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ABSTRACT 

ANALYSIS OF HOST TRANSCRIPTOME RESPONSE TO PORCINE REPRODUCTIVE 
AND RESPIRATORY SYNDROME VIRUS INFECTION 

 
By 

Maria Eugenia Arceo 

Porcine Reproductive and Respiratory Syndrome (PRRS) has been affecting commercial 

populations of pigs in the US for more than 20 years. We evaluated differences in gene 

expression in pigs from the PRRS Host Genetics Consortium initiative showing a range of 

responses to PRRS virus infection. Pigs were allocated into four phenotypic groups according to 

their serum viral level and weight gain. We obtained RNA at several days post-infection and 

hybridized it to the 20K 70 mer-oligonucleotide Pigoligoarray. We initially used plasmode 

datasets to select an optimal procedure for analyzing these data. We showed that the random 

array effects model with the moderated F statistic and significance thresholds obtained by 

permutation provided the most powerful analysis procedure. We then addressed global 

differential gene expression between phenotypic groups. We identified cell death as a biological 

function significantly associated with several gene networks enriched for differentially expressed 

genes. We found the genes interferon-alpha 1, major histocompatibility complex, class II, DR 

alpha, and major histocompatibility complex, class II, DQ alpha 1 differentially expressed 

between phenotypic groups. Finally, we used this study as pilot data to inform the design of 

future time-course transcriptional profiling experiments. We concluded the best scenario for 

investigation of early response to PRRSV infection consists of sampling at 4 and 7 days post 

infection using approximately 30 pigs per phenotypic group. 
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1. Introduction 

 Porcine Reproductive and Respiratory Syndrome (PRRS) was initially described in the 

US over 20 years ago (Done et al., 1996). The disease causes $ 664 million annual losses to the 

US pork industry (Holtkamp et al., 2012). Viral replication takes place in the host’s immune cells 

(Rowland et al., 2003;Genini et al., 2008). Therefore, a possible way of controlling the economic 

impact of PRRS is addressing the host genetic component. In this context, phenotypic variation 

between breed-lines has been observed in disease-related and production traits of PRRS virus 

experimentally infected pigs (Petry et al., 2005;Vincent et al., 2006;Doeschl-Wilson et al., 2009). 

Moreover, the availability of whole genome microarrays (Steibel et al., 2009) and next 

generation sequencing (Mardis, 2008) have favored whole genome expression profiling of 

PRRSV infected animals, and global differential expression has been assessed in pigs showing 

phenotypic variation to PRRSV infection responses (Lee et al., 2004a;Lee et al., 2004b;Miller 

and Fox, 2004;Bates et al., 2008;Genini et al., 2008;Xiao et al., 2010a;Xiao et al., 2010b;Ait-Ali 

et al., 2011;Zhou et al., 2011;Wysocki et al., 2012). While most previous studies focused on 

comparing gene expression of PRRS virus in infected versus uninfected pigs, or gene expression 

between animals showing differences in post-infection viral titers, little is known of the 

interaction between viral load and weight gain as it relates to gene expression post-infection. 

This is particularly important given the reported associations of immune traits with growth rate 

(Galina-Pantoja et al., 2006;Boddicker et al., 2012) and the genetic correlations between growth 

rate and disease traits (Doeschl-Wilson et al., 2009) as well as between growth rate and immune 

related traits (Clapperton et al., 2009).  

 To address differential gene expression using microarrays, different designs have been 

suggested for two color microarray experiments. In general, these experiments could include a 
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reference sample (reference designs) or not (loop designs) (Kerr and Churchill, 2001;Dobbin and 

Simon, 2002;Rosa et al., 2005;Tempelman, 2005). Among reference designs, blocked reference 

designs have been shown to be more efficient than common reference designs and to allow 

meaningful hypotheses testing using the reference samples (Steibel and Rosa, 2005). A two steps 

(Wolfinger et al., 2001) linear mixed model approach most often underlies the analysis of these 

experiments (Rosa et al., 2005). Initially, a general model that accounts for technical variation, 

such as array and dye effects, is fitted to the data. Then, the residuals estimated from this model 

are used to analyze each transcript specific expression, accounting for all appropriate sources of 

variation (Wolfinger et al., 2001). Consequently, this is a flexible scheme that enables the fitting 

of linear fixed and mixed models. 

 To test different hypotheses in microarray experiments several statistical methods have 

been proposed (Cui and Churchill, 2003;Wolfinger et al., 2001). Among the most commonly 

used is the classical F statistic or a modification of the F statistic (Cui et al., 2005). These two 

methods differ on the gene specific estimated variance components they incorporate into the 

tests. The modified F statistic uses shrunken (towards a common value) estimated variance 

components (Cui et al., 2005). Shrinking variance components has been reported to enhance 

power for detecting differential expression (Cui et al., 2005), since microarray experiments 

usually involve a small number of biological samples use to test differential expression of a large 

number of genes. However, moderated test statistics have non-standard distributions. To assess 

significance of these tests, P-values cannot be obtained by comparison with a reference null 

distribution. In this context, permutation analyses (Anderson and Ter Braak, 2003) have been 

implemented to obtain the null distribution of moderated test statistics (Yang and Churchill, 
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2007). Permutation analyses imply shuffling the data to simulate a null distribution and thereby 

can be very computationally intensive (Anderson, 2001). 

 The goals of this study were to evaluate the response to infection in in-vivo PRRS virus 

infected pigs in a time-course basis. In particular, we wanted to assess whole-genome gene 

expression in blood of infected pigs at different times post-infection. Furthermore, we wanted to 

identify significant biological functions and gene sets that characterize the response to PRRS 

virus infection over time. 

 To attain for these goals, the first chapter of this thesis assesses the statistical framework 

needed for more accurate and powerful evaluation of microarray data differential expression, 

including model assessment and tests for hypothesis testing. Real data is used to create plasmode 

datasets for evaluation of two different proposed linear models and tests statistics (Gadbury et 

al., 2008;Vaughan et al., 2009). 

 The second chapter of this thesis addresses global differential gene expression in pigs 

showing variation in their phenotypic response to PRRS virus experimental infection during a 

time-course experiment. Therefore, we evaluated a microarray whole-genome expression profile 

of pigs assigned to four reaction groups (phenotypic groups) according to the pigs’ weight gain 

and blood viral load, as part of the PRRS Host Genetics Consortium (Lunney et al., 2011). 

Phenotypic groups were specified as a combination of these two traits, as follows: 1) high viral 

load-high weight gain (HvHg), 2) high viral load-low weight gain (HvLg), 3) low viral load-high 

weight gain (LvHg) and 4) low viral load-low weight gain (LvLg). Individuals selected had the 

most extreme (highest and/or lowest) observed values for both variables defining the phenotypic 

groups. 
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Assessing optimal analysis models and statistical tests in a two color microarray 

experiment: a case study involving Porcine Reproductive and Respiratory Syndrome Virus 

infected pigs using plasmode datasets. 

Abstract 

 We addressed optimal statistical analysis frameworks for microarray data. In particular 

we were interested in testing differential gene expression in pigs as a response to Porcine 

Reproductive and Respiratory Syndrome Virus experimental infection. We identified an existing 

dataset suitable to derive plasmodes conforming the null distribution expected under no 

differential expression .We used these plasmode datasets to evaluate analysis models and test 

statistics. We had eight alternative analyses from the factorial combination of two models (fixed 

vs. random array effect), two test statistics (classic F vs. moderated F), and two ways of 

computing significance thresholds (with tabulated F distribution vs. with permuted distribution). 

Specifically, we assessed Type I error rate of the alternative analysis models. We then assessed 

power of the tests that controlled the Type I error rate at or close to the nominal level. 

Keywords 

 Porcine Reproductive and Respiratory Syndrome virus, microarray, plasmode datasets, 

optimal statistical analysis 
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1. Introduction 

The choice of appropriate mixed model analysis for microarray data has proven to be 

challenging (Rosa et al., 2005). To address differential gene expression using two-color 

microarrays several different designs have been suggested. In general, these experiments may 

include a reference sample, such as reference designs, or they may not, such as loop designs 

(Kerr and Churchill, 2001;Dobbin and Simon, 2002;Rosa et al., 2005;Tempelman, 2005). A 

linear mixed model approach most often underlies the analysis of data collected from these 

experimental designs (Rosa et al., 2005). The mixed model analysis approach involves a two-

step analysis of variance (Wolfinger et al., 2001). Initially, a general model that accounts for 

technical variation implicit in the microarray experiment and that may affect the estimate of 

expression level for the genes, such as array and dye effects, is fitted to the data. Second, the 

residuals from the first model (now considered as normalized expression values) are used to 

analyze the expression of each gene separately, accounting for all pertinent sources of variation 

present in the experiment (Wolfinger et al., 2001).There may be multiple sources of variation in 

a microarray experiment, and an important distinction has to be made between technical and 

biological replication (Churchill, 2002;Rosa et al., 2005). Technical replication pertains to 

multiple subsamples obtained from the same individual sample, whereas biological replication 

pertains to multiple subjects being sampled (Cui and Churchill, 2003;Rosa et al., 2005). Ideally, 

to evaluate different treatment conditions in any given biological population, biological 

replication should be present (Churchill, 2002). Technical replication would further allow 

accounting for variation introduced by the protocol implemented for processing the samples in 

the laboratory (Churchill, 2002;Cui and Churchill, 2003). Linear models can account for most 

sources of variation, fitting variance components to represent the natural variability at several 

levels.  
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A possible way of increasing the efficiency of single gene mixed model analysis is by 

treating the array effect as a Gaussian distributed random effect (Kerr and Churchill, 2001;Kerr, 

2003b) when analyzing log-intensity data. This approach was shown to be more efficient than 

treating array as a fixed effect for several designs where more than two groups are being 

compared (Steibel, 2007). To estimate variance components in a mixed model analysis, the 

Restricted Maximun Likelihood (REML) algorithm is typically used. 

To test hypotheses in a mixed model analysis of microarray data several statistical tests 

have been proposed (Cui and Churchill, 2003). A commonly used test is based on the classical F 

statistic (Wolfinger et al., 2001;Cui and Churchill, 2003). The classical F statistic is based on 

transcript specific estimated variance components (Cui and Churchill, 2003). An alternative test 

is a moderated F statistic that borrows information across all transcripts in the microarray and 

shrinks the estimated variance components towards a common value (Cui et al., 2005). 

Microarray experiments usually involve a small number of biological samples available to test 

differential expression of a large number of genes. When samples sizes are small variance 

components are estimated with less reliability (Cui and Churchill, 2003) which may lead to many 

false positive decisions (rejecting a null hypothesis of no differential expression when it is 

actually true). A way to avoid this is by shrinking estimated variance components towards a 

common value. Shrinkage of variance estimates has been reported to enhance power and to 

reduce Type I error rate for detecting differential expression (Cui et al., 2005). However, the 

moderated F statistic has a non-standard distribution under the null hypothesis. Consequently, to 

assess significance of these tests, P-values cannot be obtained by comparison with a reference 

null distribution. Hence, permutation analyses (Anderson and Ter Braak, 2003) have been 

implemented to obtain the null distribution of these statistics (Yang and Churchill, 2007). 
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Permutation analyses imply shuffling the observed data to simulate the distribution of the test 

statistic under the null hypothesis (Anderson, 2001). 

In summary, possible alternatives to enhance power of microarray analyses when sample 

sizes are small are: 1) treating array effect as  random t and 2) optimizing estimation of variance 

components using shrinkage to borrow information across transcripts. Consequently, one can 

choose to model array as a random or fixed effect, and to use a classic F statistic or a moderated 

F statistic to assess statistical significance. Selecting a linear mixed model with a moderated F 

statistic may result in a computationally very intensive analysis. This is because the REML 

algorithm would have to iterate to get variance components estimates di novo within each 

permuted dataset. The question remains on whether this is a helpful strategy or not. 

 Possible ways of predicting the performance of the different test statistics and linear 

models are: analytical derivations, evaluation in simulated data or evaluation in plasmode 

datasets (Mehta et al., 2004). Analytical derivations are often times non-tractable (Gadbury et al., 

2008) and thus simulations or plasmode datasets become more relevant. Simulated datasets are 

generated based on parametric assumptions about their distributions, whereas plasmode datasets 

are generated based on real data for which some true structure is known (Mehta et al., 

2004;Gadbury et al., 2008). Plasmode datasets have the advantage over simulations that they do 

not rely on pre-specified model assumptions, making them a useful tool for evaluation of 

statistical methods (Gadbury et al., 2008;Steibel et al., 2009a;Vaughan et al., 2009). 

