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ABSTRACT

ACCESS TO HOSPITALS IN A REGULATED HEALTH CARE SYSTEM:
IMPLICATIONS FOR UTILIZATION

By

Paul L. Delamater

Hospital use varies among populations due to access, socio-demographic characteristics, and

overall health care needs. Further, the interaction between populations and health care

providers is often mediated by governing bodies, such as Certificate of Need programs, that

regulate the supply of health care resources. The intersection of the spatial and aspatial

components of access and utilization within a regulated health care market provide the

backdrop for this research. The outcomes provide insights that inform future health services

research and offer guidance for public policy initiatives. The research approach adopted in

this dissertation addresses both methodological and theoretical issues related to the study

of access and utilization and the nature of the relationship between them. The project is

comprised by three sequential studies tied together within the framework of assessing access

and utilization in a regulated health system.

The first study examines methods used to measure distance among locations. Specifi-

cally, the work addresses the theoretical and applied implications of using raster and network

data models for identifying areas with limited geographic accessibility. The findings suggest

that the network data model provides a more accurate framework for estimating vehicular

travel time along roadways, while the raster data model offers advantages in scenarios where

roadways are not the primary route of travel. The second study offers a methodology for

clustering spatial observations having multiple attribute values. The specific focus of the

work is the formation of Hospital Groups, the allocation units used in a state-level method-

ology for predicting future hospital bed demand. The main outcome of the research is the

methodology itself, which provides a substantial advance over the previous methodologies

used in health services research by way of its ability to cluster observations based on overall



patterns of health care utilization and geographic location, simultaneously. Using knowledge

gained from the first two studies, the final portion of the dissertation explores the relation-

ship between the availability of hospital beds and the utilization of hospital services. The

focus of the study is Roemer’s Law, which states that a hospital bed built is a bed filled. The

findings of this study provide strong support for the concept that greater levels of hospital

bed availability lead to higher hospital utilization rates. This relationship is confirmed at

various levels of data aggregation, demonstrating that the observed impact of availability on

utilization is stable across geographic scales of analysis.

The main outcomes of this research can be separated into those relating to advancement in

health services research and those relating to public policy. From a public policy perspective,

this dissertation offers updated methodologies for identifying areas with limited geographic

accessibility and grouping health-based observations. In addition, the final study finds strong

evidence of the effects of Roemer’s Law, thus providing support for the continued regulation

of hospital bed availability. This dissertation also contributes significant new knowledge

to the field of health services research. The specific salient outcomes include: detailing

both the theoretical and applied differences between the raster and network data models for

estimating travel time among locations, offering a methodology that simultaneously clusters

observations based on comprehensive patterns of utilization and geographic location, and

producing compelling, robust evidence that hospital availability has a positive, significant

relationship with hospital utilization rates.
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Introduction

The United States health care system is decentralized and fragmented, while also growing

increasingly expensive over the last 40 years (Kaiser Family Foundation, 2009). Although

some states mediate the availability of health care services through Certificate of Need (CON)

programs, the US health care system has generally followed “market” forces in its evolution,

resulting in an inequitable distribution of resources (Angell, 2008; Kuttner, 2008) and dis-

parities in access to health care services. Concurrently, the costs of health care services have

risen dramatically in recent years including an increased burden of out-of-pocket costs being

placed on consumers (Cunningham, 2010; Wennberg, 2005). Despite spending more money

on health care than any country in the world, the US lags far behind the leaders in numerous

measures of public health outcomes (Murray and Frenk, 2010). Furthermore, the increased

commercialization and profit-maximizing behavior of health care providers has resulted in

distorted resource allocation of services and escalating costs (Kuttner, 2008).

Access to health care services can be defined as the ability to secure appropriate and

effective health care services in a timely manner. It is well understood that access arises from

a combination of both spatial and aspatial factors. In addition, utilization of health care

services varies among populations and is dependent upon both access and factors unrelated

to access such as overall health needs, socio-demographic characteristics, and perceptions

of the health care system (Andersen and Newman, 1973). Understanding how access to

services affects service utilization and health outcomes has been identified as being of great

importance in health services research (Higgs, 2009).

In the US, both researchers and the popular media have largely placed an emphasis on

exposing the financial barriers in access to health care due to the prohibitive costs of health

care services and significant uninsured or underinsured populations. Past research has shown

that a lack of health insurance is associated with less service utilization and worse health

outcomes (Freeman et al., 2008). Other studies have explored the spatial aspects of access

to health care services, indicating that a large number of people in the US have limited
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geographic access to services such as emergency departments (Carr et al., 2009), specialty

physicians (Rosenthal et al., 2005), and cancer care (Onega et al., 2008). Another large

body of research, most notably by Wennberg and colleagues in the Dartmouth Atlas of

Health Care, has explored small area variations in health care spending (Fisher et al., 2003),

utilization (Wennberg, 2005), and outcomes (Welch et al., 2011), exposing disparities that

exist throughout the US.

Although health care delivery has shifted increasingly towards profitability (Kuttner,

2008), health care planning and regulation in the US generally attempted to achieve two

broad goals: 1) promote public health by ensuring that the supply of services meets the

population’s needs and 2) contain health care costs by regulating the supply of services to

a level congruent with the need of the population. Regulation is often enforced through

state-based Certificate of Need (CON) programs. The primary goals of CON programs are

to contain health care costs by limiting the supply of health care services to only those needed

by the population and to achieve equal access to health care (McGinley, 1995). Passage of

the National Health Planning Act of 1974 required states to implement CON programs to

receive federal funding for certain programs such as Medicare and Medicaid. However, this

act was repealed in 1986 under concerns that it had failed to achieve its goal of reducing

overall health care costs (Finn, 2007). Although their merits have been questioned over the

past 40 years (see US Federal Trade Commission, 2004; Rivers et al., 2007; Ferrier et al.,

2010) and they are no longer federally mandated, 35 states currently employ some form of

CON program (National Conference of State Legislatures, 2011).

A number of states continue to regulate the supply of acute care hospitals, inpatient

hospital beds, and hospital services through CON programs (Langley et al., 2010). Given

that the plurality of overall health care expenditure in the US is for inpatient hospital care

(Kaiser Family Foundation, 2009), hospitalizations, and thus hospitals, are logical candidates

for cost control measures. The high costs of inpatient hospitalizations, in conjunction with

the generally accepted implications of Roemer’s Law (Shain and Roemer, 1959; Roemer,
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1961), a bed built is a bed filled, serve as the current justification for continued regulation of

hospital-based resources through CON programs.

Theoretically, access and utilization should have a direct relationship with each other

considering that access measures the “potential” to utilize services (Aday and Andersen,

1974). The study of this relationship has a long history in health and medical geography

and health services research. As noted by Hunter et al. (1986), Jarvis’ study from the mid

19th century considered the effects of distance on admissions to mental health hospitals.

Jarvis noted that the number of people from a given area admitted to a mental hospital

declined with increasing distance from the hospital, postulating that this effect was not due

to an abundance of people with mental health problems near the facilities. These ideas gave

rise to Jarvis’ Law, that health care utilization decreases with increasing distance from the

location of the service. Additionally, the previously mentioned Roemer’s Law was delivered

in the late 1950s, defining the relationship between hospital bed availability and hospital

utilization. Although only two are mentioned here, each demonstrate historical attempts by

researchers to understand how access-related factors affect health services use.

More recent research has provided contrary or inconclusive findings in regards to the

direct relationship between access and utilization (e.g., Goodman et al., 1997; Wright and

Ricketts III, 2010). As the understanding of spatial structure and spatial processes in health

services research has progressed, shortcomings of previous research are exposed. However,

in spite of improved knowledge and methodological capabilities, the intertwined spatial and

aspatial components of access and utilization make characterizations of this relationship

extremely difficult. In addition, factors such as clinical practice variation among areas

(Wennberg, 2005) and supply-induced demand complicate research efforts. Hence, few stud-

ies have linked access and utilization together in a comprehensive and coherent framework

acknowledging the spatial and aspatial components of each. As a result, simply stated, cur-

rent health services research lacks a clear understanding of how access affects the volume of

utilization nor how it affects where people seek care.
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The primary goal of this research is to provide a more complete understanding of how

access to hospitals impacts hospital utilization. However, given the complexity of this issue,

the research approach adopted in this dissertation addresses not only the nature of the

relationship between access and utilization, but also methodological and theoretical issues

related to the study of this relationship. I explore access and utilization of hospitals in

Michigan, a health care system that has been under CON regulation for 40 years. Michigan

serves as an excellent case study for this work due to 1) a physical landscape with two

separate peninsulas that complicate traditional distance measurements, 2) a large variation

in regional population density (both urban and rural areas) and hospital availability, allowing

for access and utilization to be examined over a wide range of settings, and 3) an overall

system of hospitals that have been, historically, relatively stable due to CON regulation.

Michigan implemented a CON program in 1972, thus it is one of the longest-tenured,

currently active programs in the US (Finn, 2007). As part of its overall CON program,

Michigan regulates the availability of hospital beds such that any hospital wanting to add

licensed beds to their facility, relocate their existing facility (more than 2 miles from the

existing facility), or construct a new facility must file a CON application and demonstrate a

population need for the additional beds (Michigan Department of Community Health, 2009).

The state implements a bed need methodology to predict future population demand for acute

care hospital beds (Langley et al., 2010), thus providing hospitals the necessary information

for CON applications. In addition, Michigan identifies regions in the state with limited

geographic access to acute care hospitals (Messina et al., 2006), providing little resistance

for hospitals or hospital systems expanding into these regions (Michigan Department of

Community Health, 2009).

Many of the ideas that ultimately led to this research were formed, in part, while at-

tending various meetings with members of Michigan’s Department of Community Health;

the Michigan CON Commission; and academics formerly involved with Michigan’s CON

program. However, the experience of working in a scientific advisory role for the most recent
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hospital bed CON Committee proved to be the most influential. This committee included

various stakeholders from Michigan’s hospitals, hospital systems, and insurance companies

who were assembled to review the state’s hospital bed standards in the spring of 2011.

Throughout six months of meetings, the need for information that would inform not only

health services researchers, but also health care providers and policy makers became appar-

ent. The most obvious need was for a better understanding of the spatial aspects of health

care access and utilization, especially as they relate to health care policy. Paul-Shaheen

and Carpenter (1982) noted: there are no purely technical answers in health policy ; hence,

this dissertation not only explores issues related to health services, but also acknowledges

the intertwined nature of health research, policy, and regulation, and has aimed to provide

original, robust, and useable findings.

The triangle of human ecology provides a useful conceptual framework for the study of

overall population health (see Figure 1(A), Meade and Emch, 2010). The state of health,

found in the center of the triangle, is influenced by population, habitat, and behavior and

interactions among these characteristics. Each of these broad characteristics comprise three

sub-characteristics. In Figure 1(B), the portion of the triangle explored in this research is

illustrated. In this framework, hospital utilization is considered a behavior, not a health

outcome or description of the state of health. Because hospitalization is used in an attempt

to restore health in cases of illness or injury, a state of comprimised health can be assumed.

However, because the health outcomes associated with hospitalization are not assessed within

this work, considering hospital utilization as a state of health is not justified. To explore the

spatial aspects of meta-relationship between access and hospital utilization, characteristics

of the population and their built habitat are considered, most notably the interaction among

population location, the transportation infrastructure, and hospital location.

The overall research project includes three sequential studies in which I explore spatial

accessibility characterization, health care utilization patterns, and the relationship between

the access and utilization. The specific outcomes of these studies are 1) the development
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of a system for measuring distance and travel time among locations, 2) a methodology for

comparing and clustering observations based on utilization patterns and location, and 3) an

assessment of the relationship between access and utilization of hospital services. Because the

measurement of both access and utilization patterns are heavily dependent upon the ability

to accurately characterize and measure distance and spatial relationships, studies 1 and 2

focus on methodological problems regarding the characterization of location, distance, and

spatial patterns in health services research. The final study uses this knowledge to explore

the relationship between access to hospitals and hospital utilization in Michigan. Figure 2

shows the interconnected nature of these studies as they pertain to the overall research goal.

Because each study was submitted independently for publication, they all contain the

sections (e.g., Abstract, Introduction, Conclusions, etc.) required for submission. In this

dissertation, each study is presented as an individual chapter with its original formatting

intact. These chapters are written in the first-person plural point of view. While I conceived

and performed the research and drafted the resulting manuscripts, my committee provided

helpful guidance throughout the research process and manuscript preparation, thus they

were included as co-authors of the submitted versions.

In the following paragraphs, I provide a short summary of the background and aims

of each individual study. Then, each study is presented as a stand-alone chapter. In the

Conclusions, the work is synthesized within the framework of assessing access and utilization

within a health care system regulated by a CON program. The outcomes provide insights

that inform future health services research, while also offering guidance for future public

policy initiatives.

Study 1: Measuring geographic access to health care: raster and network-

based methods. Traditional measures of geographic accessibility to services have been

replaced with more elaborate gravity-based metrics that incorporate the distance, supply,

and potential demand (Ngui and Apparicio, 2011), thus integrating accessibility and avail-

ability into one comprehensive measure (e.g., the 2 Step Floating Catchment Area (2SFCA),

7



Study 2

Clustering
method

Study 3Inference from
coefficients

Stability of
Coefficients

(MAUP)

U = β1Av + β2Ins + β3X 

Spatial access

Aspatial access

Other
Determinants
of utilization

Utilization
Volume

Utilization
patterns

Study 1
Distance

measurement

Figure 2: Research design

8



Luo and Wang, 2003). Because these metrics are calculated with limited or no actual uti-

lization data, they rely heavily on accurate measures of distance among locations. Past

studies have regularly measured distance using a straight line (Euclidean), not accounting

for true connectivity or travel impedances between locations (Jones et al., 2010; Martin

et al., 2002). More recently, advances in data availability and processing capability have

provided researchers the ability to incorporate both road connectivity (road distance) and

travel speed (travel time) in their characterizations of distance. Although these measures are

generally accepted to be more accurate representations of the friction of distance or travel

burden between locations (see Pedigo and Odoi, 2010; Shahid et al., 2009), there remains

uncertainty regarding their implementation. Most importantly, because speed limits are

often not included in roads data, travel speed must be estimated based on available road

attribute data. Concurrently, both raster and vector-based (network) methods are available

to for researchers to calculate travel time and distance along a road network.

This study compares raster and network-based methods of calculating travel time be-

tween locations. The specific case study focuses on the identification of regions with limited

geographic accessibility to Michigan’s hospitals. I develop a speed limit classification system

based on road attribute data and explore its robustness by comparing network travel time

estimates with those from Google Maps. Thirty minute travel time buffers (service areas)

are constructed around each Michigan hospital using both raster and network-based meth-

ods. Underserved areas are identified as those falling outside of the travel time buffers. To

understand each method’s sensitivity to speed limit settings, the speed limit classifications

are modified and changes in the resulting underserved areas are compared.

Study 2: Regional health care planning: a methodology to cluster facilities

using community utilization patterns. In health services research, the methods used

to create small (geographic) areas has been given little attention (Shwartz et al., 2001).

Small areas are constructed by combining disaggregated population units based on some

level of shared similarity among units. Wennberg and Gittelsohn (1973) offered a method
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to create hospital service areas by aggregating population units to a single facility (or two

near-by facilities) based on a simple plurality rule of utilization, noting that over 85% of care

was delivered by hospitals within the service area boundaries. However, this method often

requires manual adjustment to ensure contiguity (e.g., Klauss et al., 2005) and is problematic

in urban areas where service use is distributed similarly to many near-by facilities (Thomas

et al., 1981). Another set of methods, based on distance from each facility (e.g., Garnick et al.,

1987; Schuurman et al., 2006), rely heavily upon the assumption that bypass of the nearest

facility will be minimal. Although these approaches have scientific merit, they assume that

each population unit should be tied to a specific hospital (or set of hospitals). Additionally,

by ignoring where the rest of the population seeks care, they do not account for the overall

patient utilization patterns and are, thus, incomplete in their comparison.

I provide a methodology to cluster observations based on their overall utilization pat-

terns and geographic location. Specifically, this methodology is used to group Michigan’s

acute care hospitals into “Hospital Groups.” The limitations in Michigan’s current method

to group hospitals (Thomas et al., 1981) are identified, emphasizing the importance for a

methodology that emphasizes overall patterns of utilization, not hospital-based competition.

Along with the clustering methodology, I supply a heuristic that assists in determining the

appropriate number of clusters in the data, a common difficulty in clustering applications

(Jain, 2010). Although the specific case study proposed focuses on grouping hospitals, the

theoretical underpinnings are such that the methodology can be used to group any set of

spatial observations with multiple attributes. Importantly, it can be used to create health

service areas while addressing limitations found in the plurality and distance-based methods.

Study 3: Do more hospital beds lead to higher hospitalization rates? A

spatial examination of Roemer’s Law. Roemer’s Law defines a positive relationship

between the availability of hospital beds and the use of hospital services. Past research has

provided support for Roemer’s Law (e.g., Ginsburg and Koretz, 1983; Harris, 1975; Kroneman

and Siegers, 2004; Pasley et al., 1995; Shwartz et al., 2011; Wennberg, 2005); however,
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other studies have found conflicting results (e.g., Alexander et al., 1999; Rohrer, 1990; van

Doorslaer and van Vliet, 1989) or inconclusive results (e.g., Clark, 1990). The intertwined

relationships among population health, access, use of health care services, and outcomes

provide a number of research dilemmas, both theoretically and methodologically. Perhaps,

the most difficult is defining and characterizing the availability of hospital beds. Although

counting the number of beds in a hospital is trivial, measuring the overall availability of those

beds to a population is a much more complex task related to distance, demand, and access-

related factors. Unsophisticated measures of hospital bed availability, such as container-

based methods or simple distance measures (Joseph and Phillips, 1984; Guagliardo, 2004),

ignore the multifaceted nature of access and the spatial and geographic nature of health care

service use. Others have noted that the observed effects of Roemer’s Law may be due to

oversimplified methods used to assign hospital beds to regions (Folland and Stano, 1990).

In addition, statistical methods that do not incorporate spatial structure in the relationship

between availability and utilization are at risk of being biased due to the effects of spatial

autocorrelation.

This study explores the relationship between access and utilization of hospital services

using an ecological research design that integrates individual behavioral models of health

care utilization in an explicitly spatial context. I characterize both the spatial and aspa-

tial components of access while also controlling for other determinants of hospitalization

throughout my theoretical and applied models. As a result, the effects of Roemer’s Law can

be identified and quantified. The ecological study design implemented in this study neces-

sitates that the relationship between access and utilization be explored at varying scales of

analysis to examine the effects of the Modifiable Areal Unit Problem (MAUP) (Openshaw,

1984; Fotheringham and Wong, 1991). Therefore, I explore the stability of the relationship

by performing the analysis at numerous levels of data aggregation.
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Measuring geographic access to health care: raster and

network-based methods

2.1 Abstract

Background: Inequalities in geographic access to health care result from the configura-

tion of facilities, population distribution, and the transportation infrastructure. In recent

accessibility studies, the traditional distance measure (Euclidean) has been replaced with

more plausible measures such as travel distance or time. Both network and raster-based

methods are often utilized for estimating travel time in a Geographic Information System.

Therefore, exploring the differences in the underlying data models and associated methods

and their impact on geographic accessibility estimates is warranted. Methods: We examine

the assumptions present in population-based travel time models. Conceptual and practical

differences between raster and network data models are reviewed, along with methodolog-

ical implications for service area estimates. Our case study investigates Limited Access

Areas defined by Michigan’s Certificate of Need (CON) Program. Geographic accessibility

is calculated by identifying the number of people residing more than 30 minutes from an

acute care hospital. Both network and raster-based methods are implemented and their

results are compared. We also examine sensitivity to changes in travel speed settings and

population assignment. Results: In both methods, the areas identified as having limited

accessibility were similar in their location, configuration, and shape. However, the number

of people identified as having limited accessibility varied substantially between methods.

Over all permutations, the raster-based method identified more area and people with lim-

ited accessibility. The raster-based method was more sensitive to travel speed settings, while

the network-based method was more sensitive to the specific population assignment method

employed in Michigan. Conclusions: Differences between the underlying data models help

Submission information: Submitted to the International Journal of Health Geo-
graphics on January 13, 2012. Accepted on April 10, 2012. Published on May 15, 2012:
Volume 11, Issue 15. Authors on manuscript: Paul L. Delamater, Joseph P. Messina, Ash-
ton M. Shortridge, Sue C Grady.
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to explain the variation in results between raster and network-based methods. Considering

that the choice of data model/method may substantially alter the outcomes of a geographic

accessibility analysis, we advise researchers to use caution in model selection. For policy, we

recommend that Michigan adopt the network-based method or reevaluate the travel speed

assignment rule in the raster-based method. Additionally, we recommend that the state

revisit the population assignment method. Keywords: Health care access, geographic ac-

cessibility, limited access areas, underserved populations, health services.

2.2 Background

Disparities in the geographic accessibility of health care services arise due to the manner

in which people and facilities are arranged spatially. Specifically, health care services are

provided at a finite number of fixed locations, yet they serve populations that are continu-

ously and unevenly distributed throughout a region (Joseph and Phillips, 1984). Although

inequalities in accessibility are inevitable due to this configuration, the extent to which they

manifest is a product of the unique spatial arrangement of the health care delivery system,

the location and distribution of the population within a region, and the characteristics of

the transportation infrastructure. Of particular concern are scenarios that result in large

distances between people and health care facilities. These populations experience greater

difficulty in gaining access due to increased travel times, often coupled with poor trans-

portation infrastructure and a lack of public transportation options (Arcury et al., 2005).

The spatial or geographic dimensions of access have received considerable attention from

planners and researchers for many years (Cromley and McLafferty, 2002). Referred to as

spatial accessibility (Guagliardo, 2004), the spatial dimensions of access include accessibility

and availability of services. Accessibility (or geographic accessibility) is a measure of the

“friction of distance” or “burden of travel” between locations, whereas availability generally

measures the number of services in comparison to the number of potential users of the service.

Identifying areas with limited spatial accessibility of health care services allows planners to
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understand the effects of opening, closing, or relocating health care facilities or modifying

the services offered by existing facilities (McGuirk and Porell, 1984). Thus, accurate and

detailed representations of spatial accessibility are imperative to describe and understand

the overall access picture.

Changing technology and the availability of detailed spatial data have allowed for the

representation of geographic accessibility in a GIS to more closely resemble the real-world

phenomena of travel. Early studies acknowledged that the travel costs among locations were

more complex than those provided by straight-line (Euclidean) distance measures (see Shan-

non et al., 1973), yet this particular representation of geographic accessibility has been the

most widely used in past health services research (McLafferty, 2003). Although Euclidean

distance has shown to be correlated with travel time (Apparicio et al., 2008; Haynes et al.,

2006; Phibbs and Luft, 1995), it does not incorporate topological structures or the trans-

portation infrastructure (Jones et al., 2010), both of which are likely to influence travel travel

time. As computational power and data collection/storage capabilities have improved, more

detailed representations of geographic accessibility have emerged, incorporating the trans-

portation infrastructure (e.g., roads → travel distance), travel impedance (e.g., speed limits

→ travel time), and various modes of travel (public transportation → travel time).

The flexibility provided by GIS allows for multiple data representations of the same real-

world phenomena. Specifically, travel costs can be represented using a field-based model

(raster) or an object-based model (vector). The vector data model can also be extended to

incorporate network or graph features and is referred to as a “network” data model. Whereas

a raster vs. vector debate in regards to spatial data representation and analysis in GIS has

been present for many years in the GIS and Geography literature (see Couclelis, 1992; van

Bemmelen et al., 1993; Goodchild et al., 2007), the issues have not been fully explored in

health services research. Considering the importance placed on the role of distance and travel

in health care accessibility studies, we believe that an examination of the data models and

methods is warranted. Thus, the purpose of this paper is to compare geographic accessibility
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measured as travel time using both raster and network (vector) based models of spatial

data representation. We aim to illuminate both the conceptual and practical differences

between models and their methodological implications in measuring geographic accessibility.

Specifically, we address the following questions over the course of this manuscript:

• What are the basic assumptions when constructing a conceptual model of travel?

• What are the specific abstractions in the raster and network representational models

of travel in a GIS?

• What are the similarities and differences in results between data models?

• How do the underlying differences in data models affect the results?

The manuscript is organized as follows. First, we offer a short review of access and

geographic accessibility. Next, the spatial data models and methods used to calculate travel

costs are summarized. In the following section, we describe our case study and report on

the specific data and methods used in analysis. Next, we report our results and discuss

the similarities and differences between methods. Lastly, we discuss the implications of our

findings for measuring geographic accessibility.

2.2.1 Access and geographic accessibility

Access to health care is a multifaceted and complex concept, dependent upon the character-

istics of both the population in need of services and the health care delivery system (Aday

and Andersen, 1974). Penchansky and Thomas (1981) identified five distinct dimensions of

access which were classified by Khan (1992) into spatial components (accessibility and avail-

ability) and aspatial components (affordability, accommodation, and acceptability). Access

to health care can also be classified into potential and realized delivery of services (Aday

and Andersen, 1974; Joseph and Phillips, 1984) based on whether actual utilization data of

the services is incorporated (realized) or based solely on the characteristics of the services

offered (potential).
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In recent health service research, distance is commonly measured as vehicular travel

time over a road network calculated in GIS (Higgs, 2004). However, other measures such

as travel distance or Euclidean distance are also regularly used (Higgs, 2009; McLafferty,

2003). By incorporating real-world connectivity provided by the road infrastructure, travel

distance offers a more accurate characterization of the distance among locations compared to

Euclidean distance. Yet, travel distance does not recognize the variations in travel impedance

(speed limits or travel speeds) often found between rural and urban environments. Although

Euclidean and travel distance are computationally less expensive and require fewer inputs,

respectively, recent improvements in spatial data processing capabilities and drive distance

analysis allow for vehicular travel time to be modeled more easily in a GIS (Jones et al.,

2010). We acknowledge that travel time estimates offer the most accurate representation of

the cost of travel for measuring geographic accessibility based on a number of recent studies

in health services research discussing the subject (see Apparicio et al., 2008; Martin et al.,

2002; Pedigo and Odoi, 2010; Shahid et al., 2009).

A number of assumptions regarding real world phenomena are required prior to spatial

representation and modeling. In the case of forming a conceptual for model travel time,

the initial assumption is that the unique and personal experience of travel among locations

can be sufficiently characterized and estimated using spatial data and models. Rather than

attempting to isolate and discuss all the factors influencing travel time, we instead point

out the general assumptions present in many geographic accessibility models constructed

for population-based studies. First, the models assume that each person in the population

has similar driving characteristics and comparable vehicles. Another assumption is that

each person experiences the same travel conditions, therefore variation in factors influencing

travel time such as the day, time of day, local traffic patterns, and weather are held constant.

The models also assume that all people possess knowledge of and choose to travel along the

shortest path between locations. Increased availability of desktop and internet-based trip

planners has likely diminished the overall impact of this assumption, yet it remains salient in
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travel time models. Finally, due to limitations in data availability and data processing capa-

bilities, the location of a population is often assigned to a single point location. Therefore,

the travel time estimates originating from this location are assumed to be a reliable proxy for

the travel time experienced by each member of the population. Although these assumptions

hide significant variability, they are necessary when conducting population-based studies due

to the unpredictability of potential factors influencing travel (Witlox, 2007) and the lack of

individually georeferenced data. Hence, GIS-based travel time estimates should aim only to

capture the average situation encountered, a suitable metric for most accessibility studies

(Haynes et al., 2006).

2.2.2 Data models

The differences between raster and network data models have been extensively documented

in many GIS textbooks and research papers (e.g, Longley et al., 2010). Although the con-

ceptual models of space, input data formats, and computational algorithms employed in

processing these data differ, the basic premise behind the calculation of travel time is quite

similar for both. Travel time is modeled as a function of distance and travel speed and can

be conceptualized as the cost of movement. A number of data products based on cost of

movement can be calculated using a GIS. However, due to their importance in assessing

geographic access, we focus our discussion on a minimum cost path between locations and

a catchment or service area corresponding to a point location. In the following paragraphs,

the data formats and corresponding cost of movement concepts are summarized for both the

network and raster models.

The basic network data model comprises a series of nodes (points) that are connected

by edges (lines). Because the nodes and edges are the sole geometric features defined in the

data model, any place not falling on the network is essentially “undefined” or empty space.

Therefore, location and movement within the network data model are confined solely to the

edges and nodes (see Figure 3(A)).

In the representational model of travel time, the cost to traverse an edge is defined by
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Figure 3: A) Network data model and B) Cost example

the edge length and its associated travel speed. Additionally, the network data model can

be augmented to include a penalty for a directional change at a node (i.e., a time penalty

or turn delay when making a turn at an intersection). In this case, movement through a

node is assigned an angular direction, relative to the original direction of travel, and the

corresponding delay for that directional change is applied. An example of travel within a

network model is detailed in Figure 3(B), showing travel from Node A to Node D in a simple

network. The travel time (TAD) for the trip can be calculated such that

TAD =
dAE
SAE

+
dED
SED

+ PR (1)

using edge distance A-E (dAE), edge distance E-D (dED), travel speed of edge A-E (SAE),

travel speed of edge E-D (SED), and the turn delay for making a 90◦ right hand turn at

Node E (PR).

Many recent studies of health service accessibility have utilized the network data model

for calculating travel time estimates (Dai, 2010; Pedigo and Odoi, 2010; Schuurman et al.,
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2010; Wan et al., 2011). The network data model is appealing for representing vehicular travel

time or distance considering that road segments (edges) are connected at road intersections

(nodes), upholding real-world connectivity among locations. Results of path calculations are

likely to be very similar to those experienced in the real world due to the similarities between

the data model structure and the true travel environment (Kwan and Hong, 1998). Because

areal features are not defined in the network data model, service area calculation requires

that edges (lines) must be converted to a polygon representation. The polygon represents the

areal extent of the edges within the service area, but requires an approximation of undefined

space in the original data model.

The raster data model is composed of a series of regularly sized and spaced cells (or

pixels). Cells are arranged in a lattice with explicit spatial boundaries, thus all locations

within the boundaries of the lattice are represented by their 2 dimensional coordinate loca-

tion. In this data model, travel occurs through cell to cell movement wherein a specific cost

is designated for each cell, representing the time required to traverse the cell.

In most GIS software packages, movement occurs in only cardinal directions (Rook’s case)

or in both cardinal and diagonal directions (Queen’s case, see Figure 4(A)). However, other

software packages offer more flexible options such as Knight’s case movement (Lopez-Quilez

and Munoz, 2009). Travel time is calculated using the cell dimensions and travel speed

assigned to the cell. Unlike the network model, the length of individual steps in a route is

based on the cell resolution of the data and thus, constant throughout the entire raster grid.

Figure 4(B) contains a graphic representation of possible travel routes between cell A and

cell D in the raster model. In this case, the journey can be accomplished by taking a similar

route as shown in Figure 3(B) whereas the route goes from cell A to cell E to cell D. Travel

time (TAD) for this route would be calculated such that

TAD =

(
d
2
SA

+
d
2
SE

)
+

(
d
2
SE

+
d
2
SD

)
(2)

where d is the distance between cell centers, which is equal to cell resolution, and travel speed
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Figure 4: A) Raster data model and B) Cost example

(Si) is defined for each cell. Division by 2 occurs for each step in the movement because half

of each cell is traversed with each step. In this case, to travel from Point A to Point E, half

of d is traversed at 45 mph and half is at 25 mph. The journey can also be completed by

taking the diagonal, direct route between the two points such that

TAD =

√
2

2
∗ d

SA
+

√
2

2
∗ d

SD
(3)

where the increase in distance traveled for the step is accounted for by using the Pythagorean

theorem to adjust the distance term.

The raster data model has been used to calculate travel time in health service accessibility

studies (see Martin et al., 2002; Messina et al., 2006; Ray and Ebener, 2008; Tanser et al.,

2006). Because all locations are explicitly defined in the raster data model, it is attractive

for creating service areas, especially in regions without an all-encompassing transportation

network (Tanser et al., 2006).

Roads data are generally available as vector features and must be converted to a raster
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Figure 5: Conversion of vector road data to raster cells. The original roads (black lines
on left) are converted to a cell-based representation with large cell sizes (middle), resulting
in an overconnected travel grid. Smaller cells (right) improve the topological structure of
the travel grid. However, the two roads are still erroneously connected in this scenario.

representation. This process requires specification of a cell resolution. The abstraction

process necessitates decision rules for assigning a travel speed to cells in which multiple

roads (with varying speed limits) fall inside the cell bounds and/or cells in which no roads

are present. When the vector roads data are converted to cells, the roads cease to exist as

unique and individual entities (e.g., highways, surface streets, ramps, etc.) and become a

surface of travel speeds (see Figure 5). In the raster data model, the strict topology that

governs real world travel along roads is replaced by predefined directional movement among

cells. Thus, in routing applications, the raster data model has the potential to produce

unexpected results (Sander et al., 2010; Upchurch et al., 2004). Furthermore, travel time

estimates may be either overestimated or underestimated depending upon the geometric

complexity of the road network and the cell resolution.

2.3 Case study

Our case study explores the geographic accessibility of hospitals in Michigan. The Michigan

Department of Community Health (MDCH) identifies Limited Access Areas (LAA) as a

part of the state’s Certificate of Need (CON) program, thus offering a formal definition of
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areas with limited geographic accessibility with which to compare methods. The state also

serves as an excellent study area to conduct a travel time analysis due to a unique physical

geography (two separate peninsulas with irregular shorelines) and highly variable mix of

urban and rural regions (Martin et al., 2002).

As defined by statute (Michigan Department of Community Health, 2009), an LAA is

any geographic area containing a population of 50,000 that is more than a 30 minute drive

time (utilizing the slowest route available) to the nearest acute care hospital offering 24

hours/day 7 days/week emergency room services. LAA maps are used by the MDCH and

Michigan’s CON Commission to evaluate applications to construct new hospitals or branch

locations and requests to add or modify existing hospital services.

In Messina et al. (2006), the authors presented a raster-based GIS methodology used

to measure travel time to hospitals and identify underserved areas and LAAs in Michigan.

This methodology is re-implemented using updated population and health service facility

data from 2010. Underserved areas and LAAs are also identified using a network-based

travel time analysis. Both methods are tested for sensitivity to travel speed settings and

changes in the population assignment method. The results of the raster and network-based

methods are compared and implications for measuring geographic accessibility are explored.

2.4 Data and methods

2.4.1 Roads data

Both the network and raster-based methods of calculating travel time among locations

are heavily dependent upon a detailed and accurate representation of both road location

(length) and travel speed (impedance). The 2009 road network database (Michigan Ge-

ographic Framework Version 10a) was acquired from the Michigan Center for Geographic

Information (MCGI, http://www.michigan.gov/cgi). The location of each road segment is

provided along with attributes including, but not limited to: length, road name, data source,

National Functional Classification (NFC) code, Framework Classification Code (FCC), and
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legal ownership.

2.4.1.1 Speed limit classification The estimation of travel speed for each road seg-

ment, in the absence of measured travel speed data, can be accomplished most accurately

using the posted speed limit and surface material of the road segment. Speed limits define

the maximum legal travel speed, whereas surface material helps to determine realistic travel

speeds (n.b., reasonably lowered speeds on unpaved roads in rural areas). Because neither

speed limit nor road surface type are included as attributes in the MCGI roads database, we

developed a hierarchical classification system to assign estimated travel speed to each road

segment. Traditional methods of assigning travel speeds or speed limits are generally simple

classifications using only the FCC or the NFC of each road segment (see Birkmeyer et al.,

2003; Nallamothu et al., 2006; Berke and Shi, 2009). Our classification system for assigning

travel speed offers a significant advantage over traditional methods by incorporating NFC,

FCC, and road ownership into in a hierarchical decision tree, rather than relying on a single

road attribute class.

The actual speed limits of Michigan roads are based upon road classification, landuse of

surrounding areas, or average travel speed. Statutory speed limits are those set throughout

the state for a certain set of roads (i.e., 70 mph for expressways, 55 mph for state and

county roadways, and 25 mph for roads in business or residential areas), whereas modified

speed limits are assigned when roads require a speed limit below 55 mph, but above 25 mph.

National guidelines state that modified speed limits be based upon the 85th percentile speed

of all travelers during free flowing traffic and ideal weather conditions. The length of a speed

zone should be at least one half of a mile and the number of speed limit changes along a

given route should be kept minimal (Michigan Office of Highway Safety Planning).

In preliminary investigations, we found that the NFC system provided valuable infor-

mation for speed limit assignment, but should be superseded or supplemented with FCC

or road ownership. For instance, in small rural communities, road ownership better char-
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acterized observed speed limits than the NFC system, where the cutoff value for an urban

population is 5,000 people. Using only the NFC attribute, the speed limits for streets in

many small communities (rural villages and towns with populations less than 5,000) would

be mis-assigned as they are not distinguished from other rural roads. Each of the many

scenarios encountered will not be discussed in detail; however, a graphic depiction of the

complete hierarchical classification system is found in Figure 6. Development and prelimi-

nary evaluation of the classification system included personally traveling road networks in

southeast and mid-Michigan, documenting the actual speed limits.

2.4.1.2 Road hierarchy Each road was assigned a “hierarchy” value in an effort to

control traffic flow within the network data model. The MCGI roads data did not contain

attribute information describing real-world connectivity at road intersections (e.g., overpasses

and underpasses). All intersections are presumed traversable if no connectivity rules are

established, leading to an over-connected network and likely underestimation of travel times

if not accounted for. True connectivity could not be established for all roads in the state

due to the large number of intersections in the roads dataset (n > 500,000) along with a

lack of reference data. Therefore, our efforts were directed towards establishing realistic

connectivity between expressways and surface streets.

We utilized the hierarchy attribute in conjunction with a turn delay to account for

the absence of connectivity information at expressway intersections in the MCGI data. In

ArcGISTM, turn delays in a network dataset can be assigned not only by the direction of the

turn, but also by the hierarchy values of the intersecting roads. Using the FCC attribute in

the roads data, all expressways were assigned a hierarchy value of 1, all ramps (leading onto

and off of expressways) were assigned a value of 2, and all remaining roads (surface streets)

were assigned a value of 3. Considering that real-world traffic flow between expressways

and surface streets is restricted to only entrance and exit ramps connecting the two road

types, we assigned an artificially high turn delay (20 minutes) to any direct turn between
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Figure 6: Hierarchical classification system for speed limits
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expressways and surface roads (hierarchy values 1 and 3). This prevented the network solver

from choosing to make a “non-existent” turn between surface streets and expressways due

to the unrealistically high turn delay between road hierarchy values. Essentially, express-

way connectivity within the network was restricted to match actual driving conditions, thus

improving the accuracy of travel time estimates.

2.4.1.3 Network comparison Five network datasets were created and explored to

better understand how changes to the speed limit classification system (see Table 1) and the

penalties assigned for turn delays (see Table 2) affected the estimated travel times. Although

the Michigan Office of Highway Safety Planning offers guidelines for assigning road speed

limits (Michigan Office of Highway Safety Planning), we were unable to locate reference data

for comparative purposes. Furthermore, collecting enough actual travel time data to allow

for formal statistical testing was not feasible. Given these limitations, we compared travel

time estimates to results obtained from Google MapsTM. The results from Google Maps were

not considered true travel times due to the lack of methodological documentation available

and a substantial number of speed limit errors that were manually identified in their roads

data. However, because the Google Maps travel time estimates are derived from independent

source data, the comparison allowed us to assess whether the travel speeds and turn delays

of our custom built networks provided reasonable travel time estimates1 (see Wang and Xu,

2011).

A “shortest path” analysis was completed for 1618 routes covering a broad range of travel

distances (range = 0.5 - 647 miles, mean = 185.41 miles) and route types (e.g., rural, urban,

1The dominance of Google Maps in web-based mapping applications (BuiltWith Trends,
2012) does not guarantee that their roads data, travel speed data, or travel time estimates
are, in fact, accurate. However, given the large and growing number of users, we believe that
there is a low likelihood that the Google Maps source data contain a substantial amount of
significant errors.
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Table 1: Travel speeds (miles per hour, mph) used in custom-built network
datasets

Road Type N1 N2 N3 N4 N5

Expressways 70 60 60 62 65

Ramps 25 25 25 25 20

City owned, major 35 30 30 35 30

City owned, minor 25 20 20 25 20

Private 25 25 25 25 20

Minor collectors 55 55 55 45 50

Rural arterials and major collectors 55 55 55 45 50

Rural local 45 45 45 45 40

Urban, state owned arterials and major collectors 35 35 35 35 30

Urban, county owned arterials and major collectors 45 45 45 45 40

Urban, state owned local 35 35 35 35 30

Urban, county primary local 55 55 55 45 50

Urban, county local 25 25 25 25 20

Table 2: Turn delays (seconds) used in custom-built network datasets

Turn Type N1 N2 N3 N4 N5

Non-existent expressway turn 1,200 1,200 1,200 1,200 1,200

Reverse (non U-turn) 8 8 10 45 20

Left 4 5 8 30 8

Right 2 3 5 15 5

Straight (with crossroad) 1 0 2 1 1

Straight (no crossroad) 0 0 0 0 0
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Table 3: Mean difference in travel time and road distance between Google Maps
and custom-built networks in shortest path analysis

Time (minutes) Distance (miles)

Network 1 18.39 2.84

Network 2 8.29 6.41

Network 3 1.54 4.42

Network 4 2.33 3.04

Network 5 0.87 2.55

suburban)2. All networks provided reasonable travel time estimates compared to Google

Maps (see Figure 7 and Table 3). Network 5 was considered the most suitable for estimating

travel time in this application. The travel speeds specified in Network 5 are a simple 5

mph reduction of the initial speed limit values from our hierarchical classification system,

offering an objective method to account for sub-optimal driving and traffic conditions and

the presence of stop signs, traffic lights, and other mechanisms for traffic control not present

in the roads database. Additionally, the turn delays (outside of the expressway turn delay)

in Network 5 are conservative, but conventional, estimates for normal surface street turns

(Price, 2008, 2009).

