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ABSTRACT

THE VAN HIELE THEORY THROUGH THE DISCURSIVE LENS:
PROSPECTIVE TEACHERS’ GEOMETRIC DISCOURSES

By
Sasha Wang

Over the past decade, there has been an increasing trend in the mathematios educat
research community to study students’ reasoning in the teaching and learnirterhatecs,
and to examine issues emphasizing the use of vocabulary, terminology, and words in the
mathematics classroorm response, this study investigates changes in prospective elementary
teachers’ levels of geometric thinking, and the development of their geodistdzirses in the
classification of quadrilaterals.

In Sfard’s (2008)rhinking as Communicating: Human Development, the Growth of
Discourses, and Mathematizirghe introduceber commognitive framework, a systematic
approach to analyzing the discursive features of mathematical thinkihglimgcword use,
visual mediators, routines, and endorsed narratives. To examine thinking about gebtietry, t
study connects Sfard’s analytic framework to another, namely the vantihiely (see van
Hiele, 1959/1985). The van Hiele theory describes the development of students’ fis®feve
thinking in geometry. Levels 1 to 5 are described as visual, descriptive, thépfetinal logic
and rigor, respectively. This study used the van Hiele Geometry Testhifeo@ognitive
Development and Achievement in Secondary School Geometry (CDASSG) pragiestirgl)
1982) as the pretest and posttest to determine prospective elementary scheod’'tgan Hiele
levels. This study also produces, on the basis of theoretical understandings apiticéletata,

a detailed model, namelthe Development of Geometric Discour§kis model translates the



van Hiele levels into discursive stages of geometric discourses withtrespewrd use, visual
mediators, routines, and endorsed narratives.

This study reveals discursive similarities and differences in gaatits’ geometric
discourses at the same van Hiele level, as well as changes in geomaetricsgiss a result of
changes in levels of geometric thinking. The study also investigates tinassfof a

discursive framework in providing “rich descriptions” of participants’ thinkingcpsses.
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CHAPTER ONE: INTRODUCTION

In a research report prepared for the U.S. Department of Education, Wilson, Floden and
Ferrini-Mundy (2001) reported that research shows a positive connection betacerdé
preparation in their subject matter and their performance and impact in gr®atasand found
that “current results of subject matter preparation are disappointing” (R&8&en (2007) also
pointed out that “the weak mathematical preparation of many elementary and sciuloibé (K-
8) teachers is one of the most serious problems afflicting American emidgti20). These
conclusions suggest that a teachers’ preparation program needs to emphtsneatics
content knowledge for teaching. Knowing mathematics for teaching involves ldgandé
mathematical ideas, mathematics reasoning skills, as well as comtimmetalls, fluency with
examples and terms, and thoughtfulness about the nature of mathematicarprpfici

Geometry, considered as a tool for understanding and interacting with therspdwehi
we live, is perhaps the most intuitive, concrete and reality-linked part of matiherfiCMI,
1998). It is in the language of geometry that the visual structure of oucghwsrld is
described and communicated between individuals, and the language of geometriutelgs s
to reason deductively and to think interdependently. “It is written in the language of
mathematics, and its characters are triangles, circles, and othestgeahfigures without
which it is humanly impossible to understand a single word of it; without these, one wanders
about in a dark labyrinth (Usiskin, 1996, p.231). Today, the language of geometry is used
without its structure and grammar, and thus it is still a foreign language totezmers (Pimm,
1987; Usiskin, 1996).

The National Council of Teachers of Mathematics (NCTM, 2600)ciples and

Standards for School Mathemati{g&SSM)ecommended that students should “analyze



characteristics and properties of two- and three dimensional geometris sinapgevelop
mathematical arguments about geometric relationships” (p.41). For instatiee Grometry
Standards for grades 3 to 5 students, it is recommended that all students should coempifye
and analyze polygons, and develop vocabulary to describe their attributes, astovelassify
polygons according to their properties, and to develop definitions of classes of Sej@ese
students are expected to learn about geometrical concepts and attributelsaaselaionships
between them, it is important for future teachers to know and be comfortable weihghade
of geometry.

In prior research and literature on students’ learning of geometry, and ituliéera
emphasizing the use of van Hiele theory to categorize students’ levels ofighimidny studies
address the complexity and difficulty of students’ learning of geometwyekhss other
educational and psychological concerns. Based on what others have studied aboutygospecti
teachers’ learning in geometry and their geometric thinking, this stglydsd by this
overarching question: What do prospective teachers learn in geometry froprépairation for
the work of teaching geometry?

The mathematics education community has always been interested in thegteachin
learning of mathematics, and we became more aware of the importance ofihteraction in
the classrooms, and how it influences the effectiveness of teaching and le@heimgption of
mathematics as discourse and students as being apprenticed into partigslafdeag
mathematicsn particular discursive contexts is now gaining prominence in mathematics
education research. This phenomenon prompted the call for the study of teachersigaamwle
geometry and of their learning of geometry. This study is informed by preangsand

literature on van Hiele theory (van Hiele, 1959/1985), a framework that desstuldesits’



levels of geometric thinking, and by studies using van Hiele theory in the tohtex
methodology and teacher knowledge in geometry. Additionally, this study is infogmed b
research in the past that investigates students’ mathematics discounsgsdistursive
learning.

While previous work sheds light on prospective teachers’ knowledge and thinking in
geometry, it has not explored how examination of these teachers’ geometigsksccould
help in learning more about their levels of geometric thinking. This study, mefaeby the
discursive nature of van Hiele theory, and of discourse analysis in the form of timeoQnition
framework described ifthinking as Communicating: Human Development, the Growth of
Discourses, and Mathematizi(g§fard, 2008), seeks to examine prospective teachers’ knowledge
in geometry, and to investigate as well their ways of communicatingeggorhinking. The
study revisits van Hiele levels with careful examination of key matheah&iatures at each
level. These mathematical features include (1) use of mathematicid, ®) use of visual
mediators in the form of geometric figures and their parts, and symbolic&rtfaated for the
purpose of communicating about geometry, (3) endorsed narratives such as niegghemat
propositions, axioms and definitions, and (4) mathematical routine procedureshath w
participants implement well-defined types of tasks. The discursive frark@nmvides a new
lens to investigate students’ geometric thinking.

In Chapter 2, | position this study among studies addressing the teaching aimdyler
geometry in mathematics education in general, and studies that examinesstadedng in
geometry using van Hiele theory, as well as studies emphasizing discassiviad. In addition,
| describe Sfard’s discursive framework in detail, including a descriptieadf of its four key

mathematical features and important phenomenon highlighted in this frameworkerChapt



describes the methodology of the study, including descriptions of van Hiele Ggdiesitr
instruments, interview tasks and an outline of the design of the study. Chapteridscirata
results of the analyses conducted in this study along with interpretationdiaf. These
include the van Hiele Geometry pretest and posttest results and analysestadléngroup, and
participants’ in-depth interview results and analyses. Finally, Chapter 5 pg@vitlecussion of
the findings, and Chapter 6 summarizes the study’s contributions to the field, tasiding, and

suggestions for future research.



CHAPTER TWO: THEORETICAL BACKGROUND
Review of Relevant Literature

The upcoming sections detail the theoretical framework that will be used in thegqatopos
study, and present reviews of relevant literature. The first section desbebem Hiele theory
and then summarizes studies guided by the theory in the learning of geomadigition, this
section summarizes research that addresses the knowledge of mathemtgashing,
specifically that related to geometry. The second section describesithegaitive framework
related to discursive learning of mathematics. Included in this section areasiesiof studies in
discourse in the mathematics classroom, and the theoretical model of the demelaipme
geometric discourses that aligns the van Hiele theory through the disdarsveThe final
section raises general research questions in discursive terms.

Regarding the teaching and learning of geometry, the van Hieles devéiagped
influential theory of levels of geometric thinking. In discussing the profound imp&seoe
van Hiele’s theory in mathematics education, Clements (2003) concludes, “varitidiety
gave educators and researchers a model that promoted the understanding aftimporta
conceptual based level of thinking... It is also a model of synergistic coomgetmong theory,
research, the practice of teaching, and students’ thinking and learning”(p.151)tefalbscribe
the van Hiele Theory and how it has been used in the field of mathematics education, the
following section provides the historical background and a general descriptlmntbebdry.

The van Hiele Theory

The root of van Hiele theory emanated from the task of improving the teaching of
geometry. A Dutch husband and wife, Pierre Marie van Hiele and Dina van HieletGel

developed “the van Hiele Theory” in their doctoral dissertations at the Unyefditrecht,



Netherlands, in 1957. Dina died shortly after completing her dissertation, and Brénmneied to
develop and disseminate the theory (e.g., van Hiele, 1959/1985, 1986).

When Pierre and Dina worked at Montessori secondary schools as mathemchtestea
they were very disappointed with “students’ low-level knowledge of geoi(2#9,
1959/1985). On the other hand, they also realized that teachers and students often fail to
communicate with each other because they “speak a very different langp#dg’ For
example, one of Pierre and Dina’s initial observations was that they seempedkabout
geometry in a different way than their students. When Pierre and Dina spoke afoateas a
type of rectangle, students were confused because to them a square artkereete quite
different. This led Pierre and Dina to consider the existence of various tewggtometric
thinking and the possibility that those students and teachers at differentoietretding may
have difficulty communicating with one another. Although Pierre and Dina developttktrg
together, their views were quite different. As a result, Pierre’s diiearfacused on identifying
students’ levels of thinking in learning geometry, while Dina’s dissertatammore about a
teaching experiment designed to investigate how students move from level.to leve

The van Hiele theory includes five distinct levels that describe students’ tHeuglstin
the learning of geometry. However, P. M. van Hiele suggested that matherdatasoes
should focus on the first four van Hiele levels, because those are what teacheosdeavevith
in school most of the times (van Hiele, 1986). As P. M. van Hiele (1959/1985) described in “the
Children’s thought and geometry”, the five van Hiele levels are as follows (p.6B#&3) Level,
figures are judged by their appearance; First Level, figures arerbeditheir properties, and
they are recognized by their properties but not yet ordered; Second jueysrties are ordered,

and they are deduced one from another; at this level, definitions of figure come inbaiplay



students did not understand the meaning of deduction; Third Level, thinking is concemed wit
the meaning of deduction, with the converse of a theorem, with axioms, withargcasd
sufficient conditions; Fourth Level, thinking is concerned with a variety iohaatic systems

that are non-Euclidean. Geometry is seen in the abstract.

As described in the levels, students’ levels of thinking attached to the learning of a
particular geometric topic are inductive in nature. At level n-1 cert@imggic objects are
studied. Students are able to state some of the relationships explicitly abouette. @jlevel
n the objects studied are now the statements that were explicitly maselat-1 as well as
explicit statements that were only implicit at level n-1. Thereforeplthects at level n consist of
extensions of the objects at level n-1. One major purpose of distinguishing tisadewel
recognize obstacles that are presented to students. For example, when avwtodethinking
at level n-1 confronts a problem that requires vocabulary, concepts or thinkiuglat, lthe
student is unable to make progress on the problem, with expected consequences such as
frustration, anxiety and even anger.

The van Hiele levels have several important properties: (1) The levelsearete and
sequential.Discreteindicates that the levels are qualitatively different from one another.
Sequentialefers to the fact that students pass through the levels in the same order, although
varying at different rates, and it is not possible to skip levels. (2) That whsimtvinsic at one
level becomes extrinsic at the next level. For example, students operatewgltl are able to
name geometric figures only by their appearance as a “whole” — the preméra figure remain
intrinsic. However, at Level 2, these properties become extrinsic and inddbearew objects
of study. (3) Each level has its own language and symbols. Van Hiele belieiv8d temeral,

the teacher and the student speak a very different language” (van Hiele, 1986, Thes2jore,



teachers and students often have difficulty communicating with one another abhoetge
concepts. This linguistic challenge can also extend to communicationelikdiés between
students in a classroom when they are functioning at different thought levefst(dgtional
methods have a greater influence than either age or grade on a student’s gromrghgite van
Hiele levels. That is, a teacher’s instructional activities can eithir fosimpede movement
through the levels.

When assigning students to different van Hiele levels, P. M. van Hiele cauthatéidi$
possible to misjudge a student’s level of thinking without careful analysigjseoften students
memorize or learn patterns in order to accomplish tasks, but do not really unddrstand t
underlying concepts. An example is when students recognize correspondesg @anfihding

the ‘F’ that is formed by parallel lines and the transversal. See Ridguteelow.

L4

Figure 2.1 Corresponding angles of parallel lines intersected by a transversal.
This technique simplifies the relation between angles and lines. P. M. van Hisleccla
that it could be harmful to students if they only seek a quick result and avoid the ‘crisis of
thinking’. In saying ‘crisis of thinking’, P. M. van Hiele meant the difficultileat students need
to transit from one level to a higher level. It is possible for students to derigesher without

recognizing the relationships between the angles in the figure (e.g., septdeyrangles, angles



at a point, interior angles). Van Hiele warned that these types of “trialght actually prevent
students from moving to the subsequent level of reasoning (van Hiele, 1986, p.42).

The van Hiele theory recognizes the importance of language, which playsfi@angni
role in communication. According to P. M. van Hiele, students’ levels of thinkingng@rtant
not in the sense of the way of their thinking, but in the results of thinking that asdeckue
students’ speaking and writing. For example, the meaning of a statementhilefigure is a
rhombus.” depends on how one argues about it. For a student who is at Basic level, her answer
could be, “This figure has a shape that looks like what | learned to call ‘rhombusbhtrast, if
another student has already obtained the first van Hiele level or higher, imaeatgould be
quite different. The figure that the student refers to is a collection of prapantkthose
properties he/she has learned to call “rhombus” (van Hiele, 1986, p.109). By makiamthe s
statement, “This figure is a rhombus”, one could use very different reasoningoand Yery
different level of thinking. This example of students’ responses to a rhombusittsstow
geometric language can vary among levels.

The van Hiele theory has been influential and extensively studied. In the next, sey
review of the existing literatures focuses on how the van Hiele theory @asibed in research
in the years since the theory was developed.

Research Guided by van Hiele Theory

The van Hiele theory was introduced to the United States by the Russian maihemat
Izaak Wirszup in a lecture entitled “Some Breakthroughs in the Psychologpiihg and
Teaching Geometry” at the Closing General Sessions of the National Colufiedchers of
Mathematics in 1974, following its incorporation into a new Soviet geometry curriculum

(Wirszup, 1976; van Hiele, 1959/1985, 1986). After the van Hiele levels were translated into



English, they were widely used by many researchers in the United Srategy the period of
1980-83, the National Science Foundation funded three major investigations of valeVdise

in the United States: one directed by Burger and Shaughnessy at Oregomertsitly,

another by Fuys, Geddes, and Tischler at Brooklyn College, and a thirddkynUsithe

University of Chicago. Burger and Shaughnessy set out a study usinglchtecviews to
determine the usefulness of van Hiele levels for describing childreorseggc thinking in
elementary, middle, and high school grades. Fuys et al. focused their iatr@stan geometric
thinking in adolescents using instructional models. Usiskin’s project used astaigesurvey to
test whether the van Hiele theory applied to the geometric reasoning of stedeniied in
secondary geometry courses. These three intensive studies have been adjeljgcassed, and
cited. After these studies, dozens of other studies using the work of the vanhidieddseen
conducted in the United States (e.g., see Mayberry, 1983; Crowley, 1987; Senk, 1983, 1989).
Internationally, Micheal de Villiers in the Netherlands and later in SouthaAfrsed van Hiele
theory to develop geometry curricula (de Villiers, 1996), whereas Angelrteatiend Adele

Jaime and their students in Spain, and John Pegg and his students in Australia used tize theory
study students’ learning in geometry (e.g., Gutierrez, 1996; Gutierrez, Zalroetuny, 1991;
Gutierrez, Pegg, & Lawrie, 2000).

In the earlier writing of the van Hieles, the van Hiele levels of geonthtriking mainly
refer to the classification of figures (van Hiele, 1959/1985). At that timdslexa¥e descriptors
and they were not labeled by single words (e.g., “Visual” for Level 1, etenjogtlthirty years
later, van Hiele (1986) referred to the five levels of thinking as visual, deserititeoretical,
formal logic and rigor, and considered such classification to be suitable totarstifc

mathematics (p.53).
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Over the years, researchers not only used the levels to study studenssbtegyemetric
thinking, but also expanded the area of research from classification of the ajeaals|to the
classification of similar figures, to reasoning and proof, to spatial gepmdtree dimension
measurement, etc. In these studies, researchers have proposed various/ddabgaf# for the
van Hiele levels. As the first to name the van Hiele levels, Hoffer (1981) provided his
descriptors, “levels of mental development in geometry” (p.13), which labeld gvbrough 5
as recognition, analysis, ordering, deduction, and rigor (p.13-14). Besideditiedsvels,
Hoffer also suggested five basic skills that are expected at eathllleese five skills are visual
skills, verbal skills, drawing skills, logical skills, and applied skills. For m=taat Level 1
(recognition), the visual skills only focus on recognizing different figu@® fa picture, or on
recognizing information labeled on a figure. At Level 2 (analysis), visulid ske developed to
notice properties of a figure as well as to identify a figure as a pataaiex figure. At Level 3
(ordering), visual skills help to recognize interrelationships betweesreiiff types of figures
and common properties of different types of figures. At Level 4 (deduction)] sigliafocus
on using information about a figure to deduce more information. Finally, at Leugb¥)(r
visual skills are used to recognize unjustified assumptions made by using {igur®). Hoffer's
descriptors suggested that various geometric skills might be expected ofsatd#fierent
levels of their development in geometry.

Other “level indicators”, suggested by Burger and Shaughnessy (1986), ddsefiive
levels as visualization, analysis, informal deduction, formal deduction, andfagbgvels O
through 4, respectively. Using Burger and Shaughnessy’s level indicatorseZ(a887)
provided additional examples of level-specific responses (except for LevehBgraing how

students would argue a given shape is a rectangle (p. 15).
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Level 1 “It looks like one.” or “Because it looks like a door.”

Level 2 “Four sides, closed, two long sides, two shorter sides, opposite

sides parallel, four right angles ...”

Level 3 “It is a parallelogram with right angles.”

Level 4 “This can be proved if | know this figure is a parallelogram and

that one angle is a right angle.”

Each response assigns to a level. The student at Level 1 gives answers bagsdabn a
model and is identifying the rectangle by its overall appearance.#t Pethe student is aware
that the rectangle has properties; however, redundancies (i.e., propettemtbe derived from
other properties) are not noticed. A student operating at Level 3 will attergipeta minimum
number of properties (i.e., a definition), and finally, at Level 4, a student willtsgeove the
fact deductively.

More recently, Battista (2009) elaborates and refines the van Hiele letielegard to
students’ geometric reasoning. The descriptors of the levels he suggestsaraolistic
reasoning, descriptive-analytic reasoning, relational-inferenagbreng, formal deductive
proof, and rigor (p.92-94), referring to Levels 1 through 5, respectively. Fanagstat Level
1(visual-holistic reasoning), students argue that a square is not gtedtacause a rectangle is
“long”; or claim that two figures have the “same shape” because they “lookrtie(©.92). At
this level, students’ justifications of an argument are vague and holistic. &k 2.édescriptive-
analytic reasoning), students would assert that a square is a rectangle iebassmgpposite
sides equal and four right angles.” At this level, students are able to expglpetify shapes by
their parts and spatial relationships among the parts; however they descslangartoperties

informally and imprecisely using strictly informal language near from everyday life. At Level
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3 (relational-inferential reasoning), students start with empiricaldnter to reason that if a
qguadrilateral has four right angles (and this is a rectangle), its oppdssgehave to be equal
because by drawing a rectangle with a sequence of perpendiculars, thetyncake the
opposite sides unequal; and then they use logical inference to recognize tfieatlassi of
shapes into a logical hierarchy (p.94).

These descriptors not only provide detailed information about how researchery identif
students’ levels of geometric thinking, but more importantly shed light on the geometr
reasoning and language skills that students need to develop at each van Hidléhere
conducting studies using van Hiele theory, some researchers use clinreaweewhile others
prefer open-ended survey tests. Among all the van Hiele studies, Usiskin’s @ogniti
Development and Achievement in Secondary School Geometry (CDASSG) projeBtjrged
and Shuaghnessy’s “Oregon Project” are two of the most frequently used anchdited. |
following section | summarize the methods used in the van Hiele studies, as s@iha
important findings, beginning with these two projects that influence the teachingaanishy of
geometry.

Now let me move on to the research methods used in the van Hiele studies. The Usiskin
CDASSG project (Usiskin, 1982; Senk, 1983) used a standard pretest and posttest, involving
four tests, to assess 2699 students in full year geometry classes from ¢ digihodichools in
five states. The four tests were: Entering Geometry Test, vanltéiedé Test, Comprehensive
Assessment Program Geometry Test and Proof Test. The pretest (i.engEBssmmetry Test
and Van Hiele Level Test) was conducted during the first week of school, and thetgostte
van Hiele Level Test, Comprehensive Assessment Program Geometandid3toof Test) was

scheduled three to five weeks before the end of the school year.
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The van Hiele Geometry Test was designed to predict students’ van Hietedethet
beginning and the end of the school year. This test consists of 25 multiple-chmisgwitith 5
foils per item and 5 items per level, and was designed to capture the key thinkinggsoces
characteristic of each van Hiele level. In order to develop a rigorousgésiment that
describes van Hiele levels in sufficient detail, researchers in theSSBAroject first reviewed
nine original works of the van Hieles, including four originally written in Estgand five
translated into English from Dutch, German or French. They compiled all the quoteth&
van Hieles’ writings (see appendix B) that describe behaviors of studentyvahdeyel. As an
example of the quotes, the following is a selected list of Level 1 behaviors thkinl{$982)
provided in the CDASSG project report:

Level 1 (their base level, level 0)

1. “Figures are judged according to their appearance.”

2. “A child recognizes a rectangle by its form, shape”

3. “The rectangle seems different to him from a square.”

4. "A child does not recognize a parallelogram in a rhombus.”

5. “A student was able to produce these figures without error...”

The van Hiele Geometry Test (see Appendix B) instruments were baseel on
descriptions of students’ behaviors at each given level. For example, It@mere-derived
from quote number one; Item 4 was derived from quote number eight and Item 5 was derived
from quote number six. Figure 2.2 presents one van Hiele Level 1 item and its cornegpandi

Hieles’ quotes.
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Question 4: Which of these are squares?

F G H

(A) None of these are squares.
(B) G only

(C) Fand G only

(D) G and | only

(E) All are squares.

Figure 2.2  An example of a Level 1 test item with its corresponding van Hiele quotes.

To grade students’ responses to the van Hiele Geometry Test, the project usedsthe 3 of
criterion (3 out of 5 correct) and 4 of 5 criterion (4 out of 5 correct), and comparedthe tw
criterions using the analyses of Type | and Type Il error. The statiatialysis showed that,
depending on whether one wishes to reduce Type | or Type Il error, the 3 ofibreriter
minimizes the chance of missing a student and yields an optimistic pictuvelefts’ levels,
whereas the 4 of 5 criterion minimizes the chance of a student being at a lguelsking (see
Usiskin, 1982). Based on students’ test responses, the students were assiggbted swen
score according to the following:

1 point for meeting criterion on items 1-5 (Level 1)

2 points for meeting criterion on items 6-10 (Level 2)

4 points for meeting criterion on items 11-15 (Level 3)

8 points for meeting criterion on items 16-20 (Level 4)

16 points for meeting criterion on items 21-26 (Level 5) (Usiskin, 1982, p.22)
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The points were added to give the weighted sum, and the weighted sums weresdalculat
to allow a person to determine upon which levels the criterion has been reached from the
weighted sum alone. For example, a score of 19 points indicates that the studeanthessthee
criterion on Levels 1 (1 point), Level 2 (2 points) and Level 5 (16 points). The agsmhi
levels, however, was as follows: If a student met the criterion for pasaatglevel up to and
including leveln and failed to meet the criterion for all levels above, then the student was
assigned to levat; if the student could not be assigned to any level, then that student was not
said to fit. Thus a student with a weighted sum of 1+2+16 =19 would satisfy thenraer
Level 1, Level 2 and Level 5 and was assigned to van Hiele Level 2 (p.25). TheSGDAS
project used Hoffer’'s (1981) descriptors, labeling the levels as reargratialysis, ordering,
deduction and rigor, from Levels 1 to 5. Additionally, the project reported results usmtheot
classical theory (i.e., all five van Hiele levels are considered) anddtgied theory (i.e., Level
5 is excluded from consideration) to classify students into van Hiele leveldgsdan, 1982).

This large-scale research study showed that nearly 40% of students in #ok States
finish high school functioning below van Hiele Level 2 (Analysis). Students egteigh school
geometry courses with higher van Hiele levels, such as Level 2 or Leved&i{tg), were more
likely to succeed in writing proofs by the end of the school year (Senk, 1983, 1989). Of those
studied, students who entered geometry courses functioning at van Hiele Level30B&ad a
chance of success in proof writing. Entering geometry at Level 2 provigigeinss with a 56%
chance of success at proof writing, and all students entering at Level &pgpdrsuccess at
proof writing by the end of the school year. These results show that high schootstude
achievements in writing proofs are positively related to van Hiele levelsoofigtric thinking

andto achievement on standard non-proof geometry content (p.318). The study also concluded,
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“In the form given by the van Hieles, Level 5 either does not exist or is ndileesddl other
levels are testable”(Usiskin, 1982, p.79).

It is helpful to use these data to determine the initial status of students’tgeome
backgrounds and to assess their progress. However, there have been questions and doubts about
the feasibility of measuring reasoning by means of items, and about the intersistency of
the items (Crawley, 1990; Wilson, 1990). Also, one might question what information might be
missed in a paper-pencil test, and how the details of students’ thinking pravésiselse better
detected. Nevertheless, the main advantage of this method is that it can be agahitmsteny
indiviudals, and it is easy and quick to distinguish between the thought levels of students.

In contrast, Burger and Shaughnessy’s Oregon project (Burger & Shaygh@86) used
clinical interviews to determine students’ van Hiele levels. They inteedet® students from 5
school districts in 3 states, ranging from elementary to middle to high schoaht@&heews
consisted of eight tasks focusing on geometric shapes, and those tasks were daesifjieet t
the descriptions of the van Hiele levels.

The design of the interview tasks involved drawing shapes, identifying and defining
shapes, sorting shapes (e.qg., triangles and quadrilaterals); and thewnpeotaxols were
designed to engage participants in both informal and formal reasoning aboutrgesinapes.

Six of the eight tasks, focusing on drawing, identifying, and sorting, weretedgecelicit the
characterizations of van Hiele Levels 0-2 from the protocols. To giveaanpe of the design,
Figure 2.3 shows two tasks that were useehtifying and defining2.3a) andsorting(2.3b).

Identifying and Defining

Students were given a sheet of quadrilaterals (Figure 2.3a), and they keet¢casrite

an S on each square and R on each rectangle, and if the student was famitlze teitms, a P
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on each parallelogram and a B on each rhombus. During the interviews, studerdskeerto
justify their marking. In the defining part of the activity, the student wiasdasWhat would

you tell someone to look for in order to pick out all the rectangles on a sheet a?igOre an
equivalent question was asked, “Could you make a shorter list? Is No. 2 a réctampe 9 a

parallelogram?”(p.34).

i

= B

2.3a. Quadrilateral to be identified 2.3b. Triangles to be sorted

Figure 2.3 Two experimental tasks from the Oregon Project

Sorting

A set of cut out triangles was spread out on the table (Figure 2.3b). The student was
asked, “ Can you put some of these together that are alike in some way? Huosy alé&ke? Can

you put some together that are alike in a different way? How are they gpk&®) This line of
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guestioning was continued as long as the student could come up with new sortingstrategi
These activities sought to explore the student’s definitions and class inclusions.

The project collected and analyzed students’ original written works dinenigterviews,
and the dialogs between interviewers and the students were analyzed and datamemsie
For example, on the Drawing Triangles task, interviewees were asked todififaveht”
triangles. Based on the interviewees’ drawings during the interviewseBamg Shaughnessy
found that for Bud, a"5grade student, “different triangles” meant triangles in different
orientations or positions only. In contrast, for Amy, &rg8ade student, “different triangles”
meant having different angle measures and sizes, and for Dof gaati® student, “different
triangles” meant different types of triangles. Figure 2.4 shows the drafsamyBud, Amy and

Don.

Bud Amy Don

Figure 2.4 Bud, Amy and Don’s drawings of different triangles.

Recall that the “level indicators” developed by Burger and Shaugh(fe38§) describe
Levels O through 4, respectively, as visualization, analysis, informal dexluictrmal
deduction, and rigor. Pursuant to students’ responses during the interviews, it turted, out t

even though all three students were to reason about what is meant byrittfiaregles,” and
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could provide drawings, all three students were later assigned to three diffarédtiele levels:
Bud (Level 0), Amy (Level 1) and Don (Level 2). This example illustrates use téahee
language” but very different reasoning. Burger and Shaughnessy also dasithendriginal
scripts in which questions were asked for interviewees to complete the taskafpies for the
activity “Drawing Triangles”, interviewees were asked to draw agitea(called No.1), and then
another triangle (called No.2) that is different in some way from theofies. After the
interviewee had done so, he/she was asked to draw a third triangle that entiften the first
two triangles, and so on. Later, the interviewees were asked questions suolwas #32
different from #1?” and “How would they be all different from each other?”(p.37).

Burger and Shaughnessy’s project confirmed the hierarchy nature of tlse Tdhay also
found that age is not significantly related to the levels. However, the resgieivire project had
disagreements and experienced some difficulties of assigning adestetients who appeared to
be in the transition between Levels 0 and 1(p.42).

The interviewees’ written works on one hand, and their verbal responses to the questions
on the other hand, combined to increase the reliability of the data and provide strongesuite
how the data were analyzed and interpreted by researchers. The greatgedofnlinical
interviews is that the information obtained from the interviews results inpedkeowledge of
the ways students reason. However, this study is clinical with a small saihsplelents
representing a very broad range of ages (Kindergarten to College). Tdhisf kesearch is time-
consuming and is unsuitable for assessing many people.

The review of the methods used in van Hiele studies influenced the design of the
proposed study. The van Hiele Geometry Test, used to distinguish students’ vaeudislas

effective in getting initial information about students’ levels of thinking, ancCD8SAG
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project showed that it is a well-tested and designed test instrument. The Oi@got pn the
other hand, gives an example of how clinical interviews could well detect stuithamisng
processes when engaged in informal and formal reasoning about basic gesimpgk

There are many other studies using the van Hiele theory that pertain tarthedeand
teaching of geometryOone such study by Fuys et al. (1988) focused on clinical interviews with
sequences of instructions known as “Instructional Module Activities” (p.11). Iptbjsct, all
subjects were interviewed individually in six to eight 45-minutes sessiohsyawbrked with an
interviewer on the Instructional Modules. The subjects were selectedett tbe diversity of
sixth-grade students from New York City public schools. To categorize the sulgeets of
thinking, the interviews focused on their progress (or lack of it) within the levétshigher
levels, and on learning difficulties as well (p.78). This project was designed ttigate
whether or not instructional modules would help subjects move through the levels. Huys et a
(1988) also documented the dialogues between interviewers and subjects. For exahgle, in t
assessment of subjects’ understanding of the exterior angle of a triathgdets were given an

open question of finding a possible relationship among the three angles indicatade?Fg

Figure 2.5  An exterior angle of a triangle.

During the interviews, the interviewer gave several prompts to the sufijettas: “ Is

any part of angle related to angla or angleb?” With the help of the interviewer, the subjects
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would sometimes successfully complete the argument of a relationship hé¢iveeiaterior
angles (anglea andb) and their exterior angle (angteof the triangle.

In addition to the clinical interviews, Fuys et al. (1988) also analyzed geommttent
of three widely used K-8 textbook series with regard to the van Hiele levelsrdpmyed that
no more than 2% of the lessons contained content that require geometric thinkind 8t Leve
(formal deduction), and all of Level 3 lessons appeared at Grades 7 and 8. The gp8&nin
represented van Hiele Levels 0, 1, and 2. Analyzing their findings, Fuys et dld=szhthat “
average students do not need to think above Level O (visual) for almost all of theatiyeom
experience through grade 8” (p.169). Not surprisingly, the overall results forrthdéiela levels
of students in the United States were discouraging. In their study of thetgeamasoning of
sixth and ninth grade students, Fuy et al. (1988) found the following: 19% of sixth graders
performed consistently at Level 0 (visual), 31% performed sometimesvat 1 (analysis) and
sometimes at Level 2 (informal deduction), and the remaining 50% performetimemat
Level 2 and sometimes at Level 3 (formal deduction). The ninth graders’pmondasg
percentages were 12%, 44%, and 44%.

More recently, Newton (2010) used van Hiele levels to analyze K-8 geometry stat
standards. Of the 5,710 Grade Level Expectations (GLES) contained in the K-8t(yerde
Measurement strands of 42 states, 1,667 GLEs (approximately 29 %) were lalokdsdrigsive
geometry. The analysis of the descriptive geometry GLESs indicated pirakapately 47% of
the GLEs are Level 1(visualization), 49% are Level 2 (analysis), and 4&&aek3 (informal
deduction). According to Newton, the absence of Level 3 GLEs in more than 40% ofdke sta
and the near absence in the remaining 60% represent the most compelling resahalyses,

since formal deduction (Level 4) is generally expected in high school ggoroetses.
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The van Hiele theory has informed and shaped the improvement of the geometry
curriculum (Wirszup, 1976; de Villers, 1999). For example, de Villiers cautioned “oararof
effort and fancy teaching methods at the secondary school will be successfglwenkabark
on a major revision of the primary school geometry curriculum along van liie$s. In 1999,
Clements et al. encouraged the van Hiele level's use in guiding curriculum deveipante
suggested that “helping children move through these levels may be taken i@aleeduicational
goal” (p. 193). The following year, iArinciples and Standards in School Mathematibs
NCTM cited van Hiele and others who have studied his theory to develop the importance of “...
building understanding in geometry across the grades, from informal to moré tiomkeng”
(2000, p. 40).

Knowledge of Geometry for Teaching

“Mathematical knowledge for teaching means the mathematical knowleddéausarry
out the work of teaching mathematics” (Hill, Rowan & Ball, 2005, p.373). When suggesting
what it means to know mathematics for teaching, Ball, Hill and Bass (2005)thegueaching
involves knowledge of mathematical ideas, mathematics reasoning skills, and coatianoni
fluency with examples and terms, and thoughtfulness about the nature of mathlematic
proficiency. For instance, additional mathematical insight and understaandimgquired to
explain, listen, and examine students’ work, and more mathematical anahggjsired when
correcting students’ errors. In addition to mathematical knowledgedohitey, Ball et al
address the need for teachers to have a specialized fluency with mathkelavagicage, and to
know what counts as a mathematical explanation.

In this section, | summarize research that emphasizes prospectiveselcbetedge of

geometry. Mayberry (1983) investigated nineteen undergraduate prospeativer$& geometric
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understanding when encountering seven geometry concepts: squares, rigesiriaogceles
triangles, circles, parallel lines, similarity and congruend¢eoahmon topics to elementary
school textbooks. The study found that two students had difficulty in recognizingra sdtiiea
nonstandard orientation (Basic level), while the properties of figures wereradt perceived
(Level ). For example, when asked, “does a right triangle have a longe?t §.60), twelve
students responded that they did not think that such a triangle had to have a longest side. With
regard to Level I, the study concluded that class inclusions, relationshipsyaliehtions were
not perceived by many of the students, because they answer the questionfdapagires
rather than generalized ones. Responses to questions about congruence (lséweal fihat
fifteen out of the nineteen prospective teachers believed that two right tsavitiieen-
centimeter hypotenuses are always congruent. Also, ten of nineteenhaddgrotcircles with
ten-centimeter chords are always congruent (Table 2.1).

Table 2.1 Responses to Relation Questions about Congruency

Figure. “ Are these Congruent?” Always Sometimdgever Don’t know
A square and a triangle 0 1 17 1
Two squares with 10-cm sides 16 2 0 1
Two right triangles with 10-cm hypotenuses 15 3 0 1
Two circles with 10-cm chords 10 8 0 1
Two similar triangles 3 11 3 2

Findings suggested that the prospective teachers in the study did not yet pencevet
the properties of basic geometric shapes, and they did not perceive a praxdieal@hain
leading from the “given” to the “conclusion.”

Hershkowitz, Bruckheimer and Vinner conducted in Israel a study of 518 students
(grades 5-8), 142 prospective teachers, and 25 in-service teachers. Findingstehowe
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“teachers have patterns of misconceptions similar to those of students is BH&dE 987,
p.222). More specifically, they assessed 142 prospective elementary teanderstanding of
geometry concepts in the context of angles, altitudes of triangles, and dsagbpalygons. For
example, one of the tasks was to assess the understanding of the angle conceghlzyng
the drawing of an angle on a sheet of paper. Results suggested thatgsikpeetent of the
prospective teachers had a proper understanding of the concept of angle (p.223ssafising
prospective teachers’ understanding of the diagonals of polygons, Hershkowitz, Bnatkhe
and Vinner (1987) found that most of the prospective teachers only drew diagonals ¢hat wer
inside the polygons and rejected the possibility of an exterior diagonal (see Eigu This
result suggests that most prospective teachers did not use definitions as theyr tpoimahen
working with these tasks. They tended to use their own individual image of a givapt@ng,
concept of diagonals of a polygon). These prospective teachers’ individual concess wiegig

misleading in the case of the diagonals of concave polygons.

Figure 2.6 The “diagonals” of concave polygons

Gutierrez, Jaime, and Fornruny (1991) conducted a study to evaluate 32 prospective
teachers’ spatial reasoning in three-dimensional geometry. Nineafetims Spatial Geometry
Test were grouped into five activities. These activities were desigreditit prospective

teachers’ conceptual understanding of three-dimensional figures, by pagimigpa either to
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visual qualities or to the properties of basic geometric shapes such as agdgpasallelograms.
Activities that asked prospective teachers to select solids, based on givetiggpfoetused on
how prospective teachers use definitions and properties to identify the polyhedrandroem
set of solids. With regard to the question involving writing the differences andrsiies
between a cube and the Solid | (see Figure 2.7), this activity focused on abeeadt
manipulation of the polyhedran. In response to this question, for instance, one prospective
teacher argued, “In both solids [a cube and Solid I] the faces are paraliedcand both have
six faces. And the differences were, the angles in solid | are not right” (pA4gher
prospective teacher argued, “Solid | and a cube were alike because both solidsdikldguas

and all edges are the same, and they differed because they don’t have the gai(e 248).

Cube Solid 1

Figure 2.7 A cube (left) and Solid I (right)

These two responses both reasoned about the differences and similarities betuiee
and a solid, but the arguments provided by the two prospective teachers were quiet diffee
first response focused on the properties of the geometric figures;astibeclatter response
mainly paid attention to the visual qualities of figures.
Based on Vinner and Hershkowitz’s (1987) notion of concept image, Gutierrez and Jaime
(1999) conducted a study of prospective elementary teachers’ understanding of épe abnc

the altitude of a triangle. They analyzed 190 prospective teachersiviasis, focusing on
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concept images, difficulties, and errors related to the concept of the altitudeaobéet
Analysis showed that there were more correct responses in the test contedrdefjnition of
the altitude than in the test without the definition. This observation suggested thairthiodef
seemed to provide information helping these prospective teachers to improve thestamuiieg
of the concept of altitude.

From the responses that prospective teachers provided in the study, we learmhedehat t
was confusion and misunderstanding between the concepts of altitudes and mediaasgiéa t
and the concepts of altitudes and perpendicular bisectors of the sides of a triaegge. T
misunderstandings could be reasons why prospective teachers responded Intmaqertial
image that excludes external altitude (Figure 2.8a), and to a partia thtgdoes not take into

account the length of the altitude (Figure 2.8b).

2.8a. 2.8b.

“For interpretation of the references to color in this and all other figures,atierres referred to
the electronic version of the dissertation”

Figure 2.8 Responses regarding the altitude of a triangle

Another issue worth mentioning is the influence of the position of a triangle, as a
consequence of a different rotation of the figure. The easier item appearetiegbeatotypical

position with a vertical altitude, which suggests that prospective teachersptamages of
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altitudes of triangles were limited to only certain types of trissyglad with certain orientations
of how triangles are positioned.

In the previous section | have presented examples from existing liternageeding
prospective teachers’ understanding in the context of Euclidean geometrgvigve included
teachers from Israel, Spain, and the United States. Some investigatiordonetarough large-
scale studies; others were done through clinical interviews. These prospemtivers who were
tested all shared some common difficulties and weakness in their leargagroétry.

Theoretical Framework

According to the van Hieles, a learning process is also a process of leanewg a
language, because “each level has its own linguistic symbols” (van H&le/1985, p.4). The
van Hiele levels reveal the importance of language use, and emphasize thnagéaisc critical
factor in the movement through the levels. The word “language” is not clearhedefi the
broad use of it (see van Hiele, 1986). Moschkovich (2007) argued that the language of
mathematics does not mean a list of vocabulary words or grammar rules, buthether
communicative competence necessary and sufficient for competent padicipanathematical
discourse.

A real concept is an image of an objective thing in its complexity. Only when we

recognize the thing in all its connections and relations, only when this diversity is

synthesized in a word, in an integral image through the multitude of determinations, do

we develop a concept. — Vygotsky

In this section, | summarize issues of language and discourse in mathkeleaticag

from existing literature. Sfard (2008) uses a discursive approach inspixaa)bisky to make a

28



distinction between language and discourse - language is a tool, whereas dis@uesziisty

in which the tool is used or mediates. This perspective provides an understanding of tizghema
as a social and discursive accomplishment in which talk, gesture, diagramsgmégirens, and
objects play an important role; consequently, mathematics learning respaeral modes of
communication (Sfard, 2002).

Researchers such as Ball (1993) elaborated the relationship between djsomtent
and community in their research to illustrate how these elements help studentddp ddat
Schoenfeld (1992) calls a “mathematics point view.” From this perspectiveradas
mathematical discourse is essentially a progress of establising@arms about mathematics.
In her work, Lampert (1998) advances the case for classroom-based reseandidir ¢the
impact of language and discourse on mathematical learning. For exaanpleett illustrates
aspects of “mathematical talk” that includes position taking, question asking goof
justification, expanding ideas, use of evidence, conjectures, symbolic refeard® on.

