THE Ramon OF MEAN NEEDLE-SIZE _ l' - AND THE 3:25 DISTRIBUTION To ; nwruszow 0F ACETONE VAPOR - THROUGH: MR. IN A PACKED WWW ----- _.Thesisf3rthefiegree arm‘s; _-'~ . - meat-m STATE uxrmsm , . WWHPAQUE!’ I "1974 '§1_ f. L g .V i l V .VI «.3. . .. a 4. x. . .1 7|. . u." III. I w. I .I. . hm. ' y‘. ' all rig I r\. . C 1‘ I M L gm 7 If W?! 7/ w, ‘I/flgfflii SIS ("15 L; nivcrsxty (.1 and amp!“ 9"“ Hm & my mm mm ms. ABSTRACT THE RELATION OF MEAN PARTICLE SIZE AND THE SIZE DISTRIBUTION TO DIFFUSION OF ACETONE VAPOR THROUGH AIR IN A PACKED COLUMN By Andrew N. Paquet The subject of diffusion of one vapor through another as occurring in a packed column or porous media is a very important area in many fields of science and engineering. One of these areas is in the field of soil science. In the soil many physico—chemical mechanisms occur, but one of special interest to this study is the rate of transfer of gaseous components. How these gases transfer helps determine the biological activity which will occur in the soil. This in turn determines uses of the soil by man. The purpose of this study was to determine diffusion rates of gases through air in a porous media. More speci- fically, it was of interest to study the affect of the size distribution of particles comprising the porous matrix in relation to the diffusion rate through the matrix. The experiments were conducted in glass columns packed with spherical glass beads of various sizes. Tests were conducted to determine the mean size and standard deviation Andrew N. Paquet of the particle mixtures, the porosity, and the tortuousity of the bed. The procedure was initiated by running tests in empty columns so as to be sure that the literature (accepted) value of a diffusion coefficient for a particular vapor—air system could be obtained. The system under study in this work was acetone vapor diffusing through air. Acetone was metered into the glass columns and in a given period of time the amount that had evaporated could be measured by use of a calibrated pipet. This allowed for the calculation of the flux of acetone vapor for a given diffusion length. By using the ideal gas law, which approximately describes the behavior of the vapor-air mixture, and correcting for experi- mental temperature and pressure the diffusion coefficient could be obtained. All experiments were conducted in an environmental control chamber to facilitate constant experi- mental conditions. The results of this study show that the particle distribution does affect the tortuousity of the porous matrix. However, a clear affect on the porosity by the particle distribution was not discerned. In regards to the above findings it can be stated that the particle distribution does affect the rate of diffusion of acetone in air through the packed bed. That is, as the distribution of particle sizes becomes narrower the path becomes less tortuous. This, in turn, results in an increased diffusion rate (higher diffusion coefficient). THE RELATION OF MEAN PARTICLE SIZE AND THE SIZE DISTRIBUTION TO DIFFUSION OF ACETONE VAPOR THROUGH AIR IN A PACKED COLUMN By Andrew N. Paquet A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Chemical Engineering 1974 To ii Jan ACKNOWLEDGEMENTS I would like to express my appreciation to all those persons who showed interest and gave assistance to me in my work when it was requested. Included among the people are Dr. D. K. Anderson, Paul Husted, and Roger Hinson. Special appreciation is extended to my graduate advisor Dr. George Coulman whose assistance, interest, and friend- ship made this work easier and enjoyable. I can not thank him enough. Lastly, I would like it to be recognized that financial assistance from National Science Foundation Grant GI-2O made this study possible. 111 TABLE OF CONTENTS Page DEDICATION . . . . . . . . . . . . . . . 11 ACKNOWLEDGEMENTS . . . . . . . . . . . . . iii LIST OF TABLES. . . . . . . . . . . . . . Vi LIST OF FIGURES . . . . . . . . . . . . . Vii INTRODUCTION . . . . . . . . . . . . . . 1 BACKGROUND . 3 Tortuousity - 6 Porosity . 7 EXPERIMENTAL METHODS AND APPARATUS . 9 RESULTS AND DISCUSSION . . . . . . . . . . . 20 SUMMARY AND CONCLUSIONS. . . . . . . . . . . 30 RECOMMENDATIONS . . . . . . . . . . . . . 31 BIBLIOGRAPHY . . . . . . . . . . . . . . 32 APPENDIX A (General References) . . . . . . . . 33 APPENDIX B . . . . . . . . . . . . . . . 3U APPENDIX C . . . . . . , . , . , . , , , 36 iv LIST OF TABLES Table Page 1. Experimental Results for Diffusion of Acetone in Air in an Empty Column . . . . 22 2. Experimental Results for Diffusion of Acetone in Air in a Packed Column . . . . 23 3. Comparison of Tortuousity with Increasing Size Distribution Range . . . . . . . 2A A. Dimensions of the Glass Columns. . 3U LIST OF FIGURES Figure Page 1. Experimental Apparatus, . 18 2. Determination.afAcetone Level in Pipet . . l9 3. Illustrative Diagram of Read Size Distributions for Four Bead Mixtures . . . 25 vi INTRODUCTION The subject of diffusion through a porous media plays a fundamental role in many areas of science and engineering. This subject has been investigated by many people in the past. However, certain aspects of this area of study either remain unexplored or, if information is available, obscure. One particular application of the subject of diffusion in a porous media is in the field of soil mechanics. In view of the recent concern for environmental control and pollution abatement, means for proper disposal and assimula- tion of human and animal body wastes into natural systems is of growing concern. One means of processing this waste and simultaneously deriving economic benefit is by spray irrigation. This involves applying the waste to a given area ofland and taking advantage of natural processes, within the soil for decomposition and assimilation of the waste. To dothis optimally requires a thorough understanding of the biological and physical mechanisms involved. The research that was undertaken deals with a small part of the physical mechanisms that occur in the soil. In order to understand optimal use of the soil for waste disposal and assimilation, it is necessary to have information about gas exchange rates. This gas exchange occurs both within the soil and at the soil-atmosphere interface. The gas 1 exchange rates involve the diffusion of the gas through a media, and the physical structure of the media. In light of this, the following study was undertaken to investigate the relationship of the particle size and the particle size distribution to diffusion of a vapor through a packed column. Furthermore, it was desired to provide useful information for use in a mechanistic mathe- matical model to optimally describe spray irrigation procsses. To obtain the desired information, the porosity and tortuousity of the packing were needed. These were inde- pendently obtained experimentally. Furthermore, the tortuousity of the porous media (packing) was related to the experimentally obtained diffusion coefficient (effective). The relationship between tortuousity and the diffusion coefficient was derived by use of the law of conservation of mass. Bear (1) gives the following expression: .. "I ‘ - 30A _ 3((DABTL1_’(apA/3fi( I 3x. 4 Q) where DAB is the diffusion coefficient for a binary gas system through an empty column. In the following pages background information for this study is presented, followed by a description of the methods used to obtain experimental data. The experimental results are then presented and discussed. BACKGROUND In describing mass transfer processes in a porous media, one naturally relies upon the equation of mass conservation to describe, in mathematical terms, the physical process that is occurring. When this is done, it is readily seen that a term called the tortuousity is present. Bear (1) developed the conservation of mass equation for a porous medium. In his development, he assumed that the media was isotropic and that the porosity was constant. The following was his result: -*- -- 36A 3[(DL'*DABTL1 )apA/ax. 8(pAV£)] = J L, _ ._m____ 32 3x. 8x. 4 L _ t -u where DABTij EDAB is the "coefficient of molecular diffusion t in a porous medium," and fij is the medium's tortuousity. Notice that for a fixed DAB the value of DAB will decrease as the diffusion path becomes more tortuous. This requires fij‘ ("tortuousity") to decrease as the path becomes more tortuous. Furthermore, if there is no bulk mechanical motion, the coefficient of mechanical dispersion, D. Lf’ is equal to zero. Also, under these conditions Pi is equal to zero. Consequently, the equation describing diffusion in the porous media reduces to: - - I - 335 _ atthBTij )(apA/axj)1 at 3x. L The concept of tortuousity involves the concept of a matrix whose components are the products of cosines of angles between the directioncn‘the streamlines of flow. It can therefore be expressed in terms of a coordinate system. Furthermore, the tortuousity can be interpreted as a characteristic path length formed by the connection of porous spaces in which diffusion occurs. In determining the tortuousity of a porous media, it is helpful to express the transport phenomena occurring in this process in terms of fluxes as defined by Fick. For the problem at hand, concern iscflfld'with