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ABSTRACT

ESTIMATION WITH PANEL DATA

BY

Kyung So Im

This dissertation studies standard panel data models

with repeated observations for large cross sections. In

Chapter 2, we compare the BSLS estimator and the generalized

IV estimator, and derive some equivalence results. Also, we

obtain some redundancy conditions for models where the

regressors are strictly exogenous. Block diagonality of the

optimal GMM weighting matrix turns out to be crucial for

some instruments to be superfluous. Also, we propose some

GMM estimators that are computationally simple and

asymptotically no less efficient than GLS.

Chapter 3 covers weakly exogenous models. If the

instruments are weakly exogenous and the errors are serially

correlated, it seems that the currently used moment

conditions lead to inconsistent estimators in general. The

source of the serial correlations appears crucial to

determine the set of orthogonality conditions. Also, we

suggest some reduced lists of instruments in several useful

models that would produce nearly efficient estimators.

In Chapter 4, we derive asymptotic variances of

estimators when the moment conditions from covariance

restrictions are used. As nonlinear optimization is not

necessary to estimate these variances, this result, in



practice, would motivate people to use covariance

restrictions more frequently. We also detail when the

moment conditions from covariance restrictions are redundant

in several popular models. An interesting result is that

the instrumental variables can be useful even when they are

not correlated with the regressors. We also argue that the

moment conditions from covariance restrictions are useful

always unless the GLS efficiency is reached.
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CHAPTER ONE

INTRODUCTION

This dissertation deals with linear panel data models

with repeated time observations for large cross sections. A

basic model is

(1) yit = xitfi + uitl t = 1" ' '11.:

where xit is a 1xk vector and fl is a kxl parameter vector of

primary interest. Let xi = (xi'1, - - - ,xip ' with yi and ui

similarly defined. Allowing time-constant unobserved

individual effects, that may in many instances bias the

estimators obtained from single cross section data, we write

(2) u.t = ¢i-+ 5n! t = 1,- -,T.
1

Thus, ¢N is the time-constant error component and eit is the

idiosyncratic error. We assume there is a Txh matrix of

instrumental variables wg; these instruments are suggested

by various assumptions. We are interested in the case where

¢i are treated as random, and not as fixed parameters to be

estimated. We do consider the case where ¢k is correlated

with some or all of the regressors; for many applications

this is an important feature.

This chapter provides a summary of the main results

contained in the subsequent chapters, and links them to
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previous studies. The following chapters are essentially

independent of each other, and can be read separately. In

each chapter we define the relevant notation. Whenever we

refer to theorems, equations or assumptions contained in

other chapters, we will specify the chapter number.

References are gathered at the end of the thesis.

In Chapter 2, we are primarily concerned with

estimation in models where the regressors are strictly

exogenous to the idiosyncratic errors:

(3) E(x¢mg) = 0.

But, before dealing with specific models, we compare 3SLS

and generalized IV (GIV). This comparison appears in Bowden

and Turkington (1984, p. 72) and White (1984, pp. 83-105:

1986). But, a general result has not been established yet.

We assume

(4) E(uuqlvq) = E(uufi) 552.

The 3SLS and GIV estimators are defined as

B355 = [x'wmmm"w'x1'1x'mw'nm‘1w'Y,

and

3 = [x'n“W(w'n"W)"w'n'1x1‘1x'n'1w w'n'1w "w'n'1Y,
GIV

where (Y,X,W) is the data matrix stacking (yi,xi,wi) , i =

1,---,N, and n ==I~o£. 3SLS and GIV utilize the instruments

vq and 24w}, respectively. We show that there in general is
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no dominance one over the other between these two, and they

are numerically identical when the time periods use common

instruments or when E is diagonal. Thus, the well-known

equivalence result between OLS and GLS in the SUR model

follows as a corollary of our result when wi==)g.

We then turn to the specific models and provide several

reduced lists of instrumental variables that lead to the

fully efficient estimators under several different

assumptions. Asymptotically, there is no reason to reduce

the set of instruments since GMM never loses asymptotic

efficiency by adding orthogonality conditions. However, GMM

based on restricted instruments is not only computationally

simpler but could have better finite sample properties.

The unobserved effects model is standard if we add the

assumption of the random effects covariance matrix

(5) z = of:T + age,e;,

where E(e§t) = oi, t = 1, - --,T, Em?) = 03' IT is the TxT

identity matrix, and 9% is the Txl vector of ones. If xi

and <1:i are not correlated with each other, the model is the

popular random effects model, and the random effects

estimator (GLS) is the most efficient. We show that BSLS

utilizing the instrumental variables (PX,QX) is GLS, and

propose GMM using (PX,QX) as the instruments, where PX and

QX denote the NTxk meaned and demeaned matrices of the data

matrix X. If the assumption (4) does not hold - for
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example, in the presence of heteroskedasticity and/or serial

correlation in the 5n conditioned on wg‘- GMM using the

instruments (PX,QX) is generally more efficient than the

random effects estimator.

Hausman and Taylor (1981) (HT hereafter) allowed for

some of xi to be correlated with 4", and showed that how the

coefficients on the time—constant variables are identified.

Subsequently, Amemiya and MaCurdy (1986) and Breusch, Mizon

and Schmidt (1989) (EMS henceforth) developed more efficient

estimators under some additional assumptions. We argue that

the optimal weighting matrix E(wi'uiu,'wi) needs to be block

diagonal to generate the fully efficient GMM with reduced

lists of the instrumental variables. This unified theme

provides intuition behind the redundancy results established

by EMS, Ahn and Schmidt (1992) and many of the theorems in

this thesis including the previous result that 3SLS using

(PX,QX) is GLS in the random effects model. If 2 is of the

random effects form, then 2 can be expressed as aPr-i-bQT, for

some scalars a and b. Thus if wi can be decomposed into

(PTw1i,QTw2i) , where w1i is generally constructed from the

regressors that are not correlated with ¢H (an important

exception is the instrument set suggested by EMS) and w2i

usually is based on all of the time varying regressors, and

provided assumption (4) holds, the optimal weighting matrix

become block diagonal simply because Pg; = 0. We show a

redundancy result through an example when wz‘. = Lox‘i’, which
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is standard, where L is the Tx(T-1) differencing matrix and

x? = (xi1,- ~ -,xiT). Then W2(W.‘,'W2)'1W2X = QX and the resulting

estimators are the same whether W2 or QX are used as

instruments. W2 contains T(T-1)k instruments, but only the

k instruments QX are useful and the rest are redundant.

This also explains the well-known lemma showing GLS in

the random effects model is a linear combination of the

within and the between estimators, and generalizes this

lemma to the case when the optimal weighting matrix is block

diagonal. We show that 2 = aPT+bQT =9 PTzzQT = 0, but the

converse is not true. P.2Qt = 0 is sufficient to make the

optimal weighting matrix block diagonal, provided wi==

(Prwnerwzi) and assumption (4) holds. Another important

case when the optimal weighting matrix become block diagonal

is when

(6) 2 = diag(0$1"'la$)l

that is, when there are no time-constant unobserved effects

and the errors are serially uncorrelated. Under the

assumptions (4) and (6), E(w{unfivq) is block diagonal with

the t-th block 0§E(wi'twit) , where wit is the instruments for

the t-th period equation. If wit 3 xit for t = 1, --,T, BSLS

utilizing the instruments diag(x“,---,xfl) is GLS. This

covariance matrix is especially revelant for the rational

expectations models where (pi does not present and the errors

are necessarily serially uncorrelated.
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Assumption (5) is now almost standard in the panel data

literature. But, in general, there are neither a priori

grounds nor any technical reasons that justify this form of

2. Therefore, we consider the case when the idiosyncratic

errors are serially correlated. Ahn and Schmidt (1991)

showed that BSLS using all the instruments Ifinfi is GLS. We

provide a simpler proof than theirs, and reconsider the HT

model allowing for the idiosyncratic errors to be serially

correlated in an arbitrary manner. Some of the instrumental

variables turn out to be redundant, but the number is

smaller than under (5). Also, we show that GIV is not

consistent unless the equi-correlation assumption of EMS

holds, but when the BMS assumption holds, GIV can reduce the

number of instrumental variables substantially.

We also consider the model when all of the regressors

are correlated with ¢i° If the idiosyncratic errors are

arbitrarily correlated, the model is very similar to the

fixed effects model with arbitrary intertemporal covariance

considered by Kiefer (1980). We show that the several

estimators, including the Kiefer's estimator (GLS in

demeaned equation using a generalized inverse of Q12QT) , GLS

in the differenced equations, and GLS in the demeaned

equations after deleting any one equation, are numerically

identical. Thereby, generalized inverting in this case is

an unnecessary complication.

In Chapter 3, we study the models where the regressors
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are weakly exogenous to the idiosycratic errors. Thus in

place of (3) we have the assumption

(7) E(x&e“) = O, s 2 t.

Dynamic models and rational expectations models are the

leading examples of weakly exogenous but not strictly

exogenous models. However, weakly exogenous models would be

suitable in broader applications. We are primarily

concerned with the consistency of estimators when the errors

are serially correlated, and with the consistency of the

usual standard errors of the BSLS estimators when certain

moment conditions are used. Also, some nearly efficient

estimators based on some reduced lists of instruments are

proposed

We ask a basic question whether the moment conditions

in (7) are valid when the idiosyncratic errors are serially

correlated. In dynamic models, it now is well known that no

moment conditions exist between the lagged dependent

variables and the disturbances if the idiosyncratic errors

are arbitrarily serially correlated. We show that a similar

relation exists between the general weakly exogenous

regressors and the errors unless the time-varying errors

contain two components; the serially correlated components

to which the regressors are strictly exogenous and the

serially uncorrelated components to which the regressors are

weakly exogenous.
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Keane and Runkle (1992) proposed ZSLS upon the forward

filtered equations when the errors are serially correlated,

adapting a suggestion by Hayashi and Sims (1983) in a pure

time series context. Schmidt, Ahn and Wyhowski (1992) (SAW

henceforth), in a comment on Keane and Runkle, provided the

maximal sets of the instrumental variables in several weakly

exogenous models, and showed that the Keane and Runkle

estimator is numerically identical to BSLS when all the

instruments are used. Hayashi and Sims (1983) and SAW

indicated that eliminating the serial correlations by

forward filtering is justified only when "the serial

correlations in the errors are independent of the current

and lagged values of the instrumental variables". But, if

the Keane and Runkle estimator is inconsistent, so is 3SLS

since they are the same. Thereby, the requirement for

vindicating forward filtering noted by SAW and Hayashi and

Sims indeed is needed for the moment conditions in (7) to be

valid.

Wooldridge (1993) showed that the usual standard errors

for the nonlinear BSLS estimators in hedonic pricing models

are not consistent, and derived a condition for the usual

BSLS standard errors to be consistent. Ahn (1990) obtained

a similar result in the dynamic model when certain

instruments are used. If BMS's equi-correlation assumption

that E(xi't¢i) are the same over t holds, we have (T-1)k

additional instruments. We show that the usual 3SLS
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standard errors are not consistent if these instruments are

used. Applying BMS's condition to dynamic models, we have

the condition that E(yi't¢i) are the same over t, which is

implied by the stationarity of {(Yit¢i) :t=0, - - - ,T} suggested

by Arellano and Bover (1990). This condition implies T-1

instruments, and the usual 3SLS standard errors are not

consistent if these instruments are used. In fact, the

result obtained by Ahn (1990) is based on the instrumental

variables obtained from the moment conditions

E[(yit-ayit_1)¢i] being the same over t, which is weaker than

EMS condition (or Arellano and Bover), but the structures of

the instruments from these conditions are quite similar.

Thus, Ahn's result is closely related to ours.

As we argued above, all the instrumental variables are

useful unless the optimal weighting matrix is block diagonal

in general. When the instruments are weakly exogenous the

diagonal would be the only structure of 2 that makes the

optimal weighting matrices block diagonal. Thus, any

attempts to find some reduced lists of instruments that

produce the fully efficient estimators may not be fruitful.

But, it is practically useful to find some reduced set of

instruments. In many applications, the weakly and the

strictly exogenous regressors exist together in a model. A

leading example is the dynamic model with strictly exogenous

regressors considered by many. Letting X1 and X2 be weakly

and strictly exogenous regressors, respectively, we suggest
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instruments (R,n4Xé),‘where R includes all the instruments

between X1 and the errors.

In Chapter 4, we study the moment conditions from

covariance restrictions, which are essentially nonlinear in

the parameters. Covariance restrictions are rarely used in

practice in standard models, perhaps because people are

reluctant to utilize a priori restrictions that will cause

inconsistency of estimators when they are false. Another

important reason would be the computational burden of

numerical optimization. But, if covariance restrictions

bring non-trivial efficiency gains, computational burden is

secondary. We show how to consistently estimate the

asymptotic variances of the nonlinear GMM estimators that

use the moment conditions from covariance restrictions

without numerical optimization. If the efficiency gains by

adding the moment conditions from covariance restrictions is

non-trivial, then it is worth doing numerical optimization.

Testing whether the covariance restrictions are valid is

straightforward, so we can get around possible inconsistency

problem. This result applies to the general simultaneous

equations models as well as to the panel data models.

Next, we find when the moment conditions from

covariance restrictions are redundant. We consider the

scalar and the random effects covariance matrices in

strictly and weakly exogenous models. In the strictly

exogenous model with scalar covariance matrix, so where OLS
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is efficient under standard set of assumptions, it turns out

that the moment conditions from covariance restrictions are

useful unless certain third moment conditions of the errors

are met. In this case, the nonlinear GMM estimator is

equivalent to the linear GMM estimator using the instruments

made of residuals from initial consistent estimators, and

these instruments are not correlated with the regressors.

Therefore, what we find is that the instruments can be

useful even when they are not correlated with the

regressors. This deviates from convention. In fact, the

efficiency gains in this case follow from the correlations

between the instruments and the error square sequence {ufi}.

In another words, the additional instrumental variables from

covariance restrictions necessarily cause heteroskedasticity

to be useful. This relates to the results obtained by Cragg

(1983) and Chamberlain (1982) that additional instruments

(other than the regressors) can be useful in standard

regression models where all the regressors are valid

instruments under heteroskedasticity of unknown form. The

asymptotic variance of the estimator when we use instruments

w} is (we consider here a single equation case for

simplicity),

2 -1 4
(8) [E(xi'wi)E(uiwi'wi) E(wi'xi)] .

Let wi = (xi,zi) , where zi is the set of additional

instruments, and suppose E(z;xg) = 0 (this is not necessary
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but simplify the algebra), then (8) becomes

E | ‘1 E 2 | _ E 2 q E 2 | '1E 2 c E n "I

(Xi Xi) { (111-Xi Xi) (uixi Zi)[ (uizi Zi)] (uizi Xi)} (Xi Xi) I

which is strictly smaller that OLS variance as long as

E(u§xi'zi) n 0. Thus, zi contributes by explaining u‘i”.

Another general result we obtain in Chapter 4 is that

the information from covariance restrictions is useful if

the GLS efficiency is not reached. Along with the above

arguments, it becomes obvious that the GLS efficiency is

necessary but not sufficient for the moment conditions from

covariance restrictions to be redundant.

In the Hausman and Taylor (1981) model, GLS is not

consistent. But, the regression is seperated into the two

orthogonal spaces as we argued above, and the GLS efficiency

is reached in the deviation space. As was conjectured by

Ahn and Schmidt (1992), the instrumental variables from the

random effects covariance restrictions are in the deviation

space, and they are redundant if certain higher conditions

on the error are satisfied.

In weakly exogenous models, GLS is not consistent

unless 2 is diagonal. It seems that covariance restrictions

are useful if 2 is not diagonal, and they can be redundant

if 2 is diagonal. We show these through several examples

that quite often appear in applications. If there present

unobserved effects ¢H in weakly exogenous model, the moment

conditions from covariance are useful because 2 is not
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diagonal. This holds whether ¢H is correlated with the

regressors or not.



CHAPTER 2

ESTIMATION WITH PANEL DATA UNDER STRICT EXOGENEITY

1. INTRODUCTION

This chapter has two purposes. The first is to

establish equivalences between certain three stage least

squares (3SLS) and generalized instrumental variables (GIV)

estimators in several panel data models with strictly

exogenous regressors. The second purpose is to find minimal

sets of nonredundant instruments for BSLS under various

assumptions that have been used in the panel data

literature. Extensions of the standard assumptions are also

considered.

The 3SLS estimator considered in this paper appears in

Amemiya (1977, equation 5.4), Hausman, Newey and Taylor

(1987), and Schmidt (1990, equation 5), and is the

generalized method of moments estimator (GMM) under standard

assumptions. The GIV estimator has been considered by White

(1984, pp. 85-105; 1986), Bowden and Turkington (1984, pp.

68-72), Schmidt (1990), and many others.

In the models we consider, there will always be an

estimator that is asymptotically no less efficient than BSLS

and GIV, namely the cum estimator using all orthogonality

conditions and an unrestricted weighting matrix. Thus, in

14
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terms of achieving asymptotic efficiency there is really no

need to weed out redundant orthogonality conditions. As a

practical matter, though, it is very useful to know whether,

under certain assumptions, the list of nonredundant

instruments is shorter than the list of all possible

instruments. For example, in a panel data model with 10

strictly exogenous time-varying regressors and six time

periods, the total number of instruments is 360. This can

cause computational problems for CHM, especially when the

cross section dimension is small.

Even if there is no computational issue with CNN, there

might be good statistical reasons for using estimators based

on fewer orthogonality conditions. As an illustration,

consider a result obtained in section 3.3. There, it is

shown that a BSLS estimator based on a reduced instrument

list is, under the usual random effects assumptions,

equivalent to the random effects (GLS) estimator. This 3SLS

estimator is based on many fewer instruments than an

unstructured GMM analysis would be. This result implies

that, if we then compute the CNN estimator with Optimal

weighting matrix using the restricted BSLS instruments, we

obtain an estimator no less efficient than random effects.

In addition, if the random effects assumption fails, then

the estimator is generally more efficient than random

effects. And while this GMM estimator based on restricted

instruments is generally less efficient than the full GMM
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estimator if the random effects assumptions fail, it has

computational advantages and could very well have better

finite sample properties. Thus, the redundancy conditions

do have practical applications.

Throughout this chapter (and in later chapters) we

focus on general unobserved effects panel data models, where

the time constant unobserved effect may or may not be

correlated with some or all of the observed regressors. We

cover models with serially uncorrelated idiosyncratic errors

as well as models where the idiosyncratic errors are allowed

to be serially correlated with time-varying variances. Such

a setup captures the flavor of both random effects and fixed

effects-type specifications. In a random effects framework,

the key assumption is that the observed regressors are

uncorrelated with the unobserved effects. For many fixed

effects applications, the key feature is that the

unobservable effects can be correlated with some or all of

the regressors. We consider both cases in what follows, and

this is sufficient for the vast majority of applications.

The strict fixed effects framework, which assumes that the

unobserved effects are constants that differ across

individual, is not treated here. See Hsiao (1986, pp. 41-49)

for a discussion of the conceptual issues underlying the

fixed versus random effects dichotomy.