Kerslake’s (1991) focus on language in mathematics classrooms is an egampi&
that attempts to examine the specific language of the content area, antbhegmtify how the
use of language becomes a resource for understanding students’ misconceptiowsnpla;, e
based on the interviews with students, Kerslake found that students fail to cona#igadras
numbers because they perceive them as “broken numbers” instead. Moreover, soddaots t
rely on the everyday language of “sharing” to describe division, and Kerslakesssiimat this
happens because sharing is likely to have been the students’ first exseokedietding.
Kerslake suggested a closer look at how students think of and talk about fractions in e cours

of learning.
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Moschkovich (2010) also acknowledges the significant role of discourse in learning. She
demonstrated this view, through an analysis of a third grade bilingual maitteal@tsroom, to
illustrate two features of mathematical discourse: situated meahnimgyds (utterances), and
focus of attention. She suggests that learning mathematics is a disewtsiitg that involves
participating in a community of practice using multiple materialsuistg, and social
resources.

Many researchers have attempted to develop frameworks to examine stddeots'ses
in learning mathematics. As an example, Sfard’s (2008) communicational approach to
mathematical learning provides a notion of mathematical discourse that wistiesyher
framework from others in several ways. In particular, Sfard (2002) arguakehaowing of
mathematics is synonymous with the ability to participate in mathentgsiosurse. From this
perspective, conceptualizing mathematical learning as the developmatisocbarse and
investigating learning means getting to know the ways in which children modifylibeursive
actions in these three respects: “its vocabulary, the visual means with idniobnimunication
is mediated, and the meta discursive rules that navigate the flow of communioati@cidy
tell the participants what kind of discursive moves would count as suitable for tinisijpa
discourse, and which would be deemed inappropriate.” (Sfard, 2002, p.4) Therefore, Sfard’s
(2008) commognitive approach is grounded in the assumption that thinking is a form of
communication and that learning mathematics is learning to modify and extendlisoeigse.

Commognition

In Sfard’s (2008)rhinking as communicating: Human development, the growth of
discourses, and mathematizirsipe defines discourse ‘@ny act of communication made

distinct by its repertoire of admissible actions and the way these aat®psired with re-
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actions” (Sfard, 2008, p. 297). A discourse is considered to be mathematical when i feature
mathematical vocabulary that relates to numbers and shapes. Geometric €ljsceubxategory
of mathematical discourse, features mathematical vocabulary spbgifelating to geometric
shapes, definitions and proofs, etc (p.245). Mathematical discourses are distinglugttabir
vocabularies, visual mediators, routines, and endorsed narratives.

From the commognitve point of view the development of discourse involves modifying
colloquial mathematical discourse into a more precise mathematical discooe that follows
meta-discursive rules. For example, in mathematics, geometric shaasbytically classified
by their properties, not just by how they appear to us holistically. Thus, @hstiaiut triangle is
still a triangle even if it looks distorted. As long as it has three line sagnoemed at vertices, it
is a triangle; and because we count those segments and vertices, we engageistia &ct
(see Sfard, 2008). In Sfard’s terms, the mathematical discourse develops famuiabl
mathematical discourse; the colloguial mathematical discourse is an intmtaiding point, and
to develop mathematical discourse requires a fundamental change in the dipcactises.

To identify whether a discourse is “mathematical”, four characteyistio be considered
as critical: word use, routines, visual mediators and endorsed narratives.ifi@i®w very brief
description of each of these.

In a mathematical discourse, numbers words and comparison words (e.g., bigger) small
will appear in the conversations discussing numbers and shapes. In this proposed study, the
geometric discourse deals with triangles and quadrilaterals, and theirtipsmgberefore words
will appear such as “angles”, “sides”, “parallel”, “diagonals”, “congtlig’'same”, etc. and
sometimes these words will have multiple meanings depending on how the perstemses t

Word usds an all-important matter because, being tantamount to what others call wordgneani
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it is responsible for how the user sees the world, and it is one of the distinctivaaistres of
discourses (Sfard, 2005, p.245). In particular, a students’ word use reflects bigtheof
mathematical thinking, which are crucial in this proposed study.

Visual mediatorsre objects that are operated upon as a part of the process of
communication. In colloquial discourses, visual mediators are images ofahttgs existing
independently of the discourse; whereas in mathematical discourses, visuabraed@bften
involved with symbolic artifacts, created specially for the sake of tiipkar form of
communication. Communication-related operations on visual mediators often begtmmated
and embodied. For example, “the procedures of scanning the mediator with one’s eyés... Wit
some experience, this procedure would be remembered, activated, and implemémetelt act
response to certain discursive prompts, as opposed to implementation that regbeestelel
decisions and the explicit recall of a verbal prescription for these operatifasd, 2008,
p.134).

Narrativeis defined as “a set of utterances, spoken or written, that is framed as a
description of objects, of relations between objects or processes with or by admectvhich is
subject toendorsementr rejection, that is, to being labeledtase or false' (Sfard, 2008,
p.300).Endorsed narrativeare sets of propositions that are accepted and labetatedy the
given community. In the case of geometric discourse, endorsed narratives aneasnow
mathematical theories, including definitions, proofs, axioms, and theorems. Emestata
parallelogram is a quadrilateral with two pairs of parallel sidesi sr@orsed narrative of
parallelogram, defining what a parallelogram is mathematidslliathematical discourse is
conceived as one that should be impervious to any considerations other than purelyaleducti

relations between narratives. In this proposed study, the narratives will beitieoaaces
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produced by prospective teachers when identifying and classifying basnetg& shapes,
whereas the endorsed narratives will be the definitions of different quaadisdrem textbooks
that prospective teachers encounter in their geometry class, and narrativel biea
constructed or endorsed by prospective teachers during the interview.

Routinesare repetitive patterns characteristic of the given discourse. Spkgific
mathematical regularities can be noticed whether one is watching thernaghematical words
and mediators, or follows the process of creating and substantiating narabtvesumbers or
geometrical shapes. In fact, such repetitive patterns can be seen inaalgnaspect of
mathematical discourses: in mathematical forms of categorizing,thrematical modes of
attending to the environment, in the ways of viewing situations as “the samefeoemltif which
is crucial for the interlocutors’ ability to apply mathematical discoutsensver appropriate —
and the list is still long.

When someone is doing mathematics, or to be more specific, is engaging in a
mathematics task in geometry, patterns such as how one is carefully usingatetevords,
or how one is following certain steps when substantiating narratives abouttgealnsbapes,
can be observed. In fact, those repetitive patterns can be seen in almoseangfasp
mathematical discourses (Sfard, 2005; Sfard 2008). In this proposed study, whentipespec
teachers identify and classify basic geometric figures, matheaheggularities will be noticed
through the conversations, to determine whether these prospective teachersgratfEntion
to the use of mathematical words and following the process of creating arehsiabiag
narratives about geometrical shapes.

A Routineis defined as set of meta-rules defining a discursive pattern that repeats itself

in certain types of situations, and the set can be divided into two subsetsowibfea routine,
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and thewhenof a routine (Sfard, 2008, p.208): Thewof a routine: a set of meta-rules that
determine the course of the patterned discursive performance (the coumsenaf, or
procedure); thevhenof a routine: a collection of meta-rules that determine those situations in
which the discussant would deem this performance as appropriate.

In this proposed study, “the how of a routine” will likely be observed (through
interviews), whereas “the when of a routine” will not be discovered becaesgiites
observations over a period of time (consistent observations over weeks, months @aesgen y

The Levels of Geometric Discourses

Many researchers have confirmed the usefulness of van Hiele theory veleebidg the
development of students’ geometry thinking. However the same researchers oftka fiad t
Hiele theory lacking in depth with respect to the broad description of the levels, gwebtlid
like a more detailed description of students’ levels of thinking. Recall thatrt$oft®81)
“Sample Skills and Problems” (p.11) provided a framework that connects the levels of
development with five basic skills (e.g., visual skills, verbal skills, drawintsskiic) that are
expected at each van Hiele level. This work inspired me to consider the possilmbtynetting
the van Hiele theory with a discursive framework, and to translate theigkmnlévels into
discursive terms. | claim that when a student’s geometric thinking develagsigher level,
simultaneously there is a development of the student’'s geometric discourseunsige terms.
That is, the levels of geometric thinking can be viewed also as the levels cftgeatiscourses.
If so, the question is: “what additional information do the analyses of geometacidie
provide about the student’s level of thinking?” To investigate the usefulness of discursive

framework, the study produced a model, on the basis of the theoretical understahding
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describes each van Hiele level as a geometric discourse with respecti tose routines visual
mediatorsandendorsed narratives

By “the theoretical understandings”, | mean the initial translation of thé-ae levels
to discursive terms based on the quotes from the van Hieles’ writings, thejsates used to
design the van Hiele Geometry Test in the CDASSG project. Taking the ghas’Hiescriptions
of students’ behaviors at each level, | analyzed them into the four chatéetetescribed in the
Sfard framework; such translatidlustrates student geometric discourse at each van Hiele level.
The translation for five van Hiele levels is shown in Tables 2.2 (Levels 1d32.8 (Levels 4-5).

Table 2.2 Discursive Translation of van Hiele Levels 1-3

Characteristic
Key terms Geometric Discourse

Van Hieles’ description of Level 1. Figures are judged by their appear

Word use  Naming a figure is matching the figure with its name.
Routines  Direct recognition, a perceptual experience that is selirévide

Endorsed Descriptions of how one perceives. “This one (square) looks different from this
narratives one (a rectangle)”.

Visual 2-D geometric shapes, the openness of angles, positions of the lines or physical
mediators orientations of a figure are parts of the process of direct recognition.

Van Hieles’ description of Level 2. Figures are bearers of their giepe

Word use  Naming a figure is associated with its properties.

Direct recognition. Object level routines include checking, measuring and

Routines ) . . .
comparing partial properties of figures.

Endorsed Descriptions of visual properties. “Squares are not rectangles because they
narratives have all sides equal, but rectangles are not”.

2-D geometric shapes, the openness of angles, positions of segments or
physical orientations of a figure are parts of the process of direct raoagnit
and identification of visual properties.

Visual
mediators

Van Hieles’ description of Level 3. Properties are ordered and are deslueé&ehm another.
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Table 2.2 (cont'd)

Naming a figure signifies the realization of the figure regarding its eedors

Word use .
narratives.
. Including routines at Level 2. Object level routines producing endorsed
Routines :
narratives.

Endorsed Descriptions of a definition of a figure and actions on a figure. “Rectangle i
narratives parallelogram having four right angles”.

Visual Figures, lines and angles are parts of the process of identifyingsaegand
mediators sufficient condition of a definition.

Table 2.3 Discursive Translation of van Hiele Levels 4-5

Characteristic
Key terms Geometric Discourse

Van Hieles’ description of Level 4. Thinking is concerned with the meaningdoictien.

Naming a figure signifies the realization of the figure regarding its eedors

Word use narratives and its connections with other figures.

Using abstract symbols. Abstract level of routines producing endorsed
narratives and making connections among them

Endorsed Descriptions of abstract relations. Constructions of narratives using deductive
narratives reasoning.

Routines

Visual

. All level 3 visual mediators, plus abstract symbols, mathematical diagrams.
mediators

Van Hieles’ description of Level 5. Figures are bearers of their grepe

Naming a figure signifies the realization with its endorsed narratives and

Word use connections with other figures in both Euclidean and non-Euclidean geometry.
Routines  Routines are connected with creativity.

Endorsed Descriptions of abstract relations in both Euclidean and non-Euclidean
narratives geometry.

Visual Mathematical symbols and artifacts used in both Euclidean and non-Euclidean
mediators geometry.

During this process of translating, the van Hieles’ quotes at each levelevezeed and
analyzed into possible characteristics of a mathematical discoursexdfople, the quote No. 2,

“A child recognizes a rectangle by its form, shape”, provides information about tlovd a
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identifies a figure, what it calls a “rectangle”, based on its physugaance. When this quote
is translated into discursive terms, the word, “rectangle” signifies agjdorshape (i.e., a shape
that we call a “rectangle”), thus therd usehere is a name or a labeltbefigure. The phrase,
“recognizes... by its form, shape” suggests that the direct recognitioarsiige decision
making, and therefore thieutine procedures a perceptual experience and is self-evident (e.g.,
[it iS] a rectangle [because | see it] by its form, shddajrativesare utterances, verbal or
written, that describe objects, and/or relations between objects. The naregBveestt is “what
is said” about the object during the interview or observation; a student with behavidretbst
the quote is very likely to say, “it is a rectangle because it looks like onevidured mediatoin
this situation could include a drawing or picture of a four-sided figure looking li&etangle.
The translation of van Hiele levels into discursive terms provides additionahgiion
about what a student might sayofd useandnarrativeg and do foutineg, as well as what
visible objects (visual mediators) are operated upon as a part of the processnohoation
through the geometric discourses. Moreover, the translation provides more detailthe
development of the levels through the development of geometric discourses. The van Hiele
levels provide a useful framework to distinguish students in different levelseagre
geometric discourses at the van Hiele levels provide in-depth analyses of sletielg®f
geometric thinking.

The General Research Question in Commognitive Terms

In the previous section | described Sfard’s (2008) commognitive frameworgtesrstic
approach to analyzing the discursive features of mathematical thinkingamone thinking
about geometry, the study connected Sfard’s framework to the van Hiele th@59y1085),

and produced a detailed model, nantbl Development of Geometric Discour§his model
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translates the five van Hiele levels into five discursive stages of geowmlistourses. | used
empirical data of the study to enrich and refine the model with these questions:

1. At what van Hiele levels do prospective teachers operate?

2. What additional information does the modbk Development of Geometric

Discourse provide regarding prospective teachers’ levels of geometric thinking?

In view of my interest in investigating prospective teachers’ knowledge inegepafter
taking a university geometry course, | also asked this question:

3. How do prospective elementary teachers’ competencies in geometry change a

result of their participation in a university geometry course?

According to Sfard (2008), mathematical knowledge in geometry involves two tdvels
discursive process: the object level and the abstract level. For examgleothetrical narrative
on geometric shapes, “the sum of the angles in a quadrilateral is 360°”, is axhsidie object
level because it expresses a property of quadrilaterals; whereas thetdbgél involves a
patterned activity of formulation and substantiation of these object-levetinestal his study
investigates two components when examining prospective teachers’ knowledgmetrge The
first component is students’ knowledge of the names, properties and classificajemmadtric
shapes (object level); the second is competence in reasoning. The new kn@ablmage
geometrical constructs comes from a deductive process (abstrdctTéeequestion “How do
prospective elementary teachers’ competencies in geometry chamgesadt of their
participation in a university geometry course?” pertains to prospecteetsafamiliarities
with basic geometric shapes and their properties, abilities to formulagztioes, and abilities

to construct geometric proofs.
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In discursive terms, an analysis of “familiarity with basic geomstrapes, their
properties and classification” implies an examination of students’ nasatbout geometric
figures utilizing geometric names, where narratives speak about the mepéfigures and
relations between them. The analysis of “ability to formulate conjecibi@s figures, their
properties and relations, and abilities to construct geometric proofs” ssiggestamination of
students’ formulation and substantiation of these object level rules about gedimpeates.

In the next section, | will discuss the methodology to be used in this study.
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CHAPTER THREE: METHODOLOGY

The purpose of this study is to explore a discursive framework as an analyte tool t
describe students’ geometric thinking through the analysis of their géodistiourses. To this
end, | used three primary data sources, (1) written responses to the van Hieléry€este
(from a Pretest and Posttest), (2) transcripts (from two in-depth intesvilegvfirst interview
conducted right after the pretest, and the second right after the posttest), (@)ribtive
artifacts (participants’ written statements, answer sheets to geettdwks during the interviews).
| describe these sources in greater detail here followed by the methods asatize these data
sources.

Participants

All participants in the study were prospective elementary school tsadhe certain
mid-west university teacher education program, prospective elemergangts were required
to complete a sequence of two mathematics content courses designed dotatgschool
teachers. The first of these courses deals with on numbers and operations, atwhthe/ile
measurement and geometry. The participants of the study were prosgdetnentary teachers
enrolled in the measurement and geometry course; most of therjuniers and sophomores,
and a few were senior8ll seventy-four students enrolled in the course in the fall of 2010
participated in the pretest, and sixty-three of these participated in thespdsbth tests being
given as class assignments. Twenty-one participants voluntarilgiparéid in the interview part
of the study soon after the pretest, and twenty of these participated in the setohthea

interview soon after the posttest.
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All participants enrolled in the geometry and measurement course for teasbers
Parker and Baldridge’s (2008) textbo@tementary Geometry for Teachef®n chapters are
included in this textbook, all discussing mathematical topics related to ggandt
measurement for prospective elementary school teachers. Most partibipdustsidied
geometry in K-12, therefore the contents of this study related to trianglesilajeaals and
proof introduced in Chapter Béometric Figuresand Chapter 40eductive Geometjywere
partly review to them. For example, in Chapter 2 students were introducexhtges and
parallelograms. The discussion includes the introduction of angles, perpendial|zarallel
lines, as well as the classification of quadrilaterals. In the dlzestsdin of quadrilaterals, students
studied parallelograms, rectangles, rhombuses, squares, trapezoids,sard Kkapter 4
students learned how to derive new geometric facts from previously knownugaag logical
arguments. For instance, in the beginning of Chapter 4, where a problem of finding anrunknow
angle in a quadrilateral leads to an unknown angle proof, students learned fromla natura
computation to deduce a general fact about a quadrilateral. Later in gltercktudents learned
to construct proofs for congruent triangles, and to use congruent triamgksfy properties of
guadrilaterals. Thus, these participants were introduced to the topics in thisgtiheytextbook
for the course.

The van Hiele Geometry Test

As discussed in the earlier chapter, many mathematics educators have usedevan H
theory to determine students’ levels of mathematical thinking. In order tafydauntable survey
instruments for the study, literature on the van Hiele levels was revielwed.ah Hiele
Geometry Test (see Appendix C), used in the Cognitive Development and Achieyvement |

Secondary School Geometry (CDASSG) project, was chosen because it iidby csigned
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and tested by the researchers of the project (Usiskin, 1982, p.19). This test washmsed as t
instrument for pretest and posttest to determine the van Hiele level of the student

The van Hiele Geometry Test contains 25 multiple-choice items, distriitetivie van
Hiele levels: Items 1-5 (Level 1), Items 6-10 (Level 2), Items 11-£v€L3), Items 16-20
(Level 4) and Items 21-25 (Level 5). These items are designed to identigngd’ geometric
thinking at five van Hiele levels. For example, Items 1 to 5 of are designed tibyidtundents’
thinking related to van Hiele Level 1, at which figures are judged according togpegrance.
Items 5 t010 identify students’ behaviors related to van Hiele Level 2, at idnekd are the
supports of their properties. The van Hiele Geometry Test was given to protiale ini
information on students’ levels of geometric thinking at the two end points: begifpmetest)
and the end of the semester (posttest). The analyses of the pretest and pgsttedeteimine
students’ changes in geometric thinking resulting from participatiegneasurement and
geometry class.

The goals of the interviews were (1) to gather information about students’ knowledge
with triangles and quadrilaterals, as well as the parts of the triamglepuadrilaterals (e.g.,
angles, sides, etc), (2) students’ abilities in verifying their clamdsdariving mathematical
proofs, and (3) to probe further into students’ geometric discourses as revealeld theseg
mathematical activities.

Interview Tasks

Three tasks (see Appendix D) and corresponding interview protocols were ddsigne
the interviews. All three tasks were printed individually on four standard 8 sheets of white
paper. Task One presents eighteen geometric shapes, labeled with alpghitdddéettars shown

in Figure 3.1. Among these eighteen polygons, thirteen are quadrilaterals gftuaragles, and
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one is a hexagon. Sixteen of these polygons were chosen from the van Hiele Georhetry Tes
Items 1-5. Two more polygons were added, consisting of Fig. Q, a quadrilateFajaBd a
triangle with no pair of sides equal. These shapes also commonly appearantatgrand

middle school textbooks used by many researchers over the past two decadgotiaeate
students’ geometric thinking with respect to the van Hiele levels (e.g., Mgybh883; Burger

& Shaughessy, 1986; Gutierrez, Jaime, & Fortuny, 1991).

Task One: Sorting Geometric Figures
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Figure 3.1 Task One: Sorting Geometric Figures

Task One was presented to participants at the beginning of the interviews, andsach wa
asked to sort the eighteen polygons into groups. After the first round of sorting, easpgvdrt
was asked to regroup or/ and subgroup the polygons. For example, some participantsesorted t
polygons into a group of rectangles (see U, M, F, T, R, G in Figure 3.1), and a groapgié$

(see X, K, W, S in Figure 3.1). The questions “Can you describe each group to me?” and “ Ca
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you find another way to sort these shapes into groups?” allowed participardduogr
narratives about triangles and quadrilaterals based on their knowledgegun®lpnalysis of
the act of grouping gave information on how participants classify triaagkbguadrilaterals.

At the end of Task One, | asked each participant to write the definitions ahgést
square, parallelogram, rhombus, trapezoid and isosceles triangle, and:ddheat written
narratives. This information revealed how participants defined these matradeatits, and
how they made connections between a name and a recognized parallelogrammaabovel
guadrilaterals are related to one another.

Task Two: Investigating Properties of Parallelograms

Task Two of the interview had two components. The first component, divided into Part A
and Part B, was designed to collect participants’ drawings of thegtagaims (see Table 3.1),
and to gather more information on their knowledge of parallelograms.

Table 3.1 Investigating the Properties of Parallelograms

Draw a_parallelogranm the space below.

o0 What can you say about the angles of this parallelogram?
o What can you say about the sides of this parallelogram?

o What can you say about the diagonals of this parallelogram?
Draw a new parallelogram that_is differéram the one you drew previously.

o What can you say about the angles of this parallelogram?
o What can you say about the sides of this parallelogram?

o What can you say about the diagonals of this parallelogram?

Part A begins witiDraw a parallelogram in the space belowand next asks

participants to describe the angles, sides and diagonals of the parallelogramtdfoe, the
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guestion, “What can you say about the angles of this parallelogram?” wag tufiabout
participants’ familiarity with the angles of parallelograms. PastdBts with‘In the space below,
draw a new parallelogram that is differefnbm the one you drew previous)ydnd asks
participants to describe the angles, sides and diagonals of the new paeatiel®lis part of the
task investigated how participants define parallelograms, and their thinkiifeoént
parallelograms.

After participants completed Parts A and B, they were presented pictures
parallelograms not included in their drawings. Four pictures of pagiéetts were prepared for
the interviews, consisting of a parallelogram, a rhombus, a rectangle andeg squhardrawn on

a 3'x 5" white index card. Figure 3.2 shows the four parallelograms.

~ O O

Figure 3.2 Pictures of four parallelograms

The purpose of these pictures was to encourage discussion of different pagatislogr
and their parts. They helped me to explore out why a participant included somdquaeatiie
but excluded others. For example, after a participant drew a picture of @lpgralin in Part A
and drew a rectangle as a different parallelogram in Part B of Taskl presented a picture of
a square, and asked whether it was also parallelogram and why. There¢bgrédyanore
information about participants’ understanding of parallelograms, and wa® @alm tinsights
missed in Task One regarding to participants’ ways of identifying and defiamadjelograms. A
set of interview scripts was designed to further aid in analyzing ipanis’ understanding of
parallelograms (see Appendix E). These scripts were written to helgigeants make claims
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about the angles, sides and diagonals of parallelograms. Task Two shed adujtiboal |
participants’ knowledge of parallelograms, and familiarity with thagles, sides and diagonals.
In completing Task Two, participants were engaged in verifying themsleegarding
the properties of parallelograms, constructing informal and/or formal pfeaf&xample, when
a participant made a statement that the diagonals of a rectangleqwakesbe was asked to
justify the claim. In order to convince me, the participant had to engage iroairgpprocess.
Such requests of “how do you” or “why” were designed to learn how participanty ver
mathematical arguments.

Task Three: Prove the Equivalence of Two Definitions

The participants in my study are future teachers, and need to be aware that, althpugh onl
one definition of parallelogram dominates books (e.g., a parallelogram is a aeadrivith two
pairs of parallel sides), other equivalent definitions could be given (e.gpextid with two
pairs of parallel sides)(Usiskin & Griffin, 2008). The requirement for anotheritiah to be
equivalent to the standard definition is that the defining conditions yield the gamesf and
only such figures. Although Task Three focused on deriving mathematical piop®giom
previously known propositions, the choice was made to ask participants to construct
mathematical proofs in order to learn about their understanding of mathemadizial

Two definitions of parallelogram were presented in Task Three:

1. “A quadrilateral is a parallelogram if and only if both pairs of opposite sides
have the same length”
2. “A quadrilateral is a parallelogram if and only if both pairs of opposite angles

have the same measure”
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Definitions 1 and 2 describe properties of sides and angles, respectivelgy Befor
introducing this task, | first asked what it meant to prove two definitions equivalent
mathematically. | then explained as follows: “To show that two definitiomgguivalent, you
must verify that each set of defining conditions implies the other”. That ispte that the two
definitions of parallelogram are equivalent, one must prove the following imphsa(1) “if a
guadrilateral has two pairs of opposite sides of the same length, then the qualdzsilsdehas
two pairs of opposite angles of the same measure”(Hrd a quadrilateral has two pairs of
opposite angles of the same measure, then the quadrilateral also has two pairitef sidpef
the same length.”

| anticipated that participants would respond to Task Three differently. The aask w
designed to learn about their skill in constructing proofs, about their fatyikath “If P, then
Q” statements, and about their use of mathematical symbols. The task also hespatem
abilities to derive a geometric proposition from other ones, more precisély aohtext of
guadrilaterals.

Data Collection

Data collection for this study took place in four phases, as summarizes in Eigure

Phase 1 Phase 2 Phase 3 Phase 4
Administration In-depth Administration In-depth

of the van Hiele interviews . of the van Hiele . interviews
Geometry Test . with participants Geometry Test with participantg
at the first week after pretest at the first week after posttest

of class of November

\\ First two weeks of the fall 2010J \— Last two weeks of Novemebr ZOLJ)

Figure 3.3 Summary of Data Collection Phases
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The first phase of the data collection was the pretest, a 35-minutes vaGElostetry
Test. All students (n=74) enrolled in the measurement and geometry classes t@okiele
Geometry Test during the first class of the fall semester of 201LtheAests were collected and
analyzed, in order to determine participants’ van Hiele levels at the bagioinihe semester.

In the second phase, twenty-one students voluntarily participated in a 90-minutes in
depth interview with the same researcher a week after the pretegitreasAll interviews were
video and audio recorded, and transcribed to serve as the main data recourse faganalyz
interviewees’ geometric discourses relating to triangles and qatadails. All interviews were
completed before the students were introduced to geometric figures in #tle@matics content
course.

The third phase of the data collection was the posttest, consisting again of thelgan H
Geometry Test. Among the seventy-four participants, sixty-three ezptest ten weeks later
during their class time. Again the test responses were collected ayzeahah order to
determine changes in van Hiele levels between the two tests.

The last phase of the data collection consisted interviews with students who had
participated in the interviews at the beginning of the semester. Among thg-omensoriginal
interviewees, twenty were interviewed individually for 90-minutes a week thie posttest.
Again the interviews were video and audio recorded, and transcribed and analyzedtm order
observe changes in interviewees’ geometric discourse. All interviens aonducted after
students had finished the chapter introducing deductive reasoning in their ntatheoraent

course.
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Data Analysis

In my data analysis | applied Sfard’s discursive framework to analyeeviews. | used
this analysis to investigate participants’ levels of geometric thinkingghratdiscursive lens,
and to gain some perspective on the usefulness of the framework to describe levelsngf. thinki
briefly outline the data analyses for this stugyst, | compared written responses from the van
Hiele Geometry pretest and posttest, obtaining from the test scores itnborataout the
changes in these prospective elementary school teachers’ van kigdded® a whole group. To
determine students’ van Hiele levels, | followed the test grading meteddrughe CDASSG
project from the University of Chicago in 1982 (Usiskin, 1982). Following the CDASSG
project’s grading method, | used the 4 of 5 criteTimndetermine if a student had reached a
given level. | chose the 4 out of 5 correction criterion because it minimized thesobiza
participant being at that level by guessing (Usiskin, 1982). When assignimeatsio a level, |
used the classical van Hiele levels 0-5 introduced by CDASSSG.

The assigning of levels required that the student at level n satisfy thearitetonly at
that level but also at all proceeding levels. For example, if a participanetds¢ of 5 correct for
Levels 1, 2 and 3, 2 of 5 correct for Level 4, and 1of 5 correct for Level 5, this particigant wa
assigned to van Hiele Level 3 because she not only satisfied the critdcereb8, but atll
preceding levels as well. However, in this study there were particigssitfned asofit because

their van Hiele levels could not be determined from the van Hiele Geometry-begxample, a

1According to the CDASSG project, the 3 of 5 criterion minimizes the chance ohgiéss
student and yields an optimistic picture of students’ levels, whereas the 4 tefisrmri
minimizes the chance of a student being at a level by guessing. ldlexigse the 3 of 5
criterion.
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participant was assignemfit because her test results satisfied criterions at the levels 1, 3 and 5,
but not atall preceding levels (Usiskin, 1982). | also counted and analyzed students’ overall
performances for each item in the pretest and posttest, looking for changesenransingle
guestions as a group (see the results of both analyses in Chapter 4).

My main object of attention in this study is geometric discourse. | try tdhaseoices of
my participants in describing interview’s whatever possible, so that rezledyaw their own
conclusions. In analyzing participants’ geometric discourse, | identifeechathematical
features in interview transcripts using four categories in the frankelg Mathematical words,
(2) Visual mediators, (3) Endorsed narratives and (4) Mathematical rolagsematical
wordsandvisual mediatoraitilized mathematical objects of mathematical discourse, whereas
mathematical routineaimed to produce narratives in given situations. To investoygiegesn
participants’ geometric discourse, | analyzed (1) participantsdsvose regarding to the names
of triangles and quadrilaterals (e.g., rectangle, rhombus, etc), andrdrelinyeof classifications
of quadrilaterals, comparing results of the analyses from both interviews, t{{2ippats’ routine
procedures of verifying claims about properties of parallelogramsdiagaangles, sides and
diagonals, comparing results of the analyses from both interviews, and (8ppats’ routine
procedures of deriving geometric propositions from other geometric propositions, and in
constructing mathematical proofs (see the descriptions of interviews artd odghkese analyses
in Chapter 4).

| also investigated the usefulness of a discursive framework as an ahé&bytica
describe participants’ behaviors at each van Hiele level in greater aetaiepth. The study
produced a theoretical model, thevelopment of Geometric Discoursiescribing participants’

geometric discourse at each van Hiele level. The model includes the descripf{ibns of
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Geometric Objects, (2) Routines, (3) Endorsed Narratives, and (4) Visualtbtsdat van Hiele
levels 1 to 4. The model provides a new perspective to present levels of gedrming tas

geometric discourse (see the descriptions of the model in Chapter 4).
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CHAPTER FOUR: FINDINGS
Changes in van Hiele Levels of Geometric Thinking

During the fall of 2010, the van Hiele Geometry Tests were conducted at the bggihni
the semester (pretest) and ten weeks later (posttest). Sixty-thspegtive teachers participated
in both tests; among these sixty-three participants, twenty of them volypiaricipated in the
interview part of the study. In this section | present results of thegetlsiee participants’ van
Hiele Geometric Tests as a whole group, as well as the results of thg imtentiewees’ van
Hiele Geometric Tests, in order to give some background information on their cirangas
Hiele levels in the paper-pencil test.

Changes in van Hiele Geometry Test as a Whole Group

The van Hiele Geometry Test contains 25 multiple-choice items, distriitetivie van
Hiele levels: Items 1-5 (Level 1), Items 6-10 (Level 2), Items 11-£v€L3), Items 16-20
(Level 4) and Items 21-25 (Level 5). These items are designed to ideartifyigants’ geometric
thinking at five van Hiele levels. For example, Items 1 to 5 of are designed tibyidtundents’
thinking related to van Hiele Level 1, at which figures are judged according tofgpegrance.
Items 5 to10 are designed to identify participants’ thinking related to vae kEegkl 2, at which
figures are the supports of their properties.

Following the Cognitive Development and Achievement in Secondary School Geometry
(CDASSG) project’s grading method, | had a choice of either the 3 out of 5 canmregterion,
or the 4 out of 5 correction criterion, to determine whether a participant hagsdemagiven van
Hiele level. | chose the 4 out of 5 criterion for this study because it mirdrtheechance of a
participant being at that level by guessing (Usiskin, 1982). When assignundeatsto a level,

this study used the classic van Hiele levels introduced by CDASSSG, which thtleskds
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from O to 5. The assigning of levels required that the participants at levelfreddhs criterion
notonly at that level but also atl proceeding levels. For example, if a participant scored 5 of 5
correct for Levels 1 and 2, 4 of 5 correct for Level 3, 2 of 5 correct for Level 4, and 1o&8étcor
for Level 5, this participant was assigned at van Hiele Level 3 becausetstdy satisfied the
criterion at Level 3, butll preceding levels as well. However, in this study there were
participants assigned asfit because their van Hiele levels could not be determined from the
van Hiele Geometric Test. For example, if a participant scored 5 of 5 corréetvrl, 3 of 5
correct for Level 2, 4 of 5 correct for Level 3, 2 of 5 correct for Level 4, and 4 of 5 cfarec
Level 5, she was assignadfit because her test results satisfied criterions at the levels 1, 3 and 5,
but notall preceding levels (Usiskin, 1982).

To give an overall idea of participants’ van Hiele levels as a whole grouge #4bl

presents the distributions of levels in both number and percentage from the pretest and t

posttest.
Table 4.1 Distributions of participants’ van Hiele levels at both test
Level VHB VHE
N % N %
0 6 9.52 4 6.35
1 8 12.70 9 14.29
2 9 14.29 8 12.70
3 17 26.99 30 47.62
4 2 3.17 2 3.17
5 0 0 1 1.59
Total 42 66.67 54 85.71
fitting
Nofit 21 33.33 9 14.29
Totals 63 100 63 100

Note: VHB indicates interviewees’ van Hiele levels at the beginning
of the fall semester, whereas VHE indicates their van Hiele levels ten
weeks later.
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Table 4.1 shows about forty-eight percent of participants at Level 3 (h=30) at ttes{os
and that number almost doubled over the pretest. One participant moved to Level 5 at the
posttest. There was a slight reduction at Level 0 and Level 2, and a slightenatézvel 1
from the pretest to the posttest. There were twenty-one participantseassgofit at the
pretest, but only nine such participants at the posttest. These numbers show haharétthan
half (52.4%) of participants were able to reach Level 3 or above ten weelaftiateheir first
day of class in the fall semester 2010. The reduction ofdhestudents suggests that
participants’ responses were more consistent at the posttest than the pretest.

Participants’ responses for each item were counted and analyzed. Table A phese
frequencies of each item regarding responses in both the pretest and. pdsttbslded
numbers represent the number of participants having the correct answer itenthat

Table 4.2 Van Hiele Geometry Test: Item Analysis for Pretest (B) anBosttest (E)

Level | Choice| Item | 1B 1E | 2B 2E | 3B 3E | 4B 4E | 5B 5E
1 A 0 0 0 0 0 0 0 1 0 0
B 53 59 0 0 0 0 41 50 0 0
C 0 0 4 0 63 63 6 5 15 4
D 10 4 59 63 0 0 1 5 0 1
E 0 0 0 0 0 0 6 2 48 58
2 tem| 6B | 6E | 7B | 7E | 8B | 8E | 9B | 9E | 10B | 10E
A 5 5 2 1 39 46 3 1 4 5
B 43 46 1 0 3 0 2 0 4 0
C 9 7 2 1 8 3| 54 60 4 3
D 6 5 3 0 2 4 1 0| 40 44
E 0 0 55 61 | 11 10 3 2 1 11
3 ltem | 11B | 11E | 12B | 12E | 13B | 13E | 14B | 14E | 15B | 15E
A 4 3 6 4 45 56 31 46 2 6
B 3 0 47 51 0 0 14 7 29 33
C 54 58 5 4 0 0 10 3 4 1
D 1 0 0 0 0 0 4 2 7 5
E 1 1 5 4 18 7 4 5 21 18
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Table 4.2 (cont'd)

4 ltem| 16B| 16E | 1/B | 1/E | 18B | 18E | 19B | 19E | 20B | 20E
A 9 10 14 12 14 10 27 37 19 30
B 8 6 9 11 14 15 10 12 2 2
C 31 30 23 29| 3 2 14 7 5 1
D 10 13 9 4 | 27 28 10 5| 32 29
E 5 4 8 7 4 8 2 2 5 1

5 Item | 21B | 21E | 22B | 22E | 23B | 23E | 24B | 24E | 25B | 25E
A 33 28 11 12 20 26 2 5 1 2
B 16 16 9 14 8 4 3 5 16 14
C 4 7 6 6 2 5 11 13 2 1
D 1 1 15 19 25 26 16 22 33 37
E 9 10 22 12 8 2 30 18 10 9

Note the number of students (n=63) who participated in both tests.

Table 4.2 shows an increase in correct answers for Items 1 to 15 from thetprétest

posttest, indicating that participants did better at the posttest in iteatedréd van Hiele Levels

1, 2 and 3. There was an increase in correct answers at Level 4 and Level 5, but noyg for eve

item individually. Figure 4.1 compares participants’ performance basduaomumber of correct

answers for each item at the pretest and the posttest.
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Comparison of correct answers for items at the pretest and
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Figure 4.1

Comparison of correct answers for items at both tests
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Figure 4.1 shows an increase in correct answers for Items 1 to 15, indicattitige tha
group of participants (n=63) had a better performance on these items at the fhasttasthe
pretest. Thus, participants were better in answering questions relating teelafetls 1 to 3 at
the posttest than at the pretest. However, there was a reduction in correct ateswegsat Item
16, and that continued intermittently to Item 25. Items 16 to 25 are designed to identify
participants’ Level 4 and Level 5 thinking, and this inconsistency was no surpesesbdhe
course was not designed to train students at theses levels. In looking atdbkseitres clear
that participants were getting more familiar with triangles and qaaeldls, as well as with
properties related to these polygons. However, it is not clear that participamtsved in doing
proofs and thinking at an abstract level, mathematical activitiesaddtatean Hiele Level 4 and
Level 5.

Twenty students voluntarily participated in the interviews conducted afterdtespand
the posttest. In the next section, | briefly discuss the results of thesg tatentiewees’ van
Hiele Geometry Tests before they entered the interview part of the stud

Changes in van Hiele Geometry Test amonq Interviewees

Twenty-one students voluntarily participated in the interviews shortlythftquretest,
and twenty of these participated in the second interviews ten weeks lat¢hafpesttest. Table
4.3 presents distributions of interviewees’ van Hiele levels at the pretes$teapolsttest.

Table 4.3 Distributions of interviewees’ van Hiele levels at both test

Level VHB VHE

N % N %
0 2 10 1 5
1 1 5 0 0
2 2 10 4 20
3 6 30 10 50
4 1 5 2 10
5 0 0 0 0
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Table 4.3 (cont’d)

Total 12 60 17 85
fitting

Not fit 8 40 3 15
Totals 20 100 20 100

The table shows that the percentages at each van Hiele level of theitwemnigwees

matched closely with the corresponding percentages of the whole group (n=63)arRpteex

thirty percent of interviewees were at Level 3 in the pretest, wheneasaased to fifty percent

at the posttest. These numbers are close to those for the whole group, twerggreggitand

forty eight percent, respectively (see Table 4.2). Thus it appears thattitg taterviewees are

a good sample size for the study. Table 4.4 gives, for these interviewees)dres/wé changes

from one van Hiele level to another between the two tests.

Table 4.4

Interviewees’ changes in van Hiele levels between tests

Van Hiele levels at the posttest (n=20)

Van
Hiele
levels
at the
pretest
(n=20)

Levels| O 2 3 5 | Nofit
0 - - 2 -
1 - - 1 -
2 1 1 - -
3 4 1
4 - - - 1
5 - - - -
Nofit - 3 3 1

For example, among these interviewees (n=20), one stayed at Level 2, and diastay

Level 3 from the pretest to the posttest. There were two interviewees mowdagyé#m Hiele

levels from Level 0 to Level 3, while one interviewee moved two van Hiele laoatslfevel 1

to Level 3, and one interviewee changed from Level 3 to Level 4. A total of sgeeriewees

changed frommofit to Level 2 (n=3), Level 3(n=3) or Level 4 (n=1). Note that among the ten
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interviewees assigned to van Hiele levels at both the pretest and tlestpost showed no
change, and four showed changes from a lower to a higher van Hiele level.

The van Hiele Geometry Test provided initial information about participants’ isde H
levels at the time of the study, but it did not provide rich descriptions about the chranges
participants’ levels of thinking. For a deeper analysis of participants’ thinkuepty
participants were interviewed soon after the pretest and posttest. In theatiext sdescribe my
interviews with these participants, as well as my findings from theseiswey.

Changes in Geometric Discourse

In this section | describe findings about the interviewees who participated i
interview parts of the study. To narrow the scope, this section focuses on theanalyse
interviewees’ geometric discourses as examples of various scelnamicsuntered during the
interviews. My analyses are organized with regard to the results of their ei@nlédiels from
the van Hiele Geometry Tests. These five interviewees have been assgnades ATL, ANI,
ALY, AYA and ARI.

To analyze interviewees’ geometric discourses in the context of quadtdateda
triangles, | devoted my attention to interviewees’ familiarity with polygonggard to their
word useincluding use of the names of polygons (e.g., parallelogram, rectangle, etc), and the
names of the parts of polygons (e.g., angle, side, etc). Also, | analyzed iméarsi@arious
routines while engaging in solving geometric tasks during the intervieve thatines included
routinesof sorting, identifying,defining, conjecturingindsubstantiating.

Recall that aoutineis a set of meta-rules that describes a repetitive discursive action. As
described in an earlier section, this set of rules is divided intoath@f the routine and the

whenof the routine. Thavhenof the routine, was influenced by my direct requests during the
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interviews, as | asked interviewees directly for implementation ohgasks (e.g., sorting the
polygons differently from the way they did before). So for a better analydie whenof
routines, | needed to observe interviewees’ spontaneously using procedures a$ aqat
complex tasks. Therefore, in this study | mainly analyzéativeof routines, the routine
procedures that determine the course of patterned discursive performance (Sfard, 2008)

In this study different routines are involved given the nature of the tasksutiee of
sortingis a set of routine procedures that describes repetitive actions in claspdiygons (e.g,
by their family appearances, by visual properties, etc)ahene of identifyings a set of
routine procedures that describes repetitive actions in identifying polyganshy visual
recognition, by partial properties check); whereagaligine of definings a set of repetitive
actions related to how polygons are described or defined (e.g, by visual propgrties
mathematical definition, etc). In endorsed narratives such as mathendafiaitions or axioms,
theroutine of recallinga subcategory of th@utine of definingis a set of repetitive actions
using previously endorsed narratives (e.g, | remember this definition bddaasned it), and “it
can indicate a lot not just about how the narratives were memorized, but also about how they
were constructed and substantiated originally” (Sfard, 2008, p.236).

