‘33:..- .....H ...IO P... 3.... .3. 9?.‘.... . .. .3-.‘.. C!..>J.\.‘.»o.¢vlilv . a . . ......uua..)o.5 .(x... Egan“... . ....wa.§........:...... .... . 1. o. '01:... p. . ......I.’ .(U’. "§.v.llbn..v.9..o.. .00... .. . . .p . . t . . . .‘v u . . . . . . 3.1... 249.6“... 4.2.11.5?) . .. .. .. . . . .. lc-.J.v..3’.. .... c,.‘.2.:.-V.? . . . . . . . . . . . CI} 470. ..].u ..1. .5 > ..‘tth . . 7 . . . . . . . . ...... a. ...-'65....3... u. 0 5.40.0. . . . . . . . . . . ... . . .. . . .. . . .. . Q. 9 I.A¢.."o.3a.fl’ «Ma... . 3"..“A. 9.5"". . . .......'... up . \0V 0. . . ., .. . . .. .. v . . .n 9... r can 1' -\l“..a - D.— l‘. ~..'.l. . Q g - . . ....r. .a.....r..iu. . . ......3 ......v...:............... . . . . ...: ......h....... r... . . ......3.5...._..... .. 5....w ...............L...............w._w.m”; A . ‘10.... L... . Rh.oo..8..1... o. . 3......3’ 7...}? It... ...... .. 9 ..fi. ..9 .... .9. ...... a ... ...: 1).? ... ...... ... ... . . pa) .... ...- . . . .. ......2 .. 9 ......L...’ ...‘3*;. . 51.0.. : 5..-5.4 0.! . ...... .01.» ... ....‘J. . O .. . .. o. ..u.... :01 .o . . 04 2 ...? L. .... ... .r.... .1353! r3... . 3... xi .. 11...“... V... . _ 3.. ...OP; ...: 1 .. v . .192 . . . .. ..uc: :3... . ... N. . .v ...... . . 03.7“...“ an. {.3 u i . . Mu... . 3. Y7! . . .. .. o. . . . .. . . . . . ... . . U.‘~ ~ C! .r . ......YnfluJ33... .9. . . ...-.20.; ..g...~« .3... ..."..1 Jun .. ... .... . and”... . . .. 60...... .3... .. . . . ....42 . (34¢. . I. . o I 0 § .39.! .3...“ h'.1 ... a ...... - V. a... 4-..... ....- o 2...? c . 7012.). . .3,’ 0 ..~ ‘; ...-‘11.... 0.. . ..?w" '33."?! s s .... l. «mm... .. , .. u I ......Q.3CJ 5.7... ...“?Rde. ... . . . ‘ 3'9 J ‘g ’. 0.103113? 0, V 201. I ... .. .. (...: ,I:J.z.....a.... )cvS... .. A ...: v1 ...oo... ‘DI.-...-.A\....‘.o..o.. .....(a b I... .... 2a.. .9. ..v t0.’$“‘.35 .‘..V¢. .... . 1 IO N .. .. a. .r" .....91 .Y 8’. w. . .I v .9- . . I52)... 1 .05... ml. 00.. ,v.t....ti...c..u...m.1o.'$uo .... . .. ...: ...... .. . 321-5000... > 0? cl... .. ...:l . ...... tw.‘ . _ .9: . . .. ... ..r. a. . . H: . . . . . .‘av‘ 0.: l .. 1... ... ... . u .111 . .. 1...... . ‘I. . Quin... ... m9.“.-.$v . .. ..w ...? .c 3'. t. . . .HQPRJ.'HQ\O..«$JU.J.0\I:...... ....u.fJ.YSYIJ..J todvo’alnml can” .e’hfiué .. .18... . ..d‘.7¢..‘ volicvu.3.b..ov.u..rfivuo.«r.u .im Nauru" .... .363”) Y... .. .v ¢ 0. ._ 9..\. i 3‘. V9910 . Lo . v.3.u..l$.7. u . . . . .11 s ......._..............r.......nwn 5......» ..+.....5. .... r .2: «...... 2 5...»... ......u... .. r . . . -.....» ...... .... km... . n . . . .. . . . . . .m..’o§~uuhu0~.fl1’.fiJL-H- on... Q'olI ...-..Io....fl ~? .1. .- ff". v». . . 3 I)... ....c.’1...lt 5‘070-7". . . . I . f. 1. ... IT'S I. . .. w\.\ .o 60.... .../«1:? 3... t. . . .. . . ......J-. ...v' o. 0- ’1 . Y}. OI§.'I..‘ ’00: c 8“.’..3.3. . o a... . ...... . on . .....k.- ... ...oac: . 3910!.” .30... .r... u!....! ...! I. 3... . . ...... 1... .55.... . 1.. '9... ‘0 . . 1....vo...”... 18...; ...}... 0 v. . .....891u No.39. ...-$.01... IQ. . I .4. a . v .....r... or. . .62.... 3......131. . 7. ... ... 3. v. 3‘0... .,. :‘n. .... ... 3...... .0. .o ”c o .....o. O Ll..$o.1.. .3; r .9710... :1“... ”...? .. tutu «1...... 1.7.0. to 2-9, mu...‘ .1. . c. ._ . qno.,.o ...: r. €2.32!!! thfln. 0... \hr! 9 a . 0:93), \fi»’.rli.l.. .. ... - 2‘. . ...? .f.‘.-o. ‘p .1. 9‘. .0. 1"...KP 0 . . i . . . . v ... in...” ..l ..n? ”If .'10. ... .... - 9'... ....u.... . .... ..I‘..T..'. , . a. ...... ...... 1 Q... I. ... t . u... ... . .. 13 . “....” 'Io.“.0..v"!’.l.‘. h . ......m..............§ .... . . ...... .I . .) ‘ . .... ... . .0. z . I‘.-.‘ .. .. ,. .....0.....§.J.§2.UL:..... an... ...... .c) . .Qt!o¢$..l3’. . a i . v. I! . . ‘ .... .I . ‘d’isr l . s . ‘I. 60.. «to I04". ..I‘I .1. DJ. B L lbuin‘ ‘2‘.“Lso'k. . In“ . e . . . . 2’... 2.. . ...d. 9. ..U .. v.\ 9....‘Ar\r.o D . .OIIH~\ . o9,.l\......7.vv '— . c . . . c . . , . k.» ... 65.2.3... . .o G gr’gz ..‘hp... ..ufl..o9!uwrm’lo'?l.ncucnr 0... I... f to J. .. ...... . 9‘9 0.9%. .... A. 3 71.“. 290..-... .J‘t...... ..39. I... .... co. ...Ap..’¢o..4~ «...-‘9‘ i ‘n... “I... ...-z: o. I 1...? ..‘ii.\xxo. .a . ...!a I. 1. .173fl...11§ 1'..73.... 31.9.4.7 .5. u .. 1.5;- ".35“. .. . Jon” ...-Si. ...-.17}... .. 93380.... :1. . 7“... v. ... It... ...-p 4.. . O. ...-.033?! . e 3" ...‘Ix.-I.a. r . u . ”Ki". .vL ... 9 ...“. 35...... .33.... .... ........... ....0‘.‘ . .....8 . ..wulfi. .... .r33 . .. .... {311.490. . . o. s. 0.. 3.?‘35-..t.¢‘.4.’“. O o ‘l . ... ’ Q1 3‘... 4!?3...!-..- _ . . . ....9Il.¢¢.'p.o_ Ct... 93.....30. 0.....t... .. ’.r1¢'..'9. ..3 ... v. 0 ‘32-‘5I a n u on. ‘00 ...l. y} C. O . l al.\..\:aav ...:tOIkJ !¥ 0.. .‘u u' . . . ....Ol: .39... .074 9. o....-l.’..... s... ....e. ..S.....J...v .1 .13"?! .... ..I‘ .....u M. n. . ... at .91 ... .0..~a... :13: & “We .‘1 l .‘I' .V I I ' o ‘ . .107 .. ....IDQhN-H...’ ’1. ....w.a...9h3 No. ..l «09. n ‘ a. . . . .00. . . . . . ...-“HP... .....- .‘9...VO. . . . o. . V «to. I, .. . . . . . . . ‘iol’ r; ...... ... .... .l' 9-..}... l*:-.. ...-1“. iv... o . . 0 .V....t.o.'..o.!v.? .Q O ..'[r 'o" . V .‘2. . VIM-unfit .. . . .... . f‘l‘o8t. ...! a. U 5 26.0.0 .lisc’- ......‘ldofi «r ...»U . F. I . y. y’-’l V. 6. I... .C o- . L .a -. .. a . . . . .. .‘ u... r... ...). .- mofi‘p Lzlf..z 143.30‘ t “L.- ..;L«I".«‘ {oVuuvafi' t... v .t'. o 1' ...... X . ......9..... nt‘ . .. b. 90.3. .... ..o... .1 393‘... Q .... ...)... qb38131 .1 gnu-O wan-”I“ . 6 . ..ta ..1- '39,? O. 1...)".0 Its-ls! b! ..’?~‘.lo0 ....ui‘ .3A ..."030 . o.' .§.. .- 7Q. ....o... J . ... I: 6L... ...); .. . .I 0.23.8... ..I ..."? «Jinn... o ,v..r‘ I v.. r .0... v1. . ..‘I o . 3 3 ..v . . I0.. -.|.‘.Ofl J nut)... .u“ ‘ ll. .... :2 ..., .1. .90....L ,. .....I‘f ... 5 J... . ..‘nio..tfill)‘o.DQ-.~.’ . . . ... on... .. .0. ...q..9! . ..-..I. Q. ..\. . . C.....‘.....:.luv. .. ..-}... ..uc.o..-t D... . .. ... .n,..‘. .. . . .. . .... L. .1... O'col 0.. . a ... . . . . . 93-...33 f..- o‘ ‘2‘: .9 9.. 3:. .l- 0%.. w ...h . . . .. , . . . . . , . . 199...... 