Section 2 contains some general results concerning the

equivalence between 3SLS and GIV. These are extensions of
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the well-known equivalences between OLS and GLS under

certain conditions in the seemingly unrelated regressions

model, and of the equivalence between 3SLS and ZSLS in

simultaneous equations models.

Section 3 studies panel data models where the

regressors are uncorrelated with the composite errors. In a

general model the equivalence of the BSLS estimator using

all orthogonality conditions and GLS is established, giving

a different proof of a result of Ahn and Schmidt (1991). A

new result showing the equivalence of a BSLS estimator with

reduced instrument set and GLS is presented in section 3.3.

Section 4 turns to models where the time-constant

unobserved effects are potentially correlated with some or

all of the regressors. Several estimators are shown to be

identical for estimating the parameters in the unobserved

effects analog of Kiefer's (1980) fixed effects model. We

also study the Hausman and Taylor (1981) (HT hereafter)

model under more general assumptions. Hausman and Taylor

showed how the coefficients on the time constant regressors

could be identified when the time constant regressors are

correlated with the unobserved effects in a model with

serially independent idiosyncratic errors. Efficient

estimation in the HT model was considered further by

Breusch, Mizon and Schmidt (1989) (EMS hereafter) under some

additional assumptions. These results are extended to allow

for arbitrary serial correlations in the idiosyncratic
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errors .

2. 3SLS, GIV, AND REDUNDANCY CONDITIONS

2.1.W

Consider a linear panel data model,

yi==)gfi + ui, (2.1)

where yi = (yfl, - - - ,y") ' and xi = (xi'1, - - - ,xi'T) ' of dimension

Txl and Txk, respectively. {(yvag):i=1,-- ,N} is an i.i.d.

random sequence.

Throughout the paper, for any Txp matrix mi, M 5

(m{,-- , mg)' of dimension NTXp, where N is the number of

observations. Thus, the matrix M is the stacked matrix of

nu for i = 1,-- ,N with the i-th block mi. In the sample, Y

= X6 + U.

Most of the results we discuss in this chapter deal

with algebraic equivalences of various estimators and have

nothing to do with statistical properties such as

consistency and asymptotic normality. Nevertheless, one

would probably not use the estimators unless certain

assumptions are satisfied. It is useful to set out some

assumptions that typically underlie method of moments-type

estimators. Because we are studying both 3SLS and GIV we

make assumptions that traditionally underlie application of

—z~fl' -
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these methods.

To consistently estimate 6 appearing in (2.1) we assume

that there is a set of Txh instruments, wg, that are

appropriately orthogonal to “1' 4A fairly standard set of

assumptions is

ASSUMPTION 2.1:

(a) E(w{u1) = 0.

(b) E(wi'2'1ui) = 0, where 2 E(unfi) is nonsingular.

ASSUMPTION 2.2:

(a) E(wi'xi) has full column rank and E(w‘.'zwi) is

positive definite.

(b) E(wi'2"xi) has full column rank and E(wi'2wi) is

positive definite.

ASSUMPTION 2.3:

(a) E(wi'uiui'wi) = E(wi'2wi).

-1 -1 __ -1
(b) E(w{2 Inugz v“) — E(w;2 W})°

Assumption 2.1(a) and 2.2(a) ensure that the BSLS estimator

is consistent under standard regularity conditions. As a

practical matter, Assumption 2.2(a) implies that the BSLS

estimator exists with probability approaching one (as the

sample size grows); for what follows, we just assume the

estimator exists for any sample. Assumption 2.3(a) is the

weakest assumption that guarantees that the usual formula

for the asymptotic variance of BSLS is valid. Assumptions

2.1(b) and 2.2(b) imply consistency of the GIV; Assumption
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2.3(b) implies that its asymptotic variance matrix is of a

relatively simple form. Note that a sufficient condition

for both parts of Assumption 2.3 is E(uiui' Iwi) = E(uiui') = 2.

When we study 3SLS in later sections, we typically have

in mind assumptions such as Assumption 2.1(a), 2.2(a), and

2.3(a) . The key will be to find instruments wi that satisfy

these conditions under more primitive assumptions about the

models at hand. Assumption 2.1(a) is critical and dictates

the choice of wg. .Assumption 2.2(a) can be viewed as a

regularity condition. Assumption 2.3(a) cannot be

guaranteed a priori, but it is useful as a starting point.

In practice, one needs a consistent estimator of 2 to

perform 3SLS or GIV. Nothing is lost in the following

analysis by assuming 2 is known because it is consistently

estimable in the models we deal with.

2.2. Efficiency Comparison of 3SLS and GIV

Given the data matrices x, W, and Y, and defining a E

1&92, the 3SLS estimator is defined to be

2535“ = [x'W(w'nW)‘1w'x1'1x'W(w'QW)"w'y.

Equivalently, this is the GMM estimator based on the

orthogonality condition E(W'U)=0 using weighting matrix

(W'nW)4. The GIV estimator first transforms (2.1) to

spherical disturbances by premultiplying by ZYVZ, and then
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uses 21'1’zwi as the instruments. This gives

35”, = [X'fl"W(W'n"W)‘1w'n‘1x1‘1x'n"W(w'n"W)"w'n'1y.

Under Assumptions 2.1-2.3, we have the following

asymptotic variances:

Avar/N(E,SLs-m = [E(x;wi){E(w:2wi) }"E(w:xi)1“.

and

Avar/N(3mv-fi) = [E(xi')3'1wi) {E(wi'2’1wi) )‘1E(wi'2'1xi) 1".

Rather than compare the asymptotic variances, it is easier

to work with the estimates of the asymptotic variances that

these formulas imply, which are

VA A - ' ' ‘1 I '1 — I "U2 -1/2 -1
armssLs) — [x W(W (W) W X] — (x n PmVZW)“ X) , (2.2a)

and

var-($6M = [x'n"W(w'n°‘W)"w'n“X]" = (X'n'1/2P(n-1/2W)0'1’2X)('1, b)

2.2

where P(.) denotes the projection onto the columns of (-).

Efficiency comparison of the two estimators is ranking the

two idempotent matrices of the same rank P(Q“QW) and

Pm‘VZW) , which is not possible without further information

on X, W, and n. The problem is equally stated as finding

the optimal 6 which maximizes Pm‘W) , which does not seem to

be possible in general.

An important well-known special case is when W = x, in

which case 361V is the GLS estimator and 333:5» is the OLS

estimator. However, when st, general dominance of one
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estimator over the other has not been established.

Bowden and Turkington (1984, p. 72) argued that there

would be no clear dominance of one estimator over the other

without further information on X and W when X and W are of

the same order. White (1984, pp. 83-105: 1986) showed that

the GIV estimator is no less efficient than the BSLS

estimator if (I'VZW is the optimal set of instruments in the

transformed equation multiplied by n'VZ. White's proof is

based on the fact that the GIV estimator is the ZSLS

estimator on the transformed equation and the ZSLS estimator

is the most efficient when the covariance matrix is scalar

and the optimal instruments are used. However, as we can

see in (2.2), the BSLS estimator is also a ZSLS estimator in

the transformed equation with the scalar covariance matrix.

The difference is in the instruments to be used; GIV uses

(TVZW, whereas 3SLS uses QWW. It is not clear which

instrument set is optimal without further information on X,

W and a.

Before turning to algebraic equivalence results it

should be noted that the efficiency issue is unambiguous if

we strengthen the assumptions as in Chamberlain (1987). He

shows that if (i) E(uilwi) = o and (ii) E(uiui'lwi) = 2:, then

the most efficient estimator that ignores second moment

information is the BSLS estimator using the instruments

E"E(xilwi). Unfortunately, the condition E(uilwi) = 0 is too

strong for several of the panel data applications we have in
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mind.

2.3. Numerical Equivalence of 3SLS and GIV

We now turn to the algebraic equivalence of 3SLS and

GIV. Therefore, Assumptions 2.1-2.3 are not needed: we only

need for the estimators to exist along with assumptions

about W or E, to be given below.

As is well known, for nonsingular n, OLS = GLS iff

there exists nonsingular R such that 94x = XR. Essentially

the same relationship holds between the BSLS and the GIV

estimators for given instruments W. From a CNN viewpoint,

the estimators are invariant to any nonsingular

transformation of the orthogonality conditions as was

pointed out by Schmidt, Ahn and Wyhowski (1992) (SAW

hereafter).

THEOREM 2.1: In model (2.1), if there exists nonsingular B

such that n"w = WB, then Ems = 36“.

PROOF: x'n"W(w'n"W)"w'n"x = X‘WB(B'W'QWB)"B'W'X

= x'W(w'QW)"w'x. I

The most widely known special case of Theorem 2.1 is

the SUR model with either common regressors or diagonal E,

in which case OLS = GLS. We now extend these results to

show 3SLS and GIV are equivalent under analogous

assumptions.
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We first consider the common instrument case, that is,

where the same set of instruments is used for all t. This

is given by the following assumption.

ASSUMPTION 2.4: wi = ITow‘i’, where w? is a 1xq vector.

As we will see, Assumption 2.4 is applicable to many panel

data models with strictly exogenous regressors since the

regressors in each time period are orthogonal to errors in

all time periods.

THEOREM 2.2: In model (2.1), when common instruments are

used, that is wi = ITow‘i’, the 381.8 and the GIV estimators are

the same.

PROOF; From Theorem 2.1, it is sufficient to show that

E'1wi = >3"(I,ew$) = 2"ow‘i’ = (119w?) (3-181,) 2 wiB. I

Just as with Theorem 2.1, no statistical assumptions are

imposed. Since the proof is based on each observation,

technically the results holds in the samples of size no

smaller than h. It is worth emphasizing that the common

instruments w‘i’ do not have to be of the form (wi1,- - o, w”) .

Theorem 2.2 holds no matter what w? is.

Theorem 2.2 still holds after we replace 2‘ for E" for

any scalar 6. Hence, there are infinite sets of instruments

that generate the same estimator. The same result has been

provided by SAW (1992) when FW} is used as instruments,

where F is the forward filtering matrix; this corresponds to
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the case 6 = -1/2.

A wide class of models implies common instruments.

Standard panel data models where the instruments are

strictly exogenous to errors, standard simultaneous models,

and the usual SUR models are examples. Thus, the GIV

estimators are the same as the BSLS estimators in these

models.

We now turn to the case of diagonal 2, where the

instruments are essentially unrestricted.

ASSUMPTION 2.5: 2 = diag(a§, - .-,o$).

THEOREM 2.3: For any 1xht vectors wit, define w‘- = diag(wi1,

-,wn). Then, under Assumption 2.5, BSLS and GIV are the

same.

PROOF: 2'1wi = diag(o;2wi1, - - - ,ofw”) = diag(wi1o;2, - - - ,wiTa;2) E

wiB, where, B E diag(Ig1®o;2, Igzoaéz, - - - ,IgToaf) of dimension

gxg, and I9t is the identity matrix of dimension 9}. I

It turns out that the theorems in this section can be

used to derive some of the results for the specific panel

data models we turn to next. In cases where the comparision

is between BSLS using one set of instruments and GIV using

another set, direct arguments are easier.
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2.4. Algebraic Redundancy or Instruments in BSLS

In section 4 we use a general result on redundancy of

instruments for 3SLS. The following is the algebraic

equivalance analog of White (1984, Proposition 4.50).

THEOREM 2.4: Let [a = [x1111(1111'12111)"111'x1'1x'w1 (w1'nw,)"w1'y and

5 = [x'mw'nm"w'x1‘1x'mw'nm'1w'y, where w = (111,142). Then

A

6 = 19 1f wz'x = wgnw1(w,'nw1) 111111111.

PROOF: Appendix 2. I

Similarly, the two GIV estimators using instruments

WW1 and n“(w1,w2) are numerically identical if

w'n"x = WOW (WOW )‘1w'n’1X
2 2 1 1 1 1 °

3. MODEL WHERE THE REGRESSORS ARE UNCORRELATED WITH THE

ERRORS

3.1. Unrestricted Covariance Matrix

We now consider model (2.1) under the assumption that

each element of X} is orthogonal to each element of ui;

thus, we have in mind that

E(xi®ui) = o. (3.1)

Under (3.1), for each t the instruments can be taken to be
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all nonredundant elements of

x? E (xi1,~--,x"). (3.2)

Thus, we want to analyze the BSLS estimator under the

following assumption.

ASSUMPTION 3.1: E(wi'ui) = 0, where wi = Irow‘i’, and W?

contains all nonredundant elements of x?.

If there are no time constant elements in xit then w?==)¢.

Typically, w‘i’ will have fewer than Tk elements since x”

Often contains at least a constant, if not other time

constant variables. Any time constant variables only appear

once in w?.

In this subsection we place no restrictions on the

variance matrix 2, which puts us exactly in the situation of

Theorem 2.2. Ahn and Schmidt (1991) showed that the 3SLS

estimator using all of the instruments IToxi° is the GLS

estimator. We can restate their finding with a simpler

proof.

THEOREM 3.1: Under Assumption 3.1, the 3SLS estimator is

the GLS estimator.

PROOF: It follows immediately from Theorem 2.2 that BSLS =

GIV using the same set Of instruments. But the GIV

estimator using instruments Ignfi is the GLS estimator since



28

3.2. Diagonal Covariange Matrix

If the errors uit are serially uncorrelated over time,

we have Assumption 2.5. Let x: = diag(xi1, - . - ,x”) .

THEOREM 3.2: Under Assumption 2.5, the 3SLS estimator

using instruments x: is the GLS estimator.

PROOF: 38LS=GIV from Theorem 2.3. Let 52‘; = 24/22:; and

ii = E'Wxi. Since 2 is diagonal, x’i' = diag(a;1xi1, ~ - - ,O}1x") .

Thus, P(;(-)X = X. The result follows immediately. I

The definition of x: leaves the instruments for each

equation entirely unrestricted. In fact, because E(x:Hn) =

0 is sufficient for consistency of BSLS under Assumption

2.5, the strict exogeneity condition (3.1) is not needed for

consistency. Of course we are only proving algebraic

equivalence results here anyway.

Recalling the conclusion of Theorem 3.1, Theorem 3.2 is

seen to be a redundancy result. Theorem 3.1 showed that,

without any restrictions on 2, the 3SLS estimator using wi==

Itow‘i’, where w? contains all nonredundant elements of x‘i’,

equals the GLS estimator. Together, Theorem 3.1 and Theorem

3.2 show that, under Assumption 2.5, 3SLS using instruments

w} is the same as 3SLS using instruments xi. Without

Assumption 2.5 this redundancy does not necessarily hold.

In the SUR model where fi's are different across the

equations, the regressor itself is xi. OLS = GLS if 2 is
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diagonal. But in the panel data models with the same 6

across time periods, GLS is strictly more efficient than

OLS. Of course, if 0: = 02 for t = 1,---,T, OLS = GLS.

3.3. gendon Effects Structure

In many panel data applications 2 is entirely

unrestricted as in section 3.1. Further, it is essentially

never diagonal in unobserved components models. We now turn

to the popular random effects model.

To study the random effects setup we need to introduce

some notation similar to that used by EMS (1989). The

instruments ITox‘i’ are equivalent to the instruments

(eT,L)Ox‘i’, since all of the columns in (eI,L) are linear

combinations of the columns in I} and both are of the same

column rank, where eT denotes the Tx1 vector of ones and L

denotes the Tx(T-1) differencing matrix

  

The instruments etox‘i’ and Lox? are in the space spanned by eT

and L, and of dimension Tka and TxT(T-1)k, respectively.

For the same reason, the instruments x: are equivalent

- .. _ T - _ -

to (xi,xi) , where xi = 4% 21x1: and xi = (X11'X1I' - ~, xiH-xi) .

t:
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That is, X? and (wai) preserve the same information. Since

xn-xi is the negative sum of the rest of the terms (xH-xi,

-,xiT_1-§i) , xn-xi is trimmed away to avoid the singularity

problem without losing any information. Let 2” = xH-xg,

then iii = (53“, - - ~ , 52m) . The dimensions of ii and iii are

1xk and 1x(T-1)k.

In summary, the instruments Itox‘i’ are equivalent to;

(L,e,)®x? or Leo-(“521) or (L,eT)®(§i,§i). In the sample,

(X°,X,X) 9L and (X°,X,3'()181eT stand for the stacked instruments

m(xg,§i,§i) and eT®(x“?,xi,xi), respectively, where

-x11x12---x"- 'X11x12"'x11-1' -x1-

x21 x22 X21 x21 X22 x214 x2

x°- it: ’= .

- .1 - '° ” °° _ _ - _

x111 X142 x," X111 x112 X1114 X11

      

In the standard random effects model each uit can be

written as

u.it =¢i + Git! t: 1'...’T,

where ¢3 is the time-constant unobserved effect and the sit

are the idiosyncratic errors. We assume that 491 and 6it have

zero means, are uncorrelated for all t, and that

{en:t=1,-o ,T} is an uncorrelated sequence with constant

variance 0:. The variance of ¢1 is 0:. These assumptions

lead to a well known form for 2.



31

. _ 2 2
ASSUMPTION 3.2. 2 — O‘II + a‘eTeT'.

In applying random effects it is assumed that E(x;¢e)== 0

and E(xi®ei) = 0, so that the strict exogeneity condition

(3.1) holds. Thus, the set of potential instruments is

exactly as in section 3.1: the nonredundant elements of x?

can be used as instruments for each time period t. Section

3.2 showed how the number of instruments can be reduced when

2 is diagonal. The next result shows that one can get by

with many fewer instruments in the random effects model.

The proof is much simplified by writing 2 under Assumption

3.2 as E = PT + bQT, where PT = eT(e1'e,)‘1eT' = %e,e;, QT =

L(L'L)4L' = IT-Iy, and b is a positive scalar. To see how

to do this, note that

_ 2 2 _ 2 2 _ 2 2 2
2 - afiIT + o‘eTeT' — OGIT + TagT — (ae+Ta')PT + OeQT E PT + bQT.

Of-l-TO: (sum of each column in 2) is assumed to be one

without loss Of generality, and b a of. Note further that

(PT + bQT)'1 = PT + £01, that holds since two projection

matrices PT and QT span the two orthogonal bases eT and L.

Let p = INOPT, Q = INQQT.

THEOREM 3.3: Under Assumption 3.2, the 3SLS estimator using

instruments (Ppg,Qpn) is the GLS estimator.

PROOF: X'P ]X'P "
X1(PX,QX) [[ X'Q ](P+bQ) (PX,QX)] [X'Q

= X'PX + %X'QX = X'(P+bQ)'1X. I
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Another way to say this is that BSLS using all the

instruments is the same as 3SLS using (qu,Qng).