With regard to performing mathematical tasks, “guessing and checking'esrase
common activities. Theoutine of conjecturings a set of repetitive actions that describe a
process of how conjecture is formed; andrthéine of substantiating a set of patterns
describing a process of using endorsed narratives to produce new narrativesttoat @.g., an
informal or formal proof using a triangle congruence criterion).

To better understand how learning takes place, and how mathematical concepts are

developed, it is helpful to conceptualize mathematical learning as thiepieent of a
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discourse, or a change in discourse. Among the twenty interviewees, three shoaegeach
their van Hiele levels from lower to higher according to the van Hiele Georiest conducted

at the beginning of the semester (the pretest) and ten weeks later (pddteghyee

interviewees include ATL, who moved two van Hiele levels from Level 1 to LeV&Ng;who
moved three van Hiele levels from Level 0 to Level 3; and ABU who moved one van Kealle le
from Level 3 to Level 4. In the following subsections | describe each ieteze’s geometric
discourse with regard to thewmutinesandword use From my observations | present evidence to
point out changes in each interviewee’s geometric discourse. | will oetiee interview

conducted at the beginning of the semester as the Pre-Interview, and thevintendected ten
weeks later as the Post-Interview.

Case 1: Changes in ATL's Geometric Discourse

ATL was a sophomore at the time of the interviews. ATL took her last geontassy
five years prior to the geometry and measurement class. The van HieletBebest showed
that she was at Level 1 at the pretest, and ten weeks later she moved two e/¢avel®| to
Level 3 at the posttest. | interviewed ATL after both tests, and analydezbenpared ATL’s
geometric discourses in the context of triangles and quadrilaterals. A sy@idarL’s changes
in geometric discourse as follows:

e ATL’s routines of sorting changed from grouping polygons according to their
family appearances at the Pre-Interview, to classifying polygons acgdadin
their visual properties and definitions.

e ATL'’s identifying routines changed from self-evident visual recagniat the
Pre-Interview, to identifying partial properties of the polygons (i.e. sidgs a

angles) and recalling at the Post-Interview.
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e ATL’s use of the names of parallelograms changed from describing the
parallelograms as collections of unstructured quadrilaterals thatsiraee
physical appearances at the Pre-Interview, to using the names asordlet
guadrilaterals that share common descriptive narratives at the Postelntervi

e In my observations | did not finglibstantiation routines in the Pre-Interview or
the Post-Interview. That is, ATL did not use measurement tools to prove or
disprove congruent parts of the polygons at the object level; nor did she use
informal or formal mathematical proofs at the abstract level.

Let me begin by introducing Task Or&nrting Geometric Shapebhis Taskis used to
analyze intervieweesbutines of sortingidentifyinganddefiningpolygons. This task presents
eighteen polygons, includingangles(n=4),quadrilaterals(n=13) anda hexagonInterviewees
are asked to classify these polygons into groups, without being given measurganergtion.
One common reaction interviewees might have is to group the polygons based on the number of
their sides (e.g., 3-sided, 4 sided, etc). According to an individual interviewspanse, | will
ask her to regroup the polygons differently and to subgroup some of the large groups.

Let me begin with argument that there is a change in ATL’s routinestofgsdrom
using visual recognition to group quadrilaterals according to their family epmes at the pre-
interview, to classifying quadrilaterals according to their common igéiser narratives (i.e.,
definitions and properties). | briefly describe my interviews with ATiLTfask One.

At the Pre-Interview, ATL stated, “I group them solely on their amountefssj and
sorted the polygons into three groups on her first attempt: 1) 3 sides, consistiggkaf\iW, X,

and S; 2) 4 sides, consisting of Fig. U, M, F, G, P, T, L, J, H, R and Z; and 3) Trapezoid,
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including Fig. V and Q. See Figure 4.2 for some examples of each group based onvAiérs

response

3 sides (Triangle)

4 sides (Square/parallelogram)
H L

u M

Trapezoid

AR

Figure 4.2  ATL’s grouping of polygons in the Pre-Interview

ATL included all triangles in the 3-sides group and called itriaagle group.She
included allsquaresrectanglesandparallelogramsin the 4-sides group, and called it gtare
and parallelogram groupShe grouped Fig. V (a hexagon) and Fig. Q (a quadrilateral) together
as atrapezoidgroup because to herfrapezoidwas “a figure with five sides, varying in length”,
and “often make these odd shapes”. Fig. N (a right trapezoid) was not includgabirtlzese
groups.

When | asked ATL to find another way to group polygons differently, she regrouped
triangles “base on appearance”, according to attributes of angles anih sideangle. ATL
explained by saying, “I know this one has right angle”, and “these ones derteoddteaent

length, they are not the same” (see Figure 4.3).
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Triangle:

NN T~ <

right triangle isosceles triangle scalene triangles
Figure 4.3 ATL'’s regrouping of the triangles at the Pre-Interview

ATL regrouped the triangles intgght triangles isosceles triangleandscalene triangles
according to theivisual properties. ATL then regrouped the 4-sided polygons according to their
family appearances, with the namesa@tfiare rectangle parallelogram andrhombus For

example, Figure 4.4 shows two of the groupsréetanglesand thesquares.

4a. Squares 4b. Rectangles

L

U G R T
M F

Figure 4.4  ATL'’s regrouping the quadrilaterals at the Pre-Interview

When | asked ATL why she regrouped the polygons in this way, she responded, “I know
this figure (Fig. U, a square) and this figure (Fig. M, a rectangieglifferent, but they both
belong to the same quadrilateral group”. Fig. N (a right trapezoid) was nadedcin any of
these groups again at this second attempt. | asked ATL if | could put Fig. J (elpgrath) and
Fig. N together, and the following conversation took place:
Interviewer: Can we put these two together?

/7 LN

J N
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ATL: I wouldn’t believe so... Just because this [point
Fig. N] shows the angle... it doesn’t have the proes
of a square or a rectangle, the sides...measuremi

does have four sides, bro.... congruent parts.

When ATL sorted polygons into groups, she groupednt by their visual appearanc

ATL'’s routines of sorting polygons at the -interview are illustrated in Figure 4

First prompt: “Sort the shapes into grot
( \ 4
Grouping by the samc—j =\ |
number of sides | &/ |

| . |

J L

N _
V| Conclusiol
1/

‘..J""L

N
Countlng the S|de§
of shapes |

|

J

|

|
[
[
|
[
|
L

T

(
|
|
|

e e e

( \

i R Grouping by family name for;| N

Choosing quadrilaterals & partial visua :

L intuitively JL.)L properties of shapes for |—.) L Conclusiol J
triangles

e e e

(
|
|
|

Second prom|: “Find Another way to sort them differently

Figure 4.5 ATL’s routines of sorting polygons at the -Interview

ATL mentioned that all triangles and all quadritate “have a broader dnition of each
other”. When it came to classifying quadrilaterals, ATtositine procedures focused on
appearances of the polygons and how their appessastated to their family names. It w
evident that ATL identified polygons with visuakgnition. However, as | plained earlier
ATL regrouped the triangles by their visual propert(e.g., angles and sides). | conclthat
there was no defining routine AITL’s routines of sorting for Task Onkfound identifying
routines such as direct recognition and courin ATL'’s routines of sorting when she sori
polygons by the numbers of their sides and groupedirilaterals by their visual appearance:
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the case of triangles, ATL'’s identifying routine consisted of identfyiisual properties as she
regrouped triangles by the attributes of the angles and sides.

At the Post-Interview, the same task was performed. ATL grouped the polygons by
“looking at the numbers of sides solely” [pol. 2], and she sorted eighteen polygons mto thre
groups: 1)Triangles(n=4), including all 3-sided polygons; 2)sided(n=1), consisting of Fig.

V; and 3)Quadrilaterals(n=13), including all 4-sided polygons in the task. Figure 4.6 compares

ATL's first attempts at both interviews with some examples of each group.

Before Ten Weeks later
3 sides Triangles All triangles are includefd
K X\ ” x\

4 sideqFig. N & Q are missing) QuadrilateralgAll quadrilaterals are

included)

u H N
Q

Trapezoid 5-sided

VARSI

Figure 4.6 A comparison of ATL'’s grouping of polygons at both interviews

At the Post-Interview, ATL included both Fig. N (a right trapezoid) and Fig. £sfded
figure) into the quadrilateral group with the help of her defining routine. ARthdnterview
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ATL did not include Fig. N in any groups because “it does have four sides, but... not congruent
parts”, but at the Post-Interview she included Fig. N in the quadrilateral groapdeeit is “a
four sided figure with one distinct pair of parallel sides (pointing at Fig. Niskéd ATL to
regroup the quadrilaterals, and her response is shown below:
18a ATL: Quadrilaterals, you know that you have your square because ...
each forms 90-degree and all the side lengths are equal.

[Pointing at Fig. U]

U
18c. ATL: these are rectangles because two sides and those two sides are

the same. But again they form 90-degree angles...

[Pointing at Fig. F and Fig. M]

F M

18e. ATL: opposite angles are equal and opposite sides are equal, so these
three would be an example of parallelogram.

[Pointing on Fig. L, J and H]

LS LT

L J H

At the Post-Interview, ATL was able to use her definitionscpfare rectangle

parallelogramandrhombusto identify and to regroup the quadrilateral group. She regrouped
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quadrilaterals into: 13quaresjncluding Fig. U, G, and R; 2¢ctanglesincluding Fig. M, F, T;
3) rhombus consisting of Fig. Z; and $jarallelogram including Fig. L, J, H. When | asked
ATL if I could put Fig. U (a square) and Fig. N (a right trapezoid) togethEl, rasponded:

Interviewer: Can Fig. U and Fig. N group together?

ATL: They can group together as both being same amount of sides...
but in terms like property...no ... they both have two parallel
sides, but a trapezoid cannot be branched off with parallelograms

into rectangles and squares....

This dialogue provides shows ATL'’s ability to compare Fig. U and Fig. N, not only
focusing on the “same amount of sides”, but also on visual properties, like “they both have
parallel sides”. To describe what has changed in ATL'’s routine of sortinggpuyTable 4.5
summarizes ATL’s course of actions in response to Task One.

Note that there was no change in ATL’s routines of sorting triangles. Arktsaftempt
of sorting quadrilaterals at both interviews remained the same. Howerenée a change in
routines of sorting quadrilaterals on the second attempt, when | asked her to regroup the
guadrilaterals differently (see the shaded part in Table 4.5). | found definitiges when ATL
sorted quadrilaterals at the Post-Interview; ATL'’s routine of sortiragnged from only visual
recognition at the Pre-Interview, to classifying polygons according todteimon descriptive

narratives.
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Table 4.5 A comparison of ATL'’s routines of sorting polygons at the two interews

Before Ten Weeks Later

First prompt: “Sort the shapes into groups” First prompt: “Sort the shapes into groups”
1. Counting the sides of shap&o(nting) 1. Counting the sides of shag€ounting)

2. Grouping by the same number of sides 2. Grouping by the same number of sides
3. Conclusion 3. Conclusion

Second prompt: “Find another way to sort  Second prompt: “Find another way to sort

them differently” them differently”

1. Direct recognition of possible candidates 1. Direct recognition of possible candidates
(Visual recognition) (Visual recognition)

2.a Grouping by family appearance of 2.a Grouping by common descriptions of
guadrilaterals and parallelograif\dsual guadrilaterals and parallelograms by visual
recognition) properties and some mathematical definitions

(Defining routine)
2.b Grouping by properties of angles and sidésb Grouping by properties of angles and sides
in triangles(Defining routine) in triangles(Defining routine)

3. Conclusion 3. Conclusion

ATL'’s responses to the questions in Task Two also revealed changes in her geometric
discourses. Task Two involves two sets of activities about parallelograds, designed to
investigate interviewees’ familiarity with the angles, sides angldials of a parallelogram.

The first part of Task Two asks interviewees to draw two parallelogramarthdifferent
from each other, and then to discuss the relationship between the angles, sidescaatsafg
the parallelograms. In the second part of Task Two, | present pictures ltdlpgrams that are
not included in interviewees’ drawings from the first part, and then ask questionghabout
parallelograms. Presentation of these pictures of parallelogransdseld to elicit
interviewees’ thinking of “what is a parallelogram” and “whata$ a parallelogram”, and to

provide a variety of parallelograms for discussions.
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Interviewees’ responses to this task vary depending on their familiavitteghe
properties and hierarchy of parallelograms, as well as their faityikath the parts of
parallelograms. For example, when interviewees declare a narrativastiopposite sides are
equal” regarding the sides of a parallelogram, their substantiation processvean tferent.
Depending on their levels of thinking, some interviewees might produce a narvativass
“because it is a parallelogram” using defining routines, whereas otliggns conclude, “they
look like they are equal” using identifying routines.

This lead to my argument that ATL'’s identifying routines changed frdfreselent
visual recognition at the Pre-Interview, to identifying visual properties and definitions of
parallelograms to draw conclusions about the angles and the sides of paeatislagthe Post-
Interview. | describe parts of my interviews with ATL for Task Two.shswn in Table 4.6,
ATL drew a parallelogram and then a rectangle as a new paralieidggea Table 4.6). ATL
declared that the two parallelograms were different because “| wouldectt@ngizes of it
[side]”. ATL described the second drawing as, “it's a rectangle... butat'she typical looking
parallelogram”. In response to the questions about the angles of the parafislo§id
expressed her frustrations on the angles, “I am still stuck on the question ohméans by the
angles, ... Usually when I'm talking about angles, we have measurements...[patsahdke
the angles would be the same ... just based on how it looks”.

Table 4.6 summarizes ATL’s declared narratives of the angles of aepagedim and a
rectangle, and her verifications of declared narratives.

Table 4.6 ATL'’s routines of verifying on the angles of parallelograms at thBre-

Interview

Q: “What can you say about the angles of this parallelogram?”
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[ ] / ]

Parallelogram Rectangle

Conjecture “l would assume that they are “They would have to be equal...or
(Guessing) the same for the opposites” add up to a certain amount”

Q: “How do you know?”

Routines  Visual recognition Visual recognition
Declared “No. | don’t know.” “Just looks more like a stereotypical
Narrative  “just based on how it looks” parallelogram”

ATL made intuitive claims about the angles of a parallelogram and a rextasigd
direct recognition. For example, ATL assumed that the angles were “the @atime dpposites”
in a parallelogram using direct recognition. In this case, the question ddgwu know [they
are the same]?” did not lead to any substantiations of the claim, nor lead heoiteeeany
narratives using mathematical definitions; instead ATL’s final commtusias reached by direct
visual recognition which was self-evident. This routine pattern also appwhen ATL was
discussing the diagonals of a parallelogram:

17. Interviewer What can you say about the diagonals of this

parallelogram?

>

N

18. ATL The diagonals would be equal...

19. Interviewer How do you know the diagonals are equal?

20. ATL You have to measure and make sure these were, all

their sides were the same...right here [pointing on the

sides], would all equal... on each side all equaling the
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same parts.

ATL declared a narrative about the diagonals of the parallelogram staingthe
diagonals would be equal”. The diagonals of this parallelogram are not equal besdetected
with a ruler. However, ATL did not check because her direct recognition wasviataitd also
self-evident. There was no need to substantiate the narrative, “the diagonll$e equal”, but
instead ATL made her own intuitive conclusion that the “diagonals were equaliseeta all
their sides were ...the same”.

Ten weeks later, the same task was performed again. The change in ATLfyimgnti
routines was evident. Table 4.7 summarizes ATL’s course of actions in response tetiom que
“what can you say about the angles of the parallelogram?” at the Posielnter

Table 4.7 ATL’s routines of verifying on the angles of parallelograms at thBost-

Interview
Q: “What can you say about the angles of this parallelogram?”
Parallelogram Rectangle
“Opposite angles equal and ... “...you could say that the opposite
Declared ) L
. they don’t form 90-degreee angles are equal, and in this one
Narratives R »
angle all angles are equal

Q: “How do you know?”

Table 4.7 (cont’d)
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a. Visually identify partial
properties of a parallelogram by
checking the condition of
opposite angles

a. Visually identify partial
properties of a rectangle by
checking the condition of opposite

Routines e . angleg(ldentifying routine)
(Identlfyl'ng routine) ... b. Describe a rectangle with right
b. Describe a parallelogram with - .
: . . angles(Defining routine —
no right anglegDefining routine- ;
. recalling)
recalling)
Declared  “l would just say the property of Ithas properties of

parallelogram. It's a rectangle”

Narratives parallelogram” [p02.118] [p02. 4]

Recall that, at the Pre-Interview, ATL did not know how to draw a conclusion about the
angles in a parallelogram without measurements. At the Post-IntervidwwAg able to discuss
the angles of parallelograms using the properties of a parallelodedimirig routing. For
example, when ATL declared the narrative “opposite angles are equal and thefprho@to0-
degree angle”, she identified that this 4-sided polygon was a parallel¢igeartifying routing
and described the parallelogram, as it had no right angles using definimgso&imilarly, ATL
was able to identify the differences of the angles between two pegeadims: garallelogram
“opposite angles are equal and ... they don’t form a 90-degreee angleteuidrayle “the
opposite angles are equal, and in this one [rectangle] all angles are equal”

In this scenario, we begin to see the change in ATL’s routines of identifying visoial
recognition, to identifying visual properties of the angles in a pargti@ho. ATL’s routines of
defining also showed a use of definitions of parallelograms to justify herscidithe Post-
Interview. However it is important to note that ATL’s routine of defining was rabee

recalling, as it appeared to be memorization of the facts.
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During the Pre-interview, ATL showed more confidence in discussing the sithes of
parallelogram than the angles of the parallelogram. When | asked [#0Lit the sides of
parallelogram, the following conversation took place:

9. Interviewer What can you say about the sides of this

parallelogram?

[

10. ATL Opposite sides are equal...

11. Interviewer How do you know they are equal?

12. ATL Basically... on just the properties of a parallelogram. If
| measure it out...if | draw it with a ruler, it would
have to be the same for each side

13. Interviewer Is there a way that you can show me that the opposite
sides are equal?

14. ATL | would draw it out with two sides having to be the
same measure and these two having to be the same
measure. But for one of the opposite sides, they have
to be longer than others to not to make it the properties

of a square.

In this dialogue, ATL declared a narrative about the sides of the parallelogiapostte
sides are equal”. When asked for substantiation, ATL justified her clainyimgsgust the
property of a parallelogram” [12]; and provided another explanation, “If | measuravit,itdout
with a ruler...it would have to be the same” [12]. After another prompt, ATL verbaltyided a
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set of procedures to justify her claim: “draw on with a ruler”, and “draw it ahttwo sides
having to be the same measure” [14]. ATL’s routines of verifying the sides oflklogram
and a rectangle at the Pre-Interview are summarized in Table 4.8.

Table 4.8 ATL'’s routines of verifying on the sides of parallelograms at thBre-

Interview
Q: “What can you say about the sides of this parallelogram?”
Parallelogram Rectangle
Conjecture “Oppos!tes %re equal | “Each opposite side is equal in
(Guessing) Opposite sides ... one longer length”
than the other”
Interviewer “How do you know?”
a. Visual recognition a. Visual recognition
, b. Identify partial properties of a b. Identify partial properties of a
Routines g . I )
parallelogran(defining routine-  parallelogram(defining routine-
recalling) recalling)
Declared  *“just on the properties of a “rectangle can still have the
Narrative  parallelogram” properties of a parallelogram”

At the Pre-Interview, ATL identified the equal sides of a parallelograsirearectangle
intuitively and verified her claims using properties of parallelograrosuever from ATL’s
description of a parallelogram, “opposite sides one longer than the other”, | comatudd L
was at the stage of identifying parallelograms by their visual appea

In contrast to her responses at the Pre-Interview, ATL declared, “Oppddsitease
parallel and equal” in referring to the sides of a parallelogram at thérf@stew. To verify

her claims, ATL mentioned only “the properties of a parallelogram”.
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Table 4.8

109. Interviewer

110. ATL

111. Interviewer

112. ATL

113. Interviewer

114. ATL

What can you say about the sides of this

parallelogram?

NN

The sides would be the same...or they should be
opposite sides are parallel and they should be equal...
Why do you say ‘it should be’?

Because it has the properties of a parallelogram. ...by
looking at it, it looks as if they are, so it could be

good.

Is there a way that you can show me that the opposite
sides are equal and parallel?

Based on the properties of it [parallelogram].

ATL provided the narrative, “the [opposite] sides would be the same... or should
be...parallel” [110]. After several prompts, | found that ATL’s course of actionsstedsnf
visual recognition, “by looking at it”, and recalling using what she remesdtes, “the
properties of it”. Table 4.8 summarizes ATL’s routine procedures concerningléseos a

parallelogram and a rectangle at the Post-Interview.

ATL'’s routines of verifying on the sides of parallelograms at thBost-

Q: “What can you say about the sides of this parallelogram?”

NI [ ]

Parallelogram Rectangle
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Table 4.8 (cont'd)

“opposite sides would be

Declared “opposite sides are parallel and congruent” “They are
Narratives they should be equal” "
parallel to one another
Q: “How do you know?”
a. Visually identify partial
a. Visually identify partial properties of a
properties of a parallelogram by parallelogram by checking
checking the condition of the  the condition of the sides
sides(ldentifying routine) (Identifying routine)
Routines
b. Describe a parallelogram — b. Describe a particular
opposite sides are equal & parallelogram-opposite
parallel(Defining routine- sides are equal & parallel
recalling) (Defining routine-
recalling)
“It's a basic property of a
parallelogram”
Declared “It has the properties of a “To be a parallelogram,

Narratives parallelogram” opposite sides have to be
parallel, making them

congruent”

ATL described opposite sides as parallel and equal for both parallelogranestamdjies
at the Post-interview, whereas she only mentioned opposite sides as equatexnterRew.
In verification, ATL’s routine procedures consisted of identifying routimekracalling at the
Post-Interview. ATL’s changes in routines procedures were (1) from viswagméon that was
self-evident, to identifying partial properties and using properties abounghesaf a
parallelogram, (2) from identifying partial properties (i.e., equal saethle Pre-Interview, to
identifying more properties (i.e., equal and parallel sides) at the Pastidmieas described in

Table 4.9.
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Table 4.9 Summary of ATL'’s routines in Task Two from both Interviews
Pre-Interview Post-Interview
Routines Routines
Parts Of - - - - - - - -
Parallelograms ldentifying Defining Identifying Defining
Routine Routine routine routine
Visual ecogniton
Angles recognition No gnit Recalling
; Identifying
Self-evident .
partial property
Visual Visual .
recognition/ recognition/
Sides gnt Recalling Identifying Recalling
Identifying
: equal and
equal sides :
parallel sides
Visual Visual
Diagonals recognition No recognition No
Self-evident Self-evident

ATL did not think that squares and rhombi were parallelograms at the Predntervi
therefore my examples of ATL'’s identifying and defining routines for Tastx dmg limited to

the cases of a parallelogram and a rectangle. In both interviews, | diddhatgubstantiation

routine. ATL did not use measurement tools to verify the congruent anglesiaaafi

parallelograms, nor did she use definitions and triangle congruency to constrlycéneéarsed

narratives. ATL’s identifying routines changed from direct recognitmmnetalling and

identifying partial properties of parallelograms, when discussing tHesaagd diagonals of

parallelograms.

When searching for routine patterns, | noticed that ATL’s understanding ofrites rod
parallelograms, and the names of the parts of the parallelograms, infllesrceurse of action

in response to the questions related to them. In the following section, | prasarggion the

changes in ATL's use of mathematical words.
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Analyzing ATL’s use of words helped me to better understand her thinking about
parallelograms, and about the relations among the angles, sides and diagomalketfgrams.
In this section, | present findings on ATL'’s use of mathematical wordedelatparallelograms.
Recall that, a quadrilateral is defined as “a closed shape in a plane ngrsisgtiur line
segments that do not cross each other” (Beckmann, 2008). Among all quadrilaterypelve
of quadrilaterals are found predominately in school geometry textbpatalelograms,
trapezoids, rectangles, squares, and rhomb(deskin, 2008). Interviewees in my study are
also introduced t&ite (Parker & Baldridge, 2008) in their course work, and therefore the word
search on quadrilaterals includes dt#es. Tables 4.10 and 4.11 summarize the frequencies of

the names of quadrilaterals mentioned by ATL at the Pre-Interview andshénkerview:

Table 4.10  The frequencies of ATL’s use of the names of quadrilaterals dttet interviews
Name Frequency
Pre-T1 | Pos-T1 | Pre-T2 | Pos-T2 | Pre-T3 | Pos-T3
Quadrilateral 2 10 0 0 0 1
Parallelogram 13 12 17 12 6 8
Rectangle 8 6 7 7 0 1
Square 12 14 9 4 6 0
Rhombus 5 7 1 6 0 0
Trapezoid 5 7 0 0 0 0
Kite 0 1 0 5 0 0
Table 4.11  Total frequencies of ATL’s use of names of quadrilaterals at ¢hinterviews
Name Frequency
Pre Post

Quadrilateral 2 11

Parallelogram 36 32

Rectangle 15 14

Square 27 18

Rhombus 6 13

Trapezoid 5 7

Kite 0 6
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Table 4.11 shows that the wapdrallelogram(n=68) was the most frequently used word
during the interviews and it was mentioned in all three tasks. Thesgoede(n=45) was the
second most frequently used, and the werdangle(n=29) was third. In contrast, the wdkte
(n=6) is the least mentioned during the interviews, used only at the Post-utenviegask One
(n=1) and Task Two (n=5). There was an increase in use of theqwaddilateral at the Post-
Interview, and it was useadostly in Task Onén=10), and a total of eleven times in the entire
interview. Also, there was an increase in use of the wwothbusat the Post-Interview (n=13).
However, the frequencies of the words do not provide details about how and in what way those
words were used. The following findings provide more information regarding ATL'd wor
meaning in the use @larallelogram rectangle squareandrhombus Let me begin my analyses
of ATL’s word use with this conversation at the Pre-Interview:

15. Interviewer What is a parallelogram?

16. ATL A parallelogram is when two sides of each side... all
four are parallel to the opposite one...

17. Interviewer What is a rectangle?

18. ATL A rectangle is the two longer sides... the shorter ones
... but in more technical terms, | am sure that they have
congruency on both of those sides too

19. Interviewer What is a square?

20. ATL The square is all four of the sides are completely the
same

21.Interviewer  What is a rhombus?

22. ATL A rhombus... is a square... is just tilted [giggling]
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ATL’s narratives concerningarallelogram rectangle square andrhombusare
descriptive and visual at the Pre-Interview. ATL gave a descriptive narediutrectangles
based on physical appearance, “a rectangles is the two longer sides [asklarer] ones...
have congruency on both...sides”. ATL made connections betsgeemesandrhombi
according to visual appearances, and declared narratives, “a rhombus is g bgoause “they
both have four equal sides”, and “[it] is just a titled [square]’. ATL's ways ohuhef
parallelograms triggered the way she classified them. For example, whenasTasked to
identify all the parallelograms from a set of given figures, her respoaseas follows (see
earlier analyses about thautine of sorting.

53. Interviewer Can you identify all the parallelograms on this sheet?
[Pointing to task One]

S56a. ATL Ok. [Marking stars on figures that are parallelograms]

[/

H P

56b. ATL ...Now for these ones, these could be actually... be
considered parallelograms. Based on the side measures ...
even though they are rectangles... they could be in the

same category.
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ATL’s classification was no coincidence. In ATL’s written narratives aldwait t
rectangles she wrote, “rectangle is when 2 sides are differing from the other 2 sides gnpwev
opposite sides are equal in length”, and forghrallelograms she wrote, “parallelogram is
when 2 parallel sides are congruent in length”. To ATL, the \pardllelogramwas a family
name of figures having opposite sides that were parallel, and having twodea@sd two short

sides. For example, when | asked ATL to draw a parallelogram, she providetiaweng:

1. Interviewer Draw a parallelogram.

2. ATL [ATL Draw a figure looking like this]:

3. Interviewer How do you know this is a parallelogram?
4. ATL The opposite are equal in length... with the

different sides parallel, they are the same length.

Next, | asked ATL to draw a new parallelogram different from the one swe dr
23. Interviewer Draw a new parallelogram that is different from the one
you drew.

24a. ATL [ATL Drew a figure looking like this]:
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24b. ATL All I know is to change the size of it, but that's more of

a rectangle.... But it's not a typical looking
parallelogram...

30a. ATL | feel it's a rectangle, but rectangles can still have the
properties of a parallelogram... just a broad term for it.

33. Interviewer Can you say a little more about why this parallelogram
[rectangle] is different from this one [the parallelogram
ATL drew earlier]

34. ATL They aren’t. Technically, they’re probably not different,
that one just looks more like a stereotypical
parallelogram [Pointing on the parallelogram]. In terms

of properties, there is nothing different.

ATL drew two parallelograms: “a stereotypical parallelogram” andcd typical looking
parallelogram”. After ATL drew these parallelograms, | presentedtarpiof a square and a
picture of a rhombus. ATL did not think a square and a rhombus were parallelograms because
“to be a parallelogram, you have to have two long sides and two short ones, here alésides ar
equal and it is square”. In the case of a rhombus, ATL responded, “this is sintlarstpuiare
that you just showed me, ... is a rhombus or just a square”. From these conversations, it is
evident that to ATL the worgdarallelogramsignified two types of polygons, as summarized in
Figure 4.7.
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Parallelogram
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Figure 4.7  ATL’s use of the word parallelogram at the Pre-Interview

ATL'’s use of the worgarallelogramsignified a collection of unstructured polygons by
their family appearances. This family appearance included figurearapp& have opposite
sides equal and parallel, and in particular, two opposite sides longer than thevotbpposite
sides. However there was no explicit mention of the necessary condition thdighessebe 4-
sided, nor of any condition on the angles in rectangles.

At the Post-Interview, when | asked ATL to identify all the parallelogr&rom eighteen
polygons, her response was as follows:

19. Interviewer What are the parallelograms here? [Pointing to Task One]

20. ATL L and J and H will be just parallelograms, but all of these
figures [pointing to figures that are squares, rectangles and
rhombus] will be parallelograms, because...they all fit
into the greater property of opposite angles and opposite

sides to be equal.
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ATL identified two groups of parallelograms: one group contained figurésvera “just
parallelograms”, and the other group contained figures that “fit into the gpeapeerty of
opposite angles and opposite sides to be equal”’ . As our conversation continued, ATL provided
the following narratives about the parallelograms:

51. Interviewer What is a square?

52. ATL A Square is when all the angles form right angles and
they are all the same they are all 90 degrees...and each

side length also has to be the same. [Pointing at Fig. U]

53. Interviewer What is a rectangle?
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54. ATL

55. Interviewer

56. ATL

63. Interviewer

64. ATL

A Rectangle, each angle is 90 degrees but these sides are
the same and parallel, and this one is the same and
parallel, but not all 4 of them are the same, necessarily

[Pointing at Fig. M]

M

What is a parallelogram?
Um... a parallelogram is when opposite sides are equal
and opposite angles are both equal...

[Pointing at Fig. J]

J
What is a rhombus?

Sides are all the same. Does not form 90-degree angle as
rhombus alone.

Pointing at Fig. Z:
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To better understand her word meaning in the context of parallelograms, | askedl ATL i
could group Fig. J and Fig. Z together, and group Fig. U and Fig. M together. Her eesfasns
“yeah”. The following conversation gives ATL’s responses to these questiongeeks later:

37. Interviewer: Can | group Fig. J and Fig. Z together?

38. ATL: Mm Hmm.

39. Interviewer: Why is that?

40. ATL: Mm... because they both have opposite sides parallel
and both opposite angle measures are equal.

45. Interviewer: Can | group Fig. U and Fig. M together?

46. ATL: Yeah, you can because U has the same property as M.
The only differences is that M does not have all the same sides
length, so M would not have all the properties as U, but U has all

the properties of M...

In these conversations, more dimensions were added to ATL'’s use of the word

parallelogram At the Pre-Interview, the worgkarallelogramonly signified polygons that fit into
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the physical appearances of parallelograms and rectangles; svaetka Post-Interview, the

word parallelogramsignified a family of polygons that share common descriptive narratives.

Parallelogram

N
<Lz
i

H

U M

Figure 4.8 ATL'’s use of the word parallelogram at the Post-Interview

As shown in Figure 4.8, the wopdrallelogramsignified to ATL a common family
name for all figures that “have opposite sides parallel and opposite angl€'s Eqgisadliagram
illustrates how parallelograms were inter-connected. For example, AT lifielétiat “as a
rhombus alone” [it] does not form a 90-degree angle, and “sides are all the samerizus
was different from a square with regard to the angles: “all the angragifgint angles...and
each side length also has to be the same”. However ATL did not mention how extaeg
different from parallelograms.

To have a better understanding of ATL’s familiarity of geometric ternsdegs names
for quadrilaterals, | searched for words describing the parts of pagadets. Tables 4.12 and

4.13 present frequencies of the names of parts of parallelograms.
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Table 4.12

two interviews

The frequencies of ATL's use of the names of parts of parallelogramt the

Name Frequency
Pre-T1 | Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3

Angle 10 17 10 75 14 39
Side 27 17 31 33 9 40
Length 2 6 3 21 11 3
Parallel side 0 3 1 1 0 0
Opposite side 1 6 9 17 3 7
Diagonal 0 1 27 20 8 10
Right angle 2 1 0 2 0 0
Opposite angle 2 5 0 13 2 0

Table 4.13

two interviews

Total frequencies of ATL’s use of names of parts of parallelograms the

Frequency

Name Pre Post
Angle 34 131
Side 67 90
Length 16 30
Parallel side 1 4
Opposite side 13 30
Diagonal 35 31
Right angle 2 3
Opposite angle 4 18

Table 4.13 shows that the most frequently used words relating to the parts of
parallelograms werangle(n=165) andide(n=157).There was a huge increase in use of the
word angleat the Post-Interview (n=131) over the Pre-Interview (n=34). Beaitglsandside
diagonalwas also frequently mentioned at both interviews (n= 66). Howmratlel sides
(n=5), as one of the most important characteristics of a parallelogrartheMaast mentioned.

There was also an increase in usemjosite sidén=30) andpposite anglén=18) at the Post-

Interview.
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These changes of word use associated with parts of parallelograensov@ncidental.
Recall that, at the Pre-Interview, ATL showed frustration in discussingniifles without
measurements, and consequently, her responses about parallelograms and paltel@jnaans
focused on theides(n =67) rather thaangles(n=34). At the Post-Interview, she was more
comfortable talking about angles of the different parallelograms and@&so compare the
differences between angles of the parallelograms (e.g. reetanglparallelogram, square and
rhombus, etc). Moreover, ATL used a narrative, “they have opposite sides and opposge angl
are equal” to classify quadrilaterals into a group of parallelogramseTdi@anges in ATL’s
word useandroutinesshow that she gained more familiarity with the triangles and

guadrilaterals, as well as with the properties of these polygons.

Case 2: Changes in ANI's Geometric Discourse

ANI was a college sophomore at the time of the interviews, having takersher la
geometry class six years prior to the geometry and measuremenfblassn Hiele geometry
Tests showed that she was at Level O at the pretest, and moved to Level 3 at thelposttes
interviewed ANI after both tests, and analyzed her interview responses. dkdliges in
geometric discourse are summarized as follows:

e ANI’s routines of sorting changed from grouping by the names of polygons,
according to their family appearances and visual properties with no order, to
classifying polygons according to their common descriptive narratives, and
structuring quadrilaterals with a hierarchy of classification.

e ANI's routines of substantiation changed from visual recognition and recalling at

the Pre-Interview, to using endorsed narratives such as definitions and properties
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of parallelograms at the Post-Interview; and from comparing parts of
parallelograms visually in the Pre-Interview, to applying various methogls (e
Pythagorean theorem, congruence criterion, algebraic derivations)fioclaims
at an object level in the Post-Interview.

¢ ANI’s use of the names of parallelograms changed from visual recogoiti
their family appearances at the Pre-Interview, to using these narneleztions
of quadrilaterals sharing common descriptive narratives in a hierarchy of
classification.

ANI’s routine procedures for sorting polygons were observed and analyzed in Task One
She was asked to sort eighteen polygons into groups, consisting of triangles (n=4ptqualdri
(n=13) and a hexagon (n=1).

During the Pre-Interview, ANI’s first sorted polygons by their names baséamily
appearances, findirtgangles(n=>5),squareqn=3),rectanglegn=3), parallelograms(n=5) and
trapezoidgn=2). She grouped Fig. V, a hexagon, with the triangles because she identfied tw
triangles in Fig. V.

2b. ANl | made a group of triangles, which had three sides.

<]
= D
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2c. ANl lincluded V as two triangles, because if you draw

a line here in the middle, it would make two.

\Y
drew a dashed line

ANI put Fig. N, a right trapezoid, and Fig. Q, a quadrilateral, together gsea tid
group because she was not sure about what to do with these two polygons. She named the group
trapezoidby guessing.
2f. ANI 1did one that just had Q and N, which I didn’t
know what to classify. | guess they would be

trapezoids.

When asked for regrouping, ANl combined rectangles and squares together in one group
because she thought that “every square is a rectangle”. She then spantjle group into right
triangles and isosceles triangles, but did not know what to do with two other triangles

16. ANI That’s a right triangle [pointing at Fig. K], and

that's an isosceles triangle [pointing at Fig. W].
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17. ANI | guess X would, | don’t know what the
definition is [pointing at Fig. X], and this one
[pointing at Fig. S] none of the sides on that
looked even to me, so | don'’t think it looked like

any of the others
X\ :

ANI grouped two triangles according to the visual properties of angtesr{ght
triangle) and sides (i.e, isosceles triangle), and left two other #&(igilg. X and Fig. S) with no
groups. When subgrouping the parallelograms (n=5), ANI explained as follows:
22a. ANl L and Z look more like square, | don't know if
there are two different types of

parallelograms...
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22b. ANl  Where P, J, and H look more of a rectangle,
like the opposite side of all of these look the
same. So, | guess you could put it into two

groups that way.

[/

H

ANI split the parallelograms into a group of squares including Fig. L and&Fand a
group of rectangles consisting of Fig. P, Fig. J and Fig. H, because they looksglikkes and
rectangles, respectively. When | asked for the definitiomadllelogram rectangle, rhombus
andsquare ANI provided her definitions of each:

23. Interviewer What is a parallelogram?

24. ANI It has four sides. | think the opposite sides
are the same... | guess it's kind of like a
slanted rectangle.

25. Interviewer What is a rectangle?

26. ANI It has four sides with opposite sides being

equal in length.
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ANI made a connection between a parallelogram and a rectangle, adedquaeath was

a slanted rectangle, based on visual appearances. ANI next gave definitiguarefand

rhombus:

29. Interviewer

30. ANI

31. Interviewer

32. ANI

What is a square?

It has four sides of the same length.

What is a rhombus?

A rhombus is like a slanted square and a
parallelogram is a slanted rectangle. They

kind go together like that.

ANI described a square as having four sides of the same length, whereas a nvamaus

slanted square. She did not mention right angles, a defining condition of rectangsegiares

among the parallelograms. To find out whether ANI considered squares as qguaaihe, |

continued:

51. Interviewer

52. ANI

Can | group J and U together?

L/

J U

[Thinking] ...You could if you talked about
angles, | guess. You'd say this angle and this
angle are equal [pointing at the opposite
angles of Fig, J], and this angle and this angle

are equal, where the opposite angles are
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equal here [Fig. U]. So, I guess you could

group it in that way.

ANI agreed that Fig. J, a parallelogram, could group with Fig. U, a squaesideec
opposite angles were equal in both polygons [52]. Later | found that ANI did not identify a
square as a parallelogram because “a square has all the saimededgt parallelogram has
different sides”. In this case, ANI identified polygons by visual property af imgles.
However, ANI's response was different when | asked if | could group Fig. Jignkll Fa
rectangle, together:

53. Interviewer Can | group J and M together

54. ANI Yeah. Like J and U, opposite angles are equal...
you also have opposite sides are parallel
[pointing at the sides of Fig. J]...and this side
and this side are both shorter than the other ones
[pointing at the sides of Fig. M], they [Fig. J and

Fig. M] have quite a bit in common.

o

N N\

ANI acted more positive towards the grouping of Fig. J and Fig. M, as she thobght, “t

have quite a bit in common” [54]. ANI explained that a rectangle was a paredieldbecause
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it has two opposite sides equal, a rectangle graiallelogram go together’in this case, AN
identified polygons by visual property of their sgd ANI did not use any measurement toc
check the parts of polygons during the-Interview in Task One. Her routines of regroup
polygons included direct recognition andntification of polygons by visual properties of &g

and sides. ANI's routines of sorting polygons & Br«Interview are summarized in Figure ..

First prompt: “Sort the shapes into grot
i i

Grouping by the N

/

i >

names of polygons =

! v
)

N,
AN

Direct recognition
(Identifying routlne)

J

> Conclusiol
7

e,

Second prompt: “Can you regroup them different
N )
| Direct recognltlom
(Identifying
routine)

Grouping by family 1
appearances & patrtial visuaE ;—“\
properties of angles and S|dqs~—./

of polygons

Conclusiol

o —————,
v
——————— e,
D —

|

|
11 |
Ve
| |
| |
) { )

Figure 4.9  ANI’s routines of sorting polygons at the -Interview

In ANI's routines of sorting triangles and quadrilaisrat the Pi-Interview, | did not
find a defining routindecause sl did not use definitions to group polygons. | foudentifying
routines,including direct recognitic, when she grouped quadrilaterals by their vi
appearances, amdentifying visual propertie when she identified polygons by the attribute
their angles and sides.

Ten weeks later when | interviewed ANI again, haertines of sorting polygons hi
changed from grouping polygons by their visual @ppece, to classifying them by comn
descriptive narratives with a hierarchy of classifions.

At the Postinterview, ANI first grouped polygons by their nasnéindingquadrilaterals

(n=13),trapezoidgn=1), parallelogram: (n=9),rectanglegn=6),rhombi (n=5)andtriangles
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(n=4). ANI grouped all 4-sided figures into theadrilateralsgroup, and all 3-sided figures into
thetrianglesgroup. She included parallelograms, squares, and rectanglasaislograms but

not the rhombi. Theectangleggroup consisted of rectangles and squares, and the rhombi group
included squares and rhombi. Note that Fig. V, a hexagon, was not included in any of these

groups. Figure 4.10 presents ANI's groupparffallelogramsrectanglesandrhombi.

Parallelogramsgroup

Vo Oy

Rectanglegroup

=AY

L

R G

D0 Q<>

u G R

Rhombigroup

Figure 4.10  ANI’s grouping of parallelograms at the Post-Interview.
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As shown in Figure 4.10, ANI grouped polygons by their common descriptive narratives
(i.e., definitions). For example, ANI explained that she grouped squares and esctaggther
as arectangleggroup because “all squares are rectangles, and rectangles have all 90-degree
angles”. She verified that both squares and rhombi were rhombi because “that isivamalbas
is, four sides of equal length”.