2.4.2 Population and hospital data

2010 block population data and boundary files were acquired from the US Census Bureau

(http://www2.census.gov/census 2010/, http://www.census.gov/geo/www/tiger/). Michi-

gan statute requires that LAAs be identified using zip code population data, therefore the

block population data were aggregated to their corresponding Zip Code Tabulation Area

(ZCTA) boundaries (n = 978), herein referred to as zip codes. Because the census blocks

nest perfectly inside the zip code boundaries, the block population polygons were converted

to geographic centroids and spatially joined to the zip code boundary file. The population

2A custom-written automated query function was implemented in RTM. The function
sent origin and destination locations to the Google Maps API and returned the resulting
travel times and distances.
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of each zip code was calculated by summing the population of all the block centroids falling

within its boundaries. Michigan’s total population was 9,883,640 in 2010.

Location and attribute data for 169 hospitals in Michigan were acquired from the MDCH.

The hospital addresses were geocoded in ArcGIS and converted to point features. Hospital

attribute data were used to identify and subset those hospitals offering acute care and 24/7

emergency room services, resulting in 137 hospitals.

2.4.3 Raster-based method

The raster-based method used to identify LAAs is documented extensively by Messina et

al. (2006) and MDCH (Michigan Department of Community Health, 2009). Thus, it will

only be summarized here. First, roads data were converted to a raster grid of 1 km cells

wherein the travel speed for each cell was defined as speed of the slowest road falling inside

the bounds of the cell. Because each cell required a specific travel speed, cells containing no

roads were assigned 3 mph as an estimate of non-vehicular travel speed. Travel time or cost

for traversing each cell was calculated using the cell length and specific travel speed. An

accumulated cost surface was created wherein cell values represented the total travel time

from the cell to the nearest hospital location (i.e., least cost path for each cell). To identify

underserved areas, the accumulated travel time surface was reclassified into a Boolean surface

based on whether the cell was greater than 30 minutes from a hospital location. The grid

representing underserved areas was then filtered to remove any groups of less than three

contiguous cells (using Queen’s case connectivity). The filtering process was conducted in

an effort to remove single cells and very small areas where no roads were present, but were

generally “inside” the 30 minute travel bounds. Using a connectivity filter in lieu of a

“count-only” filter ensured that areas near the edges of the actual underserved areas were

not trimmed. Figure 8 shows an example of the filtering process near an underserved area in

southern Michigan. After the filtering process, the underserved areas were converted from

a raster grid to a vector data format (polygons) wherein a unique ID was assigned to each

contiguous underserved area.
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Figure 8: Example of raster filter

The population assignment method, according to Michigan’s guidelines for identifying

LAAs, requires that the entire population of a zip code be assigned to the underserved

area if any portion of the zip code polygon falls inside of the underserved area. Thus, the

underserved area polygons and zip code polygons were spatially joined in the GIS such that

each underserved area polygon was assigned the summed population of all intersecting zip

code polygons. Underserved areas with a total population of 50,000 or greater were then

classified as Limited Access Areas.

2.4.4 Network-based method

ArcGIS Network Analyst was employed for all network-based analysis. Prior to converting

the vector roads database to a network data format, each line segment was assigned a travel

time value calculated using the line segment’s length and estimated travel speed. Upon the

conversion to the network data format, travel time was specified as the cost value for edges.
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Turn delays were defined to both control traffic flow and to model expected slowdowns in

travel speed accompanying directional changes as detailed previously.

After the network was built, we created 30 minute travel time polygons for each of the

hospital locations using the “Service Area” function. Underserved areas were identified by

clipping the service area polygons from a state base map, essentially finding the inverse of the

30 minute travel areas throughout the state (see Figure 9). Population data were assigned

to each underserved polygon and the LAAs were subset using the methods detailed in the

previous section.

2.4.5 Sensitivity

To assess each method’s sensitivity to the input roads data, the preceding steps for the raster

and network methods were carried out a second time using the original speed limits of the

32



roads as opposed to the travel speeds in Network 5. In the raster-based analysis, the speed

limit of cells with no roads present were raised to 10 mph. This test was conducted in an

effort to uncover the variability in the results associated with small changes in the travel

speed settings. Although this was not a comprehensive sensitivity analysis, exploring the

difference in results due to the changes in the travel speed settings allowed us to estimate

the relative importance of the settings for each method and the overall robustness of each

data model.

We also evaluated each method for sensitivity to the scale of the data used to assign

population to underserved areas. Instead of assigning the population using the zip code

polygons, we assigned population using the US Census block centroids. In this method, a

block’s population was assigned to an underserved area only when the centroid fell within

the bounds of underserved area polygon. Then, the population of all block centroids were

summed and new LAAs were then identified using the updated population totals within the

underserved areas. The results of the population assignment by census block were compared

to the original results for both the raster and network-based methods. Considering that the

block estimates of population are closer to the “true” number of people within the under-

served areas (Apparicio et al., 2008), this comparison allowed us to evaluate which method

is more sensitive to the population assignment method specified in Michigan’s statute.

2.5 Results

2.5.1 Underserved areas

The underserved areas identified using both the raster and network-based methods are found

in Figure 10 and Table 4. Overall, the raster-based method identified more total area, zip

codes, and population as being underserved than the network method. The raster method

produced fewer unique contiguous areas than the network method. Examination of Figure

10 reveals that this result was due to larger and more contiguous areas in the raster output.

The most notable difference between methods is the total population identified as being
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Table 4: Comparison of underserved areas (Percent figures reflect proportion of
state totals)

Underserved Areas Raster % Network %

Area (km2) 52,971 35 40,043 26

Number of unique areas 223 386

Number of zip codes 410 42 316 32

Total population (zip code) 2,258,452 23 1,280,257 13

underserved. Whereas the raster method reports that 23% of Michigan’s population (≈2.26

million) lives in underserved areas, the network method identified only 13% (≈1.28 million),

a difference of nearly one million people.

As Figure 10 illustrates, the underserved areas identified by both methods share similar

shapes resulting in a general agreement in the overall configuration of underserved places

throughout the state. We compared the spatial configuration of the underserved areas by

conducting an overlay analysis. The total overlapping area (the areas identified by both

methods) was 38,667 km2, comprising 71% of the total area identified by either method

(54,347 km2). The network-based results are a nearly perfect subset of the raster-based

results; only 1,376 km2 were identified uniquely by the network method. Figure 11 shows a

detailed example where each method produced both overlapping and unique results.

2.5.2 Limited Access Areas

The results of the LAA identification are found in Figure 12 and Table 5. Again, the raster

method produced more total area, zip codes, and total population identified in LAAs. Similar

to the results of the underserved areas, the most notable difference between methods is the

total population identified. The raster-based method identified over 1.8 million people in

LAAs, whereas the network-based method identified just over 650,000, a difference of over

one million residents. Because the LAAs are a subset of the underserved areas, the spatial

configuration produced by each method are similar.
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Table 5: Comparison of Limited Access Areas. % figures reflect proportion of state
totals

Limited Access Areas Raster % Network %

Area (km2) 49,080 32 34,634 23

Number of unique areas 15 6

Number of zip codes 328 33 199 20

Total population (zip code) 1,830,028 19 654,755 7
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2.5.3 Sensitivity

2.5.3.1 Speed limits The results for underserved areas and LAAs, using both the net-

work and raster-based methods, are presented in Table 6. The table contains the initial

areas identified and the areas identified using the actual speed limit values of the input

roads data (+5 mph). Interestingly, the network-based method identified more people as

being underserved, whereas the raster-based method identified more once the LAA criteria

of 50,000 people was applied to the underserved areas.

2.5.3.2 Population representation Table 7 displays the number of people in under-

served areas and LAAs when the population is assigned using the US Census block centroids.

In both the raster and network-based methods, the use of a less aggregated population data

source identifies far fewer people as being underserved within the state. A new set of LAAs

were identified using the original 50,000 population criteria, but with population assigned
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Table 6: Comparison of underserved areas and LAAs identified with speed limits
assigned to roads. % change reflects change compared to initial travel speed settings.

Underserved Areas Raster % change Network % change

Area (km2) 37,945 -28 31,815 -21

Number of unique areas 61 -73 390 1

Number of zip codes 238 -42 255 -19

Total population (zip code) 856,150 -62 1,000,612 -22

Limited Access Areas Raster % change Network % change

Area (km2) 35,404 -28 19,343 -44

Number of unique areas 6 -60 3 -50

Number of zip codes 194 -41 117 -41

Total population (zip code) 694,562 -62 333,290 -49

Table 7: Comparison of results from block centroid population assignment method
with original travel speed settings. % change reflects change compared to zip code
intersection method.

Block centroid Raster % change Network % change

Underserved population 489,588 -78 191,420 -85

Limited access population 288,118 -84 0 -100

using the block population in lieu of the zip code populations. Figure 13 shows the resulting

LAAs. Only three LAAs were identified using the raster-based method and no underserved

area met the population criteria using the network-based method, although two areas nearly

met the criteria with populations of 45,786 and 47,849.

2.6 Discussion

The results of the analysis show that large areas in Michigan are outside of a 30 minute travel

time from an acute care hospital and thus have limited geographic accessibility, regardless

of which data model is employed. Using the state’s current methods, we found that over 2.2

million residents would be considered underserved and over 1.8 million residents would be

classified as having limited access. The network-based method identifies fewer total residents
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Figure 13: Limited Access Areas with block population assignment method

as underserved (≈1.28 million) and as having limited access (≈650,000). The results are less

dramatic after “raising” the speed limits of the input roads data by 5 mph. However, both

the raster and network-based methods identified large numbers of underserved and limited

access populations in this scenario. Modifying the population assignment method resulted

in far fewer people as both underserved and having limited access using both methods.

Notably, the network-based method in conjunction with the block population assignment

did not identify any official LAAs, although nearly 200,000 would be considered underserved

in this scenario and two underserved areas nearly meet the 50,000 person LAA threshold.

The general location of the underserved areas and LAAs are similar between raster and

network-based methods. Much of the underserved area is found in sparsely populated regions

in Michigan’s Upper Peninsula and northern Lower Peninsula. However, both methods

identified small areas in the more populated central and southern Lower Peninsula. These

smaller underserved areas are located in rural regions between urban centers. The raster-
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based method identified larger, more contiguous underserved areas, thus more were classified

as being LAAs.

In both the network and raster data models, the cost to travel among locations is based

on the distance separating places and travel speed. Given these meta-parameters, the 71%

agreement in total area identified as underserved is not completely surprising. However,

in all of the tests performed in this analysis, the raster-based method identified more total

area as underserved and as LAAs in comparison to the network-based method, warranting

further examination. Figures 10 and 12 show that both methods identified similar patterns

of underserved areas and LAAs throughout the state, however the raster method’s results

are universally larger. These results appear to be due to the underlying difference in the

data models and the abstraction process occurring when converting the vector road data

to a raster representation. The differences in the data models’ characterization of space

are worth reinforcing such that they directly influence geographic accessibility measurement.

The raster data model defines space as a continuous surface where each cell within the

data extent has a specific location and attribute value. The network data model defines

space as an empty container that is populated only by features having specific locations and

attributes. In the following paragraphs, we explore these differences and their implications

for conducting geographic accessibility studies.

Given the structural constraints of the raster data model, accessibility calculation neces-

sitates converting the vector road data to a cell-based representation. The conversion process

requires a decision rule for assigning the speed limit to a cell when multiple roads are present

within the cell bounds. Although a number of decision rules exist (e.g., the highest travel

speed or the mean travel speed of roads within the cell), each increases the uncertainty of

travel time estimates in the raster method. In the case study, because Michigan statute

requires that the speed limit of the cell be determined by the slowest route available, only

a small percentage of cells are assigned to the higher speed categories (i.e., highways and

expressways) due to the presence of nearby slower roads. This results in a general overesti-
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Table 8: Michigan roads by travel speed

Travel Speed (mph) Network % Raster % Difference

20 30.78 38.92 8.14

30 5.99 0.36 -5.63

40 40.75 49.33 8.58

50 19.73 11.20 -8.53

65 2.76 0.19 -2.57

mation of the time required to travel among locations. Figure 14 contains an example that

illustrates the dilemma produced by the abstraction process. In the example, an expressway

traversing a medium-sized town nearly disappears after the conversion to the raster data

format. Although Figure 14 shows a very specific example, the impact of this decision rule

in the conversion process is not trivial when summed over the entire state. Table 8 contains

the proportions of the roads in each travel speed class in the original vector format (based on

road length) and after conversion to the raster format (based on cell counts). Notably, the

raster format contains a higher proportion of roads in the 20 and 40 mph classes and less in

the rest of the travel speed classes. As Figure 14 illustrates, this clearly inhibits high-speed

travel. The result of slower travel speeds is an overestimation of travel time among locations

and an increased amount of area identified as being underserved. As Table 4 shows, the

raster-based method identified nearly 13,000 km2 more total area as being underserved than

the network-based method. In addition, the raster-based underserved areas were larger on

average than the network-based areas (237.54 km2 vs. 103.74 km2). Larger contiguous un-

derserved areas increase the probability that the 50,000 population threshold will be reached

for LAA classification. Hence, the raster-based method identified nearly 1.2 million more

people in LAAs than the network-based method.

All areas of the state should be accounted for in the LAA identification process (Messina

et al., 2006). This creates a conundrum- LAAs are conceptually based upon vehicular travel

time, yet some places in the state do not have any roads present. In the raster data model, all
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Figure 14: Conversion of vector roads data to raster data format with slowest
route rule

locations within the data extent are explicitly defined and measurable. Hence, to be included

in the service area estimation, each cell must be assigned a specific travel speed even if no

roads are present within the cell. The network model does not define “space” outside of the

network features (i.e., places not located on a node or edge feature). Therefore, non-road

areas are undefined and not directly measured in service area calculation. Because the two

data models diverge greatly in their characterization of space without roads, each method

requires specific techniques to account for the presence of non-road areas when identifying

geographic service areas based on vehicular travel time estimates.

In the raster method, non-road cells are not distinguished from cells with roads. There-

fore, by assigning an artificially low travel speed value to non-road cells (e.g., walking speed),

vehicular-based travel time estimates originating at these cells will be artificially high. Re-

gions near the origin of the service area will be less affected than those located towards the

periphery of the serve area extent. For example, the travel time to exit a 1 km non-road cell
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with a travel speed of 3 mph is 6.21 minutes. When a specific threshold value for a service

area is implemented, the higher travel time estimates for non-road cells result in regions or

cells identified as “non-served” areas even though they fall within the extent of the larger

service area (see Figure 8). When combined with the conservative population assignment

method employed by Michigan, the non-road cells have the potential to significantly bias

the results of the analysis. Therefore, we implemented the filter process to limit the number

of non-road cells identified as underserved. As observed in the results of the speed limit

sensitivity analysis, the raster-based method is much more sensitive to changes in the input

speed limits. The 5 mph increase in travel speeds led to a 28% reduction in the total area

(15,000 km2) and 62% reduction in the population (1.4 million) identified as underserved,

far outpacing the changes observed in the network-based method. Whereas some of the

raster-based method’s sensitivity can be attributed to the cell-based representation of roads

and the predefined directional movement (considering that travel occurs in large 1km steps

between cells), we believe that much of it is due to the change in speed for the non-road cells

(from 3 mph to 10 mph).

“Non-road” areas are also accounted for in the network-based method; however, this

process is not as apparent due to the output format of the data produced using ArcGIS

Network Analyst. The “Service Area” function produces polygon features which are in turn

used to clip a state base map to find non-served areas. Albeit indirectly, all areas in the

state are measured when implementing the network-based method to identify service areas.

Although this technique appears straight-forward, it is not without uncertainty. Service area

polygons constructed from the network-based data model are actually areal approximations

of the network edges (roads) within a specified travel time from the origin location. In

Network Analyst, the network edges are converted to a triangulated irregular network (TIN)

data structure with travel time estimates along the edges as the “height” value. Service

area polygons are then formed by subsetting the TIN to only those areas falling within the

specified travel time (ESRI, 2010). Figure 15 shows a service area where large regions, both
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Figure 15: Service area delineation in areas where no roads are present

inside and near the bounds, have no roads. The figure includes two detailed examples of

non-road areas to help illustrate the abstraction process of generating a polygon from a set of

lines. In the upper right example, the non-road area is nearly completely enclosed by roads

within 30 minutes, thus the entirety of the non-road area is considered “served”. In the lower

right example, the non-road area is bisected by the boundary of the service area. Specifically,

the “cut out” region in the service area appears to be a remnant of the TIN conversion and

subsetting technique. In theory, this particular boundary could be located anywhere within

the non-road area; therefore, its true location is uncertain. The uncertainty associated with

the polygon generation process raises questions regarding the validity of the service area

boundaries produced by Network Analyst. However, we did not find any evidence that this

led to a large amount of over or under-representation of underserved areas (and hence, LAAs)

in our case study.

Because the conceptual models of space differ significantly between data models, topo-
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logical relationships governing movement among locations are also highly dissimilar. In the

raster model, connectivity is defined solely by cell proximity- movement only occurs in single

step increments in predefined directions from the cell. The network data model, on the other

hand, enforces strict connectivity rules within the data structure itself; travel only occurs

along the edges of the network and directional changes can only be accomplished at nodes.

Because the actual cost of travel between locations is highly dependent upon the connectiv-

ity provided by the transportation network linking the locations, the models’ differences in

defining connectivity lead to dissimilar travel time estimates. Specifically, real-world connec-

tivity is not accounted for in the raster data model. Therefore, travel routes among locations

may be geographically warped, resulting in inaccurate travel time estimates. For example,

in Figure 14, all cells surrounding the 65 mph cell (on the right side of the map) have the

potential to “route” through this cell. However, in the original vector road data, no ramp

connects the surface streets to the expressway within this cell. Only the cell to the left and

bottom of the 65 mph cell are actually connected to this cell. Therefore, movement is less re-

stricted in the raster model than in the real-world and travel time estimates will generally be

underestimated. In our case study, we believe that the underestimation of travel speeds was

offset by the previously discussed overestimation of travel time due to the “slowest route”

assignment rule.

Reducing the cell size of the input data used in the raster-based method would result in

improved travel time estimates. Specifically, smaller cells will increase the probability of a

single road falling within each cell, negating the impact of the decision rule to assign travel

speeds to multi-road cells. In addition, as cell size is reduced, the topological similarity

between the raster travel speed surface and the original roads data increases (see Figure

5). As a result, travel time estimates would be more accurate for cells falling on or near

the road network, providing improved results in simple distance measurements and routing

applications. However, for service area identification, reducing the cell size would also lead to

an increase the number of non-road cells in the raster data. This would likely require a more
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sophisticated method to create the travel speed surface, a more elaborate filtering process

to remove these cells, or a polygon generating algorithm similar to the one employed in the

network-based method. Additionally, reducing cell size may lead to substantial increases in

processing time and data storage requirements (Upchurch et al., 2004; Schuurman et al.,

2006).

By design, the zip code population assignment rule used in Michigan is conservative

(Messina et al., 2006) in that it attempts to minimize the likelihood of source A errors (Cur-

rent and Schilling, 1990). Hence, by assigning the entire zip code population regardless of the

amount of area overlapping an underserved area, the true population with limited geographic

accessibility is almost certainly overestimated. The results from the block population assign-

ment method illustrate the magnitude of the overestimation. The percent change values in

Table 7 show that the network-based method was more sensitive to the block population

assignment method, overall. This is likely a result of the differences in the size and shape

of the underserved areas produced by each method. On average, the raster-based method

produced larger contiguous underserved areas. Due to the abstraction and filtering processes

(see Figure 8) in the raster-based method, the minimum size of an underserved area is 3

cells (3km2). The network-based method has no such size restriction. This difference has

three main implications in relation to population assignment. First, larger areas increase the

likelihood that an individual area will intersect multiple zip codes when assigning population

using the zip code intersection method, resulting in more underserved areas meeting the LAA

population criteria (See Tables 4, 5, 6, and 7). Second, unequally sized underserved areas

can be assigned the same population. For example, using the intersection method, a very

small area that falls on the border of two zip codes would be assigned the same population

as a larger area completely covering the two zip codes. However, third, larger areas increase

the likelihood that an underserved area will contain a block centroid when the population

assignment method is modified. Considering that the average size of the raster-based under-

served areas were generally larger than their network counterparts, the raster-based method
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was less affected by the change in the population assignment method.

2.7 Conclusions

We have presented a comparison of raster and network-based methods for measuring geo-

graphic access to health care facilities. Specifically, we have explored how both conceptual

and practical differences in the underlying data models have the potential to influence travel

time estimates. In Michigan, each data model and method produced underserved areas and

LAAs with similar configuration and shape, but of varying size. Specifically, the raster-based

method identified 132% more land area as underserved than the network-based method. Af-

ter assigning population to the underserved areas, the results clearly indicate that these

spatial differences resulted in substantial variation in the number of people with limited geo-

graphic accessibility to acute care hospitals. In fact, the raster-based method identified 176%

more people than the network-based method, a difference of nearly one million state-wide.

Using the 50,000 population minimum for an underserved area to be deemed an LAA, the

differences were even greater with the raster-based method identifying 142% more land area

and 279% more people in LAAs.

Because speed limit data were not available for Michigan roads, travel speeds were esti-

mated using the available road attribute data. Although we presented a detailed hierarchical

speed limit classification system, the unavailability of the true speed limits, the variability in

road surface types, and the large number of roads throughout the state make a perfect char-

acterization of travel speeds impossible. Therefore, we tested each data model for sensitivity

to changes in the travel speed settings. The method using the raster data model was more

sensitive to the input speed limits of the roads data. Specifically, a small increase in travel

speed settings produced greater changes in the resulting underserved areas and population

identified when compared to the network-based method.

Messina et al. selected the raster-based method to fulfill the requirement that all areas of

the state be measured directly while assessing geographic access in Michigan (Messina et al.,
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2006). However, we have illustrated that converting the roads data to a 1 km cell resolution

leads to a substantial loss of topological relationships due to the abstraction process. In

addition, the coarse resolution requires a decision rule to assign travel speeds to cells with

multiple roads present, resulting in a lower precision travel speed dataset. A reduction in cell

size would provide a travel speed surface more similar to the original roads data along with

better travel time estimates and more accurate routing results. Uncertainty associated with

travel speed classification systems is always present in these kinds of large, unconstrained

travel models. Future application of raster data modeled geographic access should explore

alternatives to the methods described here for assigning travel speeds to cells with multiple

roads and cells where no roads are present. Furthermore, an examination of the effects of

cell size is also warranted in future research efforts as it was not considered here.

As noted earlier, the conservative population assignment method currently employed in

Michigan likely overestimates the number of people in underserved areas (and thus in LAAs).

We implemented an alternative population assignment method using higher spatial resolution

data. Our findings suggest that the network-based method was more sensitive to the block

population data assignment method. This sensitivity is likely due to the overall smaller

underserved areas produced by the network-based method and its lack of a minimum size

filter as was employed in the raster-based method. However, this finding speaks more to the

population assignment method used by Michigan rather than the results of the travel time

analysis. Thus, we believe that the overestimation of the population with limited geographic

accessibility, regardless of whether the network or raster-based method is employed, warrants

further evaluation.

Both the network and raster data models provide a valid structure for constructing travel

time models. A definitive conclusion regarding the superiority of one or the other is unjust,

however, due to the lack of true reference data to compare each against. Therefore, we rec-

ommend that, when measuring geographic access for health-related applications, researchers

consider how the data models and associated methods employed may potentially influence
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their results. Because the raster data model defines all areas as traversable, the raster-based

method appears more suitable when estimating travel time service areas for non-vehicular

travel modes or in regions where travel is not restricted to roads. For estimating vehicular-

based travel time, we contend that the network data model provides a more accurate char-

acterization of the topology governing vehicular travel. Therefore, for this travel mode,

we believe that the network-based method is the appropriate choice to identify areas with

limited geographic access to health care services.
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Regional health care planning: a methodology to cluster

facilities using community utilization patterns

3.1 Abstract

Background: Community-based health care planning and regulation necessitates grouping

facilities and areal units into regions of similar health care use. Limited research has ex-

plored the methodologies used in creating these regions. We offer a new methodology that

clusters facilities based on community utilization patterns and geographic location. Case

study: Our case study focuses on Hospital Groups in Michigan, the allocation units used

for predicting future inpatient hospital bed demand in the state’s Bed Need Methodology.

We detail the scientific, practical, and political concerns that were considered throughout

the formulation and development of the methodology. Methods: The clustering method-

ology employs a 2-step K-means + Ward’s clustering algorithm to group hospitals. The

final number of clusters is selected using a heuristic that integrates both a statistical-based

measure of cluster fit and characteristics of the resulting Hospital Groups. Results: Using

recent hospital utilization data, the clustering methodology identifies 35 Hospital Groups in

Michigan. After extensive research, review, and discussion, the new clustering methodology

was approved by Michigan’s Certificate of Need Commission to replace the state’s previous

methodology. Conclusions: Despite being developed within the politically charged cli-

mate of Certificate of Need regulation, we provide an objective, replicable, and sustainable

methodology to create Hospital Groups. Because the methodology is built upon theoreti-

cally sound principles of clustering analysis and health care service utilization, it is suitable

for grouping either facilities or areal units. Keywords: Health care utilization, hospital

planning, certificate of need, clustering, K-means, Ward’s.
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3.2 Background

Health care planning and regulation in the United States has generally attempted to achieve

two broad goals: 1) promote public health by ensuring that the supply of services meets

the population’s need and 2) contain health care costs by regulating the supply of services

to a level congruent with the need of the population. Regulation is often enforced through

state-level Certificate of Need (CON) programs, which attempt to enable a sufficient supply

of service to meet the population’s health care needs without providing a large oversupply

or duplication of services (Ferrier et al., 2010). CON programs require that proposals for

additional health care services or facilities demonstrate an unmet need prior to approval.

Although their merits have been questioned over the past 40 years (see US Federal Trade

Commission, 2004; Rivers et al., 2007; Ferrier et al., 2010) and they are no longer federally

mandated, CON programs persist throughout the US.

A number of states implement CON programs to regulate the supply of acute care hos-

pitals, inpatient hospital beds, and hospital services (Langley et al., 2010). Considering that

the costs of hospital-based care make up a plurality of overall health care spending (Kaiser

Family Foundation, 2009), hospitals are a logical target for cost containment measures. Ad-

ditionally, Roemer’s Law (Roemer, 1961) states that a bed built is a bed filled, implying that

an oversupply of hospital beds results in more and possibly unnecessary hospitalizations and

costs.

Health care services are used by people, but are supplied by health care professionals

who deliver these services at hospitals, clinics, and other facilities. Although the demand

for hospital services can be considered an attribute of people or populations, the supply

only exists at hospitals. In addition, the areal units used to aggregate populations rarely, if

ever, contain residents who use a single health care facility (Bay and Nestman, 1984). To

enable community-based planning of health care resources, communities and/or hospitals are

grouped to form regions of similar health care use. Thus, planning occurs at a regional level

wherein the supply of health care resources available to the community are measured against
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community need. CON programs predict or evaluate the relationship between supply and

demand of hospital beds, necessitating methods or techniques for grouping both population

units and hospitals (e.g., Illinois General Assembly, 2012; New York State Department of

Health, 2012; North Carolina Department of Health and Human Services, 2012).

Very limited research emphasis has been placed on grouping or clustering hospitals based

on similarity in community utilization. Methods for clustering hospitals using multivariate

data received attention from health services researchers in the 1970s and 1980s. These

studies, however, were more focused on identifying hierarchical structure in the overall system

of hospitals or identifying similar hospitals for determining reimbursement levels (Berry Jr.,

1973; Elayat et al., 1978; Klastorin and Watts, 1981, 1982; Vertrees and Manton, 1986).

More recently, this research topic has been revived in response to changes in health care

delivery and organization (Dubbs et al., 2004; Luke, 2006; Zwanziger and Khan, 2008).

John Griffith, J. William Thomas, and colleagues explored the subject of service commu-

nities over 30 years ago (Griffith, 1972; Thomas, 1979; Thomas et al., 1981; Griffith et al.,

1981), providing a clustering methodology that groups communities and hospitals simulta-

neously. The State of Michigan adopted the Thomas methodology (Thomas et al., 1981)

for the creation of the state’s Subareas (see Figure 16), the allocation units used in Michi-

gan’s Bed Need Methodology. In 2011, Michigan’s CON Commission recommended a review

of the Thomas Methodology. When implemented with current data, the methodology did

not produce an acceptable Subarea configuration. Additionally, a number of theoretical and

practical issues were identified, raising concerns that the methodology was no longer suitable

to identify Subareas in light of the changes in hospital use and utilization patterns since its

adoption over 30 years ago.

A review of the literature provides little guidance toward alternative or improved methods

to group health care facilities. The branch of research most related to this particular problem

is the creation of small areas. Yet, the methods used to create small areas have received

little attention (Shwartz et al., 2001). Although multiple methods have been proposed
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more recently to group communities into health service regions (e.g., Goodman et al., 2003;

Shortt et al., 2005; Klauss et al., 2005), they are extensions of the straightforward, yet

unsophisticated, plurality method employed by Wennberg and the Dartmouth Atlas group

(Wennberg and Gittelsohn, 1973).

Here, we present a new clustering methodology that groups hospitals based on over-

all community utilization patterns and geographic location. The methodology is objective,

replicable, and sustainable, offering a substantial improvement over the previous methodol-

ogy. Furthermore, the methodology uses generally accepted clustering techniques and can be

easily transferred to create small areas for health service studies. The source code necessary

to replicate our clustering methodology is provided to ensure that the specific techniques we

employ are unambiguous (See Appendix B).

Our manuscript is organized as follows: First, we offer a brief overview of clustering

analysis and methods. The overview provides an introduction to a number of topics that were

considered during the development of the clustering methodology. Next, we detail our case

study and discuss the scientific, practical, and political concerns that were encountered while

reviewing the Thomas Methodology and developing the new methodology. The clustering

methodology is then provided in detail. We present the resulting hospital clusters and discuss

the implications for adopting the methodology. Finally, we explore pathways in which our

methodology can be extended for use in other health service applications.

3.2.1 Clustering

The overall objective in most clustering analyses is to assign individual observations into

natural groups or clusters. Jain (2010, p. 652) states that the operational definition of

clustering is:

Given a representation of n objects, find K groups based on a measure of simi-

larity such that the similarities between objects in the same group are high while

the similarities between objects in different groups are low.
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A large majority of clustering algorithms can be described as either hierarchical or partitional

in nature. Hierarchical algorithms use an n x n similarity matrix to recursively form nested

clusters over all possible values of K. Partitional algorithms divide observations into a user-

defined number of clusters and utilize an n x n similarity matrix or an n x m matrix of

observations, where n observations have m attributes or data dimensions.

Applied cluster analysis requires the analyst to make a number of subjective decisions.

Prior to clustering, the attributes (or variables) used to describe similarity among obser-

vations must be determined, a potentially subjective process (Klastorin and Watts, 1981).

Additionally, a large number of clustering techniques exist, creating a “user’s dilemma” in

the technique selection process (Dubes and Jain, 1976). Finally, determining the number of

clusters or groups, K, is one of the most difficult problems in cluster analysis (Steinley, 2006;

Jain, 2010). Milligan and Cooper (1987) provide a comprehensive review of clustering and

cluster analysis, offering a seven-step structure to guide the clustering process.

3.2.2 Case study

In 2011, the State of Michigan CON Commission formed a Hospital Bed Standard Advisory

Committee (HBSAC) to investigate issues related to the state’s Hospital Bed Standards

(see Michigan Department of Community Health, 2009). One charge of particular concern

was to explore the methodology used to calculate the necessary supply of hospital beds

needed to meet the state’s future population demand (Bed Need Methodology). As part of

this charge, the HBSAC formed a working group that focused on the specific methodology

employed to create Subareas, the allocation units used in the state’s Bed Need Methodology.

The HBSAC working group was composed of various stakeholders in Michigan’s health care

industry including representatives from hospitals, hospital systems, and health insurance

providers. The authors were commissioned by Michigan’s Department of Community Health

(MDCH) to provide the HBSAC with technical and scientific support throughout the process

of reviewing the Thomas Methodology and to offer alternative approaches to create Subareas

or other modifications of the Thomas methodology.
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The HBSAC working group’s initial concerns revolved around: 1) the legitimacy of the

current Subarea configuration, 2) the high frequency of single hospital Subareas in the current

configuration (32 out of 64), 3) the plausibility of re-implementing the Thomas methodology,

which includes an initial automated clustering method and a secondary step where the

results are reviewed and modified by an expert panel, and 4) the suitability of the Thomas

methodology itself, given changes in health care delivery in the 30 years since its adoption.

Despite efforts to trace the history of Michigan’s Subareas, we were unable to locate detailed

records or accounts of previous configurations. Outside of minor changes in 2002, we believe

that the Subarea configuration had not undergone significant modification since the original

formulation in the late-1970s.

Although a detailed description of the methodology is offered in Thomas et al. (1981)

and the Hospital Bed Standards Michigan Department of Community Health (2009), por-

tions of the methodology remain cryptic. A similar problem was experienced by researchers

at Michigan State University when tasked with implementing Michigan’s Bed Need Method-

ology and detailed by Langley et al. (2010). Therefore, the initial action required explicitly

defining the Thomas Methodology (see Appendix A) and running the methodology with

up-to-date population and hospital utilization data. We used the R programming language

and environment (R Development Core Team, 2011) to complete this task. We selected R

because of the statistical, graphical, and data processing capabilities it provides. Other ben-

efits of using R are that it is a multi-platform open source language, is highly customizable,

and can be augmented with a number of additional packages.

As Figure 17 illustrates, the Thomas Methodology does not provide a solution resembling
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the current Subarea configuration when implemented with recent hospitalization data3. Most

notably, only 21 Subareas were identified. The dissimilarity can most likely attributed to

changes in hospital utilization patterns that have occurred since the last time the methodol-

ogy was run. However, because the original Thomas Methodology results have been modified

by an expert panel, we cannot state this with complete certainty. In addition, we identified

theoretical and methodological issues in the current methodology that provided concern.

These included an unreliable measure of hospital similarity; poorly defined home areal units;

and subjective modification by an expert panel.

3.2.2.1 Unreliable measure of hospital similarity The Thomas Methodology clus-

ters hospitals based on overlapping home areal units, defined by patient utilization patterns

expressed using Relevance Index (RI) values. For a hospital, hi, RI values are defined at

each population unit (set of j units) such that

RIi,j =
Pdi,j∑
Pdj

(4)

where Pdi,j is the number patient days used by residents of areal unit j at hospital i and∑
Pdj is the total number of patient days used by residents of areal unit j. Although RI is

calculated for each hospital, the measure actually provides more information about commu-

nities rather than the hospitals. Because the patient days are summed for the areal unit in

the denominator, the RI value describes the importance of the hospital to the community.

Thus, using RI values to compare hospitals provides little information about the similarity

3Interpreting the definition of the “home areal unit” of each hospital or cluster of hospitals
in the Thomas Methodology was especially problematic. The original manuscript is quite
vague in its discussion of home areal units. Unfortunately, the definition in the Hospital Bed
Standards does not offer clarification. Therefore, we implemented multiple versions of the
Thomas Methodology, each with a slightly different interpretation of the home areal unit.
Although each produced unique results, none provided Subareas that were similar to the
current configuration. The results presented in Figure 17 defined the home areal unit as the
zip code in which the hospital is located. This implementation also allowed the algorithm
run until clustering was completed.
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of the overall hospital utilization patterns.

An alternative measure of utilization patterns, the Commitment Index (CI), is a hospital-

based representation of patient utilization patterns. CI is defined for a hospital, hi, at each

population unit (set of j units) such that

CIi,j =
Pdi,j∑
Pdi

(5)

where
∑
Pdi is the total number of patient days at hospital hi. CI values measure the

importance of each population unit to the hospital. Unlike RI, CI values are not directly

influenced by the size of the hospital (as measured by number of inpatient beds). For

example, two hospitals located near each other, one small and one large, may have very

similar patterns of utilization when expressed as CI values (e.g., in Figure 18).

Although Griffith contends that RI is “more useful” than CI (Griffith, 1972), we find

that only to be true for defining service populations or exploring market penetration for

a single hospital. It has little utility for comparative purposes. Conversely, the CI values

provide a suitable measure of similarity among community utilization patterns. As Figure 18

illustrates, the two hospitals have very similar patterns of patient utilization, drawing com-

parable percentages of their total patients from the surrounding areal units. The Pearson’s

correlation coefficient (r) of the two hospitals’ CI values confirms the similarity with near

perfect correlation (r = 0.975). Although correlation is also high between the hospitals’ RI

values (r = 0.855), the similarity in community utilization patterns is not nearly as apparent

due to the differences in magnitude of the RI values. Furthermore, the Euclidean distance

between the hosptials’ CI values is 0.034, whereas the distance between RI values is 0.437.

3.2.2.2 Poorly defined home areal units In the Thomas Methodology, hospitals

are clustered iteratively based on RI values in home areal units. However, these home areal

units are poorly defined once hospitals have been clustered. Specifically, the home areal unit

of the entire cluster is assigned as the home areal unit of a single cluster member hospital.
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Because the methodology further clusters these groups based on overlap within the single

home areal unit, it does not acknowledge that multiple hospitals compose the cluster. This

results in scenarios where hospitals grouped into the same Subarea may share little to no

similarity. For example:

• Hospital A is clustered with Hospital B based on Hospital B’s RI in Hospital A’s home

areal unit.

• Once the hospitals are clustered to form Cluster AB, the home areal unit is assigned

as Hospital B’s home areal unit.

• When Cluster AB is further clustered with Hospital C, the criteria for clustering is

based on Hospital C’s RI value in Cluster AB’s home areal unit. Because Cluster AB’s

home areal unit was defined as Hospital B’s home areal unit alone, overlap between

Hospital C and Hospital A’s home areal units is not considered.

In this scenario, Hospital C and Hospital A may share little or no similarity in the newly

formed Cluster ABC. Because the Thomas Methodology iterates until there is little overlap

among home areal units, this can lead to very large clusters (see Clusters #5 and #18 in

Figure 17) or geographically distorted clusters (see Cluster #10 in Figure 17).

3.2.2.3 Subjective modification by expert panel In the Thomas Methodology, the

Subareas results provided by the clustering algorithm are passed along to an expert panel

for modification. Thomas et al. (1981, p. 46) state:

Based on members’ knowledge of hospital relationships and other factors influenc-

ing the reasonableness of proposed groupings, the committee is asked to decide

whether the objectively determined clusters are in fact appropriate. ... Thus the

committee makes the final determination, using the patient origin data analysis

as one important source of information.
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Although this step offers the potential to incorporate useful qualitative or local knowledge

into Subarea formulation, it is also raises practical concerns with regards to implementation.

The Hospital Bed Standards do not provide guidance regarding the composition of the expert

panel or the scope of their charge. Additionally, by modifying the Subareas post hoc, the

original results of the Thomas Methodology are lost, leaving no record that would allow for

the utility of the automated method itself to be examined.

3.2.2.4 New methodology to cluster hospitals After discussing the theoretical con-

cerns and application-oriented limitations present in the Thomas Methodology, the HBSAC

working group opted to explore alternate approaches to creating Subareas, rather than

choosing to modify the parameters of the Thomas Methodology in such a way that the

methodology would provide reasonable results. In addition, the group decided to replace

the term, Subarea, with Hospital Group to better reflect the nature and specific use of these

units within the context of the overall Bed Need Methodology. For the remainder of this

manuscript Subareas will be referred to as Hospital Groups.

Our overall goal in creating the new Hospital Group methodology was for the method

itself to be as objective , replicable , and sustainable as possible. Considering the subjec-

tivity present in clustering applications and the vast number of possible clustering methods,

we placed emphasis on the higher-level theoretical issues, rather than specific application-

oriented concerns. Preliminary discussions with the HBSAC working group focused on the

identification of measurable hospital characteristics that could be used to compare and clus-

ter similar hospitals. From this discussion, two characteristics were deemed as the most

important, 1) that hospitals drew their patients from similar communities and 2) that hospi-

tals were geographically proximate. Given these meta-parameters, we presented the HBSAC

working group with a variety of suitable clustering methods. Because CON-related proceed-

ings have the potential to become highly political affairs, we initially presented only the

clustering methods themselves, rather than offering “results” of the methods. This left the
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HBSAC to form their opinions based on the merits and appropriateness of the clustering

methods themselves, not the Hospital Groups they produced.

3.3 Methods

3.3.1 Overview

The new clustering methodology employs a 2-step K-means + Ward’s algorithm to create

Michigan’s Hospital Groups. This algorithm compares observations across multiple attribute

values, allowing for both community utilization patterns and hospital location to be evaluated

simultaneously in cluster formation. In this, specific patient hospitalization data and travel

distance measurements among hospitals are required. The methodology includes a heuristic

to determine the number of Hospital Groups, K, based on statistical measures of cluster

fit and characteristics of the Hospital Group solution. We also include a set of techniques

to assign a new or proposed hospital to the existing Hospital Group solution in case this

scenario arises.

The source code used to implement the overall methodology4 can be found in Appendix

B. We utilize the R programming language using only base package functions to allow for

portability across operating systems. The code in Appendix B has also been modified slightly

from the actual code presented to the HBSAC in an effort to make it more generalizable.

In the following sections, we provide a detailed description of each step in the clustering

methodology.

3.3.2 Input data

The methodology requires georeferenced hospital utilization data. We employ data from the

Michigan Inpatient Database (MIDB), a nearly exhaustive record of the state’s inpatient

hospitalizations. Each patient record includes the discharging hospital, the zip code of the

4Although not discussed in the manuscript, the CON approved source code contains
additional steps to assign a numeric identifier to the resulting Hospital Groups based on
their geographic location and bed inventory.
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patient’s residence, patient demographic information, and diagnostic codes. Using the most

recent three years of MIDB data, the number of patient days used at each hospital by res-

idents of each Michigan zip code are arranged in an n x z origin-destination (OD) matrix.

Three years of data are included to ensure that recent patterns of state-wide hospital uti-

lization are captured without the fluctuations possible in a single year. All existing hospitals

that reported their inpatient data to the MIDB for any portion of the three year period are

included. In this, reporting is essentially universal throughout the state’s hospitals. The n

x z matrix of patient days is converted to a CI matrix (for each hospital in n) using Eq. 5.

