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ABSTRACT 

THE VAN HIELE THEORY THROUGH THE DISCURSIVE LENS: 
PROSPECTIVE TEACHERS’ GEOMETRIC DISCOURSES  

 
By 

Sasha Wang 

Over the past decade, there has been an increasing trend in the mathematics education 

research community to study students’ reasoning in the teaching and learning of mathematics, 

and to examine issues emphasizing the use of vocabulary, terminology, and words in the 

mathematics classroom. In response, this study investigates changes in prospective elementary 

teachers’ levels of geometric thinking, and the development of their geometric discourses in the 

classification of quadrilaterals.  

In Sfard’s (2008) Thinking as Communicating: Human Development, the Growth of 

Discourses, and Mathematizing, she introduces her commognitive framework, a systematic 

approach to analyzing the discursive features of mathematical thinking, including word use, 

visual mediators, routines, and endorsed narratives. To examine thinking about geometry, this 

study connects Sfard’s analytic framework to another, namely the van Hiele theory (see van 

Hiele, 1959/1985). The van Hiele theory describes the development of students’ five levels of 

thinking in geometry. Levels 1 to 5 are described as visual, descriptive, theoretical, formal logic 

and rigor, respectively. This study used the van Hiele Geometry Test from the Cognitive 

Development and Achievement in Secondary School Geometry (CDASSG) project (Usiskin, 

1982) as the pretest and posttest to determine prospective elementary school teachers’ van Hiele 

levels. This study also produces, on the basis of theoretical understandings and of empirical data, 

a detailed model, namely, the Development of Geometric Discourse. This model translates the 



 

van Hiele levels into discursive stages of geometric discourses with respect to word use, visual 

mediators, routines, and endorsed narratives.    

This study reveals discursive similarities and differences in participants’ geometric 

discourses at the same van Hiele level, as well as changes in geometric discourse as a result of 

changes in levels of geometric thinking. The study also investigates the usefulness of a 

discursive framework in providing “rich descriptions” of participants’ thinking processes. 
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CHAPTER ONE: INTRODUCTION 

In a research report prepared for the U.S. Department of Education, Wilson, Floden and 

Ferrini-Mundy (2001) reported that research shows a positive connection between teachers’ 

preparation in their subject matter and their performance and impact in the classroom, and found 

that “current results of subject matter preparation are disappointing” (p.35). Darken (2007) also 

pointed out that “the weak mathematical preparation of many elementary and middle school (K-

8) teachers is one of the most serious problems afflicting American education” (p.20). These 

conclusions suggest that a teachers’ preparation program needs to emphasize mathematics 

content knowledge for teaching. Knowing mathematics for teaching involves knowledge of 

mathematical ideas, mathematics reasoning skills, as well as communication skills, fluency with 

examples and terms, and thoughtfulness about the nature of mathematical proficiency. 

Geometry, considered as a tool for understanding and interacting with the space in which 

we live, is perhaps the most intuitive, concrete and reality-linked part of mathematics (ICMI, 

1998). It is in the language of geometry that the visual structure of our physical world is 

described and communicated between individuals, and the language of geometry helps students 

to reason deductively and to think interdependently. “It is written in the language of 

mathematics, and its characters are triangles, circles, and other geometrical figures without 

which it is humanly impossible to understand a single word of it; without these, one wanders 

about in a dark labyrinth (Usiskin, 1996, p.231). Today, the language of geometry is used 

without its structure and grammar, and thus it is still a foreign language to many teachers (Pimm, 

1987; Usiskin, 1996). 

The National Council of Teachers of Mathematics (NCTM, 2000) Principles and 

Standards for School Mathematics (PSSM) recommended that students should “analyze 
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characteristics and properties of two- and three dimensional geometric shapes and develop 

mathematical arguments about geometric relationships” (p.41). For instance, in the Geometry 

Standards for grades 3 to 5 students, it is recommended that all students should identify, compare 

and analyze polygons, and develop vocabulary to describe their attributes, as well as to classify 

polygons according to their properties, and to develop definitions of classes of shapes. Because 

students are expected to learn about geometrical concepts and attributes, as well as relationships 

between them, it is important for future teachers to know and be comfortable with the language 

of geometry.  

In prior research and literature on students’ learning of geometry, and in literature 

emphasizing the use of van Hiele theory to categorize students’ levels of thinking, many studies 

address the complexity and difficulty of students’ learning of geometry, as well as other 

educational and psychological concerns. Based on what others have studied about prospective 

teachers’ learning in geometry and their geometric thinking, this study is guided by this 

overarching question: What do prospective teachers learn in geometry from their preparation for 

the work of teaching geometry? 

The mathematics education community has always been interested in the teaching and 

learning of mathematics, and we became more aware of the importance of human interaction in 

the classrooms, and how it influences the effectiveness of teaching and learning. The notion of 

mathematics as discourse and students as being apprenticed into particular ways of doing 

mathematics in particular discursive contexts is now gaining prominence in mathematics 

education research. This phenomenon prompted the call for the study of teachers’ knowledge in 

geometry and of their learning of geometry. This study is informed by prior research and 

literature on van Hiele theory (van Hiele, 1959/1985), a framework that describes students’ 
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levels of geometric thinking, and by studies using van Hiele theory in the context of 

methodology and teacher knowledge in geometry. Additionally, this study is informed by 

research in the past that investigates students’ mathematics discourses in their discursive 

learning.  

While previous work sheds light on prospective teachers’ knowledge and thinking in 

geometry, it has not explored how examination of these teachers’ geometric discourses could 

help in learning more about their levels of geometric thinking. This study, influenced by the 

discursive nature of van Hiele theory, and of discourse analysis in the form of the Commognition 

framework described in Thinking as Communicating: Human Development, the Growth of 

Discourses, and Mathematizing (Sfard, 2008), seeks to examine prospective teachers’ knowledge 

in geometry, and to investigate as well their ways of communicating geometric thinking. The 

study revisits van Hiele levels with careful examination of key mathematical features at each 

level. These mathematical features include (1) use of mathematical words, (2) use of visual 

mediators in the form of geometric figures and their parts, and symbolic artifacts created for the 

purpose of communicating about geometry, (3) endorsed narratives such as mathematical 

propositions, axioms and definitions, and (4) mathematical routine procedures with which 

participants implement well-defined types of tasks. The discursive framework provides a new 

lens to investigate students’ geometric thinking.  

In Chapter 2, I position this study among studies addressing the teaching and learning of 

geometry in mathematics education in general, and studies that examine students’ thinking in 

geometry using van Hiele theory, as well as studies emphasizing discursive learning. In addition, 

I describe Sfard’s discursive framework in detail, including a description of each of its four key 

mathematical features and important phenomenon highlighted in this framework. Chapter 3 
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describes the methodology of the study, including descriptions of van Hiele Geometry Test 

instruments, interview tasks and an outline of the design of the study. Chapter 4 contains the 

results of the analyses conducted in this study along with interpretations of findings. These 

include the van Hiele Geometry pretest and posttest results and analyses of the whole group, and 

participants’ in-depth interview results and analyses. Finally, Chapter 5 provides a discussion of 

the findings, and Chapter 6 summarizes the study’s contributions to the field, its limitations, and 

suggestions for future research. 
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CHAPTER TWO: THEORETICAL BACKGROUND 

Review of Relevant Literature 

The upcoming sections detail the theoretical framework that will be used in the proposed 

study, and present reviews of relevant literature. The first section describes the van Hiele theory 

and then summarizes studies guided by the theory in the learning of geometry. In addition, this 

section summarizes research that addresses the knowledge of mathematics for teaching, 

specifically that related to geometry. The second section describes the commognitive framework 

related to discursive learning of mathematics. Included in this section are summaries of studies in 

discourse in the mathematics classroom, and the theoretical model of the development of 

geometric discourses that aligns the van Hiele theory through the discursive lens.  The final 

section raises general research questions in discursive terms.  

Regarding the teaching and learning of geometry, the van Hieles developed this 

influential theory of levels of geometric thinking. In discussing the profound impact of Pierre 

van Hiele’s theory in mathematics education, Clements (2003) concludes, “van Hiele theory 

gave educators and researchers a model that promoted the understanding of important, 

conceptual based level of thinking… It is also a model of synergistic connections among theory, 

research, the practice of teaching, and students’ thinking and learning”(p.151). To better describe 

the van Hiele Theory and how it has been used in the field of mathematics education, the 

following section provides the historical background and a general description of the theory. 

The van Hiele Theory 

The root of van Hiele theory emanated from the task of improving the teaching of 

geometry. A Dutch husband and wife, Pierre Marie van Hiele and Dina van Hiele-Geldof, 

developed “the van Hiele Theory” in their doctoral dissertations at the University of Utrecht, 
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Netherlands, in 1957. Dina died shortly after completing her dissertation, and Pierre continued to 

develop and disseminate the theory (e.g., van Hiele, 1959/1985, 1986). 

When Pierre and Dina worked at Montessori secondary schools as mathematics teachers, 

they were very disappointed with “students’ low-level knowledge of geometry”(p.60, 

1959/1985). On the other hand, they also realized that teachers and students often fail to 

communicate with each other because they “speak a very different language” (p.61). For 

example, one of Pierre and Dina’s initial observations was that they seemed to speak about 

geometry in a different way than their students. When Pierre and Dina spoke about a square as a 

type of rectangle, students were confused because to them a square and a rectangle were quite 

different. This led Pierre and Dina to consider the existence of various levels of geometric 

thinking and the possibility that those students and teachers at different levels of thinking may 

have difficulty communicating with one another. Although Pierre and Dina developed the theory 

together, their views were quite different. As a result, Pierre’s dissertation focused on identifying 

students’ levels of thinking in learning geometry, while Dina’s dissertation was more about a 

teaching experiment designed to investigate how students move from level to level.  

The van Hiele theory includes five distinct levels that describe students’ thought levels in 

the learning of geometry. However, P. M. van Hiele suggested that mathematics educators 

should focus on the first four van Hiele levels, because those are what teachers have to deal with 

in school most of the times (van Hiele, 1986). As P. M. van Hiele (1959/1985) described in “the 

Children’s thought and geometry”, the five van Hiele levels are as follows (p.62-63): Base Level, 

figures are judged by their appearance; First Level, figures are bearers of their properties, and 

they are recognized by their properties but not yet ordered; Second Level, properties are ordered, 

and they are deduced one from another; at this level, definitions of figure come into play but 
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students did not understand the meaning of deduction; Third Level, thinking is concerned with 

the meaning of deduction, with the converse of a theorem, with axioms, with necessary and 

sufficient conditions; Fourth Level, thinking is concerned with a variety of axiomatic systems 

that are non-Euclidean. Geometry is seen in the abstract.  

As described in the levels, students’ levels of thinking attached to the learning of a 

particular geometric topic are inductive in nature. At level n-1 certain geometric objects are 

studied. Students are able to state some of the relationships explicitly about the objects. At level 

n the objects studied are now the statements that were explicitly made at level n-1 as well as 

explicit statements that were only implicit at level n-1. Therefore, the objects at level n consist of 

extensions of the objects at level n-1. One major purpose of distinguishing the levels is to 

recognize obstacles that are presented to students. For example, when a student who is thinking 

at level n-1 confronts a problem that requires vocabulary, concepts or thinking at level n, the 

student is unable to make progress on the problem, with expected consequences such as 

frustration, anxiety and even anger.  

The van Hiele levels have several important properties:  (1) The levels are discrete and 

sequential.  Discrete indicates that the levels are qualitatively different from one another.  

Sequential refers to the fact that students pass through the levels in the same order, although 

varying at different rates, and it is not possible to skip levels.  (2) That which was intrinsic at one 

level becomes extrinsic at the next level.  For example, students operating at Level 1 are able to 

name geometric figures only by their appearance as a “whole” – the properties of a figure remain 

intrinsic.  However, at Level 2, these properties become extrinsic and in fact are the new objects 

of study.  (3) Each level has its own language and symbols.  Van Hiele believed that “In general, 

the teacher and the student speak a very different language” (van Hiele, 1986, p. 62).  Therefore, 
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teachers and students often have difficulty communicating with one another about geometric 

concepts. This linguistic challenge can also extend to communicational difficulties between 

students in a classroom when they are functioning at different thought levels. (4) Instructional 

methods have a greater influence than either age or grade on a student’s progress through the van 

Hiele levels.  That is, a teacher’s instructional activities can either foster or impede movement 

through the levels.  

When assigning students to different van Hiele levels, P. M. van Hiele cautioned that it is 

possible to misjudge a student’s level of thinking without careful analysis, because often students 

memorize or learn patterns in order to accomplish tasks, but do not really understand the 

underlying concepts. An example is when students recognize corresponding angles by finding 

the ‘F’ that is formed by parallel lines and the transversal. See Figure 2.1 below.  

 

Figure 2.1 Corresponding angles of parallel lines intersected by a transversal. 

This technique simplifies the relation between angles and lines. P. M. van Hiele claimed 

that it could be harmful to students if they only seek a quick result and avoid the ‘crisis of 

thinking’. In saying ‘crisis of thinking’, P. M. van Hiele meant the difficulties that students need 

to transit from one level to a higher level. It is possible for students to derive the answer without 

recognizing the relationships between the angles in the figure (e.g., supplementary angles, angles 
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at a point, interior angles). Van Hiele warned that these types of “tricks” might actually prevent 

students from moving to the subsequent level of reasoning (van Hiele, 1986, p.42).   

The van Hiele theory recognizes the importance of language, which plays a significant 

role in communication. According to P. M. van Hiele, students’ levels of thinking are important 

not in the sense of the way of their thinking, but in the results of thinking that are revealed in 

students’ speaking and writing. For example, the meaning of a statement like, “This figure is a 

rhombus.” depends on how one argues about it. For a student who is at Basic level, her answer 

could be, “This figure has a shape that looks like what I learned to call ‘rhombus’.” In contrast, if 

another student has already obtained the first van Hiele level or higher, her argument could be 

quite different. The figure that the student refers to is a collection of properties and those 

properties he/she has learned to call “rhombus” (van Hiele, 1986, p.109). By making the same 

statement, “This figure is a rhombus”, one could use very different reasoning, and from a very 

different level of thinking. This example of students’ responses to a rhombus illustrates how 

geometric language can vary among levels. 

The van Hiele theory has been influential and extensively studied. In the next section, my 

review of the existing literatures focuses on how the van Hiele theory has been used in research 

in the years since the theory was developed.  

Research Guided by van Hiele Theory 

The van Hiele theory was introduced to the United States by the Russian mathematician 

Izaak Wirszup in a lecture entitled “Some Breakthroughs in the Psychology of Learning and 

Teaching Geometry” at the Closing General Sessions of the National Council of Teachers of 

Mathematics in 1974, following its incorporation into a new Soviet geometry curriculum 

(Wirszup, 1976; van Hiele, 1959/1985, 1986). After the van Hiele levels were translated into 
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English, they were widely used by many researchers in the United States. During the period of 

1980-83, the National Science Foundation funded three major investigations of van Hiele levels 

in the United States: one directed by Burger and Shaughnessy at Oregon State University, 

another by Fuys, Geddes, and Tischler at Brooklyn College, and a third by Usiskin at the 

University of Chicago.  Burger and Shaughnessy set out a study using clinical interviews to 

determine the usefulness of van Hiele levels for describing children’s geometric thinking in 

elementary, middle, and high school grades. Fuys et al. focused their investigation on geometric 

thinking in adolescents using instructional models. Usiskin’s project used a large-scale survey to 

test whether the van Hiele theory applied to the geometric reasoning of students enrolled in 

secondary geometry courses. These three intensive studies have been widely read, discussed, and 

cited. After these studies, dozens of other studies using the work of the van Hieles have been 

conducted in the United States (e.g., see Mayberry, 1983; Crowley, 1987; Senk, 1983, 1989). 

Internationally, Micheal de Villiers in the Netherlands and later in South Africa used van Hiele 

theory to develop geometry curricula (de Villiers, 1996), whereas Angel Gutierrez and Adele 

Jaime and their students in Spain, and John Pegg and his students in Australia used the theory to 

study students’ learning in geometry (e.g., Gutierrez, 1996; Gutierrez, Jaime, & Fortuny, 1991; 

Gutierrez, Pegg, & Lawrie, 2000).  

In the earlier writing of the van Hieles, the van Hiele levels of geometric thinking mainly 

refer to the classification of figures (van Hiele, 1959/1985). At that time, levels were descriptors 

and they were not labeled by single words (e.g., “Visual” for Level 1, etc.). Almost thirty years 

later, van Hiele (1986) referred to the five levels of thinking as visual, descriptive, theoretical, 

formal logic and rigor, and considered such classification to be suitable to a structure of 

mathematics (p.53). 
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Over the years, researchers not only used the levels to study students’ levels of geometric 

thinking, but also expanded the area of research from classification of the quadrilaterals to the 

classification of similar figures, to reasoning and proof, to spatial geometry in three dimension 

measurement, etc. In these studies, researchers have proposed various descriptive labels for the 

van Hiele levels. As the first to name the van Hiele levels, Hoffer (1981) provided his 

descriptors, “levels of mental development in geometry” (p.13), which label Levels 1 through 5 

as recognition, analysis, ordering, deduction, and rigor (p.13-14). Besides these five levels, 

Hoffer also suggested five basic skills that are expected at each level. These five skills are visual 

skills, verbal skills, drawing skills, logical skills, and applied skills. For instance, at Level 1 

(recognition), the visual skills only focus on recognizing different figures from a picture, or on 

recognizing information labeled on a figure. At Level 2 (analysis), visual skills are developed to 

notice properties of a figure as well as to identify a figure as a part of a larger figure. At Level 3 

(ordering), visual skills help to recognize interrelationships between different types of figures 

and common properties of different types of figures. At Level 4 (deduction), visual skills focus 

on using information about a figure to deduce more information. Finally, at Level 5 (rigor), 

visual skills are used to recognize unjustified assumptions made by using figures (p.15). Hoffer’s 

descriptors suggested that various geometric skills might be expected of students at different 

levels of their development in geometry. 

Other “level indicators”, suggested by Burger and Shaughnessy (1986), describe the five 

levels as visualization, analysis, informal deduction, formal deduction, and rigor, for Levels 0 

through 4, respectively. Using Burger and Shaughnessy’s level indicators, Crowley (1987) 

provided additional examples of level-specific responses (except for Level 5), concerning how 

students would argue a given shape is a rectangle (p. l5).  
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 Level 1 “It looks like one.” or “Because it looks like a door.” 

 Level 2 “Four sides, closed, two long sides, two shorter sides, opposite  

  sides parallel, four right angles …”  

 Level 3 “It is a parallelogram with right angles.” 

 Level 4 “This can be proved if I know this figure is a parallelogram and  

  that one angle is a right angle.” 

Each response assigns to a level. The student at Level 1 gives answers based on a visual 

model and is identifying the rectangle by its overall appearance. At Level 2, the student is aware 

that the rectangle has properties; however, redundancies (i.e., properties that can be derived from 

other properties) are not noticed.  A student operating at Level 3 will attempt to give a minimum 

number of properties (i.e., a definition), and finally, at Level 4, a student will seek to prove the 

fact deductively. 

More recently, Battista (2009) elaborates and refines the van Hiele levels with regard to 

students’ geometric reasoning. The descriptors of the levels he suggests are visual-holistic 

reasoning, descriptive-analytic reasoning, relational-inferential reasoning, formal deductive 

proof, and rigor (p.92-94), referring to Levels 1 through 5, respectively. For instance, at Level 

1(visual-holistic reasoning), students argue that a square is not a rectangle because a rectangle is 

“long”; or claim that two figures have the “same shape” because they “look the same”(p.92). At 

this level, students’ justifications of an argument are vague and holistic. At Level 2 (descriptive-

analytic reasoning), students would assert that a square is a rectangle because “it has opposite 

sides equal and four right angles.” At this level, students are able to explicitly specify shapes by 

their parts and spatial relationships among the parts; however they describe parts and properties 

informally and imprecisely using strictly informal language learned from everyday life. At Level 



 

13 

3 (relational-inferential reasoning), students start with empirical inference to reason that if a 

quadrilateral has four right angles (and this is a rectangle), its opposite sides have to be equal 

because by drawing a rectangle with a sequence of perpendiculars, they cannot make the 

opposite sides unequal; and then they use logical inference to recognize the classifications of 

shapes into a logical hierarchy (p.94). 

These descriptors not only provide detailed information about how researchers identify 

students’ levels of geometric thinking, but more importantly shed light on the geometric 

reasoning and language skills that students need to develop at each van Hiele level. When 

conducting studies using van Hiele theory, some researchers use clinical interviews, while others 

prefer open-ended survey tests. Among all the van Hiele studies, Usiskin’s Cognitive 

Development and Achievement in Secondary School Geometry (CDASSG) project, and Burger 

and Shuaghnessy’s “Oregon Project” are two of the most frequently used and cited. In the 

following section I summarize the methods used in the van Hiele studies, as well as some 

important findings, beginning with these two projects that influence the teaching and learning of 

geometry.  

Now let me move on to the research methods used in the van Hiele studies. The Usiskin 

CDASSG project (Usiskin, 1982; Senk, 1983) used a standard pretest and posttest, involving 

four tests, to assess 2699 students in full year geometry classes from 13 public high schools in 

five states. The four tests were: Entering Geometry Test, van Hiele Level Test, Comprehensive 

Assessment Program Geometry Test and Proof Test. The pretest (i.e., Entering Geometry Test 

and Van Hiele Level Test) was conducted during the first week of school, and the posttest (i.e., 

van Hiele Level Test, Comprehensive Assessment Program Geometry Test and Proof Test) was 

scheduled three to five weeks before the end of the school year. 
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The van Hiele Geometry Test was designed to predict students’ van Hiele levels at the 

beginning and the end of the school year. This test consists of 25 multiple-choice items, with 5 

foils per item and 5 items per level, and was designed to capture the key thinking processes 

characteristic of each van Hiele level. In order to develop a rigorous test instrument that 

describes van Hiele levels in sufficient detail, researchers in the CDASSG project first reviewed 

nine original works of the van Hieles, including four originally written in English and five 

translated into English from Dutch, German or French. They compiled all the quotes from the 

van Hieles’ writings (see appendix B) that describe behaviors of students at a given level. As an 

example of the quotes, the following is a selected list of Level 1 behaviors that Usiskin (1982) 

provided in the CDASSG project report: 

Level 1 (their base level, level 0) 

1. “Figures are judged according to their appearance.” 

2. “A child recognizes a rectangle by its form, shape” 

3. “The rectangle seems different to him from a square.”  

4. “A child does not recognize a parallelogram in a rhombus.”  

5. “A student was able to produce these figures without error…” 

The van Hiele Geometry Test (see Appendix B) instruments were based on the 

descriptions of students’ behaviors at each given level. For example, Items 1-3 were derived 

from quote number one; Item 4 was derived from quote number eight and Item 5 was derived 

from quote number six. Figure 2.2 presents one van Hiele Level 1 item and its corresponding van 

Hieles’ quotes. 
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Question 4: Which of these are squares? 

                      

 
(A) None of these are squares. 
(B) G only 
(C) F and G only 
(D) G and I only 
(E) All are squares. 

 
Figure 2.2 An example of a Level 1 test item with its corresponding van Hiele quotes. 

 

To grade students’ responses to the van Hiele Geometry Test, the project used the 3 of 5 

criterion (3 out of 5 correct) and 4 of 5 criterion (4 out of 5 correct), and compared the two 

criterions using the analyses of Type I and Type II error. The statistical analysis showed that, 

depending on whether one wishes to reduce Type I or Type II error, the 3 of 5 criterion 

minimizes the chance of missing a student and yields an optimistic picture of students’ levels, 

whereas the 4 of 5 criterion minimizes the chance of a student being at a level by guessing (see 

Usiskin, 1982).  Based on students’ test responses, the students were assigned a weighted sum 

score according to the following: 

1 point for meeting criterion on items 1-5 (Level 1) 

2 points for meeting criterion on items 6-10 (Level 2) 

4 points for meeting criterion on items 11-15 (Level 3) 

8 points for meeting criterion on items 16-20 (Level 4) 

16 points for meeting criterion on items 21-26 (Level 5) (Usiskin, 1982, p.22)  

IHGF
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The points were added to give the weighted sum, and the weighted sums were calculated 

to allow a person to determine upon which levels the criterion has been reached from the 

weighted sum alone. For example, a score of 19 points indicates that the student has reached the 

criterion on Levels 1 (1 point), Level 2 (2 points) and Level 5 (16 points). The assigning of 

levels, however, was as follows: If a student met the criterion for passing each level up to and 

including level n and failed to meet the criterion for all levels above, then the student was 

assigned to level n; if the student could not be assigned to any level, then that student was not 

said to fit. Thus a student with a weighted sum of 1+2+16 =19 would satisfy the criterion at 

Level 1, Level 2 and Level 5 and was assigned to van Hiele Level 2 (p.25). The CDASSG 

project used Hoffer’s (1981) descriptors, labeling the levels as recognition, analysis, ordering, 

deduction and rigor, from Levels 1 to 5. Additionally, the project reported results using both the 

classical theory (i.e., all five van Hiele levels are considered) and the modified theory (i.e., Level 

5 is excluded from consideration) to classify students into van Hiele levels (see Usiskin, 1982).  

This large-scale research study showed that nearly 40% of students in the United States 

finish high school functioning below van Hiele Level 2 (Analysis). Students entering high school 

geometry courses with higher van Hiele levels, such as Level 2 or Level 3 (Ordering), were more 

likely to succeed in writing proofs by the end of the school year (Senk, 1983, 1989). Of those 

studied, students who entered geometry courses functioning at van Hiele Level 1 had a 30% 

chance of success in proof writing. Entering geometry at Level 2 provided students with a 56% 

chance of success at proof writing, and all students entering at Level 3 experienced success at 

proof writing by the end of the school year. These results show that high school students’ 

achievements in writing proofs are positively related to van Hiele levels of geometric thinking 

and to achievement on standard non-proof geometry content (p.318). The study also concluded, 
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“In the form given by the van Hieles, Level 5 either does not exist or is not testable. All other 

levels are testable”(Usiskin, 1982, p.79).  

It is helpful to use these data to determine the initial status of students’ geometric 

backgrounds and to assess their progress. However, there have been questions and doubts about 

the feasibility of measuring reasoning by means of items, and about the internal consistency of 

the items (Crawley, 1990; Wilson, 1990). Also, one might question what information might be 

missed in a paper-pencil test, and how the details of students’ thinking processes might be better 

detected. Nevertheless, the main advantage of this method is that it can be administered to many 

indiviudals, and it is easy and quick to distinguish between the thought levels of students.  

In contrast, Burger and Shaughnessy’s Oregon project (Burger & Shaugnessy, 1986) used 

clinical interviews to determine students’ van Hiele levels. They interviewed 45 students from 5 

school districts in 3 states, ranging from elementary to middle to high school. The interviews 

consisted of eight tasks focusing on geometric shapes, and those tasks were designed to reflect 

the descriptions of the van Hiele levels. 

The design of the interview tasks involved drawing shapes, identifying and defining 

shapes, sorting shapes (e.g., triangles and quadrilaterals); and the interview protocols were 

designed to engage participants in both informal and formal reasoning about geometric shapes. 

Six of the eight tasks, focusing on drawing, identifying, and sorting, were expected to elicit the 

characterizations of van Hiele Levels 0-2 from the protocols. To give an example of the design, 

Figure 2.3 shows two tasks that were used, Identifying and defining (2.3a) and Sorting (2.3b). 

Identifying and Defining 

Students were given a sheet of quadrilaterals (Figure 2.3a), and they were asked to write 

an S on each square and R on each rectangle, and if the student was familiar with the terms, a P 
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on each parallelogram and a B on each rhombus. During the interviews, students were asked to 

justify their marking. In the defining part of the activity, the student was asked, “What would 

you tell someone to look for in order to pick out all the rectangles on a sheet of figures?” Or, an 

equivalent question was asked, “Could you make a shorter list? Is No. 2 a rectangle? Is No. 9 a 

parallelogram?”(p.34). 

 

     

 

      2.3a. Quadrilateral to be identified              2.3b. Triangles to be sorted 

Figure 2.3 Two experimental tasks from the Oregon Project 

 

Sorting 

A set of cut out triangles was spread out on the table (Figure 2.3b). The student was 

asked, “ Can you put some of these together that are alike in some way? How are they alike? Can 

you put some together that are alike in a different way? How are they alike?” (p.34) This line of 
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questioning was continued as long as the student could come up with new sorting strategies. 

These activities sought to explore the student’s definitions and class inclusions.  

The project collected and analyzed students’ original written works during the interviews, 

and the dialogs between interviewers and the students were analyzed and documented as well. 

For example, on the Drawing Triangles task, interviewees were asked to draw “different” 

triangles. Based on the interviewees’ drawings during the interviews, Burger and Shaughnessy 

found that for Bud, a 5th grade student, “different triangles” meant triangles in different 

orientations or positions only. In contrast, for Amy, an 8th grade student, “different triangles” 

meant having different angle measures and sizes, and for Don, a 10th grade student, “different 

triangles” meant different types of triangles. Figure 2.4 shows the drawings from Bud, Amy and 

Don. 

                   

         Bud                                           Amy                                             Don 

Figure 2.4 Bud, Amy and Don’s drawings of different triangles. 

 

Recall that the “level indicators” developed by Burger and Shaughnessy (1986) describe 

Levels 0 through 4, respectively, as visualization, analysis, informal deduction, formal 

deduction, and rigor. Pursuant to students’ responses during the interviews, it turned out that, 

even though all three students were to reason about what is meant by “different triangles,” and 
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could provide drawings, all three students were later assigned to three different van Hiele levels: 

Bud (Level 0), Amy (Level 1) and Don (Level 2). This example illustrates use of the “same 

language” but very different reasoning. Burger and Shaughnessy also documented the original 

scripts in which questions were asked for interviewees to complete the task. For example, for the 

activity “Drawing Triangles”, interviewees were asked to draw a triangle (called No.1), and then 

another triangle (called No.2) that is different in some way from the first one. After the 

interviewee had done so, he/she was asked to draw a third triangle that is different from the first 

two triangles, and so on. Later, the interviewees were asked questions such as “How is #2 

different from #1?” and “How would they be all different from each other?”(p.37).  

Burger and Shaughnessy’s project confirmed the hierarchy nature of the levels. They also 

found that age is not significantly related to the levels. However, the reviewers of the project had 

disagreements and experienced some difficulties of assigning a level to students who appeared to 

be in the transition between Levels 0 and 1(p.42). 

The interviewees’ written works on one hand, and their verbal responses to the questions 

on the other hand, combined to increase the reliability of the data and provide strong evidence on 

how the data were analyzed and interpreted by researchers. The great advantage of clinical 

interviews is that the information obtained from the interviews results in a deeper knowledge of 

the ways students reason. However, this study is clinical with a small sample of students 

representing a very broad range of ages (Kindergarten to College). This kind of research is time-

consuming and is unsuitable for assessing many people. 

The review of the methods used in van Hiele studies influenced the design of the 

proposed study. The van Hiele Geometry Test, used to distinguish students’ van Hiele levels, is 

effective in getting initial information about students’ levels of thinking, and the CDSSAG 
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project showed that it is a well-tested and designed test instrument. The Oregon project, on the 

other hand, gives an example of how clinical interviews could well detect students’ thinking 

processes when engaged in informal and formal reasoning about basic geometric shapes.  

There are many other studies using the van Hiele theory that pertain to the learning and 

teaching of geometry. One such study by Fuys et al. (1988) focused on clinical interviews with 

sequences of instructions known as “Instructional Module Activities” (p.11). In this project, all 

subjects were interviewed individually in six to eight 45-minutes sessions as they worked with an 

interviewer on the Instructional Modules. The subjects were selected to reflect the diversity of 

sixth-grade students from New York City public schools. To categorize the subjects’ levels of 

thinking, the interviews focused on their progress (or lack of it) within the levels or to higher 

levels, and on learning difficulties as well (p.78). This project was designed to investigate 

whether or not instructional modules would help subjects move through the levels. Fuys et al. 

(1988) also documented the dialogues between interviewers and subjects.  For example, in the 

assessment of subjects’ understanding of the exterior angle of a triangle, subjects were given an 

open question of finding a possible relationship among the three angles indicated in Figure 2.5. 

 

Figure 2.5 An exterior angle of a triangle. 

 

During the interviews, the interviewer gave several prompts to the subjects such as: “ Is 

any part of angle c related to angle a or angle b?” With the help of the interviewer, the subjects 

c

b

a
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would sometimes successfully complete the argument of a relationship between two interior 

angles (angles a and b) and their exterior angle (angle c) of the triangle.  

In addition to the clinical interviews, Fuys et al. (1988) also analyzed geometric content 

of three widely used K-8 textbook series with regard to the van Hiele levels. They reported that 

no more than 2% of the lessons contained content that require geometric thinking at Level 3 

(formal deduction), and all of Level 3 lessons appeared at Grades 7 and 8. The remaining 98% 

represented van Hiele Levels 0, 1, and 2. Analyzing their findings, Fuys et al. concluded that “ 

average students do not need to think above Level 0 (visual) for almost all of their geometry 

experience through grade 8” (p.169). Not surprisingly, the overall results for the van Hiele levels 

of students in the United States were discouraging. In their study of the geometric reasoning of 

sixth and ninth grade students, Fuy et al. (1988) found the following:  19% of sixth graders 

performed consistently at Level 0 (visual), 31% performed sometimes at Level 1 (analysis) and 

sometimes at Level 2 (informal deduction), and the remaining 50% performed sometimes at 

Level 2 and sometimes at Level 3 (formal deduction).  The ninth graders’ corresponding 

percentages were 12%, 44%, and 44%.  

More recently, Newton (2010) used van Hiele levels to analyze K-8 geometry state 

standards. Of the 5,710 Grade Level Expectations (GLEs) contained in the K-8 Geometry and 

Measurement strands of 42 states, 1,667 GLEs (approximately 29 %) were labeled as descriptive 

geometry. The analysis of the descriptive geometry GLEs indicated that approximately 47% of 

the GLEs are Level 1(visualization), 49% are Level 2 (analysis), and 4% are Level 3 (informal 

deduction). According to Newton, the absence of Level 3 GLEs in more than 40% of the states 

and the near absence in the remaining 60% represent the most compelling result of the analyses, 

since formal deduction (Level 4) is generally expected in high school geometry courses.  
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The van Hiele theory has informed and shaped the improvement of the geometry 

curriculum (Wirszup, 1976; de Villers, 1999). For example, de Villiers cautioned “no amount of 

effort and fancy teaching methods at the secondary school will be successful, unless we embark 

on a major revision of the primary school geometry curriculum along van Hiele lines”. In 1999, 

Clements et al. encouraged the van Hiele level’s use in guiding curriculum development, and 

suggested that “helping children move through these levels may be taken as a critical educational 

goal” (p. 193).  The following year, in Principles and Standards in School Mathematics, the 

NCTM cited van Hiele and others who have studied his theory to develop the importance of “… 

building understanding in geometry across the grades, from informal to more formal thinking” 

(2000, p. 40). 

Knowledge of Geometry for Teaching 

“Mathematical knowledge for teaching means the mathematical knowledge used to carry 

out the work of teaching mathematics” (Hill, Rowan & Ball, 2005, p.373). When suggesting 

what it means to know mathematics for teaching, Ball, Hill and Bass (2005) argue that teaching 

involves knowledge of mathematical ideas, mathematics reasoning skills, and communication, 

fluency with examples and terms, and thoughtfulness about the nature of mathematical 

proficiency. For instance, additional mathematical insight and understanding are required to 

explain, listen, and examine students’ work, and more mathematical analysis is required when 

correcting students’ errors. In addition to mathematical knowledge for teaching, Ball et al 

address the need for teachers to have a specialized fluency with mathematical language, and to 

know what counts as a mathematical explanation.  

In this section, I summarize research that emphasizes prospective teachers’ knowledge of 

geometry. Mayberry (1983) investigated nineteen undergraduate prospective teachers’ geometric 
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understanding when encountering seven geometry concepts: squares, right triangles, isosceles 

triangles, circles, parallel lines, similarity and congruence, all common topics to elementary 

school textbooks. The study found that two students had difficulty in recognizing a square with a 

nonstandard orientation (Basic level), while the properties of figures were often not perceived 

(Level I). For example, when asked, “does a right triangle have a longest side?” (p.60), twelve 

students responded that they did not think that such a triangle had to have a longest side. With 

regard to Level II, the study concluded that class inclusions, relationships, and implications were 

not perceived by many of the students, because they answer the questions for particular figures 

rather than generalized ones. Responses to questions about congruence (Level III) show that 

fifteen out of the nineteen prospective teachers believed that two right triangles with ten-

centimeter hypotenuses are always congruent. Also, ten of nineteen assert that two circles with 

ten-centimeter chords are always congruent (Table 2.1).  

Table 2.1 Responses to Relation Questions about Congruency 

Figure. “ Are these Congruent?” Always Sometimes  Never Don’t know 

A square and a triangle 0 1 17 1 

Two squares with 10-cm sides 16 2 0 1 

Two right triangles with 10-cm hypotenuses 15 3 0 1 

Two circles with 10-cm chords 10 8 0 1 

Two similar triangles 3 11 3 2 

 

Findings suggested that the prospective teachers in the study did not yet perceive some of 

the properties of basic geometric shapes, and they did not perceive a proof as a logical chain 

leading from the “given” to the “conclusion.” 

Hershkowitz, Bruckheimer and Vinner conducted in Israel a study of 518 students 

(grades 5-8), 142 prospective teachers, and 25 in-service teachers. Findings showed that 
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“teachers have patterns of misconceptions similar to those of students in grades 5-8” (1987, 

p.222). More specifically, they assessed 142 prospective elementary teachers’ understanding of 

geometry concepts in the context of angles, altitudes of triangles, and diagonals of polygons. For 

example, one of the tasks was to assess the understanding of the angle concept by recognizing 

the drawing of an angle on a sheet of paper. Results suggested that sixty-eight percent of the 

prospective teachers had a proper understanding of the concept of angle (p.223).  After assessing 

prospective teachers’ understanding of the diagonals of polygons, Hershkowitz, Bruckheimer 

and Vinner (1987) found that most of the prospective teachers only drew diagonals that were 

inside the polygons and rejected the possibility of an exterior diagonal (see Figure 2.6). This 

result suggests that most prospective teachers did not use definitions as their primary tool when 

working with these tasks. They tended to use their own individual image of a given concept (e.g, 

concept of diagonals of a polygon). These prospective teachers’ individual concept images were 

misleading in the case of the diagonals of concave polygons. 

               
Figure 2.6 The “diagonals” of concave polygons 

 

Gutierrez, Jaime, and Fornruny (1991) conducted a study to evaluate 32 prospective 

teachers’ spatial reasoning in three-dimensional geometry. Nine items of the Spatial Geometry 

Test were grouped into five activities. These activities were designed to elicit prospective 

teachers’ conceptual understanding of three-dimensional figures, by paying attention either to 
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visual qualities or to the properties of basic geometric shapes such as squares and parallelograms. 

Activities that asked prospective teachers to select solids, based on given properties, focused on 

how prospective teachers use definitions and properties to identify the polyhedron from a given 

set of solids. With regard to the question involving writing the differences and similarities 

between a cube and the Solid I (see Figure 2.7), this activity focused on observation and 

manipulation of the polyhedran. In response to this question, for instance, one prospective 

teacher argued, “In both solids [a cube and Solid I] the faces are parallelograms and both have 

six faces. And the differences were, the angles in solid I are not right” (p.246). Another 

prospective teacher argued, “Solid I and a cube were alike because both solids have parallel faces 

and all edges are the same, and they differed because they don’t have the same shape”(p. 246). 

     
Figure 2.7 A cube (left) and Solid I (right) 

 

These two responses both reasoned about the differences and similarities between a cube 

and a solid, but the arguments provided by the two prospective teachers were quite different. The 

first response focused on the properties of the geometric figures; whereas the latter response 

mainly paid attention to the visual qualities of figures. 

Based on Vinner and Hershkowitz’s (1987) notion of concept image, Gutierrez and Jaime 

(1999) conducted a study of prospective elementary teachers’ understanding of the concept of 

the altitude of a triangle. They analyzed 190 prospective teachers’ written tests, focusing on 

Solid 1Cube
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concept images, difficulties, and errors related to the concept of the altitude of a triangle. 

Analysis showed that there were more correct responses in the test containing the definition of 

the altitude than in the test without the definition. This observation suggested that the definition 

seemed to provide information helping these prospective teachers to improve their understanding 

of the concept of altitude.  

From the responses that prospective teachers provided in the study, we learned that there 

was confusion and misunderstanding between the concepts of altitudes and medians of a triangle, 

and the concepts of altitudes and perpendicular bisectors of the sides of a triangle. These 

misunderstandings could be reasons why prospective teachers responded incorrectly to a partial 

image that excludes external altitude (Figure 2.8a), and to a partial image that does not take into 

account the length of the altitude (Figure 2.8b).  

  2.8a.                                                            2.8b. 

            

“For interpretation of the references to color in this and all other figures, the reader is referred to 
the electronic version of the dissertation” 

Figure 2.8 Responses regarding the altitude of a triangle 

 

Another issue worth mentioning is the influence of the position of a triangle, as a 

consequence of a different rotation of the figure. The easier item appeared to be the prototypical 

position with a vertical altitude, which suggests that prospective teachers’ concept images of 
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altitudes of triangles were limited to only certain types of triangles, and with certain orientations 

of how triangles are positioned. 

In the previous section I have presented examples from existing literatures regarding 

prospective teachers’ understanding in the context of Euclidean geometry. The review included 

teachers from Israel, Spain, and the United States. Some investigations were done through large-

scale studies; others were done through clinical interviews. These prospective teachers who were 

tested all shared some common difficulties and weakness in their learning of geometry.  

Theoretical Framework 

According to the van Hieles, a learning process is also a process of learning a new 

language, because “each level has its own linguistic symbols” (van Hiele, 1959/1985, p.4). The 

van Hiele levels reveal the importance of language use, and emphasize that language is a critical 

factor in the movement through the levels. The word “language” is not clearly defined in the 

broad use of it (see van Hiele, 1986). Moschkovich (2007) argued that the language of 

mathematics does not mean a list of vocabulary words or grammar rules, but rather the 

communicative competence necessary and sufficient for competent participation in mathematical 

discourse. 

A real concept is an image of an objective thing in its complexity. Only when we 

recognize the thing in all its connections and relations, only when this diversity is 

synthesized in a word, in an integral image through the multitude of determinations, do 

we develop a concept.                                              – Vygotsky 

 

In this section, I summarize issues of language and discourse in mathematical learning 

from existing literature. Sfard (2008) uses a discursive approach inspired by Vygotsky to make a 
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distinction between language and discourse - language is a tool, whereas discourse is an activity 

in which the tool is used or mediates. This perspective provides an understanding of mathematics 

as a social and discursive accomplishment in which talk, gesture, diagrams, representations, and 

objects play an important role; consequently, mathematics learning requires several modes of 

communication (Sfard, 2002).  

Researchers such as Ball (1993) elaborated the relationship between discourse, content 

and community in their research to illustrate how these elements help students to develop what 

Schoenfeld (1992) calls a “mathematics point view.” From this perspective, classroom 

mathematical discourse is essentially a progress of establishing true claims about mathematics. 

In her work, Lampert (1998) advances the case for classroom-based research to consider the 

impact of language and discourse on mathematical learning. For example, Lampert illustrates 

aspects of “mathematical talk” that includes position taking, question asking, proof and 

justification, expanding ideas, use of evidence, conjectures, symbolic reference, and so on.  

Kerslake’s (1991) focus on language in mathematics classrooms is an example of work 

that attempts to examine the specific language of the content area, and helps to identify how the 

use of language becomes a resource for understanding students’ misconceptions. For example, 

based on the interviews with students, Kerslake found that students fail to conceive fractions as 

numbers because they perceive them as “broken numbers” instead. Moreover, students tend to 

rely on the everyday language of “sharing” to describe division, and Kerslake surmises that this 

happens because sharing is likely to have been the students’ first experiences of dividing. 

Kerslake suggested a closer look at how students think of and talk about fractions in the course 

of learning.  
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Moschkovich (2010) also acknowledges the significant role of discourse in learning. She 

demonstrated this view, through an analysis of a third grade bilingual mathematics classroom, to 

illustrate two features of mathematical discourse: situated meaning of words (utterances), and 

focus of attention. She suggests that learning mathematics is a discursive activity that involves 

participating in a community of practice using multiple materials, linguistic, and social 

resources. 

Many researchers have attempted to develop frameworks to examine students’ discourses 

in learning mathematics. As an example, Sfard’s (2008) communicational approach to 

mathematical learning provides a notion of mathematical discourse that distinguishes her 

framework from others in several ways. In particular, Sfard (2002) argues that the knowing of 

mathematics is synonymous with the ability to participate in mathematics discourse. From this 

perspective, conceptualizing mathematical learning as the development of a discourse and 

investigating learning means getting to know the ways in which children modify their discursive 

actions in these three respects: “its vocabulary, the visual means with which the communication 

is mediated, and the meta discursive rules that navigate the flow of communication and tacitly 

tell the participants what kind of discursive moves would count as suitable for this particular 

discourse, and which would be deemed inappropriate.” (Sfard, 2002, p.4) Therefore, Sfard’s 

(2008) commognitive approach is grounded in the assumption that thinking is a form of 

communication and that learning mathematics is learning to modify and extend one’s discourse.  

Commognition 

In Sfard’s (2008) Thinking as communicating: Human development, the growth of 

discourses, and mathematizing, she defines discourse as “any act of communication made 

distinct by its repertoire of admissible actions and the way these actions are paired with re-
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actions” (Sfard, 2008, p. 297). A discourse is considered to be mathematical when it features 

mathematical vocabulary that relates to numbers and shapes. Geometric discourse, a subcategory 

of mathematical discourse, features mathematical vocabulary specifically relating to geometric 

shapes, definitions and proofs, etc (p.245). Mathematical discourses are distinguishable by their 

vocabularies, visual mediators, routines, and endorsed narratives. 

From the commognitve point of view the development of discourse involves modifying 

colloquial mathematical discourse into a more precise mathematical discourse, one that follows 

meta-discursive rules. For example, in mathematics, geometric shapes are analytically classified 

by their properties, not just by how they appear to us holistically. Thus, a stretched out triangle is 

still a triangle even if it looks distorted. As long as it has three line segments joined at vertices, it 

is a triangle; and because we count those segments and vertices, we engage in a linguistic act 

(see Sfard, 2008). In Sfard’s terms, the mathematical discourse develops from colloquial 

mathematical discourse; the colloquial mathematical discourse is an important starting point, and 

to develop mathematical discourse requires a fundamental change in the discourse practices. 

To identify whether a discourse is “mathematical”, four characteristics can be considered 

as critical: word use, routines, visual mediators and endorsed narratives. Following is a very brief 

description of each of these. 

In a mathematical discourse, numbers words and comparison words (e.g., bigger, smaller) 

will appear in the conversations discussing numbers and shapes. In this proposed study, the 

geometric discourse deals with triangles and quadrilaterals, and their properties; therefore words 

will appear such as “angles”, “sides”, “parallel”, “diagonals”, “congruent”, “same”, etc. and 

sometimes these words will have multiple meanings depending on how the person uses them. 

Word use is an all-important matter because, being tantamount to what others call word meaning, 
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it is responsible for how the user sees the world, and it is one of the distinctive characteristics of 

discourses (Sfard, 2005, p.245). In particular, a students’ word use reflects his/her levels of 

mathematical thinking, which are crucial in this proposed study.  

Visual mediators are objects that are operated upon as a part of the process of 

communication. In colloquial discourses, visual mediators are images of material things existing 

independently of the discourse; whereas in mathematical discourses, visual mediators are often 

involved with symbolic artifacts, created specially for the sake of this particular form of 

communication. Communication-related operations on visual mediators often become automated 

and embodied. For example, “the procedures of scanning the mediator with one’s eyes… With 

some experience, this procedure would be remembered, activated, and implemented in the direct 

response to certain discursive prompts, as opposed to implementation that requires deliberate 

decisions and the explicit recall of a verbal prescription for these operations” (Sfard, 2008, 

p.134).  

Narrative is defined as “a set of utterances, spoken or written, that is framed as a 

description of objects, of relations between objects or processes with or by objects, and which is 

subject to endorsement or rejection, that is, to being labeled as true or false” (Sfard, 2008, 

p.300). Endorsed narratives are sets of propositions that are accepted and labeled as true by the 

given community. In the case of geometric discourse, endorsed narratives are known as 

mathematical theories, including definitions, proofs, axioms, and theorems. The statement “a 

parallelogram is a quadrilateral with two pairs of parallel sides” is an endorsed narrative of 

parallelogram, defining what a parallelogram is mathematically. Mathematical discourse is 

conceived as one that should be impervious to any considerations other than purely deductive 

relations between narratives. In this proposed study, the narratives will be those utterances 
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produced by prospective teachers when identifying and classifying basic geometric shapes, 

whereas the endorsed narratives will be the definitions of different quadrilaterals from textbooks 

that prospective teachers encounter in their geometry class, and narratives that will be 

constructed or endorsed by prospective teachers during the interview.  