8?...le 3...... 38 ..vi $.05 . ‘..?It. to... 2:3. . . . . . . . . . . OS... .5... vfi’! .Nn.’o:-’ 2' ....a t ’19.. n a d- . o 9 ... ....- Doe-.51! iv» I... .I. £59.27, 70:... n. . A , 0 .. ...-.2317. .... . n ..9. .1 3.3.. .. .308! .13.... ... 3.1.5.1.... .- r..‘.....,.v..‘......372.‘ o...c.?..0.)..-...Qo¢2.§ 5.0.9.1.. ... .... Jo ...! 3.2.. 3...... c. . .32.... 9’17! ... 34...... “If .63.. ....7. no, ..r: .9 .. 3:..9171o.‘ 1.... a or...) . .92.... . ...... .0... . . . .-.-.12.. . .. O... . In... .3. fift. t. \ .19.... ”Jr; H"... La... 0.3.. 8"?! ...?hu‘hmfiopuwftdvt.2.01.03. Inflm-r... .... .... . .... . "rites“... 7.: .9. . . . .1... ... ..6 . . . z... . £9 a ~ .1691“... II a v .. . . ..v . . . . . .. o I. . o . o. . wanna. .. 1J3) .3 x....: .ycatszs ...”...oi... o} 0-... '03.... Q\ . . . . . v.1}.-. 339.901.?!001. 3'. 3...... .5... .1. 0.... -9031787 3’22}. 9 b . . . . .- ... . . .. _. ......all e. o luotl-Il! ..‘.w.€~‘.l... ... 35.0.. . . . .. . . . u.....0.o.. .. . ’1..II’ J . . ..7"!. ...-Jo ‘$.-'|90.9.o.é.. . . . . 1 _ o. O u o .. .t\?. . l....‘: . o....¢.‘.3o.wc'i.I-vi 9 .Q ~ I..,II!J... .. . _ . ....-t . . k1,... ‘ s .3 .D ... a) I .. .... q .0..5. (.....I-Qucciro- 3’29‘195.‘ .. ..XII... o _ . . ......“- uo'gc 5..“ 2,. 9... .. ...“..u’.‘ 00.“. . . . .n 30.1.-..- o. 1- v... . - J Jy‘hfi 1 3!.” .fir ......I ...: 0 _ . ,. . . ...-3.. ..o...:..!. 3:33? : . .I 0- .0. . .. ... . . . u .. 't A Q: 4.. 3.. 0.. ....Ingr1‘l . . . , ...w...qr 0"...13. .o.mml.. ‘10). 2' . . _ . L303? Inna-loitftvrihuor via)? 9qu ...... n . . . J . a o J.”J\..3W9 | .r . .... ...}... L .I .. . 0 it!!! x 0.. . l '. .- 1 .. c.- ... . 9 . v3.30. figuwhfizmm. .v." .. . . .. .. ‘3‘.- ‘Ov. . . t'vv ‘ . . ..u . mama-”1‘ ~..I.D’.a".‘~.m of ...ifl‘b.’3..2¢l . '0 30..., ..w..¢al ¥.}KL {Ciri’ 1’: bl. V . VF“ J. . .Io.‘ . 3 lo..V\-’a. ... hhh ... .‘I' .Iv.‘ .-. .- .16....>J. NZ}. .....QK‘LIJ?V 00. .9 s . ...... .. r‘kc....’:.rl) ...a é a... 36.. ) . o 3...! Q... ......h ., In. 0.3 .. v...‘,..'.no.....¢ 0" ‘0‘.’ . 2! ...... .!.1.\ .l‘? ...!i ill-.0. ... . .. )0. I. .nvo4I\...€... 17-91 . . .. . . . u”. :79... ....‘x?...qvu ...... on. . . . . . VI. ... .V..... a. . In? .1) 3.8:?! u . . , . . . . . . .. . .. . I... 0.... ...... . . f 01... 1333!)... . . : : . . . . . . . . . e . u. . , A, . 101 ....l.. 3.1.]. .1...J..-1|..OnMXIO-ON.’....?I’H&> . . _ . . . . .. V1133 cl 0. f 1.. 5.. .17; g. I. A“! 0.2.9.... if I... '7'. . 5.0.1. .3309... . . . . . .....uu... 31:1... ... .. 3,11%”. Quaybfifittfliv: .....vs -.. ...... .35... .... . . . .. o .. w . u y o c II V . ‘c ‘ . 3.03.. .rr3?“pr 2...“: fls.\..€u..o’?.«. 227.... .99.... i I.” s I“ .... 5.3.3.1.?! 1? 1.... I. a? 3.. 31 : ...: ..‘8.-. .l. . ...I :3. 3'21 ... kn...o«.31€. .I" ’3 2 .... 0'... c . 30.. . .0 '92.: .’..”.n... J.’P~ .0. I . I 3 v 0.... P01. ’0 ‘0 «9. V0 ..2 '3‘ P I a b ‘ 0 v' v i 5 i I O I | \ . l’..h..5:.|.)rulfi.flt .. .i'b . .I..."\.*‘A "6. 1.... . .o I...” ‘3." .tfi.i'£ ..., In} V .r . '3n.‘ . ...-ff. ’. o I ‘ I. . #359333 ..Q."...-lt...o‘. \ {...-l: 1 . o . g o. a I. t . V".. o o. 3.... I Y... . ,-..v ' ...-...‘O)‘sv"‘5 . ”’Q...' . 1 f. 910. 0 ..I. .. 9. .0!- 93 ’ .v’a...’.....at0.tl’ ... 0.Q.J1..o.“7lol..‘ ’0 . no... ...-.7... 5.. 0...: '4 ’7’... onIQ :2... 1|. .1.‘IO' . v '. ,’q.vo.....o.. c3. . o-u’.th-’d x...’ 9’. 1.13.. 1..- I 300.! -. .13..}.n?’o.. O. . ...-0". u «0'. ...a. 73..."... . . .- ...-...... ' l .....urlnL v.0..b- ." \fl” I too...ul E. a 5.5.2.1.“ 5 a L... A?! ... 0.1 . I ....o...o.nw .‘ .‘L 9.. 0.. \o 41"! . a. 1.. I ‘ p.r.t§’ I . 3.0.. 23.7.: 05.”.\ 0'03... 9.0!- , ’v.v.J:. ..77 ... . . 0's . . . . .... 30....03...‘fi W."O;O‘H. .... 21.0, ...l‘. I . .. .‘3... 'I".QHI‘.M. .- ‘ -b fi‘fi; 2 x ‘0 ... . 5’0 ...? .).30..|- 1.. ..I... .l’... 03$ .3" .. . Q 300’... Q. -‘i’d‘fl 0. ...i ‘an. .3! r‘..|3\. has”. . s .53. Mat-.15.! 'q ‘ . c .U\-... 0' I u‘r‘Io-’. : \ .1 ’1 a... .14‘»...§I."lt9!a 3 1' t .0. ‘5! . ...... .. . 390.31 ..‘Ognalli’ la- a. ...: . 0.13.93?! ’0 lf\.')0§\l t \ )‘t ¢\\oo.)7::- . J. 73!... \Q 5" . “..vr’.00’“ \..‘..ol 0: 2 .. . . . ., l...’v!0t ‘rit .3... 3|... ;!.a!1,3v‘o C. .0.) .Q «I as I. ..II‘Q- I. "9 ‘0- i a ..I? 1.: LI... .- _ . ._ . . \ I...U\l.' oh! )1), .....~I.I.L 11. ii . . . . . . .I‘. ...-:3! AMY ’,0.8\. In. I! 0 «$4.6 9. . . . . . 0:, 3....»3I.:.| 0.... the... .7341: . . . . . . . . . . . . ...-’ :‘I-.Q.O\.lt0~ .. U 1. I n . . . . . . . . . .I‘qol t.\1‘\‘}l.lri‘v’9\’h«. .. . ... . . u. . .. . . . .. ... .. . , . . ‘l I .‘l.‘¥ I «A. O "0 ' . .2 . ...... v3.6..- . . . . . . .. . . . . . _ .. . . . .0... Li‘s-codk)... ”\noofl . . . .1... ... b 3 13...... t"..w.:..- 3:0 .. . . . . . . Lyhngabn5fiuuy’2. It... 40). . . . . ”HP... .109... 37.0.. it?! '1 t .X‘..-'!!.' J... 32......1' , . . . . , . 1).. 19!... .0... In lzltz . o .0. .‘cl.... I. ‘31-'80... .uii...fc‘ o v.0’?..'v" ...». .1711... on. ‘1 5’» it, . . . . .... 0......HOOI’. Q! 01. ..p' 7 01...! lob-(r6 J! .4788.H...o.o.f1. vzuloclt‘ifi tide. . . r .. a... P....\ . . , . 00:311.: ... ..V’. ...... ......) - I‘D 0.0.7 |. .0... l O... I... it...{3 3"): .9’..x civic”... -.." a '0." ...0I '6. '3 t . . . In! . :1vop.4 ._ 3‘ §”’- ‘1 k'ar0,3‘.'0a -: ...: . a. . o c.1917 I-.. .... ....“- fiyfo . 3‘. Io:3¢1\. $7913.19 x... ....N. . 3.....351 .i..\~9- ......I..1.. .I . o. . ...-‘0'. .0. J... v1.33“!!! 1 .. o .q a 4 to...‘¢'laucto .f v.... ..-. ..o ’...«.?~.¢OH3J|I..I.V.....anl’) 35...- . 9.".'¢.’...o..a-. ’12:... ..Il! 09"? ’30-]. ‘IC -’..,gi"9 O. o l.\.\.v.o.a. l V . .....toa. ...-.. 2-... 1d..,§r .... u .....l J3?» . 0”. 3. 3.... . . .{Q.§.o.~o .90.-.. uII. ...! ’Q.tl..?.‘.n.h .071a‘l.‘ \\ IQI‘S .... 3.)!‘A‘ .90 v.... .o ...: 1o...336)$'. .13 I...'lt7 J?! o . .113’Or"; .fiqh . Jon-Cog! .... .... . vb), ...-.... .10.]... );\~. v-0... .6)..0’.o.-:.|‘ ..PH’J‘vdD’I .‘.cl.r.8..a.§.w . t. l- 1-.,'I.r3.u.lf'.ci"$.. "5... ..-...Oo.“ IV, .....I. More. .v.o .4 .50....‘0 «0:1! ...! .0" II’ 6...! .... Y. . . .V- .0 .... 1"..- at. n a . ’I.o57 9". J... ‘1 o .... g. to, 2‘ .O.v‘|3‘: .