HYDROLOGIC STUDIES ON THE CEDAR RIVER BASIN Thesis for the Degree of M. S. MICHIGAN STATE UNIVERSITY DAVOOD HARIRI 1960 This is to certify that the thesis entitled Ibrdrologic Studies on the Cedar River Basin presented by Davood Hariri has been accepted towards fulfillment of the requirements for M.S. degree in Agricultural Engineering Major professor mew 0-169 L I B R A R Y Michigan State University V - a ammo av ! “ORG 8: SONS' 3 300K BINDERY ' . LIBRARY amoms - mmsrout. Illcml _ L HYDROLOGIC STUDIES ON THE CEDAR RIVER BASIN by DAVOOD HARIRI A THESIS Submitted to the College of Agriculture of Michigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree or MASTER OF SCIENCE Department of.mgricultura1 Engineering 1960 Approved (:f2;¢§;§gif:;;%é;€::Z// O I u . . I A ‘ i , u t t I . a ‘4 . a» .1 o o! 5 o r .. . . . I ~ v a Is! ‘0 o. ‘i r; . ' - .. I; I ‘ ‘h' h - I. C .“0 ‘ -'\ ACKNOWLEDGMENTS The writer wishes to express his sincere thanks to Professor Earnest H. Kidder, under whose guidance this study was undertaken. He is likewise grateful to Mr. Arlington Ash, chief, and Mr. Sulo U. My assistant chief, of the United States Geological Survey Surface water Branch in Michigan, who were most helpful in collecting data. Grateful acknowledgment is also due to Mr. C. H. Hardison, chief, Hydrologic Studies Section, Surface Water, United States Geological Survey, who has offered his personal notes. ., . , . . . . . (a ., ‘. I . I O? f i. .. . . u 4 ' u I . . . r O ‘ A I 1- .I. r A _ . \I. u t» l.. .‘ C .. n - c .I ‘ . . ‘ . . . .. x I a u f . u v . y. .- (a I p v . a . .. l . I. . . It: TABLE OF CONTENTS I. INTRODUCTION ................................... 1. Purpose of Study ......................... 2. Review of Literature ..................... II. DESCRIPTION OF STUDY AREA ...................... 1. Basin .................................... Cedar River ............................. Grand River ............................. 2. Gaging Station oooooooo00000000000000.0000 3. Climate .o................................ 4. Geology .................................. 5. Soils .................................... 6. Land Use ................................. III. METHODOLOGY .................................... 1. Collection of Data ...................... 2. Assumptions and Procedure ............... Frequency Analysis of Stream Flow ...... Computing Weighed Average Pre! cipitation o.0000000000000000000000000 Runoff-Precipitation Relation .......... IV. DISCUSSION OF RESULTS ......................... Flood Frequency Analysis .................... Drought Frequency Analysis ...d.............. Mean Flow Frequency Analysis ................ Annual Precipitation - Runoff Relation ...... Page 6 OWKOKI‘QN 12 14 16 15 18 18 37 38 50 50 SO 51 57 00¢. OCIOCOCOCCIQCOOIOQC 0.0.0.... 000......000 111 Table of Contents (continued) VI. VII. Fall Precipitation - Runoff Relation .......... Winter Precipitation - Runoff Relation ........ Spring Precipitation - Runoff Relation ........ Summer Precipitation - Runoff Relation ........ SUMMARY ......................................... CONCLUSION ...................................... REFERMCES OOOOOOOOOOOOOO0.0000000000000000000000 Page 58 6O 6O 61 63 65 67 __.._.___. Ag Figure oo-«loxma-um 10a 10b 10c 11 Cedar River Map Flood Frequency Flood Frequency Drought Frequen Frequency Curve Frequency Curve Frequency Curve Frequency Curve Frequency Curve LIST OF FIGURES Curve (Gumbel's formula) ...... Curve (Hazen's formula) ....... cy Curve ....................... of Annual Mean Flow ........... of Fall Mean Flow ............. of Winter Mean Flow ........... of Spring Mean Flow ........... Of Summer Mean Flow coco-.0000. Classification Of Surface RunOff oooooooooooooo Classification of Surface Runoff .............. ClfiBSification 0f Surface Runoff 0.000.000.0000 Runoff-Precipitation Regression Line .......... Page 25 26 29 32 33 34 35 36 52 53 54 59 . ‘7“ . OOOOOOOIOOOOOIOOIO00...... -« I v ' " .l-{.- f. _ ' .' .l I . ‘u ’| ‘ . . v t r ' ' . i ‘i 3" ' 00 ,.--- i» . . .. 'c" 1" ‘ Geo-0000.00.00.00. '- r f“ l ' u ' 9"... . .~... . . .. _ .. . . , 1’: I ‘ 00...... -~ --’ .'.- .- .lu . I " - i O I .- rs - .- OOOOOI ' s -' I ' I '.¢"‘ 000... - — ~ .r- . i ‘ ' 1 a D \‘I’ ' 00000.. .i . . ,- .. _ . . . Table LIST OF TABLES Annual and Quarterly Mean Discharges of the Cedar River for Period of 1912-1919 and 1921-1930 00.0.0000...00.00.000.000...0000.0.0 The Annual Peak Floods on the Cedar River for 47 Years 0.000000000000000000000000000.000 Annual Drought on the Cedar River for the Period 01‘1932-1955 00000000000090...ooooooooo The Limit Values for Classification Obtained from Figures 5 "' 9 oooooooo00.000000000000000o Weighed Precipitation for Cedar River Basin .. Annual Carry-Over Precipitation for Cedar River B58111 cocoonoooooooooooOOooooooooooooooo Recurrence Interval of Floods on the Cedar River 00000000000.000000000000...ooooooooooooo Recurrence Interval of Droughts on the Cedar River ooooooooooooooooooo00.000000000000000... Classification of 47 Years of Surface Runoff on Cedar River Basin ocooooooooooooooooooooooo Page 17 22 27 31 39 45 50 51 55 p. .1. - 1 . DI. . ~ 0...... ' .-l l.. ' l.. 1 . - -|. . \- yo I .0 .0. .0 . ' I" ' O l .I I x. K J .1 .1... . ' L'. _ ' v. V . ' _' uf'tr. ‘u‘. ‘. I. INTRODUCTION 1 - Purpose of Study There is a great need for information relating to hydro- logic frequencies. Terraces, grassed waterways, gully control structures, flood control projects, drainage projects, irri- gation projects, the efficient design of coffer-dams, water- way openings in bridges, highway and railway culverts, urban storm sewers, stream control works, hydroelectric power installations, water supply facilities, and many hydraulic structures and projects are based on the frequency of certain hydrologic events. This study attempts to analyze the frequency of floods, droughts, and annual and seasonal mean flows on the Cedar River. The writer has classified forty-seven years of data into eight classes, from extremely dry to extremely wet. He also tries to establish a relationship between precipitation and runoff on an annual and a seasonal basis. 2 - Review of Literature Hydrology is that branch of physical geography dealing with the waters of the earth with special reference to properties, phenomena, and distribution. The prOblems of hydrology were principally a matter of speculation until recent years. Curiously enough, the greatest problem for the f! .\ .. ,\ .H I l . . .5 . , . I . .. . o t 0. ~ . v r . . a. . .v :. . I ~ 1 , ll. .. . . . o . . . 'l - ' u i- s a n I n . , .0 . . . . . . . w . . r i o o n C t .. r t s e, r | — . I I‘ 11!. I . . C Y b . I. to. o I i!» o l\ . 0 . . I I u . . I. u . -4 I. . v t) . . r c... . v. r ‘l .L y . .. r . . II. V. (. n. It i .. . . .2 -. fit .. i - V.. 1 it t on: _. . 1 I o o ‘ t . :7 P\ . s I . , a . w 0 , O \ so . u I . . . a- I A 5 IO. . o u . 'v a ' r1.“ . I . . 1 u A F v . V ..n. r O Iw . . - u. c n l J‘ .a . ,. . J. r. . . 1 . s . — ,_ o :9 Or _ D .r- p . o I X) . l . . , .. s nauom nopdm havoc _ ops—mam . . .modit i w o 8.3 have. i N w. m w .i.. x z a nIUI m D o 8 s w u s O O .u- 0 I L. O O , D. 9 Ma N. 0 D . .6 \ Ia |J z e .8 U 3 60 a” I .J . 0 J o 3 D u .1 2:: :3... a a. . g o... .2303 . y D H a z m > . m .r u I W M 3.2.2:; 5 m . o a _ is D Q . .J O m... M v. o .w 362.0 cm t 1‘ .0 . o I ocicund ’ . .0523.— oEnco 1. 23.. philosophers was that of describing the hydrologic cycle. Such men as Homer, Plato, and Aristotle felt that rainfall was quite inadequate to supply streamflow, and formulated elaborate hypotheses to explain how the water welled up from great subterranean caverns connected with the sea. Until the fifteenth century A.D. it was considered heresy to question the theories of the early philosophers. Da Vinci and Palissy (1) expounded an outline of the hydrologic cycle quite similar to present day conceptions. It was not until the seventeenth century that Perreault supplied the necessary quantitative proof by comparing measurements of rainfall and runoff for the Seine River in France and showing that the runoff volume was only about one-sixth of the rainfall. Perreault's find- ings were soon supported by the English astronomer, Halley, who demonstrated by experiments that the moisture evaporated from the oceans was adequate for precipitation which resulted in streamflow. Under the leadership of Torricelli, Pitot, Bernoulli, de Chezy, Herschel, Venturi, and others, investi- gations moved forward rapidly in the study of fluid flow. Dams, bridges, levees, and canals were soon being designed by hydraulic engineers with a fair knowledge of fluid mechanics but with only the crudest sort of rules of thumb to estimate the probable quantities of water to which these structures might be subjected. As the number and size of structures increased and the potential economic loss from structural or Operational failure multiplied, the demand for a more adequate basis for design increased, and modern hydrology found its start. '-e r ‘ e .» i v.’. i. — v .‘ \I o . ‘ . , . I O V l ' 1 ‘ I t ‘h . H I “ . .- n f . e a O ' a l - \l .. ' . u l n _‘ . .~ , . ‘ . J .o a u o ' . '1 o ‘ . ~V . .‘ir- ~ . A ,. . > . J. ' a , ‘ .' . . v . ' u . . O o A - n w . I ' ‘ O U o . ‘ .. .. . L ..' - , ,. \ ‘ ' II-..- t A. - ‘ - c ‘ ‘ ‘ ' C 1 A , _ a l . \ l . ,. .. . . 1 r . ,7 f- ”in ' 2 ‘ u, '_ ~. _ _ 3 .-‘ ,5 . \ _ , l - J» '.' .- " ' . ‘ . . , ' ( a ( . . '4 u ' x . - c ‘ e . . 7 I ~ '- t ' .— n. '- Q s ‘ a _ ,- _ ' r . . . .. i. _ . A . . O 1 f , ’ . . . -‘ . - . r. . - ' I - .d . 3 ' “'2. F . ~ _ '. \., a ' s . 4' t __ . I l I u . , ..:-. .. A-J .. , _ . I ' U __I .. ._l- o 1. n/ .n t . . ‘. _ . u I l _ n - '» o . . ' - . v . s. ' ' | _ ‘ ‘1 “LI ,4 “.1 ' L ' s I r ‘ . ,. r. .« . - r, ( . , . . w ‘. . ,- a l '. i" f . a, ' \ \-~ ’5. - . . I d ,. .‘ . , ,.. -i 4 - -- O O . , , - , I u -. ,. . , . . ‘ V .. , . I A ' . _ x . . . o -- . . , - . ,m - ‘_ -. , -- - - .' (- . s. i ' . . i ‘ .-'. ‘x b‘ e O' _- f’ . ‘ o . l I ' l ' . ,- _ . , . a . i -. ._. -' - . C p - . »» v‘ -‘ .- § . -" ' r .. - ° . ‘ 3 - g r‘ - We ’ n v . l‘ I ‘- l I. — , a . _ ,a ,- ‘ - . , i l ‘ u > ‘ ‘0' ' . 1 ' 5 4 . _ ‘ ‘ - i. ,. . . _ g I ,1 y . _ . _. 'e 'gl . ‘ . I ‘ . ' i \ ' . .' w ‘ l . I -. . , ,. o , . x - o ‘ . y.‘ i I I’ ' ' u ‘ ~- I - 0 . - r - I ‘I . I f - Qp. _ .. ‘ ~ ‘1 - Q Q C Q r ' 0- . , . . - —« .. l ' o I - . - . ' I . . . N e - é ,‘ .. L , Q I . . -. , n, .- ' ' . '. ‘ I1.- ,. ‘ .4 .. . s .u- '0 . s u v r . v ,. - _ - . o I ' ‘7.\ I f‘ ‘1 , \, t: . . - O '. 0c ‘ :‘a - J - ’ ~ to ' ' ,v , t . l'; ' . i r' . 'Vl . t \ ' - . .— , r' o v , ’- - , - v . '. .5. a no 3 - ‘ I - p. v' ' a . u . ~ _ ' ' , ”"3 I ‘ . . I o ., ,' AI __ . u‘ , I ' .(l a _ . ' O a . .' . . I L' J; .. ‘ .~ , - ...' I. I v ' k , a I P ' . l - \' , ‘ . - ,. . f ‘ . s. P. . . ,_ 2‘ i ' 'l \ .. 's ‘ - .. 3 . a f ('1 ., . , .r - ' u. v ' .. \ p - ~ .I_ s I 7 u . O - I . I l .l . hi.“ 1 .. - l I ‘- . , o h- (‘ . .. .- l‘ '\ ' . U . ~' in e ~.v .- O I, . 0‘ . , ' ~ . \ s . u I - r . \ . . - ; ‘ t r . I I . .~ .~ .A . . , -' r . ‘ Ola ‘ . ‘ t .O P r ’ y s - . O .. ., . v r . _ '. .L __ .‘ I . I ._( s ' V il. . . _ 0‘ . \ _ I . . . . ‘ I . l . - ' Orn- . . . . ' Q . . ‘x v A I ‘ o . ro- , - - t . x . h Foster (6) adapted Pearson's theoretical frequency for application to flood frequency curves. The use of logarithmic probability paper was of great help. Beard (1) states that the theory of the duration curve is relatively simple. The occurrence of the future (those that are "in store" for the future) are considered to con- stitute a series, arranged in order of descending magnitude. If there are an infinite number of occurrences in store, then this series may be represented by a continuous curve. Further- more, if it is considered that there is not a cycle or trend in magnitude with respect to time, it may be assumed that occurrence which happen within a given period have each been selected at random from the store of occurrences. Lastly, since the number of occurrences in store is considered to be infinite, the selection of a finite number of occurrences will have no effect on the distribution of magnitudes within the remaining series of occurrences. Since they have been chosen at random from the store of occurrences, the occurrences of record (those to be used in the analysis) may be used to estimate, by the laws of prObability. With this curve defined, forecasts concerning future occurrences may be made in plotting the duration curve. the assumption was made that the recorded occurrences were representative of any set of events that would occur in a period equal to the period of record considered. This is not true, however. The largest event may be twice as great as would normally occur in the given period, and the second I" c 0. Vs. \ a n e. u y n ' - Id 0 fl 9. . II .- o l o I I .T. I»: .5 ’l. L I. ~. Olir . , 0!. a v‘ .2 r . 0‘ .v v . O . Q ; . . Out. ¢» ' r u . .a n i ’7‘. C . I . y u A . L. . . V I / s. l . f . v a 9. ~ o P I. .- I‘ , , . I v i . I p. I l r. :| l ' e ’ e I. ry a (n p t . e e I .‘ _ 't . . n v. .. \ \ .. . o . .V v I. I‘ T. L r . _ n. I; . . I. Us 0 . .. 3 4 ( n .x , l~ n a e . y . I‘ .