Routines are repetitive patterns characteristic of the given discourse. Specifically, 

mathematical regularities can be noticed whether one is watching the use of mathematical words 

and mediators, or follows the process of creating and substantiating narratives about numbers or 

geometrical shapes. In fact, such repetitive patterns can be seen in almost any aspect of 

mathematical discourses: in mathematical forms of categorizing, in mathematical modes of 

attending to the environment, in the ways of viewing situations as “the same” or different, which 

is crucial for the interlocutors’ ability to apply mathematical discourse whenever appropriate – 

and the list is still long. 

When someone is doing mathematics, or to be more specific, is engaging in a 

mathematics task in geometry, patterns such as how one is carefully using mathematical words, 

or how one is following certain steps when substantiating narratives about geometrical shapes, 

can be observed. In fact, those repetitive patterns can be seen in almost any aspect of 

mathematical discourses (Sfard, 2005; Sfard 2008). In this proposed study, when prospective 

teachers identify and classify basic geometric figures, mathematical regularities will be noticed 

through the conversations, to determine whether these prospective teachers are paying attention 

to the use of mathematical words and following the process of creating and substantiating 

narratives about geometrical shapes.  

A Routine is defined as a set of meta-rules defining a discursive pattern that repeats itself 

in certain types of situations, and the set can be divided into two subsets – the how of a routine, 
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and the when of a routine (Sfard, 2008, p.208): The how of a routine: a set of meta-rules that 

determine the course of the patterned discursive performance (the course of routine, or 

procedure); the when of a routine: a collection of meta-rules that determine those situations in 

which the discussant would deem this performance as appropriate. 

In this proposed study, “the how of a routine” will likely be observed (through 

interviews), whereas “the when of a routine” will not be discovered because it requires 

observations over a period of time (consistent observations over weeks, months or even years).  

The Levels of Geometric Discourses 

Many researchers have confirmed the usefulness of van Hiele theory when describing the 

development of students’ geometry thinking. However the same researchers often find the van 

Hiele theory lacking in depth with respect to the broad description of the levels, and they would 

like a more detailed description of students’ levels of thinking. Recall that Hoffer’s (1981) 

“Sample Skills and Problems” (p.11) provided a framework that connects the levels of 

development with five basic skills (e.g., visual skills, verbal skills, drawing skills, etc) that are 

expected at each van Hiele level. This work inspired me to consider the possibility of connecting 

the van Hiele theory with a discursive framework, and to translate the van Hiele levels into 

discursive terms. I claim that when a student’s geometric thinking develops to a higher level, 

simultaneously there is a development of the student’s geometric discourse in discursive terms. 

That is, the levels of geometric thinking can be viewed also as the levels of geometric discourses. 

If so, the question is: “what additional information do the analyses of geometric discourse 

provide about the student’s level of thinking?” To investigate the usefulness of discursive 

framework, the study produced a model, on the basis of the theoretical understandings, that 
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describes each van Hiele level as a geometric discourse with respect to word use, routines, visual 

mediators and endorsed narratives.  

By “the theoretical understandings”, I mean the initial translation of the van Hiele levels 

to discursive terms based on the quotes from the van Hieles’ writings, the same quotes used to 

design the van Hiele Geometry Test in the CDASSG project. Taking the van Hieles’ descriptions 

of students’ behaviors at each level, I analyzed them into the four characteristics described in the 

Sfard framework; such translation illustrates student geometric discourse at each van Hiele level. 

The translation for five van Hiele levels is shown in Tables 2.2 (Levels 1-3) and 2.3 (Levels 4-5). 

Table 2.2 Discursive Translation of van Hiele Levels 1-3 

 
Key terms 

Characteristic 
Geometric Discourse 

Van Hieles’ description of Level 1. Figures are judged by their appearance. 

Word use Naming a figure is matching the figure with its name.  

Routines  Direct recognition, a perceptual experience that is self-evident. 

Endorsed 
narratives 

Descriptions of how one perceives. “This one (square) looks different from this 
one (a rectangle)”. 

Visual 
mediators 

2-D geometric shapes, the openness of angles, positions of the lines or physical 
orientations of a figure are parts of the process of direct recognition. 

Van Hieles’ description of Level 2. Figures are bearers of their properties. 

Word use Naming a figure is associated with its properties.  

Routines  
Direct recognition. Object level routines include checking, measuring and 
comparing partial properties of figures. 

Endorsed 
narratives 

Descriptions of visual properties. “Squares are not rectangles because they 
have all sides equal, but rectangles are not”. 

Visual 
mediators 

2-D geometric shapes, the openness of angles, positions of segments or 
physical orientations of a figure are parts of the process of direct recognition 
and identification of visual properties.  

Van Hieles’ description of Level 3. Properties are ordered and are deduced one from another. 
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Table 2.2 (cont’d) 

Word use 
Naming a figure signifies the realization of the figure regarding its endorsed 
narratives. 

Routines   
Including routines at Level 2. Object level routines producing endorsed 
narratives. 

Endorsed 
narratives  

Descriptions of a definition of a figure and actions on a figure. “Rectangle is a 
parallelogram having four right angles”.  

Visual 
mediators  

Figures, lines and angles are parts of the process of identifying necessary and 
sufficient condition of a definition. 

 

Table 2.3 Discursive Translation of van Hiele Levels 4-5 

 
Key terms 

Characteristic 
Geometric Discourse 

Van Hieles’ description of Level 4. Thinking is concerned with the meaning of deduction. 

Word use 
Naming a figure signifies the realization of the figure regarding its endorsed 
narratives and its connections with other figures. 

Routines  
Using abstract symbols. Abstract level of routines producing endorsed 
narratives and making connections among them 

Endorsed 
narratives 

Descriptions of abstract relations. Constructions of narratives using deductive 
reasoning.  

Visual 
mediators 

All level 3 visual mediators, plus abstract symbols, mathematical diagrams. 

Van Hieles’ description of Level 5. Figures are bearers of their properties. 

Word use 
Naming a figure signifies the realization with its endorsed narratives and 
connections with other figures in both Euclidean and non-Euclidean geometry. 

Routines  Routines are connected with creativity.  

Endorsed 
narratives 

Descriptions of abstract relations in both Euclidean and non-Euclidean 
geometry. 

Visual 
mediators 

Mathematical symbols and artifacts used in both Euclidean and non-Euclidean 
geometry. 

 
During this process of translating, the van Hieles’ quotes at each level were reviewed and 

analyzed into possible characteristics of a mathematical discourse. For example, the quote No. 2, 

“A child recognizes a rectangle by its form, shape”, provides information about how a child 
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identifies a figure, what it calls a “rectangle”, based on its physical appearance. When this quote 

is translated into discursive terms, the word, “rectangle” signifies a geometric shape (i.e., a shape 

that we call a “rectangle”), thus the word use here is a name or a label of the figure. The phrase, 

“recognizes… by its form, shape” suggests that the direct recognition triggers the decision 

making, and therefore the routine procedure is a perceptual experience and is self-evident (e.g., 

[it is] a rectangle [because I see it] by its form, shape). Narratives are utterances, verbal or 

written, that describe objects, and/or relations between objects. The narrative statement is “what 

is said” about the object during the interview or observation; a student with behavior described in 

the quote is very likely to say, “it is a rectangle because it looks like one”. The visual mediator in 

this situation could include a drawing or picture of a four-sided figure looking like a rectangle.  

The translation of van Hiele levels into discursive terms provides additional information 

about what a student might say (word use and narratives) and do (routines), as well as what 

visible objects (visual mediators) are operated upon as a part of the process of communication 

through the geometric discourses. Moreover, the translation provides more details about the 

development of the levels through the development of geometric discourses. The van Hiele 

levels provide a useful framework to distinguish students in different levels, whereas the 

geometric discourses at the van Hiele levels provide in-depth analyses of students’ levels of 

geometric thinking.  

The General Research Question in Commognitive Terms 
 

In the previous section I described Sfard’s (2008) commognitive framework, a systematic 

approach to analyzing the discursive features of mathematical thinking. To examine thinking 

about geometry, the study connected Sfard’s framework to the van Hiele theory (1959/1985), 

and produced a detailed model, namely the Development of Geometric Discourse. This model 
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translates the five van Hiele levels into five discursive stages of geometric discourses. I used 

empirical data of the study to enrich and refine the model with these questions:  

1. At what van Hiele levels do prospective teachers operate? 

2. What additional information does the model, the Development of Geometric 

Discourse, provide regarding prospective teachers’ levels of geometric thinking? 

In view of my interest in investigating prospective teachers’ knowledge in geometry after 

taking a university geometry course, I also asked this question:  

3. How do prospective elementary teachers’ competencies in geometry change as a 

result of their participation in a university geometry course?  

According to Sfard (2008), mathematical knowledge in geometry involves two levels of 

discursive process: the object level and the abstract level. For example, the geometrical narrative 

on geometric shapes, “the sum of the angles in a quadrilateral is 360º”, is considered at the object 

level because it expresses a property of quadrilaterals; whereas the abstract level involves a 

patterned activity of formulation and substantiation of these object-level narratives. This study 

investigates two components when examining prospective teachers’ knowledge in geometry. The 

first component is students’ knowledge of the names, properties and classification of geometric 

shapes (object level); the second is competence in reasoning. The new knowledge about 

geometrical constructs comes from a deductive process (abstract level). The question “How do 

prospective elementary teachers’ competencies in geometry change as a result of their 

participation in a university geometry course?” pertains to prospective teachers’ familiarities 

with basic geometric shapes and their properties, abilities to formulate conjectures, and abilities 

to construct geometric proofs.  
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In discursive terms, an analysis of “familiarity with basic geometric shapes, their 

properties and classification” implies an examination of students’ narratives about geometric 

figures utilizing geometric names, where narratives speak about the properties of figures and 

relations between them. The analysis of  “ability to formulate conjectures about figures, their 

properties and relations, and abilities to construct geometric proofs” suggests an examination of 

students’ formulation and substantiation of these object level rules about geometric figures.  

In the next section, I will discuss the methodology to be used in this study.  
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CHAPTER THREE: METHODOLOGY 

 

The purpose of this study is to explore a discursive framework as an analytic tool to 

describe students’ geometric thinking through the analysis of their geometric discourses. To this 

end, I used three primary data sources, (1) written responses to the van Hiele Geometry Test 

(from a Pretest and Posttest), (2) transcripts (from two in-depth interviews, the first interview 

conducted right after the pretest, and the second right after the posttest), (3) other written 

artifacts (participants’ written statements, answer sheets to the three tasks during the interviews). 

I describe these sources in greater detail here followed by the methods used to analyze these data 

sources.   

Participants 

All participants in the study were prospective elementary school teachers. In a certain 

mid-west university teacher education program, prospective elementary teachers were required 

to complete a sequence of two mathematics content courses designed for elementary school 

teachers. The first of these courses deals with on numbers and operations, and the second with 

measurement and geometry. The participants of the study were prospective elementary teachers 

enrolled in the measurement and geometry course; most of them were juniors and sophomores, 

and a few were seniors. All seventy-four students enrolled in the course in the fall of 2010 

participated in the pretest, and sixty-three of these participated in the posttest, both tests being 

given as class assignments. Twenty-one participants voluntarily participated in the interview part 

of the study soon after the pretest, and twenty of these participated in the second part of the 

interview soon after the posttest.  
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All participants enrolled in the geometry and measurement course for teachers used 

Parker and Baldridge’s (2008) textbook, Elementary Geometry for Teachers. Ten chapters are 

included in this textbook, all discussing mathematical topics related to geometry and 

measurement for prospective elementary school teachers. Most participants had studied 

geometry in K-12, therefore the contents of this study related to triangles, quadrilaterals and 

proof introduced in Chapter 2 (Geometric Figures) and Chapter 4 (Deductive Geometry) were 

partly review to them. For example, in Chapter 2 students were introduced to triangles and 

parallelograms. The discussion includes the introduction of angles, perpendicular and parallel 

lines, as well as the classification of quadrilaterals. In the classification of quadrilaterals, students 

studied parallelograms, rectangles, rhombuses, squares, trapezoids, and kites. In Chapter 4 

students learned how to derive new geometric facts from previously known facts using logical 

arguments. For instance, in the beginning of Chapter 4, where a problem of finding an unknown 

angle in a quadrilateral leads to an unknown angle proof, students learned from a natural 

computation to deduce a general fact about a quadrilateral. Later in the chapter, students learned 

to construct proofs for congruent triangles, and to use congruent triangles to verify properties of 

quadrilaterals. Thus, these participants were introduced to the topics in this study by the textbook 

for the course. 

The van Hiele Geometry Test 

As discussed in the earlier chapter, many mathematics educators have used van Hiele 

theory to determine students’ levels of mathematical thinking. In order to identify suitable survey 

instruments for the study, literature on the van Hiele levels was reviewed. The van Hiele 

Geometry Test (see Appendix C), used in the Cognitive Development and Achievement in 

Secondary School Geometry (CDASSG) project, was chosen because it was carefully designed 
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and tested by the researchers of the project (Usiskin, 1982, p.19). This test was used as the 

instrument for pretest and posttest to determine the van Hiele level of the students.  

The van Hiele Geometry Test contains 25 multiple-choice items, distributed into five van 

Hiele levels: Items 1-5 (Level 1), Items 6-10 (Level 2), Items 11-15 (Level 3), Items 16-20 

(Level 4) and Items 21-25 (Level 5). These items are designed to identify students’ geometric 

thinking at five van Hiele levels. For example, Items 1 to 5 of are designed to identify students’ 

thinking related to van Hiele Level 1, at which figures are judged according to their appearance. 

Items 5 to10 identify students’ behaviors related to van Hiele Level 2, at which figures are the 

supports of their properties. The van Hiele Geometry Test was given to provide initial 

information on students’ levels of geometric thinking at the two end points: beginning (pretest) 

and the end of the semester (posttest). The analyses of the pretest and posttest help to determine 

students’ changes in geometric thinking resulting from participating the measurement and 

geometry class.  

The goals of the interviews were (1) to gather information about students’ knowledge of 

with triangles and quadrilaterals, as well as the parts of the triangles and quadrilaterals (e.g., 

angles, sides, etc), (2) students’ abilities in verifying their claims and deriving mathematical 

proofs, and (3) to probe further into students’ geometric discourses as revealed through these 

mathematical activities.  

Interview Tasks 

Three tasks (see Appendix D) and corresponding interview protocols were designed for 

the interviews. All three tasks were printed individually on four standard 8″× 11″ sheets of white 

paper. Task One presents eighteen geometric shapes, labeled with alphabet capital letters shown 

in Figure 3.1. Among these eighteen polygons, thirteen are quadrilaterals, four are triangles, and 
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one is a hexagon. Sixteen of these polygons were chosen from the van Hiele Geometry Test 

Items 1-5. Two more polygons were added, consisting of Fig. Q, a quadrilateral and Fig. S, a 

triangle with no pair of sides equal. These shapes also commonly appear in elementary and 

middle school textbooks used by many researchers over the past two decades to categorize 

students’ geometric thinking with respect to the van Hiele levels (e.g., Mayberry, 1983; Burger 

& Shaughessy, 1986; Gutierrez, Jaime, & Fortuny, 1991).  

Task One: Sorting Geometric Figures 

 

Figure 3.1 Task One: Sorting Geometric Figures 

 

Task One was presented to participants at the beginning of the interviews, and each was 

asked to sort the eighteen polygons into groups. After the first round of sorting, each participant 

was asked to regroup or/ and subgroup the polygons. For example, some participants sorted the 

polygons into a group of rectangles (see U, M, F, T, R, G in Figure 3.1), and a group of triangles 

(see X, K, W, S in Figure 3.1). The questions “Can you describe each group to me?” and “ Can 
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you find another way to sort these shapes into groups?” allowed participants to produce 

narratives about triangles and quadrilaterals based on their knowledge of polygons. Analysis of 

the act of grouping gave information on how participants classify triangles and quadrilaterals.  

At the end of Task One, I asked each participant to write the definitions of rectangle, 

square, parallelogram, rhombus, trapezoid and isosceles triangle, and collected their written 

narratives. This information revealed how participants defined these mathematical terms, and 

how they made connections between a name and a recognized parallelogram, as well as how 

quadrilaterals are related to one another.  

Task Two: Investigating Properties of Parallelograms 

Task Two of the interview had two components. The first component, divided into Part A 

and Part B, was designed to collect participants’ drawings of the parallelograms (see Table 3.1), 

and to gather more information on their knowledge of parallelograms. 

Table 3.1 Investigating the Properties of Parallelograms 

Draw a parallelogram in the space below. 

o What can you say about the angles of this parallelogram? 
 

o What can you say about the sides of this parallelogram? 
 

o What can you say about the diagonals of this parallelogram? 
Draw a new parallelogram that is different from the one you drew previously. 

o What can you say about the angles of this parallelogram? 
 

o What can you say about the sides of this parallelogram? 
 

o What can you say about the diagonals of this parallelogram? 
 

Part A begins with “Draw a parallelogram in the space below”, and next asks 

participants to describe the angles, sides and diagonals of the parallelogram. For instance, the 
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question,  “What can you say about the angles of this parallelogram?” was to find out about 

participants’ familiarity with the angles of parallelograms. Part B starts with “In the space below, 

draw a new parallelogram that is different from the one you drew previously”, and asks 

participants to describe the angles, sides and diagonals of the new parallelogram. This part of the 

task investigated how participants define parallelograms, and their thinking of different 

parallelograms. 

After participants completed Parts A and B, they were presented pictures of 

parallelograms not included in their drawings. Four pictures of parallelograms were prepared for 

the interviews, consisting of a parallelogram, a rhombus, a rectangle and a square, each drawn on 

a 3″× 5″ white index card. Figure 3.2 shows the four parallelograms. 

 

                                
  

Figure 3.2 Pictures of four parallelograms 

 

The purpose of these pictures was to encourage discussion of different parallelograms 

and their parts. They helped me to explore out why a participant included some parallelograms 

but excluded others. For example, after a participant drew a picture of a parallelogram in Part A 

and drew a rectangle as a different parallelogram in Part B of Task Two, I presented a picture of 

a square, and asked whether it was also parallelogram and why. Thereby, I gathered more 

information about participants’ understanding of parallelograms, and was able to gain insights 

missed in Task One regarding to participants’ ways of identifying and defining parallelograms. A 

set of interview scripts was designed to further aid in analyzing participants’ understanding of 

parallelograms (see Appendix E). These scripts were written to help participants make claims 
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about the angles, sides and diagonals of parallelograms. Task Two shed additional light on 

participants’ knowledge of parallelograms, and familiarity with their angles, sides and diagonals.  

In completing Task Two, participants were engaged in verifying their claims regarding 

the properties of parallelograms, constructing informal and/or formal proofs. For example, when 

a participant made a statement that the diagonals of a rectangle were equal, she was asked to 

justify the claim. In order to convince me, the participant had to engage in a reasoning process. 

Such requests of “how do you” or “why” were designed to learn how participants’ verify 

mathematical arguments. 

Task Three: Prove the Equivalence of Two Definitions  

The participants in my study are future teachers, and need to be aware that, although only 

one definition of parallelogram dominates books (e.g., a parallelogram is a quadrilateral with two 

pairs of parallel sides), other equivalent definitions could be given (e.g., a trapezoid with two 

pairs of parallel sides)(Usiskin & Griffin, 2008). The requirement for another definition to be 

equivalent to the standard definition is that the defining conditions yield the same figures, and 

only such figures. Although Task Three focused on deriving mathematical propositions from 

previously known propositions, the choice was made to ask participants to construct 

mathematical proofs in order to learn about their understanding of mathematical proof. 

Two definitions of parallelogram were presented in Task Three:  

1. “A quadrilateral is a parallelogram if and only if both pairs of opposite sides 

have the same length” 

2. “A quadrilateral is a parallelogram if and only if both pairs of opposite angles 

have the same measure” 
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Definitions 1 and 2 describe properties of sides and angles, respectively. Before 

introducing this task, I first asked what it meant to prove two definitions equivalent 

mathematically. I then explained as follows: “To show that two definitions are equivalent, you 

must verify that each set of defining conditions implies the other”. That is, to show that the two 

definitions of parallelogram are equivalent, one must prove the following implications: (1) “if a 

quadrilateral has two pairs of opposite sides of the same length, then the quadrilateral also has 

two pairs of opposite angles of the same measure”; and (2) “if a quadrilateral has two pairs of 

opposite angles of the same measure, then the quadrilateral also has two pair of opposite sides of 

the same length.” 

I anticipated that participants would respond to Task Three differently. The task was 

designed to learn about their skill in constructing proofs, about their familiarity with “If P, then 

Q” statements, and about their use of mathematical symbols. The task also helped measure 

abilities to derive a geometric proposition from other ones, more precisely in the context of 

quadrilaterals. 

Data Collection 

Data collection for this study took place in four phases, as summarizes in Figure 3.3. 

 

Figure 3.3 Summary of Data Collection Phases 

Phase 1
Administration
of the van Hiele
Geometry Test 
at the first week 
of class

Phase 2
In-depth 
interviews
with participants
after pretest

Phase 3
Administration
of the van Hiele
Geometry Test 
at the first week 
of November

Phase 4
In-depth 
interviews
with participants
after posttest

First two weeks of the fall 2010 Last two weeks of Novemebr 2010
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The first phase of the data collection was the pretest, a 35-minutes van Hiele Geometry 

Test. All students (n=74) enrolled in the measurement and geometry classes took the van Hiele 

Geometry Test during the first class of the fall semester of 2010. All the tests were collected and 

analyzed, in order to determine participants’ van Hiele levels at the beginning of the semester. 

In the second phase, twenty-one students voluntarily participated in a 90-minutes in-

depth interview with the same researcher a week after the pretest was given. All interviews were 

video and audio recorded, and transcribed to serve as the main data recourse for analyzing 

interviewees’ geometric discourses relating to triangles and quadrilaterals. All interviews were 

completed before the students were introduced to geometric figures in their mathematics content 

course.  

The third phase of the data collection was the posttest, consisting again of the van Hiele 

Geometry Test. Among the seventy-four participants, sixty-three repeated test ten weeks later 

during their class time. Again the test responses were collected and analyzed, in order to 

determine changes in van Hiele levels between the two tests.  

The last phase of the data collection consisted interviews with students who had 

participated in the interviews at the beginning of the semester. Among the twenty-one original 

interviewees, twenty were interviewed individually for 90-minutes a week after the posttest. 

Again the interviews were video and audio recorded, and transcribed and analyzed in order to 

observe changes in interviewees’ geometric discourse. All interviews were conducted after 

students had finished the chapter introducing deductive reasoning in their mathematics content 

course.  
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Data Analysis 

In my data analysis I applied Sfard’s discursive framework to analyze interviews. I used 

this analysis to investigate participants’ levels of geometric thinking through a discursive lens, 

and to gain some perspective on the usefulness of the framework to describe levels of thinking. I 

briefly outline the data analyses for this study. First, I compared written responses from the van 

Hiele Geometry pretest and posttest, obtaining from the test scores information about the 

changes in these prospective elementary school teachers’ van Hiele levels as a whole group. To 

determine students’ van Hiele levels, I followed the test grading method used in the CDASSG 

project from the University of Chicago in 1982 (Usiskin, 1982). Following the CDASSG 

project’s grading method, I used the 4 of 5 criterion1 to determine if a student had reached a 

given level. I chose the 4 out of 5 correction criterion because it minimized the chance of a 

participant being at that level by guessing (Usiskin, 1982). When assigning a student to a level, I 

used the classical van Hiele levels 0-5 introduced by CDASSSG.  

The assigning of levels required that the student at level n satisfy the criterion not only at 

that level but also at all proceeding levels. For example, if a participant scored 4 of 5 correct for 

Levels 1, 2 and 3, 2 of 5 correct for Level 4, and 1of 5 correct for Level 5, this participant was 

assigned to van Hiele Level 3 because she not only satisfied the criterion at Level 3, but at all 

preceding levels as well. However, in this study there were participants assigned as nofit because 

their van Hiele levels could not be determined from the van Hiele Geometry Test. For example, a 

                                                 

 

1
According to the CDASSG project, the 3 of 5 criterion minimizes the chance of missing a 

student and yields an optimistic picture of students’ levels, whereas the 4 of 5 criterion 
minimizes the chance of a student being at a level by guessing. I decided to use the 3 of 5 
criterion. 
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participant was assigned nofit because her test results satisfied criterions at the levels 1, 3 and 5, 

but not at all preceding levels (Usiskin, 1982). I also counted and analyzed students’ overall 

performances for each item in the pretest and posttest, looking for changes in answering single 

questions as a group (see the results of both analyses in Chapter 4). 

My main object of attention in this study is geometric discourse. I try to use the voices of 

my participants in describing interview’s whatever possible, so that readers can draw their own 

conclusions. In analyzing participants’ geometric discourse, I identified the mathematical 

features in interview transcripts using four categories in the framework: (1) Mathematical words, 

(2) Visual mediators, (3) Endorsed narratives and (4) Mathematical routines. Mathematical 

words and visual mediators utilized mathematical objects of mathematical discourse, whereas 

mathematical routines aimed to produce narratives in given situations. To investigate changes in 

participants’ geometric discourse, I analyzed (1) participants’ words use regarding to the names 

of triangles and quadrilaterals (e.g., rectangle, rhombus, etc), and the hierarchy of classifications 

of quadrilaterals, comparing results of the analyses from both interviews, (2) participants’ routine 

procedures of verifying claims about properties of parallelograms regarding angles, sides and 

diagonals, comparing results of the analyses from both interviews, and (3) participants’ routine 

procedures of deriving geometric propositions from other geometric propositions, and in 

constructing mathematical proofs (see the descriptions of interviews and results of these analyses 

in Chapter 4). 

I also investigated the usefulness of a discursive framework as an analytical tool to 

describe participants’ behaviors at each van Hiele level in greater detail and depth. The study 

produced a theoretical model, the Development of Geometric Discourse, describing participants’ 

geometric discourse at each van Hiele level. The model includes the descriptions of (1) 
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Geometric Objects, (2) Routines, (3) Endorsed Narratives, and (4) Visual Mediators, at van Hiele 

levels 1 to 4. The model provides a new perspective to present levels of geometric thinking as 

geometric discourse (see the descriptions of the model in Chapter 4). 
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CHAPTER FOUR: FINDINGS 

Changes in van Hiele Levels of Geometric Thinking 

During the fall of 2010, the van Hiele Geometry Tests were conducted at the beginning of 

the semester (pretest) and ten weeks later (posttest). Sixty-three prospective teachers participated 

in both tests; among these sixty-three participants, twenty of them voluntarily participated in the 

interview part of the study. In this section I present results of these sixty-three participants’ van 

Hiele Geometric Tests as a whole group, as well as the results of the twenty interviewees’ van 

Hiele Geometric Tests, in order to give some background information on their changes in van 

Hiele levels in the paper-pencil test.  

Changes in van Hiele Geometry Test as a Whole Group 

The van Hiele Geometry Test contains 25 multiple-choice items, distributed into five van 

Hiele levels: Items 1-5 (Level 1), Items 6-10 (Level 2), Items 11-15 (Level 3), Items 16-20 

(Level 4) and Items 21-25 (Level 5). These items are designed to identify participants’ geometric 

thinking at five van Hiele levels. For example, Items 1 to 5 of are designed to identify students’ 

thinking related to van Hiele Level 1, at which figures are judged according to their appearance. 

Items 5 to10 are designed to identify participants’ thinking related to van Hiele Level 2, at which 

figures are the supports of their properties.  

Following the Cognitive Development and Achievement in Secondary School Geometry 

(CDASSG) project’s grading method, I had a choice of either the 3 out of 5 correction criterion, 

or the 4 out of 5 correction criterion, to determine whether a participant has reached a given van 

Hiele level. I chose the 4 out of 5 criterion for this study because it minimized the chance of a 

participant being at that level by guessing (Usiskin, 1982). When assigning a student to a level, 

this study used the classic van Hiele levels introduced by CDASSSG, which included Levels 
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from 0 to 5. The assigning of levels required that the participants at level n satisfied the criterion 

not only at that level but also at all proceeding levels. For example, if a participant scored 5 of 5 

correct for Levels 1 and 2, 4 of 5 correct for Level 3, 2 of 5 correct for Level 4, and 1of 5 correct 

for Level 5, this participant was assigned at van Hiele Level 3 because she not only satisfied the 

criterion at Level 3, but all preceding levels as well. However, in this study there were 

participants assigned as nofit because their van Hiele levels could not be determined from the 

van Hiele Geometric Test. For example, if a participant scored 5 of 5 correct for Level 1, 3 of 5 

correct for Level 2, 4 of 5 correct for Level 3, 2 of 5 correct for Level 4, and 4 of 5 correct for 

Level 5, she was assigned nofit because her test results satisfied criterions at the levels 1, 3 and 5, 

but not all preceding levels (Usiskin, 1982).  

To give an overall idea of participants’ van Hiele levels as a whole group, Table 4.1 

presents the distributions of levels in both number and percentage from the pretest and the 

posttest.  

Table 4.1 Distributions of participants’ van Hiele levels at both tests 

Level 
VHB VHE 

N % N % 
0 6 9.52 4 6.35 
1 8 12.70 9 14.29 
2 9 14.29 8 12.70 
3 17 26.99 30 47.62 
4 2 3.17 2 3.17 
5 0 0 1 1.59 

Total 
fitting 

42 66.67 54 85.71 

Nofit 21 33.33 9 14.29 
Totals  63 100 63 100 

  Note: VHB indicates interviewees’ van Hiele levels at the beginning  
            of the fall semester, whereas VHE indicates their van Hiele levels ten  
            weeks later. 
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Table 4.1 shows about forty-eight percent of participants at Level 3 (n=30) at the posttest, 

and that number almost doubled over the pretest. One participant moved to Level 5 at the 

posttest. There was a slight reduction at Level 0 and Level 2, and a slight increase at Level 1 

from the pretest to the posttest. There were twenty-one participants assigned to nofit at the 

pretest, but only nine such participants at the posttest. These numbers show that a little more than 

half (52.4%) of participants were able to reach Level 3 or above ten weeks later after their first 

day of class in the fall semester 2010. The reduction of the nofit students suggests that 

participants’ responses were more consistent at the posttest than the pretest.  

Participants’ responses for each item were counted and analyzed. Table 4.2 presents the 

frequencies of each item regarding responses in both the pretest and posttest. The bolded 

numbers represent the number of participants having the correct answer for that item. 

Table 4.2 Van Hiele Geometry Test: Item Analysis for Pretest (B) and Posttest (E) 

Level Choice Item 1B 1E 2B 2E 3B 3E 4B 4E 5B 5E 
1 A  0 0 0 0 0 0 0 1 0 0 
 B  53 59 0 0 0 0 41 50 0 0 
 C  0 0 4 0 63 63 6 5 15 4 
 D  10 4 59 63 0 0 1 5 0 1 
 E  0 0 0 0 0 0 6 2 48 58 

 
2  Item 6B 6E 7B 7E 8B 8E 9B 9E 10B 10E 
 A  5 5 2 1 39 46 3 1 4 5 
 B  43 46 1 0 3 0 2 0 4 0 
 C  9 7 2 1 8 3 54 60 4 3 
 D  6 5 3 0 2 4 1 0 40 44 
 E  0 0 55 61 11 10 3 2 1 11 

 
3  Item 11B 11E 12B 12E 13B 13E 14B 14E 15B 15E 
 A  4 3 6 4 45 56 31 46 2 6 
 B  3 0 47 51 0 0 14 7 29 33 
 C  54 58 5 4 0 0 10 3 4 1 
 D  1 0 0 0 0 0 4 2 7 5 
 E  1 1 5 4 18 7 4 5 21 18 
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Table 4.2 (cont’d) 
4  Item 16B 16E 17B 17E 18B 18E 19B 19E 20B 20E 
 A  9 10 14 12 14 10 27 37 19 30 
 B  8 6 9 11 14 15 10 12 2 2 
 C  31 30 23 29 3 2 14 7 5 1 
 D  10 13 9 4 27 28 10 5 32 29 
 E  5 4 8 7 4 8 2 2 5 1 

 
5  Item 21B 21E 22B 22E 23B 23E 24B 24E 25B 25E 
 A  33 28 11 12 20 26 2 5 1 2 
 B  16 16 9 14 8 4 3 5 16 14 
 C  4 7 6 6 2 5 11 13 2 1 
 D  1 1 15 19 25 26 16 22 33 37 
 E  9 10 22 12 8 2 30 18 10 9 

 

Note the number of students (n=63) who participated in both tests.  

Table 4.2 shows an increase in correct answers for Items 1 to 15 from the pretest to the 

posttest, indicating that participants did better at the posttest in items related to van Hiele Levels 

1, 2 and 3. There was an increase in correct answers at Level 4 and Level 5, but not for every 

item individually. Figure 4.1 compares participants’ performance based on the number of correct 

answers for each item at the pretest and the posttest.  

 

Figure 4.1 Comparison of correct answers for items at both tests 
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Figure 4.1 shows an increase in correct answers for Items 1 to 15, indicating that the 

group of participants (n=63) had a better performance on these items at the posttest than at the 

pretest. Thus, participants were better in answering questions relating to van Hiele levels 1 to 3 at 

the posttest than at the pretest. However, there was a reduction in correct answers starting at Item 

16, and that continued intermittently to Item 25. Items 16 to 25 are designed to identify 

participants’ Level 4 and Level 5 thinking, and this inconsistency was no surprise because the 

course was not designed to train students at theses levels. In looking at these results, it is clear 

that participants were getting more familiar with triangles and quadrilaterals, as well as with 

properties related to these polygons. However, it is not clear that participants’ improved in doing 

proofs and thinking at an abstract level, mathematical activities related to van Hiele Level 4 and 

Level 5.  

Twenty students voluntarily participated in the interviews conducted after the pretest and 

the posttest. In the next section, I briefly discuss the results of these twenty interviewees’ van 

Hiele Geometry Tests before they entered the interview part of the study.   

Changes in van Hiele Geometry Test among Interviewees 

Twenty-one students voluntarily participated in the interviews shortly after the pretest, 

and twenty of these participated in the second interviews ten weeks later after the posttest. Table 

4.3 presents distributions of interviewees’ van Hiele levels at the pretest and the posttest.  

Table 4.3 Distributions of interviewees’ van Hiele levels at both tests 

Level 
VHB VHE 

N % N % 
0 2 10 1 5 
1 1 5 0 0 
2 2 10 4 20 
3 6 30 10 50 
4 1 5 2 10 
5 0 0 0 0 
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Table 4.3 (cont’d) 
Total 
fitting 

12 60 17 85 

Not fit 8 40 3 15 
Totals  20 100 20 100 

 

The table shows that the percentages at each van Hiele level of the twenty interviewees 

matched closely with the corresponding percentages of the whole group (n=63). For example, 

thirty percent of interviewees were at Level 3 in the pretest, whereas it increased to fifty percent 

at the posttest. These numbers are close to those for the whole group, twenty eight percent and 

forty eight percent, respectively (see Table 4.2). Thus it appears that the twenty interviewees are 

a good sample size for the study. Table 4.4 gives, for these interviewees, frequencies of changes 

from one van Hiele level to another between the two tests.  

Table 4.4 Interviewees’ changes in van Hiele levels between tests 

 Van Hiele levels at the posttest (n=20) 
 

Van 
Hiele 
levels 
at the 
pretest 
(n=20) 

Levels 0 1 2 3 4 5 Nofit 
0 - - - 2 - - - 
1 - - - 1 - - - 
2 1 - 1 - - - - 
3 - - - 4 1 - 1 
4 - - - - - - 1 
5 - - - - - - - 

Nofit - - 3 3 1 - 1 

 

For example, among these interviewees (n=20), one stayed at Level 2, and four stayed at 

Level 3 from the pretest to the posttest. There were two interviewees moving three van Hiele 

levels from Level 0 to Level 3, while one interviewee moved two van Hiele levels from Level 1 

to Level 3, and one interviewee changed from Level 3 to Level 4. A total of seven interviewees 

changed from nofit to Level 2 (n=3), Level 3(n=3) or Level 4 (n=1). Note that among the ten 
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interviewees assigned to van Hiele levels at both the pretest and the posttest, five showed no 

change, and four showed changes from a lower to a higher van Hiele level.  

The van Hiele Geometry Test provided initial information about participants’ van Hiele 

levels at the time of the study, but it did not provide rich descriptions about the changes in 

participants’ levels of thinking. For a deeper analysis of participants’ thinking, twenty 

participants were interviewed soon after the pretest and posttest. In the next section I describe my 

interviews with these participants, as well as my findings from these interviews. 

Changes in Geometric Discourse 

In this section I describe findings about the interviewees who participated in the 

interview parts of the study. To narrow the scope, this section focuses on the analyses of five 

interviewees’ geometric discourses as examples of various scenarios I encountered during the 

interviews. My analyses are organized with regard to the results of their van Hiele levels from 

the van Hiele Geometry Tests. These five interviewees have been assigned the names ATL, ANI, 

ALY, AYA and ARI.  

To analyze interviewees’ geometric discourses in the context of quadrilaterals and 

triangles, I devoted my attention to interviewees’ familiarity with polygons in regard to their 

word use, including use of the names of polygons (e.g., parallelogram, rectangle, etc), and the 

names of the parts of polygons (e.g., angle, side, etc). Also, I analyzed interviewees’ various 

routines while engaging in solving geometric tasks during the interviews; these routines included 

routines of sorting, identifying, defining, conjecturing and substantiating. 

Recall that a routine is a set of meta-rules that describes a repetitive discursive action. As 

described in an earlier section, this set of rules is divided into the how of the routine and the 

when of the routine. The when of the routine, was influenced by my direct requests during the 
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interviews, as I asked interviewees directly for implementation of given tasks (e.g., sorting the 

polygons differently from the way they did before). So for a better analysis of the when of 

routines, I needed to observe interviewees’ spontaneously using procedures as a part of more 

complex tasks. Therefore, in this study I mainly analyze the how of routines, the routine 

procedures that determine the course of patterned discursive performance (Sfard, 2008).  

In this study different routines are involved given the nature of the tasks: the routine of 

sorting is a set of routine procedures that describes repetitive actions in classifying polygons (e.g, 

by their family appearances, by visual properties, etc); the routine of identifying is a set of 

routine procedures that describes repetitive actions in identifying polygons (e.g., by visual 

recognition, by partial properties check); whereas the routine of defining is a set of repetitive 

actions related to how polygons are described or defined (e.g, by visual properties, by 

mathematical definition, etc). In endorsed narratives such as mathematical definitions or axioms, 

the routine of recalling, a subcategory of the routine of defining, is a set of repetitive actions 

using previously endorsed narratives (e.g, I remember this definition because I learned it), and “it 

can indicate a lot not just about how the narratives were memorized, but also about how they 

were constructed and substantiated originally” (Sfard, 2008, p.236).  

With regard to performing mathematical tasks, “guessing and checking” are seen as 

common activities. The routine of conjecturing is a set of repetitive actions that describe a 

process of how conjecture is formed; and the routine of substantiating is a set of patterns 

describing a process of using endorsed narratives to produce new narratives that are true (e.g., an 

informal or formal proof using a triangle congruence criterion).  

To better understand how learning takes place, and how mathematical concepts are 

developed, it is helpful to conceptualize mathematical learning as the development of a 
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discourse, or a change in discourse. Among the twenty interviewees, three showed a change in 

their van Hiele levels from lower to higher according to the van Hiele Geometric Test conducted 

at the beginning of the semester (the pretest) and ten weeks later (posttest). The three 

interviewees include ATL, who moved two van Hiele levels from Level 1 to Level 3; ANI, who 

moved three van Hiele levels from Level 0 to Level 3; and ABU who moved one van Hiele level 

from Level 3 to Level 4. In the following subsections I describe each interviewee’s geometric 

discourse with regard to their routines and word use. From my observations I present evidence to 

point out changes in each interviewee’s geometric discourse. I will refer to the interview 

conducted at the beginning of the semester as the Pre-Interview, and the interview conducted ten 

weeks later as the Post-Interview.  

Case 1: Changes in ATL’s Geometric Discourse 

ATL was a sophomore at the time of the interviews. ATL took her last geometry class 

five years prior to the geometry and measurement class. The van Hiele Geometry Test showed 

that she was at Level 1 at the pretest, and ten weeks later she moved two van Hiele levels, to 

Level 3 at the posttest. I interviewed ATL after both tests, and analyzed and compared ATL’s 

geometric discourses in the context of triangles and quadrilaterals. A summary of ATL’s changes 

in geometric discourse as follows: 

• ATL’s routines of sorting changed from grouping polygons according to their 

family appearances at the Pre-Interview, to classifying polygons according to 

their visual properties and definitions. 

• ATL’s identifying routines changed from self-evident visual recognition at the 

Pre-Interview, to identifying partial properties of the polygons (i.e. sides and 

angles) and recalling at the Post-Interview.  
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• ATL’s use of the names of parallelograms changed from describing the 

parallelograms as collections of unstructured quadrilaterals that share some 

physical appearances at the Pre-Interview, to using the names as collections of 

quadrilaterals that share common descriptive narratives at the Post-Interview. 

• In my observations I did not find substantiation routines in the Pre-Interview or 

the Post-Interview. That is, ATL did not use measurement tools to prove or 

disprove congruent parts of the polygons at the object level; nor did she use 

informal or formal mathematical proofs at the abstract level.   

Let me begin by introducing Task One, Sorting Geometric Shapes. This Task is used to 

analyze interviewees’ routines of sorting, identifying and defining polygons. This task presents 

eighteen polygons, including triangles (n=4), quadrilaterals (n=13) and a hexagon. Interviewees 

are asked to classify these polygons into groups, without being given measurement information. 

One common reaction interviewees might have is to group the polygons based on the number of 

their sides (e.g., 3-sided, 4 sided, etc). According to an individual interviewee’s response, I will 

ask her to regroup the polygons differently and to subgroup some of the large groups.   

Let me begin with argument that there is a change in ATL’s routines of sorting, from 

using visual recognition to group quadrilaterals according to their family appearances at the pre-

interview, to classifying quadrilaterals according to their common descriptive narratives (i.e., 

definitions and properties). I briefly describe my interviews with ATL for Task One.  

At the Pre-Interview, ATL stated, “I group them solely on their amount of sides”, and 

sorted the polygons into three groups on her first attempt: 1) 3 sides, consisting of Fig. K, W, X, 

and S; 2) 4 sides, consisting of Fig. U, M, F, G, P, T, L, J, H, R and Z; and 3) Trapezoid, 
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including Fig. V and Q. See Figure 4.2 for some examples of each group based on ATL’s written 

response 

3 sides (Triangle) 

              
4 sides (Square/parallelogram) 

                       
Trapezoid 

                
Figure 4.2 ATL’s grouping of polygons in the Pre-Interview 

ATL included all triangles in the 3-sides group and called it the triangle group. She 

included all squares, rectangles and parallelograms in the 4-sides group, and called it the square 

and parallelogram group. She grouped Fig. V (a hexagon) and Fig. Q (a quadrilateral) together 

as a trapezoid group because to her, a trapezoid was “a figure with five sides, varying in length”, 

and “often make these odd shapes”. Fig. N (a right trapezoid) was not included in any of these 

groups.  

When I asked ATL to find another way to group polygons differently, she regrouped 

triangles “base on appearance”, according to attributes of angles and sides in a triangle. ATL 

explained by saying, “I know this one has right angle”, and “these ones demonstrate different 

length, they are not the same” (see Figure 4.3). 
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    Triangle:  

                     
     right triangle         isosceles triangle                                 scalene triangles  

Figure 4.3 ATL’s regrouping of the triangles at the Pre-Interview 

 

ATL regrouped the triangles into right triangles, isosceles triangles and scalene triangles 

according to their visual properties. ATL then regrouped the 4-sided polygons according to their 

family appearances, with the names of square, rectangle, parallelogram, and rhombus. For 

example, Figure 4.4 shows two of the groups: the rectangles and the squares.  

    4a. Squares 

          
 

   4b. Rectangles  

    
Figure 4.4 ATL’s regrouping the quadrilaterals at the Pre-Interview 

 

When I asked ATL why she regrouped the polygons in this way, she responded, “I know 

this figure (Fig. U, a square) and this figure (Fig. M, a rectangle) are different, but they both 

belong to the same quadrilateral group”. Fig. N (a right trapezoid) was not included in any of 

these groups again at this second attempt. I asked ATL if I could put Fig. J (a parallelogram) and 

Fig. N together, and the following conversation took place: 

Interviewer: Can we put these two together?  

                                       



 

ATL:            I wouldn’t believe so… Just because this [pointing at

                     Fig. N] shows the angle… it doesn’t have the properties

                     of a square or a rectangle, the sides…measurement… it

                     does have four sides, but n

 

When ATL sorted polygons into groups, she grouped them by their visual appearances. 

ATL’s routines of sorting polygons at the Pre

First prompt: “Sort the shapes into groups”

Second prompt
 

Figure 4.5 ATL’s routines of sorting polygons at the Pre

 

ATL mentioned that all triangles and all quadrilaterals “have a broader def

other”. When it came to classifying quadrilaterals, ATL’s routine procedures focused on the 

appearances of the polygons and how their appearances related to their family names. It was 

evident that ATL identified polygons with visual recognition. However, as I ex

ATL regrouped the triangles by their visual properties (e.g., angles and sides). I conclude 

there was no defining routine in ATL’s 

routines such as direct recognition and counting 

polygons by the numbers of their sides and grouped quadrilaterals by their visual appearances. In 

Counting the sides 
of shapes

Choosing 
intuitively 
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I wouldn’t believe so… Just because this [pointing at 

Fig. N] shows the angle… it doesn’t have the properties

of a square or a rectangle, the sides…measurement… it

does have four sides, but no…. congruent parts.  

When ATL sorted polygons into groups, she grouped them by their visual appearances. 

ATL’s routines of sorting polygons at the Pre-interview are illustrated in Figure 4.5.

First prompt: “Sort the shapes into groups”  

Second prompt: “Find Another way to sort them differently?”

ATL’s routines of sorting polygons at the Pre-Interview

ATL mentioned that all triangles and all quadrilaterals “have a broader def

. When it came to classifying quadrilaterals, ATL’s routine procedures focused on the 

appearances of the polygons and how their appearances related to their family names. It was 

evident that ATL identified polygons with visual recognition. However, as I explained earlier, 

ATL regrouped the triangles by their visual properties (e.g., angles and sides). I conclude 

ATL’s routines of sorting for Task One. I found identifying 

routines such as direct recognition and counting in ATL’s routines of sorting when she sorted 

polygons by the numbers of their sides and grouped quadrilaterals by their visual appearances. In 

Grouping by the same 
number of sides Conclusion

Grouping by family name for 
quadrilaterals & partial visual 

properties of shapes for 
triangles

Conclusion

 

Fig. N] shows the angle… it doesn’t have the properties 

of a square or a rectangle, the sides…measurement… it 

When ATL sorted polygons into groups, she grouped them by their visual appearances. 

interview are illustrated in Figure 4.5. 

 

: “Find Another way to sort them differently?” 

Interview 

ATL mentioned that all triangles and all quadrilaterals “have a broader definition of each 

. When it came to classifying quadrilaterals, ATL’s routine procedures focused on the 

appearances of the polygons and how their appearances related to their family names. It was 

plained earlier, 

ATL regrouped the triangles by their visual properties (e.g., angles and sides). I conclude that 

I found identifying 

in ATL’s routines of sorting when she sorted 

polygons by the numbers of their sides and grouped quadrilaterals by their visual appearances. In 

Conclusion

Conclusion
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the case of triangles, ATL’s identifying routine consisted of identifying visual properties as she 

regrouped triangles by the attributes of the angles and sides.  

At the Post-Interview, the same task was performed. ATL grouped the polygons by 

“looking at the numbers of sides solely” [po1. 2], and she sorted eighteen polygons into three 

groups: 1) Triangles (n=4), including all 3-sided polygons; 2) 5-sided (n=1), consisting of Fig. 

V; and 3) Quadrilaterals (n=13), including all 4-sided polygons in the task. Figure 4.6 compares 

ATL’s first attempts at both interviews with some examples of each group. 