The goal of this study was to compare linear fixed versus mixed models, and classic F 

versus a moderated F statistics as ways to optimize microarray data analysis for both specificity 

and sensitivity. To accomplish this we generated plasmode datasets using an existing microarray 
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experiment. The experiment from which the plasmode datasets were constructed involved pigs 

experimentally infected with Porcine Reproductive and Respiratory Syndrome virus (PRRSV) 

and showing phenotypic variation in response to the disease (Wysocki et al., 2012). 

2. Materials and methods 

2.1. Population, phenotypic groups and microarray design 

The samples used in this study and the experimental design are described in detail in 

Wysocki et al. (2012). Briefly, Hampshire-Duroc crossbred pigs infected with PRRSV have been 

classified into two phenotypic groups: 1) low responders (L), with low viremia, greater weight 

gain, few lung lesions and 2) high responders (H), high viremia, low/no weight gain, many lung 

lesions. Lung and bronchial lymph node (BLN) RNA was obtained from 4 pigs of each 

phenotypic group at 14 days post infection, and a microarray experiment was performed using 

the Pigoligoarray (Steibel et al., 2009b) following a common reference design (16 arrays in 

total). A pooled RNA sample isolated from several different tissues of uninfected animals was 

used as the common reference sample. 

2.2. Plasmode construction 

To build the plasmode datasets we used the 8 arrays from BLN tissue, where no 

differential expression was detected. For  explanation  see the Results section of this paper and 

the original paper from Wysocki et al. (2012). We generated the plasmode datasets by randomly 

partitioning the gene expression dataset from BLN tissue into two groups of four arrays each. 

The non-reference sample in each array was randomly assigned a treatment label “H” or “L” 

(phenotypic group). Reference sample label was kept throughout plasmode construction. There 

were a total of 35 possible label arrangements on the eight available arrays, following:  
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(n! / [(n/2)!]2) / 2 

where n = 8 arrays was assumed to be split between two treatment groups. One of the 

combinations had confounded dye and treatment effect. Thus, we did not incorporate that 

combination into the final plasmode. Consequently, all results presented in this paper are based 

on 34 plasmode datasets where no differential expression was expected, but where the natural 

biological variation was conserved. 

2.3. Linear Model Analysis 

We considered linear fixed and linear mixed models. The basic linear model used to 

analyze gene expression involved two steps. The first step accounted for overall effects across all 

transcripts by fitting the following model: 

ygijk = µ + Dj + Ak + DAjk + egijk            [1] 

where ygijk is the log-intensity for the kth
 array labeled with the jth

 dye, corresponding to a pig 

from phenotypic group i; μ is the overall mean; Dj is the effect of jth
 dye, with j = 1,2; Ak is 

the effect of the kth
 array, with k = 1,…,8; DAjk is the interaction of the jth

 array and kth
 dye, 

finally eijk is the residual with eijk~N(0,σe
2). 

 In a second step a model that accounted for gene specific variation was fitted: 

ê gijk = µg + Tgi + Dgj + Agk + εgijk            [2] 
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where ê gijk is the estimated residual from [1] for transcript g; µg is the gene specific overall 

mean, with g = 1, …, 20736; Tgi is the effect of phenotypic group i in the expression of the gth
 

transcript, with i = H, L and R (reference); Dgj is the effect of the jth
 dye in the expression of the 

gth
 transcript; Agk is the effect of the kth

 array in the expression of the gth
 transcript; finally 

εgijk is the gene specific residual, with εgijk ~N(0,σε
2). 

The fixed effects model assumed Agk were the fixed effect of the kth
 array, with k = 

1,…,8. The  mixed effects model assumed the array effect as random, with Agk ~ N(0, σga
2). 

We analyze the data using MAANOVA package (Wu et al., 2003) in R (R Development 

Core Team, 2010). 

2.4. Test Statistics 

We evaluated two test statistics, the classic F test (Wu et al., 2003) and a moderated F test 

(Cui et al., 2005). The classical F statistic is based on transcript specific variance components 

whereas the moderated F statistic is based on shrunk estimates of the variance components. 

 2.5. Estimation of the critical values 

Two different approaches were used for the estimation of significance thresholds. First, 

critical values were obtained from a central F distribution. Second, we considered a permutation 

approach where the critical values were obtained by shuffling the residuals of a subset of the 

transcripts. This subset was obtained before the permutation analysis and corresponded to 

transcripts which F statistic was smaller than an initial critical value of 0.9 (Yang and Churchill, 
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2007). The number of permutations was 100 for the random array effect model, and 1000 for the 

fixed array effect model. The resulting test statistics obtained for the permuted subset of 

transcripts were then used to compute the P-values. 

2.6. Assessment of performance under the null hypothesis 

We had eight alternative analyses from the factorial combination of two models (fixed vs. 

random array effect), two test statistics (classic F vs. moderated F), and two ways of computing 

significance thresholds (using a tabulated F distribution vs. using a permuted distribution). To 

assess the performance of these alternative tests under the null hypothesis we computed 

empirical Type I error rates in the plasmode datasets. Defining the Type I error rate (α) as the 

number of true null hypothesis that are rejected at a significance threshold, to estimate empirical 

Type I error rates we counted the number of tests that were rejected at a particular P-value 

threshold. We arbitrary evaluated nominal significance thresholds of 0.05, 0.01, 0.005, 0.001, 

and 0.0001. 

2.7. Assessment of performance in a dataset with DE transcripts 

The performance of the statistical tests described in Section 2.6. was evaluated in the lung 

dataset, where differential expression between phenotypic groups was assumed to be present. 

Although we did not know which transcripts were differentially expressed in this experiment, we 

used this dataset to count the proportion of rejected hypotheses obtained with the eight 

alternative analyses. If two analyses methods provided the same Type I error (estimated from the 

plasmode analyses), the procedure leading to more rejections in the lung dataset is likely to 

provide more power. 
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Finally, we used the false discovery rate (Storey, 2003) to assess significance (i.e. DE 

transcripts) in the lung dataset. The false discovery rate (FDR), defined as the expected 

proportion of false rejected hypotheses (Benjamini and Hochberg, 1995), is a multiple 

comparison adjustment to control the Type I error rate. 

3. Results 

3.1. Overall evidence of differential expression in lung and BLN microarray datasets 

Initially, a moderated F statistic and significance thresholds obtained by permutation 

within a mixed effects model (eq. [1] and [2] with Agk normally distributed) was used to 

address differential expression between phenotypic groups in both datasets. Figure 2.1 shows 

histograms and Q-Q plots of P-values for each dataset. Histograms and Q-Q plots are used to 

assess the distributional assumptions of an observed variable. The uniform distribution reflected 

by a flat histogram of P-values in BLN dataset (Fig. 2.1A) indicated that there was no evidence 

of differential expression between phenotypic groups. On the other hand, we observed evidence 

of differential expression between phenotypic groups in the lung dataset reflected in a larger 

frequency of small P-values (Fig. 2.1B). Similar conclusions can be made upon inspection of 

uniform Q-Q plots. Uniform Q-Q plots were used to compare the observed quantiles of the 

negative log transformed P-values versus the negative log transformed quantiles of a uniform 

distribution, implicit under the null hypothesis of no differential expression (Fig. 2.1C and 2.1D, 

red x = y line). Although the Q-Q plot for the BLN dataset (Fig. 2.1C) showed a slight departure 

from the quantiles expected under the null hypothesis, this was likely due to chance alone. 

Moreover, for an adjusted p-value threshold or FDR ≤ 20% no differentially expressed (DE) 

transcripts were identified, as stated in Wysocki et al. (2012). On the other side, the Q-Q plot 
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for the lung dataset (Fig. 2.1D) showed a clear departure from the expected quantiles for a 

uniform distribution, evidencing the presence of differential gene expression (Wysocki et al., 

2012). Consequently, we used BLN data to generate plasmode datasets under the assumption of 

no differential expression. 

    3.2. Estimation of Type I error using plasmode datasets 

Tests computed with the classic F statistic and using tabulated significance thresholds 

controlled the type I error rate close to nominal levels in all cases. This is shown in Fig. 2.2 

where the realized Type I error rate for these tests (blue line) is very close to (for the fixed 

effects model, Fig. 2.2B) or exactly equal to (for the mixed effects model, Fig. 2.2A) the nominal 

Type I error rate (red x = y line).  

Similarly, tests based on significance thresholds obtained by permutation controlled Type 

I error rate at the nominal level for both distributional model assumptions (array as a fixed or 

random effect) and statistics (classic and moderated F) considered. This is evidenced by the 

dashed lines in Fig. 2.2A and 2.2B that overlaid with the red x = y line, indicating that the 

realized Type I error rate was equal to the nominal Type I error rate. 

Tests computed with the moderated F statistic and tabulated significance thresholds did 

not control the Type I error rate at the nominal level in any case, and the realized type I error rate 

was consistently smaller than the nominal Type I error rate indicating an overly conservative test 

(Fig. 2.2A and 2.2B, green line). 

Based on the above presented results, we focused on tests that accurately controlled the 

Type I error rate close to the nominal level. That is, tests based on the classic F statistic and 

tabulated significance thresholds as well as tests based on the moderated F statistic and permuted 
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significance thresholds. We further explored the distribution of P-values for these tests (Fig. 2.3), 

and we observed that the P-value distributions resembled the expected distributions under the 

null hypothesis (green lines versus red lines in Fig. 2.3). However, we noticed plasmode to 

plasmode variation in the P-value distribution from all these tests (black lines in the graphics) 

such that an individual list of P-values from a particular experiment might contain more or less 

false positives compared to the expected proportion at the nominal significance level. 

3.3. Assessment of differential expression in lung dataset 

Tests based on the moderated F statistic and significance thresholds obtained by 

permutation had the largest proportion of rejected hypotheses (proportion of rejected hypothesis 

= 0.091, Fig. 2.4A) when array was assumed as a random effect. When the same moderated F 

statistic with significance thresholds obtained by permutation was used in a fixed array model, 

the proportion of rejected hypotheses slightly decreased (proportion of rejected hypothesis = 

0.087, Fig. 2.4B). Nevertheless, in both models (fixed or random array) these moderated F-tests 

had the largest proportion of rejected hypotheses when compared to classical F-tests and 

tabulated critical values. 

Tests computed based on the classic F statistic assuming array as a random effect 

returned similar results whether the null distribution was obtained by permutation or from a 

tabulated F distribution. This is shown by the overlapping blue lines in Fig. 2.4A. However, for 

the same tests computed in the model assuming array as a fixed effect, P-values obtained with 

significance thresholds obtained by permutation returned a larger proportion of rejected tests 

than P-values obtained with tabulated significance thresholds (blue lines in Fig. 2.4B). 
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Among tests that controlled the Type I error rate close to the nominal level, we computed 

the number of rejected hypotheses (i. e. the number of DE transcripts) at different FDR 

thresholds (Table 2.1). The largest number of rejected hypotheses occurred for tests based on a 

moderated F statistic and significance thresholds obtained by permutation in models assuming a 

random array effect. In addition, the comparison of the fixed array effect versus the random array 

effect models showed that considering array as a random effect enhanced power (larger number 

of rejected hypotheses) at all FDR thresholds. That is, the number of rejected hypotheses ranged 

between 3 and 21 for the fixed array effect model, whereas that number ranged between 5 and 69 

for the random array effect model (depending on the FDR threshold considered). 

Finally, we compared the quantiles of the observed distribution of P-values for tests 

controlling Type I error rate close to the nominal level with the expected quantiles under the null 

distribution (Fig 2.5). We observed that all tests had more extreme values than expected under 

the null distribution, revealing that they detect differential expression. Regardless the 

distributional assumptions on the array effect, P-values obtained based on the moderated F 

statistic and significance thresholds obtained by permutation had the furthermost extreme 

quantile values. Moreover, when array was assumed random, P-values associated with 

moderated F statistic and significance thresholds obtained by permutation departed more from 

the expected null distribution than their counterpart based on a fixed array effect model. 
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Table 2.1. Number of differentially expressed genes in a fixed versus mixed effects model at 
different FDR thresholds. 

 Fixed Effects model Mixed Effects Model 

 False Discovery Rate (%) 

Test 1 2.5 5 10 1 2.5 5 10 

classic F statistic and tabulated 
significance thresholds 

0 1 3 5 0 2 3 7 

classic F statistic and permuted 
significance thresholds 

2 2 3 3 2 2 3 7 

moderated F statistic and tabulated 
significance thresholds 

0 0 0 0 0 0 0 0 

moderated F statistic and permuted 
significance thresholds 

3 5 9 21 5 10 21 69 

 

4. Discussion 

In this study we aimed to identify optimal statistical analysis frameworks for microarray 

data. In particular we were interested in testing differential gene expression in pigs as a response 

to PRRSV experimental infection. Consequently, we used an existing dataset (Wysocki et al., 

2012) suitable to derive plasmodes (Gadbury et al., 2008;Vaughan et al., 2009) conforming the 

null distribution expected under no differential expression. We worked with these plasmode 

datasets to evaluate analysis models and test statisitcs. Specifically, we wanted to assess Type I 

error rate of alternative analysis models. We then assessed power of the tests that controlled the 

Type I error rate at or close to the nominal level. 

