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ABSTRACT

A SYSTEMATIC APPROACH FOR LINEAR PARAMETER VARYING
MODELING AND CONTROL OF INTERNAL COMBUSTION ENGINES

By

Andrew Philip White

In this dissertation, the modeling and control of time-varying automotive systems is

addressed with the use of linear-parameter varying (LPV) control. In practice, many au-

tomotive systems with time-varying physical processes are operated with gain-scheduled

controllers whose gains are manually calibrated through engine dynamometer and vehicle

field tests for the best performance as functions of system operational conditions. However,

this approach for gain scheduling is not only expensive and time consuming, but also does

not guarantee the stability and performance of the closed-loop system for all time-varying

parameters. LPV control techniques, on the other hand, can be used to design gain-scheduled

controllers with guaranteed closed-loop stability and performance. The goal of this disser-

tation is to create a framework to design gain-scheduled controllers using LPV techniques,

including, most importantly, the ability to select physically meaningful performance design

constraints. As part of this effort, LPV control methods have been applied to the air-to-fuel

ratio control of port-fuel-injection systems and the control of hydraulic and electric variable

valve timing systems.

Gain scheduling controllers designed using the LPV method have traditionally included

H∞ performance constraints. This is largely due to the fact that H∞ controllers can provide

robust stability margins that H2 controllers cannot provide. However, since the H∞ norm

is defined as the root-mean-square gain, or ℓ2 to ℓ2 gain, from the exogenous input to the

regulated output, controllers designed with onlyH∞ performance constraints are not suitable



for use when hard constraints on responses or actuator signals must be met.

When hard constraints on responses or actuator signals must be met, a controller with

a guaranteed ℓ2 to ℓ∞ gain is needed, which is a special type of H2 controller. When

H2 performance is used to design a controller, normally a quadratic cost function that

balances the output performance with the control input needed to achieve that performance is

considered. However, unlike the conventional H2 performance criterion, the system ℓ2 to ℓ∞

gain provides a hard constraint (ℓ∞) on the system output for a class of inputs with bounded

ℓ2 norm. Many practical control problems in automotive and aerospace systems impose hard

constraints (or ℓ∞ norm) on the system output. The existing mixed H2/H∞ LPV control

method cannot be used to solve this class of the control synthesis problems. To remedy this

gap, this dissertation provides a control synthesis method which provides a guaranteed ℓ2 to

ℓ∞ gain on the system output for LPV systems. The result is a gain-scheduled controller that

can provide hard constraints on multiple system outputs. To demonstrate the effectiveness

of this approach, both a numerical example and a simulation study with an electrical VVT

system are presented.
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Chapter 1

Introduction

1.1 Motivation

The goal of this research has been to establish a systematic procedure for the design of gain-

scheduling controllers. In industry, gain-scheduled controllers are normally developed with

long hours of ad-hoc tuning and calibration through engine dynamometer and vehicle field

tests. While these controllers are often used successfully in many practical applications, the

design process through which they are obtained is less than ideal. Not only is the process

expensive and time consuming, but more importantly it does not guarantee the stability and

performance of the closed-loop system for all possible time-varying parameters. Also, the

performance of the closed-loop system with gain-scheduling controllers designed in this way

is also dependent on the experience of person doing the calibration. In order to meet the

challenges posed by the strict requirements facing many industries these days, a systematic

process for designing gain-scheduled controllers with guaranteed performance and stability

for all time-varying parameters is needed.

One promising promising solution is the advanced control theory known as linear-parameter

varying (LPV) control [57, 44, 3, 2, 77, 81, 1, 23, 76, 10, 11, 12, 13]. LPV systems are

time-varying systems whose time-varying components consist of measurable parameters that

can vary over time. Over the years, many developments have been made in the area of

LPV control theory. In the beginning, LPV control theory mainly consisted of heuris-

1



tic approaches that were carried over from classical gain-scheduling control, and as such

these controllers provided no guaranteed stability, robustness, or performance. The au-

thors of [57] provided analysis conditions for these heuristic approaches that could provided

guaranteed stability with slowly varying parameters. Thankfully, more advanced methods

based on the convex optimization of linear matrix inequalities (LMI) have been developed

[44, 3, 2, 77, 81, 1, 23, 76, 10, 11, 12, 13].