Before  Ten Weeks later  

3 sides  

         

Triangles (All triangles are included) 

               
4 sides (Fig. N & Q are missing) 

  

Quadrilaterals (All quadrilaterals are 
included) 

 

   
Trapezoid 

     

5-sided  

 

Figure 4.6  A comparison of ATL’s grouping of polygons at both interviews 

 

At the Post-Interview, ATL included both Fig. N (a right trapezoid) and Fig. Q (a 4-sided 

figure) into the quadrilateral group with the help of her defining routine. At the Pre-Interview 
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ATL did not include Fig. N in any groups because “it does have four sides, but… not congruent 

parts”, but at the Post-Interview she included Fig. N in the quadrilateral group because it is “a 

four sided figure with one distinct pair of parallel sides (pointing at Fig. N)”. I asked ATL to 

regroup the quadrilaterals, and her response is shown below: 

18a ATL: Quadrilaterals, you know that you have your square because …  

                 each forms 90-degree and all the side lengths are equal.  

                 [Pointing at Fig. U] 

                                              
18c. ATL: these are rectangles because two sides and those two sides are 

                 the same. But again they form 90-degree angles… 

                 [Pointing at Fig. F and Fig. M] 
 

                                       
18e. ATL: opposite angles are equal and opposite sides are equal, so these  

                 three would be an example of parallelogram. 

                 [Pointing on Fig. L, J and H] 
 

                  
 

At the Post-Interview, ATL was able to use her definitions of square, rectangle, 

parallelogram and rhombus to identify and to regroup the quadrilateral group. She regrouped 
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quadrilaterals into: 1) squares, including Fig. U, G, and R; 2) rectangles, including Fig. M, F, T; 

3) rhombus, consisting of Fig. Z; and 4) parallelogram, including Fig. L, J, H. When I asked 

ATL if I could put Fig. U (a square) and Fig. N (a right trapezoid) together, ATL responded: 

Interviewer: Can Fig. U and Fig. N group together? 

                                                 

ATL:     They can group together as both being same amount of sides… 

              but in terms like property…no … they both have two parallel 

              sides, but a trapezoid cannot be branched off with parallelograms 

              into rectangles and squares…. 

 

This dialogue provides shows ATL’s ability to compare Fig. U and Fig. N, not only 

focusing on the “same amount of sides”, but also on visual properties, like “they both have 

parallel sides”. To describe what has changed in ATL’s routine of sorting polygons, Table 4.5 

summarizes ATL’s course of actions in response to Task One. 

Note that there was no change in ATL’s routines of sorting triangles. ATL’s first attempt 

of sorting quadrilaterals at both interviews remained the same. However there was a change in 

routines of sorting quadrilaterals on the second attempt, when I asked her to regroup the 

quadrilaterals differently (see the shaded part in Table 4.5). I found defining routines when ATL 

sorted quadrilaterals at the Post-Interview; ATL’s routine of sorting changed from only visual 

recognition at the Pre-Interview, to classifying polygons according to their common descriptive 

narratives. 



 

68 

Table 4.5 A comparison of ATL’s routines of sorting polygons at the two interviews 

Before  Ten Weeks Later  

First prompt: “Sort the shapes into groups” 
 
1. Counting the sides of shapes (Counting) 
2. Grouping by the same number of sides 
3. Conclusion 
     
Second prompt: “Find another way to sort 
them differently” 
 
1. Direct recognition of possible candidates 
(Visual recognition) 
 
2.a Grouping by family appearance of 
quadrilaterals and parallelograms (Visual 
recognition) 
 
2.b Grouping by properties of angles and sides 
in triangles (Defining routine) 
 
3. Conclusion 

First prompt: “Sort the shapes into groups” 
 
1. Counting the sides of shapes (Counting) 
2. Grouping by the same number of sides  
3. Conclusion  
 
Second prompt: “Find another way to sort 
them differently” 
 
1. Direct recognition of possible candidates 
(Visual recognition) 

 
2.a Grouping by common descriptions of 
quadrilaterals and parallelograms by visual 
properties and some mathematical definitions 
(Defining routine) 
2.b Grouping by properties of angles and sides 
in triangles (Defining routine) 

 
3. Conclusion  

 

ATL’s responses to the questions in Task Two also revealed changes in her geometric 

discourses. Task Two involves two sets of activities about parallelograms, and is designed to 

investigate interviewees’ familiarity with the angles, sides and diagonals of a parallelogram.   

The first part of Task Two asks interviewees to draw two parallelograms that are different 

from each other, and then to discuss the relationship between the angles, sides and diagonals of 

the parallelograms. In the second part of Task Two, I present pictures of parallelograms that are 

not included in interviewees’ drawings from the first part, and then ask questions about the 

parallelograms. Presentation of these pictures of parallelograms is designed to elicit 

interviewees’ thinking of “what is a parallelogram” and “what is not a parallelogram”, and to 

provide a variety of parallelograms for discussions.  



 

69 

Interviewees’ responses to this task vary depending on their familiarities with the 

properties and hierarchy of parallelograms, as well as their familiarity with the parts of 

parallelograms. For example, when interviewees declare a narrative such as “opposite sides are 

equal” regarding the sides of a parallelogram, their substantiation process can be very different. 

Depending on their levels of thinking, some interviewees might produce a narrative such as 

“because it is a parallelogram” using defining routines, whereas others might conclude, “they 

look like they are equal” using identifying routines. 

This lead to my argument that ATL’s identifying routines changed from self-evident 

visual recognition at the Pre-Interview, to identifying visual properties and using definitions of 

parallelograms to draw conclusions about the angles and the sides of parallelograms at the Post-

Interview. I describe parts of my interviews with ATL for Task Two. As shown in Table 4.6, 

ATL drew a parallelogram and then a rectangle as a new parallelogram (see Table 4.6). ATL 

declared that the two parallelograms were different because “I would change the sizes of it 

[side]”. ATL described the second drawing as, “it’s a rectangle… but it’s not the typical looking 

parallelogram”. In response to the questions about the angles of the parallelograms, ATL 

expressed her frustrations on the angles, “I am still stuck on the question on what it means by the 

angles, … Usually when I’m talking about angles, we have measurements…[pausing] I feel like 

the angles would be the same … just based on how it looks”.  

Table 4.6 summarizes ATL’s declared narratives of the angles of a parallelogram and a 

rectangle, and her verifications of declared narratives. 

Table 4.6 ATL’s routines of verifying on the angles of parallelograms at the Pre-

Interview 

Q:  “What can you say about the angles of this parallelogram?” 
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                Parallelogram 

                        
                        Rectangle 

Conjecture 
(Guessing) 

“I would assume that they are 
the same for the opposites”  

“They would have to be equal…or 
add up to a certain amount” 

Q: “How do you know?”  

Routines Visual recognition Visual recognition  

Declared 
Narrative  

“ No. I don’t know.”  
“just based on how it looks”  

“Just looks more like a stereotypical 
parallelogram”  

 

ATL made intuitive claims about the angles of a parallelogram and a rectangle using 

direct recognition. For example, ATL assumed that the angles were “the same for the opposites” 

in a parallelogram using direct recognition. In this case, the question “How do you know [they 

are the same]?” did not lead to any substantiations of the claim, nor lead her to endorse any 

narratives using mathematical definitions; instead ATL’s final conclusion was reached by direct 

visual recognition which was self-evident. This routine pattern also appeared when ATL was 

discussing the diagonals of a parallelogram: 

17. Interviewer What can you say about the diagonals of this 

parallelogram? 

                          

18. ATL The diagonals would be equal… 

19. Interviewer How do you know the diagonals are equal? 

20. ATL You have to measure and make sure these were, all 

their sides were the same…right here [pointing on the 

sides], would all equal… on each side all equaling the 
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same parts. 

 

ATL declared a narrative about the diagonals of the parallelogram stating that, “the 

diagonals would be equal”. The diagonals of this parallelogram are not equal, as can be detected 

with a ruler. However, ATL did not check because her direct recognition was intuitive and also 

self-evident. There was no need to substantiate the narrative, “the diagonals would be equal”, but 

instead ATL made her own intuitive conclusion that the “diagonals were equal” because “…all 

their sides were …the same”. 

Ten weeks later, the same task was performed again. The change in ATL’s identifying 

routines was evident. Table 4.7 summarizes ATL’s course of actions in response to the question 

“what can you say about the angles of the parallelogram?” at the Post-Interview.  

Table 4.7 ATL’s routines of verifying on the angles of parallelograms at the Post-

Interview 

 

Q: “What can you say about the angles of this parallelogram?” 

 
                
                Parallelogram 

                     
                       Rectangle 
 

Declared 
Narratives  

“Opposite angles equal and … 
they don’t form 90-degreee 
angle”  

“…you could say that the opposite 
angles are equal, and in this one 
all angles are equal”  

Q: “How do you know?” 

Table 4.7 (cont’d) 
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Routines 

a. Visually identify partial 
properties of a parallelogram by 
checking the condition of 
opposite angles  
(Identifying routine) 
b. Describe a parallelogram with 
no right angles (Defining routine-
recalling) 

a. Visually identify partial 
properties of a rectangle by 
checking the condition of opposite 
angles (Identifying routine) 
b. Describe a rectangle with right 
angles (Defining routine –
recalling) 

Declared  
Narratives  

“I would just say the property of 
parallelogram” [po2.118] 

“It has properties of 
parallelogram. It’s a rectangle” 
[po2. 4] 

 

Recall that, at the Pre-Interview, ATL did not know how to draw a conclusion about the 

angles in a parallelogram without measurements. At the Post-Interview, ATL was able to discuss 

the angles of parallelograms using the properties of a parallelogram (defining routine). For 

example, when ATL declared the narrative “opposite angles are equal and they don’t form a 90-

degree angle”, she identified that this 4-sided polygon was a parallelogram (identifying routine) 

and described the parallelogram, as it had no right angles using defining routines. Similarly, ATL 

was able to identify the differences of the angles between two parallelograms: a parallelogram, 

“opposite angles are equal and … they don’t form a 90-degreee angle” and a rectangle, “the 

opposite angles are equal, and in this one [rectangle] all angles are equal”.  

In this scenario, we begin to see the change in ATL’s routines of identifying, from visual 

recognition, to identifying visual properties of the angles in a parallelogram. ATL’s routines of 

defining also showed a use of definitions of parallelograms to justify her claims at the Post-

Interview. However it is important to note that ATL’s routine of defining was more of a 

recalling, as it appeared to be memorization of the facts. 
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During the Pre-interview, ATL showed more confidence in discussing the sides of the 

parallelogram than the angles of the parallelogram. When I asked ATL about the sides of 

parallelogram, the following conversation took place:  

9. Interviewer What can you say about the sides of this 

parallelogram? 

              

10. ATL Opposite sides are equal… 

11. Interviewer How do you know they are equal? 

12. ATL Basically… on just the properties of a parallelogram. If 

I measure it out…if I draw it with a ruler, it would 

have to be the same for each side 

13. Interviewer Is there a way that you can show me that the opposite 

sides are equal? 

14. ATL I would draw it out with two sides having to be the 

same measure and these two having to be the same 

measure. But for one of the opposite sides, they have 

to be longer than others to not to make it the properties 

of a square. 

 

In this dialogue, ATL declared a narrative about the sides of the parallelogram, “opposite 

sides are equal”. When asked for substantiation, ATL justified her claim by saying “just the 

property of a parallelogram” [12]; and provided another explanation, “If I measure it, draw it out 

with a ruler...it would have to be the same” [12]. After another prompt, ATL verbally described a 
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set of procedures to justify her claim: “draw on with a ruler”, and “draw it out with two sides 

having to be the same measure” [14]. ATL’s routines of verifying the sides of a parallelogram 

and a rectangle at the Pre-Interview are summarized in Table 4.8. 

Table 4.8 ATL’s routines of verifying on the sides of parallelograms at the Pre-

Interview 

Q: “What can you say about the sides of this parallelogram?” 

                   
                Parallelogram 

                        
                      Rectangle 

Conjecture 
(Guessing) 

“Opposites are equal” 
“Opposite sides … one longer 
than the other”  

“Each opposite side is equal in 
length”  

Interviewer “How do you know?”  

Routines 

a. Visual recognition  
b. Identify partial properties of a 
parallelogram (defining routine-
recalling) 

a. Visual recognition  
b. Identify partial properties of a 
parallelogram (defining routine-
recalling) 

Declared 
Narrative  

“just on the properties of a 
parallelogram” 

“rectangle can still have the  
properties of a parallelogram” 

 

At the Pre-Interview, ATL identified the equal sides of a parallelogram and a rectangle 

intuitively and verified her claims using properties of parallelograms. However from ATL’s 

description of a parallelogram, “opposite sides one longer than the other”, I conclude that ATL 

was at the stage of identifying parallelograms by their visual appearances.  

In contrast to her responses at the Pre-Interview, ATL declared, “Opposite sides are 

parallel and equal” in referring to the sides of a parallelogram at the Post-Interview. To verify 

her claims, ATL mentioned only “the properties of a parallelogram”.  
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109. Interviewer What can you say about the sides of this 

parallelogram? 

                      

110. ATL The sides would be the same…or they should be 

opposite sides are parallel and they should be equal… 

111. Interviewer Why do you say ‘it should be’? 

112. ATL Because it has the properties of a parallelogram. …by 

looking at it, it looks as if they are, so it could be 

good. 

113. Interviewer Is there a way that you can show me that the opposite 

sides are equal and parallel? 

114. ATL Based on the properties of it [parallelogram]. 

 

ATL provided the narrative, “the [opposite] sides would be the same… or should 

be…parallel” [110]. After several prompts, I found that ATL’s course of actions consisted of 

visual recognition, “by looking at it”, and recalling using what she remembered as, “the 

properties of it”. Table 4.8 summarizes ATL’s routine procedures concerning the sides of a 

parallelogram and a rectangle at the Post-Interview.  

Table 4.8 ATL’s routines of verifying on the sides of parallelograms at the Post-

Interview 

Q: “What can you say about the sides of this parallelogram?” 

 
 

                   Parallelogram 
 

Rectangle 



 

76 

Table 4.8 (cont’d) 

Declared 
Narratives  

“opposite sides are parallel and 
they should be equal”  

“opposite sides would be 
congruent” “They are 
parallel to one another”  

Q: “How do you know?” 

Routines 

a. Visually identify partial 
properties of a parallelogram by 
checking the condition of the 
sides (Identifying routine) 
 
b. Describe a parallelogram –
opposite sides are equal & 
parallel (Defining routine-
recalling) 

a. Visually identify partial 
properties of a 
parallelogram by checking 
the condition of the sides 
(Identifying routine) 
 
b. Describe a particular 
parallelogram-opposite 
sides are equal & parallel 
(Defining routine-
recalling) 

Declared  
Narratives  

“It has the properties of a 
parallelogram”  

“It’s a basic property of a 
parallelogram”  
“To be a parallelogram, 
opposite sides have to be 
parallel, making them 
congruent”  

 

ATL described opposite sides as parallel and equal for both parallelograms and rectangles 

at the Post-interview, whereas she only mentioned opposite sides as equal at the Pre-Interview. 

In verification, ATL’s routine procedures consisted of identifying routines and recalling at the 

Post-Interview. ATL’s changes in routines procedures were (1) from visual recognition that was 

self-evident, to identifying partial properties and using properties about the angles of a 

parallelogram, (2) from identifying partial properties (i.e., equal sides) at the Pre-Interview, to 

identifying more properties (i.e., equal and parallel sides) at the Post-Interview as described in 

Table 4.9. 
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Table 4.9 Summary of ATL’s routines in Task Two from both Interviews 

 Pre-Interview Post-Interview 

Parts of 
Parallelograms 

Routines Routines 

Identifying 
Routine 

Defining 
Routine 

Identifying 
routine 

Defining 
routine 

Angles  
Visual 
recognition 
Self-evident 

No 

Visual 
recognition/ 
Identifying 
partial property 

Recalling  

Sides 

Visual 
recognition/ 
Identifying 
equal sides   

Recalling  

Visual 
recognition/ 
Identifying 
equal and 
parallel sides  

Recalling 

Diagonals  
Visual 
recognition  
Self-evident 

No 
Visual 
recognition 
Self-evident 

No 

 

ATL did not think that squares and rhombi were parallelograms at the Pre-Interview; 

therefore my examples of ATL’s identifying and defining routines for Task Two are limited to 

the cases of a parallelogram and a rectangle. In both interviews, I did not find a substantiation 

routine. ATL did not use measurement tools to verify the congruent angles and sides of 

parallelograms, nor did she use definitions and triangle congruency to construct newly endorsed 

narratives. ATL’s identifying routines changed from direct recognition, to recalling and 

identifying partial properties of parallelograms, when discussing the angles and diagonals of 

parallelograms. 

When searching for routine patterns, I noticed that ATL’s understanding of the names of 

parallelograms, and the names of the parts of the parallelograms, influenced her course of action 

in response to the questions related to them. In the following section, I present findings on the 

changes in ATL’s use of mathematical words. 
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Analyzing ATL’s use of words helped me to better understand her thinking about 

parallelograms, and about the relations among the angles, sides and diagonals of parallelograms. 

In this section, I present findings on ATL’s use of mathematical words related to parallelograms. 

Recall that, a quadrilateral is defined as “a closed shape in a plane consisting of four line 

segments that do not cross each other” (Beckmann, 2008). Among all quadrilaterals, five types 

of quadrilaterals are found predominately in school geometry textbooks: parallelograms, 

trapezoids, rectangles, squares, and rhombuses (Usiskin, 2008). Interviewees in my study are 

also introduced to kite (Parker & Baldridge, 2008) in their course work, and therefore the word 

search on quadrilaterals includes also kites. Tables 4.10 and 4.11 summarize the frequencies of 

the names of quadrilaterals mentioned by ATL at the Pre-Interview and the Post-Interview: 

Table 4.10 The frequencies of ATL’s use of the names of quadrilaterals at the interviews 

Name 
Frequency  

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Quadrilateral 2 10 0 0 0 1 
Parallelogram 13 12 17 12 6 8 
Rectangle 8 6 7 7 0 1 
Square 12 14 9 4 6 0 
Rhombus 5 7 1 6 0 0 
Trapezoid 5 7 0 0 0 0 
Kite 0 1 0 5 0 0 

 
 
Table 4.11 Total frequencies of ATL’s use of names of quadrilaterals at the interviews 

Name 
Frequency 

Pre Post 
Quadrilateral 2 11 
Parallelogram 36 32 
Rectangle 15 14 
Square 27 18 
Rhombus 6 13 
Trapezoid 5 7 
Kite 0 6 
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Table 4.11 shows that the word parallelogram (n=68) was the most frequently used word 

during the interviews and it was mentioned in all three tasks. The word square (n=45) was the 

second most frequently used, and the word rectangle (n=29) was third. In contrast, the word kite  

(n=6) is the least mentioned during the interviews, used only at the Post-Interview, in Task One 

(n=1) and Task Two (n=5). There was an increase in use of the word quadrilateral at the Post-

Interview, and it was used mostly in Task One (n=10), and a total of eleven times in the entire 

interview. Also, there was an increase in use of the word rhombus at the Post-Interview (n=13). 

However, the frequencies of the words do not provide details about how and in what way those 

words were used. The following findings provide more information regarding ATL’s word 

meaning in the use of parallelogram, rectangle, square and rhombus. Let me begin my analyses 

of ATL’s word use with this conversation at the Pre-Interview: 

15. Interviewer What is a parallelogram? 

16. ATL A parallelogram is when two sides of each side… all 

four are parallel to the opposite one… 

17. Interviewer What is a rectangle? 

18. ATL A rectangle is the two longer sides… the shorter ones 

… but in more technical terms, I am sure that they have 

congruency on both of those sides too 

19. Interviewer What is a square? 

20. ATL The square is all four of the sides are completely the 

same 

21.Interviewer What is a rhombus? 

22. ATL A rhombus… is a square… is just tilted [giggling] 
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ATL’s narratives concerning parallelogram, rectangle, square, and rhombus are 

descriptive and visual at the Pre-Interview. ATL gave a descriptive narrative about rectangles 

based on physical appearance, “a rectangles is the two longer sides [and two] shorter ones… 

have congruency on both…sides”. ATL made connections between squares and rhombi 

according to visual appearances, and declared narratives, “a rhombus is a square”, because “they 

both have four equal sides”, and “[it] is just a titled [square]”. ATL’s ways of defining 

parallelograms triggered the way she classified them. For example, when ATL was asked to 

identify all the parallelograms from a set of given figures, her response was as follows (see 

earlier analyses about the routine of sorting):  

53. Interviewer Can you identify all the parallelograms on this sheet? 

[Pointing to task One] 

56a. ATL Ok. [Marking stars on figures that are parallelograms]  

      

                            

56b. ATL …Now for these ones, these could be actually… be 

considered parallelograms. Based on the side measures … 

even though they are rectangles… they could be in the 

same category. 
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ATL’s classification was no coincidence. In ATL’s written narratives about the 

rectangles, she wrote, “rectangle is when 2 sides are differing from the other 2 sides, however, 

opposite sides are equal in length”, and for the parallelograms, she wrote, “parallelogram is 

when 2 parallel sides are congruent in length”. To ATL, the word parallelogram was a family 

name of figures having opposite sides that were parallel, and having two long sides and two short 

sides. For example, when I asked ATL to draw a parallelogram, she provided the following: 

1. Interviewer Draw a parallelogram.   

2. ATL [ATL Draw a figure looking like this]: 

                    

3. Interviewer How do you know this is a parallelogram? 

4. ATL The opposite are equal in length… with the 

different sides parallel, they are the same length.  

 

Next, I asked ATL to draw a new parallelogram different from the one she drew: 

23. Interviewer Draw a new parallelogram that is different from the one 

you drew. 

24a. ATL [ATL Drew a figure looking like this]: 
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24b. ATL All I know is to change the size of it, but that’s more of 

a rectangle…. But it’s not a typical looking 

parallelogram… 

                                         ……. 

30a. ATL I feel it’s a rectangle, but rectangles can still have the 

properties of a parallelogram… just a broad term for it. 

33. Interviewer Can you say a little more about why this parallelogram 

[rectangle] is different from this one [the parallelogram 

ATL drew earlier] 

34. ATL They aren’t. Technically, they’re probably not different, 

that one just looks more like a stereotypical 

parallelogram [Pointing on the parallelogram]. In terms 

of properties, there is nothing different.  

 

ATL drew two parallelograms: “a stereotypical parallelogram” and a “not typical looking 

parallelogram”. After ATL drew these parallelograms, I presented a picture of a square and a 

picture of a rhombus. ATL did not think a square and a rhombus were parallelograms because 

“to be a parallelogram, you have to have two long sides and two short ones, here all sides are 

equal and it is square”. In the case of a rhombus, ATL responded, “this is similar to the square 

that you just showed me, … is a rhombus or just a square”. From these conversations, it is 

evident that to ATL the word parallelogram signified two types of polygons, as summarized in 

Figure 4.7.  
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Parallelogram 

 

  

 
 

 

Figure 4.7 ATL’s use of the word parallelogram at the Pre-Interview 

ATL’s use of the word parallelogram signified a collection of unstructured polygons by 

their family appearances. This family appearance included figures appearing to have opposite 

sides equal and parallel, and in particular, two opposite sides longer than the other two opposite 

sides. However there was no explicit mention of the necessary condition that these figures be 4-

sided, nor of any condition on the angles in rectangles.  

At the Post-Interview, when I asked ATL to identify all the parallelograms from eighteen 

polygons, her response was as follows: 

19. Interviewer What are the parallelograms here? [Pointing to Task One] 

20. ATL L and J and H will be just parallelograms, but all of these 

figures [pointing to figures that are squares, rectangles and 

rhombus] will be parallelograms, because…they all fit 

into the greater property of opposite angles and opposite 

sides to be equal. 
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ATL identified two groups of parallelograms: one group contained figures that were “just 

parallelograms”, and the other group contained figures that “fit into the greater property of 

opposite angles and opposite sides to be equal” . As our conversation continued, ATL provided 

the following narratives about the parallelograms: 

51. Interviewer What is a square? 

52. ATL A Square is when all the angles form right angles and 

they are all the same they are all 90 degrees…and each 

side length also has to be the same. [Pointing at Fig. U] 

                               
53. Interviewer What is a rectangle? 
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54. ATL A Rectangle, each angle is 90 degrees but these sides are 

the same and parallel, and this one is the same and 

parallel, but not all 4 of them are the same, necessarily 

[Pointing at Fig. M] 
 

                        
55. Interviewer What is a parallelogram? 

56. ATL Um… a parallelogram is when opposite sides are equal 

and opposite angles are both equal… 

[Pointing at Fig. J] 
 

                                    
63. Interviewer What is a rhombus? 

64. ATL Sides are all the same. Does not form 90-degree angle as 

rhombus alone. 

Pointing at Fig. Z: 
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To better understand her word meaning in the context of parallelograms, I asked ATL if I 

could group Fig. J and Fig. Z together, and group Fig. U and Fig. M together. Her response was 

“yeah”. The following conversation gives ATL’s responses to these questions ten weeks later:  

37. Interviewer: Can I group Fig. J and Fig. Z together? 

                                     

38. ATL:   Mm Hmm. 

39. Interviewer: Why is that? 

40. ATL: Mm… because they both have opposite sides parallel 

      and both opposite angle measures are equal. 

      …… 

45. Interviewer: Can I group Fig. U and Fig. M together? 

                                             

46. ATL: Yeah, you can because U has the same property as M. 

The only differences is that M does not have all the same sides 

length, so M would not have all the properties as U, but U has all 

the properties of M… 

 

In these conversations, more dimensions were added to ATL’s use of the word 

parallelogram. At the Pre-Interview, the word parallelogram only signified polygons that fit into 
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the physical appearances of parallelograms and rectangles; whereas at the Post-Interview, the 

word parallelogram signified a family of polygons that share common descriptive narratives.  

 
Parallelogram 

 
 
   

                                     

                              

                                                                         
Figure 4.8 ATL’s use of the word parallelogram at the Post-Interview  

As shown in Figure 4.8, the word parallelogram signified to ATL a common family 

name for all figures that “have opposite sides parallel and opposite angles equal”. This diagram 

illustrates how parallelograms were inter-connected. For example, ATL identified that “as a 

rhombus alone” [it] does not form a 90-degree angle, and “sides are all the same”. A rhombus 

was different from a square with regard to the angles: “all the angles form right angles…and 

each side length also has to be the same”. However ATL did not mention how rectangles were 

different from parallelograms. 

To have a better understanding of ATL’s familiarity of geometric terms, besides names 

for quadrilaterals, I searched for words describing the parts of parallelograms. Tables 4.12 and 

4.13 present frequencies of the names of parts of parallelograms.  
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Table 4.12 The frequencies of ATL’s use of the names of parts of parallelograms at the 

two interviews 

Name 
Frequency 

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Angle 10 17 10 75 14 39 
Side 27 17 31 33 9 40 
Length 2 6 3 21 11 3 
Parallel side 0 3 1 1 0 0 
Opposite side 1 6 9 17 3 7 
Diagonal 0 1 27 20 8 10 
Right angle 2 1 0 2 0 0 
Opposite angle 2 5 0 13 2 0 

 

Table 4.13 Total frequencies of ATL’s use of names of parts of parallelograms at the 

two interviews 

Name 
Frequency 

Pre Post 
Angle 34 131 
Side 67 90 
Length 16 30 
Parallel side 1 4 
Opposite side 13 30 
Diagonal 35 31 
Right angle 2 3 
Opposite angle 4 18 

 

Table 4.13 shows that the most frequently used words relating to the parts of 

parallelograms were angle (n=165) and side (n=157). There was a huge increase in use of the 

word angle at the Post-Interview (n=131) over the Pre-Interview (n=34). Besides angle and side, 

diagonal was also frequently mentioned at both interviews (n= 66). However parallel sides 

(n=5), as one of the most important characteristics of a parallelogram, was the least mentioned. 

There was also an increase in use of opposite side (n=30) and opposite angle (n=18) at the Post-

Interview.  
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These changes of word use associated with parts of parallelograms were not incidental. 

Recall that, at the Pre-Interview, ATL showed frustration in discussing the angles without 

measurements, and consequently, her responses about parallelograms and parts of parallelograms 

focused on the sides (n =67) rather than angles (n=34). At the Post-Interview, she was more 

comfortable talking about angles of the different parallelograms and was able to compare the 

differences between angles of the parallelograms (e.g. rectangle and parallelogram, square and 

rhombus, etc). Moreover, ATL used a narrative, “they have opposite sides and opposite angles 

are equal” to classify quadrilaterals into a group of parallelograms. These changes in ATL’s 

word use and routines show that she gained more familiarity with the triangles and 

quadrilaterals, as well as with the properties of these polygons. 

 

Case 2: Changes in ANI’s Geometric Discourse 

ANI was a college sophomore at the time of the interviews, having taken her last 

geometry class six years prior to the geometry and measurement class. The van Hiele geometry 

Tests showed that she was at Level 0 at the pretest, and moved to Level 3 at the posttest. I 

interviewed ANI after both tests, and analyzed her interview responses. ANI’s changes in 

geometric discourse are summarized as follows: 

• ANI’s routines of sorting changed from grouping by the names of polygons, 

according to their family appearances and visual properties with no order, to 

classifying polygons according to their common descriptive narratives, and 

structuring quadrilaterals with a hierarchy of classification. 

• ANI’s routines of substantiation changed from visual recognition and recalling at 

the Pre-Interview, to using endorsed narratives such as definitions and properties 
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of parallelograms at the Post-Interview; and from comparing parts of 

parallelograms visually in the Pre-Interview, to applying various methods (e.g., 

Pythagorean theorem, congruence criterion, algebraic derivations) to verify claims 

at an object level in the Post-Interview.  

• ANI’s use of the names of parallelograms changed from visual recognition of 

their family appearances at the Pre-Interview, to using these names as collections 

of quadrilaterals sharing common descriptive narratives in a hierarchy of 

classification.  

ANI’s routine procedures for sorting polygons were observed and analyzed in Task One. 

She was asked to sort eighteen polygons into groups, consisting of triangles (n=4), quadrilaterals 

(n=13) and a hexagon (n=1).  

During the Pre-Interview, ANI’s first sorted polygons by their names based on family 

appearances, finding triangles (n=5), squares (n=3), rectangles (n=3), parallelograms (n=5) and 

trapezoids (n=2). She grouped Fig. V, a hexagon, with the triangles because she identified two 

triangles in Fig. V. 

2b. ANI I made a group of triangles, which had three sides. 
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2c. ANI I included V as two triangles, because if you draw 

a line here in the middle, it would make two. 

                  drew a dashed line  

 

ANI put Fig. N, a right trapezoid, and Fig. Q, a quadrilateral, together as a trapezoid 

group because she was not sure about what to do with these two polygons. She named the group 

trapezoid by guessing. 

2f. ANI I did one that just had Q and N, which I didn’t 

know what to classify. I guess they would be 

trapezoids. 

                   

 

When asked for regrouping, ANI combined rectangles and squares together in one group 

because she thought that “every square is a rectangle”. She then split the triangle group into right 

triangles and isosceles triangles, but did not know what to do with two other triangles.  

16. ANI That’s a right triangle [pointing at Fig. K], and 

that’s an isosceles triangle [pointing at Fig. W]. 
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17. ANI I guess X would, I don’t know what the 

definition is [pointing at Fig. X], and this one 

[pointing at Fig. S] none of the sides on that 

looked even to me, so I don’t think it looked like 

any of the others 

      

 

ANI grouped two triangles according to the visual properties of angles (i.e., right 

triangle) and sides (i.e, isosceles triangle), and left two other triangles (Fig. X and Fig. S) with no 

groups. When subgrouping the parallelograms (n=5), ANI explained as follows: 

22a. ANI L and Z look more like square, I don't know if 

there are two different types of 

parallelograms… 
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22b. ANI Where P, J, and H look more of a rectangle, 

like the opposite side of all of these look the 

same. So, I guess you could put it into two 

groups that way. 

      

                      

 

ANI split the parallelograms into a group of squares including Fig. L and Fig. Z, and a 

group of rectangles consisting of Fig. P, Fig. J and Fig. H, because they looked like squares and 

rectangles, respectively. When I asked for the definitions of parallelogram, rectangle, rhombus 

and square, ANI provided her definitions of each: 

23. Interviewer What is a parallelogram? 

24. ANI It has four sides. I think the opposite sides 

are the same… I guess it's kind of like a 

slanted rectangle. 

25. Interviewer What is a rectangle? 

26. ANI It has four sides with opposite sides being 

equal in length. 
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ANI made a connection between a parallelogram and a rectangle, as a parallelogram was 

a slanted rectangle, based on visual appearances. ANI next gave definitions of square and 

rhombus:  

29. Interviewer What is a square? 

30. ANI It has four sides of the same length. 

31. Interviewer What is a rhombus? 

32. ANI A rhombus is like a slanted square and a 

parallelogram is a slanted rectangle. They 

kind go together like that. 

 

ANI described a square as having four sides of the same length, whereas a rhombus was a 

slanted square. She did not mention right angles, a defining condition of rectangles and squares 

among the parallelograms. To find out whether ANI considered squares as parallelograms, I 

continued: 

51. Interviewer Can I group J and U together? 

               
 

52. ANI [Thinking] …You could if you talked about 

angles, I guess. You'd say this angle and this 

angle are equal [pointing at the opposite 

angles of Fig, J], and this angle and this angle 

are equal, where the opposite angles are 
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equal here [Fig. U]. So, I guess you could 

group it in that way. 

 

ANI agreed that Fig. J, a parallelogram, could group with Fig. U, a square, because 

opposite angles were equal in both polygons [52]. Later I found that ANI did not identify a 

square as a parallelogram because “a square has all the same length, and a parallelogram has 

different sides”. In this case, ANI identified polygons by visual property of their angles. 

However, ANI’s response was different when I asked if I could group Fig. J and Fig. M, a 

rectangle, together: 

53. Interviewer Can I group J and M together   

     
   

54. ANI Yeah. Like J and U, opposite angles are equal… 

you also have opposite sides are parallel 

[pointing at the sides of Fig. J]…and this side 

and this side are both shorter than the other ones 

[pointing at the sides of Fig. M], they [Fig. J and 

Fig. M] have quite a bit in common. 

     
 

ANI acted more positive towards the grouping of Fig. J and Fig. M, as she thought, “they 

have quite a bit in common” [54]. ANI explained that a rectangle was a parallelogram “because 
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In ANI’s routines of sorting triangles and quadrilaterals at the Pre
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routines, including direct recognition
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Ten weeks later when I interviewed ANI again, her routines of sorting polygons had 

changed from grouping polygons by their visual appearance, to classifying them by common 

descriptive narratives with a hierarchy of classifications. 

At the Post-Interview, ANI first grouped polygons by their names, finding 
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it has two opposite sides equal, a rectangle and a parallelogram go together”. In this case, ANI 

identified polygons by visual property of their sides. ANI did not use any measurement tool to 

check the parts of polygons during the Pre-Interview in Task One. Her routines of regrouping 

polygons included direct recognition and identification of polygons by visual properties of angles 

and sides. ANI’s routines of sorting polygons at the Pre-Interview are summarized in Figure 4.9

First prompt: “Sort the shapes into groups”

 
Second prompt: “Can you regroup them differently?” 

ANI’s routines of sorting polygons at the Pre-Interview

ANI’s routines of sorting triangles and quadrilaterals at the Pre-Interview, I did not 

because she did not use definitions to group polygons. I found identifying 

including direct recognition, when she grouped quadrilaterals by their visual

identifying visual properties when she identified polygons by the attributes of 

Ten weeks later when I interviewed ANI again, her routines of sorting polygons had 

changed from grouping polygons by their visual appearance, to classifying them by common 

descriptive narratives with a hierarchy of classifications.  

Interview, ANI first grouped polygons by their names, finding 

parallelograms (n=9), rectangles (n=6), rhombi (n=5) 

Grouping by the 
names of polygons Conclusion

Grouping by family 
appearances & partial visual 
properties of angles and sides 

of polygons

Conclusion

. In this case, ANI 

identified polygons by visual property of their sides. ANI did not use any measurement tool to 

Interview in Task One. Her routines of regrouping 

ntification of polygons by visual properties of angles 

rview are summarized in Figure 4.9. 

 

 

 

Interview 

Interview, I did not 

did not use definitions to group polygons. I found identifying 

when she grouped quadrilaterals by their visual 

when she identified polygons by the attributes of 

Ten weeks later when I interviewed ANI again, her routines of sorting polygons had 

changed from grouping polygons by their visual appearance, to classifying them by common 

Interview, ANI first grouped polygons by their names, finding quadrilaterals 

 and triangles 

Conclusion

Conclusion
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(n=4). ANI grouped all 4-sided figures into the quadrilaterals group, and all 3-sided figures into 

the triangles group. She included parallelograms, squares, and rectangles as parallelograms, but 

not the rhombi. The rectangles group consisted of rectangles and squares, and the rhombi group 

included squares and rhombi. Note that Fig. V, a hexagon, was not included in any of these 

groups. Figure 4.10 presents ANI’s groups of parallelograms, rectangles and rhombi. 

Parallelograms group 

                                

         
 
Rectangles group 

              

                                                 
 
Rhombi group 

            
 

Figure 4.10 ANI’s grouping of parallelograms at the Post-Interview. 
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As shown in Figure 4.10, ANI grouped polygons by their common descriptive narratives 

(i.e., definitions). For example, ANI explained that she grouped squares and rectangles together 

as a rectangles group because “all squares are rectangles, and rectangles have all 90-degree 

angles”. She verified that both squares and rhombi were rhombi because “that is what a rhombus 

is, four sides of equal length”.  

There was a change in ANI’s identifying routine. Recall that at the Pre-Interview ANI 

grouped rhombi and squares together, because a rhombus looked like a slanted square. But at the 

Post-Interview, she grouped them together because they share a common narrative of having four 

sides of the same length. Although ANI grouped rectangles and squares together at both 

interviews, there was a difference as her identifying routine changed from recalling that all 

squares were rectangles at the Pre-Interview, to identifying common properties of rectangles and 

squares at the Post-Interview.  

ANI’s identifying routine also changed from grouping the quadrilaterals by their names 

as unstructured polygons, to classifying the quadrilaterals with a hierarchy. Figure 4.11 

illustrates all of ANI’s the subgroups of quadrilaterals (n=13). ANI classified the quadrilaterals 

beginning with the attributes of their sides. This classification included trapezoid, a quadrilateral 

with one pair of parallel sides; parallelograms, quadrilaterals with two sets of parallel sides; 

rhombus, quadrilaterals with all sides equal; and Fig. Q, a quadrilateral with no two sides equal. 

ANI next split parallelograms into parallelograms and rectangles, and split the rhombus group 

into rhombi and squares by the characteristics of right angles. ANI did not use rulers or 

protractors to check measurements of angles and sides at the Post-Interview, but she did explain 

that sides looked like they were parallel, or angles looked like they were right angles, etc. I 
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conclude that ANI used direct recognition as an identifying routine, but it as not self-evident. 

ANI’s routines of sorting polygons at the Post-Interview are summarized in Figure 4.12.  

 

 
Quadrilaterals (n=13) 

 
                                                                           
                   Trapezoid (n=1)         

                                                                                                                                            
          

                               Parallelograms (n=9)                                     Rhombus (n=5) 
 
 

                            
  

                              
 
                                 Rectangles ( n=6)                                             Square (n=3) 

                                                

                                           
 

Figure 4.11 ANI’s grouping of the quadrilaterals at the Post-Interview 

 



 

First prompt: “Sort the shapes into groups”

Second prompt: “Can you regroup them differently?”

Figure 4.12 ANI’s routines of sorting polygons at the Post
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= ∠C, ∠B = ∠D”. The following conversation took place when I asked for verification.
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          ANI’s drawing of a parallelogram
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First prompt: “Sort the shapes into groups”

 
Second prompt: “Can you regroup them differently?” 

ANI’s routines of sorting polygons at the Post-Interview

ANI’s routines of substantiation for Task Two were analyzed and compared from both 

interviews. I found that ANI’s routines changed from direct recognition and recalling

properties of polygons and using triangle congruence criterion to 

substantiate her claims. In the Post-Interview, she also derived some statements algebraically, 

In Task Two, ANI was asked to draw two different parallelograms and to discuss their 

iew she drew a parallelogram and labeled the vertices as A, B, C and 

D in clockwise order. She then wrote a statement regarding the angles of the parallelogram, 

he following conversation took place when I asked for verification.

What can you say about the angles of this parallelogram?

  

ANI’s drawing of a parallelogram 

Grouping by the common 
descriptive narratives of 

polygons
Conclusion

Grouping by common descriptive 
naratives and properties (i.e., angles & 
sides) of polygons with a hierarchy of 

classifications of quadrilaterals

Conclusion

 

 

 

Interview 

ANI’s routines of substantiation for Task Two were analyzed and compared from both 

changed from direct recognition and recalling in the Pre-

ce criterion to 

Interview, she also derived some statements algebraically, 

In Task Two, ANI was asked to draw two different parallelograms and to discuss their 

iew she drew a parallelogram and labeled the vertices as A, B, C and 

D in clockwise order. She then wrote a statement regarding the angles of the parallelogram, “∠A 

he following conversation took place when I asked for verification. 

What can you say about the angles of this parallelogram? 

Conclusion

Conclusion
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4. ANI Angles A and C are equal, and then B and D are equal 

[Pointing to angles A and C, she wrote: ∠A = ∠C, ∠B = ∠D].  

5. Interviewer How do you know? 

6. ANI Mm…I just remember being taught that, I don't actually 

know… If you measured them, they would be equal. 

 

ANI referred to her prior knowledge about the angles of a parallelogram to conclude that 

the opposite angles were equal. She was able to use mathematical symbols, such as ∠A = ∠C, to 

indicate the equivalence of the angles. However ANI remembered the property as a fact without 

knowing the explanations. After my prompt, ANI verified that ∠A = ∠C by comparing the space 

between the angles:  

10a. ANI  If you drew two lines here [adding two perpendicular 

lines from angles A and C] 

                      

10b. ANI From this line to this line, if you know that’s a 90 

degree angle …[pointing at the indicated space] 

                    
10c. ANI You know what a 90-degree angle looks like, so it's 

easier to go off of that. 

A

D

B

C

A

D

B

C
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10d. ANI …and then you look at the space here and the space 

here [pointing at the marked angles], and see if those 

are the same. 

                
 

 

ANI drew two perpendicular lines so that both ∠A and ∠C would be the sum of a right 

angle and a smaller angle. [10a]. She started with comparing the right angles because they were 

easy to distinguish by their visual appearance [10b; 10c], and then she compared space between 

the two smaller angles to check whether they were the same. In this example, ANI’s routines 

procedure relied on the visual appearance of the angles to verify her claims.  

ANI made two other statements about the angles of the parallelogram, “∠A + ∠D = 

180°, ∠C + ∠B = 180°”. When asked for substantiation, she responded as follows: 

20a. ANI If you extend this line out, and draw another straight line 

there… 

              

20b. ANI You can see that this angle equals that angle. 

A

D

B

C

A

D

B

C

A

D

B

C
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ANI pointing at the two marked angles. 

21. Interviewer How do you know they are equal? 

22a. ANI There is a term for it. It’s like a rule that I remember 

learning. Maybe parallel angle rule? Or, adjacent angle 

rule? Or something. 

22b. ANI And this is angle C [pointing at the angle BCD]. 

22c. ANI So if you were to combine them, you would have a 

straight line, and that would make a 180-dregee angle. 

              

 ANI pointing at the two marked angles. 

 

In this example, ANI recognized the structure of alternating interior angles formed by 

parallel lines and their transversals [20a]. When ANI explained, “you can see that this angle 

equals that angle” [20b], she again relied on the visual appearance of the angles.  She did not 

know names of the angles, nor the related propositions to support her claim, but referred to a rule 

that she had learned. Assuming that the two marked angles were equal [20b], she verified that 

∠C + ∠B = 180° because they made a 180-degree angle [22c]. Using the same reasoning, ANI 

A

D

B

C

A

D

B

C



 

also stated that “∠D + ∠A = 180

angles, and applied prior knowledge as a fact to verify the statements about the angles of a 

parallelogram.  

In the Post-Interview, ANI drew a parallelogram and labeled the vertices as A, B, C, and 

D in a clockwise rotation, and gave the same statements about the angles of the parallelogram as 

in the Pre-Interview. Figure 4.13

Interview. 

Figure 4.13 ANI’s written responses for Task Two at the Post

 

In contrast, ANI’s verification of her claims was different than at the Pre

When I asked for substantiation of the statement 

“this is a parallelogram because I drew it, so angle A is equal to angle C and angle 

angle D”. ANI’s verification of ∠

16a. ANI If you were to extend this line…
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A = 180°”. I conclude that ANI used visual recognition to compare 

angles, and applied prior knowledge as a fact to verify the statements about the angles of a 

Interview, ANI drew a parallelogram and labeled the vertices as A, B, C, and 

D in a clockwise rotation, and gave the same statements about the angles of the parallelogram as 

. Figure 4.13 shows some of ANI responses for Task Two in

ANI’s written responses for Task Two at the Post-Interview

In contrast, ANI’s verification of her claims was different than at the Pre-

When I asked for substantiation of the statement ∠A = ∠C and ∠B = ∠D, she explained that 

“this is a parallelogram because I drew it, so angle A is equal to angle C and angle 

∠A + ∠B = 180° was also different than in the Pre

If you were to extend this line… 

I conclude that ANI used visual recognition to compare 

angles, and applied prior knowledge as a fact to verify the statements about the angles of a 

Interview, ANI drew a parallelogram and labeled the vertices as A, B, C, and 

D in a clockwise rotation, and gave the same statements about the angles of the parallelogram as 

shows some of ANI responses for Task Two in the Post-

Interview 

-Interview. 

explained that 

“this is a parallelogram because I drew it, so angle A is equal to angle C and angle B is equal to 

was also different than in the Pre-Interview. 



 

105 

                  

16b. ANI You could look either way, like this angle is equal to 

this angle. BC and AD are parallel. They [pointing 

at the marked angles] are corresponding angles 

because they are on the parallel lines.  

                 
16c. ANI Then you could tell that if you add these two angles, 

it’s angles on a line. So it’s 180 degrees.  

 

           
pointing at angle B and it’s exterior angle. 

16d. ANI So angle A and angle B add up to 180 degrees.  

 

To verify ∠A + ∠B = 180°, ANI extended side AB so that the structure of the 

corresponding angles formed by parallel lines and their transversals was visible [16a]. She 

mentioned the corresponding angles were congruent because they were on the parallel lines 

[16b], and then concluded that angle A and angle B add up to 180 degrees [16c; 16d]. Although 

ANI verified her claim informally, it is important to see the change, as ANI justified her claim 

C

DA

B

C

DA

B

C

DA

B



 

that corresponding angles were equal using an endorsed narrative that BC and AD were pa

at the Post-Interview, whereas she relied on visual appearance of the angles at the Pre

ANI provided different narratives about the diagonals of a parallelogram at the two 

interviews. At the Pre-Interview, she asserted that the diagonals

and the diagonals of a rectangle should intersect at the mi

Post-Interview she stated that the diagonals of a rectangle should be equal in length, and the 

diagonals of a parallelogram bisect each other at the Post

the changes in ANI’s routine procedures of substantiating these narratives at both interviews. 

At the Pre-Interview, ANI drew a rhombus, and stated that it was a different 

parallelogram because all the sides were the same length. ANI later used the statement, “all the 

sides were the same length” to draw conclusions about the angles and diagonals of the rhombus. 

73. Interviewer 

74. ANI 

75. Interviewer 
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that corresponding angles were equal using an endorsed narrative that BC and AD were pa

Interview, whereas she relied on visual appearance of the angles at the Pre

ANI provided different narratives about the diagonals of a parallelogram at the two 

Interview, she asserted that the diagonals of a rhombus should be the same 

and the diagonals of a rectangle should intersect at the middle of the rectangle, whereas at the 

Interview she stated that the diagonals of a rectangle should be equal in length, and the 

sect each other at the Post-Interview. Now I describe and compare 

the changes in ANI’s routine procedures of substantiating these narratives at both interviews. 

Interview, ANI drew a rhombus, and stated that it was a different 

ause all the sides were the same length. ANI later used the statement, “all the 

sides were the same length” to draw conclusions about the angles and diagonals of the rhombus. 

What can you say about the angles of this 

parallelogram            

  

ANI’s drawing of a rhombus  

I think they [angles] should all be the same… I 

guess if I had drawn it better, all the angles 

should be the same. 

Why do you think they are the same? 

that corresponding angles were equal using an endorsed narrative that BC and AD were parallel 

Interview, whereas she relied on visual appearance of the angles at the Pre-Interview.  

ANI provided different narratives about the diagonals of a parallelogram at the two 

us should be the same 

, whereas at the 

Interview she stated that the diagonals of a rectangle should be equal in length, and the 

Interview. Now I describe and compare 

the changes in ANI’s routine procedures of substantiating these narratives at both interviews.  

