to be corrected for. In particular, the CR-CCSD(T) [124],

CR-CCSD(TQ) [124,125] and CR-EOMCCSD(T) [115] methods, which are of interest in

this dissertation, are obtained when the wave functions |¥,) in Eq. (3.37) are approx-

imated by low-order MBPT-like expressions. In the CR-CCSD(T) method which corrects
(CCSD) . . .

the ground-state CCSD energy Ej; for triply excited clusters, |¥g) in Eq. (3.37), where

m 4 = 2, is replaced by the following second-order-type, MBPT(2)[SDT]-like expression

WSOy (1 1y T 29)) 0, (3.41)
where T7 and T5 are the singly and doubly excited clusters obtained in the CCSD calculations,
the

o) = R (V1) o |®) (3.42)

term is an approximation of the connected triples (73) contribution, which is correct through
second order, and

73|®) = ROV Ty ®) (3.43)

is the disconnected triples correction, which distinguishes the CCSD(T) approach from its
CCSD|T] predecessor. Conventional MBPT notation is used here, in which R(()S) designates
the three-body component of the MBPT reduced resolvent and Vjy is the two-body part
of Hy. In the CR-CCSD(TQ) method (note that here and elsewhere the so-called CR-
CCSD(TQ),b variant is implied and that a discussion of the other variants, which can be
found, for example, in [65,123], will be omitted for the sake of brevity), which corrects the
ground-state CCSD energy for the combined effect of triples and quadruples, |¥g) in Eq.

(3.37), where m 4 = 2, is replaced by the following second-order-type, MBPT(2)[SDTQ]-like
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expression

CCSD(T)

§PI) = jwg ) + 3T5|®), (3.44)

| W

CCSD

where |U (T)> is given by Eq. (3.41).

Once these approximations have been established, the following compact formulas for the

CR-CCSD(T) and CR-CCSD(TQ) energies can be written:

EéCR—CCSD(T)) _ E(()CCSD> + NOR(T) ) p(T) (3.45)
and
E{CR-COSD(TQ)) _ p(CCSD) | yCR(TQ) / p(TQ), (3.46)

where the NCR(T) and NCR(TQ) nyumerators are defined as
NORO) — (@|(1y) Mo 3(2)|®) + (@](Z3)T Mo 3(2) @) (3.47)
and

NOR(TQ) - — NOR(T) | L@ (T1)2[Ty My 5(2) + Mo 4(2)]|®), (3.48)

and the D(T) and D(TQ) denominators, representing the overlaps between the |\Ifg CSD(T))

CCSD

and ¥ (TQ)) wave functions, Eqs. (3.41), and (3.44), respectively, with the CCSD
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ground state, as in Eq. (3.37), are calculated as

= 1+ (@[T Ty |®) + (BT (T + 1T2)|®)
@l + L))

@ ZY(Ty Ty + 1T9)|@)

and

= <\I/(()JCSD (TQ) | €T1 +T5 | CI)>

T 2 2 2 4
= DD 4 LT (3TF + IT2Ty + 5411 9).

(3.49)

(3.50)

The quantities M3(2) and My(2) in Eqgs. (3.47) and (3.48) are expressed in terms of the

triply and quadruply excited moments of the CCSD equations, easily calculated as in Eqs.

(3.39) and (3.40), with k set at 3 and 4, respectively. Specifically,

L b
Moz(2)|®) = > M (2)1905),
1<k<j,a<b<c

where

-
M ae(2) = (REEIHN(To + ThTo + 5T5 + §T7 T

+3 1175 + 5 TP T2))c| ),
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and

k]
Mo 4(2)|®) = > M apea(2) 1D (3.53)
i<k<j<l,a<b<c<d

where

ijkl

Gabed2 = (CUIIHN (3T + 311 T5 + 615

+1TET3) ol®). (3.54)

It is interesting to note that if we replace moments E)ﬁ(z)j’abc(Q) and imf)]’abc 4(2), entering
the above equations through the M3(2)|®) and M4(2)|P) quantities as shown above, by
their lowest-order estimates and the overlap denominators D) and DITQ) by 1, the CR-

CCSD(T) and CR-CCSD(TQ) approaches reduce to the standard CCSD(T) and CCSD(TQ)

methods. For example, if we replace imf)jfbc(Q) by the lowest-order estimate

<®gjb]$|<VNT2)C|¢)> and D) by 1, the CR-CCSD(T) energy, Eq. (3.45), simplifies to

E(()CCSD(T)) _ E(()CCSD) n Eg;] N Eg, (355)
where
B = (@1 (vy o)) (3.56)
and
Eg% = (®|(23) (Vi Th)c|®), (3.57)

which is the well-known formula for the CCSD(T) energy. In other words, the CCSD(T) and
CCSD(TQ) methods can be derived through the MMCC theory and are shown to be natural

simplifications of the CR-CCSD(T) and CR-CCSD(TQ) methods, respectively. It is even
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more important to note that the assumption that D) and D(TQ) can be approximated
by 1 is correct only for molecules near the equilibrium geometries. As bonds are streched
or broken, D) and D(TQ) increase, damping the unphysical values of the conventional
(T) and (TQ) correction. This is the key idea of “renormalization” of non-iterative energy
corrections behind the CR-CC and CR-EOMCC approaches, which assume excessive values

in conventional perturbative approaches of the CCSD(T) type when bonds are broken.

The CR-EOMCC methodologies for excited-states are obtained in a similar manner to
their ground-state analogs, such as CR-CCSD(T) and CR-CCSD(TQ). For example, the
CR-EOMCCSD(T) method is obtained by replacing the wave function |¥,) in Eq. (3.37)
with perturbative expressions resulting from an analysis of the EOMCCSDT equations, such

as

W) = {Ruo+ (Ru1+ RyoT1)+[Ru2+ Ry1Th
R, o(Ty + 3T8)] + [R5 + RuoTh
"’R‘u’l(TQ + %Tf)

+Ry 0T Ty + §T7)]3|®), (3.58)

where T and Ty are the singly and doubly excited clusters obtained in the CCSD calculations

and Ry, o, R, 1, and R, o are the reference, singly excited, and doubly excited components of
o (CCSD) : . .

the EOMCCSD excitation operator R, . The approximate triply excited components

of the EOMCC excitation operator, which enter Eq. (3.58) and which can be determined
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through perturbative analysis of the EOMCCSDT equations, are defined as follows:

S ~ijk b
Rug= > uj,abca a’a“apaja;, (3.59)
i<j<k,a<b<c

where
ik omijk ijk
r,u,abc - mu,abc@)/Du,abc’ (3‘6())
with moments I lf abe(2) given by
(CCSD (CCSD)
M(2) = (@I Ry )l @) + (@I (R + Ru2)lol®)
(CCSD CCSD (CCSD)
@) (HCPPR, 1) 0l9) +r,§0 V@b 7wy, (3.60)
and the perturbative denominator DN abe Blven by
Dijk _ E(CCSD) <<I>abC|H (CCSD) |<I>abc>
wabc T K
CCSD (CCSD)
= wn ) @ Al | @k
CCSD CCSD)
= W ) — ok [P ogl)
bei 77(CCSD) b
— (@i H ) g
bei 77(CCSD) | = ab
— (@l Ay otk (3.62)
Here, wl(LEOMCCSD) represents the EOMCCSD vertical excitation energy defined by Eq.
(3.23),
wl(LEOMCCSD) _ E}(LEOMCCSD) B EéCCSD)) (3.63)
I:I(()SSISD) is the open part of H (CCSD) (all diagrams of H (CCSD) that have external lines),
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(CCSD) ig a k- body component of H(CCSD) The variant of CR-EOMCCSD(T) de-

and Hy
scribed here is variant CR-EOMCCSD(T),ID. While other variants exist [115], we do not
discuss them here for the sake of brevity. Relationships exist between the CR-EOMCC
methods and their conventional perturbative EOMCC counterparts, such as EOMCCSD(T)
or EOMCCSD(T), and further details can be found elsewhere [115]. Tt should be empha-
sized that the CR-CCSD(T), CR-CCSD(TQ), and CR-EOMCCSD(T) approaches are not
only related to the conventional CCSD(T), CCSD(TQ), and EOMCCSD(T)-type meth-
ods in a straightforward manner, as described above, but they also have similar computer
costs. For example, in analogy to CCSD(T), the CR-CCSD(T) and CR-EOMCCSD(T) ap-
proaches have CPU steps that scale as n2n; (N) in the CCSD/EOMCCSD part and n3ns:
(N7) in the triples correction parts. Similarly, in analogy to the factorized formulation of

CCSD(TQ) [108], the costs of CR-CCSD(TQ) scale as n2nt (N6) in the CCSD part and

n3nt +n2nd (N7) in the (TQ) parts.

In the next section, an alternative, biorthogonal formulation of the MMCC equations is
presented and the left-eigenstate CR-CC and CR-EOMCC approaches, specifically the CR-
CC(2,3) and CR-EOMCC(2,3) methods that result from it, are discussed. These methods
have been shown to be even more accurate than the CR-CCSD(T), CR-EOMCCSD(T),
and other CR-CC/CR-EOMCC approaches derived out of Eq. (3.37), so that much of our
benchmarking effort of the CR-CC and CR-EOMCC methods presented in this thesis focuses

on the CR-CC(2,3) and CR-EOMCC(2,3) theories discussed in the next section.

42



3.1.3.2 Biorthogonal Formulation of the MMCC Equations and the CR-CC(2,3)

and CR-EOMCC(2,3) Methods

An alternative formulation of CR-CC methods that satisfies the property of size-extensivity
in the ground state, which the CR-CCSD(T) and CR-CCSD(TQ) approaches violate some-
what, was developed in Refs. [127-132]. The resulting approaches, such as CR-CC(2,3) and
CR-EOMCC(2,3) originate from the so-called biorthogonal MMCC formalism presented in

Refs. [127,128]. The biorthogonal formulation of the MMCC formalism redefines the cor-

rection 5&4) by introducing the following ansatz for the exact bra state, (¥,|, entering Eq.
(3.37):
A
(W) = (B e T, (364
where £}, is a deexcitation operator defined as
N
n=0
with
at...a ) )
L = > Eu}il...?n a'l - a™aay - day. (3.66)

11 < <ip,a1<-<ap
By substituting Eq. (3.64) into Eq. (3.37) [131], or by considering the appropriate asym-

metric energy expressions [127,128], one can rewrite the 5£LA) correction in the following
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way:

N,A
51(LA> = Z (L Myn(ma)|®)
n=m g+1
NM’A L
= ) > L I 0 (ma), (3.67)

n=m g+111<<in,a1<--<an

where M), ,(m 4) has already been defined by Eqs. (3.39). Thus, for example, when one
wishes to obtain the CR-CC corrections to CCSD/EOMCCSD energies due to triple excita-
tions, then A = CCSD and m 4 = 2, as before, and, the ground-state (x = 0) CR-CC(2,3) or

excited-state (1 > 0) CR-EOMCC(2,3) energies, E,(2,3), can be calculated in the following

manner:
Eu(2.3) = BiC D) 4 6,(2,3), (3.68)
where
17k
0u(2,3) = (@] L3 My3(2)@) = Y wabe, MIT, (2), (3.69)

1<j<k,a<b<c
with intfj’;bc(z) representing the triply excited moments of the CCSD (1 = 0) or EOMCCSD

(1 > 0) equations defined by Egs. (3.52) and (3.61), respectively.

Since the triply excited moments of the CCSD/EOMCCSD equations are already well-
defined, the determination of the three-body amplitudes EZ?% ;. entering Eq. (3.69) becomes
the primary focus. Since the exact values of these amplitudes may not be obtained with-
out solving the full CI problem for the exact bra state (¥,|, a method for the approximate
determination of the KZ?Z.C].]C amplitudes has to be proposed. Following Refs. [127,128], the
derivation of the EZZ,)iCjk amplitudes used in practical CR-CC(2,3) and CR-EOMCC(2,3) cal-

culations begins by defining the approximate form of the deexcitation operator £}, which
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parameterizes the full CI state (V| as

Ly~ LLCCSD

)+ 2y, (3.70)
where Z), 3 is the three-body component of £}, of interest, which is expressed in the usual

way as

L3 = Z KZ?z'cjk d'alaacapaq, (3.71)
1<j<k,a<b<c

with ézbicjk representing the desired triply deexcited amplitudes to be determined, and

LLCCSD) is the deexcitation operator that defines the left or bra CCSD/EOMCCSD states

via the equation [33,34]

(0] = (@I e T T2, (3.72)
where
L) 5 01+ Ly + Lo, (3.73)

is obtained by solving the so-called left CCSD/EOMCCSD equations [33,34] for the cor-

responding (¢

i and EZbZ- j amplitudes (the p = 0 variant of the system of the left CCSD/

EOMCCSD equations is equivalent to the system of the so-called “lambda” equations of the
analytic gradient CCSD theory [197]). The explicit, computationally tractable form of the
approximate ﬁzl”fjk amplitudes, which enter the CR-CC(2,3) and CR-EOMCC(2,3) correc-
tions, are then obtained by substituting the approximate expression for %, given by Eq.

(3.70) into the exact form of the simlarity-transformed bra eigenvalue problem for .Z;,

(P2 AN = E, (1L, (3.74)

45



where A is set at CCSD (and mp at 2), and the resulting equation is right projected onto

the triply excited determinants |<I>%b,g> to obtain

(CCSD) £ o J
(@] L ) H(CCSD)@%b]S> n Z (@ l:l{l H CCSD)@;IJb@ g/:l{n .
l<m<n,d<e<f
=Ly ezbzc]k . (3.75)

The exact energy £, in Eq. (3.75) is then replaced by the corresponding CCSD/ EOMCCSD

(CCSD), and the triples-triples block of the matrix representing H (CCSD) i the

energy F
second term on the left-hand side of Eq. (3.75) is replaced by its diagonal, as in the Epstein-

Nesbet partitioning [198,199]. The result of all of these operations is the following formula for

the approximate ﬁabc ik amplitudes in terms of the many-body components of the similarity-
transformed Hamiltonian of CCSD, one- and two-body components of L(CCSD), and in the

i > 0 case, the EOMCCSD excitation energies w&CCSD):

be  _ pgab ik
E;Licjk = Nﬁ,icjk/Du,abc’ (3.76)
where the numerator N abe ik and denominator D" kb are defined as follows:
,323]{7 — <<I3|L CCSD)H(CCSD |(I)abc>
CCSD CCSD
= (@1 B3 ) po + (L2 B pe
CCSD)

(Lo B ol |03, (3.77)
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and

ijk  _  (CCSD) be) 7 (CCSD) | g,ab
Du,abc - Eﬂ _<(I)gjl$|H( )’(I)gjlg
3
CCSD be) 7(CCSD),| = ab
= W O ST @l AL ate). (3.78)
n=1

Note that the denominator Dzjgbc used here is the same as that of the CR-EOM-CCSD(T)
approach (see Eq. 3.62). The CR-CC(2,3) (u = 0) and CR-EOMCC(2,3) (1 > 0) approaches

are obtained by substituting Eqs. (3.52) and (3.61) for ik

" abe(2) and Eq. (3.76) for gabe

piigk’
where Ng%k and D/ij,lcjbc are given by Egs. (3.77) and (3.78), respectively, into the triples
correction formula, Eq. (3.69), which is subsequently added to the CCSD/EOMCCSD energy

E/SCCSD) to obtain the total energy E,,(2,3), as in Eq. (3.68).

In both the CR-CC(2,3) and CR-EOMCC(2,3) theories, the exact treatment of the

Epstein-Nesbet-like denominator D/Zj,l;bc’ as in Eq. (3.78), where no terms in DZJ;];()C are

neglected, characterizes the most complete variant of the CR-CC(2,3) and CR-EOMCC(2,3)
approaches designated as CR-CC(2,3),D or CR-EOMCC(2,3),D, respectively. By neglect-
ing selected terms in Eq. (3.78) for D/Zj,l;bc’ we obtain approximate CR-CC(2,3) and CR-
EOMCC(2,3) schemes. Let us focus on CR-EOMCC(2,3) for this discussion, which contains
CR-CC(2,3) as a special case corresponding to = 0. Variant C of the CR-EOMCC(2,3) the-

ory, designated as the CR-EOMCC(2,3),C approach, is obtained by ignoring the three-body

component of H(CCSD) in Eq. (3.78), i.c., the <®%@g’H§CCSD)|¢%b]g> term, while keeping the
contributions to ijibc from the one- and two-body components of H (CCSD) intact. The

CR-EOMCC(2,3),B approach is obtained by ignoring the two- and three-body components

CCSD) DIy in

of H(CCSD) in Eq. (3.78), leaving only the one-body contribution <<I>%b]§]ﬁ{ Tk
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fozbc' Finally, variant A of the CR-EOMCC(2,3) approach is obtained by replacing the

Epstein-Nesbet-like denominator Dij];bc’ Eq. (3.78), by the Mgller-Plesset-like denominator
. L (CCSD) , . .

for triple excitations, wy, —(€a+ep+ec—€ —€j—€p), where ¢)’s are the single-particle

energies associated with spin-orbitals p (diagonal elements of the Fock matrix). An anal-

ogous discussion may be made for the ground-state case resulting in the A, B, C, and D

variants of CR-CC(2,3).

In analogy to the CR-CCSD(T) approach discussed in the previous subsection, one can
extend the CR-CC(2,3) method to higher-than-triple excitations as in, for example, the
CR-CC(2,4) scheme [127,128,166]. The CR-CC(2,4) approach, when implemented fully,
combines the NO-type steps of CCSD with the N7 (n3nd) steps of CR-CC(2,3) needed to
determine the triples correction, and the A/ (ngng) steps needed to calculate the analogous
correction due to quadruples. In order to address this CPU-time increase, Piecuch et al.
proposed the so-called CR-CC(2,3)4Q method, also tested in this thesis, where one calculates

the ground-state energy as follows [186]

ECR-CC(23)+Q _ pCR-CC(23) | pCR-CCSD(TQ) _ CR-CCSD(T) (3.79)

i.e., one adds the quadruples correction extracted from the CR-CCSD(TQ) calculations to
the CR-CC(2,3) energy. This has an advantage over CR-CC(2,4) in the fact that the CPU-
time costs of the CR-CCSD(TQ) calculations in the quadruples correction part scale as N/ 7
(n2nd) with the system size A, as opposed to the N steps of CR-CC(2,4). As a result,
the CR-CC(2,3)4+Q approach is almost as affordable as the CR-CC(2,3) method itself, while
bringing information about connected quadruply excited clusters that become important in

multiple bond breaking situations [186, 187].

48



The CR-CC(2,3) approach is capable of breaking bonds and, unlike its CR-CCSD(T)
predecessor, is size-extensive. Unfortunately, the §,(2,3) corrections to the EOMCCSD en-
ergies, defining CR-EOMCCSD(2,3), violate the property of size-intensivity of the EOMCC
excitation energies [44,115,196]. Although this violation is often unimportant, it is useful
to consider the possibility of restoring size intensivity in CR-EOMCC(2,3). This aspect is

discussed next.

3.1.3.3 A Size-Intensive Variant of CR-EOMCC(2,3): The §-CR- EOMCC(2,3)

Method

As shown in Refs. [132,200], although the ground-state variants of CR-CC(2,3) are size-
extensive, their excited-state CR-EOMCC(2,3) analogs do not satisfy the property of size-
intensivity [44,126,196], i.e., the vertical excitation energy of a non-interacting system A+ B,
in which fragment A is excited, resulting from the CR-EOMCC(2,3) calculations, is not the
same as that obtained for the isolated system A. The lack of size intensivity of the CR-
EOMCC(2,3) excitation energies can be traced back to the presence of the size-extensive

contribution [200,201]

b 5k
B = Z (0 gzbzcyk - eg,icjk) fmfj{abc@) (3.80)
1<j<k,a<b<c

in the CR-EOMCC(2,3) vertical excitation energy

(CR-EOMCC(2,3)) CR-EOMCC(2,3))

of _ B _ g{CR-CC2Y)

(3.81)
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Using the above equations for the CR-EOMCC(2,3) energies, particularly Eq. (3.80), we

can decompose the CR-EOMCC(2,3) excitation energy as follows [200,201]:

wLCR—EOMCC(2,3)) _ w/gCCSD) T ap+ B (3.82)

Here, w/gCCSD) is the vertical excitation energy of EOMCCSD, Eq. (3.23),

ik
ay, = Z gawksmjjabc( ), (3.83)
1<j<k,a<b<c

where fﬁtzj,];bc( )= ((ID?]Z’]ﬂH(CCSD)(RM’l + Ry 2)|®) is the contribution to the triply excited
moment imjfibc@) of EOMCCSD due to the one- and two-body components of the EOM-

CCSD excitation operator R,SCCSD), Eq. (3.20), and 3, is the quantity defined by Eq. (3.80).

Since the EOMCCSD approach is rigorously size intensive and, as shown in Refs. [132,200],

the ay, term is size intensive as well, the [wl(LCCSD) + ay(2,3)] part of the CR-EOMCC(2,3)

excitation energy wLCR EOMCC(2,3)) is a size-intensive quantity. Unfortunately, the 3, term
defined by Eq. (3.80), being a size-extensive contribution that does not cancel out, grows
with the size of the system [132,200], destroying the size intensivity of w (CR BOMCC(2, 3))
In order to implement the rigorously size-intensive variant of CR-EOMCC(2,3), designated
as 0-CR-EOMCC(2, 3) [201], the problematic 3, term in Eq. (3.82) is simply neglected such

that the excitation energy is redefined as follows:

w/ScS—CR-EOMCC(ZS)) _ wg(JCSD) +ay, (3.84)
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with «;, given by Eq. (3.83). The resulting §-CR-EOMCC(2, 3) approach [201] provides a
size-intensive description of the excitation energies and, by defining the total energy of a
given electronic state p, i.e., I/, as a sum of the size-extensive ground-state CR-CC(2,3)

energy and size-intensive excitation energy w/(f CR-EOMCC(2,3)) , Eq. (3.84), so that

(CR-CC(2,3))  (5-CR-EOMCC(2,3))

E, = E, Tt wy
_ (CCSD) b ijk
= Ey + Z gg,i?jk 97(0 abc( )
1<j<k,a<b<c
ijk
+ 0y O e e(2). (3.85)

1<j<k,a<b<c

While the addition of noniterative corrections is one way to correct for higher-order ex-
citations not included in lower-order CC/EOMCC approximations, in the next section yet
another inexpensive approach to account for higher-order effects in CC/EOMCC calculations

is considered.

3.1.4 The Active-Space Coupled-Cluster and Equation-of-Motion

Coupled-Cluster Approaches

In Sect. (3.1.3) methods for obtaining a partial account of the 73 and Ty clusters, and
their excited-state analogs, all based on noniterative MMCC corrections were considered.
Another practical way to account for higher-than-doubly excited clusters in the SRCC con-
siderations is by exploiting the ideas originally presented in Refs. [54,133-136, 144], where
the CCSDt and CCSDtq active-space CC equations were explored (see, also, Refs. [137-140]
and Ref. [101] for a review). The basic language of the active-space CC and EOMCC meth-

ods follows from MRCC theory, where one subpartitions the one-electron basis of occupied
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and unoccupied spin-orbitals used in the conventional SRCC-style considerations into (i)
core or inactive occupied spin-orbitals, designated as i.j,..., (ii) active occupied spin-orbitals,
designated as I,J,..., (iii) active unoccupied spin-orbitals, designated as A B,..., and (iv)
virtual or inactive unoccupied spin-orbitals, designated as a,b,.... The active-space methods
CCSDt and CCSDtq, for example, then restrict the higher-order cluster components, T3 or
T3 and Ty, respectively, which must be calculated, to a small subset of all triples and quadru-
ples defined via active orbitals. This restriction greatly reduces the computer costs, when
compared to parent CCSDT and CCSDTQ approaches, as discussed in the Introduction.
The CPU-time determining steps of CCSDt and CCSDtq are NoNyn2ni and N2N2n2nd,
respectively, where N, and N, are the numbers of active occupied and active unoccupied
orbitals, i.e., the costs of CCSDt and CCSDtq calculations scale as relatively small prefactors

times the costs of the corresponding CCSD calculations.

As an example of how the equations for the active-space methods are obtained, let us
take the CCSDtq method as an example. The conventional CCSDTQ equations, which must
be solved for the té, tz), ti‘ygz, and tz)lzg amplitudes by projecting the connected cluster form

of the Schrédinger equation, Eq. (3.5), in which T(4) = Ty + Ty + T3 + Ty, on the singly,

doubly, triply, and quadruply excited determinants, can be written as follows:

(©F|CCSD + (HNT3)c|®) = 0, (3.86)
(©f7|CCSD + [Hy (T3 + T1 T3 + Ty)]c|®) = 0, (3.87)
(DIICCSD + [Hy (T3 + T T + Ty + Ty Ty + ToTs + §T1T3)|0|®) = 0, (3.88)

52



<(I)?]blg;l’ CCSD + [HN(T?) + T3+ Ty + 1Ty +ToT3 + %leTg

+TyTy + §T2 + STy + TV T + +T3T3)]0]®@) =0, (3.89)

where CCSD designates all terms that contain 77 and 75 clusters only and terms that do
not contain cluster operators at all. Once the system of equations, Eqs. (3.86) — (3.89) is
solved, the energy is obtained using Eq. (3.14). The CCSDT method could be obtained
from the CCSDTQ approach described here by simply setting Ty = 0 and solving the system

of equations formed by Egs. (3.86) — (3.88) only.

In order to introduce the active-space CCSDtq formalism, the 75 and T} clusters must

be restricted to the internal and semi-internal excitations of the following types:

ty = Z tzjblé a%a’aCaFal ol (3.90)
I>j>k,a>b>C

ty = Z tz'gélD a®abaCaPdlaFal ol (3.91)
I>J>k>1,a>0>C>D

where I and J are summed over only active occupied orbitals and C and D are summed

over only active unoccupied orbitals. The CCSDtq system of equations for the relevant té,

Jii Lk

o Lapc and t}l‘gkl amplitudes has the form of CCSDTQ equations in which T3 and T} are

CD

replaced by t3 and t4, respectively. We obtain

(9F|CCSD + (Hyt3)c|®) =0, (3.92)
(@f7|CCSD + [Hy (13 + Titz + t4)]c|®) = 0, (3.93)
(®C|CCSD + [Hy (t3 + Tits + tg + Tyt + Tots + $TEt3)|c|®) =0, (3.94)

23



(@f§5°| CCSD + [Hy (3 + Tits + tg + Titg + Totz + 5 T3

+Toty + St3? + STy + TiTots + §T3t3)]c]|@) =0 (3.95)

where t3 and t4 are defined by Egs. (3.90) and (3.91), respectively. The CCSDt method
could be obtained from the CCSDtq equations described here by setting t4 = 0 and solving

the system of equations given by Eqs. (3.92) — (3.94) only.

The active-space methods of the CCSDt and CCSDtq types were shown to be effec-
tive for excited-state theories as well, for example, in Refs. [55-57], where the EOMCCSDt
approach, an active-space variant of EOMCCSDT was reported for the first time. While
it is rather straightforward to generalize the active-space methods to particle conserving
EOMCC theories, such as EOMCCSDT and EOMCCSDTQ), in this dissertation the focus
is on the active-space variants of particle non-conserving EOMCC theories, in particular,

the EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) methods. The full inclusion of the
R, 3p-on and R, 35,9, components of the RLNJFD and R/(LNfl) operators in the EA- and IP-
EOMCC calculations needed to obtain an accurate description of electronic excitations in
radicals comes at a high price, increasing the A/-like non% and n%n% operations defining the
iterative diagonalization steps of the base EA-EOMCCSD(2p-1h) and IP-EOMCCSD(2h-1p)
schemes to the N'-like n2n and n3n2 steps, respectively. One way to retain the accuracy of
the higher-order EA- and IP-EOMCC schemes with the 3p-2h and 3h-2p excitations, while

avoiding this steep computer cost increase, is to use the active-space variants of the EA /TP-

EOMCC methods with higher-than 2p-1h/2h-1p excitations described in Refs. [147-149].

In analogy to the ground-state active-space CC approaches described above, in the active-

space EA- and IP-EOMCC methods one divides the available orbitals of the N-electron
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reference system into core, active occupied, active unoccupied, and virtual categories, and

uses active orbitals to define the electron attaching and ionizing operators RLNJFI) and
RELN_l), respectively. In particular, the active-space EA-EOMCCSD(3p-2h){ Ny} approach

using Ny, active unoccupied orbitals is obtained by replacing the 3p-2h component R, 3, o5,

(N+1)

of the electron attaching operator R), , Eq. (3.28), by
jk A b
T3p-2h = Z rAjbc aa’aaga;. (3.96)
j>k,A<b<c

The relatively small set of the unknown amplitudes r A]blz defining 7, 3,05, Eq. (3.96), in
which at least one of the three unoccupied spin-orbital indices is active, and the remain-
ing 1p and 2p-1h amplitudes r, and Ta% that enter the (N + 1)-electron wave functions
of the active-space EA-EOMCCSD(3p-2h){ N, } approach are obtained by diagonalizing the
similarity-transformed Hamiltonian of CCSD, Eq. (3.9), obtained in the ground-state CCSD
calculations for the N-electron reference system, in the subspace of the (N + 1)-electron
Hilbert space spanned by the |®%), \@a?-), and ]@5%) determinants. Similarly, the active-
space IP-EOMCCSD(3h-2p){ Ny} approach using N, active occupied orbitals is obtained by

replacing the 3h-2p component R, 35, 9;, of the ionizing operator RELN_U, Eq. (3.29), by

Ijik b
T 3h-2p = Z r gca aapajay, (3.97)
I>j9>kb<c
. . Ik .
where the relatively small set of the unknown amplitudes r {)C defining T1u,3h-2p> Ed. (3.97),
in which at least one of the three occupied spin-orbital indices is active, and the remaining 1h
and 2h-1p amplitudes r* and ri‘g that define the (N —1)-electron wave functions of the active-

space IP-EOMCCSD(3h-2p){N,} approach are obtained by diagonalizing the similarity-
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transformed Hamiltonian obtained in the N-electron CCSD calculations, Eq. (3.9), in the
subspace of the (N — 1)-electron Hilbert space spanned by the |®;), [®; jl-’>, and |(I)I%> de-
terminants. In Sect. (3.2.5) the full and active-space variants of the EA-EOMCCSD(3p-2h)
and IP-EOMCCSD(3h-2p) methods are used to optimize the geometries of the ground and
low-lying excited states of four open-shell molecules, CNC, CoN, NCO and N3, and deter-
mine the corresponding adiabatic excitation energies. The results provided in that section

will demonstrate typical accuracies of the active-space EA- and IP-EOMCC methods as

compared with their parent approaches.

3.2 Applications

In this section, typical accuracies of the methods described in Sect. (3.1) are demonstrated
using various chemically relevant benchmarks and applications. For all of the studied sys-
tems, the relevant benchmark data are provided for comparison, originating either from
experimentally measured quantities or from quantum-chemical calculations performed at
or near the full CI level. In Sect. (3.2.1), the CR-CC(2,3) method will be used to cal-
culate barrier heights for a large variety of simple chemical reactions, for which the acti-
vation barriers are well established and which are characterized by largely SR transition
states, to see if it can match the performance of CCSD(T) in cases where CCSD(T) is ac-
curate. A more MR case is presented in Sect. (3.2.2) and then an extremely biradical case
is presented in Sect. (3.2.3) to demonstrate the relative performance of the conventional
CCSD(T) and CCSD(TQ) methods, as compared with the performance of the CR-CC(2,3)
and CR-CC(2,3)+Q theories including corrections for the connected triply and quadruply

excited clusters, which are specifically designed to handle such situations. In Sects. (3.2.4)
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and (3.2.5), excited-state systems are considered in order to demonstrate accuracies of the
CR-EOMCC(2,3) method for calculating vertical excitations and the 0-CR-EOMCC(2,3)
approach for calculating adiabatic excitation energies. Finally, in Sect. (3.2.6) the advan-
tages and accuracies of various levels of EA- and IP-EOMCC methods are discussed in more
challenging cases of many-electron excitations in open-shell systems. Although the results
presented in this section are chosen to demonstrate the strengths of the CC and EOMCC
methods, with particular attention paid to our CR-CC, CR-EOMCC, and active-space EA-

and IP-EOMCC approaches, the weaknesses of each method will be pointed out as well.