Among all testing procedures and analysis scenarios, we identified three types of tests 

that controlled the Type I error rate close to the nominal level. First, tests based on a moderated F 

statistic and significance thresholds obtained by permutation. Second, tests based on a classic F 
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statistic and tabulated significance thresholds. Third, tests based on a classic F statistic and 

significance thresholds obtained by permutation. These results extended the results from Yang 

and Churchill (2007) who reported that P-values estimated based on a moderated t-statistic using 

permutation controlled Type I error rate close to the nominal level. 

On the contrary, tests based on the moderated F statistic and tabulated significance 

thresholds were too conservative. This was expected since the moderated F statistic did not have 

a standard F distribution (Cui et al., 2005). Therefore, permutation analysis should be used to 

obtain the P-values (Anderson and Ter Braak, 2003;Yang and Churchill, 2007).  

When the array effect was assumed as fixed, tests based on the classic F statistic and 

significance thresholds obtained by permutation better controlled the Type I error rate to the 

nominal level than tests based on the same statistic and tabulated significance thresholds. In this 

regard, P-values associated with tabulated significance thresholds were computed based on the 

assumption of independent identically normally distributed residuals (Anderson, 2001). 

However, the analyzed dataset may have not met this assumption resulting in P-values that did 

not conform to the nominal F distribution. The P-values associated with significance thresholds 

obtained by permutation were computed not making such assumptions (Anderson, 2001), 

therefore resulting in an improved performance of these tests. 

In this study we showed that treating array as a random effect increased power of all tests 

evaluated. This is particularly evident in tests based on the moderated F statistic and significance 

thresholds obtained by permutation, where for example at FDR < 10%, 69 tests were rejected 

when random array effect was assumed, and only 21 tests were rejected when the array effect 

was assumed fixed. Modeling the array as a random or fixed effect has been discussed previously 
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(Kerr and Churchill, 2001;Wolfinger et al., 2001;Kerr, 2003a;b). Defining the relative efficiency 

as the ratio of the variances for fixed versus random array analysis models of the difference in 

means between two treatment groups, Kerr (2003a) showed that when array is assumed as 

random in a common reference design and its variance tends to infinity the relative efficiency 

equals 1. However, when the array variance tends to 0, the relative efficiency is larger than 1, 

and in that case to assumed array as a random effect is more efficient for estimating treatment 

differences. Moreover, Steibel (2007) proved that the relative efficiency of the fixed array versus 

random array model reached a maximum as the array and biological variance became small 

compared to the residual variances. Thus, treating array as a random effect allowed recovering of 

inter-block (i.e. inter-array) information. This has been reported before (Kerr, 2003b;Steibel, 

2007), but it has been shown that the amount of recovery of information and increase in power 

depends on variance ratios. In this paper we showed that the practical implication of assuming 

array as a random effect was that the number of rejected hypothesis increased from 21 to 69 for a 

FDR < 10%. 

As mentioned above, tests based on the moderated F statistic and significance thresholds 

obtained by permutation exceeded in the number of rejected hypotheses all other tests. There, 

shrinkage improved the estimation of variance components by borrowing information across all 

transcripts in the microarray (Cui et al., 2005) therefore resulting in more powerful tests. This 

was consistent with a previous report where P-values estimated using permutation and a 

moderated t-statistic yielded larger number of positive genes than P-values estimated using 

permutation and a regular t-statistic at all FDR thresholds evaluated (Yang and Churchill, 2007). 

In summary, in this study we show that considering array as a random effect, and 

addressing differential expression using tests based on the moderated F statistic and significance 
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thresholds obtained by permutation was the most powerful analysis. However, this type of 

analysis may be very computational demanding. An alternative would be to consider array to be 

a fixed effect. While this model results in less powerful tests, for a fixed number of permutations, 

the elapsed computational time is reduced by 87 to 90 fold, in the BLN and lung dataset 

respectively. Another alternative would be to consider array as a random effect, and tests based 

on the classic F statistic and tabulated significance thresholds. This would enable avoiding the 

permutation analysis and decreasing the elapsed computational time by 48 fold. However the 

power of the tests resulting from this approach can be expected to be much smaller. 
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Abstract 

 We evaluated differences in gene expression in pigs from the Porcine Reproductive and 

Respiratory Syndrome (PRRS) Host Genetics Consortium initiative showing a range of 

responses to PRRS virus infection. Pigs were allocated into four phenotypic groups according to 

their serum viral level and weight gain. RNA obtained from blood at 0, 4, 7, 11, 14, 28, and 42 

days post infection (DPI) was hybridized to the 70-mer 20K Pigoligoarray. We used a blocked 

reference design for the microarray experiment. This allowed us to account for individual 

biological variation in gene expression, and to assess baseline effects before infection (0 

DPI).Additionally, this design has the flexibility of incorporating future data for differential 

expression analysis. We focused on evaluating transcripts showing significant interaction of 

weight gain and serum viral level. We identified 491 significant comparisons (FDR ≤ 10%) 

across all DPI and phenotypic groups. We corroborated the overall trend in direction and level of 

expression (measured as fold change) at four DPI using qPCR (r = 0.91, p ≤ 0.0007). At 4 and 7 

DPI, network and functional analyses were performed to assess if immune related gene sets were 

enriched for genes differentially expressed across four phenotypic groups. We identified cell 

death function as being significantly associated (FDR ≤ 5%) with several networks enriched for 

differentially expressed transcripts. We found the genes interferon-alpha 1(IFNA1), major 

histocompatibility complex, class II, DQ alpha 1 (SLA-DQA1), and major histocompatibility 

complex, class II, DR alpha (SLA-DRA) to be differentially expressed (p ≤ 0.05) between 
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phenotypic groups. Finally, we performed a power analysis to estimate sample size and sampling 

time-points for future experiments. We concluded the best scenario for investigation of early 

response to PRRSV infection consists of sampling at 4 and 7 DPI using about 30 pigs per 

phenotypic group. 

Keywords: porcine reproductive and respiratory syndrome, microarray, quantitative PCR, 

functional analysis, power analysis. 
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1. Introduction 

 Porcine Reproductive and Respiratory Syndrome (PRRS) was initially described in the 

US over 20 years ago (Done et al., 1996) and a virus, now known as Porcine Reproductive and 

Respiratory Syndrome Virus (PRRSV), was identified as the primary causative agent (Collins et 

al., 1992). Overall, the disease causes $ 664 million annual losses to the US pork industry 

(Holtkamp et al., 2012). 

 Viral replication takes place in the host’s immune cells (Rowland et al., 2003;Genini et 

al., 2008) thereby, reducing the cytokine-mediated inflammatory response (Kimman et al., 

2009). In this context, a possible way of controlling PRRS is addressing the host genetic 

component. Host genetic response to infection, in particular, phenotype-genotype associations in 

immune related traits can be evaluated using currently available genomic tools (Lewis et al., 

2007;Lunney and Chen, 2010). While the molecular pathways involved in the protection against 

PRRS have not yet been entirely elucidated (Kimman et al., 2009) genotype and immune traits 

associations have been documented (Clapperton et al., 2005;Wattrang et al., 2005). Furthermore, 

phenotypic variation between breed-lines has been observed in disease-related and production 

traits of experimentally infected pigs (Petry et al., 2005;Vincent et al., 2006;Doeschl-Wilson et 

al., 2009). These authors reported differences in clinical symptoms and lung pathology in 

response to PRRSV infection, as well as in virus levels in serum and/or respiratory tissues, such 

as lung and bronchial lymph nodes. Doeschl-Wilson et al. (2009) and Petry et al. (2005) also 

reported differential body weight changes in PRRSV infected pigs. 
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 Studying gene expression in pigs showing phenotypic variation to PRRSV infection 

responses will enhance our knowledge of genetic control of the susceptibility to this disease. In 

this context, differential expression of a reduced number of immune related genes has been 

evaluated (Petry et al., 2007;Lunney et al., 2010) and global differential expression has been 

assessed in vivo (Bates et al., 2008;Xiao et al., 2010a;Xiao et al., 2010b;Zhou et al., 

2011;Wysocki et al., 2012) and in vitro (Lee et al., 2004a;Lee et al., 2004b;Miller and Fox, 

2004;Genini et al., 2008;Ait-Ali et al., 2011). 

 Most previous studies focused on comparing gene expression of PRRSV-infected and 

uninfected pigs, as well as gene expression between animals showing differences in post-

infection viral titers. However, little is known of the interaction between viral load and weight 

gain as it relates to gene expression post-infection. This is particularly important given the 

reported associations of immune traits with growth rate (Galina-Pantoja et al., 2006;Boddicker et 

al., 2012) and the genetic correlations between growth rate and disease traits (Doeschl-Wilson et 

al., 2009) as well as between growth rate and immune related traits (Clapperton et al., 2009). 

 The availability of whole genome microarrays (Steibel et al., 2009c) and next generation 

sequencing (Mardis, 2008) have further favored whole genome expression profiling of PRRSV 

infected animals (Xiao et al., 2010a;Xiao et al., 2010b). Important features when evaluating gene 

expression are: 1) the correct modeling of the phenotypic variation and the inclusion of 

biological replication (Rosa et al., 2005) and 2) sampling relevant tissues and time-points (Mateu 

and Diaz, 2008;Lunney et al., 2010). 

 We evaluated whole-genome expression profile of pigs assigned to 4 reaction groups 

(phenotypic groups) according to the pigs’ weight gain and blood viral load as part of the PRRS 



35 
 

Host Genetics Consortium (PHGC) (Lunney et al., 2011). The goals of this study were: 1) to 

assess global differential gene expression in commercial pigs showing variation in phenotypic 

response to PRRSV experimental infection, and to identify relevant molecular networks and 

biological functions enriched for differentially expressed genes involved in the pig’s immune 

response to PRRSV infection; and 2) to inform the design of future experiments, to determine the 

most informative early time-points and sample sizes required for powerful inferences when 

assessing gene expression in blood of commercial pigs experimentally infected with PRRSV. 

2. Materials and methods 

2.1. Animal model and study design 

 Crossbred commercial pigs (~200) from PHGC trial one (Lunney et al., 2011) were 

transported to the Kansas State University bio-secure testing facility at weaning (11 to 21 d. old) 

and allocated to pens (10 to 15 pigs/pen). Pigs came from PRRSV-, Influenza virus- and 

Mycoplasma hyopneumoniae-free farms. After a 7-day acclimation period and antibiotic 

treatments, pigs were both intramuscularly and intranasally infected with a known isolate of 

PRRSV (105 tissue culture infectious dose50 of NVSL 97-7985). Blood samples were collected in 

Tempus™ Blood RNA Tubes (Life Technologies, Carlsbad, CA) at 0, 4, 7, 11, 14, 19, 28 and 42 

days post-infection (DPI). Individual animal weight was measured at weekly intervals. Serum 

viral level was quantified using a semi-quantitative TaqMan PCR assay. More details on the pig 

resources, study design and data storage are in Lunney et al. (2011) and Boddicker et al. (2012). 

The study was approved by Kansas State University Institutional Animal Care and Use 

Committee. 
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2.2. Phenotypic groups  

 Figure 3.1 shows a scatterplot of weight gain versus viral load (VL) for all pigs from 

PHGC trial one. Four phenotypic groups were defined according to the pigs’ weight gain and 

VL. Weight gain was defined as body weight (kg) from 0 to 42 DPI; VL was defined as the area 

under the curve of the log-transformed serum viral level from 0 to 21 DPI. These two variables 

showed moderate negative correlation (r = -0.29). Thus, bivariate data of VL and weight gain 

were centered at their mean values and rotated to obtain uncorrelated measures. Phenotypic 

groups were then specified as a combination of these two traits: 1) high viral load-high weight 

gain (HvHg), 2) high viral load-low weight gain (HvLg), 3) low viral load-high weight gain 

(LvHg) and 4) low viral load-low weight gain (LvLg). For allocation to these four groups, pigs 

that were within one standard deviation of the population mean for either of the traits were 

discarded and the remaining animals were classified to one of the groups (Fig. 3.1).  