Interview, ANI drew a rhombus, and stated that it was a different 

ause all the sides were the same length. ANI later used the statement, “all the 

sides were the same length” to draw conclusions about the angles and diagonals of the rhombus.  

I think they [angles] should all be the same… I 
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76. ANI Because the lengths are the same. [Wrote: ∠A 

= ∠B = ∠C = ∠D because lengths of the sides 

are the same].    

… 

93. Interviewer  What can you say about the diagonals of this 

parallelogram? 

94. ANI I think the diagonals should be equal in length.  

95. Interviewer How do you know that they should be equal in 

length? 

96. ANI Because the sides are all the same length and 

the angles are all the same. So, I think the 

diagonals should be the same. 

 

In the preceding conversation, ANI claimed that the angles in a rhombus should all be the 

same [74], as well as the diagonals [94]. When asked for verification, she explained that all the 

angles should be the same because all the sides of a rhombus were the same [76]; and diagonals 

should be equal in length because all the sides and angles of a rhombus were all the same [96]. 

Of course, for ANI’s conclusions about the angles and diagonals of this rhombus to be correct, 

the rhombus had to be a square. ANI made incorrect implications from the equivalence of the 

sides to the equivalence of the angles, and then suggested that the diagonals must be equal 

because of equal sides and angles. There is no routine involved in this verification, other than 

making statements based on the fact that all the sides are equal in a rhombus. Obviously, ANI 

did not have a correct understanding of a rhombus at the Pre-Interview.  
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ANI stated that the diagonals of a rectangle were longer than its sides, and the 

intersection of the diagonals was at the middle of the rectangle.  

118b. ANI The length of this [pointing at the diagonal] is longer 

than the length of the longest side [pointing at the 

longer side of the rectangle]. 

 

  diagonal       

                                         longest side of rectangle 

118c. ANI They [the diagonals] should intersect in the middle.  

                       middle of the rectangle 

  
 

Here, ANI’s declared narratives about the diagonals of this rectangle were more like 

visual descriptions of what the diagonals appeared to be. She recognized the diagonal as the 

hypotenuse of a right triangle, and mentioned, “the Pythagorean theorem, which is how I know 

it” to verify the diagonals were longer than the longest side of rectangle. She argued her claim 

that diagonals should be at the middle of the rectangle as follows: 

130a. ANI So, if you were to find the midpoint of this 

length… [Drew one line passing through the 

midpoint of the sides] 
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130b. ANI …and then if you were to find the midpoint of 

this length, and draw a line [Drew another line 

passing through the midpoint of the other sides] 

             
130c. ANI … that the intersection of those two lines should 

be the intersection of the diagonals as well. 

 

ANI verified that the diagonals intersect at the middle of the rectangle by locating the 

midpoints of the sides of the rectangle, and concluded that the intersection of the two medians 

was the same point as the intersection point of the diagonals. 

In the preceding examples, ANI’s understanding of the properties of parallelograms was 

not clearly demonstrated. To verify the claims, she mostly described what she saw about the 

parallelogram.  

Ten weeks later I interviewed ANI again, and the same tasks were preformed. ANI first 

drew a parallelogram, and then stated that the diagonals of the parallelogram were not equal in 

length, but they cross each other at one point. She added that the diagonals create corresponding 

triangles. 

54. ANI They [the diagonals] cross at one point.  

                   

C

DA

B
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56. ANI They create corresponding triangles. Well, like this 

triangle corresponds with this triangle [Shaded the 

two corresponding triangles] 

                 

57. Interviewer What do you mean by “corresponding triangles”? 

58a. ANI This angle and this angle are equal, cause they're 

vertical angles… 

                 

58b. ANI …And then, this side should equal this side… 

             

58c. ANI …and this side should equal this side. And I know 

they're corresponding through Side-Angle-Side. 

Like, that would be the rule that… 

 

             

C

DA

B

C

DA

B

C

DA

B

C

DA

B



 

111 

59. Interviewer How do you know these sides are equal? [Referring 

to 58b & 58c] 

60. ANI Cause diagonals bisect each other. 

61. Interviewer How do you know they bisect each other? 

62. ANI I don't really know how I know… I guess it's 

because the sides are equal length and they're 

parallel, so… 

 

In the preceding conversation ANI started with a descriptive narrative about the diagonals 

of a parallelogram, “they cross at one point” [54], and then she asserted that the diagonals 

created corresponding triangles [56]. At my request, she verified the corresponding triangles 

were a pair of congruent triangles with the Side-Angle-Side (SAS) criterion [58]. Here, ANI used 

the endorsed narrative “diagonals bisect each other” to show that the corresponding triangles 

were congruent [60]. However, when asked how she knew the diagonals of this parallelogram 

bisect each other, she responded, “I don’t really know…I guess, it’s because the sides are equal 

length and they’re parallel” [62].  

It is clear that ANI remembered how to verify congruent triangles using SAS. She 

identified corresponding triangles, as well as the three elements needed for verification of 

congruent triangles. She used that fact that “diagonals bisect each other” to justify the 

congruency of the sides, and used vertical angles to show the congruence of included angles. 

Thus, there was a change in ANI’s routine of substantiating, from no routine at the Pre-

Interview, to using an endorsed narrative to identify three elements for verifying congruent 

triangles at the Post-Interview. In this case, ANI’s routine procedure for verifying her claim used 
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the endorsed narrative “diagonals bisect each other”, but she did not know as an endorsed 

narrative, but did not know why the narrative was true. It appeared that ANI derived an informal 

proof that two triangles were congruent, but she did not clearly demonstrate that she knew what 

to substantiate and why.  

When discussing the diagonals of a rectangle, ANI provided the narrative “they should be 

equal in length”, and tried to verify this claim using the Pythagorean theorem: 

128a. ANI I know the value of this side [pointing at the shorter 

side], and I know the value of that side [pointing at the 

longer side], so I can find this side [hypotenuse] use 

Pythagorean theorem.  

                      

128b. ANI It would be the same over here. I know this and I 

know this, so I can find this. 

                      ”I can find this” 

128c. ANI …you can see that those two are equal [pointing at the 

halves of the diagonal]. And then, if I drew the other 

diagonal, you could do it the same way… 
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129. Interviewer What about this case? If I add the halves of this 

diagonal, and add the halves of that diagonal, in my 

drawing here, they are not equal. 

                        

 

To verify the diagonals were equal, ANI attempted to show that adding the halves of a 

diagonal was equal to adding halves of another diagonal, and use the Pythagorean theorem. I 

provided a counterexample to refute her conclusion. ANI replied with another approach by first 

labeling the segments a, b, c and d.  

134a. ANI You could find that a is equal to d, they should be equal. 

          
134b. ANI I could do the Pythagorean theorem again, but with this 

side and this side. And then I'd find d. 

              
Pointing at the two legs of the right triangle 

d

c

b

a

d

c

b

a
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134c. ANI a equal to d because they share this side here [pointing at 

the longer leg], and this point is a middle point here, so 

these two sides are equal [two shorter legs]. They [a and 

d] are equal. 

                      

 

ANI described informally her verification of the claim “a = d” by identifying the two 

triangles sharing a longer side and having equal shorter sides [134c], and then applying the 

Pythagorean theorem to conclude “a = d” [134a; b]. ANI did not argue that the two triangles 

were right triangles, an important condition of the Pythagorean theorem, nor did she give details 

of the algebraic derivation of “a = d”. I conclude that ANI’s routine procedures changed from 

comparing the length of diagonals with the sides visually at the Pre-Interview, to describing a 

process of verifying and substantiating her claims at the Post-Interview.  

ANI did not think a square was a parallelogram at the Pre-interview, and there was not 

much to compare with what she did ten weeks later. However I do want to share ANI’s routine 

procedure of using algebra as one way to substantiate her claims at the Post-Interview. We began 

with the following conversation: 

161. Interviewer What can you say about the diagonals of the 

square? 

d

c

b

a
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162. ANI They’re equal… They bisect the angles, split 

the angles into two-45 degree angles.  

163. Interviewer How do you know “they are equal”? 

164. ANI  The same way I knew with the rectangles. 

165. Interviewer How do you know “they bisect angles”? 

166. ANI It divides the angle into two equal angles. 

 

ANI provided two narratives about the diagonals of the square, “they’re equal”, and “they 

bisect the angles”[162]. She applied her knowledge of the diagonals in a rectangle to case of a 

square [164]. To verify the diagonals bisect each other, ANI explained that they divide the angle 

into two equal angles [166]. The following is ANI’s routine procedure of verification, with 

corresponding transcripts. 

Table 4.14 ANI’s routine procedure of verification for “diagonals bisect the angles” 

Routine Procedures  Transcripts 

1. Declare narratives   

1.1Draw a diagonal  174a. I guess I’d draw a diagonal 

              
1.2 Identify two right 
triangles  

174b. It splits the square into two right triangles, because all 
of these angles are 90-degrees.  

              
adding right angle sign on each angle of the square 
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Table 4.14 (cont’d) 

1.3 Identify the 
relation between the 
angles and sides of the 
right triangle. 

174c. By the angle sum rule, all angles add up to 180 
degrees. You already have 90 here. So, X plus Y has to equal 
90. It’s also an isosceles triangle.  

        assigning X and Y to the two angles     

Q: How do you know it’s an isosceles triangle? 

2. Verification of 
isosceles triangle 
 
2.1 Identify congruent 
sides of the triangle 

180. These two sides equal. 

           
Adding two marks on the sides of the triangle 
 

2.2 Verification of 
congruent angles  

182a. It’s an isosceles triangle. So X is equal Y.  

2.3 Finding the angle 
measures of X and Y 

182b. I know that X and Y has to equal 90 degrees. So, I 
know that X is 45 degrees and Y is 45 degrees.     

2.4 Finding other 
angles measures  

190. So, if you know it's 90, and Y is equal 45 degrees, and 
this angle is also 45 degrees. Same for X here. So diagonals 
splitting into two equal angles and they are 45 degrees each.  

                 “this angle is also 45 degrees” 
3. Conclusion 194. Yeah, diagonals bisect each other 

 

It became clear that ANI favored algebraic reasoning in her routine procedures. She 

labeled the angles X and Y, and used an endorsed narrative, “all angles are 90 degrees” [174b] to 

justify that X and Y were the angles of a right triangle. She used another endorsed narrative, 
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“theses two sides equal” [180] to verify that the triangle is isosceles. Finally, ANI solved X and 

Y algebraically, to find that they were 45 degrees each [190]. Using this newly endorsed 

narrative, ANI concluded that the diagonals bisect the angles [190; 194]. In this example, ANI 

used her knowledge in algebra to help solve a problem in geometry.  

ANI’s use of the word parallelogram changed from describing the visual appearances of 

the quadrilaterals at the Pre-Interview, to using the word as a common descriptive narrative with 

a hierarchy of classifications at the Post-Interview. Here are the frequencies of ANI’s use of the 

names of quadrilaterals at two interviews: 

Table 4.15 The frequencies of ANI’s use of the names of quadrilaterals at the two 

interviews 

Name 
Frequency  

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Quadrilateral 0 3 0 0 0 0 
Parallelogram 4 3 4 0 3 1 
Rectangle 12 3 2 2 3 0 
Square 10 5 1 5 0 3 
Rhombus 2 2 1 3 0 0 
Trapezoid 2 2 0 0 0 0 
Kite 0 1 0 0 0 0 

 

Table 4.16 Total frequencies of ANI’s use of names of quadrilaterals at the two 

interviews 

Name 
Frequency 

Pre Post 
Quadrilateral 0 3 
Parallelogram 11 4 
Rectangle 17 5 
Square 11 13 
Rhombus 3 5 
Trapezoid 2 2 
Kite 0 1 

 



 

Table 4.16 shows that the word

interviews. The word rectangle (n=22) was the second most frequently used,

(n=15) was third. The names of the parallelograms were mostly mentioned in Task One, and 

among all the names, rectangle and 

(see Table 4.15). There was an increase in use of the word 

Interview. However, there was a reduction in use of the word 

Post-Interview. The words kite (n=1) and 

Interview, whereas the word trapezoid

names of quadrilaterals was much lower than other interviewees’ use of 

Recall that in the Pre-Interview, while grouping in Task One, ANI referred to a rhombus 

as a slanted square, and a parallelogram as a slanted rectangle. Later she drew a rhombus as a 

parallelogram, but disagreed that a square was a parallelog

square in Task Two: 

69. Interviewer Why is this a parallelogram?

           
                           

70. ANI Because AB is parallel to DC, and AD is parallel to BC.

71. Interviewer Why do you think it’s a 

72. ANI  Because all the sides are the same length.

73. Interviewer What do you call this shape?

74. ANI A rhombus.
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shows that the word square (n=24) was the most frequently used during the 

(n=22) was the second most frequently used, and 

he names of the parallelograms were mostly mentioned in Task One, and 

and square were most frequently mentioned at the Pre

). There was an increase in use of the word square and rhombus in the Post

Interview. However, there was a reduction in use of the word parallelogram and 

(n=1) and quadrilateral (n=3) were mentioned only at the Post

trapezoid (n=4) was only mentioned in Task One.  ANI’s use of the 

names of quadrilaterals was much lower than other interviewees’ use of those names. 

Interview, while grouping in Task One, ANI referred to a rhombus 

as a slanted square, and a parallelogram as a slanted rectangle. Later she drew a rhombus as a 

parallelogram, but disagreed that a square was a parallelogram when I showed her a picture of a 

Why is this a parallelogram? 

            
                            
Because AB is parallel to DC, and AD is parallel to BC.

Why do you think it’s a different parallelogram? 

Because all the sides are the same length. 

What do you call this shape? 

A rhombus. 

(n=24) was the most frequently used during the 

and parallelogram 

he names of the parallelograms were mostly mentioned in Task One, and 

were most frequently mentioned at the Pre-Interview 

in the Post-

and rectangle in the 

(n=3) were mentioned only at the Post-

ANI’s use of the 

those names.  

Interview, while grouping in Task One, ANI referred to a rhombus 

as a slanted square, and a parallelogram as a slanted rectangle. Later she drew a rhombus as a 

ram when I showed her a picture of a 

Because AB is parallel to DC, and AD is parallel to BC. 
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In this conversation, ANI identified a rhombus as a parallelogram because it had two 

pairs of parallel sides [70], and recognized that it was a different parallelogram because it had all 

sides of the same length. However, in the next conversation, she disqualified a square as a 

parallelogram.  

99. Interviewer How about this one? Is this a parallelogram? 

                            
100. ANI No.  

101. Interviewer Why do you think it’s not a parallelogram? 

102. ANI  Because all the lengths look like they are the same 

sides, and I think that a parallelogram has 

different sides. 

103. Interviewer What do you call this shape? 

104. ANI A square. 

 

This inconsistency showed that ANI’s use of the word parallelogram referred to visual 

family appearances. From ANI’s grouping of parallelograms in Task One, and her ways of 

identifying parallelograms in Task Two, I conclude that the word parallelogram was used to 

represent rectangles, parallelograms and rhombi. 

Figure 4.14 illustrates ANI’s use of parallelograms at the pre-interview.  

 
Parallelogram (n=8) 

 
 
 

                       Parallelogram                        Rhombus                               Rectangle 
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Figure 4.14 (cont’d) 

                               

                                                                                                                                                                                                 
Figure 4.14. ANI’s use of the word parallelogram at the Pre-Interview 

 

ANI’s use of the word parallelogram changed in the Post-Interview, as the word 

presented a class of figures sharing a common descriptive narrative, and all parallelograms 

presented in the task were connected in a hierarchy. In the Post-Interview, ANI used the word 

quadrilateral to extend the family of parallelograms, describing quadrilaterals with a hierarchy 

of classifications.  

As shown in Figure 4.15, this hierarchy, quadrilaterals have different names depending 

on attributes of their angles and sides. This hierarchy has three branches: trapezoid, 

parallelogram and quadrilateral. The word parallelogram includes parallelograms, rectangles, 

squares and rhombi by definitions. All four-sided polygons with different visual appearances 

some with right angles, some have all same sides, but sharing a common descriptive narrative, 

“opposite sides parallel and equal”. 
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Parallelograms (n=11) 
 

                            

                                           

                                                                      
  
 

                                               Rectangles (n=6)                                 Rhombus (n=5) 
 
 

              
                                                                   
 
 

                                                                          
Squares (n=3) 

 
Figure 4.15 ANI’s use of the word parallelogram at the Post-Interview 
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In the interviews, ANI mentioned more the parts of parallelogram (e.g., angles, sides, etc) 

than the names of parallelograms. Tables 4.17 and 4.18 give the frequencies of these words at the 

Pre-Interview and the Post-Interview. Table 4.18 provides total frequencies of each word at the 

interviews, whereas Table 4.17 presents the frequencies of each word used at each task in the 

interviews. 

Table 4.17 The frequencies of ANI’s use of names of the parts of parallelograms at the 

two interviews 

Name 
Frequency 

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Angle 14 7 32 37 5 3 
Side 14 12 8 27 4 1 
Length 3 4 13 10 8 2 
Parallel side 0 3 0 3 0 0 
Opposite side 2 0 1 1 2 0 
Diagonal 0 0 10 12 0 0 
Right angle 2 0 1 0 0 0 
Opposite angle 2 0 0 0 1 1 

 

Table 4.18 Total frequencies of ANI’s use of names of the parts of parallelograms at the 

two interviews 

Name 
Frequency 

Pre Post 
Angle 51 47 
Side 26 40 
Length 24 16 
Parallel side 0 6 
Opposite side 5 1 
Diagonal 10 12 
Right angle 3 0 
Opposite angle 3 1 

 

Table 4.18 shows that the most frequently used word relating to the parts of 

parallelograms was angle (n= 98), mentioned most frequently in Task Two (see Table 4). The 
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second most frequently used was side (n=66), mentioned most frequently in Task One and Task 

Two. The word length (n=40) was third, mentioned in all three tasks. The word diagonal (n=40) 

was only mentioned in Task Two. These results were expected, as Task Two asks interviewees 

to discuss the angles, sides and diagonals of parallelogram. Right angle (n=3) was least 

mentioned, appearing only at the Pre-Interview. There was a slight reduction in the use of the 

words opposite angle and opposite side in the Post-Interview. However, ANI mentioned parallel 

side (n=6) at the Post-Interview, but did not mention it at all in the Pre-Interview. 

The most compelling change in ANI’s word use was her use of the word parallelogram 

at the Post-Interview. She had a better understanding of parallelograms and their properties. 

 

Case 3: Changes in ALY’s Geometric Discourse 

ALY was a college freshman at the time of the interviews. ALY took her last geometry 

class three years prior to the geometry and measurement class. The van Hiele geometry Test 

showed that she was at Level 3 at the pretest, and moved to Level 4 on the posttest. I interviewed 

ALY after both tests, and analyzed her interview responses. A summary of findings on changes 

in ALY’s geometric discourse is as follows: 

• ALY’s routines of sorting changed from grouping polygons by the number of 

sides and by their names based on the attribute of their angles, at the Pre-

Interview, to classifying polygons by their common descriptive narratives and 

arranging quadrilaterals with a hierarchy of classifications at the Post-Interview.  

• ALY’s routines of substantiation changed from verifying the congruent parts of 

parallelograms using recalling, measuring and constructing routines at the Pre-
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Interview, to formulating mathematical proofs using mathematical axioms and 

propositions at the Post-Interview.  

• ALY’s word use changed from representing the word parallelograms as a 

collection of polygons sharing common descriptive narratives at the Pre-

Interview, to using words with a hierarchy of classifications of parallelograms at 

the Post-Interview. ALY also used more mathematical terms in the Post-interview 

than in the Pre-Interview.  

ALY’s routines of sorting were analyzed in the interviews for Task One, where ALY was 

asked to classify eighteen polygons into groups. These polygons included triangles (n=4), 

quadrilaterals (n=13) and one hexagon. The following section details these interviews. 

At the Pre-Interview, ALY grouped the eighteen polygons into three groups according to 

the number of their sides. She grouped all quadrilaterals into a group, calling it the “four-sided” 

group; and she grouped all three-sided polygons (n=4) together, naming the “triangles” group. 

ALY called Fig. V (a hexagon) “miscellaneous”, and grouped it as “other”.  

When asked to regroup the quadrilateral group, and she regroup them by right angle 

versus non-right angle. After regrouping the quadrilaterals, ALY said, “I selected shapes with 

right angles… from looking at it. I didn’t measure any of them, but I am assuming that they are 

right angles.” ALY’s regrouping of quadrilaterals is shown in Figure 4.16. 

    
Right angle Group (n=8) 
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Figure 4.16 (cont’d) 

   
    
Non-right angle Group (n=10) 

                        

              

                      
Figure 4.16 ALY’s regrouping of polygons at the Pre-Interview 

 

ALY regrouped the polygons by the attribute of having right angles or not. The right 

angle group consisted of polygons having at least one right angle, whereas the non-right angle 

group contained all other polygons. When I asked ALY to subgroup the four-sided group (n=13) 

that she initially made, she split the group into two: the rectangle group (n=6) and the non-

rectangle group (n=7). Figure 4.17 illustrates ALY’s subgrouping of the quadrilaterals. 
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   Rectangle Group (n=6) 

                     

                                
 
Non-rectangle Group (n=7) 

                          

                 
Figure 4.17 ALY’s subgrouping of the quadrilaterals at the Pre-Interview 

 

ALY used the name rectangle to split the quadrilaterals into two groups. In the rectangle 

group, ALY included both rectangles and squares. Consequently, the non-rectangle group 

contained all other quadrilaterals such as the parallelograms, the rhombi and a trapezoid. I also 

asked ALY to subgroup the non-rectangle group, and she responded that she could split the 

group into rhombus and non-rhombus.  
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26. ALY: I would separate them into rhombuses. P is a rhombus, 

                L is a rhombus, J is a rhombus, Z and H are all 

                rhombuses. [Pointing at these polygons] 

    

                           

                  
 

In the subgrouping, ALY identified both parallelograms and rhombi as rhombus. To 

investigate further, I asked ALY to identify a parallelogram, and she pointed to Fig. H. I asked 

her to identify a rhombus, and she pointed to Fig. J (another parallelogram). ALY’s subgrouping 

of the non-rectangle group revealed her confusion between parallelograms and rhombi. 

Thus, at the Pre-Interview ALY grouped polygons by the number of sides and by the 

characteristics of their angles. ALY also favored dividing polygons into two groups, according to 

what they are and what they are not, with names of polygons such as rectangle and rhombus. 

ALY identified polygons by direct recognition, but it appeared to me this recognition was not 

self-evident. For example, ALY mentioned “just from looking at it, ... I am assuming that they 

are right angles” to explain her assumptions. Figure 3 summarizes ALY’s routines of sorting at 

the Pre-Interview.  

 

 



 

Prompt: “Sort the shapes into groups”

     

Figure 4.18

 

At the Post-Interview, at my request, ALY first grouped the eighteen polygons into two 

groups, consisting of triangles (n= 4) and 

sides. When I asked ALY to regroup the eighteen polygons differently, sh

polygons into two groups, including 

by the numbers of sides. I then asked ALY to subgroup the 

quadrilaterals into two groups, consisting of 

(n=2). I continued to ask ALY to subgroup the 

groups, rectangles (n=6) and non

subgroups consisting of squares 

Figure 4.19 summarizes ALY’s subgroupings of the 

shown in Figure 4.19, ALY’s routines of sorting

determined by “what it is and what it is not” proceeding through families of quadrilaterals such 

as parallelograms, rectangles and 

 

Choosing 
intuitively

Grouping by the numbers of sides, 
and characteristics of the angles of 

Choosing 
intuitively 
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Prompt: “Sort the shapes into groups” 
 

 
Prompt: “Subgroup the group.” 

 

Figure 4.18 ALY’s routines of sorting at the Pre-Interview

Interview, at my request, ALY first grouped the eighteen polygons into two 

(n= 4) and non-triangles (n=14) according to the number of their 

sides. When I asked ALY to regroup the eighteen polygons differently, she regrouped the 

polygons into two groups, including quadrilaterals (n=13) and non-quadrilaterals

by the numbers of sides. I then asked ALY to subgroup the quadrilaterals, and she split the 

into two groups, consisting of parallelograms (n=11) and non-parallelograms

I continued to ask ALY to subgroup the parallelograms, and she came up with two 

non-rectangles (n=5). This pattern continued with the two 

 (n=3) and non-squares (n=3) within the rectangles 

Figure 4.19 summarizes ALY’s subgroupings of the quadrilaterals at the Post-Interview. As 

routines of sorting, distinguishing two groups of polygons 

nd what it is not” proceeding through families of quadrilaterals such 

and squares.  

Grouping by the numbers of sides, 
and characteristics of the angles of 

polygons (i.e., right angles) 
Conclusion

Grouping by two groups, "what 
they are and what they are not" 
using rectangleand rhombus

Conclusion

 

 

Interview 

Interview, at my request, ALY first grouped the eighteen polygons into two 

(n=14) according to the number of their 

e regrouped the 

quadrilaterals (n=5), again 

, and she split the 

parallelograms 

came up with two 

(n=5). This pattern continued with the two 

rectangles group. 

Interview. As 

distinguishing two groups of polygons 

nd what it is not” proceeding through families of quadrilaterals such 

Conclusion

Conclusion
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Quadrilaterals (n=13) 

 
 
                 Non-parallelograms (n=2)             Parallelograms (n=11) 

                   
 
                        Non-rectangles (n=5)                     

               

                                                     Rectangles (n=6) 

              
                                          Non-squares (n=3)                            Squares (n=3) 

                  

              
Figure 4.19 ALY’s chains subgroupings of the quadrilaterals at the Post-Interview. 
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During our conversations in the Post-Interview, ALY demonstrated her understandings of 

the relations between parallelograms, rhombi and squares by classifying these polygons in a 

hierarchy. For example, ALY identified the non-rectangles as parallelograms, a group consisting 

of parallelograms and rhombi.  

45. Interviewer What are the non-rectangles? 

46. AL The parallelograms? P, H, Z, J and L. [Pointing at 

these polygons] 

    

     

47. Interviewer Why are they not the rectangles? 

48. ALY Because they don’t have four right angles. 

 

ALY also identified rhombi as a subgroup of non-rectangles (i.e., parallelograms), and 

identified a square, a polygon from a group of rectangles, as a rhombus.  

77. Interviewer Can you identify if there is a rhombus? 

78. ALY A rhombus? I think Z and L are rhombuses. And then U, G, 

and R would be rhombuses as well. [Pointing at Fig. Z and L] 
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79. Interviewer How do you know that L is a rhombus? 

80. ALY Because these sides look equal in length and they are also 

parallel to the opposite sides [pointing at the sides of Fig. L] 

                    

81. Interviewer Why is U a rhombus? [Pointing at Fig. U] 

                           
82. ALY Because all sides are equal and opposite sides parallel to each 

other. 

 

At the Post-Interview, ALY first grouped the polygons by the numbers of their sides. 

When asked to regroup the polygons, ALY classified quadrilaterals by dividing them into two 



 

groups each time. During the interview, ALY did not use measurement tools to ve

angles or sides of the polygons. However, ALY did mention that she assumed the angles of the 

rectangles to be 90 degrees, and the sides of the parall

that ALY identified polygons intuitively, but agai

sorting at the Post-Interview are summarized in Figure 4.20

Prompt: “Sort the polygons into groups”

 

Figure 4.20 ALY’s 

 

We see a similar pattern as ALY grouped the polygons by the number of sides, and sub

grouped polygons by dividing them into two groups each time. However, there was a change in 

AYL’s subgroupings, as her chains of subgrouping showed a hierarchy of classifi

quadrilaterals at the Post-Interview, her subgrouping was limited only to identifying the 

rectangles and the rhombi without a hierarchy at the Pre

ALY’s change in geometric discourse also appeared in her routines of substantiation. In 

the following section, I describe observations from the interviews with ALY in Task Two and 

Task Three.  

ALY explained and verified her claims about the angles and side

recalling and measuring routines at the Pre

Choosing 
intuitively

Choosing 
intuitively 

Grouping into two groups of "what it is 
and what it is not" using the names of 

parallelograms; and arranging them by a 
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groups each time. During the interview, ALY did not use measurement tools to ve

angles or sides of the polygons. However, ALY did mention that she assumed the angles of the 

, and the sides of the parallelograms to be parallel. I have concluded 

that ALY identified polygons intuitively, but again it was not self-evident. ALY’s 

rview are summarized in Figure 4.20. 

Prompt: “Sort the polygons into groups” 

Prompt: “Subgroup the group.” 

ALY’s routines of sorting at the Post-Interview 

We see a similar pattern as ALY grouped the polygons by the number of sides, and sub

grouped polygons by dividing them into two groups each time. However, there was a change in 

AYL’s subgroupings, as her chains of subgrouping showed a hierarchy of classifi

Interview, her subgrouping was limited only to identifying the 

without a hierarchy at the Pre-Interview. 

ALY’s change in geometric discourse also appeared in her routines of substantiation. In 

the following section, I describe observations from the interviews with ALY in Task Two and 

ALY explained and verified her claims about the angles and sides of parallelograms with 

routines at the Pre-Interview; whereas she substantiated her statements 

Grouping by the number 
of sides of the polygons Conclusion

Grouping into two groups of "what it is 
and what it is not" using the names of 

parallelograms; and arranging them by a 
hierarchy of classificaitons

Conclusion

groups each time. During the interview, ALY did not use measurement tools to verify congruent 

angles or sides of the polygons. However, ALY did mention that she assumed the angles of the 

. I have concluded 

evident. ALY’s routines of 

 

 

 

We see a similar pattern as ALY grouped the polygons by the number of sides, and sub-

grouped polygons by dividing them into two groups each time. However, there was a change in 

AYL’s subgroupings, as her chains of subgrouping showed a hierarchy of classifications of 

Interview, her subgrouping was limited only to identifying the 

ALY’s change in geometric discourse also appeared in her routines of substantiation. In 

the following section, I describe observations from the interviews with ALY in Task Two and 

s of parallelograms with 

Interview; whereas she substantiated her statements 

Conclusion

Conclusion
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using endorsed narratives at the Post-Interview. When substantiating the equivalence of two 

definitions, ALY constructed two polygons with angle and side measurements that fit the 

descriptions of the definitions at the Pre-Interview, whereas she produced a mathematical proof 

at the Post-Interview. To illustrate these changes, I will provide the following scenarios.  

In Task Two, ALY drew a parallelogram, and stated that it was a parallelogram because 

the opposite sides were parallel to each other. When discussing the angles of the parallelogram, 

ALY responded that the opposite angles of the parallelogram were equal. When I asked why, 

ALY replied, “I think that is just a property of a parallelogram”. The following conversation took 

place after I prompted for verification: 

9. Interviewer If I ask you to convince me that the opposite 

angles are equal, what would you do? 

10. ALY You mean… prove it to you, that in every case it 

would be that way? 

11. Interviewer Yeah. 

12. ALY I could just measure the angles for you, with a 

protractor. I've never done a proof before, in this 

case. I've done lots of proofs, but not on 

something like that, so I don't know. 

In this conversation, I noticed that writing a proof about the angles of a parallelogram 

was new to ALY, but she was aware of the difference between a verification of a statement 

“opposite angles are equal in a parallelogram” in general (i.e., a mathematical proof) and a 

verification of an example of a statement (i.e., check the measurements of angles), as evidenced 

in her asking, “prove it to you that in every case it would be that way?” and later proposing to 
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measure the angles [12]. In this case, ALY explained the statement that opposite angles are equal 

in a parallelogram by remembering it as a property of a parallelogram. 

ALY also provided another narrative about the angles of a parallelogram, namely that the 

adjacent angles in a parallelogram add up to 180°. When asked for substantiation, ALY replied, 

“I have learned it before, but I am not 100% sure…”, and produced her verification as follows: 

26a. ALY This angle looks like it would match up if I was to 

extend this line out like this [extending the side] 

                       

26b. ALY … this angle looks equivalent to this angle. And, 

actually it is, because I've learned about parallel lines 

[pointing at the angles]. 

                    

26c. ALY It would, because this angle would be equivalent to 

this angle [pointing at the vertical angles]… and is 

also equal to that [pointing at alternating interior 

angles] 

                     

27. Interviewer Why is that? 

28. ALY That's another property [giggling]... I just remember 
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in high school, we learned a lot of properties about 

parallelograms and parallel lines, and things like that. 

29. Interviewer So… What is your conclusion? 

30. ALY That the adjacent angles add up to 180 degrees.  

 

ALY reasoned her way through by drawing extended lines [26a] and by identifying 

parallel sides [26b] and congruent angles [26b; 26c]. ALY remembered the properties of a 

parallelogram and remembered the propositions of parallel lines, as well as the relation between 

the vertical angles [26c], and she applied them in her verification process. It is notable that ALY 

identified more congruent angles than she needed for the verification. More specifically, ALY 

needed only one of the three congruent pairs of angles, but she identified three pairs [26b; 26c]. 

ALY neglected to point out how the congruent angles would lead to the proof that the adjacent 

angles add up to 180 degrees, an argument crucial in this substantiation. In the preceding 

examples ALY applied her prior knowledge about the properties of parallelogram and 

propositions of parallel lines to identify the elements needed for verification. However, in this 

example, ALY verified her claim only partially and without logical order.  

In contrast, at the Post-Interview ALY explained why opposite angles are equal, using the 

fact that the adjacent angles in a parallelogram add up to 180° as an endorsed narrative. Here is 

ALY’s demonstration that adjacent angles in a parallelogram add up to 180 degrees.  

11. Interviewer How do you know that the adjacent angles add up to 180 

degrees? 

12. ALY Because that's one of the properties of a parallelogram, I 

can show you if you like? 
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13. Interviewer Go ahead. 

14a. ALY If you were to rip this in half [drawing a line cut through 

the polygon],  

                                            
14b. ALY …and then take this top half and put it down here, then it 

would line up, like this. Does that make sense? 

         

14c. ALY Right here… Let's say that this is a and this is b. If we 

moved this [b] down here then these would be on the same 

line. [Labeling the polygon with a and b representing two 

pieces of the polygon] 

        

14d. ALY This angle here [pointing at the vertex angle] would be 

right here, and they'd be on the same line. And, angles on a 

line add up to 180 degrees. 

             

 

a

b

b

a

a

b

b

a
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To verify that adjacent angles add up to 180 degrees, ALY first referred to this statement 

as a property of parallelograms [12]. Then she described an activity of imagining to cut the 

polygon horizontally in half [14a], and moving the top half to the bottom [14b] to match the two 

adjacent vertex angles side by side in a line [14c; 14d]. ALY used this newly endorsed narrative 

that adjacent angles add to 180 degrees to justify her statement that the opposite angles in a 

parallelogram are equal.  

15. Interviewer How do you know that the opposite angles are equal? 

16a. ALY Because you have two parallel lines, here, if I was to 

extend these lines [Extending two sides of the 

parallelogram]. 

                           

16b. ALY Then, this would be a transversal. 

                        Transversal 

16c. ALY So, you've got this angle here and this and this angle here 

[pointing at the two angles] add up to 180 degrees because 

they're adjacent. 

                                                          

16d. ALY For the same reason, … then this angle and this angle 

would also add up to 180 degrees, 
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16e. ALY So these [pointing at the opposite angles] have to be the 

same. 

                           
 

In this example, ALY first identified two parallel lines [16a] and a transversal [16b], and 

concluded that adjacent angles add up to 180 degrees [16c]. In order to show that opposite angles 

were equal, ALY identified another pair of adjacent angles, with one vertex angle included in the 

previous ones [16d], so that two pairs of adjacent angles shared one angle in common. Giving the 

same reason [16a; 16b], ALY explained that the second pair of adjacent angles also added up to 

180 degrees. Finally, ALY concluded that the opposite angles had to be the same [16e].  

This scenario illustrates changes in ALY’s routine procedures. She progressed from 

referring to prior knowledge to justify her claims (i.e., recalling routines), to using newly 

endorsed narratives to substantiate her claims. ALY also moved from identifying more elements 

than needed for verifications, without logical order, to choosing the exact number of elements 

necessary to justify statements logically.  

In another change, ALY went from measuring the sides of parallelograms with rulers to 

verify congruency at the Pre-Interview, to identifying congruent triangles by congruent criterions 

to verify the congruent parts of parallelograms at the Post-Interview. In Task Two, I asked ALY 

to draw a parallelogram and to discuss its sides. ALY drew a parallelogram and stated that it was 

a parallelogram because the opposite sides were parallel to each other and were equal in length. 



 

The following conversation took place after I asked for substantiation of her claim that “the 

opposite sides were equal in length”.

41. Interviewer Is there a way that you can show me that they are the same length?

42. ALY In this parallelogram? I can measure it. So this is…4.5 

centimeters, this is a little less than 4.5. [Using a ruler to measure 

one pair 

about the same. [Measuring another pair of opposite sides]

           
                     

43. Interviewer How do you know that for every parallelogram this is true?

44. ALY You mean

property of a parallelogram.

 

To verify the claim, ALY first referred to it as a characteris

then used a ruler to measure the sides of the parallelogram to complete her verif

mentioned earlier, ALY did not have much experience in constructing a mathematical proof in 

this context, but my observation was that she was aware of the difference between constructing a 

proof at an abstract level and checking with a concre

her awareness showed when ALY asked, “In this parallelogram? I can measure it” [42]. 
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The following conversation took place after I asked for substantiation of her claim that “the 

ides were equal in length”. 

Is there a way that you can show me that they are the same length?

In this parallelogram? I can measure it. So this is…4.5 

centimeters, this is a little less than 4.5. [Using a ruler to measure 

one pair of opposite sides]… Right, this looks about 4.3. Yeah, 

about the same. [Measuring another pair of opposite sides]

 
                     ALY’s drawing  

How do you know that for every parallelogram this is true?

You mean prove it? Well, I am not sure…but I know it’s just a 

property of a parallelogram. 

To verify the claim, ALY first referred to it as a characteristic of a parallelogram

then used a ruler to measure the sides of the parallelogram to complete her verification. As I 

, ALY did not have much experience in constructing a mathematical proof in 

this context, but my observation was that she was aware of the difference between constructing a 

proof at an abstract level and checking with a concrete example at an object level. For example, 

her awareness showed when ALY asked, “In this parallelogram? I can measure it” [42]. 

The following conversation took place after I asked for substantiation of her claim that “the 

Is there a way that you can show me that they are the same length? 

centimeters, this is a little less than 4.5. [Using a ruler to measure 

of opposite sides]… Right, this looks about 4.3. Yeah, 

about the same. [Measuring another pair of opposite sides] 

How do you know that for every parallelogram this is true? 

prove it? Well, I am not sure…but I know it’s just a 

tic of a parallelogram, and 

ication. As I 

, ALY did not have much experience in constructing a mathematical proof in 

this context, but my observation was that she was aware of the difference between constructing a 

te example at an object level. For example, 

her awareness showed when ALY asked, “In this parallelogram? I can measure it” [42]. 



 

Consequently, ALY used a ruler to measure the opposite sides of the parallelogram to check 

congruency [42], and referred to thi

This pattern of measuring

equivalence of diagonals in a rectangle.

95. Interviewer What can you say about the diagonals of this parallelogram?

96. ALY They are of equal length

97. Interviewer How do you know that they are equal?

98. ALY Because I learned it a long time ago, in a rectangle, the 

diagonals are the same.

99. Interviewer Is there a way that you could convince me?

100a. ALY I would 

measure the diagonals]

100b. ALY Yeah, they’re both 8.2 centimeters. So, the diagonals have 

equal length.

   
 

I challenged ALY by asking, “What if you don’t have rulers to measure the diagonals, 

what would you do?” ALY replied, “If you look, the diagonals form two triangles”, and 

identified two triangles, and explained why the two triangles were congruent. 

115. ALY [Shading the two congruent triangles]
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Consequently, ALY used a ruler to measure the opposite sides of the parallelogram to check 

congruency [42], and referred to this congruency as a property of a parallelogram. 

measuring and checking also appeared when ALY was verifying the 

rectangle. 

What can you say about the diagonals of this parallelogram?

They are of equal length. 

How do you know that they are equal? 

Because I learned it a long time ago, in a rectangle, the 

diagonals are the same. 

Is there a way that you could convince me? 

I would measure them, is that O.K? [Using a ruler to 

measure the diagonals] 

Yeah, they’re both 8.2 centimeters. So, the diagonals have 

equal length. 

I challenged ALY by asking, “What if you don’t have rulers to measure the diagonals, 

what would you do?” ALY replied, “If you look, the diagonals form two triangles”, and 

identified two triangles, and explained why the two triangles were congruent.  

[Shading the two congruent triangles] 

Consequently, ALY used a ruler to measure the opposite sides of the parallelogram to check 

s congruency as a property of a parallelogram.  

was verifying the 

What can you say about the diagonals of this parallelogram? 

Because I learned it a long time ago, in a rectangle, the 

measure them, is that O.K? [Using a ruler to 

Yeah, they’re both 8.2 centimeters. So, the diagonals have 

 

I challenged ALY by asking, “What if you don’t have rulers to measure the diagonals, 

what would you do?” ALY replied, “If you look, the diagonals form two triangles”, and 



 

116a. ALY This side equal to this side [pointing at the opposite sides 

of the paralleogram]

    

116b. ALY This side is obviously it’s the same side.

 

                

116c. ALY …Which means this side would 

side [pointing at the diagonals]

 

ALY intuitively provided a general explanation about the equivalence of the diagonals 

using congruent triangles. ALY first identified two triangles [see shaded areas in 116a] where the 

diagonals were the hypotenuses of the triangles. ALY chose two congruen

opposite sides of the rectangles as one pair of corresponding sides in the triangles [116a], and 

noted a common side [116b]. From there, ALY concluded that the diagonals were equal based on 

the equivalence of the two other pairs of si

congruent we need three elements, and in this case ALY only provided two. We need 

information about an included angle of the two sides that ALY identified to complete the 

verification. Note that, in our earlier conversation, ALY drew this rectangle as a different 
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This side equal to this side [pointing at the opposite sides 

of the paralleogram] 

 

This side is obviously it’s the same side. 

        

…Which means this side would have to be equal to this 

side [pointing at the diagonals] 

ALY intuitively provided a general explanation about the equivalence of the diagonals 

using congruent triangles. ALY first identified two triangles [see shaded areas in 116a] where the 

diagonals were the hypotenuses of the triangles. ALY chose two congruent elements, using the 

opposite sides of the rectangles as one pair of corresponding sides in the triangles [116a], and 

noted a common side [116b]. From there, ALY concluded that the diagonals were equal based on 

the equivalence of the two other pairs of sides. Mathematically, to verify that two triangles are 

congruent we need three elements, and in this case ALY only provided two. We need 

angle of the two sides that ALY identified to complete the 

earlier conversation, ALY drew this rectangle as a different 

This side equal to this side [pointing at the opposite sides 

have to be equal to this 

ALY intuitively provided a general explanation about the equivalence of the diagonals 

using congruent triangles. ALY first identified two triangles [see shaded areas in 116a] where the 

t elements, using the 

opposite sides of the rectangles as one pair of corresponding sides in the triangles [116a], and 

noted a common side [116b]. From there, ALY concluded that the diagonals were equal based on 

des. Mathematically, to verify that two triangles are 

congruent we need three elements, and in this case ALY only provided two. We need 

angle of the two sides that ALY identified to complete the 

earlier conversation, ALY drew this rectangle as a different 
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parallelogram, and she knew that all angles were equal in a rectangle. However there was no 

mention of the equivalence of the angles, the third element needed for verification of the 

congruent triangles. 

Ten weeks later I interviewed ALY again. When ALY discussed the sides of the 

parallelogram, she used an argument including the distance between the parallel lines to verify 

her claim that the opposite sides were congruent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALY’s used rulers and protractors to measure and check the congruent parts of the 

parallelograms at the Pre-Interview. In contrast, ALY used an endorsed narrative, stating that the 

22. ALY Opposite sides are congruent in a parallelogram. 

23. Interviewer How do you know that they are congruent? 

24a. ALY Because the opposite sides are parallel to each 

other, they have a fixed distance away from each 

other. So, the distance from here to here is the 

same as here to here, it's going to be the same all 

the way through. 

                    distance 

24b. ALY So, that would mean that this would be equal to 

this because they never intersect [pointing at the 

opposite sides] 

                  



 

143 

distance between the parallel lines were equal to demonstrate that opposite sides of the 

parallelogram were equal at the Post-Interview. The preceding conversation drew my attention to 

ALY’s incorrect use of he word “distance” in the context of the distance between parallel lines; I 

will discuss this matter later in looking at ALY’s word use. 

During the Post-Interview, ALY used triangle congruent criterions to substantiate the 

congruent parts of parallelograms. For example, when discussing the diagonals of a 

parallelogram, ALY stated that the diagonals bisect each other. When asked for verification, 

ALY provided the following justification using the Angle-Side-Angle (ASA) triangle 

congruency criterion. Table 4.19 illustrates ALY’s routine procedures of substantiation, with 

corresponding transcripts.  

Table 4.19 ALY’s routine procedures of substantiating that diagonals bisect each other 

Routine Procedures  Transcripts  

1. Identify triangles 
formed by diagonals  

38a. Since I drew two diagonals, we can see that there are 
four triangles here. 

                               
2. Verification of two 
congruent triangles 
 
2.1 Identify first pair 
of corresponding 
angles of the triangles  

38b. If you take this angle here and this angle here, they're 
equal to each other because they're vertical angles [pointing 
at the vertical angles] 

                            

2.2 Identify the second 
pair of corresponding 
angles of the triangles  

 38c. Because these two lines are parallel, this angle would 
be equal to this angle here, because they're opposite interior 
angles, … 

                          
 

2.3 Identify the third 
pair of corresponding 
angles of the triangles  

38d. The same goes for this angle and this angle, …because 
of the same property. 
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Table 4.19 (cont’d) 
2.4 Identify the fourth 
pair of corresponding 
angles of the triangles  

38e. …and then this angle and this angle. 

                            
2.5 Identify one pair 
of corresponding sides 
of the triangles 

38f. We already know that these two sides are equal because 
that's a property of a parallelogram [pointing at the sides of 
the triangles] 

                             
4. Verify congruent 
triangles using A-S-A 
correspondence 

38g. So, you have Angle-Side-Angle here. And, so, that 
shows that this triangle here is congruent to this triangle here 

                                            
5. Conclusion 38h. When you match up the corresponding sides, this side 

would be congruent to this side and then, this would be 
congruent to this. So, they are of equal measure, so they 
bisect each other. 

                                 
 

In this episode, ALY provided a verbal explanation of why the diagonals of this 

parallelogram bisect each other. More specifically, ALY used the ASA triangle criterion to 

verify that two triangles were congruent [38g], and concluded that the diagonals bisected each 

other because the parts of the diagonals were corresponding sides of two congruent triangles. 

Note that at each step, ALY was able to provide mathematical justifications for her conclusions. 

For example, ALY stated, “because these two lines are parallel” and “because they are vertical 

angles” as justifications to demonstrate that two pairs of angles were equal. ALY also used “a 

property of parallelogram” to explain the congruent sides. 

During this process of verification, ALY identified four pairs of congruent angles [38b-

38e] and one pair of congruent sides [38f], more elements than needed for verification. In 



 

particular, she identified one pair of vertical angles [38b] and 

[38b] that were not needed in her final verification of two congruent triangles. 

As our conversations continued, ALY drew a rectangle and stated that the diagonals also 

bisected each other in a rectangle. The followin

substantiation.  

63. Interviewer How do you know diagonals bisect each other in this case? 

                      

64. ALY For the same reason as last time, do you want me to explain again?

65. Interviewer When you say, “for the same reason as last time”, what do you mean? 

66. ALY Just, all of it, when you create these triangles and the triangles are 

congruent to each other…based on that property, all parallelograms 

have diagonals that bisect e

parallelogram].
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particular, she identified one pair of vertical angles [38b] and a pair of alternating interior angles 

[38b] that were not needed in her final verification of two congruent triangles.  

As our conversations continued, ALY drew a rectangle and stated that the diagonals also 

bisected each other in a rectangle. The following conversation took place when I asked for 

How do you know diagonals bisect each other in this case? 

                       ALY’s drawing  

For the same reason as last time, do you want me to explain again?

When you say, “for the same reason as last time”, what do you mean? 

Just, all of it, when you create these triangles and the triangles are 

congruent to each other…based on that property, all parallelograms 

have diagonals that bisect each other [pointing at the triangles in the 

parallelogram]. 

                   

                        ALY’s drawing 

a pair of alternating interior angles 

As our conversations continued, ALY drew a rectangle and stated that the diagonals also 

g conversation took place when I asked for 

How do you know diagonals bisect each other in this case?  

For the same reason as last time, do you want me to explain again? 

When you say, “for the same reason as last time”, what do you mean?  

