:‘y‘l‘ I Tilt“. (:L: .33: We”, "7:. “‘0+IR ‘,¢.‘ \ 3"" .3; ' 7.“ Ju' ‘2‘ '71-. v "\Q’ 3‘5:— ‘43’ in}: «ax-J94?“ It ”3: fi '15“? 'A‘?:.‘ x '4 0- .{T' ' ’ V ‘ r" I' - :71‘3‘5-5 "I’(‘\ ‘f’.'.'_.‘~ M; £1% flfii ‘5," p21?” 7:4i‘71’v, ’32,”: ii. 3.7.1:} I .45 ”' 35', '7 - . - ’ _ \ "J..~z:“_r£ .,. R14” L" .x‘: ‘kéf‘nlrl’: ‘5‘:- K =':‘:i’?| 3:1?) ' of”! .r 'T,'.‘5?"V‘" .. Z-‘rgg‘og‘ikfi "5' «74¢ m’ 1.. . "I}'_ . , '25'5}; V :0“ 0", ‘ 3‘. - ,w; t'L 5 ‘2‘ n) ‘IVIIIBE J v' . ‘I ~ “z‘i‘jl'flr‘n 73‘ ‘ - - .fifu . . " 'I’fifé-L. 3‘5“} "‘?3 \‘q‘l “If ' I ‘5‘:th $.43: I ' ' .0“. I V n ‘3” L. ' 5‘ _ ‘5‘, {:4‘ ‘ h ,1 A. ‘:.VI.‘T ?‘h.«;.~_lg~h-}}‘\:,;;|’ J ha\' 4: A M, $ ' '- :32?" V‘5_"L' I '0' _ A ’5' : 5‘33 . . I‘ ‘ . (CV)! ’4' . . l W; )7 ' KT! 3:2. l 33")"1. ! L‘c 5;? . .. .33!" :3 t x ' 0 §"‘ ' I ":3: ‘ . .. I‘fi. L '- ‘ 5.”;ng 1147 @575 1-”‘ {'v‘l‘iu . “K‘s: . “‘6‘; 3.:; “h {$~o; ‘9”‘3' l“ R:: ‘.\ t a. "i ”If? ”fl V'; ”-r "-~ ‘l‘ic‘t. ' p a . "/1: ‘ c o ‘v :' ‘~ '1';n( 3?.0“. " {V “I ‘o _ “752.532; “:39“: Y' c3. {‘2}: 1,;‘3‘7‘. £?V\u “J. .’ “3“”3. “ 5 n.‘~. f ‘f "5 ‘ \r V‘ ‘Jh'q: .. I I k m .,~'V.~v .4? “n 2‘3‘0’ ”12.. .~":’ “‘9'“: . C . v N “0‘7" ff? (‘5’ '7 b’ 7““? 634$h‘?,1 55': v fi’v“. ’54‘§$§ ..~ '-;~-' 5,; 2,3? 0 ‘ .5. .t.‘:~.’ u , :‘V ‘W .. 335w. “a ' - ,. - <5. Lyra-"‘1‘!” .. .1 O s. , .., i."- O," 37. t‘ I ‘7 IS‘ (I V . w .H’fl."*.r Q~_“o :943‘7"‘- :33» " “was. :‘r..;z.‘. , z'ffilfil \-' O 5..'& 'o "A. ' I o, '\‘. «b m.-. «a, -~.._ v. . «um, 42-» ‘0 ‘~. (4- ' ~ U.- ‘I 0‘.“l}} g c ‘ \ . b ‘ - w ‘5‘,- . . . .V‘. W. R , -- 7 “ma-“:3mm8%“ '0‘”, R .- :f’tl’l‘." - w . "02:" L53?” .‘ w ._}o . . -\ -‘- . _ I ‘Q‘ “N ”1-,. l -:.O~\‘~l‘.‘l I\‘_. ‘51.“? {'5 ‘1; .- 0 " IIIIIWIWWIWII 3 1293 00991 2613 PLACE IN RETURN Box to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. ‘ .'. v leg-#2:“? . 0 ‘ fifi-‘iw 15’me {j Sci; ‘1 ¥ 'flidkfi'ft‘.‘ 4‘4“” F 2r :*$ ear“ ' . 17". a 13,715},- -‘..' '1'; r J is A o v a - z" :r 1;» _ ‘I ‘ ”I - I - at.‘ ~ ow. . :. ' x .. r . .-' -'v -. O ‘1 < . K t‘f’! '99? . ’,' ' ‘vll_ . 'v- ’ ‘ , g. I -~ ‘1 v .‘. . 6 EL , I. 2']; . . {:1 ’o 9].; V-A . we - . I “3&1”; A .3; .‘ - .t DEV-T . sat-13¢ '3‘, ._w. W 0 VJ 3-,]. -. 4" - ("-135 tr" 4-2:? ,#~if""' 3‘ l‘ I4- .I . ' .3- - a 5". O ’S . - . h . o t A - a - ' ,_ A' . ‘ ‘y.’ ._. - . ' .’- U . ‘— ‘ - - - . A . . ' o , - . ‘- “ -‘ -' ‘ - A . . -' .' . _ ~ ‘ . < ' ' -. ~ .— _ 1.}. . - ‘ A4. .' ' " ‘ ~ - .3. ~ _ n ' ‘ " ' -‘ ‘ - . . ' ' . ' " - ' '- . . ' .‘ n. ‘ .. C A ' " ‘ . - . ‘-: ' I r , . 4 ‘_ .v‘ ; .' .A ._ - .I_. 7‘ .r . v , 3. ' ‘ . .. . _. . . “1 , , ~ - . g . . _. - . A. - _ .'. - . .u . _ . . ~, A—-~,, ‘. « - . ,._ .. ' " -. ~. :.‘ v. < -: "- .‘ _ - - .