— .. Q . a .0 I ( .. I v. v I. , . l . . I. . rv. .1 . a & LI N's q. C. s. I . a p! H u f 1. . . I y A O r I s L \l I ..p . ._ o r _ I O h a. a I ~ . \ e .. . ‘ . a u I .|l..ll I! largest may be smaller than the normal second largest occurrence. For plotting position in frequency curve, Beard (1) used the Foster-Hazen formula. Gumbel (1,8), believes that the solutions proposed by Board are too general and therefore inadequate for specific problems. Gumbel, after a great deal of discussion, proposed to use T = E_%;l. formula. Extending stream flow record from the available pre- cipitation data has been a problem for research for*many years. As far as it is known, runoff is a residual of pre- cipitation in that it is really P minus L. L represents the evapotranspiration losses and thus varies with temper- ature. The constant loss in any area would be a satisfactory tool for estimating runoff from rainfall if itwere only the average stream flow that was desired. To use the constant loss method for annual runoff, the R.= P - C formula could be used in which 0 is a constant for a given area. This might be called the modern way as it was brought forth around 1935. The old fashion way was to compute runoff as a per- centage of precipitation, or R»: KP. Neither of these methods is the best available. The R»: P‘- C method is weak in that it does not take into account the fact that opportunity for evapotranspiration during dry years is less than that during wet years. The R.= KP method is weak in that there is a minimum annual pre- cipitation below which the annual discharge would be negligible. In 1945, Rice and Hardison (9) worked on this (i 3 4 '0‘; . . ' e ’ w v- - I' ,. ‘ . 5- ' r . f .. 7 ‘ . “In .I e u ‘ —‘ I - e L '2). ‘ . - u- “ - f ‘a. L .a . . e." v I. a u 1 .l ‘eu ’ ' 1 ' . _‘ l a .‘ ,1 'I I 1 . I “ l‘ -r -- - ~. .. r". r :4 f.» , J -v L o. J k'e -- y t .4. ‘ 7'. - \ u l ‘ ‘t . . \1.. \ .- ‘ .. v - .V . .U‘ x .‘ ( 'f I v I: . e k ‘ ‘ u g I 'I .. L‘: . - .‘li' " \ A I I. ' ¢ ' . - . .l l O I I'I I 0‘ 4 I - .(.,\. u ,. ,I . I l . . _ ’. 0 ‘ ‘ ‘ k U. " ' \ - \l ‘ . u '. . ' ‘ I I 1 I . - l ‘4 e H. 1 fr . * ', ' ' I ' .{ -»‘ ' I ' - ' \ . h L . ‘ . .- Q 0 o A e I A . , .' u . , . I .0 A s) - . - ' .. . ‘ I . ' ‘ . ' ‘ t - - e I I - . ‘ , ' l l - . x 1 r , v . ‘ x f . I - . l .- V. . j v . r .. ' r . o 0‘ ' . . V t , , ,_ . . z I — * ‘. -.I -" - . 5 ,,.. .4 V e '0 n 8. I r\ 1 fr 1' v ' 4| . . ' . .L . 3' .. - l. - F I" .I . ' . 1' . 1 e ' ‘ I ' "- -C‘ r! I O. l‘ I ‘ Y' ' , p . -.. . . a i. ... ._. a. ~u -.p'~.. or | ' . ,' . ' . . . A I .‘ C v n. -. o . . ,A ' ‘ r" ' I“ . b 2 .. P . to v ‘15 r . O. " \ -V ' v I f‘ U" A ‘ - e.- . . ‘ I J ' ‘ - ., _ . ' '. " 9' U . - . - . o . ' e" l ' . I- ' ._ . ' L - .. A I : i. . ‘ ' I. v I b "A 1' ‘ 0"“? ‘ I . o .. ‘ - ¢ - ,.r- .d “. P .1: v .' u . 3., . n . o ‘ r . . I '~ ~ ~ — r! ‘ ‘1 .“ i- L' ..\ ‘ - .\ .J ,. an. ‘4 0,. rm .. - \. I.‘ ..‘ _. . v! 0“ \'. - .:-. I o 9. ' , I l" ;- . . . -V _ ‘ ‘ .l s . C, ‘ I g I -_ , ‘ ,-'. 1. ("I .4 . .. .i . , '0 D D ..' " ;. _. ' s . - ”in” (, (a; t | \" J 1 O ,7 - . 9, t. .- 7 u f l I x‘ _ e I 0 'e‘ . - ’ l . 4 pl . l‘ .'- _ l I y . I“ f - ‘ ~ . . . .- . ‘ I: ‘ . . ‘ a D ' C O l‘ , x o J problem in Alabama. He found that for annual rainfall - runoff data in Alabama that a formula, L = KP + G or i R.= (1 - k)Ph C gave the best results. In order to have only one variable factor to plot on a map as a geographic factor,‘ he used an average value of 0 equal to 10 inches and solved for K. In 1949, Carter and Williams (3) found that they could improve the results by using-K as a constant equal to 0.5 and letting G be a variable that varies from year to year depend- ing on the effectiveness of the precipitation during the year. The values of C to use would have to be determined from avail- able gaging-station records in the area. In 1945, Johnson and those working with him on a water-resources report for Oklahoma (12) plotted precipitation against runoff and found that correlation could be improved by assigning a percentage weight to the previous year's pre- cipitation and the remaining part of 100 per cent to the current year's precipitation. The percentages varies from station to station but were held constant at each station. The purpose was to give some weight to carry over from last year's precipitation in the form of ground water storage. On the Cedar River the U. 3. Geological Survey has pre- pared a flood frequency curve, but no other studies have been carried on. V4 . r . r ‘ - “' ’ . . "I A l .f ‘ ' l ( . ‘ K . t V - , p _‘ ' '1. - s I ’ u ‘ . Q .1 \ . , . I L . ‘_ U L . - ".C . . . - c . . r . . e ' ' . ‘ ' e ( u . I C u f “ I r . -. fl 4 ‘ , ‘ 1 g . u r r a. “- . v . 4 . . . , v | s . ~ 4 " I u I < f ' . ,A . ’ 4 . -7 . - L . I' ‘ ’ ‘ >— ‘ ‘ I. I. - .- n . '4 h j , _a ' f , ,. ‘ , . ‘ .e . - , ~. \. . . L. - . . . . _ Y- ‘ e . r . .‘ J A 1‘ I ' ‘ ' f' - I ‘ f g I ' ‘ I r ' Q ' 4 ‘ ’ ~ 0‘ ' . 4 , l e - » v ‘ ' e ' ._ Q. ‘ r . f i ‘ . - . . . I n \— ... . i ' r - u \. \. . .— ‘ I ' . . . l I \ x x A '- \ ' o a V I ‘ ‘ . ’ v ‘ I u ' . - | , 5 . ‘ . .‘ - e ‘ n ' V I- ' r v . I v . . r t. a ' w . F ‘ ' ' . . _ . a. , .- ~ A 9 ' - I ’ ' “ C I ‘ '. I - - g ‘ ‘ 'e - e . . .‘_ ’. . ' . n . r. . v L. . ' i ‘ . a“ ' ‘- ' ‘ ~ ' ~ _ .. ‘ e ' . ‘ - r e ‘ ' . . . , r .- , 9" —- ' ' \_- I s . 0‘ D I 3 O l r ‘ I ‘ (‘ I l, -_ A _ ‘ L. .- . . - ‘ 1 l. V ' '. _~ e . ' - . _ _ w . . . ‘ g .- ' ' o-o : ' . . _ ‘ ' . . .a . . A O . . . . , . . ‘ I o. ‘ -. . - . ' . . e 9 - .. . . .- l ' ' I ‘ -e , . . . . . 7 ' l r . ‘ t O I' ' t II. DESCRIPTION OF THE STUDY AREA 1 - Basin Cedar River The Cedar River has its source in Cedar Lake which is located in southwestern Livingston County in Sections 28 and 29, Township 1 North, Range 3 East, or the Michigan.Meridian. It flows generally northwestward through Livingston County for approximately 18 miles and then continues westward through Ingham County for 28 miles, where it enters the Grand River within the city of Lansing. The river and its tribu- taries drain an area of about 475 square miles, one-fourth of which is drained by Sycamore Creek and its feeder streams. These branches entering from the north are: 1. W01! Creek 2. Squaw Creek 3. Coon Creek and branches entering from the south are: 1. Middle branch of the Cedar River 2. West branch of the Cedar River 3. Kalamink Creek 4. Dietz Creek 5. Doan Creek 6. Deer Creek 7. Sloan Creek 8. Herron Creek 9. Sycamore Creek The river has an average gradient of 2.51 feet per mile, with about one-half of the fall occurring within the uppermost one-third of the river. Cedar Lake lies at an elevation of I‘ I . _ .a V .. I . . I. are; u. ‘ I I; . .0 a . . I . . . l n. v 0.. . I r I. n A. O I . .g . I L blah - I... t o . i . a. . . I I .I. Q .. . .. . . I... c u r... e f u . .— u VI 1. d . .. n ' i... .. I.- I I- . t . I /. . f. V ‘ . . a o s D. u I I I o t u I n e . O u I I A (I ’5 Dy t_‘ ‘ ,1 'V 934 feet above sea level, and the confluence of the Cedar River with the Grand River lies at 817 feet above sea level. The stream pattern of the river and its tributaries is a combination of trellis and dendritic types of drainage. The river in its upper reaches is generally quite clear following the initial spring floods, but quite often an apparent reddish-brown color is observed which is caused primarily by reflections from the bottom in the relatively shallow water. The lower stretches of the river, however, usually appear more turbid, largely because the deeper water here accentuates this condition. There are three artificial permanent impoundments on the Cedar River (2). The most significant of these structures is located at Williamston, and was originally constructed to facilitate the operation of a sawmill. The original dam has since been replaced by one which maintains a thirteen foot head and aids in providing power for a private frozen food and refrigeration plant. The backwaters of this low dam extend upstream for about two miles, but are contained, for the most part, within a narrow belt extending a short distance out from the main channel. The other two artificial low dams, one of which is located at the Park in Okemos, the other on the Michigan State University Campus in East Lansing, serve recreational and aesthetic purposes. The East Lansing reservoir also supplies cooling water for a campus power plant. Grand River A description of Grand River Basin at this point will be pertinent in the understanding of the study. The Grand River rises in the southern part of Jackson County, Michigan, and flows in a general northerly and northwesterly direction. It empties into Lake Michigan at Grand Haven. Its drainage area, which comprises a rich agricultural region in the south-central portion of Michigan includes extensive swamps and marshes, but comparatively few lakes. At Grand Rapids the stream passes over a limestone ledge, making a consider- able fall, which has been developed for power purposes, and at Grand Ledge a similar descent occurs over sandstone. The Grand River receives a number of important tributaries, notably, the Flat, Thornapple, Maple, Lookingglass, and Cedar. 2 - Gaging Station A gaging station was established on August 30, 1902. This gage was located at the highway bridge Just below the Michigan State University Campus. The bed was sand and gravel, fairly smooth and permanent. The gage was read twice each day. This station was used until December 1903 to measure the flow from a 358 square mile drainage area. At the present time, the gaging station is located at the southwest abutment of the Farm Lane Bridge, Michigan State University Campus, three miles upstream from Sycamore Creek and four miles upstream from thejJunction with the Grand River. Its exact location is Latitude 42° 43' 40", \ 0.. 5.4 - . . .- . . . ._ . I a .ux ..., c . u . A . e C ‘4 .l i 1 . a u . }\ L . . l 0‘ :- _ I . , f . . . a. . . I. . . . L n 4 I. I .i o. u\ o, . . . I. '3‘ I . t . o 0 v D .J , . . Q, I . . . . . . . .r in is A 4 I , . . . . . ‘ v . . , I O a.-. J . u . . o . c . u 0 4 0 . l I. r . In| . . . . . c. . Iv , . . :- . . . . ,0}. . o \J . V I. . . . .l. . . .. I” h I . . ,w. v . g. . O . a . (I u 1. .1 v . . . ‘4 V I , . . , .. 1 . o o - I .e .. u n s . . . u . . I . I. . _ .\ v u... . I D . .L .HI» to. . r I t I 'x ,I i I) - . . a k .s ..| . a h a l .— ‘0 I. II . .1 rule , n . . I .- C .2. I I . . . .-.L . . .s ,. .. .. a r In a . a ‘ O u . . . w . - .. o. . a . . l . \ . my. . . .. ... e In I o .u. , I .. ._ .3 f. _ I . t o a f r w , . . . I . . L I, a. .11 .l .. .. a. a . .. u I V I L . I. . I _ . I .o n. . J n I u ~ _ j . '.. . .0 . ‘l O J. v 10 Longitude 84° 28' 40" in SWi sec. 1ST, 4N R. 1 W. There are a staff gage, a continuous recorder and a continuous recofdhfig thermograph for limnological studies on this station. The datum of the gage is 824.39 feet above mean sea level. This station measures the runoff from about 355 square miles of the basin. 3 - Climate The study area is located within a climatic type describedcby Koeppen (5) as Dbf. In this system of climatic classification, the symbols Dbf indicate the following conditions: D - a humid microthermal climate; that is, one in which the mean temperature of the coldest month is less than 32°F. and the mean temperature of the warmest month is more than 50°F. Rather cold winters and large annual temperature ranges are found in this type. b - the mean temperature of the warmest month is less than 71.6°F. f - the location of the study area, about 100 miles to the east of Lake Michigan and the prevailing westerly to southwesterly winds bringing moisture from the lake, are fictors important in determining this condition. Although the precipitation is fairly evenly distributed throughout the year, the period of maximum rainfall is in late spring and early summer. The normal annual precipitation is about 30.5 inches, including melted snow. Snowfall generally .- I ,. . i ii . tL I i . .4 . . 1: pi. i 9.. . u! o ‘7 x r: . o I n . c. L 2 f \ u. . . y. . (s . _ In]! S i ' v v fir . . '_ I ‘ r . s . I . I . . .. . . . l . (A '14. 0‘ 9o . r _. .- t . l , . ,. l c - . I O- . u .- Ix . .. .. 11 averages about 45 inches, and this snow cover is generally of sufficient duration to have a marked effect upon winter temperatures. Sunlight falling upon thehsnow is reflected to a great extent so that little of the solar energy is effective in heating the ground or the atmosphere. The low conductivity of snow tends to retard the flow of heat from the ground below to replace that which is being lost. Winter precipitation is largely cyclonic in origin. Maritime tropical air masses from the Gulf of Mexico travel northward up the Mississippi Valley, gradually being chilled by the cold ground surface and by colder and denser continental polar air which they over-ride. Summer precipitation ia.for the most part, of a convectional nature, often falling from cumulo-nimbus clouds as intense thunder showers. The same maritime tropical gulf air masses which penetrate the area set up conditions favorable for convection storms. The mean annual temperature for the area is 46.8°F., with a winter mean of approximately 24°F. and a summer mean of approximately 68.5°F. The frost-free season generally is about 160 days and extends from the first week in May to the first week in October. Winds rarely attain high velocities in the area, evapo- ration is generally low, and humidity is moderately high. Seasonal weather is characterized by rapid and non- periodic changes. During the winter, when the sun (and along with it the storm belt) has moved south, weather conditions are dominated by cyclones and anticyclones associated with shifting polar and tropical air masses, and the fronts which u n u r - . Q - r e .