- o. a... If}... . . until‘ ‘3 1.92.1. .7291“. :- x'. V: o ...r. 3“!!! it 2 ’13.: 1’13... 2 . . . . ... l .0 0.. ....) 1“. | ..(tv . ’. . . .19.. .13.. ... .0 . . bl £o§fll'.p‘.¢..: 1,6 ’41P... .1’3 .09.. 15A: (3,: . .n f .0." o ...... . . .... .....v . f9. .0 .\ O. . . 1 IV ‘.\IO$ 1 QA‘! Int-.10....C cl. 1 ...:\ . o. ..- .... ... 0 AI ...).0 :55. in. .va. 'a v .c‘i’ fryer..." I... ...3 933......9r73’f ..Iuo...‘\ . ... .§. J.v.o . . . ... t..‘\..,ao..2 .I‘ 01‘. i :7. .v. 0...... ..3\- C ..9...1.o‘.:fi7.¢l‘3 .. .....i 3..“ I 3.0. 3 It. 0". . 3.9-31... Y... .. ... ID .. . . . . . . ..a. ‘1.\o!1. .c? ..K...‘.Q\.\.!V.. \U’. . .... . a. .. o _. w J»)! .V..8..tnc"l .3! .37.. 2': 31.3: 13333332....7". .. I . . .. .. . . . . .. \f..?v..lt ..‘Jo. . v), .. O.“ I‘- . 04.8a. 9... 1.31 I...)T3P3“§ .90.... ...-'3‘ .O}CI.'?\OIII.I..."D it... . . . .. . . . . . . . ..fl..\ Ix . . .‘u-Ivo frohklov“_ n. v ).;u... «f’ v». 1““ .1 ’II 63.....51 It”. ... I. IIp-H-Hooniuvl-Juuotu. . .. . . . . . . . . . . . . .. . . 0!}, .... 099.. p. r... l.v!v.. ‘0 . . o . 3.. .6 7.....3. . . .. .x . . . . . . . . . . . . ... n . u. . 'uvcrm1io.” . ’Wb "wvagcuh..:'“ ”.‘uz.’ .. .c -... injun- ’?'.1P.I¢¢.. . . . . . . . . 2'. 0‘. ...}- J-‘oa- Ca ..c; IL,- . v I in... . . VI 1". -.0003. v 0": 0.1...‘o‘a ‘\0.a..3. . I"U-.I .l-Oan’il Inf! . . . . . . .. .. ...,Ei . .0... 3-...“ Fl. . ol...0v.tl. 31.9.3... . 3.3.2:... 1!.3‘.~....5.Pd~c< 7103.14». 3.4.11.3. . . . . . . . .o ‘01 Oil .0! ) O. ..-... ‘3' -.. 0065.4! 9'" 3’00‘ 3"...va '0’ oJ”.“. .c‘OV . sic. O. .5. . . . . . . . . . 3. § 3 .r.‘ :...DO.UV¢.1..3.- .olfi i.“- .. 331....‘t7’buqr Q|_01..“..o.~l. '33’0.!...? . . . . . . ' .I...I...f 7313......3. .. I I! .a....7..l.v.l.:¢l r933”: lo ...-3. . . ’91 ..J’) 13373013... . .. . of“... .Jr $3....)371'g1l. . . . . i... ....f... 13 . ...ols‘..1. ‘7)! ',.I.ov0 .. 5...... D v .le. 2 '3‘ . .. . . :‘Qv'...l_1¢..'.v.... ......o... .r..: no .3. . '05.”.Il’v... 9.1,}! . . . .7'1. :1. P1.o..i ... I. a..- a" {QC} . .l .C..‘ ...-0’ . .’§ 0 .a r O .0 . ....I.~O._I 3:33.... . cQI..). 3.0- .9. . I!!! ....b..\.,.. . . o 9 iv 3.. Fat-8.3.7:)» 3'21. U95.ui..’..‘¥f. a: .“.'-021 I... l!!..bo.¢q 2‘ ... i.’cvooa . ....O .0... p‘of’. .‘I-3 . .0 V..Ic1".rho. v...’ 3'. {ll 1 L 1-0.0...170 .1 .. 0...! (......94 nfoao... “it. 10.". . A ...,n h. . liopkoov.oog..".v ‘ ... .3510. ti.- ‘5‘. . .0 . O. . NI- .... 3......“ . ~0.c§. so". .0... .l.)a Ill: . 3‘09. .1... ....Vu.‘o.3.tvrv 4" ..' 0303:... . .II '3‘...“ ’jfv‘;.uo. o. O. . .0... o uh. .‘3..v‘ I: ..”’o..-.c¢0. ' .....- 2'.¢I’JQ )1, .3 col, . , ’ q , . ..r ... '3? .....Il o“ $017....s o ...-K ‘ I .. . 9.... 2...v.\¢wO-..t...n!oqm.3 .. .. 1v . ‘5‘. ...... )u...’ .9...) ...... . ..ant.v.7.. .’.\.... ...-.....9...’ ......b ..Y..!b.o.?. r . . r i Q... . ... . ‘0' . .....‘V . .73? o > ..V..." . . . . ,0..I .. . ....Vl...aol|«..o!1v..0’o . . .... ..c .' :0?...-. o Orv“ .31.... .m. .- . .... I .10’..3-. [9 '0‘.’-.-)Y ...... (I O . o . ,- ‘3’..’ '0. . ......PI...’ 3‘... ..l.. . . .23.“... .... .........b.: . .n'a... 3””...1‘. . ‘5 '1. I':’.4 ._ ... 9. i let . .. .ao.§.7v '91.... . D. a '- I . .- 'O—".-!. .0- . 197.....‘3 .4- I a . 0v. 3 ....c .oom’unw7v..Q98.r’u ..a . In... on... u. . .. tn '3‘... some; ‘0 O'Ilsllr': . a Q‘ ‘ v1?! .-. 7.. . D .9‘...‘ "1. .l’ut . 0...! .! III‘I. .. -... ....‘91 . .0, voiv a... .I 3... Q... 3‘. . «.3..I.u!"Qu ’,.1.;.v31.1a.o .slr..‘ 3,. .' ......V§l.o’o ' u. "-’.0.. ..- ).IIJ. . 0., 1...?) a) ... 0! .‘Vi’ ..A.. b.n.o . o . 'vxl) . .l .I ... I. a a. .O - ... . 3...,lbv . 0.... J. J 3.1.)-3? . I. o Y”... .71. ..."!!! . . . .... A 1.3.]. ,2...“ It; I .23. J... .... O u. .v a 1F. 3‘7. 'v’o...'o. V. .a ...)vII .‘V. .v q a... «1...... .2... 4: . O3." .704... .. 10:: u. I... H: Sitsign .. . . 9.9 ...v.~'o.~..!. 3’9 ORB .30130; to L?! o .... ..J‘l. .... L. . , . . ... ...-17.50‘ . . o v. :0... R - .' . o: 1...... 0"? .0 .. ..Otoolntooo. ...: ...-I . . .. .c -..... . .50. 1| IUQ .. 9&5 n‘l‘! .-.-l . \v.‘-p|l.'.. ~... §.-.b I} ... n 1.0;... .....Ono ; .l 9-))... . It 1......03101....:. . M1... .172. _ . .... u A. . n‘. I: . . .1. O... b '3 Q... 3’ ...-.9... .".vl '0‘ I10." 35,0. I 1).. .t\’.lo.-.. -—.’S¢pv.' '. ‘I I b-‘-‘.p$ ID. V. 2’0. lvl._.oi 35.31! o'oOF. , 0.. flav‘1u.u . _ .14 $.19... .... ..o..'.l..l.o.€ .332... \.....I..~a . 5.0.5.09... ....§.. 104.0) . o 1.4..)‘0. .L. 4.0.... 00 r,- ..o. .... ... 0035.1 ...-09’0“. ’1 'C. It... 0.... .‘o . ...c. .... ...-II. .'.I.O.o.\ ..C‘. DI . '1. ..w...' .h- .c) .....2. . ‘0‘. zt>v"¢‘o,\ - I \)O\.~ ......‘ia. I59I‘§9 00".. O. .;...Q. ‘2'... "\o. '..’c|“6 ..vlll.. ‘ .0 ’9. w. 9-“ ...“.‘h‘ 3"... “J"DI ... “0"; 1!"... . .0: .| u. .9! .. l ll . ... . t na.\3. .2 .OIOOI .1 .. 10...!!ov) . . n u.» Q“..§qc 9. . .I l on “J. \. .v- “‘1‘!“ l...‘\c.l.‘ _ . ......v . 5.. O. D} . o . IQ} . zllr.‘ II I 0'1...” Qt. I.l.'\ . . .. . . . . ...? ... o..9|.’... ‘Q ..-- ..05 n‘..-0l. ......9. t‘CI . I J Inn/....clfwwnnfla-thf . Om. . :Y . 03”.“)...13.u“...u.¢i......:...l. “run.” . i... . I...I.. . . z... . ... .... ... H... ‘ . a .... ..hru . ......l. '9‘ . p.10... . 1.. 1 ....IPYL: - n1‘3....\.\nc 10., D . . .. . . . . , . .. .9.- .l. .u .. . . ... I'D. ......t..... 3"... ...w . 5...... ......L.un.un.w...h.....:. .... .... o. ......45. . .. _ .. . _ -1331..- . . . .... A. . . . . ... . .r . . . . . , . . . . .. . . n .. : . . .I . 1.3.. ......‘f....3t.9. . . ... ...»...V....\.. I!‘ 3,95..- II V .. . 1| . . . ......o\..09 H: .. .. o§.14\1‘.'l.' .S‘O. .I’\!. ' .v§,ualflo§.b‘l..0 v u’...\.v'.. . ...Voo‘.\t10)t.a ... ’ c \c I. ...-:93... .vo.... .Ioo.’ ...-II..\. . v ... .L o voocoo’v KI...) . .....$.-.v. . . .t.. I. . ’ .' ‘n .....v,‘u I . . y ....‘Uo...9..~- 0.15 r-O.‘IO Concentration (mM) Optical Density (660 nm) 1o . . Nitrite ‘ Optical Density t 5 q ‘ - 0.05 ‘ ’ A k 0 ... .... ‘1‘ - ,..-. - -o.oo o 2 4 6 a 10 12 14 16 13 Time (days) Figure 9.2. Growth pattern, substrate utilization, and pH increase for indigenous aquifer organisms in Schoolcraft groundwater adjusted to an initial pH of 8.2. (Replicate #2) pH 9.2 9.0 8.8 8.6 8.4 Nitrate i6 30; 1 i 25.1 A cetatt E : 5 20; .5 : g 15.