3.2.1 The DBH24 Benchmark Database for Thermochemical Ki-

netics

This section provides a systematic comparison of the performance of CCSD, CCSD(T), and
variants A-D of the CR-CC(2,3) theory for a diverse collection of reaction barrier heights.
Since it is rather inconvenient to test such methods on the typical large benchmark databases
such as NHTBH38/04 [202] or Database/3 [203], as calculating the necessary chemical species
can quickly become excessively time consuming when many methods and basis sets are exam-
ined, a representative benchmark database, DBH24 [204], was developed as a more feasible
alternative to these large databases, designed specifically with computationally more in-
tensive ab initio methods in mind. DBH24 is composed of 24 barrier heights which were
determined to be the most statistically representative subset of all 38 of the forward and
reverse barrier heights of NHTBH38/04 and the 44 hydrogen-transfer barrier heights of
Database/3. DBH24 consists of four types of reactions, namely, hydrogen transfer (HT),

heavy-atom transfer (HAT), nucleophilic substitution (NS), and unimolecular and associ-
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ation (UA) reactions. There are three reactions (six barrier heights because forward and
reverse reactions are considered) for each type of reaction in the DBH24 database. The six
barrier heights of each reaction are denoted as HATBH6, NSBH6, UABHG6, and HTBHG6,

respectively.

When the DBH24 benchmark database was introduced in Ref. [204], the performance of
many ab initio wave function and density functional theory methods was examined along-
side some semi-empirical and composite approaches with the goal of determining the best
approaches (measured in terms of accuracy, consistency, and computational efficiency) for
the calculation of barrier heights for routine use in thermochemical kinetics. The benchmark
values in DBH24 were obtained using high-level theoretical methods, such as Weizmann-1
(W1) [205] or MRCI calculations, or, in a few cases, benchmark values were derived from
experimental data. The full list of reactions and forward and reverse barrier height bench-
mark values are given in Table (3.1). All calculations reported in Ref. [204] were based on
reactant, product, and transition structures optimized at the QCISD/MGS3 level with the
spin-restricted formalism for closed-shell systems and the fully spin-unrestricted formalism
for open-shell systems. The effect of spin-orbit coupling was added to the energies of the Cl
and OH radicals, which lower their energies by 0.84 and 0.20 kcal /mol, respectively. Among
all of the single-level (i.e. not composite) wave function methods tested in Ref. [204], those

based on CC theory, especially CCSD(T), proved to be the most accurate.

Following this initial study, we extended the work reported in Ref. [204] in Ref. [206]
to see if we could objectively determine whether the CR-CC(2,3) method could statistically
outperform the CCSD(T) approach on the DBH24 benchmark set due to the improved form

of the triples correction in CR-CC(2,3). We also used the opportunity to test the depen-
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Table 3.1: Representative barrier heights database DBH24 taken from Ref. [204].

database reaction V}é“ VZA @
H + NoO — OH + No 18.14 83.22

HATBHG6 H + CIH — HCI + H 18.00 18.00
CH3 + FCl — CH3F + Cl1 7.43 61.01

Cl™ ... CH3Cl — CICHg--- CI™ 13.61 13.61

NSBHG6 F~ ... CH3Cl — FCHs--- CI™ 2.89 29.62
OH™ + CH3F — HOCH3 + F— -2.78 17.33

H + Ny — HNj 14.69 10.72

UABH6 H + CoHy — CH3CHs 1.72 A41.75
HCN — HNC 48.16 33.11

OH + CH4 — CHs + HO 6.7 19.6

HTBHG6 H+ OH — O + Hy 10.7 13.1
H 4+ HsS — Ho + HS 3.6 17.3

“ ij denotes forward barrier height and V? denotes reverse barrier height (in kcal/mol).

dence of the results on the quality of the basis set and the effect of freezing core orbitals.
Calculations were performed using the CCSD, CCSD(T), and CR-CC(2,3) approaches to cal-
culate the forward and reverse barrier heights for all of the reactions included in the DBH24
database using five different basis sets of triple-zeta quality with and without applying the
frozen core approximation. The five basis sets used in our study [206] were MG3S [207], and
four correlation consistent basis sets, namely, aug-cc-pVTZ [208-210], aug-cc-pV(T+d) [211],
aug-cc-pCVTZ [208,209,212,213], and aug-cc-pCV(T+d)Z. Note that MG3S is identical to
6-311+G(3d2f,2df,2p) for H-Si and is similar to 6-311+G(3d2f), but improved [214] for P-Ar.
The aug-cc-pV(T+d)Z basis set is the same as aug-cc-pVTZ except that it has a single extra
d function for the second row atoms from Al through Ar, and the other d functions of aug-

cc-pVTZ are also optimized for these atoms. The aug-cc-pCV(T+d)Z basis set is same as
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aug-cc-pCVTZ basis set except that all valence d functions are taken from aug-cc-pV(T+d)Z
plus two d functions describing inner shells are taken from aug-cc-pCVTZ. As in the original
study by Zheng et al. [204], the geometries used in our calculations [206] were optimized
using the QCISD/MG3 level and the energies of the Cl and OH radicals were corrected for
spin-orbit effects.

The entire set of reaction barrier heights for the DBH24 database, as calculated with
the CCSD, CCSD(T), and CR-CC(2,3),A-D approaches combined with the five triple-zeta
basis sets mentioned above is supplied in the Supporting Information to Ref. [206]. The
calculated mean signed errors (MSEs) and mean unsigned errors (MUEs) obtained from these
calculations, taken from Ref. [206], are reported in Tables (3.2) and (3.3), with Table (3.2)
collecting results from all-electron calculations with all orbitals are correlated and Table (3.3)
collecting results from calculations with the core orbitals frozen. It can be seen from these two
tables that the CCSD results are relatively poor, typically producing MUE values around or
above 2.0 kcal/mol, but the CCSD(T) and CR-CC(2,3),A-D methods significantly improve
the CCSD activation energies, especially in conjunction with the augmented correlation
consistent basis sets. The mean unsigned errors of CR-CC(2,3) and CCSD(T) with the MG3S
basis set are about 0.9-1.0 kcal/mol both when correlating all electrons and when correlating
only valence electrons, whereas the mean unsigned errors characterizing the CR-CC(2,3)
and CCSD(T) results for the augmented correlation consistent basis sets vary between 0.4
and 0.75 kcal/mol. We conclude from this that the MG3S basis set offers an economical
triple-zeta basis set alternative for systems which are too large for the correlation consistent

basis sets to be affordable.
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Table 3.2: Mean signed error (MSE) and mean unsigned error (MUE) of coupled cluster methods calculated with all electrons
correlated compared against the DBH24 benchmark database (in kcal/mol).

HATBHG6 NSBH6 UABHG6 HTBHG6 DBH24
Method MSE MUE MSE MUE MSE MUE MSE MUE MUE
MG3S
CCSD(full) 4.36 436 229 229  1.76 1.76  2.55 2.55 2.74
CCSD(T)(full) 0.92 1.24  -0.01 0.74  0.70 0.70  0.93 1.04 0.93
CR-CC(2,3),A(full)  1.50 1.61  0.72 0.54  0.93 093 113 1.14  1.06
CR-CC(2,3),B(full)  1.72 177 047 0.57  0.96 0.96 1.19 119  1.12
CR-CC(2,3),C(full) 1.16 1.35  0.10 0.59  0.82 0.82  0.98 1.04 0.95
CR-CC(2,3),D(full) 1.17 1.35  0.10 0.60  0.82 0.82  0.98 1.04 0.95
aug-cc-pV'TZ
CCSD(full) 2.85 2.85 1.83 1.83 1.28 1.28 1.06 1.06 1.76
CCSD(T)(full) -0.72 0.84 -0.52 0.64 0.17 0.34 -0.72 0.72 0.64
aug-cc-pCV'TZ
CCSD(full) 3.61 3.61 2.12 2.12 1.13 1.13 1.75 1.75 2.15
CCSD(T)(full) -0.03 0.61 -0.26 0.46  0.01 0.28  -0.05 0.45 0.45
CR-CC(2,3),A(full) 0.55 0.84  0.04 0.34  0.23 0.38 0.14 0.54 0.52
CR-CC(2,3),B(full) 0.77 097 0.23 0.34  0.26 041  0.22 0.56 0.57
CR-CC(2,3),C(full)  0.42 0.76  -0.22 0.63  0.22 043  0.11 0.55 0.59
CR-CC(2,3),D(full) 0.42 0.76  -0.22 0.63  0.22 043  0.11 0.55 0.59
aug-cc-pCV(T+d)Z
CCSD(full) 3.60 3.60 2.15 2.15 1.13 1.13 1.76 1.76 2.16
CCSD(T)(full) -0.05 0.58 -0.24 0.44  0.01 0.28 -0.05 0.45 0.44
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Table 3.3: Mean signed error (MSE) and mean unsigned error (MUE) of coupled cluster methods calculated with frozen core
approximation compared against the DBH24 benchmark database (in kcal/mol).

HATBHG6 NSBH6 UABH6 HTBH6 DBH24
Method MSE MUE MSE MUE MSE MUE MSE MUE MUE
MG3S
CCSD 4.43 4.43  2.03 203  1.58 1.58  2.62 2.62 2.67
CCSD(T) 1.06 1.37  -0.25 094  0.53 0.53 1.04 1.10 0.98
CR-CC(2,3),A 1.63 1.76  0.03 0.75  0.76 0.76  1.23 1.23 1.12
CR-CC(2,3),B 1.85 1.91 0.22 0.63  0.80 0.80 1.29 1.29 1.16
CR-CC(2,3),C 1.28 1.49  -0.17 0.83  0.66 0.66  1.08 1.10 1.02
CR-CC(2,3),D 1.29 1.49  -0.18 0.83  0.65 0.65  1.08 1.10 1.02
aug-cc-pV'TZ
CCSD 3.54 3.54 1.66 1.66 1.03 1.11 1.72 1.72 2.01
CCSD(T) 0.01 091 -0.67 0.68 -0.06 0.40  -0.04 0.57 0.64
CR-CC(2,3),A 0.58 1.20  -0.39 0.44  0.17 0.47  0.15 0.62 0.68
CR-CC(2,3),B  0.80 1.32 -0.20 035 0.19 0.49  0.23 0.65 0.70
CR-CC(2,3),C 0.46 1.13  -0.70 0.77  0.16 0.48  0.11 0.64 0.75
CR-CC(2,3),D 0.46 1.13  -0.711 0.77  0.15 0.48  0.11 0.64 0.75
aug-cc-pV(T+d)Z
CCSD 3.41 3.41 1.82 1.82  1.03 1.11  1.69 1.69 2.01
CCSD(T) -0.13 0.67 -0.53 0.62 -0.06 0.40  -0.06 0.54 0.56
CR-CC(2,3),A 0.45 0.88 -0.24 039  0.17 0.47  0.13 0.60 0.58
CR-CC(2,3),B  0.67 1.00  -0.05 0.30 0.19 0.49  0.20 0.63 0.61
CR-CC(2,3),C 0.30 0.80 -0.53 0.60 0.16 0.48  0.09 0.62 0.62
CR-CC(2,3),D 0.31 0.80 -0.54 0.60 0.15 0.48  0.09 0.62 0.62
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Although the CCSD(T)(full)/aug-cc-pCV (T+d)Z method gives the best results among all
the tested methods, with a mean unsigned error of only 0.44 kcal /mol, it is our opinion that
this is not the best combination of method and basis set for routine applications of the type of
the benchmark study examined here. There are several reasons in support of this conclusion.
First, it is clear by a comparison of Tables (3.2) and (3.3) that all-electron CCSD(T) and
CR-CC(2,3) calculations generally give only slightly better results than those produced by
frozen-core calculations using the MG3S, aug-cc-pVTZ, or aug-cc-pV(T+d)Z basis sets. As
an example, the CR-CC(2,3),D/MG3S calculations with all electrons correlated produced
MUESs ranging from 0.60 to 1.35 kcal/mol, while the same combination of method and basis
set produced MUEs of 0.65 to 1.49 kcal /mol under the frozen-core approximation. In general,
it is not recommended to use valence-optimized basis sets when including both core and
core-valence correlations, since this is not only more expensive, but also a potential source of
problems [215]. By examining MUEs in Table (3.2) corresponding to CCSD(T) calculations
using the aug-cc-pVTZ and aug-cc-pCV'TZ basis sets, which have ranges from 0.34 to 0.84
kcal/mol and 0.28 to 0.61 kcal/mol, respectively, it is clear that the accuracy systematically
increases when the core-optimized basis sets are used in all-electron calculations. However,
since the results only improve slightly it is our opinion that employing the core-optimized
basis sets is not practical due to the increase in the number of basis functions composing
these basis sets and the additional correlated orbitals required to perform the corresponding
all-electron calculations, which, taken together, make the calculations significantly more
expensive then their frozen-core analogs. It is also clear from Tables (3.2) and (3.3) that
the overall accuracy of the CR-CC(2,3),A-D approaches is practically the same as that

of CCSD(T). In particular, since CR-CC(2,3),D is shown to reproduce the high accuracy
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of CCSD(T) in the barrier height calculations for the reactions from the DBH24 database,
which are largely of the SR type, while also offering a significantly better performance in more
MR cases, as demonstrated in Sects. (3.2.2) and (3.2.3), we recommend it for applications
where an accurate treatment of triples is required, particularly when paired with the aug-

cc-pV(T+d)Z basis set in the frozen-core approximation.

Additional unpublished work was performed addressing the question of whether the MSEs
and MUEs characterizing the CR-CC(2,3) calculations could be further reduced by saturating
the basis set. The increase in accuracy observed when switching from the aug-cc-pVTZ to
aug-cc-pCV'TZ basis set can be interpreted in one of two ways. Either correlating the core
electrons has a significant effect on the accuracy of these calculations, or, since there is a
large disparity between the number of basis functions in the two sets, a large portion of the
errors reported in Ref. [206] were due to basis set incompleteness. To investigate this issue,
CR-CC(2,3) energies were calculated with the aug-cc-pV(Q+d)Z basis set for all relevant
species in the DBH24 benchmark database. This basis set was chosen because it follows aug-
cc-pV(T+d)Z in the hierarchy of basis sets having the general form aug-cc-pV(X+d)Z, where
X is known as the cardinal number of the basis set, and, having obtained energies at the
aug-cc-pV(T+d)Z and aug-cc-pV(Q+d)Z basis set levels, it is then possible to extrapolate
the electronic correlation energy to the complete basis set (CBS) limit, AFEs, using one of
the existing empirical laws defining the dependence of the electronic correlation energy AFE
on X, such as

AE(X)=AEy + AX 3, (3.98)

where AE(X) is the correlation energy obtained with the aug-cc-pV(X+d)Z basis set and

AFEs and A are the parameters determined from fitting AE(X) to the calculated correla-
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tion energies. Preference is always given to the aug-cc-pV(T+d)Z and aug-cc-pV(Q+d)Z
basis set data in these fits, rather than the easier to obtain aug-cc-pV(D+d)Z data, because
the aug-cc-pV(D+d)Z data are well known to produce rather poor fits to the function given
by Eq. (3.98). While the CBS-limit correlation energy can be obtained by the above ex-
trapolation technique, the reference energy, which was provided by the RHF method for
the closed-shell DBH24 species and by the ROHF method for open-shell species, was ex-
plicitly calculated using a very large, nearly complete, basis set, i.e., the aug-cc-pV(6+d)Z
basis set. This has been shown to be a more accurate approach than extrapolation for ob-
taining approximate CBS-limit reference energies [216] and the calculations do not become
prohibitively expensive even for the largest molecules of interest in this study. Both the
fast (exponential) convergence behavior of the reference energy and the unreliable nature
of correlation energies resulting from correlation consistent DZ-type basis sets with cardinal
number 2 are thoroughly discussed and well illustrated for the HoO system in Ref. [217].
Thus, the approximate CBS-limit total energy reported in this section is constructed as a
sum of the energy produced by an aug-cc-pV(6+d)Z reference calculation and a CBS-limit
correlation energy, obtained by entering the aug-cc-pV(T+d)Z and aug-cc-pV(Q+d)Z basis

set level correlation energies into the extrapolation formula given by Eq. (3.98).
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Table 3.4: FErrors resulting from CR-CC(2,3) calculations of forward and reverse barrier heights, ij and VZA respectively,

reported as e(V#) / e(VZé )) at varying basis set levels compared against DBH24 benchmark values (in kcal/mol).

f
HATBHG6
H + NoO — OH + Ny H + HCl — HCl + H CHs + FCl — CH3F + Cl
aug-cc-pV(D+d)Z -1.17/3.84 1.92/1.92 -2.96/-0.98
aug-cc-pV(T+d)Z -0.99/2.16 0.24/0.24 -0.48/0.69
aug-cc-pV(Q+d)Z 10.37/1.85 20.10/-0.10 0.12/0.66
CBS-limit 0.07/1.69 -0.41/-0.41 0.48/0.85
NSBH6
Cl~...CH3Cl — CICHs...C1~ F~...CH3Cl — FCHj3...C1~ OH~ + CH3F — HOCHj3 + F~
aug-cc-pV(D+d)Z 1.31/-1.31 -0.79/-2.16 2.81/-1.58
aug-cc-pV(T+d)Z ~1.08/-1.08 -0.14/-1.08 0.19/-0.04
aug-cc-pV(Q-+d)Z -0.93/-0.93 20.01/-0.34 0.52/0.59
CBS-limit -0.93/-0.93 0.05/0.12 0.73/0.99
UABHG6
H + No — HNy H + CoHy — CoHj HCN — HNC
aug-cc-pV(D+d)Z 0.13/ 0.32 0.63/ 0.19 -1.92/-1.24
aug-cc-pV(T+d)Z 0.00/ 0.56 0.34/ 1.00 -0.67/-0.30
aug-cc-pV(Q+d)Z 0.08/ 0.53 0.38/ 0.86 -0.50/-0.08
CBS-limit 0.08/ 0.58 0.39/ 0.79 -0.36/ 0.04
HTBHG6
OH + CH4 — CHz + Ho0 H+ OH — O + Hy H + H9S — Hy + HS
aug-cc-pV(D+d)Z 0.15/-1.28 20.88/ 0.93 0.44/ 0.00
aug-cc-pV(T+d)Z 0.20/-0.83 -0.76/ 0.67 0.28/ 0.95
aug-cc-pV(Q+d)Z 0.19/-0.09 -0.24/ 0.31 0.43/ 0.74
CBS-limit 0.16/ 0.31 0.05/ 0.02 0.52/ 0.56
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The individual errors resulting from CR-CC(2,3) calculations for the various DBH24
reactions, when used in conjunction with the aug-cc-pV(X+Z)Z basis sets, the correspond-
ing CBS-limit values, and the MSE and MUE values characterizing these calculations are
collected in Tables (3.4) and (3.5). Results produced by CR-CC(2,3)/aug-cc-pV(D+d)Z
calculations are only included to emphasize the convergence with the basis set. For every
reaction considered, improvements in the quality of basis set correlate with improvements
in accuracy. For many of these reactions it is clear that the basis set truncation was the
main source of the triple-zeta-level error in the calculations reported in Ref. [206]. As shown
in Table (3.5), the MSE reduces for both the forward and reverse barrier heights to well
beyond chemical accuracy as the CBS-limit of the CR-CC(2,3) energies is approached. The
MUESs seem to be converged at the aug-cc-pV(Q+d)Z basis set level since there is almost
no difference with the CBS-limit results. Until it is explicitly proven, it can be assumed
that additional contributions from the remaining triples, quadruples, and other higher-order
connected clusters contribute minimally to the barrier heights considered here and may be
disregarded when predicting the activation energies for similar reactions to within a fraction
of 1 kcal/mol. In Sects. (3.2.2) and (3.2.3) chemical systems are examined which require at
least a partial treatment of quadruple excitations in order to attain results within chemical
accuracy. Our interest is in determining if the CR-CC methods, such as CR-CC(2,3)+Q can

be used to accurately describe such situations when they arise.

3.2.2 Addition Reactions of Ethylene and Acetylene to Ozone

In the previous section it was shown that the CR-CC(2,3) method is capable of matching

the performance of CCSD(T), where both were able to achieve chemical accuracy in con-
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Table 3.5:  Mean signed errors (MSE) and mean unsigned errors (MUE) resulting from

CR-CC(2,3) calculations of all DBH24 forward and reverse barrier heights, ij and VZA

respectively, reported as e(V}é) / E(V?«é )) at varying basis set levels (in kcal /mol).

MSE MUE
aug-cc-pV(D+d)Z -0.28 / 0.96 1.11 / 1.38
aug-cc-pV(T+d)Z -0.35 / 0.71 0.52 / 0.81
aug-cc-pV(Q+d)Z -0.15 / 0.54 0.32 / 0.59
CBS-limit 0.07 / 0.38 0.35 / 0.60

junction with medium basis sets when predicting simple thermochemical barrier heights of
the predominantly SR nature, and that the CR-CC(2,3) method could even achieve a sub-
chemical level of accuracy in the CBS-limit. It was thus clear that for the species included
in the DBH24 benchmark database, the correlation effects included in the CCSD(T) and
CR-CC(2,3) methods were sufficient to reproduce benchmark data with excellent accuracy.
However, not all chemical systems can be described so accurately at the CCSD(T) and CR-
CC(2,3) levels. Some systems are more MR and as such, require a balanced description of

triply and quadruply excited clusters.

Ozone is one notorious example of a MR system [218-221]. Despite its well known closed-
shell singlet electronic structure, ozone exhibits a significant biradical character estimated to
be around 33% [222-225]. Ozone is a common reagent in organic chemistry for the generation
of ketones, aldehydes, epoxides, peroxides, anhydrides, and polymers via ozonolysis of alkenes
and alkynes [226-231] The mechanism of such processes is generally accepted to proceed by
initial formation of a van der Waals (vdW) complex followed by a concerted cycloaddition
transition state (TS) before finally reaching the cycloadduct configuration. In this section,

cycloadditions of ethylene and acetylene, shown in Fig. (3.1) to the 1,3 termini of ozone
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C,H,+0;-> vdW - TS -> adduct
LR
C,H,+ O, > vdW - TS - adduct

}/% /

Figure 3.1: Stationary points along the CoHs (top row) and CoHy (bottom row) ozonolysis
reaction pathways. In each row, the structures from left to right represent the van der Waals
minimum (vdW), transition state (TS), and the cycloadduct, respectively. The oxygen, car-
bon, and hydrogen atoms are represented by the red, yellow, and grey spheres, respectively.
For interpretation of the references to color in this and all other figures, the reader is referred
to the electronic version of this dissertation.

69



Table 3.6: Benchmark values for the CoHo and CoHy4 ozonolysis reaction pathways.

0O3+CsoHo 0O3+CoHy
method vdW TS cycloadduct vdW TS cycloadduct
Wheeler et al.® -1.85 7.74 -63.04 -1.84 3.43 -56.43
CBS CCSDT+(2)Qb -1.88 790 -63.91 -1.94 3.50 -57.15
CBS CCSD(T)+Q° -1.98 7.58 -64.46 -2.03 3.18 -57.86
average = best estimate -1.90 7.74  -63.80 -1.94 3.37  -57.15

“From Ref. [225], calculated as CCSDT/CBS plus corrections for core correlation (C), adi-
abatic Born-Oppenheimer terms (A), relativistic effects (R) and a correction for quadruple
excitations (+(2)g) estimated at the cc-pVDZ basis set level for CoHg and assumed to

be the same for CoHy. °CBS CCSDT/CBS+CAR from Ref. [225] plus quadruple excita-
tion contributions calculated at the CCSDT(2)g/cc-pVDZ level for both CoHy and CoHy
separately [242]. “CBS CCSD(T)/CBS+CAR from Ref. [225] plus quadruple excitation
contributions calculated at the CCSD(TQ)/aug-cc-pVDZ level for both CoHg and CoHy
separately [242].

are considered as a more challenging set of thermochemical barrier heights, which have
reported literature values from ordinarily reliable theoretical methods ranging from 2 to 18
kcal/mol for ethylene [232-237] and 5 to 22 kcal/mol for acetylene. [238-241] When such large
discrepancies are observed between various theoretical methods, it is typical that higher-order
effects play a significant role in the description of the species involved and, indeed, work by
Wheeler et al. [225] showed that there are non-negligible contributions to the energy from
quadruply excited clusters in the ozonolysis of CoHy. Table (3.6) collects the best known
computational benchmark values for stationary points along the CoHo and CoHy4 ozonolysis
reaction pathways, as reported in Refs. [225] and [242]. Following the strategy of Ref. [242],

the averages given in Table (3.6) are the values used for comparison in this discussion.

In a joint study published by the Piecuch and Truhlar groups in 2009 [242], the effect of

quadruples on the CoHg ozonolysis was reexamined, as treated with a larger basis set, and
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the ozonolysis of CoHy was considered for the first time with quadruple excitations explic-
itly included. This discussion focuses on the performance of CC methods that start with an
iterative CCSD calculation and add noniterative corrections for connected higher-order exci-
tations, including CCSD(T), CCSD(TQ), CR-CC(2,3), and CR-CC(2,3)+Q, although many
other CC and non-CC results, which are not discussed here, were reported in Ref. [242] as
well. Since calculating corrections to the correlation energy corresponding to quadruples at
the aug-cc-pV'TZ basis set level was computationally too demanding, a composite method
was invented which treats most of the correlation energy with the aug-cc-pV'TZ basis set but
treats the part of the correlation energy corresponding to quadruples at the aug-cc-pVDZ
level. For example, a CR-CC(2,3)/aug-cc-pVTZ calculation augmented by a quadruples
correction at the aug-cc-pVDZ level is designated as CR-CC(2,3)/aug-cc-pVTZ+Q(aug-cc-
pVDZ). All CR-CC(2,3) energies discussed in this section are the variant D values. The
underlying geometries representing stationary points for the reaction pathways were opti-

mized with the M05 density functional [243] and MG3S basis set.

In Table (3.7) the selected conventional CC and CR-CC results are compared, reported
as relative energies with respect to the reactants, for each of the stationary points on the
reaction pathways. A specific subset of these results was selected to be presented here
which illustrates typical problems encountered at various levels of CC theory. We begin by
considering the CCSD-level results found using the aug-cc-pVDZ and aug-cc-pVTZ basis
sets, found in the first two rows of Table (3.7). It is clear that CCSD, when used with the
aug-cc-pVDZ and aug-cc-pV'TZ basis sets, produces a proper qualitative description of the
two reaction pathways, however the overall accuracies, reported concisely as MUEs of all

considered species with respect to the benchmark values in the second to last column, are
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quite poor, with reported values of 2.4 and 3.3 kcal/mol, respectively.

The CCSD(T) and CCSD(TQ) results reported here, generated in conjunction with
the aug-cc-pVDZ basis set, improve on the overall MUEs of CCSD, producing 1.7 and 1.5
kcal/mol, respectively, but both standard perturbative CC methods fail to give the correct
qualitative description of the ethylene ozonolysis reaction pathway, placing the transition
state -0.54 and -0.21 kcal/mol below the reactants, respectively. These results, predicting
no barrier to reaction at all, are unphysical, disagreeing with high-level theory and exper-
iment [244]. In mechanistic studies such as this, the relative energetics between reactants
and the transition states are of particular interest, since the activation energy is often an
experimentally derivable quantity, so in the final column of Table (3.7) the MUEs for only
the transition states of both reactions are reported. Comparing CCSD(T) and CCSD(TQ)
to the other reported methodologies by this measure clearly shows their exceptionally poor
performance when used to describe barrier heights when either the reactants or transition

state have significant biradical character and the other species do not.

The situation looks much better when the CR-CC methods are used to describe the same
reaction pathways. By using the CR-CC(2,3) method rather than CCSD(T) in the same basis
set, a lowering of the total MUE from 1.7 to 0.8 kcal/mol is observed, and an appropriate
sign is obtained for the barrier in the ethylene ozonolysis. This is already considered sub-
chemical accuracy, but not the best result yet. A logical next step toward increasing accuracy
is to increase the basis set from aug-cc-pVDZ to aug-cc-pVTZ. It is shown in Table 3.7 that
the same MUE of 0.8 kcal/mol is obtained when the aug-cc-pVTZ basis set is employed,
but the activation energies move toward the benchmark values. Further improvements are

observed when the CR-CC(2,3) results are corrected for quadruples. The incredibly small
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total MUE produced by the CR-CC(2,3),D/aug-cc-pVTZ+Q(aug-cc-pVDZ) method (0.6
kcal/mol), and an ever smaller MUE for the activation energies (0.2 kcal/mol) show the
ability of the relatively inexpensive CR-CC approaches to produce excellent energetics, even
for difficult reaction pathways. In the next section, Sect. (3.2.3), an even more difficult

reaction profile is considered.
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Table 3.7: Energetics of stationary points relative to reactants, in kcal/mol, produced at various levels of coupled-cluster
theory for the ozonolysis of ethylene and acetylene.

03+CqoH> 03+CoHy MUE MUE
method vdW TS cycloadduct vdW TS cycloadduct All* BHs?
CCSD/aug-cc-pVDZ -2.00 747  -69.90 -2.38 2.69 -64.22 24 0.5
CCSD/aug-cc-pVTZ -1.76 934 -T1.27 -1.89 441  -66.36 3.3 1.3
CCSD(T)/aug-cc-pVDZ -2.50 429 -64.21 -3.18  -0.54 -57.58 1.7 3.7
CCSD(TQ)/aug-cc-pVDZ -2.48 473  -63.50 -3.17  -0.21 -56.89 1.5 3.3
CR-CC(2,3),D/aug-cc-pVDZ -1.11  6.09 -63.46 -1.87 1.44  -57.10 0.8 1.8
CR-CC(2,3),D/aug-cc-pVTZ -0.58  8.08 -64.06 -0.68 3.55  -58.31 0.8 0.3
CR-CC(2,3),D/aug-cc-pVTZ+Q(aug-cc-pVDZ) -0.62  8.02 -63.29 -0.74 3.46  -57.52 0.6 0.2
Benchmark values® -1.90 7.74  -63.80 -1.94 3.37  -57.15 — —

% Average mean unsigned errors for all stationary points on the ethylene and acetylene ozonolysis reaction pathways. bAverage
mean unsigned errors for the transition state barrier heights for ethylene and acetylene ozonolysis. “The best estimates from
Table (3.6) obtained in Ref. [242].
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3.2.3 Mechanism of the Isomerization of Bicyclobutane to Buta-

diene

The pericyclic rearrangement of bicyclo[1.1.0]butane (abbreviated as bicbut) to trans-buta-
1,3-diene (abbreviated as t-but) was chosen as another test case for the CR-CC methods,
both for the intrinsic complexity of the associated isomerization pathways, which involve
polyatomic structures with a rapidly varying degree of biradical character that require an
accurate and balanced description of the dynamical and non-dynamical correlation effects,
as well as for the favorable size of the system, which has several atoms but is still not too
large, enabling calculations with larger basis sets to be performed and, in turn, allowing
convergence behavior with the size of the basis set to be examined. Let us recall that early
experimental studies suggest that the bicbut—t-but isomerization proceeds by concerted
conrotatory movement of the methylene groups [245,246], as predicted by the Woodward-
Hoffman symmetry rules (see Figure (3.2)). Computational studies confirm this, predicting,
in addition, that near the end the reaction pathway passes through the gauche-buta-1,3-diene
configuration (abbreviated as g-but) before reaching the final t-but configuration [189,248].
Theoretical studies have also considered the concerted disrotatory [189,248,249] and non-
concerted [250] pathways, finding the concerted disrotatory TS to be ~ 20 kcal/mol higher in
energy than the conrotatory T'S and the non-concerted pathway to be much too high in en-
ergy to be even considered as a plausible mechanism. The conrotatory TS was found to have
a ~ 24 % biradical character while the disrotatory T'S was found to have a ~ 90 % biradical
character, according to the high level electronic structure calculations reported in Ref. [189].
The current consensus on the mechanism for the isomerization of bicyclo[1.1.0]butane into

buta-1,3-diene is that both concerted pathways begin at bicbut and, after passing through
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the corresponding conrotatory or disrotatory TS (con_TS and dis_T'S, respectively), they
converge at the local minimum defining the intermediate g-but configuration (see Figure
(3.2)). The g-but intermediate isomerizes via a low-energy rotational barrier, defined by
the TS structure labeled as gt_T'S, before the final product, t-but, is reached. The conrota-
tory and disrotatory concerted pathways describing the isomerization of bicyclo[1.1.0]butane
into buta-1,3-diene, along with their available experimental activation [251] and reaction
enthalpies (the latter based on the enthalpies of formation of bicyclo[1.1.0]butane and buta-
1,3-diene reported in Ref. [252]; cf. Ref. [189]), and the theoretical enthalpy values obtained

in this work, are illustrated in Figure (3.2).