Initially, the small gain theorem was applied to LPV plants with linear fractional transfor-

mational (LFT) dependence on the time-varying parameters [44, 3]. This approach allowed

the parameter variations to be complex (i.e. have both real and imaginary parts). How-

ever, since the time-varying parameters in LPV systems rarely have imaginary parts, this

was considered a major source of conservatism in gain-scheduling controller design using

this method. Due to this, another method was developed that used a single or parameter-

dependent quadratic Lyapunov function in the analysis and control design for LPV plants

[2]. However, since this method allowed for arbitrarily fast parameter variation, it can pro-

duce conservative results with slowly varying parameters. To handle this problem, known

bounds on the rate of parameter variation were incorporated into the analysis conditions by

[77, 81, 1]. However, the method used by [77, 81, 1] formulates the control synthesis prob-

lem as semi-infinite convex optimization with parameter-dependent LMIs, which requires

that the gridding of the parameter space to provide a finite convex optimization. A unified

scheme was developed in [76] that joins both the small gain theorem and Lyapunov func-

tion approaches in an effort to provide a flexible approach for control engineers to trade-off

between performance improvement, controller complexity, and design effort. However, to

incorporate known bounds on the rate of parameter variation, the method developed in [76]

still requires gridding of the parameter space, which increases the complexity of implement-
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ing the controller in practice. An alternative method which does not require gridding of

the parameter space was provided by [23, 10, 11, 12, 13] for affine-parameter dependent

Lyapunov functions.

Although there has been a considerable amount of research on the design of gain-

scheduling controllers via LPV control theory, there is still room for improvement. All of the

LPV methods previously mentioned specify the performance of the LPV system as either

H∞ or H2 performance. The difficulty that arises with these methods is that real system

performance is not easily related to the H∞ and H2 performance criteria. Furthermore, the

H∞ and H2 performance criteria, as will be discussed in more detail in Chapter 3, cannot

provide hard constraints on system outputs. As a result, engineers in industry could have a

hard time utilizing the LPV methods in practical applications.

The open question is, how do we bridge the gap between practices used in industry and

the advanced practices used in academia? The answer is to develop LPV controller synthesis

methods that allow the use of physically meaningful design constraints. By considering the ℓ2

to ℓ∞ gain performance of the closed-loop system, physically meaningful performance design

constraints, that can satisfy hard bounds, can be defined. This addition to the current LPV

control theory is expected to be very useful engineers working on practical applications in

industry.

1.2 Research Overview

1.2.1 Providing hard constraints for gain-scheduling controllers

This research considers the optimal control of polytopic, discrete-time linear parameter vary-

ing (LPV) systems with a guaranteed ℓ2 to ℓ∞ gain. Additionally, to guarantee robust
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stability of the closed-loop system under parameter variations, H∞ performance criterion

is also considered as well. Controllers with a guaranteed ℓ2 to ℓ∞ gain and a guaranteed

H∞ performance (ℓ2 to ℓ2 gain) are mixed H2/H∞ controllers. Normally, H2 controllers are

obtained by considering a quadratic cost function that balances the output performance with

the control input needed to achieve that performance. However, to obtain a controller with

a guaranteed ℓ2 to ℓ∞ gain (closely related to the physical performance constraint), the cost

function used in the H2 control synthesis minimizes the control input subject to maximal

singular-value performance constraints on the output. This problem can be efficiently solved

by a convex optimization with linear matrix inequality (LMI) constraints. The contribution

of this research is the characterization of the control synthesis LMIs for both gain-scheduled

state-feedback and dynamic output-feedback control used to obtain an LPV controller with

a guaranteed ℓ2 to ℓ∞ gain and H∞ performance. Numerical examples are presented to

demonstrate the effectiveness of the proposed LPV methods.