-- _ - «- - . . . ‘ . I-‘ .‘_ - . . —'_ -‘ , . '. ‘ ' . f"- v‘- r 4 >1: ‘ - -'_" ’ - ' I A . ' _ ‘ -- ‘ .n ‘. ' .. ‘. c - ' ‘ ' ru' ‘ ’ ‘ ‘ ' A ~ - .__. . . I . A ~ ‘.. ., .. _-.. .‘_ _ . r“ g, _, - v . ~ _. . .’ . - . . . . . ‘ fi‘. ._ , . ~ _~- .. A‘ . . u > . _ __ . . . .. . ‘ . . _ , ‘_ . , ‘_. , ‘( - ' -‘ l‘ r ' , ' ' — - - ' ‘ a ‘. 1" ~ 'd t- - ' I . ' - . n " - ' -:. ' g - . < , - ‘ r‘ ' , — . __ . . . _ .. . ‘. - . . _., _ . _ _ . _. '.: .-~ ,.0 . gr ‘ v A. ‘ M?- v . - I ._~ . z“ i. 1’ _. . -:, , fl. . 4 . V . r. - . . . .‘ A . ‘,k . _¢r’~ ‘ ._. , . - . .. - . — A ; ~ . a v ._u - ' . . - .- . ~ - . L. - w . n . . _ _ , < . . , c ‘ .. _ I A . n I 1 -- -.~ U. ‘3‘" :i‘ .4; 9 .m' 0 fl,- \: u . w \. 'k '1"; 4. )1- g), ‘05 .- r m I I“ ‘. J)— .- n : fa 1:4; . ' A'-".. . ‘." . ‘1' . Wu 1‘ :A';"I . c 3.»? w .r‘ A. A. ..' ' t'.-q ' 'f. - fl. 0". l‘ I .r-u“ ' ‘ 4.. a}? . A . éx. , '1': '_ y. .‘ x x ' ,‘xo. r“. _ y'\~(., 7 7:; 53;»1'1“? ‘- ' o .I" LL} 1"fl: _ "v" U I - .l . |.4. . . A,‘ ‘ J) b 21¢. . -. .'9 ~ . '.. - ‘ .. .‘J .d‘V.'1':rl.' " A‘-‘ ‘ o - ‘_ t‘. -§.‘.- ft.‘!¢": 3. Hz ‘_ \ ‘ 95 a "1. " Qataiv‘.’ “J,“Y‘TI‘ 1 Lb‘ l.’ .10. I“ {ll}, ‘ 1‘; _ V/ OVA ' A N . h . A . "\ ' ,’." .‘ ‘-_. Ft?" ‘7 I .. -i v,» V! '. ' I..r )rlTn‘mc’.' .155...“ 3;”:- f4 ‘ .II~‘ ”$4.5“: '7 v’hx"-o ‘1 ~ Ltd- <5: t_ I ‘- ...,A h. ‘ "if": ,;-<';‘“fi-.:'a:f I ; ' "h; . ..' 3“ I I“. n ‘_ {.'.| I. ‘ ' ._ ~'.; .3 v' -‘ 'rd: ,. -' . f I . . ,w. .. I .‘ . £55.! .I'.’ S ‘, H“ ”I ‘ 1,11%;4.‘ {MN-fl L" t'l' « I“ A '1» ‘34 '7 "‘ ‘. .. .. V}. 8' -.' x 1’?!" - 7 ; :2" f.‘ + h 7 I I . ‘W‘VD ..'.34. f. “'w‘ny‘ i I ' .' r a» 3k. may- ' . .' A!" Iw'flh, “5‘8"??- , C up :17). P .. $21!.” '.\.' ‘I\ fil ‘. .-’4 a -.'|n‘ .’~' ...-~.l‘ ‘ “. a)“: f-‘fii's'rf 5". m ‘5 axing?) It"; -1 ~ ‘& ‘ IA 511;" 3.. 1. ' ..,I_) ',. f ‘ I0 3’.”".¥‘L ‘. " ‘vd .’ .I‘.‘) J“ 2 -_ ‘ ""57 a I’ T. , ‘4- "lil; ‘ '\ ' . t“ J" ‘1‘: V .. .fif‘ . .17.. A‘, 'r ‘ ~ I. ,O “I (:K'n.l.."'- .K' v > 'MI. ’[ , "r .1". ‘ 2'1. 1. ' Iv~f~lD L1" } a .- V - '_I P . w» I '- . :g'”.:'4..‘ 1'3" ' ‘r’lgji.,‘. , . . - ’9' ' . , (5 ~J:_ - 0.3” I ... q .‘f’ywfi j I ‘n‘. .‘> '- _ w -.- "I ;-h‘«" ‘.;-.‘ , . th _ '. 1““ a 2.:- x c- ‘ 3v- I" A' '9’ , “‘0' " Design of a Counterfort Retaining Wall along Red Cedar River, East Lansing, Michigan. A Thesis Submitted to The Faculty of Michigan State College of Agriculture and Applied Soience BY Philip H. ggderson Candidate for the Degree of Bachelor of Science June 1930. m was a. fflI‘I‘iun ,. o.