As demonstrated in Ref. [189], the CCSD(T) approach completely fails by placing the
disrotatory pathway defined by the strongly biradical dis_ TS about 20 kcal/mol below the
conrotatory pathway, contradicting experiment [245,246] and accurate MR calculations [248]
which state that the conrotatory pathway represents a true mechanism. At the same time,
the CASSCF and MCQDPT2 approaches, which correctly place the conrotatory pathway
below the disrotatory one, provide relatively poor energetics when compared to the available
experimental and more accurate electronic structure data [189], although CASSCF pro-
duces reasonable geometries of the corresponding stationary points. On the other hand, as
was also shown in Ref. [189], the CR-CC(2,3) approach provides an accurate and balanced
description of the conrotatory and disrotatory pathways describing the isomerization of bicy-
clo[1.1.0]butane to trans-buta-1,3-diene, and one of the primary goals of this thesis research
was to produce CR-CC(2,3) energies for this system which were converged with the basis
set [193]. To do this, the set of nuclear geometries optimized at the CASSCF(10,10)/cc-

pVDZ level of theory were taken from Ref. [189] and additional CR-CC(2,3) calculations
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Figure 3.2:  The conrotatory and disrotatory pathways describing the isomerization
of bicyclo[1.1.0]butane to trans-buta-1,3-diene, along with the enthalpy values rela-
tive to the reactant at all stationary points obtained in the explicit CR-CC(2,3)/cc-
pVQZ//CASSCF(10,10)/cc-pVDZ calculations (numbers in roman) and the enthalpy val-
ues obtained with the PES extrapolation procedure using the CR-CC(2,3)/cc-pVDZ, CR-
CC(2,3)/cc-pVTZ, and RHF /cc-pVQZ energies at all stationary points resulting from the
CASSCF(10,10)/cc-pVDZ optimizations, and the CR-CC(2,3)/cc-pVQZ correlation energy
at the reactant geometry (numbers in bold italics). The available experimental enthalpy
values are in parentheses. All enthalpies are in kcal/mol.

7



Table 3.8: Relative enthalpies, in kcal/mol, with respect to reactant as calculated at various
levels of theory for the conrotatory and disrotatory bicbut — tbut isomerization pathways.

Method con_TS dis_TS  g-but gt-TS tbut
CR-CC(2,3) /cc-pVTZ® 41.1 66.1  -249 221 -27.9
CR-CC(2,3) /ce-pVQZb 41.3 67.1  -248 229  -27.7
CR-CC(2,3)/CBS limit? 415 675  -245  -21.6  -274
CR-CC(2,3)+Q/cc-pVTZ? 40.8 67.0  -249 221  -27.8
ACSE/6-311G**¢ 41.2 55.7  -23.8 — —
DM 40.4(5)  58.6(5) -25.2(5) -22.2(5) -27.9(5)
Experiment® 40.6(+ 2.5) — — — -25.9(4)

“Taken from Ref. [189]. ®The present study (CR-CC(2,3) results taken from Ref. [193]).
“Results obtained with the anti-Hermitian contracted Schrddinger equation (ACSE) ap-
proach taken from Ref. [253]. “Benchmark computational results obtained with the diffusion
Quantum Monte Carlo (DMC) approach taken from Ref. [254]. Benchmark experimental
results taken from Ref. [252].

were performed with the cc-pVQZ basis set and, together with the cc-pV'TZ energies from
Ref. [189], CBS-limit extrapolated correlation energies were obtained using Eq. (3.98). These

and other results are reported in Table (3.8).

Enthalpy values in Table (3.8) are reported relative to reactants as calculated using
a variety of approaches. Comparison of the CR-CC(2,3)/cc-pVTZ results from Ref. [189]
with the CR-CC(2,3) results obtained through calculations at the cc-pVQZ and CBS-limit
levels, as originally reported in Ref. [193], confirms that small improvements were made by
saturating the basis set. Later in 2008, a paper was published challenging the accuracy of
these calculations. Calculations performed using the anti-Hermitian contracted Schrodinger
equation (ACSE) in Ref. [253], reported for comparison in Table (3.8), showed the dis_ TS
barrier to be much lower then CR-CC(2,3) calculations had predicted. Since the ACSE

method is good at accounting for non-dynamical correlation effects, we calculated the +Q
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corrections at various basis set levels to assure that we were not neglecting nondynamical
correlation effects described by higher-order clusters. Since, as shown in Table (3.8), these
corrections adjusted the enthalpies by less then 1 kcal/mol, we assumed that our values for

the dis_T'S barrier were reliable.

An interesting recent development, which affects this discussion, came in 2010 when high-
quality diffusion Quantum Monte Carlo (DMC) results became available for the bicbut —
tbut isomerization system [254]. By comparing with this theoretical benchmark data it was
shown that CR-CC(2,3) and CR-CC(2,3)+Q enthalpy values at all reported basis sets are
within ~ 1 kcal/mol for all stationary points except for the dis_ TS structure. There is a
rather large discrepancy at the dis_TS stationary point with the highest quality CR-CC
data predicting a barrier of around 67 kcal/mol, while the DMC results predict a dis_ TS
barrier around 59 kcal/mol. At this point the issue emerged: what is behind the few kcal/mol
difference between the CR-CC and DMC results for the disrotatory transition state? Our
group finally found an answer a few weeks ago. Based on a still preliminary study using
a new theory being presently developed in our group, abbreviated CC(t;3), that represents
a merger of the active-space CCSDt approach and CR-CC(2,3) [255], it appears to be the
iterative treatment of the singly and doubly excited clusters in the presence of the leading
triple excitations which accounts for the remaining nondynamic and dynamic correlations
responsible for this energy lowering, producing a result in perfect agreement with DMC.
Thus, while species with extreme biradical character, such as dis_ TS, may sometimes be
difficult to describe to high accuracy, the CR-CC(2,3) method remains the key in obtaining
the desired accuracies, since CC(t;3) uses the CR-CC(2,3)-style corrections to correct the

CCSDt energies for the triples missing in the CCSDt calculations, while eliminating the
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complete failure of CCSD(T).

Excluding the exceptionally difficult dis_TS stationary point, which is not part of the
energetically favorable reaction profile for the bicbut — tbut isomerization, the CR-CC(2,3)
results with or without quadruples are within 1 kcal/mol of the DMC results. It also appears
that the best CR-CC results are within the DMC error bars. Meanwhile, the ACSE results
significanly underestimate the g-but barrier and cannot claim sub-chemical accuracy. We
speculate that the ACSE method does significanly better for the dis_TS barrier, which has 90
% biradical character, but underestimates the correlation energies for the closed-shell species.
This is because the method is very good for describing nondynamical correlation energy, but
is less accurate in its description of dynamical correlation effects. On the other hand, unlike
CCSD(T), which describes dynamical correlation energy well and nondynamical correlation
energy poorly, it is at least a qualitatively predictive method. Meanwhile, the CR-CC(2,3)
method and its CR-CC(2,3)+Q and CC(t;3) extensions can, unlike the ACSE approach, give
a quantitatively correct description of the energically favorable con_TS reaction profile and,

unlike the CCSD(T) method, predict the correct reaction channel.

The success of the ground-state CR-CC formalism in this and previous sections motivates
an investigation of the performance of the CR-EOMCC methods for excited states. This is
done in the next two sections, with the first considering the performance of CR-EOMCC(2,3)
for the description of low-lying excited-state PESs of the water molecule, particularly along
the bond-breaking O-H coordinate (in Sect. (3.2.4)), followed by a fully size-intensive de-
scription of vertical excitation energies and spectral shifts in weakly bound complexes (in

Sect. (3.2.5)).
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3.2.4 Excited-State Potential Energy Surfaces for the Dissociation

of Water

The motivation for the work reported in the current section is to, for the first time, assess
the performance of the CR-EOMCC(2,3) approach in generating excited-state PESs along
a single-bond stretching dissociation channel. The water molecule was chosen as our target
system since, while there exist in the literature many experimental [256-264] and theoretical
[265-269] studies aimed at finding vertical excitation energies out of the ground state (see Ref.
[270] for a review of older work), fewer studies have focused on generating PESs other than
for the ground and first excited singlet states. Recently, however, a cut of the full ground-
state PES corresponding to the asymmetric O-H bond-breaking dissociation was carefully
optimized by Li and Paldus using the CCSD theory in conjunction with a relatively large
cc-pVT7Z basis set and then many low-lying excited-state PES cuts were calculated at the full
CI level using a cc-pVTZ basis stripped of polarization functions (referred to as the TZ basis)
[271]. Here, we intend to use the set of high-level optimized geometries and corresponding
full CI excited-state PES cuts reported in Ref. [271] as benchmark data for testing the
performance of the CR-CC(2,3) and CR-EOMCC(2,3) methods. The main objective is
to determine whether the CR-CC(2,3) and CR-EOMCC(2,3) methods can overcome the
deficiencies of the CCSD and EOMCCSD approaches for the PES cuts of interest, including
stretched O-H bond lengths and the HoO — H + OH dissociation limit, where groups
of electronic states of water converge to become degenerate. Since values are available,
we will also take this opportunity to compare the PESs obtained in the CR-CC(2,3)/CR-
EOMCC(2,3) calculations with those produced by leading MRCC or MRCC-like methods,

as taken from Ref. [271]. These include the NR-RMR-CCSD(T), NR-GMS-SU-CCSD, and
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(N, M)-CCSD methods, all of which were mentioned in the Introduction.

Following Ref. [271], calculations were peformed using a small basis set referred to as
T7Z, which, as mentioned above, is constructed by removing polarization functions from the
cc-pVT7Z basis set of Dunning. The geometries associated with the asymmetric dissociation
were generated by designating the bond length of the stretched O-H bond and optimizing the
H-O-H angle and second O-H bond length at the CCSD/cc-pVTZ level. These geometrical
parameters were taken from Ref. [271]. All calculations of singlet ground and excited states
were performed using the efficient RHF-based EOMCCSD and CR-EOMCC(2,3) computer
codes developed earlier by our group and incorporated in the GAMESS program. Triplet
EOMCC calculations were performed using a new EOMCCSD code for ROHF references
developed as part of this thesis effort, to be included in a future official GAMESS distribution,
the implementation of which is discussed in Sect. (5.1.1). Open-shell ROHF-based CR-
EOMCC(2,3) calculations were performed using the spin-orbital computer codes written by
our group that are loosely interfaced with GAMESS. In all calculations electrons in the
lowest occupied molecular orbital were frozen, spherical contaminants were dropped from
the atomic orbital basis sets, and the C's point group was enforced, distinguishing states as
either A" or A” symmetry. We use the convention for numbering states where the singlet
ground state is denoted in a usual way by the symbol X and excited states belonging to the
same irreducible representation, i.e. spin and spatial symmetry, are numbered sequentially

in order of increasing energy at the equilibrium nuclear configuration.

Ground-state X1 A’ PES cuts are reported in Table (3.9), with internuclear separations
given in the first column and energies corresponding to various methods given in the remain-

ing columns. The last two rows provide MUEs and non-parallelity errors (NPEs) relative
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Table 3.9: Ground-state XA’ energies for the asymmetric single-bond breaking of HyO
at a series of the O-H bond lengths, R, in atomic units. The last two rows give the mean
unsigned errors (MUE) and non-parallelity errors (NPE) relative to the full CI PES obtained
in Ref. [271].

R (bohr)  FCI*  7R-SU? 4R-RMR(T)¢ CCSD? CR-CC(2,3)%

1.3 -1.01567 2.87 0.08 2.84 -0.16
1.6 -1.14894 3.20 0.10 3.17 -0.16
1.809 -1.16847  3.50 0.13 3.46 -0.14
2.0 -1.16417  3.83 0.16 3.77 -0.12
2.4 -1.13058 4.65 0.20 4.59 -0.03
2.8 -1.09255 5.73 0.20 5.72 0.08
3.2 -1.06129 7.15 0.15 7.21 0.21
3.6 -1.03889 8.84 0.13 8.97 0.32
4.0 -1.02451  10.69 0.19 10.81 0.36
4.2 -1.01967  11.61 0.24 11.66 0.33
4.4 -1.01603  12.48 0.29 12.43 0.28
MUE — 6.68 0.17 6.78 0.20
NPE — 9.61 0.21 9.59 0.52

¢ Full CI energies (E), reported as (E + 75) hartree, taken from Ref. [271]. ? 7R-GMS-SU-
CCSD energies, in millihartree, reported as differences from full CI taken from Ref. [271]
¢ 4R-RMR-CCSD(T) energies, reported as differences from full CI taken from Ref. [271] d
This work. Reported as differences from full CI, in millihartree

to the full CI PES of Li and Paldus [271] for each data set. Let us first consider the errors
produced by the CCSD method, which range from 2.84 to 12.43 hartree, with MUE of 6.78
millihartree and NPE of 9.59 millihartree. As expected, errors for all methods increase sig-
nificantly as the O-H bond is stretched, but it is seen that the addition of triple excitations
via the CR-CC(2,3) method reduces absolute errors relative to full CI to no greater than
0.36 millihartree for all points considered. The MUE of 0.20 millihartree and NPE of 0.52
millihartree produced by the black-box CR-CC(2,3) approach compare very well to the ex-
pert high-level 4R-RMR-CCSD(T) method, which yields a MUE of 0.17 millihartree and a

NPE of 0.21 millihartree.
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Results for the low-lying singlet and triplet excited states of the A’ symmetry are col-
lected in Tables (3.10) and (3.11), respectively. Each table is broken into three sections,
organizing results for the three reported excited states of a given symmetry under the head-
ings 1147, 214’ and 3'4’ in Table (3.10) and 1347, 234", and 324’ in Table (3.11). In
both tables it is clear that the EOMCCSD method does well for all calculated states in the
R = 1.3 — 2.0 bohr region, i.e., near the equilibrium geometry on the ground-state PES,
but clearly fails at geometries 2.4 bohr and beyond, producing errors relative to full CI of
20-35 millihartree. The CR-EOMCC(2,3) approach improves significantly upon the EOM-
CCSD results in the stretched geometry region of each PES cut, reducing the MUESs to no
more then 3.75 millihartree. To further assess the quality of the CR-EOMCC(2,3) results,
and better appreciate the performance of the “black-box” CR-EOMCC(2,3) theory, com-
parison with the MRCC results of Ref. [271] is made. The results obtained with the expert
TR-GMS-SU-CCSD approach are worse in all cases, with only a few exceptions. For the
31 A state, CR-EOMCC(2,3) does significantly better than 7R-GMS-SU-CCSD, while for
the 334’ state TR-GMS-SU-CCSD does significantly better than CR-EOMCC(2,3). Overall,
it may be concluded that the “black-box” CR-EOMCC(2,3) method performs better than
the complicated, expert TR-GMS-SU-CCSD approach for the A’ states reported in Tables

(3.10) and (3.11).

Now, moving to results for the A” symmetry states, which are presented for the two
lowest-lying singlet states in Table (3.12) and for the two lowest-lying triplet states in Table
(3.13), many of the same trends arise as in the case of the A’ states, including the failure
of EOMCCSD for stretched nuclear geometries and the great improvements offered by the

CR-EOMCC(2,3) method. For the 21 A” state results could not be obtained using the CR-

84



EOMCC(2,3) method for the O-H bond length R of 4.4 bohr, so for this one state, MUEs
and NPEs for all methods are calculated using only 10 points, from the R = 1.3 — 4.2 bohr
region. For all the A” symmetry states, the 4R-GMS-SU-CCSD and higher-quality (8,4)-
CCSD MRCC results can be found in Ref. [271], so both types of calculations are reported
in the tables. Comparing the performance of the CR-EOMCC(2,3) method with the (8,4)-
CCSD results for the 114”7, 214" 134" and 234" states, it is clear that these methods
produce similar results in every case. In a few cases, CR-EOMCC(2,3) does slightly better
and in others (8,4)-CCSD is slightly better. For example, looking at the 21 A” state, CR-
EOMCC(2,3) produces a MUE relative to full CI of 0.89 millihartree and a NPE of 2.66
millihartree, which is better than the values produced by (8,4)-CCSD, of 3.80 and 9.66
millihartree, respectively, but for the 23A” state the (8,4)-CCSD method produces slightly
better values, with values for MUE and NPE of 2.16 and 1.67 millihartree, respectively, as
compared with the MUE of 3.19 millihartree and the NPE of 13.64 millihartree produced
by CR-EOMCC(2,3). It may be concluded from comparison with the NR-RMR-CCSD(T),
NR-GMS-SU-CCSD, and (N,M)-CCSD results reported in Ref. [271] that the CR-CC(2,3)
and CR-EOMCC(2,3) methods produce results of the MRCC or better quality for all of the

low-lying PESs of water examined here.
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Table 3.10: Same as Table (3.9) for the three lowest-lying 1A’ states.

11A/ 21A/ 31Al

R (bohr) FCI® 7R-SUY EOMSD¢ (2,3)¢  FCI* 7R-SU? EOMSD® (2,3)¢  FCI* 7R-SU? EOMSD® (2,3)¢

1.3 -0.62821  2.07 -0.71 0.27  -0.54185 1.97 -1.49 0.10  -0.39097  3.20 0.64 0.92
1.6 -0.77055  2.49 -0.34 049 -0.86730 2.25 -0.63 0.27 -0.57861 3.12 1.29 1.22
1.809 -0.79860  2.93 0.34 0.64 -0.71786  2.55 0.42 0.40 -0.63701 3.36 2.17 1.36
2.0 -0.80575  3.63 1.56 0.76  -0.72455 2.94 1.53 0.52  -0.66800  3.83 3.34 1.46
24 -0.81062  5.95 6.14 1.00 -0.71631 2.91 5.29 096  -0.69672 4.47 5.46 0.81
2.8 -0.81932  5.55 11.15 0.89  -0.72567 4.00 12.97 1.26  -0.67863 4.72 6.82 1.45
3.2 -0.82860  4.56 15.23 0.39 -0.73203 4.51 2047  -046 -0.66287 8.51 27.97 2.28
3.6 -0.83618  4.17 18.42  -0.34 -0.73289 3.74 2773 -1.91  -0.66382 19.90 26.69 8.57
4.0 -0.84172  4.04 20.79  -1.20  -0.72999  3.06 32.68  -4.57 -0.66878 28.01 32.64 8.34
4.2 -0.84379  3.98 21.69  -1.64 -0.72738  3.08 33.89  -4.98 -0.66943 29.03 34.21 7.33
4.4 -0.84546  3.92 22.40  -2.07 -0.72415 3.32 34.35 -4.92  -0.66889 28.68 -20.91 7.56
MUE — 3.94 10.80 0.88 — 3.12 15.59 1.85 — 12.44 14.74 3.75
NPE — 3.88 23.11 3.07 — 2.54 35.84 6.24 — 2591 55.12 7.76

@ Full CI energies (E), reported as (E + 75) hartree, taken from Ref. [271]. © 7R-GMS-SU-CCSD energies, reported as
differences from full CI, in millihartree, taken from Ref. [271]. ¢ EOMCCSD energies, reported as differences from full CI, in
millihartree. ¢ CR-EOMCC(2,3) energies, reported as differences from full CI, in millihartree.
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Table 3.11: Same as Table (3.9) for the three lowest-lying 3A’ states.

13A/ 23A/ 33A/

R (bohr) FCI® 7R-SUY EOMSD¢ (2,3)¢  FCI* 7R-SU? EOMSD® (2,3)¢  FCI* 7R-SU? EOMSD® (2,3)¢

1.3 -0.65020  2.94 -0.93 0.30  -0.55577  2.92 -1.63 0.18  -0.44370 4.57 0.29 0.84
1.6 -0.79340  3.32 -0.70 0.51  -0.70872  3.76 -0.59 0.42  -0.61947 4.28 1.03 1.21
1.809 -0.82511  3.79 -0.22 0.65 -0.74823 4.68 0.62 0.67 -0.67629 4.04 1.88 1.40
2.0 -0.84272  4.50 0.91 0.81 -0.76263 5.49 1.47 092  -0.71482 4.82 2.87 1.30
24 -0.89158  5.65 3.76 1.26  -0.78565 5.68 4.85 1.22 -0.73737 7.32 5.29 1.41
2.8 -0.93780  5.57 4.75 1.41  -0.81625 4.96 8.94 1.08  -0.70581  8.02 4.51 1.46
3.2 -0.96789  5.13 4.89 141 -0.83261 4.26 12.71 0.82 -0.67660 7.10 -6.01 3.81
3.6 -0.98540  4.56 4.70 1.42  -0.84103 3.79 16.07 0.34 -0.65564 6.22 12.83 3.87
4.0 -0.99516  3.99 4.35 1.45  -0.84553 3.48 18.81 -0.28  -0.64297  7.09 19.65 4.77
4.2 -0.99822  3.75 4.15 1.46  -0.84693 3.37 19.91 -0.62  -0.63921 8.22 33.47 1841
4.4 -1.00046  3.55 3.94 3.70  -0.84797  3.28 20.82 -0.97  -0.63687  9.63 34.58 1725
MUE — 4.36 2.78 1.03 — 4.32 7.42 0.70 — 6.07 7.58 3.75
NPE — 2.71 5.82 1.16 — 2.76 21.54 1.84 — 4.18 39.48 17.57

@ Full CI energies (E), reported as (E + 75) hartree, taken from Ref. [271]. © 7R-GMS-SU-CCSD energies, reported as
differences from full CI, in millihartree, taken from Ref. [271]. ¢ EOMCCSD energies, reported as differences from full CI, in
millihartree. ¢ CR-EOMCC(2,3) energies, reported as differences from full CI, in millihartree.
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Table 3.12: Same as Table (3.9) for the two lowest-lying 1 A” states.

11A// 21A”
R (bohr)  FCI*  4R-SUY (8,4)-SD¢ EOMSD? (2,3)¢ FCI®  4R-SUY (8,4)-SD¢ EOMSD? (2,3)¢

1.3 -0.70187 1.80 1.56 -0.71 0.28 -0.61400 1.89 1.53 -1.39 0.21
1.6 -0.85127 2.11 1.73 -0.54 0.53 -0.76861 2.21 1.66 -0.67 0.37
1.809 -0.88566 2.37 1.84 -0.22 0.62 -0.80694 2.46 1.77 0.18 0.44
2.0 -0.90098 2.53 1.91 0.62 0.62 -0.81992 2.78 1.88 0.88 0.47
2.4 -0.92945 2.69 1.87 4.44 0.63 -0.81008 3.50 1.98 1.01 0.41
2.8 -0.95679 2.87 1.65 8.51 0.54 -0.78177  4.47 2.03 0.70 0.40
3.2 -0.97626 3.14 1.34 11.88 0.08 -0.75430 6.21 2.75 0.78 0.58
3.6 -0.98862 3.36 0.94 14.43 -0.64 -0.73276 9.12 5.15 1.57 1.04
4.0 -0.99617 3.47 0.56 16.15 -1.48 -0.71846  13.52 8.89 3.43 2.08
4.2 -0.99870 3.48 0.47 16.73 -1.90 -0.71372  16.02 10.32 4.78 2.87
4.4 -1.00065 3.48 0.66 17.16 -2.30 -0.71037  18.04 11.19 6.35 N.C.
MUE — 2.85 1.32 8.31 0.87 — 6.22 3.80 1.54 0.89
NPE — 1.68 1.44 17.44 2.53 — 8.79 9.66 7.74 2.66

@ Full CI energies (E), reported as (E+75) hartree, taken from Ref. [271]. ® 4R-GMS-SU-CCSD energies, reported as differences
from full CI, in millihartree, taken from Ref. [271]. ¢ (8,4)-CCSD energies, reported as differences from full CI, in millihartree,
taken from Ref. [271]. 4 EOMCCSD energies, reported as differences from full CI, in millihartree. € CR-EOMCC(2,3) energies,
reported as differences from full CI, in millihartree.
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Table 3.13: Same as Table (3.9) for the two lowest-lying 3A” states.

134" 234"

R (bohr)  FCI*  4R-SUY (8,4)-SD¢ EOMSD? (2,3)¢ FCI®  4R-SUY (8,4)-SD¢ EOMSD? (2,3)¢

1.3 -0.72170 277 1.88 -0.89 0.32 -0.62356 2.75 1.81 -1.19 0.29
1.6 -0.87187 3.18 2.09 -0.73 0.56 -0.78052 3.31 2.13 -0.23 0.53
1.809 -0.90726 3.60 2.29 -0.41 0.66 -0.82109 3.98 2.45 0.80 0.67
2.0 -0.92363 4.08 2.52 0.44 0.68 -0.83571 4.68 2.70 1.61 0.79
2.4 -0.95148 4.87 2.89 4.03 0.84 -0.82785 5.83 2.68 2.02 0.92
2.8 -0.97420 4.72 2.95 7.88 1.00 -0.80175 7.33 2.36 2.59 1.36
3.2 -0.98837  4.31 3.00 11.40 0.88 -0.77863  10.70 2.26 5.19 2.92
3.6 -0.99640 4.00 3.20 14.49 0.50 -0.76634  17.79 2.03 12.44 7.31
4.0 -1.00091 3.81 3.43 16.94 -0.05 -0.76393  25.85 1.36 16.94 12.59
4.2 -1.00236 3.72 3.47 17.89 -0.34 -0.76335  27.93 1.03 26.41 13.93
4.4 -1.00345 3.61 3.25 18.68 0.50 -0.76232  28.62 0.62 29.01 14.51
MUE — 3.92 2.70 6.46 0.64 — 9.37 2.16 5.83 3.19
NPE — 2.10 1.59 18.78 1.34 — 25.18 1.67 27.60 13.64

@ Full CI energies (E), reported as (E+75) hartree, taken from Ref. [271]. ® 4R-GMS-SU-CCSD energies, reported as differences
from full CI, in millihartree, taken from Ref. [271]. ¢ (8,4)-CCSD energies, reported as differences from full CI, in millihartree,
taken from Ref. [271]. 4 EOMCCSD energies, reported as differences from full CI, in millihartree. € CR-EOMCC(2,3) energies,
reported as differences from full CI, in millihartree.
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A particularly weak aspect of the SR methods, when used to describe bond-breaking
PES cuts, is their erratic behavior as states become degenerate at the dissociation limit. In
order to assess the quality of the CC and EOMCC PES cuts considered in this report, a few
states have been plotted in Figure (3.3). The states were carefully chosen such that they all
converge with at least one other plotted state to become degenerate at the largest internuclear
separation. In the plot, these electronic states have been identified as those resulting from
combination of the doublet S ground-state of the hydrogen radical with the lowest-energy
211, 2%t and 2%~ states of the hydroxyl radical. It is quite clear from visual inspection
of Figure (3.3(a)) that the CCSD/EOMCCSD curves, which should converge to become
degenerate as the dissociation occurs, are for the most part still not falling on top of one
another as the O-H distance becomes large. This is especially evident for the highest-energy
pair of curves, 21 A’ and 33A”, which are still separated by 20 millihartree at R = 4.4 bohr.
Significant improvement is seen in Figure (3.3(b)) where the CR-CC(2,3)/CR-EOMCC(2,3)
curves exhibit much better asymptotic behavior compared with the CCSD/EOMCCSD data,
and also give excellent agreement with the full CI potentials. However, the most chllenging
pair of curves for EOMCCSD, 21 A’ and 33 A", also give CR-EOMCC(2,3) trouble, as we were
not able to obtain CR-EOMCC(2,3) results for the 21 A state at R = 4.4 bohr, although
the energies which were obtained for these two PESs showed dramatic overall improvement

over the corresponding CCSD/EOMCCSD results.

To summarize, in this section it has been shown that the CR-EOMCC(2,3) method is
capable of providing a highly accurate description of excited-state PESs of water involving
single bond-breaking. However, excited-state PESs are not directly observable quantities,

so next we move toward calculating spectroscopic properties which are observable. In the
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next section, the utility of the size-intensive §-CR-EOMCC(2,3) method in calculations of
vertical excitation energies and spectral shifts in an organic chromophore, resulting from the

introduction of hydrogen-bonded molecular environments, is examined.

3.2.5 Excitation Energies and Hydrogen-Bonding-Induced Spec-

tral Shifts in Complexes of cis-7-Hydroxyquinoline

In spite of being relatively weak, non-covalent interactions with the environment, such as
hydrogen bonds, can qualitatively affect the electronic structure and properties of the em-
bedded molecules. Accurately predicting the effect of a hydrogen-bonded environment on
the electronic structure of embedded molecules represents a challenge for computational
chemistry. Among such properties, electronic excitation energies are of great interest in view
of the common use of organic chromophores as probes in various environments [272-275].
Typically, hydrogen bonding results in shifts in the positions of the maxima of the absorption
and emission bands anywhere between a few hundred and about 3000 cm™! [276]. Thus,
in order to be able to use computer modeling for interpretation of experimental data, the
intrinsic errors of the calculated shifts must be very small, on the order of 100 cm ™ or less.