1.2.2 Application of gain-scheduling control

The methods reviewed in Chapter 2 and developed in Chapter 3 have been applied to real

control problems encountered in the control of internal combustion engines. Specifically, the

methods from Chapter 2 are used to design the gain-scheduling controller for the air-to-fuel

ratio control of port-fuel-injection processes presented in Chapter 4. The methods from

Chapter 2 where also used to develop of the observer-based mixed H2/H∞ output-feedback

controller for the hydraulic variable valve timing actuator in Chapter 5. The guaranteed

ℓ2− ℓ∞ gain controller synthesis techniques provided in Chapter 3 are applied to the control

of the electric variable valve timing actuator in Chapter 6.
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1.2.2.1 Air-to-fuel ratio control for port-fuel-injection processes

An event-based sampled discrete-time linear system representing a port-fuel-injection process

based on wall-wetting dynamics is obtained and formulated as a linear parameter varying

(LPV) system. The system parameters used in the engine fuel system model are engine speed,

temperature, and load. These system parameters can be measured in real-time through

physical or virtual sensors. A gain-scheduling controller for the obtained LPV system is then

designed based on the numerically efficient convex optimization or linear matrix inequality

(LMI) technique. To demonstrate the effectiveness of the proposed scheme, both simulation

and hardware-in-the-loop (HIL) simulation results are presented. The HIL simulations not

only show that the designed gain-scheduling controller is effective on a complex mixed mean-

value and crank-based engine model [79], but it also demonstrates feasibility of implementing

the designed gain-scheduling controller on actual hardware that could be used to control an

engine.

1.2.2.2 Control of variable valve timing actuators

Two different variable valve timing actuators are considered in this dissertation. The first

is the hydraulic cam phaser, which uses pressurized engine oil to phase the cam shaft. The

second is an electric variable valve timing system that uses an electric motor connected to a

planetary gear set to phase the cam shaft.

For the hydraulic cam phasing actuator, a family of linear models previously obtained

from a series of closed-loop system identification tests [48, 52] is used to design a dynamic

gain-scheduling controller. Using engine speed and oil pressure as the system parameters,

the family of linear models was translated into a linear parameter varying (LPV) system.

An observer-based gain-scheduling controller for the LPV system is then designed based on
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the linear matrix inequality (LMI) technique. A discussion on weighting function selection

for mixed H2/H∞ controller synthesis is presented, with an emphasis placed on examining

various frequency responses of the system. Test bench results show the effectiveness of the

proposed scheme.

For the electric variable valve timing system, a discrete-time, linear parameter-varying

(LPV) system representing the electric variable valve timing (VVT) system is developed

with engine oil viscosity as the time-varying parameter. A gain-scheduled, dynamic, output-

feedback controller is then designed such that the closed-loop system will have a guaranteed

ℓ2 to ℓ∞ gain. This is done by first constructing a set of linear matrix inequality constraints

and then performing a convex optimization to obtain the controller matrices which satisfy the

constraints. Results from a simulation study demonstrate the effectiveness of the proposed

scheme.

1.3 Organization

This dissertation is organized as follows: a review of existing LPV control synthesis tech-

niques and the modeling required to utilize them is presented in Chapter 2. These techniques

are extended in Chapter 3 such that hard constraints on system outputs can be obtained

with the guaranteed ℓ2 to ℓ∞ gain control problem. In Chapter 4 a gain-scheduled air-to-fuel

ratio controller for port-fuel-injection engines is developed using the wall-wetting parameters

and engine speed as the time-varying parameters for the LPV control synthesis. Results for

both a simulation study and a hardware-in-the loop simulation are presented. In Chapter 5,

a family of LTI systems, representing a variable valve timing actuator, obtained through

closed-loop system identification [48, 52] are converted into an LPV model. LPV control
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synthesis is then applied to the LPV model to obtain a gain-scheduling controller for the

variable valve timing actuator. The obtained controller is then validated on the variable

valve timing actuator used for the system identification. In Chapter 6, a gain-scheduling

controller with a guaranteed ℓ2 to ℓ∞ gain is designed to provide hard constraints on the

system output of an electrical variable valve timing actuator. Chapter 7 concludes this

dissertation by summarizing the results and providing directions for future research.
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Chapter 2