‘ I _ ', ' . «‘Q‘ fir g' f '. ' 5' a g .. - s y .4 ‘_ '1'! a .fi > . J ‘0; i 5 9*" an. N , ' ( Sam ; The writer wishes to acknowledge his indebted- ness to Mr. C. A. Miller, professor of Civil Engineer- ing at Michigan State College, for his able assist- ance and advice thruout this work, and to Michigan State Highway Department for material and valuable information. Philip H. Anderson. 9377'? BIBLIOGPlPHY American Highway Engineers Handbook Arthur Blanchard author Reinforced Concrete Construction George A. Hoel author Cyclopedia of Civil Engineering Vol. VI American Technical Society The protection of property from damage by floods has always been one of primary importance. The site chosen for this design is located on the out- -skirts of East Lansing at the intersection of the Red Cedar River and Harrison Road. In the mid summer this land is comparitively dry, but in the early spring the Red Cedar rises above its banks and floods the area. The difference in the extreme High Water level and the normal water level is approximately 10 feet. This difference provides an excellent opportunity for study of the variations of the resultant pressures and the subsequent reversal of stresses. In this particular case the following sketch shows the variation in pressures. \ '—l 6&vwwu’iJWHGTr _J£:Akuwnw’IMhfiv-J@Wa/ 1 a; ‘— xtfzflmr 427%! Héflkr kns/ This design was made adequate to provide safety in both cases and is found necessary to deViate from the minimum allowable dimensions in several cases to produce a satis- factory design. The site was surveyed and countours run. A log of Borings was obtained from the State Highway Department and are shown together with a Topographical map on Sheet No. l in the back folder of this book. Profiles were taien at intervals of important changes in contour. From this data a height of 21 feet was con- sidered necessary as determined on-the profile map marked Sheet No. 2. The counterforted type of wall was chosen, since the height exceeded 20 feet and results show that this type is more economical when the height is greater than 20 feet. A value of‘t equals .42 was selected with an assumed weight of 35 andha design was worked out. The Resultant pressure failed to pass within the middle tnird and these.' values were discarded. After several trials value of t equals 10' h equals 21' were found to satisfy the condition and were used. A value of 30“ was assumed for the thickness of the footing, which was later found to be high and a correction was made in the next trial. “ "—1!" — fiffizfiuiifigwtrflvfinw s hwr/ ? e w ~. _— " 'e .