There was a change in ANI's identifying routine. Recall that at theénfeesiew ANI
grouped rhombi and squares together, because a rhombus looked like a slanted square. But at the
Post-Interview, she grouped them together because they share a common nahativeydour
sides of the same length. Although ANI grouped rectangles and squaresrtagbtith
interviews, there was a difference as her identifying routine chdngedecalling that all
squares were rectangles at the Pre-Interview, to identifying commontmsmé rectangles and
squares at the Post-Interview.

ANTI’s identifying routine also changed from grouping the quadrilaterathdir names
as unstructured polygons, to classifying the quadrilaterals with a hier&igye 4.11
illustrates all of ANI's the subgroups of quadrilaterals (n=13). ANIsilizsl the quadrilaterals
beginning with the attributes of their sides. This classification includgezoid a quadrilateral
with one pair of parallel sideparallelograms quadrilaterals with two sets of parallel sides;
rhombus, quadrilaterals with all sides equal; and Fig. Q, a quadrilateral witlo rsodies equal.
ANI next split parallelograms into parallelograms and rectangles, andhgpthombus group
into rhombi and squares by the characteristics of right angles. ANI did not exseaul
protractors to check measurements of angles and sides at the Postvintauvighe did explain

that sides looked like they were parallel, or angles looked like they wéteangles, etc. |
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conclude that ANI used direct recognition as an identifying routine, but it aslihevisient.

ANI’s routines of sorting polygons at the Post-Interview are summarized ineHglLe.

Quadrilaterals (n=13)

Trapezoid (n:]/ \

Q
Parallelograms (n=9) Rhombus (n=5)
P
Rectangles ( n=6) Square (n=3)
M F G R G
T : ::
R U u

Figure 4.11  ANI's grouping of the quadrilaterals at the Post-Interview
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Figure 4.12 ANI’s routines of sorting polygons at the F-Interview

ANI’s routines of substantiation for Task Two wengalyzed and compared from b
interviews. | found that ANI's routinechanged from direct recognition and recal in the Pre-
Interview, to identifyingoropertie of polygons and using triangle congraercriterion tc
substantiate her claims. In the F-Interview, she also derived some statements algeiisa
and used Pythagorean theorem.

In Task Two, ANI was asked to draw two differentglielograms and to discuss th
properties. At the Pre-Inteexv she drew a parallelogram and labeled the \estas A, B, C an
D in clockwise order. She then wrote a statemeagdnding the angles of the parallelogré* ZA
= /C, /B = /ZD”. The following conversation took place when | askadverification

3. Interviewer What can you say about the angles of this paragjtaln’

ANI’s drawing of a parallelogral
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4. ANI Angles A and C are equal, and then B and D are equal
[Pointing to angles A and C, she wroA = ZC, /B = /D].

5. Interviewer How do you know?

6. ANI Mm...I just remember being taught that, | don't actually

know... If you measured them, they would be equal.

ANI referred to her prior knowledge about the angles of a parallelogram to cotihtide
the opposite angles were equal. She was able to use mathematical symbols/gueh/&s, to
indicate the equivalence of the angles. However ANI remembered the praperfact without
knowing the explanations. After my prompt, ANI verified thak = ZC by comparing the space
between the angles:

10a. ANI If you drew two lines here [adding two perpendicular

lines from angles A and C]

10b. ANl  From this line to this line, if you know that’s a 90

degree angle ...[pointing at the indicated space]

A B

D C

10c. ANl You know what a 90-degree angle looks like, so it's

easier to go off of that.
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10d. ANI  ...and then you look at the space here and the space
here [pointing at the marked angles], and see if those

are the same.

ANI drew two perpendicular lines so that bafA and ~#C would be the sum of a right
angle and a smaller angle. [10a]. She started with comparing the rigks &eghuse they were
easy to distinguish by their visual appearance [10b; 10c], and then she cospeerdbtween
the two smaller angles to check whether they were the same. In thiglexaMI’'s routines
procedure relied on the visual appearance of the angles to verify her claims.

ANI made two other statements about the angles of the parallelogr@dm; D =

180C°, «C + ZB = 180". When asked for substantiation, she responded as follows:

20a. ANI If you extend this line out, and draw another straight line
there...
A B A B
D ¢ D c
20b. ANI You can see that this angle equals that angle.
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ANI pointing at the two marked angles.

21. Interviewer How do you know they are equal?

22a. ANI There is a term for it. It's like a rule that | remember
learning. Maybe parallel angle rule? Or, adjacent angle
rule? Or something.

22b. ANI And this is angle C [pointing at the angle BCD].

22c. ANI So if you were to combine them, you would have a

straight line, and that would make a 180-dregee angle.

ANI pointing at the two marked angles.

In this example, ANI recognized the structure of alternating interior sufigimed by
parallel lines and their transversals [20a]. When ANI explained, “yosesthat this angle
equals that angle” [20b], she again relied on the visual appearance of the anglgisl n8he
know names of the angles, nor the related propositions to support her claim, but refaneie t
that she had learned. Assuming that the two marked angles were equal [20b], &tkthatif

/C + /B = 180 because they made a 180-degree angle [22c]. Using the same reasoning, ANI
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also stated thatZD + ZA = 18(°". | conclude that ANI used visual recognition to carg
angles, and applied prior knowledge as a fact tdyihe statements about the angles
parallelogram.

In the Postinterview, ANI drew a parallelogram and labeled Vegtices as A, B, C, ar
D in a clockwise rotation, and gave the same statésrabout the angles of the parallelograr
in the Pre-InterviewFigure 4.1 shows some of ANI responses for Task Tw the Post-

Interview.

A. Draw a paralielogram in the space below.
/

1. What can you say about the angles of this parallelogram?
- S
LA= LC /A LB = 180° LC ¥ ¢ R =\80
£B= 0 LD+ L ¢ = \%0 LD x L p =50

Figure 4.13 ANI’s written responses for Task Two at the -Interview

In contrast, ANI's verification of her claims wasfdrent than at the P-Interview.
When | asked for substantiation of the stater/A = ZC andZB = ZD, sheexplained tha
“this is a parallelogram because | drew it, so afgis equal to angle C and anB is equal to
angle D”. ANI's verification ofZA + /B = 180 was also different than in the |-Interview.

16a. ANI If you were to extend this line
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16b. ANI You could look either way, like this angle is equal to
this angle. BC and AD are parallel. They [pointing
at the marked angles] are corresponding angles

because they are on the parallel lines.

16c¢. ANI Then you could tell that if you add these two angles,

it's angles on a line. So it's 180 degrees.

EC
A D

rd
s

pointing at angle B and it's exterior angle

16d. ANl  So angle A and angle B add up to 180 degrees.

To verify Z/A + /B = 180, ANI extended side AB so that the structure of the
corresponding angles formed by parallel lines and their transversaigsia@e [16a]. She
mentioned the corresponding angles were conghesgusehey were on the parallel lines
[16Db], and then concluded that angle A and angle B add up to 180 degrees [16c; 16d]. Although

ANI verified her claim informally, it is important to see the change, ldkjéstified her claim
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that corresponding angles were equal using an sadararrative that BC and AD wererallel
at the Postnterview, whereas she relied on visual appearahdee angles at the F-Interview.

ANI provided different narratives about the diagsrat a parallelogram at the tv
interviews. At the Préaterview, she asserted that the diagc of a rhomins should be the sar
and the diagonals of a rectangle should interddtieamddle of the rectanglevhereas at th
Postinterview she stated that the diagonals of a rgttashould be equal in length, and
diagonals of a parallelogramseict each other at the F-Interview. Now | describe and comp:
the changes in ANI’s routine procedures of subgting these narratives at both intervie'

At the Prelnterview, ANI drew a rhombus, and stated thatasva differen
parallelogram beause all the sides were the same length. ANI leged the statement, “all tl
sides were the same length” to draw conclusionsitahe angles and diagonals of the rhom

73. Interviewer What can you say about the angles of this

parallelogram

& ¢
&wwﬂawg [ Rl !
4

o .

ANI's drawing of a rhombus

74. ANI | think they [angles] should all be the same.
guess if | had drawn it better, all the angle
should be the same.

75. Interviewer Why do you think they are the same?
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76. ANI Because the lengths are the same. [Wtdte:
= /B = ZC = /D because lengths of the sides

are the same].

93. Interviewer What can you say about the diagonals of this
parallelogram?

94. ANI | think the diagonals should be equal in length.

95. Interviewer How do you know that they should be equal in
length?

96. ANI Because the sides are all the same length and
the angles are all the same. So, | think the

diagonals should be the same.

In the preceding conversation, ANI claimed that the angles in a rhombus alidaddhe
same [74], as well as the diagonals [94]. When asked for verification, she eaplanhall the
angles should be the satmecause all the sides of a rhombus were the $@6jeand diagonals
should be equal in lengtiecause all the sides and angles of a rhombus were all the[3@ne
Of course, for ANI's conclusions about the angles and diagonals of this rhombus tceebg corr
the rhombus had to be a square. ANl made incorrect implications from the equivalence of the
sides to the equivalence of the angles, and then suggested that the diagonals quast be e
because of equal sides and angles. There is no routine involved in this verificatiotharther
making statements based on the fact that all the sides are equal in a rhombussIQBANI

did not have a correct understanding of a rhombus at the Pre-Interview.
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ANI stated that the diagonals of a rectangle were longer than its sides, and the
intersection of the diagonals was at the middle of the rectangle.
118b. ANI  The length of this [pointing at the diagonal] is longer
than the length of the longest side [pointing at the

longer side of the rectangle].

diagonal

longest side of rectangle

118c. ANI  They [the diagonals] should intersect in the middle.

\ middle of the rectangle

Here, ANI's declared narratives about the diagonals of this rectangtemeee like
visual descriptions of what the diagonals appeared to be. She recognized the diswtjomal
hypotenuse of a right triangle, and mentioned, “the Pythagorean theorein isvhaav | know
it” to verify the diagonals were longer than the longest side of rectarigdear§ued her claim
that diagonals should be at the middle of the rectangle as follows:

130a. ANl So, if you were to find the midpoint of this
length... [Drew one line passing through the

midpoint of the sides]
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130b. ANI ...and then if you were to find the midpoint of
this length, and draw a line [Drew another line

passing through the midpoint of the other sides]

130c. ANI ... that the intersection of those two lines should

be the intersection of the diagonals as well.

ANl verified that the diagonals intersect at the middle of the rectangtechting the
midpoints of the sides of the rectangle, and concluded that the intersection af thedvans
was the same point as the intersection point of the diagonals.

In the preceding examples, ANI's understanding of the properties of paredi@ogvas
not clearly demonstrated. To verify the claims, she mostly described whedvsladout the
parallelogram.

Ten weeks later | interviewed ANI again, and the same tasks were prefakhiefirst
drew a parallelogram, and then stated that the diagonals of the parallelograumot equal in
length, but they cross each other at one point. She added that the diagonals creptadiorges
triangles.

54. ANI They [the diagonals] cross at one point.
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56. ANI They create corresponding triangles. Well, like this
triangle corresponds with this triangle [Shaded the

two corresponding triangles]

57. Interviewer What do you mean by “corresponding triangles™?
58a. ANI This angle and this angle are equal, cause they're

vertical angles...

58b. ANI ...And then, this side should equal this side...
B .,/ C
58c. ANI ...and this side should equal this side. And | know

they're corresponding through Side-Angle-Side.

Like, that would be the rule that...
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59. Interviewer How do you know these sides are equal? [Referring
to 58b & 58c]

60. ANI Cause diagonals bisect each other.

61. Interviewer How do you know they bisect each other?

62. ANI | don't really know how | know... | guess it's
because the sides are equal length and they're

parallel, so...

In the preceding conversation ANI started with a descriptive narrative ti@oditagonals
of a parallelogram, “they cross at one point” [54], and then she asserted that tmaldiag
created corresponding triangles [56]. At my request, she verified the corregptrahgles
were a pair of congruent triangles with the Side-Angle-Side (SA8)ion [58]. Here, ANI used
the endorsed narrative “diagonals bisect each other” to show that the correspasuiihest
were congruent [60]. However, when asked how she knew the diagonals of thisquaeattel
bisect each other, she responded, “I don’t really know...l guess, it's becassgethare equal
length and they're parallel” [62].

It is clear that ANl remembered how to verify congruent triangles u#&) She
identified corresponding triangles, as well as the three elements neededffoation of
congruent triangles. She used that fact that “diagonals bisect each ofstifyahe
congruency of the sides, and used vertical angles to show the congruence of indleked an
Thus, there was a change in ANI's routine of substantiating, from no routine aethe Pr
Interview, to using an endorsed narrative to identify three elements fofingrongruent

triangles at the Post-Interview. In this case, ANI's routine procedunefifying her claim used
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the endorsed narrative “diagonals bisect each other”, but she did not know as an endorsed
narrative, but did not know why the narrative was true. It appeared that AMédi@m informal
proof that two triangles were congruent, but she did not clearly demonsttatbeéhanew what
to substantiate and why.
When discussing the diagonals of a rectangle, ANI provided the narrative “thegt bkoul
equal in length”, and tried to verify this claim using the Pythagorean theorem:
128a. ANI | know the value of this side [pointing at the shorter
side], and | know the value of that side [pointing at the
longer side], so | can find this side [hypotenuse] use

Pythagorean theorem.

-4
|

128b. ANI It would be the same over here. | know this and |

know this, so | can find this.

"I can find this”
128c. ANI ...you can see that those two are equal [pointing at the
halves of the diagonal]. And then, if | drew the other

diagonal, you could do it the same way...

<
QRS
P
-
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129. Interviewer What about this case? If | add the halves of this
diagonal, and add the halves of that diagonal, in my

drawing here, they are not equal.

To verify the diagonals were equal, ANI attempted to show that adding the hadves of
diagonal was equal to adding halves of another diagonal, and use the Pythagorean theo
provided a counterexample to refute her conclusion. ANI replied with another appydash b

labeling the segments b, c andd.

134a. ANI You could find that is equal tad, they should be equal.
S . - \a 9 - -~
’d; Phe NS < \b\
134b. ANI | could do the Pythagorean theorem again, but with this

side and this side. And then I'd fidd

Pointing at the two legs of the right triangle
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134c. ANI a equal tod because they share this side here [pointing at
the longer leg], and this point is a middle point here, so

these two sides are equal [two shorter legs]. Thanfl

d] are equal.
EEE— =
a C.-
-
e/
~
\\\

ANI described informally her verification of the claira = d” by identifying the two
triangles sharing a longer side and having equal shorter sides [134c], and thargdbply
Pythagorean theorem to conclu@de='d’ [134a; b]. ANI did not argue that the two triangles
were right triangles, an important condition of the Pythagorean theorem, nor dideldetails
of the algebraic derivation o&"= d". | conclude that ANI's routine procedures changed from
comparing the length of diagonals with the sides visually at the Pre-bvera describing a
process of verifying and substantiating her claims at the Post-Interview

ANI did not think a square was a parallelogram at the Pre-interview, and ther®mtva
much to compare with what she did ten weeks later. However | do want to share ANit'e rout
procedure of using algebra as one way to substantiate her claims at thedtosw. We began
with the following conversation:

161. Interviewer What can you say about the diagonals of the

square?
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162. ANI They're equal... They bisect the angles, split
the angles into two-45 degree angles.

163. Interviewer How do you know “they are equal’?

164. ANI The same way | knew with the rectangles.

165. Interviewer How do you know “they bisect angles”?

166. ANI It divides the angle into two equal angles.

ANI provided two narratives about the diagonals of the square, “they’re equal” hayd “t
bisect the angles’[162]. She applied her knowledge of the diagonals in a re¢tacgse of a
square [164]. To verify the diagonals bisect each other, ANI explained that thasy tfigiangle
into two equal angles [166]. The following is ANI's routine procedure of veri@inativith
corresponding transcripts.

Table 4.14  ANI’s routine procedure of verification for “diagonals bisect tle angles”

Routine Procedures Transcripts
1. Declare narratives

1.1Draw a diagonal 174a. | guess I'd draw a diagonal

1.2 Identify two right | 174b. It splits the square into two right triangles, because all
triangles of these angles are 90-degrees.

]

ol

adding right angle sign on each angle of the square
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Table 4.14 (cont'd)

1.3 Identify the
relation between the

174c. By the angle sum rule, all angles add up to 180
degrees. You already have 90 here. So, X plus Y has to equal

angles and sides of the90. It's also an isosceles triangle.

right triangle.

L
X

1900 y

assigning X and Y to the two angles

Q: How do you know it's an isosceles triangle?

2. Verification of
isosceles triangle

2.1 ldentify congruent
sides of the triangle

180. These two sides equal.

L
X

1903 Yy

4

Adding two marks on the sides of the triangle

2.2 Verification of
congruent angles

182a. It's an isosceles triangle. So X is equal Y.

2.3 Finding the angle
measures of X and Y

182b. I know that X and Y has to equal 90 degrees. So, |
know that X is 45 degrees and Y is 45 degrees.

2.4 Finding other
angles measures

190. So, if you know it's 90, and Y is equal 45 degrees, and
this angle is also 45 degrees. Same for X here. So diagonals
splitting into two equal angles and they are 45 degrees each.

U
X

199 v

7

“this angle is also 45 degrees”

3. Conclusion

194. Yeah, diagonals bisect each other

It became clear that ANI favored algebraic reasoning in her routine prese@he

labeled the angles X and Y, and used an endorsed narrative, “all and@@dagrees” [174b] to

justify that X and Y were the angles of a right triangle. She used anothereshdarsative,
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“theses two sides equal” [180] to verify that the triangle is isoscelesll\iANI solved X and
Y algebraically, to find that they were 45 degrees each [190]. Using this newkgeddo
narrative, ANI concluded that the diagonals bisect the angles [190; 194]. é&xanmigple, ANI
used her knowledge in algebra to help solve a problem in geometry.

ANTI’s use of the worgarallelogramchanged from describing the visual appearances of
the quadrilaterals at the Pre-Interview, to using the word as a common descergstative with
a hierarchy of classifications at the Post-Interview. Here arfr@¢fjgencies of ANI’'s use of the

names of quadrilaterals at two interviews:
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Table 4.15  The frequencies of ANI's use of the names of quadrilaterals &iet two
interviews
Name Frequency
Pre-T1 | Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3
Quadrilateral 0 3 0 0 0 0
Parallelogram 4 3 4 0 3 1
Rectangle 12 3 2 2 3 0
Square 10 5 1 5 0 3
Rhombus 2 2 1 3 0 0
Trapezoid 2 2 0 0 0 0
Kite 0 1 0 0 0 0
Table 4.16  Total frequencies of ANI's use of names of quadrilaterals at theo
interviews
Name Frequency
Pre Post
Quadrilateral 0 3
Parallelogram 11 4
Rectangle 17 5
Square 11 13
Rhombus 3 5
Trapezoid 2 2
Kite 0 1



Table 4.16shows that the wo square(n=24) was the most frequently used during
interviews. The wordectangle(n=22) was the second most frequently L andparallelogram
(n=15) was third. ie names of the parallelograms were mostly merdiomdask One, an
among all the nameggctangleandsquarewere most frequently mentioned at the-Interview
(see Table 4.)5There was an increase in use of the vsquareandrhombusn the Pos-
Interview. However, there was a reduction in usthefwordparallelogramandrectanglein the
Post-Interview. The wordste (n=1) andquadrilateral (n=3) were mentioned only at the F-
Interview, whereas the wotdapezoic (n=4) was only mentioned in Task On&NI's use of the
names of quadrilaterals was much lower than otiterviewees’ use those names

Recall that in the Preterview, while grouping in Task One, ANI referrexla rhombu:
as a slanted square, and a parallelogram as adleetdtangle. Later she drew a rhombus
parallelogram, but disagreed that a square wasadiglacram when | showed her a picture ¢
square in Task Two:

69. Interviewer Why is this a parallelograr

& ¢
4
A e
© e
70. ANI Because AB is parallel to DC, and AD is paralleBt©.

71. Interviewer Why do you think it's «different parallelogram?
72. ANI Because all the sides are the same le
73. Interviewer What do you call this shag

74. ANI A rhombus
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In this conversation, ANI identified a rhombus as a parallelogram because itdhad tw
pairs of parallel sides [70], and recognized that it was a different pagafleh because it had all
sides of the same length. However, in the next conversation, she disqualified ascuare
parallelogram.

99. Interviewer How about this one? Is this a parallelogram?

100. ANI No.

101. Interviewer Why do you think it's not a parallelogram?

102. ANI Because all the lengths look like they are the same
sides, and | think that a parallelogram has
different sides.

103. Interviewer  What do you call this shape?

104. ANI A square.

This inconsistency showed that ANI's use of the wmaichllelogramreferred to visual
family appearances. From ANI’'s grouping of parallelograms in Task &wkher ways of
identifying parallelograms in Task Two, | conclude that the vpamllelogramwas used to
representectanglesparallelogramsandrhombi

Figure 4.14 illustrates ANI's use of parallelograms at the pre-interview

Parallelogram (n=8)
—\ T

Parallelogram Rhombus Rectangle
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Figure 4.14 (cont’d)

Wardeld:

/

M

7 :

H F

Figure 4.14. ANI's use of the word parallelogram at the Pre-Interview

ANTI’s use of the word parallelogram changed in the Post-Interview, asottte w
presented a class of figures sharing a common descriptive narrative, pardl&lograms
presented in the task were connected in a hierarchy. In the Post-Interviewséd\the word
guadrilateralto extend the family of parallelograms, describing quadrilaterals witbrarbhy
of classifications.

As shown in Figure 4.15, this hierarchy, quadrilaterals have different names depending
on attributes of their angles and sides. This hierarchy has three brareezoid
parallelogramandquadrilateral The wordparallelogramincludes parallelograms, rectangles,
squares and rhombi by definitions. All four-sided polygons with different visuahegopees
some with right angles, some have all same sides, but sharing a common desuipétive,

“opposite sides parallel and equal”.
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Parallelograms (n=11)

g=1Vdu

M F

r7 /7

<>

Rectangles (n=6) Rhombus (n=5)

L <0

N\ A~/
o

Squares (n=3)

R

Figure 4.15 ANI’s use of the word parallelogram at the Post-Interview
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In the interviews, ANI mentioned more the parts of parallelogram (e.g., asgles, etc)

than the names of parallelograms. Tables 4.17 and 4.18 give the frequencies obttss# the

Pre-Interview and the Post-Interview. Table 4.18 provides total frequenciashoiverd at the

interviews, whereas Table 4.17 presents the frequencies of each word usbdaslea the

interviews.
Table 4.17

two interviews

The frequencies of ANI's use of names of the parts of parallelograrat the

Name Frequency
Pre-T1 | Pos-T1 Pre-T2 Pos-TZ Pre-T3 Pos-T3

Angle 14 7 32 37 5 3

Side 14 12 8 27 4 1
Length 3 4 13 10 8 2
Parallel side 0 3 0 3 0 0
Opposite side 2 0 1 1 2 0
Diagonal 0 0 10 12 0 0
Right angle 2 0 1 0 0 0
Opposite angle 2 0 0 0 1 1

Table 4.18

two interviews

Total frequencies of ANI's use of names of the parts of parallelogramat the

Frequency
Name Pre Post
Angle 51 47
Side 26 40
Length 24 16
Parallel side 0 6
Opposite side 5 1
Diagonal 10 12
Right angle 3 0
Opposite angle 3 1

Table 4.18 shows that the most frequently used word relating to the parts of

parallelograms waangle (n= 98), mentioned most frequently in Task Two (see Table 4). The
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second most frequently used veade (N=66), mentioned most frequently in Task One and Task
Two. The wordength(n=40) was third, mentioned in all three tasks. The vdmdonal(n=40)
was only mentioned in Task Two. These results were expected, as Task Two agkesveds
to discuss the angles, sides and diagonals of paralleloBight.angle(n=3) was least
mentioned, appearing only at the Pre-Interview. There was a slight reductiorugetbethe
wordsopposite anglendopposite sidén the Post-Interview. However, ANl mentiongarallel
side(n=6) at the Post-Interview, but did not mention it at all in the Pre-Interview.

The most compelling change in ANI's word use was her use of thepaoatielogram

at the Post-Interview. She had a better understanding of parallelogranheiapddperties.

Case 3: Changes in ALY's Geometric Discourse

ALY was a college freshman at the time of the interviews. ALY took hegé&snetry
class three years prior to the geometry and measurement class. The gagebimeétry Test
showed that she was at Level 3 at the pretest, and moved to Level 4 on the postegewed
ALY after both tests, and analyzed her interview responses. A summary of §rmfiragpanges
in ALY’s geometric discourse is as follows:

e ALY'’s routines of sortinghanged from grouping polygons by the number of
sides and by their names based on the attribute of their angles, at the Pre-
Interview, to classifying polygons by their common descriptive narratives and
arranging quadrilaterals with a hierarchy of classifications aPts¢-Interview.

e ALY’s routines of substantiatiochanged fronverifying the congruent parts of

parallelograms usingecalling, measuring and constructing routinasthe Pre-
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Interview, to formulating mathematical proofs using mathematical axamd
propositions at the Post-Interview.

e ALY’s word usechanged from representing the watallelogramsas a
collection of polygons sharing common descriptive narratives at the Pre-
Interview, to using words with a hierarchy of classifications of parallehog) et
the Post-Interview. ALY also used more mathematical terms in the Pasiente
than in the Pre-Interview.

ALY’s routines of sorting were analyzed in the interviews for Task One, wkieYewas
asked to classify eighteen polygons into groups. These polygons included triangles (n=4),
guadrilaterals (n=13) and one hexagon. The following section details thesemse

At the Pre-Interview, ALY grouped the eighteen polygons into three groups accarding t
the number of their sides. She grouped all quadrilaterals into a group, callintfeuthsided”
group; and she grouped all three-sided polygons (n=4) together, naming thg€t’iagroup.

ALY called Fig. V (a hexagon) “miscellaneous”, and grouped it as “other”.

When asked to regroup the quadrilateral group, and she regroup them by right angle
versus non-right angle. After regrouping the quadrilaterals, ALY saidletteel shapes with
right angles... from looking at it. | didn’t measure any of them, but | am asguhmt they are

right angles.” ALY’s regrouping of quadrilaterals is shown in Figure 4.16.

Right angleGroup (n=8)

a
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Figure 4.16 (cont'd)

Non-right angleGroup (n=10)

VAN

<>V o
\

X J

Figure 4.16  ALY’s regrouping of polygons at the Pre-Interview

ALY regrouped the polygons by the attribute of having right angles or notigttte
anglegroup consisted of polygons having at least one right angle, whereamthight angle
group contained all other polygons. When | asked ALY to subgrouptinesidedgroup (n=13)
that she initially made, she split the group into two:rdatanglegroup (n=6) and theon-

rectanglegroup (n=7). Figure 4.17 illustrates ALY’s subgrouping of the quadrilaterals.
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RectangleGroup (n=6)
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e

Non-rectangleGroup (n=7)

o
)
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Figure 4.17 ALY’s subgrouping of the quadrilaterals at the Pre-Interview

ALY used the nameectangleto split the quadrilaterals into two groups. In thetangle
group, ALY included both rectangles and squares. Consequenthghectanglegroup
contained all other quadrilaterals such as the parallelograms, the rhombrapekzaitl. | also
asked ALY to subgroup th®on-rectanglegroup, and she responded that she could split the

group intorhombusandnon-rhombus.
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26. ALY: | would separate them into rhombuses. P is a rhombus,
L is a rhombus, J is a rhombus, Z and H are all

rhombuses. [Pointing at these polygons]

V<> ¢

[/

H J

In the subgrouping, ALY identified both parallelograms and rhomih@asbus To
investigate further, | asked ALY to identify a parallelogram, and she pointed.td.H asked
her to identify a rhombus, and she pointed to Fig. J (another parallelogram). ALY/sguibg
of thenon-rectanglegroup revealed her confusion between parallelograms and rhombi.
Thus, at the Pre-Interview ALY grouped polygons by the number of sides and by the
characteristics of their angles. ALY also favored dividing polygons into teiwgpgt according to
what they are and what they are not, with names of polygons suvettasgleandrhombus
ALY identified polygons by direct recognition, but it appeared to me this recogniti®meta
self-evident. For example, ALY mentioned “just from looking at it, ... | am assummatghey
are right angles” to explain her assumptions. Figure 3 summarizes Abfises of sortingat

the Pre-Interview.
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Prompt: “Sort the shapes into grou

i Grouping by the numbers of sid N

i i i i i
i - [ | i i
| Choosing | =\ 4 characteristics of the angles | 2> | Conclusior |
| inwitively ) 57 TG i.e., right angles) | ¥ | |
t ' . polygons (i.e., right angles) j i |
Prompt: “Subgroup the group.”
{ . I Grouping by two groups "what| , | |
| Choosing | = | they are and what they are not! 5> | Conclusiol |
[ intuitively |9/ 1 ) | | i
i i | usingrectangleandrhombus | 5 5

| J | J/ L J/

Figure 4.1¢ ALY'’s routines of sorting at the Pieterview

At the Postinterview, at my request, ALY first grouped theldgigen polygons into tw
groups, consisting dfiangles(n= 4) ancnon-triangles(n=14) according to the number of th
sides. When | asked ALY to regroup the eighteeygunis differently, se regrouped th
polygons into two groups, includirquadrilaterals(n=13) anchon-quadrilaterals (n=5), again
by the numbers of sides. | then asked ALY to subgrthequadrilaterals and she split th
guadrilateralsinto two groups, consisting parallelograms(n=11) anchon-arallelogram:
(n=2). I continued to ask ALY to subgroup tparallelogramsand shecame up with twc
groups rectanglegn=6) andnor-rectanglegn=5). This pattern continued with the t
subgroups consisting sfjuaregn=3) andnon-square¢n=3) within therectanglesgroup.
Figure 4.19 summarizes ALY’s subgroupings ofquadrilateralsat the Postaterview. As
shown in Figure 4.19, ALY’soutines of sortin, distinguishing two groups of polygo!
determined by “what it isral what it is not” proceeding through families ofagrilaterals suc

asparallelogramsrectanglesandsquares.
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Quadrilaterals (n=13)
— ~—

Non-parallelograms (n=2) Parallelograms (n=11)
Q N /

Non-rectangles (n=5)

Yo
<>

yA H

Rectangles (n=6)

Non-squares (n=3) Squares (n=3)

G2 ]

<

F

Figure 4.19 ALY’s chains subgroupings of the quadrilaterals at the Post-Interview.
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During our conversations in the Post-Interview, ALY demonstrated her undengisuadi
the relations betwegparallelogramsrhombiandsquaresby classifying these polygons in a
hierarchy. For example, ALY identified tim@n-rectanglessparallelograms a group consisting
of parallelograms and rhombi.
45. Interviewer What are the non-rectangles?
46. AL The parallelograms? P, H, Z, J and L. [Pointing at

these polygons]

[/

L H

47. Interviewer Why are they not the rectangles?

48. ALY Because they don’t have four right angles.

ALY also identified rhombi as a subgrouprain-rectanglegi.e., parallelograms), and
identified asquare,a polygon from a group oéctanglesas arhombus
77. Interviewer Can you identify if there is a rhombus?
78. ALY A rhombus? | think Z and L are rhombuses. And then U, G,

and R would be rhombuses as well. [Pointing at Fig. Z and L]
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L

G R
79. Interviewer How do you know that L is a rhombus?
80. ALY Because these sides look equal in length and they are also

parallel to the opposite sides [pointing at the sides of Fig. L]

81. Interviewer Why is U a rhombus? [Pointing at Fig. U]

U

82. ALY Because all sides are equal and opposite sides parallel to each

other.

At the Post-Interview, ALY first grouped the polygons by the numbers of their sides.
When asked to regroup the polygons, ALY classified quadrilaterals by dividing them anto tw
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groups each time. During the interview, ALY did misie measurement tools tcrify congruent
angles or sides of the polygons. However, ALY diehtion that she assumed the angles o
rectangles to be 90 degreasd the sides of the paelograms to be paralldlhave conclude
that ALY identified polygons intuitively, but a¢n it was not selevident. ALY’sroutines of

sorting at the Post-Intgiew are summarized in Figure 4.

Prompt: “Sort the polygons into grou

|
| Grouping by the number =\

N

i Choosing i =N\ i i
i intuitively i 5_./) i of sides of the polygonsi 5_./) i Conclusio i
{ J L ) { J
Prompt: “Subgroup the group.”
;' ‘: ;{ Grouping into two groups of "what it \I |{ \I
| Choosing | =\ | and what it is not" using the names ' conclusior |
| intuitively | =/ | parallelograms; and arranging them t | =/ | !
| | | | | |
\ )] \ ) \ )

hierarchy of classificaitons

Figure 4.20 ALY’s routines of sortingt the Post-Interview

We see a similar pattern as ALY grouped the polgdonthe number of sides, and -
grouped polygons by dividing them into two groupsletime. However, there was a chang
AYL’s subgroupings, as her chains of subgroupingnad a hierarchy of classcations of
guadrilaterals at the Pobtterview, her subgrouping was limited only to itigmng the
rectanglesand thehombiwithout a hierarchy at the F-Interview.

ALY’s change in geometric discourse also appeandter routines of substantiation.
the following section, | describe observations fritra interviews with ALY in Task Two ar
Task Three.

ALY explained and verified her claims about thelasg@nd sids of parallelograms wit

recalling andmeasuringoutines at the P-Interview; whereas she substantiated her stater
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using endorsed narratives at the Post-Interview. When substantiating the egeidlavo
definitions, ALY constructed two polygons with angle and side measurements that f
descriptions of the definitions at the Pre-Interview, whereas she produced a ataidlgonoof
at the Post-Interview. To illustrate these changes, | will provide the folgpgdenarios.

In Task Two, ALY drew a parallelogram, and stated that it was a paralleidgreause
the opposite sides were parallel to each other. When discussing the angéegarhtlelogram,
ALY responded that the opposite angles of the parallelogram were equal. V\dked Indy,
ALY replied, “I think that is just a property of a parallelogram”. The followingwersation took
place after | prompted for verification:

9. Interviewer If | ask you to convince me that the opposite
angles are equal, what would you do?

10. ALY You mean... prove it to you, that in every case it
would be that way?

11. Interviewer Yeah.

12. ALY | could just measure the angles for you, with a
protractor. I've never done a proof before, in this
case. I've done lots of proofs, but not on
something like that, so | don't know.

In this conversation, | noticed that writing a proof about the angles of aghagadim
was new to ALY, but she was aware of the difference between a verificatistatément
“opposite angles are equal in a parallelogram” in general (i.e.,lrematical proof) and a
verification of an example of a statement (i.e., check the measurementsas)) aaglevidenced

in her asking, “prove it to you that everycase it would be that way?” and later proposing to
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measure the angles [12]. In this case, ALY explained the statement that@ppgkes are equal

in a parallelogram by remembering it as a property of a parallelogram.

ALY also provided another narrative about the angles of a parallelogram, rthatetye

adjacent angles in a parallelogram add up t¢.18Men asked for substantiation, ALY replied,

“I have learned it before, but | am not 100% sure...”, and produced her verificatioroasfoll

26a. ALY

26b. ALY

26c¢. ALY

27. Interviewer

28. ALY

This angle looks like it would match up if | was to

extend this line out like this [extending the side]

s

... this angle looks equivalent to this angle. And,

actually it is, because I've learned about parallel lines

[pointing at the angles].

p

It would, because this angle would be equivalent to

this angle [pointing at the vertical angles]... and is
also equal to that [pointing at alternating interior

angles]

Why is that?

That's another property [giggling]... | just remember
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in high school, we learned a lot of properties about
parallelograms and parallel lines, and things like that.
29. Interviewer So... What is your conclusion?

30. ALY That the adjacent angles add up to 180 degrees.

ALY reasoned her way through by drawing extended lines [26a] and by identifying
parallel sides [26b] and congruent angles [26b; 26¢]. ALY remembered the propksies
parallelogram and remembered the propositions of parallel lines, as wedl i@dation between
the vertical angles [26c], and she applied them in her verification processotalde that ALY
identified more congruent angles than she needed for the verification. MoifecafpgcALY
needed only one of the three congruent pairs of angles, but she identified thrEgpaiéc].
ALY neglected to point out how the congruent angles would lead to the proof that the adjacent
angles add up to 180 degrees, an argument crucial in this substantiation. In the preceding
examples ALY applied her prior knowledge about the properties of parallel@gém
propositions of parallel lines to identify the elements needed for verificationevown this
example, ALY verified her claim only partially and without logical order.

In contrast, at the Post-Interview ALY explained why opposite anglesgaiad, using the
fact that the adjacent angles in a parallelogram add up tcas8&h endorsed narrative. Here is
ALY’s demonstration that adjacent angles in a parallelogram add up to 180 degrees.

11. Interviewer How do you know that the adjacent angles add up to 180
degrees?
12. ALY Because that's one of the properties of a parallelogram, |

can show you if you like?
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13. Interviewer

14a. ALY

14b. ALY

14c. ALY

14d. ALY

Go ahead.
If you were to rip this in half [drawing a line cut through

the polygon],

...and then take this top half and put it down here, then it

would line up, like this. Does that make sense?

Right here... Let's say that thisasand this id. If we
moved this [b] down here then these would be on the same
line. [Labeling the polygon with a and b representing two

pieces of the polygon]

This angle here [pointing at the vertex angle] would be
right here, and they'd be on the same line. And, angles on a

line add up to 180 degrees.

£
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To verify that adjacent angles add up to 180 degrees, ALY first referred ttetieimient

as a property of parallelograms [12]. Then she described an activity ohinatp cut the
polygon horizontally in half [14a], and moving the top half to the bottom [14b] to match the two
adjacent vertex angles side by side in a line [14c; 14d]. ALY used this newly ehdarsative
that adjacent angles add to 180 degrees to justify her statement that the opgtestena
parallelogram are equal.

15. Interviewer How do you know that the opposite angles are equal?

16a. ALY Because you have two parallel lines, here, if | was to

extend these lines [Extending two sides of the

parallelogram].

/o

16b. ALY Then, this would be a transversal.
™~ ’ Transversal
16c. ALY So, you've got this angle here and this and this angle here

[pointing at the two angles] add up to 180 degrees because

they're adjacent.

=

16d. ALY For the same reason, ... then this angle and this angle

would also add up to 180 degrees,

137



16e. ALY So these [pointing at the opposite angles] have to be the

same.

In this example, ALY first identified two parallel lines [16a] and a trarsaldd 6b], and
concluded that adjacent angles add up to 180 de[jréels In order to show that opposite angles
were equal, ALY identified another pair of adjacent angles, with one vertéxiaolyded in the
previous ones [16d], so that two pairs of adjacent angles shared one angle in commonh&iving t
same reason [16a; 16b], ALY explained that the second pair of adjacent angéeidalsaip to
180 degrees. Finally, ALY concluded that the opposite angles had to be the same [16¢].

This scenario illustrates changes in ALY’s routine procedures. She predjfess
referring to prior knowledge to justify her claims (irecalling routine$, to using newly
endorsed narratives to substantiate her claims. ALY also moved from identifgiregelements
than needed for verifications, without logical order, to choosing the exact numbenehtde
necessary to justify statements logically.

In another change, ALY went from measuring the sides of parallehsgnath rulers to
verify congruency at the Pre-Interview, to identifying congruent théeanigy congruent criterions
to verify the congruent parts of parallelograms at the Post-Interinéliaask Two, | asked ALY
to draw a parallelogram and to discuss its sides. ALY drew a parallel@gstated that it was

a parallelogram because the opposite sides were parallel to each othereaaduakin length.
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The following conversation took place after | askedsubstantiation of her claim that “t
opposite mles were equal in lengtl
41. Interviewer Is there a way that you can show me that theyrersame lengtl
42. ALY In this parallelogram? | can measure it. So this4ss
centimeters, this is a little less than 4.5. [Usangiler to measut
one paitof opposite sides]... Right, this looks about 4.3aN¥

about the same. [Measuring another pair of oppssiies

M5 e

U em v
ALY'’s drawing

43. Interviewer How do you know that for every parallelogram tlsigrue’
44. ALY You meai prove it? Well, | am not sure...but | know it’'s jus

property of a parallelogral

To verify the claim, ALY first referred to it ascharacteritic of a parallelogral, and
then used a ruler to measure the sides of thelglagiam to complete her vacation. As |
mentioned earlierfALY did not have much experience in constructingiathematical proof i
this context, but my observation was that she was @ of the difference between constructir
proof at an abstract level and checking with a cete example at an object level. For exam

her awareness showed when ALY asked, “In this [gogram? | can measure it” [4:
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Consequently, ALY used a ruler to measure the dppesles of the parallelogram to che
congruency [42], and referred tos congruency as a property of a parallelogi
This pattern omeasuriniandcheckingalso appeared when ALWas verifying the

equivalence of diagonals inrectangle

95. Interviewer What can you say about the diagonals of this paogllam’

96. ALY They are of equal lenc.

97. Interviewer How do you know that they are eqt

98. ALY Because | learned it a long time ago, in a recgrpk

diagonals are the sar
99. Interviewer Is there a way that you could convince |
100a. ALY | would measure them, is that O.K? [Using a rule

measure the diagone

100b. ALY Yeah, they're both 8.2 centimeters. So, the dialyomave
equal lengtt
. & Y Nt
CoN : B N |

| challenged ALY by asking, “What if you don’t hamalers to measure the diagon:
what would you do?” ALY replied, “If you look, thdiagonals form two triangles”, ar
identified two triangles, and explained why the tinnangles were congruer

115. ALY [Shading the two congruent triang|
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116a. ALY

116b. ALY

116c. ALY

ALY intuitively provided a general explanation albtlie equivalence of the diagon
using congruent triangles. ALY first identified tvgangles [see shaded areas in 116a] wher
diagonals were the hypotenuses of the triangle¥. élhose two congrud¢ elements, using tr
opposite sides of the rectangles as one pair oésponding sides in the triangles [116a],
noted a common side [116b]. From there, ALY conetlithat the diagonals were equal base

the equivalence of the two other pairs «des. Mathematically, to verify that two triangles

This side equal to this side [pointing at the opjgosides

of the paralleograr

o e — 2 k3 L - Y
-~ Y »
A, ™, Ay g‘( 3, e
R X “ Y

_____ ", Y\ "xv (L d{\ \ \
RN |
A *—\vj . ; ,.i[)' 7’3;\ \\.‘ 5

=i >, %, “\v’ i

e T R ’ A .