‘ g 1 U " 0.30 " 0.25 . 0.20 " 0.15 "' 0.10 ' 0.05 0 2 4 6 8 10 12 14 16 Time (days) 0.00 pH Optical Density (660 nm) Figure 9.3. Growth pattern, substrate utilization, and pH increase for indigenous aquifer organisms in Schoolcraft groundwater adjusted to an initial pH of 8.2. (Replicate #3) 35 550- 500‘ 450‘ 350‘ Dry Weight (ms/L) Figure 10. Biomass accumulation of indigenous organisms in Schoolcraft groundwater measured as dry weight. 36 109 CFU/ml 10‘ 105 10‘ ' - r 0 2 4 6 8 10 12 14 16 18 Time (days) ' I ' T fi U ' U V I ' 1 V U f 1 Figure l 1. Growth of indigenous organisms in Schoolcraft groundwater measured by bacterial plate counts. 37 9.2 ~9.2 9.0 _ _ — ~9.0 8.8 L33 I . :1: 9 8.6 -8.6 a 8.4 L8.4 8.2 7 . 0 2 4 6 8 10 12 14 16 1882 Time 35 (daYS) -o.35 30 . -o.3o 1 Optical Density 25.: r025 A E a ' § 7:? 20: Acetate mm 3’. O ‘ .... t: 151 Nitrate -O.15 g i? 1 a 8 ' .— 10. -o.10 3' 5% -o.os 0 4 - 0.00 0 2 4 6 8 10 12 l4 l6 18 Time (days) Figure 12.1. Growth pattern, substrate utilization, and pH increase for Pseudomonas sp. strain KC in Schoolcraft groundwater adjusted to an initial pH of 8.2. (Replicate #1) 38 f 9.2 P 9.0 L 8.8 l 8.6 ' 8.4 10 1'2 35 (dayS) .AAIAAA-IA‘AA 8 Nitrate H U! ‘..| Concentration (mM) 10: 0 2 4 6 8 10 12 Time (dayS) 1'4 16 14 Optical Density Acetate 16 18 8.2 l- 0.30 - 0.25 ' 0.20 i. 0.15 " 0.10 .. 0.05 r 0.00 18 pH Optical Density (660 nm) Figure 12.2. Growth pattern, substrate utilization, and pH increase for Pseudomonas sp. strain KC in Schoolcraft groundwater adjusted to an initial pH of 8.2. (Replicate #2) 39 Optical Density (660 nm) 9.2 9.0 8.8 I 8.6 9- 8.4 18 8.2 35 (daYS) no.3o 30 l ~025 25.‘ . . ’ : Optlcal Denslt) P020 3 . 5 20: . '8 1 ' 015 a . Nitrate Acetate ' § 15. b 8 1 i-O.10 U 10.. ' L 5.: -o.os 0‘ ._ 4 . . . _o_oo 0 2 4 6 8 10 12 14 16 18 Time (days) Figure 12.3. Growth pattern, substrate utilization, and pH increase for Pseudomonas sp. strain KC in Schoolcraft groundwater adjusted to an initial pH of 8.2. (Replicate #3) 550‘ 500‘ 450‘ 350‘ DIV Weight (mam) E Replicate #2 Replicate #1 Tune (claw) Figure 13. Biomass accumulation of Pseudomonas sp. strain KC in Schoolcraft groundwater measured as dry weight. 41 10 91 .l : fl" ""~ ‘ ‘ I . VI . . . laboratory temp. Replleate #3 disturbance , 10 8. Replicate #1 i ..‘ an» E 1 Replicate #2 lo 71 1 10 6 ' I f I f I ' I I I fl I ' I ' I ' I ' I f T V I ‘ I ' I ' 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Time (days) Figure 14. Growth Of Pseudomonas sp. strain KC in Schoolcraft groundwater measured by bacterial plate counts. 42 Table 4. Kinetic parameters and yield coefficients for strain KC and Schoolcraft aquifer flora in Schoolcraft groundwater adjusted to an initial pH of 8.2. W Kinetic Parameter KCl Floral Nitrate to nitrite [2,)“, max. specific growth rate during N03' 6311 6:1 nversion to NO; (cl-1) bserved yield (mg cell dry weight per mg Ofli 0.04 0.05:1: 0.01 NO3'converted to NOz') Observed yield (109 CFU per mg NO3' 0.64 :t 0.19 0.033: 0.02— converted to NQ') km, Maximum specific rate of nitrate removal TH: 1.8 W 1. :1: . (mg NO3' per mg cell dry weight per day) 'R—atio Acetate to N03' 00,13qu 1.01 :1: 0.03 1.05 :t 0.01 Nitrite to gaseous end products um, max. specific growth rate during N02' 0133: 6.65 6.3721: 6.63 conversion to gaseous end products (d'l) Observed yield (mg cell dry weight per mg 0.46:1: 0.18 0.18:1: 0.07— NOz'leduced) NOz'reduced) km, Maximum specific rate of nitrite removal 0.59: 0%— 3371 0.30 (mg NOz'per mg cell dry weight per day) Nitrate to gaseous end products Overall Observed yield (mg ceH dry weight 0.40: 0.04 0121—0703-— per mg N031 , vaet-all observed yield (109 CFU per 1.01 :t 631 5.53 i 5153 mg N03') f5, fraction of electrons diverted for synthesis 0.61 :1: 0.03 0m— fc, fraction of electrons used for energy 0.39 i 0.03 0.3’2 i 0.03 I 23: weight per cell 007 pgper CFU) 4.08 i 1.52 3.09 :l: 1.10 1 Average :1: one standard deviation for three independently grown cultures at 21.1°C. 43 The half-velocity coefficient Ks is another microbial kinetic parameter effecting competition between microbial groups. It is numerically equal to the nutrient concentration at which the specific growth rate is half of its maximum value (Brock er al., 1991). The approximate values can be estimated by identifying the points at which the plots in Figures 15 and 16 change from first order to zero order. As shown in theses figures, the nitrate half-velocity coefficients for strain KC and the indigenous Schoolcraft organisms are essentially indistinguishable. 1.5 1.4 1.3 1.2 1.1 .. Nitrite 1.0- / 0.9 1 ‘ 0.8 1 0.7 r 0.6 1 0.5 1 0.4 1 0.3 0.2 0. 1 0.0 Nitrate Concentration (mM) Model “A 4A” ~u . 012345678 9101112131415161718192021 TimeChours) Figure 15. Nitrate and nitrite utilization by indigenous aquifer organisms in Schoolcraft groundwater adjusted to an initial pH of 8.2. 15 1.4 1.3 _ 1.21 ‘ y” . 1.1 1 Nitrite 1.01 0.9 - 0.8 1 0.7 - 0...; it“ Coneentntim (mM) 05 1 0.4 1 0.3 1 X . . 0.2 1 0.1 1 0.0 T11 I' 5 T 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Timealours) Figure 16. Nitrate and nitrite utilization by Pseudomonas sp. strain KC in Schoolcraft groundwater adjusted to an initial pH of 8.2. Calculated values for the half-velocity coefficients (Ks) for strain KC and the Schoolcraft organisms can be found in Table 5. These values were calculated using the computer modeling software package Systat®. This model computes the best fit value for Ks using time and nitrate depletion data. The maximum specific rates Of substrate utilization km shown in Table 5 are comparable to approximately half the value of those shown in Table 4. This is under the assumption that prOtein represents half the dry weight of each cell. See Appendix C for raw data and calculations supporting the parameters in Table 5. The model plots in Figures 15 and 16 were developed by using the average Ks, km, protein, and nitrate data for triplicate samples in the relationship