We became involved in a joint project with the Wesolowski Geneva group aimed at com-
paring shifts in the 7 — 7* excitation energy of the cis-7-hydroquinoline (cis-7THQ) chro-
mophore resulting from the formation of hydrogen-bonded complexes between cis-7THQ and a
number of small molecules [201]. Our main role was to provide reference excitation energies
using EOMCC methods, which were subsequently used to benchmark the so-called frozen-
density embedding theory (FDET) approach, developed by Wesolowski et al. [277-281],

and the conventional supermolecular form of the time-dependent density functional theory
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Figure 3.3: Cuts of the PESs for a few ground- and excited-states of a single-bond stretching
model of HyO as obtained with (a) the CCSD/EOMCCSD and (b) the CR-CC(2,3)/CR-
EOMCC(2,3) approaches, and the TZ basis set. Lines are used to represent the CC/EOMCC
data, while the corresponding full CI values are represented by points (which are identically
replicated in (a) and (b)).
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(TDDFT), frequently used in spectral shift calculations. Since the main goal of this thesis is
to examine the performance of the CR-CC/CR-EOMCC and other CC/EOMCC approaches,
our discussion below focuses on a comparison of the EOMCCSD and CR-EOMCC(2,3)-level
results with the available experimental data for the @ — 7™ excitation energies and the
corresponding environment-induced spectral shifts in the 7THQ chromophore [276]. The en-
vironment molecules constituting the eight complexes involving 7THQ that were examined in
Ref. [201] included (i) a single water molecule, (ii) a single ammonia molecule, (iii) a water
dimer, (iv) a single molecule of methanol, (v) a single molecule of formic acid, (vi) a trimer
consisting of ammonia and two water molecules, (vii) a trimer consisting of ammonia, water,
and ammonia, and (viii) a trimer consisting of two ammonia and one water molecules (see

Figure 3.2.5).

In order to establish the appropriate level of EOMCC theory to serve as a reference for the
FDET and supermolecular TDDFT calculations reported in Ref. [201], we first examined the
dependence of the vertical excitation energies w__, + and environment-induced spectral shifts
Aw__, + on the basis set. Table (3.14) compares the results of the EOMCCSD calculations
obtained with the 6-314+G(d), [282-284] 6-31++G(d,p), [282-284] 6-311+G(d), [284,285] and
aug-cc-pVDZ basis sets, as well as with the [5s3p2d/3s2p| basis of Sadlej [286], designated
as POL, for the two smallest complexes, THQ - - - HoO and 7THQ - - - NH3, for which we could
afford the largest number of computations. The results in Table (3.14) indicate that although

the vertical excitation energies w__, + in the bare cis-7THQ system and its complexes with

m
the water and ammonia molecules vary with the basis set (for the basis sets tested here by as

much as about 600 cm ™), the environment-induced shifts Aw,__,* are almost insensitive to

the basis set choice, varying by at most 27 cm ™! between all basis sets reported. Although we
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Figure 3.4: The eight hydrogen-bonded complexes of the cis-7TH(Q molecule.
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Table 3.14: The basis-set dependence of the vertical excitation energies w,_, « and the
environment-induced shifts Aw___x (in cm™ 1) obtained with the EOMCCSD approach
corresponding to the lowest 7 — 7* transition in the cis-7THQ chromophore and its complexes
with the water and ammonia molecules.

Wy Au)ﬂ%ﬂ*
Basis set THQ 7HQ---HoO T7THQ---NHg 7HQ---HoO  7HQ---NHj
6-314+G(d) 35171 34643 34396 -528 =775
6-31++G(d,p) 35120 34597 34351 -523 -769
6-311+G(d) 35046 34500 34263 -546 -783
aug-cc-pVDZ 34707 34182 33923 -525 -784
POL 34596 34077 33819 -519 =TT

were unable to perform a similarly thorough analysis for other complexes due to prohibitive

computer costs, we were able to obtain the EOMCCSD w__, s and Aw__,_x values for

s ™

all of the complexes examined in this study using the 6-31+G(d) and 6-3114+G(d) basis
sets. As shown in Table (3.15), the differences between the EOMCCSD/6-314+G(d) and
EOMCCSD/6-3114+-G(d) values of the environment-induced shifts Aw__, _+ remain small
for all complexes of interest, ranging from 8 cm ! in the THQ - - - NHjs case to 43 cm ! in
the case of THQ - - - (H3O)9, or 1-3 %. Thus, we can conclude that the choice of the basis set,

although important for obtaining the converged w__,_x values, is of little significance when

71'
the environment-induced shifts in the vertical excitation energy corresponding to the lowest
7 — 7* transition in the cis-7THQ chromophore are considered with the EOMCC methods.
Although the EOMCCSD approach is known to provide an accurate description of excited
states dominated by one-electron transitions, such as the 7 — 7* transition in cis-7HQ and
its complexes, there have been cases of similar states reported in the literature, where the

EOMCCSD level has not been sufficient to obtain high-quality results [287,288]. Moreover,

our interest in this study is in the small energy differences defining the environment-induced
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shifts Aw which may be sensitive to the higher-order correlation effects neglected in

¥
the EOMCCSD calculations. For this reason, we also examined the effect of triples correc-

tions to EOMCCSD energies on the calculated w__, + and Aw__,_x values by performing

s ™

the 6-CR-EOMCC(2, 3) calculations with the 6-31+G(d) basis set. The results of these
calculations, shown in Table (3.15), indicate that triple excitations have a significant ef-

fect on the vertical excitation energies w reducing the 4000-5000 cm ™! differences

T
between the EOMCCSD and experimental data to no more than about 800 cm™!, when
the 0-CR-EOMCC(2, 3),A/6-314+G(d) calculations are performed, and no more than about
500 cm ™! when the §-CR-EOMCC(2, 3),D/6-314-G(d) approach is employed, while bringing
the Aw__,_* values closer to the experimentally observed shifts when compared with EOM-
CCSD values. Although the differences between the 6-CR-EOMCC(2,3) and EOMCCSD

values of the environment-induced shifts Aw__,_« resulting from the calculations with the

™
6-314+G(d) basis set do not exceed 15-16 % of the EOMCCSD values, triples corrections

improve the EOMCCSD results and, as such, are useful for the generation of the reference

EOMCC data.
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Table 3.15: The vertical excitation energies w__, + and the environment-induced shifts Aw__,_ (in cm 1) obtained with
the EOMCCSD/6-31+G(d), EOMCCSD/6-311+G(d), 0-CR-EOMCC(2,3),A/6-31+G(d), and §- CR-EOMCC(2,3),D/6-
31+G(d) approaches, and their composite EOMCC corresponding to the lowest 7 — 7* transition in the cis-7THQ chromophore

and its various complexes.

EOMCCSD/ EOMCCSD/ 6-CR-EOMCC(2,3), A/ 6-CR-EOMCC(2,3),D/

Environment  6-314+G(d) 6-3114+G(d) 6-31+G(d) 6-31+G(d) EOMCC,A* EOMCC,D? Exp.¢
Wr %
None 35171 35046 31103 30711 30977 30586 30830
HoO 34643 34500 30558 30199 30415 30056 30240
NHj3 34396 34263 30291 29922 30157 29788 29925
2H»,0 33867 33699 29700 29378 29532 29210 29193
CH30H 34830 34695 30717 30428 30582 30293 30363
HCOOH 34505 34371 30368 30056 30235 29922 29816
NH3-H>O-H20O 33381 33218 29171 28863 29008 28701 28340
NH3-HoO-NHj3 33542 33385 29355 29036 29197 28879 28694
NH3-NH3-H2O 33302 33136 29088 28812 28922 28646 28348
Awﬁ_,ﬂ*
Ho0O -528 -546 -544 -512 -562 -530  -590
NHjy =775 -783 -812 -789 -820 =797 -905
2H»20 -1304 -1347 -1403 -1333 -1446 -1376  -1637
CH30OH -341 -351 -386 -283 -396 -292 467
HCOOH -666 -675 -734 -655 =743 -664 -1014
NH3-H>O-H2O -1790 -1828 -1932 -1847 -1969 -1885  -2490
NHj3-HoO-NHjy -1629 -1661 -1748 -1675 -1780 -1707  -2136
NH3-NH3-HoO -1869 -1910 -2014 -1899 -2055 -1940 -2482

¢ Defined by Eq. (3.99), in which variant A of CR-EOMCC(2,3) is employed.  Defined by Eq. (3.99), in which variant D of
CR-EOMCC(2,3) is employed. ¢ Obtained with the laser resonant two-photon ionization UV spectroscopy [276].
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Ideally, one would like to perform the 0-CR-EOMCC(2,3) calculations for basis sets
larger than 6-314+G(d), such as 6-3114+G(d), but complexes of cis-THQ examined in this
study were too large for performing such calculations on our computers. Thus, in the ab-
sence of the §-CR-EOMCC(2,3) larger basis set data and considering the fact that the
triples corrections to the environment-induced shifts Aw__,_« are relatively small when com-

pared to the EOMCCSD Aw,_, « values, we have decided to combine the EOMCCSD/6-

™
311+G(d) results with the triples corrections to EOMCCSD energies extracted from the
J-CR-EOMCC(2,3)/6-31+G(d) calculations. The final EOMCC values of the vertical exci-

tation energies w,_,_ + were obtained using a composite approach, in which we augment the

™

EOMCCSD/6-311+G(d) results by the triples corrections to EOMCCSD energies extracted

from the 6-CR-EOMCC(2, 3)/6-314+G(d) calculations, as in the following formula:

w_ +(EOMCC) = w__, +(EOMCCSD/6-311+G(d))
+ [, +(S-CR-EOMCC(2,3)/6-31+G(d)) (3.99)

— w__,_+(EOMCCSD/6-31+G(d))]

As shown in Table (3.15), the resulting composite EOMCC,A and EOMCC,D approaches
provide vertical excitation energies w__,_x that are in excellent agreement with the experi-
mental excitation energies, while offering further improvements in the environment-induced
shifts Aw__, « when compared with the EOMCCSD/6-3114+G(d) and 0-CR-EOMCC(2, 3)/6-
31+G(d) calculations. Indeed, the EOMCC,A approach, which adds the triples correction
extracted from the 0-CR-EOMCC(2,3),A/ 6-31+G(d) calculation to the EOMCCSD/6-
3114+G(d) energy, gives errors in the calculated excitation energies w__, « relative to ex-

periment that range between 147 cm™! in the case of the bare cis-7THQ system and 668
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cm ™! in the case of the THQ - - - (NH3-H20-H50) complex, never exceeding 2 % of the
experimental excitation energies. The EOMCC,D approach, which adds the triples cor-
rection obtained in the 0-CR-EOMCC(2,3),D/6-314+G(d) calculation to the EOMCCSD/6-

3114+G(d) energy, gives errors in the calculated excitation energies w__,_« relative to exper-

s
iment that range between 17 cm ™! in the case of the 7THQ - - - (H30)9 complex and 361 cm ™!
for THQ - - - (NH3-HoO-H20), or no more than 1 % of the experimental values. These results
should be compared to the much larger differences between the EOMCCSD/6-311+G(d)
and experimental excitation energies that range between 14 and 17 %. The complexation-

induced spectral shifts Aw,__,  resulting from the EOMCC,A and EOMCC,D calculations

m
agree with their experimental counterparts to within 5-27 % or 15 % on average in the case
of EOMCC,A and 10-37 % or 22 % on average in the EOMCC,D case. The EOMCC,D
approach, while bringing the excitation energies w,_, x to a closer agreement with exper-
iment than the EOMCCSD/6-311+G(d) calculations, does not offer improvements in the
calculated shifts Aw__,_+. The composite EOMCC,A approach provides additional small

improvements in the calculated Aw__, x values, reducing the 7-33 % errors relative to ex-

™

periment obtained in the EOMCCSD/6-311+G(d) calculations to 5-27 %. The EOMCC,A
data, which was generated in this study, served as a computational benchmark for the
TDDFT and FDET results and it was successfully shown that the non-relaxed FDET model
represents a reasonable alternative to EOMCC methods for calculating environment-induced
spectral shifts of excitation energies, but with a much more favorable computational scal-
ing than the EOMCC-type approaches. The non-relaxed FDET results for the 7 — 7*
shifts reported in Refs. [201] agree with our best EOMCC,A and EOMCC,D data to within

about 100 cm ™! on average. This should be contrasted with the poor performance of the
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supermolecular TDDFT appraoch that gives average errors in the calculated Aw,_,_x values
relative to EOMCC,A or EOMCC,D on the order of 700 cm™! [201]. In the next section the

performance of the EA- and IP-EOMCC methods for open-shell systems is considered.

3.2.6 Geometries and Adiabatic Excitation Energies of CNC, C,;N,

N3, and NCO

The accurate determination of geometries and energetics of ground- and excited-state radi-
cals is very difficult, both experimentally, as open-shell species are usually characterized by
short lifetimes, and computationally, due to the complexity of the many-electron correlation
problem in open-shell systems. This is particularly true for the SR CC and EOMCC methods.
Among the main reasons is the fact that the low-lying excited-states of radicals and other
open-shell species are often dominated by two-electron and other multi-electron transitions.
The goal of this section is the examination of the performance of the full and active-space
EA- and IP-EOMCC approaches with up to 3p-2h/3h-2p excitations in the calculations of
the ground and low-lying excited states of the challenging open-shell CNC, CoN, NCO, and
N3 molecules [132,289], as well as the prediction of the corresponding nuclear geometries
and adiabatic excitation energies, which was carried out jointly with Mr. Jared Hansen from
our group [290]. A series of EA-EOMCCSD(2p-1h), active-space EA-EOMCCSD(3p-2h){4},
and full EA-EOMCCSD(3p-2h) calculations were performed for the CNC and CoN molecules
using the CCSD ground states of the CNCT and CoNT closed-shell cations to provide the
reference wave functions. In addition to the DZP basis, [291] which was employed in a
previous study, [132,289] the cc-pVDZ (all three methods), cc-pVTZ (all three methods),

and cc-pVQZ [the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} approaches| ba-
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sis sets were used. The full EA-EOMCCSD(3p-2h) calculations using the largest cc-pVQZ
basis set could not be performed due to the large computer costs of the relevant numeri-
cal geometry optimizations [the analytic gradients of the EA-EOMCCSD(3p-2h) approach
are not available]. The active orbital spaces for the EA-EOMCCSD(3p-2h){4} calculations
for CNC and CoN consisted of the two lowest-energy pairs of unoccupied 7 molecular or-
bitals of CNC* and CoN™T, respectively. A series of IP-EOMCCSD(2h-1p), active-space
IP-EOMCCSD(3h-2p){2}, and full IP-EOMCCSD(3h-2p) calculations were performed for
the NCO and N3 molecules using the CCSD ground states of the NCO™ and N3~ closed-
shell anions to provide the reference wave functions. Again, in addition to the previously
employed [132,289] DZP basis, the cc-pVDZ (all three methods), cc-pVTZ (all three meth-
ods), and cc-pVQZ [the IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2} approaches]
basis sets were used, and the full IP-EOMCCSD(3h-2p)/cc-pVQZ calculations were not
performed due to the large computer costs of the corresponding numerical geometry opti-
mizations [the analytic gradients of the IP-EOMCCSD(3h-2p) method are not available].
The active orbital spaces for the IP-EOMCCSD(3h-2p){2} calculations for NCO and N3

consisted of the highest-energy pair of occupied orbitals of NCO™ and N3~ , respectively.

Unlike in earlier work [132,289], where the nuclear geometries of the ground and ex-
cited states of the CNC, CoN, NCO, and N3 species were optimized using only one method
(SAC-CI-SDT-R/PS [292-294]) and one basis set (DZP), in each molecular case and for
each electronic state and basis set considered in the present work, the nuclear geometries
were optimized at the same level of the EA/IP-EOMCC theory and with the same basis
set as those used to evaluate the corresponding total and adiabatic excitation energies. The

geometry optimizations using the cc-pVXZ (X = D, T, and Q) basis sets were constrained
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to linear geometries, since the analogous unconstrained optimizations using the DZP ba-
sis set and bent initial structures showed that the optimum geometries of the calculated
states of CNC, C9N, NCO, and N3 are linear. The unconstrained optimizations with the
DZP basis set demonstrated that we can assume the D, (in practice, Dyj,) symmetry for
each of the calculated states of CNC and Nj3, and that we can use the Cy, (in practice,
C9,) symmetry in the geometry optimizations for CoN and NCO. In all post-RHF (CCSD
and EA/IP-EOMCC) calculations, the lowest-energy core orbitals correlating with the 1s
orbitals of the C and N atoms were kept frozen and the spherical components of the d, f,
and ¢ functions were employed throughout. In addition to the results of the finite basis
set calculations, the total and excitation energies obtained in the EA- and IP-EOMCC cal-
culations for the CNC, CoN, NCO, and N3 molecules were extrapolated to the CBS limit.
The CBS extrapolations were limited to the EA-EOMCCSD(2p-1h), IP-EOMCCSD(2h-1p),
active-space EA-EOMCCSD(3p-2h){4}, and active-space IP-EOMCCSD(3h-2p){2} calcula-
tions, since full EA-EOMCCSD(3p-2h) and IP-EOMCCSD(3h-2p) computations including
geometry optimizations were too expensive to be run using the cc-pVQZ basis set that would
be required to obtain reliable CBS-limit values. In all of the remaining cases, the complete
data sets corresponding to the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets were available,
enabling reasonably meaningful CBS extrapolations. To verify the numerical stability of
our CBS extrapolations, two different extrapolation schemes, referred to as the CBS-A and

CBS-B approaches, were utilized.

In the CBS-A scheme, the CBS limit of the ground-state CCSD correlation energy of
the closed-shell N-electron reference system relevant to the EA/IP-EOMCC calculations

for the (N =+ 1)-electron target species was determined using the well-known extrapolation
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formula [217] given in Eq. (3.98) and the cc-pVTZ and cc-pVQZ data. Here, AE(X) in
Eq. (3.98) is the CCSD correlation energy obtained with the cc-pVXZ basis set, where
X represents the cardinal number of the basis set (X = 3 for cc-pVTZ and X = 4 for
cc-pVQZ), and AEy is the CCSD correlation energy in the CBS limit. The resulting
extrapolated CBS correlation energy AFE,, was then added to the RHF /cc-pV6Z energy
of the N-electron reference system, computed at the optimized geometry of the state of
interest resulting from the appropriate EA- or IP-EOMCC/cc-pVQZ calculations. Recalling
the well-known and previously discussed fact that the RHF energies converge exponentially
with the basis set, it is usually best to simply perform the calculations at the RHF level
with a very large correlation consistent basis set, such as cc-pV6Z, if such calculations are
affordable. As a check, the level of basis-set convergence was verified by comparing the
RHF /ce-pV5Z and RHF /cc-pV6Z data, obtaining differences of about 0.2 millihartree in all
of the examined cases. Once the CBS values of the RHF total and CCSD correlation energies
of the N-electron reference system were determined, the desired CBS limits of the ground-
and excited-state energies of the (N + 1)-electron target species corresponding to the EA-

or IP-EOMCC calculations of interest were computed using the formula

EA/IP-EOMCC
EA /IP-EOMCC D
+Eu7Q/z (N£1) - E§g§ (N),  (3.100)
where EE’%IP_EOMCC(N + 1) is the final extrapolated energy of the (N =+ 1)-electron

state |Q/£Ni1)>, E(E{ZHF(N ) is the ground-state RHF energy of the closed-shell N-electron

reference system obtained with the cc-pV6Z basis set, AEggOSD(N ) is the extrapolated

CCSD correlation energy of the N-electron reference system obtained using Eq. (3.98),
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EA/IP-EOMCC

E oz (N £ 1) is the total EA/IP-EOMCC energy of the (N £ 1)-electron state
|\I/ELNi1)> obtained with the cc-pVQZ basis set, and E&g%D(N ) is the total CCSD energy of

the N-electron reference system obtained using the cc-pVQZ basis set. This method of esti-

mating the CBS values of the total electronic energies of the ground and excited states of the

CNC, CoN, NCO, and N3 radicals is based on the assumption that the electron-attachment
L (N . . .

or ionization energies wy, obtained with the cc-pVQZ basis set are essentially converged

with respect to the basis set, so all one has to do is obtain the CBS limit of the CCSD

ground-state energy of the N-electron reference system and add the cc-pVQZ values of the

electron-attachment or ionization energies to estimate the CBS energies of the ground and

excited states of the corresponding (N =+ 1)-electron target species.

In the second basis set extrapolation method, referred to as the CBS-B approach, the
total CBS energy of each (N =+ 1)-electron target state of interest was directly determined

using the formula [212]
2
E(X) = Eoo + Be=XD 4 e~ (X-D7, (3.101)

and the cc-pVDZ, cc-pVTZ, and cc-pVQZ data. As in Eq. (3.98), the X variable number
entering Eq. (3.101) is again the cardinal number of the cc-pVXZ basis set (X = 2 for
cc-pVDZ, X = 3 for cc-pVTZ, and X = 4 for cc-pVQZ), E(X) is the total EA/IP-EOMCC
energy computed with the cc-pV.X7Z basis set, and Ey is the desired CBS limit of the total
EA/IP-EOMCC energy for a given electronic state of the (N %+ 1)-electron species. The
difference between the CBS-A and CBS-B extrapolation schemes lies in the fact that the
latter scheme extrapolates the total EA- or IP-EOMCC energy of each electronic state of the

(N + 1)-electron target species separately, using Eq. (3.101), whereas the former approach
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extrapolates the ground-state correlation energy of the N-electron reference system only
using Eq. (3.98) while making an assumption that the electron-attachment and ionization
energies resulting from the EA- and IP-EOMCC calculations converge faster with the basis

set than the total energies of the (N =+ 1)-electron target species, as reflected in Eq. (3.100).

The results of our EA- and IP-EOMCC calculations, along with the available experi-
mental data [295-297], are reported in Tables (3.16)-(3.21). The EA-EOM-CCSD(2p-1h),
EA-EOMCCSD(3p-2h){4}, and full EA-EOMCCSD(3p-2h) results for the CNC and CoN
molecules are reported in Tables (3.16) and (3.17) for the total and adiabatic excitation en-
ergies, and (3.18) for the geometries. The IP-EOMCCSD(2h-1p), IP-EOMCCSD(3h-2p){2},
and full IP-EOMCCSD(3h-2p) results for the NCO and N3 molecules are reported in Tables
(3.19) and (3.20) for the total and adiabatic excitation energies, and (3.21) for the geometries.

Our discussion is divided into two parts.

We begin with the CNC molecule (see Tables (3.16) and (3.18)). For CNC, the EA-
EOMCC optimizations employing the DZP basis set produced results that deviate from
the previously reported [289] SAC-CI-SDT-R/PS optimized geometries and previously cal-
culated [132,289] EA-EOMCC adiabatic excitation energies using the SAC-CI-SDT-R/PS
geometries, all obtained with the same DZP basis, by 0.001-0.009 A and 0.002-0.003 eV,
respectively, for all states and all methods considered here. Seeing that our present EA-
EOMCC optimizations employing the DZP basis set were able to reproduce the analogous
results of the SAC-CI-SDT-R/PS geometry optimizations and the EA-EOMCC excitation
energies at the SAC-CI-SDT-R/PS geometries reported in Ref. [289], the effect of the use
of the correlation-consistent basis sets of the cc-pV.XZ quality on the calculated excitation

energies and geometries was investigated.
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The ground X 2Hg state of CNC is dominated by 1p excitations out of the ground state
of the closed-shell reference CNCT ion but, the A%2A, and B2} excited states of the
same molecule exhibit a significant two-electron excitation character relative to the X 2Hg
state. As shown in Table (3.16), the basic EA-EOM-CCSD(2p-1h) optimizations produced
adiabatic excitation energies that deviate from the experimental values by 3.379-4.022 eV for
the A2A,, and BZZJ states, demonstrating the same characteristically large errors compared
to experiment that are typically seen when the EA-EOMCCSD(2p-1h) approach is applied to
the excited states of radicals dominated by two-electron transitions [147-149,298]. The full
EA-EOMCCSD(3p-2h) method improves these poor results, reducing the deviations from
experiment to 0.336-0.451 eV for both the A2A,, and BQEZLF states, when the cc-pVDZ and
cc-pV'TZ basis sets are employed. The reason for this considerable improvement in the data
over the EA-EOMCCSD(2p-1h) method is the explicit inclusion of the 3p-2h terms in the

RLN+1) operator in the EA-EOMCCSD(3p-2h) calculations.

The inclusion of all 3p-2h components in the RLNJFU operator is computationally de-

manding, particularly when one is interested in numerical gradient optimizations, such as
those performed in this work. Thus, it is of great significance to note that the active-space
EA-EOMCCSD(3p-2h){4} optimizations using the cc-pVDZ and cc-pVTZ basis sets, with
only four unoccupied orbitals in the active-space, which are only a few times more expensive
than the corresponding ground-state CCSD calculations and which require a small fraction
of the CPU time, disk, and memory when compared to the parent EA-EOMCCSD(3p-2h)
calculations, reproduce the full EA-EOMCCSD(3p-2h) optimization results to within 0.019-
0.039 eV for the adiabatic excitation energies and 0.8-3.2 millihartree for the total energies

of the ground and excited states of CNC examined in this study (see Table (3.16)). The
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deviations of the EA-EOMCCSD(3p-2h){4} results from experiment are 0.312-0.422 eV for
all three correlation consistent basis sets used in the EA-EOMCCSD(3p-2h){4} optimiza-
tions. It is interesting and somewhat surprising to note the deviations from experiment
increase slightly with the size of the cc-pVXZ basis set for all three EA-EOMCC methods
exploited in this work. To help understand this behavior, the EA-EOMCCSD(2p-1h) and

EA-EOMCCSD(3p-2h){4} results were extrapolated to the CBS limit.

Examining the total energies of the ground and excited states of CNC shown in Ta-
ble (3.16), it is clear that they are converging with the basis set in a systematic manner.
The CBS-A extrapolation scheme is based on the simplifying assumption that the electron-
attachment (or, in the IP case, ionization) energies are reasonably well converged with the
basis set, when the cc-pVQZ basis set is employed. The data in Table (3.16) show that this
is indeed a valid assumption, as the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4}
excitation energies do not significantly change when moving from the cc-pVTZ to cc-pVQZ
basis, the largest change being 0.109 eV for the less accurate EA-EOMCCSD(2p-1h) method
and only 0.003 eV for the active-space EA-EOMCCSD(3p-2h){4} approach. Moreover, the
CBS extrapolations resulting from the CBS-A and CBS-B schemes produce results that are
in good agreement with each other, especially for the higher-order EA-EOMCCSD(3p-2h){4}
method, where the differences in total energies do not exceed 1.3 millihartree, regardless of
the electronic state of CNC considered (recall that the CBS-B scheme extrapolates the total
energy of each state separately, without any simplifying assumptions). The CBS limits of
the excitation energies resulting from the CBS-A and CBS-B extrapolations obtained with
the EA-EOMCCSD(3p-2h){4} approach are essentially identical, deviating by 0.001 eV and

0.005 eV for the A2A,, and BQZQJ[ states, respectively. Thus, it may be safely concluded that
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the CBS EA-EOMCCSD(3p-2h){4} results are stable to approximately 1 millihartree for the
total energies and 0.005 eV for the adiabatic excitation energies, and can be regarded as con-
verged with the basis set. This suggests that the 0.3-0.4 eV error relative to experiment
resulting from the full and active-space EA-EOMCCSD(3p-2h) calculations for CNC are due

to either 4p-3h excitations neglected in these calculations or errors in the experimental data.

In analogy to CNC, the ground X2II state of CoN is dominated by 1p excitations out of
the ground state of the closed-shell reference CoNT ion, but the low-lying A2A, B2X~, and
C2t excited states have significant 2p-1h contributions demonstrating the rather complex
MR nature of their corresponding wave functions. The B2X ™ state also has non-negligible
3p-2h contributions, which make this state extremely difficult to describe by the meth-
ods used in this study. All of this causes major problems in the EA-EOMCCSD(2p-1h)
calculations. As shown in Table (3.17), even with a large cc-pVQZ basis set, the EA-
EOMCCSD(2p-1h) method incorrectly orders the excited states of CoN, describing the C2% T
state as being lower in energy than the B2X~ state. The errors in the EA-EOMCCSD(2p-1h)
results for the adiabatic excitation energies of CoN relative to experiment are huge. Indeed,
our geometry optimizations using the EA-EOMCCSD(2p-1h) approach produce errors in
the calculated adiabatic excitation energies of CoN relative to experiment of 3.507-3.969 eV
for the A2A state, 4.956-5.511 eV for the B2X~ state, and 3.422-3.836 eV for the C2X+
state. As with CNC, the full inclusion of the 3p-2h components in the electron attaching
operator RLV +1 significantly improves the adiabatic excitation energies relative to the disas-
trous EA-EOMCCSD(2p-1h) results, reducing the errors relative to experiment to at most
0.418 eV for the A2A state, at most 0.915 eV for the B2X ™ state, and at most 0.524 eV for

the C2X7T state when the cc-pVDZ and ce-pVTZ basis sets are employed, but the full EA-
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EOMCCSD(3p-2h) are computationally demanding, particularly when larger basis sets have
to be examined. Thus, it is important to examine how well the considerably less expensive
active-space EA-EOMCCSD(3p-2h) approach works for the low-lying excited states of CoN,

when the cc-pVazZ basis sets are employed.

As shown in Table (3.17), the results of the active-space EA-EOMCCSD(3p-2h){4} cal-
culations are almost identical to those obtained with the parent EA-EOM-CCSD(3p-2h)
approach. The adiabatic excitation energies obtained with the full and active-space EA-
EOMCCSD(3p-2h) methods, where the latter approach uses only four unoccupied orbitals
in the active-space, calculated using the cc-pVDZ and cc-pVTZ basis sets, differ by 0.023-
0.053 eV for all states of CoN examined here. The total energies obtained in the full EA-
EOMCCSD(3p-2h) and active-space EA-EOMCCSD(3p-2h){4} calculations employing the
ce-pVDZ and ce-pVTZ basis sets differ by 1.6-2.9 millihartree for the X211 state, 0.5-1.1 milli-
hartree for the A2A state, 0.5-0.9 millihartree for the B2X~ state, and 0.7-1.4 millihartree for
the C2X7 state. Comparing the EA-EOMCCSD(3p-2h){4} results with experiment, it can
be seen that the adiabatic excitation energies resulting from the EA-EOMCCSD(3p-2h){4}
calculations using the cc-pVQZ basis set differ from the available experimental data by 0.340
eV, 0.844 eV, and 0.454 eV for the A2A, B2Y~, and C2X7 states, respectively, which is a
huge error reduction when compared to the corresponding EA-EOMCCSD(2p-1h)/cc-pVQZ
calculations that give the 3.969 eV, 5.511 eV, and 3.836 eV errors for the same three states,
in addition to wrong state ordering. The full EA-EOMCCSD(3p-2h) and active-space EA-
EOMCCSD(3p-2h){4} calculations produce the correct state ordering and relatively small
errors for the A2A and C2%T states, but the discrepancy between the full and active-space

EA-EOMCCSD(3p-2h) results on the one hand and experiment on the other hand for the
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B2y~ state, on the order of 0.9 eV independent of the basis set, is a problem that needs to

be addressed.