The geographic location of each hospital is represented as an 1 x n vector of the travel

distances to the other hospitals in the state. When consolidated, this results in an n x n

OD distance matrix. The use of an n-dimensional representation of location, in lieu of tradi-

tional 2-D locational attributes such as x,y geographic coordinates, is necessary to account

for Michigan’s particular physical characteristics and transportation infrastructure. Most

notably, Euclidean distance measurements may lead to misrepresentations of true distances

among locations near shorelines. For example, using only x,y coordinates to define location,

hospitals in Michigan’s “thumb” region (HSA 6) in Figure 16 would be considered near hos-

pitals to their northwest, not accounting for the true magnitude of their separation due to

the Saginaw Bay. Distances among hospitals are calculated as travel distances on Michigan

roads using a custom-built network model (Delamater et al., 2012). After the n x n matrix

is assembled, the distance entries are rescaled from 0 to 1 by dividing each by the maximum

distance between any two hospitals. The rescaling process ensures that the range of values

in the hospital utilization matrix and distance data matrix are similar(Milligan and Cooper,

1988; Steinley et al., 2004).

The utilization matrix and distance matrix are joined to form a final data matrix con-

taining n rows or observations with m (z + n) attribute values per observation.
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3.3.3 Clustering algorithm

The K-means clustering algorithm is employed as the primary method to create Hospital

Groups. The specific algorithm employed is that of Hartigan and Wong (1979), the default

option in R’s base package kmeans() function. Given a set of n observations with m associ-

ated attribute values to be partitioned into K clusters, K-means attempts to find the cluster

solution (C ) that minimizes the sum of the squared errors (J(C)) between cluster members

(xi) and their associated cluster center (ck) over all clusters.

J(C) =
K∑
k=1

∑
xi∈ck

‖xi − µk‖2 (6)

Although their origins are closely related, two distinct characteristics of the basic K-

means algorithm provided concern for identifying Hospital Groups. First, solving Eq. 6 is

an NP-hard problem (Drineas et al., 2004), essentially rendering it non-computable in any

acceptable amount of time. Thus, K-means relies on an search algorithm to approximate

the solution and likely finds a locally optimal solution, rather than the globally optimal

solution (Steinley, 2003; Jain, 2010). Second, the basic K-means method employs a random

initialization procedure for the search algorithm. Given that the input data were of high

dimensionality, the resulting Hospital Group solution identified by the randomly initiated

K-means algorithm would likely vary between model runs. Therefore, the results would not

be reproducible.

To examine the variability associated with the random initialization of K-means and for

the presence of local optima, we initially grouped the hospitals into 50 clusters using 5,000

random starting locations. Although there were roughly 9 x 10203 possible solutions5, the

observed variability in the output cluster solutions was much higher than initially expected;

each random start provided a unique 50 cluster solution.

To stabilize the clusters provided by the K-means algorithm, we “seed” it with rational

5Based on KN/K! (Kaufman and Rousseeuw, 2005) where K = 50 and N = 158.
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starting locations in lieu using of the random start method (Milligan, 1980). Ward’s hierar-

chical clustering algorithm (Ward, 1963) was employed to initially cluster the hospitals and

provide the seed locations. The cluster centers produced by Ward’s algorithm are a K x m

set of locations that define the central location of each cluster in m-dimensional space. They

are used as initial locations in the K-means search algorithm, creating a 2-step K-means +

Ward’s clustering algorithm. Because Ward’s algorithm provides deterministic results, this

effectively and efficiently removed the stochastic element present in K-means initialization.

In addition, for K = 50, the cluster solution identified by K-means + Ward’s provided a

superior fit to solutions from all 5,000 model runs using K-means with random starts (see

Figure 19). Although we cannot confirm that the K-means + Ward’s algorithm provided

the globally optimal solution, we are encouraged that a single model run produced such a

large improvement in the fit of the cluster solution.

3.3.4 Determining the number of Hospital Groups

As was discussed earlier, one of the more difficult problems facing any applied cluster analysis

is determining the number of clusters in which to group the data. Researchers have noted that

the selection of K is largely subjective (Elayat et al., 1978), may be politically influenced

(Klastorin and Watts, 1981), or completed by an analyst with expert domain knowledge

(Jain, 2010). The members of the HBSAC working group were steadfast that the number

of Hospital Groups (K ) should be derived from the data itself, not explicitly predetermined

prior to the clustering process nor modified after clustering is completed. However, no

method or measure exists to definitively answer the question, “how many clusters should

the data be grouped into?”. Therefore, in conjunction with the HBSAC working group, we

developed a heuristic to determine the number of Hospital Groups, incorporating a statistical

approach along with a set of decision rules.

We define k as the set of integer values from 2 to n-1. A Hospital Group solution is

created for each value in k using the K-means + Ward’s clustering algorithm, allowing all

possible values of K to be evaluated. The first step in the heuristic to determine the final
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solution with a better fit (red point) than any of the 5,000 stand-alone K-means solutions.
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value of K is to calculate the incremental F statistic (incF ) (Gujarati, 1988) for each solution

in k,

incFi =

R2
i −R

2
i−1

ki − ki−1
1−R2

i

n− (ki − 1)

(7)

where

R2 = 1− (RSS/TSS). (8)

RSS and TSS are the residual sum of squared error and total sum of squared errors, respec-

tively, calculated for each cluster solution in k (J(C) from Eq. 6 is equal to RSS ). R2 is an

overall measure of the “fit” of the cluster solution to the original data. The incremental F

statistic measures only the amount of fit gained from allowing an additional cluster in the

solution, while also penalizing for adding this additional cluster. Because increasing K will

almost certainly improve the R2 of the cluster solution, incF offers a measure that incorpo-

rates both fit and K. Initial candidate solutions are selected by identifying those with local

maxima in incF (all solutions where incFk > incFk−1 and incFk > incFk+1).

After the initial candidate solutions are identified, a set of decision rules is employed

to select the final value of K. The HBSAC working group offered two qualifications for a

suitable Hospital Group configuration, 1) that no individual Hospital Group contains more

than 20 hospitals and 2) that the number of “single hospital” Hospital Groups is minimized.

First, all initial candidate solutions where any single Hospital Group contains more than

20 hospitals are removed. Next, for each of the remaining solutions, the number of single

hospital Hospital Groups is noted. The solution(s) having the minimum number of single

hospital Hospital Groups is/are retained. If multiple solutions meet these criteria, the final

solution is selected by choosing the candidate with the maximum K from the remaining

solutions.
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3.3.5 New hospital assignment

The HBSAC working group requested that the new clustering methodology include steps to

assign a new or prospective hospital to the existing set of Hospital Groups. In the Thomas

Methodology, this task was accomplished re-running the entire methodology with market sur-

vey data (projected RI values for the new hospital) added as a new observation. The HBSAC

working group members doubted the veracity of these survey data and requested a simplified

approach that did not require a market survey or rerunning the clustering methodology. We

designed a method wherein a new hospital is assigned to an existing Hospital Group using

geographic location.

A geocoded location of the new hospital is required to calculate the travel distance from

the new hospital to each existing hospital. These distances are placed in a 1 x n vector,

which is rescaled using the maximum distance between any two hospitals in Michigan (see

Input data) and arranged such that the entries are in the same order as the entries in the

original travel distance matrix.

Like the Ward’s algorithm, the 2-step K-means + Ward’s algorithm produces a K x m

matrix of cluster centers. The cluster centers from the Hospital Group solution are subset

to only those columns corresponding to the travel distance attributes (column numbers z+1

to m), resulting in a K x n matrix. This subset represents the geographic location of the

existing Hospital Group centers in n-dimensional space.

The Euclidean distance (d) from the new hospital to an existing Hospital Group center

is calculated

d =

√√√√ n∑
i=1

(ci − hi)2 (9)

where ci is the cluster center for the Hospital Group and hi is the rescaled distance vector

for the new hospital. A d value is calculated from the new location to each existing Hospital

Group. The new hospital is assigned to the Hospital Group having the minimum d value.
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3.4 Results

We implemented the new Hospital Groups clustering methodology using inpatient hospital-

ization data from 2007 to 2009, which included 169 acute care hospitals. A small number of

hospitals reported their inpatient data to the MIDB in tandem with another hospital or set

of hospitals. The hospitals reporting together are owned by the same health care system and

are located very near each other geographically. Therefore, these were treated as a single

observation for the purposes of clustering6. Two hospitals did not report any patient records

to the MIDB and were removed prior to clustering. The final data matrix consisted of 158

observations with 1065 attributes (CI values for 905 zip codes and rescaled travel distance

to 160 hospital locations).

A Hospital Group solution was created using the 2-step K-means + Ward’s algorithm

for each value of K from 2 to 157. We implemented the heuristic to select the number of

Hospital Groups for the final solution. 49 initial candidate solutions were identified using

incF values (see Figure 20 and Table 9). Next, candidate solutions of less than 29 clusters

were removed due to the maximum number of hospitals in a single Hospital Group. From

the remaining candidate solutions, the minimum number of single hospital Hospital Groups

was 1. Therefore, all solutions greater than 35 clusters were removed from consideration.

From the remaining candidate solutions, 35 was the maximum value of K and selected as

the final Hospital Group solution (see Figure 21).

6Because these hospitals were each associated with a unique geographic location, their
travel distance measurements were slightly dissimilar. To calculate the travel distances
for the grouped set, we took the mean of the hospitals comprising the group. However,
when calculating the number of “single hospital” Hospital Groups during the clustering
methodology, the grouped set was not considered a single facility.
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Figure 20: Initial candidate solutions for Hospital Groups. Data are truncated for
display purposes. Red points represent local maxima in incF values.
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Table 9: Initial candidate solutions. SH are the number of single hospital clusters in the

overall solution and Max is the maximum number of hospitals in any cluster in the Hospital

Group solution. Solutions with less than 29 clusters have Max > 20 and were removed

from consideration. From the remaining solutions, the minimum SH value was 1. Therefore,

solutions with SH > 1 were removed from consideration. From the remaining 3 solutions

(29, 33, 35), the 35 cluster solution was the maximum K and selected as the final Hospital

Group solution.

Clusters incF SH Max

3 94.78 0 91

8 25.39 0 58

11 14.58 0 48

16 7.43 0 48

18 7.10 0 45

21 9.49 0 36

26 6.30 1 24

29 6.10 1 17

33 3.73 1 17

35 4.28 1 17

38 4.16 2 17

40 4.34 4 17

42 4.01 7 17

45 4.03 8 16

47 3.61 8 16

50 3.93 10 16

52 3.53 12 16

54 3.88 14 13

57 3.55 17 12

59 3.99 20 12

63 4.09 25 12

65 4.03 28 12

Cont. on next page
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Table 9 – Cont. from previous page

Clusters incF SH Max

68 4.14 32 12

70 4.27 35 12

73 4.56 38 12

77 4.46 43 9

80 4.06 45 8

82 4.32 47 7

87 4.24 54 7

92 3.98 63 7

96 4.18 70 7

100 5.03 75 7

104 5.43 80 7

107 5.06 83 7

109 3.94 86 7

112 3.61 89 7

114 3.76 91 7

117 2.93 96 7

121 3.06 101 7

124 2.83 103 5

126 2.62 107 5

128 2.46 109 5

130 2.41 112 5

135 2.17 119 5

137 1.95 120 5

141 2.12 126 5

149 2.10 136 3

154 2.38 145 3

156 2.64 149 3

To explore the stability of the Hospital Groups provided by the methodology, we re-
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created a 35 Hospital Group solution using data from 2004 to 2006. This allowed us to

test the resulting Hospital Groups with data from an independent time period with no

overlapping years. Because a small number of hospitals closed and opened during this time

frame, after clustering, the hospitals were normalized such that only hospitals open during

both time periods were compared. The normalization step was completed post-clustering as

to not influence the results of the 2004-2006 Hospital Group solution. Overall, the two 35

Hospital Group solutions were in agreement on 93.37% of hospitals (155 of 166 hospitals).

30 of the 35 Hospital Groups produced using the 2004-2006 data were an exact match (both

group size and hospital membership) with their counterparts from the 2007-2009 data.

3.5 Discussion

Following extensive review, the HBSAC recommended that the new clustering methodology

for Hospital Groups be adopted into Michigan’s Hospital Bed Standards by a unanimous

vote. The recommendation was presented to the state’s CON Commission, who approved

unanimously to move the methodology forward to the public comment stage. After allowing

for public comments, the new methodology was again approved by the CON Commission to

be adopted into Michigan’s Hospital Bed Standards7.

Using the 2007-2009 utilization data, the new clustering methodology reduced the number

of Hospital Groups in Michigan from 64 to 35. During development of the methodology,

the HBSAC strongly believed that the number of single hospital Hospital Groups in the

state should be decreased. Therefore, an emphasis was placed on this characteristic in the

heuristic to select the final number of Hospital Groups. In the 35 Hospital Group solution,

only one Hospital Group contained a single hospital (2.86% of the groups). This result was

substantially different than the current configuration wherein 50% of the 64 Subareas contain

a single hospital.

The overall fit of the original 64 Subarea configuration is slightly better than that of the

7The CON Commission is scheduled to meet and approve the methodology in June, 2012.
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35 Hospital Group solution (R2 = 0.984 vs. R2 = 0.973). However, this is not entirely

surprising, given that model fit is influenced heavily by the number of clusters. Using the

F statistic, which incorporates both R2 and the number of clusters, we found that the

35 Hospital Group solution (F = 130.21) outperformed the original configuration (F =

92.86). It is important to note that a direct comparison of the 64 Subarea and the 35

Hospital Group solutions can be somewhat misleading given that they were created with very

disparate methods and do not have a similar number of clusters. Methods and procedures to

evaluate clustering methods or algorithms generally compare cluster solutions with the same

number of clusters or compare the cluster to solutions to a random clustering of observations.

Therefore, a more appropriate statistical test of the methods would require that the number

of output clusters be similar. For example, the fit of a K-means + Ward’s 64 cluster solution

(R2 = 0.989 and F = 135.71) is better than the current 64 Subarea configuration. Yet,

caution is also warranted in interpreting these results considering the uncertainty surrounding

the modification performed on the original output of the Thomas methodology in the 64

Subarea configuration.

Comparing the statistical fit of the 64 Subareas to the 35 Hospital Groups (or a 64 K-

means + Ward’s cluster solution) does not provide a suitable evaluation of the two methods

in light of the final purpose for allocating beds in the Bed Need Methodology. Rather, the

small number of clusters produced by the Thomas Methodology, when implemented with

recent hospitalization data, speaks more to the overall utility of the Thomas Methodology

itself. Therefore, the most basic advantage provided by the new clustering methodology is

that it produces an usable and actionable number of Hospital Groups.

While the new methodology was generally lauded by members of the HBSAC and CON

Commission, there are potential implications for hospital bed distribution within the state.

The reduction of the number of single hospital Hospital Groups assumes a more regional

view of community-based need than the previous configuration. While the initial move

toward more regional-level planning and regulation units is consistent with other states’
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CON programs, the actual consequences for inpatient hospital bed distribution and access

in Michigan remain to be seen. We are encouraged, however, by our preliminary tests

showing that the 35 Hospital Group configuration did not substantially alter predictions of

the state’s future bed demand.

Another issue to consider is the use of alternative data for clustering hospitals. Because

the focus of this application is to define Hospital Groups for inpatient hospital bed planning,

we chose only to include inpatient hospitalization data. However, other measures such as the

American Hospital Association’s case-mix adjusted discharges may be explored in the future.

Adjusted discharges incorporate both inpatient and outpatient hospital visits, possibly of-

fering a more complete characterization of community health care utilization. Additionally,

raw inpatient days do not provide insight into the efficacy of the hospitalizations or their

overall contribution to public health (Thomas et al., 1983). For our specific application, we

do not consider the use of inpatient hospitalization data as a limitation. However, we do

acknowledge the limitations of these data and future research would benefit from exploring

alternative data sources for clustering hospitals.

While the clustering methodology was designed specifically to create groups of hospitals,

the concepts are transferable to the creation of health service areas or small areas. One

of the most notable topics in health services research over the past 30 years has been the

exploration of small area variation in health care utilization (Wennberg and Gittelsohn, 1973;

Wennberg, 2005), spending (Fisher et al., 2003), and outcomes (Welch et al., 2011) in the

US. These studies often rely on an aggregation method wherein small areas are formed by

grouping disaggregated population units into larger regions based on similarity in health

services use. The method implemented by Wennberg and colleagues at Dartmouth employs

a simple plurality rule, grouping areal units based on a single CI value, not their overall

patterns of utilization (Wennberg and Gittelsohn, 1973). In rural communities, this process

is generally straightforward considering that much of the population’s health care needs are

provided by a single facility. Because urban areas often contain a greater number of facilities,
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service use by any given community is often distributed similarly among facilities (Thomas

et al., 1981), complicating small area creation and/or service area definition. Using our

clustering methodology, community utilization patterns can be expressed as the CI values

from areal units to hospitals. The areal units could then be clustered into regions of similar

hospital use, where the overall utilization patterns and location are considered. However, we

note that an additional step would be required to link the clustered areas to specific hospitals

or groups of hospitals using this methodology.

3.6 Conclusions

The goal of our new clustering methodology to create Hospital Groups was for it to be as

objective , replicable , and sustainable as possible. Given the politically and economically

charged climate surrounding CON regulation in Michigan, a full recasting of the theoretical

approach to cluster hospitals was no small undertaking. A number of possible clustering

methods were presented to the HBSAC working group and each could be considered “ob-

jective” given that they are data-driven. However, we believe that placing our focus on the

concepts of hospital similarity and the theoretical underpinnings of the methods, rather than

results, allowed for a politically objective overall methodology to emerge. In addition, we

implement a heuristic that selects the final number of Hospital Groups based on desirable

characteristics of the solutions instead of relying on a predefined number. The use of a

heuristic does not completely remove all subjectivity from our methodology; the HBSAC

working group members determined which characteristics were acceptable for selecting the

final number of clusters. However, by including the decision rules in the methodology, the

new clustering methodology provides a level of transparency that was not present in the

post-clustering modification step of the previous methodology.

Two distinct interpretations of “replicable” are fulfilled by the clustering methodology.

First, by integrating the K-means and Ward’s clustering algorithms, we have effectively

removed the unconstrained stochastic element associated with random starting locations in
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K-means. Each time the methodology is run with the same data, it will produce the same

final Hospital Group solution (both the configuration of the Hospital Groups and the number

of Hospital Groups). By supplying the source code necessary to implement the methodology,

we have provided it in an unambiguous format. Additionally, the methodology is built upon

well-known clustering algorithms allowing it be transferable in other statistical packages.

We examined the sustainability of the clustering methodology by creating a 35 Hospital

Group solution using hospitalization data from 2004-2006. The high level of agreement in

the composition and size of the resulting Hospital Groups suggests that the methodology

captures long-term community hospital utilization patterns in Michigan. Therefore, when

the clustering methodology is run in the future, Hospital Group configuration will not change

dramatically unless community utilization patterns have significantly changed.

We believe that the appropriate levels of consideration were given to the scientific, prac-

tical, and political concerns encountered during the developmental process. The new clus-

tering methodology offers substantial improvement over the previous methodology, as it is

unambiguously actionable and produces superior results. Furthermore, the methodology is

generalizable such that it is suitable for clustering both facilities or areal units within a

variety of health care service applications.
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Do more hospital beds lead to higher hospitalization

rates? A spatial examination of Roemer’s Law

4.1 Abstract

Background: Roemer’s Law, a widely cited principle in health care policy, states that

hospital beds that are built tend to be used. This simple but powerful expression has been

invoked to justify Certificate of Need regulation of hospital beds in an effort to contain health

care costs. Despite its influence, a surprisingly small body of empirical evidence supports

its content. Furthermore, known geographic factors influencing health services use and the

spatial structure of the relationship between hospital bed availability and hospitalization

rates have not been sufficiently explored in past examinations of Roemer’s Law. We pose

the question, “Accounting for space in health care access and use, is there an observable as-

sociation between the availability of hospital beds and hospital utilization?” Methods: We

employ an ecological research design based upon the Anderson behavioral model of health

care utilization. This conceptual model is implemented in an explicitly spatial context. The

effect of hospital bed availability on the utilization of hospital services is evaluated, account-

ing for spatial structure and controlling for other known determinants of hospital utilization.

The stability of this relationship is explored by testing across numerous geographic scales

of analysis. The case study comprises an entire state system of hospitals and population,

evaluating over one million inpatient admissions. Results: We find compelling evidence

that a positive, statistically significant relationship exists between hospital bed availability

and inpatient hospitalization rates. Additionally, the observed relationship is invariant with

changes in the geographic scale of analysis. Conclusions: This study provides evidence

for the effects of Roemer’s Law, thus suggesting that variations in hospitalization rates have

origins in the availability of hospital beds. This relationship is found to be robust across geo-

Submission information: Submitted to PLoS Medicine on May 3, 2012. Submitted
to PLoS ONE on June 12, 2012. Authors on manuscript: Paul L. Delamater, Joseph P.
Messina, Sue C. Grady, Vince WinklerPrins, and Ashton M. Shortridge.
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graphic scales of analysis. These findings suggest continued regulation of hospital bed supply

to assist in controlling hospital utilization is justified. Keywords: Roemer’s Law; hospital

utilization; supplier-induced demand; access; spatial accessibility; Certificate of Need

4.2 Introduction

Roemer’s Law famously and simply states, hospital beds that are built tend to be used (Shain

and Roemer, 1959, p.71). Although the authors’ original intent behind the statement is

debatable, the most common interpretation is that as the supply of hospital beds increases

the use of hospital services also increases. Roemer’s Law has fostered the belief that excess

hospital beds leads to an overutilization of hospital services, when the observed demand

outpaces the population’s actual need for services (Mulley, 2009). Hospital utilization rates

rise, therefore, due to higher levels of inpatient admissions which may or may not lead to

longer stays, contributing to higher costs. Wennberg (2005) suggests that Roemer’s Law may

be due to physicians being influenced by a subliminal knowledge regarding the availability

of hospital beds.

In the USA, the high costs of inpatient hospitalizations, in conjunction with the generally

accepted implications of Roemer’s Law, serve as the justification for state-based Certificate

Of Need (CON) programs. CON programs are independent entities that are responsible for

regulation of the supply of health care services such that the supply meets the population’s

health care needs without an oversupply or duplication of services. Given that the plurality

of overall health care expenditure in the USA is for inpatient hospital care (Kaiser Family

Foundation, 2009), hospitalizations, and thus hospitals, are logical candidates for cost control

measures. Supply is regulated by CON programs (Ferrier et al., 2010) wherein an unmet

demand for services must be demonstrated prior to CON approval of new expenditures for

hospital construction or expansion. Currently in the USA, 35 states have some form of

CON program with 28 states specifically regulating the supply of acute care hospital beds

(National Conference of State Legislatures, 2011).
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Roemer’s Law defines a positive relationship between the availability of hospital beds and

the use of hospital services. Past research has provided support for the effects of Roemer’s

Law (e.g., Ginsburg and Koretz, 1983; Harris, 1975; Kroneman and Siegers, 2004; Pasley

et al., 1995; Shwartz et al., 2011; Wennberg, 2005), while other research has found conflicting

(e.g., Alexander et al., 1999; Rohrer, 1990; van Doorslaer and van Vliet, 1989) or inconclusive

results (e.g., Clark, 1990). The intertwined relationships among population health, access,

use of health care services, and outcomes provide a number of research dilemmas, both

theoretically and methodologically. Perhaps, the most difficult dilemma is defining and

characterizing the availability of hospital beds. Although counting the number of beds in a

hospital is trivial, measuring the overall availability of those beds to a population is a much

more complex and influenced by distance, demand, and access-related factors. Measures

of hospital bed availability such as container-based metrics or simple distance (Joseph and

Phillips, 1984; Guagliardo, 2004) ignore the multifaceted nature of access and the spatial and

geographic nature of health care service use. Others have noted that the observed effects of

Roemer’s Law may be due to oversimplified methods used to assign hospital beds to regions

(Folland and Stano, 1990). In addition, statistical methods that do not incorporate spatial

structure in the relationship between access and utilization are at risk of being misestimated

due to the effects of spatial autocorrelation.

As Wennberg and colleagues (1999, p.2) have noted, in American health care, geography

is destiny. The important role of spatial factors in health care services use have not been

been given full consideration when exploring Roemer’s Law. Hence, we believe a substantive

re-examination is warranted.

So, the critical question remains, “does the availability of hospital beds affect hospital

utilization?”. Whereas Roemer’s natural experiment (Roemer, 1961) was based on a regional

study when a single hospital added a substantial number of inpatient beds, we approach this

issue by examining an entire hospital system, comprising the hospitals, populations, and

transportation infrastructure that connects populations to hospitals. We employ an ecolog-
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ical research design that integrates individual behavioral models of health care utilization

in an explicitly spatial context. Thus, the research question is reframed to ask, “Account-

ing for space in health care access and use, is there an observable association between the

availability of hospital beds and hospital utilization?”.

We characterize both the spatial and aspatial components of access such that their in-

dividual and combined contributions can be subsequently identified. Furthermore, by con-

trolling for other determinants of hospital utilization, we isolate the effects of hospital bed

availability on the utilization of hospital services, thus allowing us to statistically examine

the effects of Roemer’s Law on hospitalization rates. In addition, we explore the stability

of the relationship between hospital bed availability and hospital utilization by constructing

models at varying scales of geographic analysis.

4.3 Materials and Methods

4.3.1 Research design

The Andersen model of health service utilization serves as the underlying theoretical frame-

work in our research: utilization of health services results from a predisposing component,

an enabling component, and illness level or “need” (Andersen and Newman, 1973). This

framework is appealing because characteristics of both the population and the health care

delivery system are integrated into a single model:

U = f(n, P,E,N) (10)

where n is the number of people, P is the predisposing component, E is the enabling com-

ponent, and N is need for services. The enabling component in the Anderson model roughly

equates to access, but does not provide a detailed characterization. We extend the Ander-

sen model using the theoretical framework offered by Penchansky and Thomas (1981) that

defines access as the “fit” between the population in need of services and services offered.

In this framework, access results from a combination of five separate dimensions. Khan
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(1992) classified the dimensions into spatial components: accessibility (Ac) and availability

(Av) and aspatial components: affordability (Af), acceptability (Ap), and accommodation

(Am). In addition to the five access components proposed, we add a mobility component

(M) to capture differences in the ability to overcome distance (Paez et al., 2010). Portions

of the extended access framework cross over through P and E from the Andersen model.

Therefore, we define:

P = f(Ag,G) (11)

A = f(Ac,Av,Af,Ap,Am,M) (12)

N = f(H, εh) (13)

where

H = f(In,Ed,Et). (14)

Ag and G are the age and gender structure of the population, A is access, and H is the

health status of the population. It is important to highlight the distinction between need

(N) and demand (U) for services in this framework. Although a certain amount of U is

predictable based on known demographic characteristics of the population, N arises from

the general health status of the population and, for hospitalizations, includes a stochastic

element triggered by unpredictable instances of ill-health (Feldstein, 1966). Measuring N

is problematic in health services research given that patients and health professionals often

evaluate the need for services differently (Donabedian, 1972), resulting in cases of both

unmet need and unnecessary utilization. Therefore, in Eq. 13, H is a measure of the health

of the population and εh is a random variable representing occurrence of ill-health. Oleske

(2009) report six approaches to measuring health care need, yet all are essentially proxies

for estimation of H. Thus, we employ socio-economic status (SES) measures, income (In),

education (Ed), and ethnicity/race (Et), as proxy measures of population health (see Young

(2005), pp.153-154 for a discussion of inclusion of ethnicity/race in health models). Although

there may be questions regarding causality between SES and health, SES has shown to be
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significantly correlated with both morbidity and self-assessed health status (Norris et al.,

2003) in the US and internationally (Young, 2005).

Our theoretical model is supplemented by accounting for variations in hospital utilization

among populations that may not be fully captured in Eq. 14. We use the number of Low

Variation (LV) hospitalizations (ULV ) to help capture this variability. LV hospitalizations are

those with little clinical-based doubt regarding the need for hospitalization (Wennberg, 2005);

therefore, variations in LV hospitalization rates can be considered as arising from the actual

health care needs of the population. We also consider hospitalizations for Ambulatory Care

Sensitive (ACS) conditions (UACS) in our theoretical model. This class of hospitalizations

(also known as preventable hospitalizations) are those where inpatient hospitalization may

be avoided if primary care is available (Bindman et al., 1995) and accessible (Ricketts et al.,

2001). Hence, we control for variation in hospital utilization due to inadequate access to

primary care. In combination, we label these variables as the case mix of a population’s

hospital usage, offering proxy measures of health variation not captured in P or H.

Given dissimilar population sizes among areal units or zones, we normalize all variables

by population size producing rate-based (e.g., beds / person) or proportional (e.g., % of

population with insurance) measures where applicable. Therefore, we remove n from the

theoretical model when moving to an applied model. In addition, due to the differences in

age structure among populations, we age-standardize the hospitalization rates. Hence, we

remove Age from the theoretical model and specify a full model of hospital utilization,

Ustd = f(G,Ac,Av,Af,M, In,Ed,Et, LVstd, ACSstd, εh) (15)

which allows for examination of the relationship between U and hospital bed availability

while controlling for differences in demographic characteristics and health status among
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populations 8.

The proposed framework is implemented in an explicitly spatial context, acknowledging

the role of geography in interactions among populations and hospitals. First, because all

populations do not have equivalent geographic access to the same hospital services, we in-

corporate the spatial character of hospital utilization by limiting our analysis to only those

hospitalizations where services were demanded locally. Second, we overcome container-based

measures of hospital bed availability by calculating a metric that captures the interaction

between distance, hospital bed supply, and demand. Third, we employ spatial regression

models which incorporate the spatial structure of the proposed framework, thus counteract-

ing the problems associated with spatial autocorrelation.

The ecological study design requires that we address issues stemming from the Modifiable

Areal Unit Problem (MAUP, Openshaw, 1984; Fotheringham and Wong, 1991). The MAUP

arises when correlation or regression-based analysis is influenced by the particular resolution

or zoning scheme of the data. In extreme cases, regression coefficients may flip from positive

to negative or statistical significance may be greatly altered when an alternate scale of

analysis or zoning methodology is implemented (Chi and Zhu, 2008; Mobley et al., 2008;

Wright and Ricketts III, 2010). Therefore, we explore the stability of Roemer’s law by

evaluating the relationship between hospital bed availability and hospital utilization over

varying levels of data aggregation.

4.3.2 Case study

Our case study explores the relationship between hospital bed availability and utilization

for the state of Michigan. As of 2010, Michigan had a population of 9,883,640 residents

8The other access-related variables, Ap and Am, have been removed from the theoretical
model for the following reasons: 1) Acceptability was defined by Penchansky and Thomas
(1981) as capturing the religious or racial/ethnic fit between a person and the health care
facilities, thus is very likely outdated. 2) Accommodation attempts to account for waiting
times, hours of operation, telephone appointment systems, and other non-supply related
factors of the health care facility. These factors should be quite constant among modern
hospitals.
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Figure 22: Population distribution and hospital locations in Michigan.

served by 169 acute care hospitals with 26,180 total licensed inpatient beds. In 2010, there

were 1,127,576 hospital admissions of Michigan residents to Michigan hospitals and a total

of 5,313,149 days spent in hospitals, resulting in an overall patient day usage rate of 0.537

patient days per person. For every 1000 people, there were 9.51 hospital admissions per

month, which is slightly higher than the national averages of 8/1000 found by Green et al.

(2001) and 9/1000 as reported by White et al. (1961).

Michigan employs a CON program to regulate the availability of inpatient hospital beds

(Messina et al., 2006). To assess the needs of the population, a bed need methodology is

implemented to predict the future demand for hospital beds, which is compared with current

levels of supply (Langley et al., 2010). Michigan serves as a satisfactory study area due to the

large number of hospitalizations and population, the state’s relatively stable system of acute

care hospitals, and a diverse collection of rural and urban areas with varying population

densities, health care services distributions, and demographic characteristics (see Figure 22)
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by which to examine Roemer’s Law.

4.3.3 Population data

The Zip Code boundary data used for Michigan were acquired from the ESRI ArcGISTM

v10 data CD9. The 2010 population and demographic attribute data were acquired from the

US Census Bureau (http://2010.census.gov). Block-level data for age, gender, race/ethnicity

were aggregated to their respective Zip Code boundaries. The age-specific data were aggre-

gated into 5 year categories for 0 to 84 years of age with an additional category for 85 and

older. Income, education, and mobility attributes were culled from the 2006-2010 Ameri-

can Community Survey 5-year estimates (http://www.census.gov/acs/www/). These data

are available at the block group level and were aggregated to the Zip Code boundaries. A

small number of block groups were not reported (48 blocks with a population of 52,593,

roughly 0.5% of the total state population). Values for the missing block group data were

estimated using a weighted average of first-order (queen’s case) neighboring values (Bivand

et al., 2008). First-order neighbors are defined as areas sharing a common boundary. 2009

Small Area Health Insurance Estimates (SAHIE, http://www.census.gov/did/www/sahie/)

data were used for health insurance rates. For this analysis, we only considered the health

insurance status of people under 65 years of age. Because SAHIE data are only available

at the county level, Zip Code-level data were estimated using the age-specific rates found in

the SAHIE data and age-specific population distribution of the Zip Codes.

4.3.4 Travel time

Travel time data were derived using a custom-built network model. The most recently

available roads database (2009 version 10a, http://www.michigan.gov/cgi) was downloaded

from the Michigan Center for Geographic Information and used to construct the network

travel model. Travel speeds for each road were assigned using the road attribute data and a

9Prior to the analysis, the 908 unique Zip Codes were aggregated into 895 Zip Codes due
to mismatches between the spatial data and the hospital utilization data
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Figure 23: Age adjusted hospital utilization (USTD) and bed distribution (Av,
E2SFCA) in Michigan.

hierarchical speed limit classification system (Delamater et al., 2012).

4.3.5 Ethics statement

The Michigan Hospital Inpatient Database (MIDB) consists of routinely collected informa-

tion on patient’s hospital discharge for billing purposes. The patients provided consent for

their information to be stored in the hospital database but that information is protected

under HIPPA rules. All identifiable patient information was removed from the MIDB prior

to use in this research. The Michigan State University Internal Review Board determined

the use of this de-identifiable data exempt (IRB #07-362).

4.3.6 Hospital utilization

Inpatient hospitalization data were gathered from the 2010 Michigan Inpatient Database

(MIDB), a comprehensive record of the state’s inpatient hospitalizations. For each non-

psychiatric hospital admission excluding normal newborns, the age, principal discharge di-
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agnosis (ICD-9-CM), length of stay in days (LOS), Zip Code of residence, and admitting

hospital were collected. Travel time was attached to each discharge, calculated from the

population-weighted centroid of the Zip Code of residence and the location of the admitting

hospital (Berke and Shi, 2009). Hospitalizations occuring more than 60 minutes from the

patient’s residence were removed from the analysis. This geographic constraint accounts for

two scenarios in which hospitalizations would not be affected by the hospital bed availability

of nearby hospitals, thus confounding the analysis. First, it removes hospitalizations where

patients traveled a long distance due to the availability of hospital-specific services, not hos-

pital bed availability. Second, the constraint removes hospitalizations that occured when

the patient was a significant distance away from their residence (e.g., while on vacation) and

not affected by local hospital bed availability. While the 60 minute cutoff value is arbitrary,

it is based on previous research exploring spatial accessibility in regions having highly rural

populations (McGrail and Humphreys, 2009). Of the total patient days in 2010, 93.2% were

served by a hospital within 60 minutes of the patient’s residence.

The LV hospitalization data used in this analysis included discharges for Myocardial

Infarction, Ischemic Stroke, and Hip Fracture (Fisher et al., 1994)10. ICD-9-CM codes for

the ACS hospitalizations were culled from the Dartmouth Atlas of Healthcare (Wennberg

et al., 1999). In 2010, there were 659,997 patient days for ACS conditions and 229,834 for

LV conditions.

Because the age distribution of populations is not homogeneous among areal units, the

hospitalization data were standardized via the direct method of standardization (Meade

and Emch, 2010). Michigan’s 2010 population was used as the standard population. Age

standardization was accomplished in a two step process. Some of the state’s Zip Codes

contain small populations in each age-specific category and thus violate the 20/50 rule for

calculating health-related incidence rates (Klein et al., 2002). In addition, as previously

10ICD-9-CM codes: Myocardial Infarction (410), Ischemic Stroke (431, 434-438), and Hip
Fracture (808)
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mentioned, inpatient hospitalizations are also subject to random fluctuations of ill-health

events. Therefore, the first step in the age standardization process was to calculate each areal

unit’s age-specific patient day usage rates using an local Empirical Bayes (EB) smoothing

method (Marshall, 1991). This smoothing method assumes that the patient day count

data follow a Poisson distribution, while also borrowing strength from the patient days and

populations of neighboring regions (Bivand et al., 2008; Odoi et al., 2003). The neighborhood

structure for the EB smoothing process was defined via first-order neighbors. Once the age-

specific rates were smoothed, each areal unit’s age-specific patient day rates were multiplied

by the age-specific distribution of Michigan’s population. To calculate the overall patient

day rate, the age-specific data were summed and divided by the total state population (see

Figure 23).

Following the age-standardization process, the hospital utilization rate data were con-

verted to a Standardized Rate Difference (SRD) by subtracting the average utilization rate

of the entire state from the age-adjusted utilization rate of each observation. This simple

scalar transformation did not affect the magnitude of the data; however, it did allow for eas-

ier interpretation of the results such that observations with rates greater than 0 are higher

than the state average and those less than 0 are lower.

4.3.7 Spatial accessibility

Recently, a set of gravity-based GIS measures of spatial accessibility have been proposed that

allow both availability and accessibility to be integrated by including measures of supply,

demand, and distance simultaneously (Ngui and Apparicio, 2011). The general form of the

gravity-based models can be represented as

AGi =
n∑
j=1

Sjf(dij)∑m
k=1 Pkf(djk)

(16)

where AGi is the spatial accessibility for population zone i, Sj is the attractiveness of a

facility at location j, f(dij) is an impedance (decay) function based on the distance (d) from
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zone i to location j, f(dik) is an impedance function based on the distance from location j

to zone k, and Pk is the population in zone k. The total number of zones and facilities are

n and m, respectively.

We employed the enhanced two-step floating catchment area (E2SFCA), a gravity-based

metric proposed by Luo and Qi (2009), to measure the availability of hospital beds. One

drawback in using gravity-based measures is that the unit (AG) is often difficult to interpret.

The E2SFCA overcomes this limitation by providing availability values in easy to understand,

container like units (hospital beds per person). The E2SFCA improves on its predecessor,

the two-step floating catchment area (2SFCA, Radke and Mu, 2000; Luo and Wang, 2003),

by replacing a dichotomous distance characterization with distance or service area “bands”

radiating from each service location. The FCA measures overcome the theoretical limitations

of container-based measures by allowing the catchment areas for supply and demand locations

to “float” based on travel distance or travel time in lieu of adherence to administrative

boundaries. To accomplish this, the potential demand is calculated for each facility, which

is in turn used to calculate the supply available at each areal unit.

The E2SFCA requires weight values to allocate demand and supply to the distance bands

using the theory of distance decay. The three functions most oftenly used to model distance

decay in gravity-based measures are the Inverse power, Exponential, and Gaussian (Kwan

and Hong, 1998). Gravity-based models are generally limited by the arbitrary selection of

a distance decay function and the associated β parameter that describes the magnitude of

decay (Schuurman et al., 2010). However, because the actual travel patterns of Michigan

residents are known, our study is not limited by this arbitrary selection process. Using

the actual utilization patterns of state residents, the distance decay function and associated

parameter values were empirically estimated using a non-linear regression model.

Initial investigations showed that the oft-used distance decay functions did not adequately

fit the utilization patterns. However, the downward log-logistic decay function (de Vries et al.,
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Figure 24: Distance decay of hospital utilization in Michigan. Left) over the entire
range of the inpatient travel data. Right) a subset of the travel data. The circles are the
data points (thinned for display purposes) and the line is the downward log-logistic function
fit to the data.

2009),

W =
γ

1 + ( dβ0
)β1

(17)

provided a superior characterization of the observed decay pattern and thus was employed

to estimate the weights (W ) for the E2SFCA calculation (See Figure 24). In Eq. 17, the

γ parameter controls W at d = 0. Therefore, because W must equal 1 at d = 0, we were

able to simplify the parameter estimation process by setting γ equal to 1. We estimated the

two remaining decay parameters (β0 and β1) using the non-linear least squares estimator

available in R (R Development Core Team, 2011). The resulting parameter values were β0

= 13.89 and β1 = 1.82. Both parameters were statistically significant (p < 2 x 10−16) and

the model produced a low residual standard error (RSE = 0.003) with an excellent curve fit

(see Figure 24).

In the first step in the E2SFCA, the supply is calculated at each facility. Using the

network dataset, travel time rings were created for each hospital at 5 minute intervals to a
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maximum of 45 minutes and a final ring was created from 45 to 60 minutes to incorporate

travel in the rural regions in the state (McGrail and Humphreys, 2009). A W value was

assigned to each travel ring using the downward log-likelihood function of each travel time

value comprising the ring (e.g., the 5-10 minute ring W value is the mean of the W values

for 5-10 minutes). The population data were spatially joined to the travel time rings. The

supply (Rj , beds / person) is calculated at each facility as follows:

Rj =
Sj∑

k∈[Dr<60]

PkWr

(18)

where Sj is the number of licensed hospital beds at hospital j, Pk is the set of population of

units falling within the set of travel time rings (Dr), and Wr is the set of associated weight

values for the travel time rings. Census block centroid points were used in this step as they

offered the most accurate representation of population location.

The second step of the E2SFCA calculates the availability of hospital beds (Av) as

moderated by distance as follows:

Avi =
∑

k∈[di,j<60]

RkWk (19)

where Avi is the availability of hospital beds at population unit i, Rk is the set of hospitals

within 60 minutes of population unit i, and Wk is the set of weights based on the travel

time from unit i to hospital j for all hospitals in k using Eq. 17. We completed this step

using the travel time from the population weighted Zip Code centroids to the hospitals, thus

calculating the availability of hospital beds at the Zip Code level (see Figure 23).

4.3.8 Clustering methodology

Much of the available literature regarding data aggregation in health services research per-

tains to the creation of small-areas for investigating health disparities among regions (e.g.,

Wennberg and Gittelsohn, 1973). Generally speaking, these methods use geodemographic
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characteristics of the initial areas to create clusters of homogeneous, contiguous regions (Rey

et al., 2011). Although a number of methods have been proposed for creating small-areas,

these were deemed inappropriate for our study. Specifically, we believe that implementing a

method that clusters the areal units by the same attributes that were being used to explore

Roemer’s Law would essentially be optimizing the aggregation process to achieve a stronger

statistical outcome (Openshaw, 1984). Hence, the level of objectivity in our test of the

MAUP would be diminished (Swift et al., 2008).