Since both BSLS and GLS need a consistent estimator of

E and GLS is computationally simpler, one might think 3SLS

is not so useful in practice. But in fact Theorem 3.3 is

quite useful. Recall that 3SLS is a GMM estimator using a

restrictive weighting matrix. Under Assumption 3.2, 3SLS is

asymptotically equivalent to GMM using instruments

(Ppg,ng) which is robust in the presence of the

conditional heteroskedasticity and/or the conditional serial

correlation (White, 1980, 1982; Hansen, 1982). If

Assumption 2.3(a) is violated, for example, if there exists

conditional heteroskedasticity or serial correlation, the

inference based upon the GLS estimator is not valid. And

while the robust variance estimator of the GLS estimator can

be reported as

A A 4 4 N 4A A -1 -1 -1
Var(fiGLs)=(X'n X) (.21 xi'z uiuiz“. xi)(X'n X)

1-

(Wooldridge, 1992), this is not even necessarily smaller

than that of the OLS estimator if A2.3 is violated. On the

other hand, the GMM estimator using the instruments (qu

,qu) is the most efficient (among the estimators based on

these instruments), and Theorem 3.3 tells us it is no less

efficient than GLS, and it is more efficient than GLS if

Assumption 3.2 fails. Further, the GMM estimator using the

instruments (Ppg,qu) is no less efficient than the OLS
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estimator whether Assumption 2.3(a) holds or not, since the

instruments (ng,Qgg) are equivalent to the instruments

(xi,Ptxi) , and the additional instruments PIX: are not

redundant upon the instruments xg. This GMM estimator has a

lot fewer instruments than the GMM estimator based on all

orthogonality conditions.

The representation 2: = PT-i-bQT has many other uses as

well. For example, it leads to a straightforward proof that

the GLS estimator can be written as a convex combination of

the between and within estimators. Let 3b and 3" be the

between and the within estimators, then

Ems = [x' (P+%Q)X]'1X' (P+%Q)Y

= [x' (P+%Q)X]'1X'PY+%[X' (P+%Q)X]'1X'QY

(x'I>x+f‘5x'QX)"x'Pfo,D + (X'PX+%X'QX)'%X'QX£3H.

Theorems 3.2 and 3.3 suggest that the minimal set of

instruments depends on the structure of error covariance.

It appears that the minimal set of instruments depends on

the block diagonality of the Optimal weighting matrix

E(w;2w3). In the model with a diagonal error covariance,

the optimal weighting matrix is a block diagonal with the t-

th block O§E(x‘i"x“?) , for which only xit is non-redundant since

(1;2E(x‘i"x‘i’)‘1 meets the regressor xit only.

Recall that the instruments 119x? are equivalent to

(e,ox§’,Lex$) . In the random effect model, the Optimal

weighting matrix becomes block diagonal between the two
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blocks eT'eTO E(x“?'x‘i’) and bL'LoE(x‘i"x‘i’) . In the sample, the

first block corresponds to the regression

4
[X'P(X°®IT) (INOPT)X] X'P(XO®IT) (IN®PT)Y.

Thus, replacing PX for X°®eT produces the same result. For

the same reason, nothing differs whether we use QX or x%u;

for the regression in the space spanned by L.

It would be worth noting that if 2 is diagonal the

optimal weighting matrix becomes block digonal even when the

instruments are weakly exogenous to the errors, but when

2=PT+bQT the optimal weighting matrix is not block diagonal

upon the weakly exogenous instruments. This would be the

reason why Ahn and Schmidt (1992) get the result that all of

the instruments are not redundant in the dynamic panel data

model with the random effect covariance structure. In

dynamic model, the instruments corresponding to the lagged

dependent variables are weakly exogenous. Details are in

Chapter 3.

We end section 3 with another model where the optimal

weighting matrix is block diagonal.

3.4. A Generalization of the Random Effects Assumption

Note that E = PT+bQT is sufficient but not necessary

for the block diagonality of the optimal weighting matrix

upon the instruments (eTox‘i’,Lox‘i’) . E = PT+bQT => PTEQT = 0,
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but not vice versa (Lemma A1.2 in Appendix 1). Even though

it seems unlikely in applications for )3 to satisfy PTEQT = 0

but not be of the form PT+bQT, theoretically it is worth

looking into this case in greater details. The properties

of E which satisfies PT'L‘QT = 0 are collected in Appendix 1.

Because the nonredundant set of instruments depends in

different ways on time-constant and time-varying regressors,

we now explicitly separate the two. Write

Yit = xitfi + Zi‘y + uit' t = 1:"‘1T, (3.3)

where xit is 1xk and zi is 1xg; note that zi'can include a

constant. Note that uit need not be separated into a time

constant and time varying errors for stating the results of

this section. For consistent estimation of B and 1 by, say,

GLS, in addition to (3.1) we would now need the condition

E(zgmn) = 0.

Interestingly, if 2 satisfies certain conditions, the 3SLS

estimator with a reduced set of instruments is the GLS

estimator. The condition on 2 is formally stated as

ASSUMPTION 3.3: PTEIQT = 0.

As we mentioned earlier, if z is of the random effects form

then it satisfies Assumption 3.3, but the converse is not

true.
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THEOREM 3.4: In model (3.1) under Assumption 3.3, 3SLS

using the instruments (arm-(“etozwmxn is GLS.

PROOF: Appendix 2. I

Theorem 3.4 shows that the (T-1)(2k+g) instruments

(mxiflozweroxi) are redundant when PTEQT = 0. Redundancy of

eto'xi is rather obvious. The regression is separated into

the two orthogonal spaces and the error covariance is

idempotent in the space spanned by es. On the other hand,

the intuition behind why the instruments L®(xi,zi) are

redundant is not that obvious. Note that ii, the time

constant component of time-varying instruments x3, behaves

just like the time-constant instruments zi.

In the previous subsection, if the error covariance is

of the random effects structure then the GLS estimator is a

convex combination of the between and the within estimators.

Similarly, when the error covariance satisfies Assumption

3.3, the GLS estimator is a convex combination of the

between estimator and the GLS estimator on the differenced

data. To show this, let A = x1 (INOE'1)X, and note that the

GLS estimator on the differenced data is

Em = [X'(IN®L(L'2L)’1L'}X]'1X'{IN®L(L'2L)'1L'}Y, and 13,.»3'1PT =

éP, (Lemma A1.5 in Appendix 1) . Then,

am A'1x' (1,392")! = A'1[X'(IN®PTE'1PT)Y + x' (INGQTZ'1QT)Y]

= A’1‘;X'PY + A'1X'(I"®L(L'2L)'1L')Y

A"%(X'PX)fib + A'1[X'(INOL(L'2L)'1L')X]§GLS.
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4. MODEL NHERE THE REGRESSORS ARE CORRELATED WITH THE TIME

CONSTANT ERROR COMPONENTS

In this section we consider two models where the

time-constant unobserved effect may be correlated with some

or all of the regressors. In the first model all regressors

are time-varying and possibly correlated with the unobserved

effect. If in addition the idiosyncratic errors are assumed

to be serially uncorrelated with time-constant variance,

this effectively corresponds to the traditional fixed

effects model. When the variance-covariance matrix of the

idiosyncratic disturbances is unrestricted we get the

unobserved effects analog of Kiefer's (1980) fixed effect

model. In the general case we derive the equivalence of

several estimators that are suggested by the structure of

the model.

In sections 4.2 and 4.3 we study the HT model, where

some regressors are assumed to be orthogonal to the

unobserved effect. The original HT model assumed i.i.d.

idiosyncratic errors. We cover this case in section 4.2 and

in section 4.3 derive new redundancy results when the

variance-covariance matrix of the idiosyncratic errors is

unrestricted.



38

4.1. A "Fixed Erfects" Tyne Model

The model can be written as

yit = xitfi + 4’1 + an = xitfl + uit, t = 1,---,T. (4.1)

Now the orthogonality condition underlying the analysis is

E(xgug) = 0, (4.2)

which is a strict exogeneity condition but allows xit and Oi

to be arbitrarily correlated. This arbitrary relationship

between xi and 4’1 gives (4.1) a fixed effects flavor.

Under (4.2), only coefficients on time-varying regressors

are identified; thus, for this subsection, x contains only
M

time-varying regressors.

Under (4.2) the valid instruments for estimating 6 are

given by

_ 0

where recall that x‘i’ a (xi1,- - -,x”) is a 1ka row vector and

L is the Tx(T-l) differencing matrix (see section 3.3).

Thus, w; is Tx(T-1)k. Not surprisingly, a reduced set of

instruments is available under standard assumptions.

Under Assumption 3.2, that is E = OEIT + aie,e,', the

within (or "fixed effects") estimator is known to be

efficient (provided Assumption 2.3(a) holds with wg== Loxfi).

Thus, it seems natural that other efficient estimators would
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be the same as fixed effects.

THEOREM 4.1: In model (4.1) under Assumption 3.2, the BSLS

estimators using the instruments Lox? and thi and the GLS

estimators on the demeaned and differenced data are the

within estimator.

PROOF: The two BSLS estimators using the instrumental

variables Lox? and eri are the within estimators since

x' (X°®L) [X°'X°®L(PT+bQT)]'1(X°®L) 'x = gx'ox.

And the GLS estimators on the demeaned and on the

differenced data are the within estimator because

xi'QTQIQTXi = xi'eri = xi'L(L'L)-1L'in

where Q; denotes the generalized inverse of QT. II

If we allow E(eie;) to have an unrestricted form, then

2 = E(uiui') is also unrestricted and this effectively gives

the setup of Kiefer (1980). We can apply Theorem 2.4 to

show that some instruments used in 3SLS are redundant.

THEOREM 4.2: In model (4.1), the two 3SLS estimators using

the instruments (LoiEwLoxi) and Lexi are numerically

identical. Thus, Lexi are redundant.

PROOF: From Theorem 2.4, it is sufficient to show that

(XOL) 1): = (XOL) ' (Inez) (XOL) [(XOL) ' (Inez) (XOL) ]'1(XoL) 0:.

But, the RHS is (X'OL'E)[P(x)®L(L'£L)'1L']X

= (x'eL'z) (IN®L(L'2L)’1L')(P(g)®Qr)X = (XOL) 'x. The last
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equality holds from Lemma A2.1 in Appendix 2. I

Theorem 4.2 shows that among the T(T-1)k instruments Lox$,

the (T-1)k instruments Lon-ci are redundant. As before, this

result can be used to construct a GMM estimator that is no

less efficient than 3SLS when Assumptions 2.1(a), 2.2(a),

and 2.3(a) hold with w3== Lox?; if, in particular,

Assumption 2.3(a) should fail, this GMM estimator is more

efficient than 3SLS, and it adds no more orthogonality

conditions.

Other estimators under these assumptions also suggest

themselves. One can apply GLS on the first differenced or

demeaned equations. Kiefer (1980) proposed GLS using the

demeaned data using (QIEQTY', the generalized inverse of

error covariance on the demeaned data. It seems clear that

no information is lost by deleting any one equation in the

demeaned data, since any one equation is the negative sum of

the rest of the equations. Also demeaning and differencing

preserve the same information. There are several estimators

that are numerically identical. Let

335133 381.8 estimator using the instruments L®Xi in the

original data,

Kiefer's estimator,b

K 1
: ‘
0

GLS estimator in the demeaned equation after deletingb
o 3

any one equation,

GLS estimator in the differenced equation,E
l

0 1
!

33s”); 3SLS estimator in the differenced equation using all
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of the instruments

amv’ GIV estimator in the differenced equation using all of

the instruments.

THEOREM 4'3: fissLs = 31:1: = Bun = fior = fi3SLS = ficw'

PROOF: Appendix 2. I

4.2. nausnan and Taylor Model J

The HT model is the model (3.3) where xi== (xfi,xfi) and

zi = (z1i,22i). Thus,

yi = XML + XZiBZ + (eTozHM1 + (eTozmM2 + 4’191 + 6i. (4.3)

The dimensions of xm, x2“, z“. and z2i are 1xk“ 1xk2, 1xq1

and 1xg2, where k=k1+k2 and g=g1+gz. fi=(fi1',fiz') ' and

12(1f,15)'. Assumptions 2.1 - 2.3 and Assumption 3.2 that

the error covariance is that of the random effect model are

assumed in the HT model. The distinctive feature of the HT

model lies in the assumptions

E(x”®ug ==0, (4.4)

E(xa®ei)== 0, (4.5)

E(zfioug ==0, (4.6)

E(zfioei)== 0, (4.7)

E(x2i't¢i) is the same for t = 1,~--,T. (4.8)

The conditions (4.4)-(4.8) determine the instruments
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available in the model. (4.4) implies the Ti’k1 instruments

Iroxgi. (4.5) implies the T(T-1)k2 instruments Loxgi. (4.6)

implies the Tg1 instruments ITozfi, and (4.7) implies the

(T-1)g2 instruments LozZi. (4.8) adds the (T--1)k2

instruments eTOSEZi. The condition (4.8) and the additional

instruments 9195221 were proposed by BMS. Together, we have

[T2k1+(T"’--1)k2 +Tg1+(T-1)g2] instruments wi = (Ipxfi’wLoxgi,

Itozfi,Loz2i,eTo§2i) , which are equally represented by [Lo(x‘1’i,

xgi'z1i'ZZi)'eT®(xc1,i' S:‘21'219 ] °

For the model to be identified, the number of

instruments in the space spanned by eT should not be smaller

than the number of the time constant regressors, that is,

Tk1-1-(T-1)k.‘,+g1 2 g1-1-g2 should hold.

Under the random effects covariance structure in

Assumption 3.2, EMS and Ahn and Schmidt (1992) showed that

the minimal instruments needed for the most efficient 3SLS

estimator are [thi,eTo(x‘1’i,x2i,z1i)]. All the instruments in

the space spanned by eT are not redundant, but only the k

instruments thi are not redundant among the T(T-1)k+(T-1)g

instruments Lo(x‘i’,zi) in the space spanned by L. Since 2 =

P,-1-bQT and all the instruments belong exclusively either to

the space spanned by eT or to the space spanned by L, the

regression is separated into the two orthogonal spaces. It

is entirely valid to find the minimal set of instruments in

each space separately. In the space spanned by L, the error

covariance QIEQT = bQT is a scalar idempotent, thus it is not
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surprising that the instruments (2.xi are sufficient to reach

the GLS efficiency. In the space spanned by e,, the error

covariance is idempotent but eTo(x1i,22i) are correlated with

45,, thus it fits our intuition that all the instruments in

the space spanned by eT are not redundant.

THEOREM 4.4: In model (4.3) under Assumption 3.2, the 3SLS

estimator using the instruments [QTxi,eTo(x§’i,§2i,z1i)] is a

convex combination of the within estimator and the ZSLS

estimator using the instruments eT®(x‘1’i,x2i,z1i) .

PROOF: Let di = (x‘1’i,x2i,z1i) . In the sample the instruments

are (QX,DoeT) . Let R = (X,ZoeT) , the regressors. Note that

QR = QX. Let

bX'QX o '1 X'QX

A a R' x,Do =

(Q e7”: 0 D'DoeT'eT ] [ (DoeT) 'R ]

.. 1

A _ -1 .1. _ -1 A _1 A

3351.5 ' A (bX'QY+R'P(D®er)Y) - bA X'QXB" + A R'P(DoeT)R323Ls° I

THEOREM 4.5: In model (4.4) under Assumption 3.2, the BSLS

estimator using the instruments (QTxi,etodi) is the GIV

estimator using the same set of instruments.

PROOF: By Theorem 2.1, it is sufficient to show that

(p,+f;Q,)(Q,xi,eTodi) = (Jb*QTxi,etodi) = (QTxi,eT®di)B,

where B is the Tk1><Tk1 diagonal matrix with %'s in the first

k1 diagonal and 1's in the last (T-1)k1 diagonal. I

Thus, GIV does not reduce the number of instruments for the
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original HT model.

4.3. 31 Model with Serially Correlated Tine-Varying Errors

We now study the HT model without Assumption 3.2; in

fact, the error covariance 2 is entirely unrestricted. We

get the following redundancy result for 3SLS.

THEOREM 4.6: In model (4.3), the two BSLS estimators using

the instruments [ITo(x‘1’i,5°:2i,z"),Lo(x2i,z2i)] and ITo(x‘1’i,§2i,z")

are the same. Thus Lo(xfi,zfi) are redundant.

PROOF: Appendix 2. I

The instruments L®(xfi,zu) are redundant whereas Lo(x”,z”)

are not. The difference is that the instruments eT®(x1i,z1i)

are included in the instrument set while eT®()-(2i,22i) are not.

It is intuitively reasonable that the redundancy of the two

sets of the instrumental variables ii and zi, namely the

instruments from the time constant component of time varying

regressors and the instruments from the time constant

regressors, show the same pattern. A similar result was

provided in Theorem 3.5, but there the covariance structure

satisfying PIEQT = 0 is critical.

The BMS condition (4.8) is crucial for the GIV

estimators to consistent. Without (4.8), Lo(x%,za) are not

valid for GIV since
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E[(L®x§i) '2‘1ui] = E[(L®xgi) '3'14’11 = L'2’1eT®E(xgi'¢i),

which is not zero unless PTEQT=0. The same proof shows that

Loz2i are not valid instruments.

The instruments Lo(xfi,za) which are redundant for 3SLS

are not valid for GIV even with the BMS condition (4.8),

since

E[(Loz2i) '2'1ui] = E[(L®z2i)'2'1¢ieT] = L'E'1eT®E(22i'¢i) ,

which is not zero unless PT‘i'QT = 0. The same procedure

shows invalidity of the instruments Lox”. Thus the

instruments available for GIV are I.o(x‘1’i,5°c2i,z1i) , which are

no more than the non-redundant instruments for the 3SLS

estimator. Here, (x%,§fi, z") are the common instruments.

THEOREM 4.7: In the model (4.3), the 3SLS estimator using

the instruments I,o(x‘1’i,§2i,z1i) is the GIV estimator using

the instruments [91x1 ,eTo (x‘1’i 322, , z”) ] .

PROOF: Appendix 2. I

Thus, GIV reduces the number of instruments in the space

spanned by L from Lo(xi,z1i) to eri, say, (T-1)2k+(T-1)g1 to

k, but does not reduce the number of instruments in the

space spanned by e,.

The relationship between the two GIV estimators using

the instruments ITo(x‘1’i,§2i,zH) and [QTxi,eTo(x‘1’i,xZi,z1i)] is

similar to the relationship between the two BSLS estimators
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using the same set of instruments in the HT model of the

previous subsection, where error covariance is of random

effects form.

If there are no x”, 21. in the model we are dealing

with, the model is the fixed-effects type model of section

4.1 with unrestricted covariance matrix but with the BMS

assumption. Then, the instruments (etoxfi) are not

redundant, and there are more efficient estimators than the

GLS estimator in the differenced equation or Kiefer's

estimator.

5. CONCLUSION

For the two estimators, GIV and 3SLS, it has been shown

that there is no clear dominance of one over the other in

general but the two are the same numerically in many popular

panel data models. We have also derived new redundancy

results for BSLS estimator for a variety of panel data

models with strictly exogenous regressors.

The result that block diagonality of the optimal

weighting matrix plays the central role in determining the

nonredundant set of instrumental variables provides a sound

intuition behind the findings in Amemiya and MaCurdy (1986),

BMS, Ahn and Schmidt (1992), and most of the findings in

this paper. The idea also is applied to other models. For

example, construction of the GMM estimator which is robust
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to conditional heteroskedasticity and no less efficient than

the GLS estimator is straightforward in the usual group data

models.

When the optimal weighting matrix is not block

diagonal, a large number of instruments is not redundant for

3SLS. Even if the GIV estimators are not robust, GIV

reduces the number of relevant instruments under an

unrestricted error covariance structure. GIV would

therefore be useful in practice.