The larger deviations with experiment observed in the full EA-EOMCCSD(3p-2h) and
active-space EA-EOMCCSD(3p-2h){4} calculations for the B2~ state, which do not seem
to be decreasing with the basis set and careful geometry optimizations performed in this
work, must be related to the presence of the non-negligible 3p-2h contributions in the B2y~
wave function, which indicate a highly MR character of this state that the EA-EOMCC
methods used in the present study cannot capture without incorporating higher-than-3p-2h
contributions in the EA-EOMCC considerations. As explained in Ref. [298], the presence
of significant 3p-2h contributions in the wave function requires an explicit consideration of
the 4p-3h and, perhaps, higher-than-4p-3h components of the R/(LN—H) operator in the EA-
EOMCC calculations, neglected at the EA-EOMCCSD(3p-2h) level. The highly MR char-
acter of the B2~ state becomes clear when we examine the CASPT2 and CASSCF-based
MRCI calculations reported in Ref. [299]. These calculations are in reasonable agreement
with the results of our full and active-space EA-EOMCCSD (3p-2h) calculations for the A2A
and C2X7 states, producing a 0.238 eV error for the A2A state and 0.219 eV error for the
C2%7 state when the CASPT?2 approach is employed, but the CASPT2 and MRCI results
obtained in Ref. [299] for the B?X~ state are considerably more accurate than those ob-
tained here with the EA-EOMCCSD(3p-2h) theory levels. Indeed, the CASPT2 and MRCI
calculations for the B?Y™ state reported in Ref. [299] give errors of 0.225 eV and 0.250
eV, respectively, relative to experiment, as opposed to ~ 0.9 eV obtained with the full EA-
EOMCCSD(3p-2h) and active-space EA-EOMCCSD(3p-2h){4} methods. Interestingly, the

MRCI approach improves the CASPT2 results for the A2A and C2X7 states as well, reduc-

110



ing the 0.238 eV and 0.219 eV errors obtained in the CASPT2 calculations to 0.060 eV and
0.058 eV, respectively [299], which suggests that the incorporation of the 4p-3h and, per-
haps, some other higher-order excitations in the EA-EOMCC calculations may be necessary
to further improve the description of all three excited states of C9N examined in this work.
Since the calculations reported in the present paper exclude the possibility that the basis
set or geometry optimizations may help the EA-EOMCCSD(3p-2h) results, the next logical
step is to examine the role of 4p-3h excitations in the EA-EOMCC calculations. One may
also have to examine whether the use of the full CCSDT approach rather than the CCSD
method in providing the ground-state wave function for the reference CoNT ion plays a role

here. These will be the topics of our group’s future work.

As shown in Table (3.17), the adiabatic excitation energies resulting from the EA-
EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} calculations with the cc-pVQZ basis set
are reasonably well converged with the basis and, although the total energies of the individ-
ual electronic states of CoN are not converged when the cc-pVQZ basis set is employed, they
behave in a systematic manner as we go from the cc-pVDZ to cc-pVQZ basis sets, facilitat-
ing the CBS extrapolations. Indeed, when going from the cc-pVTZ to the cc-pVQZ basis
sets, the changes in the EA-EOMCCSD(3p-2h){4} excitation energies are very small, at most
0.018 eV. The analogous changes in the EA-EOMCCSD(2p-1h) excitation energies are some-
what larger (at most 0.120 eV), but can still be viewed as reasonably stable considering the
complicated nature of the CoN excited states that the EA-EOMCCSD(2p-1h) approach has
significant problems with. Overall, the simplifying assumption of the CBS-A extrapolation
scheme that one can treat the electron-attachment energies resulting from the EA-EOMCC

calculations with the cc-pVQZ basis set as essentially converged values remains valid for
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C9N, so we expect the CBS-A scheme to provide meaningful results. This can be verified
by comparing the CBS-A and CBS-B extrapolations. Comparing the EA-EOMCCSD(2p1h)
CBS-A and CBS-B values, the total energies differ by 1.9 millihartree for the X2II state, 0.1
millihartree for the A2A state, 0.5 millihartree for the B2X~ state, and 0.2 millihartree for
the C?X7 state. The adiabatic excitation energies resulting from the CBS-A and CBS-B
extrapolations of the EA-EOMCCSD(2p1h) data differ by 0.054 eV for the A2A state, 0.066
eV for the B2Y~ state, and 0.047 eV for the C2X7T state. The CBS-A and CBS-B results for
the EA-EOMCCSD(3p-2h){4} total energies differ by 6.0 millihartree for the X2II state, 7.5
millihartree for the A2A state, 8.2 millihartree for the B2X~ state, and 7.6 millihartree for
the C2X7 state. The differences in the adiabatic excitation energies obtained with the two
CBS extrapolation schemes, as applied to the EA-EOMCCSD(3p-2h){4} data, are 0.042 eV,
0.062 eV, and 0.045 eV for the A2A, B2X~ and C2X1 states, respectively. We can conclude
that our CBS EA-EOMCC results for the CoN molecule are generally stable to within about
8 millihartree for the total energies and 0.060 eV for the adiabatic excitation energies. The
deviations of the CBS-A extrapolated EA-EOMCCSD(3p-2h){4} results from experiment
are 0.371 eV for the A2A state, 0.893 eV for the B2X ™ state, and 0.491 eV for the C2X7
state. The analogous CBS-B calculations employing the EA-EOMCCSD(3p-2h){4} data
give errors of 0.329 eV, 0.831 eV, and 0.446 eV, respectively. These results indicate once
again that higher-than-3p-2h excitations and, perhaps, methods better than CCSD for the
description of the ground state of the reference CoNT ion may have to be included in the
EA-EOMCC calculations for the low-lying states of the CoN molecule, particularly in the

case of the B2Y~ state.

Having demonstrated the significance of higher than 2p-1h contributions for an accurate
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description of the excitation energies in the CNC and C9N molecules and having established
the ability of the active-space EA-EOMCCSD(3p-2h) approach to capture the most signif-
icant 3p-2h contributions with only a few active orbitals, independently of the basis set,
we turn now to the effectiveness of the EA-EOMCC schemes in describing the equilibrium
geometries of the ground and excited states of CNC and CaN. As seen in Table (3.18), the
EA-EOMCCSD(2p-1h) level of theory gives the C-N bond lengths in CNC designated as
Rc.N, which deviate from the corresponding experimental values by 0.003-0.015 A for the
X211, state, 0.004-0.009 A for the A2A,, state, and 0.001-0.016 A for the B2%; state, when
the cc-pV X7 basis sets with X = D, T, and Q are employed. The full EA-EOMCCSD(3p-2h)
approach employing the cc-pVDZ and cc-pV'TZ basis sets produces Rc.ny values that de-
viate from experiment by 0.001-0.017 A, 0.003-0.012 A, and 0.004-0.011 A for the XTI,
A%A,, and BQE]: states, respectively, i.e., results that are of equally high quality and not
much different than the low-order EA-EOMCCSD(2p-1h) data. The analogous active-space
EA-EOMCCSD(3p-2h){4} calculations give Rc_n bond lengths that differ from experiment
by 0.001-0.017 A in the case of the XQHg state, 0.003-0.012 A in the case of the A2A,
state, and 0.005-0.014 A when the B?%;} state is examined. All of this shows that not
only is the EA-EOMCCSD(3p-2h){4} approach able to reproduce the more computationally
demanding EA-EOMCCSD(3p-2h) results for the nuclear geometries of the low-lying states
of CNC, but that the high-level EA-EOMCCSD(3p-2h) values of Rc_n and those obtained
with the the inexpensive EA-EOMCCSD(2p-1h) method differ only by 0.002-0.004 A for the
XZHg state and 0.001-0.003 A for the A2A,, and BQE;[ states, at least when the cc-pVDZ
and cc-pVTZ basis sets are employed. The active-space EA-EOMCCSD(3p-2h){4} approach

and the EA-EOMCCSD(2p-1h) method give Rc_y values that differ by at most 0.004 A for
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all states of CNC and all basis sets examined in this work, confirming the observation that
it is sufficient to use the low-level EA-EOMCCSD(2p-1h) approach to obtain an accurate

description of the equilibrium geometries of the low-lying states of CNC.

Similar, but not entirely identical, remarks apply to the CoN molecule. As shown in
Table (3.18), the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} approaches em-
ploying the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets give C—C and C-N bond lengths,
Rc.c and Ry, respectively, that differ by at most 0.065 A when we compare the EA-
EOMCCSD(2p-1h) and the corresponding EA-EOMCCSD(3p-2h){4} data for all electronic
states of C9N examined in this work, mostly because of the inability of the EA-EOM-
CCSD(2p-1h) approach to provide a highly accurate description of the excited-state geome-
tries [the differences between the EA-EOMCCSD(2p-1h) and EA-EOMCCSD(3p-2h){4} ge-
ometries of the CoN’s ground state are less than 0.004 A]. On the other hand, the differences
between the active-space EA-EOM-CCSD(3p-2h){4} and full EA-EOMCCSD(3p-2h) values
of Ro.c and Ry obtained with the ce-pVDZ and ce-pVTZ basis sets do not exceed 0.001 A,
confirming our earlier remarks about the ability of the active-space EA-EOMCCSD(3p-2h)
approach to capture essentially all correlation effects that are included in the full EA-EOM-
CCSD(3p-2h) calculations. We could not find any experimental data for the geometries of the
ground and excited states of CaN, so we cannot comment on the accuracy of our Rc.¢ and
RN values resulting from the EA-EOMCC calculations in any definitive manner, but, judg-
ing by the high quality of the EA-EOMCC results for the geometries of the low-lying states
of CNC, we can conclude that the geometries resulting from the full EA-EOMCCSD(3p-2h)
and active-space EA-EOMCCSD(3p-2h){4} calculations using the cc-pVTZ or cc-pVQZ ba-

sis sets are of the similarly high quality. The low-level EA-EOMCCSD(2p-1h) calculations
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seem less accurate than in the CNC case, particularly when the excited states of CoN are
examined, but they are still in reasonable agreement with the high-level full and active-space

EA-EOMCCSD(3p-2h) results.

The above discussion provides us with an important insight about the performance of the
EA-EOMCC methods. The EA-EOMCCSD(2p-1h) approach, while generally inadequate for
an accurate description of the excitation energies in open-shell systems, such as the CNC and
C9N molecules examined in this work, is capable of providing reasonably accurate equilibrium
geometries, even for excited states that have a significant MR character. On the other hand,
it seems to be generally safer to use the active-space EA-EOMCCSD(3p-2h) approach in
geometry optimizations, particularly since it provides results that are virtually identical to
the corresponding full EA-EOMCCSD(3p-2h) data, both for the excitation energies and

nuclear geometries.

We now turn to the IP-EOMCC calculations for the NCO and N3 molecules, which
are summarized in Tables (3.19)—(3.21). For both molecules, the IP-EOMCC optimizations
employing the DZP basis set, carried out in the present work, produced results that are
very similar to the previously reported [132,289] IP-EOMCC adiabatic excitation energies
calculated at the SAC-CI-SDT-R/PS optimized geometries, all obtained with the same DZP
basis as that used here. For example, the deviations between the adiabatic excitation energies
of NCO and Nj obtained in the present IP-EOMCC/DZP optimizations and the analogous
excitation energies reported in Refs. [132,289], which used the geometries obtained with the
SAC-CI-SDT-R/PS approach, are 0.001-0.078 eV for all states and all methods considered
in this study. As in the case of the EA-EOMCC calculations, after seeing that our present

IP-EOMCC optimizations for the ground and excited states of NCO and N3 employing the
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DZP basis set were able to reproduce the analogous results calculated at the geometries
obtained in the SAC-CI-SDT-R/PS calculations, reported in Refs. [132,289], we moved to
the examination of the effect of the use of the correlation-consistent basis sets of the cc-pV XZ

quality on the calculated excitation energies and geometries.

Unlike the CNC and C9N molecules, which are characterized by the presence of low-
lying excited states with a significant MR character in their respective electronic spectra,
the low-lying states of NCO and N3 have a predominantly 1h excitation character relative to
the corresponding NCO™ and N reference ions, with only small contributions from higher-
than-1h excitations. As a result, it is much easier to describe the low-lying states of NCO
and N3 by the IP-EOMCC methods and already the basic IP-EOMCCSD(2h-1p) approach
performs quite well. For example, as shown in Table (3.19), the deviations from experiment
for the adiabatic excitations in NCO resulting from the IP-EOMCCSD(2h-1p) calculations
are only 0.007-0.098 eV for the A2X7T state and 0.336-0.381 eV for the B2II state when
the cc-pVX7Z basis sets with X = D, T, and Q are employed. Inclusion of higher-order
(3h-2p) correlation effects through the full IP-EOMCCSD(3h-2p) method offers additional
improvements, reducing the overall deviations from experiment to 0.018-0.072 eV in the
A2t case and 0.044-0.085 eV in the B2II case, when the cc-pVDZ and ce-pVTZ basis sets

are employed.

The inexpensive active-space variant of IP-EOMCCSD(3h-2p) using only two active oc-
cupied orbitals, IP-EOMCCSD(3h-2p){2}, yields similar excitation energy values to those
from its more expensive parent scheme, with somewhat larger deviations from experiment
of 0.207-0.312 eV for the A2XT state and very small 0.063-0.139 eV deviations for the B2II

state, confirming that one can essentially use any IP-EOMCC approach and obtain a reason-
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able description of the low-lying states of NCO, but the deviations between the results of the
full and active-space IP-EOMCCSD(3h-2p) calculations for NCO are somewhat larger than
those observed in the EA-EOMCCSD(3p-2h) computations for CNC and C9N. This is par-
ticularly true for the Ayt state, where they are 0.240 eV for the adiabatic excitation energy
and 11.0 millihartree for the total energy when the cc-pVDZ basis set is employed and 0.218
eV and 10.7 millihartree when the cc-pVTZ basis set is used. As pointed out in previous
work [289], these larger differences between the full and active-space IP-EOMCCSD(3h-2p)
results for the A2X% state of NCO are likely due to the small active-space used in the latter
calculations, which consists of only one pair of highest-energy occupied 7 orbitals of NCO™,
and/or from changes in the character of molecular orbitals when going from the NCO™ ref-
erence ion to the NCO target species. On the other hand, the overall agreement between
the full and active-space IP-EOMCCSD(3h-2p) results for NCO is rather good. For exam-
ple, the differences between the full and active-space IP-EOMCCSD(3h-2p) results for the
adiabatic excitation energies corresponding to the B2II state are only 0.019 ¢V when the
cc-pVDZ basis set is employed and 0.023 eV when the cc-pVTZ basis set is used. The differ-
ences between the total energies obtained in the full IP-EOMCCSD(3h-2p) and active-space
IP-EOMCCSD(3h-2p){2} calculations for the X2II and B?II states range between 2.1 and
3.5 millihartree when the cc-pVDZ and cc-pVTZ basis set are used, which is an excellent

agreement.

Many of the above observations remain valid when the IP-EOMCC methods are applied
to N3. As shown in Table (3.20), the adiabatic excitation energies corresponding to the B2¥:
state obtained with the IP-EOMCCSD(2h-1p) optimizations employing the cc-pVXZ basis

sets with X = D, T, and Q differ from the corresponding experimental value by 0.056-0.110

117



eV. Again, as in the NCO case, the full IP-EOMCCSD(3h-2p) approach reduces the already
small errors in the IP-EOMCCSD(2h-1p) results for the B2Y;} state of N3 to the even smaller
0.023-0.049 eV range. The much less expensive active-space IP-EOMCCSD(3h-2p){2} cal-
culations using the cc-pV XZ basis sets with X = D, T, and Q produce errors of 0.174-0.200
eV, which are larger than those obtained with full IP-EOMCCSD(3h-2p), but the general
agreement between the full and active-space IP-EOMCCSD(3h-2p) data is reasonable. In-
deed, the total energies resulting from the full IP-EOMCCSD(3h-2p) and active-space IP-
EOMCCSD(3h-2p){2} calculations differ by only 1.4-1.7 millihartree in the X2II, case and
6.9-7.3 millihartree in the case of the B?X; state. The adiabatic excitation energies cor-
responding to the B2} state obtained in the full and active-space IP-EOMCCSD(3h-2p)
calculations with the cc-pVDZ and cc-pV'TZ basis sets differ by 0.151 eV, which is a reason-
able agreement. Again, the somewhat larger differences between the full and active-space
IP-EOMCCSD(3h-2p) data for the B2X state compared to the analogous EA-EOMCC cal-

culations for CNC and CaN are likely due to the reasons cited above for the NCO molecule.

We now turn our attention to the numerical stability of our IP-EOMCC results for the
NCO and N3 molecules in the CBS limit. As in the EA-EOMCC calculations for CNC and
CaoN, the IP-EOMCC total energies of each state of NCO and N3 shown in Tables (3.19)
and (3.20) behave in a systematic manner, as we go from the cc-pVDZ to cc-pVQZ basis
sets, showing the initial signs of convergence; and the excitation energies obtained in the IP-
EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2} calculations with the cc-pVQZ basis set
can be regarded as reasonably well converged, which helps the validity of the CBS-A extrapo-
lations. Indeed, the differences between the adiabatic excitation energies calculated with the

ce-pVTZ and ce-pVQZ basis sets at the IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2}
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levels of theory are 0.028-0.029 eV for the A2Xt state of NCO, 0.020-0.031 eV for the B2II
state of NCO, and 0.003 eV for the BQEQLL state of N3. It is, therefore, not surprising that
the CBS-A and CBS-B extrapolations for the ground and excited states of the NCO and Ng
molecules summarized in Tables (3.19) and (3.20) are in good agreement. Indeed, the CBS-A
and CBS-B total energies obtained with the IP-PEOMCCSD(2h-1p) data for NCO differ by
only 1.5 millihartree for the X2IT and A2X% states and 2.7 millihartree for the B2II state.
The corresponding excitation energies resulting from both CBS extrapolations differ by 0.001
eV for the A2XT state and 0.034 eV for the B2II state. In consequence, the CBS-A- and CBS-
B-extrapolated IP-EOMCCSD(2h-1p) excitation energies obtained for NCO differ from the
corresponding experimental values by 0.009-0.010 eV in the A2XF case and 0.393-0.427 €V in
the case of the B2II state. Similar remarks apply to the IP-EOMCCSD(3h-2p){2} approach,
where the corresponding CBS-A- and CBS-B-extrapolated total energies differ by 2.5, 4.1,
and 3.0 millihartree for the X2II, A251, and B2II states, respectively, so that the differences
in the resulting CBS-A and CBS-B IP-EOMCCSD(3h-2p){2} excitation energies are 0.045
eV for the A2Y T state and 0.014 eV for the B2II state. As a consequence, the CBS-A- and
CBS-B-extrapolated IP-EOMCCSD(3h-2p){2} adiabatic excitation energies for NCO differ
from experiment by 0.189-0.234 eV for the A2SF state and 0.159-0.173 eV for the B2II state.
Much of the above analysis applies to N3. Indeed, although the CBS-A and CBS-B extrap-
olations applied to the IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2} total energies
produce somewhat larger differences than in the case of NCO (7.6-8.4 millihartree in the case
of the X 2Hg state and 6.6-8.6 millihartree in the case of the B2Y state), the adiabatic exci-
tation energies resulting from both CBS extrapolations are very stable, to within 0.003 eV for

the IP-EOMCCSD(2h-1p) approach and 0.002 eV for the IP-EOMCCSD(3h-2p){2} method.
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The CBS-A- and CBS-B-extrapolated IP-EOMCCSD(2h-1p) and IP-EOMCCSD(3h-2p){2}
adiabatic excitation energies corresponding to the BQEZLIr state of N3 are within 0.107-0.194

eV from experiment.

To conclude this discussion, we examine the performance of the IP-EOMCC methods
in describing the equilibrium geometries of the ground and low-lying excited states of the
NCO and Njg species. The results of our geometry optimizations for NCO and N3 are
summarized in Table (3.21). In the case of the X2II state of the NCO molecule, the basic
[P-EOMCCSD(2h-1p) approach produces results that deviate from experiment by 0.016-
0.031 A for the N-C bond length (designated as Ryn.c) and 0.018-0.033 A for the C-O
bond length (designated as Rc.g) when the cc-pVX7Z basis sets with X = D, T, and Q
are employed. The same approach applied to the 42X+ state of NCO gives errors of 0.014-
0.031 A for Ry_¢ and 0.018-0.031 A for Rc_g. The IP-EOMCCSD(3h-2p) results exhibit
very similar trends and accuracies, confirming the small role of higher-order contributions
neglected in IP-EOMCCSD(2h-1p) and present in IP-EOMCCSD(3h-2p). The differences
between the IP-EOMCCSD(3h-2p) and experimental values of Ry_¢ are 0.024-0.038 A for
the X2II state and 0.021-0.035 A for the A?X+ state. The analogous differences for Rc.q
are 0.015-0.025 A for the X2II state and 0.012-0.022 A for the A2X T state. Although it may
very well be that higher-than-3h-2p contributions neglected in the IP-EOMCCSD(3h-2p)
calculations and high angular momentum functions that are not present in the cc-pVTZ
(or cc-pVQZ) basis sets are the sources of the above errors, it is also possible that the
experimental geometries of the X 21T and A?2X7 states of NCO reported in Ref. [295] might
be in some error too, since none of the states of NCO examined here is as challenging as

some of the states of CNC and C9N. While there are unexplained differences between the
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experimentally N-C and C—-O bond lengths in the X2IT and A2Xt states of NCO and our
theoretical predictions, it is of great interest to note that the differences between the results of
the geometry optimizations using the full and active-space IP-EOMCCSD(3h-2p) approaches
are virtually none. Indeed, there is no difference (to within 0.001 A) between the full IP-
EOMCCSD(3h-2p) and active-space IP-EOMCCSD(3h-2p){2} results for the N-C bond
length in the X2II state and the corresponding C—O bond lengths differ by 0.002 A only,
when the ce-pVDZ and ce-pVTZ are employed. In the case of the A25T state, the differences
between the full IP-EOMCCSD(3h-2p) and active-space IP-EOMCCSD(3h-2p){2} values
of Ry.c and Rc.g are 0.004 A and 0.001-0.002 A, respectively. In the case of the B2II
state, these differences are 0.003 A for Ry.c and 0.006-0.008 A for Rc.g. The active-
space IP-EOMCCSD(3h-2p){2} calculations are clearly capable of reproducing the parent
[P-EOMCCSD(3h-2p) data for the N-C and C-O bond lengths in the ground and excited

states of NCO to very high accuracy.

Much of the above discussion applies to N3. The nearest-neighbor N-N bond lengths, des-
ignated as RN_N, resulting from the IP-EOMCCSD(2h-1p) calculations with the cc-pVX7Z
basis sets with X = D, T, and Q, differ from the corresponding experimental data by
0.003-0.020 A for the X2TI, state and 0.001-0.015 A for the B2Y; state. The higher-order
I[P-EOMCCSD(3h-2p) optimizations with the cc-pVDZ and cc-pVTZ basis sets produce sim-
ilar results, errors of 0.002-0.013 A for the X2Hg state and 0.007 A for the B2} state. The
active-space IP-EOMCCSD(3h-2p){2} approach, for which we could also afford the calcu-
lations with the cc-pVQZ basis set, produces Ryn.N values that deviate from experiment
by 0.002-0.016 A for the Xzﬂg state and 0.004-0.012 A for the BQZ;r state. Again, there

is a virtually perfect agreement between the expensive full IP-EOMCCSD(3h-2p) and in-
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expensive active-space IP-EOMCCSD(3h-2p){2} calculations, where there is no difference
(to within 0.001 A) between the two sets of data in the case of he XQHQ state and a very
small, 0.002-0.003 A, difference between the full IP-EOMCCSD(3h-2p) and active-space IP-
EOMCCSD(3h-2p){2} values of Ry_y in the case of the B2Y state. As in the case of the
NCO molecule, the origin of the deviations between the IP-EOMCC calculations employing
basis sets as large as cc-pVQZ, which seem numerically quite stable, and experimental Rn_N
values could lie in the higher-than-3h-2p correlations that we do not consider in this work
or in the significance of the high angular momentum functions absent in the cc-pV'TZ and
cc-pVQZ bases, but one cannot exclude the possibility that the experimental data reported
in Ref. [295] may need to be revisited. As in the EA-EOMCC calculations for the CNC and
CoN, it seems to us that the basic IP-EOMCCSD(2h-1p) method is capable of producing
optimized geometries of the ground- and excited-state NCO and N3 molecules that are com-
parable to those obtained with the computationally more demanding IP-EOMCCSD(3h-2p)
methods, which is a useful observation from the point of view of other applications of such

methods to geometry optimizations in other open-shell species.
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Table 3.16: Total and adiabatic excitation energies for the ground and low-lying excited states of CNC, as obtained with the
different EA-EOMCC approaches using the DZP [4s2pld] and cc-pVXZ (X = D, T, Q) basis sets and extrapolating to the
CBS limit.

Total Energy (hartree) Adiabatic Excitation Energy (eV)
Method Basis X 21, AN, B2y A2A,-X %, BIxi-X I,
EA-EOMCCSD(2p-1h) DZPp -130.406718 -130.141822 -130.125873 7.208 7.642
x=D -130.402813 -130.136443 -130.120048 7.248 7.694
x=T -130.502669 -130.220645 -130.204320 7.674 8.118
x=Q -130.534268 -130.248264 -130.232033 7.783 8.224
CBS-A -130.551020 -130.264878 -130.248586 7.786 8.230
CBS-B -130.552172  -130.264020 -130.247849 7.841 8.281
EA-EOMCCSD(3p-2h) DZp -130.411686 -130.260720 -130.238177 4.108 4.721
x=D -130.408191 -130.257611 -130.234329 4.097 4.731
x=T -130.510334 -130.358548 -130.335201 4.130 4.766
EA-EOMCCSD(3p-2h){4} DZP -130.409784 -130.259560 -130.236779 4.088 4.708
x=D -130.406511 -130.256819 -130.233332 4.073 4.712
x=T -130.507154 -130.356797 -130.333074 4.091 4.737
x=Q -130.538435 -130.388104 -130.364472 4.091 4.734
CBS-A -130.554997 -130.404664 -130.380953 4.091 4.736
CBS-B -130.556095 -130.405806 -130.382242 4.090 4.731
Experiment® 3.761 4.315

@ Taken from Refs. [295,296].
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Table 3.17: Total and adiabatic excitation energies for the ground and low-lying excited states of CoN, as obtained with the
different EA-EOMCC approaches using the DZP [4s2pld] and cc-pVXZ (X = D, T, Q) basis sets and extrapolating to the

CBS limit.
Total Energy (hartree) Adiabatic Excitation
Energy (eV)

Method Basis X 2 AZA B2y~ Cc2xt A2A- B?%—- C22%t-
X2 X2 X2

EA-EOMCCSD(2p-1h) DZP  -130.400501 -130.176452 -130.117500 -130.156651 6.097 7.701 6.635
x=D  -130.400086 -130.174345 -130.115824 -130.152828 6.143 7.735 6.728

x=T  -130.499176 -130.259914 -130.198940 -130.240134 6.511 8.170 7.049

x=Q  -130.530280 -130.287558 -130.225643 -130.267832 6.605 8.290 7.142

CBS-A -130.546521 -130.303831 -130.241794 -130.283903 6.604 8.292 7.146

CBS-B -130.548409 -130.303738 -130.241271 -130.284090 6.658 8.358 7.193

EA-EOMCCSD(3p-2h) DZP  -130.405260 -130.292989 -130.270231 -130.265181 3.055 3.674 3.812
x=D  -130.404842 -130.292610 -130.270337 -130.264086 3.054 3.660 3.830

x=T  -130.506456 -130.394642 -130.370688 -130.366299 3.043 3.694 3.814

EA-EOMCCSD(3p-2h){4} DZP  -130.403651 -130.292385 -130.269696 -130.264361 3.028 3.645 3.791
x=D  -130.403260 -130.292089 -130.269870 -130.263371 3.025 3.630 3.807

x=T  -130.503555 -130.393547 -130.369756 -130.364858 2.993 3.641 3.774

x=Q  -130.533052 -130.423692 -130.399922 -130.394864 2.976 3.623 3.760

CBS-A -130.543559 -130.433071 -130.408605 -130.404035 3.007 3.672 3.797

CBS-B -130.549517 -130.440555 -130.416854 -130.411633 2.965 3.610 3.752

Experiment?® 2.636 2.779 3.306

®Taken from Refs. [295,297].
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Table 3.18: Comparison of the optimized equilibrium geometries for the low-lying states of CNC and C9N, as obtained with
the EA-EOMCC and SAC-CI-SDT-R/PS approaches using the DZP[4s2pld] and cc-pVXZ (X = D, T, Q) basis sets.

CNC@ CoN?
Method Basis X %, A2%A, B2 X2 A2A B2 C 25t
SAC-CI-SDT-R/PS DZP 1.253 1256  1.259 (1400, 1.185) (1.315, 1.207) (1.302, 1.223) (1.311, 1.214
EA-EOMCCSD(2p-1h) DZP 1.259 1258 1.260  (1.412, 1.196) (1.372, 1.186) (1.372, 1.190) (1.365, 1.192
x=D 1.260 1258  1.260  (1.412, 1.193) (1.376, 1.182) (1.376, 1.186) (1.375, 1.188
x=T 1.242 1245 1.247  (1.389, 1.178) (1.363, 1.166) (1.361, 1.170) (1.356, 1.171
x=Q 1.239 1241  1.243  (1.385, 1.174) (1.362, 1.162) (1.360, 1.166) (1.356, 1.167
EA-EOMCCSD(3p-2h) DZP 1.261 1262  1.264  (1.410, 1.198) (1.329, 1.217) (1.308, 1.241) (1.322, 1.224
x=D 1.262 1261  1.263  (1.409, 1.195) (1.332, 1.212) (1.313, 1.234) (1.325, 1.220
x=T 1.246 1246  1.248  (1.388, 1.180) (1.316, 1.196) (1.297, 1.215) (1.308, 1.203
EA-EOMCCSD(3p-2h){4} DZP 1.262 1262 1.264  (1.411, 1.197) (1.329, 1.217) (1.308, 1.241) (1.322, 1.224
x=D 1.262 1261  1.264  (1.408, 1.195) (1.332, 1.212) (1.313, 1.234) (1.325, 1.220
x=T 1.246 1246  1.249  (1.389, 1.180) (1.316, 1.196) (1.297, 1.216) (1.308, 1.203
x=Q 1242 1243 1.245  (1.387, 1.175) (1.315, 1.190) (1.295, 1.210) (1.307, 1.197
Experiment® 1.245 1.249  1.259

“The Re.y bond lengths in A. The Dy, symmetry was employed. ’The numbers in parentheses report the Rc.c and Ry
bond lengths, respectively, in A. The Cy, symmetry was employed. “Taken from [295-297].
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Table 3.19: Total and adiabatic excitation energies for the ground and low-lying excited states of NCO, as obtained with the
different TP EOMCC approaches using the DZP [4s2p1d] and cc-pVXZ (X = D, T, Q) basis sets and extrapolating to the CBS
limit.

Total Energy (hartree) Adiabatic Excitation Energy (eV)

Method Basis X2 AZxt B2l Aletx 2 B2I-X 211
IP EOMCCSD(2h-1p) DZP  -167.581951  -167.475380  -167.427707 2.900 4.197
x=D  -167.576116  -167.468912  -167.419125 2.919 4.273
x=T  -167.718401  -167.613444  -167.560443 2.856 4.298
x=Q  -167.763112  -167.659168  -167.604432 2.828 4.318
CBS-A  -167.786913  -167.683604  -167.626529 2.811 4.364
CBS-B -167.788412  -167.685072  -167.629275 2.812 4.330
IP EOMCCSD(3h-2p) DZP  -167.591701  -167.486508  -167.448441 2.862 3.898
x=D  -167.587630  -167.481331  -167.441319 2.893 3.981
x=T  -167.732789  -167.628442  -167.584981 2.839 4.022
IP EOMCCSD(3h-2p){2} DZP  -167.589579  -167.476255  -167.446490 3.081 3.891
x=D  -167.585489  -167.470340  -167.438481 3.133 4.000
x=T  -167.730109  -167.617771  -167.581463 3.057 4.045
x=Q  -167.775958  -167.664698  -167.626155 3.028 4.076
CBS-A  -167.799482  -167.687223  -167.648439 3.055 4.110
CBS-B -167.801944  -167.691316  -167.651415 3.010 4.096
Experiment® 2.821 3.937

®Taken from Ref. [295].
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Table 3.20: Total and adiabatic excitation energies for the ground and low-lying excited states of N3, as obtained with the
different TP EOMCC approaches using the DZP [4s2p1d] and cc-pVXZ (X = D, T, Q) basis sets and extrapolating to the CBS
limit.