Given this problem, we implemented a clustering methodology that incorporates hospital

utilization patterns and geographic location, identifying geographically promixal areal units

whose populations use a similar set of hospitals (Delamater et al., Under review). The

resulting clusters are based on similarities in hospital use; however, they are not explicitly

optimized based on the same geodemographic attributes used to construct the regression

models. Essentially, the clustering methodology is based on principles garnered from small-

area studies, but does not produce the statistical bias likely present when using the same set

of attributes for the purpose of grouping the data and constructing the regression models.

The initial observation units (Zip Codes) were grouped into clusters using the K-means

clustering algorithm with rational starting locations provided by Ward’s Hierarchical clus-

tering (Milligan, 1980). We clustered the original Zip Code data based on their hospital

utilization patterns and geographic location simultaneously. The utilization pattern data

were an n x m matrix containing the proportion of each Zip Code’s total inpatient hospital

days (1:n) spent at each hospital (1:m), otherwise known as the Commitment Index (CI,

Griffith, 1972). The location of each observation is defined by the travel time from each Zip

Code (population weighted centroid) to each hospital, thus comprising another n x m matrix.

Representing location as a set of travel distances, rather than coordinates from a traditional

planar coordinate system (e.g., latitude and longitude), allows for factors influencing the true

separation among places (i.e., road infrastructure, travel speeds, or the physical landscape)

to be more accurately characterized (Jones et al., 2010). The travel time data were rescaled
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Figure 25: Zip Code clusters.

to match that of the CI data (0-1) by dividing by the maximum travel time between any

Zip Code and hospital pair. The two n x m matrices were appended to create the final data

matrix input to the clustering methodology.

The clustering methodology was run iteratively such that it provided a cluster solution

for the set of all possible clusters from 2 to 894 (the set, S). We subset the resulting

set S by implementing a selection method based on the incremental F score (incF ) of

each cluster solution (Delamater et al., Under review; Gujarati, 1988). IncF measures only

the amount of “fit” gained from allowing an additional cluster within the solution, while

also penalizing for adding this additional cluster. Therefore, local maxima in incF scores

represent cluster solutions that provide an substantial improvement in the fit when compared

with its immediate neighbors. From the initial set S, 276 cluster solutions had local maxima

in incF scores, thus they were selected as the levels of aggregation for the regression analysis

(see Appendix Figure D.1 and Table D.1). Figure 25 provides three example maps from the

final set of cluster solutions. The attribute data for each Zip Code were aggregated based on

cluster membership. In addition, we added the non-clustered data (with the 895 Zip Code

observations) for a final set of 277 levels of aggregation.
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4.3.9 Methods to remove multicollinearity

Considering that the ultimate goal of the analysis was inference on the coefficient values

from a regression analysis, multicollinearity in the independent variable set would invalidate

the observed coefficient values. Substantial correlation (Pearson’s Correlation Coefficient,

r > 0.5) was observed among the independent variables. We addressed the multicollinearity

using a suite of methods as described in the following sections.

4.3.9.1 Principal components analysis We performed a Principal Components Anal-

ysis (PCA) on functional “sets” of variables: income/education, ethnicity/race, transporta-

tion, mobility, and case mix. By producing uncorrelated component variables, PCA reduces

the number of independent variables without a large reduction in the explanatory power of

the independent variable set (Jolliffe, 2002). For example, at most scales of data aggregation,

the seven variables within the income/education variable set yielded only a single compo-

nent. Rather than attempting to identify which of the seven variables would be included in

the regression analysis, we were able to include a single income/education component that

sufficiently described the entire suite of variables (Graham, 2003; Vyas and Kumaranayake,

2006). Because the data were not standardized, we used the correlation matrix for the PCA

(Jolliffe, 2002). We also employed a varimax rotation of the results to assist in interpretation

of the component structure (Luginaah et al., 2001).

General methods to determine the number of components to extract include manual in-

terpretation of the results or “rules of thumb” (Rogerson, 2006), thus were not applicable

for our study given the large number of PCA runs that were necessary to complete the

multi-scale analysis. Therefore, we implemented a heuristic that allowed for automation of

the process to select the number of components extracted. We added a randomly generated

variable to each of the variable sets included in the PCA analysis and generated compo-

nents. Because PCA provides the loadings on each component for each input variable, the

component most heavily influenced by randomness was identified. The PCA was then reim-
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plemented without the random variable, extracting only those components describing more

variation in the data than randomness.

The functional sets of variables, the input data, and the interpreted output of the PCA

are as follows (see Appendix Table D.2 for detailed information including the number of

components extracted and the amount of variation captured by the extracted components

for each functional variable set at each level of data aggregation):

• Income/education

– Input variables

1. Median household income

2. Median earnings (16+)

3. % less than high school education (25+)

4. % with high school eduction (25+)

5. % with associates degree (25+)

6. % with bachelors degree (25+)

7. % with graduate degree (25+)

– Components

1. Income and education (SES): High scores reflect populations with higher ed-

ucation, income, and earnings11

• Ethnicity/race

– Input variables

1. % White

2. % African American

11In 19 of the 277 levels of aggregation, 2 components were identified: one with high scores
on education and another with high scores on income and earnings. The impacts of this split
are noted in the Results section.
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3. % Hispanic

4. % Asian

5. % American Indian or Alaskan Native (AIAN)

6. % Hawaiian or Pacific Islander (HWPI)

– Components

1. Race (BLACK): High scores reflect populations with higher proportions of

African Americans and lower proportions of Whites

2–5. Minority population components: High scores reflect observations with higher

proportions of Hispanic (HISP), Asian (ASIAN), AIAN, and HWPI popula-

tions12

• Means of Transportation to Work (Transportation)

– Input variables

1. % Automobile (16+)

2. % Car pool (16+)

3. % Public transportation (16+)

4. % Motorcycle (16+)

5. % Walk, Bicycle, other (16+)

– Components

1. Transportation (TRAN1): High scores reflect populations that are less reliant

on automobiles as the means for their journey to work

12The number of components for ethnicity/race were highly variable across the levels of
aggregation. The breakdown was as follows: 1 component (32), 2 components (127), 3
components (64), 4 components (52), 5 components (2). The component interpretations are
noted in the Results section.
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2. Shared transportation (TRAN2): High scores reflect populations with a larger

number of people using car pools for their journey to work13

• Average Travel Time to Work (Mobility)

– Input variables

1. % 0-9 minutes (16+)

2. % 10-19 minutes (16+)

3. % 20-29 minutes (16+)

4. % 30-39 minutes (16+)

5. % 40-59 minutes (16+)

6. % 60-89 minutes (16+)

– Components

1. High mobility (MOB1): High scores reflect populations that have a higher

proportion of long distance (greater than 40 minute) commuters

2. Medium mobility (MOB2): High scores reflect population that have a higher

proportion of medium distance (20-40 minute) commuters and a lower pro-

portion of short distance (less than 10 minutes) commuters

• Hospitalizations (Case Mix)

– Input variables

1. Age-adjusted rate of LV hospitalizations

2. Age-adjusted rate of ACS hospitalizations

13In 37 of the 277 levels of aggregation, only a single component was identified: one with
high scores on non-automobile means of transportation. The component TRAN2 was not
included in the final regression analysis as we did not believe that a sufficient theoretical
relationship existed between populations with a higher proportion of carpoolers and hospital
utilization.
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– Components

1. Case mix (CASE): High scores reflect populations that have higher rates of

both LV and ACS hospitalizations

4.3.9.2 Bivariate regressions Because we were interested in the individual impacts

of Av and Af on hospital utilization, these variables (E2SFCA and INS) were held out

of the PCA analysis. However, we found that E2SFCA was moderately correlated with the

African American population component (BLACK) and INS was moderately correlated with

the SES component. In addition, the case mix component (CASE) was also correlated with

the African American population component (BLACK). Although the moderate correlation

would not invalidate the regression results, we wanted to identify the isolated effects of

these variables. Therefore, we adopted the strategy of regressing the variable of interest

on its associated correlated variable and using the residuals for further analysis (Graham,

2003). In this, the residuals function as the “unexplained” portion of the variable of interest,

allowing both variables to be included in the final model. For example, the variable E2SFCA

becomes the availability of hospital beds not associated with BLACK and is thus recast as

E2SFCA-resid. This process was completed independently at all levels of aggregation when

r was greater than 0.4. The F scores of the overall model and coefficients were tested to

ensure the linear models provided significant (p value < 0.05) results.

4.3.9.3 Test variance inflation factor We calculated the variance inflation factor

(VIF) for the set of independent variables (see Table 10), removing those with a VIF > 2

(Graham, 2003). The variables were removed in a reverse step-wise fashion starting with

those considered the least established predictors of hospital utilization toward the most (from

bottom to top in Table 10). For example, if TRAN1 and SES both had a VIF > 2, then

TRAN1 would be removed first in the stepwise process. As the level of aggregation increased

and the number of observations became smaller, correlation among the independent variables

increased substantially. As a result, we did not perform any subsequent analysis at scales of
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Table 10: Attribute variable set. TM is the variable label in the modified Andersen model
from Eqs. 11-13 and TM2 is the label from the full model specified in Eq. 15.

TM1 TM2 Abbr. Name Description

Dependent variable:

U Ustd SRD St. Rate Difference Difference between the
age standardized hospi-
talization rate and the
state’s age standardized
rate

Independent variables:

N ACSstd, LVstd CASE-resid Case mix ACS and LV compo-
nent not explained by
BLACK

A Ac, Av E2SFCA-resid Hospital Bed Availability E2SFCA not explained
by BLACK

A Af INS-resid Health Insurance INS not explained by
SES

N In, Ed SES Income/education High income and educa-
tion component

P G FEMALE Gender Female population

N Et BLACK Ethnicity/race African American com-
ponent

N Et HISP Ethnicity/race Hispanic component

N Et ASIAN Ethnicity/race Asian component

N Et AIAN Ethnicity/race American Indian or
Alaskan Native compo-
nent

N Et HWPI Ethnicity/race Hawaiian or Pacific Is-
lander component

A M TRAN1 Transportation Non-automobile reliant
component

A M MOB1 High mobility Long commutes to work
component

A M MOB2 Medium mobility Medium commutes to
work component
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aggregation with fewer than 37 clusters/observations.

4.3.10 Regression models

As noted earlier, previous studies of the effects of Roemer’s Law have not incorporated spatial

structure. The main implication of this particular model misspecification is that regression

coefficients may have contained artificially low standard errors, leading to the rejection of the

null hypothesis when it should have been accepted. Initial tests of non-spatial linear models

showed high spatial autocorrelation in the residuals with first-order neighboring values (see

Appendix Figure D.2). To account for this phenomena, we used two sets of spatial error

models (Anselin, 1988), Simultaneous and Conditional Autoregressive Regression models

(SAR and CAR, respectively). Both models use the general form,

Y = βX + µ (20)

where

µ = λWµ+ ε. (21)

In the spatial error model, Y is a vector of SRD observations; X and B are matrices of

independent variables and coefficients, respectively; µ is a vector of autocorrelated residuals;

λ is the autoregressive coefficient; W is a neighborhood weight matrix; and ε is a vector of

non-autocorrelated residuals.

SAR and CAR models differ in their treatment of the spatial pattern in the dependent

variable (Anselin, 2003; Chi and Zhu, 2008). In the SAR model, the spatial pattern is

explained only by the independent variables, simultaneously over all observations. The CAR

model uses the independent variables to explain the spatial pattern of the dependent variable,

but also conditions the value of the dependent variable on its neighboring values (Anselin,

2003). For all regression models, we defined W as first-order neighbors. No prior information

in our data suggested whether the SAR or the CAR model were more appropriate for this

analysis. Additionally, we were unable to locate past research that provided compelling
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justification for the use of one over the other.

A Levene test confirmed heteroscedasticity in the models’ residuals due to differing pop-

ulation sizes among areal units (Rogerson, 2006, see Appendix Figure D.4). Therefore, we

implemented weighted SAR and CAR models (Bivand et al., 2008; Sparks and Sparks, 2010)

using the inverse of the square root of the population size as the weights. This specification

led to a substantial alleviation of the heteroscedasticity in the residuals (see Appendix Figure

D.5).

We constructed the SAR and CAR regression models at each level of data aggregation

produced by the clustering methodology. An automated stepwise-like process was employed

to remove independent variables that were insignificant predictors of hospital utilization rate.

The initial regression model was constructed and the independent variables were tested for

significance (p value < 0.05). If all variables were significant, the process terminated. If

any were insignificant, the variable having the highest p value in the model was removed

and a new model was constructed. This process continued iteratively until only statistically

significant independent variables remained in the final model.

4.4 Results

In total, the SAR and CAR models were constructed at 268 levels of aggregation. In 12 and

31 models for the weighted SAR and CAR models, the spatial parameter (λ) was insignificant

and the model considered invalid. The overall coefficient values of the independent variables

were very similar among the SAR and CAR models over all levels of aggregation; however, the

results of the CAR model contained latent spatial autocorrelation in the residuals at higher

levels of aggregation (see Appendix Figure D.3). Considering these findings, we believe the

CAR model was misspecified at these scales of analysis and report only the results of the

SAR model. Selected standardized coefficient values for the SAR model are found in Figure

26 and Table 11 contains an overview of all coefficient values.

In general, the magnitude of the statistical relationship among the independent variables
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Figure 26: Standardized coefficients for weighted SAR models. LEFT: E2SFCA-
resid (red), CASE-resid (black), INS-resid (green), BLACK (blue), RIGHT: SES (black),
TRAN1 (brown), MOB1 (green), MOB2 (blue), λ (red). All coefficients are significant at a
p value < 0.05.
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Table 11: Coefficient statistics. Total is the number of times the variable is present;
Model is the number of times that the variable was included in the initial model (V IF <
2); positive is the number of time the variable’s coefficient was significant (p value < 0.05)
and positive in the final model; negative is the number of time the variable’s coefficient was
significant (p value < 0.05) and negative in the final model; and insig is the number of times
the variable was insignificant and removed from the model.

weighted SAR model

Variable Total Model positive negative insig

CASE-resid 268 268 268 0 0

E2SFCA-resid 268 268 254 0 14

INS-resid 268 268 252 0 16

FEMALE 268 254 19 0 235

SES1 268 256 256 0 0

SES2 17 17 0 13 4

BLACK 268 268 268 0 0

ASIAN 66 63 44 4 15

AIAN 99 98 0 95 3

HISP 106 103 102 0 1

HWPI 137 137 41 34 62

TRAN1 268 248 219 0 29

TRAN2 238 0 0 0 0

MOB1 268 260 254 0 6

MOB2 268 252 237 0 15

λ 268 268 252 4 12
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and hospital utilization was quite stable across levels of aggregation. In particular, hospital

bed availability (E2SFCA), LV and ACS hospitalization rates (CASE), health insurance

coverage (INS), proportion of African Americans (BLACK), high income and education

(SES), and higher mobility (MOB1 and MOB2) had consistent, positive relationships with

hospital utilization rates across levels of aggregation.

4.5 Discussion

Although Roemer initially seemed somewhat surprised that his statement had been bestowed

the status of a law (Roemer, 1961), our findings provide compelling evidence to support

this claim. We found that a positive, significant relationship exists between hospital bed

availability and hospital utilization rates while controlling for numerous other determinants

of hospital utilization. Additionally, this relationship was consistent across levels of data

aggregation providing support that the origin of the observed effect is not a product of the

scale of analysis.

In previous studies, Alexander et al. (1999) and Clark (1990) found that hospital beds

per capita was not a significant predictor of hospital use rates in Michigan. In Alexander

et al., SES variables were the most significant predictors of hospital utilization, whereas

board certified physicians and registered nurses per hospital bed were significant predictors

in Clark’s study. In contrast, our results illustrate that both SES and bed availability have

significant impacts on hospital utilization rates; however, we did not consider measures

of physicians or nursing as variables in our models. A number of factors cause concern

in the results of these previous studies. First, although Alexander et al. controlled for

temporal autocorrelation in their regression models, neither study acknowledged the spatial

structure of their observations, thus likely misspecifying their regression models. Second, in

both studies, hospital bed availability was calculated using a summation of the beds and

population within the administrative unit boundaries, not incorporating the travel behavior

of patients. Third, both studies were limited to regional-level observation units (58 over
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Michigan’s lower peninsula for Alexander et al. and 53 over Michigan’s lower peninsula

excluding Detroit for Clark) and a single scale of analysis.

As Figure 26 illustrates, in the weighted SAR model, the coefficient for E2SFCA de-

creases slightly as the data are aggregated to a regional-level scale. The most similar level

of aggregation used in our analysis to those employed by Clark and Alexander et al. is 70

clusters (58 observations in the lower peninsula). At this level of aggregation, the weighted

SAR model provides a positive, significant coefficient for hospital bed availability; however,

the λ parameter is insignificant in this model. In a non-spatial weighted OLS regression

with 70 clusters, we find that hospital bed availability is again not a significant predictor of

utilization rates. These results likely stem from the homogenization of the data that occurs

as the level of aggregation moves towards this regional scale of analysis. Interestingly, the

level of aggregation used by Alexander et al. and Clark is very near an observed threshold

where λ and E2SFCA become insignificant in the set of SAR models. In fact, at 88 clusters,

E2SFCA is a positive and significant predictor and the λ parameter is also significant, sug-

gesting that both Alexander et al. and Clark’s studies may have produced different findings

had they used less aggregated data. As a result, the effects of hospital bed availability on

utilization rates may go undetected at regional-level scales. More specifically, our results pro-

vide empirical evidence of a threshold level in the ability to observe the effects of Roemer’s

Law in small area studies.

Recent research has shown the danger in statistical inference garnered from ecological-

based relationships at a single geographic scale of analysis. Wright and Ricketts III (2010),

in a review of Kravet et al. (2008), showed that coefficient values related to the supply of

health care resources may change in significance and even direction as the scale of analysis

changes by way of data aggregation. Their work highlights the problems associated with the

MAUP in health-based research. In our study, the stability of the coefficients across levels

of aggregation suggest that the observed relationships are not highly susceptible to variation

due to the scale in which the data are aggregated to. Although levels of aggregation smaller
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than Zip Codes could not be tested (due to the privatization of the hospitalization data),

the overall statistical strength and invariant nature of the relationship between hospital

bed availability and hospital utilization provide strong evidence that our findings are not a

product of the MAUP.

With support of Roemer’s Law demonstrated, we turn our attention toward the impli-

cations of our research with regards to CON programs. Past research has suggested that

over the past 40 years CON programs have not been successful in controlling health care

costs (Ferrier et al., 2010; Rivers et al., 2007; US Federal Trade Commission, 2004). A re-

cent study by Conover and Sloan (2003) reported that Michigan’s CON program had not

effectively contained hospital costs and recommended that the state abandon regulation of

acute care hospital beds. Whereas the effects of hospital bed availability on health care costs

were not considered, the findings do suggest that efforts to control hospital bed availability

will affect hospital utilization rates. Furthermore, the significant, stable, and positive nature

of the observed relationship indicates that CON-based regulation of hospital bed supply to

levels consistent with the needs of the population is justified.

Although it was not the focus of the analysis, our results also showed a strong, positive

association between a higher proportion of Black and Hispanic populations and higher rates

of hospital utilization. Given that other possible determinants of hospital utilization, SES

and access to primary care (ACS hospitalizations), often associated with contributing to

poorer health in disadvantaged populations were controlled for in our models, these findings

are troubling from a social justice perspective. Although the cause behind this statistical

association was not further explored in the present analysis, recent work by Grady (2006;

2010) and Grady et al. (2008) has demostrated that neighborhood segregation is associated

with health disparities in New York and Michigan. In the present context, higher hospitaliza-

tion rates for areas having a higher percentage of Black residents might point to underlying

health issues that stem from neighborhood effects (Darden et al., 2010; Diez Roux et al.,

2001; Oakes, 2004). Considering that metropolitan Detroit is one of the most segregated
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cities in the USA (Darden et al., 2007) and a large proportion of Michigan’s African Amer-

ican population resides in this region, our findings suggest that a more detailed analysis

exploring the effects of race, segregation, and neighborhoods on hospital utilization rates in

southeast Michigan is warranted.

4.6 Limitations

Our analysis did not consider alternative neighborhood structures in the EB smoothing

process or the spatial regression models. Other neighborhood structures, such as those based

on distance or k -nearest neighbors, require a defined threshold value for determining neighbor

status. Given the large range of data configurations evaluated and their dissimilar geographic

scales (for reference, see Figure 25), specifying a single distance or k threshold would not

provide a consistent spatial structure throughout scales of analysis. Hence, the decision

to employ a first-order neighborhood structure was considered necessary due to the multi-

scalar nature of the research design. For example, if the neighborhood structure was defined

using the 10 nearest neighbors, the neighborhood organization would vary considerably as

the data were aggregated to more regional scales14. The same difficultly would manifest if

a minimum distance threshold was implemented, augmented by the limitations associated

with measuring distances among highly aggregated areal units (Hewko et al., 2002). For the

purposes of our analysis, the first-order neighborhood structure provided a characterization

of spatial structure supported by theory (Tobler, 1970) and flexible enough to accommodate

the multi-scale nature of the research design.

Although the scale effect of the MAUP was explored in our analysis, the zoning effect was

not explicitly examined. However, the effects of zone modification was implicitly addressed

through the use of a non-agglomerative clustering methodology. Specifically, for each itera-

tion in the clustering method, the Zip Code data were clustered, not the clusters from the

previous step in the iteration. Hence, in many cases, regions were essentially “rezoned”, thus

14Specifically, 10 neighbors may approximate first-order neighbors at low levels of aggre-
gation, but 2nd or 3rd order neighbors at higher levels of aggregation.
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84 clusters 79 clusters

Figure 27: Example of rezoned region. In the 84 cluster solution (left), the region
contains 6 clusters. In the 79 cluster solution (right), the same region contains 5 non-
agglomerative clusters.

providing an implied examination of the zoning effect of the MAUP. To illustrate this point,

Figure 27 contains an example of a small region that was rezoned rather than agglomerated

as the level of aggregation changed. Given this limitation, we recommend that further con-

sideration of the zoning effect of the MAUP to be included in future research of Roemer’s

Law.

4.7 Conclusions

This research found a positive, significant association between the hospital bed availability

and hospital utilization rates while controlling for other determinants of hospitalization. The

research design was implemented in a explicitly spatial context, incorporating the spatial and

aspatial aspects of health care access and utilization along with the spatial structure of their

relationship. Thus, we have provided compelling empirical evidence to support Roemer’s

Law.
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Recent hospital construction and expansion (bypassing the CON program through leg-

islative action) and a proposed transfer of beds into areas of the state without a demonstrated

need for additional hospital beds highlight the importance of our findings in Michigan. Na-

tionally, as health care systems and hospitals adapt to increasing health care costs, a changing

economic climate, and provisions contained within the Affordable Care Act, gaining a clearer

understanding of the effects of hospital bed availability on hospital utilization is paramount.

Whereas the findings of this study address the research question originally posed, they

also elicit a number of new questions regarding health care policy and health services research.

Perhaps, the most important question is, “what are the causal mechanisms that lead to

higher hospitalization rates in areas with higher hospital bed availability?”. While some

have suggested that the answer lies in the clinical decision-making process of physicians

(Mulley, 2009), others have suggested that it may be the hospitals themselves (Shwartz

et al., 2011) and the question remains unanswered.
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Conclusions

5.1 Overall contributions

This dissertation contributes significant new knowledge to the field of health services research.

The specific salient outcomes include: detailing both the theoretical and applied differences

between the raster and network data models for estimating travel time among locations,

offering a methodology that simultaneously clusters observations based on comprehensive

patterns of utilization and geographic location, and producing compelling, robust evidence

that hospital availability has a positive, significant relationship with hospital utilization rates.

Study #1 explores the impacts of data model choice on travel time estimates. A hierar-

chical classification system is presented for assigning speed limits to roads. To explore the

suitability of the assigned speed limits, travel time estimates are compared to those from

Google Maps, an independent data source. Subsequently, populations and areas with lim-

ited geographic access to hospitals are identified using the raster and network data models.

The regions with limited access were generally similar in shape and configuration. However,

the analysis showed that the raster-based method produced larger overall regions than the

network-based method, leading to a greater number of people identified as having limited

areas. The major theoretical differences between the underlying data models were linked to

the observed differences in an applied case study. Consequently, the network data model is

suggested as preferable for estimating vehicular travel time if the topological relationships

governing real-world travel are a priority in study design; these relationships are upheld

within the data model itself. When estimating travel time for non-vehicular travel modes,

in scenarios where travel is not restricted to roadways, and in cases where each location

must be explicitly measured, the raster data model is more suitable given the unconstrained

nature of movement in the data model.

Study #2 presents a clustering methodology for grouping geographically proximal hos-

pitals with similar community utilization patterns. The methodology was specifically de-

veloped to create Hospital Groups for Michigan’s CON Program. Therefore, the scientific
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and political concerns encountered during the methodology’s development are detailed in

the study. The clustering methodology employs a K-means + Ward’s clustering algorithm,

simultaneously grouping hospitals based on their overall patient utilization patterns and ge-

ographic location. All possible values for the number of Hospital Groups (k) are evaluated

and a hueristic is provided to select the final configuration. The methodology was designed

to be repeatable, sustainable, and actionable. However, the clustering methodology can

be employed to group any type of spatial observations having multiple attributes as it was

built on first principles of clustering analysis. The methodology can be easily integrated for

use with areal units to create small areas (or regions). In this, the clustering methodology

provides a substantial theoretical advantage over the most oft-employed methods to create

small areas such that it integrates overall patterns of health care utilization and geographic

location, rather than relying on simple characterizations of utilization or relying solely on

geographic location.

The final study (Study #3) in this dissertation examines the effects of Roemer’s Law,

a simple but powerful statement that proposes that hospital utilization will increase if the

supply of hospital beds is increased. This study provides several key innovative and improved

approaches to the study of health care access and utilization. The research design improves

upon previous examinations of Roemer’s Law by incorporating spatial factors in the analysis;

the spatial nature of both utilization and access are considered, while also accounting for the

spatial structure of their relationship. Secondly, the conceptual model of access is extended

past the traditional barriers only model in which access is characterized only by the presence

of factors limiting service utilization. The conceptual model is not in itself unique. CON

programs are built around this theory. Yet, most applied access-related studies fail to account

for this phenomenon. Third, the research design incorporates a novel, multi-scalar approach,

exploring the stability of the statistical association between hospital bed availability and

utilization rates. The multi-scalar approach allows for a richer understanding of the effects

of Roemer’s Law, while also providing a general framework for spatial regression analysis
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with areal data.

The findings from Study #3 showed strong empirical evidence of the effects of Roemer’s

Law in Michigan. In a state-level study including the entire system of hospitals and popu-

lation (including over 160 hospitals, over 1 million patient admissions, and nearly 10 million

residents), the availability of hospital beds was found to have a significant, positive effect

on hospital utilization rates while controlling for other determinants of variation in utiliza-

tion rates. Additionally, this relationship proved to be highly stable across geographic scales.

These results suggest that the effects of Roemer’s Law are robust and due to health processes

unrelated to the scale of analysis.

The main outcomes of the individual studies can be separated into those relating to

advancement in health services research and those relating to matters of public policy. From

a public policy perspective, this work offers updated methodologies to assist CON programs

in their assessment and regulation of health care access. Study #1 provides a step-by-step

guide for implementing the network-based method of identifying Limited Access Areas in

Michigan. In addition, this study offers detailed descriptions of the theoretical differences

and applied implications of the data models.

The clustering methodology detailed in Study #2 is very near final approval into Michi-

gan’s Hospital Bed Standards. The new methodology improves upon the previous method-

ology, which had become unusable given changes in hospital utilization patterns over time.

The most important policy-related implication of the new methodology is that it provides

an acceptable Hospital Group solution, thus removing the need for an expert committee to

modify the automated results. Thus, from a public policy perspective, the new clustering

methodology provides a greater level of objectivity.

Study #3 finds strong evidence of the effects of Roemer’s Law, thus providing empirical

support that areas with greater hospital bed availability have greater hospital utilization

rates. Hence, this work provides empirical support for continued CON-based regulation of

Michigan’s hospital bed supply. Study #3 also showed that regions with a higher proportion
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of Black residents had higher hospital utilization rates, even while controlling for other

determinants of increased rates. This specific finding raises larger concerns about public

health for disadvantaged populations in Michigan.

At a macro-level, this dissertation has provided a broadly-ranging exploration of access

to hospitals and hospital utilization within a regulated health care system. The topic was

approached from an explicitly spatial perspective, exposing the importance of location, ge-

ography, and distance-related factors in health services research. The research has delivered

tangible research outcomes while also providing methodological advancements with the po-

tential to improve the effectiveness of CON-based assessment and regulation of health care

services. Thus, when viewed in its entirety, this dissertation provides key insights into the

relationship between access and utilization, the study of access and utilization, and the

methods used by CON programs in their mediation of health care resources.

5.2 Future research

5.2.1 Geographic accessibility

One of the most overlooked and under-reported aspects of research of geographic accessibility

is the uncertainty present in population-level travel time estimates. As was discussed in

Study #1, the actual travel time among locations is governed by a large number of factors

including, but not limited to: individual driving characteristics, traffic volume, and the

specific route chosen. Given these sources of variation, population-level models of travel time

can only aim to provide generalized estimates of travel time among locations. However, the

accuracy of these estimates has been largely ignored in previous health services accessibility

research. The most pertinent sources of uncertainty uncovered in Study #1 are 1) the

accuracy of travel speeds assigned to the roads data and 2) the completeness and/or accuracy

of the roads data. The research approach in Study #1 provides an initial step toward

addressing these issues. By comparing network-derived travel time estimates with estimates

from Google Maps, the custom-built network dataset is evaluated against an independently
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derived dataset. Given Google’s lack of transparency regarding the input data and methods

used for their travel time estimates, this approach cannot provide quantitative estimates of

the accuracy of the network or the uncertainty present in the model.

The second source of uncertainty in population travel time estimates arises from the

completeness and/or the positional accuracy of the roads data and how they affect travel

time estimates. In the specific state-level case study, there were over 750,000 line segments

(network edges) resulting in over 500,000 intersections (network nodes). Although these data

are the most up-to-date available and are provided with metadata that include both a short

description of the methods used to gather the data and the sources of the roads data, no

method currently exists to evaluate the completeness or accuracy of the data themselves.

This issue may be especially salient in Michigan, where a large number of private roads15 are

found. MDOT could not provide a quantitative estimate of the accuracy or completeness

of the dataset when contacted directly. Given recent research illustrating the importance of

roads data in health-based access studies (see Frizzelle et al., 2009), further exploration into

methods that would provide quantitative estimates of the uncertainty present in large roads

databases or methods to improve their accuracy is warranted.

Perhaps the most important questions raised in the geographic access study are those

regarding the appropriateness and utility of Michigan’s definition of limited access areas.

First, the 30 minute cut-off value employed in identifying limited access areas is likely out-

dated. Although a number of studies have invoked 30 minutes as an appropriate travel time

to discern those with geographic access from those without, like Roemer’s Law, a surpris-

ingly small amount of empirical research exists to justify this particular choice. The most

cited work, that of Bosanac et al. (1976), is over 30 years old. Both the ability to travel

and the expectation of reasonable travel to obtain health care have likely changed since since

that research. As reported, for Michigan in 2010, roughly 20% of inpatient days were spent

15Private roads are those not maintained by local, regional, or state government agencies.
Thus, they are not official roads.
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in hospitals more than 30 miles from the patients’ residences. Second, as was discussed in

Study #3, a more comprehensive framework of spatial accessibility includes not only dis-

tance, but also supply and demand. Thus, although travel time provides a simple, easy to

understand measure of geographic access, this metric alone does not incorporate the other

factors known to influence spatial accessibility and is insufficient in identifying those having

limited access. These findings call into question both the appropriateness of 30 minutes as

a cut-off value and use of distance alone to determine access status. Importantly, I have

exposed the need for future research that incorporates current patient travel patterns and

expectations of health service accessibility to provide a more complete characterization of

what constitutes “limited” geographic access.

5.2.2 Clustering health care observations

John Griffith, one of the architects of the previous clustering methodology employed by

Michigan’s CON program, delivered a positive review of the new clustering methodology

presented in Study #2, stating that it was an important new solution and an advance over

prior work. However, the selection of the final number of hospital groups in the clustering

methodology remains essentially heuristic. Important research questions remain unanswered,

specifically 1) “What is the right number of clusters?” and 2) “What is the proper balance

between objective, scientific analysis and political considerations in health policy?” On the

surface, the two questions may appear highly dissimilar; however, throughout the develop-

ment process of the clustering methodology, they were revealed to be unequivocally linked.

Despite the large amount of literature on clustering theory, methods, and uses, a recent

review from the clustering literature states (Jain, 2010, p. 654)16:

The most critical choice is K. While no perfect mathematical criterion exists,

a number of heuristics are available for choosing K. Typically, K-means is run

independently for different values of K and the partition that appears the most

16In Jain (2010), K is the number of clusters.
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meaningful to the domain expert is selected.

Therefore, given the current status of clustering methodologies, the first question above

cannot be authoritatively answered. As a result, the first question becomes “What is the

right number of clusters for the particular application?” which directly corresponds to the

second. Professor Griffith, given his longtime research focus on policy-based issues in health

care (e.g., Griffith, 1972; Griffith et al., 1981), seems to have understood this limitation in the

process of identifying the number of Hospital Groups, thus viewing the heuristic employed in

the clustering methodology as a step toward objectivity in a highly politicized process, not

a limitation of the research. Yet, although a politically acceptable solution to this problem

was delivered, further research efforts towards the statistical evaluation of cluster solutions

would likely provide valuable insights toward identifying the right number of clusters in a

dataset, thus marginalizing the subjectivity introduced by employing a domain expert (or

set of experts) for this task.

In the case of Michigan’s Hospital Groups, further evaluation of the state’s proposed

Hospital Group configuration may also benefit policy makers by providing a quantitative

estimate of how the number of Hospital Groups affects predictions of future bed demand.

As the results of Study #3 illustrated, the relationship between hospital utilization rates

and hospital bed availability became undetectable at regional-level scales. Specifically, a

threshold level was discovered near 90 observation units; further aggregation into fewer

observation units yielded regression models with insignificant predictor variables. Because

the hospitals in proposed Hospital Groups are more highly aggregated than the previous

configuration (35 vs. 64 groups) and both fall under the identified threshold, the most

apparent concern is that localized unmet hospital bed demand and/or excess capacity will

be masked by variation within the spatially larger groups. As a result, regions with an unmet

demand may go unnoticed. Furthermore, the threshold uncovered in Study #3 casts doubt

upon the use of the Hospital Groups as a unit of analysis for exploring other health-related

relationships in Michigan.
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Study #2 also invoked limitations in the current methods used to create small areas in

health services research. Small areas are created by aggregating individual areal observa-

tions into groups or regions. Studies that explore variations in health care spending, health

outcomes, and health care utilization have been present and forefront in the health services

literature since Wennberg and Gittlesohn’s (1973) work exploring variations in utilization

rates in Maine. However, despite the nearly 40 years that have passed since this seminal pub-

lication, their relatively simple method to create the small areas remains oft-used in current

research. This method assigns the initial observations to groups (small areas) using only a

single measure of hospital utilization, the plurality of visits (e.g., Unit A would be assigned

to Hospital 1’s group if more residents visited that facility than any other, regardless of the

actual proportion). While this method performs well in regions where facilities are well dis-

tributed, it often requires manual adjustment of the small area membership in regions with

multiple facilities. Hence, the clustering methodology developed in Study #2 provides an

important advance in improving the creation of small areas. However, given that many small

area studies focus on exploring differences among facilities, this methodology only delivers

the first step in this process. To link the clustered regions to specific hospitals or groups of

hospitals would require an additional step not explored in Study #2. One possible approach

for this task is to consider attributes of both the facilities and population units in the cluster

formation method, as suggested by Gilmour (2010).

5.2.3 Roemer’s Law

The final study found evidence of a positive association between hospital bed availability

and hospital utilization rates while controlling for other determinants of hospital utilization.

Although this outcome does provide support for Roemer’s Law, it begs the question, “What

causes Roemer’s Law?” Given the ecological nature of this research, an attempt to assign

causation based on the findings is not justified. Hence, the logical next step to better

understand the implications of Roemer’s Law is to explore the causal factors that produce

higher utilization rates in areas with greater hospital bed availability. Although Wennberg
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(2005) points to clinical decision-making as a possible cause of Roemer’s Law, the complex

interaction of the actors involved in hospitalization (i.e., doctors, hospitals, and patients),

in combination with the socio-demographic, environmental, and stochastic nature of ill-

health events that lead to inpatient hospitalization, suggest that this explanation may be

inadequate. The complexity of the process poses significant challenges to future research

endeavors. Given the high costs of hospitalizations and strong evidence of Roemer’s Law

demonstrated by this study, efforts to understand the underlying mechanisms are clearly

warranted.

The demonstrated effect of Roemer’s Law in Study #3 suggests that efforts to mediate

the availability of hospital beds will likely impact hospital utilization rates. These results

lend support for continued CON regulation of hospital bed availability under the assump-

tions that 1) overutilization is present in areas with high hospital bed availability and 2)

curbing overutilization of hospital services will assist in lowering overall health care costs.

This dissertation provides the initial step toward evaluating the first assumption. A logi-

cal continuation of the work would be to isolate the effects of hospital bed availability on

utilization rates and identify areas where high availability leads to higher than expected

utilization. Additionally, exploring temporal changes in utilization rates as hospitals have

opened, closed, and/or expanded their capacity would also likely provide insights towards

identifying areas in which overutilization may be present, along with a more detailed under-

standing of the relationship between availability and utilization in these areas. Furthermore,

similar inpatient hospitalization data from a state without CON regulation would provide

the opportunity to build a natural experiment exploring whether the presence of a CON

program had an impact on this relationship.

There has been little recent research examining the effectiveness of CON programs in

controlling health care costs. The lack of research likely stems from the variation in scope

and size among the state-based CON programs and the limited availability of information
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regarding the specifics of CON laws and oversight (Rivers et al., 2007)17. This dissertation

corroborates Rivers et al.’s assertion as searches for detailed information regarding nearby

states’ CON programs or recent research exploring specific CON programs were largely

unsuccessful.

The small number of recent CON-related studies provided conflicting results regarding

the programs’ effectiveness. A general review determined that the programs have not reached

their goal of health care cost-containment (Banks et al., 1999). Conover and Sloan (1998)

found that states that had repealed their CON laws did not experience an increase in health

care costs per capita. Further research found that CON regulation may actually lead to

higher health care costs (Rivers et al., 2007) and lower levels of hospital efficiency (Grander-

son, 2011) by obstructing the potential for competition among hospitals. In an example

of conflicting research, Ferrier et al. (2010) showed that states with CON programs have

higher levels of hospital efficiency, thus improving resource allocation and lowering social

costs. Additionally, recent work by Hellinger (2009) demonstrated that states with CON

programs have fewer hospital beds per capita, which is associated with lower overall health

care costs (however, the CON variable was not itself a significant predictor of health care

costs in the model).

CON-based research papers appear to have declined in number over the last decade.

Given that the general findings show that CON programs have failed to reach their aims of

health care cost containment, it begs the question of why a majority of states that continue

to employ them. Although efforts towards easing CON regulation or deregulation altogether

have increased in recent years (see Romano, 2003; Robeznieks, 2008), CON programs persist.

Perhaps this is a reflection of the duality in the overall goals of many CON programs.

Outright removal of CON laws would not only remove the program tasked with regulating

health services expansion, but also the program that attempts to provide equitable access

17Finn (2007) provides a historical overview of CON at a national level and a detailed
examination of Michigan’s CON program.
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to health services for the population. As Rivers et al. (2007) suggest, tasking both goals to

the same program is not practical. In Michigan, this sentiment was offered prior to Rivers et

al.’s research by Conover and Sloan (2003) in their assessment of the state’s CON program.

This dissertation found that hospital bed availability is positively related with hospital

utilization rates, thus providing support for the continued regulation of hospital bed sup-

ply. However, further identifying areas with significant over- or underutilization of hospital

services in the state would provide a better understanding of the effectiveness of Michigan’s

CON program in mediating hospital bed supply to meet population need. This work would

provide the necessary foundation to a larger exploration of the effects of the state’s CON

program on health care costs.

5.2.4 Spatial structure

Study #3 examined the relationship between access and utilization over a broad geographic

area containing large variations in demographic structure, socio-economic status, and ur-

ban/rural settings. Given the variability among areas, further explorations of specific regions

of the state may offer more detailed information regarding the significance and magnitude

of this relationship. The CAR and SAR regression models, although accounting for spatial

structure, consider the magnitude of the observed relationships among variables to be sta-

tionary (i.e., a single coefficient describes the relationship over the entire study area). Tech-

niques such as Geographically Weighted Regression (GWR) provide the ability to identify

nonstationarity in regression-based coefficients, allowing spatial structure in the observed re-

lationships themselves to be identified (Brunsdon et al., 1996). GWR could be implemented

to identify regional characteristics of the drivers of hospital utilization, thus providing an

initial step toward a more detailed examination of the determinants of hospital utilization

within specific regions.
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5.2.5 Health insurance

In Study #3, health insurance coverage was considered an “aspatial” measure of access to

health care and only contained the percent of the population having coverage. No difference

was made among public or private insurance, type of insurance (e.g., health maintenance

organization (HMO), preferred provider organization(PPO)), or level of coverage. Although

more detailed data regarding the nature of health insurance coverage would be useful, a

more interesting avenue to explore is the potential for the “type” of insurance to impact

utilization patterns. Because HMOs and PPOs offer incentives for staying within a specific

network of providers, the resultant utilization patterns of the population may reflect the

geographical distribution of providers within their specific network not those expected based

on travel time or hospital bed availability. Additionally, differences in utilization patterns

may manifest between those with public insurance (i.e., Medicare and Medicaid) and those

having private insurance, as well as differences in utilization rates among public and private

insurance holders. Examining the the effects of health insurance coverage on spatial pat-

terns of utilization may provide important insights into understanding the travel behavior

of patients, while also potentially offering a better understanding of how redistribution of

hospital bed availability may impact hospital utilization rates.

5.2.6 Spatial accessibility

The Enhanced 2-Step Floating Catchment Area method was employed to describe the avail-

ability and accessibility of hospital beds in Study #3. The creation of improved metrics to

describe spatial accessibility is an active area of health services research; FCA metrics are a

relatively recent development with improvements and modifications being offered regularly.