A
; T » - - ~

...Which means this side wouhave to be equal to th

side [pointing at the diagona

congruent we need three elements, and in thisAla¥eonly provided two. We nee

information about amcludedangle of the two sides that ALY identified to cowtel the

verification. Note that, in ougarlier conversation, ALY drew this rectangle abifeerent
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parallelogram, and she knew that all angles were equal in a rectangievétdhere was no
mention of the equivalence of the angles, the third element needed for tienfaahe
congruent triangles.

Ten weeks later | interviewed ALY again. When ALY discussed the sides of the
parallelogram, she used an argument including the distance between the Ipasitelverify
her claim that the opposite sides were congruent.

22. ALY Opposite sides are congruent in a parallelogram.
23. Interviewer How do you know that they are congruent?
24a. ALY Because the opposite sides are parallel to each
other, they have a fixed distance away from each
other. So, the distance from here to here is the
same as here to here, it's going to be the same all
the way through.
- [
distance
24b. ALY So, that would mean that this would be equal to
this because they never intersect [pointing at the

opposite sides]

[/

ALY’s used rulers and protractors to measure and check the congruent parts of the

parallelograms at the Pre-Interview. In contrast, ALY used an endorsetiveaistating that the
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distance between the parallel lines were equal to demonstrate that oppesitaf $he
parallelogram were equal at the Post-Interview. The preceding converdegiv my attention to
ALY’s incorrect use of he word “distance” in the context of the distance beatparallel lines; |
will discuss this matter later in looking at ALY’s word use.

During the Post-Interview, ALY used triangle congruent criterions to Sutiathe
congruent parts of parallelograms. For example, when discussing the diagonals of a
parallelogram, ALY stated that the diagonals bisect each other. When askedffcation,

ALY provided the following justification using the Angle-Side-Angle (ASAangle
congruency criterion. Table 4.19 illustrates ALY’s routine procedures of sulasi@amtivith
corresponding transcripts.

Table 4.19  ALY’s routine procedures of substantiating that diagonals biséeach other

Routine Procedures Transcripts

1. Identify triangles ~ 38a. Since | drew two diagonals, we can see that there are
formed by diagonals four triangles here.

=

2. Verification of two  38b. If you take this angle here and this angle here, they're
congruent triangles  equal to each other because they're vertical angles [pointing
at the vertical angles]

2.1 Identify first pair

of corresponding E

angles of the triangles

2.2 Identify the second 38c. Because these two lines are parallel, this angle would

pair of corresponding be equal to this angle here, because they're opposite interior

angles of the triangles angles, ...

2.3 ldentify the third  38d. The same goes for this angle and this angle, ...because
pair of corresponding of the same property.

angles of the triangles E
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Table 4.19 (cont'd)
2.4 ldentify the fourth 38e. ...and then this angle and this angle.

pair of corresponding
angles of the triangles E

2.5 ldentify one pair  38f. We already know that these two sides are equal because
of corresponding sidesthat's a property of a parallelogram [pointing at the sides of

of the triangles the triangles]
=l

4_
4. Verify congruent ~ 38g. So, you have Angle-Side-Angle here. And, so, that
triangles using A-S-A shows that this triangle here is congruent to this triangle here

correspondence
LT X

5. Conclusion 38h. When you match up the corresponding sides, this side
would be congruent to this side and then, this would be
congruent to this. So, they are of equal measure, so they

bisect each other.

In this episode, ALY provided a verbal explanation of why the diagonals of this

parallelogram bisect each other. More specifically, ALY used the A@Adle criterion to
verify that two triangles were congruent [38g], and concluded that the diagmsedehieach
other because the parts of the diagonals were corresponding sides of two corigngtes t
Note that at each step, ALY was able to provide mathematical justhisdior her conclusions.
For example, ALY statedjpecausdhese two lines are parallel” anbdetauseahey are vertical
angles” as justifications to demonstrate that two pairs of angles weile &AMaalso used “a
property of parallelogram” to explain the congruent sides.

During this process of verification, ALY identified four pairs of congruentes8b-

38e] and one pair of congruent sides [38f], more elements than needed for verifination.
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particular, she identified one pair of vertical Easy[38b] anca pair of alternating interior angl
[38b] that were not needed in her final verificatif two congruent triangle

As our conversations continued, ALY drew a rectarggid stated that the diagonals
bisected each other in a rectangle. The follig conversation took place when | asked
substantiation.

63. Interviewer How do you know diagonals bisect each other inc¢hise”

NS 4 di:

afs

v ALY'’s drawing

64. ALY For the same reason as last time, do you want reepiain again

65. Interviewer When you say, “for the same reason as last timbgtwlo you mean

66. ALY Just, all of it, when you create these trianglesthe triangles ar
congruent to each other...based on that propertpaadlllelogram:

have diagonals that bise@ch other [pointing at the triangles in |

parallelogram

ALY'’s drawing
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ALY referred to her newly endorsed narrative alibetdiagonals bisecting each othe
a parallelogram [64] to justify her claim about thiagonals in a rectangle. Given t

opportunity, | asked for a written proof. ALY’s wien proof is presented Table4.20.

Table 4.20 ALY’s written proof that diagonals bisect each othe at the Pos-Interview

D e 4 L(i)

e

v

<

p is the intersection of the diagor

- ~

(A% € LovC (Ntiesl ougles)
[ APDF LRfC (\azz*«\.»éxa\)

Lohe S pep (et wh Ls, TBJ/EC)

ae = v (prep. & ff‘e,gmm}

AREE = ACEY <A6P:) (st SieS w0 z bc;
AP = PO (c_c:w. gigdes, 1 & z"}‘sb D’?:W

Before ALY started to write the proof, she labelled vertices of the rectangle with A,
C, and D in a clockwise order. ALY used mathemasganbols like/, =, A, /to replace th
wordsangle congruenttriangle, andparallel, respectively, in hewritten proof. For example
ALY wrote “ZAPB = ZDPC”, “AB = DC” and "AABP = ACDP” to indicatewo congruen
angles, sides and triangles accordingly. | aske¥ Adr further clarification
77. Interviewer Can you explain to me what you wrc

78a. ALY | haveangle APB, so this angle right here, is equal t&€[
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because they are vertical angles, And then also angle APD, so

this here, well | guess that's not really important

Z/APB = #/DPC (vertical

A B
angles)
Z/APD = /BPC (vert.£s)
D C
78b. ALY Angle BAC is congruent to DCP because AB and DC are

parallel to each other, so these two angles are alternate interior

angles, and they're always congruent.

/BAC = /DCP (alt. int£s,

A B
AB//DC)
p
D C
78c. ALY AB is equal to DC because that is a property of a

parallelogram. So, we have two angles on this side, and that is
enough information to conclude that triangle ABP is congruent

to triangle CDP.

AB = DC (prop. of //logram)
A B

AABP = ACDP (ASA)

79. Interviewer When you say two angles and a side, what do you mean?
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80. ALY This angle and this angle. And then we have a side.

ZAPB = /DPC
A B
(vertical angles) angle
9
/BAC = /DCP
D C

(alt. int £s, AB//DC) -angle
AB = DC (prop. of //logram) —

side

It is evident that there was a change in ALY’s routines of verifying. She préyvious
measured and compared the sides of the parallelogram to verify her claimgshbgéct level in
the Pre-Interview, whereas, at the Post-Interview, she constructed ama@atiaéproof using
mathematical symbols and justifications at an abstract level. Howev¥rinsbrrectly used
Angle-Angle-Side (AAS) to verify congruent triangles. Recall that, inaaliee substantiation,
ALY mentioned “two angles and a side” as ASA to verify the congruent tricicgieectly.
However, in this example the same phrase, “two angles and a side” appeared agaimaiut
indication of AAS. Thus ALY displayed ambiguity in using congruent criterions.

When proving the equivalence of the two definitions, ALY’s routine procedures also
changed. At the Pre-Interview, ALY verified the equivalence of the definitiomststructing
the parts of the parallelograms with measurements that fit the descriptibiesdaffinitions,
whereas she constructed a mathematical proof of the equivalence of thigodefati the Post-

Interview. The following illustrates ALY’s routine procedure that | obsgimerask Three.
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In Task Three, interviewees were asked to construct mathematical poyofgifren
definitions. In particular, these interviewees were given two definitioaspafallelogram and
were asked to substantiate that these definitions were equivalent.

e Definition #1: A quadrilateral is a parallelogram if and only if both pairs of
opposite sides have the same length.

e Definition #2: A quadrilateral is a parallelogram if and only if both pairs of
opposite angles have the same measure.

In order to verify the equivalence of the definitions mathematically, inieeas needed
to usedeductionto prove the following implications:

e If a quadrilateral has both pairs of opposite sides of the same length, then both
pairs of opposite angles have the same measure; and

e If a quadrilateral has both pairs of opposite angles of the same measure, then both
pairs of opposite sides have the same length.

Deductiontakes place when a newly endorsed narrative is obtained from previously
endorsed narratives with the help of well-defined inferring operations.

At the Pre-Interview, | asked ALY what she would do to prove the two statememts wer
equivalent. She replied, “I would demonstrate what each definition is sayinghtherinew it
results in the same thing”. In trying to prove the implication “If a quadrdbtexrs both pairs of
opposite sides of the same length, then both pairs of opposite angles have the saneg meas
ALY explained, “I would draw a parallelogram where the opposite sides hawsaime length.
And, because they have the same length, they're going to have the same anylesedh
ruler to construct a polygon with opposite sides parallel and equal, so that thel qugnaadh fit

the description in Definition #1. ALY next used a protractor to check all the aoigles
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parallelogram, and found that the opposite angheisthe same measures, matching
descriptions in Definition #2. ALY finished this paf the substantiation with the conclus
“it's going to be that case every time, where thgles will be equal every timeALY’s routine
procedure of constructirgyparallelogram with both pairs cpposite sides of the same lengtt
order to prove thanplication, is shown in Table 4..

Table 4.21 ALY'’s proof by constructing a parallelogram with opposite sides equi

ALY'’s drawing of the parallelogra

o e <
e\ §
<
s

%"

b om

1. Constructing a parallelogram witopposite sides equal

1\

2. Verifying the given conditions (Definition # Using a ruler to measure the opposite side
the parallelogram

ocm 6cm
6cm 6cm

3. Verifying the result¢Definition #2: Using a protractor to measure the opposite arajlédse

parallelogram
68° 68° 112°
—
4. Conclusion
ALY: So, it's going to be that case every time, whezeatigles will be equal every time. | wa:

measuring the angles when | drew it. | was justisireg on the lengths, but it just came out
they were the same. And, it will come out that e&gry time
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To prove the other implication, “If a quadrilatehels both pairs of opposite angles o
same measure, then both pairs of opposite sidesthawsame length.” ALY began by drawin
guadrilateral with opposite angles equal then shasured the opposite sidShe used a ruler
check all the sides of the parallelogram, and fallnadl oppoite sides had the same leng
matching the descriptions in Definition #1. ALY cplated her verification with the conclusi
“based on oppgite angles being the sai | ended up with sides that were almost identici
length”. ALY’s routine procedure cconstructing a quadrilateral with both pairs of ogite
angles of the same measure to prove the implicagishown in Table.22.

Table 4.22  ALY'’s proof by constructing a parallelogram with opposite angles equi

ALY’s drawing of the parallelogra

5.7 ey

%8 o

1. Constructing a parallelogram with opposite anglesi&
1.1 Constructing an angle with®

65°

[ Py Py
—O v —0

1.2 Constructing a parallel line to the side an@soeing the ang

@&—

115°

P

—

65° 65°
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Table 4.22 (cont'd)

1.3 Constructing the fourth side that is parallel to its opposite side and measurigj tifdhre
angles

— Va > VN
115° . 115° gge
65° 65° 1159

2. Verifying the given conditions (Definition #Zhecking the angle measure of the opposite

angles
115° 65°
65° 115°

3. Verifying the results (Definition #1)Jsing a ruler to measure the opposite sides of the
parallelogram

5.7cm

115° 65°
4.1cm 4 1cm
65° 115°

5.6cm

4. Conclusion

ALY:This time, when | drew it, | focused on the angles. | drew the lines, thertddtoa

shape, based on opposite angles being the same. And, | ended up with sides thatostre alm
identical in length.

At the Pre-Interview, ALY’s routine procedures of proving the equivalence of the two
definitions involved the constructing a parallelogram, measuring the angles sides, and
comparing the measurements, all mathematical activities opesatamgobject level. It is

important to note that ALY did not know how to construct a mathematical proof and her
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argument was to generalize the result from a pdaiexample, assuming that “it will came «
that way every time.”

Ten weeks later, ALY’s routine procedures for subisséing the equivalence of tltwo
definitions changed. First of all, ALY proved thaplication “If a quadrilateral has both pairs
opposite sides of the same length, then both p&mpposite angles have the same measurt
providing an example of thaverseof the implicationThat is, ALY drew a polygon that fit t
implication “if a quadrilateral does not have bptirs of opposite sides of the same length,

both pairs of the opposite angles don’t have timeesaneasure.” ALY’s drawing and h

Z + ALY’s drawing

ALY: ...if they [pointing at the parallel sides] didn't hakie same
length, if one of the sides had a different lerthm the othel
...... then they [pointing at the legs of the trapezeowuld not
be a fixed distance away from each other, theyccoat be
paralld to each other, eventually, they would inters

explanation are shown in Figu4.2..

ALY: So, opposite angles are not eq;
Figure 4.21 ALY’s verification of the first implication at th&os-Interview

To my request, “Can you prove that opposite angtesequal, knowing that twopposite
sides have the same measure?” ALY drew a paratitognd onstructed a mathematical prc
by assuming the parallel sides of the polygon esrgiand applied the proposition that wl
parallel lines are cut by a transversal, the adjaiceericr angles add up to 180 degrees. She
solved the equations algebraically to justify thpposite angles have the same measure. A

drawing of a parallelogram and her constructiothefproof is shown in Figure 4.:
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Figure 4.22 ALY’s proof that opposite angles have the same une
To gain a better understanding of ALY’s thing, | asked for clarification, and h
response to that as follows:
13. Interviewer Can you explain to me what you wrc
14. ALY We'regiven that these opposite sides are parallel tb etdter. Sc
it's a parallelogram. We know that adjacent angtisup to 18I
degree:

AB /[ DC
A B AD // BC (given

D C
15. Interviewer How do you know this is parallelogram?
Because it's a fo-sided figure and opposite sides are paralli

16a. ALY each other and equal to each other, in le

154



A and D add up to 180 degrees, and also A and B add up to 180
16b. ALY degrees. So, that must mean that D and B are equal to each other,

because they are both supplementary to A. So, the same is true

for angles C and A, because B and C add up to 180 degrees and B

and A add up to 180 degrees. So, C and A must be equal too.

A B

D C
/A + /B =180 (prop. of //.ogram)
ZA+ /D =180 (prop. of //.ogram)
/B=/D
/C+/B =180 (prop. of //.orgam)

/C= /A

ALY'’s routines of substantiation changed from constructing parallelogt@absnatch
the descriptions in the definitions at the Pre-Interview, to formulating neativas “angle B
equal to angle D, angle A equal to angle C” using the endorsed narratiaasetfadjngles add
up to 180" and “two angles supplement to the same angle are the same” at the Rosivinte
Although ALY was able to use mathematical symbols in her proofs and she developed some
skills of proving in geometry, she still could not make a clear distinction betwesnwal
given and what was to be proved in the Post-Interview. For example, ALY was teeassum

quadrilateral with opposite sides of the same length as the given, but insteadsleetigc
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assumed the polygon was a parallelogram and used that to begin her substantippeardida
that ALY was at the beginning stage of constructing mathematical phMofe.evidence of the
change in ALY’s geometric discourse was in her word use. In the followitigrselcdescribe
the change in ALY’s use of mathematical terms during the two interviews.

ALY’s use of the worgarallelogramchanged from indicating bothombiand
parallelogramsin the Pre-Interview, to representing a hierarchy of classifications of
parallelograms in the Post-Interview. ALY also used more mathematioa teetween the Post-
Interview than during the Pre-Interview. Let us look at ALY’s use of thergewerds
guadrilateral parallelogram rectangle square rhombus, trapezoidndkite. The total
frequencies of these categories of quadrilaterals at the Pre-intamwikthie Post-Interview are
listed in Table 4.23 and Table 4.24.

Table 4.23  The frequencies of ALY’s use of the names of quadrilaterals #ite two

interviews
Name Frequency
Pre-T1 | Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3

Quadrilateral 0 1 0 4 0 1
Parallelogram 3 4 6 14 3 4
Rectangle 9 3 4 4 0 1
Square 1 3 3 8 0 0
Rhombus 11 3 0 3 0 0
Trapezoid 2 2 0 0 0 0
Kite 0 0 0 0 0 0

Table 4.24 shows the wophrallelogram(n=34) was the most frequently used during
the interviews, being mentioned in all three tasks (see Table 4.24). Theastanogle(n=21)
was the second most frequently used, daadnbus(n=17) the third. The workite (n=0) was not
mentioned at all in both interviews, atndpezoid(n=4) was the second least mentioned. Table 5
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shows that the wordfiombusandtrapezoidwere mostly mentioned in Task One, where
interviewees were asked to group the polygons. There was an increase in use of the words
guadrilateral parallelogramandsquarefrom the Pre-Interview to the Post-Interview. In
particular, the wordjuadrilateralwas used only during the Post-Interview. The word
parallelogramalmost doubled in the Post-Interview, while the wagdarealmost tripled There
was a reduction in the use of the wordstangleandrhombusat the Post-Interview. The
following section will discuss findings of ALY’s use of the wqrdrallelogramat the

interviews.

Table 4.24  Total frequencies of ALY’s use of names of quadrilaterals abé¢ two

interviews
Name Frequency
Pre Post
Quadrilateral 0 5
Parallelogram 12 22
Rectangle 13 8
Square 4 11
Rhombus 11 6
Trapezoid 2 2
Kite 0 0

In an earlier section, | described ALY’s routine procedures for sorting datedais in
Task One. In the Pre-Interview, ALY identified all 4-sided polygons with oppsisiess parallel
and without right angles, asombi My conversations with ALY revealed that she did not have

clear concepts of a rhombus and a parallelogram.
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30. ALY: P is arhombus, L is a rhombus, J is awhas, Z and H a

all rhombuses. [Pointing at these polygt

V<0 o

31. Interviewer: What is a rhombt

32. ALY: a rhombus would be the opposite sidesthrdpposit
angles are equal and it’s a f-sided figure.

33. Interviewer: What is a parallgram?

34. ALY: A parallelogram with opposite sides andjl&s are equal. .

This is a parallelogram [pointing at Fig.

In this conversation ALY made no distinction betwexrhombusand gparallelogran,
as she described both as a feigredfigure with opposite sides and angles equal. IrkTago,
ALY drew a picture of a parallelogram with the peojes of a rhombu

3. Interviewer Why do you think this is a parallelogram?
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4. ALY Because opposite sides are equal and parallel.
49. Interviewer What can you say about the diagonals of this
parallelogram?

50. ALY They are perpendicular.

ALY’s drawing of a parallelogram looked like a rhombus. Our conversations led ALY t
investigate the sides and the diagonals of the parallelogram. She confhiahdeetfigure was a
parallelogram with opposite sides equal, and the diagonals of the parallelegram
perpendicular. Of course, a parallelogram with diagonals perpendicular is lausobhese
observations suggest that ALY was not aware of the differences betweealalogramand a
rhombus and treated them as the same entity. To ALY at the time of the Pre-Inteaview

parallelogranwasa rhombus.

57. Interviewer Can you identify a rhombus here?

J
58. ALY J. [Pointing at Fig. J]

My interview with ALY showed that her use of the waakallelogramapplied of
rhombiandrectanglesa family of a four-sided figures that have opposite sides equal and

parallel. Figure 4.23 illustrates ALY’s use of the wpatallelogramat the Pre-Interview

Parallelogram

/\

Rhombus/Parallelogram Rectangle
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Figure 4.23 (cont’d)

Figure 4.23 (Previous Page) ALY’s use of the word parallelogram at the Pre-Intervie

ALY'’s use of the wordparallelogramandrhombusrefers to a family of four-sided
polygons that share a common descriptive narrative: opposite sides are equal leidpaiag
the Pre-Interview, ALY did consider squares as rectangles, but she made ndiconsietween
a rhombus and a square. Her grouping and identification of quadrilaterals sulggeshe had
no clear understanding of a hierarchy of classifications of quadrilaterals

At the Post-Interview, the change in ALY’s use of the names of quadrilasb@iseed an
understanding of the womghrallelogram as revealed in her hierarchy of the classifications of
parallelograms. In this hierarchy, the weatallelogramdescribes a collection of quadrilaterals

with different appearances and names, and arranged by the charastefittesr angles (i.e.,
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right angle versus non-right angle) and sides (i.e., all sides equal vepaisgt®gides equal).
Although given differenhamessuch asectanglesparallelogramsrhombiandsquaresthey
are all callecparallelogramsbecause they fit the description of opposite sides being equal and

parallel. This hierarchy of classification is analyzed in Figure 4.24.

Parallelogram (n=11)

Parallelograms Rectangles
Rhombi Square
L z R u

.

Parallelograms Rectangles

Y

T
P

Figure 4.24  ALY’s use of the word parallelogram at the Post-Interview

161



There was also a change in ALY’s use of the names of the parts of paralledo&he
used more mathematical terms describing the relations between amjdes in the Post-
Interview than in the Pre-Interview. A word search of the names of the partallpgrams
includedangle sides Jength parallel side opposite sideopposite angleright angleand
diagonal Findings show that ALY used more words describing the parts of parallelotframs

the names of parallelograms. Tables 4.25 and 4.26 provide word usage frequency of veord usag

at the two interviews.

Table 4.25  The frequencies of ALY’s use of the names of the parts of pasdtigrams at

the two interviews.

Name Frequency
Pre-T1 | Pos-T1 Pre-T2 Pos-T2 Pre-T Pos-T3
Angle 6 9 23 52 5 16
Side 13 10 15 27 4 16
Length 0 3 3 12 9 7
Parallel side 1 2 2 1 1 1
Opposite side 3 3 7 9 3 5
Diagonal 0 0 5 13 1 0
Right angle 3 1 0 1 0 0
Opposite angle 1 0 5 1 3 4

Table 4.26  Total frequencies of ALY’s use of names of the parts of parallelagns at the

two interviews

Frequency

Name Pre Post
Angle 34 77
Side 32 53
Length 12 22
Parallel side 4 4
Opposite side 13 17
Diagonal 6 13
Right angle 3 2
Opposite angle 9 5
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Table 4.26 shows that the most frequently used word relating to the parts of
parallelograms waangle(n= 111), with its usage of the word doubling in the Post-Interview
over the Pre-interview. The woahgle(n=75) was mentioned mostly in Task Two (see Table
4.25). The wordside (n=85) was the second most frequently mentioned. The vaogleand
sidewere mentioned in all tasks. Aftangleandside the worddength(n=34) ancdpposite side
(n=30) were the next most frequently mentioned at both interviews. Thdengitthwas mostly
used in Task Two and Task Three, whereas the dppusite sidevas mentioned in all three
tasks. Likewise the wordiagonal(n=19) was mostly used in Task Two. These results were
expected, as Task Two asks interviewees about the relations of the adgkeand diagonals of
a parallelogram. The ternght angle(n=5) was the least mentioned, and it was used mostly in
Task One. The termarallel side(n=8) was the second least mentioned, and it was mentioned
only one or two times during each task. The tepposite anglevas mentioned fourteen times
and it was used mostly in Task Two and Task Three. The wardd#lel sideandopposite angle
were not frequently mentioned during the interviews.

During the Post-Interview, ALY used more mathematical terms to desbelyelations
between the angles of the parallelograms than at the Pre-Interview. pédarfically, she used
the termsalternating interior anglgn=6) andadjacent anglegn=3) in the Post-Interview,
whereas she used “this angle” and “that angle” to refer to such anglesRretiinterview. ALY
also used the worgluadrilateral (n=5) in the Post-Interview, whereas she used the term “four-
sided figures” to describe such polygons in the Pre-Interview.

Lastly, | want to draw attention to ALY’s use of the walidtance The worddistance

was mentioned eight times during the Post-Interview, two times for Task Twoxantes for
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Task Three. Let us look at one case of ALY’s use of the @istdnceduring the Post-

Interview.

24a. ALY

6¢c. ALY

Because the opposite sides are parallel to each other,
they have a fixed distance away from each other. So,
the distance from here to here is the same as here to

here, it's going to be the same all the way through.

17
“fixed distance”

Because they have a fixed distance away from each
other and they always have a fixed distance away from
each other [pointing at the opposite sides of the

parallelograms]

v

“fixed distance”

ALY’s use of the wordlistancewas ambiguous. She indicated that the distance between

two parallel lines was the length of segments parallel to the other pair bélpsides of the

parallelogram [24a; 6¢c]. Mathematically, we defthstancedifferently in this context. Table

4.27 illustrates the mathematical definitiondidtanceand ALY’s use of the wordistance
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Table 4.27  The word distance in geometry and used by ALY

Distancebetween two parallel lines: E

al
—

ALY'’s use of “fixed distance”

In this section | have shown evidence of changes in ALY’s geometric disc@lry

—

changed from relying on the measurements of angles and sides to verify thaieocoggto
using axioms and propositions to substantiate claims about the congruent parts of the
parallelograms. During the Post-Interview, although ALY’s mathemaircafs were not all
correct, she demonstrated an ability to construct mathematical proofs usingiswynd
justifications. ALY’s word use regarding names of parallelograntscianged as we see a
structured hierarchy of classifications of parallelograms at thelRtestiew.

Among the twenty interviewees, five of them showed no change in their van Higke le
in the van Hiele Geometry Test conducted at the pretest and posttest. T astefiviewees
were AYA (2-2), ARI (3-3), AJA (3-3), ALI (3-3) and ARA (3-3). Therefome,this section |
describe AYA and ARI's geometric discourses, and | point out the differencefiamges in
their geometric discourses in the context of quadrilaterals and triangles.

Case 4: Changes in AYA's Geometric Discourse

AYA was a college sophomore at the time of the interviews. AYA took her lastajey
class seven years prior to the geometry and measurement class. Thde/@ebliretry Test
showed that she was at Level 2 at the pretest, and stayed at Level 2ngctmtide posttest ten
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weeks later. | interviewed AYA after both tests, and analyzed both her inteegpanses. A
summary of findings about AYA’s geometric discourse follows:

e My analyses from the Pre-Interview and the Post-Interview show that AYA's
routines of sorting polygons remained the same.

e AYA’s routine of substantiatioohanged from colloquial mathematical discourse,
where her substantiation was a set process of an activity at objectdevarids a
mathematical discourse using previously endorsed narratives about mathkemat
objects at an abstract-level. AYA'’s routine procedures were descripbonsthe
processes of activities using transformations such as reflectionatransand
rotation at the Pre-Interview, but were constructions of newly endorsed narratives
using propositions and definitions at the Post-Interview.

e When verifying congruent figures, AYA chose Side-Side-Angle (SSA)eas
conditions of verification at the Pre-Interview, which was incorrect, weeaea
the Post-Interview AYA chose angle-side-angle and side-angle-silii&, v
congruent criterions for verification of congruent triangles.

e When substantiating the equivalence of two definitions, AYA did not know how
to construct newly endorsed narratives from given definitions at the Pre-
Interview, whereas at the Post-Interview AYA constructed a newly erdtlorse
narrative using deduction.

e There were changes in AYA’s use of mathematical terminology such as the
names of polygons and their parts.

AYA's routine procedures for sorting polygons were observed and analyzed in Task One.

During the Pre-Interview, when AYA was asked to sort polygons into groups, her fissibque
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was, “Am | doing it on the assumption that those are right angles [pointing aiglles af a
square], and by itself can | assume anyway?” AYA's first attemgdréing geometric shapes “in
terms of the numbers of sides they had” resulted in the following: 1) 3-sidedgi(n=4)
consisting of all triangles; 2) 4-sided figures (n=13) consisting of atlrjaterals; and 3) 6-
sided (n=1) figures, which is Fig. V (a hexagon). When | asked AYA to subgroupstded!
group, her first reaction was, “If | can assume that the sides appear to ket fmaeach other”,
while pointing to the opposite sides of a parallelogram. AYA then rearrangedditisdigroup
into three subgroups, and subsequently, she rearranged the 3-sided group into thoapsabgr
well. See Figure 4.25 for details of AYA’s subgrouping of the quadrilatenalshes triangles on

the first attempt.

4-sided shapes (n=13)

/ \

Group One Group Two Group Three

On 0>
1 @PHD

167



Figure 4.25 (cont’d)

3- sided shapes (n=4)

K W X S

right triangle isosceles scalene

Figure 4.25 AYA'’s first attempt at sorting polygons at the Pre-Interview

Figure 4.25 presents three subgroups for quadrilaterals: squares/rectangles
parallelograms and a group of 4-sided figures that do not fit into the descriptitestab
previous groups. AYA made it very clear about the characteristics of each goo@xafple,
AYA talked about thgarallelograms grougonsisting only of the parallelograms that “don’t
have right angles”, and tlsgjuares/rectangles grougnsisting of figures that “have four sides,
all right angles, pairs of sides are parallel and have the same lengtharlg, AYA sorted
triangles into three groups by the characteristics of their anglédest ©n the first attempt,
AYA's courses of actions in response to the questions about sorting geomates figcused on
characteristics of angles (e.g., right angles) and sides (e.dlelpsices or equal sides). During
the interview, AYA did not use measurement tools such as rulers or protractorskahehe
angles and sides of the figures, but instead she chose geometric figures uagsurgtions
that “the sides appeared parallel” and “angles are right anglgsiteH.26 illustrates AYA’s

routine procedures of sorting geometric shapes into different groups.
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First prompt: “Sort the shapes into grot

7 r 7 N\

N

|
Counting the S|des} =N

|

|

l

of shapes | i, - Conclusiol

| I ,

I
Grouping by the samei: =N
number of sides | I/
1

First prompt continued: “Can you subgrot-sided and 4ided group?

] i

Choosing Grouping by visual properties of =\ | .

intuitively figures such as angles and SIdQS— % i Conclusiol
I

| J N / N J/

"’

Figure 4.26 AYA's first attempt of theroutine of sortingat the Prdnterview

When | asked AYA to regroup the figures differentigr first response was, “I want
separate them into shapes containing right angiésbapes that do ncontain right angle:.
Among the eighteen geometric figures in Task tAYA included figures (n=8) with at lea
one right angle in Group One, and included therégyn=10) with no rightngles in Grouy

Two. See Figure 4.2fbr some example

Group One: shapes contain right angles (

AN .

N M G

Group Two: shapes do not contain right angles (¥

AR ~~

J Z W

Figure 4.27 Examples of AYA'’s regrouping at the Pngerview
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In Figure 4.27 we see a variety of figures in each group, where AYA simptedivi
figures that have right angles from those figures that do not have righs anlen asked AYA
to subgroup Group One, and she provided the following response:

Interviewer: Can you subgroup Group One?

AYA: | guess for Group One [subgroup 1]...I could take
squares and non-squares ...l could take shapes that
have acute angles...like triangle...like K and N

[pointing at Fig. K and N]

AYA: | am sure that by defining the second group
[subgroup 2] ...I don’t know they kind seem
exclusive.... will follow figures that don’t contain

acute angles [pointing at Fig. U and M]

AYA continued to talk about her strategies of subgrouping Group Two. She divided
Group Two into two subgroups that do not contain right angles: one with figures that have at
least one set of parallel sides, and the other with figures that have no paltedeFgyure 4.28

illustrates the two subgroups in Group Two.
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Subgroup 1: with at least one set of parallel ¢

05>

Subgroup 2: with no parallel sic
W : : \% S : Q

X

J

Figure 4.28 The two subgroups of Group Two at the Rrerview

During the regrouping, AYA'’s courses of actions sorting geometric shapes focus
mostly on the characteristics of the angles ofriég notthe sides of figures. That is, AYA fir
divided the entire group of figures (n=18) into two greudepending on whether the figures
a right angle or not; and then divided Group Ore iwo subgroups based on whether
figures had an acute angle or not. AYA divicGroup Two according to wheththe figures ha
parallel sides or not; half of the figures in Grolyo are parallelograms. AYA’s routir

procedures in sorting geometric figures at the sé@&itempt are summarizin Figure 4.2¢

Second prompt: “Find another way to sort trdifferently?”

- Grouping by the characteristi¢s
iﬁ&?ﬁigg |:> of angles of figures |:> Conclusiol
y (i.e., right angles)

171



Figure 4.29 (cont’'d)
Second prompt: “Can you subgroup the two grou

] { \

. I~ | Grouping by the characteristics | _,
Choosing | &\ | h , Al PN
intuitivel)g i > i angles and sides of figures (i.e},| =) |

i i

(

i

i .

b LI > | Conclusiol
acute angles and parallel sideg) “ |
J |

v

e
N

J

Figure 4.29 AYA's second prompt of the routine of sorting at®me-Interview

Ten weeks later | interviewed AYA again, and folno changen her routineprocedures
for sortinggeometric shapes when compared to those of tt-interview. For example, at tf
Postinterview, when | asked AYA to group the figureg &aid, “the first thing | want to do
separate them by numbers of sides, like | didtlaxe [at the Pre-Interview]'When | askec
AYA to regroup the figures, she replied, “This [gpd just assumes that all figures appeare
have right angles ... Group Two could just be allfthares that don’contain right angle:.
Therefore AYA'’s routine pcedures fogrouping polygons at the Pdsiterview were similar t
what she did at the Piaterview.

Although I did not find any changes in AYA'’s rougiprocedures in classifyir
geometric figures between the time of the-Interview and the Postderview, | noted change
in her routine procedures of substantiation ofatares. In the followingl describe changes
AYA's substantiation routines Task Two and Task Threetween the Préaterview and the

Recall that aoutine of substantiatiois a set of patterns describing a process of
endorsed narratives to produce new narrativesatieatrue. For instance, in the context of
study, aroutine of substantiatic describes what an interviewee did, stepstgp, to substantia
her/hisdeclared statements that opposite sides are egagbarallelogram. One importe
finding in AYA’s geometric discourse was the chasgeherroutines of substantiatic as

observed and analyzed in Task Two and Task Tl
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Recall that Task Two asks interviewees to draw two parallelogramge¢hdiffarent
from each other, and then to discuss the angles, sides and diagonals of these twappanzdlel
At my request, AYA drew a parallelogram and declared, “in this paralletfogheangles should
add up equal to 360 After my prompt for substantiation, “how do you know that all angles add
up to 360?” AYA produced the following:

14a. AYA Well, when you have parallel AYA'’s drawing:

sides, you can extend all the E

sides... AYA extended the sides of

parallelogram:

S

14b. AYA ...it's 180 degrees and they’re Pointing at the two angles that

complementary angles ... form straight angles:

S

14c. AYA ...but you can see that this  Pointing at the two angles:

angle really just match this
angle ; ;

14d. AYA ...so you know that these two Pointing at the two angles:

angles together are gonna

Y

equal 180 degrees
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In the preceding substantiation, AYA first drew extended lines on the sides of the
parallelogram, in saying “you have parallel sides... you can extend...”[14a]danified a
vertex angle and its corresponding exterior angle forming a “complememgle’[14b]; and
she then identified an adjacent vertex angle transversal to the san@& exigle and made an
intuitive claim about the two angles, “you ...see this angle...matches this angle”Al¥4]
concluded that the two adjacent vertices of a parallelogram added up to 180 degredssjhgd]
this endorsed narrative, “two angles equal 180 degrees”, AYA continued her sabstatd
the final step:

24a. From this diagram and the Pointing at the two angles:
AYA parallel sides, these two

angles add up to 180

degrees... 0\

24Db. ... the fact that it’s just like Making an invisible line:
AYA a mirror image, the two 18(

sets of angles are just gonr

add up to 360 degrees. Q\

AYA used her previously endorsed narrative, “two angles add up to 180", and then
endorsed a new narrative, “two sets of 180 degrees angles add up to 360 degrees"Heseause t
are a “mirror image” (i.e., a reflection) of each other, and drew atiefteline (i.e., the dashed
line in 24b). AYA’s substantiation of the narrative, “all angles add up to 360 degrees” was
intuitive and self-evident because the reflection line that AYA drew was nue aflireflection
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of the parallelogram. Mathematically, this parallelogram only has point sytpnsymmetry

with respect to the center of the parallelogram (i.e., where the diagonalsatjteaad not line

symmetry. In this example, AYA used a “mirror image”(i.e., reflecttonjraw a conclusion

that all the angles add up to 360 degrees.

During the Pre-Interview, AYA frequently used reflections, rotations and atamss in

her substantiations of narratives. For example, when | asked AYA to verifyaimartblt “two

opposite angles (i.e4 1 andZ 4)are equal”, she provided the following response:

37.Interviewer:

38a. AYA:

38b. AYA:

38c. AYA:

38d. AYA

How do you know this angle is equal to this?

[Pointing atZ1 and/4]

...this angle [pointing ar'1 ] can just be slid over to this position and
create this angle [pointing a12] ...

...this line [drawing arrowhead on the line] can be rotated so that this
angle [pointing at“2] now becomes this angle [pointing.£3].

...this angle [pointing ar' 3] at this intersection, can just be slid down
and then be in this angle’s position [pointing/a].

So these two angles are equal [Pointing htand /4]
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In this case, AYA used words such as “slid over”, “rotated” and “slid down” to iredecat
sequence of movements preformed to substantiate the claim that “two oppogseaaag|
equivalent”. Lines and angles are static mathematical objects, but Aathtlnsse sequences of
imaginary movements to complete her substantiation; and through AYA'’s diesgripese
imaginary movements became visible to me. AYA’s substantiation was intartoveisual.
AYA's substantiation focused on the processing of the activities of mathaihdijects, rather
than on discussions about these mathematical objects. | conclude that AYAis prottedures
operated at the object level at the time of the Pre-Interview.

Ten weeks later when asked for substantiation, AYA used mathematical axidms a

propositions to verify her claims. The following brief substantiation wasaypi the Post-

Interview:
16a. AYA ... angles on a straight line add up Extending one side of the
to 180 degrees... parallelogram with a dashed
line, and pointing at the two
angles:
A
16b. AYA ...this angle here is the same as tl Pointing at the angles:

angle... Because parallel lines me

7
a third line at the same angle. E

’

16¢c. AYA By the same reason [referring to  Pointing at the two angles:
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16a], this angle added to this ang| y

equals 180 degrees... \cy/
16d. AYA ...these two also add up to 180  Pointing at the two angles:
degrees .
16e. AYA ...for a similar reason, these two Pointing at the two angles:
angles add up to 180 degrees... .

16f. AYA Together they equal 360 degree..

AYA made the same statement as previously about the angles of a paiatte|tal
added together they equal 36dn contrast to AYA'’s routines of substantiation at the Pre-
Interview, this example shows two changes that are evident: The first is dzath step of
substantiation, AYA provided endorsed narratives (e.g., mathematical axiom®podifons,
etc) as evidence instead of reasoning intuitively. For example, AYA egrgld&iow two
transversal angles are equivalent, not because you “can see it” astie-theeRiew, but as a
result of “two parallel lines meet a third line at the same angle” in thelfessiew. The
second change occurs in AYA'’s conclusion that “all angles add up to 360 degree”. At-the Pre
Interview, she argued on the assumption of this “mirror image”, whereas at tHatBosew
AYA reached her conclusion in a repeat of a similar proof that “two aadgksip to 180
degrees” for two adjacent angles in a parallelogram [16e-f]. Thus, one chang@’m rattine

of substantiatiorwas the shift from descriptions about the processes of activities at the object
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level towards the abstract level. | will suggest that the maturity of thicaabkevel of
substantiation is revealed in AYA'’s substantiation of congruent triangles.

In the following example, | will describe the changes in AYAgatines of substantiation
of two congruent triangles that | observed between the Pre-Interview aRdgtinterview. To
describe these changes | looked at two aspects: 1) change from the use of tatinsi®imthe
process of substantiation at the object level, to the use of mathemaitoas @t the abstract
level; and 2) the change in the choices of elements needed for verificatiorgnfemrtriangles.

During the interviews, participants were asked to substantiate theiredbokaratives
about the angles, sides and diagonals of a parallelogram. For example, whiioraske
substantiation of the narratives, “opposite sides are equal’, “opposite angéesialeand /or
“diagonals bisect each other”, some interviewees would support their narrativesd rulers
and protractors to measure the corresponding sides and angles, whereas otissvesterould
try to use mathematical proofs to verify their statements. Using lei@oggruency to
substantiate the corresponding sides and angles are congruent in a peaailedagcommon
method students utilize.

During my interviews with AYA, when asked for substantiation of declared nagsati
about the sides and angles of a parallelogram, AYA's first response was,thathgust
measuring them?” AYA expected to substantiate her declared narratttesitising the
measurement tools at both the Pre-Interview and the Post-Interview. As golesxam
following are AYA'’s routine procedures for the narrative, “diagonals bisestt ether in a
parallelogram”, using the triangle congruency method at the Pre-ktervi

When AYA discussed the diagonals of the parallelogram, she talked about dsagonal

creating two pairs of congruent triangles. After my prompt for subatamtj AYA identified
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one pair of such congruent triangles, and then identified two corresponding sides and tw

corresponding angles from the two triangles to verify their congruency

64a. AYA

64b. AYA

64c. AYA

64d. AYA

64e. AYA

64f. AYA

Because | previously established AYA added two marks:
that, it is given that these are %\
parallel sides...

And, these angles are equal and AYA added two angle signs:

when lines intersect... %\

... it's essentially the same AYA drew extended lines:
intersection, translated to a new %\
position...

... | was suggesting that this angl AYA added an arrowhead on the
is the same as this angle here.  two extendded sides, and two

angle signs:

=

... And that likewise, the AYA identified two angles that
complementary angles, the small form a striaght angle:
angle that makes it add up to 18( M
degrees...

. is the same over here... AYA identified another two

angles that form a straight angle:

e
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64g. AYA

64h. AYA

64i. AYA

64j. AYA

... S0, now | know that the angle Pointing at the alternating

here of this triangle is equivalent interior angles:

to the angle here of this triangle.. ﬁ

. and this side length is, the Referring to the two sides:
same of this side length... So, I'v %\
already shown how a side length
and an angle match of each...

... And then diagonals bisect AYA added two marks on the
themselves equally. | can't really diagonal:

prove that, but I'm suggesting the %\

this side length is the same as th

side length...