a single fluid saturat- ing the porous media. It is assumed that transport does not take place in the solid phase. Furthermore, there are no interactions in the form of ion exchange, adsorption, etc., occurring between the constituents of the solid packing and the saturating fluid. Therefore for a homogenous fluid (5A = constant) at rest (9:0), taking the above conditions into consideration, the diffusive mass flux with respect to mass average velocity can be expressed as: t j = -Dd-gnad DA or, in terms of per unit area of porous media, +* it - _I Q = n] = -nDdT - gnad pA = -nDd-gaad pA’ - 1 Therefore, nDd =nDd _t The quantity Dd is defined as the 2* T coefficient of molecular diffusion in a porous medium. If Dd is known, which in general it is (or can be determined), _¢ and Dd can be experimentally obtained, it is readily seen it how T , the medium's tortuousity, can be acquired. The diffusion coefficient, D is the diffusion coefficient d’ for a binary gas system obtained by diffusion of one gas through a stagnant layer of another gas. This involves the use of Fick's first law of diffusion through a stagnant gas film. The theoretical discussion and mathematical expressions are developed in numerous books and articles; the following is from Bird, et al. (2). The most useful expression being the following: ‘pDAB/RT’ P32 N _ Kn [ 1 AZ z=z ‘22 21’ 75—3—1 I (vaB/RT) P (12-2,)(P (PAI’ A2) B’zn This form, as can be seen, allows for the determination of Dd=DAB, the diffusion coefficient, by measuring the flux, the diffusion path length, and the particle pressures of the binary components (ref. Lee and Wilke). The partial pressures can be determined by temperature measurements. The diffusion path length should remain constant as a theoretical consid- eration. However, by assuming a quasi-steady state condition, and using an average of the initial and final lengths, the problem of a changing diffusion path length can be circum- vented. The flux can be determined experimentally by utilizing a vessel of constant dimensions and (determining by measurement) the amount of substance that has evaporated or diffused out of the column. Tortuousigy The following explanation may be helpful in understand- ing how tortuousity is related to the distribution of particle sizes. The tortuousity is an indication of the effective length along which diffusion occurs. This effective length is caused by the manner in which the individual beads pack themselves, or in other words, the geometry of the packing. Furthermore, it is felt by this author, that this geometry is related to the mean size of the beads (also, ref. Brown (5)). Between the beads, pores occur (through) which the vapor diffuses. When the beads are of various sizes, smaller beads can occupy the porous spaces between larger beads. This in turn causes the vapor to take a more "tortuous" path as it diffuses through a porous media. If the distribution of particle sizes is broad, i.e. the standard deviation is fairly large, there is a greater chance of smaller beads occupying the space between larger beads. This will act to form a more tortuous path. Also, it may be that this situation results in a smaller porosity for the packing. As a result of the definition of I‘, it will decrease in value as the path becomes more tortuous. Porosity Porosity, as defined by Bear (1), Bird, et al. (2), and many others, is the ratio of the volume of the void space (Vv) to the bulk volume (VB) of a porous medium: VU (I-VS) €=VE=__VB___ where epsilon is the porosity and Us is the volume of the solids contained in the bulk volume. As can be seen, the porosity is a dimensionless quantity and is expressed as a percentage. In a porous medium, the pores may be inter- connected or not. In regards to flow through a porous media, only interconnected pores are of interest. Therefore, the measurement of an effective porosity is desirable because the fraction of interconnected pore volume is mea- sured. The porosity of unconsolidated materails depends on thepacking of the particles, their shape, arrangement, and the size distribution. The particle size distribution affects the porosity in that smaller particles may occupy the pores formed by the larger particles. This may act to reduce the porosity. Porosity may vary with depth into a column due to compaction from the weight of the material above. For short distances, though, this effect is small. The measurement of porosity can be done directly by measuring thevolume displacement of water by the beads, or by dividing the weight of the beads by their density. In previous work on diffusion in porous media, many investigators found various relationships between the porosity of the medium and the diffusion coefficient. Smith and Brown (1933), in working with a COZ—air-soil system, according to Linvill report a linear relationship between the porosity of the soil and the diffusion coefficient of the gases diffusing in the soil. Linvill also reports that Penman (19M0) also found a linear relation- ship. For separate runs with C02, C82, and acetone where the porosity of the medium ranges from 0.0-0.7 Penman reports the expression D'/vd = 0.665. Linvill (1969); however, found that the ratio bd/vd' or that the diffusion coefficient, varied exponentially with porosity. He worked with an OZ-air—soil system. The form of his relationship is bd/Dd = aeb, where a and b are experimentally obtained constants. Actual values of porosities for various types of packing materials with different geometrical structures are given in Brown (5). For spheres (spherecity = 1.0), the porosities range from 0.38—0.A7. Glass spheres (spherecity = 1.0) are reported to have a porosity of about 0.41. This same reference indicates that porosity may vary with the diameter of the particles comprising the packing. EXPERIMENTAL PROCEDURE AND APPARATUS The experimental procedure and apparatus used in this study was quite similar to that employed by other investigators in obtaining vapor phase diffusion coefficients (ref. Lee and Wilke; Stefan; McMurtie and Keyes). The experimental work was separated into two phases. The first phase being conducted in empty columns while the second phase employed packed columns. In the first phase of experimentation, the method con- sisted of having a liquid contained in the bottom of a vertical tube. This liquid was allowed to evaporate and its vapor to pass up the length of the empty column. At the tube opening, another gas (air) was passed by at a sufficient rate to keep the partial pressure of the vapor at a level corresponding to theinitial composition of the gas. In the case where the gas is vapor free, this initial composition is zero. The diffusion coefficient can then be determined by the rate at which a given quantity of vapor has passed out of the apparatus. The variables to consider in this method were the temperature at which the experiment was conducted, the ambient pressure, the flow rate of air passing over the tube Opening, and the diffusion path length (as related to the 10 air flow rate, and also the falling off of the liquid level as a result of evaporation). Temperature affects the rate of evaporation. If the vapor behaves ideally, then there is a linear relationship between the rate of evaporation and temperature. It is desirable to maintain a constant temperature if a constant evaporation rate (or flux) is desired. Pressure also affects the rate of evaporation for a well behaved vapor. A higher pressure will result in less vapor, and vice versa. Consequently, it is desired to maintain constant pressure during the experiment, or to isolate it from other factors and measure evaporation with changing pressure. The flow rate of air passed by the tube opening facili- tated the removal of vapor as it arrived there. It also allowed for the maintanance of a concentration difference from the liquid level at the bottom of the tube to the tube opening. With no concentration difference there would be no evaporation. However, the rate of evaporation can be affected if the air flow rate is too great or too small. This affect is manifested in the actual diffusion path length. If the air flow rate is too great, turbulence occurs at the tube opening with the result being a shortening of the actual diffusion path length. The opposite affect occurs if the air flow rate is too low (ref. Lee and Wilke). 11 A further problem with the diffusion path length vary- ing was encountered due to the evaporation of the liquid. As the liquid evaporated, the liquid level dropped. Since it is desirable to maintain the liquid level at a constant position, a means to do just that was developed. A reservoir of liquid was connected to the column. Periodically, when the liquid level had dropped a small amount, a small amount of liquid could be added to the column. By this method the diffusion path length could be determined by using the arithmetic average of values at the beginning and at the end of the diffusion process. This resulted in a small error for the actual value of the diffusion coefficient experi- mentally measured. In regards to this, quasi-steady state conditions rather than steady state conditions were main- tained. In this study an environmental chamber was employed to control and adjust the ambient temperature and the air flow rate. Pressure was monitored by a barometer (calibrated) housed within the chamber. It was of course necessary to calibrate and adjust the air flow rate within this chamber for reasons already mentioned. All conditions were set and monitored so that the affects of the air flow rate would be isolated. The temperature was set at 30°C, and pressure was monitored. Subsequently, it was found that an air flow rate of 30% of maximum was sufficient for operation. These conditions l2 (temperature and air flow rate) were established as the experimental operating conditions. After having established the operating conditions, experiments to obtain diffusion coefficients employing the following procedure were conducted (refer to Figure l): 1. Read level in pipet. 