Total Energy (hartree) Adiabatic Excitation Energy (eV)

Method Basis X 21, B2y B 25X 21,

IP EOMCCSD(2h-1p) DZP -163.716374  -163.545829 4.641
x=D -163.712083 -163.542627 4.611
x=T -163.848768 -163.677460 4.662
x=Q -163.891293 -163.719861 4.665
CBS-A -163.923747 -163.752426 4.662
CBS-B -163.915306 -163.743856 4.665

IP EOMCCSD(3h-2p) DZP -163.729782  -163.560803 4.598
x=D -163.726673 -163.558437 4.578
x=T -163.865416 -163.696218 4.604

P EOMCCSD(3h-2p){2} DZP 1163.728362  -163.554434 4.733
x=D -163.725315 -163.551533 4.729
x=T -163.863766  -163.689041 4.755
x=Q -163.907325 -163.732710 4.752
CBS-A -163.939566 -163.764109 4.747
CBS-B -163.931977 -163.757469 4.749

Experiment® 4.555

®Taken from Ref. [295].

127



Table 3.21: Comparison of the optimized equilibrium geometries for the low-lying states of N3 and NCO, as obtained with the
IP EOMCC and SAC-CI-SDT-R/PS approaches using the DZP [4s2p1ld] and cc-pVXZ (X = D, T, Q) basis sets.

N3¢ NCO?
Method Basis X %I, B2% X2 Ayt B2
SAC-CI-SDT-R/PS DZP 1188 1.185 (1230, 1.193) (1.191, 1.190) (1.220, 1.309)
IP EOMCCSD(2p-1h) ~ DZP 1195 1191 (1.232, 1.196) (1.197, 1.192) (1.225, 1.318)
x=D 1.185  1.181  (1.231,1.188) (1.196, 1.184) (1.223, 1.313)
x=T 1171 1.169 (1219, 1.177) (1.182, 1.175) (1.206, 1.306)
x=Q 1168 1165  (1.216, 1.173) (1.179, 1.171) (1.202, 1.304)
IP EOMCCSD(3p-2h) ~ DZP 1200  1.196 (1240, 1.198) (1.200, 1.198) (1.235, 1.328)
x=D 1.190  1.187  (1.238,1.191) (1.200, 1.190) (1.233, 1.322)
x=T 1175 1.173  (1.224, 1.181) (1.186, 1.180) (1.216, 1.312)
IP EOMCCSD(3p-2h){2} DZP 1.200  1.194  (1.240, 1.196) (1.196, 1.196) (1.239, 1.319)
x=D 1190 1.184 (1238, 1.189) (1.196, 1.189) (1.236, 1.314)
x=T 1175 1171 (1.224, 1.179) (1182, 1.178) (1.219, 1.306)
x=Q 1172 1168  (1.222, 1.174) (1.179, 1.174) (1.214, 1.303)
Experiment* 1.188  1.180  (1.200, 1.206) (1.165, 1.202)

@The Ry.n bond lengths in A. The Dy, symmetry was employed. ’The numbers in parentheses report the Ry_c and R
bond lengths, respectively, in A. The Cy, symmetry was employed. “Taken from Ref. [295].
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Chapter 4

Potential Energy Surface

Extrapolation Schemes

4.1 Motivation

The primary goal of this dissertation so far has been the examination of ab initio electronic
structure methods which allow for the efficient generation of highly accurate molecular PESs
or chemical reaction pathways. Unfortunately, under the constraints of current computing
capabilities and algorithms, the range of applicability of the electronic structure methods
discussed in Sect. (3) is limited to small- to medium-sized systems if local correlation, frag-
mentation, or other similar techniques are not exploited, and those have additional intrinsic
errors. This is not only because of characteristic steep scalings of computer costs of typical
high-accuracy ab initio methods with the system size, but also because of the enormous num-
bers of points typically associated with PESs of larger molecules. Under the conventional

procedure, one usually follows to obtain a PES, the calculation of m”™ points is required,
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where m is the number of nuclear geometries required to represent a one-dimensional PES
cut (typically, m is on the order of 10) and 7 is the PES dimension (for the one-dimensional
PES cuts along the relevant intrinsic reaction coordinates, 7 = 1; for the global multidimen-
sional PESs, 7 = 3M — 6, where M is the number of atomic nuclei in the molecular system
of interest). Meanwhile, the CPU time associated with the accurate ab initio electronic
structure calculation of a single point of the PES scales at least as kn%, where the prefactor
k is a polynomial function of the number of occupied orbitals n,. For most medium to large
systems this can cause even a single point energy calculation to become prohibitively expen-
sive when using a basis set of realistic size. The total CPU time required to generate a PES
for a given molecular system scales as k‘ané, a scaling so poor that studies involving larger
polyatomic systems must be limited to small basis sets and small numbers of points on the
PES for the calculations to remain computationally feasible. The focus of this chapter is to

develop and test numerical techniques which can help reduce the enormous computer costs

associated with the conventional procedure for generating PESs.

Considerable progress has been made toward alleviating these large computer costs with
the proposal of an ab initio extrapolation scheme, described in Ref. [184], that predicts a PES
corresponding to a larger basis set from the results of smaller basis set calculations by scal-
ing electron correlation energies. In the PES extrapolation scheme suggested in Ref. [184], a
universal correlation energy scaling factor is determined at a single nuclear geometry, called
a pivot geometry, over a series of basis sets of growing size. The scaling factor is then applied
to electron correlation energies calculated using smaller basis sets at the remaining geome-
tries to obtain the entire PES at the desired (larger) basis set level. The original work [184],

as well as more recent effort by us [193,300], and Varandas [301, 302] have demonstrated
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the effectiveness of this procedure, where in each studied case one could generate the target
PESs to within, on average, fractions of a millihartree of the true calculated energies, while
effectively reducing the number of points which must be calculated on the high-level PES
of interest from m” to one or a few. The general principles behind the PES extrapolation
methodology of Refs. [184,193,300] are outlined in Sect. (4.2), while Sect. (4.3) elaborates
on the the so-called single-level PES extrapolation schemes based on the ideas laid down
in Refs [184,193,300]. In Sect. (4.3.1) the details of the single-level PES extrapolation
scheme are described, while Sect. (4.3.2) deals with an extension allowing one to perform
PES extrapolations to the CBS-limit in an inexpensive way. Section (4.3.4) surveys a few
of the user-defined parameters, which must be chosen using the PES extrapolation schemes
examined in this work, and Sect. (4.3.3) demonstrates the performance of a few different
single-level PES extrapolation schemes in the first-ever practical application involving a com-
plex polyatomic system reported in Refs. [193,300], namely the bicbut— t-but isomerization

examined in Sect. (3.2.3).

Despite the significant improvements in computational expense offered by the single-level
PES extrapolation schemes of Refs. [184, 193, 300], performing even a single high-level ab
1matio calculation with a larger basis set may sometimes be too taxing. In all such cases, the
PES extrapolation scheme of Refs. [184,193,300] that requires one large-basis set high-level
ab initio calculation cannot be of much help. Rather then be forced to resort to using less
accurate methods to describe the associated PESs, an additional flexibility can be utilized
within the framework of the PES extrapolation scheme of Refs. [184,193,300] which enables
one to predict the correlation energy scaling factor for calculations using a higher-order

methodology from scaling factors calculated with lower-order methods. Using this so-called

131



dual-level PES extrapolation scheme, introduced for the first time in Sect. (4.4), one can
obtain a surface at the quality of a very accurate method and large basis set without having to
calculate even a single point at the target ab initio level of interest. This new approach allows
results to be obtained much more affordably for larger systems, as any explicit calculation
at the desired level of theory is completely circumvented. To demonstrate the potential
cost savings this implies, relative computational costs associated with performing typical
calculations at the HF and selected MBPT and CC levels are collected in Table (4.1). The
utility of replacing a CR-CC(2,3) calculation by, say, a CCSD or MP4SD(Q calculation is
immediately apparent after examination of Table (4.1), as the computational effort can be
reduced by a factor of 7 or 40, respectively. If the dual-level PES extrapolation scheme could
be used to produce a PES which is virtually identical to the results of explicit large basis set
CR-CC(2,3) calculations using only the calculations performed with lower-level methods,
such as CCSD or MP4SD(Q and small basis set CR-CC(2,3) computations, it would offer

incredible savings in the required computational effort.

To test the accuracy of the dual-level PES extrapolation scheme proposed in this thesis,
where a number of different lower-order ab initio methodologies combined with small basis
set CR-CC(2,3) calculations are used to approximate large basis set CR-CC(2,3) results,
several chemical systems were chosen for benchmark studies. The systems considered here
include the asymmetric stretch of the HoO molecule, the bond stretching of the Fg and HCI
molecules, and, once again, the bicbut—#but isomerization of Sect. (3.2.3). The three
single-bond breaking potential energy curves have been well studied and serve our purposes
particularly well because they have regions clearly dominated by dynamical correlation effects

near the equilibrium bond lengths and regions with significant nondynamical correlation
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Table 4.1: Computer costs of typical ab initio wave function calculations at the aug-cc-pV'TZ
basis set level, taken from Ref. [204]

Scalings of CPU steps®

Method Tterative Noniterative CPU time®
CR-CC(2,3) NG N7 574¢
CCSD(T) NG NT 287
CCSD NG — 86
MP4SDQ — N© 15
MP3 — N 12
MP2 — NP 3

HF N4 — 1

@ N is a measure of the system size. b The CPU time for each method is reported as the time
required by an energy gradient calculation for phosphinomethanol divided by the computer
time characterizing the corresponding HF /aug-cc-pVTZ energy gradient calculation with
the same software on the same computer. Although such costs depend to some extent (for
example, 15%) on the machine, the program, and the computer load, they still provide a
useful indication of computer resource demand. ¢ The cost of the CR-CC(2,3) method was
not measured explicitly, but rather approximated by doubling the CPU time of the CCSD(T)
calculation (the most expensive steps of CR-CC(2,3) are approximately twice as expensive
as those of CCSD(T)).
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effects as relevant bond lengths approach the fully dissociated limits. The bicbut—t-but
isomerization is also reexamined, as it provides a good example of a reaction profile for a
polyatomic molecule which is composed of stationary points with strongly varying biradical
character. The general theory associated with the dual-level PES extrapolation scheme is
presented in Sect. (4.4.1) and results of the applications for the various di- and tri-atomic
systems and the isomerization pathways of bicyclo[1.1.0]butane to trans-butadiene are given
in Sects. (4.4.2) and (4.4.3), respectively. Finally, in Sect. (4.4.4), comparisons are made
regarding relative cost and accuracy under a number of different combinations of user-defined

choices required by the PES extrapolation schemes considered in this work.

4.2 Theory

The PES extrapolation scheme proposed in Ref. [184] and further developed in Refs. [193,

300-302] focuses on extrapolating the difference AE (A) hetween the total electronic energy,

base)

E®) obtained with some correlated approach A, and the base energy, El , that one

should be able to calculate with any basis set. For most applications discussed in this

(base) (RHF)

dissertation the base energy F is set equivalent to the RHF reference energy F ,

so that the extrapolated energy component AF (4)

is the total correlation energy, but one
can envision other ways of decomposing the total energy E@) into E(Mase) and AEMA) | For
example, (base) could be the CASSCF energy and E (4) the MRCI energy, in which case we
describe the non-dynamical correlation effects exactly within the CASSCF approximation
and extrapolate the difference AE(A) = E(A) _ p(base) describing dynamical correlations.

In this chapter, we focus on two specific choices of EMase) and AEMA) both related to the

choice of target method A as CR-CC(2,3), namely, (i) E(base) — p(RHF) 5nq Ap(A) =
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E(CR-CC(2,3)) _ p(RHF) = AE(CR'CC(273)), so that E(Pas¢) ig the RHF energy, which is easy
to calculate, and AF (4) is the CR-CC(2,3) correlation energy, which is the expensive part we
want to extrapolate, and (ii) E(P#s¢) = p(CCSD) anq Ap(4) = p(CR-CC(23)) _ p(COSD) =
5(2,3), so that E(base) ig the CCSD energy, which we can often calculate even when large
basis sets are employed, and AF (4) is the triples correction of CR-CC(2,3), which is the most
expensive component for the CR-CC(2,3) energy that we want to extrapolate. In addition to
the target method A, we introduce the auxiliary correlated approach B, which in single-level
PES extrapolation techniques of Refs. [184,193,300-302] equals A, and in dual-level schemes
is some other correlated method, less expensive than A. We use the auxiliary approach B
to determine the approximate correlation energy scaling factor, allowing us to rescale the

desired AE(A) energy part from smaller to larger basis sets, as described below.

Suppose a set of correlated PES calculations are performed with correlated methods A
and B, as described below, using smaller basis sets indexed by formal numbers m — 1 and

m. Let us designate the resulting PESs obtained for basis sets m — 1 and m using method

(R) and E%& )(R), respectively, and using method B as E (B)

Aas BEW B R) and P (R),

m—1

respectively. Using the PES extrapolation scheme that interests us here, the extrapolated

PES for the Eﬁf_zl(R) target (m + 1)-th basis set is obtained as

(base) (A)

BN ®) = BV ®) + L (R)AELY (R). (4.1)

m+

Here, Eé?j_sle) (R) is the energy of the base method calculated with the (m + 1)-th basis set,

AE,S? ) (R) = E,(,? ) (R) —E}}; ase) (R), R denotes the 7-dimensional vector of the nuclear space

coordinates defining the PES, and the scaling factor X(B) (R) is defined as [184,193,300—

m+1,m
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302]

X1 (R) = 14 5@%22 [S(Re)y 1 — 11 (4.2
with
SR = AEY (R)/AED) (R, (4.3)
(A)

Thus, the desired high-level PES E

m1(R), obtained with the largest basis set m + 1, is

extrapolated from the PESs E (B) (R) and ET(,]? ) (R) obtained in smaller basis set calculations,

m—1

(R), EP¥)(R), and BP0

. base
the base energies E( ) m-+1

1 (R), and a single correlated energy,

5B

mi1(Re), calculated at the pivot geometry Re.

It is easy to see that Eq. (4.1) represents the simplest mathematical expression one

can propose to extrapolate the energies EW) (R) from the smaller basis sets (m — 1) and

m+1

m to the larger basis set (m + 1). Indeed, the scaling function Xq(f+)1 m(R) satisfies the
(B)

mi1.m(B) — 1 for all values of R when m — oo, and

following desirable properties: (i) x

.. B B B A bas
(i) X\Z)) n(Re) =B (Re)/ES) (Re), so that when B = 4, B (Ro)=E*Y (Re) +
AEr(;:l ll(Re), as one would like to have. Of course, we hope that ngll m(R) determined

using the information obtained with smaller basis sets (m — 1) and m, and the “correlation”

energy AEr(erB 4zl(Re) obtained with target basis set (m + 1) at a reference (pivot) geometry

R only is universal enough to extrapolate the AE (4) (R) values at the remaining points

m—+1

R on the PES, even when method B is an approximation to the target approach A.
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4.3 Single-Level Potential Energy Surface Extrapola-

tion Schemes

In the original proposal of the PES extrapolation scheme of Ref. [184], it was assumed that
(B)

m-+1,m

(R) and the correlation energy it is applied to, AET(;LA ) (R), were

the scaling factor x
required to be generated using the same electronic structure method. While this constraint,
i.e., that A = B in Eqgs. (4.1)-(4.3), will be a helpful simplifying assumption for the initial
discussion of the PES extrapolation scheme considered here, it will be eventually shown
in Sect. (4.4), that the theory can work equally well with A # B, where B is only an
approximation to A, resulting in the so-called dual-level PES extrapolation scheme. In
this section, we begin a discussion of several ways to employ the basic equations defining
the PES extrapolation scheme, Eqs. (4.1)—(4.3), with the single-level PES extrapolation to
larger basis sets and to the CBS-limit in Sects. (4.3.1) and (4.3.2), repectively. Following

this, a discussion of the role of pivot geometries, R¢, and base wave functions, \If(base),

(base)

which are behind base energies F , is given in Sect. (4.3.3), and an application to the

bicyclobutane isomerization pathways of Sect. (3.2.3) is shown in Sect. (4.3.4).

4.3.1 Potential Energy Surface Extrapolation to Larger Basis Sets

Beginning with a simple example to demonstrate how the PES extrapolation scheme is
typically used, consider a case where A = B and F (base) — E(RHF), in which a PES cor-
responding to the cc-pVQZ basis set (previously m + 1) is to be extrapolated from PESs
obtained from cc-pVDZ (m — 1) and ce-pVTZ (m) basis set calculations. In this example,

the following quantities must be collected to perform a single-level PES extrapolation: cor-
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relation energies for every point calculated at the cc-pVDZ and cc-pVTZ basis set levels
using method A, base energies for every point calculated at the cc-pVDZ, cc-pVTZ, and
cc-pVQZ basis set levels, and a single correlated energy calculated with the cc-pVQZ basis
set at the pivot geometry Re. For simplicity, in all discussions in this dissertation except
for those involving CBS-limit extrapolation, the cc-pVDZ, cc-pVTZ, and cc-pVQZ or the
aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis set series are employed, meaning that
for all finite basis set extrapolations considered here, the index m used in Eqgs. (4.1)-(4.3)
may be equated with the cardinal number 3 of the cc-pV.XZ basis sets, corresponding to
cc-pVTZ or aug-cc-pVTZ, and thus m—1 and m+1 correspond to cc-pVDZ or aug-cc-pVDZ
and cc-pVQZ or aug-cc-pVQZ, respectively. Although PES extrapolations in this disserta-
tion focus on extrapolating CR-CC(2,3) correlation energies across the (aug-)cc-pVXZ basis
sets of Dunning and co-workers, which are very systematic in terms of the dependence of
the angular momentum functions on the cardinal number X, it must be emphasized that
the PES extrapolation method is not tailored to fit any single class of electronic structure
approaches nor is it limited to any specific family of basis sets. This was demonstrated in

the original study, Ref. [184], using the MRCI approach and a series of Pople-type basis sets.

4.3.2 Potential Energy Surface Extrapolation to the Complete Ba-

sis Set Limit

The theory for PES extrapolation schemes presented in Sect. (4.2) is not limited to basis
sets immediately sequential in size either, as in, for example, the cc-pVDZ, cc-pVTZ, and
cc-pVQZ sequence. In fact, the target basis set m+ 1 in Egs. (4.1)—(4.3) could be of infinite

size enabling us to extrapolate the PES g (R), where (m + 1) represents the CBS limit,

m—+1
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from the finite basis set calculations. This requires knowledge of the CBS limits of the base

energies, Eﬁ?j_sle) (R) = E(ggase) (R), at each point R on the PES of interest and the CBS-limit

(base)

of the correlation energy at the pivot geometry Re, AE(base)(R) = AEs ’(R), which is

m+1
needed to define the x,,41.4,(R) scaling factor in a situation where (m + 1) represents the

infinite basis set.

As an example, consider the PES extrapolation for a sequence of basis sets of cc-pVX7Z
quality to the CBS-limit in a situation where the target method A is CR-CC(2,3) and where

the base energy originates from RHF calculations. The CBS-limit base PES E(base)

m—+1 <R)

needed in Eq. (4.1) can be determined via relatively inexpensive RHF /cc-pV6Z level cal-
culations (recall from Sect. (3.2.1) that at the RHF level, cc-pV6Z results are an excellent
approximation to the corresponding CBS limit). One can then determine the CBS limit
of the correlation energy AEéél ) (Re) at the pivot geometry Re using, for example, corre-
lation energies obtained with the cc-pVTZ and cc-pVQZ basis sets and one of the CBS

extrapolation laws, such as Eq. (3.98). The resulting CBS-limit value of AE&;4 ) (Re) can be

used as AE}%4 JZl(Re) to determine the S (Re)gﬁm ratio and, ultimately, the scaling factor
X;ﬁj—l m(R) (recall that B = A here). Thus, the necessary quantities for extrapolation of

the CR-CC(2,3) PES to the CBS-limit are the RHF/cc-pVDZ and RHF /cc-pVTZ values
at all points R of interest, the CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ values at

all points R of interest, the CBS-limit base energies E(base)

mi1 (R) at all points R of interest,

obtained, for example, in the RHF /cc-pV6Z calculations, and a CBS-limit extrapolated cor-

relation energy AE&? )(Re) corresponding to a single pivot geometry Re, which serves as

the AE(A)

mi1(Re) value in Eqs. (4.1)-(4.3). We could carry out a similar CBS PES extrapo-

lation procedure for methods other than CR-CC(2,3) and other sequences of the correlation
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consistent basis sets. An actual application of this procedure, as applied to the CR-CC(2,3)
approach, will be discussed in Sect. (4.3.4), but before we do this, we examine the role of

(R) in Eq. (4.1).

pivot geometries Re and base wave functions used to define Eé?j_sle)

4.3.3 The Role of Pivot Geometries and Base Wave Functions in

Single-Level PES Extrapolations

A few inherent flexibilities of the PES extrapolation scheme should be be discussed before
moving on to applications. First, the pivot geometry, which appears in Eq. (4.2) as Re, can
be chosen as the equilibrium geometry, as the geometry corresponding to the reactants or
products, or in principle, as any other single point on the PES of interest. It is even possible to
choose more than one pivot geometry in PES extrapolations [301,302], although the benefits
of doing so may be minimal since, as was shown in Ref. [193], the accuracy of results does
not depend on the choice of the pivot geometry Re. This fact will be illustrated in the next
section. One also has a choice of generalizing Eqs. (4.1)—(4.3) to several pivots Re that may
provide an adequate sampling of the PES of interest for performing an extrapolation. The
idea of multiple pivots Re has been explored with considerable success, in Refs. [301,302].
The other inherent flexibility which will be investigated numerically in the next section is
the choice of base wave function defining the base energies in Eqs. (4.1)—(4.3). In the specific
case of the PES calculations performed in Sect. (4.3.4), where the total electronic energies of
interest are those obtained using the CR-CC(2,3) approach, two alternative definitions of the
base energy F (base) are considered, pbase) — p(RUF) o1 q pbase) — p(COSD) 1y the former
case, as already alluded to above, we decompose the CR-CC(2,3) energy inttoo the RHF base

energy and the CR-CC(2,3) total correlation energy, which we want to extrapolate across
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the entire PES. In the latter case, the CR-CC(2,3) energy is decomposed into the CCSD
base energy and the triples correction of CR-CC(2,3) which we want to extrapolate across
the entire PES. The relative performance of the PES extrapolation procedure based on Egs.
(4.1)-(4.3) under each of these two definitions of the base wave function is reported in the

next section.

4.3.4 Application to the Isomerization of Bicyclobutane to Buta-

diene

Since the excellent performance of the single-level PES extrapolation scheme had already
been established for di- and tri-atomic molecular PESs in Ref. [184], in 2008 we published a
study aimed at assessing the potential usefulness of the PES extrapolation scheme in studies
of chemical reaction pathways involving polyatomic molecules [193]. In that work, the PES
extrapolation scheme was applied to the stationary points defining the conrotatory and disro-
tatory paths characterizing the isomerization of bicyclo[1.1.0]butane to buta-1,3-diene, which
we discussed earlier in Sect. (3.2.3). There were a number of reasons for conducting the study
in Ref. [193]. The first reason was to examine the basis set dependence of the CR-CC(2,3)
results for both isomerization pathways, The second reason was to examine whether the PES
extrapolation scheme was capable of recovering the results of the laborious point-wise CR-
CC(2,3)/cc-pVQZ calculations from the PESs obtained in the CR-CC(2,3)/cc-pVDZ and
CR-CC(2,3)/cc-pVTZ calculations, the base energies (RHF or CCSD) obtained in the cc-
pVDZ, cc-pVTZ, and cc-pVQZ calculations, and a single CR-CC(2,3) energy obtained with
the cc-pVQZ basis set at the pivot geometry Re on the relevant polyatomic reaction pathway.

Finally, the third reason for the study in Ref. [193] was to demonstrate the effectiveness of
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our PES extrapolation procedure to the CBS-limit.

As already mentioned, two choices of the base wave function for defining the AFE values
that enter Eqs. (4.1)-(4.3) were considered, namely, the RHF energy (E(base) — p(RHE))
and the CCSD energy (E(base) = E(CCSD)). The results obtained with both choices of the
reference energy and for the pivot geometry defined by the bicbut reactant are collected
in Table (4.2). Different choices of the pivot geometry, Re, were also considered, each
corresponding to one of the stationary points that define the two isomerization pathways.
These results are shown in Tables (4.3)—(4.7). It can be seen in Tables (4.2)—(4.7) that
the resulting maximum differences between the calculated and extrapolated CR-CC(2,3)/cc-
pVQZ energies characterizing both pathways are virtually independent of the choice of the
pivot geometry Re. For this reason, in the following discussion we mainly focus on one
specific choice of Re, namely, the geometry of the bicbut reactant (see Figure 3.2), as
shown in Table (4.2), while mentioning numerical results produced using other choices of Re

very briefly.

As one can see in Table (4.2), independent of the choice of the base energies (RHF
or CCSD), there is virtually no difference between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies. The differences between the calculated and extrapolated CR-~
CC(2,3)/cc-pVQZ energies characterizing both isomerization pathways do not exceed 0.631
millihartree when E(Pase) = g (RHF), and 0.277 millihartree when E(Pase) = f (CCSD), when
the geometry of the bicbut reactant is used as the pivot geometry Re. To appreciate the
small magnitude of these extrapolation errors, the changes in the total electronic energies
when going from the cc-pVTZ to cc-pVQZ basis sets are also included in Table (4.2), which

are values on the order of 42-44 millihartree. Similar remarks are true for the other pivot ge-

142



Table 4.2: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3) /cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut—t-but isomerization.
The bicbut reactant defines the pivot geometry for the PES extrapolations.

RHF Base

Eza Ega Eflcalc) a Eflextr) b AE43C €4d

bicbut = -155.493284 -155.651348 -155.695497 -155.695497 -44.149 0.000
con TS -155.424792 -155.581666 -155.625392 -155.625147 -43.727 0.245
dis- TS  -155.388352 -155.540034 -155.582481 -155.581850 -42.447 0.631
g-but  -155.533086 -155.689327 -155.733236 -155.732754 -43.909 0.482
gt TS  -155.528145 -155.684308 -155.728073 -155.727663 -43.764 0.410
t-but -155.537788 -155.694080 -155.738043 -155.737480 -43.963 0.563

CCSD Base

o Ega Eflcalc)a Eé(fxtr) b AE436 64d

bicbut  -155.493284 -155.651348 -155.695497 -155.695497 -44.149 0.000
con-TS -155.424792 -155.581666 -155.625392 -155.625212 -43.727 0.180
dis- TS -155.388352 -155.540034 -155.582481 -155.582364 -42.447 0.117
g-but -155.533086  -155.689327 -155.733236 -155.732971 -43.909 0.265
gt TS  -155.528145 -155.684308 -155.728073 -155.727894 -43.764 0.179
t-but -155.537788 -155.694080 -155.738043 -155.737766 -43.963 0.277

“Total energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E3), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (Ey) levels. "Total CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
¢Differences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-

CC(2,3)/cc-pVQZ energies.
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Table 4.3: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3) /cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut—t-but isomerization.
The con_T'S transition state defines the pivot geometry for the PES extrapolations.

RHF Base

Ega E3a Eicalc) a E,iextr) b AE430 €4d

bicbut  -155.493284 -155.651348 -155.695497 -155.695750 -44.149 -0.253
con_TS -155.424792 -155.581666 -155.625392 -155.625392 -43.727 0.000
dis_/ TS -155.388352 -155.540034 -155.582481 -155.582077 -42.447 0.404
g-but  -155.533086 -155.689327 -155.733236 -155.733001 -43.909 0.235
gt TS  -155.528145 -155.684308 -155.728073 -155.727908 -43.764 0.164
tbut -155.537788  -155.694080 -155.738043 -155.737726 -43.963 0.317

CCSD Base

Eyt Ega Eécalc) a Eé(lextr) b AE436 €4d

bicbut  -155.493284 -155.651348 -155.695497 -155.695698 -44.149 -0.202
con.TS -155.424792 -155.581666 -155.625392 -155.625392 -43.727 0.000
dis/T'S  -155.388352 -155.540034 -155.582481 -155.582510 -42.447 -0.029
g-but  -155.533086 -155.689327 -155.733236 -155.7323159 -43.909 0.077
gt- TS  -155.528145 -155.684308 -155.728073 -155.728082 -43.764 -0.009
tbut -155.537788 -155.694080 -155.738043 -155.737954 -43.963 0.090

“Total energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E3), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (Ey) levels. "Total CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
¢Differences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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Table 4.4: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3) /cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut—t-but isomerization.
The dis_T'S transition state defines the pivot geometry for the PES extrapolations.

RHF Base

EQG Ega E,icalc) a E,iextr) b AE436 €4d

bicbut  -155.493284 -155.651348 -155.695497 -155.696200 -44.149 -0.704
con TS -155.424792 -155.581666 -155.625392 -155.625828 -43.727 -0.436
dis_ TS  -155.388352 -155.540034 -155.582481 -155.582481 -42.447 0.000
g-but  -155.533086 -155.689327 -155.733236 -155.733439 -43.909 -0.203
gt TS  -155.528145 -155.684308 -155.728073 -155.728345 -43.764 -0.272
tbut -155.537788 -155.694080 -155.738043 -155.738163 -43.963 -0.120

CCSD Base

Ega Ega Ez(lcalc) a Ez(le;vtr) b AE436 €4d

bicbut  -155.493284 -155.651348 -155.695497 -155.695659 -44.149 -0.162
con_.T'S -155.424792 -155.581666 -155.625392 -155.625357 -43.727 0.036
dis- TS -155.388352 -155.540034 -155.582481 -155.582481 -42.447 0.000
g-but  -155.533086 -155.689327 -155.733236 -155.733122 -43.909 0.114
gt- TS  -155.528145 -155.684308 -155.728073 -155.728045 -43.764 0.028
tbut -155.537788 -155.694080 -155.738043 -155.737917 -43.963 0.127

“Total energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E3), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (Ey) levels. "Total CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
¢Differences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-

CC(2,3)/cc-pVQZ energies.
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Table 4.5: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3) /cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut—t-but isomerization.
The g-but intermediate defines the pivot geometry for the PES extrapolations.

RHF Base

Eyt Ega Eicalc) a E,Ziextr) b AE436 64d

bicbut  -155.493284 -155.651348 -155.695497 -155.695992 -44.149 -0.495
con-TS -155.424792 -155.581666 -155.625392 -155.625626 -43.727 -0.234
dis-TS  -155.388352 -155.540034 -155.582481 -155.582294 -42.447 0.187
g-but  -155.533086 -155.689327 -155.733236 -155.733236 -43.909 0.000
gt- TS  -155.528145 -155.684308 -155.728073 -155.728142 -43.764 -0.070
tbut -155.537788 -155.694080 -155.738043 -155.737960 -43.963 0.083

CCSD Base

By a s a Eé(lcalc) a Eé(lextr) b AEy3 c €4 d

bicbut  -155.493284 -155.651348 -155.695497 -155.695781 -44.149 -0.285
con-TS -155.424792 -155.581666 -155.625392 -155.625467 -43.727 -0.074
dis_TS -155.388352 -155.540034 -155.582481 -155.582570 -42.447 -0.089
g-but  -155.533086 -155.689327 -155.733236 -155.733236 -43.909 0.000
gt TS  -155.528145 -155.684308 -155.728073 -155.728159 -43.764 -0.086
tbut -155.537788 -155.694080 -155.738043 -155.738031 -43.963 0.012

®Total energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E>), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (Ey) levels. bTotal CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
“Differences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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Table 4.6: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3) /cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut—t-but isomerization.
The gt_T'S transition state defines the pivot geometry for the PES extrapolations.