...this triangle is equivalent to thi¢ The shaded area indicates two

triangle here. congruent triangles:

==

AYA's substantiation included two parts: the first was the substantiation of the

equivalence of alternating interior angles [64b-64(g], and the second was tluatienfof
congruent triangles. The first part of substantiation, “this angle is eguivaléhis angle” (i.e.,
alternating interior angles), was intuitive and self-evident. To show that oppogiles are
equivalent in a parallelogram [64b], AYA used an instinctive process of translaging t

intersection to a new position [64c], and then “suggested” that the correspondingtiaite
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exterior angles were equivalent [64d], another intuitive act. The second part ahsabish
involved the verification of the two congruent triangles that she identifiedn@the process of
verification, AYA did not use measurement tools to measure the angles anthaidbgect level
of verification) to check equivalence, but instead chose three elements ofrijleti® verify
congruent triangles abstractly. However it is important to note that A¥iAogce of these three
elements (angle, side, side) for verification of congruent trianghssneorrect, because this
criterion does not guarantee congruent triangles. | conclude that AMBssastiation was a
combination of an objective level of substantiation (e.g., these angles are eglal),abstract
level of verification (e.g., two triangles are congruent), even though heeabicthe elements
for verification was not all correct.

Ten weeks later, | interviewed AYA again, and the same tasks were pedioitithe
Post-Interview AYA was able to use triangle congruency to substantiateofries declarations
stating that “opposite angles are equivalent”, “opposite sides are equiadritiagonals
bisect each other” in a parallelogram. AYA was able to choose three &emenés of the six,
such as Side-Angle-Side and Angle-Side-Angle, to verify congruenglesrand she was
comfortable using the triangle congruency method. The following responseatibgsAYA’s
substantiation that “diagonals bisect each other”:

54a. AYA ... I'mlooking at this triangle as Pointing at the shaded area:

compared to this one here...

54b. AYA And | know that these two AYA marked the angle signs on
angles are congruent... the two angles in the shaded

triangles:
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54c. AYA ...And between these parallel Pointing at the two parallel lines

lines, and now this diagonal, and one diagonal:

54d. AYA ... these angles are also AYA marked the angle signs on
congruent. the two angles of shaded
triangles:

54e. AYA ... So, by the triangle test, Pointing at the corresponding
angle, side, angle, these two angles, sides and angles of
triangles are congruent. shaded triangles:

N\

54f. AYA ...which means that this side  Pointing at each half of the
corresponds with this side and diagonals:

that this side corresponds with

that side. That's probably the
most roundabout way to find

that answer.

In the preceding substantiation AYA first verified that the “two triasglee congruent”
[54e] using the angle-side-angle criterion. She identified the exact tereerds (i.e., two
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angles and their included sides) needed for verification; and used the endordeceritveatwo
triangles are congruent” to construct a new narrative that “diagonatg bech other”, by
saying “this side corresponds with this side....”[54f] as a result of congrusmmgles. AYA also
made no intuitive claim about the equivalence of alternating interior angles Rbst-Interview,
as she clearly explained:
46d. AYA ...And, we know that between parallel lines, if you take a third

line and cross both lines, then it will have angles that are

congruent. In this case, this angle and this angle.

[AYA extended the two parallel lines, and marked angle signs

on the two alternating interior angles]

During the Post-Interview, AYA applied the same substantiation to other similar
situations. For instance, when | asked AYA why diagonals bisect eachrothezctangle, she
responded, “the same as what | did in parallelogram, | already ds¢abiigat.” When | asked
AYA at the end of Task Two, “is it true that in all parallelograms diagdmiakxct each other?”

AYA responded, “Yes, that’s true” and then shared her thinking about this conclusion:
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148. AYA ...because when you draw the diagonals in a figure, there is an
intersection point and it divides the figure into four triangles.
And, regardless of the figure, if it's a parallelogram, these two
triangles will be congruent and these two triangles will be
congruent [pointing at the two pairs of congruent triangles in the
rectangle] So, it can be found that in congruent triangles,
corresponding sides will be equal [therefore diagonals bisect

each other in all these cases].

In summary | conclude that there was a change in AYA'’s routine procedwrasy$ing
translation intuitively in the process of substantiation about the equivalertez aridles at the
object level, to using mathematical axioms to substantiate the sameatthienabstract level. |
am convinced that AYA was more rigorous at the Post-Interview, when she mackesabioi
three elements needed for verification of congruent triangles, than atthedtview.

To illustrate AYA'’s routines of substantiation, and how that substantiation helped t
produce newly endorsed narratives, the following scenario points out a furthge chakivA’s
geometric discourse in the context of her routine procedures of constructing néwesafram
previously endorsed narratives.

Recall that Task Three involves a mathematical proof, in discursive terntg, whe
interviewees were asked to construct new narratives from endorsed naffiagiyelefinitions of
a parallelogram). In particular, interviewees were given two defivgtof a parallelogram and

were asked to substantiate that these definitions are equivalent.
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e Definition #1: A quadrilateral is a parallelografrand only if both pairs c
opposite sides have the same ler

e Definition #2: A quadrilateral is a parallelom if and only if both pairs c
opposite angles have the same mea:

My conversations with AYA at both the I-Interview and the Postiterview show tha
she did not know the mathematical meaning of “twbrdtions are equivalent”; she thought
statement meant, “they’re baghying the same thin about the parallelograms. At the -
Interview AYA did not know how to substantiate thguivalence of two definitions; howev
she did attempt an analysis by drawing two quaeridds that fit the descriion in definition #1.
AYA'’s drawings from the Préaterview are shown in Table 4.

Table 4.27 AYA's attempts at proving the equivalence of two definitions

a. AYA'’ first attempt

AYA'’s drawing Transcripts

.

AYA: | wanted to draw a figure.
making opposite sides the same
length. | thought | was gonna
measure the angles, except th
cheated and used a right angle.
1\ So, that's not a very good exam

b. AYA’s second attempt

AYA: Well, this equal this side
length, and that equal this side
length ...and pairs of the angles
the same measure. | think the
definitions are equivalent, but hc
do | prove it without any numbel
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AYA first drew a figure as a concrete example of what is described imibafi #1: a
rectangle has opposite sides equal, and in particular the rectangle that &W Aaly opposite
sides with measurements of 4 and 3 respectively (Table 4.27a). AYA suggestddihs not a
good example” because the conclusion of “opposite angles are equal” is obvious giitaa ¢ghat
rectangle. As a second attempt, AYA drew an arbitrary quadrilatefahwispecific length
measurements and she assumed that it had opposite sides equal as describetian BEfini
(Table 4.27b); but she could not continue the proof because she did not know how to prove the
angles were equivalent without measurements, as she wondered “what is pro6f of this

In contrast, at the Post-Interview AYA was able to complete the substamutiif a
guadrilateral has both pairs of opposite sides of the same length, then both pairs o opposit
angles have the same measure”, using the Side-Side-Side triangle congritencs to verify
two congruent triangles. Using this endorsed narrative, AYA then identified tfesgonding
angles in the two congruent triangles to construct the newly endorsed nahattitteoth pairs
of opposite angles have the same measure”. AYA'’s routine procedures gredrzald the
corresponding transcripts from the Post-Interview are provided in Table 4.28.

Table 4.28  AYA's substantiation of two congruent triangles at the Post-letrview

Routine Procedures Transcripts
1. Draw a figure 4a. | guess | would start with a figure...
1.1. Identify the given 4c. ...just assume that this is a figure that this sgté is

equal to this side length and this side length is equal to this
side length, and that's all we know.

1.2 Draw a transversal 12a. | first would just draw a line from these angles, a
transversal here.

L

2. Verification of two
congruent triangles
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Table 4.28 (cont’d)

2.1 Identify corresponding  12b. ...this is a common side in both of these triar
sides of the triangles K
common side

2.2 ldentifying three elemen 12b. It's enough to say that two triangles witleéhside:
needed for verification of congruent to one another, to a corresponding si
congruent triangles another figure, are congruent figures.

3. Conclusion congruent
triangles using S-S-S ﬂ

correspondence two congruent triangles: shaded vs. trade

AYA'’s drawing and writing

Too Ls o 2 € *\4%“*&%3

1&. i‘é’ﬁ (\_51& ’M‘)h ,fﬂ

AYA wrote: “Two A’s arex if they 3 corresponding sides”

AYA's construction of a new endorsed narrative amntéd as she was tryi to show that
“opposite angles in this qualkhteral of the same measut

Table 4.29 AYA'’s newly constructed endorsed narrative at the Bst-Interview

Routine procedure Transcripts
1. Use previously 18a. usinghe fact that these two triangles .
endorsed narrative congruent

y

2. ldentify correspondin

angles of the congrue

triangles

2.1 Identifying one pair ¢ 18a. | know that this angle is equalmeasure t
corresponding angles (i.« this angle...

the first pair of opposit
angles) m
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Table 4.29 (cont’d)

2.2 ldentify second pair of 18b. ... and this angle is equal to measure to this
corresponding angles angle...

ZARL

2.3 Identify the third pair 18c. ...And that, this one is equal to this one...

of corresponding angles ﬂ

2.4 If all the parts of two 18d. ..therefore, these two added together is

angles are equal then two gonna equal these two added together, which

angles are equal would make them still the same angle,
corresponding...

s S o O
3. Conclusion 18d. . a four-sided figure with opposite angles
equal...

It is notable that there was a change in AYA'’s routine procedures of comgiraetv

narratives from previous endorsed narratives. At the Pre-Interview, A¥éMuataable to finish
the proof because she was unsure how to prove the equivalence of the angles withag checki

their measurements. However at the Post-interview, AYA was able fg eengruent triangles

by choosing three elements of six elements needed for verification, and usingotetuct

construct a new narrative. Thus, AYA's geometric discourse made a trantio geometric
discourse with only a partial properties check at an object level at the Rxeelntg¢owards a

geometric discourse with routine procedures capable of constructing new endorsikesa

using mathematical axioms and definitions.

| have described AYA'’s change in routine procedures of substantiation and tigesha

in her routine procedures of constructing new narratives; now let me describerthescima

AYA's use of mathematical terminologies.
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| begin with my general analyses of words that AYA used in naming georgtires in
various conversations; in particular, the wogdsdrilateral parallelogram rectangle square
rhombus trapezoidandkite. The total frequencies of the names of these geometric figures from

the Pre-Interview and the Post-Interview are shown in Table 4.30.

Table 4.30 The frequencies of AYA'’s use of the names of quadrilaterals the two
interviews
Name Frequency
Pre-T1 | Pos-T1 | Pre-T2 | Pos-T2 | Pre-T3 | Pos-T3
Quadrilateral 3 1 0 0 2 1
Parallelogram 7 5 33 19 4 6
Rectangle 3 4 0 1 0 0
Square 5 4 6 I 0 0
Rhombus 6 0 0 0 0 0
Trapezoid 3 0 0 0 1 0
Kite 0 0 0 0 0 0
Table 4.31  Total frequencies of AYA’s use of names of quadrilaterals até two
interviews
Frequency
Name Pre Post
Quadrilateral 5 2
Parallelogram 44 30
Rectangle 3 5
Square 11 11
Rhombus 6 0
Trapezoid 4 0
Kite 0 0

Table 4.31 shows that the wapdrallelogram(n=74) is the most frequently used during
both interviews, being mentioned in all three tasks. The sgudre(n=22) is the second most
frequently used, and the worectangle(n=8) is third. Note that the large difference in the

frequency of the wordgarallelogramandrectangle(n=66), and between the words
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parallelogramandsquare(n=52). The vord kite (h=0) was not mentioned all in both
interviews. Table 4.36hows that the worrhombus(n=6) andrapezoidwere only mentioned :
the Prelnterview, and mostly were mentioned at Task Orer@ was a reduction in use of-
wordsquadrilateral, parallelogram, rhombt andtrapezoidat the Postaterview, and there we
a slight increase in use of the wectangle(n=2) at the Podiaterview. However, th
frequencies of the word counts do not provide teetout how and in what way these wc
were used. The following analyses look AYA’s word meaning in the use phrallelogran,
rectangle square trapezoidandrhombus

In an earlier section, | described my observatmfrAYA'’s routine of sorting fo Task
One. It is important to note théhe natures of the tasks designed for the intervieare limited
and preeonstructed. For example, when AYA identified getndigures among given figure
in Task One, the pool of choices was limited tdheagn figures and those figures were-
drawn.Consequently, AYA’s misunderstandings about sonth@eometric figures were r
detected in Task One. Itis in Task Two, when lealsRYA to draw two different parallelograr
at the Prdnterview, that | began to understand AYA’s misdomsd definitior of
parallelogram and it was quitéifferent from what | expecte

2. AYA AYA'’s drawinc

Note: AYA drew a parallelogram first, and extendetes of the

parallelogram late
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3. Interviewer Why is this a parallelograr

4a. AYA | believe that this is a parallelogram becausewdt so that thi:
side... would be parallel to this side [pointingla¢ two longe!
sides of the parallelogram]

4b. AYA ... andthis side would be parallel with this side [poimgfiat the

two shorter sides of the parallelogr:

Later | asked AYA to draw a new parallelogram diiat from the one she drew, and :
provided the following respons

86. AYA AYA'’s drawing of newparallelograms:

Note: AYA drew a hexagon first, and she extendiss f the
hexagon late

87. Interviewer Why is this a parallelograr

88. AYA | think it's a parallelogram... because all the sialesparalle
to another sid

89. Interviewer Why is it a different parallelograr

90. AYA It's different...because there are more sides andusecthe

angles are differer
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The preceding conversations present an interpretive descripparalfelogramwhen
AYA used that word at the Pre-Interview. During our earlier conversati@kedaAYA “what is
a parallelogram”, and she responded, “it [parallelogram] is any figurédsait least one pair of
parallel sides. I think trapezoid [pointing at Fig. N, a right trapezoid] isders a
parallelogram”. When | asked AYA to write down the definition, she wrote, “Alletwgram is
a figure with all sides being pairs of parallel line segments”, and thana@ssistent with her
verbal statement. Neither AYA’s written narrative nor her verbal narrabeet parallelograms
mentioned the necessary condition of a parallelogram being a quadrilateeals8et this
missing condition, AYA chose a hexagon as an example of a different paratelMylen
identifying and defining parallelograms, AYA focused on the necessaditon of parallel
sides. At the Pre-Interview, AYA'’s concept of a parallelogram was anas she expressed, “I
actually don’t know if parallelograms are strictly four-sided figures... or nshaypes should be
parallelograms”.

AYA's use of the wordarallelogram(see Figure 4.30) signifies a collection of figures
that share this visual property of parallel sides. Based on AYA'’s definitiorgdlestion of
figures could include figures that have one pair of parallel sides sticpagoidstwo pairs of
parallel sides such @arallelogramspr figures that have more than two pairs of parallel sides
such ahexagonsWe notice that rectangles and squares are not included in the family tree of
parallelograms. According to what | observed during the Pre-Interview, AY Adatiinclude
rectangles and squares as parallelograms, but rather considered thespasit@ group of

figures that have right angles.
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Parallelogram

T

oo

N

AYA: a parallelogram is a figure wit AYA:itis a AYA: | think it's a

all sides being a pairs of parallel li ~ figure that has parallelogram because .
segments at least one pair sides are parallel to anott
of parallel sides. side [pr2. 88].
| think a
trapezoid is More could fit here based ¢

considered a  AYA's general definition o
parallelogram. parallelogram

N\

O

Figure 4.30 AYA'’s use of the wo parallelogram at the Prénterview

At the Postinterview the mosimportant change in AYA’s word usg her use of th
word parallelogram Although AYA showed very similar routine procedsmwhen identifying
geometric figures in both interviews, her concdp parallelogramwas different from that c
the Preinterview. For example, when | asked AYA to dravotdifferent parallelograms in Ta
Two, she drew a parallelogram and a sqt

2. AYA: AYA'’s drawing of a parallelogra
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3. Interviewer:  Why is this eparallelogram?

4. AYA: Because it has four sides and each opposing spradlel to one
another
60. AYA: AYA's drawing of a different parallelogra
>
A i
N, '5”"
Y v
61. Interviewer: Why is this a parallelograr
62. AYA: It's asquare... it has four sides of equal measure arahgles are
90 degree

63. Interviewer: Why is this different from the one you dre

64. AYA This one is different because all the angles is fiigure are equz

AYA's use of the wordarallelogran changed with regard to this added neces
condition of “foursided” figure, and the necessary condition of “faraides”. AYA
considered rectangles and squares as figures 8-degree angles and as parallelogre
AYA'’s use of the wordparallelogrem now signified a collection of figures sharing th@mmon
descriptive narrative, “a fowstded figure with two sefof parallel sides”.

It is notable that AYA included all quadrilateralgth two sets of parallel sides in tf
family tree of parallelogims, relating these quadrilaterals because “theg tveo sets of paralle
sides”. AYA did not provide any explicit informaticabout how these figures were related o
than being parallelograms. For example, AYA grougeambi together with parallelogms

because all rhombi have two sets of parallel sideg/ever there were no connections m
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between rhombi and squares, although AYA defined a rhombus as a “four-sided figuré with a
side length equal in measure”. Moreover, AYA did not mention any relations betweeassqua
and rectangles other than that they have four right angles. Thereforeg tizagat the Post-
Interview AYA had a good grasp of the concept of parallelograms in general rbut he
understanding of the hierarchy of parallelograms was missing, or noyadearbnstrated in the
interviews. Figure 4.31 illustrates AYA'’s understanding of definition péiallelogramat the

Post-Interview.

Parallelogram

\
<>

c
el

i

T G

Figure 4.31 AYA'’s use of the word parallelogram at the Post-Interview

According to my observations, AYA focused on the angles and sides of geongetres fi
when identifying and defining geometric figures. When asked to group figuressAfirét
reaction was to group them by the numbers of sides. When asked for subgrouping, AYA looked
at differentiating the figures by their angles, such as by rigliiea versus acute angles. Table

4.32 provides the frequencies of the names of the parts of parallelograms thatehtiéned in
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each task during the two interviews, and Table 4.33 provides the total frequertbesiames
of the parts of parallelograms at the Pre-Interview and the Post-Intervie
Table 4.32  The frequencies of AYA'’s use of the names of the parts of pasdtigrams at

the two interviews

Name Frequency
Pre-T1 | Pos-T1 Pre-T2 Pos-TR2 Pre-T3 Pos-T3
Angle 1 4 60 69 4 24
Side 21 18 41 53 7 13
Length 4 4 18 34 7 6
Parallel side 9 6 4 3 1 1
Opposite side 0 0 1 3 3 0
Diagonal 0 0 27 13 4 0
Right angle 9 10 2 4 2 0
Opposite angle 0 0 1 3 0 3

Table 4.33  Total frequencies of AYA’s use of names of the parts of parallel@amns at the

two interviews

Frequency

Name Pre Post
Angle 65 97
Side 69 84
Length 29 44
Parallel side 14 10
Opposite side 4 3
Diagonal 31 13
Right angle 13 14
Opposite angle 1 6

Table 4.33 shows that the most frequently used words relating to the parts of

parallelograms werangle(n= 162) angide(n=153).The wordsangle(n=129) andide (n=94)
were mentioned mostly in Task Two during both interviews. Adtejleandside the word
lengthis the next most frequently mentioned at both interviews (n= 73), and it was mostly

mentioned during Task Two (n=52). Likewise the word diagonal (n=44) was mostly usskl in ta
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Two. These results are expected, as Task Two asks interviewees aboutitres relahe angles,
sides and diagonals in a parallelogram. | want to draw a little attentiencheords such as
parallel side(n=24),opposite sidén=7) andopposite angl€én=7); these words describe
important characteristics of a parallelogram, but were least mentibbhethanterviews.

To support my claims of AYA’s change in geometric discourse, | descrilvetdnd use
and routine procedures during the interviews, and analyzed the changes inrAitikies of
substantiation, routines of constructing new narratigad her use of the wopdrallelogram
We see a dynamic change in her geometric discourse, from a colloquiahmraataé discourse
towards a mathematical one.

Case 5: Changes in ARI's Geometric Discourse

ARI was a college sophomore at the time of the interviews. ARI took her @segy
class in 8 grade, about five years prior to the geometry and measurement clasanTHiele
Geometry Test showed that ARI was at Level 3 at the pretest, and stags@la® bccording to
the posttest ten weeks later. | interviewed ARI after both tests, and ahbbzmterview
responses. Based on my observations, findings about ARI's geometric discoamrsdsefPre-
Interview and the Post-Interview are as follows:
¢ ARI changed her routines of sorting polygons, from focusing on the names and
attributes of the quadrilaterals at the Pre-Interview, to focusing on the hiecdrc
the classifications of the quadrilaterals at the Post-Interview.
e ARI's routine of substantiatiochanged from a combination of recalling and
measuring, a routine procedure using measurement tools to check the results at a
object-level at the Pre-Interview, to routine procedures using previously eddors

narratives to construct new narratives at an abstract-level at the Rogielut
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e ARI applied congruence criterions such as angle-side-angle, digksidee for
verification of congruent triangles; and used the dissection method to verify the
sum of the interior angles of parallelograms.

e ARl used new mathematical terminology to describe and to justify the canigrue
parts of triangles and parallelograms at the Post-Interview, whereasghmed
her claims informally at the Pre-Interview.

In the following sections let me begin with ARFgutine of sorting The findings of
ARI’s routine procedures of sorting polygons are mostly observed in Task One. TasksOne ha
eighteen polygons, consisting of triangles, quadrilaterals and a hexagon. Duiimgriews,
ARI was asked to place these figures into groups, and then to regroup them 8ifferent

At the beginning of the Pre-Interview, when ARI was asked to sort the polygons into
groups, she sorted them based on their names. She grouped eighteen polygoosgatof
triangles rectanglessquaresparallelogramgrhombi quadrilaterals andother. ARI's method
of grouping was as follows:

2a. ARl This group is triangles:

N~ <
TS

2b. ARl ... And then these ones are rectangles [pointing at the Fig. M, F, GJ:
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2c. ARl U, G, R are squares [pointing at Fig. U, G, R]:

Caunl

2d. ARl ... and these P, L, J, Z and H are parallelograms... rhombuses...

<> ¢

[/

J H

2e. ARl Andthen N and Q just are quadrilaterals...

N Q
2f. ARl And then Vs ... just a weird shape.

ARI grouped all 3-sided polygons together and called thiemgles she also sorted all
rectanglegogether, as well auares She groupegarallelogramsandrhombitogether, the
only group with two names. ARI put Fig. N (a right trapezoid) and Fig. Q (a quadrilattral
no parallel or equal sides) together because both have just four sides. Fig. ag@haas

grouped by itself. ARI called it “other” because “it is a just weird shape”.
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| asked ARI to regroup the polygons differently, and she regrouped them by combining
rectangles and squares together. ARI called that gemtangles
22. ARl These are just rectangles because squares can be also

rectangles...yeah [pointing at Fig. U and M]

ARI continued her regrouping, and she split paeallelograms/rhombuseagoup into a
group ofparallelogramsand a group athombi

24a. ARl And then L, Z those are rhombuses

24b. ARl  And then, those are parallelograms

[/
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ARI sorted the polygons based on the characteristics of their angles. She grouped the
polygons into aight-angled shapgroup (n= 8), consisting of polygons with at least one right
angle, and anbtuse trianglg€n=2) group containing triangles with an obtuse angle.

28. ARl  And these are right-angled shapes.

30a. ARI ..the right angle triangle [pointing at Fig. K]

30b. ARI ...and this has a right angle here [pointing at a right angle in Fig. N]

N
30c. ARI All the squares and rectangles [pointing at Fig. U and Fig. M again]

U M

30d. ARI These ones | put as obtuse triangles

w

Three polygons were left: Fig. S, Fig. Q and Fig. V. Then the following conversation

took place:
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33. Interviewer Why doesn’t Fig. S go with any other groups? [Pointing at Fig. S]

S

34. ARI It doesn’t have a right angle, it's not four-sided...so it's not a
square, a parallelogram, and then ...it's not obtuse either.

35. Interviewer How about Fig. Q? Why is Q left out? [Pointing at Fig. Q]

Q
36. ARI It doesn’t have parallel sides and it doesn’t have a right angle.

37. Interviewer How about Fig. V? [Pointing at Fig. V]

38. ARI V? ...that's just a weird shape...

ARI grouped figures according to their common descriptive narratives (i.aitidef)
by direct recognition. For example, when | asked ARI if | could put Fig. U (aespaad Fig. L
(a rhnombus) together, she responded, “yes, because they both can be seen as rhombudes”. When
followed by asking ARI why she thought the two polygons were rhombuses, she saids&beca
all their sides are equal lengths”. ARI did not use any measurement toolskdlehangles or
the sides of any polygon for verification while working on Task One. ThereforesARI’
judgments about the attributes of the angles and sides were direct recogmitiotugion.

Figure 4.32 summarizes ARI’s routine procedures for sorting polygons at thatétkeew.
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Grouping: “Sort the shapes into grou

Grouping by family ‘; N
appearances of the figuréd = >
(Identifying routine) | ¥
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i Visual recognition .
; Conclusiol
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(Identifying routing
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|
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|
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|
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Regrouping: “can you regroup them differentl

1. Grouping by the common
Visual recognition descriptive narratives of the names
p =\ | of the figuregDefining routine) | :
(identifying  |E21 2 Grouping by the characteristidd>’| ~Conclusio
routine) of the angles and the sides of the
figures (dentifying routine)

h N 4 N 7 h N 7

Figure 4.32 ARI’s routine procedures for sorting polygons & ®re-Interview
Ten weeks later | interviewed ARI again. In hertho@ procedures of sortir

guadrilaterals she arranged them with a hieraréltyassifications. Let me begin with ARI
responses in grouping the eighteen polygons. ARt §rouped polygons (n=18) bye numbers
of their sidestriangles(n=4), quadrilaterals (n=13) and &ix-sided figurgn=1). ARI then
divided thequadrilateralgroup into subgroups consistingsquaresrectangle,
parallelogramstrapezoidsandquadrilaterels. Figure 4.33 illustrateall the subgroups of tr
guadrilateralgroup.

Figure 4.33 ARI’s grouping of the subgroups of iquadrilateralsat the Pos-Interview.

Quadrilaterals (n=13)

/ \ Trapezoid
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Figure 4.33 (cont’d)

Parallelograms (n=11)

V<>

ARI: “...then P, L, J,Z, H, R, TG, F, Mand U are all parallelograms”

G U R
ARI:“M, FT, U, G, R are rectangles” \ ‘ /

“U, G, R are squares”

Figure 4.33 ARI’s grouping of the subgroups of the quadrilaterals at the Post-

Interview.
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At the time of the Podtaterview, ARI was able to groupe polygons using a hierarc|
of classifications of parallelograms. In her grawpia polygon could be placed multiple tin
because it was identified in several subgroupsitbgrdnt common descriptive narratives of
polygons. For example, in the fely of parallelograms Fig. R, asquare was not only classifie
as agparallelogrambut it was also identified asrectangle

When | asked for regrouping, ARI regrouped triasglecording to the characteristics
their angles, splitting thegiangle group into three subgroups consistingbfuse triangle, a
right triangle and armacute triangl. For theparallelograms the only change ARI made from t
previous grouping was to put the rhombuses anddhares into the same group, which
called the-hombusegroup. When | asked ARI why she made this charyeresponded, “the
are all rhombuses becauthey have equal sid¢. In this regrouping processsguar¢ was also
grouped as ehombusby this common descriptive narrative, “a rhombua feu sided figure
with all equal sides”During the Po-Interview, ARI again did not use measurement tc

ARI’s routines of sortingpolygons at the Pc-Interview are summarized in Figure 4.

Grouping: “Sort the shapes into grou

) R
1. Grouping by the numbers of sideg

Visual (Identifying routine)

recognition 2. Grouping by the common narrati\ . :
(Identifying I::> on the names of the polygons, ¢ [:> Conclusiol
routing) arranging the polygons by the hierarc
of classificationyDefining routines )/
~— ~—
Regrouping: “can yoregroup them differently?”
S s N )
_ 1. Grouping by the common descript
Vlsuz_atl' narratives on the names of the figu
recogniuon (Defining routine) 2. . :
(Identifying E:> Grouping by the characteristics of 1 I? Conclusiol
routine) angles and the sides of the figu
L (Identifying routine) )
J -/

Figure 4.34 ARI’s routines of sorting polygons at the F-Interview
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In ARI's responses for Task One in the Pre-Interview and the Post-Interviewashe
able to group geometric shapes by their common descriptive narratives. Also ssiidenva
classify quadrilaterals into a hierarchy with the help of her definingnesdt the Post-
Interview. At the Pre-Interview, ARI’s defining routines focused on the negessaditions of
the definitions. Thus figures were categorized by their common names. Instaaitthe Post-
Interview, ARI’'s defining routines focused on both necessary and sufficient cosdati the
definitions, and thus, the quadrilaterals were grouped with a hierarchy oficddisms. Change
in ARI's geometric discourse also occurred in her routines of substantiatithre. following
section | describe ARI’s routine procedures of substantiating her claims

| observed ARI’s routine patterns of verifying and justifying declarechtiges while
working on Task Two. ARI was able to use endorsed narratives to construct new rsaatatines
Post-Interview, whereas she depended on recalling and measuring routines eximberHAew.

A recalling routine is a course of action using previously endorsed narratives,raackiabout
remembering what one learned previously. In this study, A measurement isw#iset of
repetitive actions where participants measure the parts of polygons, andsesedasurements
in their identifying, verifying and substantiating processes. In the nart@e, ARI tried to
verify that all angles add up to 360 degrees in a parallelogram.

In Task Two all interviewees were asked to draw two parallelogramsetitfdom each
other, and to discuss the angles of the parallelograms. ARI drew a parafiekd wrote that
all of the angles added together equal°380hen asked for substantiation, ARI first showed that

two adjacent angles added together equat,la@td next used that result to justify her claim that

“all of the angles added together equal 360
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26. ARI

27. Interviewer

28. ARI

29. ARI

30. ARI

31. Interviewer

32. ARI

33a. ARI

33b. ARI

If you add this angle and this angl Pointing at the angle:

together, it's equal 180... D

Why is that?
There is a name for it. | forget the
term...

| think this angle is suppose to Pointing at the two angles:

equal this outside angle here... E

...and this line would equal 180 Pointing at the two angles:

N\

How do you know these angles ai Pointing at the two angles in
equal? [29]

...because | learned it in school?

don’t know how to explain it.

If that equals 180 added together Pointing at the two angles:

AN

...then this would equal 180 adde Pointing at the other two
together. So all the angles all angles

together would equal 360.

In this episode, ARI’s routine procedure is a recalling routine, where sleenteened

related mathematical rules, without knowing their mathematical termbythe&se rules work in

207



a given situation. For example, in looking at the two adjacent vertex angles ailelpgram,
ARI concluded that they added up to 180 degrees [26]. This conclusion is correct bexause w
know by definition that a parallelogram has opposite sides parallel, and we qaopsstions
about parallel lines and their transversals to conclude that the two angles add up to B30 degre
Similarly, ARI was able to recognize that the alternating interigtesnwere congruent [29], but
she did not know why these two angles were congruent, a consequence of two paratlet lines
by a transversal. Note that ARI utilized logical thinking in the statemiérhdt equals
180.. thenall the angles...” [33a-b].

In contrast to ARI's response at the Pre-Interview to the declared natrativibe angles
add up to 180 degrees, her substantiation of this narrative was different at thedPaistaint

33a. ARl These are adjacent angles... Pointing at the angles:

0

33b. ARI ... and these are alternate interior angl Pointing at the angles:

and they are equal, because... by the

i’

parallel lines

33c. ARI ... then this plus this angle is 180 Pointing on the angles:

because angles on a line.

!

33d. ARI ... And so this and this, the adjacent  Referring to the adjacent

angles equal 180. angles:

0
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In this argument ARI began to use mathematical terms to express her ideasedRieus
words “adjacent angles” and “alternating interior angles” to replacenformal use of “this
angle” and “that angle”, and “angle inside” and “angle outside” at thenBeesew. More
importantly, ARI substantiated her claims using endorsed narratives. &opkx when ARI
produced the narrative that alternate interior angles were equal, sheplsaddy ... the
parallel lines[33b]; and when ARI declared another narrative that two angles add up to 180
degrees, she used the phriaseause angles on a lifi@3c]. When | asked ARI why she thought
all angles in a parallelogram add up to 360e following conversation took place:

34. Interviewer Why do all the angles add up to 360? What are the angles that
add together to equal 360?
35. ARI All the interior angles, this plus this plus this plus this equal

360. [Pointing at these angles]:

pSEN

37. ARI Because if you draw a line, the diagonal, there are two triangles,

36. Interviewer Why is that?

and the interior angles of a triangle equal 180. So, two triangles

would equal 180 plus 180. That equals 360. [Draw a diagonal

XS

N\

on the figure]
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| expected ARI to use a newly endorsed narrative, such as two adjacestatjle to
180 [33d], to make the substantiation. She surprised me with her dissection method, drawing a
diagonal to cut the parallelogram into two triangles. ARI then used the endorsst/adhat
the sum of the interior angles of a triangle equals 180 to complete her proof of the claim
that all interior angles in a parallelogram add up t6®38RI’s routine procedures also changed
in verifying the congruent parts of a parallelogram.

ARI was aware of the abstraction of congruent parts of the parallelogtahesPost-
Interview, whereas she only usedasurement routings check the congruent parts at the Pre-
Interview. That is, when recalling routines did not seem to help, ARI used nmeasisdo
check her claims about the sides and angles of a parallelogram. In the nersatomve asked
ARI to substantiate her declared narrative about the diagonals of a square:

182. Interviewer What can you say about the diagonals of this parallelogram?

[Pointing at the square]

183. ARI They're gonna be equal lengths
184. Interviewer How do you know?
185a ARI Because they are all equal sides and | am pretty sure they

would be all equal diagonals...[Pointing at the sides of the

square]
185b. ARI | can check...
185c. AR Let's do it in inches...this one is 2.7... that’s also 2.7

[Using a ruler to measure the length of the diagonals of the
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square].

185d. ARI Yeah, diagonals are equal lengths.

When asked for substantiation, ARI first made an intuitive claim about why thendiag
would be equal [185a], and then used a ruler to measure the length of the diagonals, getting
measurements for each diagonal of 2.7 inches [185c]. With this confirmatiomoABUuded
that the diagonals were of equal length [185d], completing substantiation.

Our conversation went on, and ARI declared another narrative about the diagonals of a
square being perpendicular to each other.

189. Interviewer What can you say about the diagonals of this

parallelogram? [Pointing at the square]

190. ARI | think they’re perpendicular to each other.

191. Interviewer What do you mean when you say perpendicular?

192. ARI At the intersection, they create a 90-degree angle
[Pointing at the intersection of the diagonals]

193. Interviewer How do you know they are 90-degree angles?

194. ARI | can measure it... Yeah... it's 90-degree.
[Using a protractor to measure one of the angles
at the intersection]

195. Interviewer How do you know they are all 90-degrees?

[Pointing at the other angles at the intersection]
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196. ARI | am pretty sure that they are all 90-degrees.
Yeah.. this is 90... that’s 90... they are all equal.
[Giggling, and use a protractor to measure two

other angles at the intersection]

When | asked, “how do you know that they are all 90-degrees?”, | was looking for a
routine procedure operating at an abstract level. However, in ARI's responsetoetstion, she
focused on the concreteness of the congruent angles, in using a protractor tbelacjes one
by one [194; 196], thereby using measurement routines to verify her claam®hbject level.

As in her responses at the Pre-Interview, ten weeks later ARI declaredrtbenarrative
about the diagonals of a square, stating that the diagonals were equal |dmgthadked for
substantiation, ARI this time did not measure the length of the diagonals but respdghdéd w
can prove again that the triangles are congruent”. ARI had just substhttietéhe diagonals in
a rectangle were equal, so she applied that argument. Table 4.34 summarize®dtRie
procedures of this verification with corresponding transcripts:

Table 4.34  ARI’s routine procedures of substantiation for “two diagonals a& equal”

Routine Procedures Transcripts

1. Identify two congruent 111a. ARI: this triangle and this triangle are congruent [pointing

triangles at the shaded triangles]:

2. Declared narrative 111b. ARI: and then that side equals this side [pointing at the
diagonals]:
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Table 4.34 (cont’d)

Prompt for verification

3. Verification of two
congruent triangles

112. Interviewer: How do you know these two triangles are
congruent? [Referring to 111a]

3.1 Identify
corresponding angles of
the triangles

113a. ARI: well, these are 90 degrees [pointing at the two right
angles]

el A

3.2 ldentify
corresponding sides of
the triangles

3.3 ldentify another
corresponding sides of
the triangles

4. Verify congruent
triangles using S-S-S
correspondence

5. Conclusion

113b. ARI: they have a common side so that would be the same
for both triangles... [Marked a tally on the common side]

113c. ARI: opposite sides that are parallel...are equal [Marked
two tallies on the opposite sides of the rectangle]

113d. ARI: that gives you side, angle, side ... and makes these
two triangles congurent.

113e. ARI: by that, you can conclude that this side and this side
are equal [pointing at the diagonals of the rectagnle].

Table 4.34 shows that AR first identified a pair of congruent triangldsdigigonals as

one set of corresponding sides of the triangles, and drew a conclusion about therexpuofale

the diagonals [111a-b]. After my prompt for substantiation, ARI provided a sequeriep0b6

selecting three elements needed for the verification of congruergles|113a-c]. During this

selection, ARI did not use a ruler or protractor to check the measurements of trendides

angles, but instead used identifying routines and defining routioegxample, ARI used the

definition of a rectangle to identify two corresponding angles that “are@eek’ [113a], and

two corresponding sides that “are equal” [113c] in the triangles.
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86. Interviewer Why is this a parallelogram?ointing at ARI's drawing

87. ARI Because opposite sides are parallel and the oppmdits are equ

88. Interviewer Why is this a different parallelogram from the gm@ drew’

89a. ARI Because they all form 90 degree ancall the angles are equal, r
just the opposite angle

89b. ARI This is a rectangl

ARI used an identifying routii to identify the right angles and opposite sidepats of
the rectangle; and then usededining routincto confirm her choice of the elements of
congruent triangles needed for verification. Beeathe polygon was a rectangle, all angles v
equal and opposite sides were equal. It is legterf@a ARI to apply this proof in the case ¢
square as ithe next example, because she considered a squaneeatangle (see my earl
analyses for routines of sortint

We continued to discuss the diagonals of a sqédréproduced further narratives su
as “diagonals are perpendicular to each otheragonals bisect each other” and “diagor
bisect the angles”. As noted earlier, ARl madedbenection between the diagonals of a sq
and the diagonals of a rectangle, as in both dhgs@s‘diagonals were equal”. Later ARI ma
another connection beeen the diagonals of a square and the diagonagafallelogram, as
both cases their “diagonals bisect each other”. 4g@d the Ang-Side-Angle criterion tc
substantiate two congruent triangles in a parall@m, and applied that result to dréhe same

conclusion in the case of a square. To avoid reainey] ARI's substantiation of “the diagon.
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bisect each other” is not presented here. Instead | share ARI's sudigiargf “diagonals are

perpendicular to each other”:

133. ARI

134. Interviewer

135a. ARI

135b. ARI

135c. ARI

135d. ARI

135e. ARI

They are perpendicular to each other. [Pointing at the intersection

of the diagonals]:

How do you know?
[Thinking]... because the angles of the square are 90 degrees

[Pointing at the angle]

And the diagonal cut this angle in equal halves. [Pointing at the

two angles]

So this would be 45 degrees and this would be 45 degrees. [Writing

45-degree at each angles]

5° 45X

So that would equal to 90 degrees ... [Adding the two 45-degree
angles]
For angles a triangle it would be 180 total, so it would have to be

90 degrees. [Pointing at the intersection of the diagonals]
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To verify that the diagonals are perpendicular to each other, ARI tried to shatvethat
diagonals form 90-degree angles [135a]. ARI did not use a protractor to mebhtheeangles at
the intersection, but used endorsed narratives to verify her claims [135e]. In¢besoof this
verification, ARl made one assumption, that “the diagonal cuts this angle'ifl¥db], that
was not mentioned before. Therefore, | asked for substantiation:

142. Interviewer How do you know that the diagonal Pointing at the angle

cuts the angle in two halves?

—>
143a. ARI Because, if the diagonals are bisectin Pointing at the halves of

each other, .... Then the halves are a one diagonal:

equal lengths too ... Because the

diagonals are equal lengths.
143b. ARI ... So from there, if these sides are Pointing at the base

equal, and it would be an isosceles angles of the triangle:

triangle...by the definition of an

isosceles triangle, then these angles

would have to be equal.

143c. ARI And then the same with this triangle, Pointing at the adjacent
would also be an isosceles. triangle:
—>
143d. ARI So, these are the same isosceles Pointing at the angles:

triangles. So, the triangles are all
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congruent, and the angles would all

have to be congruent.
143e. ARI But this is 90 degrees. So, if these  Pointing at the angle of

angles are equal... then they are all 4 the square:

degrees.

45°

143f. ARI So the diagonals cut the angles in ha

ARI applied several endorsed narratives to substantiate her declareiyeétina
diagonals cut the angles in half”. ARI first used “diagonals bisect eacti atite“diagonals are
equal’, both newly endorsed, to conclude that “the halves are all equal” [143a], and used this
newly endorsed narrative to identify congruent isosceles triangles [143b-difBythe
properties of isosceles triangles, ARI showed that all corresponding [ingbe3 avere equal
[143b]. Knowing that the figure was a square, with 90-degree angles, ARI conclutig:tha
diagonals cut the angles in halves and they were all 45 degrees [143e-f].

In summary, | conclude that ARI changed her routine of substantiation, when she moved
away from an object level of measuring and checking the congruent parts of thetquaeen at
the Pre-Interview, towards an abstract level of substantiation, using endorsédemto verify
the congruent parts at the Post-Interviews.

The use of words and language are important when we study ones mathematical
discourse. Different interviewees show different developments in their usatioémmatical word
use. In ARI's case, she was able to use more mathematical terms in th&étegw than in

the Pre-Interview; she also developed conceptual understandings of quadisikater
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parallelograms after the Pre-Interview. Let me begin with sa@mergl findings of words that
ARI used in the names of the polygons. More specifically, these wordsjuadelateral
parallelogram rectangle square rhombus, trapezoidndkite. The total frequencies of the
names of quadrilaterals at the two interviews are shown in Table 4.35 and Table 4.36.