below: T = (Ks*ln(So/S)/(km*X) + (SO-S)/(km*X) 45 where: Ks = the half-velocity coefficient So = the initial nitrate concentration S = time dependent nitrate concentration km = the maximum specific rate of substrate utilization (mg NO3-lmg dry weight *hour) X = average protein concentration The above equation is based on the theory that substrate utilization generally follows a similar kinetic model as that for bacterial growth (Lawrence et al., 1970). It has the same form as the well-known Michaelis—Menton expression for enzymatic degradation, but it is an empirical relationship based on observed patterns of substrate consumption by whole cells, and its coefficients may or may not be related to the activity of a specific enzyme. As shown in Figures 15 and 16, the model does not fit the actual data perfectly. This may be caused by conditions in which a nutrient or nutrients other than nitrate are limiting growth. The initial lag period of the data could be the result of cell acclimation to a new environment (Brock er al., 1991). As discussed in the introduction of this thesis and the beginning of this chapter, it is apparent that strain KC has the competitive advantage on the grounds of resource-based competition theory. Assuming approximately equivalent decay rates for strain KC and the Schoolcraft organisms, strain KC has a much lower 5min and hence would be expected to outcompete the indigenous organisms at alkaline pH levels (>8). Table 5. Half-velocity coefficients and maximum specific rates of substrate utilization for Pseudomonas sp. strain KC and the indigenous organisms in Schoolcraft groundwater. W Kinetic Parameter KCl Floral Nitrate to nitrite Maximum specific rate of nitrate removal, km L(mg NO3' per mg protein per day) 19.51 :1: 2.41 21.68 i 0.49 velocity coefficient, Ks (mg NO3'IL) 11.97 :1: 1.34 9.40 d: 0.32 itrite to gaseous end products Maximum specific rate of nitrite removal, 1cm (mg NOz‘ per mg protein per day) 0.77 :1: 0.58 5.60 :1: 0.22 1 Average :1: one standard deviation for three independently grown cultures at 21.1°C. CHAPTER 7 ENGINEERING APPLICATION There has been much discussion in the literature concerning the introduction of genetically engineered microorganisms into the environment. Pseudomonas sp. strain KC is not a genetically engineered microorganism, but many of the concerns surrounding its introduction are addressed in such reports. The introduction of novel organisms into a new environment is termed bioaugmentation. This process has much untapped potential for remediation of many environmental contaminants in a variety of treatment schemes. Many important scientific issues must be considered in evaluating the potential ecological consequences of the planned introduction of organisms into the environment. These include survival and reproduction of the introduced organisms, interactions with other organisms in the environment, and effects of the introduced organisms on ecosystem function (Tiedje et al., 1989). When considering the environmental application of some microorganism, one of the most important series of questions to ask concerns the opportunity for persistence of the population after it has been introduced into the target environment (Lenski, 1992). Is it desirable for the introduced population to be self-sustainin g? Or is it better if the introduced population performs its intended function and then dies out, being reintroduced only as need arises? The answer will depend, of course, on a comparison of the magnitude of the additional benefits that may derive from prolonged persistence with the possible costs, if any, that might arise from potential adverse effects caused by persistence (Lenski, 1992). Once this comparison has been made, it is appropriate to ask: What efforts, if any, have been made to enhance or limit the persistence 47 48 of the introduced population, as so desired? Results contained herein have shown that persistence and relawd containment of strain KC can be controlled to a certain degree by alkaline niche adjustment. Alkaline conditions have been shown to support a stable population of strain KC which rapidly decreased upon lowering the pH to 7.5. Copper toxicity is the suswa cause for the rapid decay of strain KC under near neutral conditions (Criddle et al., 1990). However, this effect is not immune to mutations within strain KC which may allow it to persist. Another necessary question to ask is: What empirical data are there concerning the indefinite persistence of the introduced microbial population in the target enviromnent (Lenski, 1992)? Figure 8 provides evidence for the ability to contain strain KC through pH adjustment, but there is also evidence for the lack of ability to completely eliminate its persistence. It is quite likely that strain KC will not completely die out but will continue to persist. Lewis and Crawford (1993) observed persistence of strain KC for one year in aquifer materials stored at 4°C. This may be the result of genotype differences between generations. A key element in determining the likelihood of persistence of any introduced organism is its fitness in the new environment (Lenski, 1992). In most cases, a target environment will be supporting an indigenous population that is closely related to the organism proposed for introduction. Interactions between these two organism types is likely to be quite significant for the fate of the introduction; even slight differences in kinetic parameters or the ability to withstand various conditions may affect the opportunity for persistence of the introduced population. It becomes clear that the fimess of an introduced organism relative to a closely related indigenous population is likely to be especially useful in predicting the fate of an introduced population (Lenski, 1992). This thesis has addressed the fitness of Pseudomonas sp. strain KC in comparison to the indigenous organisms in Schoolcraft groundwater. Inherently the Schoolcraft groundwater contains organisms that