‘ . I‘ '3‘. - | . .4 - .- - f.‘ . - ~ ’I' .. , 'o . . v.- s .. J ~ .; - . .. . . ,3, . a . - . . ‘ . . . . _ . . '. ‘ I ‘ I \ . . ,,_ ~ » v. .4 h o i - _. .1 . _ . i .. _' - . l l " r _ i , _ n V l ' . l ' ' "V ‘ ‘ I' I. w ._ ‘ v . .k. ‘ O . I 3 v ~ 0 o I f‘ _ W A \ AW ‘ ~" t-‘. . ' . - \ .‘ _ . ~ . . , . . . .. .1. . ’ ' . _- r.. _ - ‘ r: '. . - _. ." ' I | l n . ' . ‘ u... . ‘.. u v g Q 0 U . . e ' . t , 4 I . ,, ' .. .- .a. . - . ‘{ —« — n - ~ » an 4 | . . - - a i- . a .- I ~ I -v o I _ .- . o . . I. . i u'. ‘ , ' ‘ ‘ _.'. . g r p' ‘c (' 'l‘ ‘ f « - -. A- _... . x. . a ‘ - - "' r.': n. I . u - 'c I f ’ 'I . " fl‘ _ ‘. z, . ' . a -“, I .4. u. \ ~l '1 . - v . . . a . 0' q - s - n , . , . a. . - - . - u- e , ‘. . II'.‘ A f '} . r. ‘ a . ' ‘ - . . ‘ .. - t. ,. .7 - .~_ ‘4 ‘J .- ' I a Q ' ' v ._ A ' ' -‘ - . v I . . s . ' i i s w e ’v - _..~ « . .. '2 . ,i . - r . . . . , " . ‘ ‘0: A 4 ' ' ‘ c t v - . I) D— I - ' p . . e ' _ _ , ‘ v | . ' ‘v Q l \ .r. . - 1 . , .|‘ .- a (m. .. . .. o . - a“ ." " ' " , ' ' 1 , . A .- ..- f f" I~ \ '. ' .' u ‘ . ’ h 04 l .J . .n . r . - . ' ' ‘ F ‘ i ’ 1 . ' u" "I ‘ ' .'. ‘ : ‘. 9| 9 ’ f " r ‘ “ ‘ ‘ ‘. . I ' . I k. . . Iv - . . r -l .- - . {i A‘ ‘ . . ' ' u . . - \J '. r . . ‘ _ v' . ‘ ' . - ‘ ‘. Y _ 9‘ ‘ .i . _ . . ' 3‘ s4 _ . ‘ ' l '4 . - ' 1 , D Q I ' I“ O r l a I L ' I - a < ’ ‘ ~ A -' 'L I . ' , n .\_.......- ~J.- ,' ‘ ~ .1. A. \. . --.. O . ’ f o . o. '- ' . .\ _ _, ‘, . _.‘ , . . . t u ' . ‘ '\ i a - . '- ‘r - , '- , ' . . . _. o . o s , I . . . . . , ' ‘ 6' -u . \v .-' . . J L. x, . . u a — A v > o - \ , . s. n . . . . A \ . . . i u . _ to I.. 0 - . . r , ‘ \ .- ‘ ‘ . q . ‘ v v t , ‘Vl - , Q 0 I .9 . ‘ ‘ 4’7 3 I' I J ‘ . ' . . 'f u.- 12 develop along their'boundaries. An anticyclone made up of cold polar or artic continental air descending from Arctic Canada may produce a bitter "cold wave" over the area for several days or weeks and then be replaced by warmer maritime tropical air from the south. 4 - Geology The rock strata which lie immediately beneath the glacial drift in the area in which the study was undertaken are of the Pottsville series of Pennsylvanian age. This series varies in thickness from 0 to 535 feet, and includes shales, coal beds, the Parma sandstone and a persistent, shaly lime-bed called the Verne limestone. The topography of the area is nearly level to rolling, resulting from the cary phase of the late Wisconsin glaciation. The drift is quite calcarious, containing large quantities of limestone debris. Among the landforms which typify the region are the characteristics of continental glaciation. Between the recessional moraines which run in an east-west direction in the area are found areas of gently undulating ground moraine or till plain. A few eskers are found running in a north-south direction, most of them in the southern portion of the watershed. These mounds of water sorted materials serve as a source of gravel for road construction and concrete in the area. Numerous depressions, some of them holding water, are found throughout the watershed. These t . f . . . I . _ t - t h . . .1 f . u .. t , . L . .I. WI. 4 . ‘ a u . e — - e . . s i . . .u I. > i . 1 . u r A . . . v t . i , Q 9 . . a ‘I . u c A. n I.‘ . I l u . ’\ ‘ . I i i. r .\ n s . \ rt . r _ . u ‘ A . . I ‘ t If . A. A : .‘Ic< _ . 1 .i . .\ «a. . ' o . | e- x _ r . . . o u s. o . I . .. I . u our. “ O... . . N h _ h . .. o. . . I. .1 .1 C u . \l . a f. . a. I .. T. a, '1“ . . u w i .. . , . . I. I ‘1 . '1 I I I . . a v . _ o .i ‘1. . a e . r . l . . r I a o . u . a . n. o . . . i. O .o I .r I s . O. s. p . _ , . . . I o . . a. . -e. u \ l l |. . J... C . . . . t i I D‘. u . u. ,. n, \ . . V . . aw . u. e I . 4 It . 4 .. . , . a n A . .e I K , '. . I . — . . . . I . . . y . . 0 . I. . . l e . n . . u l v . . I c IJ 13 are called pits if they are found in an outwash plain, or kettles when they are found in morainic deposits, but they are formed similarly in either case. Blocks of ice were left buried beneath the drift as the glacier melted away and as these ice blocks melted the overburden slumped into the vacancies forming the pits or kettles. In terms of the fluvial cycle, the Cedar River is in the mature stage of valley development. Meanders are common in the lower reaches of the river, and one oXbow has been cut off about a mile downstream from Okemos. 5 - Soils The soils of Ingham and Livingston Counties are derived mainly from limy loam glacial till (13). The primary soil series in the area are the Miami and the Conover, which are essentially gray-brown podzols of good to intermediate drain- age. The unweathered drift underlying the Miami soils is alkaline and contains considerable amounts of limestone debris. More specifically, the soils in the immediate vicinity of the Cedar River can be considered to be of three main types: 1. Qgggggg‘£;n§,§§ggx,;2gg, This well-drained alluvial soil is found along the lower reaches of the river and extends upstream from the mouth almost to the city of Williamston. . ,.,. , ‘ . ,-J . - I \ \ .h I . - . . - . u a . Q I .. 2' . (xv u' , ~‘.va ._ - 'Iw..-‘. '«. . .5- L -.-l-- -- o o . ,‘ ’. IT'J‘ F .1 -. ’."I‘ '- ' u- ‘ - ' l » . .- - ' u N 3' ,o . ,. _ r 0 " . v _ f . ..‘ - , . i . . I I . t . . i J p‘ - .A u . -- . v U 7‘ ’ Cu ' . o v Q . .. r . ' ‘ w " I: ' . ~ _ .5 ;_ k . ._ .. .L. , J - - O . Q I ' 'e . '. . . . . l I '1 ‘ ' u . a - _ 1 ‘ 7 ‘ v 1 n ‘ ; - 'i \ z .- - .L. l .4 a 'i ~ .3‘ ~-« u ‘ . I - . '.. - - .‘ .. xv , I ' l C .‘ v“"~‘~o u»-.—o.o-o '. . a .9‘1‘." , .' . a; \. F 'I' _.|.Jk' .‘ - . .1. 4.. " ‘ , . (- ‘ . . . l _ u ‘ . . a». a a ‘- m -o o- O-\ ‘V 14 2. Griffin loam, These alluvial deposits are more poorly drained than the Genesee loam, and range from slightly acid to alkaline in reaction. They are found from the vicinity of Williamston upstream to the vicinity of Fowler- ville. Here the soils along the river give way to Cariisle muck. 3. Carligle muck. This organic soil type is found from the proximity of Fowlerville upstream to Cedar Lake, the source of the river. This soil is characteristically medium acid to alkaline in reaction. It is generally rich in lime and phosphorus but poor in potash. 6 - Land Use Dairy and general farming predominate in the area as a whole, with hogs, poultry, and sheep as minor enterprises (10). Most of the crops grown are the feed crops of hay, pasture, corn, and cats. The major cash crop is wheat, with sugar beets and field beans important in areas with favorable soil conditions. The major factors influencing the choice of these particular enterprises are: (1) the relatively long growing season; (2) the predominance of sandy loams, silt loams, and loams of medium to high fertility; and (3) the good market for whole milk in the area. For the most part, land use practices and agricultural techniques in the study area seem to be sound. Excessive runoff during times of the year when the soil is capable of absorbing water is not a problem. In the upper portions of o. ‘ . \ u r .u v ,' , , C ‘ s. _ .. - 9 ' | f a . . L1 .9 I \ ,' l.- 1 0A» . , ‘, 0‘ x -\ w ‘0 f . U I”. J ("l . . a D a" D . .. r ‘5 K a Q '- . . .. \ D l o v a‘ o . ~. 0 I v r " x l n '- - . . . b. J. ._o A . AI '. v. ‘ - . I - a ’I rhir s , .. ‘ . _. ‘- 4’. 1?. __\ ‘ J I, x 'I o I 6' .1 .A C‘ n; . -" I l .e. I ’ a . ‘ . 5'" ok' .’r t L’ l~" I’ V ." f D O n . o a ' ‘— ."\ ‘. ( ,.- _.. :7. . I. s.’ Q . ;._ . o ..‘ n O s" o-¢\ .0. O l- .' Q‘_' I D -' ‘ . 9' . t ' u ‘0‘ i t ,4 , t" ' 30‘ ’ O I ,- A ._ . k.- r‘ . " l°_ ‘ L. ' s. vb- - \. , A‘.§ . we 4 D r'v \ ' '* . I .l 'I g‘ p . . 0‘- D l . r - u —. ’x' 9 . ,. . . .n. . I '7‘ K ' t .v .v r‘ 15 the watershed, the river and its tributaries have, in many places, been dredged to straighten and deepen the channel for agricultural drainage purposes. The high incidence of wet lands in the upper portion of the watershed was partially responsible for this work which had marsh and swamp drainage as the objective. Wood lots, a few of them grazed quite heavily, dominate the use of the land immediately adjacent to the river. A few small fields of corn and other grain crops are found along the river banks and other fields which have been allowed to lie fallow for various periods are occasionally encountered. In the wooded areas the main species of trees are the white oak, elm, ash, soft maple, shagbark, hickory, and.basswood, while the muck soils are dominated by tamarack, aspen, and shrUbs of various kinds. . . . l. v‘ ' u o .KL ~ . .e u . O. \ . .. . h . . . I. N o. A I . . . 9. . . 1| . . . . ‘ . . .Ih - o L . . . 1. h. . .. . ..- r t l , « . x .u. c v a o . . u . x .1 C . . . I I .e . . . 'v _. l . . L . . . . . e . . . A A \ lv d . t . .r-.. l I i A . ,.\ k IA . a y. A . l | Q . ~ \ | K . . . . I . . 3. e y ‘\ a; . ._ an. - e n a. Q . u .. n r O O n r _ Q . .1" . r u e a . . I d . ‘ . . n A a ‘ L . c I I l .x . . . . ; “a, I u n p y I Q {a . _ 1 x . , .I I. . 1 I in. v .- v 0'. s c . ‘A 01‘ a v , . . . . ‘ .e . ,. . ... , . I. . . I; e . e. \ . L ‘ I . ) a l .._ .. . . u . . ,a . .. . A . p e A \, . . .\ , v A » ’3'. . . n. v i . t ‘ A A. . 9 . 7 u , . u n . O . . . . f A A . o y . . , f. c . . . A. . III. METHODOLOGY 1 - Collection of Data The data for stream flow since 1931, up to the present, was obtained from water supply papers published by United States Geological Survey. Monthly records for the period 1921-1931, which were computed with the correlation method between other close basins by U. S. Geological Survey Surface Water Branch in Washington, D. 0., were taken from the files of U. S. Geo- logical Survey Surface Water Branch, Regional Office in Lansing. Fbr the period of 1912-1919, the stage of the river was observed twice a day by U. S. Weather Bureau and published in the U. S. Weather Bureau publications. The writer established a relationship between U. S. Geological Survey gage readings and U. S. Weather Bureau gage readings. He computed the daily discharges for eight years from this re- lationship. The seasonal mean discharges for the period of 1912- 1919, and 1921-1930, are shown on Table 1. The sources for precipitation data were U. S. Weather Bureau climatological data publications. D“ *4 lo.“ . t. .p . . u.. .I. . M a . . . . o. , . n e ,.. ..o ..A» . .n _ .. t . . . . . . , . . . . . I v - I . . r . .0 .Mrl o o L . . . L . .o . a r c. . v . . D14 , a . r L l n . . e \ Y n. . . .. . r u e.-. p. y , \ . K. v . A I I Q . .. .. . y . .- . . . v . . . . - . . f -. r . l o x - . , . . . 4 . . I . . . O . L .1 v . u . .. .u u. . r . «I . u . . ‘ . . .A .1. . . l l n. O . O l . ' I . .- . v . e C e . r .. - Q . O 0 ~ _ 9 r . . I . . I v \ b I a I. . .. a l . . r- e e.‘ w . . . a... .., . . .l . , u w . o. 9.. . e . - o _ x. r r.. ' r . .I P . I .. . I v IA . a . I. . t g a r\ If. 17 Table 1 Annual and Quarterly Mean Discharges of the Cedar River for the Period of 1912-1919 and 1921-1930 Annual 005:}Dec. JZ::;§:r. A:£:}§Ene JE§;7§:pt. Water Mean in Mean in Mean in Mean in Mean in Leg}; c,f,s, c,f,s. c,f,s, g,f,s, 9.1.13, 1912 321 206 318 718 41 1913 311 135 715 374 20 1914 235 77 378 389 107 ' 1915 169 48 484 107 351 1916 362 108 758 534 50 1917 200 33 244 419 105 1918 276 71 854 166 15 1919 259 169 282 543 42 I920? 1921 213 183 374 271 51 1922 280 182 344 457 61 1923 138 70 243 203 31 1924 174 74 219 355 40 1925 75 31 158 87 24 1926 214 171 258 374 55 1927 _186 188 296 228 32 1928 213 160 237 355 93 1929 321 181 395 533 57 1930 219 127 459 268 31 0.0 y 1 1 ‘ O . l 1 4; I o I 0 ~' ‘ e v ‘ 1 r1 I . r- I. 4‘ 4‘ I K I ‘ . \ K. n 1, , 1 . L . I ‘ ", . A . . u . I“| . ‘ 1 i . I 1.. I: . ., 1 -. “'5. .e- .. 1 \V'. 1 . s Q . 1fi' a. ‘- u N .. e .1 - ~| v 01“. s I up- \ 1 ' D .,' 71 'f- - . .- .- s‘ "r .' “ 7 e - . ‘ f‘l e .. . . " O 1 . - .- \ . .. ‘ I , . ‘- 1 1 I '- - . 1 WT ‘ . 1 - ,. \ . . ‘ I . A. 1’ A . i .‘ 1" I i . - 3 ' . s . s . ”‘1 18 2 - Assumptions and Procedures Frequency Analysis of Stream Flow Frequency may be defined as the number of flows of a particular’magnitude as compared to the total number of all such flows, whereas a frequency distribution is an arrangement by magnitude of frequencies. For example, in a given 100- year record there are 100 annual peak flows or floods. The smallest of these flows is equalled or exceeded every year and therefore can be designated the one-year flood. Similarly, the fifth largest flood occurs on the average every twenty years and becomes the twenty year flood; the highest flow, the 100-year flood. These recurrence intervals may be de- fined by this equation: T=.I.1_'.':__1. r m where m is the order number when the values are arranged in decreasing order and n is total number of events. It should be noted that no chronological sequence is implied, but only an average interval of occurrence. In the following sections, the applicability of frequency analysis to high flow or floods, to low flows or droughts, and to all stream flow is shown. Frequency analysis of flood flows - Flood frequencies are developed for design of culverts, bridge waterways, and spillways, for preliminary planning, and for economic studies. Floods may be defined either as peak or volume floods, depend- ing upon the purpose of the analysis. A peak flow is simply nv ~ r .. > .1 A .9 a o. r . (,. \c r L ‘ fl. .1 /‘- 1... .I , f. 