Just, all of it, when you create these triangles and the triangles are 

congruent to each other…based on that property, all parallelograms 

ach other [pointing at the triangles in the 



 

ALY referred to her newly endorsed narrative about the diagonals bisecting each other in 

a parallelogram [64] to justify her claim about the diagonals in a rectangle. Given this 

opportunity, I asked for a written proof. ALY’s written proof is presented in 

 
Table 4.20 ALY’s written proof that diagonals bisect each other at the Post

 

 

p is the intersection of   the diagonals

 

Before ALY started to write the proof, she labeled the vertices of the rectangle with A, B, 

C, and D in a clockwise order. ALY used mathematical symbols like 

words angle, congruent, triangle

ALY wrote “∠APB ≅ ∠DPC”, “

angles, sides and triangles accordingly. I asked ALY for further clarification.

77. Interviewer Can you explain to me what you wrote?

78a. ALY I have 
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ALY referred to her newly endorsed narrative about the diagonals bisecting each other in 

a parallelogram [64] to justify her claim about the diagonals in a rectangle. Given this 

opportunity, I asked for a written proof. ALY’s written proof is presented in Table 

ALY’s written proof that diagonals bisect each other at the Post

 

p is the intersection of   the diagonals 
 

Before ALY started to write the proof, she labeled the vertices of the rectangle with A, B, 

C, and D in a clockwise order. ALY used mathematical symbols like ∠, ≅, ∆, ⁄⁄ to replace the 

triangle, and parallel, respectively, in her written proof. For example, 

DPC”, “AB = DC” and “∆ABP ≅ ∆CDP” to indicate two congruent 

angles, sides and triangles accordingly. I asked ALY for further clarification. 

Can you explain to me what you wrote? 

I have angle APB, so this angle right here, is equal to DPC, 

ALY referred to her newly endorsed narrative about the diagonals bisecting each other in 

a parallelogram [64] to justify her claim about the diagonals in a rectangle. Given this 

Table 4.20. 

ALY’s written proof that diagonals bisect each other at the Post-Interview 

 

Before ALY started to write the proof, she labeled the vertices of the rectangle with A, B, 

to replace the 

itten proof. For example, 

two congruent 

angle APB, so this angle right here, is equal to DPC, 
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because they are vertical angles, And then also angle APD, so 

this here, well I guess that's not really important 

 

∠APB ≅ ∠DPC (vertical 

angles) 

∠APD ≅ ∠BPC (vert. ∠s)     

78b. ALY Angle BAC is congruent to DCP because AB and DC are 

parallel to each other, so these two angles are alternate interior 

angles, and they're always congruent. 

 

∠BAC ≅ ∠DCP (alt. int ∠s, 

AB//DC) 

78c. ALY AB is equal to DC because that is a property of a 

parallelogram. So, we have two angles on this side, and that is 

enough information to conclude that triangle ABP is congruent 

to triangle CDP. 

 

AB = DC (prop. of //ogram) 

∆ABP ≅ ∆CDP (ASA) 

79. Interviewer When you say two angles and a side, what do you mean? 
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80. ALY This angle and this angle. And then we have a side. 

 

∠APB ≅ ∠DPC  

(vertical angles) –angle 

∠BAC ≅ ∠DCP  

(alt. int ∠s, AB//DC) –angle  

AB = DC (prop. of //ogram) –

side 

 

It is evident that there was a change in ALY’s routines of verifying. She previously 

measured and compared the sides of the parallelogram to verify her claims at an object level in 

the Pre-Interview, whereas, at the Post-Interview, she constructed a mathematical proof using 

mathematical symbols and justifications at an abstract level. However, ALY incorrectly used 

Angle-Angle-Side (AAS) to verify congruent triangles. Recall that, in an earlier substantiation, 

ALY mentioned “two angles and a side” as ASA to verify the congruent triangles correctly. 

However, in this example the same phrase, “two angles and a side” appeared again but with an 

indication of AAS. Thus ALY displayed ambiguity in using congruent criterions.  

When proving the equivalence of the two definitions, ALY’s routine procedures also 

changed. At the Pre-Interview, ALY verified the equivalence of the definitions by constructing 

the parts of the parallelograms with measurements that fit the descriptions of the definitions, 

whereas she constructed a mathematical proof of the equivalence of the definitions at the Post-

Interview.  The following illustrates ALY’s routine procedure that I observed in Task Three. 
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In Task Three, interviewees were asked to construct mathematical proofs from given 

definitions. In particular, these interviewees were given two definitions of a parallelogram and 

were asked to substantiate that these definitions were equivalent. 

• Definition #1: A quadrilateral is a parallelogram if and only if both pairs of 

opposite sides have the same length. 

• Definition #2: A quadrilateral is a parallelogram if and only if both pairs of 

opposite angles have the same measure.  

In order to verify the equivalence of the definitions mathematically, interviewees needed 

to use deduction to prove the following implications:  

• If a quadrilateral has both pairs of opposite sides of the same length, then both 

pairs of opposite angles have the same measure; and  

• If a quadrilateral has both pairs of opposite angles of the same measure, then both 

pairs of opposite sides have the same length.  

Deduction takes place when a newly endorsed narrative is obtained from previously 

endorsed narratives with the help of well-defined inferring operations.  

At the Pre-Interview, I asked ALY what she would do to prove the two statements were 

equivalent. She replied, “I would demonstrate what each definition is saying, then show how it 

results in the same thing”. In trying to prove the implication “If a quadrilateral has both pairs of 

opposite sides of the same length, then both pairs of opposite angles have the same measure”, 

ALY explained, “I would draw a parallelogram where the opposite sides have the same length. 

And, because they have the same length, they're going to have the same angles”. ALY used a 

ruler to construct a polygon with opposite sides parallel and equal, so that the parallelogram fit 

the description in Definition #1. ALY next used a protractor to check all the angles of the 



 

parallelogram, and found that the opposite angles had the same measures, matching the 

descriptions in Definition #2. ALY finished this part of the substantiation with the conclusion 

“it’s going to be that case every time, where the angles will be equal every time.” 

procedure of constructing a parallelogram with both pairs of o

order to prove the implication, is shown in Table 4.21

Table 4.21 ALY’s proof by constructing a parallelogram with opposite sides equal

ALY’s drawing of the parallelogram

1. Constructing a parallelogram with 

                                              
2. Verifying the given conditions (Definition #1):
the parallelogram 

                         
3. Verifying the results (Definition #2)
parallelogram 

                               
4. Conclusion  
ALY: So, it's going to be that case every time, where the angles will be equal every time. I wasn't 
measuring the angles when I drew it. I was just focusing on the lengths, but it just came out that 
they were the same. And, it will come out that way every time.
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parallelogram, and found that the opposite angles had the same measures, matching the 

descriptions in Definition #2. ALY finished this part of the substantiation with the conclusion 

“it’s going to be that case every time, where the angles will be equal every time.” 

a parallelogram with both pairs of opposite sides of the same length in 

implication, is shown in Table 4.21.  

ALY’s proof by constructing a parallelogram with opposite sides equal

 
ALY’s drawing of the parallelogram 

 
Constructing a parallelogram with opposite sides equal 

 
Verifying the given conditions (Definition #1): Using a ruler to measure the opposite sides of 

        
(Definition #2): Using a protractor to measure the opposite angles of the 

           

So, it's going to be that case every time, where the angles will be equal every time. I wasn't 
measuring the angles when I drew it. I was just focusing on the lengths, but it just came out that 
they were the same. And, it will come out that way every time. 

parallelogram, and found that the opposite angles had the same measures, matching the 

descriptions in Definition #2. ALY finished this part of the substantiation with the conclusion 

“it’s going to be that case every time, where the angles will be equal every time.” ALY’s routine 

pposite sides of the same length in 

ALY’s proof by constructing a parallelogram with opposite sides equal 

Using a ruler to measure the opposite sides of 

: Using a protractor to measure the opposite angles of the 

So, it's going to be that case every time, where the angles will be equal every time. I wasn't 
measuring the angles when I drew it. I was just focusing on the lengths, but it just came out that 



 

To prove the other implication, “If a quadrilateral has both pairs of opposite angles of the

same measure, then both pairs of opposite sides have the same length.” ALY began by drawing a 

quadrilateral with opposite angles equal then she measured the opposite sides. 

check all the sides of the parallelogram, and found that oppos

matching the descriptions in Definition #1. ALY completed her verification with the conclusion 

“based on opposite angles being the same.

length”.  ALY’s routine procedure of

angles of the same measure to prove the implication is shown in Table 4

Table 4.22 ALY’s proof by constructing a parallelogram with opposite angles equal

 
ALY’s drawing of the parallelogram

  

1. Constructing a parallelogram with opposite angles equal
1.1 Constructing an angle with 65

                            
1.2 Constructing a parallel line to the side and measuring the angle
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To prove the other implication, “If a quadrilateral has both pairs of opposite angles of the

same measure, then both pairs of opposite sides have the same length.” ALY began by drawing a 

quadrilateral with opposite angles equal then she measured the opposite sides. She used a ruler to 

check all the sides of the parallelogram, and found that opposite sides had the same lengths 

matching the descriptions in Definition #1. ALY completed her verification with the conclusion 

site angles being the same. I ended up with sides that were almost identical in 

ALY’s routine procedure of constructing a quadrilateral with both pairs of opposite 

angles of the same measure to prove the implication is shown in Table 4.22.  

ALY’s proof by constructing a parallelogram with opposite angles equal

ALY’s drawing of the parallelogram 

 

Constructing a parallelogram with opposite angles equal 
1.1 Constructing an angle with 65° 

 

                   
1.2 Constructing a parallel line to the side and measuring the angle 

 

To prove the other implication, “If a quadrilateral has both pairs of opposite angles of the 

same measure, then both pairs of opposite sides have the same length.” ALY began by drawing a 

She used a ruler to 

ite sides had the same lengths 

matching the descriptions in Definition #1. ALY completed her verification with the conclusion 

I ended up with sides that were almost identical in 

constructing a quadrilateral with both pairs of opposite 

ALY’s proof by constructing a parallelogram with opposite angles equal 
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Table 4.22 (cont’d) 

1.3 Constructing the fourth side that is parallel to its opposite side and measuring the rest of the 
angles   

                

2. Verifying the given conditions (Definition #2): Checking the angle measure of the opposite 
angles  

                                          

3. Verifying the results (Definition #1): Using a ruler to measure the opposite sides of the 
parallelogram 

                    
4. Conclusion  
ALY: This time, when I drew it, I focused on the angles. I drew the lines, then I created the 
shape, based on opposite angles being the same. And, I ended up with sides that were almost 
identical in length.  
 
 

 

At the Pre-Interview, ALY’s routine procedures of proving the equivalence of the two 

definitions involved the constructing a parallelogram, measuring the angles or the sides, and 

comparing the measurements, all mathematical activities operating at an object level. It is 

important to note that ALY did not know how to construct a mathematical proof and her 



 

argument was to generalize the result from a particular example, assuming that “it will came out 

that way every time.”  

Ten weeks later, ALY’s routine procedures for substantiating the equivalence of the 

definitions changed. First of all, ALY proved the implication “If a quadrilateral has both pairs of 

opposite sides of the same length, then both pairs of opposite angles have the same measure” by 

providing an example of the inverse 

implication “if a quadrilateral does not have both pairs of opposite sides of the same length, then 

both pairs of the opposite angles don’t have the same measure.” ALY’s drawing and her 

explanation are shown in Figure 4.21

                                             

ALY:  …if they [pointing at the parallel sides] didn't have the same 
length, if one of the sides had a different length than the other, 
……then they [pointing at the legs of the trapezoid] would not 
be a fixed distance away from each other, they could not be 
parallel to each other, eventually, they would intersect.
 

ALY:  So, opposite angles are not equal. 
Figure 4.21 ALY’s verification of the first implication at the Post

 

To my request, “Can you prove that opposite angles are equal, knowing that two 

sides have the same measure?” ALY drew a parallelogram and c

by assuming the parallel sides of the polygon as given, and applied the proposition that when 

parallel lines are cut by a transversal, the adjacent interio

solved the equations algebraically to justify that opposite angles have the same measure. ALY’s 

drawing of a parallelogram and her construction of the proof is shown in Figure 4.22.
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argument was to generalize the result from a particular example, assuming that “it will came out 

en weeks later, ALY’s routine procedures for substantiating the equivalence of the 

definitions changed. First of all, ALY proved the implication “If a quadrilateral has both pairs of 

opposite sides of the same length, then both pairs of opposite angles have the same measure” by 

inverse of the implication. That is, ALY drew a polygon that fit the 

implication “if a quadrilateral does not have both pairs of opposite sides of the same length, then 

both pairs of the opposite angles don’t have the same measure.” ALY’s drawing and her 

re 4.21. 

                                              ALY’s drawing  

they [pointing at the parallel sides] didn't have the same 
length, if one of the sides had a different length than the other, 
……then they [pointing at the legs of the trapezoid] would not 
be a fixed distance away from each other, they could not be 

l to each other, eventually, they would intersect. 

So, opposite angles are not equal.  
ALY’s verification of the first implication at the Post

To my request, “Can you prove that opposite angles are equal, knowing that two 

sides have the same measure?” ALY drew a parallelogram and constructed a mathematical proof 

by assuming the parallel sides of the polygon as given, and applied the proposition that when 

parallel lines are cut by a transversal, the adjacent interior angles add up to 180 degrees. She then 

solved the equations algebraically to justify that opposite angles have the same measure. ALY’s 

drawing of a parallelogram and her construction of the proof is shown in Figure 4.22.

argument was to generalize the result from a particular example, assuming that “it will came out 

en weeks later, ALY’s routine procedures for substantiating the equivalence of the two 

definitions changed. First of all, ALY proved the implication “If a quadrilateral has both pairs of 

opposite sides of the same length, then both pairs of opposite angles have the same measure” by 

That is, ALY drew a polygon that fit the 

implication “if a quadrilateral does not have both pairs of opposite sides of the same length, then 

both pairs of the opposite angles don’t have the same measure.” ALY’s drawing and her 

they [pointing at the parallel sides] didn't have the same 
length, if one of the sides had a different length than the other, 
……then they [pointing at the legs of the trapezoid] would not 
be a fixed distance away from each other, they could not be 

ALY’s verification of the first implication at the Post-Interview 

To my request, “Can you prove that opposite angles are equal, knowing that two opposite 

onstructed a mathematical proof 

by assuming the parallel sides of the polygon as given, and applied the proposition that when 

r angles add up to 180 degrees. She then 

solved the equations algebraically to justify that opposite angles have the same measure. ALY’s 

drawing of a parallelogram and her construction of the proof is shown in Figure 4.22. 



 

 
 
 

 
         ALY’s drawing 

Figure 4.22 ALY’s proof that opposite angles have the same measure

To gain a better understanding of ALY’s think

response to  that as follows: 

13. Interviewer Can you explain to me what you wrote?

14. ALY We're 

it's a parallelogram. We know that adjacent angles add up to 180 

degrees.

 

15. Interviewer 

 

16a. ALY 

How do you know this is a 

Because it's a four

each other and equal to each other, in length.
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ALY’s proof that opposite angles have the same measure

To gain a better understanding of ALY’s thinking, I asked for clarification, and her 

Can you explain to me what you wrote? 

We're given that these opposite sides are parallel to each other. So 

it's a parallelogram. We know that adjacent angles add up to 180 

degrees. 

 

 
     AB // DC     
     AD // BC     (given)
 
 

How do you know this is a parallelogram? 

Because it's a four-sided figure and opposite sides are parallel to 

each other and equal to each other, in length. 

 
ALY’s proof that opposite angles have the same measure 

ing, I asked for clarification, and her 

given that these opposite sides are parallel to each other. So 

it's a parallelogram. We know that adjacent angles add up to 180 

 
AD // BC     (given) 

sided figure and opposite sides are parallel to 
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16b. ALY 

A and D add up to 180 degrees, and also A and B add up to 180 

degrees. So, that must mean that D and B are equal to each other, 

because they are both supplementary to A. So, the same is true 

for angles C and A, because B and C add up to 180 degrees and B 

and A add up to 180 degrees. So, C and A must be equal too. 

 
              ∠A + ∠B = 180°   (prop. of //.ogram) 

             ∠A + ∠D = 180°  (prop. of //.ogram) 

             ∠B ≅ ∠D 

             ∠C + ∠B = 180°   (prop. of //.orgam) 

             ∠C ≅ ∠A 

 

ALY’s routines of substantiation changed from constructing parallelograms that match 

the descriptions in the definitions at the Pre-Interview, to formulating new narratives “angle B 

equal to angle D, angle A equal to angle C” using the endorsed narratives “adjacent angles add 

up to 180” and “two angles supplement to the same angle are the same” at the Post-Interview. 

Although ALY was able to use mathematical symbols in her proofs and she developed some 

skills of proving in geometry, she still could not make a clear distinction between what was 

given and what was to be proved in the Post-Interview. For example, ALY was to assume a 

quadrilateral with opposite sides of the same length as the given, but instead she incorrectly 



 

156 

assumed the polygon was a parallelogram and used that to begin her substantiation. It appeared 

that ALY was at the beginning stage of constructing mathematical proofs. More evidence of the 

change in ALY’s geometric discourse was in her word use. In the following section, I describe 

the change in ALY’s use of mathematical terms during the two interviews. 

ALY’s use of the word parallelogram changed from indicating both rhombi and 

parallelograms in the Pre-Interview, to representing a hierarchy of classifications of 

parallelograms in the Post-Interview. ALY also used more mathematical terms between the Post-

Interview than during the Pre-Interview. Let us look at ALY’s use of the general words 

quadrilateral, parallelogram, rectangle, square, rhombus, trapezoid and kite. The total 

frequencies of these categories of quadrilaterals at the Pre-interview and the Post-Interview are 

listed in Table 4.23 and Table 4.24.  

Table 4.23 The frequencies of ALY’s use of the names of quadrilaterals at the two 

interviews  

Name 
Frequency  

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Quadrilateral 0 1 0 4 0 1 
Parallelogram 3 4 6 14 3 4 
Rectangle 9 3 4 4 0 1 
Square 1 3 3 8 0 0 
Rhombus 11 3 0 3 0 0 
Trapezoid 2 2 0 0 0 0 
Kite 0 0 0 0 0 0 

 

 

Table 4.24 shows the word parallelogram (n=34) was the most frequently used during 

the interviews, being mentioned in all three tasks (see Table 4.24). The word rectangle (n=21) 

was the second most frequently used, and rhombus (n=17) the third. The word kite (n=0) was not 

mentioned at all in both interviews, and trapezoid (n=4) was the second least mentioned. Table 5 



 

157 

shows that the words rhombus and trapezoid were mostly mentioned in Task One, where 

interviewees were asked to group the polygons. There was an increase in use of the words 

quadrilateral, parallelogram and square from the Pre-Interview to the Post-Interview. In 

particular, the word quadrilateral was used only during the Post-Interview. The word 

parallelogram almost doubled in the Post-Interview, while the word square almost tripled. There 

was a reduction in the use of the words rectangle and rhombus at the Post-Interview. The 

following section will discuss findings of ALY’s use of the word parallelogram at the 

interviews.  

Table 4.24 Total frequencies of ALY’s use of names of quadrilaterals at the two 

interviews 

Name 
Frequency 

Pre Post 
Quadrilateral 0 5 
Parallelogram 12 22 
Rectangle 13 8 
Square 4 11 
Rhombus 11 6 
Trapezoid 2 2 
Kite 0 0 

 

In an earlier section, I described ALY’s routine procedures for sorting quadrilaterals in 

Task One. In the Pre-Interview, ALY identified all 4-sided polygons with opposite sides parallel 

and without right angles, as rhombi. My conversations with ALY revealed that she did not have 

clear concepts of a rhombus and a parallelogram. 



 

30. ALY: P is a rhombus, L is a rhombus, J is a rhombus, Z and H are

      all rhombuses. [Pointing at these polygons]

       
 

                                    
                               
31. Interviewer: What is a rhombus?
 
32. ALY: a rhombus would be the opposite sides and the opposite

     angles are equal and it’s a four

33. Interviewer: What is a parallelo
 
34. ALY: A parallelogram with opposite sides and angles are equal. …

     This is a parallelogram [pointing at Fig. J]. 

 
In this conversation ALY made no distinction between a 

as she described both as a four-sided 

ALY drew a picture of a parallelogram with the properties of a rhombus.

3. Interviewer 
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30. ALY: P is a rhombus, L is a rhombus, J is a rhombus, Z and H are

all rhombuses. [Pointing at these polygons] 

       

                                  
 

31. Interviewer: What is a rhombus? 

32. ALY: a rhombus would be the opposite sides and the opposite 

angles are equal and it’s a four-sided figure.  

33. Interviewer: What is a parallelogram? 

34. ALY: A parallelogram with opposite sides and angles are equal. …

This is a parallelogram [pointing at Fig. J].  

In this conversation ALY made no distinction between a rhombus and a parallelogram

sided figure with opposite sides and angles equal. In Task Two, 

ALY drew a picture of a parallelogram with the properties of a rhombus. 

Why do you think this is a parallelogram? 
 

             
 

30. ALY: P is a rhombus, L is a rhombus, J is a rhombus, Z and H are 

 

 

34. ALY: A parallelogram with opposite sides and angles are equal. … 

parallelogram, 

figure with opposite sides and angles equal. In Task Two, 
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4. ALY Because opposite sides are equal and parallel. 
       … …     

49. Interviewer What can you say about the diagonals of this 

parallelogram? 

50. ALY They are perpendicular. 

 

ALY’s drawing of a parallelogram looked like a rhombus. Our conversations led ALY to 

investigate the sides and the diagonals of the parallelogram. She confirmed that the figure was a 

parallelogram with opposite sides equal, and the diagonals of the parallelogram were 

perpendicular. Of course, a parallelogram with diagonals perpendicular is a rhombus. These 

observations suggest that ALY was not aware of the differences between a parallelogram and a 

rhombus, and treated them as the same entity. To ALY at the time of the Pre-Interview, a 

parallelogram was a rhombus.  

 
57. Interviewer 

 
Can you identify a rhombus here? 

            
58. ALY J. [Pointing at Fig. J] 

 

My interview with ALY showed that her use of the word parallelogram applied of 

rhombi and rectangles, a family of a four-sided figures that have opposite sides equal and 

parallel. Figure 4.23 illustrates ALY’s use of the word parallelogram at the Pre-Interview 

Parallelogram 

 

    Rhombus/Parallelogram                            Rectangle 
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Figure 4.23 (cont’d) 

     

     

                                              

           

                 

  

                     

Figure 4.23 (Previous Page) ALY’s use of the word parallelogram at the Pre-Interview 

 

ALY’s use of the words parallelogram and rhombus refers to a family of four-sided 

polygons that share a common descriptive narrative: opposite sides are equal and parallel. During 

the Pre-Interview, ALY did consider squares as rectangles, but she made no connections between 

a rhombus and a square. Her grouping and identification of quadrilaterals suggests that she had 

no clear understanding of a hierarchy of classifications of quadrilaterals.  

At the Post-Interview, the change in ALY’s use of the names of quadrilaterals showed an 

understanding of the word parallelogram, as revealed in her hierarchy of the classifications of 

parallelograms. In this hierarchy, the word parallelogram describes a collection of quadrilaterals 

with different appearances and names, and arranged by the characteristics of their angles (i.e., 
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right angle versus non-right angle) and sides (i.e., all sides equal versus opposite sides equal). 

Although given different names such as rectangles, parallelograms, rhombi and squares, they 

are all called parallelograms because they fit the description of opposite sides being equal and 

parallel. This hierarchy of classification is analyzed in Figure 4.24. 

 
       Parallelogram (n=11) 

 
 

                                    Parallelograms                      Rectangles 
              
 
 
 

                               Rhombi                                                                                                Square  

                                                       

                                                                                                                                   
                                        Parallelograms                               Rectangles 

                                              

                                                                                              
Figure 4.24 ALY’s use of the word parallelogram at the Post-Interview 
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There was also a change in ALY’s use of the names of the parts of parallelograms. She 

used more mathematical terms describing the relations between angles and sides in the Post-

Interview than in the Pre-Interview. A word search of the names of the parts of parallelograms 

included angle, sides, length, parallel side, opposite side, opposite angle, right angle and 

diagonal. Findings show that ALY used more words describing the parts of parallelograms than 

the names of parallelograms. Tables 4.25 and 4.26 provide word usage frequency of word usage 

at the two interviews. 

Table 4.25 The frequencies of ALY’s use of the names of the parts of parallelograms at 

the two interviews. 

Name 
Frequency 

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Angle 6 9 23 52 5 16 
Side 13 10 15 27 4 16 
Length 0 3 3 12 9 7 
Parallel side 1 2 2 1 1 1 
Opposite side 3 3 7 9 3 5 
Diagonal 0 0 5 13 1 0 
Right angle 3 1 0 1 0 0 
Opposite angle 1 0 5 1 3 4 

 

Table 4.26 Total frequencies of ALY’s use of names of the parts of parallelograms at the 

two interviews 

Name 
Frequency 

Pre Post 
Angle 34 77 
Side 32 53 
Length 12 22 
Parallel side 4 4 
Opposite side 13 17 
Diagonal 6 13 
Right angle 3 2 
Opposite angle 9 5 
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Table 4.26 shows that the most frequently used word relating to the parts of 

parallelograms was angle (n= 111), with its usage of the word doubling in the Post-Interview 

over the Pre-interview. The word angle (n=75) was mentioned mostly in Task Two (see Table 

4.25).  The word side (n=85) was the second most frequently mentioned. The words angle and 

side were mentioned in all tasks. After angle and side, the words length (n=34) and opposite side 

(n=30) were the next most frequently mentioned at both interviews. The word length was mostly 

used in Task Two and Task Three, whereas the term opposite side was mentioned in all three 

tasks. Likewise the word diagonal (n=19) was mostly used in Task Two. These results were 

expected, as Task Two asks interviewees about the relations of the angles, sides and diagonals of 

a parallelogram. The term right angle (n=5) was the least mentioned, and it was used mostly in 

Task One. The term parallel side (n=8) was the second least mentioned, and it was mentioned 

only one or two times during each task. The term opposite angle was mentioned fourteen times 

and it was used mostly in Task Two and Task Three. The words parallel side and opposite angle 

were not frequently mentioned during the interviews.  

During the Post-Interview, ALY used more mathematical terms to describe the relations 

between the angles of the parallelograms than at the Pre-Interview. More specifically, she used 

the terms alternating interior angle (n=6) and adjacent angles (n=3) in the Post-Interview, 

whereas she used “this angle” and “that angle” to refer to such angles in the Pre-Interview. ALY 

also used the word quadrilateral (n=5) in the Post-Interview, whereas she used the term “four-

sided figures” to describe such polygons in the Pre-Interview.  

Lastly, I want to draw attention to ALY’s use of the word distance. The word distance 

was mentioned eight times during the Post-Interview, two times for Task Two and six times for 
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Task Three. Let us look at one case of ALY’s use of the word distance during the Post-

Interview. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALY’s use of the word distance was ambiguous. She indicated that the distance between 

two parallel lines was the length of segments parallel to the other pair of parallel sides of the 

parallelogram [24a; 6c]. Mathematically, we define distance differently in this context. Table 

4.27 illustrates the mathematical definition of distance and ALY’s use of the word distance. 

 

 

 

24a. ALY Because the opposite sides are parallel to each other, 

they have a fixed distance away from each other. So, 

the distance from here to here is the same as here to 

here, it's going to be the same all the way through. 

                     “fixed distance” 
… … 

6c. ALY Because they have a fixed distance away from each 

other and they always have a fixed distance away from 

each other [pointing at the opposite sides of the 

parallelograms] 

               
                                                 “fixed distance” 
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Table 4.27 The word distance in geometry and used by ALY 

 
 
Distance between two parallel lines:  

            
 

 

      
 
       ALY’s use of “fixed distance” 
 

    
 

In this section I have shown evidence of changes in ALY’s geometric discourse. ALY 

changed from relying on the measurements of angles and sides to verify their congruency, to 

using axioms and propositions to substantiate claims about the congruent parts of the 

parallelograms. During the Post-Interview, although ALY’s mathematical proofs were not all 

correct, she demonstrated an ability to construct mathematical proofs using symbols and 

justifications. ALY’s word use regarding names of parallelograms also changed as we see a 

structured hierarchy of classifications of parallelograms at the Post-Interview.   

Among the twenty interviewees, five of them showed no change in their van Hiele levels 

in the van Hiele Geometry Test conducted at the pretest and posttest. These five interviewees 

were AYA (2-2), ARI (3-3), AJA (3-3), ALI (3-3) and ARA (3-3). Therefore, in this section I 

describe AYA and ARI’s geometric discourses, and I point out the differences and changes in 

their geometric discourses in the context of quadrilaterals and triangles. 

Case 4: Changes in AYA’s Geometric Discourse 

AYA was a college sophomore at the time of the interviews. AYA took her last geometry 

class seven years prior to the geometry and measurement class. The van Hiele Geometry Test 

showed that she was at Level 2 at the pretest, and stayed at Level 2 according to the posttest ten 
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weeks later. I interviewed AYA after both tests, and analyzed both her interview responses. A 

summary of findings about AYA’s geometric discourse follows: 

• My analyses from the Pre-Interview and the Post-Interview show that AYA’s 

routines of sorting polygons remained the same. 

• AYA’s routine of substantiation changed from colloquial mathematical discourse, 

where her substantiation was a set process of an activity at object-level, towards a 

mathematical discourse using previously endorsed narratives about mathematical 

objects at an abstract-level. AYA’s routine procedures were descriptions about the 

processes of activities using transformations such as reflection, translation, and 

rotation at the Pre-Interview, but were constructions of newly endorsed narratives 

using propositions and definitions at the Post-Interview.  

• When verifying congruent figures, AYA chose Side-Side-Angle (SSA) as the 

conditions of verification at the Pre-Interview, which was incorrect, whereas at 

the Post-Interview AYA chose angle-side-angle and side-angle-side, valid 

congruent criterions for verification of congruent triangles. 

• When substantiating the equivalence of two definitions, AYA did not know how 

to construct newly endorsed narratives from given definitions at the Pre-

Interview, whereas at the Post-Interview AYA constructed a newly endorsed 

narrative using deduction.    

• There were changes in AYA’s use of mathematical terminology such as the 

names of polygons and their parts.  

AYA’s routine procedures for sorting polygons were observed and analyzed in Task One. 

During the Pre-Interview, when AYA was asked to sort polygons into groups, her first question 
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was, “Am I doing it on the assumption that those are right angles [pointing at the angles of a 

square], and by itself can I assume anyway?” AYA’s first attempt at sorting geometric shapes “in 

terms of the numbers of sides they had” resulted in the following: 1) 3-sided figures (n=4) 

consisting of all triangles; 2) 4-sided figures (n=13) consisting of all quadrilaterals; and 3) 6-

sided (n=1) figures, which is Fig. V (a hexagon). When I asked AYA to subgroup the 4-sided 

group, her first reaction was, “If I can assume that the sides appear to be parallel to each other”, 

while pointing to the opposite sides of a parallelogram. AYA then rearranged this 4-sided group 

into three subgroups, and subsequently, she rearranged the 3-sided group into three subgroups as 

well. See Figure 4.25 for details of AYA’s subgrouping of the quadrilaterals and the triangles on 

the first attempt. 

 
4-sided shapes (n=13) 

 

  
  

                    Group One    

            

          
 

 

   
  
 

 
   

                   Group Two 

      

              
 
 

    
           

 
  

       Group Three 
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Figure 4.25 (cont’d)  

 
3- sided shapes (n=4) 

 
 

                           
    right triangle           isosceles                                                       scalene 

Figure 4.25 AYA’s first attempt at sorting polygons at the Pre-Interview 

 

Figure 4.25 presents three subgroups for quadrilaterals: squares/rectangles, 

parallelograms and a group of 4-sided figures that do not fit into the descriptions of the two 

previous groups.  AYA made it very clear about the characteristics of each group. For example, 

AYA talked about the parallelograms group consisting only of the parallelograms that “don’t 

have right angles”, and the squares/rectangles group consisting of figures that “have four sides, 

all right angles, pairs of sides are parallel and have the same length”. Similarly, AYA sorted 

triangles into three groups by the characteristics of their angles or sides. On the first attempt, 

AYA’s courses of actions in response to the questions about sorting geometric figures focused on 

characteristics of angles (e.g., right angles) and sides (e.g., parallel sides or equal sides). During 

the interview, AYA did not use measurement tools such as rulers or protractors to check the 

angles and sides of the figures, but instead she chose geometric figures under the assumptions 

that “the sides appeared parallel” and “angles are right angles”. Figure 4.26 illustrates AYA’s 

routine procedures of sorting geometric shapes into different groups. 

 

 

 



 

First prompt: “Sort the shapes into groups”
 

 
First prompt continued: “Can you subgroup 3

Figure 4.26 AYA’s first attempt of the 

 

When I asked AYA to regroup the figures differently, her first response was, “I want to 

separate them into shapes containing right angles and shapes that do not 

Among the eighteen geometric figures in Task One,

one right angle in Group One, and included the figures (n=10) with no right a

Two. See Figure 4.27 for some examples.

   Group One: shapes contain right angles (n=8)

   
   Group Two: shapes do not contain right angles (n=10)

  
Figure 4.27 

 

Counting the sides 
of shapes
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Grouping by visual properties of 
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First prompt: “Sort the shapes into groups” 

First prompt continued: “Can you subgroup 3-sided and 4-sided group?”
 

AYA’s first attempt of the routine of sorting at the Pre-Interview

When I asked AYA to regroup the figures differently, her first response was, “I want to 

separate them into shapes containing right angles and shapes that do not contain right angles”

Among the eighteen geometric figures in Task One, AYA included figures (n=8) with at least 

one right angle in Group One, and included the figures (n=10) with no right angles in Group 

for some examples. 

Group One: shapes contain right angles (n=8) 

      
Group Two: shapes do not contain right angles (n=10) 

   
 Examples of AYA’s regrouping at the Pre-Interview

Grouping by the same 
number of sides Conclusion

Grouping by visual properties of 
figures such as angles and sides Conclusion

 

sided group?” 

 

Interview 

When I asked AYA to regroup the figures differently, her first response was, “I want to 

contain right angles”. 

AYA included figures (n=8) with at least 

ngles in Group 

 

 
Interview 

Conclusion

Conclusion
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In Figure 4.27 we see a variety of figures in each group, where AYA simply divided 

figures that have right angles from those figures that do not have right angles. I then asked AYA 

to subgroup Group One, and she provided the following response: 

Interviewer: Can you subgroup Group One? 

AYA: I guess for Group One [subgroup 1]…I could take 

squares and non-squares …I could take shapes that 

have acute angles…like triangle…like K and N 

[pointing at Fig. K and N] 

                         

AYA: I am sure that by defining the second group 

[subgroup 2] …I don’t know they kind seem 

exclusive.... will follow figures that don’t contain 

acute angles [pointing at Fig. U and M] 

                    

 

AYA continued to talk about her strategies of subgrouping Group Two. She divided 

Group Two into two subgroups that do not contain right angles: one with figures that have at 

least one set of parallel sides, and the other with figures that have no parallel sides. Figure 4.28 

illustrates the two subgroups in Group Two. 



 

Subgroup 1: with at least one set of parallel sides

  
Subgroup 2: with no parallel sides

    

    
Figure 4.28 

 

During the regrouping, AYA’s courses of actions for sorting geometric shapes focused 

mostly on the characteristics of the angles of figures,

divided the entire group of figures (n=18) into two groups, depending on whether the figures had 

a right angle or not; and then divided Group One into two subgroups based on whether the 

figures had an acute angle or not. AYA divided 

parallel sides or not; half of the figures in Group Two are parallelograms. AYA’s routine 

procedures in sorting geometric figures at the second attempt are summarized 

Second prompt: “Find another way to sort them 

Choosing 
intuitively
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Subgroup 1: with at least one set of parallel sides 

     
Subgroup 2: with no parallel sides 

         

 
The two subgroups of Group Two at the Pre-Interview

During the regrouping, AYA’s courses of actions for sorting geometric shapes focused 

mostly on the characteristics of the angles of figures, not the sides of figures. That is, AYA first 

ed the entire group of figures (n=18) into two groups, depending on whether the figures had 

a right angle or not; and then divided Group One into two subgroups based on whether the 

figures had an acute angle or not. AYA divided Group Two according to whether the figures had 

parallel sides or not; half of the figures in Group Two are parallelograms. AYA’s routine 

procedures in sorting geometric figures at the second attempt are summarized in Figure 4.29.

Second prompt: “Find another way to sort them differently?”
 

 

Grouping by the characteristics 
of angles of figures                   
(i.e., right angles) 

Conclusion

   

 

Interview 

During the regrouping, AYA’s courses of actions for sorting geometric shapes focused 

the sides of figures. That is, AYA first 

ed the entire group of figures (n=18) into two groups, depending on whether the figures had 

a right angle or not; and then divided Group One into two subgroups based on whether the 

er the figures had 

parallel sides or not; half of the figures in Group Two are parallelograms. AYA’s routine 

in Figure 4.29. 

differently?” 

 

Conclusion



 

Figure 4.29 (cont’d)  
Second prompt: “Can you subgroup the two groups?”

Figure 4.29 AYA’s second prompt of the routine of sorting at the Pre

 

Ten weeks later I interviewed AYA again, and found 

for sorting geometric shapes when compared to those of the Pre

Post-Interview, when I asked AYA to group the figures she said, “the first thing I want to do is 

separate them by numbers of sides, like I did last tim

AYA to regroup the figures, she replied, “This [group] just assumes that all figures appeared to 

have right angles … Group Two could just be all the figures that don’t 

Therefore AYA’s routine procedures for 

what she did at the Pre-Interview. 

Although I did not find any changes in AYA’s routine procedures in classifying 

geometric figures between the time of the Pre

in her routine procedures of substantiation of narratives. In the following, 

AYA’s substantiation routines in Task Two and Task Three be

Recall that a routine of substantiation 

endorsed narratives to produce new narratives that are true. For instance, in the context of this 

study, a routine of substantiation

her/his declared statements that opposite sides are equal in a parallelogram. One important 

finding in AYA’s geometric discourse was the changes in her 

observed and analyzed in Task Two and Task Three. 

Choosing 
intuitively 

Grouping by the characteristics of 
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Second prompt: “Can you subgroup the two groups?” 

AYA’s second prompt of the routine of sorting at the Pre

Ten weeks later I interviewed AYA again, and found no change in her routine 

geometric shapes when compared to those of the Pre-interview. For example, at the 

Interview, when I asked AYA to group the figures she said, “the first thing I want to do is 

separate them by numbers of sides, like I did last time [at the Pre-Interview]”. When I asked 

AYA to regroup the figures, she replied, “This [group] just assumes that all figures appeared to 

have right angles … Group Two could just be all the figures that don’t contain right angles”

rocedures for grouping polygons at the Post-Interview were similar to 

Interview.  

Although I did not find any changes in AYA’s routine procedures in classifying 

geometric figures between the time of the Pre-Interview and the Post-Interview, I noted changes 

in her routine procedures of substantiation of narratives. In the following, I describe changes in 

in Task Two and Task Three between the Pre-interview and the 

routine of substantiation is a set of patterns describing a process of using 

endorsed narratives to produce new narratives that are true. For instance, in the context of this 

routine of substantiation describes what an interviewee did, step-by-step, to substantiate 

declared statements that opposite sides are equal in a parallelogram. One important 

finding in AYA’s geometric discourse was the changes in her routines of substantiation

observed and analyzed in Task Two and Task Three.  

Grouping by the characteristics of 
angles  and sides of figures (i.e., 
acute angles and parallel sides)

Conclusion

 

 

AYA’s second prompt of the routine of sorting at the Pre-Interview 

in her routine procedures 

interview. For example, at the 

Interview, when I asked AYA to group the figures she said, “the first thing I want to do is 

When I asked 

AYA to regroup the figures, she replied, “This [group] just assumes that all figures appeared to 

contain right angles”. 

Interview were similar to 

Although I did not find any changes in AYA’s routine procedures in classifying 

terview, I noted changes 

I describe changes in 

interview and the  

is a set of patterns describing a process of using 

endorsed narratives to produce new narratives that are true. For instance, in the context of this 

step, to substantiate 

declared statements that opposite sides are equal in a parallelogram. One important 

routines of substantiation as 

Conclusion
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Recall that Task Two asks interviewees to draw two parallelograms that are different 

from each other, and then to discuss the angles, sides and diagonals of these two parallelograms. 

At my request, AYA drew a parallelogram and declared, “in this parallelogram all angles should 

add up equal to 360°”. After my prompt for substantiation, “how do you know that all angles add 

up to 360°?” AYA produced the following: 

14a. AYA Well, when you have parallel 

sides, you can extend all the 

sides… 

AYA’s drawing: 

 

AYA extended the sides of 

parallelogram: 

 

14b. AYA …it's 180 degrees and they’re 

complementary angles … 

Pointing at the two angles that 

form straight angles: 

 

14c. AYA …but you can see that this 

angle really just match this 

angle 

Pointing at the two angles: 

 

14d. AYA …so you know that these two 

angles together are gonna 

equal 180 degrees 

Pointing at the two angles: 
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In the preceding substantiation, AYA first drew extended lines on the sides of the 

parallelogram, in saying “you have parallel sides… you can extend…”[14a], and identified a 

vertex angle and its corresponding exterior angle forming a “complementary angle”[14b]; and 

she then identified an adjacent vertex angle transversal to the same exterior angle and made an 

intuitive claim about the two angles, “you …see this angle…matches this angle” [14c]. AYA 

concluded that the two adjacent vertices of a parallelogram added up to 180 degrees [14d]. Using 

this endorsed narrative,  “two angles equal 180 degrees”, AYA continued her substantiation to 

the final step: 

24a. 

AYA 

From this diagram and the 

parallel sides, these two 

angles add up to 180 

degrees… 

Pointing at the two angles: 

     

 

24b. 

AYA 

… the fact that it’s just like 

a mirror image, the two 180 

sets of angles are just gonna 

add up to 360 degrees. 

Making an invisible line:  

    

 

 

AYA used her previously endorsed narrative, “two angles add up to 180”, and then 

endorsed a new narrative, “two sets of 180 degrees angles add up to 360 degrees” because these 

are a “mirror image” (i.e., a reflection) of each other, and drew a reflection line (i.e., the dashed 

line in 24b). AYA’s substantiation of the narrative, “all angles add up to 360 degrees” was 

intuitive and self-evident because the reflection line that AYA drew was not a line of reflection 
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of the parallelogram. Mathematically, this parallelogram only has point symmetry, symmetry 

with respect to the center of the parallelogram (i.e., where the diagonals intersect), and not line 

symmetry. In this example, AYA used a “mirror image”(i.e., reflection) to draw a conclusion 

that all the angles add up to 360 degrees. 

During the Pre-Interview, AYA frequently used reflections, rotations and translations in 

her substantiations of narratives. For example, when I asked AYA to verify her claim that “two 

opposite angles (i.e., ∠ 1 and ∠ 4) are equal”, she provided the following response: 

37.Interviewer: How do you know this angle is equal to this? 

[Pointing at ∠1 and ∠4] 

                  

38a. AYA: …this angle [pointing at ∠1 ] can just be slid over to this position and 

create this angle [pointing at ∠2] … 

38b. AYA: …this line [drawing arrowhead on the line] can be rotated so that this 

angle [pointing at ∠2] now becomes this angle [pointing at ∠3]. 

38c. AYA: …this angle [pointing at ∠3] at this intersection, can just be slid down 

and then be in this angle’s position [pointing at ∠4]. 

38d. AYA So these two angles are equal [Pointing at ∠1 and ∠4] 

 

3

2 4 1
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In this case, AYA used words such as “slid over”, “rotated” and “slid down” to indicate a 

sequence of movements preformed to substantiate the claim that “two opposite angles are 

equivalent”. Lines and angles are static mathematical objects, but AYA used these sequences of 

imaginary movements to complete her substantiation; and through AYA’s description, these 

imaginary movements became visible to me. AYA’s substantiation was intuitive and visual. 

AYA’s substantiation focused on the processing of the activities of mathematical objects, rather 

than on discussions about these mathematical objects. I conclude that AYA’s routine procedures 

operated at the object level at the time of the Pre-Interview. 

Ten weeks later when asked for substantiation, AYA used mathematical axioms and 

propositions to verify her claims. The following brief substantiation was typical at the Post-

Interview:  

16a. AYA … angles on a straight line add up 

to 180 degrees… 

Extending one side of the 

parallelogram with a dashed 

line, and pointing at the two 

angles: 

         

 

16b. AYA …this angle here is the same as this 

angle… Because parallel lines meet 

a third line at the same angle. 

Pointing at the angles: 

         

16c. AYA By the same reason [referring to Pointing at the two angles: 
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16a], this angle added to this angle 

equals 180 degrees… 

       

16d. AYA …these two also add up to 180 

degrees 

Pointing at the two angles: 

      

16e. AYA …for a similar reason, these two 

angles add up to 180 degrees... 

Pointing at the two angles: 

     

16f. AYA Together they equal 360 degree…  

 

AYA made the same statement as previously about the angles of a parallelogram, “all 

added together they equal 360°”. In contrast to AYA’s routines of substantiation at the Pre-

Interview, this example shows two changes that are evident: The first is that in each step of 

substantiation, AYA provided endorsed narratives (e.g., mathematical axioms and propositions, 

etc) as evidence instead of reasoning intuitively. For example, AYA explained how two 

transversal angles are equivalent, not because you “can see it” as in the Pre-Interview, but as a 

result of  “two parallel lines meet a third line at the same angle” in the Post-Interview. The 

second change occurs in AYA’s conclusion that “all angles add up to 360 degree”. At the Pre-

Interview, she argued on the assumption of this “mirror image”, whereas at the Post-Interview 

AYA reached her conclusion in a repeat of a similar proof that “two angles add up to 180 

degrees” for two adjacent angles in a parallelogram [16e-f]. Thus, one change in AYA’s routine 

of substantiation was the shift from descriptions about the processes of activities at the object 
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level towards the abstract level. I will suggest that the maturity of this abstract level of 

substantiation is revealed in AYA’s substantiation of congruent triangles. 

In the following example, I will describe the changes in AYA’s routines of substantiation 

of two congruent triangles that I observed between the Pre-Interview and the Post-Interview. To 

describe these changes I looked at two aspects: 1) change from the use of transformations in the 

process of substantiation at the object level, to the use of mathematical axioms at the abstract 

level; and 2) the change in the choices of elements needed for verification of congruent triangles.  

During the interviews, participants were asked to substantiate their declared narratives 

about the angles, sides and diagonals of a parallelogram. For example, when asked for 

substantiation of the narratives, “opposite sides are equal”, “opposite angles are equal” and /or 

“diagonals bisect each other”, some interviewees would support their narratives by using rulers 

and protractors to measure the corresponding sides and angles, whereas other interviewees would 

try to use mathematical proofs to verify their statements. Using triangle congruency to 

substantiate the corresponding sides and angles are congruent in a parallelogram is a common 

method students utilize.  

During my interviews with AYA, when asked for substantiation of declared narratives 

about the sides and angles of a parallelogram, AYA’s first response was, “other than just 

measuring them?” AYA expected to substantiate her declared narratives without using the 

measurement tools at both the Pre-Interview and the Post-Interview. As an example, the 

following are AYA’s routine procedures for the narrative, “diagonals bisect each other in a 

parallelogram”, using the triangle congruency method at the Pre-Interview. 

When AYA discussed the diagonals of the parallelogram, she talked about diagonals 

creating two pairs of congruent triangles. After my prompt for substantiation, AYA identified 
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one pair of such congruent triangles, and then identified two corresponding sides and two 

corresponding angles from the two triangles to verify their congruency: 

64a. AYA Because I previously established 

that, it is given that these are 

parallel sides… 

AYA added two marks: 

         

64b. AYA And, these angles are equal and 

when lines intersect… 

AYA added two angle signs: 

         

64c. AYA … it's essentially the same 

intersection, translated to a new 

position… 

AYA drew extended lines: 

             

64d. AYA … I was suggesting that this angle 

is the same as this angle here.   

AYA added an arrowhead on the 

two extendded sides, and two 

angle signs: 

               

64e. AYA … And that likewise, the 

complementary angles, the smaller 

angle that makes it add up to 180 

degrees… 

AYA identified two angles that 

form a striaght angle: 

              

64f. AYA …  is the same over here… AYA identified another two 

angles that form a straight angle: 
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AYA’s substantiation included two parts: the first was the substantiation of the 

equivalence of alternating interior angles [64b-64g], and the second was the verification of 

congruent triangles. The first part of substantiation, “this angle is equivalent to this angle” (i.e., 

alternating interior angles), was intuitive and self-evident. To show that opposite angles are 

equivalent in a parallelogram [64b], AYA used an instinctive process of translating the 

intersection to a new position [64c], and then “suggested” that the corresponding alternating 

64g. AYA … So, now I know that the angle 

here of this triangle is equivalent 

to the angle here of this triangle… 

Pointing at  the alternating 

interior angles: 

              

64h. AYA …  and this side length is, the 

same of this side length… So, I've 

already shown how a side length 

and an angle match of each… 

Referring to the two sides: 

               

64i. AYA … And then diagonals bisect 

themselves equally. I can't really 

prove that, but I'm suggesting that 

this side length is the same as this 

side length… 

AYA added two marks on the 

diagonal: 

              

64j. AYA …this triangle is equivalent to this 

triangle here. 