Linear Parameter-Varying Modeling

and Control Synthesis Methods

This chapter is split into the following two parts: modeling of LPV systems and control

synthesis methods for LPV systems.

2.1 Modeling of LPV systems

Throughout this dissertation, the control synthesis methods used rely on the existence of

an LPV model with a polytopic parameter dependence. Unfortunately, this is not the most

intuitive form that an LPVmodel can take. Many physical systems have parameter variations

that can be easily represented with LFTs. For this reason, we will demonstrate how to

convert an LPV model with LFT parameter dependence into an LPV model with a polytopic

parameter dependence.

Consider the following open-loop, discrete-time LPV system with LFT parameter depen-
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dency:




x(k + 1)

l(k)

z(k)

y(k)




=




A Bp Bw Bu

Cl Dlp Dlw Dlu

Cz Dzp Dzw Dzu

Cy Dyp Dyw Dyu







x(k)

p(k)

w(k)

u(k)




p(k) = Θ(k)l(k)

(2.1)

where x(k) is the state at time k, w(k) is the exogenous input, and u(k) is the control

input. The vectors z(k) and y(k) are the performance output and the measurement for

control. Also, p(k) and l(k) are the pseudo-input and pseudo-output connected by Θ(k).

The time-varying parameter Θ(k) follows the structure

Θ(k) ∈ Θ =
{
diag(θ1In1, θ2In2 , · · · , θN InN )

}
. (2.2)

To emphasize the fact that there exists an LFT with respect to the time-varying pa-

rameter matrix Θ(k), the state-space matrices can be re-arranged into the following upper

LFT:




l(k)

x(k + 1)

z(k)

y(k)




=




Dlp Cl Dlw Dlu

Bp A Bw Bu

Dzp Cz Dzw Dzu

Dyp Cy Dyw Dyu




︸ ︷︷ ︸
=:M




p(k)

x(k)

w(k)

u(k)




p(k) = Θ(k)l(k).

(2.3)
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The time-varying matrix can be Θ(k) can be absorbed back into the state space matrices

such that the state space matrices would be given by




x(k + 1)

z(k)

y(k)



=




A(Θ(k)) Bw(Θ(k)) Bu(Θ(k))

Cz(Θ(k)) Dzw(Θ(k)) Dzu(Θ(k))

Cy(Θ(k)) Dyw(Θ(k)) Dyu(Θ(k))




︸ ︷︷ ︸
=:H(Θ)




x(k)

w(k)

u(k)




(2.4)

where

H(Θ) := Fu(M,Θ)

=




A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu



+




Bp

Dzp

Dyp



Θ(k)

(
I −DlpΘ(k)

)−1
[
Cl Dlw Dlu

]
.

(2.5)

It is clear from (2.5) that when the matrix Dlp is non-zero, then the system matrices are not

affine functions, i.e., a linear combination of the time-varying parameters plus a constant

translation. Since, as previously mentioned, all control synthesis methods covered in this

book rely on an LPV model with a polytopic parameter dependence, the system matrices

must be affine functions of the time-varying parameters. If the matrix Dlp is non-zero, then

some approximation must be made. If the parameter variation is “small”, then a first-order

Taylor series approximation can be performed.
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2.1.1 First-order Taylor series approximation of LPV systems

Using the first-order Taylor series expansion at Θ = Θ̄, the LPV system can be approximated

as

Ĥ(Θ(k)) = H(Θ̄) +
N∑

i=1

[
▽H(Θ̄)