2.3. Microarray design and analysis 

 Three pigs per group were randomly selected and their RNA isolated using the TempusTM 

Spin RNA Isolation Kit as per manufacturer’s instructions (Applied Biosystems/Life 

Technologies) from blood at 0, 4, 7, 11, 14, 28, and 42 DPI. RNA samples were reverse 

transcribed using the Amino Allyl MessageAmp II aRNA Amplification Kit (Ambion./Life 

Technologies), labeled with N-hydroxysuccinate (NHS) ester Cy3 or Cy5 dyes (GE Healthcare, 

CA), and hybridized to the 20K 70-mer oligonucleotide Pigoligoarray as previously described 

(Steibel et al., 2009c) following a block reference design (Steibel and Rosa, 2005). Each 

individual pig’s 0-DPI-sample served as reference for all other samples from the same animal. 

Reference sample dye flipping was performed across pigs to allow separation of dye and 0-DPI 

effects (Steibel and Rosa, 2005). Fluorescent images and fluorescence intensity data were 
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collected as previously described (Steibel et al., 2009c). Median intensities were background 

corrected with Normexp method fixing the offset parameter κ =50 (Ritchie et al., 2007). 

Background corrected data was normalized using a within print-tip loess-location normalization 

(Yang et al., 2002). All computations were implemented in R (R Development Core Team, 2010) 

through LIMMA (Smyth, 2005). Normalized log-intensities were analyzed on a transcript per 

transcript basis using a linear mixed model accounting for all pertinent random and fixed effects 

(Rosa et al., 2005) as described below: 

yijklm = μ + TGij + Dl + Am + Sk + eijklm 

where yijklm is the log-intensity measure at the ith
 DPI, for the kth

 pig corresponding to 

phenotypic group j in the mth
 array labeled with the lth

 dye; μ is the overall mean; TGij is the 

effect of DPI i and phenotypic group j in the expression of the transcript, with i = 1,…,7 and j = 

1,…,4; Dl is the effect of lth
 dye, with l = 1,2; and Am is the random effect of the mth

 array, 

with m = 1,…,72 and Am~N(0,σa
2); Sk is the random effect of the kth

 pig, with k = 1,…12 

and Sk~N(0,σs
2); finally eijklm is the residual with eijklm~N(0,σe

2). 

 The mixed model was fitted using the package MAANOVA (Wu et al., 2003). An F test 

based on a shrinkage estimator of variance components was used to evalulate significance of 

fixed effects (Cui et al., 2005). Permutation based P-values (number of permutations = 100) were 

obtained to assess significance (Yang and Churchill, 2007). 

To account for multiple testing a two-stage testing procedure was used to assess significance of 

gene expression changes in response to weight gain and viral load status over time. First, for 
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each DPI, the interaction effect TGij was tested at 10% false discovery rate (FDR) (Storey, 

2003). Then, for all transcripts with significant interaction, the effect of viral load was evaluated 

in high-weight-gain and low-weight-gain pigs, separately (nominal p ≤ 1/Ns, with Ns = number 

of significant interactions). Similarly, the effect of weight gain was evaluated in high-viral-load 

and low-viral-load pigs, separately. 

 All in all, this testing protocol resulted in 4 contrasts of interest for the comparisons of 

phenotypic groups. Each contrast involved the comparison of two phenotypic groups. Two of 

these contrasts evaluated the effect of viral load and the other two the effect of weight gain. In 

particular, for the viral load effect, we compared 1) HvHg vs.LvHg and 2) HvLg vs.LvLg. To 

evaluate the weight gain effect, we compared 1) HvHg vs.HvLg and 2) LvHg vs.LvLg. 

Data have been deposited in NCBI’s Gene Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/) with accession number GSE41144. Code used for these 

analyses can be found at https://www.msu.edu/~steibelj/JP_files/PRRSV.html 

2.4. Pathway Analysis 

 Gene set enrichment analyses were performed using Ingenuity Pathways Analysis 

software (IPA) (Ingenuity® Systems, www.ingenuity.com). After statistical analyses described 

above pathway analyses were restricted to early time-points (4 and 7 DPI). The network analyses 

generated a set of relevant networks (P ≤ 10-10 and number of DE genes ≥ 5) built based on a 

user-specified list of genes. Networks were composed of genes and gene products that are known 

to interact with each other and that were enriched for the DE transcripts (as defined in section 

2.3.). Functional analysis identified the biological functions that were significantly enriched 

(Benjamini-Hochberg (1995) p < 0.05) for these DE genes. 
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2.5. qPCR design and analysis 

 Quantitative PCR (qPCR) analysis was used to assess differential expression of 15 genes. 

Twelve genes were selected from microarray and pathway analyses results. In addition, three 

genes [interferon-alpha 1 (IFNA1); major histocompatibility complex, class II, DQ alpha 1 (SLA-

DQA1); and major histocompatibility complex, class II, DR alpha (SLA-DRA)] not present in the 

microarray platform were included based on previously documented knowledge of their relevant 

role in immune modulation, reviewed by Lunney and Chen (2010). Probes and primers were 

obtained from the Porcine Immunology and Nutrition Database (Dawson et al., 2005) or 

designed with Primer Express Software v3.0 (Life Technologies) from sequences obtained from 

Ensembl (http://useast.ensembl.org/index.html). Primers and probes were designed to span exon-

exon junctions, if possible, to avoid false positive genomic DNA contamination (Supplementary 

Table 1). Synthesis of cDNA was performed with SuperScript Reverse Transcriptase and qPCR 

amplification was implemented using the Brilliant Kit (Agilent Technologies, Inc., CA) with 35 

ng of cDNA in an ABI Prism 7500 Sequence Detector System (Life Technologies). Assays were 

performed in duplicate. The amplification conditions are described in Royaee et al.(2004). Ct 

values were obtained from each individual amplification curve. Average Ct for each target gene 

in each sample and DPI (4 and 7) were subtracted from the corresponding average Ct of RPL32 

(housekeeping gene), producing ΔCt values. ΔΔCt values were computed by subtracting 0-DPI-

ΔCt from ΔCt at each DPI. Resulting ΔΔCt were analyzed separately for each DPI (except 0 

DPI) with the following linear model: 

ym = Gm + em 
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where ym is the ΔΔCt value for the gene in the mth
 phenotypic group, Gm is the effect of the 

phenotypic group m and em~N(0,σe
2) is the residual. This model is equivalent to a previously 

described linear model (Steibel et al., 2009a). 

2.6. Statistical power and sample size computation 

 Using this experiment’s dataset as pilot data for future experiments with a similar design, 

we computed the expected discovery rate (EDR) and FDR as defined by Gadbury et al. (2004) to 

estimate statistical power at a fixed number of biological replicates (n) and Type I error rate (α). 

We considered either n = 20 or n = 30 per phenotypic group (4 groups) and α = 0.01. This choice 

of α resulted in a FDR < 10 % in all cases. Computations were performed using PowerAtlas 

software (Page et al., 2006). Sample sizes were selected assuming a common reference design 

with either 4 (n = 20) or 3 (n = 30) sampling time-points, such that the total number of 

microarray slides was fixed to 240. This represents a common situation where the researcher has 

to decide whether to allocate arrays to extra biological samples with fewer time-points or to 

include more time-points at the expense of sample size for a given total budget. 

3. Results 

 Dye labeled cDNA prepared from blood samples from 12 PHGC pigs at 7 different time 

points (0, 4, 7, 11, 14, 28, and 42 DPI) were hybridized to the Pigoligoarray using a block 

reference design. Three pigs per group were randomly selected from each of the four phenotypic 

groups defined according to the pigs’ weight gain and viral load (HvHg, HvLg, LvHg and 

LvLg). We addressed global differential expression in four contrasts of interest (HvHg vs. LvHg, 

HvLg vs. LvLg, HvHg vs. HvLg, and LvHg vs. LvLg).  

3.1. Microarray analysis  
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3.1.1. Evidence of differential gene expression at 0 DPI  

 The presence of an effect on gene expression profile that cannot be attributed to the 

experimental infection was addressed by evaluating differential gene expression between the 

four phenotypic groups at 0 DPI. Although no significant differences in transcripts were 

identified (FDR ≤ 0.1), inspection of P-value distributions for the four contrasts indicated a 

departure from the expected uniform distribution under null hypothesis (Fig. 3.2). The actual 

distribution of P-values for LvHg vs. LvLg indicated an excess of small P-values. This is 

consistent with the alternative hypothesis of differential expression. The contrasts HvHg vs. 

LvHg and HvLg vs. LvLg showed P-value distributions inconsistent with both null and 

alternative hypotheses implicit in the analysis model (Page et al., 2006). The observed deviations 

in the P-value distributions of these tests likely reveal the existence of unaccounted effects (Page 

et al., 2003). These patterns also appeared in contrasts at other time-points if these differences at 

0 DPI were ignored (results not shown). 

3.1.2. Evidence of differential gene expression for remaining DPI 

 Based on the results from the previous section, differential expression between 

phenotypic groups after 0 DPI was corrected by subtracting the estimated difference at 0 DPI. 

For example, to address differential expression between two phenotypic groups of pigs, the 

effect was estimated following [(TGi≠0, j – TGi’=0, j) – (TGi≠0, j’ – TGi’=0, j’)]. The same 

procedure was used for all contrasts. After correcting for 0-DPI estimated effect, the distribution 

of P-values for all contrasts was consistent with the expected distribution under either null or 

alternative hypotheses (data not shown). This indicated that correcting each comparison estimate 

by the corresponding estimate at time zero accounts for pre-existing differences in gene 
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expression and/or for animal specific effects missed by the model. Consequently, we based all 

inferences on the above specified contrasts. 

Evidence of differential expression was found, as revealed by the Q-Q plot of P-values (Fig. 3.3). 

This plot represents the quantiles of the empirical distribution of P-values versus the expected 

quantiles of uniformly distributed P-values (corresponding to the null hypothesis). The 

represented departure from the straight line y = x indicates an excess of small P-values as 

compared to the expectation under the null hypothesis, consistent with the alternative hypothesis. 

3.1.3. Weight gain and viral load interaction effect on gene expression 

 A total of 491 null hypotheses were rejected (FDR ≤ 10%) when testing for the 

interaction between weight gain and VL. The number of transcripts showing a significant 

interaction was 288, 14, 177 and 12 at 4, 7 14 and 42 DPI respectively (Table 3.1). There were 

no significant interactions detected at 11 and 28 DPI. Transcripts showing significant weight 

gain and viral load interaction effect on their expression were further evaluated and results are 

presented in section 3.1.4. 
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Table 3.1. Number of putatively differentially expressed transcripts.  

Time (DPI) Ns 

Phenotypic Groups Comparisons 

HvHg vs. LvHg HvLg vs. LvLg HvHg vs. HvLg LvLg vs. LvHg

4 288 86 42 22 141 

7 14 13 12 14 11 

14 177 106 25 38 120 

42 12 12 12 9 12 

Numbers indicate differentially expressed genes per time and phenotypic groups’ 
comparisons. 

Ns= total number of transcripts being tested (i.e. with a significant interaction at the specific 
DPI being evaluated). 

 

3.1.4. Weight gain and viral load effect on gene expression 

 To declare a differentially expressed (DE) transcript we used an adjusted P-value where 

the null hypothesis was rejected if p ≤ 1/Ns, with Ns = total number of transcripts being tested 

(i.e. with a significant interaction at the specific DPI being evaluated), such that we expected one 

false positive per comparison. This led to a number of putatively DE transcripts per DPI and 

comparison, as shown in Table 3.1. At 4 and 14 DPI, we observed a similar number of DE 

transcripts, consisting of a large number of transcripts with significant interaction (288 and 177 

respectively) mainly involving differential expression in HvHg vs. LvHg (86 and 106 transcripts) 

and in LvLg vs. LvHg (141 and 120 transcripts). However, at 7 and 14 DPI, the number of 

significant interactions is smaller (14 and 12) with most of the transcripts DE across all four 

contrasts. Although we reported number of DE at 42 DPI, we did not follow up on these results 

because response at that late sampling time-point could be due to a rebound of the disease 

(Boddicker et al., 2012). 
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3.2. Pathway analyses  

 Subsequent to testing for changes in global gene expression, we assessed if immune 

related gene sets were enriched for DE genes across pigs from the four phenotypic groups. We 

performed pathway analyses to identify relevant molecular networks and biological functions 

associated with such networks enriched for the DE genes identified in section 3.1.4. We 

restricted the analyses to 4 and 7 DPI since 1) we were interested in early immune responses and 

2) these were the times that provided the most power to detect future differential expression (as 

shown in section 3.4.). Following these pathway analyses, and to limit the interpretation of 

results to genes with large effects, in addition to the P-value threshold described in section 3.1.4, 

we considered an absolute fold-change (FC) threshold equal to, or greater than 1.5. For instance, 

in a specific contrast involving two groups, the gene expression level in the first phenotypic 

group had to be 50 % larger (or smaller) than the one in the second phenotypic group for a 

significantly DE gene to be considered. DE genes with a positive FC (larger than 1.5) were 

considered to be over-expressed, and DE genes with a negative FC (smaller than -1.5) were 

considered to be under-expressed in the first phenotypic group included in the contrast equation. 