The shaded area indicates two 

congruent triangles:  
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exterior angles were equivalent [64d], another intuitive act. The second part of substantiation 

involved the verification of the two congruent triangles that she identified. During the process of 

verification, AYA did not use measurement tools to measure the angles and sides (an object level 

of verification) to check equivalence, but instead chose three elements of the triangles to verify 

congruent triangles abstractly. However it is important to note that AYA’s choice of these three 

elements (angle, side, side) for verification of congruent triangles was incorrect, because this 

criterion does not guarantee congruent triangles. I conclude that AYA’s substantiation was a 

combination of an objective level of substantiation (e.g., these angles are equal), and an abstract 

level of verification (e.g., two triangles are congruent), even though her choice of the elements 

for verification was not all correct.  

Ten weeks later, I interviewed AYA again, and the same tasks were performed. At the 

Post-Interview AYA was able to use triangle congruency to substantiate most of her declarations 

stating that “opposite angles are equivalent”, “opposite sides are equivalent” and “diagonals 

bisect each other” in a parallelogram. AYA was able to choose three exact elements of the six, 

such as Side-Angle-Side and Angle-Side-Angle, to verify congruent triangles, and she was 

comfortable using the triangle congruency method. The following response illustrates AYA’s 

substantiation that “diagonals bisect each other”: 

54a. AYA … I'm looking at this triangle as 

compared to this one here… 

Pointing at the shaded area: 

       

54b. AYA And I know that these two 

angles are congruent… 

AYA marked the angle signs on 

the two angles in the shaded 

triangles: 
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54c. AYA …And between these parallel 

lines, and now this diagonal, 

Pointing at the two parallel lines 

and one diagonal: 

         

54d. AYA … these angles are also 

congruent. 

AYA marked the angle signs on 

the two angles of shaded 

triangles: 

         

54e. AYA … So, by the triangle test, 

angle, side, angle, these two 

triangles are congruent. 

Pointing at the corresponding 

angles, sides  and angles of 

shaded triangles: 

          

54f. AYA …which means that this side 

corresponds with this side and 

that this side corresponds with 

that side.  That's probably the 

most roundabout way to find 

that answer. 

Pointing at each half of the 

diagonals: 

           

 

In the preceding substantiation AYA first verified that the “two triangles are congruent” 

[54e] using the angle-side-angle criterion. She identified the exact three elements (i.e., two 
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angles and their included sides) needed for verification; and used the endorsed narrative “the two 

triangles are congruent” to construct a new narrative that “diagonals bisect each other”, by 

saying “this side corresponds with this side….”[54f] as a result of congruent triangles. AYA also 

made no intuitive claim about the equivalence of alternating interior angles at the Post-Interview, 

as she clearly explained: 

46d. AYA …And, we know that between parallel lines, if you take a third 

line and cross both lines, then it will have angles that are 

congruent.  In this case, this angle and this angle.   

[AYA extended the two parallel lines, and marked angle signs 

on the two alternating interior angles] 

                        
                    

 

During the Post-Interview, AYA applied the same substantiation to other similar 

situations. For instance, when I asked AYA why diagonals bisect each other in a rectangle, she 

responded, “the same as what I did in parallelogram, I already established that.” When I asked 

AYA at the end of Task Two, “is it true that in all parallelograms diagonals bisect each other?” 

AYA responded, “Yes, that’s true” and then shared her thinking about this conclusion: 
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148. AYA …because when you draw the diagonals in a figure, there is an 

intersection point and it divides the figure into four triangles.  

And, regardless of the figure, if it's a parallelogram, these two 

triangles will be congruent and these two triangles will be 

congruent [pointing at the two pairs of congruent triangles in the 

rectangle] So, it can be found that in congruent triangles, 

corresponding sides will be equal [therefore diagonals bisect 

each other in all these cases]. 

 

In summary I conclude that there was a change in AYA’s routine procedures, from using 

translation intuitively in the process of substantiation about the equivalence of the angles at the 

object level, to using mathematical axioms to substantiate the same claim at the abstract level. I 

am convinced that AYA was more rigorous at the Post-Interview, when she made choices of 

three elements needed for verification of congruent triangles, than at the Pre-Interview.  

To illustrate AYA’s routines of substantiation, and how that substantiation helped to 

produce newly endorsed narratives, the following scenario points out a further change in AYA’s 

geometric discourse in the context of her routine procedures of constructing new narratives from 

previously endorsed narratives. 

Recall that Task Three involves a mathematical proof, in discursive terms, where 

interviewees were asked to construct new narratives from endorsed narratives (i.e., definitions of 

a parallelogram). In particular, interviewees were given two definitions of a parallelogram and 

were asked to substantiate that these definitions are equivalent. 



 

• Definition #1: A quadrilateral is a parallelogram if and only if both pairs of 

opposite sides have the same length.

• Definition #2: A quadrilateral is a parallelogra

opposite angles have the same measure. 

My conversations with AYA at both the Pre

she did not know the mathematical meaning of “two definitions are equivalent”; she thought the 

statement meant, “they’re both saying the same thing”

Interview AYA did not know how to substantiate the equivalence of two definitions; however 

she did attempt an analysis by drawing two quadrilaterals that fit the descript

AYA’s drawings from the Pre-Interview are shown in Table 4.27

Table 4.27 AYA’s attempts at 

AYA’s drawing
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Definition #1: A quadrilateral is a parallelogram if and only if both pairs of 

opposite sides have the same length. 

Definition #2: A quadrilateral is a parallelogram if and only if both pairs of 

opposite angles have the same measure.  

My conversations with AYA at both the Pre-Interview and the Post-Interview show that 

she did not know the mathematical meaning of “two definitions are equivalent”; she thought the 

saying the same thing” about the parallelograms. At the Pre

Interview AYA did not know how to substantiate the equivalence of two definitions; however 

she did attempt an analysis by drawing two quadrilaterals that fit the description in definition #1. 

Interview are shown in Table 4.27. 

AYA’s attempts at proving the equivalence of two definitions 

a. AYA’ first attempt 

AYA’s drawing Transcripts 

 

AYA: I wanted to draw a figure… 
making opposite sides the same 
length. I thought I was gonna 
measure the angles, except that I 
cheated and used a right angle.  
So, that's not a very good example.

b. AYA’s second attempt 

 

AYA: Well, this equal this side 
length, and that equal this side 
length … and pairs of the angles of 
the same measure. I think the 
definitions are equivalent, but how 
do I prove it without any numbers?

Definition #1: A quadrilateral is a parallelogram if and only if both pairs of 

m if and only if both pairs of 

Interview show that 

she did not know the mathematical meaning of “two definitions are equivalent”; she thought the 

about the parallelograms. At the Pre-

Interview AYA did not know how to substantiate the equivalence of two definitions; however 

ion in definition #1. 

 

I wanted to draw a figure… 

So, that's not a very good example. 

and pairs of the angles of 

definitions are equivalent, but how 
do I prove it without any numbers? 
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AYA first drew a figure as a concrete example of what is described in Definition #1: a 

rectangle has opposite sides equal, and in particular the rectangle that AYA drew has opposite 

sides with measurements of 4 and 3 respectively (Table 4.27a). AYA suggested that “it was not a 

good example” because the conclusion of “opposite angles are equal” is obvious given that it is a 

rectangle. As a second attempt, AYA drew an arbitrary quadrilateral with no specific length 

measurements and she assumed that it had opposite sides equal as described in Definition #1 

(Table 4.27b); but she could not continue the proof because she did not know how to prove the 

angles were equivalent without measurements, as she wondered “what is proof of this?” 

In contrast, at the Post-Interview AYA was able to complete the substantiation of “if a 

quadrilateral has both pairs of opposite sides of the same length, then both pairs of opposite 

angles have the same measure”, using the Side-Side-Side triangle congruence criterion to verify 

two congruent triangles. Using this endorsed narrative, AYA then identified the corresponding 

angles in the two congruent triangles to construct the newly endorsed narrative that “both pairs 

of opposite angles have the same measure”. AYA’s routine procedures are analyzed and the 

corresponding transcripts from the Post-Interview are provided in Table 4.28. 

Table 4.28 AYA’s substantiation of two congruent triangles at the Post-Interview 

Routine Procedures  Transcripts  

1. Draw a figure  4a. I guess I would start with a figure… 

       
1.1. Identify the given  4c. …just assume that this is a figure that this side length is 

equal to this side length and this side length is equal to this 
side length, and that's all we know. 

1.2 Draw a transversal 12a. I first would just draw a line from these angles, a 
transversal here.   

      
2. Verification of two 
congruent triangles 

 



 

Table 4.28 (cont’d) 

2.1 Identify corresponding 
sides of the triangles  

2.2 Identifying three elements 
needed for verification of 
congruent triangles  

3. Conclusion congruent 
triangles using S-S-S 
correspondence 

 
AYA wrote: 

 

AYA’s construction of a new endorsed narrative continued as she was trying

“opposite angles in this quadrilateral of the same measure”:

Table 4.29 AYA’s newly constructed endorsed narrative at the Post

Routine procedure 

1. Use previously 
endorsed narrative  

2. Identify corresponding 
angles of the congruent 
triangles  
2.1 Identifying one pair of 
corresponding angles (i.e., 
the first pair of opposite 
angles) 
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12b. … this is a common side in both of these triangles

        common side 

2.2 Identifying three elements 12b. It's enough to say that two triangles with three sides 
congruent to one another, to a corresponding side in 
another figure, are congruent figures. 

       
two congruent triangles: shaded vs. non-shaded

AYA’s drawing and writing 
 

AYA wrote: “Two ∆’s are ≅ if they 3 corresponding sides” 

AYA’s construction of a new endorsed narrative continued as she was trying

rilateral of the same measure”: 

AYA’s newly constructed endorsed narrative at the Post-Interview

Transcripts 

18a. using the fact that these two triangles are 
congruent 

            
2. Identify corresponding 
angles of the congruent 

  

2.1 Identifying one pair of 
corresponding angles (i.e., 
the first pair of opposite 

18a. I know that this angle is equal in measure to 
this angle… 

          

this is a common side in both of these triangles 

12b. It's enough to say that two triangles with three sides 
congruent to one another, to a corresponding side in 

shaded 

 

AYA’s construction of a new endorsed narrative continued as she was trying to show that 

Interview 

the fact that these two triangles are 

in measure to 
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Table 4.29 (cont’d) 
 
2.2 Identify second pair of 
corresponding angles  

18b. … and this angle is equal to measure to this 
angle… 

        
2.3 Identify the third pair 
of corresponding angles  

18c.  …And that, this one is equal to this one… 

        
2.4 If all the parts of two 
angles are equal then two 
angles are equal 

18d. …therefore, these two added together is 
gonna equal these two added together, which 
would make them still the same angle, 
corresponding… 

                  
3. Conclusion  18d. … a four-sided figure with opposite angles 

equal… 
 

It is notable that there was a change in AYA’s routine procedures of constructing new 

narratives from previous endorsed narratives. At the Pre-Interview, AYA was not able to finish 

the proof because she was unsure how to prove the equivalence of the angles without checking 

their measurements. However at the Post-interview, AYA was able to verify congruent triangles 

by choosing three elements of six elements needed for verification, and using deduction to 

construct a new narrative. Thus, AYA’s geometric discourse made a transition from a geometric 

discourse with only a partial properties check at an object level at the Pre-Interview, towards a 

geometric discourse with routine procedures capable of constructing new endorsed narratives 

using mathematical axioms and definitions.  

I have described AYA’s change in routine procedures of substantiation and the changes 

in her routine procedures of constructing new narratives; now let me describe the changes in 

AYA’s use of mathematical terminologies.  
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I begin with my general analyses of words that AYA used in naming geometric figures in 

various conversations; in particular, the words quadrilateral, parallelogram, rectangle, square, 

rhombus, trapezoid and kite.  The total frequencies of the names of these geometric figures from 

the Pre-Interview and the Post-Interview are shown in Table 4.30.  

Table 4.30 The frequencies of AYA’s use of the names of quadrilaterals at the two 

interviews 

Name 
Frequency  

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Quadrilateral 3 1 0 0 2 1 
Parallelogram 7 5 33 19 4 6 
Rectangle 3 4 0 1 0 0 
Square 5 4 6 7 0 0 
Rhombus 6 0 0 0 0 0 
Trapezoid 3 0 0 0 1 0 
Kite 0 0 0 0 0 0 

 

Table 4.31 Total frequencies of AYA’s use of names of quadrilaterals at the two 

interviews 

Name 
Frequency 

Pre Post 
Quadrilateral 5 2 
Parallelogram 44 30 
Rectangle 3 5 
Square 11 11 
Rhombus 6 0 
Trapezoid 4 0 
Kite 0 0 

 

Table 4.31 shows that the word parallelogram (n=74) is the most frequently used during 

both interviews, being mentioned in all three tasks. The word square (n=22) is the second most 

frequently used, and the word rectangle (n=8) is third. Note that the large difference in the 

frequency of the words parallelogram and rectangle (n=66), and between the words 



 

parallelogram and square (n=52). The w

interviews. Table 4.30 shows that the word 

the Pre-Interview, and mostly were mentioned at Task One. There was a reduction in use of the 

words quadrilateral, parallelogram, rhombus

a slight increase in use of the word 

frequencies of the word counts do not provide details about how and in what way these words 

were used. The following analyses looks at

rectangle, square, trapezoid and 

In an earlier section, I described my observations of 

One. It is important to note that t

and pre-constructed. For example, when AYA identified geometric figures among given figures 

in Task One, the pool of choices was limited to eighteen figures and those figures were pre

drawn. Consequently, AYA’s misunderstandings about some of the geometric figures were not 

detected in Task One. It is in Task Two, when I asked AYA to draw two different parallelograms 

at the Pre-Interview, that I began to understand AYA’s misconstrued definition

parallelogram, and it was quite different from what I expected:

2. AYA AYA’s drawing
                                                  

    
 
Note: AYA drew a parallelogram first, and extended sides of the 

parallelogram later
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(n=52). The word kite (n=0) was not mentioned at all in both 

shows that the word rhombus (n=6) and trapezoid were only mentioned at 

Interview, and mostly were mentioned at Task One. There was a reduction in use of the 

parallelogram, rhombus and trapezoid at the Post-Interview, and there was 

a slight increase in use of the word rectangle (n=2) at the Post-Interview. However, the 

frequencies of the word counts do not provide details about how and in what way these words 

were used. The following analyses looks at AYA’s word meaning in the use of parallelogram

and rhombus. 

In an earlier section, I described my observations of AYA’s routine of sorting for

One. It is important to note that the natures of the tasks designed for the interviews were limited 

constructed. For example, when AYA identified geometric figures among given figures 

in Task One, the pool of choices was limited to eighteen figures and those figures were pre

Consequently, AYA’s misunderstandings about some of the geometric figures were not 

detected in Task One. It is in Task Two, when I asked AYA to draw two different parallelograms 

Interview, that I began to understand AYA’s misconstrued definition of

different from what I expected: 

AYA’s drawing:   
                                                   

                                

Note: AYA drew a parallelogram first, and extended sides of the 

parallelogram later 

all in both 

were only mentioned at 

Interview, and mostly were mentioned at Task One. There was a reduction in use of the 

Interview, and there was 

Interview. However, the 

frequencies of the word counts do not provide details about how and in what way these words 

parallelogram, 

AYA’s routine of sorting for Task 

he natures of the tasks designed for the interviews were limited 

constructed. For example, when AYA identified geometric figures among given figures 

in Task One, the pool of choices was limited to eighteen figures and those figures were pre-

Consequently, AYA’s misunderstandings about some of the geometric figures were not 

detected in Task One. It is in Task Two, when I asked AYA to draw two different parallelograms 

of 

Note: AYA drew a parallelogram first, and extended sides of the 



 

3. Interviewer Why is this a parallelogram?

4a. AYA I believe that this is a parallelogram because I drew it so that this 

side… would be parallel to this side [pointing at the two longer 

sides of the parallelogram]…

4b. AYA … and this side would be parallel with this side [pointing at the 

two shorter sides of the parallelogram]

 

Later I asked AYA to draw a new parallelogram different from the one she drew, and she 

provided the following responses:

86. AYA AYA’s drawing of new 

      

Note: AYA drew a hexagon first, and she extended sides of the 

hexagon later

87. Interviewer Why is this a parallelogram?

88. AYA I think it's a parallelogram… because all the sides are parallel 

to another side.

89. Interviewer Why is it a different parallelogram?

90. AYA It’s different…because there are more sides and because the 

angles are different.
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Why is this a parallelogram? 

I believe that this is a parallelogram because I drew it so that this 

side… would be parallel to this side [pointing at the two longer 

sides of the parallelogram]… 

this side would be parallel with this side [pointing at the 

two shorter sides of the parallelogram] 

Later I asked AYA to draw a new parallelogram different from the one she drew, and she 

provided the following responses: 

AYA’s drawing of new parallelograms: 

        

Note: AYA drew a hexagon first, and she extended sides of the 

hexagon later 

Why is this a parallelogram? 

I think it's a parallelogram… because all the sides are parallel 

to another side. 

Why is it a different parallelogram? 

It’s different…because there are more sides and because the 

angles are different. 

I believe that this is a parallelogram because I drew it so that this 

side… would be parallel to this side [pointing at the two longer 

this side would be parallel with this side [pointing at the 

Later I asked AYA to draw a new parallelogram different from the one she drew, and she 

 

Note: AYA drew a hexagon first, and she extended sides of the 

I think it's a parallelogram… because all the sides are parallel 

It’s different…because there are more sides and because the 
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The preceding conversations present an interpretive description of parallelogram when 

AYA used that word at the Pre-Interview. During our earlier conversation, I asked AYA “what is 

a parallelogram”, and she responded, “it [parallelogram] is any figure that has at least one pair of 

parallel sides. I think trapezoid [pointing at Fig. N, a right trapezoid] is considered a 

parallelogram”. When I asked AYA to write down the definition, she wrote, “A parallelogram is 

a figure with all sides being pairs of parallel line segments”, and that was inconsistent with her 

verbal statement. Neither AYA’s written narrative nor her verbal narrative about parallelograms 

mentioned the necessary condition of a parallelogram being a quadrilateral. Because of this 

missing condition, AYA chose a hexagon as an example of a different parallelogram. When 

identifying and defining parallelograms, AYA focused on the necessary condition of parallel 

sides. At the Pre-Interview, AYA’s concept of a parallelogram was unclear, as she expressed, “I 

actually don’t know if parallelograms are strictly four-sided figures… or many shapes should be 

parallelograms”.  

AYA’s use of the word parallelogram (see Figure 4.30) signifies a collection of figures 

that share this visual property of parallel sides. Based on AYA’s definition, this collection of 

figures could include figures that have one pair of parallel sides such as trapezoids, two pairs of 

parallel sides such as parallelograms, or figures that have more than two pairs of parallel sides 

such as hexagons. We notice that rectangles and squares are not included in the family tree of 

parallelograms. According to what I observed during the Pre-Interview, AYA did not include 

rectangles and squares as parallelograms, but rather considered them as a separate group of 

figures that have right angles. 

 

 



 

    
 

 AYA: a parallelogram is a figure with 
all sides being a pairs of parallel line 
segments.            

Figure 4.30 AYA’s use of the word

At the Post-Interview the most 

word parallelogram. Although AYA showed very similar routine procedures when identifying 

geometric figures in both interviews, her concept of a 

the Pre-interview. For example, when I asked AYA to draw two different parallelograms in Task 

Two, she drew a parallelogram and a square:

2. AYA: AYA’s drawing of a parallelogram
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          Parallelogram 
 
 
 
 

 

  

  

AYA: a parallelogram is a figure with 
all sides being a pairs of parallel line 

AYA: it is a 
figure that has 
at least one pair 
of parallel sides. 
I think a 
trapezoid is 
considered a 
parallelogram. 

AYA: I think it’s a 
parallelogram because all 
sides are parallel to another 
side [pr2. 88]. 
 
More could fit here based on 
AYA’s general definition of 
parallelogram. 

AYA’s use of the word parallelogram at the Pre-Interview 

Interview the most important change in AYA’s word use is her use of the 

. Although AYA showed very similar routine procedures when identifying 

geometric figures in both interviews, her concept of a parallelogram was different from that of 

interview. For example, when I asked AYA to draw two different parallelograms in Task 

Two, she drew a parallelogram and a square: 

AYA’s drawing of a parallelogram 

 

 

AYA: I think it’s a 
parallelogram because all 
sides are parallel to another 

More could fit here based on 
AYA’s general definition of 

Interview  

is her use of the 

. Although AYA showed very similar routine procedures when identifying 

was different from that of 

interview. For example, when I asked AYA to draw two different parallelograms in Task 



 

3. Interviewer: Why is this a 

4. AYA:  Because it has four sides and each opposing side is parallel to one 

another.

        …     … 

60. AYA: AYA’s drawing of a different parallelogram

              
61. Interviewer: Why is this a parallelogram?

62. AYA: It’s a square… it has four sides of equal measure and all angles are 

90 degrees.

63. Interviewer: Why is this different from the one you drew?

64. AYA This one is different because all the angles in this figure are equal.

 

AYA’s use of the word parallelogram

condition of “four-sided” figure, and the necessary condition of “parallel sides”. AYA 

considered rectangles and squares as figures with 90

AYA’s use of the word parallelogra

descriptive narrative, “a four-sided figure with two sets 

It is notable that AYA included all quadrilaterals with two sets of parallel sides in this 

family tree of parallelograms, relating these quadrilaterals because “they have two sets of parallel 

sides”. AYA did not provide any explicit information about how these figures were related other 

than being parallelograms. For example, AYA grouped rhombi together with parallelogra

because all rhombi have two sets of parallel sides; however there were no connections made 
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Why is this a parallelogram? 

Because it has four sides and each opposing side is parallel to one 

another. 

…     …  

AYA’s drawing of a different parallelogram 

               
Why is this a parallelogram? 

square… it has four sides of equal measure and all angles are 

90 degrees. 

Why is this different from the one you drew? 

This one is different because all the angles in this figure are equal.

parallelogram changed with regard to this added necessary 

sided” figure, and the necessary condition of “parallel sides”. AYA 

considered rectangles and squares as figures with 90-degree angles and as parallelograms. 

parallelogram now signified a collection of figures sharing this common 

sided figure with two sets of parallel sides”.  

It is notable that AYA included all quadrilaterals with two sets of parallel sides in this 

ams, relating these quadrilaterals because “they have two sets of parallel 

sides”. AYA did not provide any explicit information about how these figures were related other 

than being parallelograms. For example, AYA grouped rhombi together with parallelogra

because all rhombi have two sets of parallel sides; however there were no connections made 

Because it has four sides and each opposing side is parallel to one 

square… it has four sides of equal measure and all angles are 

This one is different because all the angles in this figure are equal. 

changed with regard to this added necessary 

sided” figure, and the necessary condition of “parallel sides”. AYA 

degree angles and as parallelograms. 

now signified a collection of figures sharing this common 

It is notable that AYA included all quadrilaterals with two sets of parallel sides in this 

ams, relating these quadrilaterals because “they have two sets of parallel 

sides”. AYA did not provide any explicit information about how these figures were related other 

than being parallelograms. For example, AYA grouped rhombi together with parallelograms 

because all rhombi have two sets of parallel sides; however there were no connections made 
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between rhombi and squares, although AYA defined a rhombus as a “four-sided figure with all 

side length equal in measure”. Moreover, AYA did not mention any relations between squares 

and rectangles other than that they have four right angles. Therefore, I argue that at the Post-

Interview AYA had a good grasp of the concept of parallelograms in general, but her 

understanding of the hierarchy of parallelograms was missing, or not clearly demonstrated in the 

interviews. Figure 4.31 illustrates AYA’s understanding of definition of a parallelogram at the 

Post-Interview.  

 

Parallelogram 
 
 
 
 

   
 

                    
 

       
 

         

     

                     

Figure 4.31 AYA’s use of the word parallelogram at the Post-Interview 

 

According to my observations, AYA focused on the angles and sides of geometric figures 

when identifying and defining geometric figures. When asked to group figures AYA’s first 

reaction was to group them by the numbers of sides. When asked for subgrouping, AYA looked 

at differentiating the figures by their angles, such as by right angles versus acute angles. Table 

4.32 provides the frequencies of the names of the parts of parallelograms that AYA mentioned in 
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each task during the two interviews, and Table 4.33 provides the total frequencies of the names 

of the parts of parallelograms at the Pre-Interview and the Post-Interview: 

Table 4.32 The frequencies of AYA’s use of the names of the parts of parallelograms at 

the two interviews 

Name 
Frequency 

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Angle 1 4 60 69 4 24 
Side 21 18 41 53 7 13 
Length 4 4 18 34 7 6 
Parallel side 9 6 4 3 1 1 
Opposite side 0 0 1 3 3 0 
Diagonal 0 0 27 13 4 0 
Right angle 9 10 2 4 2 0 
Opposite angle 0 0 1 3 0 3 
 

Table 4.33 Total frequencies of AYA’s use of names of the parts of parallelograms at the 

two interviews 

Name 
Frequency 

Pre Post 
Angle 65 97 
Side 69 84 
Length 29 44 
Parallel side 14 10 
Opposite side 4 3 
Diagonal 31 13 
Right angle 13 14 
Opposite angle 1 6 

 

Table 4.33 shows that the most frequently used words relating to the parts of 

parallelograms were angle (n= 162) and side (n=153). The words angle (n=129) and side (n=94) 

were mentioned mostly in Task Two during both interviews. After angle and side, the word 

length is the next most frequently mentioned at both interviews (n= 73), and it was mostly 

mentioned during Task Two (n= 52). Likewise the word diagonal (n=44) was mostly used in task 
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Two. These results are expected, as Task Two asks interviewees about the relations of the angles, 

sides and diagonals in a parallelogram. I want to draw a little attention here to words such as 

parallel side (n=24), opposite side (n=7) and opposite angle (n=7); these words describe 

important characteristics of a parallelogram, but were least mentioned at both interviews.  

To support my claims of AYA’s change in geometric discourse, I described her word use 

and routine procedures during the interviews, and analyzed the changes in AYA’s routines of 

substantiation, routines of constructing new narratives and her use of the word parallelogram. 

We see a dynamic change in her geometric discourse, from a colloquial mathematical discourse 

towards a mathematical one. 

Case 5: Changes in ARI’s Geometric Discourse 

ARI was a college sophomore at the time of the interviews. ARI took her last geometry 

class in 9th grade, about five years prior to the geometry and measurement class. The van Hiele 

Geometry Test showed that ARI was at Level 3 at the pretest, and stayed at Level 3 according to 

the posttest ten weeks later. I interviewed ARI after both tests, and analyzed her interview 

responses. Based on my observations, findings about ARI’s geometric discourses from the Pre-

Interview and the Post-Interview are as follows: 

• ARI changed her routines of sorting polygons, from focusing on the names and 

attributes of the quadrilaterals at the Pre-Interview, to focusing on the hierarchy of 

the classifications of the quadrilaterals at the Post-Interview. 

• ARI’s routine of substantiation changed from a combination of recalling and 

measuring, a routine procedure using measurement tools to check the results at an 

object-level at the Pre-Interview, to routine procedures using previously endorsed 

narratives to construct new narratives at an abstract-level at the Post-Interview. 
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• ARI applied congruence criterions such as angle-side-angle, side-side-side for 

verification of congruent triangles; and used the dissection method to verify the 

sum of the interior angles of parallelograms.  

• ARI used new mathematical terminology to describe and to justify the congruent 

parts of triangles and parallelograms at the Post-Interview, whereas she explained 

her claims informally at the Pre-Interview. 

In the following sections let me begin with ARI’s routine of sorting. The findings of 

ARI’s routine procedures of sorting polygons are mostly observed in Task One. Task One has 

eighteen polygons, consisting of triangles, quadrilaterals and a hexagon. During the interviews, 

ARI was asked to place these figures into groups, and then to regroup them differently.  

At the beginning of the Pre-Interview, when ARI was asked to sort the polygons into 

groups, she sorted them based on their names. She grouped eighteen polygons into groups of 

triangles, rectangles, squares, parallelograms/rhombi, quadrilaterals, and other. ARI’s method 

of grouping was as follows: 

2a. ARI This group is triangles: 

      

      
2b. ARI … And then these ones are rectangles [pointing at the Fig. M, F, G]: 
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2c. ARI U, G, R are squares [pointing at Fig. U, G, R]: 

                
2d. ARI … and these P, L, J, Z and H are parallelograms… rhombuses… 

                    

    
2e. ARI And then N and Q just are quadrilaterals… 

                                                                         
2f. ARI  And then V is … just a weird shape. 

                          
 

 

ARI grouped all 3-sided polygons together and called them triangles; she also sorted all 

rectangles together, as well as squares. She grouped parallelograms and rhombi together, the 

only group with two names. ARI put Fig. N (a right trapezoid) and Fig. Q (a quadrilateral with 

no parallel or equal sides) together because both have just four sides. Fig. V, a hexagon, was 

grouped by itself. ARI called it “other” because “it is a just weird shape”.  
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I asked ARI to regroup the polygons differently, and she regrouped them by combining 

rectangles and squares together. ARI called that group rectangles: 

22. ARI These are just rectangles because squares can be also 

rectangles…yeah [pointing at Fig. U and M] 

                 

 

ARI continued her regrouping, and she split the parallelograms/rhombuses group into a 

group of parallelograms and a group of rhombi 

24a. ARI And then L, Z those are rhombuses 

               

24b. ARI And then, those are parallelograms 
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ARI sorted the polygons based on the characteristics of their angles. She grouped the 

polygons into a right-angled shape group (n= 8), consisting of polygons with at least one right 

angle, and an obtuse triangle (n=2) group containing triangles with an obtuse angle. 

28. ARI And these are right-angled shapes. 

30a. ARI ..the right angle triangle [pointing at Fig. K] 

                           

30b. ARI …and this has a right angle here [pointing at a right angle in Fig. N] 

            
30c. ARI All the squares and rectangles [pointing at Fig. U and Fig. M again] 

                      
30d. ARI These ones I put as obtuse triangles 

           

 

Three polygons were left: Fig. S, Fig. Q and Fig. V. Then the following conversation 

took place: 
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33. Interviewer Why doesn’t Fig. S go with any other groups? [Pointing at Fig. S] 

              
34. ARI It doesn’t have a right angle, it’s not four-sided…so it’s not a 

square, a parallelogram, and then …it’s not obtuse either.  

35. Interviewer How about Fig. Q? Why is Q left out? [Pointing at Fig. Q] 

                 
36. ARI It doesn’t have parallel sides and it doesn’t have a right angle. 

37. Interviewer How about Fig. V? [Pointing at Fig. V] 

38.  ARI V? …that’s just a weird shape…  

                    
 

ARI grouped figures according to their common descriptive narratives (i.e., definitions) 

by direct recognition. For example, when I asked ARI if I could put Fig. U (a square) and Fig. L 

(a rhombus) together, she responded, “yes, because they both can be seen as rhombuses”. When I 

followed by asking ARI why she thought the two polygons were rhombuses, she said, “because 

all their sides are equal lengths”. ARI did not use any measurement tools to check the angles or 

the sides of any polygon for verification while working on Task One. Therefore, ARI’s 

judgments about the attributes of the angles and sides were direct recognition and intuition. 

Figure 4.32 summarizes ARI’s routine procedures for sorting polygons at the Pre-Interview. 

  



 

Grouping: “Sort the shapes into groups”
 

 
Regrouping: “can you regroup them differently?”

Figure 4.32 ARI’s routine procedures for sorting polygons at the Pre

Ten weeks later I interviewed ARI again. In her routine procedures of sorting 

quadrilaterals she arranged them with a hierarchy of classifications. Let me begin with ARI’s 

responses in grouping the eighteen polygons. ARI first grouped polygons (n=18) by th

of their sides: triangles (n=4), quadrilaterals

divided the quadrilateral group into subgroups consisting of 

parallelograms, trapezoids and quadrilatera

quadrilateral group. 

Figure 4.33 ARI’s grouping of the subgroups of the 

 

      
 

                                                                                                                             

                                                                                       
 

 

Visual recognition

(Identifying routine)

Visual recognition

(Identifying 
routine)
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Grouping: “Sort the shapes into groups” 

Regrouping: “can you regroup them differently?” 

ARI’s routine procedures for sorting polygons at the Pre

Ten weeks later I interviewed ARI again. In her routine procedures of sorting 

quadrilaterals she arranged them with a hierarchy of classifications. Let me begin with ARI’s 

responses in grouping the eighteen polygons. ARI first grouped polygons (n=18) by th

quadrilaterals (n=13) and a six-sided figure (n=1).

group into subgroups consisting of squares, rectangles

quadrilaterals. Figure 4.33 illustrates all the subgroups of the 

ARI’s grouping of the subgroups of the quadrilaterals at the Post

Quadrilaterals (n=13) 

                                                                                                                                                  Trapezoid 

                                                                  

Grouping by family 
appearances of the figures 

(Identifying routine)
Conclusion

1. Grouping by the common 
descriptive narratives of the names 
of the figures (Defining routine)                                   

2. Grouping by the characteristics 
of the angles and the sides of the 

figures (Identifying routine)

Conclusion

 

 

ARI’s routine procedures for sorting polygons at the Pre-Interview 

Ten weeks later I interviewed ARI again. In her routine procedures of sorting 

quadrilaterals she arranged them with a hierarchy of classifications. Let me begin with ARI’s 

responses in grouping the eighteen polygons. ARI first grouped polygons (n=18) by the numbers 

(n=1). ARI then 

rectangles, 

all the subgroups of the 

at the Post-Interview. 

Trapezoid  

              

Conclusion

(Defining routine)                                   Conclusion
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Figure 4.33 (cont’d) 

Parallelograms (n=11) 

                          

                                                             
 

             ARI:  “…then P, L, J, Z, H, R, T G, F, M and U are all parallelograms”                       

                                                   

                                                                                                    
 
                                             

                            ARI: “ M, F T, U, G, R are rectangles”  
               

                                                                                                 

                                                                                  “ U, G, R are squares” 
 

Figure 4.33 ARI’s grouping of the subgroups of the quadrilaterals at the Post-

Interview. 

 



 

At the time of the Post-Interview, ARI was able to group th

of classifications of parallelograms. In her grouping, a polygon could be placed multiple times 

because it was identified in several subgroups by different common descriptive narratives of the 

polygons. For example, in the fami

as a parallelogram but it was also identified as a 

When I asked for regrouping, ARI regrouped triangles according to the characteristics of 

their angles, splitting the triangle

right triangle and an acute triangle

previous grouping was to put the rhombuses and the squares into the same group, which she 

called the rhombuses group. When I asked ARI why she made this change, she responded, “they 

are all rhombuses because they have equal sides”

grouped as a rhombus by this common descriptive narrative, “a rhombus is a four

with all equal sides”. During the Post

ARI’s routines of sorting polygons at the Post

Grouping: “Sort the shapes into groups”

Regrouping: “can you 

Figure 4.34 ARI’s routines of sorting polygons at the Post

Visual 
recognition

(Identifying 
routine)

1. Grouping by the numbers of sides                  

2. Grouping by the common narratives 
on the names of the polygons, and 

arranging the polygons by the hierarchy 
of classifications 

Visual 
recognition

(Identifying 
routine)

1. Grouping by the common descriptive 
narratives on the names of the figures 

(Defining routine)                                   
Grouping by the characteristics of the 

angles and the sides of the figures 
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Interview, ARI was able to group the polygons using a hierarchy 

of classifications of parallelograms. In her grouping, a polygon could be placed multiple times 

because it was identified in several subgroups by different common descriptive narratives of the 

polygons. For example, in the family of parallelograms, Fig. R, a square, was not only classified 

but it was also identified as a rectangle.  

When I asked for regrouping, ARI regrouped triangles according to the characteristics of 

triangle group into three subgroups consisting of obtuse triangles

acute triangle. For the parallelograms, the only change ARI made from her 

previous grouping was to put the rhombuses and the squares into the same group, which she 

group. When I asked ARI why she made this change, she responded, “they 

e they have equal sides”. In this regrouping process, a square

by this common descriptive narrative, “a rhombus is a four

. During the Post-Interview, ARI again did not use measurement tools. 

polygons at the Post-Interview are summarized in Figure 4.34

Grouping: “Sort the shapes into groups” 

Regrouping: “can you regroup them differently?” 

ARI’s routines of sorting polygons at the Post-Interview

1. Grouping by the numbers of sides                  
(Identifying routine)                                                                          

2. Grouping by the common narratives 
on the names of the polygons, and 

arranging the polygons by the hierarchy 
of classifications (Defining routines )

Conclusion

1. Grouping by the common descriptive 
narratives on the names of the figures 

(Defining routine)                                   2. 
Grouping by the characteristics of the 

angles and the sides of the figures 
(Identifying routine)

Conclusion

e polygons using a hierarchy 

of classifications of parallelograms. In her grouping, a polygon could be placed multiple times 

because it was identified in several subgroups by different common descriptive narratives of the 

was not only classified 

When I asked for regrouping, ARI regrouped triangles according to the characteristics of 

obtuse triangles, a 

, the only change ARI made from her 

previous grouping was to put the rhombuses and the squares into the same group, which she 

group. When I asked ARI why she made this change, she responded, “they 

square was also 

by this common descriptive narrative, “a rhombus is a four sided figure 

Interview, ARI again did not use measurement tools. 

rview are summarized in Figure 4.34. 

 

 

Interview 

(Identifying routine)                                                                          

Conclusion

Conclusion
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In ARI’s responses for Task One in the Pre-Interview and the Post-Interview, she was 

able to group geometric shapes by their common descriptive narratives. Also, she was able to 

classify quadrilaterals into a hierarchy with the help of her defining routines at the Post-

Interview. At the Pre-Interview, ARI’s defining routines focused on the necessary conditions of 

the definitions. Thus figures were categorized by their common names. In contrast, at the Post-

Interview, ARI’s defining routines focused on both necessary and sufficient conditions of the 

definitions, and thus, the quadrilaterals were grouped with a hierarchy of classifications. Change 

in ARI’s geometric discourse also occurred in her routines of substantiation. In the following 

section I describe ARI’s routine procedures of substantiating her claims. 

I observed ARI’s routine patterns of verifying and justifying declared narratives while 

working on Task Two. ARI was able to use endorsed narratives to construct new narratives at the 

Post-Interview, whereas she depended on recalling and measuring routines at the Pre-Interview. 

A recalling routine is a course of action using previously endorsed narratives, and is more about 

remembering what one learned previously. In this study, A measurement routine is a set of 

repetitive actions where participants measure the parts of polygons, and use these measurements 

in their identifying, verifying and substantiating processes. In the next example, ARI tried to 

verify that all angles add up to 360 degrees in a parallelogram. 

In Task Two all interviewees were asked to draw two parallelograms different from each 

other, and to discuss the angles of the parallelograms.  ARI drew a parallelogram and wrote that 

all of the angles added together equal 360°. When asked for substantiation, ARI first showed that 

two adjacent angles added together equal 180°, and next used that result to justify her claim that 

“all of the angles added together equal 360°”: 
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26. ARI If you add this angle and this angle 

together, it’s equal 180… 

Pointing at the angle: 

       
27. Interviewer Why is that?  

28. ARI There is a name for it. I forget the 

term… 

  

29. ARI I think this angle is suppose to 

equal this outside angle here… 

Pointing at the two angles:   

 

30. ARI …and this line would equal 180 Pointing at the two angles: 

    

31. Interviewer How do you know these angles are 

equal? 

Pointing at the two angles in 

[29] 

32. ARI …because I learned it in school? I 

don’t know how to explain it. 

 

33a. ARI If that equals 180 added together,  Pointing at the two angles: 

 

33b. ARI …then this would equal 180 added 

together. So all the angles all 

together would equal 360. 

Pointing at the other two 

angles 

 

In this episode, ARI’s routine procedure is a recalling routine, where she remembered 

related mathematical rules, without knowing their mathematical terms or why these rules work in 
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a given situation. For example, in looking at the two adjacent vertex angles in a parallelogram, 

ARI concluded that they added up to 180 degrees [26]. This conclusion is correct because we 

know by definition that a parallelogram has opposite sides parallel, and we can use propositions 

about parallel lines and their transversals to conclude that the two angles add up to 180 degrees. 

Similarly, ARI was able to recognize that the alternating interior angles were congruent [29], but 

she did not know why these two angles were congruent, a consequence of two parallel lines cut 

by a transversal. Note that ARI utilized logical thinking in the statement, “if that equals 

180…then all the angles…” [33a-b].  

In contrast to ARI’s response at the Pre-Interview to the declared narrative that the angles 

add up to 180 degrees, her substantiation of this narrative was different at the Post-Interview.  

33a. ARI These are adjacent angles… Pointing at the angles: 

        

33b. ARI … and these are alternate interior angles 

and they are equal, because… by the 

parallel lines 

Pointing at the angles: 

        

33c. ARI … then this plus this angle is 180 

because angles on a line.   

Pointing on the angles: 

         

33d. ARI … And so this and this, the adjacent 

angles equal 180. 

Referring to the adjacent 

angles: 
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In this argument ARI began to use mathematical terms to express her ideas. ARI used the 

words “adjacent angles” and “alternating interior angles” to replace her informal use of “this 

angle” and “that angle”, and “angle inside” and “angle outside” at the Pre-Interview. More 

importantly, ARI substantiated her claims using endorsed narratives. For example, when ARI 

produced the narrative that alternate interior angles were equal, she used a phrase by … the 

parallel lines [33b]; and when ARI declared another narrative that two angles add up to 180 

degrees, she used the phrase because angles on a line [33c]. When I asked ARI why she thought 

all angles in a parallelogram add up to 360°, the following conversation took place: 

34. Interviewer Why do all the angles add up to 360?  What are the angles that 

add together to equal 360? 

35. ARI All the interior angles, this plus this plus this plus this equal 

360. [Pointing at these angles]: 

                               
36. Interviewer Why is that? 

37. ARI Because if you draw a line, the diagonal, there are two triangles, 

and the interior angles of a triangle equal 180. So, two triangles 

would equal 180 plus 180. That equals 360. [Draw a diagonal 

on the figure] 
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I expected ARI to use a newly endorsed narrative, such as two adjacent angles add up to 

180° [33d], to make the substantiation. She surprised me with her dissection method, drawing a 

diagonal to cut the parallelogram into two triangles. ARI then used the endorsed narrative that 

the sum of the interior angles of a triangle equals 180° [37] to complete her proof of the claim 

that all interior angles in a parallelogram add up to 360°. ARI’s routine procedures also changed 

in verifying the congruent parts of a parallelogram.  

ARI was aware of the abstraction of congruent parts of the parallelograms at the Post-

Interview, whereas she only used measurement routines to check the congruent parts at the Pre-

Interview. That is, when recalling routines did not seem to help, ARI used measurements to 

check her claims about the sides and angles of a parallelogram. In the next conversation, I asked 

ARI to substantiate her declared narrative about the diagonals of a square:  

182. Interviewer What can you say about the diagonals of this parallelogram? 

[Pointing at the square] 

                                   

183. ARI They’re gonna be equal lengths 

184. Interviewer How do you know? 

185a ARI Because they are all equal sides and I am pretty sure they 

would be all equal diagonals…[Pointing at the sides of the 

square] 

185b. ARI I can check… 

185c. ARI Let’s do it in inches…this one is 2.7… that’s also 2.7 

[Using a ruler to measure the length of the diagonals of the 
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square]. 

185d. ARI Yeah, diagonals are equal lengths.  

 

When asked for substantiation, ARI first made an intuitive claim about why the diagonals 

would be equal [185a], and then used a ruler to measure the length of the diagonals, getting 

measurements for each diagonal of 2.7 inches [185c]. With this confirmation, ARI concluded 

that the diagonals were of equal length [185d], completing substantiation.  

Our conversation went on, and ARI declared another narrative about the diagonals of a 

square being perpendicular to each other.  

189. Interviewer What can you say about the diagonals of this 

parallelogram? [Pointing at the square] 

                       

190. ARI I think they’re perpendicular to each other. 

191. Interviewer What do you mean when you say perpendicular? 

192. ARI At the intersection, they create a 90-degree angle 

[Pointing at the intersection of the diagonals] 

193. Interviewer How do you know they are 90-degree angles? 

194. ARI I can measure it… Yeah… it’s 90-degree. 

[Using a protractor to measure one of the angles 

at the intersection] 

195. Interviewer How do you know they are all 90-degrees? 

[Pointing at the other angles at the intersection] 
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196. ARI I am pretty sure that they are all 90-degrees. 

Yeah.. this is 90… that’s 90… they are all equal. 

[Giggling, and use a protractor to measure two 

other angles at the intersection]  

 

When I asked, “how do you know that they are all 90-degrees?”, I was looking for a 

routine procedure operating at an abstract level. However, in ARI’s response to this question, she 

focused on the concreteness of the congruent angles, in using a protractor to check the angles one 

by one [194; 196], thereby using measurement routines to verify her claims at an object level.  

As in her responses at the Pre-Interview, ten weeks later ARI declared the same narrative 

about the diagonals of a square, stating that the diagonals were equal length. When asked for 

substantiation, ARI this time did not measure the length of the diagonals but responded with “I 

can prove again that the triangles are congruent”. ARI had just substantiated that the diagonals in 

a rectangle were equal, so she applied that argument. Table 4.34 summarizes ARI’s routine 

procedures of this verification with corresponding transcripts: 

Table 4.34 ARI’s routine procedures of substantiation for “two diagonals are equal” 

Routine Procedures  Transcripts  

1. Identify two congruent 
triangles  

111a. ARI: this triangle and this triangle are congruent [pointing 
at the shaded triangles]: 

                   

2. Declared narrative  111b. ARI: and then that side equals this side [pointing at the 
diagonals]: 
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Table 4.34 (cont’d) 
Prompt for verification 112. Interviewer: How do you know these two triangles are 

congruent? [Referring to 111a]    

3. Verification of two 
congruent triangles 

 

3.1 Identify 
corresponding angles of 
the triangles  

113a. ARI: well, these are 90 degrees [pointing at the two right 
angles] 

                      

3.2 Identify 
corresponding sides of 
the triangles  

113b. ARI: they have a common side so that would be the same 
for both triangles… [Marked a tally on the common side] 

                             

3.3 Identify another 
corresponding sides of 
the triangles  

113c. ARI: opposite sides that are parallel…are equal [Marked 
two tallies on the  opposite sides of the rectangle]  

                    
4. Verify congruent 
triangles using S-S-S 
correspondence 

113d. ARI: that gives you side, angle, side … and makes these 
two triangles congurent. 

5. Conclusion 113e. ARI: by that, you can conclude that this side and this side 
are equal [pointing at the diagonals of the rectagnle]. 

 

Table 4.34 shows that ARI first identified a pair of congruent triangles with diagonals as 

one set of corresponding sides of the triangles, and drew a conclusion about the equivalence of 

the diagonals [111a-b]. After my prompt for substantiation, ARI provided a sequence of steps of 

selecting three elements needed for the verification of congruent triangles [113a-c]. During this 

selection, ARI did not use a ruler or protractor to check the measurements of the sides and 

angles, but instead used identifying routines and defining routines. For example, ARI used the 

definition of a rectangle to identify two corresponding angles that “are 90 degrees” [113a], and 

two corresponding sides that “are equal” [113c] in the triangles. 



 

86. Interviewer Why is this a parallelogram? [P

                   

87. ARI Because opposite sides are parallel and the opposite sides are equal.

88. Interviewer Why is this a different parallelogram from the one you drew?

89a. ARI Because they all form 90 degree angles, 

just the opposite angles.

89b. ARI This is a rectangle.

 

ARI used an identifying routine

the rectangle; and then used a defining routine

congruent triangles needed for verification. Because the polygon was a rectangle, all angles were 

equal and opposite sides were equal. It is legitimate for ARI to apply this proof in the case of a 

square as in the next example, because she considered a square as a rectangle (see my earlier 

analyses for routines of sorting). 

We continued to discuss the diagonals of a square. ARI produced further narratives such 

as “diagonals are perpendicular to each other”, “di

bisect the angles”. As noted earlier, ARI made the connection between the diagonals of a square 

and the diagonals of a rectangle, as in both cases their “diagonals were equal”. Later ARI made 

another connection between the diagonals of a square and the diagonals of a parallelogram, as in 

both cases their “diagonals bisect each other”. ARI used the Angle

substantiate two congruent triangles in a parallelogram, and applied that result to draw t

conclusion in the case of a square. To avoid redundancy, ARI’s substantiation of “the diagonals 
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Why is this a parallelogram? [Pointing at ARI’s drawing]

                    

Because opposite sides are parallel and the opposite sides are equal.