— A/ormo/ arr/#0- /!V(/ .11. _i ‘ TV 49'- a' L ’9, Verticle Wall W due to earth equals 25# W due to earth & water equals (62.4 - 25) equals 37.4# Verticle.flall The pressure at a depth of 16.5' is wh. equals 37.4 x 18.5 wh equals 730# The counterforts are spread 8' apart 0 - c with a thickness of 16“. Clear Span equals 8-1.35 equals 6.67' M equals 1/10 wlav equals 750/10 1 (6.67?” equals 3242# per ft. of width d equals \fi7bi equals V32427107T7 equals 5.71 For Shear--— V equals 730 (4 - .6?) equals 2430 d equals V/vbj equals 2430/(40)(.874).(12) equals 5.75 or 5” The minimum allowable d to allow for plaCing of the steel is 12”. It was found advisable to use 14' here. Assume 1/2" round bars spaced 4' on centers. A equals p d b A, equals (.0077) (12) (5.78) equals .535 u equals V/eoad equals 2450/12t4 x (1.571) X (.874) (5.78) equals 102# Since a bond stress of 102# is too high the spacngg was decreased to 5' u equals 2430 l 1.5 .8 .78 equals 76# v equals V equals 2430 equals 40# 533 IZI-873(5-587 For Outer Steel: wh equals 25 X 18.5 equals 487# M equals 1 x 48? 1:46.07)? equals 213236;E 10 d equals1‘2132 equals 4.45 157.7 A, equals p d b equals (.0077) 12 (4.45) equals .4l Use 1/2' round bars Spaced 5 1/2" c - c Spac1ng of Steel: Inner Wall, at Quarter Point equals 4 x 4/3 equals 5.33" at one-half point equals 4 X 4/2 equals 8.“ Outer Wall at Quarter Pt. equals 5 l/2 X 4/3 equals 7.53" at One-half Pt. equals 5 1/2 x 2 equals ll" Dealgn 9;.gqggygg; (High Water) To determine total pressure on Base. wt. of Earth squall (18.5 x 5.09 x 100) equals 9425 ' ” Stem " (1.165 X 18.5 X 150) ” 3230 ' “ Footing " (10 x 2.50 x 150) n 3750 . . Water " (62.4 x 15.5 x 2.75) I 2660 15075“ r equals (9425 x 2.54) plus£3230 i 6.67) plus (3750 x 5) plus 2660 g 8.63) ldU'I'D r equals 85250 equals 4.72 18075 To Find where Resultant Pressure Acts: P (earth) equals 112 wdpequals l/2.25.(21)yequals 5520 P (water) equals 1/2 whrequals 1/2 62.4 X Sgrequals 10100# Pr equals 10100 equals 5520 equals 4580# 1 equals 5520 X 7 - lOlUQfiX 6 ecuals 5.22 r 450v 1 equals 4580 equals 1.3 5.22 18575 X0 equals (5.00 ~ 4.72) plus 1.3 equals 1.58 P equals 18075 (1 plus ‘6) (1.58; equals 1807 plus 1720 equals 3527# Pb equals 1807 - 1720 equals 87# {It L l r2~ffi4pam¢ l nWh/fvmd/gykw Safety Factors: Sliding equals 18075 X .5 equals 1.9 4580 Overturning equals 4.72 equals 2.5 4.72:3.42 Pressures for Normal Water level: Wt. of Earth equals (18.5 x 5.09 x 100) equals 9425 “ ' Stem ' (1.165 X 18.5 X 150) ” 3230 " " Footing . (10 x 2.50 x 150) N 3750 ” ” Water ” (2.75 X 62.4 X 5.5) “ 945 17550 r equals (Q425X2L54)p1us(3230X8.67)plu§(3750§5)plus(945X8.65) 17350 r equals 70500 equals 4.05 17350 To Find where Resultant Pressure Acts: P (earth) equals 3 . 25 X (21)*Equals 5520 P (water) equals 3 . 