3.2.1. HvHg vs. LvHg 

 At 4 DPI, pathway analyses identified 5 significant molecular networks. Significant 

functional categories identified in these networks were: Cell Death, Cell Morphology, Cellular 

Assembly and Organization, Cellular Function and Maintenance. Among DE genes in these 

networks and associated with these categories, c-mer proto-oncogene tyrosine kinase (MERTK) 

was under-expressed in this contrast. Ezrin (EZR) and moesin (MSN) were over-expressed and 

under-expressed in this contrast, respectively. Present in the top network was also Rho GTPase 

activating protein 35 (GRLF1) that was under-expressed.  
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 At 7 DPI, pathway analyses identified one significant molecular network and similar to 4 

DPI a significant functional category associated with the network was also Cell Death. Within 

this category DE genes involved in the initiation of apoptosis (PYD and CARD domain 

containing, PYCARD) and cytotoxicity of cytotoxic T cells (granzyme A, GZMA) were under-

expressed in this contrast. Also present in this network and under-expressed in this contrast was 

epidermal growth factor receptor pathway substrate 15 (EPS15). 

3.2.2. HvLg vs. LvLg  

 At 4 DPI, pathway analysis identified three significant molecular networks. Significant 

functional categories identified in these networks were Organismal Development, and Cell 

Death. Among DE genes in these networks and associated with Cell Death, major 

histocompatibility complex, class II, DR beta 1 (HLA-DRB1/SLA-DRB1), involved in the 

cytotoxicity of Th1 cells, was under-expressed in this contrast. In the same network, jumonji, AT 

rich interactive domain (JARID2) was under-expressed in the contrast. In addition, present in the 

top network generated was integrin beta 7 (ITGB7) and RAS guanyl releasing protein 1 

(RASGRP1) were both under-expressed in this contrast.  

 At 7 DPI, pathway analyses results pointed at one significant molecular network. 

Functional categories associated with this network were: Genetic Disorder, Inflammatory 

Disease, and Cellular Compromise. Differentially expressed genes associated with these 

functions were PYCARD and GZMA, over-expressed in this contrast. 

3.2.3. HvHg vs. HvLg  

 At 4 DPI, pathway analysis identified one significant molecular network with 12 DE 

genes. However, no significant functional category was identified for genes in this network. 
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 At 7 DPI there was also one significant network identified. The significant functional 

category identified for this network was Cell Death. DE genes in this category related to cell 

death of leukocytes (GZMA and PYCARD), and initiation of apoptosis (PYCARD) were under-

expressed in this contrast. Another gene, NEDD8 activating enzyme E1 subunit 1 (NAE1), also 

related to initiation of apoptosis was over-expressed in the contrast.  

3.2.4. LvHg vs. LvLg  

 At 4 DPI, seven significant molecular networks were identified. However, no significant 

functional categories were identified for any of these networks. 

 At 7 DPI, one significant molecular network was identified. The significant functional 

category identified for this network was Cell Morphology. Associated with this function, GZMA 

was DE and over-expressed in this contrast. 

3.3. qPCR analysis 

3.3.1. Verification of microarray findings 

 Among a total of 96 comparisons for the 12 genes present in the microarray and selected 

for qPCR (12 genes * 4 phenotypic groups * 2 DPI), 26 significant comparisons (p ≤ 1/Ns, as 

defined in section 3.1.4.) were detected by the microarray. Significant comparisons occurred for 

nine genes: EPS15, EZR, GRLF1, GZMA, ITGB7, JARID2, MERTK, PYCARD, and RASGRP1. 

Each comparison corresponds to a significant test of differential expression at a specific DPI. 

Focusing on the direction and level of expression change of all comparisons, we evaluated the 

gene set correlations between microarray and qPCR measured FC. From a measurement error 

perspective, the overall trend in direction and amount of expression was validated at 4 DPI (r = 

0.91, p ≤ 0.0007), but not at 7 DPI. As expected, correlation between measurements associated 
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with non-DE comparisons in the microarray and the qPCR were not significant (r = 0.15, p > 

0.24). Based on microarray results, qPCR confirmed differential expression of two genes: 

JARID2 and ITGB7. JARID2 was confirmed in HvLg vs .LvLg at 4 DPI (p ≤ 0.03 and p ≤ 0.0001 

for QPCR and microarray, respectively). ITGB7 was confirmed in LvHg vs. LvLg at 7 DPI (p ≤ 

0.007 and p ≤ 0.004).  

 A total of 70 non-DE comparisons were reported by the microarray analysis. This 

includes comparisons among the nine genes mentioned plus all comparisons for interleukin-1 

alpha (IL1A); interleukin 8 (IL8); and interferon regulatory factor 1 (IRF1). Among these non-

DE comparisons only two were detected DE with qPCR. These included IRF1 in HvLg vs. LvLg 

(p ≤ 0.007, FC ≤ -2.22) and LvHg vs. LvLg (p ≤ 0.005, FC ≤ -2.33) at 7 DPI. All these results 

together indicate that, although the rate of differential expression validation of individual genes 

is limited, the overall pattern of differential expression was confirmed for comparisons at 4 DPI. 

Consequently, enrichment analysis (networks and functions) identified at the earliest time-point 

are expected to be reproduced in future experiments.  

3.3.2. Additional genes 

 Three genes not present on the microarray were also tested using qPCR: interferon-alpha 

1 (IFNA1), major histocompatibility complex, class II, DQ alpha 1 (HLA-DQA1/SLA-DQA1), 

and major histocompatibility complex, class II, DR alpha (HLA-DRA/SLA-DRA). SLA class II 

antigens are expressed in B and T cells, with numerous haplotypes identified throughout 

different pig populations, which led researchers to explore their association with disease 

responses (Lunney et al., 2009). IFNA1 encodes for an innate cytokine, and has been reported to 

be modulated by PRRSV (Mateu and Diaz, 2008;Kimman et al., 2009). Significance levels and 

FC for these genes in all comparisons are presented in Table 3.2. 
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 At 4 DPI, IFNA1 was significantly DE (p ≤ 0.05) when comparing HvLg to LvLg and 

HvHg to HvLg.  

 At 7 DPI, IFNA1 was significantly DE in all contrasts. SLA-DQA was DE in all contrasts 

except for HvHg vs. HvLg and SLA-DRA was DE in LvHg vs. LvLg 

Table 3.2. Test of immune gene expression for genes not present in the microarray platform. 

 

Viral Comparisons Growth Comparisons 

HvHg vs. LvHg HvLg vs. LvLg HvHg vs. HvLg LvHg vs. LvLg

DPI Symbol P-value FC P-value FC P-value FC P-value FC 

4 

IFNA 0.09 3.21 0.01 -6.67 0.02 5.45 0.05 -3.93

SLA-DQA 0.71 1.15 0.11 -1.92 0.71 1.15 0.11 -1.92

SLA-DRA 0.96 -1.03 0.62 -1.35 0.71 -1.25 0.42 -1.64

7 

IFNA 0.04 3.25 0.02 -4.08 0.04 3.27 0.02 -4.05

SLA-DQA 0.04 1.32 0.01 -1.43 0.95 -1.01 0.00 -1.89

SLA-DRA 0.15 1.58 0.55 -1.20 0.40 -1.29 0.02 -2.45

Values in the table include significance levels and FC of genes; bolded values indicate 
significant comparisons and their FC 

 

3.4. Microarray statistical power and sample size estimation 

 In order to inform the design of future experiments, we computed the EDR per contrast at 

early DPI. The EDR is the multi-test equivalent to power, which is also called sensitivity (Steibel 

et al., 2009b). EDR should be computed at a specific nominal Type I error rate, α, and for a 

given sample size, conditioning on estimated effects from a previous experiment (Gadbury et al., 

2004). We considered a future experiment that would include sampling time = 0 DPI plus two or 

three other times, selected among 4, 7, and 11 DPI. We assumed effect sizes estimated from this 

data, a fixed nominal error rate α = 0.01, and two sample sizes (n = 30 for three sampling time-
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points or n = 20 for four sampling time-points). The sample allocation (sampling fewer time 

points with more biological replicates or vice versa) would require the same number of 

microarray slides (240) and would roughly have the same cost. For evaluating which sampling 

time-points have to be included in a future study, we set the threshold of inclusion to EDR > 

80%. That is, the average probability of detecting an effect (assuming the effect is indeed 

present) to be larger than 0.8. When n = 30, two sampling time-points (other than 0 DPI) could 

be included. In that case, the best sampling combination would be at 4 and 7 DPI. This would 

provide adequate power (EDR > 80%) to detect weight gain and VL effects in all contrasts 

except for LvHg vs. LvLg. Changing the sampling scheme to include 11 DPI (with only 20 

samples per phenotypic group), would not add to the purpose of having sufficient power in that 

contrast. Furthermore, sampling at 11 DPI would only result in one contrast (HvLg vs. LvLg) 

having EDR > 80% (Table 3.3) 
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Table 3.3. Expected discovery rate (EDR) comparing 20 and 30 biological replicates.  

  Sampling time-points (DPI) 

Phenotypic 
Group 
Comparisons 

Sample 
Size (n) 

4 7 11 

HvHg vs. LvHg 
20 0.84 0.86 0.37 

30 0.91 0.92 0.47 

HvLg vs. LvLg 
20 0.83 0.80 0.96 

30 0.91 0.88 0.98 

HvHg vs. HvLg 
20 0.77 0.88 NA 

30 0.86 0.94 0.45 

LvHg vs LvLg 
20 0.55 0.42 0.62 

30 0.63 0.51 0.70 

All four contrasts were compared at each DPI and evaluated for future sampling with desirable 
power (> 80%) 

NA: not available. The algorithm could not reach a result 

 

4. Discussion 

 The first objective of this study was to assess global differential gene expression in 

weaned pigs showing variation in weight gain and blood viral load in response to PRRSV 

infection. To achieve this objective, four reaction groups (phenotypic groups) of pigs were 

evaluated. Our study is different from other PRRSV-response gene expression profiling 

experiments in three ways. First, we focused on modeling individual biological variation of gene 

expression. Given that a longer term objective is to find genes for diagnosis and prognosis of 

PRRSV infection, we were interested in characterizing the variance of expression at the 
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individual level. The resulting scope of inference is different from that obtained using pooled 

samples (Genini et al., 2008;Xiao et al., 2010a;Xiao et al., 2010b), since our experimental and 

inferential unit is the individual animal and not a pool of animals. Second, we used a blocked 

reference design (Steibel and Rosa, 2005). In contrast to common reference designs (Bates et al., 

2008;Xiao et al., 2010a;Xiao et al., 2010b;Wysocki et al., 2012), our design allowed us to use 0 

DPI samples as a reference, and still include 0 DPI in tests, which was instrumental in assessing 

baseline effects before infection. Additionally, because of the design used to accommodate single 

cDNA samples, this study has the flexibility of incorporating future data for differential 

expression analysis. Third, we report on whole-genome expression profiling of white blood cells 

from in-vivo infected pigs that complements existing results from studies using pulmonary 

alveolar macrophages (PAM), bronchial lymph node and lung (Petry et al., 2007;Bates et al., 

2008;Genini et al., 2008;Lunney et al., 2010;Xiao et al., 2010a;Zhou et al., 2011;Wysocki et al., 

2012). Furthermore, obtaining blood samples is simpler and less invasive than sampling other 

tissues, thus simplifying implementation of genomic diagnostics in pigs, including in-situ 

sampling at farms.  