Table 4.35 The frequencies of ARI's use of the names of quadrilateralsthe two

interviews
Frequency
Name
Pre-T1 | Pos-T1 Pre-T2 | Pos-T2 | Pre-T3 | Pos-T3
Quadrilateral 3 4 0 0 1 0
Parallelogram 5 3 1 4 3 4
Rectangle 5 2 0 1 0 7
Square 6 1 1 3 0 7
Rhombus 5 3 0 1 0 2
Trapezoid 3 2 1 0 0 0
Kite 0 0 0 0 0 0

Table 4.36  Total frequencies of ARI's use of names of quadrilaterals atehtwo

interviews
Frequency
Name Pre Post
Quadrilateral 4 4
Parallelogram 9 11
Rectangle 5 10
Square 7 11
Rhombus 5 6
Trapezoid 4 2
Kite 0 0

Table 4.36 shows that the wagpdrallelogram(n=20) was the most frequently used
during the interviews, and being mentioned in all three tasks (see Table 4.35pralsguare
(n=18) was the second most frequently used ractngle(n=15) was third. The workite

(n=0) was not mentioned at all in both interviews, sadezoid(n=6) was the second least
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mentioned. Table 4.38hows that the worcquadrilateral rhombusandtrapezoicwere mostly
mentioned in Task One, where interviewees weredagkgroup the polygons. There was
increase in use of the worgdarallelogran, squareandrhombusn the Posthterview, over the
Prednterview, and use of the worectangledoubled in the Post-IntervieWRI's use of the
names of quadrilaterals was much lower than otiterviewees’ use of those nam

In an earlier section, | described ARI’s routinegadures for sorting quadrilaterals
Task One. At the Prexterview, ARI first groped the figures by their names and then by
characteristics of their angles. However ARI wasfased about how trapezoicand a
parallelogramwere related. ARI's confusion was not detectedaskiOne, but rather her choi
in drawing a different pali@logram at Task Two shed light on her understagaif the word:
trapezoidandparallelogram

la. ARI | don’t know if this is right, but | am going toalw it.

[ARI drew a figure

1b. ARI | think this is wronc

3. Interviewer Why? | just want to know what bothers y«

4. ARI | know these are parallel sides [pointing at the
parallel sides], but | don't know if a trapezoidhiso &
parallelogram. | am not sur

5. Interviewer What is a trapezoic

6. ARI | am not sure, cause | think trapezoids need two pdu

sides..
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7. Interviewer What is a parallelograr
8. ARI [Thinking]...A four-sided shape with like this [Pointit

at her first drawing], opposite sides that are lpelfa

The preceding conversation shows that ARI's conoétrapezoidwas unclear, as st
explained, “I don’t know if a trapezoid is also arallelogram” [4]. ARI produced a verk
narrative to my request “what is a trapezoid”,iatathat a trapezoid neecwo parallel sides [6
We see that ARI did know something abtrapezoids, fousided polygons with two parall
sides, but had no clear understanding that a paamllel sides is a necessary condition in
definition of trapezoid, confusirtrapezoidwith parallelogram a polygon requiring two pairs
parallel sides.

In Task One, ARI created tlparallelogramgroup consisting only gfarallelogramsand
rhombi Theparallelogramgroup was later split intparallelograms anchomb as two
subgroups. ARI created tihectanglegroup consisting of rectangles asglare then divided
them into arectanglegroup and isquaregroup. At that time ARI did not group tlrectangles
with theparallelogramsand did not provide information akt howrectanglesand
parallelogramswere related.In Task Two, ARI identified a rectangle and a squas
parallelograms, and explain€they are parallelograms, because they have bqgtosite sides
parallel”. ARI's use of the wor(parallelogran descrited a collection of figures having paral
sides. As noted, | included ARI's drawing of a #apid in this diagram because she did cons

at one point that a trapezoid could be a paraltelmg displaying her confusion about wh
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trapezoid was, and how it related to a parallelogram. Figure 4.35 illustratssufBerstanding
that all squares are rectangles, as well as her understanding of ibe daveen a rhombus
and a parallelogram. However, ARI did not clearly demonstrate the conndmttoveen a
rhombus and a square, but she knew that both were a “four-sided figure with all sidéd equal
conclude that ARI’'s uses of the names of parallelograms were limited tadh@non
descriptive narratives at the local level, while her understanding of tlaedhngrof
parallelograms at the global level was missing in the Pre-Interview.

To me, ARI's use of the worgdarallelogramreferred to a family of parallelograms with

two branchesparallelogramsandrectanglesillustrated as follows:

Parallelogram

TN

Parallelograms /rhombi Rectangle
M F
“
U
J
R G

L

Figure 4.35 ARI's use of the word parallelogram at the Pre-Interview
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At the Post-Interview the change in ARI's word use regarding the namesdrfigigaals
was revealed in the hierarchy of classifications of parallelogransRl’'s grouping and
regrouping for Task One in the Post-Interview, the waahllelogramdescribed a collection of
figures that were 4-sided with two pairs of parallel sides. In the fampwiafielograms, ARI
also recognized two subgroupsiegtanglegroup consisting of parallelograms with right angles,
and arhombusgroup consisting of parallelograms with all equal sides. Based on the
characteristics of the sides, ARI also split tbetanglegroup intosquaresa group of rectangles
with all equal sides, anectanglesLastly, ARI groupedhombiandsquaregogether because

all their sides were equal.

Parallelogram (n=11)

W <>¢
=< £
A/

M F R G
Rectangle (n=3) Rhombus (n=2)
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Figure 4.36 (cont’d)

o0

\ /

Square (n=3)

<

Figure 4.36  ARI’s classifications of parallelograms at the Post-Interview

R

Figure 4.36 shows a hierarchy of classifications of the parallelogra&RRlis use of the
word parallelogram In this hierarchy, the wongarallelogramsdenoted a collection of
guadrilaterals with differemtamesand these names weyarallelogramsrectanglessquares
andrhombi Although thes@mamesddentify polygons with different physical appearances and
attributes of their angles and sides, they arpaathllelograms

There was also a change in ARI's use of the names of the parts of paraftedotn this
study, the names of the parts of parallelograms considerecangleesides Jength parallel
side opposite sideopposite angleright angleanddiagonal Findings show that ARI used more
words describing the parts of the parallelograms than the names of thdquaaatihs. Tables
4.37 and 4.38 provide information on the frequencies of these words’ usage at the Pre-Interview

and the Post-Interview.
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Table 4.37

the two interviews

The frequencies of ARI’'s use of the names of the parts of parédigrams at

Name Frequency
Pre-T1 Pos-T1 Pre-T2 Pos-T Pre-T3  Pos-T3
Angle 1 2 22 26 4 3
Side 10 10 11 25 0 7
Length 1 0 18 14 5 5
Parallel side 2 2 1 0 0
Opposite side 2 6 11 3 7
Diagonal 2 0 4 12 0 0
Right angle 4 0 1 0 0
Opposite angle 0 4 4 2 4

Table 4.38

two interviews

Total frequencies of ARI's use of names of the parts of parallelogramat the

Frequency

Name Pre Post
Angle 27 31
Side 22 42
Length 24 19
Parallel side 4 2

Opposite side 11 21
Diagonal 6 12
Right angle 4 2
Opposite angle 6 8

Table 4.38 shows that the most frequently used words relating to the parts of
parallelograms werside (n= 64) andangle(n= 58).The wordsangle(n= 48) andide (n=36)
were mentioned mostly in Task Two during both interviews (see Table 7).aifjégandside
the wordlengthwas the next most frequently mentioned at both interviews (n= 43), and it was
mostly mentioned at Task Two (n= 32). Likewise the wdiedjonal(n=16) was mostly used in
task Two. These results were expected, as Task Two asks intervieweethalvelattions of the

angles, sides and diagonals of a parallelogram. Among the dpposite sidegparallel sides
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andopposite anglegn=14) that describe important characteristics of parallelogm@ppssite
sides(n=33) was mostly mentioned, apdrallel sidegn=6) the least mentioned.

During the interviews, | noticed that ARI used the waidesandlengths
interchangeably. For example, ARI identified Fig. Z as a rhombus bedabhss all equal
lengths[prl. 50], and later she stated a rhombus “has esjdak. Also, ARI used the phrases
“samelength’ and “samesid€’ frequently during the interviews when referring to figures with
the same length measures.

Another important change in ARI's use of words was in her use of formal matb@mat
terminology at the Post-Interview. These formal mathematical termslaesttributes of lines
and angles, as well as the relations between them. In particular, she useditajacent
angle alternating interior anglescomplementarysupplementantransversalandcongruent In
an earlier section, | briefly mentioned that ARI used the terms “adjangigs” and “alternating
interior angles” to replace her informal use of “this angle” and “that gregtd “angle inside”

and “angle outside” in her substantiation that angles add up to 360

Tables 4.39 and 4.40 provide information on the frequencies of these new mathematical

words used at the interviews.

Table 4.39  The frequencies of ARI's use of formal mathematical words até two

interviews
Name Frequency
Pre-T1 | Pos-T1 Pre-T2 Pos-Tp Pre-T3  Pos-T3

adjacent angle 0 0 0 4 0 1
alt. Interior 0 0 0 8 0 0

complementary 0 0 0 2 0 1
supplementary 0 0 0 1 0 0
vertical angle 0 0 0 2 0 0
transversal 0 0 0 1 0 0
congruent 0 0 0 12 0 0
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Table 4.40  Total frequencies of ARI's use of formal mathematical words ahé two

interviews
Name Frequency
Pre Post
adjacent angle 0 5
alt. Interior 0 8
complementary 0 3
supplementary 0 1
vertical angle 0 2
transversal 0 1
congruent 0 12

Table 4.40 shows that all these mathematical words were used only at thatétomw,
and most of them were mentioned in Task Two, where interviewees discussed thesateges
and diagonals of a parallelograms. The wardgruent(n=12) was the most frequently
mentioned, as ARI used congruent triangles to substantiate the congruent therrts of
parallelograms in the Post-Interview. During the process of verditati congruent triangles,
ARI often identifiedalternating interior anglegn=8) as one of the elements for verification, and
consequently this term was the second most mentioned (see Example Two).

ARI’s transition from colloquial mathematics discourse towards matheshdiscourse
also appeared in her use of logical justification. For example, at the Posiel{eARI
produced narratives with justifications such as “those sides arelggoatresponding parts in
congruent triangles “angles are equdlecause vertical angles are equalid “these sides are
equalby the definition of a parallelogram™To me, ARI's use of such mathematical language
was a step closer to the language of proof.

The van Hiele Levels as Geometric Discourse

In this section | introduce the modtie Development of Geometric discouiSee

Appendix F) that | developed for this study. In order to have a theoretical béstsmbdel, |
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translated each van Hiele level into discursive terms using four mathdrfesdicaes described
in the commognitive framework. These translations are presented in Chapter 2.

The model consists of four components:@Bometric Objectare utilized in the
participants’ use of mathematical words, saming criterions, realizatmahsystems of objects,
(2) Routinesare used in participants’ courses of actions in response to mathematical¥asks
Endorsed Narrativeare collected from participants’ written or verbal narratives in tbhyst
(4) Visual Mediatorsare collections of symbolic artifacts, geometric figures and thes, @t
involved in the study.

Let me describ&eometric ObjectandRoutinesn a bit more detail. In a mathematical
discourse, a mathematical object constitutes “this thing” that we discubs #tudy, “this
thing” very often is a triangle or a quadrilateral. Perhaps “this thing” alsd beuparts of a
triangle or a quadrilateral (e.g., sides, angles, etc). It is impaotg@ty attention to the
mathematical objects involved in a given discourse.

In this study, at different van Hiele levels the same geometric figuressisd may not be
the same thgeometric objecin the corresponding geometric discourse. For example, at Level 1
the wordsquareis used as a label to a picture of a square, just a matching of a word with a shape
(signifier). All squares can be grouped together because they all fit thig &opearance of four
sides equal; however, at this level students will not group a rhombus and a squles toget
because they do not have the same family appearance even though they both have four sides
equal (saming criterion). All figures are grouped by their names onlgubee@ach name
represents a family appearance (realization), and there is no hiecarcigcting geometric
figures at Level 1 (system of objects). At Level 3, the vwaapdlarecan also represent a

parallelogram, a rectangle or a rhombus because a square fits the commiptivaesarratives
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“opposite sides parallel”, “a parallelogram with four right anglest ‘garallelogram with four
sides equal” (saming criterion). Thus, a square can be grouped with parallslogretangles
and rhombi (realization).

If a student moves from Level 1 to Level 3, the polygon called “square” plays different
roles as a geometric object in the two different geometric discourses. A& sglavel 1 is a
picture of “a thing” called a square, whereas a square in Level 3 is an abljeattwith
required properties that can have different names. It is important in this stcoippare
geometric objects at each van Hiele level.

Routinesare discursive patterns that repeat themselves in similar situdtidhs study,
routines consist of identifying routines and defining routines, helping me fgsyian to the role
of definitions played in van Hiele levels 1 to 3. The model helps me to be more explicit about
how students identify a polygon, and with what evidence, as a repetitive patteenafyale, at
Level 1 a student identified a square because it looked like one (visual recognitiacepswiie
Level 2, this student identified a square because it has four equal sides. Buméheosild also
be rhombus because right angles were not mentioned (identifying partial @opdite
defining routines provide clues to the students’ use of definitions.

This model helped to identify participants’ geometric discourses with regdrditovan
Hiele levels. The model was revised during the process of analyzingpaarts: geometric

discourses.
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CHAPTER FIVE: DISCUSSION

Efforts in the mathematics education research community toward an understanding of
students’ learning have defined mathematical learning as activelyrouridiv knowledge from
experience and prior knowledge (NCTM, 2000), moving to a higher level of thinking (vem Hie
1959), or as changes in discourse (Sfard, 2008). Other researchers have developedanethods
measure learning quantitatively (Floden, 2002). In this chapter | return to thgsidisat
motivated this study and guided my analyses of learning. The question that settveda@petus
for the study was: “What do prospective teachers learn in geometry frompriyearation for the
work of teaching geometry?” It can be argued that this study doegdiinswer the question
because of the complexity of participants’ learning, and of the context ih wWigse students
were observed. However, my effort is to conceptualize these participzatteematical thinking
through their mathematical discourses as an evidence of their learningy thedaty some
information to the views of learning as moving to a higher level of thinking, and ageshian
discourse. | will begin with a brief summary of the participantshgea in levels of thinking as
well as changes in their geometric discourses.

Summary of the Results

To investigate changes in students’ mathematical learning, my studedoons
comparisons of students’ competencies in the topics of triangles and quadsikiténa
beginning of a semester and at its end. | conducted the analysis using ealeVisl (1959) to
investigate changes in students’ geometric thinking, and also used Sfard’s (300&)ide
framework in which mathematical features of discourse (i.e., word use, vistialtons,

narratives and routines) are analyzed.
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Changes in van Hiele Levels

Changes in participants’ (n=63) competencies were revealed in their overall
performances on the van Hiele geometry pretest and posttest. Therenmereements in
answering questions related to van Hiele Levels 1 to 3 at the posttest.dalpgrinost
participants did better in the following:

e More than ninety-five percent of the participants correctly named keisng
squares, rectangles, and parallelograms at the posttest.

e More than ninety-five percent of the participants at the posttest correctly
identified the properties of isosceles triangles, squares, rectaagteshombi
related to their sides, angles and diagonals.

e About ninety percent of the posttest participants correctly used logiahstaits
regarding triangles, squares, rectangles, and parallelograms.

These changes show that participants gained familiarity withefigiike triangles,
squares, rectangles, rhombi and parallelograms, and with their propentiespdds mentioned
more about the properties of angles and sides in a parallelogram, but less on ttiepaipe
diagonals. The comparisons of van Hiele pretest and posttest levels reusddedss
weaknesses in using deductive reasoning to construct proofs (Level 4) and #ietkeg
(Level 5).

Given these test results, one conclusion is that the geometry course helped sbudent
move from a lower van Hiele level to Level 3. However, the van Hiele testraleed that a
student entering the class at Level 3 likely would stay at Level 3. But ésa¢xpected, as the
course was designed for future elementary and middle school teachers, andsheraterials

emphasized activities mostly at Levels 1 to Level 3 of geometric tlgnkimd included only a
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brief introduction to constructing proofs. The study did not look at how teaching or the hee of t
textbook affected these students’ learning, but certainly the textbook and icstmsetions
contributed in some degree to these prospective teachers’ learning abourigdauees and
their properties.

The van Hiele Geometry pretest and posttest served as a frame toygathrai
information about students’ competencies and their thinking as a whole, but it did not provide
details on changes in students’ thinking at an individual level. For this purpose, |alsedn
changes in participants’ geometric discourses with in-depth interviews.

Changes in Geometric Discourses

| begin with brief remarks on the discursive framework, in order to set up my later
comments. Recall that the discursive framework conceptualizes matteasatiaiscourse, and
defines “learning mathematics” as changing of participation in mattieghdiscourse. The four
key mathematical features highlighted in the discursive framework (althgheir definitions)
are:
e Word use: Mathematical words that signify mathematical objects orgzoce
e Visual mediators: Symbolic artifacts, created specially for the citkes
particular communication
e Narratives: Any text, spoken or written, which is framed as a description of
objects, of relations between processes with or by objects, and which is subject to
endorsement or rejection; that is, to being labeled as true or false.
e Routines: Repetitive patterns characteristic of the given matheindiscourse

(Sfard, 2008)
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These features interact with one other in a variety of ways. For exampleseshdor
narratives contain mathematical words, and provide the context in which matlamatits are
used; mathematical routines are apparent in the use of visual mediators and paochines;
visual mediators are used in the construction of endorsed narratives, etc. Thderesting
part of this investigation was the way in which the examination of these maitedrfestures
contributed to understanding the richness and detail of the participants’ gealisetourse and
their thinking.

In an earlier chapter, | described in detail the uniqueness of each pariscg@metric
discourse at the beginning of the semester, and again at the end of the semest&n The m
changes in participants’ geometric discourses occurred in the followingatgds of
mathematics discourseord useandroutines

Word useThis study focused on patrticipants’ use of the names of quadrilaterals, and of
the parts of quadrilateralRarticipants’ use of mathematical terminology changed from
describing parallelograms as collections of unstructured quadrilatessd lon family
appearances, to using the names as collections of quadrilaterals sharingnodesoriptive
narratives. Some participants used of names of quadrilaterals with &lmyeoéclassifications
in the Post-Interview.

Word use is a key element in identifying objectification in the discursive Wwanke
Sfard (2008) defines objectification as “a process in which a noun begins to be used as if
signifies an extradiscursive, self-sustained entity (object), indepeaflentan agency”
(p.412).

The use of the worgarallelogramillustrates the importance of objectification. When a

student states, “this isparallelogrant based on its family appearance, she uses the word
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parallelogramas a label to match polygons fitting this visual description, rather than a definition.
It is perhaps in course work, through the process of identifying, defining ancliggngr

properties of quadrilaterals, that this student has developed a conpaptltdlogram,so that

the word is used as a collection of quadrilaterals sharing a common descripttead.e.,
definition), such as “parallelogramis a quadrilateral with opposite sides of the same measure”
That said, the student uses the wpatallelogramto include 4-sided polygons such as squares,
rectangles, and rhombi. The change in discourse counting as learning istiatrénesn non-
objectified speaking to objectified speaking.

Objectification is not straight-forward to detect; however therelaes ¢n the ways
students speak that provide hints about how they are thinking. In the example in the previous
paragraph, “g@arallelogramis a quadrilateral with opposite sides of the same measure”, the
word “parallelogram” is used with “is”, “quadrilateral” and “opposite sidkthe same
measure”. One clue that “parallelogram” has been objectified is #ias ‘ised with the object.
That is, “parallelogram” is a noun. Also, in this discourse “quadrilateral” and “dpmides of
the same measure” are used exclusively with geometric shapes. Thus|l&qoeam is a
guadrilateral with sides of the same measure” is stated as a matlaéfaation geometry. At the
non-objectified stage of the use of “parallelogram”, we would be more likelyatoslbenething
like “this parallelogram has two long sides equal and two short sides equal’.efoe“has”,

“long sides”, “short sides” and “equal” describes what a stusksdabout a parallelogram, but
does not have to describe a mathematical fact.

The objectification oparallelogramis perhaps even more complex when we consider

the hierarchy of classifications. | suggest that the objectificatiparaflelogramis complete
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when students can map out a hierarchy of classifications. Only then is thpawaltdlogram
recognized in all its connections and relations, and its diversity realized.

Routines] analyzed changes in participants’ routine procedures, including routines of
classifying, identifying, defining, verifying and substantiating. Byistated, participants’
routine procedures changed from identifying polygons using visual recognitionntibyice
them using endorsed narratives. In verifying claims, participants’ routinedurmes changed
from recalling, measuring and/or constructing routines, to formulating pusofg mathematical
propositions and axioms. Some participants’ routine procedures also includedialgebra
reasoning to verify claims in geometry.

Some participants’ routines of verifying were descriptions of processeatbématical
activity. For example, one participant verified that diagonals in a rdethage equal measure
by explaining, “They are the same because | measured it". The tenea4ured it” reveals that
the participant’s routine of verifying relies on comparing and checkingunements, and is a
description of whashe did Another participant verified that two angles were congruent by
asserting, “the angle can slide over to this position and create thisamdjkbe line can be
rotated so that this angle now becomes this angle”. The use of “angle” wdthdser” and
“create”, and the use of “line” with “be rotated” and “becomes”, indicatethiparticipant’s
routine of verifying was a description of whhe linesand angles didn an imaginary way, but
was not rigorously based on mathematical facts. Changes in discourse thaisdeaming are
transitions from an object level way of speaking to an abstract level waysakisg.

In this study, the participants’ routine procedures were less polished than those of

professional mathematicians. However the analyses of their routine presstied light on
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participants’ reasoning and problem solving skills, and on their abilities in corstsiof
mathematical proofs.
What Can We Generalize and Why

Although, much support exists for van Hiele levels, researchers have questioned and
modified certain aspects of these levels. To answer the question “Whatraalditformation
does the discursive framework provide with regard to the levels of geometriat#hki need
to discuss how and in what way my study contributes to mathematics education bakad on w
we knowso farabout van Hiele theory. In this section | begin with a brief review of what we
know about so far the van Hiele theory, and follow with descriptions of geordesttmurses at
each van Hiele level, and then discuss the usefulness of revisiting the valevideaising a
discursive lens.

To elaborate more on “what do we knewfarabout the van Hiele theory?”, let me refer
to the following three questions raised by Clements (1992):

1. Are the levels discrete?

2. Do students reason at the same van Hiele levels across topics?

3. Should other characteristics of the levels be considered?

First, according to the van Hieles (1959), the levels are discrete in the serke\tlze
gualitatively different from one another, and the “discontinuities are ... jumps iaaherg
curve, and these jumps reveal the presence of the levels” (p. 76). Research dahftrttee
five van Hiele levels are distinct qualitatively from each other. Howenany studies have
guestioned whether the van Hiele levels are discrete, because some stedelstsflgeometry
thinking are in transition between two levels (e.g., Fuys et al., 1988; Burgen&gBnessy,

1986). For example, when assigning students to van Hiele levels in Burger and Shaghnes
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project, reviewers could not resolve disagreements on whether students shoulghlieel &ss

van Hiele Level 0 or Level 1 (Burger & Shaughnessy, 1986, p.18). These results erctourage
researchers to provide evidence for a more dynamic and continuous model (e.gt,dfuys
1988; Gutierrez et al., 1991; Usiskin, 1982).

Going in that direction, with the assumption that van Hiele levels are not discrete
Gutierrez et al. (1991) developed a model, “degree of acquisition of a van Hiele(pe\238).
This model assigned a numerical value to indicate one’s acquisition of a varedal For
instance, when students have no trace of the thinking methods specific to a new lgvely¢he
no acquisitionto this level of reasoning. Once the students begin to be aware of the methods of
thinking at a given level, with some attempts to work on this level, they Havwedegreeof
acquisition of the level. Improvement goes on until students attain complete tmowkthe
new level, when they have complete mastery of this way of thinking and are al#etto us
without difficulties. Figure 5.1 shows both the quantitative and qualitative inteipnstaf the

model (p.238).

No Low Intermediate High Complete
acquisition  acquisition acquisition acquisition  acquisition
- - - e |
Y RSSO BORaas e s
- Li E 1 L . L]

0 15 40 60 85 100

Figure 5.1 Degree of acquisition of a van Hiele level
Using this model, Gutierrez et al. found that the possibility that a student caopigvel
consecutive levels of reasoning at the same time, and the acquisition of thesl@hes inore
complete than the acquisition of the upper level. Their study inferred possible cotirtioiitya

van Hiele level.
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More recently, when describing the levels of reasoning, Battista (2009atkdst
students’ reasoning at each level with different phases. For example, hstsulggie‘Students
at the beginning of Level 1 [Visual-Holistic reasoning] might identigyfes...as squares”
(p.93); “Students at the end of Level 1 might reject... as a square”(p.93); and fiBafigre
reaching the last phase of Level 2 [Descriptive-Analytic reasoniragt students would identify
... as a square”(p.93). Battista’s descriptions of students’ levels of reastiowgd the
continuity of the development within levels. More researchers are convincdovatyhat the
levels are “dynamic rather then static” (Burger & Shaughnessy, 1986, p.45) emib ref
“continuity rather than jumps” (Clements, 1992, p.429) in the process of learning. Hpweayer
little study has been done in this area to verify these claims.

Several studies using van Hiele levels to categorize students’ levasraggy thinking
across different topics indicate that students may not be working at theesetnenl all concepts
(e.g., Burger & Shaughnessy, 1986; Mayberry, 1983). For example, Mayb@8B) @ssessed
nineteen undergraduate pre-service teachers’ levels of thinking using seveety concepts:
squares, right triangles, isosceles triangles, circles, paraksl, Isimilarity and congruence. The
study found that “the determination of the success criterion for a given topicvehd/és rather
subjective” (p.68). This conclusion can be understood to mean that pre-servicestessrkeat
different levels for different concepts. However the study did not provide infimmaoncerning
in what way they are different. For instance, one might suspect that a mmndtditincept such
as similarity would require a higher van Hiele level of thinking than the titzgsn of a
quadrilateral.

In Burger and Shaughnessy’s project (1986), interview tasks consisted ofgjrawin

sorting, identifying, and defining geometric shapes such as triangles andageisds. With
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regard to different tasks, some students operated at different levelsaRgslexone student
was reasoning at Level 3 (Abstraction) on the sorting task, but was astidreact| 4
(Deduction) on the identifying and defining tasks because he was able tdwengga attempt
to verify his conjecture by means of formal proof (p.42).

The ways of identifying students’ levels of geometric thinking suggestiahould
adapt van Hiele levels to the complexity of the human reasoning processehstcai@snts do not
behave in a simple, linear manner.

The van Hieles argued that a learning process is also a processioil@new
language, because “each level has its own linguistic symbols” (van H&le/1985, p.4). The
van Hiele levels reveal the importance of language use, and language tahfadtor in the
movement through the levels. Van Hiele (1986) provides an explanation of the language use a
each level. For example, at Basic level thereléguage but the use of thignguageis limited
to the indication of configurations that have been made clear based on observationl Af Leve
students need to develop theguagethat belongs to the descriptive level. At Level 2, the
languagehas a much more abstract character then the descriptive level, and reaboning
logical relations between theorems begins at this level. At Level 3, stutkentisdanguageof
proof (p.43-53). However, the word “ language” is not clearly defined in the broad mise of
Some researchers would consider “language” in the comparisons of infonguahdge versus
formal language, whereas others would refer to it as the different use of mia¢heneabulary
at different van Hiele levels.

In discussing the assessment of students’ reasoning in van Hiele levetsa B2007)
argues about the validity of the reasoning, which involves the accuracy andbpretistudents’

identifications, descriptions, conceptions, explanations and justifications. &tessamnust
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determine which, if any, validity or mere uses of proprieties are ¢retn@aacteristics of van
Hiele levels (p.855). The analysis of van Hiele levels depends largely oratilugtstudents’
verbal expressions. Many researchers found that activities such as soaes and drawing
pictures of polygons can also provide evidences of students’ levels of thinking (e.gr, &urg
Shaughnessy; 1986; Mayberry, 1983). These activities work well especiallyouitiger
children (Clements et al., 1999), while their language skills are still undelogenent.
Therefore we need to take a greater consideration of what studentafisido” when working
on a geometry task in order to better understand their geometric thinking.

My study took a different direction, in examining students’ geometric thinkingghrou
their geometric discourse. The results of these examinations revealéétactiahs of the
richness of human thinking, while helping to add a little more data on what wesknianabout
the van Hiele Theory.

The van Hiele Levels: Discrete or Continuous?

This ongoing discussion about the continuity and discreteness of van Hiele theory
motivates the study to revisit the van Hiele levels with a different lend.use two of the most
revealing characters of geometric discougemmetric objecandroutine of substantiatiorgt
each van Hiele level to argue that my study confirms the discrete nataeelefels, and adds as
well more information on the continuity of the levels. | use the term “geaaddject(s)” to
refer to all the mathematical objects involved in a particular geometdoutse, whereas the
term “geometric figure(s)” refers to all the 3 or 4-sided polygons. My gssens about students’
substantiation at each van Hiele level focus on two types of substantiations: théewbjeand

abstract level substantiations.
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The object level substantiation emphasizes students’ routines of substantiatiorg &ioki
descriptions of how geometric figures are being investigated. Desgsatic lines, angles and
polygons as movable entities under transformations (i.e., rotation, translatiorilecttbrg, as a
way of substantiation, is an example of the object level of substantiation. Wit tega
definitions of different quadrilaterals, however, routines of substantiation depending
measurement routines to check the sides and angles of quadrilaterals, wittiauog tibout how
guadrilaterals are connected, are other examples of the object level of satostai@bject level
substantiation is a routine of substantiation, where students focus on the concreteness of
geometric figures.

Abstract level substantiation emphasizes students’ routines of substantiatgn usi
endorsed narratives to endorse new narratives. That is, students use mathdefatitons and
axioms to construct mathematical proofs. During my interviews with stsidienoticed that
students with an abstract level of substantiations also used object level satistentd modify
their justifications. For example, a student used the Angle-Side-Angle congraeterion to
construct a proof at an abstract level that opposite angles of a pgralhelare congruent, and
could also justify why this congruence criterion works using rotations at an objelct le

Geometric Discourse at Level 1

At Level 1, students name geometric figures based on their appearancambtrge
discourse at this level, the word use is passive. That is, the process of namirgpa go&n act
of matching a picture of a polygon with its given name. When a student is askedficatuan
of why such polygons are called “rectangles”, or why “opposite sides arnesarfgl
parallelogram are equal”, the course of actions include direct reagthtt are self-evident.

Some students use their prior experiences to draw conclusions, but the course ofractions a
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known as rote memorizations, such as “I learned it in school”, or “I know it is a squathis A
level, grouping quadrilaterals into different groups (i.e., rectangle, rhromba#g[mgram,
square, etc.) is about putting them together by their names. The geomettis abibis level of
discourse are collections of concrete, unstructured, discursive objects, and tloer@usne of
substantiation.

Geometric Discourse at Level 2

At Level 2, students are able to identify some properties of geometriegiguut
properties are not yet ordered. In geometric discourse at this level, wosdraggne driven,
which means that naming a polygon involves not just matching a polygon with a name, but
referring to it with a common descriptive narrative according to some visuakfesp®/hen a
student is asked for an explanation of why a polygon is called a “rectangle”, dopgosite
sides and angles of a parallelogram are equal”, the courses of actiods ihichct recognition,
as well as counting the number of sides, or measuring the sides and anglésddittensight
respond with, “It looks like it has four right angles”, or “I measured and all thesaagk 90
degrees”. At this level, grouping quadrilaterals into different groups involvesiniggthem by
their names and by some of their visual properties. The geometric objectdetahcd
discourse are collections of concrete, unstructured discursive objects whithomgaced into
disjoint categories (i.e., they all have right angles, or parallel stie¥, The routines of
substantiations in this geometric discourse focus on checking and vep#yitig visual
properties of geometric figures.

Geometric Discourse at Level 3

Level 3 is a level where the properties of geometric figures areeakdamnd they are

deduced one from another. A student thinking at this level does not understand deduction, but the
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definitions of figures come into play. In geometric discourse at this leved, ugar is still object
driven, as the naming of a polygon depends on its visual properties, and a common descriptive
narrative accompanying the name of the figure (i.e., a definition of a quagijatVhen a
student is asked why a polygon is called a “rectangle”, the course of actioméckotice
defining conditions of the polygon by counting the number of sides, and measuring and
comparing the sides or angles. A possible response is, “It is a rectarglsdéds a
parallelogram, and it has four right angles”. At this level, when the studmmgquadrilaterals,
a polygon could belong to multiple groups at the same time by definition. For exantpléerat s
could identify a square as a rectangle, a parallelogram, and a rhombus liddsube
descriptions of these polygons. Geometric objects at Level 3 are collections @teoncr
discursive objects and they begin to connect with joint categories. In thefcassdrilaterals,
all 4-sided polygons begin to fall into a hierarchy of classification.

It is important to note that objectification can be found in geometric discoursgeit3.
That is, a concrete discursive object, such as a 4-sided polygon labeled as & &qukmeer
geometric discourse (i.e., a lower van Hiele level), becomes an alos$@aasive object at this
geometric discourse, as the word “square” presents this multi-dimensionaitthirggfinitions
and relations to other quadrilaterals. Geometric discourse at Level 3 alds theadetails of
substantiation as a beginning stage of deductive reasoning.

Geometric Discourse at Level 4

At Level 4, students are able to reason deductively. In geometric disebtinselevel,
word use is object driven. That is, the naming of a polygon or using a matheneauicét.g.,
angle bisector, supplement angle, etc.) is guided by common descriptivevaargia.,

definitions). Grouping quadrilaterals into different groups means arrarf@nglty definitions
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with a hierarchy of classification. Routines of substantiations lead to thewims of new
endorsed narratives. At this level, students are more fluent in using definitithesri
substantiation, and in making connections among endorsed narratives (axioms,ipnspesd.)
to construct new endorsed narratives. Geometric objects at Level 4 actiand of abstract
discursive objects, and the main activity of substantiation is to produce newlyeshdors
narratives, or commonly, to construct mathematical proofs.

After the description of geometric discourse at each van Hiele level sitretginess, in
terms of qualitatively different geometric thinking at each level, is evidentydars, researchers
have examined the possibility that levels are continuous without jJumps. Let me movepn t
earlier claim that my study provides evidence of the continuity of thestawngbarticular, the
continuity of levels made visible through the variability of participants’ ceaungtheir
geometric discourse at the same van Hiele level, as well as at tweuibrséevels.

Continuity becomes more evident once we realize that changes in students’ igeometr
discourses are forms of change in thinking and communication, and that thinking is developed
continuously towards, rather than in jumps, to a higher van Hiele level. | wish to discousse
detail the development of geometric discourse, highlighting the development of wordluke a
changes in routines of substantiation.

Continuity Within a van Hiele Level

AYA and ARI showed no change in van Hiele levels in their responses in the pretest
posttest, but | found changes in their geometric discourses.

AYA'’s van Hiele pretest and posttest responses suggested that her thinketgapé
Level 2 (descriptive). | analyzed AYA’s word use, and found that her use of the word

“parallelogram” changed from the pre-interview to the post-interview. Whesjgoke the word
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“parallelogram” at the beginning of the semester, she naggmngolygon having pairs of parallel
sides, in using a definition of parallelogram with only a necessary condititer.ihdhe
semester, AYA developed more understanding of parallelograms in the geolas$; and she
was able to use definitions of parallelograms with both necessary andesuiffionditions. Her
thinking at the time fit more towards the descriptions of geometric discoursgedt3. Figures
5.2 and 5.3 illustrate the characteristics of AYA's geometric discoutbe are-interview and at

the post-interview, respectively.

AYA
Geometric Object Substantiation
No No Hierarchy . No
Definition of Classification il Abstract Level

Figure 5.2 Characteristics of AYA’s geometrics discourses at Level 2 atehe Pr

interview.
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AYA

Geometric Object Substantiation

/N /N

No Hierarchy
of Classification

Some

Definiti
efinition Abstract Level

Object Level

Figure 5.3 Characteristics of AYA’s geometrics discourses at Level 2 at the Pos

interview.

Figures 5.2 and 5.3 show two main changes in AYA’s geometric discourse, a change in
word use and a change in reasoning. AYA had developed competence in usingdgfioiti
identify and group polygons with no hierarchy of classification, and had developed som
informal deductive reasoning as her geometric thinking moved towards Levede3.IlAm not
trying to contradict the findings from AYA'’s paper-pencil pretest and postidsher interview
results, but rather to compile the results and to treat her thinking more dyiharkieaprogress
illustrates a student’s geometric thinking developing continuously within Leved tha
transition between Level 2 and Level 3, as she was more competent in usingpdsfininame
polygons, and her routines of substantiation began to operate at an abstract lemgl in usi
definitions and axioms to construct mathematical proofs.

ARI’'s geometric discourse presents another example of such continuity, but avithi
different van Hiele level. Her van Hiele pretest and posttest respargggsssged that her thinking
operated at Level 3. ARI came in with the ability to identify and group polygons using
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definitions at the beginning of the semester. By the end of the semester, shilregaon
more abstractly by constructing mathematical proofs using definitions sndsaxFigures 5.4
and 5.5 illustrate characteristics of ARI's geometric discourse al Beuethe pre-interview

and post-interview, respectively.

ARI
Geometric Object Substantiation
No Hierarchy No

Definition Object Level

of Classification Abstract Level

Figure 5.4  Characteristics of ARI's geometric discourse at Level 3 at the Pre-

interviews.
ARI
Geometric Object Substantiation
Hierarchy of Some

Definition Object Level

Classification Abstract Level

Figure 5.5 Characteristics of ARI's geometric discourse at Level 3 at the Pre-

interviews.
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Clearly, there are changes in ARI's geometric discourse withinl BeBuilding on her
familiarity with using definitions of quadrilaterals, ARI later showed usi@ading of how
guadrilaterals are connected. After ARl was more fluent in using definjtstre developed
routines of substantiations using informal deductive reasoning to substantidtrhsr c

In comparing ARI's geometric discourse at Level 3 with AYA's atéleéd, we find
similarities between ARI's geometric discourse at the pre-intervnel\AX'A’s at the post-
interview. Both shared familiarity with using definitions in identifying anouging
guadrilaterals, and were able to reason at an object level. Perhaps this abserdaiates the
continuity of learning in transitioning between two consecutive levels, Lewel@vel 3. | will
next look at ALY’s geometric discourse to make another case that the leproogss is
continuous.

Continuity Within Two Consecutive Levels

ALY was one of two students of the study who reached Level 4 at the end of the

semester. At Level 3, ALY demonstrated a typical behavior at this levéljsisated in Figure

5.6.
ALY
Geometric Object Substantiation
No Hierarchy No

Definition Object Level

of Classification Abstract Level
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Figure 5.6 Characteristics of ALY’s geometric discourse at Level 3 at the Pre-
Interview.

Similar to other students at Level 3, ALY came in with the ability to use tefisito
identify and group polygons, but she did not show how quadrilaterals were connected, and
performed object level substantiation. At the end of the semester, she wascble t
connections among quadrilaterals and to use propositions and axioms to construtiaticghe

proofs, as illustrated in Figure 5.7.

ALY

Geometric Object Substantiation

/N /N

Hierarchy of
Classification

Definition Object Level Abstract Level

Figure 5.7 Characteristics of ALY’s geometric discourse at Level 3 at the Post-

interview.

Figure 5.7 presents a main characteristic of a Level 4 discourse thatns iabsevel 3:
abstract level of substantiations. At this level, ALY showed familiantigls using definitions
and axioms to construct proofs and with using algebraic symbols to write a forrhahmatital
proof. However, at Level 4 we also expect to see behavior where students aveagbly t
inductive reasoning in an unfamiliar situation, and to connect the knowledge theyldarne
ALY’s case, she was able to apply her knowledge of quadrilaterals to constroetmattal
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proofs in a familiar situation (e.g., to prove opposite angles or sides are congingnt

congruent criterions), having carried out similar proofs in her geometry clhen ALY was

asked to prove two definitions were equivalent, she did not finish the proof because thestask w
new to her, and she did not know how to use the same axioms in a new situation. | argue that
ALY was at the beginning stage of Level 4 thinking, starting to gain the akid languages

needed for mathematical proofs, but needing more practice to move forward to an édvance
abstract level.

AYA, ARI and ALY each made a case that the development of geometric discourse
within a level is continuous, and the development of geometric discourse from one van Hiele
level towards a geometric discourse at the next van Hiele level is also contidsmgsa
discursive lens in this study allowed me to unpack students’ thinking, and to betterandlerst
what students said about geometric figures and what they did when they asketifif@tjoss.

As a result, my study also contributes to answering another question raiSeshignts, on
whether there arether characteristics thahould beconsidered at each van Hiele level.

The van Hieles wished to note language differences and different lingyisiioks at
each level, in the study of language in geometric thinking, but were neveiteadpdiat it. The
language of mathematics | wish to discuss here does not refer to a lisabtilary words or
grammar rules, but rather to the communicative competence necessary iareht tdf
competent participation in mathematical discourse.

The van Hiele descriptions of the levels focus largely on how a student reasons about
geometric figures in a language, for instance, in response to what is aleegg&sgs what is
not a rectangle, in applying a definition. What is missed or not clearly emph#&sihe meaning

of a mathematical term when used by a student. When | consider each van Hiegle l=/elvn
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geometric discourse with characteristics of word use, narratives, roatidegsual mediators, |
regard word use as all-important, revealing facts concerning how a catmpted. In this
study, students’ word use provided significant information about how a concept of a ggometr
figure is formed at different van Hiele levels among different studentsedver, a careful
analysis of students’ mathematical word use in geometric discourse alsgbkhed how words
are used and whether the words are used correctly for the sake of commusidbény other
characteristics should be considered at van Hiele levels, | recommendaddingseto the list.

Discursive routines do not determine students’ actions, but only constrain whaanhey c
reasonably say or do in a given situation, as negotiated conventions. However, discursive
routines offer valuable information about what students do and say as a courgmdbauotke
conjectures and justifications in a pattern at a geometric discounsé.itl Yiery useful to see the
details of students’ routines of identifying, defining and justifying wherkingron a task about
geometric figures and their properties, where the roles of definitions rmend&ated at the first
three van Hiele levels. Discursive routines are associated with studeatsvity when they
apply routines in non-routine ways; that is, in applying familiar routines in an uiafiam
discursive context. In my study, some participants used algebraic reasamml@g(froutines) to
construct geometric proofs (unfamiliar discursive context), without gognetric axioms.
Therefore, if any other characteristics should be considered in van Hidk lealso
recommend addingputine, a repetitive discursive action to the list.

| have tried in several ways to explain what additional information this digeursi
framework provides with regard to the levels of geometric thinking, as wiethashis

additional information adds to what we know about van Hiele levels. There is no closinat to w
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we know about the van Hiele levels. Looking at what we do know, we are led to ask what future
studies are needed in this important area of research.
What Can Be Asked and Why

Have you ever had an experience of sitting alone at your desk thinking, lost in thoughts
as if engaged in a conversation with someone? We must concede that thinking is an
individualized form of interpersonal communication, and whatever is createdadwcpof
collective doing. As a teacher, most of the time, | wish to know what is in my studentls
and their thoughts in mathematics. This empirical study in some way giaesapportunity to
analyze students’ thinking at an individual level. One question natural to ask isytHiray
what do we learn from students’ thinking?”