RHF Base

Eyt Ega Eicalc) a E,Ziextr) b AE436 64d

bicbut  -155.493284 -155.651348 -155.695497 -155.695920 -44.149 -0.423
con-TS -155.424792 -155.581666 -155.625392 -155.625557 -43.727 -0.164
dis_TS  -155.388352 -155.540034 -155.582481 -155.582229 -42.447 0.252
g-but  -155.533086 -155.689327 -155.733236 -155.733166 -43.909 0.070
gt- TS  -155.528145 -155.684308 -155.728073 -155.728073 -43.764 0.000
tbut -155.537788 -155.694080 -155.738043 -155.737891 -43.963 0.153

CCSD Base

By a s a Eé(lcalc) a Eé(lextr) b AEy3 c €4 d

bicbut  -155.493284 -155.651348 -155.695497 -155.695689 -44.149 -0.192
con_TS -155.424792 -155.581666 -155.625392 -155.625384 -43.727 0.009
dis_TS -155.388352 -155.540034 -155.582481 -155.582503 -42.447 -0.022
g-but  -155.533086 -155.689327 -155.733236 -155.733150 -43.909 0.086
gt- TS  -155.528145 -155.684308 -155.728073 -155.728073 -43.764 0.000
tbut -155.537788 -155.694080 -155.738043 -155.737945 -43.963 0.099

®Total energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E>), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (Ey) levels. bTotal CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
“Differences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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Table 4.7: The calculated CR-CC(2,3)/cc-pVDZ and CR-CC(2,3) /cc-pVTZ energies and the
calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut—t-but isomerization.
The t-but product defines the pivot geometry for the PES extrapolations.

RHF Base

Eyt Ega Eicalc) a E,Ziextr) b AE436 64d

bicbut  -155.493284 -155.651348 -155.695497 -155.696077 -44.149 -0.580
con.TS -155.424792 -155.581666 -155.625392 -155.625709 -43.727 -0.316
dis_TS  -155.388352 -155.540034 -155.582481 -155.582370 -42.447 0.110
g-but  -155.533086 -155.689327 -155.733236 -155.733319 -43.909 -0.083
gt TS  -155.528145 -155.684308 -155.728073 -155.728225 -43.764 -0.152
tbut -155.537788 -155.694080 -155.738043 -155.738043 -43.963 0.000

CCSD Base

By a s a Eé(lcalc) a Eé(lextr) b AEy3 c €4 d

bicbut  -155.493284 -155.651348 -155.695497 -155.695795 -44.149 -0.298
con-TS -155.424792 -155.581666 -155.625392 -155.625479 -43.727 -0.086
dis_TS -155.388352 -155.540034 -155.582481 -155.582579 -42.447 -0.099
g-but  -155.533086 -155.689327 -155.733236 -155.733248 -43.909 -0.013
gt TS  -155.528145 -155.684308 -155.728073 -155.728172 -43.764 -0.099
tbut -155.537788 -155.694080 -155.738043 -155.738043 -43.963 0.000

®Total energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E>), CR-CC(2,3)/cc-
pVTZ (E3), and CR-CC(2,3)/cc-pVQZ (Ey) levels. bTotal CR-CC(2,3)/cc-pVQZ ener-
gies, in hartree, resulting from the PES extrapolation procedure discussed in the text.
“Differences, in millihartree, between the actual CR-CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-
pVTZ energies. dDeviations, in millihartree, between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies.
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ometries examined in Tables (4.3)—(4.7), which correspond to the remaining stationary points
along the conrotatory and disrotatory pathways defining the bicbut—t-but isomerization.
As shown in Tables (4.3)—(4.7), the differences between the calculated and extrapolated CR-
CC(2,3)/cc-pVQZ energies characterizing both isomerization pathways do not exceed 0.704
millihartree, when g(base) — p (RHF), and 0.298 millihartree, when pbase) — E(CCSD), and
are often much smaller, independent of the choice of the pivot geometry Re. Thus, the single-
level PES extrapolation procedure, originally proposed in Ref. [184] and further developed
in Refs. [193,300], reproduces changes in the total energies when going from the cc-pVTZ to
ce-pVQZ basis sets to within 1.5 %, when the RHF energies are used as the base energies,
and 0.6 %, when the CCSD energies are employed instead to define the base energies F (base)
As one might expect and as shown in Tables (4.2)—(4.7), the use of the CCSD wave function
in determining the base energies reduces the observed differences between the calculated and
extrapolated CR-CC(2,3)/cc-pVQZ energies. However, this is to be expected since the use
of the correlated base energies, such as those obtained in the CCSD calculations, reduces
the fraction of the correlation energy to be extrapolated, which in turn decreases the mag-
nitude of the extrapolation errors. On the other hand, it is quite remarkable that the use of
uncorrelated RHF base energies in determining the AFE values that enter Eqs. (4.1)—(4.3)
leads to extrapolated CR-CC(2,3)/cc-pVQZ PESs which are identical to the calculated CR-~
CC(2,3)/cc-pVQZ PESs to within ~ 0.7 millihartree, independent of the choice of Re. These
small differences between the calculated and extrapolated CR-CC(2,3)/cc-pVQZ electronic
energies are also reflected in the small differences between the calculated and extrapolated

CR-CC(2,3)/cc-pVQZ enthalpy values characterizing the six stationary points along the con-

rotatory and disrotatory pathways that define the isomerization of bicyclo[1.1.0]butane to
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buta-1,3-diene, shown in Figure (3.2), which are on the order of 1 kcal/mol or, in most cases,

even less.

Returning now to the third reason for the study of the bicbut— #but reaction published
in Ref. [193], this system was used to test the accuracy which may be obtained using single-
level PES extrapolation techniques to obtain a PES at the CBS-limit. In the case in Ref.
[193], the cc-pVDZ basis set was chosen as basis level m—1, the cc-pV'TZ basis set was chosen
as basis level m, and the infinite basis set limit was chosen as basis set m + 1 in Eqs. (4.1)—
(4.3). Thus, results of CR-CC(2,3) calculations at the cc-pVTZ and cc-pVQZ basis set levels
were used to determine the CBS limit of the CR-CC(2,3) correlation energy at Re using Eq.
(3.98), and the resulting CBS value of the CR-CC(2,3) correlation energy was subsequently
used to define AE};QI(RG) in Egs. (4.1)-(4.3) (recall again that A = B in the present
considerations). Then, the AE};1 +)1(Re) correlation energy at Re determined in this way and
the CR-CC(2,3)/cc-pVDZ and CR-CC(2,3)/cc-pVTZ correlation energies, AEﬁf_)l(R) and

AET(f:l ) (R), respectively, at all geometries R of interest were used to obtain the scaling factor

(4)

Xpnt1.m(R) from the cc-pVTZ basis set to the CBS limit according to Eqs. (4.2) and (4.3).

Once the scaling factor X(A) (R) at each R was established, we used it to determine the

m+1,m
CBS limit of the CR-CC(2,3) PES, ET(;? Jzl(R), at all geometries of interest by multiplying

the CR-CC(2,3) correlation energies AE%1 )(R) obtained with the cc-pVTZ basis set by

(4)

Xomt1 n(R) and by adding the resulting energies to the base energies £ (base)

ma1 (R) obtained

in the RHF /cc-pV6Z calculations which, as already explained, are practically equivalent to
the RHF energies in the CBS limit. By avoiding the point-wise CBS extrapolations of the
CR-CC(2,3) correlation energies from the cc-pVTZ and cc-pVQZ basis sets at all geometries

R (we had to perform the CBS extrapolation of the CR-CC(2,3) energy only at the pivot

150



geometry Re) and by using the cc-pV6Z values of the RHF energies, we saved a lot of CPU
cycles, while producing the smooth CR~-CC(2,3)-level PESs corresponding to the CBS limit,

since the base RHF PESs obtained with a large, cc-pV6Z basis set and the scaling factor

(4)

Xm+1 m(R) are smooth functions of R.

Indeed, as shown in Table 4.8, the differences between the energies resulting from the
CBS extrapolation scheme that combines Eqgs. (4.1)-(4.3) with Eq. (3.98) and the energies
resulting from the conventional point-wise CBS extrapolations using the CR-CC(2,3)/cc-
pVTZ and CR-CC(2,3)/cc-pVQZ data at each stationary point defining the conrotatory and
disrotatory pathways shown in Figure (3.2) do not exceed 1.092 millihartree, i.e., they are
on the same order as the intrinsic error of the CBS extrapolations based on Eq. (3.98). This
method provides a significant advantage over conventional CBS-limit extrapolation of PESs
when it is considered that combining Eqs. (4.1)—(4.3) with Eq. (3.98) requires only one CR-
CC(2,3)/cc-pVQZ calculation (at the pivot geometry), whereas the conventional point-wise
CBS extrapolation method requires the CR-CC(2,3)/cc-pVQZ calculations at each point on

the PES of interest, which represents an enormous increase in computer cost.
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Table 4.8: The calculated CR-CC(2,3)/cc-pVDZ, CR-CC(2,3)/cc-pVTZ, and CR-CC(2,3)/cc-pVQZ energies and the CBS
values of the CR-CC(2,3) energies obtained using the point-wise extrapolations exploiting Eq. (3.98) and the CBS extrapolation
procedure combining Eqs. (4.1)—(4.3) with Eq. (3.98) discussed in the text at the stationary points defining the conrotatory
and disrotatory pathways characterizing the bicbut—t-but isomerization. The bicbut reactant was used to define the pivot
geometry for the PES extrapolations based on Egs. (4.1)—(4.3).

EQa Ega Eé(lcalc)a E(()galc)b E(()gxtr)c AEOO,?,d fnot

bicbut  -155.493284 -155.651348 -155.695497 -155.723202 -155.723202 -71.854  0.000
con-TS -155.424792 -155.581666 -155.625392 -155.652777 -155.652353 -71.112 0.424
dis_TS -155.388352 -155.540034 -155.582481 -155.608902 -155.607810 -68.868 1.092
g-but  -155.533086 -155.689327 -155.733236 -155.760795 -155.759962 -71.468 0.833
gt TS  -155.528145 -155.684308 -155.728073 -155.755491 -155.754781 -71.182 0.710
t-but -155.537788 -155.694080 -155.738043 -155.765622 -155.764647 -71.541 0.975

“Total energies, in hartree, calculated at the CR-CC(2,3)/cc-pVDZ (E3), CR-CC(2,3)/cc-pVTZ (E3), and CR-CC(2,3)/cc-
pVQZ (Ey) levels. bTotal energies, in hartree, obtained by adding the RHF /cc-pV6Z energies to the CBS correlation energies
resulting from the point-wise CBS extrapolations employing the CR-CC(2,3)/cc-pVTZ and CR-CC(2,3)/cc-pVQZ calcula-
tions and Eq. (3.98). “Total energies, in hartree, obtained by adding the RHF /cc-pV6Z energies to the CBS values of the
correlation energy resulting from the extrapolation procedure combining Eqgs. (4.1)—(4.3) with Eq. (3.98), as discussed in the
text. ?Differences, in millihartree, between the CR-CC(2,3)/CBS energies resulting from the point-wise CBS extrapolations
employing Eq. (3.98) and the corresponding CR-CC(2,3)/cc-pVTZ energies. ©Differences, in millihartree, between the CR-
CC(2,3)/CBS energies resulting from the point-wise CBS extrapolations employing Eq. (3.98) and the CBS PES extrapolation
combining Eqgs. (4.1)—(4.3) with Eq. (3.98).
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4.4 Dual-Level Potential Energy Surface Extrapolation

Schemes

The main idea of the PES extrapolation scheme is to scale the difference, AFE, between the
total electronic energy F, and the energy of some base wave function £ (base) e difference,
AFE, representing the correlation energy or some fraction of it, is scaled to the quality of
a larger basis set by applying a scaling factor which predicts the change in the correlation
energy with the size of the basis set at a particular nuclear configuration. Since the basis set
dependence of the correlation energy may be similar for related electronic structure methods,
after the original PES extrapolation scheme was proposed in Ref. [184] and further developed
and tested in Ref. [193], additional flexibility was introduced by allowing the scaling factor
to be generated using a method different from the method used to calculate the surface of
interest. This is reflected in Eqs. (4.1) — (4.3) by the designation of method A, corresponding

to the desired level of theory of the target PES, and method B, corresponding to the level
(B)

m—+1,m

of theory used in the generation of the scaling factor, x (R). A discussion of the ideas
behind the dual-level PES extrapolation scheme is given in Sect. (4.4.1). This is followed
by a few applications in Sects. (4.4.2) and (4.4.3), where the CR-CC(2,3) method is used to

calculate the PESs of interest using smaller basis sets, where computer costs remain low, in

combination with the dual-level PES extrapolation scheme, in which the correlation scaling

(B)

mal . (R) is generated with lower-order methods, to obtain the PESs corresponding

factor y
to the massively more expensive large basis set CR-CC(2,3) calculations. The resulting PESs

are obtained using only a fraction of the computational resources required by the single-level

PES extrapolation scheme, not to mention the point-by-point CR-CC(2,3) computations
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using larger bases. A detailed analysis of the huge computational savings which the single-

and dual-level PES extrapolation schemes can offer will be presented in Sect. (4.4.4).

4.4.1 Using Lower-Order Methods to Produce Correlation Energy

Scaling Factors in High-Level Calculations

The dual-level extrapolation scheme presented here closely follows the original procedure,

proposed in Ref. [184] and described in Sect. (4.3), differing only in the definition of the
(B)

scaling factor x,. .y .,

(R), which may now be obtained with a different, less expensive,
methodology, B, than the target methodology A of interest. By allowing A and B to

differ, the approximate high-level PES E (4)

ma1(R) can be generated by extrapolating the PES

Ey(,fl ) (R) obtained with smaller basis set m, using the base surfaces Eg)isle)(R), E,SE ase)(R),

(B)

and E(base)(R), the correlated surfaces E}f_)l(R) and Ey, '(R), and a single correlated

m+1

energy calculated at the pivot geometry, E(B) (Re), all obtained with method B, which is,

m+1

by choice, less expensive than the target method A. The most significant advantage over the

(4)

mt1.m(R) was used, is that the calculation of

original PES extrapolation scheme, where x

£A)

m1(Re), which accounts for the majority of the expense of the

the single high-level energy
original procedure of Ref. [184], is avoided entirely and replaced instead by the calculation
of Ean 4zl(Re), using a quantum-chemistry method B which is less expensive than A.

The conventional low-order MBPT or CC approximations are among the approaches
which may be considered as lower-order methods for the extrapolations of the high-level
PESs resulting from higher-order CC calculations. The systematically improvable hierarchy

of MBPT approaches is especially appealing in this study because it provides a series of “built

in” lower-order methods that can facilitate an investigation of the lowest levels of correlation
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treatment required to properly reproduce the correlation scaling factors for the higher-level
CC methodology, CR-CC(2,3). The lowest-level MBPT methods, including MP2, MP3, and
MP4X (X = D, DQ, and SDQ), are all much less expensive than the CR-CC(2,3) theory,
with formal noniterative scaling steps of only N for MP2 and A0 for MP3 and MP4SDQ).
For comparison, the CPU-time determining steps of CR-CC(2,3) scale as A0 in the iterative
CCSD part and N7 in the triples correction part. In fact, even CCSD offers considerable
savings compared to CR-CC(2,3), so this would be another candidate for determining the

correlation energy scaling factor for extrapolating the CR-CC(2,3) PES.

As an example, if, say A = CR-CC(2,3) and B = CCSD, a CR-CC(2,3)/cc-pVQZ

CR-CC(23)

PES AEi R) may be obtained by extrapolating a CR-CC(2,3)/cc-pVTZ PES

AE?()CR_CC(Q’?’)) (R) by applying XEL%CSD) (R), a correlation energy scaling factor constructed

from CCSD/cc-pVDZ energies, CCSD/cc-pVTZ energies, and a single CCSD /cc-pVQZ en-
ergy at the pivot geometry Re (rather than from the analogous set of energies obtained with

CR-CC(2,3), as would be the case in the previously discussed single-level PES extrapolation

(CCSD)

scheme) and adding the resulting x, 5 (R)A E?()CR‘CC(?B))(

R) term to an explicitly cal-

culated RHF /cc-pVQZ PES that provides the base Eibase)(R) term in Eq. (4.1). Similarly,

if A= CR—-CC(2,3) and B = MP4SDQ), we can determine the CR-CC(2,3)/cc-pVQZ-

(CR-CC(2,3)) (MP4SDQ) (CR-CC(2,3))

level PES E, (R) by adding the X43 (R)AE, (R) term, where
Xg\gPALSDQ) (R) is a correlation energy scaling factor obtained from the MP4SDQ calculation

using the cc-pVDZ and cc-pVTZ basis sets and a single MP4SDQ/cc-pVQZ point calcu-
lated at Re, to the RHF /cc-pVQZ base energy E ibase) (R). Other examples of the auxiliary

method B used in determining the correlation energy scaling factor for extrapolating the

CR-CC(2,3) PES examined in this work include the MP2, MP3, MP4D, and MP4D(Q ap-
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proaches. We apply the dual-level PES extrapolation procedure, as described above, to
predict the CR-CC(2,3)/cc-pVQZ or CR-CC(2,3)/aug-cc-pVQZ PESs characterizing a few
single-bond dissociations (Sect. (4.4.2)) and the previously examined bicyclobutane isomer-

ization pathways (Sect. (4.4.3)).

4.4.2 Application to Single Bond-Breaking Potential Energy Curves

In this section, single bond-breaking potential energy curves of the HoO, HCI, and F9y
molecules are considered as benchmark cases to test the accuracy of the dual-level PES
extrapolation procedure. In all PES extrapolations discussed in this section, the pivot ge-
ometry R is taken to be the equilibrium geometry, the base wavefunction is chosen to be the
RHF wavefunction, and the CR-CC(2,3)/aug-cc-pVTZ PESs are extrapolated to the CR-
CC(2,3)/aug-cc-pVQZ level by applying a correlation energy scaling factor generated from
the following quantities: RHF /aug-cc-pVDZ, RHF /aug-cc-pVTZ and RHF /aug-cc-pVQZ
base surfaces, B/aug-cc-pVDZ and B/aug-cc-pVTZ surfaces, and a single B/aug-cc-pVQZ
energy at the pivot geometry Re, where the lower-order method B is MP2, MP3, MP4X (X

=D, DQ, SDQ), or CCSD.

In Table (4.9), extrapolation errors are collected for selected points on the HoO— OH-+H

dissociation curve. In the first two columns of this table, benchmark CR-CC(2,3)/aug-cc-

CR-CC(23))

pVQZ energies, Ei R) are given for selected points R on the potential energy

curve, along with the energy differences, AFEy 3(R), between EiCR_CC(z’S))(R) and the CR-

CR-CC(23)

CC(2,3)/aug-cc-pVTZ energies E§ R). In the following columns, extrapolation

errors are reported, in millihartree, relative to the corresponding true EiCR_CC(Q’g)) (R) val-

(B)

ues, organized according to the correlation energy scaling x, 3’ (R) that was used in their
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generation. Each set of extrapolation errors should be compared to those reported in the
far right column of Table (4.9), which represent the errors found using the single-level for-
mulation of the PES extrapolation scheme, appropriately designated by the scaling factor
XEL%R_CCQ’S))(R) found in the corresponding column heading. While not all lower-order
methods can be used to accurately reproduce all points on the CR-CC(2,3)/aug-cc-pVQZ
PES, it is notable that relatively small extrapolation errors are observed when all of the
lower-order methods (except for MP2) are employed to generate the near-equilibrium region
of the HoO—OH+H curve. This implies that MP3, the various variants of MP4, and CCSD
yield corrleation energies which have a very similar correlation energy scaling to the CR-
CC(2,3) energies in this region. If one is only concerned with the near-equilibrium region
of this bond-stretching curve, all of these methods except MP2 can be used successfully to
scale a CR-CC(2,3) correlation energy to the quality of a larger basis sets. Unfortunately,
the MP3 and various MP4X methods fail to produce the proper scaling at the largest in-
ternuclear distances, shown by steeply rising extrapolation errors beyond 2Re. As a specific
example, when XEL%P4SDQ) (R) is used, the largest reported error in the extrapolation of the
CR-CC(2,3)/aug-cc-pVQZ PES in the region from 0.75Re — 2R, is only 0.338 millihartree,
which represents a recovery of about 98% of the correlation energy change when going from

aug-cc-pVTZ to aug-cc-pVQZ, identified in Table (4.9) as AEi%R_CC(Q’S)). However, at 4Re,

the same error rises sharply to 4.798 millihartree, which is 26% of AE&%R_CC(Q’?))) at this
geometry. It is quite remarkable, though, to observe such tiny errors while extrapolating
the CR-CC(2,3)/aug-cc-pVQZ PES in the relatively large R = 0.75R¢ — 2R, region, on the

order of small fractions of a millihartree, particularly when we realize that the CPU time of

the MP4SDQ calculations is approximately the same as the cost of a single CCSD iteration.
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To predict an accurate PES at the highly stretched geometries, it is clear from the
extrapolation errors reported in Table (4.9) that CCSD is the only lower-order method
which accurately and consistently predicts the correct correlation energy scaling in both
the equilibrium and bond-breaking regions of the CR-CC(2,3) surface. When XEL%CSD) (R)
is used, the maximum reported deviation from the true CR-CC(2,3)/aug-cc-pVQZ curve
in the R = 0.75R¢ — 4R, region is only 1.124 millihartree, with extrapolation errors in
the R = 0.75R, — 2R, region not exceeding 0.394 millihartree. For comparison, when the
CR-CC(2,3) methodology is used to generate the correlation energy scaling factor, as in
the single-level scheme, the largest error found for the extrapolated CR-CC(2,3)/aug-cc-
pVQZ HoO PES is 0.760 millihartree in the R = 0.75R¢ — 2R, regioin and 0.314 milli-
hartree when R does not exceed 2R. From these results it is clear that for the HoO system,
XEL%CSD)(R) and XEL%R_CC@’?)))(R) are virtually identical for all reported geometries. The
final observation from Table (4.9) is that the MP2 method is found to consistently overesti-
mate XZ(&R—CC(Q,S)) (R), producing relatively large negative extrapolation errors on the order
of (-4)—(-2) millihartree, even in the near-equilibrium region. Thus, the MP2 method should

not be used in conjunction with the dual-level PES extrapolation scheme to describe the

scaling of CR-CC(2,3) with the basis set.

Analogous sets of extrapolation errors for the HCl and Fo bond-stretching surfaces are
reported in Tables (4.10) and (4.11), respectively, and similar trends are observed therein.
For both the HCI and Fg systems the MP3 and MP4X methods are again shown to provide
the proper correlation energy scaling in the equilibrium region, where large percentages

(CR-CC(2,3))

(between 93-100%) of AE, 5 (R) are consistently recovered and errors relative to

true CR-CC(2,3)/aug-cc-pVQZ calculations are on the order of a millihartree or less. Also,
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as before, extrapolation errors grow rapidly as the internuclear separation approaches the
R > 2R, region, with CCSD appearing to be the only lower-order method which may be
used successfully at all internuclear separations. This is especially evident for the Fo curve
where results based on correlation energy scaling factors obtained with MP2, MP3, MP4D,
MP4DQ, and MP4SDQ diverge badly at 4R from the true CR-CC(2,3) /aug-cc-pVQZ curve,
and while the use of CCSD instead leads to reasonable behavior. In fact, the maximum
reported extrapolation errors are again found to be very close at all internuclear distances
when the CCSD and CR-CC(2,3) correlation energy scaling factors are used to scale the CR-
CC(2,3)/aug-cc-pVTZ HCIl and Fo PESs. For HCI, they are 1.891 and 1.664 millihartree,

respectively, each corresponding to a recovery of about 90% of AE&%R_CC(QS))(R). For Fo,

extrapolation errors found using XEL%CSD) (R) show a recovery of 93-99% of the corresponding

AEi%RCC(ZS)) (R) values, which may be compared to 95-100% obtained with Xi%R_CCQ’?))).
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Table 4.9: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies of the HoO molecule in which
one of the two O-H bonds (R) is stretched, while keeping the other O-H bond at the equilibrium length and the H-O-H angle
fixed at 104.5°. The equilibrium geometry defines the pivot geometry R, and RHF defines the base wave function for the
PES extrapolations. In all post-RHF' calculations, the lowest orbital, correlating with the 1s shell of the oxygen atom was kept
frozen.

64(Xig))d

R/R.“ Eyb AE;3¢ MP2 MP3 MP4D MP4DQ MP4SDQ CCSD  CR-CC(2,3)

0.75 -76.259133  -22.676 -2.993 -0.763 -0.611  -0.257 -0.073 -0.186 -0.140
0.90 -76.351620 -21.605 -2.759 -0.573 -0.425  -0.046 0.121 0.031 0.012
1.00 -76.363051 -21.059 -2.742 -0.576 -0.428  -0.033 0.131 0.054 0.000
1.10 -76.355931 -20.641 -2.723 -0.580 -0.430 -0.019 0.145 0.085 0.009
1.25 -76.329620 -20.278 -2.624 -0.509 -0.349 0.080 0.253 0.225 0.133
1.50 -76.276456 -19.952 -2.639 -0.513 -0.316 0.130 0.338 0.394 0.314
2.00 -76.199626 -19.168 -3.613 -1.217 -0.788  -0.359 -0.071 0.294 0.244
3.00 -76.162662 -18.479 -4.086 -0.601 0.729 0.774 1.450 0.912 0.744
4.00 -76.161060 -18.303 -2.232 1.965  3.688 2.953 4.798 1.124 0.760

@The equilibrium value of R used here is Re = 0.95785 A. bThe calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. “Differences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDjifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, where the latter

energies were generated by applying the correlation energy scaling factors XEL%)(R) obtained with B = MP2, MP3, MP4D,
MP4DQ, MP4SDQ, CCSD, and CR-CC(2,3). The choice of B = CR-CC(2,3) is equivalent to the single-level PES extrapolation
scheme.
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Table 4.10: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies for several internuclear separa-
tions Ry of the HCI molecule. The equilibrium geometry defines the pivot geometry Re and RHF defines the base wave
function for the PES extrapolations. In all post-RHF calculations, the lowest five orbitals, correlating with the 1s, 2s, and 2p
shells of Cl, were kept frozen.

64(X4(£)) )4

R/R.* Eyb AE; 3¢ MP2 MP3 MP4D MP4DQ MP4SDQ CCSD  CR-CC(2,3)

0.75 -460.245772  -22.053 -4.017 -1.415 -1.254 -0.834 -0.854 -0.896 -1.273
0.90 -460.351216 -20.979 -3.055 -0.537 -0.387  0.033 0.022 -0.003 -0.410
1.00 -460.364178 -20.704 -2.610 -0.127 0.017 0.439 0.437 0.427 0.000
1.10 -460.356856 -20.550 -2.330 0.128  0.268 0.692 0.703 0.713 0.270
1.25 -460.329720 -20.327 -2.178 0.261  0.407 0.834 0.868 0.926 0.469
1.50 -460.277589 -19.823 -2.429 0.065 0.276 0.697 0.793 0.991 0.580
2.00 -460.212229 -18.747 -3.755 -0.828 -0.293 0.055 0.456 0.966 0.730
3.00 -460.192428 -18.345 -2.889 0.849  2.050 1.675 4.602 1.891 1.664
4.00 -460.192532 -17.809 -0.558 2.958  3.966 1.670 9.747 1.573 1.049

“The equilibrium value of R used here is Re = 1.27455 A. "The calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. “Differences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, where the latter
energies were generated by applying scaling factors Xfff;) (R) obtained with B = MP2, MP3, MP4D, MP4DQ, MP4SDQ),
CCSD, and CR-CC(2,3). The choice of B=CR-CC(2,3) is equivalent to the single-level extrapolation scheme.
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Table 4.11: A comparison of calculated and extrapolated CR-CC(2,3) /aug-ccpVQZ energies for several internuclear separations
Rp_y of the Fg mole- cule. The equilibrium geometry defines the pivot geometry R, and RHF defines the base wave function
for the PES extrapolations. In all post-RHF calculations, the lowest two orbitals, correlating with the 1s shells of the F atoms,
were kept frozen.

64(X4(£)) )4

R/R.% Ey® AE;3¢ MP2  MP3 MP4D MP4DQ MP4SDQ CCSD  CR-CC(2,3)

0.75 -199.196897 -56.537 -5.098 -2.516 -1.915  -1.208 -0.689 -1.120 -1.011
0.90 -199.349657 -53.009 -3.991 -1.752 -1.132  -0.444 0.065 -0.197 -0.258
1.00 -199.364732 -51.743 -3.835 -1.737 -1.028  -0.378 0.191 0.036 0.000
1.10 -199.356794 -51.172 -3.871 -1.793 -0.929  -0.349 0.284 0.236 0.227
1.25 -199.333764 -50.464 -4.209 -2.010 -0.775  -0.389 0.313 0.396 0.455
1.50 -199.307123 -49.741 -4.370 -1.655  0.587 0.339 1.119 0.944 0.965
2.00 -199.296727 -49.300 -1.232 3.454  8.189 5.241 6.107 2.453 2.146
3.00 -199.297648 -49.368 6.748 13.398 18.543  0.429 4.979 3.239 2.460
4.00 -199.297985 -49.422 12.149 18.901 22.880  30.269 31.933 3.585 2.673

“The equilibrium value of R used here is Re = 0.988351 A. The calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. “Differences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, where the latter

energies were generated by applying the correlation energy scaling factors XEE?(R) obtained with B = MP2, MP3, MP4D,
MP4DQ, MP4SDQ, CCSD, and CR-CC(2,3). The choice of B=CR-CC(2,3) is equivalent to the single-level PES extrapolation

scheme.
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In summary, MP2 consistently fails to predict the proper information about the CR-
CC(2,3) correlation energy scaling, while MP3 typically does much better. This leads to the
conclusion that at least third-order correlation energy effects must be included for the proper
description of the correlation energy scaling in the near-equilibrium PES regions. In regions
further away from equilibrium, the third and even the partial fourth-order perturbative
corrections still cannot produce the proper correlation energy scaling factors that would be
compatible with those of CR-CC(2,3), which is a consequence of the inability of MBPT to
describe bond-breaking, but one can use the CCSD approach instead, which is qualitatively
correct at larger internuclear separations in single-bond breaking situations, providing a

reasonable estimate of the CR-CC(2,3) correlation energy scaling with the basis set.

4.4.3 Application to the Isomerization of Bicyclobutane to Buta-

diene

The results of dual-level PES extrapolations on the reaction profiles for the isomerization
of bicyclobutane to butadiene are given in Table (4.12). The format of this table is similar
to that of Tables (4.9)—(4.11), except that here the geometries of interest are the station-
ary points along the conrotatory and disrotatory pathways shown in Figure (3.2) and the
cc-pVXZ rather than aug-cc-pV.XZ basis sets are employed throughout. From the results
presented in Table (4.12) it can be seen that the MP3 and various MP4 methods may be
successfully used to probe the CR-CC(2,3) correlation energy scaling for the energetically
favored conrotatory reaction profile, which consists entirely of species with correlation en-
ergy dominated by lower-order excitations, but in every case the MBPT methods produce a

significantly larger error for the highly biradical dis_T'S geometry. On the other hand, when
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XELC?)CSD)(R) is used to extrapolate the CR-CC(2,3)/cc-pVQZ PES, the reported extrapo-

lation errors remain within a millihartree of the explictly calculated CR-CC(2,3)/cc-pVQZ
energy values at every stationary point, rivaling the sub-millihartree accuracies found using
the single-level PES extrapolation scheme where XEI%R_CCQ’?))) (R) is employed instead. This
is another case where a quasi-degeneracy, in this case resulting from the biradical nature of
the dis_T'S configuration, inhibits the MBPT methods from producing the correct correla-
tion energy scaling information. It is clear, of the methods considered here, that only the
CCSD approach can offer a correlation energy scaling factor compatible with CR-CC(2,3),
although the extrapolation errors obtained with MP4SDQ, which are 1.950 millihartree or
~ 1.5 kcal/mol for the strongly biradical dis_TS structure (located over 60 kcal/mol above
the reactant) and less than 1 millihartree for the remaining structures, are excellent as well.