 We first assessed differential expression at 0 DPI between pigs allocated to different 

phenotypic groups, and observed effects that could not be solely attributed to experimental 

infection or random errors (Page et al., 2006). The individual baseline (0 DPI) differential 

expression assessment was only briefly reported before (Ait-Ali et al., 2011), and using 0 DPI 

correction has not been reported. This type of correction was not usually addressed either 

because the baseline samples were pooled (Genini et al., 2008;Xiao et al., 2010a;Xiao et al., 

2010b) or because they were omitted from the expression experiment (Bates et al., 

2008;Wysocki et al., 2012). 
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 We tested the interaction effect between weight gain and viral load on global gene 

expression. From breeding and management perspectives, quantifying interaction effects at early 

time-points would allow making timely management and selection decisions. Consequently we 

concentrated on 4 to 14 DPI for further analyses. In addition, by considering early DPI we 

assured that the effect being evaluated was exclusively due to an initial infection stage and not to 

a rebound of the disease (Boddicker et al., 2012). Our results complement and extend those 

reported by Petry et al. (2007) and Bates et al. (2008), who tested the interaction between viral 

burden and genetic line as well as infection status on gene expression. Petry et al. (2005) 

reported that pigs from Nebraska Index Line, selected for improved reproductive traits, gained 

more weight than Hampshire x Duroc crossbred pigs after PRRSV infection. Therefore, the 

weight gain and blood viral level interaction effect we evaluated resembled the genetic line by 

viral burden interaction reported by Petry et al. (2007) and Bates et al. (2008). These authors 

reported seven genes with significant line by viral load interaction in lung or bronchial lymph 

node expression profiles. Querying expression levels for the same genes in our dataset, we found 

that DDX3Y (DEAD box proteins, ATP-dependent RNA helicase), a paralog of DDX3 reported 

by Bates et al. (2008), was also DE in blood cells. Significant differences in DDX3 expression 

occurred between low and high viral burden pigs in Nebraska Index Line, but not in Hampshire x 

Duroc line. Likewise, we observed significant differences (p ≤ 0.003) in DDX3Y expression in 

HvHg vs. LvHg, but not in HvLg vs. LvLg, at 14 DPI, although the direction of change was 

opposite in our results as compared to the Bates et al. (2008) experiment. The reason for this is 

unclear but it could be attributed to differences in tissues, genetic background, and/or functional 

differences between the paralogous genes. 
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 Within the first objective of this study we also aimed to characterize gene networks and 

individual genes influencing PRRSV immune response in the four phenotypic groups considered. 

We further evaluated transcripts with expression subject to significant viral load by weight gain 

interaction effects to identify biological functions associated with relevant molecular networks. 

We focused on 4 and 7 DPI since these provide insights on early host anti-viral and innate 

immune response to PRRSV infection and they are candidate sampling time-points to be pursued 

in future studies. Pathway analysis revealed that cell death function was significantly associated 

with several networks enriched for DE genes at 4 and 7 DPI. Genes included in these networks 

and associated with cell death were MERTK, GZMA, and PYCARD. All these genes followed a 

general pattern of under-expression in high viral load compared to low viral load pigs (FC ≤ -

1.5). An exception to this was HvLg vs. LvLg at 7 DPI. These overall results are consistent with 

those from Genini et al. (2008) that reported inhibition of apoptosis in cell lines 9 to 12 hours 

post infection and with results from Xiao et al. (2010b) comparing gene expression of pigs 

infected with a highly pathogenic strain of PRRSV compared to uninfected controls at 4 and 7 

DPI. Cell death is a host defense mechanism to inhibit viral replication (Alcami and 

Koszinowski, 2000). Overall, the global gene expression profile showed a trend where HvLg and 

HvHg pigs had lower expression of the listed genes relative to LvLg and LvHg pigs, 

respectively, indicating that the defense mechanism mediated by cell death had reduced 

efficiency, thereby allowing increased viral replication. At 4 DPI, our study identified MERTK as 

DE and associated with cell death in HvHg vs. LvHg pigs. The product of MERTK is a 

phagocytic receptor that is involved in the clearance of apoptotic thymocytes. Mouse 

macrophages lacking MERTK showed a delayed clearance of apoptotic cells (Seitz et al., 2007). 

There have been no previous reports of this gene identified as DE in PRRSV response studies. 
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 Key genes in the swine leukocyte antigens (SLA) complex have been well documented 

for their effects on production and immune traits in different pig populations (Lunney et al., 

2009). At 7 DPI, we identified SLA-DRA significantly over-expressed in LvLg relative to LvHg. 

SLA-DQA1 followed the same trend, and in addition, it was significantly under-expressed in 

LvHg and HvLg relative to HvHg and LvLg, respectively. Global differential expression and 

functional analysis comparing PRRSV infected to uninfected pigs at the same sampling time-

points by Xiao et al. (2010a) reported that MHC class II antigens (SLA-DQA, SLA-DMB, SLA-

DQB1 and SLA-DRA) were significantly induced in PRRSV infected lungs. 

Our study identified IFNA1 as being significantly DE in all contrasts but HvHg vs. LvHg at 4 

DPI. Specifically, at both 4 and 7 DPI, IFNA1 was over-expressed in HvHg and LvLg relative to 

HvLg and LvHg pigs, respectively. This gene was reported as under-expressed in PRRSV-

infected with respect to uninfected PAM at 30 (Ait-Ali et al., 2011) but not at 12 hours post 

infection (Genini et al., 2008). IFNA was reported under-expressed at 4 and 7 DPI in lung tissue 

of infected pigs relative to uninfected controls (Xiao et al., 2010a) but at 14 DPI, Lunney et al. 

(2010) reported no differences in expression in tracheobronchial lymph node for several innate 

markers (IFNA, IL1B and IL8). In addition, Petry et al. (2007) found that differences in 

expression of IFNA were influenced by pig genetic line. 

 Overall, our findings of DE genes in whole blood are in agreement with previous reports 

on specific target tissues and cells, such as lung and PAM, following PRRSV infections. These 

results stress the usefulness of our study for sampling the more accessible blood to reveal the 

complexity of host responses to PRRSV infection. We expect that our planned, more detailed 

studies will generate further questions on the role of these and many other genes in anti-PRRSV 

responses. 
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 Finally, our global differential expression results were used as pilot data to inform design 

of future time-course transcription profiling experiments. We evaluated different scenarios of 

sample sizes and sampling time-points for combinations given a fixed total sampling effort. We 

concluded the best scenario for future studies consists of sampling at 4 and 7 DPI using about 30 

pigs per phenotypic group, and that a minimum of 20 pigs per group are needed for controlling 

Type I and Type II error rates to acceptable levels in most comparisons. The results obtained 

with a sample size n = 30 were consistent with previous results obtained from a dataset generated 

by Chen et al. (manuscript in preparation). Our group used the Wysocki et al. (2012) dataset of 

lung tissue expression at 14 DPI to evaluate statistical power of high versus low viral burden 

pigs, and affirmed that approximately the same sample size was needed. These results 

underscore the importance of computing sample size. We predict that this could be applied in a 

broader context, for instance, in next generation sequencing experiments. Such technology is 

being increasingly used for evaluating expression profiling in pigs infected with PRRSV (Xiao et 

al., 2010a;Xiao et al., 2010b). Even though we could expect less technical variation in expression 

measured with RNA-seq (Marioni et al., 2008), biological variation would remain unaffected. In 

such cases, the only way of increasing power of the tests would be increasing the number of 

biological samples (Steibel et al., 2009b). 

 Evidence presented in this paper highlights the importance of thoughtful experimental 

design and accurate modeling. We acknowledge sample size is a key factor of every experiment 

and correct modeling of variation (biological and technical) is essential. As a result, this 

experiment provided information on actual sample sizes and sampling time-points needed for 

more precise estimation of effects of interest. Our preliminary results have already identified 

differential gene expression, molecular networks and biological functions affecting the four 
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phenotypic groups of pigs and the influence of PRRSV infection. Finally, due to the flexible 

experimental design utilized in this study, the resulting dataset can be merged with future data 

for increasingly powerful and precise inferences on response to PRRSV infection. 

Conflict of Interest Statement 

No competing interests. 

Acknowledgements 

This work was supported by USDA ARS funding and USDA NIFA grant #2010-65205-20433. 

The PRRS Host Genetics Consortium (PHGC) samples were supported through grants #07-233 

and #09-244 from the U.S. National Pork Board. 

The authors acknowledge the careful RNA preparations performed by Amber Jean Tietgens at 

BARC 



57 
 

 

REFERENCES 



58 
 

References 

Ait-Ali, T., Wilson, A.D., Carre, W., Westcott, D.G., Frossard, J.P., Mellencamp, M.A., 
Mouzaki, D., Matika, O., Waddington, D., Drew, T.W., Bishop, S.C., and Archibald, 
A.L. (2011). Host inhibits replication of European porcine reproductive and respiratory 
syndrome virus in macrophages by altering differential regulation of type-I interferon 
transcriptional response. Immunogenetics 63, 437-448. 

Alcami, A., and Koszinowski, U.H. (2000). Viral mechanisms of immune evasion. Immunology 
Today 21, 447-455. 

Bates, J.S., Petry, D.B., Eudy, J., Bough, L., and Johnson, R.K. (2008). Differential expression in 
lung and bronchial lymph node of pigs with high and low responses to infection with 
porcine reproductive and respiratory syndrome virus. Journal of Animal Science 86, 
3279-3289. 

Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate - a Practical and 
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-
Methodological 57, 289-300. 

Boddicker, N., Waide, E.H., Rowland, R.R.R., Lunney, J.K., Garrick, D.J., Reecy, J.M., and 
Dekkers, J.C.M. (2012). Evidence for a major QTL associated with host response to 
Porcine Reproductive and Respiratory Syndrome Virus challenge. Journal of Animal 
Science 90, 1733-1746. 

Clapperton, M., Bishop, S.C., and Glass, E.J. (2005). Innate immune traits differ between 
Meishan and Large White pigs. Veterinary Immunology and Immunopathology 104, 131-
144. 

Clapperton, M., Diack, A.B., Matika, O., Glass, E.J., Gladney, C.D., Mellencamp, M.A., Hoste, 
A., and Bishop, S.C. (2009). Traits associated with innate and adaptive immunity in pigs: 
heritability and associations with performance under different health status conditions. 
Genetics Selection Evolution 41. 

Collins, J.E., Benfield, D.A., Christianson, W.T., Harris, L., Hennings, J.C., Shaw, D.P., Goyal, 
S.M., Mccullough, S., Morrison, R.B., Joo, H.S., Gorcyca, D., and Chladek, D. (1992). 
Isolation of Swine Infertility and Respiratory Syndrome Virus (Isolate ATCC VR-2332) 
in North America and Experimental Reproduction of the Disease in Gnotobiotic Pigs. 
Journal of Veterinary Diagnostic Investigation 4, 117-126. 

Cui, X.G., Hwang, J.T.G., Qiu, J., Blades, N.J., and Churchill, G.A. (2005). Improved statistical 
tests for differential gene expression by shrinking variance components estimates. 
Biostatistics 6, 59-75. 

Dawson, H.D., Beshah, E., Nishi, S., Solano-Aguilar, G., Morimoto, M., Zhao, A.P., Madden, 
K.B., Ledbetter, T.K., Dubey, J.P., Shea-Donohue, T., Lunney, J.K., and Urban, J.F. 
(2005). Localized multigene expression patterns support an evolving Th1/Th2-like 
paradigm in response to infections with Toxoplasma gondii and Ascaris suum. Infection 
and Immunity 73, 1116-1128. 



59 
 

Doeschl-Wilson, A.B., Kyriazakis, I., Vincent, A., Rothschild, M.F., Thacker, E., and Galina-
Pantoja, L. (2009). Clinical and pathological responses of pigs from two genetically 
diverse commercial lines to porcine reproductive and respiratory syndrome virus 
infection. Journal of Animal Science 87, 1638-1647. 

Done, S.H., Paton, D.J., and White, M.E.C. (1996). Porcine reproductive and respiratory 
syndrome (PRRS): A review, with emphasis on pathological, virological and diagnostic 
aspects. British Veterinary Journal 152, 153-174. 

Gadbury, G.L., Page, G.P., Edwards, J.W., Kayo, T., Prolla, T.A., Weindruch, R., Permana, 
P.A., Mountz, J.D., and Allison, D.B. (2004). Power and sample size estimation in high 

dimensional biology. Statistical Methods in Medical Research 13, 325-338. 

Galina-Pantoja, L., Mellencamp, M.A., Bastiaansen, J., Cabrera, R., Solano-Aguilar, G., and 
Lunney, J.K. (2006). Relationship between immune cell phenotypes and pig growth in a 
commercial farm. Animal Biotechnology 17, 81-98. 

Genini, S., Delputte, P.L., Malinverni, R., Cecere, M., Stella, A., Nauwynck, H.J., and Giuffra, 
E. (2008). Genome-wide transcriptional response of primary alveolar macrophages 
following infection with porcine reproductive and respiratory syndrome virus. Journal of 
General Virology 89, 2550-2564. 

Holtkamp, D.J., Kliebenstein, J.B., Neumann, E.J., Zimmerman, J.J., Rotto, H., Yoder, T.K., 
Wang, C., Yeske, P., Mowrer, C., and Haley, C. (2012). Assessment of the economic 
impact of porcine reproductive and respiratory syndrome virus on United States pork 
producers. J. Swine Health Prod. (Manuscript in press). 