What Do We Learn From Students’ Thinking?

First, | want to discuss the existence of Level 0. Some researcherstedgpe existence
of a level prior to the Base Level (Level 1). My empirical study shows tha¢ists can reason at
a higher van Hiele level, but their lack of knowledge in geometry, or simmggtting what they
learned in geometry, has kept them from giving correct answers. Irs ABde, we learned that
the geometric pretest placed her at Level 0. However, my interview wittaf@tithe pretest
revealed that she was able to group parallelograms by their names, but did not know the
differences between a rhombus and a square, as well as the differences laepaellelogram
and a rectangle; this geometric discourse fit more to the descriptibegeitl than Level 0.

It was quite common during the interviews that a student could not identify aZrdje
or a “rnombus”, because they did not learn these names, or forgot the names. Sonsgider c
the existence of Level O (a pre-level to Level 1), then it is likely thahelade the possibility of

the kind of reasoning students perform in a domain of knowledge that they have not yet
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explored. This observation led us to consider: “What does van Hiele theory serves$@’aasd
“What do we wish to find out using van Hiele theory?”

Next | want to think about this scenario, when students were prompted to show that two
opposite angles were congruent in a parallelogram. First, visually #reyoconvinced that the
two angles were the same, but further verification was required. One student rdgpanhtiee
two angles were congruent because she used a protractor to measurestharahtfiey had the
same measurement. This course of action is typical in geometric discouesela2, where a
student’s reasoning depenals checking and verifying the conditions for being congruent. From
this response we learn that this student has mastered knowing what are “opgbsitia a
parallelogram, but needs to explore what we call “congruent”, a property of @pogies, in a
concrete way. For the same task, another student described a sequence ahatostowhere
a rotation was followed by a translation, to show that the two angles were theS@rstated
that she could rotate one angle, and moved the angle to match the other one, andtihats sure
the two angles would match exactly. This course of action is typical in geodistiourse at
Level 3, where a student is familiar with the term “congruent” and triegplore whether
opposite angles are congruent concretely. From this response, we might irgeudbats need
to explore the properties of parallelograms through hands-on activities befpredhbb the
conclusion thatdll opposite angles are congruengainy parallelograms”; then inductive
reasoning starts to make sense.

Recall that van Hiele levels are sequential, in that students pass throlglretben the
same order, although varying at different rates, and it is not possiblg teskis. In my study,
we noticed a sequence where a student needs to understand “opposite angles” irofle case

parallelogram and the meaning of “congruent” first; and then move on to explore theipsoper
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and relations regarding opposite angles in a parallelogram; and then, perhaps, bassel on t
concrete experiences, she begins to develop some abstract thinking such aginehsxning.
Thus, the object level of substantiations clouds important points van Hiele masietlesits
must explore domains before describing them, that elaborate descriptions etepnoperties
and relations must be made before abstract relations are explored.

One challenge our students face is the development of abstract relationsg bieeaus
abstract relations in geometry may never be fully understood by some stitdakes time for
students to get used to new mathematical terms, as well as to digest therhantigties
relating to a particular property, before they can generalize it. When stw@tenhtroduced to
more advanced thinking in deductive reasoning, some mimic the proofs without fully
understanding them. When we rush to the stage of constructing proofs that a studertigynot
for, it creates obstacles. It is important to give students enough opportunitgsoie e
sequence of activities at a level built on other activities at a previous |léget bbstract
relations are explored.

Next, let us discuss the breath of Level 3. Recall that among the sixtysthdemts who
took the van Hiele posttest, thirty of them were considered at van Hiele Leared 8mong the
twenty students who participated in the interviews, ten of them were beimgl giacevel 3 in
the van Hiele posttest, and the interview analyses confirmed that thesastuelee competent
to use definitions to justify their conclusions. It was quite surprising to havesthuatents at
Level 3 than students at the lower levels. However, we also learned thatstgdentetric
discourses seemed to develop at different rates, and geometric discduengs &tvaried from
person to person and varied in the same person at different times of the semesteaimw

variations of the discourse at Level 3 are 1) how profound a student uses defingmmstfic
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object) and 2) the way she reasons about the geometric figures (substgniajure 5.8

illustrate these two variations in Level 3.

Level 3

Geometric Object Substantiation

/N /N

Hierarchy
of Classification

Definition Object Level Abstract Level

Figure 5.8 Characteristics of Level 3 geometric discourse.

Figure 5.8 highlights possible variations of geometric discourse at LeveliBig-a
geometric discourse at Level 3 indicates that a student has developed coenpetgmtying
definitions in their identifying and justifying routines. In this study, sustudent may or may
not make connections among the quadrilaterals, where a hierarchy of déssifis presented
and depending on how profoundly the student understands the definitions and uses them
adequately.

ATL’s geometric discourse shows that a student at Level 3 could have competence
using definitions to identify quadrilaterals, but still needs to develop othems&édided at this
level. In contrast to ATL’s geometric discourse at the same level, AYA andréjpresented a
group of students who could use definitions fluently, as well as reason at the olgkdN
and ARI represented a group of students who were more advanced at Level 3, wherdthey use

definitions to show a hierarchy of classification among quadrilateraldyas®t on their
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experiences of reasoning at object level, they also tried to substantiatetiwdusions using
some abstract relations.

In our analysis of the variety of geometric discourses at Level 3, we haneddhat
Level 3 thinking is more complicated than previously thought. At this level, studeedsto be
familiar with and feel comfortable using the definitions fluently; anth@isme time, they also
are developing informal reasoning by describing what they observe from dxquiariconcrete
properties of geometric figures, so that they can see or feel the partycotdigiures before
abstract relations take place. All these mathematical activities leestoichents’ prior
experiences in the development of abstract thinking.

There is a challenge for teachers when teaching a group of studentsgebosstric
discourses vary at different places. What kinds of activities will be sut@bléstudents so that
they can move toward a higher level of thinking? It is also a challengeskanchers to identify
kinds of activities that will help students in their development of geometric descatithe same
level and at different levels.

Practical Information About Teaching and Assessment

The empirical data of the study offers a dialogue between a learneresehecher in a
designed environment. The researcher carefully chooses the tasks, and pruepts’st
thinking with well-designed protocols. However, this procedure is not too far from what a
teacher might do in preparing instructional materials. So one question we ask ispfédtiasl
information does this study offer about teaching and assessment?”

We need more instructional interventions in our classrooms. Students need to explore
“unfamiliar situations” using their existing knowledge. In an instructioequence, a student

first is introduced to a new concept or new way of presenting her idea in matlseswatitas in
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constructing a proof by imitating what others say and do, and then she is asked to sialve sim
problems or construct similar proofs in a similar context. It is a practicgpehting the same
process, the process of exploring the domain of polished tasks and well-designedatieghem
activities, and it is an important part of learning. However, we do want our studlemntse
beyond this stage and to be more creative. There are opportunities in the classheoen
students can be creative. Their discursive routines show that sometimesteeyguse
algebraic reasoning to derive a geometric proof. We need to encourage such timdlanepte
more activities to help students make connections between geometry and other domains of
mathematics without losing the goals of introducing definitions and axioms in ggome

Our concerns about “communication,” “language,” and “discourse” in the matlssmati
classroom are not new. Fifty years ago, the same concerns motivated thelearndievelop
their theory. Surprisingly, we still don’t have much to recommend what needs to be done in a
geometry classroom for the sake of communication. My study can add some titforateut
the need to clarify the mathematical terms we use in the classroom, and toifoe apaat the
context in which they are used.

When a student mentions the word “parallelogram”, she says nothing unless she makes
explicit what she means. My empirical data shows that the word “parallelbgoaid mean
quite different things to our prospective teachers. Some thought paralletografour sided
figures having two pairs of parallel sides with two sides longer; wheoeas thought
parallelograms are tilted rectangles and squares. A few studenthtthimatga parallelogram is a
polygon with pairs of parallel sides, and then of course, hexagons and octagons are
parallelograms. | also found that the use of the word “bisector” was confusoagisieeof the

several contexts where it was used. Some referred to it as “angle Bjsehtreas others
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thought it “a mid-point of a segment”. A few thought “all bisectors cross eachiottiee middle

of a parallelogram”. All these are correct ideas of “bisector” in fagogar context. Just imagine

a group of students working together, using the same word in their own way, and definitely
creating some miscommunications. Teachers need to be very cautious aboytshelesats use
mathematical terms, in order to make the classroom discussions more undelstéhadang the
interviews, | found it helpful to get to the bottom of what students meant with a matesmat

term by asking questions such as, “Can you say more about what you mean by.. 13/otWil

give me an example of what you just said about...?” and “Can you show me in this picttee whe
is (are)...?".

Every classroom is different. | only can offer what worked in my study witlppotise
teachers. But the principle is that classroom teachers need to ask questionslmiiffierent
guestions, and to listen carefully to students’ responses, and give rapid feedback tthehsure
mathematics subjects are communicated well.

Limitation of the Study

This study contributes to the field of mathematics education in several kvaiysts an
analytic method for investigating students’ geometric thinking using ardigedramework
looking in particular at changes in prospective teachers’ learning about tsiamgle
guadrilaterals in Euclidean geometry. The discursive framework presentsramayie view
van Hiele levels as qualitatively different geometric discourses.

The study illustrates the usefulness of the discursive framework forghghg the
opportunities for rich description at each van Hiele level through a discursivéldetailed
analysis can discover differences in participants’ geometric discougselavvan Hiele level,

which may impact the ways in which students do mathematics, speak about mathemdt
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therefore learn mathematics. This study also provides information for thought emskaa to
teacher educators interested in geometry more specifically. For exaimpléd the development
of a concept in geometry begin with a word? Should the introduction of a quadrilatenal beg
with the necessary condition of a polygon with four sides? Finally, this study ackgewled
students’ participation by analyzing their thinking processes as the union ofrithe and
actions observed during the interviews.

The primary limitations of this study have been stated throughout this dissertait
will be reiterated here briefly. First, analyzing students’ thinkinggsses (i.e., in video
recordings and interview transcripts) is challenging. In particulaen participants’ thinking
was not yet consistent and logically ordered, analyzing their geometrauicie was harder.
Hopefully, my descriptions and interpretations are clear. Secondly, theiadalgfisions
regarding what to present and to compare for each participant were méaastriatd similarities
and differences. Thus, the primary perspective represented here is nckreowkedge that
another individual using the same data (i.e., reading the transcriptions) ntayngeejuite
differently. It is possible that some important responses from particigants) the interviews
may have been missed. Finally and most importantly, | interviewed twentyttuded
presented my analyses for five of them. Thus many claims are based orethefda®
students, or of twenty students. In addition, this study focused only on the “two end points” of
students’ thinking during the time of their course work. | did not consider the individual
aptitudes of students’ learning, and the study may miss some advanced thinkatyafsar the
course is over. Therefore, there is no closure to my study, but it opens the door for mego purs

further investigations.
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The study leaves me a long list of looming questions and ideas for futurehes$est,
there is a group of students whose van Hiele levels could not be determined tasthesults,
but who participated in the interviews. | decided not to include their interview responsy
analyses in order to narrow the scope of the study. To continue the study, one coualel analy
these data to find out how the model of development of geometric discourse would help to
identify participants’ levels of thinking. And how would these data help to refineadelrof
development of geometric discourse?

This study focused on students’ geometric discourse, and how this discourse helps us to
learn more about their thinking. However, one open question asks what this mathematics
discourse looks like when a student works on different mathematical tasks thde iditferent
content domains of mathematics, and how the subsets of mathematics discowasewrtter
each other. Perhaps it will help to gain more information regarding one of Clemeastions,
“do students reason at the same van Hiele levels across topics?”

As mentioned previously, for those interested in geometry or teaching gepametry
investigation using a discursive lens into students’ use of mathematicaldkrgyi in geometry
would be a next step. This analysis could also be extended to other mathematicdlftangcs
discussions regarding classroom interactions are needed. What can we do to hekpstadent
mathematical terminology more precisely for the sake of communicatibdemelopment of a
mathematical concept?

We need to develop frameworks for analyzing activities from both textbooks and
classrooms, and to identify mathematical activities that help students mogédo van Hiele
levels. The rise and popularity of computer software created a new leanminghenent for

students, and presented an important instructional and learning tool in school curriMalyn
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researchers and curriculum developers want to design pre-constructedceacatsiiig software,
and they hope that these activities will serve as mediators to help studengeleaetry. In
response, there is a need to develop instruments to examine these activitié® gotd Df
helping students develop more advanced levels of thinking.

Finally, we need to revisit van Hiele levels with multiple lenses, in order toehbeter
picture of human thinking, and to improve communication through classroom interaction. How
can teachers better facilitate classroom discussions at variousdaueals various contexts?

In summary, this study provides opportunities for conversations among matlsematic
education researchers, curriculum developers, and teacher educators and wathelsarning
and teaching of geometry. Such conversations would address students’ levels of thinking
Euclidean geometry through the lens of a discursive framework, in hopes of impresaagah

and teaching, and therefore better serving mathematics learners.
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Appendix A: Research Study Consent Form

Dear Participant:

You are invited to participate in a research study (Research title: TheielanHeory Through

the Discursive Lens: Prospective Teachers’ Geometric Discourgs®aihers are required to
provide a consent form to inform you about the study, to convey that participation is vgluntary
to explain risks and benefits of participation, and to empower you to make an informéshdecis
You should feel free to ask the researcher any questions you may have.

From this study, the researcher hopes to learn about prospective teachers’ knoivbecie
geometric shapes; their abilities to make conjectures and their abditesstruct mathematical
proofs. Participating in the study will involve discussing your understanding abmuege
shapes and their properties. You will also be asked to explain your reasonintgfoesta you
make about geometric shapes. The entire study will take you about four hotirst tine-hour
will take place at the beginning of the semester. This part includes a pretest(8sjrand an
interview (85 minutes); the second 2-hour will take place at the end of the serapdtit
includes a posttest (35 minutes) and an interview (85 minutes). You will receivelpantsa
for the Math 202 class you are taking after you complete both pretest andtp&sitai are
selected for an interview, you will be asked to work on three geometri¢ gasksvill discuss
your results with the researcher or other students during the interview. Yaaceile $20 as
compensation for your time from the researcher one week after you compl@%erthieutes
interview.

In the study, your written work (e.g., pretest, posttest, exercise wotksiteevziew tasks etc.)
will be collected, and your activities and conversations with the researmthevith other
students will be audio-recorded and/or video-recorded. The researcher may ¢sksunioiy the
exercise and interview. The potential benefit for you to participate in thig isttight you will
receive the opportunity to learn properties of basic geometric shapes and to feamutate
conjectures and geometric proofs, which is a part of the course content of Mathu2&2
taking. Additionally, research indicates that self-reflection on one's thinkingnaiisreasing
the level of sophistication of that thinking. Therefore, the researcher on this stuelyosurage
such self-reflection.

The results of this research study might be published in professional publicaticrecfars
and researchers. Only the research team will use the audio, videotapes optsdios@nalysis.
Your confidentiality will be protected to the maximum extent allowable by lde.data
collected will be coded such that your name and personal information will not shovouupé
linked with any reports and presentations of research project. The data wilidnkastd locked
in a steel cabin in the office of the researcher in Wells Hall at the Mitldgae University.
Only the research term of the project or the Institutional Review Board iRBe Michigan
State University have access to the research records about you and ttedlefzted from you.
All research data will be retained for a minimum of 3 years followingurke of project.

Participation in this research study is entirely voluntary. You may choose patticipate at all.

You may also refuse to participate in certain procedures or answen cpréstions.
Furthermore, you may decide to discontinue your participation at any titmeuvpenalty.
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There are some minimal risks associated with your participation irefeanch study in that you
may feel tired and embarrassed when you do not know how to justify your thinking. Thinking
out loud may be an unfamiliar process to you and thus you might feel uncomfortatde at fi

Please sign your initials if you consent to either of the following:
o | agree to participate in the pretest and posttest but not the interviews.
[ ]Yes [ ]No Initials
o | agree to participate in the pretest and posttest with the possibility of tiedsen for
the interviews.

[ ]Yes [ ] No Initials
Please sign your initials if you consent to participate in the videotaping:
0 | agree to allow my image on the videotapes to be included in presentations.
[ ]Yes [ ] No Initials
o | agree to allow audio recording/video recording of the interview.
[ ]Yes [ ] No Initials

If you have concerns or questions about this study, such as scientific issues, howytpalt a
of it, or to report an injury, please contact Dr. Glenda Lappan at (517) 432-3635, or e-malil
glappan@math.msu.eaw regular mail at A718 Wells Hall, MSU, East Lansing, MI, 48824.

If you have any questions or concerns about your role and rights as a reseanigapianvould
like to obtain information or offer input, or would like to register a complaint about thig,st
you may contact, anonymously if you wish, the Michigan State UniversityaHuResearch
Protection Program at 517-355-2180, Fax 517-432-4503, or @érbi@imsu.edwr regular mail
at 207 Olds Hall, MSU, East Lansing, Ml 48824.

Participant’s Printed Name

Participant’s Signature Date

Sincerely,

Glenda Lappan, Ph.D.

University Distinguished Professor

Division of Science and Mathematics Education
Michigan State University

A718 Wells Hall

(517) 432-3635glappan@math.msu.edu

Sasha Wang

Doctoral Student

Michigan State University

A719 Wells Hall

(517) 432-3635wangsash@msu.edu
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Appendix B: Behaviors at Each van Hiele Level

Level 1 (van Hieles’ Basic level)

(P.M.,
1

2.

3.

(P.M.,

(P.M.,

1958-59)
“ Figures are judged according to their appearance.”

“A child recognizes a rectangle by its form, shape.

... and the rectangle seems different to him from a square.”

“When one has shown to a child of six, a six year old child, what a rhombus is, what a
rectangle is , what a square is, what a parallelogram is , he is able to graxhece

figures without error on a geoboard of Gattegno, even in difficult situations.”

“a child does not recognize a parallelogram in a rhombus.”

“the rhombus is not a parallelogram. The rhombus appears ... as something quite
different.”

1968)

. “when one says that one calls a quadrilateral whose four sides are equal a rhlmsibus, t

statement will not be enough to convince the beginning student [from which | deduce that
this is his level 0] that the parallelograms which he calls squares & teg set of
rhombuses.”

1979)
(on a question involving recognition of a titled square as a square)
“basic level, because you can see it.”

Level 2 (van Hieles' first level)

(P.M.,
1.

(P.M.,

1957)

“He is able to associate the name ‘isosceles triangle’ with s spefigle, knowing

that two of its sides are equal, and draw the subsequent that the two corresponding angles
are equal.”

1957; P.M. and Dina, 1958)

. “ ... apupil who knows the properties of the rhombus and can name them, will also have

a basic understanding of the isosceles triangle = semirhombus.”
“The figures are the supports (lit. ‘supports’ in French) of their properties.”

“That a figure is a rectangle signifies that it has four right andlesa rectangle, even if
the figure is not traced very carefully.”
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5. “The figures are identified by their properties. (E.g.) If one is told thaighee traced
on the blackboard possesses four right angles, it is a rectangle, even if theésfigoir
traced very carefully.”

6. “The properties are not yet organized in such a way that a square is idestiieitnga
rectangle.”

(P.M., 1959)
7. “The child learns to see the rhombus s an equilateral quadrangle with identical opposed
angles and inter-perpendicular diagonals that bisect both each other and thé angle

8. (a middle ground between this and the next level) “once the child gets to the stage where
it knows the rhombus and recognizes the isosceles triangle for a semi-rhomidus, it
also be ale to determine of hand a certain number of properties of the equilateral
triangle.”

9. “Once it has been decided that a structure is an ‘isosceles trianglailthe/idl also
know that a certain number of governing properties must be present, without having to
memorize them in this special case.”

(P.M., 1976)
10.“The inverse of a function still belongs to the first thought level.”

11.“Resemblance, rules of probability, powers, equations, functions, revelationsyg#ts
these you can go from zero to the first thought level.”

Level 3 (van Hieles’ second level)
(Dina, 1957)
1. “Pupils ... can understand what is meant by ‘proof’ in geometry. They have artitred a
second level of thinking.”

(P.M., 1957)
2. “He can manipulate the interrelatedness of the characteristics of gieqpadtierns.”

3. “e.g., if on the strength of general congruence theorem, he is able to deduce libe equa
of angles or linear segments of specific figures.”

(P.M., 1958-59)
4. “The properties are ordered [lit. ‘ordonnent’]. They are deduced from each anieer
property precedes or follows another property.”
5. “The intrinsic significance of deduction is not understood by the student.”

6. “The square is recognized as being a rectangle because at this leugbdsfof figures
come into play.”
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(P.M., 1959)
7. “the child... [will] recognize the rhombus by means of certain of its properties,...
because , e.qg., it is a quadrangle whose diagonals bisect each other perpbndicula

8. “It [the child] is not capable of studying geometry in the strictest senbe eford.”

9. “The child knows how to reason in accordance with a deductive logical systemis. this
not however, identical with reasoning on the strengtiormhal logical.”

(P.M., 1976)
10.“the question about whether the inverse of a function is a function belongs to the second
thought level.”

11.“The understanding of implication, equivalence, negation of implication belongs to the
second thought level.”

(P.M., 1978)
12.“they are able to understand more advanced thought structure, such as: ‘thegraratleli
the lines implies (according to their signal character) the presencauf, and therefore

(according to their symbolic character) equality of the altermaggior angles’.

13.“ I [the student] can learn a definition by heart. No level. | can understandetizitions
may be necessary: second level.”

14.%... you know that is meant by it [the use of ‘'some’ and ‘all'] second level.

Level 4 (van Hieles’ third level)
(P.M., 1957)

1. “He will reach the third level of thinking when he starts manipulating thengatri
characteristics of relations. For example: if he can distinguish bet@vpsoposition and
its reverse” [sic. Meaning our converse]

(Dina, 1957)

2. We can start studying a deductive system of propositions, i.e., the way in which the
interdependency of relations is affected. Definitions and propositions now come withi
the pupil’s intellectual horizon.”

3. “Parallelism of the lines implies equality of the corresponding angles aad/ersa.”

(P.M. and Dina, 1958)
4. “The pupil will be able, e.g., to distinguish between a proposition and its converse.”

5. “it (is) ... possible to develop an axiomatic system of geometry.”
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(P.M.,
6.

(P.M.,
7.

1958-59)
“The mind is occupied with the significance of deduction, of the converse of a theorem,
of an axiom, of the conditions necessary and sufficient.”

1968)

“ ... one could tell him (the student) that in proof it is really a question of knowing

whether these theses are true or not, or rather of the relationship betweer thie trut

these theses and of some others. Without their understanding such relationships we
cannot explain to the student that one has to have recourse to axioms.” [l includelthe leve
from the first part of the statement; he never identified the level.]

Level 5 (van Hieles’ fourth level)

(Dina, 1957)

1.

“A comparative study of the various deductive syatems within the field of gagometr
relations is ... reserved for those, who have reached the fourth level...”

(P.M. and Dina, 1958)

2.
3.

(P.M.,
4.

“finally at the fourth level (hardly attainable in secondary teaching) &gnnking itself
can become a subject matter.”
“the axiomatic themselves belong to the fourth level.”

1958-59)

“one doesn’t ask such question as: what are the points, lines, surfaces, etaés. afig
defined only by symbols connected by relationships. To find the specific meanirey of t
symbols, one must turn to lower levels where the specific meaning of these syanbol
be seen.”
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Appendix C: van Hiele Geometry Test

Please print
Name Section
Directions

Do not open this test booklet until you are told to do so.

This test contains 25 questions. It is not expected that you know everything ontthis tes

When you are told to begin:

1.
2.

4.
5.
6.

Read each question carefully.
Decide upon the answer you think is correct. There is only one correct answér to eac
guestion. Check the letter corresponding to your answer on the answer sheet.

Use the space provided on the answer sheet for figuring or drawing. Do not mark on
this test booklet.

If you want to change an answer, completely erase the first answer.

If you need a pencil and an eraser, raise your hand.

You will have 35 minutes for this test.

Wait until the instructor says that you may begin.

This test is based on the work of P.M. van Hiele.

Copyright ©1980 by the University of Chicago. Reprinted with permission of the Uiyefs

Chicago.
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VAN HIELE GEOMETRY TEST

1. Which of these are squares?

K L M

(F) Konly

(G) L only

(H) M only

() Land M only
(J) All are squares

2. Which of these are triangles?

OV~

(A) None of these are triangles.
(B) V only

(C) W only

(D) W and X only

(E) Vand W only

3. Which of these are rectangles?

(A) S only

(B) T only

(C) Sand T only

(D) S and U only

(E) All are rectangles
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4. Which of these are squares?

F G

(A) None of these are squares.
(B) G only

(C) Fand G only

(D) G and | only

(E) All are squares.

5. Which of these are parallelograms?

/J/Q

(A) J only

(B) L only

(C) J and M only

(D) None of these are parallelograms.
(E) All are parallelograms.

6. POQRS is a square.
Which relationship is true in all squares?

R Q
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(A) PR and RS have the same length.
(B) QS and Pk are perpendicular.

(C) PS andQRare perpendicular.

(D) PS< and QS have the same length.
(E) Angle Q is larger than angle R.

7. In arectangle, GHJIKGJ and HK are the diagonals.

Which of (A) — (D) is_notrue in_everyectangle?

(A) There are four right angles.

(B) There are four sides.

(C) The diagonals have the same length.

(D) The opposite sides have the same length.
(E) All of (A) — (D) are true in every rectangle.

8. Arhombusis a 4-sided figure with all sides of the same length.
Here are three examples.

Which of (A) — (D) is_notrue in every rhombus?

(A) The two diagonals have the same length.

(B) Each diagonal bisects two angles of the rhombus.
(C) The two diagonals are perpendicular.

(D) The opposite angles have the same measure.

(E) All of (A) — (D) are true in every rhombus.
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9. Anisosceles triangle is a triangle with two sides of equal length.
Here are three examples.

A [

Which of (A) — (D) is true in every isosceles triangle?

(A) The three sides must have the same length.

(B) One side must have twice the length of another side.

(C) There must be at least two angles with the same measure.
(D) The three angles must have the same measure.

(E) None of (A) — (D) is true in every isosceles triangle.

10.Two circles with centers P and Q intersect at R and S to form a 4-sidedRRRQ@8.
Here are two examples.

(¢

Which of (A) — (D) is_notlways true?

(A) PRQS will have two pairs of sides of equal length.
(B) PRQS will have at least two angles of equal measure.

(C) The linesPQ and R€ will be perpendicular.
(D) Angles P and Q will have the same measure.
(E) All of (A) — (D) are true.

11.Here are two statements.

Statement 1: Figure F is a rectangle.
Statement 2: Figure F is a triangle.
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(A) If 1 is true, then 2 is true.

(B) If 1 is false, then 2 is true.
(C) 1 and 2 cannot both be true.
(D) 1 and 2 cannot both be false.
(E) None of (A) — (D) is correct.

12.Here are two statements.

Statement SAABC has three sides of the same length.
Statement T: INABC, ZB and Z C have the same measure.

Which is correct?
(A) Statements S and T cannot both be true.
(B) If Sis true, then T is true.
(C) If Tis true, then S is true.
(D) If Sis false, then T is false.
(E) None of (A) — (D) is correct.

13.Which of these can be called rectangles?

(A) All can.
(B) Q only
(C) R only
(D) P and Q only
(E) Q and R only
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14.Which is true?

(A) All properties of rectangles are properties of all squares.

(B) All properties of squares are properties of all rectangles.

(C) All properties of rectangles are properties of all parallelograms.
(D) All properties of squares are properties of all parallelograms.
(E) None of (A) — (D) is true.

15.What do all rectangles have that some parallelograms do not have?

(A) Opposite sides equal
(B) Diagonals equal

(C) Opposite sides parallel
(D) Opposite angles equal
(E) None of (A) — (D)

16.Here is a right triangle ABC. Equilateral triangles ACE, ABF, atiDBhave been
constructed on the sides of ABC.

From this information, one can prove thaD, BE, and CF have a point in common.
What would this proof tell you?

(A) Only this triangle drawn can we be sure tidd, BE, andCF have a point in
common.

(B) In some but not all right trﬁngle@ﬁ, andCF have a point in common.
(C) In any right triangle,AD, BE, andCF have a point in common.

(D) In any triangle,AD, BE, and CF have a point in common.

(E) In any equilateral triangleAD, BE, and CF have a point in common.
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17.Here are three properties of a figure.

Property D: It has diagonals of equal length.
Property S: It is a square.
Property R: It is a rectangle.

Which is true?
(A) D implies S which implies R.
(B) D implies R which implies S.
(C) S implies R which implies D.
(D) R implies D which implies S.
(E) R implies S which implies D.

18. Here are two statements.

I: Ifafigure is a rectangle, then its diagonals bisect each other.
II:  If the diagonals of a figure bisect each other, the figure is agéeta

Which is correct?

(A) To prove lis true, it is enough to prove that Il is true.

(B) To prove ll is true, it is enough to prove that | is true.

(C) To prove ll is true, it is enough to find one rectangle whose diagonal bisect each
other.

(D) To prove ll is false, it is enough to find one non-rectangle whose diagonals bisect
each other.

(E) None of (A) — (D) is correct.

19.1In geometry:

(A) Every term can be defined and every true statement can be proved true.

(B) Every term can be defined but it is necessary to assume that certain stait@me
true.

(C) Some terms must be left undefined but every true statement can be proved true.

(D) Some terms must be left undefined and it is necessary to have some statements,
which are assumed true.

(E) None of (A) — (D) is correct.

20.Examine these three sentences.
(1) Two lines perpendicular to the same line are parallel.
(2) A line that is perpendicular to one of two parallel lines is perpendicullae to t
other.
(3) If two lines are equidistant, then they are parallel.
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In the figure below, it is given that lines m and p are perpendicular and lines n and
p are perpendicular. Which of the above sentences could be the reason that line m
and is parallel to line n?

p
/N\
< = —> m
< [ Y n
Vg
(A) (1) only
() (2)only
(C) (3)only

(D) Either (1) or (2)
(E) Either (2) or (3)

21.In F-geometry, one that is different from the one you are used to, there arg fxactl
points and six lines. Every line contains exactly two points. If the points are Par@@ R
S, the lines are {P, Q}, {P, R}, {P, S}, {Q, R}, {Q, S}, and {R, S}

Y

° e S

Here are how the words “intersect” and “parallel” are used in F-gepmet

The lines {P, Q} and {P, R} intersect at P because {P, Q} and {P, R} have P in
common.

The lines {P, Q} and {R, S} are parallel because they have no points in common.

From this information, which is correct?
(A) {P, R} and {Q, S} intersect.

(B) {P, R} and {Q, S} are parallel.

(C) {Q, R} and {R, S} are parallel.

(D) {P, S} and {Q, R} intersect.

(E) None of (A) — (D) is correct.
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22.To trisectan angle means to divide it into three parts of equal measure. In 1847, P.L.
Wantzal proved that, in general, it is impossible to trisect angles using coypass
and an unmarked ruler. From his proof, what can you conclude?

(A) In general, it is impossible to biseartgles using only a compass and unmarked
ruler.

(B) In general, it is impossible to trisect angles using only a compass akeldnar
ruler.

(C) In general, it is impossible to trisect angles using any drawing ingttame

(D) It is still possible that in the future someone may find a general way to trisect
angles using only a compass and an unmarked ruler.

(E) No one will ever be able to find a general method for trisecting angles using onl
a compass and an unmarked ruler.

23.There is a geometry invented by a mathematician J in which the followingpis tr
The sum of the measures of the angles of a triangle is less than 180°.
Which is correct?

(A) J made a mistake in measuring the angles of the triangle.

(B) J made a mistake in logical reasoning.

(C) J has a wrong idea of what is meant by “true.”

(D) J started with different assumptions than those in the usual geometry.
(E) None of (A) — (D) is correct.

24.Two geometry books define the word rectangle in different ways.
Which is true?

(A) One of the books has an error.

(B) One of the definitions wrong. There cannot be two different definitions for
rectangle.

(C) The rectangles in one of the books must have different properties from those in
the other book.

(D) The rectangles in one of the books must have the same properties at those in the
other book.

(E) The properties of rectangles in the two books might be different.
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25.Suppose you have proved statements | and Il.

l. If p, then q.
Il. If s, then not q.

Which statement follows from statements | and 11?

(A) If p, then s.

(B) If not p, then not .
(C) If porq, then s.
(D) If s, then not p.

(E) If not s, then p.
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Appendix D: Interview Tasks

Task One

L

AN
VM=
QQ o

Figure Appendix D. 1. Task One: Sorting Geometric Figures
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Task Two

A. Draw a parallelogramm the space below.

1. What can you say about the angles of this parallelogram?

2. What can you say about the sides of this parallelogram?

3. What can you say about the diagonals of this parallelogram?

B. In the space below, draw a new parallelogram that is difféti@mtthe one you drew
previously.

1. What can you say about the angles of this parallelogram?

2. What can you say about the sides of this parallelogram?

3. What can you say about the diagonals of this parallelogram?

Task Three
Two geometry books define the wqudrallelogramin different ways.

1. A quadrilateral is parallelogramif and only if two pairs of opposite sides of the
same length.

2: A quadrilateral is parallelogramif and only if two pairs of opposite angles of the
same measure.

Show me that these two definitions are equivalent. To verify that two definitions are

equivalent, you must show that each set of defining conditions implies the other.
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Appendix E: Interview Protocols

Before beginning the interview, provide the student with the following materials
Pencils, ruler, protractor, blank sheets of paper

Turn on both video cameras.

Task One

Present Task One and turn the page to face the student.

1. Say: These are geometric shapes. Sort these shapes into groups. You lvaim sory tvay you want.
Write down your answers at the bottom of the task, and make notes about vdrpypuhem in such a

way. Let me know when you are finished.

While the student is working on the task, check the positions of the caaretaee if they are recording
appropriately. Monitor the student while she/he is working on the task, aredmotds to prepare

possible questions.

After the student has finished the taskn on the audiotape.
2. Ask: Can you describe each group to me?
After the student has finished describing her/his results, ask onefofltivdng:
If the student sorts the shapes as all rectangles togethagrajlds together, all squares together,
etc, then
o Ask: Can you find another way to sort these shapes into groups? Try it.
o Ask: Why?
If the student sorts the shapes as all triangles together, atllgteadls together, etc., then
e Ask: Can you sort these shapes into subgroups? Try it.
o Ask: Why?
If the student says that he/she doesn’t know any other way to sort the shaipes,
e Ask: Can “this” (e.g., a rectangle, or a parallelogram) and “this” (elgo@mbus, or a
trapezoid) go together?

o Ask: Why, or why not?

3. Ask: What is a parallelogram?
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After the student has answered the questions verbally, then give thet stydlece of blank paper, and
Say: write it down. Do the same for the following questions.

4. Ask: What is a rectangle?

5. Ask: What is a square?

6. Ask: What is a rhombus?

7. Ask: What is a trapezoid?

8. Ask: What is an isosceles triangle?

Turn off the cameras and audio recorder. Remind the student to writegrenddtis/her name on all the
worksheets.
Say: | will collect all your worksheets.

Put all Task One materials away, give the student three minutdsdmd get ready for Task Two.
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Task Two

Turn on both video cameras and audio recorder.

Present Task Two —“A. Draw a parallelogram ..."” and turn the pageddHactudent

Say: Draw a parallelogram in this empty space here.
Once the student has finished drawing, then
1. Ask: What can say about the angles of this parallelogram?
e |f the student says, “the opposite angles are equal”, or “all the vergéesaadd up to 360
or “the adjacent angles add up to 18then
0 Say: Write down your answer(s), and convince me.
After the student has finished explaining his/her conclusion, then
Ask: Is there any other relationship among the angles of thidglagaam?
¢ If the student says, “all the vertex angles add up t8"36ten
0 Say: Write down your answer(s), and convince me.
¢ If the student says, “no, that’s all”, then
2. Ask: What can you say about the sides of this parallelogram?
e |f the student says, “ Opposite sides are equal”, or “opposite sidegaltelhahen
0 Say: Write down your answer(s) and convince me.
After the student has finished explaining his/her conclusion, then

Ask: Is there any other relationship involving the sides of thidlpkrgram?

Present Task Two — “B. Draw a new parallelogram ...” and turn the page facetthe student

Say: In the empty space here, draw a new parallelogram that is differarthe one you drew
previously.
Once the student finished drawing, then
1. Ask: Why is this a different parallelogram from the first one you drew?
2. Ask: What can you say about the angles of this parallelogram?
¢ If the student draws another parallelogram, then his/her answer to thiqueight be
identical to Task Two A. No need to repeat the process as in Task Two A.
o If the student draws a rectangle, or a square, or a rhombus, and provides thessanas
he/she did in Task Two A., then

0 Say: Convince me.
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3. Ask: What can you say about the sides of this parallelogram?
¢ If the student draws another parallelogram, then his/her answer to thiqueight be
identical to Task Two A. If so, then ask question 4, “what can you say about tbealsagf
this parallelogram?”
o If the student draws a rectangle, or a square, or a rhombus, and provides thasaenas
he/she did in Task Two A., then
Say: Convince me.
4. What can you say about the diagonals of this parallelogram?
¢ If the student draws a parallelogram, after she/he has finished degthibidiagonals of the
parallelogram,
0 Ask: Why?
(Present a drawing of a rectangle), and then
0 Ask: What can you say about the diagonals of this one?
0 Ask: Why?
(Present a drawing of a square), and then
o0 Ask: What can you say about the diagonals of this one?
0 Ask: Why?
(Present a drawing of a rhombus), and then
0 Ask: What can you say about the diagonals of this one?
o0 Ask: Why?
¢ If the student draws a rectangle as a hew parallelogram, after sheftmeshas describing
the diagonals of the rectangle,
0 Ask: Why?
(Present a drawing of a square), and then
0 Ask: What can you say about the diagonals of this one?
0 Ask: Why?
(Present a drawing of a rhombus), and then
0 Ask: What can you say about the diagonals of this one?
0 Ask: Why?
¢ If the student draws a square as a new parallelogram, after he/shedtesifagscribing the
diagonals of the square,
o0 Ask: Why?

(Present a drawing of a rectangle), and then
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0 Ask: What can you say about the diagonals of this one?
0 Ask: Why?
(Present a drawing of a rhombus), and then
0 Ask: What can you say about the diagonals of this one?
o0 Ask: Why?
e If the student draws a rhombus as a new parallelogram, after he/simedteesifdescribing
the diagonals of the rhombus,
0 Ask: Why?
(Present a drawing of a square), and then
0 Ask: What can you say about the diagonals of this one?
0 Ask: Why?
(Present a drawing of a rectangle), and then
0 Ask: What can you say about the diagonals of this one?
0 Ask: Why?
5. Is it true that in every parallelogram the diagonals have the same midiga@et each other)?
o Ask: Why? Or Why not?
After the student has finished describing his/her conclusion, then

e Say: write it down

Turn off the cameras and audio recorder. Remind the pair to write tharththeir names on all the
worksheets.
Say: | will collect all your worksheets.

Put all Task Two materials away, give the pairs three minutes bndageaready for Task Three.
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Task Three

Turn on both video cameras and audio recorder.

Present Task Three and turn the page to face the student

Say: Read the task carefully, and show your work. Let me know if you have any caiestion

If the student shows difficulty understanding the task, and doesn’t knowawtiat then

Say: To show that the two definitions are equivalent, you need to show:
1. If in a quadrilateral, two pairs of opposite sides of the same lengthwberairs of opposite
angles of the same measure.

And,
2. If in a quadrilateral, two pairs of opposite angles of the same medsuréwb pairs of

opposite sides of the same length.
When the interview is finished, turn off both cameras and audiod&co

Say: “Thank you” to the student, and let him/her know that you will share thiesresth them if he/she

is interested.
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Appendix F: Development of Geometric Discourse at Each van Hiele Ldve

Table 4.41  Development of Geometric Discourse at Each van Hiele Level
Level Geometric Objects (figures) Routines
of dis- | Signifier | Saming Realiz- System of Identifying Routines Examples of | Defining Routines
course | - Word Use | criterion ations objects Attributed Examples of Justifying How When
(figures) Declared Identification | (“What is
narratives (“Why is this | X?”)
(“How do you X?”)
know it’s X?”)
proper according | primary d- | unstructured | visual “It looks like...” | “Because it is”
1 name to family objects, collection of | recognition,
(passive appearance concrete d- | self-evident
use) S objects
2 common according | primary d- | unstructured | Step 1. visual “It looks like “‘Because | can | describe serves as
name to visual objects, collection of | recognition they are see it” the figure necessary
(routine properties disjoint parallel...” by visual condition for
driven (with no categories of | Step 2. “‘Because | properties, | the use of
and/or order) concrete Substantiation. | “I measured measured... or by word
phrase d-objects Identifying by (sides & [some visual recalling
driven) partial angles)...” properties,no | (no
properties superordinate] | superor-
check (e.g. dinate);
counting,
measuring,
comparing,
etc);
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Table 4.41 (Cont'd

3

common
name
(object
driven)

1. common
descriptive
narrative on
the name of
the figures

2",

common
descriptive
narrative on
the
properties
of figures
(e.g., equal,
bisector,
etc)

concrete
d-object
(Objectific
ation
occurred)

*two levels
of
realization
tree:
definitions
and
properties
of
geometric
figures,
and the
relations
about how
one
implies the
other.

May or may
not have
hierarchy of
classifications

Step 1. visual
recognition

Step 2.
Substantiation
|dentifying by
definitions
(check of
defining
conditions by
counting,
measuring,
comparing,
etc.)

Step 3.
Construction
of new
narratives
(informal
proving
equality,
congruency,
etc.)

“All squares

are rectangles”

“All these
figures (e.g.,
squares,
rectangle,
rhombus) are

parallelograms

. [critical
conditions are
fulfilled]

“If it is a square,
then it has to be
a rectangle, it
fulfills the
definition.”

“Because they
all have two
pairs of parallel
sides.”

describe a
figure or a
mathematic
al term by
definition

serves as a
necessary &
sufficient
condition for
the use of
word

294




Table 4.41 (Cont'd

4 1. common | Common abstract d- “they are “If two parallel | describea | servesasa
name descriptive | object hierarchy of | Construction | alternating lines are cut by | figure ora | necessary &
(object narrative on classifications | of new interior angles, | a transversal, mathematic | sufficient
driven) the name of narratives and they are their alternating | alterm by | condition for

figures (formal equal.” interior angles | definition. | the use of
proving using are equal.” word
2.common | Common | * two-level definitions, serves as a
relations descriptive | realization axioms, necessity for
among narrative on | tree: theorems, etc) the use of
definitions, | the relations available
axioms, properties | among axioms,
theorems, | of figures definitions, theorem,
etc. (e.g., equal, | properties, etc.
bisector, axioms,
etc) theorems
about
geometric
figures.
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