An updated method, the 3 Step Floating Catchment Area (3SFCA) was recently proposed

by Wan et al. (2012), introducing potential competition among facilities into the calcula-

tion of spatial accessibility. However, preliminary experiments conducted for Study #3 (not

presented in manuscript) suggest that the 3SFCA underestimates potential demand, thus
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providing artificially inflated levels of spatial accessibility in areas with multiple nearby facil-

ities. From a theoretical perspective, the inclusion of facility competition into an FCA-based

metric has the potential to provide a more accurate and comprehensive characterization of

availability and accessibility. Yet, the initial experiments suggest that the 3SFCA has not

accomplished this goal. A better understanding of the relationship among supply, demand,

and potential competition is necessary to provide an applied FCA metric that incorporates

these elements simultaneously. Further attention is warranted given the widespread use of

these metrics in current health services research.

5.2.7 Access and utilization in a regulated health care system

Within the last five years in Michigan, two hospitals were opened in areas without a demon-

strated need for additional hospital beds. Approval for these facilities did not come from the

state CON program, but through specially-drafted legislation subverting the CON process

(Greene, 2012). More recently, another Michigan conglomerate hospital system filed a CON

application to transfer a large number of licensed beds into an area of the state without a

demonstrated need for additional hospital beds (Hopkins, 2012). If the CON application

for the current request is denied, special legislative action to approve the transfer appears

highly likely (Greene, 2012). Thus, control over the distribution of hospital beds in Michigan

will again be removed from the state’s CON program. In addition, the redistribution of the

state’s hospital bed supply will not follow demonstrated patterns of population need. Al-

though these are specific examples from the particular study area explored in this research,

they are a microcosm of the larger changes occurring in the US health care system. As a

result of rising health care costs and a shift toward profit-maximizing behavior (Kuttner,

2008), the US health care system continues to undergo significant changes, many of which

impact health care delivery and population access.

The Patient Protection Act of 2010 attempts to address “affordability” by increasing

access to health insurance for the currently uninsured and underinsured populations (Schoen

et al., 2011), limiting insurance companies’ abilities to deny coverage, and redistributing
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the burden of public health (and costs) onto all stakeholders involved (i.e., health care

practitioners, health insurance companies, and health care consumers). Increases in health

insurance coverage, along with a greying US population due to increased life expectancies and

the aging of the baby-boom generation, have the potential to significantly raise the future

demand for health care services (Hofer et al., 2011; Strunk et al., 2006). The potential burden

placed on the US health care system due to increased health insurance access and population

demand for services, in conjunction with the changes resulting from a shifting economic

environment, highlight one piece of the uncertainty existing for the future public health

of US citizens. The poor current performance of the US health care system in numerous

measures of public health outcomes (Murray and Frenk, 2010) only offers further concern.

By examining the meta-relationship between health care access and utilization, this dis-

sertation has provided important findings while also supplying a number of research pathways

for future studies in health geography. This work did not consider the relationship among

access, utilization, and public health outcomes. Thus, at a macro level, the most important

question invoked by this research, but yet to be answered is, “How do access and utilization

affect public health outcomes?” Given the recent changes within the US health care system

and those likely forthcoming, answering this question is paramount to understanding how

changes in health care access and utilization will affect population health in the US.
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Appendix A
R code to implement the Thomas Methodology

#########################################################################

#### ####

#### Citation information (code) ####

#### Delamater PL, Shortridge AM, and JP Messina, Regional health ####

#### care planning: a methodology to cluster facilities using ####

#### community utilization patterns. BMC Health Services Research ####

#### ####

#### Citation information (original methodology) ####

#### Thomas JW, Griffith JR, and P Durance, Defining hospital ####

#### clusters and associated service communities in metropolitan ####

#### areas, Socio-Economic Planning Sciences 1981, 15(2):45-51 ####

#### ####

#### Max Relevance Algorithm Clustering Algorithm ####

#### ####

#### Requires: Patient visits table (zip -> hospital) ####

#### Zip population data ####

#### Hospital info table ####

#### Hospital zip code table ####

#### ####

#### Interpreted and converted to R code by Paul Delamater and ####

#### Ashton Shortridge during summer, 2011 for the Michigan ####

#### Hospital Bed Standard Advisory Committee working group. ####

#### Funding for this research was provided by the Michigan ####

#### Department of Community Health. ####

#### ####

#########################################################################

#########################################################################

## ##

## Get input data ##

## ##

#########################################################################

###########################

## Read patient visits data

###########################

#### Note: pv is a table with hospitals in rows and zip codes
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#### in columns. Hospital identifier column should be

#### labeled "HOSP_ID". Zip code column lables should

#### be the five digit zip code (e.g., "48823"). Table

#### entries are the number of hospitalizations from

#### residents of each zip code at each hospital.

# Load data

pv <- read.csv("inputdata/hosp.zip.visits.mtx.csv")

# Ensure HOSP_ID in character format

pv$HOSP_ID <- as.character(pv$HOSP_ID)

# Remove characters from column names

# R adds an "X" to the zip code number

# Assumes all zip codes are 5 digits

names(pv)[2:ncol(pv)] <- substr(as.character(names(pv)[2:ncol(pv)]), 2, 6)

############################################################

## Convert number of visits to proportions (Relevance Index)

############################################################

# Define variable for last zip code column

n.zip <- ncol(pv)

# Sum hospital visits for each zip code

# Assumes HOSP_ID is first column

zip.visits <- colSums(pv[,2:n.zip])

# Divide each entry by summed visits to create Rij values

pv[,2:n.zip] <- pv[,2:n.zip] / rep(zip.visits, each = nrow(pv))

################################

## Read hospital attributes data

################################

#### Note: hosp.info is a table with hospitals in rows and

#### attributes in columns. In this case, the column

#### that corresponds to the patient records is "MIDB".

# Load data

hosp.info <- read.csv("inputdata/hospitals.csv")

#### Note: hosp.HAU is a table with hospitals in rows and

#### attributes in columns. In this case, the column

#### that corresponds to the patient records is "MIDB".
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#### Home Areal Unit is "ZIP".

# Load home areal unit (zip code) of each hospital

hosp.HAU <- read.csv("inputdata/hospital.zipcodes.csv")

# Attach to home areal unit to patient records

pv <- merge(pv, hosp.HAU, by.x="HOSP_ID", by.y="MIDB", all.x=TRUE)

# Change column name

names(pv)[ncol(pv)] <- "HAU"

# Add column with Rij (Relevance Index) of each hospital in

# its own home areal unit

for (h in 1:nrow(pv)) pv$RiHAU[h] <- pv[h,which(names(pv)==pv$HAU[h])]

###############################

## Get zip code population data

###############################

#### Note: zip pop is a table with the zip code name in a

#### column, "ZIP" and the population of the zip code

#### in a column, "POP"

# Load data

zip.pop <- read.csv("inputdata/zipcode.population.csv")

#########################################################################

## ##

## Code to implement Thomas Methodology ##

## ##

#########################################################################

#######################################

## Prepare data and create data holders

#######################################

# Add column with initial alpha values (all are set at 0.02)

# In an update of this code, initial alpha values are set at 0.05

pv$alpha <- 0.02

# Define initial values for alpha variables

alpha.1 <- 0.02

alpha.2 <- 0.125

130



# Add binary holder column for individuals / groups

pv$Group <- 0

# Add column to hold hospital names after clustering

pv$GrNames <- pv$HOSP_ID

####################################################

## Calculate population weighted relevence index, Rj

####################################################

#### Note: Pi = population of areal unit i

#### Rij = relevance index values for areal unit i

#### to hospital j

# Calculate PiRij values (Pi * Rij)

PiRij.matrix <- pv

PiRij.matrix[,2:n.zip] <- PiRij.matrix[,2:n.zip] * rep(zip.pop$POP, each

= nrow(PiRij.matrix))

# Create holder for Rj values

Rj.all <- NULL

# Create holder for Ij zip codes

Ij.matrix <- pv

Ij.matrix[,2:n.zip] <- 0

# Calculate Rj for each hospital

for (j in 1:nrow(pv)) {

# Get hospital j’s Ri values

hosp.j <- pv[j,2:n.zip]

#### Note: From Thomas et al., Ij = set of areal units

#### for which individual relevance values of

#### hospital j exceeds or equals alpha

# Find zip codes with Rij greater than alpha

Ij.list <- which(hosp.j >= alpha.1)+1

# Write zip codes greater than alpha to Ij holder

Ij.matrix[j,c(Ij.list)] <- 1

# If no areal units in Ij, Rj value is zero

if (length(Ij.list) == 0) {
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# Write hospital ID and 0 to Rj holder

Rj.all <- rbind(Rj.all, cbind(as.character(pv$HOSP_ID[j]), 0))

} else {

# Get list of zip code names

Ij.zips <- names(pv)[Ij.list]

# Get numerator value for Rj

PiRij <- sum(PiRij.matrix[j,Ij.list])

# Get denominator value for Rj (total zip code population)

Pi <- sum(zip.pop$POP[c(Ij.list-1)])

#### Note: Rj = sum(Pi(dij/Di)) / sum(Pi)

#### where dij/Di is Relevance Index

# Calculate Rj (population weighted relevance index)

Rj <- PiRij / Pi

# Put in holder

Rj.all <- rbind(Rj.all, cbind(as.character(pv$HOSP_ID[j]), Rj))

}

}

# Make Rj.all into dataframe

Rj.all <- as.data.frame(Rj.all)

# Rename columns in Rj.all

names(Rj.all) <- c("HOSP_ID", "Rj")

# Convert from factor to numeric and character

Rj.all$Rj <- as.numeric(levels(Rj.all$Rj)[Rj.all$Rj])

Rj.all$HOSP_ID <- as.character(Rj.all$HOSP_ID)

###################################################

## Remove hospitals with Rj of 0 from analysis

## These hospitals are ungroupable using the method

###################################################

# Locate hospitals with Rj = 0

zeros <- which(Rj.all$Rj == 0)
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# Get hospital ID

Ungroupable.hospitals <- Rj.all[c(zeros),1]

# Remove hospitals from matrices

pv <- pv[-c(zeros),]

Rj.all <- Rj.all[-c(zeros),]

Ij.matrix <- Ij.matrix[-c(zeros),]

PiRij.matrix <- PiRij.matrix[-c(zeros),]

# Write ungroupable hospitals info to table

Ungroupable.hospitals.info <- hosp.info[hosp.info$MIDB %in%

Ungroupable.hospitals, ]

###########################################################

## Start iterative process part of the code and explicitly

## state which method will be used to STOP the process

###########################################################

# Create holder for grouped hospitals

Grouped.Hospitals <- NULL

# Create holder for temporary Rj.min values

Rj.temp <- NULL

#### Note: From Thomas et al., The procedure terminates

#### when one of three conditions occurs: (1) all

#### hospitals have been aggregated into a single

#### large cluster; (2) a user-specified number of

#### iterations has been completed; or (3) all

#### identified clusters are stable, i.e., no

#### cluster serves more than alpha of the patients

#### in the home areal unit of any other cluster.

####

#### These lines will make the iterative process stop

#### at a specified number of Subareas, similar to

#### option number (2) above. To choose this option

#### uncomment the following lines and comment out,

#### "run <- 1" and "while (run == 1) {"

# Select desired number of Subareas

# n.subareas <- 64

# Start grouping hospitals

# while (nrow(pv) > n.subareas) {
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#### These lines will make the iterative process stop

#### when no hospital/group has greater than alpha

#### of any other hospitals/group’s home area (option

#### number (3) above). These line also stops code if

#### all hospitals are aggregated into one large

#### group (option number (1) above).

# Create variable used in the iterative process for stopping

run <- 1

# Start grouping hospitals

while (run == 1) {

################################

## Find hospital with minimum Rj

################################

#### Note: Checks for hospitals in a temporary holder. This

#### holder is defined below. It is used in case any

#### hospital is the min Rj, but does not have another

#### hospital to group with yet

if (length(Rj.temp) == 0) {

# Locate hospital with minimum Rj value

which.hosps <- which(Rj.all$Rj == min(Rj.all$Rj))

# Get number of "minimum" Rj hosps

n.min.hosps <- length(which.hosps)

} else {

# Locate hospital with minimum Rj value (minus temp)

which.hosps <- which(Rj.all$Rj == min(Rj.all$Rj[-Rj.temp]))

# Get number of "minimum" Rj hosps to determine if ties exist

n.min.hosps <- length(which.hosps)

}

# If a tie exists, randomly select which of the hospitals is

# is selected for aggregation. Otherwise min.hosp is used

if (n.min.hosps > 1) {
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# Create random variable using number of tied hospitals

min.hosp <- round((n.min.hosps-1)*runif(1))+1

# Select hosptial using random variable

min.hosp <- which.hosps[min.hosp]

} else {

# Use the single hospital

min.hosp <- which.hosps

}

# Subset minimum hospital from Rj.all

Rj.min <- Rj.all[min.hosp,]

# Print to screen to display which hospital is selected

print(paste("Rj.min = ", Rj.min[2], ", HOSP_ID = ", Rj.min[1],

sep=""))

# Get Rj.min’s home areal unit (column number!)

Rj.min.Ij <- which(names(pv) == pv$HAU[min.hosp])

# Print Rj.min’s home areal unit and RI

print(paste("Rj.min HAU = ", pv$HAU[min.hosp], ", RI = ",

pv[min.hosp, Rj.min.Ij], sep=""))

################################################################

## Find hospital/cluster with max RI in Rj min’s home areal unit

################################################################

#### Note: From Thomas et al., the hospital with the smallest

#### Rj is identified and grouped to form a cluster with

#### the hospital having the greatest individual

#### relevance in hospital j’s home areal unit.

# Find max RI in Rj min’s home areal unit

Rj.max.Rj.min <- which(pv[,Rj.min.Ij] == max(pv[,Rj.min.Ij]))

# If statement in case it selects itself

# e.g., no hospital or cluster has higher Ri in minimum’s

# home area

if (Rj.max.Rj.min == min.hosp) {

# Pick the next highest after removing min hospital
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next.Rj.max <- max(pv[-min.hosp,Rj.min.Ij])

Rj.max.Rj.min <- which(pv[,Rj.min.Ij] == next.Rj.max)

}

# In case of ties for Rj.max select randomly from tied hospitals

if (length(Rj.max.Rj.min) > 1) {

# Generate random number

rand <- round((length(Rj.max.Rj.min)-1)*runif(1))+1

# Use random number to select

Rj.max.Rj.min <- Rj.max.Rj.min[rand]

}

# Get RI of Rj.max

alpha.Rj.max <- pv[Rj.max.Rj.min, Rj.min.Ij]

# Print alpha value and HOSP ID to screen

print(paste("alpha.Rj.max = ", alpha.Rj.max, ", HOSP_ID = ",

pv$HOSP_ID[Rj.max.Rj.min], sep=""))

################################################################

## Big logic part of code. Determines whether to group hospitals

## or move to next minimum hospital in list

################################################################

#### Note: From Thomas et al., ...the hospital with the smallest

#### Rj is identified and grouped to form a cluster with

#### the hospital having the greatest individual relevance

#### in hospital j’s home areal unit.

####

#### We assume that there is a ’cut-off’ value in this

#### step based on the text in termination option number

#### (3), i.e., no cluster serves more than alpha of the

#### patients in the home areal unit of any other cluster.

# If the Rj value in Rj.min’s home area is larger than the

# alpha cutoff of the hospital or cluster, then cluster

if (alpha.Rj.max >= pv$alpha[Rj.max.Rj.min]) {

#########################################

## Update RI values to reflect clustering

#########################################
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# Sum RI values for clustered hospitals

pv[Rj.max.Rj.min,2:n.zip] <- pv[Rj.max.Rj.min,2:n.zip] +

pv[min.hosp,2:n.zip]

# Update alpha score and group columns

pv$alpha[Rj.max.Rj.min] <- alpha.2

pv$Group[Rj.max.Rj.min] <- 1

pv$GrNames[Rj.max.Rj.min] <- paste(pv$GrNames[Rj.max.Rj.min],

pv$GrNames[min.hosp], sep=",")

#####################################

## Update home areal unit for cluster

#####################################

#### Note: From Thomas et al., When a previously formed cluster

#### j* is identified for further clustering, its home

#### areal unit is assumed to be the home areal unit of

#### the hospital (member of j*) having the highest Rij

#### among the cluster hospitals’ home areas

# If Rj min’s relevance in its home area is larger than Rj max

# assign new home areal unit to newly formed cluster

if (pv$RiHAU[Rj.max.Rj.min] < pv$RiHAU[min.hosp]) {

# Assign Rij to cluster entry

pv$RiHAU[Rj.max.Rj.min] <- pv$RiHAU[min.hosp]

# Assign new home areal unit to cluster entry

pv$HAU[Rj.max.Rj.min] <- pv$HAU[min.hosp]

}

#########################################################

## Update Ij.matrix to reflect new alpha value of cluster

#########################################################

# Find zip codes above new alpha value

Ij.new <- which(pv[Rj.max.Rj.min,2:n.zip] >= alpha.2)+1

# Clear old Ij row, then write new zip codes to Ij holder

Ij.matrix[Rj.max.Rj.min, 2:n.zip] <- 0

Ij.matrix[Rj.max.Rj.min,c(Ij.new)] <- 1

######################
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## Update PiRij.matrix

######################

# Sum PiRij entries

PiRij.matrix[Rj.max.Rj.min,2:n.zip] <-

PiRij.matrix[Rj.max.Rj.min,2:n.zip] +

PiRij.matrix[min.hosp,2:n.zip]

##############################################

## Update Rj.all with new list of Ij zip codes

##############################################

# Get numerator value for Rj

n.PiRij <- sum(PiRij.matrix[Rj.max.Rj.min,Ij.new])

# Get denominator value (total zip code population)

n.Pi <- sum(zip.pop$POP[c(Ij.new-1)])

# Calculate Rj (population weighted relevence index)

Rj <- n.PiRij / n.Pi

# Put in holder

Rj.all$Rj[Rj.max.Rj.min] <- Rj

#########################################################

## Remove Rj.min from pv, Ij.matrix, PiRij.matrix, Rj.all

## because it has now been grouped

#########################################################

pv <- pv[-c(min.hosp),]

Ij.matrix <- Ij.matrix[-c(min.hosp),]

PiRij.matrix <- PiRij.matrix[-c(min.hosp),]

Rj.all <- Rj.all[-c(min.hosp),]

# Write Rj.min hosp to holder

Grouped.Hospitals <- c(Grouped.Hospitals, Rj.min$HOSP_ID)

# Print to screen which hospitals have been grouped

print(Grouped.Hospitals)

# Reset Rj.temp because current Rj.min has been grouped

Rj.temp <- NULL

} else {

###############################################################
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## Re-run steps with a different Rj.min because aggregation may

## produce clusters with home areas > alpha) in former Rj min’s

## home area. So we hold onto this Rj.min and re-check later

## List this Rj.min in holder

###############################################################

Rj.temp <- c(Rj.temp, min.hosp)

}

# Print to screen which hospitals are in Rj.temp and

# the length of both Rj.temp and Rj.all

print(paste("Rj temp has: ", length(Rj.temp), " hospitals/cluster", sep=""))

print(paste("Rj all has: ", nrow(Rj.all)-1, " hospitals/clusters remaining",

sep = ""))

##################################################

## Determine whether to keep attempting to cluster

## or to terminate the iterative process

##################################################

# If all the hospitals (-1) are in Rj.temp, then no

# hospital has more than alpha of another’s home area

if (length(Rj.temp) == nrow(Rj.all)-1) {

run <- 0

}

# If all hospitals are grouped Rj.all has one row

if (nrow(Rj.all) == 1) {

run <- 0

}

}

###################################################

## Attach Subarea designation to hospital info file

###################################################

# Get number of Subareas

n.subareas <- dim(pv)[1]

# Make empty holder

subarea.table <- NULL

# Break apart output table from Thomas method
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# and insert into holder

for (p in 1:n.subareas) {

names <- unlist(strsplit(pv$GrNames[p], ","))

subarea.table <- rbind(subarea.table, cbind(p, names))

}

# Rename column names

colnames(group.table) <- c("Thomas", "MIDB")

# Attach Subarea names to hospital info file

hosp.info <- merge(hosp.info, group.table, by="MIDB", all.x=TRUE)

# Name ungroupable hospitals "NG"

hosp.info$Thomas <-as.character(hosp.info$Thomas)

hosp.info$Thomas[is.na(hosp.info$Thomas)] <- "NG"
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Appendix B
R code to implement the new clustering methodology

#########################################################################

#### ####

#### Citation information ####

#### Delamater PL, Shortridge AM, and JP Messina, Regional health ####

#### care planning: a methodology to cluster facilities using ####

#### community utilization patterns. BMC Health Services Research ####

#### ####

#### 2-step K-means + Ward’s Algorithm ####

#### ####

#### Requires: Patient visits table (zip -> hospital) ####

#### Hospital travel distance table (hosp -> hosp) ####

#### Hospital info table ####

#### ####

#### Methodology developed by Paul Delamater, Ashton Shortridge, ####

#### and Joe Messina during summer, 2011 for the Michigan Hospital ####

#### Bed Standard Advisory Committee working group. Funding for ####

#### this research was provided by the Michigan Department of ####

#### Community Health. ####

#### ####

#########################################################################

#########################################################################

## ##

## Get input data ##

## ##

#########################################################################

###########################

## Read patient visits data

###########################

#### Note: pd.1, pd.2, pd.3 are tables with hospitals in rows

#### and zip codes in columns. Hospital identifier column

#### should be labeled "HOSP_ID". Zip code column lables

#### should be the five digit zip code (e.g., "48823").

#### Table entries are the number of patient days from

#### residents of each zip code at each hospital.

####
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#### Assumes patient day matrices have similar dimensions!

# Load data

pd.1 <- read.csv("inputdata/hosp.zip.patdays.mtx.y1.csv")

pd.2 <- read.csv("inputdata/hosp.zip.patdays.mtx.y2.csv")

pd.3 <- read.csv("inputdata/hosp.zip.patdays.mtx.y3.csv")

# Create 3 year sum matrix

p.sum.3yr <- pd.1[,2:ncol(pd.1)] + pd.2[,2:ncol(pd.2)] + pd.3[,2:ncol(pd.3)]

# Re-attach hospital names column

p.sum.3yr <- cbind(pd.1[,1], p.sum.3yr)

# Rename hospital names column

names(p.sum.3yr)[1] <- "HOSP_ID"

# Ensure HOSP_ID in character format

p.sum.3yr$HOSP_ID <- as.character(p.sum.3yr$HOSP_ID)

# Remove characters from column names

# R adds an "X" to the zip code number

# Assumes all zip codes are 5 digits

names(p.sum.3yr)[2:ncol(p.sum.3yr)] <-

substr(as.character(names(p.sum.3yr)[2:ncol(p.sum.3yr)]), 2, 6)

#############################################################

## Convert raw patient days to proportions (Commitment Index)

#############################################################

# Define variable for last zip code column

n.zip <- ncol(p.sum.3yr)

# Sum patient days for each hospital

# Assumes HOSP_ID is first column

hosp.pat <- rowSums(p.sum.3yr[,2:n.zip])

# Divide each column by total patient days

p.sum.3yr[,2:n.zip] <- p.sum.3yr[,2:n.zip] / hosp.pat

# Rename table

p.CI.3yr <- p.sum.3yr

rm(p.sum.3yr)

##########################################
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## Remove hospitals with no patient visits

##########################################

# Locate hospitals with zero visits

zero.pv <- which(hosp.pat == 0)

# Get names of zero hospitals (will need this later!)

zero.names <- as.character(p.CI.3yr$HOSP_ID[zero.pv])

#### Note: p.CI.3yr is now an n x z+1 matrix of CI values.

#### The "+1" includes the identifier column (HOSP_ID).

# Remove hospitals from CI matrix

p.CI.3yr <- p.CI.3yr[-c(zero.pv),]

################################

## Read hospital attributes data

################################

#### Note: hosp.info is a table with hospitals in rows and

#### attributes in columns. In this case, the column

#### that corresponds to the patient records is "MIDB".

# Load data

hosp.info <- read.csv("inputdata/hospitals.csv")

############################

## Read travel distance data

############################

#### Note: od is a table with "TO", "FROM", and "DISTANCE"

#### as columns (format from ArcGIS Network Analyst).

#### This table must be re-arranged such that it is

#### an actual OD matrix (n x n dimensions). If data

#### is already arranged in an OD matrix, skip to

#### "Scale table" section.

# Load data

od <- read.csv("inputdata/travel-distance.csv")

#############################

## Convert table to OD matrix

#############################

# Create empty holder
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dist.mat <- NULL

# Get unique FROM hospitals

f.hosp <- unique(od$FROM)

# Loop through hospitals

for (fr in 1:length(f.hosp)) {

# Subset

od.sm <- od[od$FROM == f.hosp[fr],]

# Sort matrix, shouldn’t be necessary... but safer

od.sm <- od.sm[order(od.sm$TO),]

# Append distance to holder as a ROW

dist.mat <- rbind(dist.mat, od.sm$DISTANCE)

}

# Make into dataframe

dist.mat <- as.data.frame(dist.mat)

# Assign column names

names(dist.mat) <- f.hosp

# Assign row names

row.names(dist.mat) <- f.hosp

###########################################

## Scale table to match CI data range (0-1)

###########################################

# Get maximum distance between hospitals

max <- max(dist.mat)

# Rescale data

dist.mat <- dist.mat/max

##############################################

## Join distance data matrix to CI data matrix

##############################################

#### Note: To create the final n x m data matrix used for

#### clustering, the n x z and n x n matrix are joined.

# Add column for table join

dist.mat$HOSP_ID <- row.names(dist.mat)

## Join tables, add distance matrix to CI data
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p.CI.3yr <- merge(p.CI.3yr, dist.mat, by="HOSP_ID")

#########################################################################

## ##

## Custom 2-step K-means + Ward’s clustering function ##

## ##

#########################################################################

#### Note: The inputs for the function are the n x m data

#### matrix (x) and the desired number of clusters (clusters).

kmeans.ward <- function(x, clusters) {

# Create distance matrix

d <- dist(x, "euclidean")

# Perform Ward’s clustering

hc <- hclust(d, method="ward")

# Get cluster members at "K" clusters

memb <- cutree(hc, k = clusters)

# Make empty holder for cluster center locations

cent <- NULL

# Get cluster centers

for (k in 1:clusters) {

cent <- rbind(cent, colMeans(x[memb == k,]))

}

# Use cluster centers from Ward’s to seed K-means clustering

k.m <- kmeans(x, cent, iter.max = 10000)

# Return the K-means object

return(k.m)

}

#########################################################################

## ##
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## Create initial cluster solutions for Hospital Groups ##

## ##

#########################################################################

#######################################

## Prepare data and create data holders

#######################################

#### Note: All possible numbers of clusters are considered

#### from 2 to n-1.

# Define the range of cluster solutions to evaluate (the set k)

cl.max <- nrow(p.CI.3yr)-1

clusters <- c(2:cl.max)

# Create an empty holder for cluster statistics

wss <- bss <- r2 <- incF <- SingHosp <- MaxSize <- rep(0, length(clusters))

k.data.pat <- cbind(clusters, wss, bss, r2, incF, SingHosp, MaxSize)

# Get number of data attributes in table (columns)

col.max <- ncol(p.CI.3yr)

#####################################################

## Conduct K-means + Ward’s for all cluster solutions

#####################################################

for (K in 1:length(clusters)) {

# Use K-means + Wards method to create clusters

Kclust <- kmeans.ward(p.CI.3yr[,2:col.max], clusters[K])

# Write cluster statistics to data holder

# Within sum of squares

k.data.pat[K,2] <- Kclust$tot.withinss

# Between sum of squares

k.data.pat[K,3] <- Kclust$betweenss

# R^2

k.data.pat[K,4] <- 1-(Kclust$tot.withinss/Kclust$totss)

# Number of single hosp clusters

table.c <- table(Kclust$cluster)

k.data.pat[K,6] <- sum(table.c == 1)
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# Maximum size of any single cluster

k.data.pat[K,7] <- max(table.c)

}

# Convert data holder to dataframe

k.data.pat <- as.data.frame(k.data.pat)

#################################

## Calculate incremental F scores

#################################

n.obs <- nrow(p.CI.3yr)

for (i in 2:length(clusters)) {

k.data.pat$incF[i] <- ((k.data.pat$r2[i]-k.data.pat$r2[i-1])/

(k.data.pat$clusters[i]-k.data.pat$clusters[i-1])) /

((1-k.data.pat$r2[i])/((n.obs)-(k.data.pat$clusters[i]-1)))

}

#########################################################################

## ##

## Select the number of Hospital Groups using the heuristic ##

## ##

#########################################################################

############################################

## Find local maxima in incremental F scores

############################################

# Make variable of the last candidate solution to evaluate for maxima

i <- cl.max-1

# Find the local maxima

incF.peaks <- which(k.data.pat$incF[3:i] > k.data.pat$incF[2:(i-1)] &

k.data.pat$incF[3:i] > k.data.pat$incF[4:(i+1)])+2

# Subset initial candidate solutions
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candidates <- k.data.pat[incF.peaks,]

#######################################################################

## Remove solutions wherein a single cluster has more than 20 hospitals

#######################################################################

candidates <- candidates[candidates$MaxSize < 20,]

###########################################################

## Subset solutions to those with the "minimum" number of

## single hospital Hospital Groups from remaining solutions

###########################################################

candidates <- candidates[candidates$SingHosp == min(candidates$SingHosp), ]

######################################

## From the remaining solutions select

## the solution with most clusters, K

######################################

solution <- candidates[candidates$clusters == max(candidates$clusters), ]

# Get number of clusters

n.clusters <- solution$clusters

###################################################

## Use K-means + Wards method to re-create clusters

###################################################

#### Note: Only the cluster statistics were kept in the

#### initial clustering process. The final cluster

#### solution is recreated to extract Hospital Group

#### membership and cluster center information.

#### Because the clustering algorithm provides

#### deterministic results, this clustering

#### configuration will be identical to the one

#### formed in the intial clustering process.

HG.solution <- kmeans.ward(p.CI.3yr[,2:col.max], n.clusters)

# Attach Hospital Group number to MIDB name

HG.names <- as.data.frame(cbind(p.CI.3yr$HOSP_ID, HG.solution$cluster))

names(HG.names) <- c("MIDB", "HG")
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#########################################################################

## ##

## Rename the Hospital Groups ##

## ##

#########################################################################

#### Note: The K-means + Ward’s names clusters using random

#### numbers. This section will re-enumerate the Hospital

#### Groups based on an existing larger regional group.

#### (HSA - Health Service Area) and the sum of the beds

#### in the Hospital Groups. This section can be omitted

#### if re-enumerating is not necessary.

#### This sections also requires that the hospital

#### information file (hosp.info) has columns named

#### "HSA" and "BEDS".

# Attach initial cluster number to hospital information table

hosp.info <- merge(hosp.info, HG.names, by="MIDB", all.x=TRUE)

# Convert cluster number column to character format

hosp.info$HG <- as.character(hosp.info$HG)

# If hospitals were removed becasue they didn not have patient

# records, assign them to "NG"

hosp.info$HG[is.na(hosp.info$HG)] <- "NG"

# For each Hospital Group, find the HSA where the max number of

# hospitals falls inside. These lines of code assumes that there is

# a column named "HSA" in the hospital information table (hosp.info)

HG.HSA <- NULL

for (hg in 1:n.clusters) {

sub <- hosp.info$HSA[hosp.info$HG == hg]

t.sub <- table(sub)

HG.HSA <- c(HG.HSA, names(t.sub[t.sub == max(t.sub)]))

}

##############################################

## Rename Hospital Groups by HSA and bed count

##############################################

# Make holder

HG.NEW <- NULL
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# Make counter variable. Will hold the "last" Hospital Group

# name assigned

max.hg <- 0

# Get number of "regions" (HSAs)

hsa.list <- as.numeric(sort(unique(HG.HSA)))

# Start looping through the regions

for (hsa in hsa.list) {

# Get Hospital Groups in region

hsa.hgs <- which(HG.HSA == hsa)

# Subset hospital information file to only hospitals

# in these HSAs

sub.hosp.info <- hosp.info[hosp.info$HG %in% hsa.hgs,]

# Aggregate the number of hospital beds in each

# Hospital Group. Assumes there is a column in hosp.info

# named "BEDS"

bed.totals <- aggregate(sub.hosp.info$BEDS, by=list(HG = sub.hosp.info$HG), sum)

# Reorder aggregated table by total number of beds

bed.totals <- bed.totals[order(bed.totals$x, decreasing=TRUE), ]

# Change column type to character

bed.totals$HG <- as.character(bed.totals$HG)

# Make numbers for first and last Hospital Group in

# this subset. Uses counter.

f.hg <- max.hg+1

l.hg <- nrow(bed.totals)+max.hg

# Make join table

j.HG.names <- as.data.frame(cbind(bed.totals$HG, f.hg:l.hg))

# Name columns

names(j.HG.names) <- c("HG_O", "HG_N")

# Append the holder table

HG.NEW <- rbind(HG.NEW, j.HG.names)

# Advance counter

max.hg <- l.hg
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}

################################################################

## Attach new Hospital Group names to hospital information table

################################################################

hosp.info <- merge(hosp.info, HG.NEW, by.x="HG", by.y="HG_O", all.x=TRUE)

# Remove old cluster numbers

hosp.info$HG <- NULL

# Rename Hospital Group column

col <- which(names(hosp.info) == "HG_N")

names(hosp.info)[col] <- "HG"

#########################################################################

## ##

## Assign a new hospital to existing Hospital Groups ##

## ##

#########################################################################

#### Note: This code requires a 1 x n vector of hospital distances

#### to assign a hospital to the existing Hospital Groups

#### based on location. Uses a Euclidean distance measure from

#### the new hospital to the existing cluster centers.

###################################################

## Get original cluster centers from K-means object

###################################################

HG.centers <- as.data.frame(HG.solution$centers)

# Subset to only "travel distance" attributes

HG.centers <- HG.centers[,n.zip:ncol(HG.centers)]

# Attach new cluster names to cluster centers

HG.centers$HG_O <- rownames(HG.centers)

HG.centers <- merge(HG.centers, HG.NEW, by="HG_O")

# Remove old names and re-sort data

HG.centers$HG_O <- NULL

rownames(HG.centers) <- HG.centers$HG_N)
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HG.centers$HG_N <- NULL

HG.centers <- HG.centers[order(as.numeric(rownames(HG.centers))),]

##################################

## Get new hospital or observation

##################################

# Get travel distance for new observation

new.hosp.loc <- read.csv("inputdata/new.hospital.location.csv")

# Remove characters from column names

# R adds an "X" to the column names that

# are only numeric values.

# Assumes hospital name is 4 characters long.

fix.names <- which(nchar(names(new.hosp.loc)) > 4)

names(new.hosp.loc)[fix.names] <-

substr(as.character(names(new.hosp.loc)[fix.names]), 2, 5)

# Test that columns match in new hospital and Hospital

# Group cluster centers

if (sum(names(new.hosp.loc) != names(HG.centers)) > 0)

print("Columns do not match")

# Divide travel distances by the maximum travel distance

# between any hospitals in Michigan

new.hosp.loc <- new.hosp.loc / max

###################################################

## Create function to measure Euclidean distance in

## n-dimensional space

###################################################

euc.dist <- function(x1, x2) {

dist <- sqrt(sum((x1-x2)^2))

return(dist)

}

#####################################################

## Measure distance from new location to all existing

## Hospital Group centers

#####################################################

new.dists <- apply(HG.centers, 1, euc.dist, x2=new.hosp.loc)

# Get closest Hospital Group
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HG.new.hosp.loc <- names(new.dists)[new.dists == min(new.dists)]

#### Note: This is the Hospital Group that the new

#### hospital is assigned to

print(HG.new.hosp.loc)
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Appendix C
Testimony– Blue Cross Blue Shield of Michigan/Blue Care Net-
work

Testimony
Blue Cross Blue Shield of Michigan/Blue Care Network

CON Commission Meeting: Proposed Hospital Bed Standards
December 15, 2011

Thank you for the opportunity to provide testimony on behalf of Blue Cross Blue Shield of

Michigan (BCBSM) and Blue Care Network (BCN). BCBSM/BCN supports the proposed

hospital bed standards which have been submitted for Commission consideration by the

Hospital Bed SAC. The proposed standards reflect months of deliberative discussions and

ensure that the needs and realities of the health care marketplace in Michigan are the central

tenet of the standards.

Hospital Group and Bed Need Methodolgy

The proposed methodologies developed by the workgroup and approved by the SAC were

developed over a period of five months with the participation of multiple stakeholders and

the assistance of the MSU Department of Geography. The workgroup focused on the goal of

developing objective, replicable, and sustainable standards which could be utilized now and

into the future.

The standards developed through the workgroup process accomplish these goals in the fol-

lowing manner:

• The proposed hospital group methodology groups hospitals based on location and

utilization patterns. This methodology will more logically group hospitals

than the groupings provided by the existing methodology.

The testimony’s text formatting has been slighly modified to meet the required format
for this dissertation. However, instances of boldface text are unchanged from the original
document.
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• The demand for bed need will be based on modeling of trends based on the previous five

years of county-wide patient day data. The previous methodology relied on zip-code

level data and often inaccurate population projections. The proposed methodology

will capture trends in patient day rates more effectively than the current

methodology, will avoid the errors that are encountered when using small

data sets, and will require the collection of dramatically less data.

• According to MSU Geography, which has been contracted to run this data for the

Department in previous years, the methodologies “can be executed within a

short time frame, using open-source code, and produces replicable results.”

When considering the tenets of cost, quality, and access, the proposed methodologies show

that the current number of hospitals and hospital beds in the state are more than adequately

serving the demands of Michigan’s population. When run illustratively for the workgroup

using 2009 MIDB data, the proposed methodologies found no areas of hospital bed need in

the state and an overall excess of 6,747 hospital beds state-wide. Should patient population

and utilization trends change in the future, the methodologies are equipped to reflect such

changes.

Hospital Bed Reduction

BCBSM supports the proposals that emerged from the hospital bed reduction work goup

as a valuable first step in addressing the excess bed capacity in Michigan’s hospitals. The

proposals adopted by the SAC will limit the financial incentive for hospitals to use large

amounts of excess beds as a bargaining tool for their purchase. Additionally, the proposals

will promote the development of capital projects that will be more reflective of a hospital’s

average occupancy, which could provide cost savings in the future. While BCBSM believes

that the proposal is a step in the right direction, continued efforts must address excess

hospital capacity on a larger scale in order to truly make a more significant impact on excess

costs within the health care system.
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Conclusion

BCBSM/BCN supports the Hospital Bed Standards recommended by the Hospital Bed

SAC to the CON Commission. The thorough review of these standards over the past six

months has resulted in significant improvements to the standards that will ensure appropriate

hospital access and reflect the health care needs of the state’s population for years to come.

12/15/11
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Appendix D
Additional Figures and Tables
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Figure D.1: incF scores for cluster solutions in set S. Black points represent peak
values in incF scores. The data has been truncated for display purposes.
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Figure D.2: Moran’s I of regression residuals for weighted OLS regression model.
All values less than 0.05 (dotted line) have significant spatial autocorrelation in the model
residuals.
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Figure D.3: Moran’s I of regression residuals for weighted SAR and CAR models.
All values less than 0.05 (dotted line) have significant spatial autocorrelation in the model
residuals.
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Figure D.4: Levene Test of regression residuals for SAR and CAR models. All
values less than 0.05 (dotted line) have significant heteroscedasticity in the model residuals
due to population size.
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Figure D.5: Levene Test of regression residuals for weighted SAR and CAR mod-
els. All values less than 0.05 (dotted line) have significant heteroscedasticity in the model
residuals due to population size.
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Table D.1: Cluster solutions and incF scores.

CL incF CL incF CL incF CL incF

8 173.588 219 4.478 420 2.574 634 1.950

13 117.188 223 4.785 422 2.525 637 1.936

17 57.137 227 4.155 424 2.514 641 1.968

19 46.520 229 4.191 426 2.470 645 1.957

21 41.105 231 3.352 428 2.446 647 1.928

23 35.267 234 3.802 430 2.422 651 1.915

27 28.022 237 3.709 432 2.421 653 1.896

29 27.952 239 4.119 437 2.399 656 1.890

32 21.648 243 3.621 441 2.409 659 1.876

34 32.543 245 3.812 445 2.388 662 1.869

37 22.762 247 3.220 447 2.343 664 1.901

40 24.243 250 3.472 449 2.370 669 1.887

44 24.131 253 3.558 453 2.367 672 1.882

47 22.427 255 3.436 455 2.367 674 1.865

50 17.827 257 3.541 457 2.362 676 1.838

54 17.783 259 3.644 461 2.584 679 1.839

56 23.635 263 2.805 466 2.379 681 1.850

59 15.538 265 3.905 471 2.305 688 1.787

61 17.436 268 3.972 474 2.347 690 1.787

64 10.838 272 3.450 477 2.350 693 1.779

66 18.027 274 3.630 480 2.330 695 1.771

70 11.505 279 3.544 484 2.287 698 1.769

73 20.162 281 3.508 488 2.295 701 1.773

77 13.521 284 3.550 494 2.287 709 1.799

79 14.299 290 4.243 497 2.284 711 1.784

84 8.937 294 3.461 500 2.287 714 1.789

88 9.763 297 3.419 506 2.408 718 1.806

90 12.296 299 3.022 509 2.042 722 1.803

93 8.184 301 3.446 511 2.206 725 1.765

96 8.975 303 3.384 516 2.270 728 1.770

101 10.237 306 3.340 520 2.112 731 1.789

103 8.573 308 3.149 523 2.193 735 1.734

105 8.618 310 3.277 525 2.203 737 1.699

108 9.590 312 3.186 528 2.317 746 1.752

Cont. on next page
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Table D.1 – Cont. from previous page

CL incF CL incF CL incF CL incF

111 6.621 316 2.903 531 2.176 749 1.683

114 10.148 319 3.137 533 2.164 753 1.681

116 9.488 322 3.003 536 2.156 756 1.697

121 7.840 325 3.333 541 2.139 760 1.679

124 6.302 329 2.908 544 2.148 763 1.680

129 10.391 331 2.958 546 2.636 766 1.682

131 7.376 334 2.929 550 2.133 770 1.680

133 8.357 337 3.159 554 2.146 775 1.670

136 7.806 339 2.895 556 2.150 782 1.672

139 6.168 341 2.760 558 2.153 785 1.735

142 5.989 343 2.942 560 1.958 789 1.658

145 6.427 345 2.834 562 2.149 792 1.654

147 6.223 349 2.725 564 2.182 796 1.597

150 5.386 354 2.978 566 2.177 798 1.593

152 6.834 356 2.891 568 2.151 803 1.562

154 6.671 359 3.673 570 2.101 805 1.564

157 6.621 362 2.597 572 2.152 807 1.533

159 5.148 364 2.648 575 2.150 810 1.528

161 6.301 367 2.936 578 2.143 812 1.589

164 6.079 369 2.762 581 2.191 821 1.544

166 5.838 373 2.758 586 2.096 824 1.521

172 7.055 376 2.884 588 2.098 827 1.532

176 6.552 381 3.257 591 2.097 830 1.480

180 6.088 383 2.725 593 2.170 837 1.515

184 5.825 386 2.659 596 2.063 843 1.484

187 4.415 389 2.697 598 2.110 849 1.463

189 4.086 393 2.673 601 2.078 855 1.415

192 6.036 396 2.651 607 2.080 858 1.361

194 5.112 399 2.638 610 2.054 860 1.373

196 5.035 402 2.658 612 1.916 868 1.418

199 5.050 407 2.551 615 2.038 876 1.546

204 5.255 409 2.736 619 2.029 881 1.600

208 4.161 411 2.895 621 2.037 886 1.751

210 4.120 413 3.031 623 2.098 888 1.764

Cont. on next page
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Table D.1 – Cont. from previous page

CL incF CL incF CL incF CL incF

216 4.818 416 2.443 625 2.057 890 1.665

164



Table D.2: Number of components and % of the total variance explained for each
functional set of variables.