As was shown in Schmidt (1990), in general GIV produces

inconsistent estimators when the instruments are only weakly

exogenous to the errors. This raises many interesting

questions both for the consistency of the estimators and for

the consistency of the standard errors. We study weakly

exogenous panel data models in Chapter 3.

Throughout this paper, we only consider orthogonality

conditions between the regressors and the errors. An

interesting question is whether the orthogonality conditions

from the error covariance matrix in each of the models are

useful or not. Chapter 4 gives the conditions when the

information from the error covariance matrix is useful in

several popular models.

"1
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APPENDIX 1

LEMMA A1.1: P1291 = 0 iff the element sums of each row

(column) are the same for all rows (columns) of E.

PROOF: PIZQT = o e z = 13,29T + QTZQT, since 2 = (pT+QT)2(P,+QT) .

The element sum of each row (column) in QTEQT is 0 and all

of the elements in P.2PT are the same. Hence, necessity

follows. If the element sums of each column are the same,

all of the elements in P12: are the same. Thus PTZ = P.2PT,

which implies PTEQT = 0. Hence, sufficiency follows. I

LEMMA A1.2: For non-negative scalar a and b, 2: = aPT + bQI

e PTEQT = 0, but not vice versa.

PROOF: Direct substitution proves that 2‘. = aPI + th => PIEQT

= 0. A counter-example which satisfies P1291 = 0 but not of

the form 2 = aPT + bQT is sufficient for the proof. Suppose

3 1 0

2 = [ 1 4 -1 ].

O -1 5

2 is symmetric positive definite and the sum of each row is

4, but 2 is not of the form aPT + bQT, because not all of

its diagonal elements are equal and not all of its off

diagonal elements are equal. I
'
”
"
1
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LEMMA A1.3: E = aPT + bQT e PTZQT = 0 when T = 2.

PROOF: Equality of the off diagonal terms is guaranteed

from the symmetry of E and the equality of diagonal terms is

enforced from Lemma A1.1. Thus 2 is of the form P1 + bQT. I

LEMMA A1.4: If PIEQT = 0 and either all of the off

diagonals in 2 are equal or all the diagonal terms in 2 are

the same, then 2: = aPT + bQT.

PROOF: If the off diagonal terms are equal, all of the

diagonal terms should be the same each other for PTEQT = 0

to hold from Lemma A1.1. Thus the two statements 2 = aPT-+

bQT and PTZQT = 0 are equivalent when the off diagonal terms

of E are the same. To prove the statement that the equal

diagonal elements of E and PTEQT = 0 implies )3 = aPI + err

mathematical induction is used. When T = 3, imposing the

equality of the diagonal terms and from the symmetry of 2, 2

is expressed as

a on GB

013 023 a

From Lemma A1.1, a12+a13 = O12+023 = O13+Oz3, hence, 012 = 013 =

08, Suppose the Off diagonals are the same. If the

diagonal terms are the same for T = t > 3, then for T = t+1,

the (t+1)—th off diagonal terms are forced to be the same

(Lemma A1.1). I
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o
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_
-1 .-

LEMMA A1.5. If PIEQ1 — 0, then P.,ZIPT — aPI, PTZ PT - 1P
a 1' and

e1(e,'2e,)"e1' = P.2'1PT, where a is the sum of each column of

2.".

PROOF: PIZJPT = e,(eT'eT)"eT'Ee,(eT'eT)"eT'= gPT, where s = et'zzeT

is the sum of all elements of 2, thus % = a. Hence, the

first result follows. (P,>:"P,) (P,2P,) = PT. Thus,

(P.2T‘P,)aPT = P1 and PTE'1PI = éPT. The third result follows

trivially. I

LEMMA A1.6: If PTZQT = 0, then QT2'1QT = L(L'2L)"L'.

PROOF: It is sufficient to show that QTZ'1QT2 = L(L'2L)'1L'2.

4 _ 4 _ - _ -
Note that Q: Q72 — QTZ‘ ‘2."QI — 0., Since PTZIQT - 0 =: Q12 — QTZIQT

= ZQT. Thus, what we need to show is that L(L'2L)'1L'2 = QT.

But, L(L'EL)"L'2(P,+QT) = L(L'ZL)'1L'EQT, since P,EQt = o ..

L'Ee, = o and L(L'EL)"L'EQT = L(L'EL)"L'2L(L'L)"L' = Q IT.

LEMMA 111.7: PTEQT = o e PTE"QT = o.

PROOF: PTZQT = o e E = PTZPT + QTZQI e PTE = P.2PT and QTZ =

QTBQT. Post-multiplying by E", P1r = PTEPTZ'1 = PTEPTE'1PT =

2PT'2T‘PT and pre-multiplying by 2", we have 2:"PT = PT2'1PT,

which is the condition we are looking for. Exactly the same

procedure shows that '2'i‘1QT = Q.2"Q.. Given sufficiency,

necessity is obvious. I
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In fact, 2" = (PTZIPI + QIEQI)" = (P.2"P, + QTanT) for any

integer n, which implies 2" = (PJI‘PT + QTE'1QT) if PTZIQT = 0.
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APPENDIX 2

LEMMA A2.1: (P(x)oQT)X = (P(R)OQT)QX = ox.

PROOF: Note that when k = 1, X = vec(X°') and X = X°QT.

vec(Q,X°') = QX, which is valid when k > 1 by applying this

argument to each of the regressors separately. In fact, X

 

are the first (T-1)k columns of X°QT, but P(X)X°Qt = X°Q,,

simply because the projection of QT after deleting any one

column of QT is still QT. I

PROOF of Theorem 2.4: 25 = 3 if x'w1(w1'nw1)"w1'x

= X'W(W'flW)'1W'X. But,

'1
W2'flW2 WZ'flW1] [WZ'X]

X'W(W'nW)'1W'X = (x'w2 X'W1)[
w1'nw2 w; aw1 w; x

4 _ 4 4 _ 4 4
x'wzn wz'x x'wzo wz'nw1(w1'nw1) w1'x x'w1(w1'nw1) w1'nwzo wz'x

+ x'w1(w1'nw1)“w,'x + x'w1(w1'nw1)"w;{211213411150111 (w1'nw1)"w1'x,

from the partitioned inverse lemma. Thus the condition is

x'wzn"w,_'x - x'WZD'1w2'nw,(w1'nw,)"w,'x - x'w,(w1'nw,)"w1'nwzn"w2'x

+ x'w1(w1'nw1)‘1w1'nwzo'1w2'nw1(w1'nw1)“w1'x = 0, which is A'D‘1A,

where A = wz'x — wgnw1(w1'nw,)“w,'x and D = 11219112 -

W2'nW1(W1'flW1)"W1'nW2, a nonsingular positive definite. Thus

A'D'1A = 0, iff A = o. I
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PROOF of Theorem 3.4: Let H=(X,Z). It is sufficient to

show that

X'XOL'ZL ]‘[ (XOL) '

(XoL,HoeT)[ J (X,Z®e.)

H ' Hoe; ‘2.."eI (HoeT)

= (1“82'1)(X,ZoeT).

The LHS is

[P(R)OL(L'2L)'1L'](X,Z®eT) + [P(H)oe,(e;ze,)"e;] (x,2oe,)

= [IueL(L'EL)'1L']X + [Inoe,(e;2eT)"e;](x,ZoeT) = (INoQTE‘1QT)x

+ (I'OPTZ'1PT)(X,Z®eT) = (Iuoz'1)(X,ZoeT).

The first equality follows from Lemma A2.1 and the second

equality follows from Lemmas A1.5 and A1.6. I

PROOF of Theorem 4.3: Ems = Ems = 76'6“, in the differenced

equation from Theorem 2.1 and Theorem 3.1. EELS = 333“ since

X'(XOL)(X'XOL'ZL)'1(X®L)'X = x' [P(g)@L(L'ZL)'1L']X

= x'[INoL(L'EL)"L'][P(x)oQT]x = X'(INOL) (INOL'ZL)'1(IN®L) 'x.

The last equality follows from Lemma A2.1. To show fifi.=

30,, it is sufficient to show that L(L'2L)"L' = (9,29,)‘2

But: C212£2114(I:"231:)"L'QTEQT = 0,20,, L(L'):L)"L'QTEQ.L(L'EL)"L'=

L(L'EL)"L' and QTZQTL(L'2L)'1L'= L(L'2L)'1L'QT2QT = or Thus

L(L'EL)'1L' is the unique generalized inverse of QTF.QT

(Theil, 1971, pp 269). To prove 25,, = Bo". Let

ii 3'1 0

, ] and (QTXQTV = [ ]

xi
QTxi=[ o o

where ii denotes the first T-l rows and x? denotes the last

row of QTi. Hence, we are looking at the case when the
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last row of the demeaned data is deleted. Then,

1 * ”1 £1 81 0 {‘i "I ’1"

xiQT(QT2QT) QTXi = [xi 'xi 1 ][ c] = X15 xi'
0 0 xi

Deleting any one other row instead of the last row of the

demeaned data makes no difference. I

PROOF of Theorem 4.6: Let R = (x,z6e,), H = (322,22) and G =

(xg,22,z,). Note (HoL)'R = (HoL)'X. From Theorem 2.4 it is

sufficient to show that

(HoL)'(INo2)(GoIT)[(GoIT)'(Iuoz)(co1.)]"(co1,) 'R = (HoL) 'R.

The LHS is (HoL)'(P(G)oIT)'R = (HoI.)'(P(G)oL)'X = (HoL)'X

(Lemma A2.1). I

PROOF of Theorem 4.7: Let R = (X,ZoeT) and G = (X?,XZ,Z1).

For the 3SLS estimator using the instruments (GOIT),

(GOIT) [ (GOIT) ' (Inez) (GOIT) ]'1(G®IT) ' (X,Z®eT)

= (P(G)ozq)(X,Zoefi. And, for the GIV estimator using the

instruments (QX,Goefi

XIQ '1 x1

(I oE")(Qx,Goe ) (I o2")(Qx,Goe ) Q (I o2")(x,zoe )

" I (Gee ) " ' (Gee ) " '
T T

[ (I'82"QT)XD'1X ' (INOQT2‘1)

(luoz"Q,)xn“x' (P(G)®QTZ'1eT(eT'E'1e1)'1e1'2'1)

(P(G)82'1e1(e{2'1e1) '1eT'2'1QT) XD'1X' (Iqu,E")

+ P(G)OZ'1eT(eT'2'1eT)‘1eT'2'1

+ (P(G)®2'1e1(e1'2'1e7)’1eT'2'1QT)XD'1X' (P(G)8Q,2'1et(e1'2'1et)'1e7'2'1) ]

° (xlzee‘f) I
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where D = x' (INeQT2'1Q,)x - x'[P(G)eQ,2"e,(eT'z"eT)"e;2"Q,]x.

Let A n [x' (InsQ12'1)-X'(P(G)®QTZ'1eT(eT'2'1e,)'1eT'2'1)](X,ZoeT) .

A -— [x' (INeQ,2“Q,) -x' (P(G)oQTE'1eT(eT'2'1eI)'1eT'2'1Q7) 1 (x,Zee,)

+ [x'(IueQT2“P,)-x'(p(G)eQ,2"e,(e;z"e,)"e;2"PT)1(X,Zee,)] = D.

Thus, the 1st and the 2nd terms add up to (IN®2'1QT)X and the

3rd and the 5th terms add up -(P(G)92"er(er'2’1eT)"eT'2'1Q,)X.

Together, we have (1'82'1QT)X - (P(G)92"eT(eT'Z'1eT)"et'z‘ng + IT

[P(G)oz"e1(e;z'1e,)"eT'E'H(X,Z®e,). For the regressor ZoeT, I"

[P(G)92'1eT(eT'Z'1eT)'1eT'2'1](ZoeT) = (9(G)e2")(2ee,), and for x,

[Iner‘or- P(G)®2'1eT(eT'Z'1eT)"e;2'1QT + p(G)e2"eT(e;2"eT)"egzfljx

= (1.32"ng + (P(G)®2'1PT)X = (P(G)ez“)x. I



CHAPTER 3

BBTIHATION USING PANEL DATA UNDER WEAK BXOGBNBITY

1. INTRODUCTION

In this chapter we study linear panel data models where

the regressors are only weakly exogenous. The primary

concern is with the consistency of estimators when the

errors are serially correlated, and with the consistency of

the usual standard errors of 3SLS (appropriately defined,

see Chapter 2) estimators when certain instruments are used.

We also discuss how to construct some reduced lists of

instrumental variables that would lead nearly efficient

estimators.

A leading example of the weakly exogenous model is the

dynamic model with lagged dependent variables. Anderson and

Hsiao (1981), Bargava and Sargan (1983), Holtz-Eakin, Newey

and Rosen (1988), Arellano and Bover (1990), Arellano and

Bond (1991), Ahn (1990), and Ahn and Schmidt have studied

efficient estimation in dynamic models. The rational

expectations model is an another important example. Using

panel data to test the rational expectations hypothesis has

lead to renewed interest in studying weak exogeneity in

panel data models (Zeldes, 1989; Kean and Runkle, 1990;

Runkle, 1991). Generally, there is a growing realization

56
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both in time series and panel data contexts that many

regressors in general models would be only weakly exogenous

to the errors.

However, only a few study exist that deal with the

general weak exogeneity (Keane and Runkle (1992) and

comments). An important feature of weak exogeneity is that

different instruments are available for each period so that T

GLS transformation, in general, will bring the inconsistency ‘

of the resulting estimators (Schmidt, 1990). An important

exceptional case is when E is diagonal (Chapter 2, Theorem

2.3). When 2 is diagonal, the redundancy result of Theorem

3.2 of Chapter 2 also applies to weakly exogenous case.

Consequently, a general result that GMM using all the moment

conditions is the best specially has a force in weakly

exogeneous case with non-diagonal covariance matrix (Ahn and

Schmidt, 1992; comments on Keane and Runkle, 1992).

Schmidt, Ahn, and Wyhowski (1992) (SAW henceforth)

provide the lists of instrumental variables for each of

several weakly exogenous models. The structure of the

weakly exogenous instrumental variables provided by SAW is

quite similar to the structure of the instruments for lagged

dependent variables in dynamic models. It now is well-known

that no moment conditions between the lagged dependent

variables and the disturbances exist unless the covariance

matrix is somehow restricted. We ask a basic question about

whether the a priori population moment conditions that are
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currently suggested'in weakly exogenous models are valid

when the idiosyncratic errors are serially correlated.

Genarally, it is likely that there is a link between

covariance restrictions and orthogonality conditions as is

in dynamic models. We investigate these in the next

section.

If the variances of the disturbances conditioned on the

instrumental variables is the same as unconditional

variances, the usual 3SLS standard errors are consistent in

general. Wooldridge (1993) showed that the usual standard

errors from nonlinear BSLS in hedonic pricing models are not

consistent even when the conditional variance of the errors

are constants. A similar result was obtained by Ahn (1990)

in dynamic panel data models. SAW suggested that the equi-

correlation assumption of Breusch, Mizon, and Schmidt (1989)

(EMS hereafter) can hold in weakly exogenous models. We

show, in section 3, that the usual 3SLS standard errors are

not consistent if the instrumental variables from the BMS

assumption are used under any plausible assumptions for

weakly exogenous models. Also, we link this to the result

obtained by Ahn (1990) in dynamic models.

Keane and Runkle (1992) proposed ZSLS after forward

filtering the equations in weakly exogenous panel data

models when the errors are serially correlated, adapting a

suggestion by Hayashi and Sims (1983) in a pure time series

context. But, it was shown by SAW that the Keane and Runkle
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estimator is numerically identical to BSLS when all of the

instruments are used, and therby forward filtering is an

unnecessary complication. However, it still remains an

interesting question that how the forward filtering can

reduce the list of instruments, since, in many instances,

using all of the instruments is not even feasible. Keane

and Runkle provided evidence through an example that forward

filtering can bring non-trivial efficiency gains, though

this does not generalize to other cases. The arguments of

Chapter 2 comparing BSLS and GIV apply to this case. The

main idea of Keane and Runkle is that forward filtering

whitens the errors and applying instruments (without

transformation) to the forward filtered equations would

result in better estimators. However, 3SLS also is ZSLS on

the forward filtered equations useing the instruments 0“QW.

Therfore, what Keane and Runkle suggest is using W instead

of n“QW on the forward filtered equations. To compare these

two, we need to compare P(W) and P(fl“QW)' where P(.) denotes

the projection onto the columns of (o). This comparison, in

general, is not entirely clear. See Chapter 2 for more

details.

BSLS and the Keane and Runkle estimators, in the

presence of heteroskedasticity, are less efficient than GMM

that uses the same instruments. The comparison between the

two GMM estimators using instruments W and Q'WW is even

more ambiguous.
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However, in finite samples, GMM estimators based on a

huge number of instrumental variables might not have

desirable properties. For example, in finite samples, the

standard errors can grow by adding instruments, and this

would happen more likely when the number of instruments

becomes closer to the number of observations. Thus, it is

practically useful to find some reduced lists of instruments

that generate estimators with desirable properties. In

section 4, we suggest some weighted sums of the given long

lists of instrumental variables, which do not generate fully

efficient estimators but would lead to nearly efficient

estimators. However, we should note that the usefulness of

applying these reduced lists of instrumental variables

remains to be seen. Section 5 concludes.

2. SERIAL CORRELATION AND CONSIBTENCY OF EBTINATORB

This section shows that the moment conditions in weakly

exogenous models are restricted in general by structures of

covariance matrices. Before doing this, we review previous

results on the moment conditions for weakly exogenous

regressors, in particular those provided by SAW.
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2.1. figment Conditions under Weak Exggeneity

The model we consider is

yit = xitB + uitr t = 1,-°-,T. (2.1)

Let Yi = (Yi1""IYir)" xi = (xi'1I"'Ixi'r)' and “i = (“i1""'

u")' of dimensions Tx1, Txk and Tx1, respectively. (2.1)

is equally expressed as yi = xi)? + u,. {(yi,xi):i=1, - --,N} is

an i.i.d. sequence and the fourth moments of (ywaq) exist.

Let 2 = E(uiui').

If there are no unobserved individual effects that are

correlated with the regressors, weak exogeneity is defined

by an assumption

ASSUMPTION 2.1: E(x§un) = 0, l s t s s S T.
‘I

This implies %T(T+1)k instruments diag(x%,x§V---,x%), where

x% = (x“,--',xn), t = 1, o-,T. Note that we did not give

any restrictions on 2. Also, Assumption 2.1 allows for

unobserved effects that are uncorrelated with the

regressors.

By introducing unobserved fixed effects that are

correlated with the regressors, the errors are composites of

the time-constant and the time-idiosyncratic components, so

uit = ¢i-+ e", t = 1, -~,T. The assumption that corresponds

to the weak exogeneity and the presence of explicit

unobserved effects is
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ASSUMPTION 2.2: E(xfie.) = O, 1 S t S s S T.
It 18

Under Assumption 2.2, ¢H is allowed to be arbitrarily

correlated with the regressors.