2. Uncork pipet, open valve to transfer acetone to column. 3. Set level of acetone at a predetermined sight line on column reservoir. A. Close valve, cork up pipet. 5. Read and record new level in pipet. 6. Repeat procedure at various time intervals. In the course of these experiments many problems were encountered, incorporating changes in the apparatus, before good consistent results were obtained. These problems stemmed mainly from two sources, leaks in the system and the air flow rate. The problem with the air flow rate was due to not knowing the maximum flow rate (circulation rate) in the environmental chamber. The circulation rate was rheostatically controlled and the dial was calibrated in percentage of the maximum flow rate. Consequently, an acceptable flow rate of air was determined by trial and error. The importance of the circulation rate has been previously discussed. However, the problem with the air flow rate was alleviated only after the leaks were stopped. Only then could the affect of the flow rate be isolated. 13 In the original experimental setup, calibrated burets instead of pipets were used as part of the acetone reservoir. The burets had stopcocks so that acetone could be metered into the column. It was found that acetone leaked out of the burets at the stopcocks. Apparently the acetone dissolved the stopcock grease after a period of time so that the seal between the stopcock and the buret was destroyed. After varying attempts at correcting this problem, it was decided to change the experimental apparatus and use pipets and valves (see Figure 1). This helped correct much of the problem, but some leaks still remained. These leads came from the polyethylene hose--glass nipple joinings both at the pipet and the column. This problem was alleviated by using a silicone sealant at these points (manufactured by General Electric Company). A third source of error was associated with the accuracy with which the calibration of the pipet could be read. This was overcome by using finely calibrated rulers placed next to the markings on the pipet and taking a sighting by a telescope (see Figure 2). This setup allowed readings accurate to the thousandths of a milliliter. It was very important to take thetime to obtain good consistent results from this phase (the first) of the experiment. Contingent upon these results and the subsequent operation of the apparatus was the basis for acceptance of the results for the second phase of the experiment. The 1“ first phase of the experiment was used to obtain a well working experimental apparatus and to verify the "literature" value of the binary diffusion coefficient of acetone vapor through air (as reported by Perry's Chemical Engineer's Handbook). The result of correcting all the above mentioned problems resulted in the attainment of the goals of the first phase of experimentation. Having established the correct procedure, as already stated, it was possible to procede to the second phase of the experimentation. In this phase the same operating conditions, methods, and equipment as used in the first phase were employed. However,instead of measuring diffusion through an empty column, diffusion was measured through a packed column. The column was packed with glass beads of a certain size distribution and mean diameter. Furthermore, these beads were of a uniform spherical shape (approximately 90% true spheres), and their specific gravities ranged between 2.H6 and 2.99 g/ml. These beads were manufactured by the Microbeads Division of the Cataphote Company. The porosity of the packing was measured by weighing a known volume of beads and then dividing this value by the density (specific gravity) of the beads. The value obtained was the volume of tmabeads in the known (bulk) volume weighed. The former volume was designated the bead volume (V3), and the latter 15 volume was called the bulk volume (Vb). The porosity was then calculated by use of the following expression: E = .YX. = (vb-vé) Vb 0b where Vv is the void volume. The porosity obtained in this manner was checked by another procedure. If the known volume of beads (Vb) was placed in a given volume of water, the resoltant volume of beads plus water should be equal to the sum of the bead volume (V6) and the given volume of water (vw). Apparatus The apparatus used was similar to that which was employed by other investigators (see Figure l). The diffusion columns were constructed of glass. Plastic columns were originally used, but they proved to be inadequate because it was desirable to use acetone. Acetone is a rather good solvent for the plasticizers in the plexiglass. The length to diameter ratio for the five glass columns used was approximately 12:1. The liquid reservoir was also constructed of glass. The reservoir had sight lines placed every sixteenth of an inch apart along its length. Furthermore, the reservoir and the column were joined by a ground glass joint. A glass pipet with a volume of five milliliters, calibrated into tenths of a milliliter, was connected to the 16 diffusion column by polyethylene tubing (OD=0.25 inches, ID=0.l25 inches). Acetone was placed in the pipet and transferred through the tubing into the column. The acetone used was reagent grade (98.8% pure). Flow of the liquid was regulated by use of values equipped with Swagelok fittings. The polyethylene tubing was secured to the pipet and the column at their respective nipples by using a silicone adhesive that set in 2H hours. The adhesive was manufactured by the General Electric Company. After the liquid was transferred from the pipet to the column, the liquid level in the pipet was accurately deter- mined. This was facilitated by use of a precisely calibrated ruler and a sighting telescope (see Figure 2). The ruler was placed behind the pipet, both being supported by a burst clamp. The liquid level could then be accurately read by magnifying the set-up with the telescope (Figure 2). The pipet was cooked to prevent evaporation of acetone. The loss of acetone vapor out of the pipet when it is uncorked during the readings is small in volume therefore introducing negligible error in volume readings. The whole set-up was housed in a controlled environment room. The use of this room allowed for the maintenance of a constant temperature and air flow rate. A barometer housed in this room allowed for the measurement of pressure when ever a reading of the acetone level was done. 17 The values for the column dimensions are listed in Table A in Appendix B. 18 9 Cork fl Glass Comma Hauflmw CAlnbr __1_ ”met NH Gnome! Blassa—omt *— I I ‘ Sunort Screen 1‘ H I 1 I.— ” Dwma" Sum 3... $1159. Lines l,____ LJGJJId Resevmr 0‘3 My lame. 1:1 Lms ——J ‘1 Flow uumue VALVE FIGURE l . Exvexmzum. A'Wmn‘rus ’- 19 ._ Suppm 9mm: For). APPARATUS I(:0 T< ' . 1 \ \\ 3 (x ._ ‘1 \\\ :1 H Batman} ‘ 5’5 E in new-res :-6 E 0mm 5 7E ~r 5P8 E E E E“? 3 HO T_?|PET SITING TELEswPE 1! ”\ FIwREZ. DETERMINATION of' ACETONE IN ’PIPET RESULTS AND DISCUSSION Some representative results for the first phase of the experimentation are given in Table 1. It will be noticed that the error percentage of some of the experimentally obtained diffusion coefficients deviates greatly from the value of the diffusion coefficient as reported by Perry's Chemical Engineer's Handbook. These values are presented for illustrative purposes in regards to the problems encount- ered, as mentioned in the previous section. Obviously, the value with the large positive error indicates a leaky system as indeed was the case. The value with the significant negative deviation was a result of the air circulation rate being too low. Because the flow rate was slow, the acetone vapor was not removed from fluetube opening at a sufficient rate. This resulted in effectively increasing the diffusion path length. Consequently, by using the tube length as the diffusion path length in the computations a negative error resulted. The value of the diffusion coefficient with the small error is an example of the experimental results after the problems with the set—up and the experimental method were corrected. Consistently good results, with the error less than 5%, were obtained when the apparatus and experimental technique became established. 