SES ETH TRAN MOB CASE

CL n s n s n s n s n s

34 1 0.85 1 0.43 1 0.64 2 0.89 1 0.93

37 1 0.86 1 0.40 1 0.65 2 0.89 1 0.93

40 1 0.85 2 0.61 1 0.64 2 0.89 1 0.93

44 1 0.83 5 1.00 2 0.88 2 0.88 1 0.93

47 1 0.82 3 0.78 1 0.62 2 0.88 1 0.93

50 1 0.81 3 0.77 1 0.64 2 0.88 1 0.93

54 1 0.81 3 0.76 2 0.85 2 0.88 1 0.93

56 1 0.81 2 0.59 1 0.61 2 0.88 1 0.93

59 1 0.80 1 0.38 1 0.60 2 0.88 1 0.93

61 1 0.79 2 0.59 1 0.60 2 0.88 1 0.93

64 1 0.78 2 0.58 2 0.84 2 0.88 1 0.93

66 1 0.77 3 0.75 1 0.59 2 0.87 1 0.93

70 1 0.77 3 0.75 1 0.60 2 0.86 1 0.93

73 1 0.79 1 0.36 1 0.60 2 0.87 1 0.92

77 1 0.82 2 0.57 1 0.60 2 0.87 1 0.92

79 1 0.82 3 0.74 1 0.60 2 0.86 1 0.92

84 1 0.81 3 0.74 1 0.59 2 0.87 1 0.91

88 1 0.80 2 0.57 1 0.59 2 0.86 1 0.91

90 1 0.80 1 0.37 1 0.59 2 0.86 1 0.91

93 1 0.80 1 0.37 1 0.59 2 0.86 1 0.91

96 1 0.79 5 1.00 1 0.59 2 0.86 1 0.93

101 1 0.79 2 0.57 1 0.60 2 0.85 1 0.94

103 1 0.79 2 0.56 1 0.60 2 0.85 1 0.94

105 1 0.79 2 0.56 1 0.59 2 0.85 1 0.93

108 1 0.79 3 0.73 1 0.59 2 0.85 1 0.93

111 1 0.79 3 0.73 1 0.60 2 0.85 1 0.93

114 1 0.79 4 0.87 1 0.60 2 0.85 1 0.93

116 1 0.79 2 0.56 1 0.60 2 0.85 1 0.93

121 1 0.79 2 0.56 1 0.61 2 0.84 1 0.93

124 1 0.78 3 0.73 1 0.61 2 0.85 1 0.93

129 1 0.78 3 0.73 1 0.60 2 0.84 1 0.94

131 1 0.78 1 0.36 1 0.59 2 0.84 1 0.93

Cont. on next page
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Table D.2 – Cont. from previous page

SES ETH TRAN MOB CASE

CL n s n s n s n s n s

133 2 0.89 3 0.74 2 0.91 2 0.85 1 0.93

136 2 0.89 3 0.74 2 0.91 2 0.85 1 0.93

139 2 0.89 3 0.75 2 0.91 2 0.85 1 0.93

142 2 0.89 3 0.74 2 0.91 2 0.84 1 0.93

145 2 0.89 3 0.74 2 0.91 2 0.84 1 0.93

147 2 0.89 3 0.74 2 0.91 2 0.84 1 0.93

150 1 0.70 3 0.74 2 0.91 2 0.84 1 0.93

152 2 0.89 3 0.74 2 0.91 2 0.84 1 0.91

154 1 0.70 3 0.74 2 0.91 2 0.84 1 0.91

157 2 0.89 3 0.74 2 0.91 2 0.84 1 0.91

159 2 0.89 3 0.74 2 0.91 2 0.84 1 0.91

161 2 0.89 3 0.74 2 0.91 2 0.84 1 0.91

164 2 0.89 3 0.73 2 0.91 2 0.83 1 0.90

166 1 0.70 3 0.73 2 0.91 2 0.83 1 0.90

172 2 0.89 3 0.73 2 0.90 2 0.83 1 0.90

176 2 0.89 3 0.73 2 0.89 2 0.83 1 0.90

180 2 0.89 3 0.73 2 0.89 2 0.83 1 0.90

184 1 0.71 2 0.56 2 0.89 2 0.83 1 0.90

187 2 0.89 3 0.73 2 0.89 2 0.82 1 0.90

189 1 0.72 2 0.56 2 0.89 2 0.82 1 0.89

192 1 0.71 3 0.73 2 0.89 2 0.83 1 0.89

194 1 0.71 3 0.73 2 0.89 2 0.83 1 0.89

196 1 0.71 2 0.56 2 0.89 2 0.82 1 0.89

199 1 0.71 1 0.36 2 0.88 2 0.82 1 0.90

204 1 0.71 2 0.56 2 0.88 2 0.83 1 0.90

208 1 0.71 2 0.56 2 0.88 2 0.82 1 0.90

210 2 0.88 3 0.73 2 0.88 2 0.82 1 0.90

216 2 0.88 2 0.56 2 0.88 2 0.82 1 0.89

219 1 0.72 3 0.72 2 0.88 2 0.82 1 0.89

223 1 0.72 2 0.55 2 0.88 2 0.82 1 0.89

227 1 0.71 2 0.55 2 0.88 2 0.82 1 0.89

229 1 0.72 2 0.55 2 0.88 2 0.82 1 0.89

231 1 0.72 2 0.55 2 0.88 2 0.81 1 0.88

Cont. on next page
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Table D.2 – Cont. from previous page

SES ETH TRAN MOB CASE

CL n s n s n s n s n s

234 1 0.72 2 0.55 2 0.88 2 0.81 1 0.88

237 1 0.72 2 0.55 2 0.88 2 0.81 1 0.88

239 1 0.72 2 0.55 2 0.88 2 0.81 1 0.88

243 1 0.72 2 0.55 2 0.88 2 0.80 1 0.88

245 1 0.72 2 0.55 2 0.88 2 0.81 1 0.88

247 1 0.72 4 0.87 2 0.88 2 0.81 1 0.88

250 1 0.71 2 0.55 2 0.88 2 0.81 1 0.88

253 1 0.72 2 0.55 2 0.88 2 0.81 1 0.88

255 1 0.72 2 0.55 2 0.88 2 0.80 1 0.88

257 1 0.72 2 0.55 2 0.88 2 0.80 1 0.88

259 1 0.72 2 0.55 2 0.88 2 0.80 1 0.88

263 1 0.72 2 0.55 2 0.88 2 0.80 1 0.88

265 1 0.72 2 0.55 2 0.88 2 0.80 1 0.88

268 1 0.72 2 0.55 2 0.88 2 0.80 1 0.88

272 1 0.72 2 0.55 2 0.88 2 0.80 1 0.88

274 1 0.72 2 0.55 2 0.88 2 0.80 1 0.88

279 1 0.72 3 0.72 2 0.88 2 0.79 1 0.88

281 1 0.72 2 0.55 2 0.88 2 0.79 1 0.87

284 1 0.73 2 0.55 2 0.88 2 0.79 1 0.87

290 1 0.72 2 0.55 2 0.87 2 0.79 1 0.87

294 1 0.72 2 0.55 2 0.87 2 0.79 1 0.87

297 1 0.72 1 0.35 2 0.87 2 0.79 1 0.87

299 1 0.72 2 0.55 2 0.87 2 0.79 1 0.87

301 1 0.72 2 0.55 2 0.87 2 0.79 1 0.87

303 1 0.72 2 0.54 2 0.87 2 0.78 1 0.87

306 1 0.72 2 0.54 2 0.87 2 0.78 1 0.87

308 1 0.72 3 0.71 2 0.87 2 0.78 1 0.87

310 1 0.72 3 0.71 2 0.87 2 0.78 1 0.87

312 1 0.72 1 0.35 2 0.87 2 0.78 1 0.87

316 1 0.72 2 0.54 2 0.87 2 0.78 1 0.86

319 1 0.72 2 0.54 2 0.87 2 0.78 1 0.87

322 1 0.71 4 0.87 2 0.87 2 0.78 1 0.87

325 1 0.71 2 0.54 2 0.87 2 0.78 1 0.87

Cont. on next page
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Table D.2 – Cont. from previous page

SES ETH TRAN MOB CASE

CL n s n s n s n s n s

329 1 0.71 1 0.36 2 0.87 2 0.78 1 0.87

331 1 0.71 4 0.87 2 0.87 2 0.78 1 0.86

334 1 0.71 3 0.71 2 0.87 2 0.78 1 0.87

337 1 0.71 3 0.72 2 0.87 2 0.78 1 0.86

339 1 0.71 3 0.72 2 0.87 2 0.78 1 0.86

341 1 0.71 4 0.87 2 0.87 2 0.78 1 0.86

343 1 0.71 2 0.54 2 0.87 2 0.78 1 0.86

345 1 0.71 3 0.71 2 0.87 2 0.78 1 0.86

349 1 0.71 2 0.54 2 0.87 2 0.78 1 0.86

354 1 0.72 2 0.54 2 0.87 2 0.78 1 0.86

356 1 0.72 3 0.71 2 0.87 2 0.78 1 0.85

359 1 0.72 1 0.36 2 0.87 2 0.78 1 0.85

362 1 0.72 3 0.72 2 0.87 2 0.78 1 0.85

364 1 0.72 2 0.55 2 0.87 2 0.78 1 0.85

367 1 0.72 3 0.72 2 0.87 2 0.78 1 0.85

369 1 0.72 1 0.36 2 0.87 2 0.78 1 0.85

373 1 0.72 2 0.54 2 0.87 2 0.78 1 0.84

376 1 0.72 2 0.54 2 0.87 2 0.78 1 0.84

381 1 0.72 2 0.54 2 0.87 2 0.77 1 0.85

383 1 0.72 2 0.54 2 0.87 2 0.77 1 0.85

386 1 0.72 2 0.54 2 0.87 2 0.77 1 0.85

389 1 0.72 1 0.36 2 0.87 2 0.77 1 0.85

393 1 0.71 2 0.54 2 0.86 2 0.77 1 0.85

396 1 0.71 4 0.86 2 0.86 2 0.77 1 0.85

399 1 0.71 3 0.70 2 0.86 2 0.77 1 0.84

402 1 0.71 2 0.54 2 0.86 2 0.77 1 0.84

407 1 0.71 2 0.54 2 0.86 2 0.77 1 0.84

409 1 0.71 1 0.35 2 0.86 2 0.77 1 0.84

411 1 0.71 4 0.86 2 0.86 2 0.77 1 0.84

413 1 0.71 4 0.86 2 0.86 2 0.77 1 0.84

416 1 0.71 1 0.35 2 0.86 2 0.77 1 0.84

420 1 0.71 2 0.54 2 0.86 2 0.77 1 0.82

422 1 0.71 4 0.86 2 0.86 2 0.77 1 0.82
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Table D.2 – Cont. from previous page

SES ETH TRAN MOB CASE

CL n s n s n s n s n s

424 1 0.71 3 0.70 2 0.86 2 0.76 1 0.82

426 1 0.71 4 0.86 2 0.86 2 0.76 1 0.82

428 1 0.71 2 0.54 2 0.86 2 0.76 1 0.82

430 1 0.71 2 0.54 2 0.86 2 0.76 1 0.82

432 1 0.71 2 0.54 2 0.86 2 0.76 1 0.81

437 1 0.71 4 0.86 2 0.86 2 0.76 1 0.82

441 1 0.71 4 0.86 2 0.86 2 0.76 1 0.80

445 1 0.72 4 0.86 2 0.86 2 0.76 1 0.80

447 1 0.72 2 0.54 2 0.86 2 0.76 1 0.80

449 1 0.72 2 0.53 2 0.86 2 0.76 1 0.81

453 1 0.71 1 0.35 2 0.86 2 0.76 1 0.81

455 1 0.71 2 0.53 2 0.86 2 0.76 1 0.81

457 1 0.72 2 0.53 2 0.86 2 0.76 1 0.81

461 1 0.73 2 0.53 2 0.86 2 0.76 1 0.80

466 1 0.72 4 0.86 2 0.86 2 0.75 1 0.80

471 1 0.72 2 0.53 2 0.86 2 0.75 1 0.80

474 1 0.72 4 0.86 2 0.86 2 0.75 1 0.80

477 1 0.72 2 0.53 2 0.86 2 0.75 1 0.80

480 1 0.72 2 0.53 2 0.86 2 0.75 1 0.80

484 1 0.72 2 0.54 2 0.86 2 0.75 1 0.80

488 1 0.73 2 0.53 2 0.86 2 0.74 1 0.80

494 1 0.73 1 0.35 2 0.86 2 0.75 1 0.80

497 1 0.73 1 0.35 2 0.86 2 0.74 1 0.80

500 1 0.72 2 0.53 2 0.85 2 0.74 1 0.80

506 1 0.73 4 0.86 2 0.85 2 0.74 1 0.80

509 1 0.72 4 0.86 2 0.85 2 0.74 1 0.80

511 1 0.72 2 0.53 2 0.85 2 0.74 1 0.79

516 1 0.73 4 0.86 2 0.85 2 0.75 1 0.79

520 1 0.73 4 0.86 2 0.85 2 0.75 1 0.79

523 1 0.73 4 0.86 2 0.85 2 0.75 1 0.79

525 1 0.73 4 0.86 2 0.85 2 0.75 1 0.79

528 1 0.73 2 0.53 2 0.85 2 0.75 1 0.79

531 1 0.72 1 0.35 2 0.85 2 0.74 1 0.79
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Table D.2 – Cont. from previous page

SES ETH TRAN MOB CASE

CL n s n s n s n s n s

533 1 0.72 3 0.70 2 0.85 2 0.74 1 0.79

536 1 0.72 1 0.35 2 0.85 2 0.74 1 0.79

541 1 0.72 4 0.86 2 0.85 2 0.74 1 0.79

544 1 0.72 3 0.70 2 0.85 2 0.74 1 0.79

546 1 0.73 1 0.35 2 0.85 2 0.74 1 0.80

550 1 0.72 4 0.86 2 0.85 2 0.74 1 0.79

554 1 0.72 3 0.70 2 0.85 2 0.74 1 0.79

556 1 0.72 4 0.86 2 0.85 2 0.74 1 0.79

558 1 0.73 2 0.53 2 0.85 2 0.74 1 0.79

560 1 0.73 1 0.35 2 0.85 2 0.74 1 0.79

562 1 0.73 3 0.70 2 0.85 2 0.74 1 0.79

564 1 0.73 1 0.35 2 0.85 2 0.74 1 0.79

566 1 0.73 3 0.70 2 0.85 2 0.74 1 0.79

568 1 0.73 1 0.35 2 0.85 2 0.74 1 0.79

570 1 0.73 3 0.70 2 0.85 2 0.74 1 0.79

572 1 0.73 1 0.35 2 0.85 2 0.74 1 0.79

575 1 0.73 2 0.53 2 0.85 2 0.74 1 0.79

578 1 0.73 2 0.53 2 0.85 2 0.74 1 0.79

581 1 0.73 2 0.53 2 0.85 2 0.74 1 0.79

586 1 0.73 4 0.86 2 0.85 2 0.74 1 0.79

588 1 0.73 2 0.53 2 0.85 2 0.74 1 0.79

591 1 0.73 2 0.53 2 0.85 2 0.74 1 0.79

593 1 0.73 4 0.86 2 0.85 2 0.74 1 0.79

596 1 0.72 4 0.86 2 0.85 2 0.74 1 0.79

598 1 0.72 2 0.53 2 0.85 2 0.74 1 0.79

601 1 0.72 2 0.54 2 0.85 2 0.74 1 0.79

607 1 0.72 4 0.86 2 0.85 2 0.74 1 0.79

610 1 0.72 4 0.86 2 0.85 2 0.74 1 0.79

612 1 0.72 2 0.54 2 0.85 2 0.74 1 0.78

615 1 0.72 2 0.54 2 0.85 2 0.74 1 0.78

619 1 0.72 4 0.86 2 0.85 2 0.74 1 0.78

621 1 0.72 1 0.36 2 0.85 2 0.74 1 0.78

623 1 0.72 2 0.54 2 0.85 2 0.74 1 0.78
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Table D.2 – Cont. from previous page

SES ETH TRAN MOB CASE

CL n s n s n s n s n s

625 1 0.72 2 0.54 2 0.85 2 0.74 1 0.78

634 1 0.71 4 0.86 2 0.85 2 0.74 1 0.78

637 1 0.71 2 0.53 2 0.85 2 0.74 1 0.78

641 1 0.71 2 0.53 2 0.85 2 0.74 1 0.79

645 1 0.71 4 0.86 2 0.85 2 0.74 1 0.79

647 1 0.71 4 0.86 2 0.85 2 0.74 1 0.79

651 1 0.72 2 0.53 2 0.85 2 0.74 1 0.79

653 1 0.72 2 0.53 2 0.85 2 0.74 1 0.79

656 1 0.72 2 0.53 2 0.85 2 0.74 1 0.79

659 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

662 1 0.72 4 0.86 2 0.85 2 0.74 1 0.79

664 1 0.72 2 0.53 2 0.85 2 0.74 1 0.79

669 1 0.71 2 0.53 2 0.85 2 0.73 1 0.79

672 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

674 1 0.72 2 0.53 1 0.59 2 0.73 1 0.79

676 1 0.72 3 0.70 2 0.85 2 0.73 1 0.79

679 1 0.72 4 0.86 2 0.85 2 0.73 1 0.79

681 1 0.72 1 0.35 2 0.85 2 0.73 1 0.79

688 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

690 1 0.72 3 0.70 2 0.85 2 0.73 1 0.79

693 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

695 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

698 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

701 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

709 1 0.72 4 0.86 2 0.85 2 0.73 1 0.79

711 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

714 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

718 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

722 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

725 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

728 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

731 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

735 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

Cont. on next page
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Table D.2 – Cont. from previous page

SES ETH TRAN MOB CASE

CL n s n s n s n s n s

737 1 0.72 2 0.53 2 0.85 2 0.73 1 0.79

746 1 0.73 2 0.53 2 0.85 2 0.73 1 0.79

749 1 0.73 4 0.86 2 0.85 2 0.73 1 0.79

753 1 0.73 4 0.86 2 0.85 2 0.73 1 0.79

756 1 0.73 4 0.86 2 0.85 2 0.73 1 0.79

760 1 0.73 4 0.86 2 0.84 2 0.73 1 0.80

763 1 0.73 2 0.53 2 0.84 2 0.73 1 0.80

766 1 0.73 1 0.35 2 0.84 2 0.73 1 0.80

770 1 0.73 1 0.35 2 0.84 2 0.73 1 0.80

775 1 0.73 2 0.53 2 0.84 2 0.73 1 0.80

782 1 0.73 4 0.86 2 0.84 2 0.73 1 0.80

785 1 0.73 2 0.53 2 0.84 2 0.73 1 0.80

789 1 0.73 2 0.53 2 0.84 2 0.73 1 0.80

792 1 0.73 4 0.86 2 0.84 2 0.73 1 0.80

796 1 0.73 3 0.70 2 0.84 2 0.73 1 0.80

798 1 0.73 3 0.70 2 0.84 2 0.73 1 0.80

803 1 0.73 2 0.53 2 0.84 2 0.73 1 0.80

805 1 0.73 2 0.53 2 0.84 2 0.73 1 0.80

807 1 0.73 4 0.86 2 0.84 2 0.73 1 0.80

810 1 0.74 3 0.70 2 0.84 2 0.73 1 0.80

812 1 0.74 3 0.70 2 0.84 2 0.73 1 0.80

821 1 0.74 3 0.70 2 0.84 2 0.73 1 0.80

824 1 0.74 4 0.86 2 0.84 2 0.73 1 0.80

827 1 0.74 4 0.86 2 0.84 2 0.73 1 0.80

830 1 0.74 4 0.86 2 0.84 2 0.73 1 0.80

837 1 0.74 2 0.53 2 0.84 2 0.73 1 0.80

843 1 0.74 4 0.86 2 0.85 2 0.73 1 0.80

849 1 0.74 2 0.53 2 0.85 2 0.73 1 0.80

855 1 0.74 4 0.86 2 0.85 2 0.73 1 0.81

858 1 0.74 3 0.70 2 0.85 2 0.73 1 0.81

860 1 0.74 4 0.86 2 0.85 2 0.73 1 0.81

868 1 0.74 2 0.53 2 0.85 2 0.73 1 0.81

876 1 0.74 3 0.70 2 0.85 2 0.73 1 0.81

Cont. on next page
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Table D.2 – Cont. from previous page

SES ETH TRAN MOB CASE

CL n s n s n s n s n s

881 1 0.74 3 0.70 2 0.85 2 0.73 1 0.81

886 1 0.74 4 0.86 2 0.85 2 0.73 1 0.81

888 1 0.74 3 0.70 2 0.85 2 0.73 1 0.81

890 1 0.74 3 0.70 2 0.85 2 0.73 1 0.81

895 1 0.74 3 0.70 2 0.85 2 0.73 1 0.81
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Appendix E
Additional R Code

##################################################################

## R code to import ACS 5yr data and transfer/modify/figure out ##

## allocation issues to get data into ZIP code format ##

##################################################################

library(rgdal)

library(sp)

library(maptools)

library(shapefiles)

library(spdep)

### Import Block Group data

acs.bg <- read.csv("/media/data/GISdata/acs2010/5yr/tables/

ACS.5yr.IncEdMob.BlockGroup.csv")

### Remove leading characters from GEOID

acs.bg$GEOID <- substr(acs.bg$GEOID, 8, 19)

### First, import the Block Group shapefile and remove any BGs

### that do not have population (water!)

BG.proj.clip <- read.dbf("/media/data/GISdata/census_2010_data/

block_groups/MI_2010_blockgroups_proj_clip.dbf")

BG.proj.clip <- BG.proj.clip$dbf

# Get unique GEOID10 for "good" Block Groups

BGs <- unique(BG.proj.clip$GEOID10)

### Subset ACS data to these Block Groups

which.bgs <- which(acs.bg$GEOID %in% BGs)

acs.bg <- acs.bg[which.bgs,]

### Read in Block Pop data

### Will use this to weight and allocate to

### block groups, tracts, and counties

bp.cent <- read.dbf("/media/data/GISdata/census_2010_data/blocks/

MI_2010_blocks_proj_cent_pop/MI_2010_blocks_proj_cent_pop_gt0.dbf")

bp.cent <- bp.cent$db
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bp.cent <- bp.cent[,c(1,17)]

bp.cent$GEOIDBG <- substr(bp.cent$GEOID, 1, 12)

bp.cent$GEOIDT <- substr(bp.cent$GEOIDBG, 1, 11)

bp.cent$GEOIDC <- substr(bp.cent$GEOIDBG, 1, 5)

### Aggregate by block group, tract, and county

BG.pop <- aggregate(bp.cent$POP100, by=list("GEOIDBG" = bp.cent$GEOIDBG),

sum)

T.pop <- aggregate(bp.cent$POP100, by=list("GEOIDT" = bp.cent$GEOIDT),

sum)

C.pop <- aggregate(bp.cent$POP100, by=list("GEOIDC" = bp.cent$GEOIDT),

sum)

names(BG.pop)[2] <- names(T.pop)[2] <- names(C.pop)[2] <- "POP"

### Attach population to block groups

acs.bg <- merge(acs.bg, BG.pop, by.x="GEOID", by.y="GEOIDBG", all.x=TRUE)

sum(BG.pop$POP)

sum(acs.bg$POP, na.rm=TRUE)

### Remove any Block Groups with no pop

acs.bg <- acs.bg[!is.na(acs.bg$POP),]

sum(acs.bg$POP)

#########

### Convert counts to percentages

#########

acs.bg.pct <- acs.bg

### Education

acs.bg.pct[,11:15] <- acs.bg.pct[,11:15] / acs.bg.pct[,10]

#sum(acs.bg.pct[2,11:15])

### Mobility (Trav to work, trav time)

acs.bg.pct[,17:28] <- acs.bg.pct[,17:28] / acs.bg.pct[,16]

#sum(acs.bg.pct[1,17:21])

#sum(acs.bg.pct[1,22:28])

##########

### Import polygon file and get neighbors
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##########

# Read in block group polygon file

bgs.poly <- readOGR("/media/data/GISdata/census_2010_data/block_groups/

MI_2010_blockgroups_proj_clip.shp", layer="MI_2010_blockgroups_proj_clip")

# Make neighbors list

## Use queen contiguity

bgs.nb <- poly2nb(bgs.poly, queen = TRUE)

na.MHI <- which(is.na(acs.bg.pct$MedHouInc))

na.ME <- which(is.na(acs.bg.pct$MedEarn16p))

na.E <- which(is.na(acs.bg.pct$EdPop25p) | acs.bg.pct$EdPop25p == 0)

na.T <- which(is.na(acs.bg.pct$TrvWorkPop16p) | acs.bg.pct$TrvWorkPop16p

== 0)

### Get interpolation stats

#u.na.bgs <- unique(c(na.MHI, na.ME, na.E, na.T))

#length(u.na.bgs)

#nrow(acs.bg.pct)

#bg.na.pop <- sum(acs.bg.pct[u.na.bgs,ncol(acs.bg.pct)])

#bg.na.pop / sum(acs.bg$POP)

#length(u.na.bgs) / nrow(acs.bg.pct)

### Start looping through each Block Group that is missing data

### Median Household Income

for (i in 1:length(na.MHI)) {

## Get the Block Group ID

na.id <- acs.bg.pct$GEOID[na.MHI[i]]

## Find which entry in the shapefile

which.poly <- which(bgs.poly$GEOID10 == na.id)

## Get list of neighbors

nbs <- bgs.poly$GEOID10[bgs.nb[which.poly][[1]]]

## Get the Median Houshold Income values of the neighbors

## Get the Populations of the neighbors

nb.vals <- acs.bg.pct[acs.bg.pct$GEOID %in% nbs, c(1,8,29)]

## Get weighted average of neighbors

mhi.interp <- sum(nb.vals$MedHouInc * nb.vals$POP, na.rm=TRUE) /

sum(nb.vals$POP, na.rm=TRUE)
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## Put interpolated value into table

acs.bg.pct$MedHouInc[na.MHI[i]] <- mhi.interp

}

sum(is.na(acs.bg.pct$MedHouInc))

### Start looping through each Block Group that is missing data

### Median Earnings

for (i in 1:length(na.ME)) {

## Get the Block Group ID

na.id <- acs.bg.pct$GEOID[na.ME[i]]

## Find which entry in the shapefile

which.poly <- which(bgs.poly$GEOID10 == na.id)

## Get list of neighbors

nbs <- bgs.poly$GEOID10[bgs.nb[which.poly][[1]]]

## Get the Median Houshold Income values of the neighbors

## Get the Populations of the neighbors

nb.vals <- acs.bg.pct[acs.bg.pct$GEOID %in% nbs, c(1,9,29)]

## Get weighted average of neighbors

mhi.interp <- sum(nb.vals$MedEarn16p * nb.vals$POP, na.rm=TRUE) /

sum(nb.vals$POP, na.rm=TRUE)

## Put interpolated value into table

acs.bg.pct$MedEarn16p[na.ME[i]] <- mhi.interp

}

which(is.na(acs.bg.pct$MedEarn16p))

### Start looping through each Block Group that is missing data

### Median Household Income

for (i in 1:length(na.MHI)) {

## Get the Block Group ID

na.id <- acs.bg.pct$GEOID[na.MHI[i]]

## Find which entry in the shapefile
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which.poly <- which(bgs.poly$GEOID10 == na.id)

## Get list of neighbors

nbs <- bgs.poly$GEOID10[bgs.nb[which.poly][[1]]]

## Get the Median Houshold Income values of the neighbors

## Get the Populations of the neighbors

nb.vals <- acs.bg.pct[acs.bg.pct$GEOID %in% nbs, c(1,8,29)]

## Get weighted average of neighbors

mhi.interp <- sum(nb.vals$MedHouInc * nb.vals$POP, na.rm=TRUE) /

sum(nb.vals$POP, na.rm=TRUE)

## Put interpolated value into table

acs.bg.pct$MedHouInc[na.MHI[i]] <- mhi.interp

}

sum(is.na(acs.bg.pct$MedHouInc))

### Start looping through each Block Group that is missing data

### Education

for (i in 1:length(na.E)) {

## Get the Block Group ID

na.id <- acs.bg.pct$GEOID[na.E[i]]

## Find which entry in the shapefile

which.poly <- which(bgs.poly$GEOID10 == na.id)

## Get list of neighbors

nbs <- bgs.poly$GEOID10[bgs.nb[which.poly][[1]]]

## Get the Median Houshold Income values of the neighbors

## Get the Populations of the neighbors

nb.vals <- acs.bg.pct[acs.bg.pct$GEOID %in% nbs, c(1,10:15)]

## Get weighted average of neighbors

mhi.interp <- colSums(nb.vals[,3:7] * nb.vals$EdPop25p, na.rm=TRUE) /

sum(nb.vals$EdPop25p, na.rm=TRUE)

## Put interpolated value into table

acs.bg.pct[na.E[i],11:15] <- mhi.interp

}
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which(is.na(acs.bg.pct$EdltHS))

### Start looping through each Block Group that is missing data

### Mobility

for (i in 1:length(na.T)) {

## Get the Block Group ID

na.id <- acs.bg.pct$GEOID[na.T[i]]

## Find which entry in the shapefile

which.poly <- which(bgs.poly$GEOID10 == na.id)

## Get list of neighbors

nbs <- bgs.poly$GEOID10[bgs.nb[which.poly][[1]]]

## Get the Median Houshold Income values of the neighbors

## Get the Populations of the neighbors

nb.vals <- acs.bg.pct[acs.bg.pct$GEOID %in% nbs, c(1,16:28)]

## Get weighted average of neighbors

mhi.interp <- colSums(nb.vals[,3:14] * nb.vals$TrvWorkPop16p, na.rm=TRUE) /

sum(nb.vals$TrvWorkPop16p, na.rm=TRUE)

## Put interpolated value into table

acs.bg.pct[na.T[i],17:28] <- mhi.interp

}

which(is.na(acs.bg.pct$TrvCar))

### Write out table

write.csv(acs.bg.pct, file="/media/data/GISdata/acs2010/5yr/tables/

ACS.5yr.IncEdMob.BlockGroup.Interpolated.csv", row.names=FALSE)

##################################################################

##################################################################

############################################################

## R Code to aggregate county data from SAHIE by Zip Code ##

## Use block / zip percentages because of nesting ##

############################################################
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options(scipen=500)

## Get joined block / zip code : age proportions table

zip.blk.age <- read.csv("/home/delamate/MDCH/data/dissertation/zipcodes/

tables/zipcode_blocks_age_breakdown.csv")

sum(zip.blk.age$SumAgePop)

## Make County ID column

zip.blk.age$GEOIDC <- substr(zip.blk.age$GEOID10, 1, 5)

## Aggregate to Counties

zip.c <- aggregate(zip.blk.age[,c(5:22,24)], by=list("GEOIDC" =

zip.blk.age$GEOIDC, "ZIP" = zip.blk.age$ZIP), sum)

sum(zip.c$SumAgePop)

## Create similar age brackets

zip.c$P0_19 <- rowSums(zip.c[,3:6])

zip.c$P20_64 <- rowSums(zip.c[,7:15])

zip.c$P0_64 <- rowSums(zip.c[,3:15])

zip.c$P65p <- rowSums(zip.c[,16:20])

## Subset

zip.c <- zip.c[,c(1:2,21:25)]

sum(zip.c$SumAgePop)

##

## First, sum Zip Code 0 - 64 populations

zip.pop <- aggregate(zip.c[,6], by=list("ZIP" = zip.c$ZIP), sum)

names(zip.pop)[2] <- "POP064ZIP"

## Merge

zip.c <- merge(zip.c, zip.pop, by="ZIP", all.x=TRUE)

## Create County :: Zip percentage

zip.c$CPCT064 <- zip.c$P0_64 / zip.c$POP064ZIP

## Get SAHIE data table

sahie.c <- read.csv("/media/data/GISdata/census_SAHIE/2009/tables/

sahie.county.health.insurance.estimates.csv")
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## Remove error columns

sahie.c <- sahie.c[,c(1:4,6,8:9,11,13:14,16)]

## Fix 0-18, 18-64 :: Make into 0-18, 19-64

sahie.c$POP_19_64 <- sahie.c$POP_18_64 -

((sahie.c$POP_0_18 + sahie.c$POP_18_64) - sahie.c$POP)

sahie.c$INSPOP_19_64 <- sahie.c$INSPOP_18_64 -

((sahie.c$INSPOP_0_18 + sahie.c$INSPOP_18_64) - sahie.c$INSPOP)

sahie.c$POP_19_64<- sahie.c$POP_18_64 -

((sahie.c$POP_0_18 + sahie.c$POP_18_64) - sahie.c$POP)

sahie.c$UNINSPOP_19_64 <- sahie.c$POP_19_64 - sahie.c$INSPOP_19_64

## Convert SAHIEs to Percentages

sahie.c.o <- sahie.c

sahie.c[,4:5] <- sahie.c[,4:5] / sahie.c$POP

sahie.c[,7:8] <- sahie.c[,7:8] / sahie.c$POP_0_18

sahie.c[,10:11] <- sahie.c[,10:11] / sahie.c$POP_18_64

sahie.c[,13:14] <- sahie.c[,13:14] / sahie.c$POP_19_64

## Get COUNTY pop data

c.age <- read.csv("/home/delamate/MDCH/data/dissertation/zipcodes/

tables/county_AGE_blockpop_adj.csv")

## Aggregate to similar age brackets

c.age$P0_19 <- rowSums(c.age[,2:5])

c.age$P20_64 <- rowSums(c.age[,6:14])

c.age$P0_64 <- rowSums(c.age[,2:14])

c.age$P65p <- rowSums(c.age[,15:19])

c.age <- c.age[,c(1,20:24)]

######################

### Use the weights to allocate COUNTY values to ZIP CODES!!

######################

zip.sahie <- NULL

u.zips <- unique(zip.c$ZIP)

for (i in 1:length(u.zips)) {

## Get weights
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zip.c.weights <- zip.c[zip.c$ZIP == u.zips[i], c(1,2,9)]

## Get SAHIE County values

sahie.c.sub <- sahie.c[sahie.c$COUNTY %in%

as.numeric(substr(zip.c.weights$GEOIDC, 3, 5)), c(1,2,4,7,13)]

## Sort each

zip.c.weights <- zip.c.weights[order(zip.c.weights$GEOIDC),]

sahie.c.sub <- sahie.c.sub[order(sahie.c.sub$COUNTY),]

# if(sum(zip.bg.weights$GEOIDBG != acs.bg.sub$GEOID) > 0)

print(paste("Something went wrong at i = ", i, sep=""))

## Multiply by weights and SUM

w.sahie <- sum(sahie.c.sub$INSPOP * zip.c.weights[,3])

## Now, figure out overall insured rate... assuming all 65+ are insured

zip.o <- zip.c[zip.c$ZIP == u.zips[i], c(1,2,6,7)]

zip.64u <- sum(zip.o$P0_64 * sahie.c.sub$INSPOP)

zip.65p <- sum(zip.o$P65p * 1)

ov.ins.rate <- (zip.64u + zip.65p) / (sum(zip.o$P0_64) + sum(zip.o$P65p))

## Now, get overall insured rate... and 0-64 rate using the separate rates

zip.o <- zip.c[zip.c$ZIP == u.zips[i], c(1,2,4,5,6,7)]

zip.0.19 <- sum(zip.o$P0_19 * sahie.c.sub$INSPOP_0_18)

zip.20.64 <- sum(zip.o$P20_64 * sahie.c.sub$INSPOP_19_64)

zip.65p <- sum(zip.o$P65p * 1)

interp.ins.rate <- (zip.0.19 + zip.20.64 + zip.65p) / (sum(zip.o$P0_19)

+ sum(zip.o$P20_64) + sum(zip.o$P65p))

interp.ins.rate.64 <- (zip.0.19 + zip.20.64) / (sum(zip.o$P0_19)

+ sum(zip.o$P20_64))

## Put in holder

zip.sahie <- rbind(zip.sahie, c(u.zips[i], w.sahie, ov.ins.rate,

interp.ins.rate, interp.ins.rate.64))

}

class(zip.sahie)

zip.sahie <- as.data.frame(zip.sahie)

names(zip.sahie) <- c("ZIP", "HeaInsRate0_64", "HeaInsRateTot",

"HeaInsRateIntTot", "HeaInsRateInt0_64")
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### Write out file

write.csv(zip.sahie, file="/home/delamate/MDCH/data/dissertation/

zipcodes/tables/zipcode_SAHIE_HealthInsurance.csv", row.names=FALSE)

############################################################

############################################################

###########################################################

## R Code to subset patient days to only those spent ##

## in a hospital < 60 minutes travel time from residence ##

## This matches specification in E2SFCA calculation ##

###########################################################

library(rgdal)

library(sp)

library(maptools)

library(shapefiles)

## Get records

records <- read.csv(file="2010/2010MIDBrecords.csv")

## Get Zip / Hosp distances

## Get OD matrix for Zip Codes

## Read in origin-destination shapefile table

od <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/OD/hosps_esri2010pwcent_traveltime_od.dbf")

## Remove header info

od <- od$dbf

## Subset

od <- od[,c(7,8,5)]

# Remove weird point

# Weird point is Block centroid that didn’t fall in any Zip Code!

badID <- which(od$FAC_ID %in% unique(od$FAC_ID)[170:338])

od <- od[-c(badID),]

## Get hospital info file and attach FAC_ID

hosp.info <- read.csv("/media/data/GISdata/hospitals/csv/

2011-hosps-beds.csv")

od <- merge(od, hosp.info[,c(1,4)], by="FAC_ID", all.x=TRUE)

## Aggregate distances by ZIPCODE / MIDB

od <- aggregate(od$Total_MinT, by=list("ZIPCODE" = od$ZIPCODE,
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"MIDB" = od$MIDB), mean)

names(od)[3] <- "MIN"

length(unique(od$ZIPCODE))

length(unique(od$MIDB))

### Attach travel time to patient records

names(records)[c(2,4)] <- c("MIDB", "ZIPCODE")

records <- merge(records, od, by=c("ZIPCODE", "MIDB"), all.x=TRUE)

### Subset

records.60 <- records[records$MIN <= 60, ]

no.dist <- which(is.na(records.60$LOS))

records.60 <- records.60[-no.dist,]

records <- records.60

#write.csv(records, file="2010/2010MIDBrecords.60min.csv",

row.names=FALSE)