'I’ I. v o C .u J I . ll . . c I: . ..ll .L . l I z i . s 0 v 0' .. ...U . . n . o .I. f . \ l ( . . . . A .. s: .A . . .\ . n. V. , . .. Iv. . . . an n DI - . .v. t t . r2 .. _ ., . . . ... . , . . I I o a . is ’H . V . u . .. On \| a; . 1 0‘ a 19.. I. . . . A. . . . . .. rva ; . r a . . . . l. .... .L . 1. 'AA . . a) r . l . r l . . .q . . F II —.V o . ... \ o v. - . \5 . . I s. 1..., . . 1— . O O\ cl“ 19 the highest instantaneous discharge; whereas a volume flood is that high rate of discharge persisting for a specified duration, such as one day, three days, or ten day flood. To develop a peak flood frequency curve, peak floods are selected from a stream flow record. Floods are selected by the highest flood in each water'year. A common problem upon developing a flood frequency curve is the need to estimate the magnitude of floods having recurrence intervals greater than that of the length of record. The extreme curvature dis- played by most frequency curves plotted on rectangular co- ordinate paper makes extrapolation difficult; therefore, plotting the curve on probability, log probability, semi-log or log-leg paper is helpful in reducing the curvature. Low flow - The low flows can be analyzed on a fre- quency basis in an identical manner to that of flood flows. Instead of selecting peak flows, the lowest recorded dis- charges each year are employed. Droughts are defined as the annual minima of discharges. Drought frequency curves have important engineering applications for irrigation, industry, and municipal water supply dependent upon stream flow, for hydroelectric power developments, and for estimating storage requirements. Frequency analysis of all flows - Rather than developing frequency curves from only small segments of stream flow record, analysis of the entire period of record has several engineering applications. Here, all of the mean daily flows constitute a population. e... I. ' V'IV _ , ‘ ‘ ‘ l ' ’ , f - , 'l | .‘ .7 . a c" , - - r ‘ r. . , I; ‘ a - ‘ . '\. ‘L \ u r - . I ' , ‘- A‘ J _‘ f\ ' I . . . s) . . A. ._ O. r y .- I I , 9)." l . '“f't‘ ( r . . . .- r|( rf‘ ‘. . a .. . - . . ., . - -. . u o . IV - ' O .. v . L r I " ’ 'o 'H . \ s .3 . ‘ . L ‘ a t ~ .- ' - ‘- a P . "" H ,. ' ‘- c ‘ H v . . - \.' L b' 5 \ - ‘ I 1*. “ , ‘ l ' . ‘ ‘ ‘ ‘ \— . 1 1.. .‘ I‘ ‘\ I ' ' . ‘ s , .- . r .. .I_ I‘ If \. ~ . | ~-> . . d r I - p u o . _ ,, . , ’- .L s v- .« - I ’9 a \ U Q a r " !O‘ C ' -1. « '~. ‘. -. e.-. ’ . '- .' - I . P ‘ . o r‘ . s '- . ‘ ‘ "‘ J I .. - ' l . s. s . . 3 ~ *7 . ' a s 9v , "I'\' * ~ ‘.r "c ’, " ( ‘ 'l P x .‘ . ‘ . . ~ .. ~ \ .'. '1 ‘ ' \ " n . 3 -~ . . A ‘ I n "u 3‘ ' I" n s h | .. e . . _ . . r , , ' ' 0 - P. -. ' . ' . e . . | . - r. . - -.e 4‘“ I is. .. ' r e . , . '.- ‘ . f5 . . r - ‘9‘ T ¢ I“ f . . ‘ .I ' I _ . . . i - ... I I Q - . r A ' . t', . _ . ’ ' ‘ . ‘ i _ ‘ - J. . , s _ f _. s ‘hl" . .. , . ' .- .-.I *9..- . ' s , ,r i,-' ‘ o '. - ',<- a. 1‘ Q _ l‘l-. I . - I \- e . .-"- 1 -. P- s - ... I. > ' '\ “ . . ’9 ,‘- -‘.‘e- ‘ s" 1.-. . __ 'f L1. ”J .—‘\o‘ ,I. 1. -’ J. u ‘ ' . > Q ' ' a. ' ‘ - 1 ' - I . p U‘ . l , ‘ ' ‘ .‘ ' I‘,’ W b ‘ ’ r ‘- ‘.- b . A ~ ~‘- A - n‘n- . ,- ,. l - .. . , . ,- - . q ,. - ' '3- 2O Plotting positions - In treating hydrologic data for the study of their frequency of recurrence, two phases of study are generally met. One is the frequency of recurrence for the observed distributions, and the other one is the corresponding frequency of recurrence for the theoretical distributions of'best-fit. The former is usually required for the purpose of plotting observed data and hence is called the "plotting positions," a term used by Foster (7). The latter is treated by mathematical theory of probability and generally serves as a theoretical basis for interpreting the observed phenomena. A correct determination of plotting positions has been a moot question and has caused a great deal of discussion. Many methods for computing plotting positions have been proposed, but few of them deserve theoretical explanation. An attempt is made here to give a rational solution to the derivation of plotting position formulas for T recurrence interval. If it is assumed that n past observations were taken from a certain unknown distribution of events, these n values can be arranged in an order of descending magnitude in which the rank, designated by m, of the largest value is equal to one. According to Gumbel and von Schelling (4), it is possible to compute the probability that an observed value of any rank m which will be taken from the same distribution in N future trials. It can be proved that the mean number of exceedandes x for this m - the largest value to be equalled or exceeded in N future trials is: . v . .. I . . . . . s I a . . . I I . . . I II, ’4 p I . . .. . I... s: . . n . I .. . . e I . . . . I. I ’ _ . I a _ I . . - . . o . I r A Q I F 7 ~ , . I . I. t . f. I I . . . . . . I . . . . t . . \ . . y n . . . .. . . . . u I i . . I. I t . . l I - l - . .‘a . 0.1- e . . \ a 3. . . s e l . I . g I . . u . O o . l s , . . . .. I e . . E . v I . I 9 . l I \ . e . I ‘ Q t I! a A ' V - i l. e .. . , . e . . . Q . . II a s a ‘K Y . .. r . . . . . o . \ I . ., v \ » ~ I I .L . r C. ‘ I l v. ' _ v I l- r a . . D v I .I f. F L. . I x . s . I .— . . a I . I I . . . . L I U! - I ! . u . . . I. s \ . .. o I. I . s . . I I. I . . . Z .a e. . . o . I e I e . . c . . . . . e . I . - I . x. . l . . e . v . . I . . I _ ~ . v . . . . . l . . . . ' f . . u I? on . y . . . . . . I . L I I \ I .. I . a . . I .l v . ‘ C. e o l I ' .I e l . c I . O. J . v I . . I . IQI| a I . ,l . .l l . a . \.. I D. . I. I . . .- e . J a .. J cl h . 3 9.. . c . . It... 1 I .. y . . l\. pII as U .: n “I I rPI I\ e i . . . ‘ O» r. . J v . . I 2 '.e ' .. . , o ., . e . r . . . . 0P . . ¢ . I I . e a . . ~ I . . _ l . .. . . I. .I. . . . 4 . . . ls _ I I. . . . . O O . . . I .i O a On .» I v I. v . . ' .Is . . . o . .. . I I Ir . . I I l. e I ll ‘ . ,1 u I MIL '. . It‘s!“ . x . l ~u v .I Y I . I Al ,‘ _ s . o .5. . . . I I t I I \ . 1 y I ' . .YL . 0 42 I . . . . . . . ,. n l. o I; [V . . 1 . . A . 1. ,.. .\ H. v I . I . - . . . .r. .L . u p a \ I . I .. .4 I p . e . n . fl! ‘ l u a Q A a II ‘ P .. « ’ rt v 1 . . o . . g . . c . » r . b I c U . .1 I 4 d .p h l, . ; ID. a u. 21 m n + 1 For annual maximum values, the recurrence interval may be defined as the time in years for N future trials that the mth largest value in annual maxima will be equalled or ex- ceeded once on the average. In other words, the recurrence interval T is equal to N when the mean number of exceedance i is equal to one. From above equation when i = 1, 1 = N m , and for T = N n + 1 _ n + 1 T ' m This indicates that the recurrence interval of an annual maximum value is equal to the number of years of record plus one and divided by the rank of the value. The above equation is also used for computing the plotting positions of annual minima, annual mean, and seasonal means. In computing plotting position for annual minimum, m is the order number when the values are arranged in in- creasing plotting position formula, special plotting paper which is used by U. 8. Geological Survey is adopted. For annual maxima also, another plotting position which is known as Hazen method, from the following formula: F _ 100 (2m - 12 where a “ n F is the plotting postion in per cent m8‘ is the rank number n is the total number of observations is computed and plotted on normal log paper. On table 2 the peak flood is shown chronologically with their rank numbers and plotting positions according to Gumbel and Hazen formulas. The curves for these two methods I I\ . I. I. _ .J . .I . I . - c o (I . 4 .0I r: .. .v .1 e . .II. or . I I I ‘ 1h . - POI. ‘ ‘r . . . , w . I . I. I I ‘ I C . a. O- D Q r _ . I. . I. I or" . . . I f I m. u . .. r, \I r I I , - f\ r H m I u w I A .I |.\ I I a I I. I. v . r . . . . I . PI .II l .i I , . I . I I , \ I I I I . A I. . a. . . . I . .I I o I I I . .. 01.. 0.. 5.!- umfi “In. I" water Year 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 Peak Annual Flood 1n Cafes. 4430 3000 2900 3260 5050 2600 5540 3340 5000 1100 2080 1950 1800 900 2520 800 1160 1840 2180 350 1160 2400 22 Table 2 Rank No, 5 12 14 1o 3 17 2 8 7 50 29 31 33 43 19 46 39 32 28 47 38 22 Recurrence Interval in Years Gumble 9.6 4 3.42 5.8 16 2.82 24 1.26 2.18 The Annual Peak Floods on the Cedar River for 47 Years Recurrence Interval in Years Hagen 10.4 4.08 3.48 4.95 18.85 2.85 31.3 6.25 7.25 1.19 1.65 1.54 1.45 1.11 2.54 1.03 1.22 1.49 1.71 1.01 1.25 2.19 .0- .- .- . 1 -\'O- ‘ .. . . o 1 ‘C -. . . C O .. .0 C C \ "V . 3...- \-' a", I' V y'. l I ' ‘ I. 1 'J‘ . . . . - .- 1 . A. - 9 x a .. 1 ' A _ .. p ' ‘ 4 n .u ' " 'u . _ u . O r - ~ - n \ ‘ ‘ r. O - A -‘-- 0“ -1 vs- ‘ I . 0"- oo ' <--- 5“..- .. .. ' . .‘ o I . u. a 1 g o _1 . I . , - . I ‘ . I . - ‘ ‘- . - . . . . .. T ( K \ " "\ .3 ' . .‘ . | I -‘ . . \ '\ '1 - 1 'fi ‘ I .. 1 - \ .— b- \ I‘ . l. , . I I. .t ‘m I t r ‘ ' 5‘" I 1 1 ’1 l ' f I ‘ 1 L . ' ‘ . . 1 f C . . > , ' f . . 4 u / c ‘ 1 ~ I c D b J 1 1 .0- c 1 ‘ f. . I ‘ i . ‘ . b 1 I. ." a ' - O ' 1 O ‘ u o I ,“I 1 .\ - . ‘..‘ r, ‘ 7‘ 1 , D . ,. .-.' ‘1 ‘4 23 Table 2 (continued) Peak Recurrence Recurrence Annual Interval Interval Water Flood Rank in Years in Years '1g§;__, 1n o,f.e, _§2; Qumble Hagen 1934 1340 37 1.29 1.29 1935 1800 34 1.41 1.40 1935 1020 41 1.17 1.16 1937 2330 24 2 2 1938 £020 6 8 8.55 1939 1750 35 1.37 1.37 1940 1970 30 1.60 1.59 1941 1020 42 1.19 1.14 1942 2660 16 3 3 1943 2490 20 2.4 2.4 1944 2320 25 1.92 1.92 1945 2930 13 3.69 3.76 1946 2320 26 1.84 1.86 1947 5920 1 48 91 1948 4960 4 12 13.5 1949 2580 18 2.66 2.69 1950 3170 11 4.38 4.50 1951 2240 27 1.78 1.78 1952 2740 15 3.2 3.24 1953 878 44 1.09 1.08 1954 2490 21 2.28 2.29 1955 1440 36 1.33 1.33 1956 3310 9 5-33 5.52 1957 2400 23 2.06 2.08 1958 878 45 1.06 1.06 . u p . I L .1 .'. .0 9 .0 - Q- - - . t 0‘ . r ‘L- I I V .—‘.I~| F .1 I- 0.. I 1 .1 V .l s a Q; ‘ .I-' 0' . \ , n O . l . y . .1 - ' -' L.‘ .. '. , ‘ v D . 5 (,1 ._ (‘1 r‘ r‘ f. ’ ' . . O 1 , . - .4 ---4- ~-. an§ .a Own-.- Q-O . . - I . | ". ‘ Y I - c . O ’ . . ’ f o x . i 5 ' r 1 . '. a I . ..‘ . . . ~ ‘ l 1 ’ I .‘I. K- . .' I ' n . . v . . - _ o n. ’ 1" ‘ v ' x ‘ o ‘ . ‘l <‘ 1 . r\ n 1 ‘ _’ D .1 _ r .n '1 . l ‘ ( ‘1 I I A L . D I. O a 1 , ' I ' I. ' n 4 ‘ x I - ”7 --o ' 1 I O . ‘l. \ ' 1 ‘ r‘ (u ‘ .7 l V 1 ‘ 1 . 5 . ' l . . . ‘ , V‘_ t ‘ ‘ L. 1 r ’ ' - 1 1 l .\. Y‘ ' . - 1 i C' - P-' -;- . ‘ .. K I ' ‘ ~ :- I . . . I ’ . r- | . 1 I 1 I _. t .. ‘ ~ I‘ . I O O n I ‘ \ .u' I I 1 .- 0. I ’ i, .A . a — ‘ ’ 1 . . 1 . O l | l‘ f D i-‘ ' ‘f‘v - t x “ I‘ . ..l ' '1 , .. . \ ." 1 a \"I' . ‘ . ‘ . I .--,~ "I -t 24 are shown on figures 2iand 3. For the analysis of frequency of droughts, the five consecutive days with lowest flow in each water year’were chosen and the average of the five days was used to represent the lowest flow of the water year. This analysis was done for twenty-five years (1932-1958). These data are listed in table 3, chronologically with rank numbers and plotting positions; the drought frequency curve is illustrated on figure 6. This curve was plotted on special probability paper which is used by U. 8. Geological Survey for droughts frequency curves. For the mean annual and four mean seasonal frequency analysis, forty-seven years of stream flow was considered. Fbr each season (spring, from April until July; summer, from July until Octdber; fall, from OctOber until January; winter, from January until April) the average of the three months was used. These data were ranked and plotting positions were determined from Gumble's formula. Five curves were plotted for annual and four seasonal frequency distri- bution. It was assumed that the median value has a re- currence interval of two years. On the average, out of every two years, one is drier and one is wetter than the median value. The curves have each two branches. The upper branch indicates the values higher (wetter) than normal (median) and the lower one those drier than normal. The ob- servations were classed in groups according to their recurrence. values with a recurrence smaller than three years were called "normal.” On the average, out of every e . . . o. . e w r\ . .Ae. . a v. . .0 F V, ~|c L l A. 1.. . e- “V . a v H ‘v . . . O J . r V . I . ’ .. . _ . . f o . . ..- u \ r n k v r .4 x e L . ..- . l O. . s ..V e o e. . . v e . e u . ~‘ _ I r v\ o , e .. Q ,q 0 u U. u r - I.I.a In . e v . a OJ Q‘ I p .. . 1f . x .e :— l. l ~ ; my Aeasanoh e.dnanav nepdm havoc one do chemo hosesueah ocean .m ensmuh endow ad .HcphewnH oesophsoem com 00. en 0: on on . o. a m. .. n. u E! a... 2 .o._ - l4--. II%!-L|1:! -11; - .