are somewhat related to strain KC, but it is possible that the most competitive organisms 49 are fixed to soil particles in the Schoolcraft aquifer and not present in the groundwater that was used for the experiments in this thesis . A textbook definition of fimess is 'The average contribution of one allele or genotype to the next generation or to succeeding generations, compared with that of other alleles or genotypes' (Lenski, 1993). The Darwinian fimess of an organisms therefore refers to its capacity for survival and reproduction, which depends on its environmental circumstances as well as on its genotype (Lenski, 1993). Fitness of an organism is dependent upon environmental conditions. Therefore, fitness is best regarded as a relative property, not an absolute one (Lenski, 1992). The results contained in this thesis have shown that under alkaline conditions, strain KC has the competitive advantage over the indigenous organisms (as a group) in Schoolcraft groundwater. This is not to infer that strain KC is the best competitor under all environmental conditions. The concept of niche adjustment has broad implications for bioaugmentation efforts, where competition with native microorganisms is a major hurdle. Addition of alkalinity is a simple procedure that may be effective at certain sites. Of course, many other niche adjustment strategies can be envisioned. The optimal choice of strategies will depend upon the physiology of the organism to be introduced, the nature of the indigenous organisms, and prevailing environmental conditions at a targeted site. CHAPTER 8 CONCLUSIONS Pseudomonas sp. strain KC has a higher yield than Schoolcraft aquifer organisms at all pH values in medium D. Alkaline pH values are optimal for growth of strain KC in medium D. Niche adjustment does not reduce the concentration of indigenous organisms. Strain KC will not persist at significant concentrations in a post niche-adjusted environment. Higher maximum specific growth rate and yield are the primary reasons for the competitive advantage of strain KC under moderately alkaline conditions. The half-velocity coefficient (Ks) for nitrate is insignificant in the assessment of strain KC's growth advantage. Using resource-based competition theory, a lower estimated 3min is evidence that strain KC would outcompete the indigenous organisms in Schoolcraft groundwater. The competitiveness of strain KC and its ease of transport through columns packed with Ottawa sand and Schoolcraft aquifer material (Mayotte et al., 1994) indicate that field-scale 50 5 1 studies are jusu'fied. It may be possible to establish and maintain a (Tr-degrading zone or biofence by colonizing a pH-adjusted region in front of a migrating CI' plume. Considering the diverse environments that strain KC was able to colonize and remediate (Dybas et al., 1994 b), it can be concluded that alkali niche-adjustment is a useful means of maintaining a competitive population of strain KC under non-sterile operating conditions. FUTURE WORK RECOMMENDATIONS 1. Complete lo'netic growth parameter characterization of strain KC and the indigenous organisms in Schoolcraft groundwater at pH 7.5. 2. Determination of the kinetic growth parameters of strain KC and the indigenous organisms in Schoolcraft groundwater with nitrite as the sole initial electron acceptor. 3. Determination of the minimum P. KC dose needed for adequate colonization in the Schoolcraft aquifer 4. Enumeration of denitrifying bacteria in the Schoolcraft aquifer. LIST OF REFERENCES 10. 11. LIST OF REFERENCES Brock, TD., and MT Madigan. 1991. WWW, Prentice Hall: Englewood Cliffs, New Jersey. Criddle,C. S., L. A. Alvarez, andP. L. McCarty. 1991. J. Bear andM. Y. Corapcioglu (eds 1W Kluwcr Academic Publishers. The Netherlands, 639-691. Criddle, C.S., J .T. DeWitt, D. Grbric-Galié, and PL. McCarty. 1990. Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl. Environ. Microbiol. 56:3240-3246. Dybas, M. J ., G. M. Tatara, and CS. Criddle. 1994(a). Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. strain KC. Submitted for publication in Applied and Environmental Microbiology. Dybas, M. J., G. M. Tatara, W. H. Knoll, and CS. Criddle. 1994(b). Alkaline niche adjustment to enable colonization and remediation by Pseudomonas sp. strain KC. Submitted for publication in Environ. Sci. Technol. Hansen, S. R., and S. P. Hubbel, 1980. Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. Science, 207: 1491 - 1493. Lawrence, A. Wm, and P. L. McCarty, 1970. Unified basis for biological treatment design and Operation, Jour. Sanitary Engineering Division, Amer. Soc. of Civil Engineers, 96/SA3, 757-778. Lenski, R. E., 1992. M. A. Levin, R. J. Seidler, andM. Rogul, (eds). Relative fitness: its estimation and its significance for environmental application of microorganisms WWW. McGraw-Hill, Inc. New York, Chapter 9, pg. 183-198. Lenski, R. E., 1993. Evaluating the fate of genetically modified microorganisms in the environment: Are they inherently less fit? Experientia, 49(3): 187-276. Lewis, T. A., and R. L. Crawford. 1993. Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC. Appl. Environ. Microbiol., 59: 1635-1641. Markwell, M.A., S. M. Haas, N.E. Tolbert, and LL. Bieber. 1981. Protein determination in membrane lipoprotein samples: manual and automated procedures. Methods Enzymol., 72:296-301. 52 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 53 Mayotte, T. J., M.J. Dybas, and CS. Criddle. 1994. Bench-scale evaluation of bioaugmentation to remediate carbon tetrachloride-contaminated aquifer materials. Submitted for publication. Monod, J., 1942. Recherches sur la croissance des cultures bacteriennes, Hermann and Cie, Editors, Rue de la Sorbonne, Paris. Rittrnan, B. E., and P. L. McCarty, 1980. Model of steady-state-biofilrn kinetics. Biotechnology and Bioengineering, 22:2343-2357. Semprini, L., G. D. Hopkins, P.L. McCarty, and RV. Roberts. 1992. In-situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions. Environ. Sci. T echnol., 26:2454- 2461. Stumm, W. and J.J. Morgan. 