Also, once again, MP2 correlation energies do not contain sufficient information to model

the CR-CC(2,3) correlation energy scaling at any geometry.
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Table 4.12: A comparison of calculated and extrapolated CR-CC(2,3)/cc-pVQZ energies at the stationary points defining the
conrotatory and disrotatory pathways characterizing the bicbut—#-but isomerization. The bicbut reactant defines the pivot
geometry Re and RHF defines the base wave function for the PES extrapolations. In all post-RHF calculations, the lowest
four orbitals, correlating with the 1s shells of the carbon atoms, were kept frozen.

64(X4(£)) )

Structure 40 AEg;3b  MP2  MP3  MP4D MP4DQ MP4SDQ CCSD  CR-CC(2,3)

bicbut -155.695497 -44.149 -9.521 -0.860 -0.397  0.845 0.760 0.582 0.000
con_TS -155.625392  -43.727 -10.169 -1.578 -0.993 0.292 0.397 0.466 0.245
dis_ TS -155.582481 -42.447 -13.436 -4.643 -3.890 -2.671 -1.950 0.096 0.631
g-but -155.733236 -43.909 -9.730 -0.879 -0.325 0.899 0.906 0.927 0.482
gt TS -155.728073 -43.764 -9.815 -0.934 -0.374  0.844 0.837 0.876 0.410
t-but -155.738043 -43.963 -9.614 -0.786 -0.234  0.972 0.987 1.008 0.563

“The calculated CR-CC(2,3)/cc-pVQZ total energies in hartree. ’Differences, in millihartree, between the actual CR-
CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-pVTZ energies. “Differences, in millihartree, between the calculated and extrapolated
CR-CC(2,3)/cc-pVQZ energies, where the latter energies were generated by applying the correlation energy scaling factors

XE;Bg)(R) obtained with B = MP2, MP3, MP4D, MP4DQ, MP4SDQ, CCSD, and CR~-CC(2,3). The choice of B = CR-CC(2,3)
is equivalent to the single-level extrapolation scheme.
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4.4.4 The Role of Pivot Geometries and Base Wave Functions in

Dual-Level PES Extrapolations

In Tables (4.9)—(4.12) it was clear that regardless of the correlation energy scaling factor
used in the PES extrapolation scheme based on Eqgs. (4.1) — (4.3), the extrapolation errors
are largest in regions where the nature of the electron correlation effects differ most from
those found at the pivot geometry. To see how much the reported errors could be reduced by
employing additional pivot geometries, the same sets of PES extrapolations were considered,
but this time with all nuclear configurations treated as pivot geometries. In addition to
introducing a new extrapolation method which should yield improved accuracies, this ap-
proach provides a direct measure of the error introduced when lower-order correlation energy
scaling factors are employed to predict the results of higher-order calculations with a larger
basis set, since any error due to the earlier assumption of the approximate transferability
of the scaling factor from one geometry to another is eliminated. Additional calculations
required to perform these extrapolations, when compared to those required for the extrapo-
lations of the previous section (done with a single pivot geometry), consist of the remaining
calculations required to obtain each PES using the aug-cc-pVQZ basis for the bond-breaking
curves or the cc-pVQZ basis for the bicbut—t-but isomerization pathways using the lower-
level methodology B. This is still relatively inexpensive, since we never have to perform the

high-level CR-CC(2,3) calculation with the largest basis set employed at any geometry.

A comparison of Tables (4.9) and (4.13), (4.10) and (4.14), (4.11) and (4.15), and (4.12)
and (4.16) demonstrates the full extent of the accuracy which may be gained by using
additional pivot geometries for each of the systems considered in this study. The most

interesting detail to note in these comparisons is that when the same method is used to
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predict the correlation energy scaling factor, increasing the number of pivot geometries does
not necessarily result in an overall improvement in the quality of the extrapolated surface.
Extrapolation errors are, for the most part, improved when the number of pivot geometries
is increased, especially when MP4SD(Q and CCSD are used to generate x, but there are no
significant benefits from switching from the previously discussed single-point approach to its

multi-point analog.

As stated before, the many options inherently included in the PES extrapolation scheme
based on Eqgs. (4.1) — (4.3) allow one to tailor it to make it more accurate or more affordable,
as required by a given application. To demonstrate clearly and concisely the different levels
of accuracy and savings in the computer effort which may be obtained using different tiers
of the PES extrapolation scheme, the results of four different PES extrapolations examined
here, using the bicbut— t-but isomerization as an example, are collected in Table (4.17). We
recall that the goal of each extrapolation in this case is to predict the CR-CC(2,3)/cc-pVQZ
PES (as represented by six structures on the corresponding conrotatory and disrotatory
pathways) from the results of lower-level calculations. The most efficient PES extrapolation
considered for this table, where a lower-order MP4SDQ) scaling factor is used to extrapolate
the CR-CC(2,3)/cc-pVTZ PES to the level of CR-CC(2,3)/cc-pVQZ calculations using one
pivot geometry (bicbut) and RHF base energies, requires only 5% of the CPU time of the
conventional method and the mean unsigned error (MUE) is slightly below 1 millihartree.
The MUE is reduced by 0.314 millihartree when the correlation energy scaling factor obtained
with MP4SDQ is replaced by that produced by CCSD, but the required CPU time is also
increased to 10% of that required by the conventional CR-CC(2,3)/cc-pVQZ calculations.

The results obtained with the original single-level PES extrapolation procedure are also
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presented, where the time required to perform these calculations is 22% of that required
conventionally, but the mean unsigned error falls to below 0.4 millihartree. Finally, when
the base energy is obtained in CCSD calculations and XEL%R_CC(ZS))(R) is used to scale
the remaining correlation energy, an MUE of 0.170 is attained, but now the computational
time savings amounts only to about one third of the conventional procedure. It can be seen
in Table (4.17) that regardless of the PES extrapolation approach used, the MUE remains
below 1 millihartree, which is a relatively insignificant loss in accuracy compared to the
conventional, point-wise CR-CC(2,3)/cc-pVQZ calculations. By using the dual-level PES
extrapolation scheme to extrapolate CR-CC(2,3)/cc-pVQZ energies, we have reduced the
time required to accurately construct a PES for this problematic polyatomic isomerization
by more than an order of magnitude. These computational savings would only grow larger

if another system were considered which contained a greater number of electrons or a larger

number of points on the PES were considered.
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Table 4.13: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies of the HoO molecule, in which
one of the two O-H bonds R is stretched, while keeping the other O-H bond at the equilibrium length and the H-O-H angle
fixed at 104.5°. Each geometry serves as its own pivot geometry and RHF defines the base wave function for the PES
extrapolations. In all post-RHF calculations, the lowest orbital, correlating with the 1s orbital of the oxygen atom, was kept
frozen.

64(Xig))d

R/R.“ By’ AE; 3¢ MP2  MP3 MP4D MP4DQ MP4SDQ CCSD

0.75 -76.259133  -22.676 -2.766 -0.504 -0.360  -0.014 0.129 0.059

0.90 -76.351620 -21.605 -2.737 -0.534 -0.391  -0.016 0.138 0.063
1.00 -76.363051 -21.059 -2.742 -0.576 -0.428  -0.033 0.131 0.054
1.10 -76.355931 -20.641 -2.769 -0.636 -0.475  -0.060 0.114 0.041
1.25 -76.329620 -20.278 -2.835 -0.733 -0.538  -0.096 0.097 0.034
1.50 -76.276456  -19.952 -3.072 -0.951 -0.668  -0.190 0.033 0.021
2.00 -76.199626 -19.168 -4.107 -1.651 -1.073  -0.591 -0.301 -0.080
3.00 -76.162662 -18.479 -5.201 -1.501  0.009 0.207 0.856 0.101
4.00 -76.161060 -18.303 -3.619 1.054 3.143 2.604 4.400 0.164

@The equilibrium value of R used here is Re = 0.95785 A. bThe calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. “Differences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, with the latter

energies generated by applying the correlation energy scaling factors Xff? (R) obtained with B = MP2, MP3, MP4D, MP4DQ,
MP4SDQ, and CCSD.
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Table 4.14: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies for several internuclear separa-
tions R of the HCI molecule. Each geometry serves as its own pivot geometry and RHF defines the base wave function for
the PES extrapolations. In all post-RHF calculations, the lowest five orbitals, correlating with the 1s, 2s, and 2p shells of Cl,
were kept frozen.

64(X4(£)) )4

R/R.* Eyb AE; 3¢ MP2 MP3 MP4D MP4DQ MP4SDQ CCSD

0.75 -460.245772  -22.053 -2.707 -0.044 0.123 0.516 0.491 0.447
0.90 -460.351216 -20.979 -2.625 -0.087  0.056 0.466 0.453 0.424
1.00 -460.364178 -20.704 -2.610 -0.127 0.017 0.439 0.437 0.427
1.10 -460.356856 -20.550 -2.680 -0.220 -0.062 0.373 0.384 0.401
1.25 -460.329720 -20.327 -2.885 -0.404 -0.204 0.249 0.284 0.362
1.50 -460.277589 -19.823 -3.370 -0.739 -0.426 0.046 0.146 0.386
2.00 -460.212229 -18.747 -5.151 -1.906 -1.204 -0.736 -0.265 0.336
3.00 -460.192428 -18.345 -5.225 -0.655 0.927 0.985 4.375 0.933
4.00 -460.192532 -17.809 -2.748 2.016  3.643 1.988 11.510 0.533

“The equilibrium value of R used here is Re = 1.27455 A. PThe calcuated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. “Differences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, with the latter

energies generated by applying the correlation energy scaling factors xfll?))) (R) obtained with B = MP2, MP3, MP4D, MP4DQ,
MP4SDQ, and CCSD.
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Table 4.15: A comparison of calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies for several internuclear sepa-
rations R of the Fo molecule. Each geometry serves as its own pivot geometry and RHF defines the base wave function for
the PES extrapolations. In all post-RHF calculations, the lowest two orbitals, correlating with the 1s orbitals on the fluorine
atoms, were kept frozen.

64(X4(£)) )4

R/R.* Ey° AE;3¢ MP2  MP3 MP4D MP4DQ MP4SDQ CCSD

0.75 -199.196897 -56.537 -3.415 -1.068 -0.764  -0.128 0.310 0.190
0.90 -199.349657 -53.009 -3.570 -1.389 -0.877  -0.215 0.290 0.149
1.00 -199.364732 -51.743 -3.835 -1.737 -1.028  -0.378 0.191 0.036
1.10 -199.356794 -51.172 -4.116 -2.030 -1.063  -0.466 0.176 0.009
1.25 -199.333764 -50.464 -4.758 -2.539 -1.062  -0.646 0.107 -0.115
1.50 -199.307122  -49.741 -5.496 -2.676 -0.019  -0.237 0.664 -0.119
2.00 -199.296727 -49.300 -3.680 1.008  6.381 3.741 4.751 0.250
3.00 -199.297648 -49.368 4.354 11.655 18.778  -4.021 2.203 0.723
4.00 -199.297985 -49.422  9.504 17.002 22.892  30.905 32.328 0.876

“The equilibrium value of R used here is Re = 0.988351 A. The calculated CR-CC(2,3)/aug-cc-pVQZ total energies in
hartree. “Differences, in millihartree, between the actual CR-CC(2,3)/aug-cc-pVQZ and CR-CC(2,3)/aug-cc-pVTZ energies.
dDifferences, in millihartree, between the calculated and extrapolated CR-CC(2,3)/aug-cc-pVQZ energies, with the latter
energies generated by applying scaling factors st)(R) obtained with B = MP2, MP3, MP4D, MP4DQ, MP4SDQ), and
CCSD. ’
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Table 4.16: A comparison of calculated and extrapolated CR-CC(2,3) /aug-cc-pVQZ energies at the stationary points defining
the conrotatory and disrotatory pathways characterizing the bicbut—t-but isomerization. Each geometry serves as its own
pivot geometry and RHF defines the base wave function for the PES extrapolations. In all post-RHF calculations, the lowest
four orbitals, correlating with the 1s orbitals of the carbon atoms, were kept frozen.

64(X4(£)) )

Structure 40 AEy3b  MP2  MP3 MP4D MP4DQ MP4SDQ  CCSD

bicbut -155.695497 -44.149 -9.521 -0.860 -0.397  0.845 0.760 0.582
con_TS -155.625392 -43.727 -10.455 -1.614 -1.036 0.322 0.373 0.295
dis_ TS -155.582481 -42.447 -14.074 -4.825 -4.164 -2.824 -2.131 -0.529
gbut -155.733236 -43.909 -10.245 -1.009 -0.473 0.781 0.728 0.699
gt TS -155.728073 -43.764 -10.366 -1.085 -0.548 0.702 0.652 0.641
tbut -155.738043 -43.963 -10.220 -1.007 -0.472 0.776 0.729 0.703

®The calculated CR-CC(2,3)/cc-pVQZ total energies in hartree. bDifferences, in millihartree, between the actual CR-

CC(2,3)/cc-pVQZ and CR-CC(2,3)/cc-pVTZ energies. “Differences, in millihartree, between the calculated and extrapolated

CR-CC(2,3)/cc-pVQZ energies, with the latter energies generated by applying the correlation energy scaling factors XEL%)(R)

obtained with B = MP2, MP3, MP4D, MP4DQ, MP4SDQ, and CCSD.
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Table 4.17: A summary of the necessary calculations and the corresponding computer resources required to utilize different
tiers of the PES extrapolation scheme based on Eqs. (4.1) — (4.3) to scale the bicyclobutane isomerization pathway from the
CR-CC(2,3)/cc-pVTZ level of theory to the CR-CC(2,3)/cc-pVQZ level, along with the corresponding extrapolation errors.
The bicbut structure is used to provide the pivot geometry.

Base Correlation Energy cc-pVQZ Calculations Required ¢ CPU Time Mean Unsigned

Energy?® Scaling Factor® ~ RHF CCSD CR-CC(2,3) (t/tcony)®  Error (millihartree)®

RHF MP4SDQ 6 0 0 0.05 0.973
RHF CCSD 6 1 0 0.10 0.659
RHF CR-CC(2,3) 6 1 1 0.22 0.389
CCSD CR-CC(2,3) 6 6 1 0.63 0.170
Conventional Calculation/ 6 6 6 1 —

The method used to generate the base energy. The method B used to generate the correlation energy scaling factor Xz(fs) (R)

in Eq. (4.1). “The number of cc-pVQZ basis set calculations which must be performed using a given base wave function and
a given correlation energy scaling factor to extrapolate the CR-CC(2,3)/cc-pVQZ PES. The CPU time needed to perform
the necessary calculations for each PES extrapolation type relative to the time needed to generate the true CR-CC(2,3)/cc-
pVQZ PES. ¢The mean unsigned error representing an extrapolated CR-CC(2,3)/cc-pVQZ reaction pathway generated using
the designated base energy and correlation energy scaling factor. fCharacteristics of the true PES calculation, in which

each stationary point on the conrotatory and disrotatory pathways of the bicbut—#but isomerization is calculated at teh
CR-CC(2,3)/cc-pVQZ level.
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Chapter 5

Development of Computer Codes for

the GAMESS software Package

A large portion of the current doctoral effort was devoted to writing EOMCC computer
codes for the GAMESS software package. In this section, we discuss the highly efficient
GAMESS implementations of the open-shell EOMCCSD and IP-EOMCCSD(2h-1p) methods
developed as part of this thesis project, based on theory discussed in Sect. (3.1.2) and the
corresponding factorized equations, in terms of recursively generated intermediates that lead
to the vectorized computer codes through the use of fast matrix multiplication rountines
from the BLAS library. The open-shell EOMCCSD and IP-EOMCCSD(2h-1p) codes were
interfaced with previously existing ROHF and RHF/ROHF integral routines, respectively,
available in the GAMESS software package [194], as well as the CC programs and routines
for the generation of matrix elements of the similarity-transformed Hamiltonian of CCSD
originally developed for GAMESS by the Piecuch group at Michigan State University. In

Sect. (5.1), we begin our discussion of the implementation of these programs, with specific
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details outlined for the open-shell EOMCCSD and IP-EOMCCSD(2h-1p) methods in Sects.

(5.1.1) and (5.1.2), respectively.

5.1 Key Detalils of Efficient Computer Implementations

Both the open-shell EOMCCSD and IP-EOMCCSD(2h-1p) codes must begin by solving the
usual CCSD equations for the ground-state of the N-electron reference system in order to
obtain the singly and doubly excited cluster amplitudes, té and ti‘%, respectively. In both
cases, this is done using the general ROHF-based CCSD codes included in GAMESS that
work for closed- and open-shells, developed by the Piecuch group and described in [130].
Following the CCSD calculation, the converged té and tgjb amplitudes are used to contruct

the one- and two-body matrix elements of the CCSD similarity-transformed Hamiltonian

FI}SSPSEE), }_Lg and E;g, respectively, which define the one- and two-body components of
ﬁ](\?gpseg) within the second quantized formalism,
—~(CCSD T
H{ ) - hialaq, (5.1)
and
~(CCSD 17
Hé ) = 1hpgNlaPalasay], (5.2)
respectively. NJ...] is the normal product of the operators between the brackets and the

Einstein summation convention over repeated upper and lower indices is assumed through-
out. The explicit equations defining these matrix elements in terms of the matrix elements
of the Hamiltonian in the normal-ordered form f;} = (p|f|q) and vpa = (pq|v|rs) — (pqlvlsr),

and CCSD cluster amplitudes ), and tijé), are given in Table (5.1). Once these common
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initial steps are complete, the appropriate expressions for solving the EOMCCSD and IP-
EOMCCSD(2h-1p) eigenvalue problems have to be constructed. These steps, which are
specific to the open-shell EOMCCSD and IP-EOMCCSD(2h-1p) codes considered here, are
outlined in Sects. (5.1.1) and (5.1.2), respectively. Once the suitable EOMCCSD and IP-
EOMCCSD(2h-1p) equations are constructed, another common feature in our implementa-
tion of the EOMCCSD and IP-EOMCCSD(2h-1p) approaches is that we rely on the Hirao-
Nakatsuji generalization [303] of the Davidson diagonalization algorithm [304] to solve the

resulting non-Hermitian eigenvalue problems, Eqgs. (3.24) and (3.25) in Sect. (3.1.2.1).

5.1.1 Standard Equation-of-Motion Coupled-Cluster Theory with

Singles and Doubles for Open-Shell Systems

The left-hand sides of the EOMCCSD equations are calculated by projecting [H](\?gpse?l)

(Ry1+ Ry 2)lc|®) onto the subspace of all singly- and doubly-excited determinants, <(I)?3 l,

(@7, (@gaka, (@77

5
iaja ' (Pigjs |, and (<I> | to obtain the following expressions:

(CCSD)

@D Ry + Ruollol®) = Beario — Rig it 4 By plemo
_e ot m
+h %ré%?ﬁo‘ + hé%fn%‘armo‘ + haaﬁﬁr%

_ 132 man 17e ian
A+ Ao,

—iaf man _eafn tan
hmagﬁ a fﬂﬁ —{—haan% eafg’
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Table 5.1:  Explicit algebraic expressions for the one- and two-body matrix elements of

Hj(\ggpse? (hi and BZZ, respectively) taken from Refs. [126,132].
Intermediate Expression®
B it
h! 1+ vl Joelald + notl
i 1= B gm
B uhe — uben
BZ@ vfja + vfj@tg
hed ved 4 Loed ymn _ ped g qed g
ﬁf} vfjl + %vfjft’g} - Bé?tlg + vfjeté
& T = vintta = Wit
his VI8 St — RIS, T 4 TJIC 4T — R T4

R
nl* ol BIEem — oket] 4 ordRple thin
el + 1t — Soelel

I fo + vhe e
I ID — Jvmmtes
Lo i + viatl

& Summation over repeated upper and lower indices is assumed. fg = (p|flg) and vy =
(pg|v|rs) — (pq|v|sr) are the one- and two-body matrix elements of the Hamiltonian in the
normal-ordered form (one- and two-electron integrals), and the té and tZ]b are the singly
and doubly excited cluster amplitudes defining the ground-state CCSD wave function of the
N-electron reference system. The antisymmetrizer @, = 1 — (pg) operator is also used,
where (pq) is the transposition of indices p and g.
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(CCSD
< BH Nopen)(RM,1 + RM,Q)]C’(I)> =
b (CCSD)
<®?§]3|[ N,open <R/J71 + R,u,Z)]C’|q)> =

178

+ heozfoz taja

1
_Qﬂ

+id,;

e 1 1 m iam

Py = Pgray + lungtiges

_ (& m (&
+h$r(bla7aa%65 aﬂﬂgﬁreﬁﬁ + ha%’rzarea

_1p808 mEvs | 1penls ton

27mpng aﬁfﬁ 2lagngTesfy

—igfa  mgna —egfa igna
- rggna%ﬂﬁfa agna egf ) (5.4)

—%amhfﬁarzj‘m + abahggr;%z

—d ]‘,}'aja + o, peada ia

aada"'maba taja aqba Tea

]. hla]a Tmana

200ba ea fo T 2Mmanaagbg
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Oéeﬂ mﬁ]a
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latajo ma slajaeg Mg
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Tiajafa _mana
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aba mabanﬁ aafﬁ

—y

heoz]ozfa iaNo
alaanbana’ eafa

o ~eajofp Zanﬂ

taja aabanﬁ eafﬁ (5.5)
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agbg
i8I
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HN,open
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where the antisymmetrizer o7,y = 1 — (pq) is used, with (pg) designating the transposition

of indices p and ¢, and

slajgfa epfe iadp
hmabﬁna o v”?éa%a teabﬂ’
Biajﬂfg _ veafg iajg
mabﬁnﬁ mang eabﬁ’
Biajgea _ Ueafg g
aan/@ma manﬁ aO[fﬁ’
pledges o eplp ledp
aamzmg Umﬂnﬂ aafg’
Beajgfoz _eafa majg
aabﬂna manao aabﬂ ’
Beajgfg _ Ueafg majg
aabﬂnﬂ manga aabﬁ i
}—liafﬁea _ veozfg iang
aabﬁma moﬂlﬂ &abﬂ’
and
—iozfﬁeﬁ eﬁfﬁ ianﬁ
haabgmg = vmﬁnﬁtaabﬁ’ (5.8)

where the p subscript was dropped from the r amplitudes for clarity. By substituting the
three-body components of the similarity transformed Hamiltonian of CCSD given in Eq.
(5.8) and factorizing the resulting equations, the open-shell EOMCCSD equations projected

on doubly excited determinants, Eqs. (5.5), (5.6), and (5.7), may be rewritten in the following
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way:

b (CCSD)
<(I);lc(yyjo?“ N,open (R/ial +R,u,2)]0’q)> = %aba( 1h20‘ majo + 1hea laja

loja Mo aaba Ao eaba

lyiaja ma l7eaja, io
thab Ta + sh r

aaba’ €a
St + St
RS oot
~ X i BXGS ) (5.9)

(® o 91 (CCSD)

178 ™BIg | 178, 'BIp
1313 Nopen ;1 (—5h + 2h

gbsigig\ T2 ms aghy T 2Mag eghg
170696 M3 | 176898 18
“2MmgbgTag + 2Magss
+ %fﬁ 133 + Zﬁjﬁ mﬁnﬁ
%”6 Tepls ghmgng Taghg
_’Lﬁeﬁ mﬁ ﬁ _Zﬁea ma]ﬁ
hmﬁaﬂ 6/@ 5 +haﬁma e bﬁ
1 i3 maip 1,8 /1638
—7Xm5f%bﬁ + 3Xd egbg) (5.10)

(Bua+ Ru2)lel®) = o,
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e N ) (s + Ruall®) = i)~ i)
T T A o T T
it i

sy
RCE R B
iy )+ P
T T

Z;C;);ﬁ +xag tiﬁ%

ig jlang fﬁtiajg

_ngat

5.11
_X”/Btaabﬁ + Xbﬁ aats ( )
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L A e

eaf ng ; ; eozfﬁ ianﬁ

+U’n§éa’r?/6rf§t’é%é + %Ug?afgaréir}g + vmanﬁreafg’ (512)
eafg n
i = ol ) o

eafn n n eafﬁ mang

_Un?agﬁrfgt%a _ %vf,?‘afq‘{‘argéo}aa _ Uma"ﬁTaafﬁ , (5.13)
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o elp me il ne o eplp g is

Xmﬂ _Unﬁmﬂrfﬁ mgnarfa _UnﬂmﬁTfﬁteﬂ
eafa ) eafn ipgn eafa  igna
Homgna? it & Fomgngrel + VnigraTe o (5.14)
and
€ fpeg n e f eafn mpgm
Xag = Vaguy? g+ Vgnal i + Vg )t
egfa m eafn mpan eafa mang
_Umﬁﬂnarygtaﬂﬁ _ %U”?ﬂgﬁra;fﬁﬂ _Umﬁg"araﬁﬁfa , (5.15)

which is the final form of the open-shell EOMCCSD equations used in the efficient vectorized

GAMESS code. Once the singly and doubly excited amplitudes defining the EOMCCSD

(CCSD)

& respectively, and the vertical excitation energy wy,

excltation operator, Ti,a and "ab

have been determined by solving Egs. (3.24) (3.25), r,, 0 is calculated a posteriori from the

following expression:

~(CCSD
Tp,0 = <(I)|[H](V,open>

(CCSD) . ,(CCSD) (CCSD)

(R + R,y Dlel®) /w7 (5.16)

5.1.2 Electron-Attached and Ionized Equation-of-Motion Coupled-

Cluster Theories

The key difference between the open-shell EOMCC theory and EA- or IP-EOMCC is the sec-
tor of the Fock space the similarity-transformed Hamiltonian of CCSD is diagonalized within.
As an example, in the IP-EOMCC approaches we diagonalize the similarity-transformed
Hamiltonian obtained in calculations for an N-electron reference system in the sector of

the Fock space corresponding to (N — 1) electrons. Thus, the left-hand sides of the IP-
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EOMCCSD(2h-1p) eigenvalue problem,

are obtained by projecting Eq. (5.17) onto all (®; ﬁ’ (P, ﬁ |, and (P, ba | determinants. In

Zﬁ]ﬂ Zﬂ]
this way the following equations are obtained:
(CCSD 2h-1p) Mo  —€ iam
(@ Zﬁ|( Nopen)RgVom?n) @) = —h Bﬁ R Teg +hmﬂ7’eg ’
~igfa m na —igf m n
bg (CCSD) (2h-1p) B 5 ﬂnﬁ fﬁ igig
<(I)25j5|( N,open RNopen) |(I)> - A25Jﬁ nﬁ bﬁ hb/@ fﬁ

_Zﬂ]ﬂ m —€ﬁja ZﬁmOé
mgh ﬁ—I—AZﬁ]ﬂ mgba e

FAI8 lgms | 17isds  mans
—Aigighygmgres |+ 2hmgngres
1818 [ ipig mpns
~2omng egbs’ g
egfa ipjn mang
~vmgnalo gy (5.19)
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and

(CCSD) p(2h-1p)  Tja B = fo tBJa
< 25‘70‘|( N,open RN,open)C‘(I)> - _h%aarb +hbgrfa

,’Lﬁ mﬁja 725.]04 mﬁ
ﬂ mﬂba
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As in the case of EOMCCSD, the

Hirao-Nakatsuji algorithm [303].
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[P-EOMCCSD(2h-1p) equations are solved using the



Chapter 6

Summary and Concluding Remarks

In this dissertation, we addressed the problem of generating highly accurate potential energy
surfaces (PESs) for reactive processes by introducing and demonstrating the performance of
electronic structure methodologies that can provide a balanced description of chemical species
with varying levels of electronic degeneracy, but are also practical enough to be applied to a
wide range of chemical problems, as well as extrapolation techniques which facilitate the gen-
eration of PESs corresponding to high-level electronic structure calculations in a much more
efficient manner than that offered by conventional and laborious point-wise computations.
In particular, we examined the performance of two classes of coupled-cluster (CC) methods
which are capable of accounting for the diverse electron correlation effects encountered in the
majority of ground- and excited-state PES considerations. The first class of methods con-
sisted of the size-extensive completely renormalized (CR) CC approaches for ground states
and their equation-of-motion (EOM) CC extensions for excited states, in which noniterative

corrections due to higher-order correlation effects are added to the energies obtained with

the standard CC and EOMCC approximations, such as CCSD or EOMCCSD, respectively.
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We showed that the left-eigenstate CR-CC(2,3) and CR-EOMCC(2,3) methods that belong
to this category offer excellent performance for a diverse range of applications, including
a benchmark database of barrier heights for thermochemical kinetics, a pair of bimolecu-
lar association mechanisms involving the ozone molecule, competing intramolecular reaction
mechanisms describing the isomerization of bicyclobutane to butadiene, and the ground- and
excited-state PES cuts for the water molecule. When necessary, corrections for quadruple
excitations were also included via the CR-CC(2,3)4+Q method which usually improved the
performance of the CR-CC(2,3) methods from chemical to sub-chemical accuracies for many
of the studied systems. A new variant of the CR-EOMCC(2,3) method was also presented
and discussed, namely, the J-CR-EOMCC(2,3) approach that can provide a size-intensive
treatment of excitation energies. This method was applied to describe excitation energies
and hydrogen-bonding-induced spectral shifts in complexes of 7-Hydroxyquinoline with con-
siderable success, helping to explain problems with time-dependent density functional theory.
The second class of methods considered here were the active-space variants of the electron
attached (EA) and ionized (IP) EOMCC theories. The EA- and IP-EOMCC approaches
were shown to be an excellent alternative to open-shell CC and EOMCC methods and their
perturbative extensions for describing open-shell molecular systems, providing spin-adapted
results while their active-space variants proved to be extremely efficient, significantly reduc-
ing the costs of the high-level parent EA- and IP-EOMCC approximations without sacrificing
accuracy. We also developed a general strategy for reducing the cost of generating PESs with
correlated electronic structure methods via the concept of correlation energy scaling. In order
to demonstrate typical accuracies one may expect when using the two types of PES extrap-

olation schemes presented here, namely, the single-level and dual-level schemes, a number
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of benchmark applications were presented, such as the previously mentioned bicyclobutane
isomerization and single-bond breaking potential energy curves for the HoO, HCl, and Fo
molecules. The single-level extrapolation schemes were shown to reproduce PESs obtained
in laborious high-level point-by-point computations to within fractions of a millihartree in
most cases, even when used to extrapolate the PES to the CBS-limit. Meanwhile, the dual-
level PES extrapolation schemes were shown to be capable of producing similar accuracies
at a tiny fraction of the computational cost of their single-level analogs. The insensitivity of
the results to the choice of pivot geometry and improvements in accuracy available when a
higher-order base wave function is chosen were also demonstrated. Finally, the development
of new open-shell EOMCCSD and IP-EOMCCSD(2h-1p) computer codes for the GAMESS

software package, along with the corresponding programmable equations, was discussed.
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