### Aggregate by age!

### Bin into AGE categories

records0004 <- records[as.numeric(as.character(records$AGE)) < 5, ]

records0509 <- records[as.numeric(as.character(records$AGE)) >= 5 &

as.numeric(as.character(records$AGE)) < 10, ]

records1014 <- records[as.numeric(as.character(records$AGE)) >= 10 &

as.numeric(as.character(records$AGE)) < 15, ]

records1519 <- records[as.numeric(as.character(records$AGE)) >= 15 &

as.numeric(as.character(records$AGE)) < 20, ]

records2024 <- records[as.numeric(as.character(records$AGE)) >= 20 &

as.numeric(as.character(records$AGE)) < 25, ]

records2529 <- records[as.numeric(as.character(records$AGE)) >= 25 &

as.numeric(as.character(records$AGE)) < 30, ]

records3034 <- records[as.numeric(as.character(records$AGE)) >= 30 &

as.numeric(as.character(records$AGE)) < 35, ]

records3539 <- records[as.numeric(as.character(records$AGE)) >= 35 &

as.numeric(as.character(records$AGE)) < 40, ]

records4044 <- records[as.numeric(as.character(records$AGE)) >= 40 &

as.numeric(as.character(records$AGE)) < 45, ]

records4549 <- records[as.numeric(as.character(records$AGE)) >= 45 &

as.numeric(as.character(records$AGE)) < 50, ]

records5054 <- records[as.numeric(as.character(records$AGE)) >= 50 &

as.numeric(as.character(records$AGE)) < 55, ]

records5559 <- records[as.numeric(as.character(records$AGE)) >= 55 &
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as.numeric(as.character(records$AGE)) < 60, ]

records6064 <- records[as.numeric(as.character(records$AGE)) >= 60 &

as.numeric(as.character(records$AGE)) < 65, ]

records6569 <- records[as.numeric(as.character(records$AGE)) >= 65 &

as.numeric(as.character(records$AGE)) < 70, ]

records7074 <- records[as.numeric(as.character(records$AGE)) >= 70 &

as.numeric(as.character(records$AGE)) < 75, ]

records7579 <- records[as.numeric(as.character(records$AGE)) >= 75 &

as.numeric(as.character(records$AGE)) < 80, ]

records8084 <- records[as.numeric(as.character(records$AGE)) >= 80 &

as.numeric(as.character(records$AGE)) < 85, ]

records85p <- records[as.numeric(as.character(records$AGE)) >= 85, ]

records0004 <- aggregate(records0004[,4], by=list(ZIP =

records0004$ZIPCODE), FUN=sum)

records0509 <- aggregate(records0509[,4], by=list(ZIP =

records0509$ZIPCODE), FUN=sum)

records1014 <- aggregate(records1014[,4], by=list(ZIP =

records1014$ZIPCODE), FUN=sum)

records1519 <- aggregate(records1519[,4], by=list(ZIP =

records1519$ZIPCODE), FUN=sum)

records2024 <- aggregate(records2024[,4], by=list(ZIP =

records2024$ZIPCODE), FUN=sum)

records2529 <- aggregate(records2529[,4], by=list(ZIP =

records2529$ZIPCODE), FUN=sum)

records3034 <- aggregate(records3034[,4], by=list(ZIP =

records3034$ZIPCODE), FUN=sum)

records3539 <- aggregate(records3539[,4], by=list(ZIP =

records3539$ZIPCODE), FUN=sum)

records4044 <- aggregate(records4044[,4], by=list(ZIP =

records4044$ZIPCODE), FUN=sum)

records4549 <- aggregate(records4549[,4], by=list(ZIP =

records4549$ZIPCODE), FUN=sum)

records5054 <- aggregate(records5054[,4], by=list(ZIP =

records5054$ZIPCODE), FUN=sum)

records5559 <- aggregate(records5559[,4], by=list(ZIP =

records5559$ZIPCODE), FUN=sum)

records6064 <- aggregate(records6064[,4], by=list(ZIP =

records6064$ZIPCODE), FUN=sum)

records6569 <- aggregate(records6569[,4], by=list(ZIP =

records6569$ZIPCODE), FUN=sum)

records7074 <- aggregate(records7074[,4], by=list(ZIP =

records7074$ZIPCODE), FUN=sum)

records7579 <- aggregate(records7579[,4], by=list(ZIP =

records7579$ZIPCODE), FUN=sum)
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records8084 <- aggregate(records8084[,4], by=list(ZIP =

records8084$ZIPCODE), FUN=sum)

records85p <- aggregate(records85p[,4], by=list(ZIP =

records85p$ZIPCODE), FUN=sum)

## Get Zip Code age breakdown

zip.age <- read.csv(file="/home/delamate/MDCH/data/dissertation/

zipcodes/tables/zipcode_AGE_blockpop_adj.csv")

zip.days <- merge(records0004, records0509, by="ZIP", all.x=TRUE,

all.y=TRUE)

zip.days <- merge(zip.days, records1014, by="ZIP", all.x=TRUE, all.y=TRUE)

names(zip.days)[2:ncol(zip.days)] <- names(zip.age)[2:ncol(zip.days)]

zip.days <- merge(zip.days, records1519, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records2024, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records2529, by="ZIP", all.x=TRUE, all.y=TRUE)

names(zip.days)[2:ncol(zip.days)] <- names(zip.age)[2:ncol(zip.days)]

zip.days <- merge(zip.days, records3034, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records3539, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records4044, by="ZIP", all.x=TRUE, all.y=TRUE)

names(zip.days)[2:ncol(zip.days)] <- names(zip.age)[2:ncol(zip.days)]

zip.days <- merge(zip.days, records4549, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records5054, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records5559, by="ZIP", all.x=TRUE, all.y=TRUE)

names(zip.days)[2:ncol(zip.days)] <- names(zip.age)[2:ncol(zip.days)]

zip.days <- merge(zip.days, records6064, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records6569, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records7074, by="ZIP", all.x=TRUE, all.y=TRUE)

names(zip.days)[2:ncol(zip.days)] <- names(zip.age)[2:ncol(zip.days)]

zip.days <- merge(zip.days, records7579, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records8084, by="ZIP", all.x=TRUE, all.y=TRUE)

zip.days <- merge(zip.days, records85p, by="ZIP", all.x=TRUE, all.y=TRUE)

names(zip.days)[2:ncol(zip.days)] <- names(zip.age)[2:ncol(zip.days)]

zip.days[is.na(zip.days)] <- 0

names(zip.days)

### Clean up file to account for funky Zip Codes ##################

### See dissertation data notes ###################################

### Remove islands

#islands <- which(zip.days$ZIP %in% c(48028, 49726, 49757, 49775, 49782))

#airport <- which(zip.days$ZIP == 48242)

#zip.days <- zip.days[-c(islands, airport), ]
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### Reassign zips

zip.days$ZIP[zip.days$ZIP == 48710] <- 48706

zip.days$ZIP[zip.days$ZIP == 48743] <- 48739

zip.days$ZIP[zip.days$ZIP == 48824 | zip.days$ZIP == 48825] <- 48823

zip.days$ZIP[zip.days$ZIP == 49104] <- 49103

zip.days$ZIP[zip.days$ZIP == 49792] <- 49765

zip.days$ZIP[zip.days$ZIP == 49873] <- 49807

zip.days <- aggregate(zip.days[,2:ncol(zip.days)], by=list("ZIP" =

zip.days$ZIP), sum)

dim(zip.days)

### 3 Zip Codes have NO patient days within 60 minutes!!

### 892 records... add zero entries for these 49725, 49858, 49893

zip.days <- rbind(zip.days, c(49725, rep(0,18)))

zip.days <- rbind(zip.days, c(49858, rep(0,18)))

zip.days <- rbind(zip.days, c(49893, rep(0,18)))

zip.days <- zip.days[order(zip.days$ZIP), ]

dim(zip.days)

zip.days$TotDays <- rowSums(zip.days[2:19])

## Write records to file

write.csv(zip.days, file="/home/delamate/MDCH/data/dissertation/

zipcodes/tables/zipcode_2010_UTILIZATION_age_breakdown.60min.csv",

row.names=FALSE)

###########################################################

###########################################################

###########################################################

## R Code to estimate distance decay in a gravity model ##

## Uses MIDB patient days and network GIS travel data ##

###########################################################

library(rgdal)

library(sp)

library(maptools)

library(shapefiles)

library(classInt)

## Get table of patient days
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pd <- read.csv("/home/delamate/MDCH/data/dissertation/utilization/2010/

2010MIDBrecords.csv")

## Subset to needed data

pd <- pd[,c(2,4,3)]

## Get travel distance data

## Get OD matrix for Zip Codes

## Read in origin-destination shapefile table

od <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/OD/hosps_esri2010pwcent_traveltime_od.dbf")

## Remove header info

od <- od$dbf

## Subset

od <- od[,c(7,8,5)]

# Get hosp info and attach MIDB number

hosp.info <- read.csv("/media/data/GISdata/hospitals/csv/

2011-hosps-beds.csv")

# Attach to OD matrix

od <- merge(od, hosp.info[,c(1,4)], by="FAC_ID", all.x=TRUE)

## Get mean of distances to grouped hospitals

od <- aggregate(od$Total_MinT, by=list("ZIPCODE" = od$ZIPCODE, "MIDB" =

od$MIDB), mean)

names(od)[c(1,3)] <- c("ZIP", "Min")

## Get total number of beds per MIDB hospital (SUPPLY)

n.beds <- aggregate(hosp.info$BEDS2010, by=list(MIDB = hosp.info$MIDB),

sum)

names(n.beds)[2] <- "BEDS"

## Get total number of patient days per MIDB hospital (DEMAND)

n.patient.days <- aggregate(pd$LOS, by=list(MIDB = pd$HOSP_ID), sum)

names(n.patient.days)[2] <- "PDj"

## Get total number of patient days per ZIP

n.pat.days.zip <- aggregate(pd$LOS, by=list(ZIP = pd$MIDB_ZIP), sum)

names(n.pat.days.zip)[2] <- "PDi"

## Get patient flows from each Zip to each hospital

zip.pd <- aggregate(pd$LOS, by=list(ZIP = pd$MIDB_ZIP, MIDB = pd$HOSP_ID),

sum)

188



names(zip.pd)[3] <- "PDij"

## Aggregate data into single table

data <- zip.pd

data <- merge(data, n.beds, by="MIDB", all.x=TRUE)

data <- merge(data, n.patient.days, by="MIDB", all.x=TRUE)

data <- merge(data, n.pat.days.zip, by="ZIP", all.x=TRUE)

data <- merge(data, od, by=c("ZIP", "MIDB"), all.x=TRUE)

####

#### Distance decay function is cumulative by distance traveled!!

#### It’s a probability that people travel X dist or less

####

#### Get total days

## Remove "NAs" in distance

nas <- which(is.na(data$Min))

data <- data[-nas,]

t.pat.days <- sum(data$PDij)

#### Bin probability by Distance

max.d <- max(data$Min)

dist.bin <- 0:floor(max.d)

#### Make holder

Prob <- as.data.frame(cbind(dist.bin, rep(0, length(dist.bin))))

names(Prob) <- c("Min", "Prob")

#### Loop through and get probabilities

for (d in dist.bin) {

## Get records greater than or equal to distance bin

sub.data <- data[data$Min >= d,]

## Get patient days

d.pat.days <- sum(sub.data$PDij)

## Get probability

Prob$Prob[d+1] <- d.pat.days / t.pat.days

}

nlc <- nls.control(maxiter = 1000000)
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nlsfit.d.log.logistic <- nls(Prob ~ 1 / (1 + (Min/a)^b), data=Prob,

start=list(a=1, b=1), control=nlc, trace=TRUE)

summary(nlsfit.d.log.logistic)

a <- summary(nlsfit.d.log.logistic)$coefficients[1,1]

b <- summary(nlsfit.d.log.logistic)$coefficients[2,1]

## Write out data for making figures

fig.dat <- as.data.frame(cbind(Prob, fitted(nlsfit.d.log.logistic)))

names(fig.dat) <- c("Min", "Util", "dll")

write.csv(fig.dat, file="distance.decay.utilization.csv", row.names=FALSE)

## Write out weights table

weight.table <- as.data.frame(cbind(0:700, 1 / (1 + ((0:700)/a)^b)))

names(weight.table) <- c("Min", "dllWgt")

write.csv(weight.table, file="/home/delamate/MDCH/data/dissertation/

Distance.decay/decreasing.log.likelihood.weights.empirical.2010.csv",

row.names=FALSE)

###########################################################

###########################################################

###################################################

## Code to calculate demand for E2SFCA ##

## Get poplulation and allocate based on weights ##

###################################################

options(scipen=999)

## Get block / ring data

blcks <- read.csv("/home/delamate/MDCH/data/dissertation/E2SFCA/tables/

block.centroid.rings.csv")

## Get 2010 weights

weights <- read.csv("/home/delamate/MDCH/data/dissertation/

Distance.decay/decreasing.log.likelihood.weights.empirical.2010.csv")

## Convert aggregate weights to "ring" structure

w.5 <- mean(weights$dllWgt[1:6])

w.10 <- mean(weights$dllWgt[6:11])

w.15 <- mean(weights$dllWgt[11:16])
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w.20 <- mean(weights$dllWgt[16:21])

w.25 <- mean(weights$dllWgt[21:26])

w.30 <- mean(weights$dllWgt[26:31])

w.35 <- mean(weights$dllWgt[31:36])

w.40 <- mean(weights$dllWgt[36:41])

w.45 <- mean(weights$dllWgt[41:46])

w.60 <- mean(weights$dllWgt[46:51])

weights.mean <- c(w.5, w.10, w.15, w.20, w.25, w.30, w.35, w.40, w.45,

w.60)

nms <- seq(5,60,5)

nms <- nms[c(1:9,12)]

names(weights.mean) <- c(paste("W", nms, sep=""))

weights.mat <- as.data.frame(matrix(rep(weights.mean, nrow(blcks)),

nrow=nrow(blcks), ncol=length(weights.mean), byrow=TRUE))

names(weights.mat) <- names(weights.mean)

## Make presence / absence table

blcks.p <- blcks

blcks.p[,3:12] <- as.numeric(blcks.p[,3:12] > 0)

## Multiply p/a by weights

wght.blck <- blcks.p

wght.blck[,3:12] <- wght.blck[,3:12]*weights.mat

## Multiply pop by weights

pop.wght <- wght.blck

wght.blck$Min5 <- wght.blck$Min5 * wght.blck$POP100

wght.blck$Min10 <- wght.blck$Min10 * wght.blck$POP100

wght.blck$Min15 <- wght.blck$Min15 * wght.blck$POP100

wght.blck$Min20 <- wght.blck$Min20 * wght.blck$POP100

wght.blck$Min25 <- wght.blck$Min25 * wght.blck$POP100

wght.blck$Min30 <- wght.blck$Min30 * wght.blck$POP100

wght.blck$Min35 <- wght.blck$Min35 * wght.blck$POP100

wght.blck$Min40 <- wght.blck$Min40 * wght.blck$POP100

wght.blck$Min45 <- wght.blck$Min45 * wght.blck$POP100

wght.blck$Min60 <- wght.blck$Min60 * wght.blck$POP100

library(rgdal)

library(sp)
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library(maptools)

library(shapefiles)

## Read in 5 minute file

dbf5 <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_5.dbf")

dbf5 <- dbf5$dbf

## Subset to needed columns

dbf5 <- dbf5[,c(names(dbf5) == "GEOID10" | names(dbf5) == "FAC_ID")]

## Attach demand per hospital!

dbf5 <- merge(dbf5, wght.blck[,c(1,3)], by="GEOID10", all.x=TRUE)

## Aggregate by hospital

hosp.demand <- aggregate(dbf5$Min5, by=list(FAC_ID = dbf5$FAC_ID), sum)

names(hosp.demand)[2] <- "Min5"

rm(dbf5)

## Read in 10 minute file

dbf10 <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_10.dbf")

dbf10 <- dbf10$dbf

## Subset to needed columns

dbf10 <- dbf10[,c(names(dbf10) == "GEOID10" | names(dbf10) == "FAC_ID")]

## Attach demand per hospital!

dbf10 <- merge(dbf10, wght.blck[,c(1,4)], by="GEOID10", all.x=TRUE)

## Aggregate by hospital

hosp.demand.t <- aggregate(dbf10$Min10, by=list(FAC_ID = dbf10$FAC_ID), sum)

names(hosp.demand.t)[2] <- "Min10"

## Merge

hosp.demand <- merge(hosp.demand, hosp.demand.t, by="FAC_ID", all.x=TRUE)

rm(dbf10)
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## Read in 15 minute file

dbf15 <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_15.dbf")

dbf15 <- dbf15$dbf

## Subset to needed columns

dbf15 <- dbf15[,c(names(dbf15) == "GEOID10" | names(dbf15) == "FAC_ID")]

## Attach demand per hospital!

dbf15 <- merge(dbf15, wght.blck[,c(1,5)], by="GEOID10", all.x=TRUE)

## Aggregate by hospital

hosp.demand.t <- aggregate(dbf15$Min15, by=list(FAC_ID = dbf15$FAC_ID), sum)

names(hosp.demand.t)[2] <- "Min15"

## Merge

hosp.demand <- merge(hosp.demand, hosp.demand.t, by="FAC_ID", all.x=TRUE)

rm(dbf15)

## Read in 20 minute file

dbf20 <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_20.dbf")

dbf20 <- dbf20$dbf

## Subset to needed columns

dbf20 <- dbf20[,c(names(dbf20) == "GEOID10" | names(dbf20) == "FAC_ID")]

## Attach demand per hospital!

dbf20 <- merge(dbf20, wght.blck[,c(1,6)], by="GEOID10", all.x=TRUE)

## Aggregate by hospital

hosp.demand.t <- aggregate(dbf20$Min20, by=list(FAC_ID = dbf20$FAC_ID), sum)

names(hosp.demand.t)[2] <- "Min20"

## Merge

hosp.demand <- merge(hosp.demand, hosp.demand.t, by="FAC_ID", all.x=TRUE)

rm(dbf20)
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## Read in 25 minute file

dbf25 <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_25.dbf")

dbf25 <- dbf25$dbf

## Subset to needed columns

dbf25 <- dbf25[,c(names(dbf25) == "GEOID10" | names(dbf25) == "FAC_ID")]

## Attach demand per hospital!

dbf25 <- merge(dbf25, wght.blck[,c(1,7)], by="GEOID10", all.x=TRUE)

## Aggregate by hospital

hosp.demand.t <- aggregate(dbf25$Min25, by=list(FAC_ID = dbf25$FAC_ID), sum)

names(hosp.demand.t)[2] <- "Min25"

## Merge

hosp.demand <- merge(hosp.demand, hosp.demand.t, by="FAC_ID", all.x=TRUE)

rm(dbf25)

## Read in 30 minute file

dbf30 <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_30.dbf")

dbf30 <- dbf30$dbf

## Subset to needed columns

dbf30 <- dbf30[,c(names(dbf30) == "GEOID10" | names(dbf30) == "FAC_ID")]

## Attach demand per hospital!

dbf30 <- merge(dbf30, wght.blck[,c(1,8)], by="GEOID10", all.x=TRUE)

## Aggregate by hospital

hosp.demand.t <- aggregate(dbf30$Min30, by=list(FAC_ID = dbf30$FAC_ID), sum)

names(hosp.demand.t)[2] <- "Min30"

## Merge

hosp.demand <- merge(hosp.demand, hosp.demand.t, by="FAC_ID", all.x=TRUE)

rm(dbf30)

194



## Read in 35 minute file

dbf35 <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_35.dbf")

dbf35 <- dbf35$dbf

## Subset to needed columns

dbf35 <- dbf35[,c(names(dbf35) == "GEOID10" | names(dbf35) == "FAC_ID")]

## Attach demand per hospital!

dbf35 <- merge(dbf35, wght.blck[,c(1,9)], by="GEOID10", all.x=TRUE)

## Aggregate by hospital

hosp.demand.t <- aggregate(dbf35$Min35, by=list(FAC_ID = dbf35$FAC_ID), sum)

names(hosp.demand.t)[2] <- "Min35"

## Merge

hosp.demand <- merge(hosp.demand, hosp.demand.t, by="FAC_ID", all.x=TRUE)

rm(dbf35)

### Read in 40 minute files

dbf40a <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_40a.dbf")

dbf40b <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_40b.dbf")

dbf40a <- dbf40a$dbf

dbf40b <- dbf40b$dbf

## Subset to needed columns

dbf40a <- dbf40a[,c(names(dbf40a) == "GEOID10" | names(dbf40a) == "FAC_ID")]

dbf40b <- dbf40b[,c(names(dbf40b) == "GEOID10" | names(dbf40b) == "FAC_ID")]

## Combine tables

dbf40 <- rbind(dbf40a, dbf40b)

## Attach demand per hospital!

dbf40 <- merge(dbf40, wght.blck[,c(1,10)], by="GEOID10", all.x=TRUE)
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## Aggregate by hospital

hosp.demand.t <- aggregate(dbf40$Min40, by=list(FAC_ID = dbf40$FAC_ID), sum)

names(hosp.demand.t)[2] <- "Min40"

## Merge

hosp.demand <- merge(hosp.demand, hosp.demand.t, by="FAC_ID", all.x=TRUE)

rm(dbf40a)

rm(dbf40b)

rm(dbf40)

### Read in 45 minute files

dbf45a <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_45a.dbf")

dbf45b <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_45b.dbf")

dbf45a <- dbf45a$dbf

dbf45b <- dbf45b$dbf

## Subset to needed columns

dbf45a <- dbf45a[,c(names(dbf45a) == "GEOID10" | names(dbf45a) == "FAC_ID")]

dbf45b <- dbf45b[,c(names(dbf45b) == "GEOID10" | names(dbf45b) == "FAC_ID")]

## Combine tables

dbf45 <- rbind(dbf45a, dbf45b)

## Attach demand per hospital!

dbf45 <- merge(dbf45, wght.blck[,c(1,11)], by="GEOID10", all.x=TRUE)

## Aggregate by hospital

hosp.demand.t <- aggregate(dbf45$Min45, by=list(FAC_ID = dbf45$FAC_ID), sum)

names(hosp.demand.t)[2] <- "Min45"

## Merge

hosp.demand <- merge(hosp.demand, hosp.demand.t, by="FAC_ID", all.x=TRUE)

rm(dbf45a)

rm(dbf45b)

rm(dbf45)

### Read in 60 minute files
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dbf60a <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_60a.dbf")

dbf60b <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/Service-areas/join/MI_2010_blocks_proj_cent_pop_gt0_join_60b.dbf")

dbf60a <- dbf60a$dbf

dbf60b <- dbf60b$dbf

## Subset to needed columns

dbf60a <- dbf60a[,c(names(dbf60a) == "GEOID10" | names(dbf60a) == "FAC_ID")]

dbf60b <- dbf60b[,c(names(dbf60b) == "GEOID10" | names(dbf60b) == "FAC_ID")]

## Combine tables

dbf60 <- rbind(dbf60a, dbf60b)

## Attach demand per hospital!

dbf60 <- merge(dbf60, wght.blck[,c(1,12)], by="GEOID10", all.x=TRUE)

## Aggregate by hospital

hosp.demand.t <- aggregate(dbf60$Min60, by=list(FAC_ID = dbf60$FAC_ID), sum)

names(hosp.demand.t)[2] <- "Min60"

## Merge

hosp.demand <- merge(hosp.demand, hosp.demand.t, by="FAC_ID", all.x=TRUE)

rm(dbf60a)

rm(dbf60b)

rm(dbf60)

### Sum

hosp.demand$DemandSum <- rowSums(hosp.demand[,2:11])

### Get bed info

## Import hospital bed numbers

hosp.info <- read.csv("/media/data/GISdata/hospitals/csv/

2011-hosps-beds.csv")

## Attach beds to demand table

hosp.demand <- merge(hosp.demand, hosp.info[,c(4,8)], by="FAC_ID",

all.x=TRUE)
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## Reorder

hosp.demand <- hosp.demand[,c(1,13,2:12)]

####

#### Calculate Hospital Supply!

####

hosp.demand$HospSupply <- hosp.demand$BEDS2010 / hosp.demand$DemandSum

# hosp.demand[,c(1,2,14)]

####

#### Calculate E2SFCA

####

## Get OD matrix for Zip Codes

## Read in origin-destination shapefile table

od <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/OD/hosps_esri2010pwcent_traveltime_od.dbf")

## Remove header info

od <- od$dbf

## Subset

od <- od[,c(7,8,5)]

# Remove weird point

# Weird point is Block centroid that didn’t fall in any Zip Code!

badID <- which(od$FAC_ID %in% unique(od$FAC_ID)[170:338])

od <- od[-c(badID),]

# Calculate weights

### Because we have the actual distance, we can calculate this using

### the formula from estimate.decay.parameter.R

#2009 data# weight = (1 / (1 + (Min/13.77)^1.83127))

od$dllWgt <- (1 / (1 + (od$Total_MinT/13.885928)^1.817622))

########################

############

############ Important!

############

############ Because we only considered demand out to 60 minutes,

############ change any weight above 60 minutes to 0 (zero)
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############

########################

od$dllWgt[od$Total_MinT > 60] <- 0

## Attach supply at each hospital

od <- merge(od, hosp.demand[,c(1,14)], by="FAC_ID", all.x=TRUE)

## Multiply supply by weight

od$Supply <- od$dllWgt*od$HospSupply

## Aggregate for each ZIP CODE

E2SFCA <- aggregate(od$Supply, by=list(ZIP = od$ZIPCODE), sum)

names(E2SFCA)[2] <- "E2SFCA"

### Clean up file to account for funky Zip Codes ##################

### See dissertation data notes ###################################

### Get zip pop data :: WE NEED ORIGINAL DATA HERE! ::

### Not "adjusted for bad zips" data!

zip.pop <- read.csv("/home/delamate/MDCH/data/dissertation/zipcodes/

tables/zipcode_blockpop_adj_ALLZIPS.csv")

### Attach to 3SFCA

E2SFCA <- merge(E2SFCA, zip.pop, by="ZIP", all.x=TRUE)

### Remove islands

#islands <- which(od$ZIPCODE %in% c(48028, 49726, 49757, 49775, 49782))

#od <- od[-islands, ]

### Reassign zips

E2SFCA$ZIP[E2SFCA$ZIP == 48710] <- 48706

E2SFCA$ZIP[E2SFCA$ZIP == 48743] <- 48739

E2SFCA$ZIP[E2SFCA$ZIP == 48824 | E2SFCA$ZIP == 48825] <- 48823

E2SFCA$ZIP[E2SFCA$ZIP == 49104] <- 49103

E2SFCA$ZIP[E2SFCA$ZIP == 49792] <- 49765

E2SFCA$ZIP[E2SFCA$ZIP == 49873] <- 49807

###############

### Do a weighted mean by zip population

###############
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E2SFCA$WgtE2SFCA <- E2SFCA$E2SFCA*E2SFCA$BkPopAdj2010

E2SFCA <- aggregate(E2SFCA[,3:4], by=list("ZIP" = E2SFCA$ZIP), sum)

E2SFCA$E2SFCA <- E2SFCA$WgtE2SFCA / E2SFCA$BkPopAdj2010

### Clean up file to account for funkty Zip Codes ##################

### See dissertation data notes ####################################

E2SFCA <- E2SFCA[,-3]

### Test to see if math worked

sum(hosp.info$BEDS2010)

sum(E2SFCA$E2SFCA * E2SFCA$BkPopAdj2010)

## Write out to table

write.csv(E2SFCA, file="/home/delamate/MDCH/data/dissertation/zipcodes/

tables/zipcode_E2SFCA_2010_new.csv", row.names=FALSE)

## Attach to Zip Polys and map (updated clusters!)

## Import Zip Code file and attach

zip.poly <- readOGR("/media/data/Project Files/Delamater/Dissertation/

Clustering/Cluster_shapefiles/d/895.shp", layer="895")

## Join

zip.poly@data <- cbind(zip.poly@data, E2SFCA)

zip.poly$E31000 <- zip.poly$E2SFCA * 1000

writeOGR(zip.poly, dsn="/media/data/Project Files/Delamater/Dissertation/

Utilization/E2SFCA", layer="MI_CL895_E2SFCA_new", driver="ESRI Shapefile")

###################################################

###################################################

###################################################

## R Code to cluster Zip Codes into regions ##

## Built upon code from Michigan Hospital Groups ##

###################################################
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### Read in 2010 patient records

pd <- read.csv("/home/delamate/MDCH/data/dissertation/utilization/2010/

2010MIDBrecords.csv")

### Drop age column

pd <- pd[,-1]

### Clean up file to account for funky Zip Codes ##################

### See dissertation data notes ###################################

### Remove islands

islands <- which(pd$MIDB_ZIP %in% c(48028, 49726, 49757, 49775, 49782))

pd <- pd[-islands, ]

### Reassign zips

pd$MIDB_ZIP[pd$MIDB_ZIP == 48710] <- 48706

pd$MIDB_ZIP[pd$MIDB_ZIP == 48743] <- 48739

pd$MIDB_ZIP[pd$MIDB_ZIP == 48824 | pd$MIDB_ZIP == 48825] <- 48823

pd$MIDB_ZIP[pd$MIDB_ZIP == 49104] <- 49103

pd$MIDB_ZIP[pd$MIDB_ZIP == 49792] <- 49765

pd$MIDB_ZIP[pd$MIDB_ZIP == 49873] <- 49807

### Clean up file to account for funkty Zip Codes ##################

### See dissertation data notes ####################################

### Convert to OD matrix

out <- aggregate(pd$LOS, by=list("ZIP" = pd$MIDB_ZIP, "MIDB" =

pd$HOSP_ID), sum)

names(out)[3] <- "PD"

pd <- reshape(out, direction=’wide’,idvar=’ZIP’, timevar=’MIDB’)

rm(out)

pd[is.na(pd)] <- 0

### Sort... rename columns

pd <- pd[order(pd$ZIP), ]

names(pd)[2:ncol(pd)] <- paste("PD", substr(names(pd)[2:ncol(pd)], 4, 7),

sep="")

### Convert patient days to Commitment Index values

z.days <- rowSums(pd[,2:ncol(pd)])

ci.pd <- pd[,2:ncol(pd)] / z.days

ci.pd$ZIP <- pd$ZIP

ci.pd <- ci.pd[,c(159,1:158)]
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# write.csv(pd, file="datatables/2010.patient.days.csv",

row.names=FALSE)

# write.csv(ci.pd, file="datatables/2010.patient.days.CI.csv",

row.names=FALSE)

# pd <- read.csv(file="datatables/2010.patient.days.csv")

# ci.pd <- read.csv(file="datatables/2010.patient.days.CI.csv")

#sum(ci.pd[3,2:ncol(ci.pd)])

### Read in Distance data from Zip Codes to hospitals

library(rgdal)

library(sp)

library(maptools)

library(shapefiles)

## Get OD matrix for Zip Codes

## Read in origin-destination shapefile table

od <- read.dbf("/media/data/Project Files/Delamater/Dissertation/

Utilization/OD/hosps_esri2010pwcent_traveltime_od.dbf")

## Remove header info

od <- od$dbf

## Subset

od <- od[,c(7,8,5)]

### Have to attach MIDB number to OD matrix

## Import hospital info

hosp.info <- read.csv("/media/data/GISdata/hospitals/csv/

2011-hosps-beds.csv")

## Attach MIDB number to OD matrix

od <- merge(od, hosp.info[,c(4,1)], by="FAC_ID", all.x=TRUE)

sum(is.na(od$MIDB))

### Clean up file to account for funky Zip Codes ##################

### See dissertation data notes ###################################

### Remove islands

#islands <- which(od$ZIPCODE %in% c(48028, 49726, 49757, 49775, 49782))

#od <- od[-islands, ]

### Reassign zips

od$ZIPCODE[od$ZIPCODE == 48710] <- 48706

od$ZIPCODE[od$ZIPCODE == 48743] <- 48739
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od$ZIPCODE[od$ZIPCODE == 48824 | od$ZIPCODE == 48825] <- 48823

od$ZIPCODE[od$ZIPCODE == 49104] <- 49103

od$ZIPCODE[od$ZIPCODE == 49792] <- 49765

od$ZIPCODE[od$ZIPCODE == 49873] <- 49807

### Clean up file to account for funkty Zip Codes ##################

### See dissertation data notes ####################################

## Because some hospitals have the same MIDB, but are in different

## locations, aggregate records (mean) by BOTH : FROM and TO

## this gives the "mean" distance for these locations

od <- aggregate(od[,3], by=list("ZIP" = od$ZIPCODE, "MIDB" = od$MIDB),

mean)

names(od)[3] <- "Min"

### Convert to OD matrix

od <- reshape(od, direction=’wide’,idvar=’ZIP’, timevar=’MIDB’)

od[is.na(od)] <- 0

names(od)[2:ncol(od)] <- paste("D", substr(names(od)[2:ncol(od)], 5, 8),

sep="")

# write.csv(od, file="datatables/traveltime.zipcodes.hospitals.csv",

row.names=FALSE)

### Scale distance matrix from 0-1

max.dist <- max(od[,2:ncol(od)])

# Divide by maximum travel time btwn any two hospitals

od[,2:ncol(od)] <- od[,2:ncol(od)] / max.dist

# write.csv(od, file="datatables/traveltime.zipcodes.hospitals.scaled.csv",

row.names=FALSE)

#####################

## Attach utilization matrix to distance matrix

#####################

data <- merge(ci.pd, od, by="ZIP")

dim(data)

sum(is.na(data))

# write.csv(data, file="datatables/cluster.data.2010.csv", row.names=FALSE)

# data <- read.csv("datatables/cluster.data.2010.csv")
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################################################################

## Function to seed Kmeans cluster algorithm with centers ##

## provided by a Ward’s cluster output. Stabilizes results ##

## and produces better results ##

################################################################

kmeans.ward <- function(x, clusters) {

d <- dist(x, "euclidean") # create distance matrix

hc <- hclust(d, method="ward") # initial clusters

memb <- cutree(hc, k = clusters) # get ’n’ clusters

cent <- NULL # make holder

for (k in 1:clusters) { # get cluster centers

cent <- rbind(cent, colMeans(x[memb == k,]))

}

k.m <- kmeans(x, cent, iter.max = 10000) # seed kmeans with ward’s

return(k.m)

}

## Define the range of solutions to evaluate

cl.max <- nrow(data)-1

clusters <- c(2:cl.max)

## Create a holder for cluster statistics

wss <- bss <- r2 <- incF <- rep(0, length(clusters))

k.data.pat <- cbind(clusters, wss, bss, r2, incF)

## Create a holder for cluster membership

membership <- data.frame(data$ZIP)

names(membership) <- "ZIP"

# Get number of columns in data

col.max <- ncol(data)

start <- Sys.time()

count <- seq(0, cl.max, 25)

# Loop through clusters

for (z in 1:length(clusters)) {

## Use K-means + Wards method to create clusters

kmeans <- kmeans.ward(data[,2:col.max], clusters[z])

## Write cluster stats to data holder

k.data.pat[z,2] <- kmeans$tot.withinss
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k.data.pat[z,3] <- kmeans$betweenss

k.data.pat[z,4] <- 1-(kmeans$tot.withinss/kmeans$totss)

## Write cluster membership to data holder

membership$clusters <- kmeans$cluster

names(membership)[z+1] <- paste("CL", z+1, sep="")

if (z %in% count) print(paste("Cluster: ", z, " at ",

Sys.time()-start, sep=""))

}

print(Sys.time() - start)

## Convert data holder to data frame

k.data.pat <- as.data.frame(k.data.pat)

## Calculate incremental F score

for (i in 2:length(clusters)) {

k.data.pat$incF[i] <- ((k.data.pat$r2[i]-k.data.pat$r2[i-1])/

(k.data.pat$clusters[i]-k.data.pat$clusters[i-1])) /

((1-k.data.pat$r2[i])/((nrow(data))-(k.data.pat$clusters[i]-1)))

}

## Write data to file

write.csv(k.data.pat, file="datatables/cluster.stats.csv", row.names=FALSE)

## Find peaks in incremental F score

incF.peaks <- which(k.data.pat$incF[3:(cl.max-1)] >

k.data.pat$incF[2:(cl.max-2)] & k.data.pat$incF[3:(cl.max-1)] >

k.data.pat$incF[4:cl.max])+2

## Subset results

cluster.groups <- k.data.pat[incF.peaks,]

membership <- membership[,c(1,cluster.groups$clusters)]

## Write out cluster membership to file

write.csv(membership, file="datatables/cluster.membership.incF.peaks.csv",

row.names=FALSE)

###################################################

###################################################
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###########################################

## R Code to create data for regressions ##

###########################################

start <- Sys.time()

library(rgdal)

library(sp)

library(maptools)

library(shapefiles)

library(spdep)

library(gpclib)

library(plotrix)

# This line allows maptools to use gpc lib

gpclibPermit()

library(car)

library(MASS)

library(psych)

### Read in cluster information

cl <- read.csv("/home/delamate/MDCH/data/dissertation/clustering/

datatables/cluster.membership.incF.peaks.csv")

### Add "non-clustered" column

cl[,ncol(cl)+1] <- seq(1:895)

names(cl)[ncol(cl)] <- "CL895"

### Get total number of clusterings to be evaluated

e <- ncol(cl)-1

# Get list of dissolved shapefiles

cs <- list.files("/media/data/Project Files/Delamater/Dissertation/

Clustering/Cluster_shapefiles/d", pattern=’.shp’)

cs <- cs[seq(1,length(cs),2)]

# Get hospitalization information

pd <- read.csv("/home/delamate/MDCH/data/dissertation/zipcodes/tables/

zipcode_2010_UTILIZATION_age_breakdown.csv")

# Get zip age breakdown

age <- read.csv("/home/delamate/MDCH/data/dissertation/zipcodes/tables/

zipcode_AGE_blockpop_adj.csv")

# Get large data table
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data <- read.csv("/home/delamate/MDCH/data/dissertation/zipcodes/tables/

zipcode_all_variables.csv")

## Add age categories for income, insurance variables

data$Pop0_64 <- rowSums(age[,2:14])

data$Pop16p <- rowSums(age[,5:19])

data$Pop25p <- rowSums(age[,7:19])

## Make STANDARD population (state totals)

std.pop <- colSums(age[,-1])

## For PCA random variable

set.seed(1)

tolerance <- function (x) {

1/vif(x)

}

###################

### START ITERATION

###################

for (i in e:1) {

######################

### Attach cluster membership to files

######################

pd.i <- merge(pd, cl[,c(1,i+1)], by="ZIP", all.x=TRUE)

age.i <- merge(age, cl[,c(1,i+1)], by="ZIP", all.x=TRUE)

data.i <- merge(data, cl[,c(1,i+1)], by="ZIP", all.x=TRUE)

######################

### Get dissolved shapefile, make neighbors

######################

shp <- readOGR(paste("/media/data/Project Files/Delamater/Dissertation/

Clustering/Cluster_shapefiles/d/", cs[i], sep=""), layer=substr(cs[i],

1, nchar(cs[1])-4), verbose=FALSE)

### Get neighbors

nb <- poly2nb(shp)

### One island poly doesn’t have neighbors in the original file...

### It is connected by a bridge to a single zip code
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### Assign neighbors to it manually

nb.mat <- nb2mat(nb,style="B",zero.policy=TRUE)

### Find regions with zero neighbors

w.zero <- as.numeric(which(rowSums(nb.mat) == 0))

### If island poly is not grouped, assign neighbor as 48193

if (length(w.zero) > 0) {

near.clust <- data.i[data.i$ZIP == 48193, 42]

nb[[w.zero]] <- near.clust

nb[[near.clust]] <- as.integer(c(w.zero, nb[[near.clust]]))

}

######################

### Aggregate attributes

######################

### First, those columns that use FULL population

data.i[,c(6,8:9,11,30:38)] <- data.i[,c(6,8:9,11,30:38)] *

data.i$BkPopAdj2010

### Next, those columns that use 0-64

data.i[,c(7,10)] <- data.i[,c(7,10)] * data.i$Pop0_64

### Next, those columns that use 16+

data.i[,c(12,18:29)] <- data.i[,c(12,18:29)] * data.i$Pop16p

### Finally, those columns that use 25+

data.i[,13:17] <- data.i[,13:17] * data.i$Pop25p

### Now, sum by CLUSTER

data.cl <- aggregate(data.i[,2:41], by=list("CL" = data.i[,42]), sum)

### Now, divide by appropriate "summed" population

### First, those columns that use FULL population

data.cl[,c(6,8:9,11,30:38)] <- data.cl[,c(6,8:9,11,30:38)] /

data.cl$BkPopAdj2010

### Next, those columns that use 0-64

data.cl[,c(7,10)] <- data.cl[,c(7,10)] / data.cl$Pop0_64

### Next, those columns that use 16+

data.cl[,c(12,18:29)] <- data.cl[,c(12,18:29)] / data.cl$Pop16p

### Finally, those columns that use 25+

data.cl[,13:17] <- data.cl[,13:17] / data.cl$Pop25p

names(data.cl)[1] <- names(cl)[i+1]

######################

### Aggregate hospitalization rates

### Calculate Empirical Bayes estimates of patient day rates
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######################

## First, aggregate patient days and age population by CLUSTER

pd.i <- aggregate(pd.i[,2:19], by=list("CL" = pd.i[,21]), sum)

age.i <- aggregate(age.i[,2:19], by=list("CL" = age.i[,21]), sum)

# Make holders

EB <- data.frame(CL = pd.i$CL)

CR <- data.frame(CL = pd.i$CL)

EB.phi <- data.frame(CL = pd.i$CL)

EB.gamma <- data.frame(CL = pd.i$CL)

## Loop through each age group

for (z in 2:19) {

if (sum(age[,z] == 0) > 0) {

age.zero <- age.i[,z]

age.zero[which(age.zero == 0)] <- 1

eb <- EBlocal(pd.i[,z], age.zero, nb, zero.policy=TRUE)

} else {

eb <- EBlocal(pd.i[,z], age.i[,z], nb, zero.policy=TRUE)

}

eb[is.na(eb)] <- 0

EB[,z] <- eb$est

CR[,z] <- eb$raw

EB.phi[,z] <- attributes(eb)$parameters$a

EB.gamma[,z] <- attributes(eb)$parameters$m

names(EB)[z] <- names(CR)[z] <- names(EB.phi)[z] <- names(EB.gamma)[z]

<- names(pd.i)[z]

}

### Write out age-specific rates

write.csv(CR, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates/Crude/", names(cl)[i+1],

".csv", sep=""), row.names=FALSE)

write.csv(EB, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates/EBsmooth/", names(cl)[i+1],

".csv", sep=""), row.names=FALSE)

write.csv(EB.phi, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates/EBphi/", names(cl)[i+1],

".csv", sep=""), row.names=FALSE)

write.csv(EB.gamma, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates/EBgamma/", names(cl)[i+1],

".csv", sep=""), row.names=FALSE)

### Get crude population rate
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pop.days <- sum(pd.i[,2:19])

pop.c.r <- pop.days / std.pop[19]

### Calculate overall EB adj hospitalization rates

eb.adj <- NULL

for (z in 1:nrow(pd.i)) {

## Multiply zip-specific rates by std pop

z.r.eb.adj <- EB[z,2:19] * std.pop[1:18]

## Sum and divide by total population

z.r.eb.adj <- sum(z.r.eb.adj) / std.pop[19]

## Attach to holder

eb.adj <- rbind(eb.adj, c(as.numeric(pd.i$CL[z]),

as.numeric(z.r.eb.adj)))

}

### Insert into data table

data.cl$AgeAdjPatDayRateEBadj <- eb.adj[,2]

### Calculate Standardized Rate Ratio and Standardized Rate Difference

data.cl$StRateRatio <- data.cl$AgeAdjPatDayRateEBadj / pop.c.r

data.cl$StRateDif <- data.cl$AgeAdjPatDayRateEBadj - pop.c.r

### Write out the Aggregated data table

write.csv(data.cl, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/all_data/", names(cl)[i+1], ".csv", sep=""),

row.names=FALSE)

######################

### Principal Components

######################

data.cl$RANDOM <- runif(nrow(data.cl))

### SES: Education, Income

cor.ses <- cor(data.cl[,c(11:14,16:17,42)])

pca.ses <- principal(cor.ses, nfactors=7, rotate="none", scores=FALSE)

pca.ses.loadings <- unclass(pca.ses$loadings)

m <- apply(abs(pca.ses.loadings), 2, FUN=max)

n.ses.pc <- as.numeric(which(abs(pca.ses.loadings[7,]) == m))
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if (length(n.ses.pc) == 0) n.ses.pc <- which(abs(pca.ses.loadings[7,])