1981. W, 2nd ed.; John Wiley & Sons: New York, p. 248. Tatara, G.M., M.J. Dybas, and CS. Criddle. 1993. Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC. Appl. Environ. Microbiol., 59:2126-2131. Taylor, P. A., and P. J. Lab. Williams, 1975. Theoretical studies on the coexistence of competing species under continuous-flow conditions. Can. J. Microbial. 21:91-98. Tiedje, J. M., R. K. Colwell, Y. L. Grossman, R. E. Hodson, R. E. Lenski, R. N. Mack, and P. J. Regal, 1989. The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology, 70(2):298-315. Tilman, D. 1981. Tests of resource competition theory using four species of Lake Michigan algae. Ecology, 62(3):802-815. van Uden, N., 1967. Transport-limited growth in the chemostat and its competitive inhibition; a theoretical treatment. Archiv fur Mikrobiologie, 58:145-154. APPENDIX A APPENDIX A ORIGINAL DATA AND CALCULATIONS FOR PSEUDOMONAS SP. STRAIN KC KINETIC PARAMETERS IN MEDIUM D. Table A-1. Original data used for determination of um, b, and protein per cell for P. KC in medium D. verage . . (hr) Protein /ml Protein/ml .KC Cells/ml .KC Cells Prot./Cell was not a Average ttg Protein/Viable P.KC Cell = 1.72 X 10-7 i 1.01 X 10-7 The correlation for the above relationship is shown by R2 = 0.996 Time points 21 - 54 hours used to ensure that cells were in log growth phase and to avoid including dead cell protein in calculations. 54 55 Table A-2. Data used for calculations of 11m and b for Pseudomonas sp. strain KC. um (days-1) = 10.73 Overall b (days-1) = 8.92 Time range for calculation of overall b = 60 to 78 hours. Balanced stoichiometric equations (shown below) using f3 and fc were used for the theoretical determination of the ratio of acetate to nitrate for cells (Criddle et al., 1991). Rd: 1/8 CH3coo- + 1/4 H20 = 1/4 coz + 7/8 11+ +e- stc: f5 * [5/28 C02 + 1/28 NO3' + 29/28 H+ + e' = 1/28 C5H702N + 11/28 H20] fcRa: fc * [1/5 N03: + 6/5 11+ + e' = 1/10 N2 + 3/5 H20] where: = half reaction for the oxidation of an electron donor normalized by the moles of electrons removed from the donor. Ra = half reaction for the reduction of an electron acceptor used for energy normalized by the moles of electrons added to the acceptor. RC = half reaction for the reduction of an electron acceptor used for synthesis normalized by the moles of electrons added to the acceptor, and f3 + fe =1. 56 Using the balanwd equations above and yield data, the following relationship can be made: Yield = W219 :- [fe (1/5) +fs (1/28)] 62 g NO3'lmole e’ Using the relationship f¢ = l-fs, the values for fc and fs were calculated It was assumed that all the nitrate was converted to nitrogen gas and that the dry weight of each cell was equal to twice the measured protein. The maximum overall protein measurements were used in the above calculations. The assumed formula for cells was C5H702N which has not been proven to for Pseudomonas sp. strain KC. APPENDIX B APPENDIX B ORIGINAL DATA AND CALCULATIONS FOR KINETIC PARAMETERS IN SCHOOLCRAFT GROUNDWATER. Table B-1. Data used for determining the maximum specific growth rate 11m of Schoolcraft organisms in Schoolcraft groundwater. 11m 011 N03‘ =(lnX2/X1)/(t2-t1) 11m 011 N02’ =(1nX2/X1)/(t2-t1) (da s-1> rrne -1 - — ' - - (dags) . - 0.76 7.021- 0.69 3.604 8.042 T5712. - 1.04 . 1- 0.74 5.875 7.500 3.604- 062' "77521- 0.59 4.125 7.50 Average 0.81 Average 0.67 Standard 0.21 Standard 0.08 Dev. Dev. 57 58 Table B-2. Data uwd for determining the maximum specific rate of substrate utilization (km) of Schoolcraft organisms in Schoolcraft groundwater. 8:1mMaxNO3‘ Util. -1 Max N02 Util. 03 (mM 02- (mM) I' - ,- - dam?» mine-mi 50379 7. 11L7l- 0.— -I.o°6 I 7. 02 with; 0221a; m /m cells*d) m /m cells*d) 34 E 11.69 24 .51 me I 03 (mM) I' ate (mg N03 ““68 I02' (W) is (mg N02 (days) *d) *d) 7....85y-) ‘.I5- I'- '0. 0 4.13 7. 02 1.031 Dry tan-2 Dry ltm-f Weight (mg NO3- Weight (mg N03- (mg/L) /m cells*d) (mg/L) /mg cells*d) —'_2'7'_E'—21 .51 50] 3721 {-s 3 Max N03 Util. 1-3 Max NOz’Util. Time I (mM ) I’ are (m N - imc I 02' (mM) a...) a...) ‘4.1-..rt -i.7 -.11. t .47.1 - 4.4 - 5.88 0.284 Dry km-3 Weight (mg NO3' (mg/L) /mg cells*d) Dry kin-3 (mg/L) /mg cells*d) 28 10 80] 48 3. 48 : choolcr t ' Max. pec' c Nltrate i choolcraft ora Max. pec 1c Nltnte . t111tion,krn ”tilization, km , 1 ..’ 59 Table B-3. Data used for determining the yield of Schoolcraft organisms in Schoolcraft groundwater on nitrate reduced to gaseous end products . 1e . Data( rtratetogaseousenc p nucts) - usrn est o we1_.htv ue) ove . rhest NO3' I' . 1e . late ieH Consumed 918m cunts (mM) mg/L) mg cells/mg CFU/ml) 10"9 CFU/ ' 03') , gNO3‘) I 12.003I 93| O.12I1.50E+08] 0.20 - (usin' iar est - wei tvalue) overall hi_hest) I N03' ID . 1e’r ' te reld Consumed 518m ' unts (mM) mg/L) mg cells/mg CFU/ml) 109 CFU/ I 03’) , gN03‘) I 11.931I 68] 0.09I2.20F.+08 0.30 - (usin larest c wei ht value) overall hihest) I 1003- II Yield 'late reld Consumed eight ‘ unts (mM) mg/L) mg cells/mg CFU/ml) 109 CFU/ I 03') g NO3') [ 11.938[ 108V 0.15I2.00E+08| ’ 0.27 60 Table B-4. Data used for determining the yield of Schoolcraft organisms in Schoolcraft groundwater on nitrate reduced to nitrite. re ata (mtrate to nitrite) - = 28) NO3' Dry Yield Consumed Welght (mM) (mg/L) (mg cells/mg N03' ) 0.04 3 DOE-+07] 0.0 - = days) i NO3' Dry Yield Consumed W918i“ (mM) (mg/L) (mg cellS/mg NO3' ) 11.931 3 0.05 4 OOE+06 0.01 Piate Yield Counts (CFU/ml) (10"9 CFU/mg N03“ ) ZOOE+O7 00 61 Table B-5. Data used fa determining the yield of Schoolcraft organisms in Schoolcraft groundwater on nitrite reduced to gaseous end products. ie ata 1tnte to gaseous end p cts) - =.-.1 s) 5.-.£1ays) NOz' Dry Yleld 1002- Plate Yidld Consumed W913” Consumed Counts (mM) (mg/L) (mg cells/mg (mM) (CFU/m1) (1009 CFU/mg NOz') N02') 6.791 63] 0.20] 5.5| 12015378 0.47 (5W -1 .71 days) N02“ Plate Yield Consumed Counts (mg cells/mg (mM) (CFU/ml) (1009 CFU/mg N02“) ‘ 7.161 32] 0.101 77701 2.16E+O8 ' 0.61 To. - 0.7Ldays) NOT—- Plate Y'ield Consumed Counts (mM) (CFU/m1) (1049 CFU/mg N02') 0.24 4.422 1.80E+08 0.88 Table B-6. Data used for determining the maximum specific growth rate (11m) of Pseudomonas sp. strain KC in Schoolcraft groundwater. ' “In on NC)3. =(lnX2/X1)/(t2-t1) ttm on NOZ‘ =(lnX2/X1)/(t2-t1) i If- “131)” ___ _,_ __ _____ ___ ___ __ ____)____.