----!r O 000. _& \Aflml ooom w. .:. am 0 e no . .r m .1lii- ooonnc .. m d w .m n _ oooe m a m u u ooonh oooo coo» _ - , oooe 26 3.352” man—enemy 925m .2300 e5 so Ergo hoaeauehm uoofim Recurrence Interval, in Years .m.a.o as .eoodm seam coop 000m 000» ooo~ OnXU. nZum . n 93w?” /. // e.‘ o On: Aunvu Auc— Ago ON 0. n.N hm; mu; no; NO; .0; Recurrence Interval, in Years 27 Table 3 Annual Drought on the Cedar River Period 1932-1956 Average Recurrence 23;: D... 2.5 23‘3", 3’15: “2°23: 1" 1932 June 24-28 17.4 13 2 1933 July 22-26 8.4 5 5.2 1934 July 17-21 3.8 1 26 1935 August 12-16 19.2 15 1.67 1936 August 3-7 6.4 ’ 2 13.0 1937 Dec. 3-7 18.8 14 1.86 1938 July 26-30 7.8 3 8.66 1939 Sept. 26-30 10.1 7 3.71 1940 August 15-19 17 12 2.16 1941 Sept. 14-18 11.1 8 3.25 1942 Sept. 15-20 28.2 21 1.24 1943 Oct. 2-6 55.6 25 1.04 1944 Sept. 11-15 31.2 23 1.13 1945 Oct. 29-Nov. 2 20.2 17 1.53 1946 Sept. 14~18 9.1 6 4.33 1947 Oct. 4-8 15.2 10 2.6 1948 Sept. 1-5 23.8 18 1.44 1949 Sept. 4-8 16.4 11 2.36 1950 August 21-25 37.4 24 1.07 1951 Sept. 21-25 27.6 20 1.3 1952 Sept. 25-30 28.4 22 1.18 1953 Sept. 26-30 25.6 19 1.37 A . . e p O b I. k e .I .. 1 . . I l . t. 1. ‘0 r. I V 1 n I! O 4 a. . . . . . o . . — . I e I. O . l ... ... 6 . e . - e. . 1 . O . v a s . . . . o e 1. e . u 4. . I. . l \ . u 8 t c - .1 ., O s. 3'1 e A L.) . s 1 1 . . l I 'I‘1 C. is . I1 . . O 0 re m. 0 . ~ 510. I. — . ~.[ ‘1‘ _ u a ‘1. e . - Table 3 (continued) water lea; Date 1954 Sept. 6-10 1956 Date 1‘5 28 Average of 5 days in c.f.s. 12.2 8.2 19.6 Recurrence Interval in Years 2.89 6.5 1.6 hepdm peace on» no nenmsoan acsnnd hen epah on» no cease honesuOQM .4 ehnmdh EGOH g .HGEOu.flH OOflOflHfiOOfi ¢4U> 0,06 96. On 0.? On ON 0. h n - n -N . . _ _ 1| _ 2 .o . fl .muo . . " .. _ 29 Flow in. c5155.. Flow in c.f.s. ‘LYII11 |llvi|1ll1 '11 l )1..1l|| xlfi I 1|111T 4'11)! a . o o. _ TIL, ll] 1, - - l 1 On. I 1 21 1 30 three years one is wetter than the upper limit of the "normal" class, one is within the "normal" class and one is drier than the lower limit of the "normal" class. Within the group "normal” the values wetter than median were marked with + and those drier with - sign. Values with a recurrence between three and ten years were classed "wet" or "dry." Very wet and very dry have a recurrence between ten and fifty years. The extreme values more exceptional than once in fifty years were called "extremely wet" or "extremely dry.” The limits obtained by this assumption from the five frequency curves on figures 5 - 9 are shown in table 4. . r ‘1 '1 . . . f a. I . e . 9 I u e i I .. . . . 1 1 . I . .. I 1 I . '— o r . . a e . . . p . . .. It r . a D r 0 e . 1 O U u 1 e . I. . . . . . a . o . l e r. I , e . .. I . P . ; l. l e . u 1 a o .. I I- 4 . '- I . I . _ . g I Q N h ’ e.. 1 .s . I ~ — . r . . 1. . 1 . .1. . . . 1.. e 1 ll u o e .. . v . . . . . I . ,. u a . . o . 1.1V 1 . . . . I . v 'v. f: n . , e . 1 . e- . F n \J ... . t . 2 u , c n r r e- . 1 , 1 1.1 , .1. . - .1 . e“ 1 1 . v1 , .. , . ,1 (I. . . i .1 n . .1. 1 1 . s . 1 . O ' ‘1 II . D ' e o a .... . . . _- . . L .. . 1. . . 1 e! u t O o . O . .l I as v \ . 1 r O u ~ \ . . p r i K I . . '1 1r . . . 1 . 1 r .. . v s . a v y I ' 1‘ 1 1 e O . 1 . .1 i I I I II: a 2 . I . . \ ll 0 l . .IL . . 1 ‘ . . . .. e r, . . . i n . (k . f . . I, U c . .1 1 4 .I . r O 1 e V . t .. 1+ . . . C 1 . .4 A . e . I I e n. (e I l o .' Q 11 n e y . I. 9. 31 .pmummno axon on» ad Uwpahumdaaa and soda: dpwu manuflawbw no mnwoh no>om unpack on» no aoapwoauammdao Hanomwom wad stqnw you you: cad mosHm> paaaa mamas m I m mohswah song c¢nampno seducedudmmaao sou wands» paaaa any .¢ magma um. m_som omnmm mnsw: mq m¢nmw mmuam amuom_ .+om_ possum -om om-m__ m..um_m «.mummn mmm mmnumm¢ mm¢aomm ommuomm +omm mzdanm 1mm mmuom. om.-o¢m oqmumam mam mma-mo¢ mo¢ummm mmmuomm _+omm pound: -m. m_-on , on-mm mm-- 55 55-0m. om_-bom pom-mnm +mnm ”Ham -oq o¢-o__ o__-mo_ mm.ummp mm. mm_-~mm wmm10mm omnummm +mmn ado: Hasna< amuhuo umuhuo umuhuo «mango u. mahuo «mohoo «mohuo omuhoo omohuo ad ad ad a“ a“ a“ ad ad ma 5.8 in in HaEcz $30: 1382 no: go: co: .axm huo> u + huo> .axm 1" 1 I19 '. I. .‘l .i'\" ‘1'. ‘ t I Q. I . .. N: H. I 1 I - Q a. .. n V. . I. . .i .. t l . u . . - : N .| 'd n 1 Q. . I . . . U. u u r 0-. b\n.|. o.v II. 32 OON nova havoc on» no 33E dong :25 on» no 3.2.6 honed—dog .m 0."sz 930» a." 4.3.3an oonéaoom 00. on 0? On 0 N O. m a w A 4 a o _ _ m _ 1 1/ 1 a M _ r #— 3.1-1-3 oo. , . _ _ / 1.1 8. H .m w 1m . 0 II .1 con A . m m .. u Com m m oon \\ . J JOmn .II1T1'4Y: --|¢I..1 In! JYulIl‘llvnillvithl'I‘I'i» 00¢ Ont 33 35m .2300 map so 32H .33 go: 23 no 0230 homage; .w 93mg .-. OON 00. On O¢ 0m H ......ON .. O. m n N L endow a." £235 0059.303. IT 1- 1 ...... IL 00. on. 5 I O O N . Mean Flow, in 30:08. . _ .. 1 . - 1. 0mm . . H u . . m 1 VI! 3'1 I: I lliltlnl OIII .1'.F-1 I 1.11 I! 2.1 . x t til II I _ . . 1 . . _ _ , . , _ ., _ W 1 _ 1 . _ W _ m H m 1 Till. ‘IIIII llr+l 50 ilvlli‘q ‘ l A1 0 -.-.ol: Into --- l.|-1... +1.. 101'; ..I .--+.o:-11l 3. .I..;L. ... 1. I . M . 1. 1. h 1 can . 1 . . a h . . . . . _ W _ m . . . . ._ . . . w 1 . r- {2! I - - -- 1 .. .1. . . 1 ,1- I r .108 . . a _ _ . fl . . . 1 . . . . N m .. . n 1. 1. _ _ . .f L _ F . w 1.1-13-1-.391100? 34 CON 00.. nopam Adamo man no team hound: ado: any no abuse hoaoauohh 1 On 0? on and.» ad .Hdphaan conuaasomm o. 0 ON .b onzmfim N / 00. DON CON 0 0 Q O O n 000 00h 000 Mean Flow, in c.f.s. 35 OON nobdm havoc on» no 33H $3”an «802 23 no Ergo hodoauonh .w cud—mg ...."on a.“ .Hfizcann ooaoppaoom 00. On 0% On. .ON 1 .0. l m m N 4 fl 1 1. 4. o h H . 1.1 . . 1 a . 00. 1 .w 1 11Ti-4..l.ll.llill.i 1 COM __ _ 1 1 M 1 1. P. . .1 . oom . . _ H . . m 1+ . 00¢ 000 000 \\ \\ \ ..I1yLOON \ -i111-i com com Moan Flow, in c.f.s. 36 com papa .3600 an» no 30.3 .3356 go: on» no 021.8 honosghh .m 93mg 3on 5 .3533 ooaotzoom 00. on oc on ON 0.. n «o if mm or an . . \ 2. . M . . .\ 8 . 1 L _ . . . m 1. . \ I-|I100.n . 1 \ 1. _\.\\ w. o \ 1\ S. n m M on. at 1.3111. com com 37 b - Computing Weighed Average Precipitation for the Basin In the Cedar basin only the East Lansing precipitation gaging station had continuous records. Three other gaging stations (Jackson, Milford, and Owosso), which had continuous data and were relatively close to the basin, were also applied. Twenty-seven years of data were used for this study. The following procedure for weighing the mean precipitation of the basin was applied. A table showing runoff and pre- cipitation in inches was prepared. Then the items in each column were ranked in descending order. The differences of the ranks of each precipitation station and runoff were squared. The sum of the squares were used as relative indi- cations of correspondence between precipitation and runoff. The smaller the total, the higher the correspondence. The following formula for weighing each precipitation station was used: PJ 3.. E a 45+ Where P' is the weighed precipitation, d is difference in rank, and P is the precipitation at each station. = 1 ‘ 1 D EdeL +511?! +Sdo "' 213‘} The sample form is shown in table 5 for annual precipitation. The annual runoff in inches is written in the first column for twenty-seven years, from 1932 until 1959; and in the other four successive columns, the amount of precipitation . V W t . l . . s ‘ Q I t. ' I . A . u , , ‘— I! w .a - ~. 4 \ ~ duo , V f" r . f ' - u o . —‘ - .- I- O . 1’ o . .‘ r ‘ . ,A - . - Q ‘ I 6" ’ ‘ ‘ . ... . .- I J ' . . -4. . i. . ‘ . 5 , Q. .A .. I'o O , _¢ , K A.-..‘..'II. J.’ D - -- ..--- r -. . . .L ' . " - a v 1 ' . J c —. . . . ”A... <« “ ‘ ‘ O I l ' I‘ . . U - a . a " 7 ,..t. , I . t ' .- u I- “i '- .., 4 'f N. . r . U ,, 9‘ ‘ ' l “ l‘\ \ ., 2"- I‘ I n l . o . I. . O 9 _ ... , fl . , _ ‘ . . ; } .. .. ‘ . ‘ . - e u t . ....5 . ’ l a." .' ' ‘ f 1 . F I -\ . ' .~. _ -. , 3 . . ‘k' , . t .. , C ‘r. O. t . u -'. . A c . - . a . . u ‘ h , ‘ ‘ ‘ ‘ . . l o . .' v . - l . — ' ‘ . o v | ' y ,A . § - o ' '. - V V 4 -_ . . .i o . Q o . . I c l . ; . at -5. _ 5 a. .. . A - ‘ . a a . . . . . ' .1 ' . -. . I .... .. I I ‘ A ‘ - ' ~ - '- r ( ’ ‘ ‘ y o b h ’ ' v , ' .l. . .- L | . ~ - h . .. f . - p . o‘ . . t _ ' 'u ' ( Q ' ‘ . . v I I t ' v , l ' - . C ' '- § . CI. ‘ O - ' u u f o 38 for the same twenty-seven years at the East Lansing, Milford, Owosso, and Jackson stations are shown. The upper left superscripts are the rank numbers for each column, and the upper right superscripts are the squares of the differences between runoff rank and precipitation rank. The sum of these squares are in the bottoms of the columns. The last column is the weighed average precipitation for the basin. Other computations for annual precipitation are: 2 ._ tdL ‘ 1524 m; = .00065 2am? - .1116 2 .. 2‘11) " ‘73‘ £757 = .00058 53%? = .00066 D a .00065 + .00090 + .00058 + .00066 = .00279 The weight for each station which was derived from this fo rmula: 1 weight 2:de2 are: D East Lansing .22 Milford 032 Owosso .24 Jackson .22 ' Runoff - Precipitation Relation The runoff during a given period, such as a month, may be expressed as a function of the net rainfall after n . , ..‘ .. O b 0‘ , . -\ ' o 3 CA '- \. --. ' O . ‘ .- C . . . . ’ o". . k i t} ' _.A u a 'Q . . A n O I I; _ ‘ .1 9‘ , a amd c ’. .. - . , .< \ . i I < s-. ,- - .xg_ . .. I . . k ,. | " " I .O‘ —. K -.- 'll' ’0 O \u ‘l' v: . r. ‘ ' a. " ' .. 4 ,, ‘ ' ‘ , .- ' - ‘ I I. . . t _ 7. . n \ n . .. ' .3 o'- ‘ ‘ . ' ‘ l v ‘ ‘ I x - D f l l u I I -_ . I c. " A p A I ‘ I I p ' . 4;. ' J. ' " C a . , a ' ’ ' ‘ ~’f"-" u I l . V .4 I . . . '0'. ¢.-‘, 3. C .' A‘s! on. o .‘ .1. - 'n n "...’ I‘. " ... \ . .- .. I . ’V .v s .. . O , . V . . 1 I _ . . ' " .- , V . ‘ u . I- n v , o A , . n J . 21 o . '... ,_ 4 . p. 4 \-‘ '. n - n O ’I . I. . | I r ... o " ' (v r, ‘ ‘ pl . o » . , , .. 1’ o x b). - IJ . ‘. I“ ‘ .. y, . ' ' _ V" . c S .. - s C I " " I. 'I a p a ._ ’ .‘I x‘ o . .- ... .. 39 hm.on 00— w— 2.8, ms.nn 6% 86m mw.mm mm m— .m.—N mm.nm —>.hn 0mm a ——.ON mummmmjmm owdao>< enemas: m_.on as m. mu.nm .m— m. m¢.mm a .— mm.en m. m o..em 0 mm n..~m. Fm #— om.om e um om.on .m. h. mm.en mmm e nn.nm mononH nu soapspamaoohm somxowh ,m.am 00— @— mm.om m em mm.mn . m am.on a .— mm.¢m m mm mn.em mm a. mm.om . mm mm.o¢ me _ mu.>m mmm a _b.m_ monoaH ad soupsadnaooam ounoso on.mm pm a. m¢.em # mm mw.nm m. #— .o.en a .. so.mm mp Fm so.mm #m om sm.mm . em oo.mn 00. @— mo.o¢ wmm a mm.»— mo£onH ad noduspamaoohm backdaz sausm ao>dm havoc on» non sedaoadndooam commas: m canoe mm.nn mm m em.¢m o em mo.mm m_ m o_.¢n . m mm.hm mm om ww..m #w m— .m.mm _ mm mo.mm m __ hm.¢m as. a mm.mm .ulmmmmmmjmwnu soapseaaaoonm wnaunsa swam hm.n mm a} #m .¢.h 0. Nb.» OO.¢ mm mm.¢ mm ow.n hm m_.m mm.m om mononH ca whondm owm— mmm. mmm. bmmp mnm— mmmp amm— mmm— unm— «mm. ado» hops: I W O 0 0 o o o o o o o , I u - v ,' ' ' V - ' e ' : o ' l u v . n ’ v ' ' , .I we I ' . , , . - _. .4 . . O - - . . . I . I {I - -O- - Q Q n -0 --‘ flaws-v - -r‘u—o . 0 .-~ ~. . I. g .- o o . . ,. . . s g . .-.. ,_ . .... - £ . .. “-.. - . ... . . U E , . , — o O o Q . u ur a ‘ i" ' O -.. | I”. 4 0” _ t I . I I - \ a.“ . I ‘ I l-‘ ' ‘ . .. 1.. «.3 l' ' t v V. I .' ' . _-,--. I ‘ I" z a ',_ ' I a . I . . . o ‘ . . . >. . ‘ l l O ..c. r '9 ., '1 . . ,. . . .fl ---‘4-vo.a'. N.."~~..-. . n - l- a - ---.u . .Afico-IQO I .O-nxv-O-o—Q --~-~----n “n- . a ~..~~ 4 _. K'l . o ' "' ’0 ' ' I :. ' . V o o o e 0 o o o o o . - :1. ..f ' ' .: ~ ‘ , ‘ q ‘ i 1“ ‘l - ' ‘0 ‘ ‘ . f x _ ‘ . 7 . ._. . I v u ‘ |\I ‘. ‘ . - \ \ g .. . , o . I . _ ... v I ; \«. r r‘ s s . . .- ‘ - - ‘ . ‘ o I “V ' i ' Q 5 3 . a c O - C . Q C O -4‘\.--C d -7 I .- .-.—Ari. '-.fl -bv-h ~O J .- ‘ n l I - - O o | c -. - o O lfiAr - .-‘afl-Q v-.‘- --. P k 4.1. o o . I ' s‘“ V y . l V. E . ‘ I’ . . '. ‘- v I . 0 v ... ‘ : ,, ‘ . ‘ '7 ." ' i ‘ 1 - 1 . ‘. t. ' 1 4. . " I _ g . C - ..‘ ---.J- 4‘ A u o , ' ' ' v I ’ . a t t n ‘ 14 I. . - . , . . - 0 . . _‘ u s I I o D. o , , ‘ a _ L I ' 0 ‘i - . . z I "r "r - v - , - n : . , s a. ‘ -- A .. -.- ...‘ao C ‘ 4' ‘ “-v-~‘i~ 4|. op-fi i a” do- i I U ‘0 U - - O - 9 -.- , - 'v‘-r- - *4. a .“ no'v‘ - . rm'O-J‘-.. -T x - . . , r, . ..,, . .. . p o" ’ " . . I ‘ . s- ‘ ' ' \ . V ' ‘ f1 ‘ ,n r. . ‘ I . l . ' . y | , '. ' 0 ~ ' . . v - , O ‘ I I O ' I . I ‘ C O O I O O O O o . ‘ . . I . I u I . t ‘ ‘ .- ' t ' . g, a I I ‘ ‘ g l I ‘ l o ‘ V .. .- I ... I-. I ' O . o . D u I n a ‘ a $ 0 V I ‘ D - . . .a . 1 a A - ’... y. .. a. s l .‘m I - Va... -.-O ....- --~‘—~. O l-‘J- o -.. - H 0-”. v. >.-'.. o .v -s -. ... - - «-.. -¢~‘u~.fl*-— ‘ 0... ~ ‘ . n n . . Q ' n ; _ . o I « I ‘, - .-. 3 \ u o I 4. n \ . . . . I . . I - ' ‘ ‘ . ' 4 n 1. urg~ - . ....-.g - -~° 0 ~ ~~o 7v- o c a. q A. a. .. - - -—-....o~ u .- -ra-v‘ ‘u. n. _ q-d ...— . ...-cg ~ 0.».va .— e s — - .- ' “u I . I - v ‘ v —' . . - u ‘ ‘ 3 a v ' ‘ .I . r 4O on.ow o N n¢.nn ¢ N— hm.Nm ¢¢p n. om._¢ m . ow.#N mNN 0N No.mn .N— b mm.mN m. —N mm.mn o n Oh.mn 00— w nNomN m NN mononH ad omwaopd oonwao: mm.mn mm » nm.nn mm m m_.on —mm 0N m~.mn _ n mm.om mm m— am.mn .m m oo._m a m. _N.m¢ ¢ . ¢m.mn wm— N m—.hm m. mm .unmmmmmmjmmlu noaawpanaoonm nouxomn mm.mn — n ¢>.mm — n— mw.mm mm. a. mm.mm — m om.mm «w m. .m.mm ¢¢F m m>.mm m ON m~.om pm N. pm.mn map N —¢.¢N m. mm mmsonH ad noaaapaaflooum ammozo mu.m¢ o N ~¢.~n m: p m¢.~n mm m mn.m¢ m . mN.NN mmm mm mm.mn mm m. .m.¢m #m mm mm.mm ¢ m om._n m mp m>.