Under Assumption 2.2, the coefficients on the time-

constant variables are not identified. Thus we simply

assume that all the regressors are time-varying. It is

usual, under Assumptions 2.2, to estimate the parameters

after differencing. In the differenced equations, the

errors are Auit E uit - uit+1 = 6i: - emu t = 1, - --, T-l, and

the orthogonality conditions are

E(xfiAum) = o, t S s = 1,---,T-1. (2.2)

Thus, we have the instrumental variables diag(x%,--.,x%4)

of dimension TX%T(T-l)k in the differenced equations.

Let wi = diag(x‘i’1,x“?2, ---,x‘i’T,1) . Applying wi to the

differenced equations amounts to applying the instrumental

variables Img‘to the original equations before differencing

(SAW), where L is the Tx(T-l) differencing matrix (for the

definition of L, see SAW or Chapter 2). While applying

instruments Lwi to the original equations and applying wi to

the differenced equations yield the numerically identical

estimators, using Img in the original equations has several

important advantages, both for the identification of

coefficients on the time-constant variables if they exist

and for the efficiency of all of the estimators, whenever we

have some instrumental variables that are not in the space
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spanned by L.

2.2. Serial Correlation and noment Conditions

It is usually assumed that {e":t=1,---,T) is an

uncorrelated sequence with a constant variance and is not

correlated with {¢i}. In this case 2 takes the random

effects covariance structure

22 = ail, + aie,e,', (2.3)

where II is the TxT identity matrix and er is the Txl vector

of ones. But, there is no reason to think (2.3) holds

universally. In GMM, the restriction (2.3) makes no

difference unless we utilize the moment conditions implied

by (2.3), namely, the moment conditions from covariance

restrictions. 2 is estimable in the models we deal with and

imposing restrictions like (2.3) without testing can be too

limiting.

In dynamic models, the set of the instrumental

variables corresponding to the lagged dependent variables

relies heavily on whether the idiosyncratic errors are

serially correlated (Ahn and Schmidt, 1992; Arellano and

Bond, 1991). Nevertheless, serial correlation of the

idiosyncratic errors in weakly exogenous models have often

been presumed to have nothing to do with the set of the

instrumental variables (Runkle (1991) is an exception; he
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expressed the concern that the usual instrumental variables

might not be valid if the time-varying errors are serially

correlated).

We will consider whether instruments LM} (or Assumption

2.2 that generally is based on apriority) are valid when the

idiosyncratic errors are serially correlated in the model

with fixed effects. Although we will study the case when

the regressors are correlated with the unobserved individual

effects, the results equally apply to the model with no

fixed effects.

To this end, though it is unnecessary to give any

parametric restrictions on serial correlations, for

simplicity, we do impose them. We consider two examples

that are simple and of particular interest in practice:

AR(1) and MA(1). For the AR(1) case, suppose

= ¢€n4 + g”, for some non-zero constant ¢, (2.4a)

E(gnxfi) = 0, (2.4b)

E(Cit¢i) = E(gite‘?t-1) = 0! (2.4C)

for t = 1,---,T. Under weak exogeneity, the regressors are

correlated with the lagged errors so that xit is correlated

with ‘nq for j > 0, thus

E(x'
iteit-j) " 0: j > 0. (2.5)

We now examine whether moment conditions of Assumption 2.2,

given (2.4) and (2.5), are valid. But,
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E(xi'teit) = V’E(xi't€it~1) + E(xi'tgit) = ¢E(Xi't€it-1) " 0'

And the same course shows that E(x ) s 0, j > 0. Thus
i't‘iuj

given (2.4), Assumption 2.2 is at odds with condition (2.5),

as is in dynamic models.

Condition (2.4), in fact, implies a set of

orthogonality conditions that are not linear in parameters.

Ignoring (2.40), covariance restrictions, (2.4b) implies

E[(Aun-¢Aun4)x%] = 0, t = 2,- -,T-1,

since (uh-nu”) - ¢(u"4-un) = g" - ch”. These are

[%T(T-1)-1]k moment conditions so that, to compare with Lwi,

the number of moment conditions reduced by the AR(1) serial

correlations is k.

We next consider the case when the idiosyncratic errors

follow the MA(1), so when we have

cit = nit - pnit-1l (2.6a)

E(nitx?t) = or (2.6b)

E(nitn?t-1) = E(nit¢i) = 0! (2.6C)

for t = 1,-- ,T. Then,

E(xi'tAuit) = E[xi't(nit-pnit-1-nit+1+pnit)1 = “E(xi'tnit-1) " 0°

Thus, if we use the instruments lmg, the obtained estimator

will be inconsistent in this case.

However, from (2.6b) we have the %(T-1)(T-2) moment

conditions
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E(x‘i’t'Auit+j) = 0, j 2 1. (2.7)

These are linear in B, and we have the instruments

  

- o -

x%

"(:31 x?2

'x?2 .

x?T-2

' "X?r-2 ‘

Comparing this with 1mg, the number of instruments shrinked

by the MA(1) serial correlation is (T-1)k. The instruments

that becomes invalid is L[diag(xH,---,x"4)], which

corresponds to the statement in (2.7) that E(xi'tniH) e 0.

However, it is interesting to note that the condition

E(xfinnwfi ==0 can be valid, giving an alternative

explanation for the serial correlation. As appears in

rational expectations literature, time lags until the shocks

are observed by individuals can cause serial correlation.

If this is the case, it is quite possible that the one

period lagged errors are uncorrelated with the current

regressors though the errors follow MA(1), thus the moment

condition E(xinnwn ==0 can be plausible. Therefore,

allowing for time lags until shock is observed, it would not

be necessary to reduce the set of instruments.

We showed that the set of instrumental variables in

weakly exogenous model is closely connected to the structure
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of 2 through a couple of examples. However, we can give a

different interpretation for serial correlation of the

idiosyncratic errors. Suppose that serial correlation is

caused by some omitted variables that are uncorrelated with

the regressors of all periods (like time constant-errors in

the random effects model) and that the error components to

which the regressors are weakly exogenous are serially

uncorrelated. Then.1mg is valid and 2 is unrestricted. In

this case, the errors should be of the form

+ e“
_ _ S

‘u. _ ¢i'+ 6n - ¢i'+ 6 n!
u t = l,---,T, (2.11)

where the regressors are strictly exogenous to the serially

correlated errors 6% and weakly exogenous to the

intertemporally uncorrelated errors ‘3' This distinguishes

general weakly exogenous models from dynamic models. In

dynamic models, there can not exist the error components to

which the regressors are strictly exogenous. A familiar

example is the unoberved individual effects ¢H° The

correlation between ¢i and the lagged dependent variables

are guaranteed in dynamic models, but it is not necessarily

the case in general weakly exogenous models.

SAW and Hayashi and Sims (1983) pointed out that

eliminating serial correlations by forward filtering

requires a similar situation. We quote SAW (p. 11),

"Forward filtering requires that the serial correlations in

the errors do not depend on the values current and lagged
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values of the instruments."

As was noted earlier, SAW showed that the Keane and Runkle

estimator, the ZSLS estimator based on forwarded filtered

equations, is numerically identical to BSLS if all the

instruments Lwi are used. Thus, whenever the Keane and

Runkle estimator is inconsistent, so is BSLS. The

requirement for vindicating forward filtering noted by SAW l

and Hayashi and Sims indeed is needed for currently utilized “

instrumental variables to be valid.‘

Finally, we note on the relationship between the moment

conditions for lagged dependent variables and the structure

of 2 in the dynamic model considered by Ahn and Schmidt and

many others. For simplicity, let xit = Yn4r t = 1, --,T.

We start with the assumption that

E(eity‘i’m) = 0, t = 1,~--,T, (2.12)

which implies that {e“:t=1,---,T} is serially uncorrelated.

We do not impose the homoskedasticity restriction of

{6"3t=1,- -,T} so that E(ea) s E(ei), t e s. Assumption

(2.12) alone implies the set of instruments L g'that are

usually used in dynamic models, but, as was noted by Ahn and

Schmidt, we need an additional assumption

E(eitcp‘.) are the same, t = 1,---,T, (2.13)

in order to have the restricted covariance matrix where all

of the off-diagonal elements are the same. The T-2
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additional moment conditions suggested by Ahn and Schmidt,

E(uitum1 - uimumz) = 0, t = 1, - -~,T-2, (2.14)

along with the instruments 1mg, encompass all of the moment

conditions implied by conditions (2.12) and (2.13). Thus,

the Hausman test (1978) and the GMM test (Hansen, 1982),

given the instruments LM}, of testing the validity of the

moment conditions (2.14) essentially test whether the

condition (2.13) holds.

When (2.13) is violated, the covariance matrix still

will be restricted as long as {e“:t=1,- -,T) is serially

uncorrelated. The off-diagonal part of 2 has

%T(T-1) possibly distinctive elements, but these are

composed of the T+1 elements E(¢gen), t = 1,. -,T, and 0:,

and so there should be the %T(T-3)-1 restrictions. But,

these add no useful moment conditions given the instruments

Lwi, since Lwi stands for the %(T-1) (T-2) moment conditions

from covariance restrictions when condition (2.13) holds,

and %(T-1)(T-2) > %T(T-3)-1.

3. ESTIMATION USING THE BMS ASSUMPTION

Wooldridge (1993) showed that the usual standard errors

based on N3SLS in hedonic pricing models are not consistent,

and he derived a condition for the usual 3SLS standard

errors to be valid. Ahn (1990) obtained a similar result in

 



70

dynamic panel data models when certain moment conditions

from covariance restrictions are used. These results

essentially show that some moment conditions necessarily

cause heteroskedasticity in the models considered by

Wooldridge (1993) and Ahn (1990).

It was suggested by SAW that the equi-correlation

assumption of BMS can hold in weakly exogenous models with

unobserved effects, and then (T-1)k instruments are added.

This section shows that the usual 3SLS standard errors are

not consistent if these instruments are used. Also, we

apply this result to the dynamic case and link it to the

result obtained by Ahn (1990). We assume that the

covariance matrix is of the random effects form to avoid the

consistency arguments of the previous section.

For the usual 3SLS standard errors to be consistent

when the instruments Lwi are used, we need the assumption of

no heteroskedasticity

ASSUMPTION 3.1: E(wi'L'uiui'Lwi) = E(wi'L'ZLwi) .

Wooldridge (1993, Example 5.2) showed that Assumption 3.1 is

satisfied under the assumptions

E(eitlxgt,e$t,1,¢i) = o (3.1a)

and

E(egtlxfim‘i’bwcpi) = 02 (3.1b)
(l

that are plausible and used quite often in the rational
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expectations models. To see this, note that E(wi'L'uiui'Lwi)

has elements E(x‘i’t'AuitAuisxgs) = E[x‘i’t'(eit-eit+1)(sis-eis+1)x“?s],

t,s = 1,---,T-1, and so the result follows immediately by

the law of iterated expectations.

The assumption suggested by BMS is

ASSUMPTION 3.2: E(x&¢w) is the same, t = 1,-~ ,T,

which, given Assumption 2.2, is expressed as

E(xtuit - anfi%rn) = O, t = 1, -o,T-1. (3.2)
I

It is convenient to see the orthogonality conditions implied

by this through the moment matrix

- I ... . ,
Xnun xnun

E : I . (3.3)

  h ' . . . ' d

xnu“ Xnun

Under Assumptions 2.2 and 3.2, all of the elements in the

upper triangular of the moment matrix are the same, while

Assumption 2.2 only implies that the elements in each row of

the upper triangular of (3.3) are the same. Thus,

Assumption 3.2 adds the (T-1)k moment conditions that the

upper triangular elements of (3.3) are the same across the

rows. The moment conditions of (3.2) describes these and we

have instrumental variables



72

'xn xn

iT-1

  —xiT _

A notable distinction between hi and Lwi is that hi is not in

the space spanned by L and it is useful for identification

of the parameters on the time-constant variables.

For the usual BSLS standard errors to be consistent

 

when the instruments hi are used, the conditions

E(hi'uiui'hi) E(hi'Zhi) (3.4a)

and

E(wi'L'uiui'hi) E(wi'L'Zhi) (3.4b)

should be satisfied. Now, we show that condition (3.4) can

not hold under any plausible assumptions for weakly

exogenous models with fixed effects. To this end, we will

show that the equalities for the first kxk blocks of (3.2a)

and (3.2b) do not hold. The first kxk block of E(hgzh1)==

E[hi' (ofIT+aieTeT' )hi] is

afE(xi'1xi1 + Xi'zxiz) + aiE[(xi1-xi2)'(xi1-xi2)] (3.5a)

And for E(hi'uiui'hi) , we have
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I 2 - I - I I 2

E(xnunx" xi1ui1ui2xi2 xizuizunxn + xiZuiZXiZ)

... 2 I _ I I 2 I

“' E[e"xi1xi1 ei16i2(xi1xi2 + xizxn) + eizxizxizl

2

+ E[¢i(xi1-xi2) ' (xi1-xi2)] (3-5b)

' .- I U '

+ E[2¢i€i1xi1xi1 ¢i(5i1+‘i2) (xi1xi2+xi2xi1) + 2¢i€i2xi2xi23

For the equality between (3.5a) and (3.5b) to hold, three

conditions should be met:

(i) E[ei1ei2(xi'1xi2 + xi'zxi1)] in the first term of (3.5b) is

zero,  
(ii) E(¢§Axi'1Axi1) == 03E(Axi'1Axi1) for equality of the second

terms in (3.5a) and (3.5b),

(iii) the last term of (3.5b) is zero.

Condition (1) holds under Assumption 3.1. Condition (ii)

holds if we are willing to assume

E(¢§|Axi1,.~,Axi,_1) = oi, (3.6)

which is a strong assumption, but still is plausible along

with Assumption 3.2. Condition (iii) is a different matter.

From the assumptions in (3.1), the last term of (3.5b)

becomes

E[¢i (€i1+€i2) (xi'1xi2+xi'2xi1)] = E[¢i€i1(xi'1xi2+xi2xi1) 1'

which, however, never becomes zero under any assumptions

that are plausible for weakly exogenous models with fixed

effects.

Next we compare the first kxk block of E(ng'unqrn)
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and E(wa'Zhi). For E(ng'Zhi),'we have

E[wi'L' (OEIT+aieTe;)hi] = a§E(wi'L'hi) = afE(xi'1xi1 + xi'1xi2) ,

and from the assumption (3.1) , E(wi'L'uiui'h‘.) becomes

OEEWGXH + Xi'1xi2) + E(¢i€i1xi'1xi2) r

the second term of which is not zero in weakly exogenous

cases with fixed effects. Therefore, the usual BSLS

 
standard errors are not consistent if the instruments hi are

used.

We now apply this result to dynamic models and compare

it with the result obtained by Ahn (1990). For simplicity,

we focus on a simple AR(1) dynamic model with no exogenous

regressors, so xit = Yn4l t = 1,-- ,T. The covariance

matrix is assumed to be of the random effects form, and we

keep the assumption (3.1) of conditional moment conditions.

The BMS assumption, in this case, tells that

E(Yit¢i) is the same for t = O,---,T, (3.7)

which is implied by the stationarity of {(Yit¢i) :t=0- - - ,T},

the assumption suggested by Arellano and Bover (1990). The

moment conditions are

E(yituit+1 - yit+1uit+2) = 0' t = 0' ' --,T-2, (3’8)

and we have the set of the instruments (waln). Note that

all of the elements in the upper triangular of the moment
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matrix (3.3) are the same, and so the number of moment

conditions is %T(T+1)-1. This covers the moment conditions

from the random effects covariance restrictions (except for

those from the restriction of equal diagonals in 2).

Nothing essentially differs from the previous model, and the

usual standard errors from 3SLS are not consistent if h.i is L

used as instruments.

Without the stationarity of { (Yit¢i) :t=0, - - - ,T} , there

 are %T(T-1)-1 moment conditions from the equal off—diagonal

restriction of 2, and T-1 conditions that E(ymAun) = O, t =

1,.o-,T-1. Together, we have %T(T+1)-2 conditions, one less

than the case under the stationarity of {(yhgn):t=O,-- ,T}.

These comprise %T(T-1) moment conditions E(wa'u1)== 0, and

T-2 conditions (2.14) suggested by Ahn and Schmidt. The

conditions in (2.14) are essentially nonlinear in

parameters. Ahn and Schmidt showed that, given that the

diagonals of 2 are equal, these additional moment conditions

are represented as linear in parameters like

E(yitAuit - yimAuim) = 0, t = 1,---,T-2. (3.9)

These are, in fact, linear combinations of the conditions in

(2.14) with the moment conditions from the restrictions of

equal diagonals, and with E(ngVuQ ==0. Ahn (1990) showed

that the usual 3SLS standard errors are not consistent when

the instrumental variables from (3.9) are used, which is

quite closely related to the result we obtained. The
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structure of instruments from (3.9) is quite similar to hi.

The conventional N3LS methods do not generalize to

implement the moment conditions from covariance

restrictions. Thereby, there is no point to compare between

GMM and N3SLS when the moment condition (2.14) are used.

4. NEARLY EFFICIENT ESTINATION

GMM using all of the moment conditions leads to the

fully efficient estimator in large samples. In many panel

data sets (e.g. when we construct the data from PSID), there

is trade-off between N and T in applications; as T

increases, the size of cross-section N shrinks. Further, as

T increases, the number of moment conditions grows by T2.

Thereby, when T is relatively large (like 6 - 10),

situations where it is not even feasible to use all of the

moment conditions could arise, and finding some shorter

lists of instruments is of practical importance.

In this section, we propose several reduced lists of

instruments that would lead to nearly efficient estimators.

However, we cannot provide "how near", since the

efficiencies of the resulting estimators depend on too many

factors to be sorted out clearly. The estimators we propose

are intended to serve as only possible estimators among

many, and they need to be compared to other possible

estimators in practice. The arguments apply equally to the
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estimator proposed by Keane and Runkle (1992).

In many cases some of the regressors in weakly

exogenous models are, in fact, strictly exogenous. A

leading example is the dynamic panel data model with

additional strictly exogenous regressors considered by many.

Suppose xit = (x%",xfit) for t = 1, --,T and B = (B;,fl;)' in

model (2.1), where x”t is weakly exogenous and xZit are

strictly exogenous to the errors. The dimensions of x1it and

 
x2,it are 1xk1 and 1xk2, where k = k1 + k2. We first consider

a simple model where all the regressors are not correlated

with the time-constant error ¢i. ‘We have

ASSUMPTION 4.1: E(xfi'tuis) = o, 1 s t s s s T.

ASSUMPTION 4.2: E(xfieu1)== 0.

The set of instrumental variables implied by Assumption 4.1

is w1i = diag(x§’i1,x‘1’i2 ,---,x‘1’iT ). Assumption 4.2 implies the

instruments w2i = (Itex‘z’fl) . Let wi = (w1i,w2i) of the column

dimension J'2"1'(T+1)k1 + T2k2. We further assume that there

presents no conditional heteroskedasticity, so

ASSUMPTION 4.3: E(wi'uiui'wi) = E(wi'zwi).