]
i (θi(k)− θ̄i) (2.6)

where θi(k), for i = 1, . . . , N are the individual parameters in Θ(k), and
[
▽H(Θ̄)

]
i is the

partial derivative of the LFT system H(Θ) with respect to θi solved at Θ̄. The ith partial

derivative of the the upper LFT system H(Θ) is computed by [39]

[▽H(Θ)]i = M21[I −ΘM11]
−1Ei[I −M11Θ]−1M12, (2.7)

where

M11 = Dlp, M12 =

[
Cl Dlw Dlu

]
, M21 =




Bp

Dzp

Dyp



, (2.8)

and the matrices Ei are defined such that

Θ(k) =
N∑

i=1

θi(k)Ei. (2.9)

After performing this first-order Taylor series approximation, then the approximated

system Ĥ(Θ(k)) will have affine parameter dependence with respect to Θ(k). As shown in

the next section, a polytopic LPV model can be obtained from an LPV system with affine

parameter dependence.
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Figure 2.1: Examples of possible parameter space polytopes.

2.1.2 Polytopic linear time-varying system with Barycentric co-

ordinates

The LPV system with affine parameter dependence can be represented by the following

polytopic linear time-varying system




x(k + 1)

z(k)

y(k)



=




A(λ(k)) Bw(λ(k)) Bu(λ(k))

Cz(λ(k)) Dzw(λ(k)) Dzu(λ(k))

Cy(λ(k)) Dyw(λ(k)) Dyu(λ(k))




︸ ︷︷ ︸
=:H(λ)




x(k)

w(k)

u(k)




(2.10)
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where the system matrices A(λ(k)), Bw(λ(k)), Bu(λ(k)), Cz(λ(k)), Cy(λ(k)), Dzw(λ(k)),

Dzu(λ(k)), Dyw(λ(k)), and Dyu(λ(k)) belong to the polytope

D =

{
(A,Bw, Bu, Cz, Cy, Dzw, Dzu, Dyw, Dyu)(λk) :

(A,Bw, Bu, Cz, Cy, Dzw, Dzu, Dyw, Dyu)(λk)

=
N∑

i=1

λi(k)(A,Bw, Bu, Cz, Cy, Dzw, Dzu, Dyw, Dyu)i, λk ∈ ΛN

}
,

(2.11)

with (A,Bw, Bu, Cz, Cy, Dzw, Dzu, Dyw, Dyu)i the vertices of the polytope and λk = λ(k) ∈

RN the vector of time-varying barycentric coordinates lying in the unit simplex

ΛN =



ζ ∈ R

N :
N∑

i=1

ζi = 1, ζi ≥ 0, i = 1, · · · , N



 . (2.12)

The vertices of the polytope D are obtained by solving the system matrices of Ĥ(Θ) at

each of the vertices Vi for i = 1, . . . , N . Then each of the state space matrices in H(λk) are

computed as the convex combination of the vertice systems of this polytope, such that, for

example, the state matrix would be computed by

A(λk) =

N∑

i=1

λi(k)Ai. (2.13)

Each of the other matrices in H(λk) are computed in the same way. The convex combination

coefficients {λi(Θ)} for a given Θ and set of vertices {Vi} are also known as the barycentric

coordinates. The barycentric coordinate function is defined in [64] as

λi(Θ) =
Υi(Θ)∑
iΥi(Θ)

, (2.14)
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where Υi(Θ) is the weight function of vertex i for a point Θ inside of the convex polytope.

The weight function is

Υi(Θ) =
vol(Vi)

Πj∈ind(Vi)(nj · (Vi −Θ))
, (2.15)

where vol(Vi) is the volume of the parallelepided span by the normals to the facets incident

on vertex i, i.e., Vi . {nj} is the collection of normal vectors to the facets incident on vertex i.

The volume of a parallelepided can be found as

vol(Vi) = |det(nind)| . (2.16)

where nind is a matrix whose rows are the vectors nj where j ∈ ind(Vi).