Why is this a different parallelogram from the one you drew?

Because they all form 90 degree angles, all the angles are equal, not 

just the opposite angles. 

his is a rectangle. 

used an identifying routine to identify the right angles and opposite sides as parts of 

defining routine to confirm her choice of the elements of the 

congruent triangles needed for verification. Because the polygon was a rectangle, all angles were 

equal and opposite sides were equal. It is legitimate for ARI to apply this proof in the case of a 

the next example, because she considered a square as a rectangle (see my earlier 

analyses for routines of sorting).  

We continued to discuss the diagonals of a square. ARI produced further narratives such 

as “diagonals are perpendicular to each other”, “diagonals bisect each other” and “diagonals 

bisect the angles”. As noted earlier, ARI made the connection between the diagonals of a square 

and the diagonals of a rectangle, as in both cases their “diagonals were equal”. Later ARI made 

ween the diagonals of a square and the diagonals of a parallelogram, as in 

both cases their “diagonals bisect each other”. ARI used the Angle-Side-Angle criterion to 

substantiate two congruent triangles in a parallelogram, and applied that result to draw t

conclusion in the case of a square. To avoid redundancy, ARI’s substantiation of “the diagonals 

ointing at ARI’s drawing] 

Because opposite sides are parallel and the opposite sides are equal. 

Why is this a different parallelogram from the one you drew? 

all the angles are equal, not 

to identify the right angles and opposite sides as parts of 

to confirm her choice of the elements of the 

congruent triangles needed for verification. Because the polygon was a rectangle, all angles were 

equal and opposite sides were equal. It is legitimate for ARI to apply this proof in the case of a 

the next example, because she considered a square as a rectangle (see my earlier 

We continued to discuss the diagonals of a square. ARI produced further narratives such 

agonals bisect each other” and “diagonals 

bisect the angles”. As noted earlier, ARI made the connection between the diagonals of a square 

and the diagonals of a rectangle, as in both cases their “diagonals were equal”. Later ARI made 

ween the diagonals of a square and the diagonals of a parallelogram, as in 

Angle criterion to 

substantiate two congruent triangles in a parallelogram, and applied that result to draw the same 

conclusion in the case of a square. To avoid redundancy, ARI’s substantiation of “the diagonals 
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bisect each other” is not presented here. Instead I share ARI’s substantiation of  “diagonals are 

perpendicular to each other”: 

133. ARI They are perpendicular to each other. [Pointing at the intersection 

of the diagonals]: 

                   
134. Interviewer How do you know? 

135a. ARI [Thinking]… because the angles of the square are 90 degrees 

[Pointing at the angle]    

                                              
135b. ARI And the diagonal cut this angle in equal halves. [Pointing at the 

two angles] 

                
135c. ARI So this would be 45 degrees and this would be 45 degrees. [Writing 

45-degree at each angles] 

                 
135d. ARI  So that would equal to 90 degrees … [Adding the two 45-degree 

angles] 

135e. ARI For angles a triangle it would be 180 total, so it would have to be 

90 degrees. [Pointing at the intersection of the diagonals] 
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To verify that the diagonals are perpendicular to each other, ARI tried to show that the 

diagonals form 90-degree angles [135a]. ARI did not use a protractor to measure all the angles at 

the intersection, but used endorsed narratives to verify her claims [135e]. In the process of this 

verification, ARI made one assumption, that “the diagonal cuts this angle in half” [135b], that 

was not mentioned before. Therefore, I asked for substantiation: 

142. Interviewer How do you know that the diagonal 

cuts the angle in two halves?  

Pointing at the angle 

                 

143a. ARI Because, if the diagonals are bisecting 

each other, …. Then the halves are all 

equal lengths too … Because the 

diagonals are equal lengths.  

Pointing at the halves of 

one diagonal: 

        

143b. ARI  … So from there, if these sides are 

equal, and it would be an isosceles 

triangle…by the definition of an 

isosceles triangle, then these angles 

would have to be equal.   

Pointing at the base 

angles of the triangle: 

                

143c. ARI And then the same with this triangle, it 

would also be an isosceles. 

Pointing at the adjacent 

triangle: 

               

143d. ARI So, these are the same isosceles 

triangles. So, the triangles are all 

Pointing at the angles: 
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congruent, and the angles would all 

have to be congruent.                

143e. ARI  But this is 90 degrees.  So, if these 

angles are equal… then they are all 45 

degrees. 

Pointing at the angle of 

the square: 

              

143f. ARI So the diagonals cut the angles in half.   

 

ARI applied several endorsed narratives to substantiate her declared narrative “the 

diagonals cut the angles in half”. ARI first used “diagonals bisect each other” and “diagonals are 

equal”, both newly endorsed, to conclude that “the halves are all equal” [143a], and used this 

newly endorsed narrative to identify congruent isosceles triangles [143b-d]. By using the 

properties of isosceles triangles, ARI showed that all corresponding [base] angles were equal 

[143b]. Knowing that the figure was a square, with 90-degree angles, ARI concluded that the 

diagonals cut the angles in halves and they were all 45 degrees [143e-f].  

In summary, I conclude that ARI changed her routine of substantiation, when she moved 

away from an object level of measuring and checking the congruent parts of the parallelogram at 

the Pre-Interview, towards an abstract level of substantiation, using endorsed narratives to verify 

the congruent parts at the Post-Interviews.  

The use of words and language are important when we study ones mathematical 

discourse. Different interviewees show different developments in their use of mathematical word 

use. In ARI’s case, she was able to use more mathematical terms in the Post-Interview than in 

the Pre-Interview; she also developed conceptual understandings of quadrilaterals and 
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parallelograms after the Pre-Interview. Let me begin with some general findings of words that 

ARI used in the names of the polygons. More specifically, these words were quadrilateral, 

parallelogram, rectangle, square, rhombus, trapezoid and kite. The total frequencies of the 

names of quadrilaterals at the two interviews are shown in Table 4.35 and Table 4.36.  

Table 4.35 The frequencies of ARI’s use of the names of quadrilaterals at the two 

interviews 

Name 
Frequency  

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Quadrilateral 3 4 0 0 1 0 
Parallelogram 5 3 1 4 3 4 
Rectangle 5 2 0 1 0 7 
Square 6 1 1 3 0 7 
Rhombus 5 3 0 1 0 2 
Trapezoid 3 2 1 0 0 0 
Kite 0 0 0 0 0 0 
 

Table 4.36 Total frequencies of ARI’s use of names of quadrilaterals at the two 

interviews 

Name 
Frequency 

Pre Post 
Quadrilateral 4 4 
Parallelogram 9 11 
Rectangle 5 10 
Square 7 11 
Rhombus 5 6 
Trapezoid 4 2 
Kite 0 0 

 

Table 4.36 shows that the word parallelogram (n=20) was the most frequently used 

during the interviews, and being mentioned in all three tasks (see Table 4.35). The word square 

(n=18) was the second most frequently used, and rectangle (n=15) was third. The word kite 

(n=0) was not mentioned at all in both interviews, and trapezoid (n=6) was the second least 



 

mentioned. Table 4.35 shows that the words 

mentioned in Task One, where interviewees were asked to group the polygons. There was an 

increase in use of the words parallelogram

Pre-Interview, and use of the word 

names of quadrilaterals was much lower than other interviewees’ use of those names. 

In an earlier section, I described ARI’s routine procedures for sorting quadrilaterals for 

Task One. At the Pre-Interview, ARI first grou

characteristics of their angles. However ARI was confused about how a 

parallelogram were related. ARI’s confusion was not detected in Task One, but rather her choice 

in drawing a different parallelogram at Task Two shed light on her understanding of the words 

trapezoid and parallelogram.  

1a. ARI I don’t know if this is right, but I am going to draw it. 

[ARI drew a figure]

                           
 

1b. ARI I think this is wrong.

3. Interviewer Why? I just want to know what bothers you. 

4. ARI I know these are parallel sides [pointing at the two 

parallel sides], but I don't know if a trapezoid is also a 

parallelogram. I am not sure. 

5. Interviewer What is a trapezoid?

6. ARI I am

sides…

219 

shows that the words quadrilateral, rhombus and trapezoid

mentioned in Task One, where interviewees were asked to group the polygons. There was an 

parallelogram, square and rhombus in the Post-Interview, over the 

Interview, and use of the word rectangle doubled in the Post-Interview. ARI’s use of the 

names of quadrilaterals was much lower than other interviewees’ use of those names. 

In an earlier section, I described ARI’s routine procedures for sorting quadrilaterals for 

Interview, ARI first grouped the figures by their names and then by the 

characteristics of their angles. However ARI was confused about how a trapezoid

were related. ARI’s confusion was not detected in Task One, but rather her choice 

llelogram at Task Two shed light on her understanding of the words 

I don’t know if this is right, but I am going to draw it. 

[ARI drew a figure] 

                            

I think this is wrong. 

Why? I just want to know what bothers you.  

I know these are parallel sides [pointing at the two 

parallel sides], but I don't know if a trapezoid is also a 

parallelogram. I am not sure.  

What is a trapezoid? 

I am not sure, cause I think trapezoids need two parallel 

sides… 

trapezoid were mostly 

mentioned in Task One, where interviewees were asked to group the polygons. There was an 

Interview, over the 
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sides. As noted, I included ARI’s drawing of a trapezoid in this diagram because she did consider 
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What is a parallelogram? 

[Thinking]…A four-sided shape with like this [Pointing 

at her first drawing], opposite sides that are parallel? 

           

The preceding conversation shows that ARI’s concept of trapezoid was unclear, as she 

explained, “I don’t know if a trapezoid is also a parallelogram” [4]. ARI produced a verbal 

narrative to my request “what is a trapezoid”, stating that a trapezoid needs two parallel sides [6]. 

We see that ARI did know something about trapezoids, four-sided polygons with two parallel 

sides, but had no clear understanding that a pair of parallel sides is a necessary condition in the 

definition of trapezoid, confusing trapezoid with parallelogram, a polygon requiring two pairs of 

In Task One, ARI created the parallelogram group consisting only of parallelograms 

group was later split into parallelograms and rhombi

rectangle group consisting of rectangles and squares

group and a square group. At that time ARI did not group the 

and did not provide information about how rectangles and 

In Task Two, ARI identified a rectangle and a square as 

“they are parallelograms, because they have both opp

ARI’s use of the word parallelogram described a collection of figures having parallel 

sides. As noted, I included ARI’s drawing of a trapezoid in this diagram because she did consider 

at one point that a trapezoid could be a parallelogram, displaying her confusion about what a 

sided shape with like this [Pointing 

at her first drawing], opposite sides that are parallel?  

was unclear, as she 

explained, “I don’t know if a trapezoid is also a parallelogram” [4]. ARI produced a verbal 

wo parallel sides [6]. 

sided polygons with two parallel 

sides, but had no clear understanding that a pair of parallel sides is a necessary condition in the 

, a polygon requiring two pairs of 
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rhombi as two 

squares then divided 

group. At that time ARI did not group the rectangles 
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In Task Two, ARI identified a rectangle and a square as 

“they are parallelograms, because they have both opposite sides 

ed a collection of figures having parallel 

sides. As noted, I included ARI’s drawing of a trapezoid in this diagram because she did consider 

at one point that a trapezoid could be a parallelogram, displaying her confusion about what a 
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trapezoid was, and how it related to a parallelogram. Figure 4.35 illustrates ARI’s understanding 

that all squares are rectangles, as well as her understanding of the relation between a rhombus 

and a parallelogram. However, ARI did not clearly demonstrate the connections between a 

rhombus and a square, but she knew that both were a “four-sided figure with all sides equal”. I 

conclude that ARI’s uses of the names of parallelograms were limited to their common 

descriptive narratives at the local level, while her understanding of the hierarchy of 

parallelograms at the global level was missing in the Pre-Interview.   

To me, ARI’s use of the word parallelogram referred to a family of parallelograms with 

two branches: parallelograms and rectangles, illustrated as follows: 

 
Parallelogram  

 
 
 

                         Parallelograms /rhombi                          Rectangle 

                
 
       

                

  

                       

  

                   
   

                         

Figure 4.35 ARI’s use of the word parallelogram at the Pre-Interview 
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At the Post-Interview the change in ARI’s word use regarding the names of quadrilaterals 

was revealed in the hierarchy of classifications of parallelograms. In ARI’s grouping and 

regrouping for Task One in the Post-Interview, the word parallelogram described a collection of 

figures that were 4-sided with two pairs of parallel sides. In the family of parallelograms, ARI 

also recognized two subgroups: a rectangle group consisting of parallelograms with right angles, 

and a rhombus group consisting of parallelograms with all equal sides. Based on the 

characteristics of the sides, ARI also split the rectangle group into squares, a group of rectangles 

with all equal sides, and rectangles. Lastly, ARI grouped rhombi and squares together because 

all their sides were equal.  

 
Parallelogram (n=11) 

             

                                       

                      
 

                                Rectangle (n=3)                                         Rhombus (n=2)  
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Figure 4.36 (cont’d) 

       
 

 

 
Square (n=3) 

                

Figure 4.36 ARI’s classifications of parallelograms at the Post-Interview 

 

Figure 4.36 shows a hierarchy of classifications of the parallelograms in ARI’s use of the 

word parallelogram. In this hierarchy, the word parallelograms denoted a collection of 

quadrilaterals with different names, and these names were parallelograms, rectangles, squares 

and rhombi. Although these names identify polygons with different physical appearances and 

attributes of their angles and sides, they are all parallelograms.    

There was also a change in ARI’s use of the names of the parts of parallelograms. In this 

study, the names of the parts of parallelograms considered were angle, sides, length, parallel 

side, opposite side, opposite angle, right angle and diagonal. Findings show that ARI used more 

words describing the parts of the parallelograms than the names of the parallelograms. Tables 

4.37 and 4.38 provide information on the frequencies of these words’ usage at the Pre-Interview 

and the Post-Interview.  
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Table 4.37 The frequencies of ARI’s use of the names of the parts of parallelograms at 

the two interviews 

Name 
Frequency 

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
Angle 1 2 22 26 4 3 
Side 10 10 11 25 0 7 
Length 1 0 18 14 5 5 
Parallel side 2 1 2 1 0 0 
Opposite side 2 3 6 11 3 7 
Diagonal 2 0 4 12 0 0 
Right angle 4 1 0 1 0 0 
Opposite angle 0 0 4 4 2 4 
 

Table 4.38 Total frequencies of ARI’s use of names of the parts of parallelograms at the 

two interviews 

Name 
Frequency 

Pre Post 
Angle 27 31 
Side 22 42 

Length 24 19 
Parallel side 4 2 
Opposite side 11 21 

Diagonal 6 12 
Right angle 4 2 

Opposite angle 6 8 
 

Table 4.38 shows that the most frequently used words relating to the parts of 

parallelograms were side (n= 64) and angle (n= 58). The words angle (n= 48) and side (n=36) 

were mentioned mostly in Task Two during both interviews (see Table 7). After angle and side, 

the word length was the next most frequently mentioned at both interviews (n= 43), and it was 

mostly mentioned at Task Two (n= 32). Likewise the word diagonal (n=16) was mostly used in 

task Two. These results were expected, as Task Two asks interviewees about the relations of the 

angles, sides and diagonals of a parallelogram. Among the terms opposite sides, parallel sides 
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and opposite angles (n=14) that describe important characteristics of parallelograms, opposite 

sides (n=33) was mostly mentioned, and parallel sides (n=6) the least mentioned.  

During the interviews, I noticed that ARI used the words sides and lengths 

interchangeably. For example, ARI identified Fig. Z as a rhombus because “it has all equal 

lengths”[pr1. 50], and later she stated a rhombus “has equal sides”. Also, ARI used the phrases 

“same length” and “same side” frequently during the interviews when referring to figures with 

the same length measures.  

Another important change in ARI’s use of words was in her use of formal mathematical 

terminology at the Post-Interview. These formal mathematical terms describe attributes of lines 

and angles, as well as the relations between them. In particular, she used the words adjacent 

angle, alternating interior angles, complementary, supplementary, transversal and congruent. In 

an earlier section, I briefly mentioned that ARI used the terms “adjacent angles” and “alternating 

interior angles” to replace her informal use of “this angle” and “that angle”, and “angle inside” 

and “angle outside” in her substantiation that angles add up to 360°.  

Tables 4.39 and 4.40 provide information on the frequencies of these new mathematical 

words used at the interviews.  

Table 4.39 The frequencies of ARI’s use of formal mathematical words at the two 

interviews 

Name 
Frequency 

Pre-T1 Pos-T1 Pre-T2 Pos-T2 Pre-T3 Pos-T3 
adjacent angle 0 0 0 4 0 1 
alt. Interior 0 0 0 8 0 0 
complementary 0 0 0 2 0 1 
supplementary 0 0 0 1 0 0 
vertical angle 0 0 0 2 0 0 
transversal  0 0 0 1 0 0 
congruent 0 0 0 12 0 0 
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Table 4.40 Total frequencies of ARI’s use of formal mathematical words at the two 

interviews 

Name 
Frequency 

Pre Post 
adjacent angle 0 5 
alt. Interior 0 8 
complementary 0 3 
supplementary 0 1 
vertical angle 0 2 
transversal  0 1 
congruent 0 12 

 

Table 4.40 shows that all these mathematical words were used only at the Post-Interview, 

and most of them were mentioned in Task Two, where interviewees discussed the angles, sides 

and diagonals of a parallelograms. The word congruent (n=12) was the most frequently 

mentioned, as ARI used congruent triangles to substantiate the congruent parts of the 

parallelograms in the Post-Interview. During the process of verification of congruent triangles, 

ARI often identified alternating interior angles (n=8) as one of the elements for verification, and 

consequently this term was the second most mentioned (see Example Two). 

ARI’s transition from colloquial mathematics discourse towards mathematical discourse 

also appeared in her use of logical justification. For example, at the Post-Interview, ARI 

produced narratives with justifications such as “those sides are equal by corresponding parts in 

congruent triangles”, “angles are equal because vertical angles are equal” and “these sides are 

equal by the definition of a parallelogram”. To me, ARI’s use of such mathematical language 

was a step closer to the language of proof. 

The van Hiele Levels as Geometric Discourse  

In this section I introduce the model, the Development of Geometric discourse (See 

Appendix F) that I developed for this study. In order to have a theoretical basis of the model, I 



 

227 

translated each van Hiele level into discursive terms using four mathematical features described 

in the commognitive framework. These translations are presented in Chapter 2.  

The model consists of four components: (1) Geometric Objects are utilized in the 

participants’ use of mathematical words, saming criterions, realizations and systems of objects, 

(2) Routines are used in participants’ courses of actions in response to mathematical tasks, (3) 

Endorsed Narratives are collected from participants’ written or verbal narratives in this study, 

(4) Visual Mediators are collections of symbolic artifacts, geometric figures and their parts, all 

involved in the study. 

Let me describe Geometric Objects and Routines in a bit more detail. In a mathematical 

discourse, a mathematical object constitutes “this thing” that we discuss. In this study, “this 

thing” very often is a triangle or a quadrilateral. Perhaps “this thing” also could be parts of a 

triangle or a quadrilateral (e.g., sides, angles, etc). It is important to pay attention to the 

mathematical objects involved in a given discourse.  

In this study, at different van Hiele levels the same geometric figure discussed may not be 

the same the geometric object in the corresponding geometric discourse. For example, at Level 1 

the word square is used as a label to a picture of a square, just a matching of a word with a shape 

(signifier). All squares can be grouped together because they all fit this family appearance of four 

sides equal; however, at this level students will not group a rhombus and a square together 

because they do not have the same family appearance even though they both have four sides 

equal (saming criterion). All figures are grouped by their names only, because each name 

represents a family appearance (realization), and there is no hierarchy connecting geometric 

figures at Level 1 (system of objects). At Level 3, the word square can also represent a 

parallelogram, a rectangle or a rhombus because a square fits the common descriptive narratives 
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“opposite sides parallel”, “a parallelogram with four right angles”, and “parallelogram with four 

sides equal” (saming criterion). Thus, a square can be grouped with parallelograms, rectangles 

and rhombi (realization).  

If a student moves from Level 1 to Level 3, the polygon called “square” plays different 

roles as a geometric object in the two different geometric discourses. A square in Level 1 is a 

picture of “a thing” called a square, whereas a square in Level 3 is an abstract object with 

required properties that can have different names. It is important in this study to compare 

geometric objects at each van Hiele level.  

Routines are discursive patterns that repeat themselves in similar situations. In this study, 

routines consist of identifying routines and defining routines, helping me pay attention to the role 

of definitions played in van Hiele levels 1 to 3. The model helps me to be more explicit about 

how students identify a polygon, and with what evidence, as a repetitive pattern. For example, at 

Level 1 a student identified a square because it looked like one (visual recognition), whereas at 

Level 2, this student identified a square because it has four equal sides. But the same could also 

be rhombus because right angles were not mentioned (identifying partial properties). The 

defining routines provide clues to the students’ use of definitions. 

This model helped to identify participants’ geometric discourses with regard to their van 

Hiele levels. The model was revised during the process of analyzing participants’ geometric 

discourses.  
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CHAPTER FIVE: DISCUSSION 

 

Efforts in the mathematics education research community toward an understanding of 

students’ learning have defined mathematical learning as actively building new knowledge from 

experience and prior knowledge (NCTM, 2000), moving to a higher level of thinking (van Hiele, 

1959), or as changes in discourse (Sfard, 2008). Other researchers have developed methods to 

measure learning quantitatively (Floden, 2002). In this chapter I return to the questions that 

motivated this study and guided my analyses of learning. The question that served as the impetus 

for the study was: “What do prospective teachers learn in geometry from their preparation for the 

work of teaching geometry?” It can be argued that this study does little to answer the question 

because of the complexity of participants’ learning, and of the context in which these students 

were observed. However, my effort is to conceptualize these participants’ mathematical thinking 

through their mathematical discourses as an evidence of their learning, thereby adding some 

information to the views of learning as moving to a higher level of thinking, and as changes in 

discourse. I will begin with a brief summary of the participants’ changes in levels of thinking as 

well as changes in their geometric discourses. 

Summary of the Results 

To investigate changes in students’ mathematical learning, my study focused on 

comparisons of students’ competencies in the topics of triangles and quadrilaterals at the 

beginning of a semester and at its end. I conducted the analysis using van Hiele levels (1959) to 

investigate changes in students’ geometric thinking, and also used Sfard’s (2008) discursive 

framework in which mathematical features of discourse (i.e., word use, visual mediators, 

narratives and routines) are analyzed.  
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Changes in van Hiele Levels 

Changes in participants’ (n=63) competencies were revealed in their overall 

performances on the van Hiele geometry pretest and posttest. There were improvements in 

answering questions related to van Hiele Levels 1 to 3 at the posttest. In particular, most 

participants did better in the following: 

• More than ninety-five percent of the participants correctly named triangles, 

squares, rectangles, and parallelograms at the posttest.  

• More than ninety-five percent of the participants at the posttest correctly 

identified the properties of isosceles triangles, squares, rectangles, and rhombi 

related to their sides, angles and diagonals.  

• About ninety percent of the posttest participants correctly used logical statements 

regarding triangles, squares, rectangles, and parallelograms.  

These changes show that participants gained familiarity with figures like triangles, 

squares, rectangles, rhombi and parallelograms, and with their properties. Participants mentioned 

more about the properties of angles and sides in a parallelogram, but less on the properties of 

diagonals. The comparisons of van Hiele pretest and posttest levels revealed students’ 

weaknesses in using deductive reasoning to construct proofs (Level 4) and abstract thinking 

(Level 5).  

Given these test results, one conclusion is that the geometry course helped students to 

move from a lower van Hiele level to Level 3. However, the van Hiele test also showed that a 

student entering the class at Level 3 likely would stay at Level 3. But that was expected, as the 

course was designed for future elementary and middle school teachers, and the course materials 

emphasized activities mostly at Levels 1 to Level 3 of geometric thinking, and included only a 
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brief introduction to constructing proofs. The study did not look at how teaching or the use of the 

textbook affected these students’ learning, but certainly the textbook and course instructions 

contributed in some degree to these prospective teachers’ learning about geometric figures and 

their properties.  

The van Hiele Geometry pretest and posttest served as a frame to gather general 

information about students’ competencies and their thinking as a whole, but it did not provide 

details on changes in students’ thinking at an individual level. For this purpose, I also analyzed 

changes in participants’ geometric discourses with in-depth interviews. 

Changes in Geometric Discourses 

I begin with brief remarks on the discursive framework, in order to set up my later 

comments. Recall that the discursive framework conceptualizes mathematics as a discourse, and 

defines “learning mathematics” as changing of participation in mathematical discourse. The four 

key mathematical features highlighted in the discursive framework (along with their definitions) 

are: 

• Word use: Mathematical words that signify mathematical objects or process 

• Visual mediators: Symbolic artifacts, created specially for the sake of this 

particular communication 

• Narratives: Any text, spoken or written, which is framed as a description of 

objects, of relations between processes with or by objects, and which is subject to 

endorsement or rejection; that is, to being labeled as true or false.  

• Routines: Repetitive patterns characteristic of the given mathematical discourse 

(Sfard, 2008) 
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These features interact with one other in a variety of ways. For example, endorsed 

narratives contain mathematical words, and provide the context in which mathematical words are 

used; mathematical routines are apparent in the use of visual mediators and produce narratives; 

visual mediators are used in the construction of endorsed narratives, etc. The most interesting 

part of this investigation was the way in which the examination of these mathematical features 

contributed to understanding the richness and detail of the participants’ geometric discourse and 

their thinking.  

In an earlier chapter, I described in detail the uniqueness of each participant’s geometric 

discourse at the beginning of the semester, and again at the end of the semester. The main 

changes in participants’ geometric discourses occurred in the following two features of 

mathematics discourse: word use and routines. 

Word use. This study focused on participants’ use of the names of quadrilaterals, and of 

the parts of quadrilaterals. Participants’ use of mathematical terminology changed from 

describing parallelograms as collections of unstructured quadrilaterals based on family 

appearances, to using the names as collections of quadrilaterals sharing common descriptive 

narratives. Some participants used of names of quadrilaterals with a hierarchy of classifications 

in the Post-Interview.  

Word use is a key element in identifying objectification in the discursive framework. 

Sfard (2008) defines objectification as “a process in which a noun begins to be used as if it 

signifies an extradiscursive, self-sustained entity (object), independent of human agency” 

(p.412). 

The use of the word parallelogram illustrates the importance of objectification. When a 

student states, “this is a parallelogram” based on its family appearance, she uses the word 
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parallelogram as a label to match polygons fitting this visual description, rather than a definition. 

It is perhaps in course work, through the process of identifying, defining and generalizing 

properties of quadrilaterals, that this student has developed a concept of parallelogram, so that 

the word is used as a collection of quadrilaterals sharing a common descriptive narrative (i.e., 

definition), such as “a parallelogram is a quadrilateral with opposite sides of the same measure” 

That said, the student uses the word parallelogram to include 4-sided polygons such as squares, 

rectangles, and rhombi. The change in discourse counting as learning is a transition from non-

objectified speaking to objectified speaking.  

Objectification is not straight-forward to detect; however there are clues in the ways 

students speak that provide hints about how they are thinking. In the example in the previous 

paragraph, “a parallelogram is a quadrilateral with opposite sides of the same measure”, the 

word “parallelogram” is used with “is”, “quadrilateral” and “opposite sides of the same 

measure”. One clue that “parallelogram” has been objectified is that “is” is used with the object. 

That is, “parallelogram” is a noun. Also, in this discourse “quadrilateral” and “opposite sides of 

the same measure” are used exclusively with geometric shapes. Thus, “a parallelogram is a 

quadrilateral with sides of the same measure” is stated as a mathematical fact in geometry. At the 

non-objectified stage of the use of “parallelogram”, we would be more likely to hear something 

like “this parallelogram has two long sides equal and two short sides equal”. The use of “has”, 

“long sides”, “short sides” and “equal” describes what a student sees about a parallelogram, but 

does not have to describe a mathematical fact.  

The objectification of parallelogram is perhaps even more complex when we consider 

the hierarchy of classifications. I suggest that the objectification of parallelogram is complete 
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when students can map out a hierarchy of classifications. Only then is the word parallelogram 

recognized in all its connections and relations, and its diversity realized.   

Routines. I analyzed changes in participants’ routine procedures, including routines of 

classifying, identifying, defining, verifying and substantiating. Briefly stated, participants’ 

routine procedures changed from identifying polygons using visual recognition, to identifying 

them using endorsed narratives. In verifying claims, participants’ routine procedures changed 

from recalling, measuring and/or constructing routines, to formulating proofs using mathematical 

propositions and axioms. Some participants’ routine procedures also included algebraic 

reasoning to verify claims in geometry.  

Some participants’ routines of verifying were descriptions of processes of mathematical 

activity. For example, one participant verified that diagonals in a rectangle have equal measure 

by explaining, “They are the same because I measured it”. The term “I measured it” reveals that 

the participant’s routine of verifying relies on comparing and checking measurements, and is a 

description of what she did. Another participant verified that two angles were congruent by 

asserting, “the angle can slide over to this position and create this angle, and the line can be 

rotated so that this angle now becomes this angle”. The use of  “angle” with “slide over” and 

“create”, and the use of  “line” with “be rotated” and “becomes”, indicate that this participant’s 

routine of verifying was a description of what the lines and angles did in an imaginary way, but 

was not rigorously based on mathematical facts. Changes in discourse that count as learning are 

transitions from an object level way of speaking to an abstract level ways of speaking.  

In this study, the participants’ routine procedures were less polished than those of 

professional mathematicians. However the analyses of their routine procedures shed light on 
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participants’ reasoning and problem solving skills, and on their abilities in constructions of 

mathematical proofs.  

What Can We Generalize and Why 

Although, much support exists for van Hiele levels, researchers have questioned and 

modified certain aspects of these levels. To answer the question “What additional information 

does the discursive framework provide with regard to the levels of geometric thinking?”, I need 

to discuss how and in what way my study contributes to mathematics education based on what 

we know so far about van Hiele theory. In this section I begin with a brief review of what we 

know about so far the van Hiele theory, and follow with descriptions of geometric discourses at 

each van Hiele level, and then discuss the usefulness of revisiting the van Hiele levels using a 

discursive lens.  

To elaborate more on “what do we know so far about the van Hiele theory?”, let me refer 

to the following three questions raised by Clements (1992):  

1. Are the levels discrete?  

2. Do students reason at the same van Hiele levels across topics?  

3. Should other characteristics of the levels be considered?  

First, according to the van Hieles (1959), the levels are discrete in the sense that they are 

qualitatively different from one another, and the “discontinuities are … jumps in the learning 

curve, and these jumps reveal the presence of the levels” (p. 76). Research confirmed that the 

five van Hiele levels are distinct qualitatively from each other. However, many studies have 

questioned whether the van Hiele levels are discrete, because some students’ levels of geometry 

thinking are in transition between two levels (e.g., Fuys et al., 1988; Burger & Shuaghnessy, 

1986). For example, when assigning students to van Hiele levels in Burger and Shaughnessy’s 
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project, reviewers could not resolve disagreements on whether students should be assigned to 

van Hiele Level 0 or Level 1 (Burger & Shaughnessy, 1986, p.18). These results encouraged 

researchers to provide evidence for a more dynamic and continuous model (e.g., Fuys et al., 

1988; Gutierrez et al., 1991; Usiskin, 1982).  

Going in that direction, with the assumption that van Hiele levels are not discrete, 

Gutierrez et al. (1991) developed a model, “degree of acquisition of a van Hiele level” (p. 238). 

This model assigned a numerical value to indicate one’s acquisition of a van Hiele level. For 

instance, when students have no trace of the thinking methods specific to a new level, they have 

no acquisition to this level of reasoning. Once the students begin to be aware of the methods of 

thinking at a given level, with some attempts to work on this level, they have a low degree of 

acquisition of the level. Improvement goes on until students attain complete acquisition of the 

new level, when they have complete mastery of this way of thinking and are able to use it 

without difficulties. Figure 5.1 shows both the quantitative and qualitative interpretations of the 

model (p.238). 

 

Figure 5.1 Degree of acquisition of a van Hiele level 

Using this model, Gutierrez et al. found that the possibility that a student can develop two 

consecutive levels of reasoning at the same time, and the acquisition of the lower level is more 

complete than the acquisition of the upper level. Their study inferred possible continuity within a 

van Hiele level.  
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More recently, when describing the levels of reasoning, Battista (2009) illustrated 

students’ reasoning at each level with different phases. For example, he suggests that “Students 

at the beginning of Level 1 [Visual-Holistic reasoning] might identify figures…as squares” 

(p.93); “Students at the end of Level 1 might reject… as a square”(p.93); and finally, “Before 

reaching the last phase of Level 2 [Descriptive-Analytic reasoning], most students would identify 

… as a square”(p.93). Battista’s descriptions of students’ levels of reasoning showed the 

continuity of the development within levels. More researchers are convinced intuitively that the 

levels are “dynamic rather then static” (Burger & Shaughnessy, 1986, p.45) and refer to 

“continuity rather than jumps” (Clements, 1992, p.429) in the process of learning. However, very 

little study has been done in this area to verify these claims.   

Several studies using van Hiele levels to categorize students’ levels of geometry thinking 

across different topics indicate that students may not be working at the same level on all concepts 

(e.g., Burger & Shaughnessy, 1986; Mayberry, 1983).  For example, Mayberry (1983) assessed 

nineteen undergraduate pre-service teachers’ levels of thinking using seven geometry concepts: 

squares, right triangles, isosceles triangles, circles, parallel lines, similarity and congruence. The 

study found that “the determination of the success criterion for a given topic and level was rather 

subjective” (p.68). This conclusion can be understood to mean that pre-service teachers were at 

different levels for different concepts. However the study did not provide information concerning 

in what way they are different. For instance, one might suspect that a more difficult concept such 

as similarity would require a higher van Hiele level of thinking than the classification of a 

quadrilateral.  

In Burger and Shaughnessy’s project (1986), interview tasks consisted of drawing, 

sorting, identifying, and defining geometric shapes such as triangles and quadrilaterals. With 
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regard to different tasks, some students operated at different levels. For example, one student 

was reasoning at Level 3 (Abstraction) on the sorting task, but was assigned to Level 4 

(Deduction) on the identifying and defining tasks because he was able to conjecture and attempt 

to verify his conjecture by means of formal proof (p.42).  

The ways of identifying students’ levels of geometric thinking suggest that we should 

adapt van Hiele levels to the complexity of the human reasoning process because students do not 

behave in a simple, linear manner.   

The van Hieles argued that a learning process is also a process of learning a new 

language, because “each level has its own linguistic symbols” (van Hiele, 1959/1985, p.4). The 

van Hiele levels reveal the importance of language use, and language is a critical factor in the 

movement through the levels. Van Hiele (1986) provides an explanation of the language use at 

each level. For example, at Basic level there is a language, but the use of this language is limited 

to the indication of configurations that have been made clear based on observation. At Level 1, 

students need to develop the language that belongs to the descriptive level. At Level 2, the 

language has a much more abstract character then the descriptive level, and reasoning about 

logical relations between theorems begins at this level. At Level 3, students use the language of 

proof (p.43-53). However, the word “ language” is not clearly defined in the broad use of it. 

Some researchers would consider “language” in the comparisons of informal language versus 

formal language, whereas others would refer to it as the different use of mathematical vocabulary 

at different van Hiele levels.  

In discussing the assessment of students’ reasoning in van Hiele levels, Battista (2007) 

argues about the validity of the reasoning, which involves the accuracy and precision of students’ 

identifications, descriptions, conceptions, explanations and justifications. Researchers must 
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determine which, if any, validity or mere uses of proprieties are critical characteristics of van 

Hiele levels (p.855). The analysis of van Hiele levels depends largely on illustrating students’ 

verbal expressions. Many researchers found that activities such as sorting shapes and drawing 

pictures of polygons can also provide evidences of students’ levels of thinking (e.g., Burger & 

Shaughnessy; 1986; Mayberry, 1983). These activities work well especially with younger 

children (Clements et al., 1999), while their language skills are still under development. 

Therefore we need to take a greater consideration of what students “say” and “do” when working 

on a geometry task in order to better understand their geometric thinking.  

My study took a different direction, in examining students’ geometric thinking through 

their geometric discourse. The results of these examinations revealed small fractions of the 

richness of human thinking, while helping to add a little more data on what we know so far about 

the van Hiele Theory.    

The van Hiele Levels: Discrete or Continuous?  

This ongoing discussion about the continuity and discreteness of van Hiele theory 

motivates the study to revisit the van Hiele levels with a different lens. I will use two of the most 

revealing characters of geometric discourse, geometric object and routine of substantiation, at 

each van Hiele level to argue that my study confirms the discrete nature of the levels, and adds as 

well more information on the continuity of the levels. I use the term “geometric object(s)” to 

refer to all the mathematical objects involved in a particular geometric discourse, whereas the 

term “geometric figure(s)” refers to all the 3 or 4-sided polygons. My discussions about students’ 

substantiation at each van Hiele level focus on two types of substantiations: the object level and 

abstract level substantiations.  
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The object level substantiation emphasizes students’ routines of substantiation, looking at 

descriptions of how geometric figures are being investigated. Describing static lines, angles and 

polygons as movable entities under transformations (i.e., rotation, translation and reflection), as a 

way of substantiation, is an example of the object level of substantiation. With regard to 

definitions of different quadrilaterals, however, routines of substantiation depending on 

measurement routines to check the sides and angles of quadrilaterals, without thinking about how 

quadrilaterals are connected, are other examples of the object level of substantiation. Object level 

substantiation is a routine of substantiation, where students focus on the concreteness of 

geometric figures.  

Abstract level substantiation emphasizes students’ routines of substantiation using 

endorsed narratives to endorse new narratives. That is, students use mathematical definitions and 

axioms to construct mathematical proofs. During my interviews with students, I noticed that 

students with an abstract level of substantiations also used object level substantiations to modify 

their justifications. For example, a student used the Angle-Side-Angle congruence criterion to 

construct a proof at an abstract level that opposite angles of a parallelogram are congruent, and 

could also justify why this congruence criterion works using rotations at an object level.  

Geometric Discourse at Level 1  

At Level 1, students name geometric figures based on their appearance. In geometric 

discourse at this level, the word use is passive. That is, the process of naming a polygon is an act 

of matching a picture of a polygon with its given name. When a student is asked for verification 

of why such polygons are called “rectangles”, or why “opposite sides and angles of a 

parallelogram are equal”, the course of actions include direct recognition that are self-evident. 

Some students use their prior experiences to draw conclusions, but the course of actions are 
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known as rote memorizations, such as “I learned it in school”, or “I know it is a square”. At this 

level, grouping quadrilaterals into different groups (i.e., rectangle, rhombus, parallelogram, 

square, etc.) is about putting them together by their names. The geometric objects at this level of 

discourse are collections of concrete, unstructured, discursive objects, and there is no routine of 

substantiation.   

Geometric Discourse at Level 2 

At Level 2, students are able to identify some properties of geometric figures, but 

properties are not yet ordered. In geometric discourse at this level, word use is routine driven, 

which means that naming a polygon involves not just matching a polygon with a name, but 

referring to it with a common descriptive narrative according to some visual properties. When a 

student is asked for an explanation of why a polygon is called a “rectangle”, or why “opposite 

sides and angles of a parallelogram are equal”, the courses of actions include direct recognition, 

as well as counting the number of sides, or measuring the sides and angles. The student might 

respond with, “It looks like it has four right angles”, or “I measured and all the angles are 90 

degrees”. At this level, grouping quadrilaterals into different groups involves organizing them by 

their names and by some of their visual properties. The geometric objects at this level of 

discourse are collections of concrete, unstructured discursive objects which might be placed into 

disjoint categories (i.e., they all have right angles, or parallel sides, etc.). The routines of 

substantiations in this geometric discourse focus on checking and verifying partial visual 

properties of geometric figures.  

Geometric Discourse at Level 3 

Level 3 is a level where the properties of geometric figures are ordered, and they are 

deduced one from another. A student thinking at this level does not understand deduction, but the 
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definitions of figures come into play. In geometric discourse at this level, word use is still object 

driven, as the naming of a polygon depends on its visual properties, and a common descriptive 

narrative accompanying the name of the figure (i.e., a definition of a quadrilateral). When a 

student is asked why a polygon is called a “rectangle”, the course of action is to check the 

defining conditions of the polygon by counting the number of sides, and measuring and 

comparing the sides or angles. A possible response is, “It is a rectangle because it is a 

parallelogram, and it has four right angles”. At this level, when the student groups quadrilaterals, 

a polygon could belong to multiple groups at the same time by definition. For example, a student 

could identify a square as a rectangle, a parallelogram, and a rhombus because it fits the 

descriptions of these polygons. Geometric objects at Level 3 are collections of concrete 

discursive objects and they begin to connect with joint categories. In the case of quadrilaterals, 

all 4-sided polygons begin to fall into a hierarchy of classification.  

It is important to note that objectification can be found in geometric discourse at Level 3. 

That is, a concrete discursive object, such as a 4-sided polygon labeled as a “square” at a lower 

geometric discourse (i.e., a lower van Hiele level), becomes an abstract discursive object at this 

geometric discourse, as the word “square” presents this multi-dimensional thing with definitions 

and relations to other quadrilaterals. Geometric discourse at Level 3 also reveals the details of 

substantiation as a beginning stage of deductive reasoning.  

Geometric Discourse at Level 4  

At Level 4, students are able to reason deductively. In geometric discourse at this level, 

word use is object driven. That is, the naming of a polygon or using a mathematical term (e.g., 

angle bisector, supplement angle, etc.) is guided by common descriptive narratives (i.e., 

definitions). Grouping quadrilaterals into different groups means arranging them by definitions 
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with a hierarchy of classification. Routines of substantiations lead to the constructions of new 

endorsed narratives. At this level, students are more fluent in using definitions in their 

substantiation, and in making connections among endorsed narratives (axioms, propositions, etc.) 

to construct new endorsed narratives. Geometric objects at Level 4 are collections of abstract 

discursive objects, and the main activity of substantiation is to produce newly endorsed 

narratives, or commonly, to construct mathematical proofs.  

After the description of geometric discourse at each van Hiele level, the discreteness, in 

terms of qualitatively different geometric thinking at each level, is evident. For years, researchers 

have examined the possibility that levels are continuous without jumps. Let me move on to my 

earlier claim that my study provides evidence of the continuity of the levels; in particular, the 

continuity of levels made visible through the variability of participants’ changes in their 

geometric discourse at the same van Hiele level, as well as at two consecutive levels. 

Continuity becomes more evident once we realize that changes in students’ geometric 

discourses are forms of change in thinking and communication, and that thinking is developed 

continuously towards, rather than in jumps, to a higher van Hiele level. I wish to discuss in more 

detail the development of geometric discourse, highlighting the development of word use and the 

changes in routines of substantiation. 

Continuity Within a van Hiele Level 

AYA and ARI showed no change in van Hiele levels in their responses in the pretest and 

posttest, but I found changes in their geometric discourses. 

AYA’s van Hiele pretest and posttest responses suggested that her thinking operated at 

Level 2 (descriptive). I analyzed AYA’s word use, and found that her use of the word 

“parallelogram” changed from the pre-interview to the post-interview. When she spoke the word 
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“parallelogram” at the beginning of the semester, she meant any polygon having pairs of parallel 

sides, in using a definition of parallelogram with only a necessary condition. Later in the 

semester, AYA developed more understanding of parallelograms in the geometry class, and she 

was able to use definitions of parallelograms with both necessary and sufficient conditions. Her 

thinking at the time fit more towards the descriptions of geometric discourse at Level 3. Figures 

5.2 and 5.3 illustrate the characteristics of AYA’s geometric discourse at the pre-interview and at 

the post-interview, respectively.  

 

Figure 5.2 Characteristics of AYA’s geometrics discourses at Level 2 at the Pre-

interview. 
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Figure 5.3 Characteristics of AYA’s geometrics discourses at Level 2 at the Post-

interview.  

 

Figures 5.2 and 5.3 show two main changes in AYA’s geometric discourse, a change in 

word use and a change in reasoning. AYA had developed competence in using definitions to 

identify and group polygons with no hierarchy of classification, and had developed some 

informal deductive reasoning as her geometric thinking moved towards Level 3. Here, I am not 

trying to contradict the findings from AYA’s paper-pencil pretest and posttest with her interview 

results, but rather to compile the results and to treat her thinking more dynamically. Her progress 

illustrates a student’s geometric thinking developing continuously within Level 2 and in 

transition between Level 2 and Level 3, as she was more competent in using definitions to name 

polygons, and her routines of substantiation began to operate at an abstract level in using 

definitions and axioms to construct mathematical proofs. 

ARI’s geometric discourse presents another example of such continuity, but within a 

different van Hiele level. Her van Hiele pretest and posttest responses suggested that her thinking 

operated at Level 3. ARI came in with the ability to identify and group polygons using 
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definitions at the beginning of the semester. By the end of the semester, she began to reason 

more abstractly by constructing mathematical proofs using definitions and axioms. Figures 5.4 

and 5.5 illustrate characteristics of ARI’s geometric discourse at Level 3, in the pre-interview 

and post-interview, respectively. 

 

Figure 5.4 Characteristics of ARI’s geometric discourse at Level 3 at the Pre-

interviews. 

 

Figure 5.5 Characteristics of ARI’s geometric discourse at Level 3 at the Pre-

interviews. 
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Clearly, there are changes in ARI’s geometric discourse within Level 3. Building on her 

familiarity with using definitions of quadrilaterals, ARI later showed understanding of how 

quadrilaterals are connected. After ARI was more fluent in using definitions, she developed 

routines of substantiations using informal deductive reasoning to substantiate her claims.  

In comparing ARI’s geometric discourse at Level 3 with AYA’s at Level 2, we find 

similarities between ARI’s geometric discourse at the pre-interview and AYA’s at the post-

interview. Both shared familiarity with using definitions in identifying and grouping 

quadrilaterals, and were able to reason at an object level. Perhaps this observation indicates the 

continuity of learning in transitioning between two consecutive levels, Level 2 to Level 3. I will 

next look at ALY’s geometric discourse to make another case that the learning process is 

continuous.   

Continuity Within Two Consecutive Levels  

ALY was one of two students of the study who reached Level 4 at the end of the 

semester. At Level 3, ALY demonstrated a typical behavior at this level, as illustrated in Figure 

5.6.  
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Figure 5.6 Characteristics of ALY’s geometric discourse at Level 3 at the Pre-

Interview. 

Similar to other students at Level 3, ALY came in with the ability to use definitions to 

identify and group polygons, but she did not show how quadrilaterals were connected, and 

performed object level substantiation. At the end of the semester, she was able to draw 

connections among quadrilaterals and to use propositions and axioms to construct mathematical 

proofs, as illustrated in Figure 5.7. 

 

Figure 5.7 Characteristics of ALY’s geometric discourse at Level 3 at the Post-

interview. 

 

Figure 5.7 presents a main characteristic of a Level 4 discourse that is absent in Level 3: 

abstract level of substantiations. At this level, ALY showed familiarities with using definitions 

and axioms to construct proofs and with using algebraic symbols to write a formal mathematical 

proof. However, at Level 4 we also expect to see behavior where students are able to apply 

inductive reasoning in an unfamiliar situation, and to connect the knowledge they learned. In 

ALY’s case, she was able to apply her knowledge of quadrilaterals to construct mathematical 
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proofs in a familiar situation (e.g., to prove opposite angles or sides are congruent using 

congruent criterions), having carried out similar proofs in her geometry class. When ALY was 

asked to prove two definitions were equivalent, she did not finish the proof because the task was 

new to her, and she did not know how to use the same axioms in a new situation. I argue that 

ALY was at the beginning stage of Level 4 thinking, starting to gain the skills and languages 

needed for mathematical proofs, but needing more practice to move forward to an advanced 

abstract level. 

AYA, ARI and ALY each made a case that the development of geometric discourse 

within a level is continuous, and the development of geometric discourse from one van Hiele 

level towards a geometric discourse at the next van Hiele level is also continuous. Using a 

discursive lens in this study allowed me to unpack students’ thinking, and to better understand 

what students said about geometric figures and what they did when they asked for justifications. 

As a result, my study also contributes to answering another question raised by Clements, on 

whether there are other characteristics that should be considered at each van Hiele level.  

The van Hieles wished to note language differences and different linguistic symbols at 

each level, in the study of language in geometric thinking, but were never explicit about it. The 

language of mathematics I wish to discuss here does not refer to a list of vocabulary words or 

grammar rules, but rather to the communicative competence necessary and sufficient for 

competent participation in mathematical discourse.  