Kimman, T.G., Cornelissen, L.A., Moormann, R.J., Rebel, J.M.J., and Stockhofe-Zurwieden, N. 
(2009). Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) 
vaccinology. Vaccine 27, 3704-3718. 

Lee, C., Bachand, A., Murtaugh, M.P., and Yoo, D. (2004a). Differential host cell gene 
expression regulated by the porcine reproductive and respiratory syndrome virus GP4 and 
GP5 glycoproteins. Veterinary Immunology and Immunopathology 102, 189-198. 

Lee, C., Rogan, D., Erickson, L., Zhang, J., and Yoo, D. (2004b). Characterization of the porcine 
reproductive and respiratory syndrome virus glycoprotein 5 (GP5) in stably expressing 
cells. Virus Research 104, 33-38. 

Lewis, C.R., Ait-Ali, T., Clapperton, M., Archibald, A.L., and Bishop, S. (2007). Genetic 
perspectives on host responses to porcine reproductive and respiratory syndrome (PRRS). 
Viral Immunology 20, 343-358. 

Lunney, J.K., and Chen, H. (2010). Genetic control of host resistance to porcine reproductive 
and respiratory syndrome virus (PRRSV) infection. Virus Research 154, 161-169. 

Lunney, J.K., Fritz, E.R., Reecy, J.M., Kuhar, D., Prucnal, E., Molina, R., Christopher-Hennings, 
J., Zimmerman, J., and Rowland, R.R.R. (2010). Interleukin-8, Interleukin-1 beta, and 



60 
 

Interferon-gamma Levels Are Linked to PRRS Virus Clearance. Viral Immunology 23, 
127-134. 

Lunney, J.K., Ho, C.-S., Wysocki, M., and Smith, D.M. (2009). Molecular genetics of the swine 
major histocompatibility complex, the SLA complex. Developmental & Comparative 
Immunology 33, 362-374. 

Lunney, J.K., Steibel, J., Reecy, J.M., Fritz, E., Rothschild, M.F., Kerrigan, M., Trible, B., and 
Rowland, R.R.R. (2011). Probing genetic control of swine responses to PRRSV infection: 
current progress of the PRRS host genetics consortium. BMC Proceedings 5, S30. 

Mardis, E.R. (2008). The impact of next-generation sequencing technology on genetics. Trends 
in Genetics 24, 133-141. 

Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. (2008). RNA-seq: An 
assessment of technical reproducibility and comparison with gene expression arrays. 
Genome Research 18, 1509-1517. 

Mateu, E., and Diaz, I. (2008). The challenge of PRRS immunology. Veterinary Journal 177, 
345-351. 

Miller, L.C., and Fox, J.M. (2004). Apoptosis and porcine reproductive and respiratory syndrome 
virus. Vet Immunol Immunopathol 102, 131-142. 

Page, G.P., Edwards, J.W., Gadbury, G.L., Yelisetti, P., Wang, J., Trivedi, P., and Allison, D.B. 
(2006). The PowerAtlas: a power and sample size atlas for microarray 

experimental design and research. Bmc Bioinformatics 7, 84. 

Page, G.P., George, V., Go, R.C., Page, P.Z., and Allison, D.B. (2003). “Are We There Yet?”: 
Deciding When One Has Demonstrated Specific Genetic Causation in Complex Diseases 
and Quantitative Traits. The American Journal of Human Genetics 73, 711-719. 

Petry, D.B., Holl, J.W., Weber, J.S., Doster, A.R., Osorio, F.A., and Johnson, R.K. (2005). 
Biological responses to porcine respiratory and reproductive syndrome virus in pigs of 
two genetic populations. Journal of Animal Science 83, 1494-1502. 

Petry, D.B., Lunney, J., Boyd, P., Kuhar, D., Blankenship, E., and Johnson, R.K. (2007). 
Differential immunity in pigs with high and low responses to porcine reproductive and 
respiratory syndrome virus infection. Journal of Animal Science 85, 2075-2092. 

R Development Core Team (2010). " R: A language and environment for statistical computing.". 
(Vienna, Austria: R Foundation for Statistical Computing). 

Ritchie, M.E., Silver, J., Oshlack, A., Holmes, M., Diyagama, D., Holloway, A., and Smyth, 
G.K. (2007). A comparison of background correction methods for two-colour 
microarrays. Bioinformatics 23, 2700-2707. 



61 
 

Rosa, G.J.M., Steibel, J.P., and Tempelman, R.J. (2005). Reassessing design and analysis of two-
colour microarray experiments using mixed effects models. Comparative and Functional 
Genomics 6, 123-131. 

Rowland, R.R.R., Lawson, S., Rossow, K., and Benfield, D.A. (2003). Lymphoid tissue tropism 
of porcine reproductive and respiratory syndrome virus replication during persistent 
infection of pigs originally exposed to virus in utero. Veterinary Microbiology 96, 219-
235. 

Royaee, A.R., Husmann, R.J., Dawson, H.D., Calzada-Nova, G., Schnitzlein, W.M., 
Zuckermann, F.A., and Lunney, J.K. (2004). Deciphering the involvement of innate 
immune factors in the development of the host response to PRRSV vaccination. 
Veterinary Immunology and Immunopathology 102, 199-216. 

Seitz, H.M., Camenisch, T.D., Lemke, G., Earp, H.S., and Matsushima, G.K. (2007). 
Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of 
apoptotic cells. Journal of Immunology 178, 5635-5642. 

Smyth, G.K. (2005). "Limma: linear models for microarray data.," in Bioinformatics and 
Computational Biology Solutions using R and Bioconductor, eds. R. Gentleman, V. 
Carey, S. Dudoit, R. Irizarry & W. Huber.  (New York: Springer), 397-420. 

Steibel, J.P., Poletto, R., Coussens, P.M., and Rosa, G.J.M. (2009a). A powerful and flexible 
linear mixed model framework for the analysis of relative quantification RT-PCR data. 
Genomics 94, 146-152. 

Steibel, J.P., and Rosa, G.J.M. (2005). On Reference Designs For Microarray Experiments. 
Statistical Applications in Genetics and Molecular Biology, 1-19. 

Steibel, J.P., Rosa, G.J.M., and Tempelman, R.J. (2009b). Optimizing design of two-stage 
experiments for transcriptional profiling. Computational Statistics & Data Analysis 53, 
1639-1649. 

Steibel, J.P., Wysocki, M., Lunney, J.K., Ramos, A.M., Hu, Z.L., Rothschild, M.F., and Ernst, 
C.W. (2009c). Assessment of the swine protein-annotated oligonucleotide microarray. 
Animal Genetics 40, 883-893. 

Storey, J.D. (2003). The positive false discovery rate: a Bayesian interpretation and the q-value. 
The Annals of Statistics 31, 2013-2035. 

Vincent, A.L., Thacker, B.J., Halbur, P.G., Rothschild, M.F., and Thacker, E.L. (2006). An 
investigation of susceptibility to porcine reproductive and respiratory syndrome virus 
between two genetically diverse commercial lines of pigs. Journal of Animal Science 84, 
49-57. 

Wattrang, E., Almqvist, M., Johansson, A., Fossum, C., Wallgren, P., Pielberg, G., Andersson, 
L., and Edfors-Lilja, I. (2005). Confirmation of QTL on porcine chromosomes 1 and 8 
influencing leukocyte numbers, haematological parameters and leukocyte function. 
Animal Genetics 36, 337-345. 



62 
 

Wu, H., Kerr, M., Cui, X., and Churchill, G. (2003). "MAANOVA: A Software Package for the 
Analysis of Spotted cDNA Microarray Experiments 

The Analysis of Gene Expression Data," eds. G. Parmigiani, E. Garrett, R. Irizarry & S. Zeger. 
Springer London), 313-341. 

Wysocki, M., Chen, H., Steibel, J.P., Kuhar, D., Petry, D., Bates, J., Johnson, R., Ernst, C.W., 
and Lunney, J.K. (2012). Identifying putative candidate genes and pathways involved in 
immune responses to porcine reproductive and respiratory syndrome virus (PRRSV) 
infection. Animal Genetics 43, 328-332. 

Xiao, S.Q., Jia, J.Y., Mo, D.L., Wang, Q.W., Qin, L.M., He, Z.Y., Zhao, X.A., Huang, Y.K., Li, 
A.N., Yu, J.W., Niu, Y.N., Liu, X.H., and Chen, Y.S. (2010a). Understanding PRRSV 
Infection in Porcine Lung Based on Genome-Wide Transcriptome Response Identified by 
Deep Sequencing. Plos One 5. 

Xiao, S.Q., Mo, D.L., Wang, Q.W., Jia, J.Y., Qin, L.M., Yu, X.C., Niu, Y.N., Zhao, X.A., Liu, 
X.H., and Chen, Y.S. (2010b). Aberrant host immune response induced by highly 
virulent PRRSV identified by digital gene expression tag profiling. Bmc Genomics 11. 

Yang, H., and Churchill, G. (2007). Estimating p-values in small microarray experiments. 
Bioinformatics 23, 38-43. 

Yang, Y.H., Duboit, S., Luu, P., Lin, D.M., Peng, V., Ngai, J., and Speed, T.P. (2002). 
Normalization for cDNA microarray data: a robust composite method addressing single 
and multiple slide systematic variation. Nucleic Acids Res 30, e15. 

Zhou, P., Zhai, S., Zhou, X., Lin, P., Jiang, T., Hu, X., Jiang, Y., Wu, B., Zhang, Q., Xu, X., Li, 
J., and Liu, B. (2011). Molecular Characterization of Transcriptome-wide Interactions 
between Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and 
Porcine Alveolar Macrophages in vivo. Int J Biol Sci 7, 947-959. 



63 
 

CHAPTER FOUR



64 
 

1. Conclusion 

1.1. Goals and contribution of this study 

Porcine Reproductive and Respiratory Syndrome (PRRS) has been affecting commercial 

populations of pigs in the US for more than 20 years (Done et al., 1996). Different studies on the 

economic impact of this disease in the pork industry reported million annual losses of 

approximately $ 560 in 2005 (Neumann et al., 2005) and $ 664 in 2011 (Holtkamp et al., 2012). 

In this regard, the PRRS Host Genetic Consortium (PHGC) was created with the objective of 

addressing the genetic control of the response to PRRS virus (PRRSV) infection (Lunney et al., 

2011). In this thesis, the overall goal was to evaluate whole-genome expression profile of 

PRRSV-infected pigs to characterize their response to infection over the time. A specific goal 

was to use these data to inform the design of future time-course related experiments. 

In this regard, we evaluated whole-genome expression profile of PRRSV experimentally 

infected pigs from an infection trial of the PHGC. These pigs were experimentally infected with 

PRRSV. Genetic correlations between growth rate and disease traits (Doeschl-Wilson et al., 

2009), as well as between growth rate and immune related traits (Clapperton et al., 2009) have 

been reported. In addition, associations of immune traits with growth rate have also been 

reported (Galina-Pantoja et al., 2006;Boddicker et al., 2012).Therefore we defined four 

phenotypic groups based on the pigs’ weight gain and viral load, and subsequently allocated the 

pigs into one of the four groups. We used the 20k 70-mer oligonucleotide Pigoligoarray to assess 

global differential gene expression in these pigs as a response to PRRSV infection. We tested 

differential gene expression at seven different days post infection (DPI), from 0 DPI to 42 DPI. 

To address differential gene expression using two colors microarrays several different 

designs have been assessed (Kerr and Churchill, 2001;Dobbin and Simon, 2002;Rosa et al., 
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2005;Tempelman, 2005). A linear mixed model approach most often underlies the analysis of 

data from these experiments (Wolfinger et al., 2001). Moreover, hypothesis testing in a mixed 

model analysis of microarray data could be performed with different statistical tests (Wolfinger 

et al., 2001;Cui and Churchill, 2003;Cui et al., 2005). 

 In chapter one, we used plasmode datasets to select an optimal analysis framework. 

Specifically, we estimated Type I error rate of the alternative tests. Additionally, we assessed 

power of tests that controlled Type I error rate close to the nominal significance level. Among all 

possible combinations of different testing procedures, we identified three that control the Type I 

error rate close to the nominal level: tests based on a moderated F statistic and significance 

thresholds obtained by permutation, tests based on a classic F statistic and tabulated significance 

thresholds, and tests based on a classic F statistic and significance thresholds obtained by 

permutation. We showed that the random array effect model, as opposed to the fixed array effect 

model, increased power of all tests evaluated. Furthermore, we identified the most powerful 

procedure corresponding to tests based on a moderated F statistic and significance thresholds 

obtained by permutation. Therefore, all further analyses on microarray data were performed 

using a linear mixed model that considered array and biological sample as random effects and 

the hypothesis testing was performed with a moderated F statistic and significance thresholds 

obtained by permutation. 