Under Assumptions 4.1 - 4.3 and if E is diagonal so

that if there are no unobserved individual effects and the

errors are intertemporally uncorrelated, the reduced set of

instruments diag(x",xn,---,xn) generate the fully efficient

estimator (Chapter 2). No result exists that finds some
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reduced set of instruments that lead to the fully efficient

estimator when 2 is not diagonal (Ahn and Schmidt, Chapter

2, Chapter 4). Here we allow momentarily that E to be

unrestricted, but Assumptions 4.1 - 4.3 hold. These

assumptions rules out time constant unobservables correlated

with the regressors, but the result obtained under these

assumptions will be generalized to more practical models.

For the rest of the paper, for any Txp matrix mi, M E

(m{,o--,mu)' of dimension NTxp. Thus, the matrix M is the

stacked matrix of mi for i = 1, - - - ,N with the i-th block mi.

Let n = Inez. Then, W = (W1,W2) , note that W2 is equally

represented by X3811. (Chapter 2) .

If all the regressors are strictly exogenous, the GLS

estimator is fully efficient. Nevertheless, E(x1i'2'1ui) # 0,

and 24x1i are not valid instruments. However, 24x2i are

still valid. It would be natural to consider the property

of the 3SLS estimator using the instruments zi = (w1i,2'1x2i) ,

the column dimension of which is %T(T+1)k14-15. Estimators

are defined as

,8 = [x'wm'nm‘1w'x1'1x'wm'nwr‘w'y

and

f3= [x'z(z'QZ)"z'X]"x'z(z'QZ)"z'Y

We will compare the variances of 8 and 3. Let P(.)

denote the projection onto the columns of (-). Then,
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we have

-1 __ -1/2 -1/2 __ -1
W(W'nW) W'X2 — n P(n"zz,,xgo2"2)“ X2 — 9 X2, (4.2a)

and

Z(z'I22)“z'x2 = IT‘X2 (4.2b)

since amuz'nm"z'r11/2r2'1/Z‘x2 = P(01/2W1'n-1/2x2)fl'1/2X2 = n'VZxZ.

From (4.2), it follows that

[ )(1'W(w'rzw)"w'x1 x1'n'1x2 ]"

I
[X'W(W'nW)'1W'X]'1 = (4.3a)

4 4
x50 x1 xz'n x2

and

[x'2(z'02)“z'x1“ = [

X1'Z(Z'DZ)'1Z'X1 x1'n"x,_ "

0 (403b)

-1 -1
x50 x1 xz'n x2

The difference between these two arises from the difference

between X1'W(W'flW)'1W'X1 and x1'2(z'r22)"z'x1. We know that E

is more efficient than 3. However, the difference in

efficiency might not be substantial, since both W and Z

include W1 which provides direct information for X1. This

result depends on Assumption 4.3 of no conditional

heteroskedasticity, and asymptotically the GMM estimator

using the instruments Z could be dominated by GMM using

simpler instruments (W,X§) in the presence of

heteroskedasticity. This is the reason why the instruments

2 is limited to serve as only a choice to be compared with

many other constructable set of instruments.

If the covariance matrix is of the random effects form
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and the unobserved effects are not correlated with the

regressors, it is better to use (W1,PX2,QX2) than (W1,n"XZ)

as instruments whether there is heteroskedasticity or not,

since (2")(2 = aPXZ-I-bQX2 and we never worse off by using

(PX2,QXZ) instead of aPX2+bQXZ, where P = INGJT‘eTeT' and Q =

I“.- P. See Chapter 2 for the result of n'1 = aP+bQ. In

this case, (PXZ,QX2) explains x1 better than aPXz-I-bQXZ. We

 omit complicated algebra comparing the performance of two

sets of instrumental variables (W1,PX2,QX2) and (W1,n"x2) I

since it is intuitively clear.

In the case when the unobserved individual effects are

correlated with all of the regressors and the covariance

matrix is of the random effects form, we have the

instruments ri = L-diag(x‘1’i1,x§’i2, - - - ,x‘1’im) and Loxgi. In this

case, the reduced set of instruments (R,QX§)*would produce a

nearly efficient estimator, since P(R,QX2)XZ = P(R,x‘2’oL)XZ =

QXZ. The same algebra compares the variances of estimator

from these instruments, and produces a result like (4.3).

The above arguments also apply to more general models

where only some of the regressors are correlated with the

fixed effects. We study the dynamic version of the Hausman

and Taylor model considered by Ahn and Schmidt:

Yit = ayit-1 + X“:31 + XZitfiZ + z1i71 + zzflz + ¢i "' ‘itl (4'4)

for t = 1,...,T, All the regressors but the lagged

dependent variable are strictly exogenous to the
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idiosyncratic errors, and only (xfit,za) is correlated with

unobserved fixed effects ¢H' The covariance matrix takes

the random effects form. Then, we have the set of

instruments I‘ = [R1, (X1,z1oe,)oI,, (Xz,zzoeT)oL], where R1

includes all the instruments between the lagged dependent

variables and the disturbances. Note that (Z1,Zt.,)oeT is the

time-constant regressors. The reduced lists of instrumental

variables F = (R1,QX,PX1,Z1®eT) would produce a nearly

 efficient estimator, since PU‘) (X1,Z1oe,) = P0,.) (x1,Z1oeT) =

(X1,z1oe,) and P(r)(X2,ZZ) = P(F)(x2,zz). Hence, the

reasoning is the same as the previous cases. Note that

(QX,X1oeT,Z1oeT) is the reduced lists of instruments in the

static Hausman and Taylor model, that produces the fully

efficient estimator when there is no heteroskedasticity.

For more details, see Ahn and Schmidt (1992).

5. CONCLUSION

We showed that the moment conditions that are currently

utilized in weakly exogenous models may not be valid in some

cases if the idiosyncratic errors are serially correlated.

Were the serial correlations of the idiosycratic errors

detected from an initial stage estimator of 3, testing

exogeneity of the instruments would be constructive.

Difficulty arises when 2 is entirely unrestricted. Then,

identification of 3 becomes a serious problem unless there
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are a sufficient number of strictly exogenous instrumental

variables. However, testing the structure of 2 would lead

to some nice specification tests that are not doable in

single equation models, which we leave for further study.

Though we prove that GMM should be used when we

estimate using the BMS assumption, the reason why there

necessarily arises heteroskedasticity problem is not so

clear. But, the condition derived by Wooldrige (1993)

provides a partial answer for this. He essentially shows

that weak exogeneity is minimally required for the usual

3SLS standard errors to be consistent. Any instruments wit

for the t-th equation that satisfy E(e",eru1,---,enlwk)== 0

do not raise this problem, but the instruments from the BMS

assumption and the instruments suggested by Ahn (1990)

necessarily relate to disturbances across equations and

thereby violate the Wooldridge's condition.



CHAPTER 4

INFORMATION PROM COVARIANCE RESTRICTIONS

IN PANEL DATA MODELS

1. INTRODUCTION

In this chapter, we study the orthogonality conditions

from covariance restrictions. The main purpose is to find

whether the covariance restrictions are useful for more

efficient estimation in several panel data models. We focus

on the restrictions from scalar and random effects

covariance matrices, but the results can be extended to more

general restrictions. Also, we derive the asymptotic

variances of generalized method of moment (GMM) estimators

that use the moment conditions from covariance restrictions.

Covariance restrictions have largely been studied in

the context of simultaneous equations models, and

identification has been the major concern. For efficiency,

Rothenberg and Leenders (1964) showed that the exploitation

of covariance restrictions lowers the Cramer-Rao bound in

standard simultaneous equations models when the errors are

normally distributed. Hausman, Newey and Taylor (1987)

proposed augmented 3SLS as a handy way to realize the

efficiency gains from covariance restrictions.

For panel data models, previous studies have focused on

simple dynamic models. No results exist for static models

83
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like the Hausman and Taylor (1981) model (HT henceforth) and

general weakly exogenous models. The random effects

covariance structure, which has become an almost standard

assumption in panel data analysis, implies a set of

orthogonality conditions. Instrumental variables for lagged

dependent variables considered by Anderson and Hsiao (1982),

Holtz-Eakin, Newey and Rosen (1988), Arellano and Bond

(1991) and Ahn and Schmidt are based on the orthogonality

conditions from the random effects covariance matrix.

Covariance restrictions are rarely used in practice

except for dynamic panel data models and triangular

simultaneous equations models, where covariance restrictions

are crucial for identification. This may be due to

reluctance to utilize a priori restrictions that will cause

inconsistency of estimators when they are false. Another

important reason would be computational burden of numerical

optimization, which is required in general to realize the

efficiency gains from covariance restrictions. But, if

covariance restrictions bring non-trivial efficiency gains,

the computational burden is secondary. Therefore, it would

be nice to have an easy way (without getting nonlinear

estimators) to approach the possible efficiency gain when

moment conditions from covariance restrictions are added.

We show how to consistently estimate the asymptotic

variances of the nonlinear GMM estimators that incorporate

covariance restrictions without numerical optimization. By
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comparing the two variance estimates of estimators (with and

without covariance restrictions) we can see the possible

efficiency gains when we add the moment conditions from

covariance restrictions. If the efficiency gain is non-

trivial, it would be worth doing numerical optimization.

Oncw we get a nonlinear GMM estimator, it is straightforward

to apply Hausman test (Hausman, 1978) or GMM test (Hansen,

:

1982) to test whether the covariance restrictions used are

T
‘
—

0
‘

valid. Thus, it is not hard to get around the possible

inconsistency problem of estimators from using false

restrictions.

In section 2, we study a general model and give some

preliminary results used for the chapter. The asymptotic

variances of GMM estimators that use the orthogonality

conditions from covariance restrictions will be derived, and

it will be shown how they are consistently estimated without

numerical optimization. Also, we provide the conditions

when the linear GMM estimators using the residuals as

instrumental variables are asymtotically identical to the

nonlinear GMM.

In sections 3 and 4 we study covariance restrictions in

specific models and derive conditions when the moment

conditions from covariance restrictions are redundant.

Section 3 deals with models where the regressors are

strictly exogenous to the time-varying errors. It turns out

that certain moment conditions from covariance restrictions
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are useful unless some third moment conditions - essentially

symmetry conditions - of the errors are met. We cover three

models: the model with scalar covariance matrix, the random

effects model, and a fixed effects type model where the

unobserved individual effect is correlated with the

regressors.

Section 4 studies weakly exogenous models. We argue

that the orthogonality conditions from covariance

restrictions can be redundant when the covariance matrix is

diagonal, but whenever the covariance matrix is not

diagonal, they are essentially always useful. Section 5

concludes.

2. PRELIMINARIES

2.1. Begundancy Conditions for Moment Restrictions

We study a linear panel data model

yit = xitfi + uit' t = 1'...’T, (2.1)

where {(yn,xn):i = 1, --,N) is an i.i.d. random sequence.

Lat Y5 = (yi1r"'lyir)'r Xi = (Xi'1!"'lxi'1)'l and ui = (ui1t'°'r

u")' of dimensions Txl, Txk and Tx1, respectively. (2.1)

is equally expressed as yi = xiB + ui. Let 2 E E(uiui') , a

TxT nonsingular matrix. We assume that the 4-th moments of

(ywag) exists. Throughout the chapter, for any TXp matrix
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an, M I (m{,---,m;)' of dimension NTxp, where N is the

number of cross-section observations.

There is a set of Txh observable instrumental variables

wi , that satisfy

ASSUMPTION 2.1: E(wgug ==0.

ASSUMPTION 2.2: E(ngk)lhas full column rank and E(wgwg) is

positive definite.

Assumption 2.2 is a regularity condition that ensures

identification, and it is assumed for the rest of the paper

without being stated further.

Throughout the paper, we let E[g”(fi)] = 0 denote an

initial set of moment conditions and E[gfi(fl)] = 0 be

additional moment conditions from covariance restrictions.

Therefore, our major concern is whether the additional

moment conditions E[gfi(fi)] = O are redundant, given the

conditions E[g”(fi)] = 0.

Let em?) = [gnwwefim 1 If we use the

orthogonality conditions E[gi(B)] = 0, GM solves the

problem

. l N “4 1 N
mfiJ-n Q“(fl) = [N121 gi(fi)]'Au [1.1.2:]. gi(B)]°

1.

It is well known that the best choice of weighting matrix X"

is a consistent estimator of A a E[gi(fi)gi(fi) '1, so we take

AN = 1.112;]. gi(B)gi(B) ' I
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where 3 is a consistent estimator of 3 (e.g. Hansen, 1982).

Then

Avar/N(Sa. - fl) = [D'A4014, (2.2)

a .

where D I E[ Egg—‘31]. Let A). = E[(9,-,(B)gu(fi) '1. 332 = 1.2.

agjiw)
and D 1- (D1',Dz,')', where Dj E[—3B_']' j = 1,2. Then, the 1

asymptotic variance of the GMM estimator that uses only

E[gfi(3)] = 0 is “

Avar/N(8W - 3) = [D1'A;}D1]". (2.3)

From (2.2) and (2.3) it is seen that interest centers

on the difference between D'A"D and D1'AflD1. The former is

no smaller than the latter since GMM never becomes worse

asymptotically by adding orthogonality conditions. Thus,

the information from covariance restrictions is useful

unless D'A'1D = D1'AHD1. Schmidt (1991) shows that this

equality holds if and only if

D2 = A21A;]D1. (2.4)

We will use this condition at several points in the

remainder of the chapter.

2.2. Sealar Covariance and the Asymptotic Varienee ef QMM

We begin by considering the moment conditions from the

scalar covariance matrix.
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ASSUMPTION 2.3: 2 = 021,.

Assumption 2.3 tells that the off-diagonals are zero and the

diagonals are the same in 2. The number of off-diagonal

elements in E is T(T—l), but due to the symmetry of 2, the

upper triangular of 2 is a duplicate of the lower

triangular. Thus, the condition of zero off-diagonals

implies the %T(T-1) orthogonality conditions

  

E(umu") = 0, s > t = 1,---,T-1. (2.5)

The moment conditions (2.5) can be expressed as E(b1'iui) = 0

or E(bz'iui) = 0, where

r “n u” l

“a “u

bn = I

n

_ 0 ..

and

.. 0 0 —

u” o 0

ha = um um '

' “n “n “n4 ‘
  

The dimension of both b1i and b2i is TX%T(T-1).

The condition of equal diagonals implies the T-1 moment

conditions
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mu?t - ufim) = o, t = l,---,T-l. (2.6)

We express (2.6) as E(ci'ui) = 0, where

P ui1 '1

"uiz uiZ

ci = -ui3 .

uiT-1

_ _u _

W

The moment conditions in (2.5) and (2.6) contain different

information, and will be considered separately.

We derive the asymptotic variance of the GMM estimator

expressed in terms of xi, wi, b“, has and ci. First,

D1 = -E(wi'xi). (2.7a)

For the moment conditions in (2.5), or E(b1'iui) = 0, the

elements of D2 are

-E(uisxit + uitxis), s > t = 1,---,T-1.

Thus, it follows that D2 can be written as

D2 = -E[(b1i+b2i) 'xi]. (2.7b)

For the moment conditions E(ci'ui) = 0, we have the elements

of D2

'2E(uitxit - uit+1xit+1) ' t = 1' ' ' ' 'T-l'

so

D2 = —2E(ci'xi). (2.7c)
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Consider first the estimator that uses the moment conditions

E(wi'ui) = 0 and E(b1'iui) = 0. Then from (2.2),

Aver/M5“, - fl) =

I I I I 1 I
w. uiuiw, wiuiuib1i ] E wixi ]

(b1i+b2i) 'xi

(2.8a)

-1

E[xi'wi ,xi' (b1i+b2i) ]E[

I . ' I

b1iuiui Wi bi1uiui bu

Similarly for the GMM estimator that uses the moment

conditions E(wi'ui) = 0 and E(ci'ui) = 0, we have

Aver/1W;m2 - fl) =

wi' uiui' wi wi' uiui' ci '1 wi' xi '1

E[xi'wi,2xi'ci]E[ ] E[ ] (2.8b)

ci'uiui'w‘. ci'uiui'ci 2ci'xi

The equations (2.8a) and (2.8b) are useful in practice.

They are consistently estimated using residuals G“ in place

of disturbances u”, t = 1,---,T, where G" is based on a

consistent estimator of B from the initial instruments WI°

For a proof of consistency, See White (1984, pp. 135-138).

Define b”, b2i and Si to be b", b2i and ci after replacing Git

for uit for t = 1,---,T, and let w: = (wwbfi). Then, the

ratio between the corresponding diagonal elements of the two

estimators (standard errors) of the asymptotic variances

N A A

[X'W(.§:1wi'u‘.ui'wi)"W'X]'1

1-

and

A A N * A A * _1 A A -1

[X' (W,B1+B2) (121 wi 'uiui'w.) (B1+B2,W) 'X]

will provide guidance about whether it is worth trying to
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use the moment conditions from zero off-diagonal covariance

restrictions through numerical optimization. Similar

arguments apply for the equal diagonal restrictions.

Were they available, b“, b2i and ci could serve

themselves as instrumental variables. In the equation

(2.8a), it is not hard to see that if E(bfixg) = 0 the

asymptotic variance of the nonlinear GMM estimator becomes

the asymptotic variance of the linear GMM estimator using

b1i as instruments. Similarly, if E(bfixg) = 0, the linear

GMM estimator using b2i as instrumental variables is

asymptotically identical to the nonlinear GMM estimator.

Also equation (2.8b) shows that when E(c{xg) = 0, the

nonlinear GMM estimator is the same asymptotically as the

linear GMM estimator using'cg as instrumental variables. It

is interesting to ask what will happen if we use b", 8a and

8, as instruments instead of b", b2i and ci. As shortly will

be shown, there is an interesting correspondence. If

E(ngg) = 0, there asymptotically is no difference between

using b1i and b" as instruments. Similarly, if E(bfixg)== 0

and E(ci'xi) = 0, we lose nothing by doing linear GMM using

instruments BZi and Si, respectively.

We now verify these assertations. If we use b", bfi or

A

cg as instruments the resulting estimators are consistent

since

I N A

plimfiixl uisuit = E(u.suit), s,t = 1, - --,T.
I
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For the limiting distributions of the resulting estimators

not to be affected by replacing b1i by b”, the two random

N N

variables X G u. and 2 u u. for s > t, should have
fii-l is It 71’31-1 is It'

the same limiting distribution. But, 6,8 = uis - xis(§ - fl)

and

N N N A

26.11. = fun. ~1zu.x./N(p-p). ‘7
afii-l Is It film-1 Is It N1_1 It 18

Because JN(§ - B) = Op(l), the limiting distributions of the is

two GMM estimators using 5" and using b1i are the same

provided

N

plimgiizlu = E(u.txis) = 0, s > t,
itxis .

so when E(bz'ixi) = 0. Similarly, if E(b1'ixi) = 0, replacing

b2i by SZI do not affect the limiting distribution of the

estimators. For 8,, since

N A A

#121 (uituit ' uit+1uit+1)

N 2 2 l N A

= #121 (uit ‘ uit+1) ' N121 (uitxit ' uit+1xit+1)’/N(fi " 3) I

if E(unx“) = 0, t = 1, °-HP.<a can be replaced by 3i

without affecting the limiting distribution of the

estimators. In summary, the linear GMM estimators using

b”, 32‘. and oi as instrumental variables are asymptotically

identical to the nonlinear GMM estimators if

E(bz'ixi) = 0, E(b1'ixi) = 0 and E(ci'xi) = O, (2.9)
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respectively. Further, if (2.9) holds, it is valid to

replace yit for u“, t = 1, --,T in b”, b2i and ci.