¢m mm cm ammonH Gd coapwpdmaoonm agenda: mm.n_ N do.h w. mm.n_ m¢.—— c mm.> .— mN.w w. mm.o up um.n_ n um.w m— :mom 0. mo.mn ¢ ¢ o>._n a m. nm.mm .m. «— m».mn _ m un._m mmm pm p_.mm mm_ m o_.mm mm mm mm..¢ w _ mm.mn mm. m om.mm .. m. monoaH ad noaamuaaaooum wnfimQQQ gnaw mononH ma Hmondm 0mm— m¢m_ ¢_ wdm— h¢m— wém— m¢m— ##m— m¢m— N¢mp —¢m— ado» nova: Acosaapnoov m oanaa a 0-4" w u. . _- ,- -< o O ‘ I - -.-.-. ‘ .--. -‘ ‘ . J-~'v--..-o~.l--4 -.-»«. --- ‘a\‘~-CI . I. - p -5 O - r .. .. 01";- --. ‘m..~ '9‘-.‘- v. -- ¢ "1 .10! I v . , . I A ,. O ‘ O... Q I a . . ..A a A o o . . . Q-I OJ- -.~~ II- v‘ - p.’.- 0.. “‘0‘ ...IM‘ v.-'.--.~'C l “7 .— an." “' ~v-n .- -a a. 0 <9. ‘0 ..-. ..t.. a a- ’u. ‘fi-o|-.-. - n..- ...- Q OJt—.%M.-\‘W O ‘f o O I ,I ‘ ‘-o*. . ._. ... .m ' I O O ' 9 0 ,g‘. -- .I. .-..‘~'- " l' - . O D ‘ . . - I . o . OI.-~.00-'- Iw~‘-O«r-v-0“~‘ —. 4 Q o. Q“ N, a.~.—~ J v I -..-.---.. --, O'. ~-— ...-.0 Q. "1 - r I ... ’. O . ‘Im~‘- . "Q'v. *s‘“ c a " I O ' .-. .‘D‘ Q. .-.‘.\O on. .. .-D.--on.-~¢. I a' * 9 I 'J O V 9 O 1 '. .9. O"- O~'-J~-' ' on- '0 O I . I I q 0 S l --o . \ I I . _. . . . . i . I _ . 'I . W‘.‘ ‘. I ' O I . . C . ' f .- . l .. a v . —‘ - ..-. 41 Dow— Hm.mm — mm mm.on m. >— nm.mn a m ¢¢.Nn P #— >_.mm m: m. om.mw — om mm.nn m— o— om._n 00— m— mummmmjmfi owanopd wonwuo: _n>_ mcumm 0 mm om.mm .m— «m mo.mn _ m mn.mm m .m co.mn o m. mm.mm mm mm mm.mm m. o. ¢¢.om mm. m. IlmmmmmwlmWIu nadpduaaaompm domxoah Nom— Nmu¢m ¢ #N woo—n m o— m¢.mn o h mn.mm 0 mp nm.nm mm. mm no.mm 0 pm hm.mn é m NO.NN mm. @— Immmmna ad: nadpdpanaomnm onmoxo mw.nn mm.—¢ @— n wb.mm on m h¢.nn mm.mn mm m— om.mm m. o— mm.mn mononH ad dadgdaamdoahm GHOHHHS #Nm— mouHm " .m N_.om m. p. ...mm mm ¢. m_.mn w n. #m.wm 00. mm #m.¢m m. mm m¢.mn @— o— hm.>m mm. m. monona ma nonpwpanaooam madmadq yoga wpom mm m—.> n— mm.0— h mm.m m— m—ob Np mm.m —N om.o_ m FN.OF m monoaH ad “Madam mmm. 5mm— mmm— mmm— #mm— nmm. mmm— pmmp Adam yoga: Auosndaqoov m oflnua g - I I I ° ' - ' I i I I ~ ; 0" _ ' ‘ J ' . -» .. . N . I . ' _ V ‘ --o I . ’ O II.~ . , I I I I‘ o ' 3 . .0 o o o o o o 0 . ‘. I ; I . I, I : - r ‘I I . i I 'I r I i I . ‘ I l~ O “....--“ c-oo 4 0 ¢ ...-'QL‘ D'I’.‘-w- nun-nu. t .-...-u~--- -.“D... . . a... . .‘I. .... . O-dr - ~ I Q .J ”I o I _ r g I ‘ ‘ I . | - 0 - ‘ 4 ' o '. . \ ' ’I _ I ‘ Q ' 0 o o a O O O O , '- Q ' ‘ I . . . O , j \ l t I ' . '.. .‘ .‘ ( I I II . ‘ i l . i M. . ‘ . . . .—.' . ' I . o '0 0-. ~—- -v-0. Av-Q O o -.--..w. —H4v.- '9 -- -- . .- —. a. c ,. r u .- -... .-.-o n -0- a o '- o.vv-gw—.-.-anrh.-. .....‘_- , c- o , - 3 v ' I If ‘ , I . I y ‘ u ‘ I ' I" I Q l ... f ‘ ' 0 ‘ - I . . I ‘ \ '_ . ' ‘ i v . I. o o o o o o o 3 ' I - ‘ I I I o ". '2 o . 0 0 - v , . ' ’ ' i E o l . . I .4 I I . r ' . ,' ‘ \ ! - . ‘ . . a... . v 0 ‘ a can. u.-... v 4 «1 ~¢~d0ran.-‘.-.-C-§-o. " --'¢ 0 .... .I - -. a." -—.---n --- ~19. -...w ..- --.. -H‘ —.~‘-a.o- O~ . .- -. .. voguwnw.‘ I- . .-5.‘ .oQo---‘- D . O I I , ‘ .- u ‘ . ‘ , s I ' o . . --r O 0 O o O O o o ‘. ~ I ' I , . ~ I , r ' ‘ ' . ‘ J .4 N -w0-' I C n I . , j. ‘ . 'I ' - I ‘ l .I I o - 0 9 . - . , v ) ' . . ’ ’ | 4.. ”u..- .D-Q - -o 5. -... . o '9"... - imam-O5 . 90-. .,Q 9.. -. n‘. *0 r.” Q~~OQ w. .~ .I ‘- 4- -- O -‘ .. ~- .. g - ‘a --o t I . I . I . . . L ‘ , ~ - 9 ’ - 0 l I I C I ' --( .. . o i O ‘ . ' I ~' 0 ‘ ' ‘ '. v . - - - v ‘ n “ - ”N . I" I v '7 I- y 4 . | I _' O ' . . . . . . C . , o I ‘ . ' 1. - , . . y‘ .‘ ,. . ‘ . » I c - z . "I .' l . ' . V ‘. . ' o I o 1 . i I . -. ' _ ~ ‘ - v . O u I u I- ‘ I I J ' I ' _,‘. a I.--... aw.“ ...—.-.... 4......” Q-- ..Iu. .-. -o--o.a-.a~- I. “...-~- .-wo-co—- wu~ moo--4-..‘-‘ . -.ofiu<.-‘ . .. ... .-. --..-. I- n -o C I "' -1 ‘ v , I ' I ‘ . O o O O O O . 0 v ' - E ,l ' | . ' l ' . ' ‘ . ‘ l O ‘ . '7 6 I. o I : a 0 - _ I o “- '.~' .* “"9" '0 O 0" ..-'-'."" . .-."" .h. ‘fi- 0 C rm“ 0-- . '6.- . ~¢ ‘ O ‘ -m'“ Q ”~. 01-.-u— 09-0.1 o «-.40— —. . l ' ’ l I. I o . I O C ‘ l ' I : I - - . I . I . ‘ -I . . 42 losses, abstractions, and of the carry-over from previous runoff. Algebraically this statement might be written as follows: R6 = a(Po - Lb) + KRl where Re is the runoff during a given period; L0 is the abstraction and losses from the rainfall, El is antecedent runoff and a, and K are constants. However no is affected by antecedent precipitation. This effect may be expressed as: L0 = b - cPl where P1 is antecedent precipitation, and b and c are seasonal constants. Antecedent runoff R is also correlated with antecedent precipitation in the same way as R0, as follows: R:= a (P - L) + k R? where L may be expressed: L = b - cP2 and so on. Collecting all terms, there results: _ R = aPo + (c + ak)P1 + k(c + ak)P2 + k2(c + ak)P3+... kn (c + ak)Pfi since the value of k is less than unity, the value of kn may be decreased to as small a value as may be desired, so that the last term may be neglected. The basic principle employed is: That stream flow during a given.month is the resultant of all weather, currant and past to the beginning of time. Since precipitation is the dominant climatic force OC . v - . ' 1 “ - ’ ‘I o ' I I _ -a ‘ v ‘ h l a. ... . . — 0" r ‘ ‘L ' k v‘ :- — ‘ ,L ‘ ' ‘ O - ' ‘- r, o. C \ ’ l .. I .e .. . . . ' . ' ‘ i . - , . .- . . ' ' [A L ' 7‘ ' ' . A u . 1 . V v‘ 0 ‘ H . . .‘ I ~ “ ‘ I \ . v -' ‘ . l a U -. ' ' .M ‘ - k r‘. '_ . I‘- . I I . l ' r . Q ~ --- “ ‘ " 7‘ . - A ' x I 'w l i n. , ° ' ' ' . . . \ ~. . -' - ‘ " I .' \ l V B I ' - . . 7 ' I , . J. '\ . ' \ I . f V 1‘ ‘ f ’71 ( ‘ - _\ .1 . . s ‘- .- ' A ' 0‘ ' ' r ' . .0 .". . 4 ‘ r I ‘ . — ' I s ' ' " ’ ., I- . . 4 .‘ ‘ O I. ' ‘ I ‘ T . ' - be .-- . J4 A e ‘ V k -- .. I‘ _ r ‘ y I . h ‘ — p , 4. ' .- A . l ‘ H . ' t r O o . ‘ " r‘ ' . . . .- h ‘ -- ' I - r I ‘ ‘ .. ,1 . ,. 5. ~ ’ .v .7 .7 ‘,' t ‘J . - ‘ r . ' fl .' n . V .l‘ ‘ " . " . . a 1 v u ' ' f‘ ‘ L - ' ' ' r t - ' ‘3 ‘ , I I I ‘ 7 a» .' ' ' - ‘ ‘ Q ‘ ‘ 0 ’ ‘- . 1. (g 1 A v ‘ . . I , ' . V' p ‘ e V. o ' " ’- 1 ‘ l l O K (r r , .- s . O A. . - v ' 1‘ | I ‘ . . e 0 ‘ ‘ ‘ - Fr r I; ' A :9 o ' “" . .. ,- - ‘ ; . .A . g I . O ’_.L. I}. I ' . . r / V , I“. '.' " ‘ - .‘ 4‘ .I . I ! - .4. l C « o r ’- r ‘ VV 7 "“ fl‘ . _ . ‘ o . , ~ ' , ,. '. . . A .. . . v- .’ f v ‘ " ‘ ' ' A '. 'v a V ‘ I " I . | . ‘ I - ”‘ ‘ i ’ . . .‘ v ' _ ‘ I . I a I . L; .- ' ‘\ O' I. . ‘ .l ‘\ .~ ' e ‘ v" ' ' - “ I -_ , ‘ \i ’ . . . ~ 7 r' '- -.‘ " . . I _‘ ., . . t‘ l a f‘ ’ r. a v 43 this relationship may be expressed as follows: so = k + UOPO + 01?, + UQPQ + U3P3 + ---- where Ro is the runoff during interval 0; Po is precipitation during the interval current with R0; P1, P2, P3, are the precipitation amounts during successive antecedent intervals, U 0’ U1, U2, etc., are coefficients and k is constant. This is the form of equation adopted by Hayford and Fblse. However, it is not the only form of equation avail- able; others involving product-terms, or power terms might be devised to give better agreement with this or that theory. The advantage of the above expression is its comparative simplicity. Methods of solution - The solution requires evaluation of the several coefficients, Uo ----- n. There are two means of getting the solution: 51 Graphical method 2 Analytical method The graphical method is convenient where the correlation is high and converges quickly on the answer. An analytical method seems most applicable where the form of the results cannot be anticipated or the correlation is poor. A combi- nation analytical and graphical method was used. In this basin, annual and four seasonal relations were studied. For this reason only U5 and U1 were computed. The procedure, which can be called trial and error, is as follows: Fbr the first trial .9 and .1 were used for U0 and U1, respectively; in the second trial .8 and .2 were used for U6 and U1. This order of decreasing U0 and 0‘0—0- lvri .\ I‘ .w Q - . ., . \ a a J g V i . o . u . ..~ a it o . u... . . f C ~~-‘- .. 0.: . l . -. 0.. . I Ix I P r .. . . A P- . Q . :3 w . . ' .. ' — a V i _ V . r . . .. .U u u. I. I- — It . _y. c. x . . .. . r . . . ..u z 'u. .. a o \ .o O . p . I . . . s c O a . . L. P .u r O... 5 f . . . .v u . fl .4 " w H .- r. r . . r. .n o .... . ul -. O I U ' . r. I C . . r o . O O ‘ . H e r a l .n 44 increasing U1 was continued further. The computed data using the above procedure was pre- pared in tables. Table 6 exemplifies the derivation for annual carryover precipitation. The items in each column were ranked in descending order (highest as one). The differences in the ranks of precipitation and runoff were squared and totaled for each column. The column which had the smallest sum of the squares was chosen to have the best correlation with the runoff. In table 6 the upper left superscripts are rank numbers, and the upper right superscripts are squares of differences in rank. The sums of the squares, revealing differences in rank, are shown at the bottom of their respective columns. To find the correlation, the runoff is assumed to be a function of the precipitation. That means precipitation is an independent variable, x, runoff is a dependent vari- able, y, and the regression coefficient bxy is: §§UL:;&§§J_1§IJ. n Efi-Eflg n Bax == The regression line formula is: y = y +‘b(x - i) where x is mean of x's 5; is mean of y's and the correlation coefficient is: r =‘b éE. where 3y "LIE ... . ~ I ' 7 ‘ ' “ v . 0 : -~ - .- o 7 u _ . u ; A‘ . - . ' _ . - .. e s - . . . ‘ _ . r . l n - n l o ' . ' n r V ‘ ~ ' ' ~ ' ' . v i ‘ I v .' . x . . _ u - . A» - - O .- .— - q. ‘.- O . I 9 ' ‘ ' \ '- , . . _ . . . , A . _- ’ . . . _ ‘ . ' bl . . - I .— 4 U ‘ I 6 Q . . . » . ~ . . .- . g 1 ' ' . . , . . . . L .i .' \ .. . ., .- ‘ , . -. ,~ . . , — . . ‘ - . ' ' (‘ I I t v n a ' - . \ O p ' , , , . - , . ' . . . . . ’ ' - .' r ' t -, vi . - . , « . ~ -. . , l- O - " ‘ - A ‘ n v' A. ‘ ‘- ~ . — ‘ , n ' ' ‘ v D I > C * I r . 9 c . r ' s .' '~‘ A l c put ‘- A) ' u w H , I ' ~ I ' r ' ’ | . . - - . ,.‘i .. ... . i \ v v Q. ' § . - v . . — e l‘ . a - - . v v . ' - *v "‘ A . f o . 1 ' ‘ ‘. ' .. u t _ . - 0 v I Q . . p e 1 .u ‘°‘ , . ‘ ’ “ “ .. ' ' ' ‘ r ."' J": _ .. '- , . .. u . A A - I I r . . . . < . . ‘ ‘ .4 - A _ .f < fl“ .- k i . I 2 ~ -- - , e . .‘ o ‘ - |_ q . ’ 1 , ‘ c ‘ ‘K I .5 D - I .0 nu. -O I'. .3 o .‘ . . . vv . ' ‘. . . : n- a 0.” . - -§ 0 a ---.-o r.“ .. . -I I .- . u. l. . a 7., .-.'_ U o o . r. . r' ' r ‘ . .- - . . , . - . a ’. .- " ‘. .0 . - . r _ V a x o. I _ .‘ \ ' 1 ~ . \ ‘ Q r" " - . ' - .7 1\ ' , . - .- - vl ’ I . , , . p . " _ r., o I I , i . . e . .r . r a -. N Q . o \ . x ‘ . f' ’ ‘ < . e a r 45 no.mn_ nm.m_m mm.—m .m.mm no.hm om.mm mw.¢ amm— m. cm ¢ mm d «N #m Nm.m¢m #w._m—F om.mm am.nn pm.nn .m.nn F¢.b mnm. _ a m o o. — __ o— mw.n¢m ¢¢.nwm un.om on._m w¢.mn .m.mn hp.» uan mm m_ mm #. w. n. m m_.mo_ #b.¢¢h oo.m. mm.bm om.mm ¢¢.wm o.¢ chm. 0 mm . wm 0 mm mm mo.on_ w¢.mm> mm.mm mm.mm mo.mm hm.mm mm.¢ mmm— m cm ¢ .m m_ m. mm ¢¢.pm .m._om mm... m>.mm mo.¢m am.mm ¢.n :nm. 0 pm 0 5m 0 pm pm mm.mmm #n.anm_ m¢.mo .m.mn .b.¢n nn.¢n m_.m nnmp ¢ 0 ¢ 0 _ u m .m.>m. m~.n_o_ Nm.¢n #m._n mF.¢n mm.mn mm.m who. on #. _m_ m mmm m om _nm. .3033 cam Umnwzdm ...-Iconiwfidm 3... 3 m ... om manna ado» :oapdpanaoonm aoaadpamaoonm whosdm ca gnaw: no aosuopm _ unocnm :«mwm po>fim havoc one you coupapanaomhm nopouhunwo chqa¢ m oanua ~- Q ~- ., - a ~00 — >94. _ 0— p at. ..g -0: s - b' ...-g In. ‘v -. .p' O'“‘ 0.7.... n-nov .-...onn ~ 0 O O O I I O 0 wow.- I .- th—r—u. .. . .0 0 0-57. m -—--sv--b-.-.¢n 0: . ..c.. v, .. .7 -7. . .. . . ... . . ... . . .. .. . . -..,'-, . A.. Q .‘ +0: ’ I . I ‘C- “O. o . . . . . . . . - --‘.\_ -..- \- .- .7... _. .n -u' ...... .ol~v»--n. hr -....--. u, n ‘v‘. .- ._. ..-..- . -. .- u --.. g u. -... ——-.-p_‘H-.. - . o.-. ,, . no t. ..4 .‘Ov—vn -- W-u‘o.‘ .- ~--‘-n.--~‘- ‘d‘olt- 0- n a. n ...v.-Q-~- -fl-O‘W- - - ~- . -- - - v.0 -. .. q—no ‘~ A --. I -" ...u- rw" . ,. 9.4- .10 ~o~..‘. ._,.. ‘Q N. a - ' r \l , ' . . A f ' C . ‘ n - . a. .— M -. z. - 0M .- unu-A‘I -..-w I. .h‘ 0"- ~o~.~..~.. ‘0‘. n. w ---0 04¢. a -. ‘v-' ' u-~Mo~- JO. - ' ‘V ' ‘ I I - S \ _ O I D u I o ‘ t p Q .... V I . p -. , ' I C . . ' I I I P I t , o ‘ _ I J , I. . , ..' _ I . l 4‘ ~v .,,-V~N..,-,. ‘~.'~.. ....-v .~..-.~o.n ..>. _ .. c ...... .- - ...-.o .. w .— .. ‘ -.‘.--‘.‘,.. u - A... a‘ o- ‘o n . .- - r . . . ~ I _ ' , 0 ‘ . . - - v ( o o o o o I o o "' - . , . . ‘ ‘ _ ’ ‘ . . . - ‘ ' . - v 1 - . ‘ a V. . ...—,7 ""h— O o c .4 I'v--~-cou.-...4.- --O-‘»d - .. o I O“ \ n. . Q~<-‘ -4- Ac , n — v . -.. Q n u n. C. v A R . I ‘ , - . I . . O - l . I 46 mm.¢nm mn.mm¢ #oo¢—# mm.hom hm.mom —m.—om mm.bom m..mmm oo.¢m— mm.m_F ....HHO. 3. 6:5 _ nonuauandoonm no “oucOQm mm.00—— mm.mmm— bn.mon— om.mmp ®¢.bn0— mp.mnm ¢¢.mn¢_ om.m0—p fin.mmb mm.mmm nllmmmmmmmluu noauapanaoonm mm.m¢ no.mm— nn.~n— mpk¢m n¢.mn mm.n¢ mb.mb— m_.>¢ mw.mn m>.m_ vohwsum whoanm hm.nn mm m .m.mn m . ¢ n_.wn _ n .m.mm .m. mm .m.mn mm m“ mm.on o >— :m.>n . m .m.mn mm o. .m.um w. mm wm.mm #w m. “mm“ a + omHmu m— ¢ mm— m# —m m. .m nn.nn nb.¢n o¢.wn #m.om nn.nn mm.mm m—.mn ow.¢n hw.hm .o.on m— mm ’— m— mm b— .mm + 0mm ¢m.nn m. o. mm.nm aw m 0—.o¢ m _ mmumm mmm mw ~_.¢n 00— m m».~m m om >n.wn o n mm.mn co. m o».mm 0. mm m¢.om —m NF .nnmquuummmqu :0.» #— mm.m— m¢.—— ¢ mm.» p— mm.m @— mm.m b. bn.n— m hm.m m. #m.m m— um.n mm mudeH dd «Madam m¢mp wém— bcm— m¢m~ mmm. ##m— némp m#m— —¢m— o¢m— JHmMM nova: Av¢finapnoov m oanua O .