20 21 Having proved that good results could be consistently obtained gave confidence in applying the technique to the second phase of the experiment. For the first phase of the experiment a gas phase diffusion coefficient for acetone in air was established as 0.13A5 square cm per second, at 30°C and 7A0.0 mm Hg pressure. For the second phase ofthe experiment with diffusion of acetone through air in a column packed with glass beads, representative results are given in Table 2. In Table 3 values of the tortuousity resulting from various packing distributions are presented. The experimental conditions were 30°C and various pressures. A complete set of experi- mental data is given in Appendix C. From Table 2 it can be seen that some of the bead distri- butions are not specifically known. These distributions are designated Mixes #l, #2, and #3. They are mixtures of various narrower bead distributions prepared to obtain added data on the affect of the size distribution with respect to thetortuousity, and also get a tighter packing arrangement (i.e. a smaller porosity). The bead mixtures were constructed around the basic narrow distribution with a mean size of 0.019896t0.00297l centimeters. Mix #1 was a broad distribu- tion of sizes, with Mix #2 having a little narrower range, and Mix #3 still narrower than the other two. Figure 3 below illustrates the size distributions and how the three mixtures approach the basic narrow bead distribution (designated as 22 TABLE l.—-Experimental Results for Diffusion of Acetone in an Empty Column (Representative Values). _.—-— __._-_ DACEAEXP(cm2-sec-l) DACE,REAL(cm2 sec-1) Error(%) 0.1345 0.1301 + 3.A 0.1062 0.129“ -17.9 0.19u1 0.1327 +A6.3 23 I M% xHE mmwm.0 20000.0 H3.0 I m% xHE mmm©.0 Hm~w0.0 H3.0 I H* NH: mem.0 05000.0 H3.0 000mma.0 mmmHH0.0 mmm>.0 mmmmo.o mmm.0 owmmwa.0 mmmHH0.0 0000.0 mmmm0.0 mmm.0 mmw0m0.0 050000.0 mmmw.0 03HH.0 mm.0 mm~0m0.0 muomoo.0 moow.0 00HH.0 mm.0 02mHm0.0 mmm000.0 00nm.0 wan~0.0 02.0 03mHm0.0 mmm000.0 mmm©.0 mmmmo.0 03.0 mmwma0.0 HNmN00.0 mmmw.0 Nwm00.0 33.0 mmmma0.0 H>0N00.0 0505.0 mmoa.0 23.0 mwmm00.0 HO0H00.0 30am.0 QOHH.0 23.0 mwmw00.0 HO0H00.0 N02w.0 mHHH.0 32.0 “Eovcmoz AEoVwH>oQ .me AmpfimsoszOpve AHIomm.mEovmxm.mo o>Hpmpcmmopaomv CESHOO Umxomm .m CH mcoumofi MO COHmSMMHQ .HOM mpfldmmm HGDCQEHH®QNMII.N Bm¢8 24 --Comparison of Tortuousity with Increasing Size Distribution Range. ..____ ___ _ --= Tortuousity Size Distribution(cm) No. of Samples .62918 0.165860: 6.9% 5 .71122 0.019896i1u.9% 6 .77923 0.050788i17.9% A .57960 0.0312u012o.9% 5 .82713 0.008289:23.7% 6 25 mm! #4“ A 1me #3 A mun. //f‘ NIX #I Q\\ 0.?»qu cm FIGURE 3- I HUSTRATIVE DIAAAAm m: Bum SIEE DISTRIBUTIDIJ; Fan. Faun. BEA]; mIIITIJILES 26 "Mix #4" for comparative purposes). From Table 2 it can be seen that as the bead size distribution of these mixtures approach the basic narrow distribution the tortuousity of the mixtures also approach the tortuousity of the basic mixture (Mix #A). This result indicates that tortuousity is affected by the distribution of sizes of the beads. If the size distribution is narrow, i.e. the beads are close in size and in relatively similar quantities, then the tortuousity (I’) is increased. If, however, the size distribution is broad, the tortuousity is generally decreased. This is shown in the results given in Tables 2 and 3. Table 3 shows an exception for the case with an average tortuousity of 0.57960. This can partially be accounted for by the character of the bead size distribution for this mixture. The distri- bution curve for this mixture was not smooth and unimodal, but had a "hump" at both ends as well as in the center of the distribution curve. With this being the case it is difficult to compare this set of data with the results from the other size distributions. It will be noticed that a relatively narrow range of values were obtained for the porosities of the bead mixtures. The beads were randomly packed into the columns, and after each run the packing was changed. An investigation of the experimental results yield no progression of porosity with particle sizes. Unfortunately, though, the range of data (on porosity) is not extensive enough to provide reasons to 27 the lack of progression in the data. As mentioned previously, it was hoped that the mixtures #l, #2, and #3 would have had lower porosities so as to broaden the range of data and help elucidate the affect of porosity on gas phase diffusion. As a result of these mixtures though, it is felt by this author that a combination of bead sizes with the influence of compaction of the bed will yield lower porosities. It was mentioned that the columns were repacked after each run. This was done so as to maintain the randomness of the packing geometry which might possibly have been lost as a result of settling. Settling could occur by disturbing the columns as a result of activity in the environmental room and with taking readings of the acetone level in the columns. The experiments were conducted to obtain data that would allow for the computation of the effective diffusion coefficient, DACE' The tortuousity could then be computed by using the value obtained for bACE and DACE’ the diffusion coefficient of acetone through air from an empty column, in themanner described in the Background Section. In the analysis of the data two statistical techniques were employed. A linear regression of the data was performed. This data was of a temporal sequence, or continuous with time. The linear regression of this data yielded information, via the computed slope of the line, as to the variability of results. It will be noticed in the results given in Appendix C that the slopes were very low, hence proving consistent 28 results. If the slope of the line was very great, it would indicate that diffusion was not constant with time which would be false for the experimental conditions in this study. The second statistical technique used was the least squares test. The purpose of this test was to find out again the consistency of the results. But, for this test, each time a data reading was taken it was considered a separate experiment. That is there was no consideration for continuity with time. The result from this test would yield an average value for the data and could be compared to the intercept of the line obtained from the linear regression technique for an indication of consistency of results. In regards to the values shown on the computer outputs in Appendix C it will be noticed on a few of these sheets that some rather large exponents occur on some of the values. This is due to a programming error on the part of the author of not properly dimensioning the array in which these values are stored. It was mentioned in the Background Section that in this exercise it was assumed that no Knudsen diffusion or that no adsorption on the bead surfaces occurs. The former can be verified mathematically. However, it is a little more difficult to prove that there is no adsorption on the bead surfaces. The beads are inert to the acetone vapor, and the porosity of the packing is sufficient for the vapor to pass 29 through the column. Hence, it is generally accepted that if adsorption is occurring its affect is negligible. In comparing the results of this study with those of studies given earlier in the paper, it will be noticed that generally agreement was not obtained. It was stated that Penman obtained an average tortuousity of 0.66. It is felt by this author that Penman's work was too simplistic, and it did not concern itself with the effect that different packing distributions have on the tortuousity of the matrix. The work that Linvill performed appears much more realistic, and hence it is felt that a logarithmic relationship exists for tortuousity and porosity. SUMMARY AND CONCLUSIONS For diffusion of acetone vapor in air through an empty column it was found that the acceptable literature value could be obtained within 5% error. For diffusion of acetone vapor in air through a packed column (a porous bed) it was found that the size distribution of beads influenced the tortuousity and porosity of the packing. This in turn determined the (effective) diffusion coefficient for the system being studied. Narrow ranges of porosity were obtained. It is felt that this was partly due to improperly mixing the various bead sizes and partly due to a lack of compaction of the bead bed. The values of porosity that were obtained are generally near the maximum attainable value. These porosities represent packing geometries close to orthorhombic or cubic geometries. The average diffusion coefficient obtained for a packed column system was 0.09660 square cm per second. This value is associated with a tortuousity of 0.7182:0.0665. However, the use of an average tortuousity may be rather limited due to the fact that the tortuousity is affected by the size distribution of the packing. 30 RECOMMENDATIONS There are many areas of engineering where information of the nature given in this work is desired. Much additional work is needed to complete the study undertaken here. Specifically additional information acquired at lower porosities is desired, for it is these lower porosities that occur in natural soil systems. Therefore it is recommended that additional experimentation, if it should be undertaken, focus on attaining packed columns with porosities around 0.30. Furthermore, a series of packed beds having a range of porosities is desired. Information from a study of this sort should yield a useful (empirical) mathematicalexpression that could be used in soil studies, fluidized bed systems, adsorption columns, and other important applications in the field of engineering. 