Since the polytopic LTV system have been defined, we will now focus our attention in

the next section on the performance specifications for the polytopic LTV system.

2.2 Performance of discrete-time polytopic LPV sys-

tems

Consider the H2 or H∞ weighted closed-loop discrete-time LPV system

H :=





x(k + 1) = A(λk)x(k) + Bw(λk)w(k), x(0) = 0

z(k) = Cz(λk)x(k) +Dw(λk)w(k)

(2.17)

where x(k) ∈ Rn is the state, w(k) ∈ Rr is the exogenous input, and z(k) ∈ Rp is the

performance output. The system matrices A(λk), Bw(λk), Cz(λk), Dw(λk), belong to the

polytope similar to D in (2.11).
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The H∞ performance of the system (2.17) from w(k) to z(k) is defined by the quantity

‖H‖∞ = sup
‖w(k)‖2 6=0

‖z(k)‖2
‖w(k)‖2

(2.18)

with w(k) ∈ ℓr2 and z(k) ∈ ℓ
p
2. By using the bounded real lemma, an upper bound for the

H∞ performance is characterized by the following lemma [12].

Lemma 1. Consider the system H given by (2.17). If there exist bounded matrices G(λk)

and P (λk) = P (λk)
T > 0 for all λk ∈ ΛN such that




P (λk+1) A(λk)G(λk) Bw(λk) 0

G(λk)
TA(λk)

T G(λk) +G(λk)
T − P (λk) 0 G(λk)

TCz(λk)T

Bw(λk)
T 0 ηI Dw(λk)

T

0 Cz(λk)G(λk) Dw(λk) ηI




> 0 (2.19)

then the system H is exponentially stable and

‖H‖∞ ≤ inf
P (λk),G(λk),η

η.

This lemma is an extension of a standard result provided by [18, 17].

The infinite horizon H2 performance of the system (2.17) from w(k) to z(k) is defined as

‖H‖22 = lim
T→∞

sup E





1

T

T∑

k=0

z(k)T z(k)



 (2.20)

where w(k) is a zero-mean white noise Gaussian process with identity covariance, E denotes

the expectation operator, and the positive integer T denotes the time horizon. An upper
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bound for the H2 performance is characterized by the following lemma [12].

Lemma 2. Consider the system H given by (2.17). If there exists bounded matrices G(λk),

P (λk) = P (λk)
T > 0, and W (λk) = W (λk)

T for all λk ∈ ΛN such that




P (λk+1) A(λk)G(λk) Bw(λk)

G(λk)
TA(λk)

T G(λk) +G(λk)
T − P (λk) 0

Bw(λk)
T 0 I



> 0 (2.21)

and 


W (λk)−Dw(λk)Dw(λk)
T Cz(λk)G(λk)

G(λk)
TCz(λk)T G(λk) +G(λk)

T − P (λk)


 > 0 (2.22)

then the system H is exponentially stable and its H2 performance is bounded by ν given by

ν2 = inf
P (λk),G(λk),W (λk)

sup
λk∈ΛN

trace {W (λk)}

such that ‖H‖2 ≤ ν.

The proof for this lemma can be found in [12].

Note that the parameter dependent LMI conditions in Lemmas 1 and 2 must be evaluated

for all λk in the unit simplex ΛN . This leads to an infinite dimensional problem. By imposing

an affine parameter-dependent structure on the Lyapunov matrix P (λk), such that

P (λk) =
N∑

i=1

λi(k)Pi, i = 1, . . . , N, (2.23)

a finite set of LMIs in terms of the vertices of the polytope D can be obtained.
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To reduce conservatism, the parameter variation rate

∆λi(k) = λi(k + 1)− λi(k), i = 1, . . . , N (2.24)

is assumed to be limited. Two limits have been considered in the literature. The first rate

limit considered in the literature [40, 10, 11] is given by

−bλi(k) ≤ ∆λi(k) ≤ b (1− λi(k)) , i = 1, . . . , N, (2.25)

with b ∈ [0, 1]. With this parameter variation rate bound and the affine parameter-dependent

structure in (2.23), the H∞ performance criteria in Lemma 1 can be transformed into a finite

number of LMIs, as shown in the next Lemma [10].