== max(abs(pca.ses.loadings[7,])))

# Reconduct PCA without random variable to get "pct of variance explained"

cor.ses <- cor(data.cl[,c(11:14,16:17)])

pca.ses <- principal(cor.ses, nfactors=6, rotate="none", scores=FALSE)

pca.ses.loadings <- unclass(pca.ses$loadings)

pca.var <- apply(pca.ses.loadings^2, 2, sum) / 6

write.csv(pca.var[1:(n.ses.pc-1)], file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/pca_variance/SES/",names(cl)[i+1],

".csv", sep=""))

# Do actual PCA with rotation and # of components

pca.ses <- principal(data.cl[,c(11:14,16:17)], nfactors=n.ses.pc[1]-1,

rotate="varimax", scores=TRUE)

pca.ses.loadings <- unclass(pca.ses$loadings)

# round(pca.ses.loadings, 2)

### Write loadings to file

write.csv(pca.ses.loadings, file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/pca_loadings/SES/",names(cl)[i+1],

".csv", sep=""))

### ETH: Ethnicity

pca.eth <- principal(data.cl[,c(32:36,38,42)], nfactors=7, rotate="none",

scores=FALSE)

pca.eth.loadings <- unclass(pca.eth$loadings)

m <- apply(abs(pca.eth.loadings), 2, FUN=max)

n.eth.pc <- as.numeric(which(abs(pca.eth.loadings[7,]) == m))

if (length(n.eth.pc) == 0) n.eth.pc <- which(abs(pca.eth.loadings[7,]) ==

max(abs(pca.eth.loadings[7,])))

# Reconduct PCA without random variable to get "pct of variance explained"

pca.eth <- principal(data.cl[,c(32:36,38)], nfactors=6, rotate="none",

scores=FALSE)

pca.eth.loadings <- unclass(pca.eth$loadings)

pca.var <- apply(pca.eth.loadings^2, 2, sum) / 6

write.csv(pca.var[1:(n.eth.pc-1)], file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/pca_variance/ETH/",names(cl)[i+1],

".csv", sep=""))

pca.eth <- principal(data.cl[,c(32:36,38)], nfactors=n.eth.pc[1]-1,

rotate="varimax", scores=TRUE)

pca.eth.loadings <- unclass(pca.eth$loadings)

# round(pca.eth.loadings, 2)

### Write loadings to file

write.csv(pca.eth.loadings, file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/pca_loadings/ETH/",names(cl)[i+1],

".csv", sep=""))
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### MOBILITY 1

pca.mob <- principal(data.cl[,c(18:20,22,42)], nfactors=5, rotate="none",

scores=FALSE)

pca.mob.loadings <- unclass(pca.mob$loadings)

m <- apply(abs(pca.mob.loadings), 2, FUN=max)

n.mob.pc <- as.numeric(which(abs(pca.mob.loadings[5,]) == m))

if (length(n.mob.pc) == 0) n.mob.pc <- which(pca.mob.loadings[5,] ==

max(pca.mob.loadings[5,]))

# Reconduct PCA without random variable to get "pct of variance explained"

pca.mob <- principal(data.cl[,c(18:20,22)], nfactors=4, rotate="none",

scores=FALSE)

pca.mob.loadings <- unclass(pca.mob$loadings)

pca.var <- apply(pca.mob.loadings^2, 2, sum) / 4

write.csv(pca.var[1:(n.mob.pc-1)], file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/pca_variance/MOB/",names(cl)[i+1],

".csv", sep=""))

pca.mob <- principal(data.cl[,c(18:20,22)], nfactors=n.mob.pc[1]-1,

rotate="varimax", scores=TRUE)

pca.mob.loadings <- unclass(pca.mob$loadings)

#round(pca.mob.loadings, 2)

### Write loadings to file

write.csv(pca.mob.loadings, file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/pca_loadings/MOB/",names(cl)[i+1],

".csv", sep=""))

### MOBILITY 2

pca.mob2 <- principal(data.cl[,c(23:28,42)], nfactors=7, rotate="none",

scores=FALSE)

pca.mob2.loadings <- unclass(pca.mob2$loadings)

m <- apply(abs(pca.mob2.loadings), 2, FUN=max)

n.mob2.pc <- as.numeric(which(abs(pca.mob2.loadings[7,]) == m))

if (length(n.mob2.pc) == 0) n.mob2.pc <- which(pca.mob2.loadings[7,] ==

max(pca.mob2.loadings[7,]))

# Reconduct PCA without random variable to get "pct of variance explained"

pca.mob2 <- principal(data.cl[,c(23:28)], nfactors=6, rotate="none",

scores=FALSE)

pca.mob2.loadings <- unclass(pca.mob2$loadings)

pca.var <- apply(pca.mob2.loadings^2, 2, sum) / 6

write.csv(pca.var[1:(n.mob2.pc-1)], file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/pca_variance/MOB2/",names(cl)[i+1],

".csv", sep=""))

pca.mob2 <- principal(data.cl[,c(23:28)], nfactors=n.mob2.pc[1]-1,

rotate="varimax", scores=TRUE)

pca.mob2.loadings <- unclass(pca.mob2$loadings)

# round(pca.mob2.loadings, 2)
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### Write loadings to file

write.csv(pca.mob2.loadings, file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/pca_loadings/MOB2/",names(cl)[i+1],

".csv", sep=""))

### Aggregate PCA scores into table

pca.scores <- as.data.frame(cbind(pca.ses$scores, pca.eth$scores,

pca.mob$scores, pca.mob2$scores))

### Rename columns

names(pca.scores) <- c(paste("SESPC", 1:(n.ses.pc[1]-1), sep=""),

paste("ETHPC", 1:(n.eth.pc[1]-1), sep=""), paste("MOBPC", 1:(n.mob.pc[1]-1),

sep=""), paste("MOB2PC", 1:(n.mob2.pc[1]-1), sep=""))

write.csv(pca.scores, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/pca_data/",names(cl)[i+1],".csv", sep=""))

######

### Remove MOBPC2 if it is in data (no theory!)

######

if ("MOBPC2" %in% names(pca.scores)) pca.scores <-

pca.scores[,-(which(names(pca.scores) == "MOBPC2"))]

### Make new data

data.pc <- as.data.frame(cbind(data.cl[,c(1:4,6,10,31)], pca.scores))

listw <- nb2listw(nb, style = "B", zero.policy=TRUE)

### Regress E2SFCA and Ethnicity here

if (cor(data.pc$E2SFCA, data.pc$ETHPC1) >= 0.4) {

lm.E2SFCA <- lm(data.pc$E2SFCA ~ data.pc$ETHPC1)

resid.E2SFCA <- residuals(lm.E2SFCA)

data.pc[,5] <- resid.E2SFCA

names(data.pc)[5] <- "E2SFCAresid"

# write out regression statistics

write.csv(summary(lm.E2SFCA)$coefficients, file=paste

("/home/delamate/MDCH/data/dissertation/regressions/output_tables/

pre.regression.stats/E2SFCA/", names(cl)[i+1],".csv", sep=""))

}

### Regress Health Insurance and SES here

if (cor(data.pc$HeaInsRateInt0_64, data.pc$SESPC1) >= 0.4) {

lm.hi <- lm(data.pc$HeaInsRateInt0_64 ~ data.pc$SESPC1)

resid.HI <- residuals(lm.hi)
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data.pc[,6] <- resid.HI

names(data.pc)[6] <- "HeaInsRateInt0_64resid"

write.csv(summary(lm.hi)$coefficients, file=paste("/home/delamate/

MDCH/data/dissertation/regressions/output_tables/pre.regression.stats/

HealIns/", names(cl)[i+1],".csv", sep=""))

}

cor.table <- abs(cor(data.pc[,5:ncol(data.pc)]))

write.csv(round(cor.table, 6), file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/correlation_all/",names(cl)[i+1],

".csv", sep=""))

names.lm <- paste(names(data.pc)[5:ncol(data.pc)], collapse=" + ")

vif.lm <- vif(lm(formula(paste("StRateDif ~ ", names.lm), sep=""),

data=data.pc))

write.csv(vif.lm, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/vif_all/",names(cl)[i+1],".csv", sep=""))

### Remove correlated variables here

### If there’s too much correlation... don’t proceed!!

while (max(vif.lm) > 2) {

### Find max

which.vif <- names(vif.lm)[(max(which(vif.lm > 2)))]

which.max <- which(names(data.pc) == which.vif)

### Remove correlated variable

data.pc <- data.pc[,-which.max]

names.lm <- paste(names(data.pc)[5:ncol(data.pc)], collapse=" + ")

vif.lm <- vif(lm(formula(paste("StRateDif ~ ", names.lm), sep=""), data=data.pc))

}

write.csv(vif.lm, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/vif/",names(cl)[i+1],".csv", sep=""))

g.vars <- which(colnames(cor.table) %in% names(data.pc))

write.csv(round(cor.table[g.vars,g.vars], 6), file=paste("/home/delamate/

MDCH/data/dissertation/regressions/output_tables/correlation/",

names(cl)[i+1],".csv", sep=""))

lm.dat <- as.matrix(data.pc[,5:ncol(data.pc)])
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write.csv(lm.dat, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/lm_data/", names(cl)[i+1],".csv", sep=""),

row.names=FALSE)

}

print(Sys.time() - start)

###########################################

###########################################

#####################################################################

## R Code to conduct state-level simple linear regressions ##

## at many scales of analysis to show AUTOCORRELATION of residuals ##

#####################################################################

start <- Sys.time()

library(rgdal)

library(sp)

library(maptools)

library(shapefiles)

library(spdep)

library(gpclib)

library(plotrix)

# This line allows maptools to use gpc lib

gpclibPermit()

library(car)

library(MASS)

library(psych)

### Read in cluster information

cl <- read.csv("/home/delamate/MDCH/data/dissertation/clustering/

datatables/cluster.membership.incF.peaks.csv")

### Add "non-clustered" column

cl[,ncol(cl)+1] <- seq(1:895)

names(cl)[ncol(cl)] <- "CL895"

# Get list of population files

pop.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/all_data")

order <- unlist(strsplit(pop.files, ".csv"))

215



order <- order(as.numeric(substr(order, 3, 5)))

pop.files <- pop.files[order]

# Get list of ACS files

acs.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.ACS/data")

order <- unlist(strsplit(acs.files, ".csv"))

order <- order(as.numeric(substr(order, 3, 5)))

acs.files <- acs.files[order]

# Get list of Low Variation files

lv.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.LowV/data")

order <- unlist(strsplit(lv.files, ".csv"))

order <- order(as.numeric(substr(order, 3, 5)))

lv.files <- lv.files[order]

# Get list of dissolved shapefiles

cs <- list.files("/media/data/Project Files/Delamater/Dissertation/

Clustering/Cluster_shapefiles/d", pattern=’.shp’)

cs <- cs[seq(1,length(cs),2)]

# Get list of utilization rates and variables

u.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.60min/data")

order <- unlist(strsplit(u.files, ".csv"))

order <- order(as.numeric(substr(order, 3, 5)))

u.files <- u.files[order]

i.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/lm_data")

order <- unlist(strsplit(i.files, ".csv"))

order <- order(as.numeric(substr(order, 3, 5)))

i.files <- i.files[order]

matches <- which(u.files %in% i.files)

u.files <- u.files[matches]

pop.files <- pop.files[matches]

acs.files <- acs.files[matches]

lv.files <- lv.files[matches]

shp.match <- which(as.numeric(unlist(strsplit(cs, ".shp"))) %in%

as.numeric(substr(unlist(strsplit(i.files, ".csv")), 3, 5)))

cs <- cs[shp.match]
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cl.match <- which(as.numeric(substr(names(cl)[2:ncol(cl)], 3, 5))

%in% as.numeric(substr(unlist(strsplit(i.files, ".csv")), 3, 5)))

cl <- cl[,c(1,cl.match+1)]

## Choose significance for regression models

sig <- 0.05

# sig <- 0.1

### Get total number of clusterings to be evaluated

e <- length(u.files)

###################

### START ITERATION

###################

for (i in e:1) {

######################

### Get data

######################

ut <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.60min/data/", u.files[i],

sep=""))

lm <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/lm_data/", i.files[i], sep=""))

acs <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.ACS/data/", i.files[i],

sep=""))

lv <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.LowV/data/", i.files[i],

sep=""))

pop <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/all_data/", pop.files[i], sep=""))

pop <- pop$BkPopAdj2010

i.pop <- 1/sqrt(pop)

pop.med <- median(pop)

fits.groups <- pop <= pop.med

qx <- quantile(pop, probs=seq(0,1,0.2))

q.fits.groups <- cut(pop, qx, include.lowest = TRUE)

######

### Remove MOBPC2 if it is in data (no theory!)

######

if ("MOBPC2" %in% names(lm)) lm <- lm[,-(which(names(lm) == "MOBPC2"))]
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######################

### Get dissolved shapefile, make neighbors

######################

shp <- readOGR(paste("/media/data/Project Files/Delamater/Dissertation/

Clustering/Cluster_shapefiles/d/", cs[i], sep=""), layer=substr(cs[i],

1, nchar(cs[1])-4), verbose=FALSE)

### Get neighbors

nb <- poly2nb(shp)

### One island poly doesn’t have neighbors in the original file...

### It is connected by a bridge to a single zip code

### Assign neighbors to it manually

nb.mat <- nb2mat(nb,style="B",zero.policy=TRUE)

### Find regions with zero neighbors

w.zero <- as.numeric(which(rowSums(nb.mat) == 0))

### If island poly is not grouped, assign neighbors as 48193 (only for one)

if (length(w.zero) > 0) {

near.clust <- cl[cl$ZIP == 48193, i+1]

nb[[w.zero]] <- near.clust

nb[[near.clust]] <- as.integer(c(w.zero, nb[[near.clust]]))

}

listw <- nb2listw(nb, style = "B", zero.policy=TRUE)

### Do PCA on ACS and LV

pca.h <- principal(cbind(acs$AgeAdjPatDayRateEBadj,

lv$AgeAdjPatDayRateEBadj), nfactors=1, rotate="varimax", scores=TRUE)

acs.lv.scores <- pca.h$scores

pca.h2 <- principal(cbind(acs$AgeAdjPatDayRateEBadj,

lv$AgeAdjPatDayRateEBadj), nfactors=2, rotate="none", scores=FALSE)

pca.h2.loadings <- unclass(pca.h2$loadings)

pca.var <- apply(pca.h2.loadings^2, 2, sum) / 2

# Regress on ETHPC1

acs.lv.lm <- lm(acs.lv.scores ~ lm$ETHPC1)

######

###### LM weighted, normal

######

lm.dat <- as.matrix(cbind(residuals(acs.lv.lm), lm))
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colnames(lm.dat)[1] <- "ACSLowVPCresid"

## Regression

milm <- lm(ut$StRateDif ~ lm.dat, weights=i.pop)

## If there are non-significant terms in the model...

while (sum(summary(milm)$coefficients[2:(ncol(lm.dat)+1),4] > sig) > 0) {

## Remove and remodel

bad.t <- as.numeric(which(summary(milm)$coefficients[2:(ncol(lm.dat)+1),

4] == max(summary(milm)$coefficients[2:(ncol(lm.dat)+1),4])))

if (ncol(lm.dat) == 2) name <- paste("lm.dat", colnames(lm.dat)[-bad.t],

sep="")

lm.dat <- lm.dat[,-bad.t]

milm <- lm(ut$StRateDif ~ lm.dat, weights=i.pop)

if (is.vector(lm.dat) == TRUE) break

}

lm.sum <- summary(milm)$coefficients

if (is.vector(lm.dat) == TRUE) rownames(lm.sum)[2] <- name

write.csv(lm.sum, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/regression.stats.ACS.LowV.dep.lm/weighted/

n.scale/betas/",names(cl)[i+1],".csv", sep=""))

mt <- moran.test(residuals(milm), listw, randomisation=FALSE)

resid.med <- median(residuals(milm))

r.fits.groups <- residuals(milm) <= resid.med

stats <- c(summary(milm)$adj.r.squared, summary(milm)$fstatistic[1],

pf(summary(milm)$fstatistic[1], summary(milm)$fstatistic[2],

summary(milm)$fstatistic[3], lower.tail = FALSE),

leveneTest(residuals(milm),factor(fits.groups))[1,3],

leveneTest(residuals(milm),factor(r.fits.groups))[1,3], mt$statistic,

mt$p.value)

names(stats) <- c("adjR2", "F", "F.p", "LevenePOP2", "LeveneRESID2",

"Moran", "Moran.p")

write.csv(stats, file=paste("/home/delamate/MDCH/data/dissertation/
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regressions/output_tables/regression.stats.ACS.LowV.dep.lm/weighted/

n.scale/sig/",names(cl)[i+1],".csv", sep=""))

######

###### LM weighted, scaled

######

lm.dat <- as.matrix(cbind(residuals(acs.lv.lm), lm))

colnames(lm.dat)[1] <- "ACSLowVPCresid"

lm.dat <- scale(lm.dat)

ut <- as.data.frame(scale(ut))

## Regression

milm <- lm(ut$StRateDif ~ lm.dat, weights=i.pop)

## If there are non-significant terms in the model...

while (sum(summary(milm)$coefficients[2:(ncol(lm.dat)+1),4] > sig) > 0) {

## Remove and remodel

bad.t <- as.numeric(which(summary(milm)$coefficients[2:(ncol(lm.dat)+1),

4] == max(summary(milm)$coefficients[2:(ncol(lm.dat)+1),4])))

if (ncol(lm.dat) == 2) name <- paste("lm.dat", colnames(lm.dat)[-bad.t],

sep="")

lm.dat <- lm.dat[,-bad.t]

milm <- lm(ut$StRateDif ~ lm.dat, weights=i.pop)

if (is.vector(lm.dat) == TRUE) break

}

lm.sum <- summary(milm)$coefficients

if (is.vector(lm.dat) == TRUE) rownames(lm.sum)[2] <- name

write.csv(lm.sum, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/regression.stats.ACS.LowV.dep.lm/weighted/

scale/betas/",names(cl)[i+1],".csv", sep=""))

mt <- moran.test(residuals(milm), listw, randomisation=FALSE)

resid.med <- median(residuals(milm))

r.fits.groups <- residuals(milm) <= resid.med

220



stats <- c(summary(milm)$adj.r.squared, summary(milm)$fstatistic[1],

pf(summary(milm)$fstatistic[1], summary(milm)$fstatistic[2],

summary(milm)$fstatistic[3], lower.tail = FALSE),

leveneTest(residuals(milm),factor(fits.groups))[1,3],

leveneTest(residuals(milm),factor(r.fits.groups))[1,3], mt$statistic,

mt$p.value)

names(stats) <- c("adjR2", "F", "F.p", "LevenePOP2", "LeveneRESID2",

"Moran", "Moran.p")

write.csv(stats, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/regression.stats.ACS.LowV.dep.lm/weighted/

scale/sig/",names(cl)[i+1],".csv", sep=""))

######

###### LM non-weighted, normal

######

lm.dat <- as.matrix(cbind(residuals(acs.lv.lm), lm))

colnames(lm.dat)[1] <- "ACSLowVPCresid"

## Regression

milm <- lm(ut$StRateDif ~ lm.dat)

## If there are non-significant terms in the model...

while (sum(summary(milm)$coefficients[2:(ncol(lm.dat)+1),4] > sig) > 0) {

## Remove and remodel

bad.t <- as.numeric(which(summary(milm)$coefficients[2:(ncol(lm.dat)+1),

4] == max(summary(milm)$coefficients[2:(ncol(lm.dat)+1),4])))

if (ncol(lm.dat) == 2) name <- paste("lm.dat", colnames(lm.dat)[-bad.t],

sep="")

lm.dat <- lm.dat[,-bad.t]

milm <- lm(ut$StRateDif ~ lm.dat)

if (is.vector(lm.dat) == TRUE) break

}

lm.sum <- summary(milm)$coefficients

if (is.vector(lm.dat) == TRUE) rownames(lm.sum)[2] <- name
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write.csv(lm.sum, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/regression.stats.ACS.LowV.dep.lm/n.weighted/

n.scale/betas/",names(cl)[i+1],".csv", sep=""))

mt <- moran.test(residuals(milm), listw, randomisation=FALSE)

resid.med <- median(residuals(milm))

r.fits.groups <- residuals(milm) <= resid.med

stats <- c(summary(milm)$adj.r.squared, summary(milm)$fstatistic[1],

pf(summary(milm)$fstatistic[1], summary(milm)$fstatistic[2],

summary(milm)$fstatistic[3], lower.tail = FALSE),

leveneTest(residuals(milm),factor(fits.groups))[1,3],

leveneTest(residuals(milm),factor(r.fits.groups))[1,3], mt$statistic,

mt$p.value)

names(stats) <- c("adjR2", "F", "F.p", "LevenePOP2", "LeveneRESID2",

"Moran", "Moran.p")

write.csv(stats, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/regression.stats.ACS.LowV.dep.lm/n.weighted/

n.scale/sig/",names(cl)[i+1],".csv", sep=""))

######

###### LM non-weighted, scaled

######

lm.dat <- as.matrix(cbind(residuals(acs.lv.lm), lm))

colnames(lm.dat)[1] <- "ACSLowVPCresid"

lm.dat <- scale(lm.dat)

ut <- as.data.frame(scale(ut))

## Regression

milm <- lm(ut$StRateDif ~ lm.dat)

## If there are non-significant terms in the model...

while (sum(summary(milm)$coefficients[2:(ncol(lm.dat)+1),4] > sig) > 0) {

## Remove and remodel

bad.t <- as.numeric(which(summary(milm)$coefficients[2:(ncol(lm.dat)+1),

4] == max(summary(milm)$coefficients[2:(ncol(lm.dat)+1),4])))

if (ncol(lm.dat) == 2) name <- paste("lm.dat", colnames(lm.dat)[-bad.t],

sep="")
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lm.dat <- lm.dat[,-bad.t]

milm <- lm(ut$StRateDif ~ lm.dat)

if (is.vector(lm.dat) == TRUE) break

}

lm.sum <- summary(milm)$coefficients

if (is.vector(lm.dat) == TRUE) rownames(lm.sum)[2] <- name

write.csv(lm.sum, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/regression.stats.ACS.LowV.dep.lm/n.weighted/

scale/betas/",names(cl)[i+1],".csv", sep=""))

mt <- moran.test(residuals(milm), listw, randomisation=FALSE)

resid.med <- median(residuals(milm))

r.fits.groups <- residuals(milm) <= resid.med

stats <- c(summary(milm)$adj.r.squared, summary(milm)$fstatistic[1],

pf(summary(milm)$fstatistic[1], summary(milm)$fstatistic[2],

summary(milm)$fstatistic[3], lower.tail = FALSE),

leveneTest(residuals(milm),factor(fits.groups))[1,3],

leveneTest(residuals(milm),factor(r.fits.groups))[1,3], mt$statistic,

mt$p.value)

names(stats) <- c("adjR2", "F", "F.p", "LevenePOP2", "LeveneRESID2",

"Moran", "Moran.p")

write.csv(stats, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/regression.stats.ACS.LowV.dep.lm/n.weighted/

scale/sig/",names(cl)[i+1],".csv", sep=""))

}

print(Sys.time() - start)

#####################################################################

#####################################################################

###############################################

## R Code to conduct state-level regressions ##

## at many scales of analysis ##
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###############################################

start <- Sys.time()

library(rgdal)

library(sp)

library(maptools)

library(shapefiles)

library(spdep)

library(gpclib)

library(plotrix)

# This line allows maptools to use gpc lib

gpclibPermit()

library(car)

library(MASS)

library(psych)

### Read in cluster information

cl <- read.csv("/home/delamate/MDCH/data/dissertation/clustering/

datatables/cluster.membership.incF.peaks.csv")

### Add "non-clustered" column

cl[,ncol(cl)+1] <- seq(1:895)

names(cl)[ncol(cl)] <- "CL895"

# Get list of population files

pop.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/all_data")

order <- unlist(strsplit(pop.files, ".csv"))

order <- order(as.numeric(substr(order, 3, 5)))

pop.files <- pop.files[order]

# Get list of ACS files

acs.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.ACS/data")

order <- unlist(strsplit(acs.files, ".csv"))

order <- order(as.numeric(substr(order, 3, 5)))

acs.files <- acs.files[order]

# Get list of Low Variation files

lv.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.LowV/data")

order <- unlist(strsplit(lv.files, ".csv"))

order <- order(as.numeric(substr(order, 3, 5)))

lv.files <- lv.files[order]
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# Get list of dissolved shapefiles

cs <- list.files("/media/data/Project Files/Delamater/Dissertation/

Clustering/Cluster_shapefiles/d", pattern=’.shp’)

cs <- cs[seq(1,length(cs),2)]

# Get list of utilization rates and variables

u.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.60min/data")

order <- unlist(strsplit(u.files, ".csv"))

order <- order(as.numeric(substr(order, 3, 5)))

u.files <- u.files[order]

i.files <- list.files("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/lm_data")

order <- unlist(strsplit(i.files, ".csv"))

order <- order(as.numeric(substr(order, 3, 5)))

i.files <- i.files[order]

matches <- which(u.files %in% i.files)

u.files <- u.files[matches]

pop.files <- pop.files[matches]

acs.files <- acs.files[matches]

lv.files <- lv.files[matches]

shp.match <- which(as.numeric(unlist(strsplit(cs, ".shp"))) %in%

as.numeric(substr(unlist(strsplit(i.files, ".csv")), 3, 5)))

cs <- cs[shp.match]

cl.match <- which(as.numeric(substr(names(cl)[2:ncol(cl)], 3, 5))

%in% as.numeric(substr(unlist(strsplit(i.files, ".csv")), 3, 5)))

cl <- cl[,c(1,cl.match+1)]

## Choose significance for regression models

sig <- 0.05

# sig <- 0.1

### Get total number of clusterings to be evaluated

e <- length(u.files)

###################

### START ITERATION

###################

for (i in e:1) {
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######################

### Get data

######################

ut <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.60min/data/", u.files[i],

sep=""))

lm <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/lm_data/", i.files[i], sep=""))

acs <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.ACS/data/", i.files[i],

sep=""))

lv <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/patdayrates.LowV/data/", i.files[i],

sep=""))

pop <- read.csv(paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/all_data/", pop.files[i], sep=""))

pop <- pop$BkPopAdj2010

i.pop <- 1/sqrt(pop)

pop.med <- median(pop)

fits.groups <- pop <= pop.med

qx <- quantile(pop, probs=seq(0,1,0.2))

q.fits.groups <- cut(pop, qx, include.lowest = TRUE)

######

### Remove MOBPC2 if it is in data (no theory!)

######

if ("MOBPC2" %in% names(lm)) lm <- lm[,-(which(names(lm) == "MOBPC2"))]

######################

### Get dissolved shapefile, make neighbors

######################

shp <- readOGR(paste("/media/data/Project Files/Delamater/Dissertation/

Clustering/Cluster_shapefiles/d/", cs[i], sep=""), layer=substr(cs[i],

1, nchar(cs[1])-4), verbose=FALSE)

### Get neighbors

nb <- poly2nb(shp)

### One island poly doesn’t have neighbors in the original file...

### It is connected by a bridge to a single zip code

### Assign neighbors to it manually

nb.mat <- nb2mat(nb,style="B",zero.policy=TRUE)

### Find regions with zero neighbors

w.zero <- as.numeric(which(rowSums(nb.mat) == 0))
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### If island poly is not grouped, assign neighbors as 48193 (only for one)

if (length(w.zero) > 0) {

near.clust <- cl[cl$ZIP == 48193, i+1]

nb[[w.zero]] <- near.clust

nb[[near.clust]] <- as.integer(c(w.zero, nb[[near.clust]]))

}

listw <- nb2listw(nb, style = "B", zero.policy=TRUE)

### Do PCA on ACS and LV

pca.h <- principal(cbind(acs$AgeAdjPatDayRateEBadj,

lv$AgeAdjPatDayRateEBadj), nfactors=1, rotate="varimax",

scores=TRUE)

acs.lv.scores <- pca.h$scores

# Regress on ETHPC1

acs.lv.lm <- lm(acs.lv.scores ~ lm$ETHPC1)

write.csv(summary(acs.lv.lm)$coefficients, file=

paste("/home/delamate/MDCH/data/dissertation/regressions/output_tables/

pre.regression.stats/ACS.LowV/", names(cl)[i+1],".csv", sep=""))

######

###### SAR

######

lm.dat <- as.matrix(cbind(residuals(acs.lv.lm), lm))

colnames(lm.dat)[1] <- "ACSLowVPCresid"

lm.dat <- scale(lm.dat)

ut <- as.data.frame(scale(ut))

write.csv(cor(lm.dat), file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/scale.regression.stats.ACS.LowV.dep/

correlation/",names(cl)[i+1],".csv", sep=""))

if (sum(abs(cor(lm.dat)) > 0.5) > ncol(lm.dat)) write.table

(as.character(names(cl)[i+1]), file="/home/delamate/MDCH/

data/dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/bad.correlation.regressions.txt",

col.names = FALSE, row.names=FALSE, append=TRUE)

## Spatial regression

misar <- spautolm(ut$StRateDif ~ lm.dat, listw = listw)

## If there are non-significant terms in the model...

while (sum(summary(misar)$Coef[2:(ncol(lm.dat)+1),4] > sig) > 0) {
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## Remove and remodel

bad.t <- as.numeric(which(summary(misar)$Coef[2:(ncol(lm.dat)+1),

4] == max(summary(misar)$Coef[2:(ncol(lm.dat)+1),4])))

if (ncol(lm.dat) == 2) name <- paste("lm.dat", colnames(lm.dat)[-bad.t],

sep="")

lm.dat <- lm.dat[,-bad.t]

misar <- spautolm(ut$StRateDif ~ lm.dat, listw = listw)

if (is.vector(lm.dat) == TRUE) break

}

lm.sum <- summary(misar)$Coef

if (is.vector(lm.dat) == TRUE) rownames(lm.sum)[2] <- name

write.csv(lm.sum, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/scale.regression.stats.ACS.LowV.dep/SAR/

betas/",names(cl)[i+1],".csv", sep=""))

write.csv(residuals(misar), file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/SAR/residuals/",names(cl)[i+1],

".csv", sep=""))

write.csv(misar$fit$signal_trend, file=paste("/home/delamate/MDCH/

data/dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/SAR/fitted/effect/",

names(cl)[i+1],".csv", sep=""))

write.csv(misar$fit$signal_stochastic, file=paste("/home/delamate/

MDCH/data/dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/SAR/fitted/spatial/",

names(cl)[i+1],".csv", sep=""))

mt <- moran.test(residuals(misar), listw, randomisation=FALSE)

stats <- c(misar$lambda, as.numeric(summary(misar)$LR1$p.value),

misar$LL, misar$LL0, misar$fit$s2, AIC(misar),

as.numeric(summary(misar, Nagel=TRUE)$NK), mt$statistic, mt$p.value)

names(stats) <- c("lambda", "lambda.p", "LL", "LL0", "s2", "AIC",

"NagelR2", "Moran", "Moran.p")
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write.csv(stats, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/scale.regression.stats.ACS.LowV.dep/SAR/

sig/",names(cl)[i+1],".csv", sep=""))

## Test SAR for heteroskedasticity

write.csv(leveneTest(residuals(misar),factor(fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/SAR/2/",

names(cl)[i+1],".csv", sep=""))

write.csv(leveneTest(residuals(misar),factor(q.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/SAR/5/",

names(cl)[i+1],".csv", sep=""))

resid.med <- median(residuals(misar))

r.fits.groups <- residuals(misar) <= resid.med

write.csv(leveneTest(residuals(misar),factor(r.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/SAR/

resid2/",names(cl)[i+1],".csv", sep=""))

r.qx <- quantile(residuals(misar), probs=seq(0,1,0.2))

rq.fits.groups <- cut(residuals(misar), r.qx, include.lowest = TRUE)

write.csv(leveneTest(residuals(misar),factor(rq.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/SAR/

resid5/",names(cl)[i+1],".csv", sep=""))

######

###### weighted SAR

######

lm.dat <- as.matrix(cbind(residuals(acs.lv.lm), lm))

colnames(lm.dat)[1] <- "ACSLowVPCresid"

lm.dat <- scale(lm.dat)

## Spatial regression

w.misar <- spautolm(ut$StRateDif ~ lm.dat, listw = listw, weights=i.pop)

## If there are non-significant terms in the model...

while (sum(summary(w.misar)$Coef[2:(ncol(lm.dat)+1),4] > sig) > 0) {

## Remove and remodel

bad.t <- as.numeric(which(summary(w.misar)$Coef[2:(ncol(lm.dat)+1),

4] == max(summary(w.misar)$Coef[2:(ncol(lm.dat)+1),4])))
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if (ncol(lm.dat) == 2) name <- paste("lm.dat", colnames(lm.dat)[-bad.t],

sep="")

lm.dat <- lm.dat[,-bad.t]

w.misar <- spautolm(ut$StRateDif ~ lm.dat, listw = listw, weights=i.pop)

if (is.vector(lm.dat) == TRUE) break

}

lm.sum <- summary(w.misar)$Coef

if (is.vector(lm.dat) == TRUE) rownames(lm.sum)[2] <- name

write.csv(lm.sum, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/scale.regression.stats.ACS.LowV.dep/wSAR/

betas/",names(cl)[i+1],".csv", sep=""))

write.csv(residuals(w.misar), file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/wSAR/residuals/",names(cl)[i+1],

".csv", sep=""))

write.csv(w.misar$fit$signal_trend, file=paste("/home/delamate/MDCH/

data/dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/wSAR/fitted/effect/",names(cl)[i+1],

".csv", sep=""))

write.csv(w.misar$fit$signal_stochastic, file=paste("/home/delamate/

MDCH/data/dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/wSAR/fitted/spatial/",names(cl)[i+1],

".csv", sep=""))

mt <- moran.test(residuals(w.misar), listw, randomisation=FALSE)

stats <- c(w.misar$lambda, as.numeric(summary(w.misar)$LR1$p.value),

w.misar$LL, w.misar$LL0, w.misar$fit$s2, AIC(w.misar),

as.numeric(summary(w.misar, Nagel=TRUE)$NK), mt$statistic,

mt$p.value)

names(stats) <- c("lambda", "lambda.p", "LL", "LL0", "s2", "AIC",

"NagelR2", "Moran", "Moran.p")

write.csv(stats, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/scale.regression.stats.ACS.LowV.dep/wSAR/

sig/",names(cl)[i+1],".csv", sep=""))
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## Test wSAR for heteroskedasticity

write.csv(leveneTest(residuals(w.misar),factor(fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/wSAR/2/",

names(cl)[i+1],".csv", sep=""))

write.csv(leveneTest(residuals(w.misar),factor(q.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/wSAR/5/",

names(cl)[i+1],".csv", sep=""))

resid.med <- median(residuals(w.misar))

r.fits.groups <- residuals(w.misar) <= resid.med

write.csv(leveneTest(residuals(w.misar),factor(r.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/wSAR/

resid2/",names(cl)[i+1],".csv", sep=""))

r.qx <- quantile(residuals(w.misar), probs=seq(0,1,0.2))

rq.fits.groups <- cut(residuals(w.misar), r.qx, include.lowest = TRUE)

write.csv(leveneTest(residuals(w.misar),factor(rq.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/wSAR/resid5/",

names(cl)[i+1],".csv", sep=""))

######

###### CAR

######

lm.dat <- as.matrix(cbind(residuals(acs.lv.lm), lm))

colnames(lm.dat)[1] <- "ACSLowVPCresid"

lm.dat <- scale(lm.dat)

## Spatial regression

micar <- spautolm(ut$StRateDif ~ lm.dat, listw = listw, family="CAR")

## If there are non-significant terms in the model...

while (sum(summary(micar)$Coef[2:(ncol(lm.dat)+1),4] > sig) > 0) {

## Remove and remodel

bad.t <- as.numeric(which(summary(micar)$Coef[2:(ncol(lm.dat)+1),

4] == max(summary(micar)$Coef[2:(ncol(lm.dat)+1),4])))

if (ncol(lm.dat) == 2) name <- paste("lm.dat", colnames(lm.dat)[-bad.t],

sep="")
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lm.dat <- lm.dat[,-bad.t]

micar <- spautolm(ut$StRateDif ~ lm.dat, listw = listw, family="CAR")

if (is.vector(lm.dat) == TRUE) break

}

lm.sum <- summary(micar)$Coef

if (is.vector(lm.dat) == TRUE) rownames(lm.sum)[2] <- name

write.csv(lm.sum, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/scale.regression.stats.ACS.LowV.dep/CAR/

betas/",names(cl)[i+1],".csv", sep=""))

write.csv(residuals(micar), file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/CAR/residuals/",

names(cl)[i+1],".csv", sep=""))

write.csv(micar$fit$signal_trend, file=paste("/home/delamate/MDCH/

data/dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/CAR/fitted/effect/",names(cl)[i+1],

".csv", sep=""))

write.csv(micar$fit$signal_stochastic, file=paste("/home/delamate/MDCH/

data/dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/CAR/fitted/spatial/",

names(cl)[i+1],".csv", sep=""))

mt <- moran.test(residuals(micar), listw, randomisation=FALSE)

stats <- c(micar$lambda, as.numeric(summary(micar)$LR1$p.value),

micar$LL, micar$LL0, micar$fit$s2, AIC(micar),

as.numeric(summary(micar, Nagel=TRUE)$NK), mt$statistic, mt$p.value)

names(stats) <- c("lambda", "lambda.p", "LL", "LL0", "s2", "AIC",

"NagelR2", "Moran", "Moran.p")

write.csv(stats, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/scale.regression.stats.ACS.LowV.dep/CAR/

sig/",names(cl)[i+1],".csv", sep=""))

## Test CAR for heteroskedasticity

write.csv(leveneTest(residuals(micar),factor(fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/
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output_tables/scale.regression.stats.ACS.LowV.dep/levene/CAR/2/",

names(cl)[i+1],".csv", sep=""))

write.csv(leveneTest(residuals(micar),factor(q.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/CAR/5/",

names(cl)[i+1],".csv", sep=""))

resid.med <- median(residuals(micar))

r.fits.groups <- residuals(micar) <= resid.med

write.csv(leveneTest(residuals(micar),factor(r.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/CAR/resid2/",

names(cl)[i+1],".csv", sep=""))

r.qx <- quantile(residuals(micar), probs=seq(0,1,0.2))

rq.fits.groups <- cut(residuals(micar), r.qx, include.lowest = TRUE)

write.csv(leveneTest(residuals(micar),factor(rq.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/CAR/resid5/",

names(cl)[i+1],".csv", sep=""))

######

###### weighted CAR

######

lm.dat <- as.matrix(cbind(residuals(acs.lv.lm), lm))

colnames(lm.dat)[1] <- "ACSLowVPCresid"

lm.dat <- scale(lm.dat)

## Spatial regression

w.micar <- spautolm(ut$StRateDif ~ lm.dat, listw = listw, family="CAR",

weights=i.pop)

## If there are non-significant terms in the model...

while (sum(summary(w.micar)$Coef[2:(ncol(lm.dat)+1),4] > sig) > 0) {

## Remove and remodel

bad.t <- as.numeric(which(summary(w.micar)$Coef[2:(ncol(lm.dat)+1),

4] == max(summary(w.micar)$Coef[2:(ncol(lm.dat)+1),4])))

if (ncol(lm.dat) == 2) name <- paste("lm.dat", colnames(lm.dat)[-bad.t],

sep="")

lm.dat <- lm.dat[,-bad.t]

w.micar <- spautolm(ut$StRateDif ~ lm.dat, listw = listw, family="CAR",
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weights=i.pop)

if (is.vector(lm.dat) == TRUE) break

}

lm.sum <- summary(w.micar)$Coef

if (is.vector(lm.dat) == TRUE) rownames(lm.sum)[2] <- name

write.csv(lm.sum, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/scale.regression.stats.ACS.LowV.dep/wCAR/

betas/",names(cl)[i+1],".csv", sep=""))

write.csv(residuals(w.micar), file=paste("/home/delamate/MDCH/data/

dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/wCAR/residuals/",names(cl)[i+1],

".csv", sep=""))

write.csv(w.micar$fit$signal_trend, file=paste("/home/delamate/MDCH/

data/dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/wCAR/fitted/effect/",

names(cl)[i+1],".csv", sep=""))

write.csv(w.micar$fit$signal_stochastic, file=paste("/home/delamate/

MDCH/data/dissertation/regressions/output_tables/

scale.regression.stats.ACS.LowV.dep/wCAR/fitted/spatial/",

names(cl)[i+1],".csv", sep=""))

mt <- moran.test(residuals(w.micar), listw, randomisation=FALSE)

stats <- c(w.micar$lambda, as.numeric(summary(w.micar)$LR1$p.value),

w.micar$LL, w.micar$LL0, w.micar$fit$s2, AIC(w.micar),

as.numeric(summary(w.micar, Nagel=TRUE)$NK), mt$statistic, mt$p.value)

names(stats) <- c("lambda", "lambda.p", "LL", "LL0", "s2", "AIC",

"NagelR2", "Moran", "Moran.p")

write.csv(stats, file=paste("/home/delamate/MDCH/data/dissertation/

regressions/output_tables/scale.regression.stats.ACS.LowV.dep/wCAR/sig/",

names(cl)[i+1],".csv", sep=""))

## Test wCAR for heteroskedasticity

write.csv(leveneTest(residuals(w.micar),factor(fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/wCAR/2/",

names(cl)[i+1],".csv", sep=""))
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write.csv(leveneTest(residuals(w.micar),factor(q.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/wCAR/5/",

names(cl)[i+1],".csv", sep=""))

resid.med <- median(residuals(w.micar))

r.fits.groups <- residuals(w.micar) <= resid.med

write.csv(leveneTest(residuals(w.micar),factor(r.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/wCAR/resid2/",

names(cl)[i+1],".csv", sep=""))

r.qx <- quantile(residuals(w.micar), probs=seq(0,1,0.2))

rq.fits.groups <- cut(residuals(w.micar), r.qx, include.lowest = TRUE)

write.csv(leveneTest(residuals(w.micar),factor(rq.fits.groups))[1,],

file=paste("/home/delamate/MDCH/data/dissertation/regressions/

output_tables/scale.regression.stats.ACS.LowV.dep/levene/wCAR/resid5/",

names(cl)[i+1],".csv", sep=""))

}

print(Sys.time() - start)
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