31 BIBLIOGRAPHY BIBLIOGRAPHY Bear, Jacob; Dynamics of Fluids in Porous Media; Chap. 2,4; American Elsevier Publishing Co., Inc.; New York (1972)- Bird, R. Byron; Steward, Warren E.; Lightfoot, Edwin N.; Transport Phenomena; Chap. 16,17; John Wiley & Sons, Inc.; New York (1960). Lee, C.Y. and Wilke, C.R.; "Measurements of Vapor Diffusion Coefficient"; Industrial and Engineering Chemistry 46(11), 2381 (1954). Linvill, Dale Edward; MLS. Thesis; University of Connecticut (1969). Brown, George G.; Unit Operations; Chapter 7; John Wiley and Sons, Inc.; New York (1950). 32 APPENDIX A GENERAL REFERENCES McMurtrie, R.L., and Keyes, F.G., J. Am. Chem. Soc. 19, 3755(1948). Wilke, C.R., Chem. Eng. Progr. 46, 95(1950). Carslaw, Introduction to the Mathematical Theorngf the Conductance of Heat in Solids, New York, Dover Publication, 1945. Van Bavel, C.H.M.; "Gaseous Diffusion and Porosity in Porous Media", Soil Sci. 13, 91-104(1952). Shearer, R.C., and Millington, R.J., and Quirk, J.P.; "Oxygen Diffusion Through Sands in Relation to Capillary Hysteresis--Quasi Steady State Diffusion of Oxygen Through Partly Saturated Sands", Soil Sci. 191, 432-436(1966). Perry's Handbook for Chemical Engineer's, McGraw-Hill Publishing Co., 4th Edition. 33 APPENDIX B 34 TABLE 4.--Dimensions of the Glass Columns. Diameter (ID in inches) Length of Tube (inches) 0.5444 6.230 0.5800 6.341 0.5750 6.306 0.5758 6.211 0.5422 6.288 0’6 35 NOMENCLATURE 3) average density of component A( gm'cm— dispersion coefficient (cm2'sec-l diffusion coefficient (cm2'sec-l) average tortuousity tensor distance coordinate of component 1 (cm) diffusion coefficient vector (cm2'sec-l) average velocity (cm'sec—l) mass flux relative to moving coordinates (gm-cm’z-seC'l) mass flux relative to stationary coordinates (gm-cm'Z-sec’l) system pressure (mm Hg) partial pressure of component 1 (mm Hg) length at level 1 (cm) -1°-1 gas constant (cal-gmole ~ K ) temperature (°K) media's porosity media's tortuousity APPENDIX C D u U 2 b 4 3 0 < M 2 U m g I 3 u < Im 0 o w b I Ommu u U 2 v m D wK—mz a O h h hu 0: Z r h b 2 ( k u! z a 2 g u o annuzzz < 0 u — z t Du—V ca 3 z < H u m ura—z—z h 3 U — 3 3 Jhmm< I N k H k < < z w m P O u m u A I or zz:~0 z < m u r T A buddy-Z7 H I- '- uJ D v - o~r>4 mu h m 2 3 U x I u Plb— 2‘2 d U 4 — IA 3IOU< 3 o d 2 J o <0 m u mm—u 2 h 0 Z 3 D —\ — 3(4 5: 4 H 9 d 09 30 Z. mmg b m d m —r t wz>mounx 0 U m W 3 b3- 4: t—h3w33~ 23 u u D m IbO U ~<~ 140d IA A1 3 u u 4K“ m I mu4< I I Db ~w U u d ldv <0 wZDz >222 h 044 vu H 3 ID to a—3JDAZ P I l~u Z A Ft 3 a + — ~20 3 ~t fl :Luu:u<04— 3 3 nhulzo — 3 2 NJ) 4 on \ 1 (222 2’ d I ZDDZZ~3 3 3 ~>v < o .0 Z P: b<~ma D Z 03 \1 31 J O—OOODD’Y— u 3 Z J u up w J A 2 3 am O! 2— ~ Ithm31~u ~20 p ~0<<1 4 a 3 u up 22 1 wlhm<23~ l SHE u 3 213 h at" £2 h w t 0\ td a Q ZNMDU*MK Kb Ulzkuuu33§ 4 whDZ ~ A Q (N A0 34 \ (muumm DIM mu 4303223~i d Ifi—u L ea u Sb :N J u b ~~ b 34‘ DJ 33 Ad) I 2>2t Juan 0 fl ms 32 J O rnz 13 I; <——uJ>u ~nu~~ VtD — 0 o~ JD 3 hhflmm 4100:: 3 Igugz < ZIDZ~v m A ND Cd I :(mu< SJOHZDPMI DPXUJD n 4 1L MDDWDO Q D< vm om < QDkOJOU< I~49r~ ~3<<<nn p x anon a < h 22 ~~ DJ 23 ~cuuuDu44 m—11134 bu un— usuxa < xv < < A QQ~u0>quxno < ID—mn3>~u Z¢E~ ZDQZMOd Cu 00 Allluzdh $321) 2434 0:3; cavfi :m-n boom C~03 wou<~z Cum h. 4:24:00 mul~~~ u «a: m~m~umfih uo UOU ~JPBI Ixualex 2~l>>v v xzu<—~> u < «Dam ouuzstfiataz u <2 z:nz« 33-: ozazw ~41; :4 m3. *4 I 1143 ~>zz zhu coma uou . ”Amour; uz—haozmam z .o_.. ~u: .22<_m m<_:u: ut_ ~ t.~—n0131 pr» o.<:~.a o. p4210e :— m><.<.<25~n.n 3h_moa:»19p m:_ ..<# .o e._<34p.o_ —z_zi Jux<.0\3hnurc u m><3<~ n4n9u14 43:0 .\\.:.~«m.¢ isuh o:.\.:..~n.- 31o.xo_.\.:.-u~ .t (toxoq.\.:ou‘wotu n20: xm~.\on e._u oJD>toxnotaar zzvmmu¢1$oxootArI.02—ptoxmuot t. hdzzom MN ..3. «42.2m.:.—_maozp13— mr— c.<: ._.:u.xm..:.«qu.xm.m..1.._.—._~ *zmxa ~ Juz<10\._.1 um3 .ozqhm m<~auz uzp ooo::. m~ 22:40: m_zp z. >p~m3191 Ur» ADJ—zrumh aur<33n mu mt: Jab—zap ur— o.~ nooaremn. noomfinefio naomano~o 333.23. hrs c.o ~o.un~an. neouooep. no.2o::_. aczpzap ur— o.n «oouusnu. no.un~:~. no.uoo~_. boners. gr. 3.: ~o.u.~o~. no.uonn~. mo.moooa. :a:_xa_ mzp o.n .o.uono~. no.uomn~. wo.uoo-. 333.13» u:— o.~ .o.u.uo‘. noousenp. ~o.moac:. zonpzab mt. o.. ooouancn. nooumcns. ~o.u:o:~. . xv—znau ..42..1<>u .40) .0: :z.mmuza .zz.u:~p no rpazun zo—mauuuo < :24 muzuz— e-:m. no muput<~o < m 3~U4 ~rwuu~wm DVII Jb- DISH Iw-O :0 P A - UIV4> 0U oeudddu ~QQQ IOMFPZON 0000000 n N (“I ~’CDOC) I-IL O<——Z-' 90990.0 040 o b 3D 40 wumuumu 039 o 222 IF D>h mc~~oam wow U QODO OQ QD—WZ unnam~m 3‘ A“? V afl-‘fl LLJJIIOD" Mn-mn—: Nsfl H bbb U bmmw Mh—ndNN 500 O 2444 m1~h1041 cocoon. th fl 9221 1d~~31~ 0“ 0 0 0 ~11: Ohvhfl-OQW 0 0 #333 411 10— (man n~<—u In I mru 4 Q IMUU NM4JFIU3 U 2 31:1 111$ #22 Ina :mu UWfl-P I-PZ) I-4 (L4KQP- to mn~noo.o m~ qun 24m: n__ :24 zu .oa ~oo.° n_ .<_>u2 .:z<_m m-moxoa mt» Una—2tump mm1»_naonpzop ark ooouoo.«. m_ .pnu_ nuzw mt: a:.u~.r~. n_..nx: 33.xc. u uz_p p< >p_naaapzap m1. o.~ «c.aownno no.»~o-. no.u)no~. ca.u:=‘x. n— .nx: :c.:¢. u at.» p4 >._n333p13— ax. 9.0 ~a.upocn. mo.u.on~. no.ua::_. oaoumn.z. n_ .nxr :3.owq u uz_h p4 »p_n333»xap u:- o.n «o.uonn~. nc.uo_:~. no.moo~_. o:.»nu~n. n— .nx: oo.oa u at.» —< »p_naa:_:3_ utp o.: ~c.uonou. nc.a~nn~. ~o.uo)oo. co.u:oan. n. .nz: oo.- u az_p p< >__n333_xap u:— o.a «a.u:_nq. noounoss. ~o.uoo-. oooun-n. m— .mxz 90.3: n at.» p< >h~n333pzap wt. o.~ ‘a.utuc~. noouo¢¢ho ~°.uour:. acou¢nm:. m. .mzr so.:~ u u1_» p< >p—n333pzsp mt» o.~ o¢.ua~mm. ncowmn¢~. ~o.w>o:~. zwpznou .adt..14>u .43) .9: 1:.mmuzm .ar.w:~h to h—N30oo— no Ipaqu zo—mDuL—a < az< mutuz— cMNsmo LO zmhut 0b.! loci-PZCV I—tb o<—o—-z—o '3h 413 It— 23>»- OQ uo—mz u.uJu03- 4 U t-mznu Luann-1343: lulu—31" OI-VLLU-Oc'fl .121 13'- ULu4LIJD-ILIJ3 IIIfl t-IZ I—V-Q .r-4 :3 0333—3... mu MN—n 24m: mum 324 zu 3~omoo.¢ m~ .<_>uo .ozp_moxe; Ur» uaaflzzomb muzqnam hm__n:o:pza_ uzp oo.mmmo_. m. .pmup mux..naoa.xa_ uz. o.~ 3:.uoann. n¢.umo:~. no.uano_. aa.unmn~. n_ .31: 93.... u 32.» p< >b_p:::_z:_ an. o.o do.u:=nm. no.uo:.~. no.u=::.. a=.uqoa~. n. .nx: ca.c~_ n It.» .4 >p_mao:_x:_ ax. a.m .c.mx-~. nc.mmn:~. mo.uao~_. oo.un~as. m. .mx: 99.0. n uz_p #4 >p~nzsspxa_ 3:. c.: .o.u:.-. ma.u¢n:~. o.usaoo. ec.g.a=s. n. .mz: ao.m~ u 3:.» .< »h_n:onpz:b m2. c.q 3c.uha-. n°.u.om~. ~o.uoo-. ==.uo\u~. n. .mz: 33.x. u uz_p p< »p_m:a:pz:_ uxp o.~ .o.u:o°3. no.uo~_s. ~o.uoon.. ==.uno_m. n. .mzz :o.:~ u 3:.» p4 »__n:o:.x:_ ux. o._ oo.ug.~m. no.m¢~:~. ~o.uaa:~. xwpzaau ..4z..1<>u .Jo> .3: xz.mmu¢m .mz.u:__ :3 NCOfi~.o_ ....3 Ibozug zo—m3uu—3 4 32¢ muzuz— oomhm. mo aubuozmo < mw3 .32<_m m<33uz uzp aooyn. m. 213.90 n.:» z. >p.moxoz m1» 33:.zruu» nuxqaan pn~.nao:»zap m:— oo.uo¢... m. ._mu. nux<33m bmu n19 33.3nnon. n. .nx: 33.no. u 3:.» .< »_.naaa.za_ 3:. 3.3 .3...3nn. 33..o::~. n«.mono.. =3.unucz. n. .nx: 33.3.. n 32.» _< »..n33:.za. 3:. o.c .3.33nun. no.unn¢~. n .Mn::_. oo.uarun. n. .mzz :3.3\. u 3:.» _< >_.n:o:.za_ 3:3 3.m .3.u:.om. no.3:ash. no.uco~.. oo.u::nx. n. .nx: ea.ca u 31—» .4 >~.n33:_r:_ u:— o.: .o.u~3... no.u¢ans. mm.uoooo. o=.uoo~n. n. .mx: 33.m. u mt.» p4 »~.m33:_:3. ur. o.n .o.uono.. no.uo~.~. .uaows. 33.30.33. A. .mx: 30.x: a 3:.» p4 >».m333.x:. uz. 3.~ .3.m33... no.3:wch. ~o.moox:. 33.3nonn. a. .mz: 33.:m u 3:.3 p< >».n:o:_x:— wt. 3.. oo.mo:cm. no.um~n~. ~o.uoo:~. zu—zsou ..Jz..1<>w .4:> .9: :z3mmuzm .a:.u:~_ to Nmmin.n~ 23 223234 23—m3uu—3 < 32¢ mutuz— cnmhm. L3 zu~wt<~o < mu3 .oz<_m m<_3uz gr» oooo:. m_ zzzqou m_r» z. yp.mozom m2» 423—255... nm1<33n mp~m303p~5p m: .cl uq~ m— .+nu~ noancn bmqud :oxu .-~. ma o=.uonnq. «ouuon-. halupfisn. .o.u.nn.. oo.mcqn«. douu.n-. scnuo:~m. go.manm.. oo.uomw~. «ouua:n~. hmumm:rm. «o.mmmn_. =o.ucnn.. *onunron. s uumq_o. m.w ... o=.uonn.. onmorxp. souu¢aan. o .-au_n. oo.monm_. ~ouuu~¢ao pouuxnmm. eo.monnn. oo.uomn_. doaumnrn. coou~_o—. oo.uo:on. 4axw mzo oo.u:uxn. n_ .nz: 32.noq u uznp p< >p-A333_za_ mzp a.~ «coun3nw. nc.uo::~. neouono‘. ao.uar\m. nu .mxr 33.33. u u:_p .4 >p_n:::_13_ wt. o.o .o.»ooow. mo.mmq:n. no.ua::_. aaouonnn. n~ .nzr 33.3M. n gt.» p4 >—_n333_13_ wr— =.n .oouozoa. no.u¢m:~. noouoo~_. 33.40330. mg .mx: 90...? n #2:. .4 >:r3:3—13~ u...— o.: «3.9.2.4. Meou¢am~.. Naowooona. oa.gnnon. n— .mz: so.m~ u at.» .4 >»_n33:bxop uzp :.m «comauag. neouopgs. ~m.uo:-. oo.»m.no. n. .nxr oo.2¢ u 41—» ~< »__n393_13_ uzp o.m ooouormh. mo.m¢~:h. m .uoams. ooouonoo. n~ .mxr oc.¢~ u ut_» p< >p—maonhzap uzp o.— oc.uoonn. no.wmhns. Noouoosm. zu523ou ..4:..1<>u .43> .9: :z.mmuma .mr.uz~b :0 enm30.nn 20 Ibszm4 20—m3mm—0 < 02< muzoz— oscsm. L0 mu~u2<~0 < mUMMA11u~ or 1(1) THE fiUMHAIlUN or IHE THE SUMMAIIUN or DNA PS AREA 9 D 3 0‘ Z I 4 U 0 U I h ‘ U DO m 03 w IO ax uh 04 3-0 ID 0 #3 0 an O a o No— Nm 04 m u d J U I m: 0 ~fi3 1 ~ ML U2 — DZ 0 3) 00 qu—bo ZFOWMOZ I IMOOU UZuhia MOO NO p—nmmsu mouoou thx m ouo< or "I 3% CU mc 3H 0 mm m m. MI (~00 2 Ohm 3 OI $32 N dd h 0Q kO—WZ Lunoau 4 U hmmm UIAPIOwo .oz~4m3131 urp use—Ztuu» nuzp_n:oabzop uzp . .ouumnma. m4 ._nuh nur<3=m ~mu mzo ::.u:)«s. n~ .mxr aa.