-.-o - O ' I -.. ...“.- ..0» ...-‘1 a. .- ...» D ' f ...-o -"-..v Q r a“ 9. --' u o f . >.~.- - v C u I Q ‘ v o a r . -0‘0- '- c - — 0-7. “M'l‘v.-Q-l“fis '0‘" --. .Q- ...-.4. Ont -~-- 0 O - .o -- ..w ---..4—~ -. o O O ' t‘ .-o ....=-- .... V O l v ‘v—a -or--' «Op-C.“ ’1‘ o .4. I . O O I own-nag o o .--...- .. . .- ' J O O ’ A . ‘ I . I r G v-J- . ‘4 u o . O O " hr; . - - , . , O O U r 7 o ' .-., o u - -.~Jv .-~- Q-¢A‘- 9'... “u. -.., - ' L _ I _ . O . I . _ .1 -s -.'--o .-.—..- . ‘---~a ...-“...... .\ -. 2 ' O O O . ‘ I » . , . . -.-, '.~HV o -.—o..u-o v- 9... -~ 4.- - I K. - o W , ' '0'!“ mp¢ -- o . a . a I . '-'v‘ .‘ . ' I C ... .-*-¢-~ -A--‘o.-- .0 {I O 9 . 0-. 'O-a-u-Iu.‘ 9 0 , > L". I , - ‘2‘ . ‘ t O O O ' ‘ . . g I I . ' . I , - a - I .' ' - t ‘ "fi . . O -‘ A —¢.-.-..~ Ow. “-mwun ...... .a c 1 Q ‘ . g o ' l ‘ l l .’ . - O O O ' a 3 ' - f O. ' Q U, _. E ~ a I I .‘ s - co-n O "...-nu. 0.. O 2 o‘ I I‘). - ~ 0< a" O -1. v‘ “'M' ...-gr“ out -' "1 O - I I"- - 'r - -r O . J ~--~.‘ _ -.,., 9". ---.:- -- 0 ..-.-.o a - —a-I-. w -.. ‘- .4- ~0§~O -’-—~l a“ , .¢. . U vfl‘. -I~0 o o "0‘ 7 O c . I o ‘ ' .I u l c 4--Q .... . . om.“ I-na »‘.- v.-- ‘:-+‘ «run-.-. ' .... u.» --~ 0 ~.~-o‘- a -~-. '0. “flu . 47 mmm enp mm.. mo :6: 862. 8.8 $5M moém 8.6m . _ mJNI. mmm. ¢ #N a am .q am mm m¢.mnm mo.mmo_ mm.om mm.mm .m._n m_._n m_.> nmm. p m. d m— m w. n. uo._bn om.m¢mp 50.0.. nm.mn mm.mm mm.mn mm.o. mmm. ¢ m m ¢ m ¢ b «a.m—m mm.mmm mm.h¢ mn._m mu.—n __.mm mm.m mmmp . m_ P m_ o m. m. F¢.nom m_.bom mm..m —¢.mm _>.wm #m.mm m—oh #mm. .m .m o: m. on m_ m. wm.om_ on.omw b&.on m_.mm mm.wm hm.bm mm.m mmm. ¢ m, _ om o _m .m mm.m¢n #m.mmo_ mm.m.. mmomn >m.mm w¢.nn ow.op «mm— mm __ ma m. mm m_ m mm.o~n nm.mm_. o~.¢__ nm.¢n om.¢n .m.mn .>.o_ mem_ ¢ p m m .m a. m m»..mm mn.mw¢_ b>.mm_ mm.mm #m.mm ~m.mm mm.m_ omm_ .llJflflmmflflammfl. llldmmmmmmlll .lllllfll .I— _ _ F o m m nowwdwwmwwwmm nodpdvdndoonm UMMMMIM .mmn. + om~w¢ .HMN. + om Q41 lmq . ,Illll. :m. + ommq: mogozH away ma gmng “madam w “83383 :33 ‘ n - D , . . .o , . . . . - v _ . . _ . ' -4 - I - ..- . 7‘ A ~. .. .. . ; . . -..-J.c.-‘. .A— to- - v'v . -A-pnwaanfi-un ‘ .s ‘ .. rVQIO-n‘ rd- _ - -- ~ ‘ ' . 1 . ' O . . _, . . J - , . ' -.. o ., V: . ’J .- . -.-o -| 0%. v‘--‘ o 5-. vv -“HO‘ fi.‘ --<...o -. 01-» I o q a i"- ‘u. I ...... l_‘l .-.-‘ -ym'. -- Q ~ A. .1..- .. u v . I N . ' . 1 - o l " I ' b h, ~ ~ I --7 . -p . . . --, ¥ . -..-..- C» a I . .p. ,--.-‘ .,.~—--I ; v... ... n.o A. '1' y a. . o o m .w‘.‘ .' _ .....u .A. .~.- -- --I-r .. g. I... an '- is: ' . '. I . - ' .I r ' r ..-. ‘ . . V ' I o - f ‘ I. ' ’ ...-.-. . - .p ‘ .. . -.-.....I.... y .4‘».-». .. ~.--q . - I I a a .- .. 4. a... .. ..1 4 - --.‘»o -~<.¢.-......-o- . .y. .-...,...-....... - . .-- ... .... wm. ---r~ I-‘Ar‘ I.” l .A .~¢.- . .,- .,.. 1 5“... A-.n,.‘ .» .- o - a o . --.. .— -. .A.o..q—v‘t—-- up u n a s .v--I . can. .. . .“-\%." ‘-.~c . ... ... - . a -....g..—.«- .r'. . M' I " l "I ' I ‘ - - l . a ' ‘ II - .. - - . — .‘>§u0"v‘- -..-g o «n. .i- .,.... ¢ . a I- . ,gk. cup-w c . .. . ...- ... . - -.. . ¢ '. Ia ‘- ... -h ~I¢vnvt I l w-.~' — .—o -‘O 9. ¢-.. 48 Sx is the variance of x's Sy is the variance of y's The standardeerror of estimate was computed from the fOIlow- ing equation: - N - 1 r2 2 x — 1 - S 5y \jN_2( )y where ng is standard error of estimate S y is variance of the y's r is correlation coefficient N is number of observations This study was carried on for the annual water year from October 1 until September 30 and four seasons (spring, from April until July; summer, from July until October; fall, from October until January; and winter, from January until April). The annual precipitation and runoff relation study detail computations are illustrated here. In table 6 the first column is runoff in inches. In the second column the carry-over precipitation was computed by using .9 and .1 for U6 and U1, respectively; the third column has values of U6 = .8 and U, = .2; and in the fourth column Uo = .67 and U, = .33. The upper left superscripts are rank numbers and upper right superscripts are the squares of the differences between runoff rank and precipitation rank. The sum of the squares are at the foot of the respective columns. The fourth column has the least of the squares of the differences between runoff and precipitation rank. The U6 = .67 and U1 = .33 was chosen for annual carry-over co- efficients, and column four shows the annual carry-over precipitation Pc. The other three columns are the squares . .. . ' O. . . L on V C -. ... v n . s. _ h. ~ ‘ I n . ‘ u‘ w . 4 '- . . .v . I . I Q . x . z u n I . 4 a _ n 1 .-c u C a n o . ~ . . . I . p I c _- . l . . . v : o. I . . . 1 f . . . t. L y . r. . . . o t . . u h. .r. o . t ' ‘ A a ‘ I fix . . O . 4 . .. l I ‘- - O . l- v - ' ' I .¢ ‘ - - . . , . A e . . p, O! - . . 1 o a n ; ( C ..x . I 0. w .\ ,Juluus ...“. ..... .. ...: {W 49 of the'runoff, squares of the carry-over precipitation, and product of the runoff and precipitation. The rest of the computations are: i = 7.63 = 31.68 MI The coefficient of regression was bxy = 1.075; the equation of regression line was: y = 7.63 + 1.075 (x - 31.68) The standard deviation of precipitation was Sx = 2.92; the standard deviation of runoff was Sy = 3.56; the coefficient of correlation was r = .88; standard error of estimate was Syx = 1.730 IV. DISCUSSION OF RESULTS Flood Frequency Analysis The data obtained from the flood frequency curves I plotted from Hazen's (figure 2) and Gumbel's (figure 3) formulas are shown in table 7. ; Recurrence Gumbelfs Hazen's Interval in Formula - Formula - Years glow in c.;;§; Flow in cg£LgL 2 2250 2100 3 2850 2650 S 3500 3300 10 4320 4200 50 6160 6200 100 6900 7200 Table 7. Recurrence Interval of Floods This table, prepared in accordance with Gumbel's and Hazen's methods, shows that there is not a great difference in the magnitude of flood calculated by the two methods. During the forty-seven year period, the highest peak flood of about 5920 c.f.s. was recorded in 1947. Drought Frequency Analysis Data obtained from figure 4, five day annual droughts :frequency curve, are shown in table 8. 1".“ ,' ) Linn -' '_T.P§ 1 v ... .7 _1_ .' ,- r 1 . . I _., . . r . r «as ' "f” I" _ V. ‘65. ' 1' “ I. v '9 - r " .- (‘5 I' .’ ‘ s . ‘. .. 0 Y ' 1 1m. ’ -- . o ’ 1;. ' . ._ A‘. I r _ ' ' O .. 0 h . ‘ ' .4 . .1 ¢ -.s .. 51 Mean Five Day Recurrence Interval, Minimum Flow, ._____$E_!£§£§_____. ._J£L£hlh§m__. 2 15.5 3 11.5 8.5 10 6.0 50 3.0 100 2.2 Table 8. Recurrence Interval of Droughts on the Cedar River Mean Flow Frequency Analysis The annual and seasonal frequency curves of mean flow for forty-seven years are shown graphically in fugures 10a, 10b, and 10c. The annual variations are shown with bold lines and the seasonal variations are shown with hatching. 'b-‘I 'va - A... ...J. ‘ 52 wndgpam dd Ugandan use omen .Pmom a." .3553 ..uofinm .3000 on... so 26: go: dungeon and use: .3553 Ho sogmocdmumao .uo. 93mg 05 V5. mm. OmN m._N muo >50 ..xm 50> 30 .05.02 «03 - «03.) .0356 h e a» .303 seo> no.0; ream 29> To .oeuoz .83 .35 .> .036. w m .... o wndnopmm a.“ Addendum was 0:3 Peon a.“ Hmsgfiopam havoc on» no ..on qua: 63833 use use: H3534 no sodpooaauuodo .8. 85mg 53 NE omm mt no. no. _N_ em. mom mmo 1111-11-11 11- :53 AT l111|l--11|1111111‘ 1111 11 11 - . 1 1 -1111|11 .4] >5 . -. f 1 ////// V//// V/ e- - /. //;V/ ///, // . \\N\\\\\\.11R\k11 \w -1 1.1- \ S .253. .\\\\ km '1 1111 -1-1- 4% -1- - 111 1 1.. - - 7' \\\A \\ *0; \2- - -. 1 -_ 11-1-1 - _ 33> 11.71,. -1. 11 -111 17-- 1 W- -, 11-111 :3 .20 H .0.» all: -T1-mwm_1-_:Nvm-_ lfim-.-1-1owm_-T1mmm_ - mmm. Sm. .22; mmm. 08. H 3m. 39 m mmm. 52 0mm. mum. owns», , m -, . 1'1 - 11 :1; -- -7 1 1 w - 11 11 11-, 11-1l:11|1 .C .x V4 1. 11 -- .117- -1 - , - >hoo*>w / 2 , - 1i - 11-1. , . 1. - 1 - . ,/ 1 1.1171l1l11: / /V / fl/1///\V /\ VNWV/W/Ay/ r/// 7 1a 532 t \\ - 1111 \\\\\\\ .- . 4111111 -1 \x :...’1 - 1 \ \ no; 1111 ; 17. 1-11-1111 33> 1* 1111111171.. 1111 . .11 $3.36 «0. mm. _ mo TN m? we 2... .mm mao 54 wnanoaum ad Haaouaom use 03 room a." H.353 Sofia havoc 2.3 no eradh use: Addendum use qsoz.dnanq< no sodaaoauaondac .oop _ mm. mm. _ whN .m— hm. 0?. m m 0 >543 29> - New 7/4- y//: -1r/ //////l 7/ >Lo //// /// 7// $- \\\§ @ 9 \\ - .oEnoz r1 - 11 11 p 1 1 11.1 fill .03 .035 mom. Rum. -2 $3.28 see» .263 sec» .333 3.5 39> T/ ///// >:u .\\\\\ firm if a 111- 11 mm m [AWV \\\\\\\\\ .eELoz 33 _ 2- -§\l -- . VV - mwm a 1||1|11 $35 vm. $3 gum muo 55 Table 9 Classification of 47 Years of Surface Runoff dn..:Cedar River Basin 322;: Annual Fall Winter Spring Summer 1912 Very wet Very wet +Norma1 Ext. wet -Nomal 1913 Wet +Norma1 Very wet +Normal Dry 1914 «manual Normal +Nonnal +Normal Very wet 1915 -Normal Very dry Very wet Very dry -Nomal 1916 Very wet +Normal Very wet Wet +Normal 1917 +Normal Dry -Normal Wet Very wet 1918 Wet -Nomal Ext. wet Dry Very dry 1919 Wet Very wet -Nomal Wet -Normal 1 921 +Nonnal Wet +No rmal Dry Normal 1 922 Wet Wet +No rmal Wet +Norma1 1 923 Dry -No mal -Normal Dry Dry 1924 -Nonnal ~Normal -Nonnal +Normal -Normal 1925 Very dry Very dry Dry Very dry Dry 1 926 +Nonnal +No rmal -Normal +Normal +No rmal 1 927 -Normal Wet 3Nomal -Noma1 Dry 1928 +Nonnal Wet -Normal +Nomal Wet 1929 Very wet Wet +Norma1 Very wet Wet 1 930 +No rmal +Normal Wet -Normal Dry 1931 Very dry Dry Very dry Very dry Dry 1 932 Dry -Norma1 Dry -Normal +Norma1 1 933 +No rmal Wet -Normal +Norma1 Dry 1934 Very dry +Normal Very dry Dry Ext. dry 1935 Dry Very dry -Nonnal Dry -Noma1 1936 Very dry -Normal +Normal Dry Very dry f, J. ... I LL '6’! ‘_fl% V; 0 1 r c ..-v . a s _ C l ‘ '1 1 0‘ n t . u-a . D. . I 1 5‘ ' o l ' . 1 1 . - V . 1‘ . S" a. ’ - f . . 1 ' o ', .- V . . . ‘- ’ I . ' .' 1 . . 1r v .5: -. . - o . A n . . - q . . . .... . _ x . '3 ‘ ' "v a“ I" ' n ‘ 1 _, k . V O: - - - ‘ . 1‘ I . t. ’ ‘ 1 3.: ‘. ‘ - 1 . ... 1 _ . . ' _- . . .b. . - .. l . ' . , ‘ r. - .‘ , g . , .. .L’ 1 ‘” ‘ ‘ I ‘ u ‘- ' . ~. . , . r ‘ n C _ . - . - , . ‘ i. .‘t‘ ‘ ' "7- u ‘ . I“: o. ' .- . g. . . V v‘ " ( u. . 0 ft .. ' a u «7' 0' 'v w . . ‘0 ( t. I - ‘1 e .. . . . 1 . ' r 1. . r . o f , - .. . )I . .- I . ' l I «u ' 0 ‘ . . - I. . 1 to ~ 1 . ,x a , . . ‘ I.- f 0—- . ’ ~ ' I . o . n - ... u f . so ' ' 5‘ . I g' 1 u l 1. ‘ ‘ II‘ 1 Q ,_ n ' ‘ ‘ 1 a I s- , . l ,- c ' _. 1 . ' . .4 . '- O . . . . 1 g V O O 0 a0. \ ' l . J ' v , A r~ a. \ ' . , ‘ 1 ' -J . 1 n v . ‘ . ‘ u . . s - _ \ e l v ~ 1 t I .' . ‘ f \C ' I ‘ I Q‘ I _ ~ I -.. . 1 “. . c ‘3- M ‘ _ l 1 " _ . ’I 1' f" . 1 a . a . I . l . o l . ‘ 1 / 7 n 1 . Table 9 (continued) Water Year 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 Annual +Normal Normal Dry Very dry Dry -Nbrmal Very wet -Norma1 +Normal Normal Wet Very wet -Norma1 Very wet Wet Wet Dry Normal -Normal Wet -NOrma1 Dry Fall Dry Dry Very dry Very dry +Normal +Norma1 Very wet +Normal DRY . Wet Dr? Em. wet -Normal +Norma1 Wet Wet Normal Dry Wet -NOrma1 Dry Wet -Normal 56 Winter Very dry Wet Dry Very dry -Normal +Norma1 Wet -Normal Very dry Wet Very dry Wet +Norma1 Very wet Wet Wet Dry +Normal +Normal +Normal Dry DPT +Normal ..S.2.r_isa. Wet Dry eNormal Dry Dry Dryr Wet -Normal +Normal Dry Wet Wet Wet Wet +Normal +Normal ~Normal -Normal Dry Very wet Nbrmal Very dry Wet Summer eNormal Dry Very dry Wet Very dry -Normal Wet Dry +Normal Dry Very wet -Normal +Normal Wet -Normal -Normal Normal +Norma1 Dr? Wet Very wet Wet . u . . It | ~ 1 a . . . . . r0 . t \ v .1. .I d. O . I u . v ‘ A P I ' u c . p . o . ... . . . . A . .0 _ . I II - |’.~ . 1 .. . s I u I— Q .l 1 ‘ . . ..- . l I r . l . o I o. . - . - . . I1 . u I . I. O . I ‘ .. I g _ .....L- 11:- V an. . b ‘v -1. O 0"? II! a .- 4 6 m f . . .1 r t 1 .QI A I ‘ . . v A p. f . l . a I 57 The years are taken as water years starting from October 1 until September 30, the seasons are fall, winter, spring, and summer, respectively. This classification is also shown in table 9. The basic assumptions for this classification were discussed in the previous chapter, under methodology. This classification indicates that chronologically there was a ’ general frequency of ten years wet, six years near normal, F’I two years wet, thirteen years dry, ten years wet, six years ‘5 dry in this basin. This does not show a pattern of rotation. [9 The variations of the seasonal runoff were not regular. The ‘ runoff through the year was not well distributed. There was only one extremely wet fall season, in 1948. An extremely wet winter occurred in 1918, and in the spring season of 1912 it was also extremely wet. The summer of 1934 was extremely dry. The annual runoff for recent years seemed to be drier than normal, Whereas summer runoff was wet. Annual Precipitation and Runoff Relation The weighing formula for weighed mean annual precipitation for the basin was: P = .22PL + .32PM + .24PO + .22PJ The carry-over relation was: Pc = .67Po + .33P1 where .0 1I n.) a I It . v F . C. .\.. . a I. I I I . r . 1. a u .l. r n .I- — I \ ‘ _ 4 . . O . . . I - 9 0| I n L . A I I - r. - .- I Is . l O '1 .- .. _ . ... u 9 . u 1L I, . . F. «I» . 1. . I u I. f v - - .1 . . . . I. .. . . ... .x {15 pt I s . . ... a. O 1 a1... . Al. O. m . . T . ... -. 1 .. . O . I I oIV .. 1.. b . w I e f a g . s. 1 . s I -I .I ll .1, I .1. 11 i a .v . A. a a . .— 1- I . . 