Note that the condition (2.9) holds for each column in

b”, bin and ci, and thus should apply to any covariance

restrictions that are subsets of the scalar covariance

restriction.

If S", bei and 6i are used as instruments when (2.9)

does not hold, the usual standard errors are not consistent

and adjustment terms should be added (for a general

treatment, see Newey and McFadden, 1993, Section 6).

We end this sub-section by stating the general

redundancy condition (2.4) more explicitly for the current

problem. The additional moment conditions E(b1'iui) = 0 are

redundant, given the initial moment conditions E(wgufi ==O,

iff

E[(b1i+b2i)'xi] = E(b1'iuiui'wi)[E(wi'uiui'wi)]'1E(wi'xi). (2.10a)

In the remainder of this chapter we are interested in

checking this condition for various choices of w}. Now

consider using the orthogonality conditions from (2.6).

Given the initial moment conditions E(wi'ui) = 0, the

orthogonality conditions E(c;u1)== 0 are redundant iff

2E(ci'xi) = E(ci'uiui'wi) [E(wi'uiui'wi) ]'1E(wi'xi) . (2.10b)
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2.3. Bengom Effects Covariance and the Asymptotic Variance

9f GMM

 

The random effects error structure allows the time-

constant error component, thus in model (2.1)

nit = (pi + eit, t = 1,-.-,'r. (2.11)

where ¢3 is the time-constant error.

Instead of Assumption 2.3 that 2 is a scalar covariance

matrix, we assume the random effects covariance:

. .. 2 2

where 02 = E(¢§), a2 = E(egt), t = 1,---,T, and IT and e are
9 i I

TxT identity matrix and Txl vector of ones, respectively.

Assumption 2.4 implies that the idiosyncratic errors (6",

-,e") are uncorrelated with each other, are uncorrelated

with ¢3, and have constant variance.

The difference between the random effects covariance

matrix and the saclar covariance matrix is that the off-

diagonal elements of the random effects are non-zero but the

same each other. We have the %T(T—1)-1 moment conditions

from the restriction of equal off-diagonals, one less than

for the case of scalar covariance, and the restriction of

equal diagonals adds the T-1 moment conditions. Together,

we have the %T(T+1)-2 moment conditions, which should be the

case since we have only two parameters of and 0: among the
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%T(T+1) possibly distinct elements of Z.

The condition of equal off diagonals of 2 is

Ewan")

= E(ui3ui1) = E(ui3ui2)

 
E(unun) = E(uiTuiZ) = = E(ui‘ruiT-Z) = E(uiTuiT-1) (2°12) \

It is convenient to consider the orthogonality conditions I

(2.12) in two groups; one is that all the elements in each ‘

row are the same and the other is that all the elements are

equal across the rows. The first set is

E[uis(uit-uim)] = o, s > t+1, t = 1,---,T-2. (2.13a)

And the second set is

E[(uit-um1)ui1] = o, t = 2,---,T-l. (2.13b)

The moment conditions (2.13) are equally expressed as

either E(h1'iui) = 0 or E(hz'iui) = 0, where h1i and h2i are

  

' “a u“ “n 0 ‘

"um ”um um ”um u" um

'uM 7“” “um um

h1i = “W 'un

-ufl “n

_ O ..ui1 .4 
and
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' 0 Ann Ann "' Aun4 1

0 0 0 0

Au
n

ha 3 I

Ann Ann

L ' . . . JAui1 Ann-2 0 0 
where Auit a u.-«1 The left and right blocks of h1i and

it it+1'

h2i correspond to the moment conditions in (2.13a) and

(2.13b), respectively.

To derive the asymptotic variance of the nonlinear GMM

estimator, we follow the same path as we did in the last

sub-section. Since

au.Au.

—6mfiTLL = -(uisAxit + xisAuit) I

it follows that

ahlu.

“EfiIJ'= ’(hn+ha)'xw

and we have

02 = -E[(h1i+h2i) 'xi].

The first derivatives of the moment conditions from the

random effects covariance matrix is quite similar to that

from the scalar covariance, which is the case because the

moment conditions from the random effects covariance are

some linear combination of those from the scalar covariance.

Thus, the results we obtained for the scalar covariance

restriction equally applies to the random effects covariance
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restriction. If we use the orthogonality conditions E(w;ufi

= 0 and E(h1'iui) = 0, then

Mar/M56... - fl) =

I I I I '1 I
w.unnvq wiunntni ] E wixi ]

I

(h1i+h2i) 'xi
(2.14)

4

[E[xi'wi,xi' (h1i+hi2) ]E[

I I I I

1H9%uiwi 1%fi%uihn

The linear GMM estimator using the instrumentals h” (hfi) is

asymptotically identical to the nonlinear GMM if E(hfixk) = 0

(E(h1'ixi) = 0).

Applying the redundancy condition (2.4), the moment

conditions from the restriction of equal off-diagonals are

redundant iff

E[(h1i+h2i) 'xi] = E(h1'iuiui'wi) [E(wi'uiui'wi) ]'1E(wi'xi) , (2.15)

which is an analogy of the condition (2.10a)

3. STRICTLY EXOGENOUS MODELS

In this section, we find the conditions when the moment

conditions from covariance restrictions are redundant in the

models where the regressors are strictly exogenous to the

time-varying errors. We study the scalar and the random

effects covariance matrices. Before considering redundancy,

we present a theorem that provides intuition for our later

discussion.
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3.1. genera; Resuits on Nonredundemcy umder Ideal Conditions

In the model yi = xiii + ui, we assume:

ASSUMPTION 3.1: E(uilxi) = o,

ASSUMPTION 3.2: E(uiui'lxi) = 07-1,.

Assumptions 3.1 and 3.2 are "ideal" conditions. OLS is BLUE

under these assumptions (along with nonsingularity of X'X

matrix). Chamberlain (1987) showed that, ignoring the

moment conditions from (3.1b) below, if all the instrumental

variables wi that include xi satisfy

E(uilwi) = OI (3.13)

E(uiui' IWI) = 021,, (3.1b)

the optimal set of instruments is E(xilwi) = xi, and OLS is

the most efficient. Condition (3.1) is stronger than

Assumptions 3.1 and 3.2, and Chamberlain's result allows

that there would be nonredundant instrumental variables

other than xi under Assumptions 3.1 and 3.2. We write it

down more explicitly.

THEOREM 3.1: In model (2.1) under Assumptions 3.1 - 3.2,

suppose there are instrumental variables afi'of dimension qu

such that (i) E(agui) = o and (ii) E(ai'uiui'xi) e 02E(ai'xi).

Then GMM using the instruments (xifim) is more efficient

than OLS.
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PROOF: It is sufficient to show that a.i is not redundant.

From (2.5), given the initial instruments in ai are

redundant iff

E(ai'xi) = E(ai'uiui'xi) [E(xi'uiui'xi) ]'1E(xi'xi) , (3.2)

which holds iff E(ai'uiui'xi) = 02E(ai'xi). I

Theorem 3.1 holds even when the errors are normally

distributed and when the regressors are independent of the

errors, but applies only to large samples. Generally GMM

should be used to realize the efficency gain from the

additional instruments ai.

The idea underlying Theorem 3.1 is suggested in Cragg

(1983) and Chamberlain (1982). They showed that there can

exist nonredundant instrumental variables in addition to the

regressors in the presense of conditional heteroskedasticity

of unknown form, even when all the regressors are valid

instruments. Cragg's estimator is a GMM estimator with more

instrumental variables that are correlated with the

conditional error covariance. The efficiency gain in

Chamberlain's optimal minimum distance estimator has a

similar interpretation.

Note that Theorem 3.1 shows that, to be useful, the

additional instrumental variables ai do not have to be

correlated with the regressors xi. Instruments that are

uncorrelated with the regressors appear frequently in the

models we study subsequently.
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3.2. 55:19:12 Exogemoms Model; Scalar Covariance

Assumption 3.1 is stronger than needed. The weakest

assumption with strictly exogenous regressors is

ASSUMPTION 3.3: E(wi'ui) = 0, where wi = ITsx‘i’ and x“? =

new - - - .xin-

The choice of instruments in Assumption 3.3 simply means

that xit is uncorrelated with u“, all t,s = 1, --,T. In

this section, we find when the moment conditions from the

scalar covariance of Assumption 2.3 are redundant, given the

initial instruments ITox‘i’.

Under Assumption 3.3, E(b1'ixi) = E(bz'ixi) = E(ci'xi) = 0,

so from (2.9) the linear GMM estimators using either 8” or

$2, and (ii as instruments has the same limiting distribution

as the nonlinear GMM. Thus, we treat b”, b2i and ci as being

available. Applying the condition (2.10a) to see if b1i is

redundant or not, given the initial instruments Imnfi, we

get

E(b1'.u.ui'(I,ox$)][E(uiui'oxg'x‘i’)1"E[(1Tox‘;) 'xi] = o. (3.3)
I I

If there exists no conditional heteroskedasticity, thus if

the assumption

ASSUMPTION 3.4: E(wi'uiui'wi) = E(wi'Zwi)

holds, then combined with the scalar covariance assumption 2
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= 01H” the weighting matrix which is in the middle of the

LHS of the equation (3.3) becomes aZIroE(x“?'x‘i’) . Thus, OLS

is efficient and only k instruments xi are useful among Tzk

instruments I ox? since P o X = X. Otherwise all the
T I (X 81,)

instruments Ignfi are useful (Chapter 2). Under Assumption

3.4, the equation (3.3) becomes

E(b1'iuiui'xi) = 0. (3.4a)

This is no more than the redundancy condition of b1i on the

initial instruments xi. E(b1'iuiui'xi) contains the elements

T

21 E(uisuituifx") , s > t = 1, - - - ,T-l.

T:

A sufficient condition for (3.4a) is

E(uisufitxit) = E(uisufitxis) = E(uisuituifxifl = 0, s s t s 1’. (3.4b)

There are other situations where (3.4a) holds, but they are

not very intuitive.

If Assumption 3.4 is violated, condition (3.3) holds if

E[b1'iuiui' (ITGX?)] = 0. (3 . 5a)

(3.5a) is stronger than (3.3), but it would be very unusual

if (3.3) holds without (3.5a) . Because E[b1'iuiui'(I,ox‘i’)] has

elements

E(uisuituifx‘i’), s > t = 1,-~,T-1 and ‘r = 1,---,T,

condition (3.3) holds if
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E(u'fsuitx‘i’ = 0 and E(uisuituifx‘i’ = 0, s ,I t a 1. (3.5b)

Condition (3.5b) is stronger than (3.4b), but as long as the

strong exogeneity assumption holds the two conditions are

quite similar. A sufficient condition that ensures (3.5b)

is E(uituislx‘i’m”) = 0, 1 II s,t, (including s = t), which is

met if the errors are independent over time. This condition

particularly rules out ARCH presentation in panel data

context. A constructive way to understand what the

condition (3.5b) represents is that for b1i to be redundant,

there should be no conditional heteroskedasticity when b1i

is used as instruments. Otherwise, though being

uncorrelated with the regressors, b1i becomes useful by

explaining the second moments of errors. Thus, the reason

why b1i can be useful is the same as why additional

instrumental variables afilof the previous subsection can be

useful even when they are uncorrelated with the regressors.

We follow the same procedure to find the redundancy

condition for ci. From (2.10b), when Assumption 3.4 holds

ci is redundant iff E(ci'uiui'xi) 0, or equivalently

T

2:1E(ui:’s - ufiw)uitxit = 0, s = 1,---T-1. (3.6a)

t=

Given the condition that b1i is redundant, this condition

becomes

E(U?txit - u?t*1xit+1) = O, t = 1’ ' ' ' ,T-10 (306b)
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A sufficient condition for (3.6b) is

E(u?txit) = o, t = l,---,T, (3.6c)

that demands the symmetry of the error distribution as a

miminum.

If Assumption 3.4 does not hold, ci is redundant if

E[ci'uiui' (IT®X?)] = 0, (3.7a)

or,

E[(u§t-u§t+1)u"x? = o, t = l,---,T-l, r = l,---,T. (3.7b)

Given (3.5a), condition (3.7b) becomes

E(ufitx‘; = o, t = l,---,T-l. (3.70)

It is interesting to note that the conditions (3.5) and

(3.7) are usually assumed in the literature concerning about

covariance restrictions in simultaneous equations models,

namely:

ASSUMPTION 3.5: E[(uiui'®ui)wi] = 0.

Examples are Hausman, Newey and Taylor (1987) and Arellano

(1989). In particular, standard errors from augumented BSLS

estimator proposed by Hausman, Newey and Taylor are not

consistent when Assumption 3.5 is violated (Section 4 of

their paper). To show why Assumption 3.5 ensures the

conditions (3.5) and (3.7), we define selection matrices Sj

of dimension [32-41‘('I'+1)-1]x'r2 such that z = 07-1, e Sjvec(2) = o
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(Magnus and Neudecker, 1980) . Thus, the matrix Sj selects

the elements in vec(2) . In our model, Sj[vec(uiui')] =

(bji,ci)'ui, for j = 1,2. Since vec(uiui') = (IToui)ui, the

conditions (3.5a) and (3.7a) are equally expressed as

S1E[ (Iroui)uiui' (ITox‘i‘H = S1E[ (uiui'eui) (ITox‘i’H = 0 from

Assumption 3.5. Thus, Assumption 3.5 is sufficient to

ensure the moment conditions from covariance restrictions

are redundant when the regressors are strictly exogenous.

Allowing for individual effects would be a primary

reason why people use panel data models, and the model we

studied in this section rarely appears in panel data

applications. We now turn to more widely applicable models.

3.3. Strictly Exogenous Model: Random Effects Covariance

In this section, we will consider the covariance

restrictions in the popular random effects model. Thus, the

errors are composites of time-constant.¢k and time-varying

e and all the regressors are exogenous to ¢i as well as to
“I

e", t = 1,- -,T. We have the initial instruments Ignfi and

the set of moment conditions from the random effects

covariance is a subset of the moment conditions from the

scalar covariance. Thus, the moment conditions from the

random effects covariance matrix are redundant as long as

the higher conditional moment conditions of the errors such

as Assumption 3.5 are satisfied.

 



106

We focus on the higher moment conditions on the time-

constant error ([5, that usually is thought to be caused by

omitting some unobserved variables that are invariant over

the time periods in question.

The additional moment conditions are E(h1'iui) = 0 or

E(hz'iui) = 0, and E(ci'ui) = 0. Since E(h1'ixi) = E(hz'ixi)

E(ci'xi) = 0, we handle h", h2i and ci like they are

available. From the condition (2.15), h1i is redundant if

E[h1'iuiui' (Irex‘i’n = 0. (3.9a)

and which is equally stated as,

(i) E(uisAu. 11. X?It If I 0, and (ii) E(ui1Aunu.x9 = 0,
ITI

s-1 > t = 1, --,T-1, T = 1,-- ,T, and c = 2, --,T-1. (3.9b)

The first and the second conditions of (3.9b) correspond to

the left and the right blocks of h”. Due to homogeneity of

the moment conditions, not much is lost by examining only

the (1,1) element of E[h1'iuiui'(I,ox“?)], so the condition

E(ui3AuHui1x‘i’) = 0. Then, we have

E{[¢I(Ei1-ei2)+¢i(€I1‘6i16i24—6i16i3—6i26i3)+(GI16i3-6i16i26i3)JX‘IP} = 0'
(3.9c)

The condition (3.9c) is met if (i) E(eilxi,¢i) = 0, (ii)

E(eiteislxi,¢i,ei,) = E(eiteis), s,t II 1 (including 5 = t).

For the moment conditions from equal diagonals, we

apply the condition (3.7b) that E[(u§t-u§t+1)ui1x‘i’ = 0, t =

1,---,T-1, and r = 1, --,T. We consider the case when t = r
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= 1, then the condition becomes

2 2_ 2_ 3 _ z o _
E{[2(ei1-Isi2)¢i + (36“ e“ 2€i16i2)¢i + I:i1 ei1ei2]xi} - 0. (3.10)

Equality of this equation holds if we add the condition

E(efi1x?) = 0 to (3.9) . One notable thing is that the

condition (3.7c) that E(u?x£ = 0 does not necessarily apply
III

for this case. Note that in (3.10) ¢§ is differenced away.

3.4. ict Exo enous ode : ' ed Ef ects T

We allow for arbitrary correlations between the

regressors and the time-constant error ¢i° ‘The usual

assumption is

ASSUMPTION 3.6: E(xioei) = 0.

Note that we still are working on the random effects

covariance matrix. Assumption 3.6 implies a set of

instrumental variables Lex§,*where L is the Tx(T-l)

differencing operator (Chapter 2; Ahn and Schmidt). We

assume that there are no time-constant variables in xit to

ensure that B and 2 are identified.

Ahn and Schmidt showed that the moment conditions from

the random effects covariance restrictions are redundant

under Assumption 3.6. Their reasoning is that the moment

conditions from the random effects covariance restrictions

add information only through the regression corresponding to
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the instruments that are in the space spanned by L where the

regression reaches the GLS efficiency. Their finding is

plausible under certain set of assumptions, that we will

detail.

E(hfixg) = 0 under Assumption 3.6, thus the linear GMM

using 3” as instruments is asymptotically identical to the

nonlinear GMM, but using the instruments fia would in

general lead to less efficient estimator than the nonlinear

GMM since E(hfixg) # 0. Thus, h1i will be considered as being

available. Note that h1i is in the space spanned L in the

sense that ch11. = h”, where QT = L(L'L)"L'.

If Assumption 3.4 of no conditional heteroskedasticity

is met, so that if we have,

E[(L®x§)'uiui'(1.®x‘i’)] = oiL'IeE(x‘i"x‘i’) ,

the only relevant instrumental variables are 09g, and OLS

on the demeaned equations is efficient. It does not matter

whether we use thi or Lox? as the initial instruments since

P (”max = QX, where Q = IueQT. Applying the redundancy

condition (2.15), we have

a§E(h1'ixi) = E(h1'iuiui'QTxi) . (3.11)

To simplify this condition, we will consider an example when

T 3. Then, hfii = (ui3 -ui3 0) ' and hfii = (0 ui1 -ui1) ', that

are pretty much of the same sort in a sense that one is

redundant if the other is. We will consider h% only. Since
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E(hii'xi) = E[4’i(xi1"'xi2)J

and

3 -

E(h'ii'uiui'eri) = E[(ei3+¢i)(€i1-€i2) 21 6i1(xi1-xi) ] I
f-

the equality in (3.11) holds under

ASSUMPTION 3.7: E(eiteislxi,¢i,ei,) = E(eiteis), s,t !‘ 1’.

Note that Assumption 3.7 includes the case when t = s.