=u. u 42—» _< >p—h33:_za_ urp o.n _o.g=nn~. no.umcn~. no.moo~_. oo.g~_no. m~ .nx: =c.cr u mt.» p< >p_n:oapxah at. o.: «o.uana.. no.u_a-. ~o.m»00¢. o:.u::no. n4 .nxr =3.M~ u 42—» h< >~.n:3:pxap uzp o.n 4comn¢:~. ncouaonh. mo.u Nu. 33.4.3.0. m. .nxr =o.r: u uz_» h< >p_n:o:pxa. an. o.~ =o.uonoo. no.mo~:~. No.mo me. oo.uaoao. m. .mzr oo.¢u u urn» p< »»_m:o:_zo_ mxp °.. oo.monae. nc.u~mnp. No.mao:~. xwpzaou ..4:..1<>u .40> .3: xx.mmwma .xz.u:- 20 Ncom~.o— 20 IhDZw4 zommaku—o < 02¢ murozn comhm. $0 mmhu2<~0 ( mu: .oz<.m m<.auz mt» ooaan. m. 2:3.ou m.:p z. >..maxox mt» u:3.z:um. muzqaam .m~.n:oa»xop Ur. co.uoo... m. .pnu. maz<3cn pm~.. :o.uo.mn. oo.mmmm.. o=.uon~.. oouuo~:.. oo.mmno:. Juxqz: 1xuu mzo .nx: =o.ro. u dz.» .< »..n332.13. u:— o.~ .o.mnnan. no.u~:nh. no.uono.. .nxt 39.3.. n us.» .a >..n323.:a. an. o.o .o.uon~n. no.um:nn. nc.us::.. .nz: ao.ou. u uz.» .4 >..¢333.13_ u:— o.n .c.uan-. no.u.amp. no.uo¢~.. .mxr 39.0: n u:.» _< >p.n:::.x:. u:— =.: .o.u.~.~. no.u.om~. No.uoooo. .nxr aa.w~ u at.» .< »».m:::.za. u:— o.n .a.u.uo.. no.0o.:>. wo.uoo-. .mzr ac.r¢ u at.» p< >—.n33:.za_ uz. o.~ .:.un.o.. no.05mns. mo.u00m:. .mz: =o.¢m u ux.p _< >p.n333.13. wt. 0.. oo.uanam. no.0no:s. ~o.uoo:~. zwpzaou ..4:..1<>u .43> .oz :z.mmuza .azvu:.p 20 mmm)n.n— $0 Ipozu4 20—m0mm—0 ¢ 02¢ mwt0z~ onmhm. 50 xm—ut¢~0 ¢ m¢r 3 .02 220400 J3 nmn I) o—u—a—o—t—A z. o:~.mo.o n. m~.n 24uz n . :24 so ~umooo.o n. .4.>m: .324.m m4.: 2 4:. oacos. m. 223.00 n.:. z. >..m3131 ur. n23.2tum. muz423n .n4u. zaxm oo.uocmn. m. 4.0.: wt. .3 >..n:oa.xo. .rw .c usc... m. ..mu. nux432n .m4u. :91. .4.4: .9 ... .m n .oaua..o. . . conum.m:. u ...1. .cnumaqm. o°.umom~. oo.uonn.. .onmn.m.. .onumq.x. ecogouo:. coouomn.. .onunfioc. .oomn.:~. acom.m-. 4.14:: 14m4z: 43.. .a4>u mt: .nx: ca.ou. u 42.. .4 >..n33:.z:. uz. c.n .o.manm.. no.un.n.. no.0 o~.. .nxz so.c) u u:.. .4 »..n393.za. an. o.: .o.uanu.. no....n.. mo.m.ooa. .nz: co.~. u u:.. .4 ...m333.za. uz. a.m oc.uaana. no.u.mm~. No.uoo~.. .pz: oo.t: u 02.. .4 >..n333.r:. 4:. :.~ ao.mo.wo. no.mo.¢.. No.uoom:. .nzz 33.:V u u:.. .4 >..n:o:.z:. at. o.. ooouonnm. no.uno¢.. mo.uoo:~. 20.2390 ..4:..1<>w .43> .0: zz.mmwzm .mz.wz~. . 20 nmmsr.n. m0 1—9204 20~m0bmu0 ¢ 02¢ mmIUZ— 03¢¢m. L0 zubut¢uo ¢ m¢I - .02 220400 33.4V:.~. 00.432nN. aaouflsnfi. 33.4.fihN. 00.43335. oaousnss. 00.4033h. n I) n n'flnfl H—u-u-u-n—n—n .nx: .nrr .nz: .nzr .nx: .nx: omit 93.20. 99.33. 33.3». 30.53 33.V~ 93.2: .03.¢N zu 0030.9.9 w. my.» 24.2 m.. 324 20 .srmoo.o n. .4.>u3 .324.m m4.3mz mt» 999:4. w. 223.33 m.:. z. >..m3:31 wI. u33.z:uu. nmx433n .3404 :31. o .unnmh. n. 4.3.: wt. .3 >..3333.z3. 0:. 99....9.. m. ..nm. n.2433m .m4u. 23:. .4.43 .3 ..L .mun .9nun.na. . . 4onu9n.n. u ...14u423 .9um2.39. a. 433.22... 23.nmuxcmx 24.2.3 u:. :3. .auuzu.z. u:. :ouuamsn. m. 033.2:00. zo.mmuxauz «402.4 mi. :0. 0134A 0:. 99.unm... 33:433n ...m..n::3.23_ u:. 9.. .9.u.nnm. no.3..nh. no.uono.. 42.. .4 ...n3:3.:3_ 4:. 9.5 .9.u.u~n. n9.u.nn~. no.mo::.. u:.. .4 >..n3::.:3. u:. 9.n .9.49n.u. 99.u9.4.. no..m.~.. “2.. .4 »..n9:9.za. .2. 9.: .9..99.m. 99....... mm.“ m... “2.. .4 >..w33:.:3. 0:. 3.3 .3.49nm.. 03.43045. ~ .uo.~s. .2.» .4 >..m333.:3. u:. 9.~ .9.uw:9.. n9.uon:.. ~o.uoon:. 42.. .4 >..n333.:3. .2. 9.. 99.09.~m. n9.mom4.. ~o.uoo:~. 10.2330 ..42..14>w .43> .3: :z.mmuza .¢:.ut—h 29 woo...o. .9 2.92.4 zo.m9...9 4.924 muzuz. oomsm. .9 mu.uz4.9 4 .4: n .oz 229.99 00.40005. 99.0vn9.. 09.4N)\c. 99.4.:no. 00.40.36. 03.44930. .1, ‘13 n n fl‘fl .u-n—n—u—n— .02: .02: OWII .mII .mII .02: 30.3:— 93.0w. 30.03 99.x. 30.x: 90.4V :0 Nmman.n. 02.. .¢ >— 02.» .¢ >. 42.. p¢ >. 42.. .¢ r. 02.. .4 >. 02.. .4 r. 2 23.9m9.9 m. 00.0 2402 n.. 324 29 3.99 9.9 n. .4.>03 .324.m 04.30: 0:. 999mm m. 229390 n.:. 2. >..m9291 0:. 039.2:90. 902439n .940. 292. 99 .0.nmo. . 4.902 0:. .3 »..n393.29. 0:. .9: 09993. 0. ..n0. A024 cm .0404 292. .4*43 .3 ..0 .003 .9uuo.:.. . . 99-0.9m . n ...1x0423 .9000.:.. 0. 099.223 30. 29.nm 02 2402.4 0:. 29. .10020.:. 0:. not0.3~.. n. 099 .2: 00. 2 002002 2402.4 0:. 23. 0194A 0:. 99.0.09». 302499m ...m40423 .o 29..4223n 0:. ~9.09~9.. ... 32¢ ...2x0423 wu9ooma 0:. .9 29..4223n 0:. 99.99.90 .... .9 29..4223n 0:. 09.0N.~m. 302499n .... no 29..42290 99.00999. .20. .9 99 ~9.099m.. 4 .9.09.9.. 4024 99.09~.~. ma 99.09n9.. .9u0nn.9. ma0m.m . «.09.. . 99.0999.. «9:0..n9. I09. . .00.. . 99.09nn.. 9u0c9.9. 9u0m.9 . 9.0..n . 99.0999.. .9u0..:9. 9u0~99.. 99.09.99. 99.0999.. .9a99.99. 9-09.... 99.0.9.9. 99.0999.. .9n0:.9.. 9-0n.om. 99.0099N. 902423 :x0423 x34. .a4>0 029 999.29. 0:. 9.9 .9.4n.om. 9.0m.nh. no.09.... 999.23. 0:. 9.9 .9.gn.-. 9.0..n.. no.099~.. 393.29. 0:. 9.. .9.uow... 9.0.mn.. ~9.09999. 999.29. 0:. 9.9 .9.09nn.. 9.09.... ~9.099~.. 393.29. 0:. 9.0 99.09..:. 9.09.... ~9.0999.. 339.29. 0:. 9.. 99.09~.n. 9.0no... ~9.0o9.~. 20.2399 ...2..24>0 ..9> .9: 22.0002. .2:.02.. .0 1.9204 20.00.0.0 ¢ 02¢ meUZ— cmmhn. .0 20.02¢.0 ¢ m¢r c .02 220400 20 99909..9 0. 0~.9 2402 9.. 324 20 9M0..9.9 9. .4.>03 .324.0 04.392 0:. 99999. 0. 229999 9.2. 2. ...9929. 0:. 933.2:00. 0024330 .9409 232. 99.99900. 0. 4.392 0:. .0 ...9333.23. 9:. .9:0..:.. 0. ..90. 9924999 .9409 292. .4.49 .9 ... .009 .9u99999. . . :9u0.9.9.u n ...2<0429 .9.99999. 0. 093.2:90. 29.0002902 2402.9 0:. 29. .20920.2. 0:. 99-0.9.9.u 0. 099.2290. 29.0002902 2402.9 0:. 29. 02990 0:. 99.09999. 9 9024990 ...2x0423 .9 29..42299 0:. No.0...m. .... 3Z4 ...2x0423 .u3ooza 0:. .o 20..42239 0:. 99.09990. .... .9 29..42239 0:. 09.099N0. 9024339 .... .o zo..42230 99.00999. .20. .9 9. ~9.09~9.. x .9.0:9... 4024 99.09~.~. 0. 99.9999«. ”19:99.. .mn099m9. .w.0999.. 99.9999 . 39:99.. . I993 9. .909 . 99.0999.. ”:9992.. .90999Q9. mm.9.9 .. 99.0999.. . -9999.. .9.999 9. .099 9. 99.0909.. .9u99.9.. .9u00999. 99.99.90. 99.0999.. .9I0:)9.. .9I099.9. 99.09.9N. 992423 140423 <39. oa<>0 020 99.99990. 9. .92: 99.39. u 92.. .4 »..9999.29. 0:. 9.9 .9.0999~. 99.99.9.. 99.99::.. 99.999:9. 9_ .92: 99.99. u 92.. .4 >..9999.29. 0:. 9.9 .9.0999.. 99.0..9.. mm.09 0.. 99.93999. 9 .92: 99.99 u 92.. .4 ...9999.29. 0:. 9.: .9.09:9.. n9.0.99.. .09.99. 99.99939. 9. .92: 99.0. n 92.. .4 >..0393.23. 0:. 9.9 .9.9.mo . 99.09.:.. No.09 N.. 99.99999. 9. .92: 99.9: u 92.. .4 >..9999.29. 0:. 9.9 99.0999 . n9.099:.. ~9.09 99. 99.99999. 9. .92: 99.99 u 02.. .4 ...9993.29. 0:. 9.. 99.09999. 99.099:.. ~9.099¢~. 20.2399 ..92..24>0 .99> .9: 22.0002. .2:.02.. 20 Nmmwwoo. .0 2.9209 20.00...0 < 024 00202. 00000. no 2U.U2<—0 C 0(2 N .02 220900 Lu scoursur. :aouotsro acouzr.a. oaou.:na. «souo.:_. ~:.uo~:~. .=.A:n:~. I) [3.0 Dflflfi u-n—n-n-n—u-t—n .nx: .nxn .nx: .mx: .nx: .mx: .mx: 33.n04 =3.:¢¢ ccoowq ::.c) o:.m~ :o.r: =o.:~ I. ll II II II II N JJJJ'AJAJLUJJALJ I 222112 nu—q—n—u—u-o-n I—P-I—t-t-O—O- O—r-r-t-O-I-fi— (<4 <<<< to h—MOOooq mo IpDZuJ 20—m3Lk—o < :24 muruz— owmsmo to onmnao.o m. u~_n zu3 .oz<—m n<_ag ccc::. m— zzaqou m_rp z. >__m0131 gas—2tuu» mu1._nnoapxap oc.momm.. m. ._nu_ ngzu mzo >p‘naa:_x:_ uz— c.~ .a.unn_¢. no.ucon~. no.uano.. >»_n:a:_xab urp c.o do.uoaon. no.unmnh. no.ua::_. »~_533:_13_ urp o.n do.m_n7~. no.umo-. no.uoo~_. >p~n:a:_z:_ wt. 3.: .o.ur~:~. no.um:nh. ~o.uoooo. >—_naaa_x:_ urb =.a .c.uooaq. no.uom:h. Naouaows. >p_n:::_xap uzp con ~o+ur~n—o Moog—ass. No.uoon:. >»_n:33~xo_ uzp c._ oc.uon~o. no.mmo:s. woouocsm. xupznau ..Jz..1<>u .40) .9: tz.mmuza .mr.ux—p no zu~wtu: .oz<_m m<_cuz uzp ooo::. nu 223430 m.:» z- >p_moxom wt» unadZtum» muzqaaa hnun zoxu ooounnon. m. <_auz urh a: >h_n33:»zo» at» dosun_-. m_ .wnmp mux<3cm pm_. aaounoq«. «anuNoON. smlumncno #m.m:n:.. oc.uno<_. «oum_ao~. p -uommz. .ggs. . oo.mm5fi~. «onunonho souuwosm. co.mn.:n. oc.umcn.. auumnrs. honuwnam. oo.mmwom. a=.uncn_. .onu.fi.n. ~ouu.amo. oo.uo:om. Jurqzs 1xw¢xa KDAK oa<>u mt: =a.u32nn. n_ .nxr =3.zc. u ¢z_p .< >h_n:::—23. u:— o.~ .o.uonn~. no.uoons. no.u 30.. / :3.gn:on. m~ .px: =3.:¢. u uz~p p< »~_r333_x:. u:— o.o do.uon_~. .mo.ummn~. no.“ 33.. ooou¢onn. n. .mz: so.auq u w:_— —< >—.n333pzah u:— o.n «c.4nqnqo mo.mmauh. neouaaN~o a:.gracn. n. .nx: :o.:: u 42—» p: »»_n33:.r3. uzp 0.: o.un::.. no.um¢n~. wmou on}. acouswnn. n— .mz: oo.u~ u at.» p< >p_m333_rap uI— o.n ~o.un0o_. noouowch. N ow cup. so.unnrn. n. .mzz 33.1: n gt.» p4 >p_n33:_za_ uzp o.~ co.uoan~. noouqmss. mo.u on:. ao.u¢c=o. n. .nx: co.c~ u at.» p4 >h_n:o:p::~ uz» 9.. coouoonn. no.umo:s. ~o.wooc~. zwpzaau ..4:..1<>u .43) .3: 2:.mmuma .m:.ux~_ to archon~ m3 IPDZUA zammDmL—a < :24 muIUZ— osccmo Lo mu—ux<~a ( mua .oz<_m 4.:uz an» oaa::. m. zxsqou n_:p z— >—umoxom at» ups—zruup nux<33n pn~. n— «may: u:— no >p~h333p10p at» co.u:~o.. mm .bnu— muxm mt: 3:.433nh. n. .nzr ao.awq u at.» p4 »_.nao:_za_ u:— o.n «o.uonom. no.u~om~. no.mao~_. =a.u:n-. n. .nxn 33.0) n #1.» h: »p_n393.x:_ an. o.: «c.3nram. no.um:a~. ~o.unuoo. :=.u:n)~. n— .nxr 32.ns n uz_» b: >p_m333—rap u:_ o.m .o.u:oc~. nc.uow:s. maowaa~ho o=.uwn=n. n— .nxr ca.t: u u:—» p< »~_m223b13_ at. o.~ .o.uq~_—. no.u—m¢~. ~o.uoom:. oo.u_ncs. n_ .mx: ao.:n u u2—p h< >pun333pxap wt. o.. oo.m=-o. no.mmc:p. ~o.uoo:~. xw—ZDOU ..Jt..1<>u .43> .0: 1:.mmuza .¢:.ux- zu om~fl~.0~ a: IbDZwJ 20—m3um~o < 32¢ mutuzu oomhmo mo zapuzduo ( m4: n .62 ZIDJOU to ensomo.o m— u~_n zquz m__ 32¢ 20 n~oooo.o n. .<~>w: .oz<»m m¢~auz 4:» ocean. m. 22:4ou m_r» z“ >p_moxom at» 4::_ztump nwz<23n pn< u: xoxu o=.uno:~. n— <_:uz u:— u: >» noonpxo» ur. o:.uo.o4. m. .bmup n41<33n ~m-~. ma oa.4non4. .ouuo:on. souuos~o. .o.u:o_~. oo.uqcn.. 29.4:234. con44nm.. .c.u~m:~. no.4ncw4. oa.4n~o*. omuuoum . m.w:xcm. oo.uncn_. ao.un~o . c n43mm . .