The van Hiele descriptions of the levels focus largely on how a student reasons about 

geometric figures in a language, for instance, in response to what is a rectangle versus what is 

not a rectangle, in applying a definition. What is missed or not clearly emphasized is the meaning 

of a mathematical term when used by a student. When I consider each van Hiele level as its own 
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geometric discourse with characteristics of word use, narratives, routines and visual mediators, I 

regard word use as all-important, revealing facts concerning how a concept is formed. In this 

study, students’ word use provided significant information about how a concept of a geometric 

figure is formed at different van Hiele levels among different students. Moreover, a careful 

analysis of students’ mathematical word use in geometric discourse also shed light on how words 

are used and whether the words are used correctly for the sake of communications. If any other 

characteristics should be considered at van Hiele levels, I recommend adding word use to the list. 

Discursive routines do not determine students’ actions, but only constrain what they can 

reasonably say or do in a given situation, as negotiated conventions. However, discursive 

routines offer valuable information about what students do and say as a course of action to make 

conjectures and justifications in a pattern at a geometric discourse. I find it very useful to see the 

details of students’ routines of identifying, defining and justifying when working on a task about 

geometric figures and their properties, where the roles of definitions are demonstrated at the first 

three van Hiele levels. Discursive routines are associated with students’ creativity when they 

apply routines in non-routine ways; that is, in applying familiar routines in an unfamiliar 

discursive context. In my study, some participants used algebraic reasoning (familiar routines) to 

construct geometric proofs (unfamiliar discursive context), without using geometric axioms. 

Therefore, if any other characteristics should be considered in van Hiele levels, I also 

recommend adding routine, a repetitive discursive action to the list.   

I have tried in several ways to explain what additional information this discursive 

framework provides with regard to the levels of geometric thinking, as well as how this 

additional information adds to what we know about van Hiele levels. There is no closure to what 
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we know about the van Hiele levels. Looking at what we do know, we are led to ask what future 

studies are needed in this important area of research.  

What Can Be Asked and Why 

Have you ever had an experience of sitting alone at your desk thinking, lost in thoughts 

as if engaged in a conversation with someone? We must concede that thinking is an 

individualized form of interpersonal communication, and whatever is created is a product of 

collective doing. As a teacher, most of the time, I wish to know what is in my students’ minds 

and their thoughts in mathematics. This empirical study in some way gives us an opportunity to 

analyze students’ thinking at an individual level. One question natural to ask is, “If anything, 

what do we learn from students’ thinking?”  

What Do We Learn From Students’ Thinking? 

First, I want to discuss the existence of Level 0. Some researchers suspected the existence 

of a level prior to the Base Level (Level 1). My empirical study shows that students can reason at 

a higher van Hiele level, but their lack of knowledge in geometry, or simply forgetting what they 

learned in geometry, has kept them from giving correct answers. In ANI’s case, we learned that 

the geometric pretest placed her at Level 0. However, my interview with ANI after the pretest 

revealed that she was able to group parallelograms by their names, but did not know the 

differences between a rhombus and a square, as well as the differences between a parallelogram 

and a rectangle; this geometric discourse fit more to the descriptions at Level 1 than Level 0.  

It was quite common during the interviews that a student could not identify a “trapezoid”, 

or a “rhombus”, because they did not learn these names, or forgot the names. So, if we consider 

the existence of Level 0 (a pre-level to Level 1), then it is likely that we include the possibility of 

the kind of reasoning students perform in a domain of knowledge that they have not yet 
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explored. This observation led us to consider: “What does van Hiele theory serve to assess?” and 

“What do we wish to find out using van Hiele theory?”  

Next I want to think about this scenario, when students were prompted to show that two 

opposite angles were congruent in a parallelogram. First, visually they were convinced that the 

two angles were the same, but further verification was required. One student responded that the 

two angles were congruent because she used a protractor to measure the angles and they had the 

same measurement. This course of action is typical in geometric discourse at Level 2, where a 

student’s reasoning depends on checking and verifying the conditions for being congruent. From 

this response we learn that this student has mastered knowing what are “opposite angles” in a 

parallelogram, but needs to explore what we call “congruent”, a property of opposite angles, in a 

concrete way. For the same task, another student described a sequence of transformations where 

a rotation was followed by a translation, to show that the two angles were the same. She stated 

that she could rotate one angle, and moved the angle to match the other one, and was sure that 

the two angles would match exactly. This course of action is typical in geometric discourse at 

Level 3, where a student is familiar with the term “congruent” and tries to explore whether 

opposite angles are congruent concretely. From this response, we might infer that students need 

to explore the properties of parallelograms through hands-on activities before they reach the 

conclusion that “all opposite angles are congruent in any parallelograms”; then inductive 

reasoning starts to make sense.   

Recall that van Hiele levels are sequential, in that students pass through the levels in the 

same order, although varying at different rates, and it is not possible to skip levels. In my study, 

we noticed a sequence where a student needs to understand “opposite angles” in the case of a 

parallelogram and the meaning of “congruent” first; and then move on to explore the properties 
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and relations regarding opposite angles in a parallelogram; and then, perhaps, based on these 

concrete experiences, she begins to develop some abstract thinking such as inductive reasoning. 

Thus, the object level of substantiations clouds important points van Hiele made that students 

must explore domains before describing them, that elaborate descriptions of concrete properties 

and relations must be made before abstract relations are explored.  

One challenge our students face is the development of abstract relations, because the 

abstract relations in geometry may never be fully understood by some students. It takes time for 

students to get used to new mathematical terms, as well as to digest the hands-on activities 

relating to a particular property, before they can generalize it. When students are introduced to 

more advanced thinking in deductive reasoning, some mimic the proofs without fully 

understanding them. When we rush to the stage of constructing proofs that a student is not ready 

for, it creates obstacles. It is important to give students enough opportunities to explore a 

sequence of activities at a level built on other activities at a previous level before abstract 

relations are explored.  

Next, let us discuss the breath of Level 3. Recall that among the sixty-three students who 

took the van Hiele posttest, thirty of them were considered at van Hiele Level 3; and among the 

twenty students who participated in the interviews, ten of them were being placed at Level 3 in 

the van Hiele posttest, and the interview analyses confirmed that these students were competent 

to use definitions to justify their conclusions. It was quite surprising to have more students at 

Level 3 than students at the lower levels. However, we also learned that students’ geometric 

discourses seemed to develop at different rates, and geometric discourse at Level 3 varied from 

person to person and varied in the same person at different times of the semester. Two main 

variations of the discourse at Level 3 are 1) how profound a student uses definitions (geometric 
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object) and 2) the way she reasons about the geometric figures (substantiation). Figure 5.8 

illustrate these two variations in Level 3. 

 

Figure 5.8 Characteristics of Level 3 geometric discourse.  

 

Figure 5.8 highlights possible variations of geometric discourse at Level 3. Having a 

geometric discourse at Level 3 indicates that a student has developed competence in applying 

definitions in their identifying and justifying routines. In this study, such a student may or may 

not make connections among the quadrilaterals, where a hierarchy of classification is presented 

and depending on how profoundly the student understands the definitions and uses them 

adequately.  

ATL’s geometric discourse shows that a student at Level 3 could have competence in 

using definitions to identify quadrilaterals, but still needs to develop other stills needed at this 

level. In contrast to ATL’s geometric discourse at the same level, AYA and ALY represented a 

group of students who could use definitions fluently, as well as reason at the object level. ANI 

and ARI represented a group of students who were more advanced at Level 3, when they used 

definitions to show a hierarchy of classification among quadrilaterals; and based on their 
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experiences of reasoning at object level, they also tried to substantiate their conclusions using 

some abstract relations.  

In our analysis of the variety of geometric discourses at Level 3, we have learned that 

Level 3 thinking is more complicated than previously thought. At this level, students need to be 

familiar with and feel comfortable using the definitions fluently; and at the same time, they also 

are developing informal reasoning by describing what they observe from exploration of concrete 

properties of geometric figures, so that they can see or feel the particularity of figures before 

abstract relations take place.  All these mathematical activities become students’ prior 

experiences in the development of abstract thinking. 

There is a challenge for teachers when teaching a group of students whose geometric 

discourses vary at different places. What kinds of activities will be suitable to all students so that 

they can move toward a higher level of thinking? It is also a challenge for researchers to identify 

kinds of activities that will help students in their development of geometric discourse at the same 

level and at different levels. 

Practical Information About Teaching and Assessment 

The empirical data of the study offers a dialogue between a learner and a researcher in a 

designed environment. The researcher carefully chooses the tasks, and prompts students’ 

thinking with well-designed protocols. However, this procedure is not too far from what a 

teacher might do in preparing instructional materials. So one question we ask is, “What practical 

information does this study offer about teaching and assessment?” 

We need more instructional interventions in our classrooms. Students need to explore 

“unfamiliar situations” using their existing knowledge. In an instructional sequence, a student 

first is introduced to a new concept or new way of presenting her idea in mathematics, such as in 
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constructing a proof by imitating what others say and do, and then she is asked to solve similar 

problems or construct similar proofs in a similar context. It is a practice of repeating the same 

process, the process of exploring the domain of polished tasks and well-designed mathematics 

activities, and it is an important part of learning. However, we do want our students to move 

beyond this stage and to be more creative. There are opportunities in the classrooms where 

students can be creative. Their discursive routines show that sometimes they prefer to use 

algebraic reasoning to derive a geometric proof. We need to encourage such thinking and create 

more activities to help students make connections between geometry and other domains of 

mathematics without losing the goals of introducing definitions and axioms in geometry.  

Our concerns about “communication,” “language,” and “discourse” in the mathematics 

classroom are not new. Fifty years ago, the same concerns motivated the van Hieles to develop 

their theory. Surprisingly, we still don’t have much to recommend what needs to be done in a 

geometry classroom for the sake of communication. My study can add some information about 

the need to clarify the mathematical terms we use in the classroom, and to be specific about the 

context in which they are used.  

When a student mentions the word “parallelogram”, she says nothing unless she makes 

explicit what she means. My empirical data shows that the word “parallelogram” could mean 

quite different things to our prospective teachers. Some thought parallelograms are four sided 

figures having two pairs of parallel sides with two sides longer; whereas some thought 

parallelograms are tilted rectangles and squares. A few students thought that a parallelogram is a 

polygon with pairs of parallel sides, and then of course, hexagons and octagons are 

parallelograms. I also found that the use of the word “bisector” was confusing, because of the 

several contexts where it was used. Some referred to it as “angle bisector”, whereas others 
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thought it “a mid-point of a segment”. A few thought “all bisectors cross each other in the middle 

of a parallelogram”. All these are correct ideas of “bisector” in a particular context. Just imagine 

a group of students working together, using the same word in their own way, and definitely 

creating some miscommunications. Teachers need to be very cautious about the way students use 

mathematical terms, in order to make the classroom discussions more understandable. During the 

interviews, I found it helpful to get to the bottom of what students meant with a mathematical 

term by asking questions such as, “Can you say more about what you mean by…?”, “Will you 

give me an example of what you just said about…?” and “Can you show me in this picture where 

is (are)…?”.  

Every classroom is different. I only can offer what worked in my study with prospective 

teachers. But the principle is that classroom teachers need to ask questions and to ask different 

questions, and to listen carefully to students’ responses, and give rapid feedback to ensure that 

mathematics subjects are communicated well.   

Limitation of the Study 

This study contributes to the field of mathematics education in several ways. It pilots an 

analytic method for investigating students’ geometric thinking using a discursive framework 

looking in particular at changes in prospective teachers’ learning about triangles and 

quadrilaterals in Euclidean geometry. The discursive framework presents another way to view 

van Hiele levels as qualitatively different geometric discourses.  

 The study illustrates the usefulness of the discursive framework for highlighting the 

opportunities for rich description at each van Hiele level through a discursive lens. A detailed 

analysis can discover differences in participants’ geometric discourse at each van Hiele level, 

which may impact the ways in which students do mathematics, speak about mathematics, and 



 

258 

therefore learn mathematics. This study also provides information for thought and discussion to 

teacher educators interested in geometry more specifically. For example, should the development 

of a concept in geometry begin with a word? Should the introduction of a quadrilateral begin 

with the necessary condition of a polygon with four sides? Finally, this study acknowledges 

students’ participation by analyzing their thinking processes as the union of the words and 

actions observed during the interviews.  

The primary limitations of this study have been stated throughout this dissertation, but 

will be reiterated here briefly. First, analyzing students’ thinking processes (i.e., in video 

recordings and interview transcripts) is challenging. In particular, when participants’ thinking 

was not yet consistent and logically ordered, analyzing their geometric discourse was harder. 

Hopefully, my descriptions and interpretations are clear. Secondly, the analytic decisions 

regarding what to present and to compare for each participant were made to illustrate similarities 

and differences. Thus, the primary perspective represented here is mine. I acknowledge that 

another individual using the same data (i.e., reading the transcriptions) may see things quite 

differently. It is possible that some important responses from participants during the interviews 

may have been missed. Finally and most importantly, I interviewed twenty students, and 

presented my analyses for five of them. Thus many claims are based on the cases of five 

students, or of twenty students. In addition, this study focused only on the “two end points” of 

students’ thinking during the time of their course work. I did not consider the individual 

aptitudes of students’ learning, and the study may miss some advanced thinking gained after the 

course is over. Therefore, there is no closure to my study, but it opens the door for me to pursue 

further investigations. 



 

259 

The study leaves me a long list of looming questions and ideas for future research. First, 

there is a group of students whose van Hiele levels could not be determined by their test results, 

but who participated in the interviews. I decided not to include their interview responses in my 

analyses in order to narrow the scope of the study. To continue the study, one could analyze 

these data to find out how the model of development of geometric discourse would help to 

identify participants’ levels of thinking. And how would these data help to refine the model of 

development of geometric discourse? 

This study focused on students’ geometric discourse, and how this discourse helps us to 

learn more about their thinking. However, one open question asks what this mathematics 

discourse looks like when a student works on different mathematical tasks that include different 

content domains of mathematics, and how the subsets of mathematics discourse interact with 

each other. Perhaps it will help to gain more information regarding one of Clement’s questions, 

“do students reason at the same van Hiele levels across topics?”  

As mentioned previously, for those interested in geometry or teaching geometry, an 

investigation using a discursive lens into students’ use of mathematical terminology in geometry 

would be a next step. This analysis could also be extended to other mathematical topics. More 

discussions regarding classroom interactions are needed. What can we do to help students use 

mathematical terminology more precisely for the sake of communication and development of a 

mathematical concept?  

We need to develop frameworks for analyzing activities from both textbooks and 

classrooms, and to identify mathematical activities that help students move to higher van Hiele 

levels. The rise and popularity of computer software created a new learning environment for 

students, and presented an important instructional and learning tool in school curriculum. Many 
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researchers and curriculum developers want to design pre-constructed activities using software, 

and they hope that these activities will serve as mediators to help students learn geometry. In 

response, there is a need to develop instruments to examine these activities, with the goal of 

helping students develop more advanced levels of thinking.   

Finally, we need to revisit van Hiele levels with multiple lenses, in order to have a better 

picture of human thinking, and to improve communication through classroom interaction. How 

can teachers better facilitate classroom discussions at various levels and in various contexts?  

In summary, this study provides opportunities for conversations among mathematics 

education researchers, curriculum developers, and teacher educators and teachers, on the learning 

and teaching of geometry. Such conversations would address students’ levels of thinking in 

Euclidean geometry through the lens of a discursive framework, in hopes of improving research 

and teaching, and therefore better serving mathematics learners.  
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APPENDIX A 

 

RESEARCH STUDY CONSENT FORM 
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Appendix A: Research Study Consent Form 

Dear Participant: 
You are invited to participate in a research study (Research title: The van Hiele Theory Through 
the Discursive Lens: Prospective Teachers’ Geometric Discourses). Researchers are required to 
provide a consent form to inform you about the study, to convey that participation is voluntary, 
to explain risks and benefits of participation, and to empower you to make an informed decision.  
You should feel free to ask the researcher any questions you may have. 
 
From this study, the researcher hopes to learn about prospective teachers’ knowledge of basic 
geometric shapes; their abilities to make conjectures and their abilities to construct mathematical 
proofs. Participating in the study will involve discussing your understanding about geometric 
shapes and their properties. You will also be asked to explain your reasoning for statements you 
make about geometric shapes. The entire study will take you about four hours: the first two-hour 
will take place at the beginning of the semester. This part includes a pretest (35 minutes) and an 
interview (85 minutes); the second 2-hour will take place at the end of the semester, and it 
includes a posttest (35 minutes) and an interview (85 minutes). You will receive10 extra points 
for the Math 202 class you are taking after you complete both pretest and posttest. If you are 
selected for an interview, you will be asked to work on three geometric tasks, and will discuss 
your results with the researcher or other students during the interview. You will receive $20 as 
compensation for your time from the researcher one week after you complete the 85-minutes 
interview.  
 
In the study, your written work (e.g., pretest, posttest, exercise worksheet, interview tasks etc.) 
will be collected, and your activities and conversations with the researcher and with other 
students will be audio-recorded and/or video-recorded. The researcher may take notes during the 
exercise and interview. The potential benefit for you to participate in this study is that you will 
receive the opportunity to learn properties of basic geometric shapes and to learn to formulate 
conjectures and geometric proofs, which is a part of the course content of Math 202 you are 
taking. Additionally, research indicates that self-reflection on one's thinking aids in increasing 
the level of sophistication of that thinking. Therefore, the researcher on this study will encourage 
such self-reflection. 
 
The results of this research study might be published in professional publications for teachers 
and researchers. Only the research team will use the audio, videotapes or transcripts for analysis. 
Your confidentiality will be protected to the maximum extent allowable by law. The data 
collected will be coded such that your name and personal information will not show up in or be 
linked with any reports and presentations of research project. The data will be stored and locked 
in a steel cabin in the office of the researcher in Wells Hall at the Michigan State University. 
Only the research term of the project or the Institutional Review Board (IRB) of the Michigan 
State University have access to the research records about you and the data collected from you. 
All research data will be retained for a minimum of 3 years following closure of project.  
 
Participation in this research study is entirely voluntary. You may choose not to participate at all. 
You may also refuse to participate in certain procedures or answer certain questions. 
Furthermore, you may decide to discontinue your participation at any time without penalty. 
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There are some minimal risks associated with your participation in this research study in that you 
may feel tired and embarrassed when you do not know how to justify your thinking. Thinking 
out loud may be an unfamiliar process to you and thus you might feel uncomfortable at first.  
 
Please sign your initials if you consent to either of the following: 

o I agree to participate in the pretest and posttest but not the interviews. 
 Yes   No  Initials____________ 

o I agree to participate in the pretest and posttest with the possibility of being chosen for 
the interviews. 

                                           Yes   No  Initials__________ 
Please sign your initials if you consent to participate in the videotaping: 

o       I agree to allow my image on the videotapes to be included in presentations. 
 Yes   No  Initials____________ 

o I agree to allow audio recording/video recording of the interview. 
 Yes   No  Initials____________ 

 
If you have concerns or questions about this study, such as scientific issues, how to do any part 
of it, or to report an injury, please contact Dr. Glenda Lappan at (517) 432-3635, or e-mail 
glappan@math.msu.edu or regular mail at A718 Wells Hall, MSU, East Lansing, MI, 48824. 
 
If you have any questions or concerns about your role and rights as a research participant, would 
like to obtain information or offer input, or would like to register a complaint about this study, 
you may contact, anonymously if you wish, the Michigan State University Human Research 
Protection Program at 517-355-2180, Fax 517-432-4503, or e-mail irb@msu.edu or regular mail 
at 207 Olds Hall, MSU, East Lansing, MI  48824. 
 
Participant’s Printed Name _________________________________________ 
 
Participant’s Signature__________________           Date __________________ 
 
Sincerely,  
 
Glenda Lappan, Ph.D.  
University Distinguished Professor  
Division of Science and Mathematics Education  
Michigan State University 
A718 Wells Hall 
(517) 432-3635, glappan@math.msu.edu 
 
Sasha Wang 
Doctoral Student 
Michigan State University 
A719 Wells Hall  
(517) 432-3635, wangsash@msu.edu  
 
 



 

265 

APPENDIX B 

 

BEHAVIORS AT EACH VAN HIELE LEVEL 
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Appendix B: Behaviors at Each van Hiele Level 

 
Level 1 (van Hieles’ Basic level) 
(P.M., 1958-59) 

1. “ Figures are judged according to their appearance.” 
 
2. “A child recognizes a rectangle by its form, shape. 

 
3. … and the rectangle seems different to him from a square.” 

 
4. “When one has shown to a child of six, a six year old child, what a rhombus is, what a 

rectangle is , what a square is, what a parallelogram is , he is able to produce those 
figures without error on a geoboard of Gattegno, even in difficult situations.” 

 
5. “a child does not recognize a parallelogram in a rhombus.” 

 
6. “the rhombus is not a parallelogram. The rhombus appears … as something quite 

different.” 
 
(P.M., 1968) 

7. “when one says that one calls a quadrilateral whose four sides are equal a rhombus, this 
statement will not be enough to convince the beginning student [from which I deduce that 
this is his level 0] that the parallelograms which he calls squares are part of the set of 
rhombuses.” 

 
(P.M., 1979) 

8. (on a question involving recognition of a titled square as a square)  
“basic level, because you can see it.” 

 
 
 
Level 2 (van Hieles’ first level) 
(P.M., 1957) 

1. “He is able to associate the name ‘isosceles triangle’ with s specific triangle, knowing 
that two of its sides are equal, and draw the subsequent that the two corresponding angles 
are equal.” 

 
(P.M., 1957; P.M. and Dina, 1958) 

2. “ … a pupil who knows the properties of the rhombus and can name them, will also have 
a basic understanding of the isosceles triangle = semirhombus.” 

 
3. “The figures are the supports (lit. ‘supports’ in French) of their properties.” 

 
4. “That a figure is a rectangle signifies that it has four right angles, it is a rectangle, even if 

the figure is not traced very carefully.” 
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5. “The figures are identified by their properties. (E.g.) If one is told that the figure traced 
on the blackboard possesses four right angles, it is a rectangle, even if the figure is not 
traced very carefully.” 

 
6. “The properties are not yet organized in such a way that a square is identified as being a 

rectangle.” 
 

(P.M., 1959) 
7. “The child learns to see the rhombus s an equilateral quadrangle with identical opposed 

angles and inter-perpendicular diagonals that bisect both each other and the angles.” 
 
8. (a middle ground between this and the next level)  “once the child gets to the stage where 

it knows the rhombus and recognizes the isosceles  triangle for a semi-rhombus, it will 
also be ale to determine of hand a certain number of properties of the equilateral 
triangle.” 

 
9. “Once it has been decided that a structure is an ‘isosceles triangle’ the child will also 

know that a certain number of governing properties must be present, without having to 
memorize them in this special case.” 

 
(P.M., 1976)  

10. “The inverse of a function still belongs to the first thought level.” 
 
11. “Resemblance, rules of probability, powers, equations, functions, revelations, sets – with 

these you can go from zero to the first thought level.” 
 
 
Level 3 (van Hieles’ second level) 
(Dina, 1957) 

1. “Pupils … can understand what is meant by ‘proof’ in geometry. They have arrived at the 
second level of thinking.” 

 
(P.M., 1957) 

2. “He can manipulate the interrelatedness of the characteristics of geometric patterns.” 
 
3. “e.g., if on the strength of general congruence theorem, he is able to deduce the equality 

of angles or linear segments of specific figures.” 
 

(P.M., 1958-59) 
4. “The properties are ordered [lit. ‘ordonnent’]. They are deduced from each other: one 

property precedes or follows another property.” 
 
5. “The intrinsic significance of deduction is not understood by the student.” 

 
6. “The square is recognized as being a rectangle because at this level definitions of figures 

come into play.” 
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(P.M., 1959) 
7. “the child… [will] recognize the rhombus by means of certain of its properties,… 

because , e.g., it is a quadrangle whose diagonals bisect each other perpendicularly.  
 
8. “It [the child] is not capable of studying geometry in the strictest sense of the word.” 

 
9. “The child knows how to reason in accordance with a deductive logical system… this is 

not however, identical with reasoning on the strength of formal logical.” 
 

(P.M., 1976) 
10. “the question about whether the inverse of a function is a function belongs to the second 

thought level.” 
 
11. “The understanding of implication, equivalence, negation of implication belongs to the 

second thought level.” 
 

(P.M., 1978) 
12. “they are able to understand more advanced thought structure, such as: ‘the parallelism of 

the lines implies (according to their signal character) the presence of a saw, and therefore 
(according to their symbolic character) equality of the alternate-interior angles’.” 

 
13. “ I [the student] can learn a definition by heart. No level. I can understand that definitions 

may be necessary: second level.” 
 

14. “… you know that is meant by it [the use of ‘some’ and ‘all’] second level. 
 
 
Level 4 (van Hieles’ third level) 
(P.M., 1957) 
 

1. “He will reach the third level of thinking when he starts manipulating the intrinsic 
characteristics of relations. For example: if he can distinguish between a proposition and 
its reverse” [sic. Meaning our converse] 

 
(Dina, 1957) 

2. We can start studying a deductive system of propositions, i.e., the way in which the 
interdependency of relations is affected. Definitions and propositions now come within 
the pupil’s intellectual horizon.” 

 
3. “Parallelism of the lines implies equality of the corresponding angles and vice versa.” 

 
(P.M. and Dina, 1958) 

4. “The pupil will be able, e.g., to distinguish between a proposition and its converse.” 
 

5. “it (is) … possible to develop an axiomatic system of geometry.” 
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(P.M., 1958-59) 
6. “The mind is occupied with the significance of deduction, of the converse of a theorem, 

of an axiom, of the conditions necessary and sufficient.” 
 
(P.M., 1968) 

7. “ … one could tell him (the student) that in proof it is really a question of knowing 
whether these theses are true or not, or rather of the relationship between the truth of 
these theses and of some others. Without their understanding such relationships we 
cannot explain to the student that one has to have recourse to axioms.” [I include the level 
from the first part of the statement; he never identified the level.] 

 
 
 
Level 5 (van Hieles’ fourth level) 
(Dina, 1957) 
 

1. “A comparative study of the various deductive syatems within the field of geometric 
relations is … reserved for those, who have reached the fourth level…” 

 
(P.M. and Dina, 1958)  

2. “finally at the fourth level (hardly attainable in secondary teaching) logical thinking itself 
can become a subject matter.” 

3. “the axiomatic themselves belong to the fourth level.” 
 
(P.M., 1958-59) 

4. “one doesn’t ask such question as: what are the points, lines, surfaces, etc.?... figures are 
defined only by symbols connected by relationships. To find the specific meaning of the 
symbols, one must turn to lower levels where the specific meaning of these symbols can 
be seen.”  
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APPENDIX C 

 

VAN HIELE GEOMETRY TEST 
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Appendix C: van Hiele Geometry Test 

 

Please print 
 
Name                                                          Section                            . 
 
 

Directions 

 

Do not open this test booklet until you are told to do so. 

This test contains 25 questions. It is not expected that you know everything on this test.  

When you are told to begin: 

1. Read each question carefully. 

2. Decide upon the answer you think is correct. There is only one correct answer to each 
question. Check the letter corresponding to your answer on the answer sheet. 

 
3. Use the space provided on the answer sheet for figuring or drawing. Do not mark on 

this test booklet. 
 

4. If you want to change an answer, completely erase the first answer. 

5. If you need a pencil and an eraser, raise your hand. 

6. You will have 35 minutes for this test.  

Wait until the instructor says that you may begin.  

 

 

 

 

 

 

 

 

This test is based on the work of P.M. van Hiele. 

Copyright ©1980 by the University of Chicago. Reprinted with permission of the University of 
Chicago. 
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VAN HIELE GEOMETRY TEST 
 

1. Which of these are squares? 

                                         
(F) K only                     
(G) L only 
(H) M only                                
(I) L and M only 
(J) All are squares          

 
2. Which of these are triangles? 

         
(A) None of these are triangles. 
(B) V only 
(C) W only 
(D) W and X only 
(E) V and W only 

 
3. Which of these are rectangles? 

                       
 

(A) S only 
(B) T only 
(C) S and T only 
(D) S and U only 
(E) All are rectangles  
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4. Which of these are squares? 

                      
(A) None of these are squares. 
(B) G only 
(C) F and G only 
(D) G and I only 
(E) All are squares. 

 
 

5. Which of these are parallelograms? 

           
(A) J only 
(B) L only 
(C) J and M only 
(D) None of these are parallelograms. 
(E) All are parallelograms. 
 
 

6. PQRS is a square. 
Which relationship is true in all squares? 
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(A) PR and RS have the same length. 
(B) QS and PR are perpendicular. 
(C) PS and QR are perpendicular. 
(D) PS and QS have the same length. 
(E) Angle Q is larger than angle R. 

 
 

7. In a rectangle, GHJK, GJ and HKare the diagonals.  
 

                               
 
 

Which of (A) – (D) is not true in every rectangle? 
 

(A) There are four right angles. 
(B) There are four sides. 
(C) The diagonals have the same length. 
(D) The opposite sides have the same length. 
(E) All of (A) – (D) are true in every rectangle.  
 
 
 

8. A rhombus is a 4-sided figure with all sides of the same length.  
      Here are three examples.  

                             
 
 Which of (A) – (D) is not true in every rhombus? 
 

(A) The two diagonals have the same length. 
(B) Each diagonal bisects two angles of the rhombus.  
(C) The two diagonals are perpendicular. 
(D) The opposite angles have the same measure. 
(E) All of (A) – (D) are true in every rhombus. 
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9. An isosceles triangle is a triangle with two sides of equal length.  
      Here are three examples.  

            
 
 Which of (A) – (D) is true in every isosceles triangle? 
 

(A) The three sides must have the same length. 
(B) One side must have twice the length of another side. 
(C) There must be at least two angles with the same measure. 
(D) The three angles must have the same measure. 
(E) None of (A) – (D) is true in every isosceles triangle.  

 
 

10. Two circles with centers P and Q intersect at R and S to form a 4-sided figure PRQS. 
Here are two examples. 

                   
 

Which of (A) – (D) is not always true? 
 

(A) PRQS will have two pairs of sides of equal length. 
(B) PRQS will have at least two angles of equal measure. 
(C) The lines PQ and RS will be perpendicular. 
(D) Angles P and Q will have the same measure. 
(E) All of (A) – (D) are true. 

 
 

11. Here are two statements. 
 

Statement 1: Figure F is a rectangle. 
Statement 2: Figure F is a triangle. 
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(A) If 1 is true, then 2 is true. 
(B) If 1 is false, then 2 is true.  
(C) 1 and 2 cannot both be true. 
(D) 1 and 2 cannot both be false. 
(E) None of (A) – (D) is correct.  
 

 
12. Here are two statements. 
 

Statement S:  ∆ABC has three sides of the same length. 
Statement T: In ∆ABC, ∠B and ∠C have the same measure. 

 
Which is correct? 

(A) Statements S and T cannot both be true. 
(B) If S is true, then T is true. 
(C) If T is true, then S is true. 
(D) If S is false, then T is false. 
(E) None of (A) – (D) is correct. 

 
 

13. Which of these can be called rectangles? 
 

                  
 

(A) All can. 
(B) Q only 
(C) R only 
(D) P and Q only 
(E) Q and R only 
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14. Which is true? 
 

(A) All properties of rectangles are properties of all squares. 
(B) All properties of squares are properties of all rectangles. 
(C) All properties of rectangles are properties of all parallelograms. 
(D) All properties of squares are properties of all parallelograms. 
(E) None of (A) – (D) is true.  
 
 

15. What do all rectangles have that some parallelograms do not have? 
 

(A) Opposite sides equal 
(B) Diagonals equal  
(C) Opposite sides parallel 
(D) Opposite angles equal 
(E) None of (A) – (D)  
 
 

16. Here is a right triangle ABC. Equilateral triangles ACE, ABF, and BCD have been 
constructed on the sides of ABC. 

 

                           
From this information, one can prove that AD, BE, and CF have a point in common. 
What would this proof tell you? 

 
(A) Only this triangle drawn can we be sure that AD, BE, and CF have a point in 

common. 
(B) In some but not all right triangles, AD, BE, and CF have a point in common. 
(C) In any right triangle, AD, BE, and CF have a point in common. 
(D) In any triangle, AD, BE, and CF have a point in common. 
(E) In any equilateral triangle, AD, BE, and CF have a point in common. 
 

F

E

D

CB

A
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17. Here are three properties of a figure.  
 

Property D: It has diagonals of equal length. 
Property S: It is a square. 
Property R: It is a rectangle. 

 
 Which is true? 

(A) D implies S which implies R. 
(B) D implies R which implies S. 
(C) S implies R which implies D. 
(D) R implies D which implies S. 
(E) R implies S which implies D.  
 
 
 

18. Here are two statements.  
 

         I:     If a figure is a rectangle, then its diagonals bisect each other. 
        II:     If the diagonals of a figure bisect each other, the figure is a rectangle.  
 
Which is correct? 

(A) To prove I is true, it is enough to prove that II is true. 
(B) To prove II is true, it is enough to prove that I is true. 
(C) To prove II is true, it is enough to find one rectangle whose diagonal bisect each 

other. 
(D) To prove II is false, it is enough to find one non-rectangle whose diagonals bisect 

each other. 
(E) None of (A) – (D) is correct. 
 
 

19. In geometry: 
 

(A) Every term can be defined and every true statement can be proved true. 
(B) Every term can be defined but it is necessary to assume that certain statements are 

true. 
(C) Some terms must be left undefined but every true statement can be proved true. 
(D) Some terms must be left undefined and it is necessary to have some statements, 

which are assumed true. 
(E) None of (A) – (D) is correct. 
 
 

20. Examine these three sentences. 
(1) Two lines perpendicular to the same line are parallel. 
(2) A line that is perpendicular to one of two parallel lines is perpendicular to the 
     other. 
(3) If two lines are equidistant, then they are parallel. 
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In the figure below, it is given that lines m and p are perpendicular and lines n and 
p are perpendicular. Which of the above sentences could be the reason that line m 
and is parallel to line n?  

                
(A) (1) only  
(B) (2) only 
(C) (3) only 
(D) Either (1) or (2)  
(E) Either (2) or (3)  
 

21. In F-geometry, one that is different from the one you are used to, there are exactly four 
points and six lines. Every line contains exactly two points. If the points are P, Q, R and 
S, the lines are {P, Q}, {P, R}, {P, S}, {Q, R}, {Q, S}, and {R, S} 

                                           
 Here are how the words “intersect” and “parallel” are used in F-geometry. 
 The lines {P, Q} and {P, R} intersect at P because {P, Q} and {P, R} have P in 
            common. 
 The lines {P, Q} and {R, S} are parallel because they have no points in common.  
 
 From this information, which is correct? 

(A) {P, R} and {Q, S} intersect. 
(B) {P, R} and {Q, S} are parallel. 
(C) {Q, R} and {R, S} are parallel. 
(D) {P, S} and {Q, R} intersect. 
(E) None of (A) – (D) is correct.  
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22. To trisect an angle means to divide it into three parts of equal measure. In 1847, P.L. 
Wantzal proved that, in general, it is impossible to trisect angles using only a compass 
and an unmarked ruler. From his proof, what can you conclude? 

 
(A) In general, it is impossible to bisect angles using only a compass and unmarked 

ruler. 
(B) In general, it is impossible to trisect angles using only a compass and marked 

ruler. 
(C) In general, it is impossible to trisect angles using any drawing instruments. 
(D) It is still possible that in the future someone may find a general way to trisect 

angles using only a compass and an unmarked ruler. 
(E) No one will ever be able to find a general method for trisecting angles using only 

a compass and an unmarked ruler. 
 
 

23. There is a geometry invented by a mathematician J in which the following is true: 
 

The sum of the measures of the angles of a triangle is less than 180º.  
  
 Which is correct? 
 

(A) J made a mistake in measuring the angles of the triangle. 
(B) J made a mistake in logical reasoning. 
(C) J has a wrong idea of what is meant by “true.” 
(D) J started with different assumptions than those in the usual geometry.  
(E) None of (A) – (D) is correct.  
 
 

24. Two geometry books define the word rectangle in different ways.  
Which is true? 
 

(A) One of the books has an error. 
(B) One of the definitions wrong. There cannot be two different definitions for 

rectangle. 
(C) The rectangles in one of the books must have different properties from those in 

the other book. 
(D) The rectangles in one of the books must have the same properties at those in the 

other book. 
(E) The properties of rectangles in the two books might be different. 
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25. Suppose you have proved statements I and II.  
 

I. If p, then q. 
II.  If s, then not q. 

 
Which statement follows from statements I and II? 
 
(A) If p, then s. 
(B) If not p, then not q. 
(C) If p or q, then s. 
(D) If s, then not p. 
(E) If not s, then p. 
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APPENDIX D 

 

INTERVIEW TASKS 
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Appendix D: Interview Tasks 

 

Task One 

 

Figure Appendix D. 1. Task One: Sorting Geometric Figures 
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Task Two 

A. Draw a parallelogram in the space below. 
 

   
1. What can you say about the angles of this parallelogram? 

 
 

2. What can you say about the sides of this parallelogram? 
 

 
3. What can you say about the diagonals of this parallelogram? 

 
 
 
B. In the space below, draw a new parallelogram that is different from the one you drew 
previously. 
 
 

1. What can you say about the angles of this parallelogram? 
 
 

2. What can you say about the sides of this parallelogram? 
 
 

3. What can you say about the diagonals of this parallelogram? 
 

 

Task Three 

Two geometry books define the word parallelogram in different ways. 
  
 1:  A quadrilateral is a parallelogram if and only if two pairs of opposite sides of the 
                 same length. 
 

2:  A quadrilateral is a parallelogram if and only if two pairs of opposite angles of the 
     same measure. 

 

Show me that these two definitions are equivalent. To verify that two definitions are 

equivalent, you must show that each set of defining conditions implies the other. 
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APPENDIX E 

 

INTERVIEW PROTOCOLS  
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Appendix E: Interview Protocols  

 

Before beginning the interview, provide the student with the following materials: 

 Pencils, ruler, protractor, blank sheets of paper 

Turn on both video cameras. 

 

Task One 

Present Task One and turn the page to face the student.  

1. Say: These are geometric shapes. Sort these shapes into groups. You can sort them any way you want. 

Write down your answers at the bottom of the task, and make notes about why you group them in such a 

way. Let me know when you are finished.  

 

While the student is working on the task, check the positions of the cameras and see if they are recording 

appropriately. Monitor the student while she/he is working on the task, and make notes to prepare 

possible questions. 

 

After the student has finished the task, turn on the audiotape.  

2. Ask: Can you describe each group to me?  

After the student has finished describing her/his results, ask one of the following: 

 If the student sorts the shapes as all rectangles together, all triangles together, all squares together, 

etc, then  

• Ask: Can you find another way to sort these shapes into groups? Try it. 

• Ask: Why? 

If the student sorts the shapes as all triangles together, all quadrilaterals together, etc., then 

• Ask: Can you sort these shapes into subgroups? Try it. 

• Ask: Why? 

If the student says that he/she doesn’t know any other way to sort the shapes, then 

• Ask: Can “this” (e.g., a rectangle, or a parallelogram) and “this” (e.g, a rhombus, or a 

trapezoid) go together?  

• Ask: Why, or why not? 

 

3. Ask: What is a parallelogram? 
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After the student has answered the questions verbally, then give the student a piece of blank paper, and 

Say: write it down. Do the same for the following questions. 

4. Ask: What is a rectangle? 

5. Ask: What is a square? 

6. Ask: What is a rhombus? 

7. Ask: What is a trapezoid? 

8. Ask: What is an isosceles triangle? 

   

Turn off the cameras and audio recorder. Remind the student to write the date and his/her name on all the 

worksheets. 

Say: I will collect all your worksheets.  

Put all Task One materials away, give the student three minutes break and get ready for Task Two. 
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Task Two  

 

Turn on both video cameras and audio recorder. 

 

Present Task Two – “A.  Draw a parallelogram …” and turn the page to face the student 

Say: Draw a parallelogram in this empty space here.  

Once the student has finished drawing, then  

1. Ask: What can say about the angles of this parallelogram? 

• If the student says,  “the opposite angles are equal”, or “all the vertex angles add up to 360°, 

or “the adjacent angles add up to 180°”, then  

o Say: Write down your answer(s), and convince me.  

After the student has finished explaining his/her conclusion, then 

 Ask: Is there any other relationship among the angles of this parallelogram? 

• If the student says, “all the vertex angles add up to 360°”, then  

o Say: Write down your answer(s), and convince me.  

• If the student says, “no, that’s all”, then 

2. Ask: What can you say about the sides of this parallelogram? 

• If the student says, “ Opposite sides are equal”, or “opposite sides are parallel”, then  

o Say: Write down your answer(s) and convince me.  

 After the student has finished explaining his/her conclusion, then  

 Ask: Is there any other relationship involving the sides of this parallelogram? 

 

Present Task Two – “B.  Draw a new parallelogram …” and turn the page face to the student 

Say: In the empty space here, draw a new parallelogram that is different from the one you drew 

previously.  

Once the student finished drawing, then  

1. Ask: Why is this a different parallelogram from the first one you drew? 

2. Ask: What can you say about the angles of this parallelogram? 

• If the student draws another parallelogram, then his/her answer to this question might be 

identical to Task Two A. No need to repeat the process as in Task Two A. 

• If the student draws a rectangle, or a square, or a rhombus, and provides the same answer as 

he/she did in Task Two A., then  

o Say: Convince me.  
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3. Ask: What can you say about the sides of this parallelogram? 

• If the student draws another parallelogram, then his/her answer to this question might be 

identical to Task Two A. If so, then ask question 4, “what can you say about the diagonals of 

this parallelogram?” 

• If the student draws a rectangle, or a square, or a rhombus, and provides the same answer as 

he/she did in Task Two A., then  

Say: Convince me.  

4. What can you say about the diagonals of this parallelogram? 

• If the student draws a parallelogram, after she/he has finished describing the diagonals of the 

parallelogram, 

o Ask: Why?  

(Present a drawing of a rectangle), and then 

o Ask: What can you say about the diagonals of this one?  

o Ask: Why?   

(Present a drawing of a square), and then 

o Ask: What can you say about the diagonals of this one?  

o Ask: Why? 

(Present a drawing of a rhombus), and then 

o Ask: What can you say about the diagonals of this one? 

o Ask: Why? 

• If the student draws a rectangle as a new parallelogram, after she/he has finished describing 

the diagonals of the rectangle, 

o Ask: Why?  

(Present a drawing of a square), and then  

o Ask: What can you say about the diagonals of this one?  

o Ask: Why? 

(Present a drawing of a rhombus), and then 

o Ask: What can you say about the diagonals of this one?  

o Ask: Why?  

• If the student draws a square as a new parallelogram, after he/she has finished describing the 

diagonals of the square, 

o Ask: Why?  

(Present a drawing of a rectangle), and then  
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o Ask: What can you say about the diagonals of this one?  

o Ask: Why?  

(Present a drawing of a rhombus), and then  

o Ask: What can you say about the diagonals of this one?  

o Ask: Why?  

• If the student draws a rhombus as a new parallelogram, after he/she has finished describing 

the diagonals of the rhombus, 

o Ask: Why?  

(Present a drawing of a square), and then 

o Ask: What can you say about the diagonals of this one? 

o Ask: Why?  

(Present a drawing of a rectangle), and then 

o Ask: What can you say about the diagonals of this one?  

o Ask: Why?  

5. Is it true that in every parallelogram the diagonals have the same midpoint (bisect each other)? 

• Ask: Why? Or Why not? 

After the student has finished describing his/her conclusion, then 

• Say: write it down 

 

Turn off the cameras and audio recorder. Remind the pair to write the date and their names on all the 

worksheets. 

Say: I will collect all your worksheets.  

Put all Task Two materials away, give the pairs three minutes break and get ready for Task Three. 
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Task Three  

Turn on both video cameras and audio recorder. 

 

Present Task Three and turn the page  to face the student 

Say: Read the task carefully, and show your work. Let me know if you have any questions. 

 

If the student shows difficulty understanding the task, and doesn’t know what to do, then  

Say: To show that the two definitions are equivalent, you need to show: 

1. If in a quadrilateral, two pairs of opposite sides of the same length, then two pairs of opposite 

angles of the same measure.  

And,  

2. If in a quadrilateral, two pairs of opposite angles of the same measure, then two pairs of 

opposite sides of the same length.  

 

When the interview is finished, turn off both cameras and audio recorder.  

Say: “Thank you” to the student, and let him/her know that you will share the results with them if he/she 

is interested.  

 

 

 

 

 

 

  



 

292 

APPENDIX F 

 

THE DEVELOPMENT OF GEOMETRIC DISCOURSES AT EACH VAN HIELE LEVEL 
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Appendix F: Development of Geometric Discourse at Each van Hiele Level 

Table 4.41      Development of Geometric Discourse at Each van Hiele Level 

Level 
of dis-
course 

Geometric Objects (figures) Routines 

Signifier  
- Word Use 
 

Saming 
criterion 

Realiz-
ations 

System of 
objects 
(figures) 

Identifying  Routines Examples of 
Justifying 

Identification 
(“Why is this 

X?”) 

Defining Routines  
Attributed Examples of 

Declared 
narratives  
(“How do you 
know it’s X?”) 

How  
(“What is 
X?”) 

When 

 
1 

proper 
name 
(passive 
use) 
 

according 
to family 
appearance
s  

primary d-
objects,  

unstructured 
collection of 
concrete d-
objects 

visual 
recognition, 
self-evident  

“It looks like…” “Because it is” -- -- 

2 common 
name 
(routine 
driven 
and/or 
phrase 
driven) 

according 
to visual 
properties  
(with no 
order) 

primary d-
objects, 
 

unstructured 
collection of 
disjoint 
categories of 
concrete  
d-objects  

Step 1. visual 
recognition  
 
Step 2. 
Substantiation. 
Identifying by 
partial 
properties 
check  (e.g. 
counting, 
measuring, 
comparing, 
etc); 

“It looks like 
they are 
parallel…” 
 
“I measured 
(sides & 
angles)…” 
 

“Because I can 
see it” 
 
“Because I 
measured... 
[some visual 
properties, no 
superordinate]  

describe 
the figure 
by visual 
properties, 
or by 
recalling 
(no 
superor-
dinate);    

serves as 
necessary 
condition for 
the use of 
word  
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Table 4.41  (Cont’d) 
3 common 

name  
(object 
driven) 

1. common 
descriptive 
narrative on 
the name of 
the figures  
 
2*. 
common 
descriptive 
narrative on 
the 
properties 
of figures 
(e.g., equal, 
bisector, 
etc) 

concrete 
d-object 
(Objectific
ation 
occurred) 
 
 
*two levels 
of 
realization 
tree: 
definitions 
and 
properties 
of 
geometric 
figures, 
and the 
relations 
about how 
one 
implies the 
other. 

May or may 
not have 
hierarchy of 
classifications 
 
 
 

Step 1. visual 
recognition  
 
Step 2. 
Substantiation 
Identifying by 
definitions 
(check of 
defining 
conditions by 
counting, 
measuring, 
comparing, 
etc.) 
 
Step 3. 
Construction 
of new 
narratives 
(informal 
proving 
equality, 
congruency, 
etc.) 

“All squares 
are rectangles”  
 
 
 
“All these 
figures (e.g., 
squares, 
rectangle, 
rhombus) are 
parallelograms
. [critical 
conditions are 
fulfilled] 

“If it is a square, 
then it has to be 
a rectangle, it 
fulfills the 
definition.” 
 
 
“Because they 
all have two 
pairs of parallel 
sides.” 

describe a 
figure or a 
mathematic
al term by 
definition 

serves as a 
necessary & 
sufficient  
condition for 
the use of 
word 
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Table 4.41  (Cont’d) 
4 1. common 

name  
(object 
driven) 

Common 
descriptive 
narrative on 
the name of 
figures 

abstract d-
object 

 
hierarchy of 
classifications 

 
Construction 
of new 
narratives 
(formal 
proving using 
definitions, 
axioms, 
theorems, etc) 

“they are 
alternating 
interior angles, 
and they are 
equal.” 

“If two parallel 
lines are cut by 
a transversal, 
their alternating 
interior angles 
are equal.” 

describe a 
figure or a 
mathematic
al term by 
definition. 

serves as a 
necessary & 
sufficient  
condition for 
the use of 
word 

2. common 
relations 
among 
definitions, 
axioms, 
theorems, 
etc. 

Common 
descriptive 
narrative on 
the 
properties 
of figures 
(e.g., equal, 
bisector, 
etc) 

* two-level 
realization 
tree: 
relations 
among 
definitions, 
properties, 
axioms, 
theorems 
about 
geometric 
figures. 

serves as a 
necessity for 
the use of 
available 
axioms, 
theorem, 
etc. 
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