62.4 X 8yequals 2000 R equals 5520 - 2000 equals 3520 Xr equals 5520 X 7 - 2000 X 2.66 equals 9.45 3520 1 equals 3520 9.45 17350 1 equals 1.92 Xo equals (4.05 plus 1.92) - 5.00 equals .97 p equals 17350 $1 plus .97 x 6; a 15 lo equals 1735 - 1010 equals 725# Pb equals 1735 plus 1010 equals 2745# %g 445' “ I ll‘ A ' 1d? Ali/palvf '97 1”Wm-of pal/If Pressures on Base in both Cases. H1 gh Water. .1“ . I . x ‘37 3527 Normal Water. 41 725 .27vs”‘ Inner Floor Slab. The decrease in load per foot is 725 plus 931 equals 828# Uniform load on end Step equals 1850 plus 375 - 828# equals 1397* Max. Bending Moment equals (1397) x (6.67f”equale 6220# 10 d equals V6220 equals 5.8“ 157 7 For Shear. v equals 1397 (9.00 - 67) equals 4700# d equals 470 equals lb“ plus or 16“ Total depth equals 16 plus 3 equals 19" X equals 1? equals 6220 equals 27.6 de 15 P equals 27.6 equals .00194 ' Xea A8 equals (.00194)(l2)(15) enuals .342 sq. in. Use & in. round bars spaced 12' center to center SpaCing over Supports equals (80)(12)(2.36)(.87)(l5) 4700 8 equals 6.3 or 6.5 decrease in load per foot equals 2745 -725 equals.202# At 2 feet from End: 10 Top Spacing equals 6 Xfil§97 equals 6.3 or 6.5" Bottom Spacing equalslééX 6.5 equals 13' At 4 feet from end: TOP SpaCing equals 6 X 1397 equals 12.2 or 12.5” 6§8 Bottom Spacing equals 12.5 X 2 equals 25“ - 18“ equal Max. P equals .44 equals .0049, 3 equals .894 x :8 equals feazogsiz) r equals [Adam .0 4 .5 28-) 74600 equals 6320# 1182 2; equals 6320 X .75 equals 14.8 or 15" 4n 4 X 80 length of Embedment equals 15" v equals 4700 equals 4700 equals (12)(.894)(15) 161 29.2# Outer Cantilever: Wt. of Wall equals 2.75 X 150 X 2.5 equals 1030# " ' Water “ 945# Total 1975* distance to c. g. equals 2.75 (2.(2189) plus 2745) equals 1.43 4934 M equals (2.467)(2.75)(1.43) (2.75)(2.5)(150)p1us 94511.375 d equals V7100 equals 8' plus 157.? Sheer equals (3075)(3.75)-(2.75 X 2.5) X 150 5700 - 568 equals 5132 d equals 813 equals 16" (12)(30)(.87) Total equals 16 plus 3 equals 19” Use &' round bars spaced 12' center to center. P equals :44 equals .0040 3 equals .999 6 X 15 ' u equals 132 equals 76* _§, 2.3 .899 6 6 F8 equals 7100 X 12 equals 7700* 1004 .699 .256 12 . Length of embedment of Steel: §;_equals 7700 75 equals 18' u 4.80 Design of Counterfort. Horizontal force transmitted equals fi(25)(18.5?¢8 equals 34200# M equals 34,200 218.5; 12 equals 2,540,000'# 3 I equals 2 540 0 0 equals 34.6 16(5.65)¢.