4 4| .... f . . . ... .. . _. O . v ‘ V I . o a n . I . - z. .. I. s g I .V O r 1. r . . . . v 1 1.. . _ - - ._... . . . . C I . . r .. . . . .l p u t. e\ 1 .1 o u _ . Mai-l. lava, In. an." .H :I . PWA _ PL = PM = P0 = PJ 2 PC = P0 = P1 = If we assume: 58 - Weighed average precipitation for the basin Precipitation in East Lansing Precipitation in Milford Precipitation in Owosso Precipitation in Jackson Carry-over precipitation for the basin Current year's weighed average precipitation Previous year's weighed average precipitation X as precipitation, and Y as runoff Mean of the runoff for 27 years was i = 7.63 inches Mean of the precipitation ferr27 years was i = 31.68 inches The coefficient of regression was bxy = 1.075 The equation of regression line was: 2:70 63 + 1.075 (x - 31.68) The standard deviation of precipitation was Sx = 2.92 inches The standard deviation of runoff was Sy = 3.58 inches The coefficient of correlation was r = .88 The standard error of estimate was Sxy = 1.73 inches The regression line is illustrated in figure 11. Fall (October through December) Precipitation and Runoff Relation The weighing formula for weighed average of fall precipitation for the basin was: Pw.A. '3 .2421, + .30 PM + .24 P0 + .22 P; a . . . I .. . f 1 . . . K. - J (. . w v . 4 I . I . . 1 . g. . . . - I 9 < - . 1 . ... 3v . . II I.‘ 1 . .- 4. o u . 1. f v -. I 4 v I . V . r _ . . . I. . . . o .u . . L l .. — I 1 . . ~11 . ..l. .1. . . I . r 1 _ - I i I . u ‘1. o . .1 1 _ . .. f e . 0 O A 1 Q . . a- . . ' _ l . . v 1 . v1 1 a a. . - 1. v . ~ .v I 1 o v I u o e \ 1 . I . I . a y . . I (I\ . p . or. . A I ... . 1. . II 1 I . s I l . . I b l :1. r '1 o. o . I n . I I 4 I. I A - ‘C o I ‘ ‘I _‘ . I .Io I I. _ -. 1 . O , .. . _. . 1 . . I. r t . 1 l A 4 I tl 1 I .1 o 1. . I. n r . . a l . 1 (I i . I u. I n 1 . . . . e 4 '- Qv . u .I . u 1 . .1 . It. . r . . _. 1 . . .. - 1. .. r . L . . r . .. v . I . n 1 . . . I . u I I . . . . . u I I r. 1 .I . o. 1 1 . 1 .. . 1 I .- ... I o . _ . . a 1. 1 C . ... . I. a I .. _ no I U I 59 L. mm. on hm on noguc. c_.co_.o:a_oo.m mm N» .n wN n~ 15 ‘_._. 4___4;- i __+___. __ -- ‘Ark’---_ 05 Rugkfflinlnchos N. v. Regression Line for Annual Precipitation and Runoff on the Cedar River Basin :Fienxrei"10 6O carry-over relation was: Pc = .6 Po + .4 P1 equation of the regression line was: I = 1.01 + .371 (x - 7.40) coefficient of correlation was r = .89 standard deviation of precipitation was Sx = 1.66 inches standard deviation of the runoff was Sy = .69 inch standard error of estimate was Sxy = .36 inch Winter (January through March) Precipitation and Runoff Relation The weighing formula for weighed average of winter precipitation for the basin was: The ngA. ‘ .24 PL + .25 PM + .30 Po + .20 PJ carry-over relation was: c equation of regression line was: I = 3.0 + .724 (x - 6.32) coefficient of correlation was r = .71 standard deviation of the precipitation was Sx = 1.56 inch standard deviation of the runoff was Sy = 1.57 inches standard error of estimate was Sxy = 1.11 inches Spring (April through June) Precipitation and Runoff Relation The weighing formula for weighed average of spring precipitation for the basin was: 1" I . I. . . w ,‘l . ' I , , _ . . I t a. p a, . . , ~ A... I... O, . W I: . I c . I O 1, . ,1 . 1.1 . I | I. n v . la . . . f . I A. O a . . I . a . _. . - ..I . u . I . I O .,I » .1 1.3!.“ In“ all «Eng IUD .1. w ... III..— 3 i E‘ I 'o.‘ ‘ .‘ I. .- I4 I. . .. r 1". \ -.. I, u. .. _ . I 13— ‘Ir r I a r . Al 0 g. C u . ‘ I. I r. . . Ir a. I v . A A. (t r x .. 61 quA. = .22 PL + .28 PM + .32 P0 + .18 PJ carry-over relation was: Po = P0 equation of regression line was: I = 2.97 + .463 (x - 10.35) coefficient of correlation was r = .76 standard deviation of the precipitation was Sx = 2.95 inch I standard deviation of the runoff was sy = 1.78 inches g“ standard error of estimate was Sxy = 1.17 inches ( [ Summer (July through September) Precipitation and Runoff Relation The weighing formula for weighed average of summer precipitation for the basin was: Pwer = .23 PL 1' .36 PM + .23 P0 4’ .18 PJ carry-over relation was: P = .8 PC + .2 P1 c equation of regression was: I = .57 + .141 (x - 8.89) coefficient of correlation was r = .70 standard deviation of the precipitation was 81 = 2.01 inches standard deviation of the runoff was Sy = .40 inch standard of error of estimate was Sxy = .26 inch This study shows that in the Cedar River Basin, 24 per cent of the annual precipitation turns out into the run- off. This percentage varies greatly in differentiieasons. The percentage of this value for fall season is only 14; . . . I..‘ 1‘ j.‘ . . .I" .1‘1 ... 1 I I .1 I ‘ . f D I '1 n O ‘ f‘ . , .I I 0' ‘ a I I I I l a .‘ 'u x 1., O I o 1. l .' ' i. ...h u . ... - 1 - Q . . I '3':- I. 00. I .. A" I - s F -- a.“ , ..-- f... , - I ,l . -. O .‘s . ' a -‘. I ' - r .. .r. I l’ _ - . V I .. _. f 5 fl r-. 62 for winter, because of the frozen ground, this percentage goes up as high as 48. During the spring season, because of the frequent heavy thundershowers and low evaporation, this valué’is 39 per cent; whereas, in the summertime the percentage is as low as 6.5. The runoff-precipitation analysis also illustrates that the carry-over precipitation amount should always be taken into account. This percentagevvalue of the carry-over for annual precipitation in this basin is about 33, which shows the ground water has a great influence in stream flow. For the fall and winter seasons, the percentage values of carry-over are about 40; whereas, this amount for summer is 20, and for spring is zero. innit... :t - II. 7 A . . ‘1... all!" liTiI . lllcl...|. . I .\ ., I . . . a w I v . t c, . . 0 u I i a . p I I» I . . I ‘ . o . . It 4 to II ... If I. I e n . l I C. t I . c, I. v. I. . K. A .- 1 . w . n a \ ._ I ’ urn . . .- a» I c I I u I I A I I r . . w L .. I . r I C I O . t a .D I; ‘ n I . . . "I 4 I .- . . . . 6. .c s v. _ a. n . u I r _ o C . o . I 1 4‘ I ‘6' ‘ V'. SUMMARY A study on the Cedar River Basin was made to find the frequency of the flood, drought, and mean flow; and to establish a relationship between precipitation and runoff. l Most of the data used in this study was obtained -u — .:. .‘ from official publications of the U. 8. Geological Survey and U. 5. Weather Bureau. Eight years of daily discharges ‘W from 1912-1918 were computed by the author. I A flood frequency analysis was derived by Hazen's and Gumbel's methods. The 100 year flood by Hazen's and Gumbel's procedure for East Lansing was 7200 and 6900 cubic feet per second, respectively. The 100 year drought ob- tained from mean five day of annual minimum flow was 2.2 cubic feet per second. The mean.flow frequency analysis did not show a regular pattern of cycles of wet and dry years. There was no extreme annual mean flow, but seasonal variations had a large range and there were several extremely wet and dry seasons. ' The precipitation and runoff study shows that 24 per cent of the annual precipitation of the basin goes to the Cedar River. To establish the precipitation-runoff relationship, the annual and four seasonal precipitation of the four 64 stations, East Lansing, Milford, Owosso, and Jackson were weighed to obtain a mean annual and mean seasonal precipi- tation for the basin. It was assumed that because of the contribution of the groundwater to the runoff, a time lag for precipitation should be taken into account. A percent- age of the previous years or previous seasodh precipitation was considered to secure annual or seasonal carry-over precipitation values. The regression line equations between the annual and four seasonal precipitation and runoff were established. The precipitation and runoff in the basin had a relatively high correlation. The correlation coefficient was 0.88 for the annual relationship, 0.89 for fall, 0.71 for winter, 0.76 for spring, and 0.70 for summer. 1 no . .4 “IIIIII I “E I .‘I‘ a... t. "4n w VI. CONCLUSION The frequency analysis shows that the flow of the river is usually highest during the late winter when a combi- nation of melting snow, rather heavy rains, and not yet thawed ground occasionally brings about serious floods. The lowest flows are found in the late summer prior to fall precipitation. The 50 and 100 year peak floods are about 6200 and 7200 cubic feet per second, respectively. The 50 and 100 year five days mean droughts are 3 and 2.2 cubic feet per second, respectively. The annual median flow of 195 cubic feet per second, has a two years recurrence interval. By using the results of the precipitation-runoff relationship, missing runoff data for a certain year or season on the Cedar River could be computed. The securing of missing data could be accomplished by the following procedure: 1. The mean precipitation for the basin, for a certain year or season which runoff data is needed, should be weighed by using the precipitation of the four stations, East Lansing, Milford, Owosso, and Jackson, in the proper equation. c I I _ ... I I. _ .I I“ I... I I o . . A . \ n ,I I O r. I I . r - r l I I I4 . C _ . _.l . o I‘ .. a I A. ... I _ 0 VI 1 I I . .I I O o I . r I I o . II. t . Q L I- I I . o r I. r I .. I . a . . , I . I - . C . . I .. . I )4 I . r. O I . u r . I .I l r J I. . II I. Is a. II I. ._ ( I G . I .. I ' I I .4 (J I J I L I I. .I I. .J I .. — ‘ b — .... t O. . ..I I a ,. I II. . I. . r.\ I . II. .I I. . [K a... I I . fa . . c _ . O I I. I I . II ~ I I‘D I II; J . -.I O I. I . I ~ I I I o r . . ' I I . I . . . I. I I I I I I. A I, ) 4 0| n . I v . II V I I I . _ I I L . .I I LII' .I . . o I .I O O i I. . u I I I I Os . ‘ I .. I. . I I » II c I I vI I I. I . f I I c .'I I I o . .. I I I I I . I {I I I I, t I. . , ... I O Q l 'v . O. I . C. p . I, I . . .I I I .I I I of. I I I Al \ o __ ,I. I I . I I I I .q ,. I _ . Ir! .. I.II I. _ i A \ O I I _ r n .. . cw I I I nl. J I I I. Ir . . a I‘ U 5 O , I . a - e I I I I I I . . .., II I I I I OK I I \. Ila Q . I I I . u . . .7. I . f... . I I . I . . . o .1’ l I .L . I: I I I I. I I. I r I ... I . v I '. t u I . . .. r 1. 4 I I a l . I. I‘ (3 .i O. .. I . I I n O . I J I I . . . 'I L I‘ L I a I 2. 66 The weighed mean precipitation or the basin should be put in the carry-over precipitation formula to obtain carry-over precipitation. If the carry-over precipitation value is substituted for x in the regression line equation, the value of y will be obtained for runoff. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) VII. REFERENCES Beard, L. R. (1943). Statistical Analysis ip,gzdrologp, Transactions American Society of Civil Engineers, V. 108, pp. 1110-1160. Brehmer, Morris L. (1956). ;g Biological and Chgpicgl \ Survey p£_the Red Cedar giver pp the Vicipity g; t Williamston, Michigan. M. S. Thesis, Department of H Fisheries and Wildlife, Michigan State university. a Garter, R. w. and M. R. Williams (1949). water L Resources and gxdrolpgp g; Southeastern Alabama, Geological Survey of Alabama Special Report 2. Chow, v. T. (1953). Ereguencz gpalzsis g; Hydrologic Data with Special Application pp_Rainfal; Intensities, University of Illinois Eng. Exp. Sta. Bul. Finch, Vermor C. (1957). Phxsicp; Elm entg of Qgpg_appz, 4th ed., McGraw Hill Book Co., New York, €41 pp. Foster, H. A. (1924). Theoretical Freguencp Cungs Egg Their Application pp_§pg;pggpgpg,Problems, Transactions American Society of Civil Engineers, V. 87, pp. 142-203. Foster, H. A. (1934). Duration Cu es, Transactions American Society of Civil Engineers, V. 99. Pp. 1213-1235. Gumbel, E. J. (1954). Statistical Theog§ 9;,ppppgppp, PrOCI Amer. SOC. of CiVil Engin.g V. 0, September, No. 439. 19 pp. Hardison, C. H. and E. B. Rice (1945). Natural water Lpsses from Selected Dppinage Basins in Alabama, Geological Survey of Alabama Bulletin 56. Hill, E. B. and R. G. MaWby (1954). szgg of E§__ggg in Michi an, Michigan State College Agri. Exp. Sta. SpeC. Enll. NO. 206, 80 pp. Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus (1949). Applied Hydrology, McGraw-Hill Book Co., New Ybrk. :0 9 out. A a - u- . a n - 4 . i u v.. . . . n O I. C‘ Q ', I .. _ u 1 I .‘~ a n . . - ..... -7 ~. I c o I — a O C u . . I - .. s < I V a .« .I . ‘ ‘. u l . I ' I . ; . --. «a .7 o . . .-,,. ' . 1 \ - v ,. . - I *‘ «9 o o‘ . . I ‘ J l 3 . - I L . h an. e _ D . as ...- . --- .1 I I - . C I -.-v q _ n ' > ’ 1’. 6 C I fl . . I . ,- I ‘Q ...-...- ,-, - ‘ 1 n. . . ' ._ .> . C ., ‘ _ . 1 ‘I . . ‘X I . . I o . C t - ’ Q . . . ‘ ’ ‘ , . v... O "-I . ‘ A g 0 _ n . . .. “~ 4'0 0‘. g. .— ' O . . .4 ‘ “ t -. ' " -. . ‘ fl ' l I . . . . u . . r . ' , T - ,‘ O O Q . u ‘ ’ . :- - -. ... ‘ . . I . a . . .... ... , . . ' 0‘ . j,- ‘a n . . . ' ~ - _ . . _ 1 ‘ I .. . . ' . u 1 ‘ 1 0 0 t . . . v 5... , . ...-g . - . .. . ' o ‘ I‘ ‘ I - . ... - ‘ C ' g Q C O I . . . . .- 0 A. . . . l. . ‘ b ' v V . Q '. . - . T .2‘ . . .. t .. O o , ‘ _ . I . 0-0‘ ‘1'. - ... . . ..., . . LI. '0. O O Q. ‘ C I '1 . - . . _ _ I 1 . ‘ a I / ' ’ . | ' -. 0 g , o A \ 68 (12) (1945). Oklahoma water, Oklahoma Planning on Research Board, Water Resources, U. S. Geological Survey. (13) Whiteside, E- P. (1959). 50118 9; M1 hi an, 14101118811 State University, Agri. Exp. Sta. Spec. Bull. No. 402, 52 pp. . A ...- ) “_."H—_——r_‘n ‘7 . I .\ ROOM USE ONLY 1111111111111111111111111 111111111111111 111111 23193010890998