___ __ __ 1 _____ _ . ..__. - - - rrne - - - (da 5) (da 3) l. 75- 3.21 5.021- 0.30 0.25 2.375 5.826 1.938- 376'. "Ti. 8 9.875- 0.13' 2.250 11.125 Average 3.1 1 Average 0.23 Standard 0.69 Standard 0.09 Dev. Dev. 62 Table B-7. Data used for determining the maximum specific rate of substrate utilization (km) of Pseudomonas sp. strain KC in Schoolcraft groundwater. P. KC -1 Max NO3‘ Utll :. -1M N- Util. f 1 ”me I ()3- (mM) I' re rrne I 07011114) ,. te (days) mg NO3‘/L*d) (days) mg N02’/L*d) .OI - '.i - I 150.5. - 6.5 4- I 313.54 1.94 7.157 4.46 2.717 Dry km Weight (mg N03- Weight (mg NOz' (mg/L) oclls*d) (mg/L) g cells*d) 129] 1 1.68 I 390] 0.80] l_ UIII- ___7 777_"77'7__7 I: ” _7._ [fl rrne I 03‘ (mM) 1’ te (mg NO3‘ me I 02' (mM) 1' ate (mg N02' 7.38 - 5.595 - i 2T67 2.25 3.061 Dry ltm-z Dry ltm-2 ’ Weight (mg N03“ Weight (mg NO3‘ (m ) lmg cells*d) (mg/L) /m g cells*d) 114] 10.60] | 310] 0.68] ate (mg N03' rrne 02 (mM) te (mg N02' (days) *d) | 76.8 1 . Dry. Welght (mg N03" WClghI (mg N02' (mg/L) ling cells*d) (mg/L) [mg cells*d) 64 14.06 254 0.30] Pseudomonas sp. strarn K Max. seudomonas sp. straln K Max. pecr c S cific Nitrate Utilization, km itrite Utilization, km Average 1 .11] Average] 6.53] [Standard I 1.77 Standard 0.26 Dev. Dev. 63 Table B-8. Data used for determining the yield of Pseudomonas sp. strain KC in Schoolcraft groundwater on nitrate reduced to gaseous end products . 1e ata(N1trate to gaseous en products P. - = .17 days) NO3' Dry. Yield Consumed W918” (mM) (mg/L) (mg cells/mg NO3') 11.716] 259 0.36.5.70E+08] 0.78] P. - (T= . days) overall hi hest) [ NO3' Dry Yield Plate Yleld Consumed Weight Counts (mM) (mg/L) (mg cells/mg (CFU/ml) (10"9 / NO3' ) mg NO3’ ) 11.624] 299 0.41 9.9013408] 1.37] . - (T=1 .1 s) [ N03" Dry. field Consumed W918” (mM) (mg/L) (mg cells/mg / NO3-) mg N03" ) 11.492] 309 0.43 6.50E+08] 0.91] 64 Table B-9. Data used for determining the yield of Pseudomonas sp. strain KC in Schoolcraft groundwater on nitrate reduced to nitrite. _l '. ”' - verage (T: . . between 2.38 and 2.94 days) NO3' Dry 7176111 Consumed Weight (mM) (mg/L) (mg cells/mg (CFU/ml) (10"9 CFU/mg NO3’) . 1 1 0.26 0. P. K - (Average between 2.38 and 2.94 days) _ 1003- Dry Yiekl Consumed Weight (mM) (mg/L) (mg cells/mg (CFU/ml) (10"9 CFU/mg NO3') N03’) 116271—129 0.1 5.20E+08 0'72 P. KC -3 (Average (12.46) between 2.38 and 2.94 'i't'ield Plate Yield Counts (mg cells/mg (CFU/ml) (10"9 CFU/mg NO3') NO3') 0720 2.98E+O8 0.421 65 Table B-10. Data used for determining the yield of Pseudomonas sp. strain KC in Schoolcraft groundwater on nitrite reduced to gaseous end products. 1e ata (N itrite to gaseous end p cts . - .13- .1 days r 1002- Dry Yield 1002- Plate Yield Consumed Weight Consumed Counts (mM) (mg/L) (mg cells/mg (mM) (CFU/ml) (10A9 CFU/mg N02') N02“) 11.050] 150] 0.30] 11.010| 3.42E+0 0.68 P. K - ( .1 - . da s) (3.13-6.13 days) NOz' Dry_ Yield NOz' Plate Y'ield Consumed Weight Consumed Counts (mM) (mg/L) (mg cells/mg (mM) (CFU/ml) (1009 CFU/mg NOz‘) N02") 10.943 220] 0.44 6.500] 6.6OE+08 2721 (W1 - .96 gays) _ NO2- Plate Yield Consumed Weight Consumed Counts (mM) (mg/L) (mg cells/mg (mM) (CFU/ml) (mag CFU/mg NOz') N02) 9.000] 270 . 0E5 5.600] 435E+08 1.65 The relationship below and the method outlined in Appendix B was used to calculate fc and f5. Yield on nitrate reduced to gaseous end products represented the yield for these calculations. Yield = _fsllafinllacellumle e- [fc (1/5) +fs (1/28)] 62 g NO3-lmole e- APPENDIX C APPENDIX C ORIGINAL DATA USED FOR DETERMINING THE HALF-VELOCITY COEFFICIENTS IN SCHOOLCRAFT GROUNDWATER. Table C-l. Supporting data for the determination of the maximum specific rate of nitrate utilization km of Schoolcraft organisms in Schoolcraft groundwater. W—NO3" “flag—c consumed Progt/Leir; (mg NO3'lmg - tein*d) 1'3 . 3 7. 5 0. 784 11.79 21.99 - . . 1 . 1.11 Table C-2. Supporting data for the determination of the maximum specific rate of nitrite utilization km of Schoolcraft organisms in Schoolcraft groundwater. Sample Trrne NOZ' Average km rotein*d) J l . 5.6 l S2 l8.75- 20. 7'75“ 0.776 1T3O 5.37 | - 9. 5- . 5 .879 I 13.91 I 5.81 | Table 03. Calculated half-velocity coefficients Ks and supporting data for Schoolcraft organisms in Schoolcraft groundwater. Ks (mg/L) ' .05 Ikm(hr" 1)I 0.914 I 05916 I 0.88 | 0.90 | 0.02 | Protein I 12.09 I 11.79 I 12.34 I 12.07 I 0.2? I (mg/L) 66 67 The above values for km and protein were used to calculate the half-velocity coefficients Ks for Schoolcraft organisms. The average Ks was then used in developing the model plot shown in Figure 15. Table C-4. Supporting data for the determination of the maximum specific rate of nitrate utilization km of Pseudomonas sp. strain KC in Schoolcraft groundwater. Sample Time NO3‘ Average km (hours) consumed Protein (mg NQ3-/mg __r (mM) (mg/L) protein*d) P.KC 1 1.5-5.5 0.940 18.25 19.16 P.KC 2 1.5-6 0.962 18.41 17.28 P.KC 3 1.5-6 1.01 15.12 22.08 Table C-5. Supporting data for the determination of the maximum specific rate of nitrite utilization km of Pseudomonas sp. strain KC in Schoolcraft groundwater. km 1 (mg N02'/mg l rotein*d) Average N02- . Protem m consumed ; Time ~ (hours) 1 P.K 1 Table C-6. Calculated half-velocity coefficients Ks and supporting data for Pseudomonas sp. strain KC in Schoolcraft groundwater. Parameter P.K 1 P.KC 2 P.KC Average Standard Dev. Ks (mg/L) 13.52 11.13 11.26 11.9% 1.34 [km(hr’\-l) 0.80 0.72 0.92 0.81 0.10 | Protein 18.25 18.41 15.12 17.26 1.85 I (mg/L) The above values for km and protein were used to calculate the half-velocity coefficients Ks for Pseudomonas sp. strain KC. The average K3 was then used in developing the model plot shown in Figure 16. "111111111111111111115