-x c . oo.ufion_. oo.unro_. ecuum¢m . o.4¢u~_. co.unon_. .oaunNn3. coo4~4 . o.49nn~. co.unon.. oo.unu... cauu-~_. oo.uo~_:. 44x42: 1xuu mt: 33.44arn. n. .nx: 33.xs_ u 42—» _¢ >—_n:3:_13. uzp o.~ qo.4noo~. nc.4oon~. mm.uano_. 32.4:\rs. m~ .nz: 23.334 u 42—h —< >p—n333p13— uzp c.a «o.u-om. mo.um~n>. n .uossu. ==.uo-~. n. .mx: 33.3u4 u 4:.» .4 >p4n332.13_ uzp c.m «o.monn~. mm.um=-. mm.ua ~.. 32.42n25. n. .nx: :=.cm u 42—» .4 >p4w333_13_ ur. o.: o.ucno~. n .un:m~. .w: co. 33.4.).x. n4 .mx: :o.~> u 41—» _< >p_n:3:_zo_ an. o.n .o.u:nn_. no.uc~:~. No.4wows. 32.4n7ns. n— .nx: a:.:: u 42—» p< »b_nnaa_zap urp =.~ oo.uomwo. no.u~mcs. ~o.u ems. ca.ucnns. n. .mxr ao.¢~ u 41—h —< >p4nao:_za— urp o._ ao.marmm. no.umoc~. ~o.uoo:~. zupzaao ..4:..1<>u .43) .or :24mmuxm .m14uxnp IQ owoaz.m~ 53 Ip92m4 za—nbuu—a ¢ 22¢ mwruz— anmhm. to ZUhmt¢uo ¢ m¢I c .02 223400 15.94435 CM COUNTER .SQQQO INCHES AND A DIFFUSION LENUIH 0F EVAP.(ML)° VUL. HAS A DIAHEYER 0F PRESSCHH H6) 1 IIME¢HR) COLUMN N0. ob‘Jlt'UO obJ’lt‘UU .9477LOUU .bthtOUU obbdbh‘UU 0“]5hL’UU .YbJ/tOUO b b b b S b b l I I l l I l HHS. HRS. £4000 HH§g “BOUU “Nb. £4.00 HR5. C‘OQOU HHS. (“OUU HHS. (“00“ KQOUU II H II H II II II hLUAuMLUU IZ1UEIZ2: —l t-I—OI-u-n —a—n hhhhhbh bhfl-Phn-h '<<>>>>>> hid-hhn—h m—um—u—uu .nn/umnnn U U U U U U U IHE IUHIUU lhfi [UHIUU IHL lquUU [HE IUHTUU t IUHIUU t IUHIUU E IUHIUU In [H In OCMDDCKDO 01'00000 dQPTLDON ocuaacnmo o:umoccx> §+¢H.¢+. uhuwunumuJ caccnmaoa ‘n-«unancv rfimh¢m003 Mannnrvwc 000.000 0.999.. FLUX DHAEXP UMAHtL GHS EVAP. OCMDOOcHD OCNDQOCH3 OQHOOOOO uuuuunuuua .13875902 57606009 @003 LXP‘I) AND 1‘!) ED oSleE’OO 925 DNA UAR l U ouci 1) 5 [£001 995002 5 1.9. .3032E003 .2729E903 0. bUMMAFION 0F DHAEXPC THE bUMMATION 0F IHE PRO SUMMAIION 0F 7(1) SQUARED THE YHE bUMMAIlON 0F 1(1) PS AREA .1 X P0 IEHP -4 D 3 —o 2 t d (J O :4 I h a ‘W? m OF) m I: -I .4) <34 :00 ID 3 In: fl r~n N m c «an I r~m 0< xn In ‘— J u: 2 L03 3 -3 I -¢nu :uz -— 321 o 3;) 0: n‘pm—O z—mmmucz I: IuJSOLD cJZukfirc IMOO‘fUfi hn-film13N ‘DtuJOON ZUMT: m Ou0< 02 -I 23m :39 mu: c—“o mqun U10 74: 4-«30 I OhM‘ g =91 2032:?“ L44 ‘nuZUh- IMJIHIZde ZFnJ .J 0 3—0 m:>oo (.FWZILhto U ¢DO- — 24101 an) -wruum»m4m JPIJtDIZF‘ :30 P t41~u¢> 0m :ror+4—zcru pm0<~—2— IDJ!'¢A Ih- D>+- p F 0 T S N O LUHHDD-fi < 33.4nfinn. o=.4cc0fi. acou353m. 33.423sm. 3304\330. acounuao. o:.4:—uo. filLflDflflf’ v-n—u-I—n-t—u-n .nxr .nx: .nzr .nxr .nx: .nz: .mxr 33.304 33.33« 33.3N— =3.C? ::.V~ 330$: cc.¢~ II I. II II N M II : conno~.o m. mw—n zu: .oz__moxom ur» 433—2tuup mwx¢33n.pm¢u4 zaxu oa.u~n~n. ~ ¢_3m1 mt» no >-naoabxop u:— _ouwo:c~. m. .«mu— n41< cm hmu mzo 42.» _< >p4n33:_ra_ at. o.~ 4:.uan:~. no.4oonp. no.uono_. 4:4» —< >»_n:::.x3_ u:— o.o 4c.uu:.~. no.4nunh. no.mo::.. 42—» 44 >p_n3::_zop ur— o.n do.u~n~.. qo.4~o-. no.woo~_. 42—h _< >__r33:_13— u:— =.: .o.uq:: . mm.4m:ns. mm.uo co. mz_p p4 »p_n:::.za_ ur— o.n 4:.u-_ . n .uou:~. .m: ~s. 42.» p4 »—_n:a:_::. u:— o.~ co.uon:s. no.u_n:s. ~o.uoon:. uz_p _< >»_n:::_xap mt. o.. oa.uaonn. no.mmo¢s. ~o.moo:~. zupzaou ..4t..1<>u .4o> .oz :24mmuxm .a14uxnp zu a~o-.o~ x: rpazu4 zo_m3uu_o < :24 muzuz— oaonm. no xupuxu: .32¢pm m¢~ouz an» oaoss. m— 223400 m_rp z~ >b‘mozom uzp 433.2204— nuz¢aan _n¢u4 :oxu oo.uo.oo. .n_ ¢_ouz mzp he >p_n:oapzo~ urp ~onuon~¢. mu .*nup nuz¢32m bm¢u4 292$ .¢W¢o no ”flu pmun otmfiOnn. . — :on-m:~ . n .1¢u¢za .ouunoNn. n— 439.2: m» 23.mwuxouz x¢uz_4 uzp zom .1uuxu—2~ mt» :oumn:~m. m. was .22 um» zo_mmwxou1 m¢uz~4 uI» Ion u194n wt» oo.ummmo. oum¢33m ._.a¢u¢zo no zo_—¢zzan uxp No.2:nao. ._.p 22¢ ...a¢u¢23 puaooza 2» no zo_»¢2z:n uzp no.4omho. . .p no zoup¢223m mrp ma.w:oon. ouz¢aan .m.» u: zo—.¢zz:m na.umnon. arm» .0 on ~o.u:.o.. x no.m:~oq. ¢uz¢ no.u9-~. ma oo.un:m-. ~ou4nono. oou4ooo_. .o.uon-. ao.un:n.. gongaaoa. coauc~o_. o.umnm~. 2.222. 2-2.03. “$.32” may”? 9 . o I « o I P o oo.un:n*. *cu422na. owuw239 . .wno. . :o.un¢n.. «c-4222». conunnoq. oo.uon-. co.mfi:nq. .oouu03n. sonuoo:o. oo.4:onn. 4ur¢zo 1xu¢xo x342 .a¢>u mzo a:.unxq~. n_ .nz: 33.20. n 42.» .¢ >_.n33:_za. ur~ a.~ «a.4nm:n. mo.um«: . Mo.4»no_. no.4u¢.~. x. .nx: ca.¢:q u uz_» _¢ >2_r:::_xa_ uzp =.o o.un4om. o.u c . o.u,::.. 33.4.332. n. .mx: a:.ow4 u 422p _¢ »»_n333_zah ~22 9.9 43.4m¢:~. no.u~omw. no.uoo~_. 93.43310. n. .nxr ::.c3 u 4:.» p¢ >2_m302—ro_ an» 9.: ~=.w2na~. no.4mans. ~o.moooa. co.4s.ro. n~ .nx: 23.x» u uz_p ~¢ »_.n:a:hxa. Ur. o.n —o.4-:.. no.u~¢ns. ~o.uww-. ==.unnco. n_ .nxr 39.2: n 22__ —¢ »p_m:::_x:_ 42. o.m oo.uoona. nc.uo:-. mo.m 2:. o:.43unc. n~ .mzr co.:u u 42—h p¢ >p4noaspxop u:— c.. oo.4on:¢. no.uo~ns. ~o.uoo:~. xwpzacu ..4z..1¢>u .40) .0: :24mmuza .mrvuxup to ox~m..o— L: Ibozw4 zoumamu—a ¢ 32¢ muruz— ocmhm. no zupwt¢no ¢ m¢r n .02 223400 . 23 on~33o.o m. uw.n 24m: m.. 32¢ 20 .oo.3o.o a. .¢.>u3 .324—n m¢.332 m2» 333::. m. 223430 m.:» z. >p.m3131 urp 333.223mp nuzqzcn pn¢u4 231m 33.3252m. n. ¢.3.2 mt. 23 >».n333»23» ur» .3nunpns. m. ..n.. muz¢3an pm¢u4 23x. .¢¢¢3 .3 p.. .mum .3a3mwon. . p :3nu:33 . u ...1¢u¢23 .3nummos. n. 333.223u. 23.mmuzomx x¢uz.4 32. :3. .3332332. mt» :3uue3a.. m. m3:.223u. zo.mmuxoua a¢u2.4 wt. :32 uao4n wt» 33.33.3m. 332¢33m ...mxu¢23 23 23..¢223n urp ~3.monnm. .... 32¢ ...axu¢23 $333322 wt» .3 23..¢223n wx» no.uom~o ...p 23 23..¢223n ur. m3.u:oon. 3u2¢33m ...h 23 23..¢223m mo.u~m3n. azu» .3 on ~3.m:om.. x .3.u.3m.. u m23 33.33:»3. n. .mz: 33.23. N 32.. .¢ »..n333.z3. 3:. 3.. .3.ua:om. no.4n.:s. nm.u 33.. 33.43.33. A. .nz: 33.::. n 32.. _¢ »—.m3:3.23. 3:. 3.3 .3.u~nuw. no.un.¢~. n .u ::.. 33.3.333. w. .22: 33.3x. u 32.. .¢ >._n333.x3. 3:. 3.3 .3.3333.. n3.u~onh. n3.mao~.. 33.4rarn. n. .nx: 33.5: u 32.. .¢ >..¢333.z3. 3:. 3.: .3.3.3n.. no.mmmn~. ~3.mo c3. 33.3wszn. n. .mz: 33.x. n 32.. .¢ >..m333.z3. mt. 3.3 .3.un~... 33.3.333. ~3.mo ~s. 33.3735n. n. .nxr 33.2: n 42.» .¢ >..3333.x3. 32. 3.m 33.33.-. no.wo:-. ~o.u333:. 33.43n2n. n. .nz: 33.3w u 42.» .¢ >..m33:.x3. 3:. 3.. 33.33.5n. n3.uomns. ~3.moo:~. zup23ou ..42..1¢>u .43) .32 223mmuzm .a:.u2.— 23 mx::9.n. 23 Ipazu4 23_m3uL—3 ¢ 32¢ muruzm 0:3:m. no aubu2¢~o ( m¢I - .02 223430 CM 13.69659 COUNTER .57580 INCHES AND A DIFFUSION LENuTH or EVAP.(HL)' VUL. PRESSIMH HG) Q HAS A DIAMETER 0F TIHEIHR) COLUMN N0. o7d‘Ut900 .7u9ltouu 3759’t900 oyhb/L'UU ohthL ‘ UU IBIIJL°UU .7956t000 3 b b h 3 3 b l l I l I l 1 MRS. .IHD. HH5. leoUU “Kb. (HOOD HHS. fifloUU HN3. 12.00 HRS. 95.00 1603“” IQQOUU uALUA.LuJ ZIIHEZZI ”—‘Ffl-fi hrfl-hhn-h phphI—u—u— '(ddKUIfld >>>>>>> bra-hmn—— ——q~~—n—n—n b 5 5 S b H b [UHIUUU IHE IUKIUUU- THE IURlUUU luxluou IUHIUUU THE [UHTUUU‘ THE IUHIUUU [HE THE THE O—uumwmd OCMDOCHND 00.0009 flAMLUAA.I (DOOCNDMD FUDGLfiO‘nn Shnhfiflhsl m-«flUNFWT o coatloo nrwvmnnn OCKMDOCK) ooowoooo uumnmuuul NNMHWWMH °CKMW°°°I 0...... NUMLJUMMI "03WMW5Q OQWMW33n :1VUOWL’O (U3N0an- C...... FLUX UMAEXP UMAHtL OHS EVAPO 3333333 OCMDODCND 09.0.9. wwwuuuu 3333333 O I ITIIII MHAUJUMUJ Nnu~oc~nn ~0~ooWWfio ~unm-flMUN "dwd-O .00.... .7I7bt908 OF THE .2129Eo03 olb79L’OI 0.1590E002 I3o32£o03 SUMMATION or 1(1) souanco THE SUMMATION or 1(1) THE SUMMATION THE bUMMATlON 0F DHAE 05976E‘04 .99bIE-Ol .lObILOOO- HUM LEAbI buuAHE5 TECHNIQUE IS IS F 0 uUE ‘CHNIQUE Is I L I I + 0.0019 . 13 00003239 CM 1 FROM LEAST SOUA 0397OE'0Q THE SLOPE FOR THE LINEAR REGRESSION THE INTERCLPI row THE LINEAR REGHE lb.ddb79 CM CUUNIER .58000 INCHES AND A DIFFUSION LENUIH UF EVAP.(ML)' VULo 2 HAS A DIAHEYER OF PRESS(MM HG) IIME(HR) COLUMN NO. 3303333 3333333 99009.. JJJJJJJJJJJ-JU VSJVU¢CV {Ln«\r-)c n~u31~r D‘LOfiJLCG I O O O O O O Jmnnnnnn ~~~“—lfl O O O I O 0 O nnmnnnn 1111111 122121: 3333333 3333332) 0 O O O O O O :ruccsr M3\?M:C l l l Hungauu ZIZZIZI d l‘fi—H‘d hhhhhbh ———-ppp <<<<<<4 I-o—l-d—n—a—n—Q Hltfl)ub - ow Pu.04-0£Z— . zu3o< oz m. 3~_n z<3z m__ 324 :3 ~ x3: 3. .<_>33 .3z__m3131 3:» gas—2:33p m3xqaam pn<34 torn 33.3nvm0. n. «.33: 3:» 33 >333333313» 3:» 3303.333. m— .333» 0314320 #3434 29:3 .3. 33:30350. 33.30M30. 33.3:333. 33:3:003. ~3|3nn:o. 33.30Vnn. 032<23 x‘3<:3 x343 .1<>3 3:0 33.0n33o. 03 .n:: 33.20. u 023. 3< >pqn33:.:3_ 3:3 3.~ 33.u~3.n. no.3oneh. 33.3330 . 33.30000. n_ .n:: :3.::. u 3:.» .< >33033:—:3_ 3:_ 3.0 _=.3:u0m. 33.3000». 33.33:: . 33.33300. n— .nz: 23.3u_ n 02.3 34 >~_n:3:_::3 3:. 3.0 33.33n33. 33.33::p. no.333~_. 33.30.00. nq .n:: 33.0) n 02—» _< »__n333312_ 3:3 3.: 43.30003. 33.33333. ~3.33303. 33.0rn00. n. .01: :3.m~ u 0:.» .4 »p_n:::_:ab 3:_ 3.3 _3.u.-.. 33.30033. No.33333. 33.00.00. n_ .n:: 33.3: n 32—p —< >33033:.:D_ 3:. 3.3 33.33303. 33.3N333. ~3.3333:. 33.05.30. 3. .01: 33.:3 u 31—h p< >3333333133 02p 3.3 33.33330. 33.30303. ~3.333¢~. zwpzaou ..Jz3.1<>3 .43> .3: :z.mmumm .a:33x~» to Nmnu~.0_ 33 t-DZuA zo—m333—3 4 32¢ muruz~ ooonm. Lo ZUputdno < m4 32 m. 33.0 2432 3.. 324 23 3 4.2 3. .4.>33 .324»m 34.302 3:» 333.0. 3. 223033 3.:. 2. ...03:31 3:» 032.2:33. 0324330 .0430 23:. 33.33~»0. 0. 4.332 3:» .3 >..0333»23. 3:. .3-3»003. 3. ..m3. 3024330 .3430 23:. .4.43 .3 ..3 .33: .3-02300. . » 03-3mm.0.- u ...:43423 .3-33303. m. 333.2:30. 23.303233: 2432.0 3:. 23. .33320.2. 3:» 03-3N0.0.- m. 333.2:33» 23.333233: 3432.0 3:. :3. 31300 3:» 33.3»330. 3024333 ...ax3423 33 23..42230 3:» 33.03330. ...» 324 ...ax3423 $333323 3:» .3 23.»4223m 3:» 33.33~»0 ...» .3 23..42230 3:» 33.30033. 3314300 ...» no 2:..42233 33.33333. 323» .3 on ~3.3333.. 4 .3.3o»0.. 4324 33.30~»~. ma 33.3333.. .3-330»3. »3-33.oo. .3.3333~. 