For the restriction of equal diagonals in 2, we have

the orthogonality conditions E(cgu1)== 0, and the redundancy

condition becomes

2 —

20‘E(ci'xi) — E(ci'uiui'QTxi) . (3.12)

We will consider the simplest case when T = 2. Then, the

LHS of (3.12) becomes 20‘3E[<1>i(xi1 - xi2)]. For the RHS of

(3.11), we have

2 _ 2 _

EH41 ’ 42) 21 €i1(xi1-Xi)] + E[2¢i(€i1 ‘ Ei2) 21 ei1(in-xi)]'
r- r=

For both terms to be the same, it generally requires

ASSUMPTION 3.8: E(e?tlxi) = o, t = 1,--.,'r,

as well as Assumption 3.7.

Recall that Assumption 3.7 and 3.8 are quite similar to

the conditions we derived for the random effects model.

They also are quite similar to the redundancy conditions in

1
.
1
1
.
4
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the equations (3.5) and (3.7) of the moment conditions from

the scalar covariance matrix if we consider «pi as a

regressor. Allowing for correlation between the individual

effects and the regressors does not alter appreciably the

redundancy condition for the moment conditions from the

random effects covariance restrictions. The intuition

provided by Ahn and Schmidt (1992) is plausible, but it is

interesting to note that there are more efficient estimators

than GLS when certain conditional third moments conditions

on errors are violated.

Throughout this section we have studied redundancy

conditions of covariance restrictions in the models where

the GLS efficiency is reached. In the following, we turn to

the models where the regressors are weakly exogenous to the

errors .

4. NEARLY EXOGENOUS MODELS

As we noted in Chapter 3, dynamic models and the

rational expectations models are typical weakly exogenous

models. There is a growing concern that many regressors in

standard panel data models would be only weakly exogenous to

the time-varying errors. We will not work on dynamic models

explicitly, since there is a large body of previous work and

much of which studied covariance restrictions. For listings

of references, see Chapter 3. We study the models under the
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assumptions that are usual in the rational expectations

models. But, our results apply to standard models where

some of regressors are weakly exogenous and also to general

dynamic models. There, in general, is no point to argue

whether covariance restrictions are useful in dynamic

models, because covariance restrictions coincide with the

instruments for the lagged dependent regressor. But, there

at least is one model (probably the only model) that draws

our interest, which we study first.

4.1. Weakly Exogenous Model: Diagonal Covariance

We first study the weakly exogenous panel data model

with sequential conditional moment restrictions of the type

in Chamberlain (1992), but with no individual effects. The

model is a typical rational expectations model that appears

in panel data applications. The diagonal covariance matrix

rarely appears in standard panel data models. Nevertheless,

it frequently is assumed in the rational expectations models

as the hypothesis itself implies. Further, many tests

failed to reject the null of no individual effects (Keane

and Runkle, 1990; 1992; Runkle, 1991). Other important

models that can have the diagonal covariance matrix are

dynamic models. Most of the previous studies on dynamic

models concerned the random effects covariance. However, it

has been observed that allowing for rich dynamics diminishes
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the importance of individual effects (e.g. Holtz-Eakin,

1988).

We continue to consider model (2.1), and assume

ASSUMPTION 4 . 1: E (uit | x?,,u‘,-’t-1)

I

O (
1
'

II

P I-
3

where x‘i’t = (xi1,---,xit) and u‘i’t (uiV- ~,uit), t = 1,---,T.

Assumption 4.1 implies many instrumental variables.

Utilizing every moment condition is not feasible. We

restrict our attention to the second moment conditions of

(xi,ui) , thus we have

E(unxg) = 0, t = 1,-- ,T, (4.1)

and

E(u‘un) = 0, s # t. (4.2)

(4.1) implies the set of instruments that appears in panel

data literatures (e.g. Schmidt, Ahn and Wyhowski, 1992), and

(4.2) is the covariance restrictions that the off-diagonals

of E are zero. It is usual to assume

ASSUMPTION 4.2: E(ufitlxgt,u‘;t_1) = of, t = 1,---,T.

This excludes conditional heteroskedasticity. Under

Assumptions 4.1 and 4.2, GMM using the instrumental

variables x: = diag(xi1, - . - ,x") is asymptotically identical

to GLS, and no other instruments are useful ignoring the

higher moment conditions on the errors (Chapter 2). That is

to say, among tk instruments for the t-th period equation,

.1
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only k instruments xit are useful and others are redundant,

and any other functions of 3% are also redundant.

We find whether the moment conditions (4.2) are

redundant under Assumptions 4.1 and 4.2, given the initial

instruments x}. Note that E(bfixi) = 0, but E(bz'ixi) s 0.

Thus, the linear GMM using the instruments 8m is identical

to the nonlinear GMM asymtotically. Thus, we treat b2i like

it is known.

THEOREM 4.1: In model (2.1) under Assumptions 4.1 - 4.2,

the orthogonality conditions in (4.2) are redundant, given

the initial instrumental variables x:.

PROOF: We apply the redundancy condition (2.10a), which

becomes

E(bz'ixi) = E(bz'iuiui'x'i') [E(xg'uiui'xh]’1E(x:'xi) (4.3)

E(bz'iuiui'xb = E(u.u s > t = l,---,T-1, 1 = l,-~,T.
it isuitxi1)'

When 1’ = S, E(u.u = E(u.u = E[ui “E(IJ-H'ut'xis)xis]It ISXIS)

= 0§E(uitxis) ’1 0. When 1=,t E(u.u

it is“ ifxiv)

itisuirx") = E‘unumxn) =

E[ufiE(uh|u",xn)xn] = 0 from Assumption 4.1. For T s s,t,

E(uituisui7x”) = 0. Thus, non-zero elements in E(bz'iuiui'xh

are a§E(uitxis) for s > t. For simplicity, we show this when

T = 3. Then,

2
0 azunxiz 0

I I * .. 2

2
0 0 o3ui2xi3

and [E(x:'uiui'x'i')]"E(x:'xi) = (a;2 of agz)'8Ik. Thus, the RHS
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of the condition (4.3) becomes E(u ) for t < s = 2,3,
nxn

which is no more than the LHS of the condition (4.3). The

argument is more tedious for general T. I

Even if the regressors are only weakly exogenous, GLS

is consistent since 2 is diagonal, and efficient under

Assumption 4.2. This result also applies to dynamic models

with one or more lagged dependent variables. As an example,

suppose a simple AR(1) dynamic model where yit,1 is the only

regressor. Then, GLS is equivalent to 3SLS using the

instruments diag(ym,c--,y"4). The moment conditions to be

used are E(ypnn) = 0, t = 1,- -,T, which are equivalent to

E(unqu“) = 0, t = 1,- -,T-1, and E(ymu“) = 0. Thus, among

%T(T-1) zero off-diagonal restrictions only (T-l)

restrictions that correspond to the second moments between

regressors and errors are useful and rest are redundant.

Similar arguments apply when more than one lagged dependent

variable appear as regressors.

Theorem 4.1 depends heavily on the diagonality of E.

If E is not diagonal and the regressors are weakly

exogenous, GLS is not consistent (Schmidt, 1990), and all

the covariance restrictions would be useful in general. We

study a special case of this in the next section.
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4.2. Weekiy Exogenous Model: Random Effects Covariance

We now combine the individual effects and the weak

exogeneity of the regressors to the idiosyncratic errors.

From Ahn and Schmidt, and section 3.3, we know that the

moment conditions from the random effects error covariance

are useful unless GLS efficiency is reached in the space

spanned by L. In another words, for the orthogonality

 conditions from the random effect covariance to be

redundant, GLS in the differenced equations should be at

least consistent or equivalently the instruments Lox? should

be valid in the original equations before differencing. In

this sense, the model with a diagonal covariance matrix we

studied in the last sub-section is an exception, where the

instruments Lox? are not valid, but the GLS efficiency (not

in the space spanned by L) is reached because the covariance

matrix is diagonal and so the optimal weighting matrix

becomes block diagonal.

We argue, throughout this section, that whenever the

GLS efficiency is not reached, the moment conditions from

covariance restrictions are useful. There probably is a

nice and simple proof for this statement, but we could not

provide it. Thus, we only provide a heuristic discussion

through a couple of examples that look useful in

applications.

The model we deal with in this section is (2.1) with
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the random effects error structure. Once we allow for the

time-constant error ¢3,.Assumption 4.1 is not plausible.

Instead, we assume

ASSUMPTION 4.3: E(eitngt,e$t_1,¢i) = o, t = 1,---,'r.

Assumption 4.3 is standard in the rational expectation

models that allow for arbitrary correlations between the

regressors and the time-constant unobservable ¢i.

Like we did in the previous subsection, we will

consider only the orthogonality conditions from the second

moments of (xwan). Then, we get a set of instruments

.. 0 q

x“

_o o

x“ x”

O

an

  _ o -
Xn4

For more details, see Chapter 3 or Schmidt, Ahn and Wyhowsky

(1992). Also, Assumption 4.3 implies that the off-diagonals

of Z are the same each other.

We add no conditional heteroskedasticity assumption

ASSUMPTION 4.4: E(GEtIx‘i’t,<-:“?t_1,¢i) = o2 t = l,---,T.
‘I

This assumption is stronger than usual. It generally is

allowed that E(ea) s E(efi), t ¢ 5. Assuming that they are

the same, along with Assumption 4.3, leads to the ramdom
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effects covariance matix. But, as will shortly become

clear, the restriction of equal diagonals of 2 does not

alter the results we obtain. The moment conditions from

equal diagonals are not our concern anyway; our interest

centers on whether the equal off-diagonal restriction of

covariance matrix are useful under Assumption 4.3 and 4.4.

The orthogonality conditions from equal off-diagonals

of the random effects covariance matrix are E(h1'iui) = 0. To

simplify our discussion, we will consider when T = 3. We

focus on the moment condition E(hfii'ui) = 0, and find whether

it is redundant. We lose no generality from this

simplification, since the moment conditions E(hflhm) = 0 and

E(hfiiIui) 0 represent the same sort of moment conditions of

equal off-diagonals of covariance matrix. The moment

condition E(hfii'ui) = 0, given the initial instruments wi, is

redundant iff

E[ (hfifihéi) 'xi] = E(hfii'uiui'wi) [E(wi'uiui'wi) ]'1E(wi'xi) . (4.4)

Recall that hgi = (ui3 -ui3 0)' and hgi = (o 0 Au“) I. Thus,

the LHS becomes

E[¢i(xi1’xi2)] + (€i1-6i2)xi3]°

Straightforward algebra using the matrix inverse lemma and

the identity E(xflx‘i’z) [E(x‘i’z' x‘i’z) ]'1E(x‘i’2' x‘i’1) = E(x‘i’1'x‘i’1) shows

that the RHS of the condition (4.4) is
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“4’9“” " 312w.» - %E<¢ixn> [E(xiaxn>1"E<xixiz>

+ %E(¢ixi1) [E(xiglxi1)].1E(xi'1xi3) + %E(¢ix?2) [E(xci’z'xci’z) 1-1E(X?2'Xi3)

Equality between two terms do not hold unless E(¢9q) = 0,

and E(enxfl) = E(euxu) = 0, that make both terms zero.

Thus, the moment condition E(hfii'ui) = 0 is not redundant

under Assumption 4.3 and 4.4.

Nonlinear optimization is necessary in general to

implement the moment condition E(hhfim) = 0, since both

E(hki'xi) and E(hgi'xi) are non-zero. However, E(hgi'xi) = 0 so

that the linear GMM estimator using 3% as instrumental

variables is asymptotically equivalent to the nonlinear GMM

that uses the same set of moment conditions. Note that we

construct the %T(T-1)-1 instruments hh (or h%) first by

equalizing the elements in each row of (2.13a), and then the

T-l instruments h% (or ha) are constructed by equalizing

the elements in columns of (2.13a). But, it is not hard to

see that the column dimensions of h% and h% (or h; and h%)

are reversed if we construct the orthogonality conditions by

equalizing all the elements in each column of (2.13a) first.

Thus, %T(T-1)-l moment conditions can be implemented without

numerical optimization.

One would still be doubtful that efficiency gains from

the random effcts covariance restrictions would come from

allowing correlations between the regressors and the time-

constant error ¢u rather than from covariance structure. To
1
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provide a firm idea that covariance structure plays an

important role for redundancy of the moment conditions from

covariance restrictions, we consider one more model under a

quite strong set of assumptions, which would not be much of

practical use.

We add assumptions

ASSUMPTION 4.5: E(¢ilxi,ei)

l

O

ASSUMPTION 4.6: E(¢§Ixi,ei)

I

o

Assumption 4.5 is like the random effects assumption in

strictly exogenous model, Assumption 4.6 is an assumption of

no conditional heteroskedasticity. Obviously, Assumptions

4.5 and 4.6 exclude dynamic models. Now, the only

difference between the model under Assumption 4.3 - 4.6 that

we will consider and the model under 4.1 - 4.2 that we

considered in the last subsection is in the covariance

structure. The initial set of instruments is the same, that

is wi = diag(x‘i’1,x‘i’2, - - - ,x‘fi) .

For simplicity, we again consider the case when T = 3

and the moment condition E(hfihm) = 0. The condition (4.4)

is the redundancy condition, given the initial instruments

Iq = diag(x%,x§,-~~,x%). The LHS of (4.4) is

E[(h|1.i+h2i) 'xi] = E[(€i1-€i2)xi3]°

For the RHS of (4.4), we have
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E(h1'iuiui'w‘.) = [o o (o§+o§)E((eH-ei2)x$3}],

E(wi'xi) = E(XIIXII Xi'zxi’z xi'3x‘i’3)'

and

E(wi'uiui'wi) = (Ii-E(wi'wi) + o§E(wi'eTeT'wi)

(0:303) XII. XII 03X?1'X?2 03x3 x233

_ 2 2 o. o 2 0.0

(af+o§) x‘i’; x‘i’3

Though it is onerous to invert E(w{unfivq), it is not hard

to see that equality in (4.4) holds when the off-blocks of

E(wi'uiui'wi) are zero, as P(X§)Xt = Xt, t = 1,2,3, the case we

considered in the last section. Thus, covariance

restrictions become useful by allowing the time-constant

error.

Note again that the only difference between this and

the model we studied in the last section is in the structure

of the covariance matrix. Given weak exogeneity of the

regressors, appearance of the time-constant error breaks the

block diagonality of the optimal weighting matrix and make

GLS inconsistent.

In many of the rational expectations models, MA(1)

serial correlation of the errors has been detected (e.g,

Keane and Runkle, 1990; 1992; Runkle, 1991). As we

discussed in Chapter 3, we do not have to shrink the set of

instruments if the serial correlation is caused by the time

lag for observing past shocks. Then, the set of instruments

in those models and in the model we are dealing with are the
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same except those from covariance restrictions. However,

GLS anyway is not consistent under MA(1) error structure.

Thus, we conjecture that covariance restrictions are useful

in those models. Also, numerical Optimization will not be

necessary to realize the efficiency gains from covariance

restrictions in those models.

5. CONCLUSION

GMM provides a new aspect of instrumental variables

that, to be useful, they do not have to be correlated with

the regressors as long as they are correlated with the error

squared sequence (u§}. It is interesing to ask how much we

can improve estimators from using those instruments.

Finding that kind of instrumental variables outside of the

models we are interested in would be unusual, but as

sections 3 and 4 show, residuals generated from initial

consistent estimators could play that role. And generally

they are useful when error distribution is not symmetric.

From section 4, we know that diagonality of covariance

matrix is crucial for GLS to be consistent and efficient

when the regressors are weakly exogenous. However, there

are models, though not of practical importance, where GLS is

consistent but covariance restrictions are always useful.

Suppose a model where the regressors are only currently

uncorrelated with the errors (known as contemporaneous
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uncorrelated model) and 2 is diagonal, then GLS is

consistent. But, conditional heteroskedasticity is

guaranteed in this case, and more instruments generally are

useful if exist, and covariance restrictions also are

useful. This arguments are directly related with Wooldridge

(1993) and Chapter 3.

We only considered redundancy of the moment conditions

from the second moments of errors and it proves that the

conditional third moment conditions of errors are crucial.

If covariance restrictions are not useful since the

conditional third moment conditions of the errors are met.

Then, those conditional third moment conditions of the

errors in turn become a new set of moment conditions, and

they, to be redundant, would require certain set of the

conditional fourth moment conditions of the errors, and so

on. Though we do not pursue the redundancy of higher

moments in this paper, we conjecture that unless the

conditional errors are from a normal distribution, higher

moment conditions would matter at some point. For an

example, consider a moment condition E(ei) = 0, t = 1,-- ,

T. It is not hard to show that these moment conditions are

not redundant unless E(e’i’t) = 30““, which holds when the

errors are from a nomal distribution.
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CHAPTER FIVE

CONCLUDING REMARKS

Finding some additional moment conditions and the

conditions under which certain moment conditions are

superfluous in panel data models has been an important

branch of research; Hausman and Taylor (1981), Amemiya and .

MaCurdy (1986), Breusch, Mizon and Schmidt (1989), Anderson |-

 and Hsiao (1981), Holtz-Eakin, Newey and Rosen (1988),

Arellano and Bover (1990), Schmidt, Ahn and Wyhowski

(1992), and Ahn and Schmidt are examples of contributions.

The results in this thesis unify and extend results in

several of these papers. One consequence of the analysis is

the emergence of some new estimators that either exploite

redundancy results or new useful orthogonality conditions.

Another important line of research is the specification

test. In most of applications, people presume that the

covariance matrix takes the random effects form, and many

existing tests that are suitable for the panel data

framework focus on testing whether the time-constant

unobserved effects are correlated with the explanatory

variables (Chamberlain, 1982; Holtz-Eakin, 1986; Jakubson,

1991). However, as we discussed in Chapter 3, in weakly

exogenous models it is highly probable that the moment

conditions depend on the structure of the covariance matrix,

123
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and also as we showed in Chapter 2, in strictly exogenous

model the redundancy of moment conditions hinges heavily on

the structure of the covariance matrix. Thus, testing the

structure of covariance matrices will be quite useful and

necessary in many cases. While the over-identification test

(Sargan, 1958; Hansen, 1982) and the Hausman test (Hausman,

1978) are directly applicable for testing the covariance

structure, these tests need the estimators using the moment

conditions from covariance restrictions, and therefore, in

general, will involve numerical optimization.

There might be simpler ways of testing the structure of

covariance matrix. Arellano and Bond (1991) devised a test

statistic for testing the null a“3t = 0, s # t, in dynamic

models, where ast is the (s,t) element of the covariance

matrix of the differenced errors. This direct test can be

generalized to general weakly exogenous, and also to

strictly exogenous models. There also will be many more

test statistics to be devised. For an example, it would be

nice to have a simple test statistic that jointly tests the

null that the covariance matrix is of the random effects

form.

In addition, these direct test of covariance structure,

combined with the Hausman test or with the GMM test, would

lead to even nicer results. For an example, suppose we have

a conflict result in the rational expectations model

considered in Chapter 3; the null of the MA(1) serial
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correlation of the time-varying errors cannot be rejected

from the direct test, but the Hausman test cannot reject the

hypothesis that the instruments are valid, that are supposed

to be invalid in the presence of the MA(1) serial

correlation. Then, this result will lead to the conclusion

that the serial correlation is due to the time lag until the

shock is observed. We leave these topics for future works.
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