In chapter two, we addressed global differential gene expression using a blocked 

reference design that allowed the modeling of individual biological variation in gene expression 

as well as assessing baseline effects before infection (at 0 DPI). We observed evidence of 

differential gene expression that could not be attributed to the experimental infection and 

therefore such effect was accounted for when evaluating differential gene expression at later 
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DPI. Interestingly, the use of a baseline differential expression correction has never been 

reported before. In addition to accounting for the baseline effect, modeling the individual 

biological variation in gene expression is particularly relevant in our case, since the longer term 

objective is to identify genes for prediction of resistance/susceptibility of individual pigs to 

PRRSV infection. 

We focused on characterizing the differential expression of genes with a significant 

interaction of weight gain and viral load at early DPI. From a disease management perspective, 

being able to identify these genes would facilitate selection decisions. By considering early DPI, 

we also assured that the effect being evaluated was exclusively due to an initial infection stage 

and not to a rebound of the disease (Boddicker et al., 2012). 

Subsequently, we identified relevant molecular gene networks and associated biological 

functions. Cell death function was significantly associated with several gene networks enriched 

for differentially expressed (DE) genes. We identified MERTK, GZMA and PYCARD as DE in 

these networks. All these genes followed and overall pattern of under expression in high viral 

load compared to low viral load pigs. Therefore, viral replication might be increased in high viral 

load pigs since the defense mechanism mediated by cell death was reduced in efficiency. 

Finally, we used this study as pilot data to inform the design of future time-course 

transcription profiling experiments. We evaluated different scenarios for sample sizes an 

sampling time-points, based on the objective of controlling costs while maximizing power. 

Therefore, the combinations of sample sizes and sampling time-points were chosen to produce a 

fixed number (240) of microarray slides. We concluded that the best scenario consists of 

sampling at 4 and 7 DPI using 30 pigs per phenotypic group. A minimum of 20 pigs per group 
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are needed for controlling Type I and Type II error rates to acceptable levels in most 

comparisons. 

1.2. Future research directions 

 We acknowledge sample size and accurate modeling of variance components are key 

factors in every experiment. Particularly, in this experiment we analyzed the data with a 

powerful statistical framework. In a future experiment, sample size will be enlarged to allocate 

27 pigs per phenotypic group. Given the flexibility of the microarray design we are using, data 

from the 27 pigs can be easily merged with data from the 3 pigs per phenotypic group we have 

already analyzed to reach 30 pigs per phenotypic group. We showed that 30 pigs per phenotypic 

group is an adequate sample size to estimate differential gene expression in this type of 

experiment. Furthermore, we expect that a next experiment will have enough power to uncover 

new genes that are differentially expressed among phenotypic groups. This in turn, will translate 

into identifying new molecular gene networks and biological functions that are affecting the 

response to PRRSV infection in commercial pigs. The whole-blood genome profiling approach 

of this study is useful to identify genes whose expression is associated with the viremia and 

weight loss in pigs due to PRRSV infection. In the past there has been skepticism about using 

whole blood for differential expression studies as opposed to look at differential expression in 

specific cell types. We have shown that this approach is valuable and uncovers genes and 

networks previously reported when looking at differential expression in tissues that are target of 

the disease. The result is important because it encourages development of diagnostic tools using 

transcriptional profiling of whole blood. In the longer term, the diagnostic tools developed could 

be incorporated for breeding pigs with enhanced PRRS resistance. Ultimately, the results from 
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this thesis will allow the design of more accurate profiling experiments that will translate into a 

helpful tool for making decisions for improved PRRSV resistance.
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1. Appendix A 

1.1. Figure Legends 

Figure 2.1. Distribution of P-values from BLN and lung datasets. The P-values resulted from 

testing for differential expression with a moderated F statistic and significance thresholds 

obtained by permutation within a mixed effects model. A) histogram of P-values from BLN 

dataset, B) histogram of P-values from lung dataset, C) Uniform Q-Q plot of p-values for BLN 

dataset, and D) Uniform Q-Q plot of P-values for lung dataset. Red x=y line in C and D 

represents the expected p-values quantiles under the null distribution. 

Figure 2.2. Realized versus nominal Type I error rate in plasmode datasets. A) Mixed 

effects model, and B) Fixed effects model. Each line in the plots corresponds to P-values 

computed for a specific combination of test statistic and significance thresholds. Blue lines 

correspond to the classic F statistic and green lines to the moderated F statistic. Solid lines 

correspond to tabulated significance thresholds and dashed lines to significance thresholds 

obtained by permutation. Red x = y line represents values for which the realized Type I error rate 

equals the nominal Type I error rate. P-values from the classic F statistic and significance 

thresholds obtained by permutation lay under P-values from the moderated F statistic and 

significance thresholds obtained by permutation. 

Figure 2.3. Uniform Q-Q plot of p-values in plasmode datasets. A) Negative log transformed 

P-values from a moderated F statistic and permuted significance thresholds obtained under a 

mixed effects model, B) Negative log transformed P-values from a moderated F statistic and 

permuted significance thresholds obtained under a fixed effects model, C) Negative log 

transformed p-values from a classic F statistic and tabulated significance thresholds obtained 
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under a mixed effects model, D) Negative log transformed P-values for a classic F statistic and 

tabulated significance thresholds obtained under a fixed effects model. Each black line 

corresponds to the distribution in one of the 34 plasmode datasets. The green line corresponds to 

the overall distribution in all 34 plasmodes. The red x = y line corresponds to the expected 

negative log transformed quantiles under the null distribution. 

Figure 2.4. Proportion of rejected hypotheses in lung dataset. A) Mixed effects model, and 

B) Fixed effects model. Each line in the plots corresponds to P-values computed for a specific 

combination of test statistic and significance thresholds. Blue lines correspond to the classic F 

statistic and green lines to the moderated F statistic. Solid lines correspond to tabulated 

significance thresholds and dashed lines to significance thresholds obtained by permutation. Red 

x = y line represents values for which the proportion of rejected hypotheses equals the nominal 

level. 

Figure 2.5. Uniform Q-Q plot in lung dataset for tests that controlled the Type I error rate. 

Each line in the plots corresponds to negative log transformed P-values computed for a specific 

combination of test statistic, significance thresholds, and linear model. Blue lines correspond to a 

fixed effects model. Green lines correspond to a mixed effects model. Solid lines correspond to 

the classic F statistic and tabulated significance thresholds. Dashed lines correspond to the 

moderated F statistics and significance thresholds obtained by permutation. Red x = y line 

corresponds to the expected negative log transformed quantiles under the null distribution 
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Figure 2.1. Distribution of P-values from BLN and lung datasets. 

For interpretation of the references to color in this and all other figures, the reader is referred to 

the electronic version of this thesis. 
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Figure 2.2. Realized versus nominal Type I error rate in plasmode datasets. 
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Figure 2.3. Uniform Q-Q plot of P-values in plasmode datasets. 



78 
 

 

Figure 2.4. Proportion of rejected hypotheses in lung dataset 
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Figure 2.5. Uniform Q-Q plot in lung dataset for tests that controlled the Type I error rate 
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2.  Appendix B 

2.1. Figure Legends 

Figure 1. Scatterplot of weight gain versus viral load for all pigs in PHGC trial one. Each 

dot represents a pig. Color shadings indicate the four different phenotpypic groups (HvHg, 

HvLg, LvHg, and LvLg). Dark color indicates pigs that were classified into one of the groups. 

Light color indicates pigs that were not classified because they lay in the boundary of the groups. 

Circles indicate pigs that were selected for transcriptional profiling in this experiment. 

Figure 2. Histogram of P-values for the four contrasts of interest at 0 DPI. For each contrast 

of interest (HvHg vs. LvHg, HvLg vs. LvLg, HvHg vs. HvLg, and LvHg vs. LvLg), this figure 

shows the distribution of P-values at 0 DPI. For a condition of no differential expression the 

histograms should have a flat trend. 

Figure 3. Uniform Q-Q plot for gene expression of all contrasts across 4 to 42 DPI after 

correcting for 0 DPI estimated effect. This plot represents the quantiles of the empirical 

distribution of P-values versus the expected quantiles of uniformly distributed P-values 

(corresponding to the null hypothesis). The represented departure from the straight line y=x 

indicates an excess of small P-values as compared to the expectation under the null hypothesis, 

consistent with the alternative hypothesis of differential expression. 
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Figure 3.1. Scatterplot of weight gain versus viral load for all pigs in PHGC trial one 
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Figure 3.2. Histogram of P-values for the four contrasts of interest at 0 DPI 
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Figure 3.3. Uniform Q-Q plot for gene expression of all contrasts across 4 to 42 DPI after 

correcting for 0 DPI estimated effect 
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Supplementary Table 1. Primers and probes used to amplify genes evaluated with qPCR. 

Gene 
Ensembl 
Accesion 
Number 

Primer Foward Primer Reverse Probe 

EPS15 ENSSSCT
000000042

84 

AGCGAGGTTC
AGGATCTTCA

AG 

GGGCCTTCTGCTC
ATCCA 

CCCAGAAACAGCAA
GTACAGGAACTCCTT

G 

EZR ENSSSCT
000000044

87 

GCAGCGGCAG
CTGATGA 

GTCGTTGTGGGTC
CTCTTGTTC 

ACCAACGAGCTGTC
CCAGGCCA 

GRLF1 ENSSSCT
000000034

46 

CCCATACAAC
ATGCAGATGG

AT 

ACCTCCTTTAGGG
CATGTAGCTT 

TGGAGGCACACAAA
ATCAACGACCG 

GZMA ENSSSCG
000000169

02 

GGAGCTCACT
CGATAACCAA

GAAA 

GCTTTAGAAGTTT
AAGGTCACCCTCA

T 

TCCTTATCCATGCTT
TGACCAGGACACAC 

IFNA1 GQ415055 
(GenBank) 

TCAGCTGCAA
TGCCATCTG 

AGGGAGAGATTCT
CCTCATTTGTG 

TGACCTGCCTCAGAC
CCACAGCC 

IL1A ENSSSCG
000000080

90 

CTGAAGAAGA
GACGGTTGAG

TTTAAA 

AAGTTGTATTTCA
TGTTGCTCTGGAA 

CAGAAGAAGAAATC
ATCAAGCCCAGATC

AGC 

IL8 ENSSSCG
000000089

53 

CCGTGTCAAC
ATGACTTCCA

A 

GCCTCACAGAGAG
CTGCAGAA 

CTGTTGCCTTCTTGG
CAGTTTTCCTGC 

IRF1 ENSSSCG
000000142

77 

AATCCAGCCC
TGATACCTTCT

CT 

GGCCTGTTCAATG
TCCAAGTC 

TGCCTGATGACCAC
AGCAGCTACACA 

ITGB7 ENSSSCG
000000002

57 

TCGCAGCCCA
GAGTTTGACT 

GGCACTGGTGACA
GCAAAGA 

TCAGGTAGCCCAGG
CCCTCTCTGC 

JARID2 ENSSSCT
000000011

55 

CCTTTCTCTGC
CTTCGAGGTT 

CGTCCTGAGAGCT
TCCGAAAT 

TCCTGCGCTGCCCAA
CAGCA 

MERTK ENSG0000
0153208 

GGAAAGATGG
GAAGGAATTG

C 

TCATCTTACAGAT
ATATGACCCATTG

TCT 

TTCAGCATAACCAGT
GTGCAGCGTTCA 
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Supplementary Table 1 (cont’d) 

PYCARD ENSG00
0001034

90 

CAAACCAGCA
CTGCACTTCGT

CAGCCCGTCCACG
TCTGT 

CGGGCAGCCCTCAT
CTCAAGGG 

RASGRP
1 

ENSSSC
G000000

04791 

GGAGAATAAA
GAATCCCTCA

TAAAATCA 

TTATTTCCTGTTCC
AGCTCTTGGT 

CTCCGTCACCTCAGA
CTCCCCACC 

RPL32 ENSSSC
G000000

27637 

GGAAAGATGG
GAAGGAATTG

C 

TCATCTTACAGAT
ATATGACCCATTG

TCT 

TTCAGCATAACCAGT
GTGCAGCGTTCA 

SLA-
DQA1 

ENSSSC
G000000

01456 

GGTTCCTGAG
GTGACTGTGT

TT 

GACAGAGTGCCCG
TTCTTCAA 

CTGGGTCAGCCCAA
CACCCTCAT 

SLA-DRA ENSSSC
G000000

01453 

CCCGCCAGTG
GTCAATGT 

AGTGGAACTTGCG
GAAAAGG 

AGGAGTGTCAGAGA
CAGTCTTCCTGCCC 

 