(12)"‘ P equals .0024? AB equals (I.65)(12)(16)(.00247) equals 2.68 Use 4— 1 inch buss Spaced 3% c - c Moment at 14' below top 4(25)(i4)Vx 6 equals 19600 M equals 19600 (ls/3) x 6 equals 1,090,000 in lbs. Moment at 7' below tau %(25)(49)(S) equals 4900 M equals 4900 (8/3) 12 equals 15700 in lbs. At 14' below top .5: . K equals equals 25.8 Rigid P equals .0018 At 7' below top K equals 15700 equals 6.90 16(3.13)V(12) Rigid P equals .0005 2 rods carried above 14' point 2 rods carried above 7' point Pl equals 1°7851 .2 equals .0020 15(4.28)(12 P2 equals _L-7851 .2 equals .0025 ‘15(3.13)(12) These rods may be stopped as clanned. Horizontal Steel: Shear on 1 ft. in height. V equals 25 X (18.5)(6.67) equals 3080 assume 1/2" round bars. No. per one it. ht. equals 3080 equals .97 or 1 16000 X .196 Spacing at Foating equals (122(2) equals 24" l Spacing at 10' point V equals (25)(10)(6.67) equals 1670 No. per one ft. ht. equals 1670 equals .55 16000 X .196 Spacing equals 12 X 2 equals 43" 035 Max. spacing is 24" Verticle Steel: V equals (l397)(6.67) equals 9320# Use 5/8" round bars No. per ft. ht. equals 9320 equals 1.9 or 2 16000 . .306 0’) O on O H s :3 r 1o a equals 12 X 2 equals 12" 2 329 °trip v equals 9320 - (3 x 828) equals 6836 No. per ft. ht. equals 6836 equals 1.3 T6000 . 306 Spacing equals 12.2 equals 18" 1.3 412 Strip v equals 9320 - (4 x 828) equals 6000 No. equals 6008 equals 1.2 16000 X 306 Spacing equals 24 equals 20" 1.2 532 Strip V equals 9320 - (5 X 828) equals 5180 No. equals 5180 equals 1.05 16000 X 306 9135101113 .. ~ 24-- r: 22.4" 1.05 Amount of steel for one Bay & Counterfort. Footing. 1r — 2” round bars - 8' a 188 lin. ft. 16 — 3" " " -3'1o"g_62 lin. ft, .Z- Wall — Horizontal 74 - 1" round bars - 8'0" 2 Verticle 3 - 1" round bars —20'l" 9 2 q _ an H H w "1”" E Counterfort 2 — 1" round bars —25' 2 fl 1" H H “20. Verticle 2 -§" round bars -5' 2 -§" H H "8.6" 2 _n n u n “1396" 2 -H H H H “18' Horizontal 2 - 1" round bars ~6'2" 2 ‘- ICEH II N “5'8" 2 a "H H H “5'0" 190 X 1.5 ~592 lln. 62 -41 an. 40 H . I = 285* ft.X.67= 396" " Xl.5= 62? _§5‘X 2.67 = 240% ~27 76 __z._ . 90 X 1.04 : 94a R) R) [0 f0 [‘0 PO oon't. 1" round bars H H H H H H -4'3" —4'2" ~3'6" -2'8" -2'3" —1'6" ~1'o" H 6‘ I") 74 X .67 3 59% Total 3 1169# ‘ Sne 3t No. III shows a detailed drawing of one bay and coun tcrf art. This drawing shows the spacing and arrang3ment of the steel reinforcement. *3 ications used in design were 2003? ml, Ine speci concrete, n: 15 , f: 16000 , f: 650 , k: 107.7 . In assuming 3 = .42 a reference was made to Trantwine's tables vhich was the basis of this assumntmon, however HGV ral trials showed that this ratio voild not hold in this case due to the effect of the water pressure on the outside 0 of the vm all. The method of finding the corre t ratio th at vould make the resul ant pressures pass thru the third point was therefore one of trial and error and considerable time was spent in this manner. ICHIGRN STRTE UNIV. LIBRRRIES III II llll 1 312930099 2 llllll |l||| ' 6 13