33.3333.. .3-3.n33. 03-3.33 . “3.3m»3~. 33.3333.. «3-03303. 03-30.“ . m.300».. 33.3233.. 3-30033. 03-303 . . .323m.. 33.0333.. .3-30433. 03-03.” . mm.0m0 .. 33.3333.. .3-33333. 03-303 . .3 ..». 33.3033.. .3-00000. 03-03»3.. 33.3o~»3. 002423 343423 430. .14>3 323 .02: 33.30. n 0:.» .4 >..0333.13. 3:. 3.» .3.00333. 33.3030». 33.3 30.. .02: 33.00. u 02.. .4 »..033:.::. 3:. 3.0 .3.0030~. 33.3000». 33.3 00.. .02: 33.3». u 02.» .4 >».0333.13. 3:. 3.0 .3.03333. 33.3300». 33.333N.. .02: 33.0: u 02.. .4 »..03:3.:3. 3:. 3.0 .3.3»0».. 33.3003». mo.0.300. .02: 33.3. n 02.. .4 >.«0333.23. 3:. 3.3 .3.3033.. 33.3003». 3.3333». .31: 33.20 n 02.» .4 »» 3333.13. 3:. 3.3 33.03333. 33.3333». ~3.03330. .32: 33.0» n 32.. .4 >».0333»23. 3:. 3.. 33.03~»0. 33.3030». ~3.3330~. 23.2333 ..02..14>3 .03> .32 22.33323 .m:.32.» 20 N30)n.n. .3 I»9230 ZD—nDuL—a < 324 mwtoz~ onmbm. no :u»UI<—o < m4 32 3. 3~.0 2432 3.. 324 23 . 4.2 0. .4.>33 .324»3 34.332 3:» 333.0. 3. 223333 0.2» 2. >».33233 3:» 333.2233. 3324330 .0433 2323 33.33230. 0. 4.332 3:» 33 »..0333»23» 3:» .3-30333. 3. .»33. 0324333 .3433 2323 .4»43 33 ».3 .333 .3-30o.0. . . 03-3330..- u ...343423 .3-303.0. 3. 333.2233. 23.0032032 2432.3 3:» 233 .33323.2. 3:» 03-3333..- 3. 333.2233» 23.333233: 3432.3 3:» 233 33330 32» 33.30303. 3324333 ...343423 33 23.»42230 32» 33.33030. .... 324 ...343423 »333323 3:» 33 23..42230 3:» 33.333»0. ...» 33 23..42230 3:» 33.30033. 3324330 .... 33 23..42233 33.33333. 323» .3 33 33.303 .. 4 .3.3. 3.. 4324 n3.33~»~. 33 33.3003.. .3-3300». »3-33»03. .3.3.03.. 33.3033.. .3-3002». »3-33023. .3.3~00.. 33.3300.. «3-3..0». »3-30.03. «3.3.»nn. 33.3333.. 3-30332. »3-33333. 3.3mm. . 33.3030.. .3-33.30. »3-3m»33. 33.30303. 33.3nnm.. .3-30330. »3-3n033. 33.33033. 33.3030.. .3-33030. .3-3~.no. 33.30»0~. 332423 343423 4333 .34>3 3:0 33.30. u 32.» .4 >..0333.23. 3:» 3.» .3.3.00~. 33.3030». 33.3300.. 33.00. u 32.» .4 >..0333.23. 3:. 3.0 .3.30.3m. 33.3300». 33.3000.. 33.33. a 32.» .4 >..0333.23. 3:» 3.0 .3.300».. 33.3000». 33.3m3~.. 33.03 u 32.» .4 »».0333.23. 3:» 3.0 .3.3.~0.. 33.3033». 33.3.303. 33.3. n 32.» .4 »..0333.23_ 3:. 3.3 .3.3003.. 33.3003». 33.3»33». 33.20 u 32.. .4 »..0333.23. 3:. 3.3 33.33.3». 33.3333». 33.3.330. 33.0w n 32.» .4 »..033:.23. 3:. 3.. 33.33003. 33.3030». ~3.3330~. 23.2333 ..32..34>3 .33> .32 22.33323 .3:.32.» to amm09.m. .0 1.3233 20.3333.o < 324 mutuz. ccecmo to mu»wt<.a ( m< oz m~ mw_n zu3 .ozpumoxox uzp Ana—2tuup mum<33m .nqu4 torn oo.u~nm~. m. <~auz urh no >»_n303»xo_ azp deny—ND}. m— .bmu— nux<33m pmqwq zoxu .<»>: . :o.mcfim«. «sounNoJ. Conumnc . m.mn__ . ao.grna‘. .auurno). coou.no . a .uun:~. oo.mnnn_. ao.u.o;—. couu—n._. oo.unooc. 431::2 mxuqzo ‘34; .a<>u mxo .nx: 29.25‘ u uz_h p: >-n:3:_13— wt. a.~ «o.ar~un. neomon:s. no.wano_. .n:: 22.7:. n u:_p p< >__m:::_za_ ur— o.c _o.uw\nm. no.um::s. no.u»::_. .mrt 3:.:u‘ u uqu .4 >~_n333_ra— mrh o.n «a.unon~o no.gn:¢~. no.uaou.. .nzr 23.5) n u:_p _< >b~n333_rap an. o.: ~o.ucnnqo noowmmm~. Ncoummoo. .nx: as.x~ u u1_» _< >p_n33:_13~ wz. o.n acound:_. ro.uo:mp. Maou N». .mx: 33.1: u u:—» .q >p—flsazbra_ urp o.~ ecouafico. noouquB. o.uoam:. .xzz ao.:~ u at.» p4 >»_n:3:pzop wt. o.‘ ao.uom_m. no.u¢m:~. ~o.uoo:~. xu—zaou ..4:..1<>u .49) .0: tzvmmuxa .mrvux—p :u Nccfi«.oq x0 1.92»; zc—mDLm—a < DZ< mwroz— ocmhmo no zuhMIC—o C m< 02 m« Juan 24w: mpu 92¢ to ~x.x n. .<_>u3 .oz<_m m<_ou: mt» ooa~:. m— zzsqou m_:_ z. >»_mazoa uz» use—Ztme mqunan _np~nsoapxop wrw ~=uunwom. m— .bmmp muz<33m bmu mtg a:.g\..c. n_ .nx: :2.::. u u2_p _< »__n332_r:_ u:— o.~ ~:.u~nnm. no.uomnp. no.w:no_. azouanqc. n“ .nz: ::.r:« u 92—» .4 »~_n333_19p yr. 3.0 .ooun::m. mo.m~sm~. no.mo::_o o=.u:=.o. mm .nx: ac.=u. n wt.» —< >h_n3::_za. mt. o.n ~o+u¢~om. neouc~3ho no.uoo~.. ==.u~crn. n~ .nxr a:.:) u uz_» .4 >p_n33:_rab urp o.: ~o+umam~o noom¢mm~. , Noouoooo. oa.gnnzn. nq .nrz so.n\ u us.» _< »p_n3::~xa_ ur. o.n .o.u:o_~. nm.umam~. ~m.uwo-. ::.gcmnn. n. .nx: a:.r: u uz_~ pq >»_n332_zap u:— o.~ oo.uorsh. n .ucqns. N .u 0x3. caogxo~m. fig .mxr :=.q~ n gt_» p4 >~_n:o:_zap ur. c._ oo.uo>~n. no.u¢an~. ~o.woo:~. zmpznou ..Jz..1<>u .43) .o: xx.mmuza .az.ux~» ZJ Nmnumoo. LO I_Dzu4 zo—mbuu—z < 324 mmruza ocean. to ¢u~u1<~a < m4: N .02 213400 . zuuo< oz mu uwun zu3 .324pm m<_ouz uzp ooc—to m. 213330 m—r— z— >~‘m3101 urp 333—2tuup wmz<33m .mqmg torn osoupnoo. n— <_ouz wt» L3 >p—n333hzop mzp .3ou~oc7. m— ohmMF nuz<33m hmu mzo 33.3ncnc. n— .nx: :3.to. u uz_p p4 >p_n333_13_ ur— 3.~ ~o+gnrano no.uomm~. fio.u>noq. 3:.uarcc. mm .nxr 33.3:« n 323» _< >—_n333_13_ 3:. 3.0 «o.ucncw. mo.uwsn~. neoma::_. oaournno. n— .nxr 33.3wq u 423p ~< »—_n333_z3_ 3:. o.n ~o+uco.mo mo+uo~¢~. noouon~.. aaouwnco. n. .nrr 23.5? n uqu .4 >__n333.z3~ 31p 3.: «oomon-o nc.u:nnn. Nc.uoooo. aaounnoc. n. .nz: aa.n~ u uzub b4 >p~m333~13_ 31— o.n «a.ucnn~. no.3manfio No.uoo~s. aa.urnno. n. .nxr ::.z: u mz__ _< >»_n333p13— u:_ a.~ oo+uoonz. no+yqsnh. No.uao::. 3:.usomo. n— .nx: :3.¢M u 323p _< >—_n333px3p wt. 3.3 ooouano¢. noom¢nn>. Noouoo:~. zwpz330 ..Jz..x<>u .43) .3: zz.mmuxa .mr.uz~» to unwanonq no Ibozwd ZD—mzmm—a < 32< muruzu Ohmhmo no muhw1<~o ( m< oz m. w~_n 24m: m__ 224 zu ~ x_x n. .<_>w3 .oz<_m m<~amz 3:» ooo.:. m3 2233ou m_z» z_ >p_moxom ax» mas—zzouh nuzqasn .nqua tax; oo.u.~an. n. «.23: urp u: >»_n303»zop yr» .cumo~an. mm .hnw— nuz<33m ~mu mto 323» .< »__r::3_za~ 3:» o.~ «3.30::m. no.uomnn. no.uamo.. 323p P< >~.n:::.x:_ at. a.o .o.um:_~. no.u~hn~. no.uo::_. ;z_» _< >_~m3::prap mzp o.n 39.3:o~_. no.uomc~. no.mao~_. wz_p p< »p_n333»r3_ mt. 0.: «o.mqun~. noou¢mnh. Naouoooao 3:3» .4 >p3n333_x3. 3:. o.n .o.u:can. no.umoqs. mo.moo-. mz_p p4 >p_m3:3bx:» ur— o.~ ccouoomh. noou¢¢mso ~oouoox3. uz_» p4 »h_n333~rop mt. o.3 oo.uo~am. no.uccns. No.uao:~. xubz330 ..4z..1<>u .43> .91 zx.mmuza .mz.uz~h tu cmmsoon— m3 Ithma zo—maum—a < 32¢ muzuz— 63¢¢mo Lo zuhwt<~o < m>>>>>> u—ph~+n-— —————~— 5 luuluuus IUHIUUUS luuluuu5 quluuus IUHIUUU5 t E Ht L E IHE TURIUUUb H 1 H. H Iflfi IURIUUU FLUX UHAEXP UMAHLL 6H5 EVAPO b38900 q - nnnnmn mmnfinnn OCkumm—u 3000000 0 o o o o o o LLJLLJLLJLAJUMJUJ ~3m3-meh N 3"? O-fih mm—sx-s ~YN-u-u-NN oOQIStOOZ 0806“E.05 05003 ALXPtl) RED E AE .27295o03 0I67QE9OI o.no|«£ooz 130325.03 SUHHAIIUN or 1(1) souaaeo THE bUMHAIION or 1!!) IHE bUMMATlON or 1H IHE bUHMAIIUN OF DH PS AREA -.ISI7E-03 .IIJIEOOO 09784E°0I ROM LEAbI SUUAREb TECanUUt ECHNIQUE IS IS 0 F H?1UUE IS 0 S t 0 M <3n:ru cu ID—bhzoN hLO<—~Z~ non (fl 1h D>h 01 nepmz kmuDD— d U hmmu wx~h13 a I o -A t K uuA t 3 v 0 J ~\ 0 O I x <1 LU\ n d 3 M I 00 0 8 I 0 D a: 0 AA 1 t O (0 Q—- d A ‘p.g~ A 0m \' o O K 14 has 3 0.! A I 3 (LU DO 0 —t cu A A to Q-v A A OI v I o 0. PI 01 $3 54 J I t K 39 N :2 *2 u v K Ol 91 3 \u I 0 03 I A n 3 «z u: M 4m 0h — 0 fi\ < A w J on mu . b O. N\ D O 0A 2 0 a m \— U0 m N to Z O ~A Q 3 I t on 1‘. :3 t on: u M t-' 9 h. l ' 4" <0 .1 “N AN .J \ U” A o t x ox P'O < h :N u A4 A K o 1 ~° OJ» 0 m n3 2 4 Nu v m < 0 AA bun A 33 on 3 3 or 1 ¢AO 3 no 31w m OJ No I Md K AA. 0 0\ 143 O 0< Vh m < NZ mass. 1 K0 P29 4 t id K3 \ N: (I..- < a: 320 4 fill OD K025 4 \ ZJJ-‘dr > 0 O DOA 0 NM o~m Uh 1| BAA—I m Cd 0A9 I "L ii 10‘ It 2 oouwv fl- hov b < tv h D < uA ADOOw A an D'h I u A102 \3 km HQKKZ 2 .0 ax. < 4 1x04 4 AA vv vomm— o 0‘ ZDA «A3» buo— ~— .14 xivvp t x HAG «on: It 3 2 VV OK. 30mm. 0 o vkv m o o< odmu 0A2 A PK ON) .14 O o o x a. 0 ~29 :N-m Z\< —A \D A4. muxxxam 00 IAK ZOZA m\3o3z~ *3 AJ 0:1 oxoom\AA\1 UOU A °¢DKHOAVNQDmA FOG—L OOO A J—uJ Z .—a 03" u u-o othtttoong . u o AAuAU—h— AAaucu A<0uo A "v A31 1.3 cm 0— «2.3 Pb Amflooo OAZ CQMOMAAA A oootou 10—0 0‘ OZ 0"" 0" 0'03 ”1—0 NO ""1" 0") ~A-0A 04’ II \JOVV'r-O 9" O'IJMJO" I~ m 0 m 043 oo-v N 9° Av9V——N MN 2*: \ID~ (mZAthhAbmdquo ht A N—unllJ-N A hhbDbIPOJZ h 120 < < v Ohdvb ( < vxnuzh— hh<<u m3 Ibazua zo—m3mu—3 < 32¢ mwruzn a::¢m. .43) .0: :zommuma no mu~ut¢~o < m~ . song: . oo.u~=-. oo-¢omm_. «mnwm» ooo4s~—~o couuocm~. oo.uoa.oo ecoucnqao ootudumuo oo.ua~:n. ~=Iu:).m. sclumnsm. .onmn3mm. 1xuu mzo «couu an. ao.uo~nh. No. 900. ~coan‘nN. no.w:hm~. No.0 34m. 4:.4nnqa. no.u~¢:p. Mmouw «N. acousoaa. ncowhe:ho N ow .NN. 4onuooho. noouaocp. doouoooN. ..4:..1<>u .43) .0: zzummmma .mzeux—p L0 ampwx<~0 < m~<_m>ooumxnna firm: .- nto-1‘71]? ouxlog d. Othwvooc> 0.. 0. #Lun N'(Q.0 I) II II IIJWVAV Mn N ZXONN NO 3 Km PILLJLIJ NH ON )— oy—¢ z Fu mzo do.uunnn. ncouo~n~. No. 900. _¢¢wnun~. no.m:~nh. No. a_m. ~o.unn._. no.u~¢:n. Nc.uww:~. acou~ooao moou~:¢~. mo.u .mm. .onuoo~o. no.u_o:s. .o.uooo~. ..4:..1<>u .4=> .9: z:.mmuma .a:.ux_p Lo mu~ux<~o < m~~xouq NN<~~~¢¢M mqfinfinmnn q—n-n-a—n-n—n—n-o ......... 000000’000 000000000 0 O 6 O O 9 § 9 O GCCCCOOOO 0°00 00°00 IIIIIIIII LUJWMLWJuHfiU $N33fifl~fi~ ~h0~3~mno NFNNdNOOA “HWVNOMVNAHU 00001-0000 unaduwuwmdd 000000000 I O 0 O O 9 O O 6 wuuLUMMMflJu omm:wamoo o~mrumnfion ?O?o~omm— h—a—Nmmmmh oooocnoooo 05599E.02 .ITOZEOOS 2992E003 oIOhUE’oz .30426003 028““6’03 0. OITOQE’UI THE SUMMATION or the PRODUCT UMAEXPII) AND THE SUHHATION OF DMAEXPIII SQUAREU SUMMATION or III) SuUARED THE SUMMATION or It!) PS AREA A PO TEMP .ZIOIEOOO -.“O“0E-03 0I94IE900 I ELHNIUUE IS 5 T 00 ST HNIOUE IS 0 L‘ EC ON It I 0N T ESSI .210 ARES SOU 9 T T FROM LEAS -OQOQOE'O3 (I) = FIT OF EAR ST THE INTERCEPT FOR THE LINEAR REGR E THE SLOPE FOR THE LINEAR REGRESSI DMA B MICHIGAN STRTE UNIV. LIBRARIES lllH Ill! llll llll III”! II” Hill!” 9 8 312 30100 7447