Lemma 3. The system H (2.17) has an H∞ performance bounded by η if there exist matrices

Gi ∈ Rn×n and symmetric matrices Pi ∈ Rn×n such that




(1− b)Pi + bPℓ ⋆ ⋆ ⋆

GT
i AT

i Gi +GT
i − Pi ⋆ ⋆

BT
w,i 0 ηI ⋆

0 Cz,iGi Dw,i ηI




> 0 (2.26)
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Figure 2.2: Fastest possible parameter transition between the extreme conditions with N = 2
and b = 0.5 when the rate limit given by (2.25) is in effect.

holds for i = 1, . . . , N and ℓ = 1, . . . , N and




(1− b)Pi + (1− b)Pj + 2bPℓ ⋆ ⋆ ⋆

GT
j AT

i +GT
i AT

j Gi +GT
i +Gj +GT

j − Pi − Pj ⋆

BT
w,i + BT

w,j 0 2ηI ⋆

0 Cz,iGj + Cz,jGi Dw,i +Dw,j 2ηI




> 0

(2.27)

holds for ℓ = 1, . . . , N , i = 1, . . . , N − 1, and j = i+ 1, . . . , N .

A proof for this lemma can be found in [10].

While the rate limit (2.25) can be useful, it is, however, not very realistic. To see this,

one only needs to consider the example parameter variation with N = 2 and b = 0.5 as

displayed in Fig. 2.2. In this example, the time-varying parameter starts at one extreme and

moves the other extreme as quickly as the parameter variation rate limit (2.25) allows. It is

clear that the maximum parameter variation rate is dependent on the current value of the
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parameters with the rate limit given by (2.25).

A more realistic parameter variation limit that is not dependent on the current value of

the time-varying parameter is considered in [41, 12]. This limit is given by

−b ≤ ∆λi(k) ≤ b, i = 1, . . . , N, (2.28)

with b ∈ [0, 1]. When using this parameter variation rate, the uncertainty domain, where

the vector (λ(k),∆λ(k))T ∈ R2N takes values, is modeled by the compact set

Γb =

{
δ ∈ R

2N : δ ∈ co{g1, . . . , gM}, gj =
(

fj

hj

)
, f j ∈ R

N , hj ∈ R
N ,

N∑

i=1

f
j
i = 1 with f

j
i ≥ 0, i = 1, . . . , N,

N∑

i=1

h
j
i = 0, j = 1, . . . ,M

} (2.29)

defined as the convex combination of the vectors gj, for j = 1, . . . ,M, given a priori. This

definition of Γb ensures that λ(k) ∈ ΛN and that

N∑

i=1

∆λi(k) = 0 (2.30)

holds for all k ≥ 0. For a given bound b, the columns of Γb can be generated as the columns

of a matrix V as follows [12] (in MATLAB code)

V = zeros(2*N,N^2+(N-1)^2+(N-1));

for i = 1:1:N

V(i,(i-1)*N+1) = 1;

ind = 1;

for j = 1:1:N

19



if j ISNOT i

V(i,(i-1)*N+ind+1) = 1;

V(N+i,(i-1)*N+ind+1) = -b;

V(N+j,(i-1)*N+ind+1) = b;

V(i,N^2+(i-1)*(N-1)+ind) = b;

V(j,N^2+(i-1)*(N-1)+ind) = 1-b;

V(N+i,N^2+(i-1)*(N-1)+ind) = -b;

V(N+j,N^2+(i-1)*(N-1)+ind) = b;

ind = ind + 1;

end

end

end

f = V(1:N,:);

h = V(N+1:2*N,:);

With the uncertainty set Γb, each λi(k) and ∆λi(k) for i = 1, 2, . . . , N are given by

λi(k) =
M∑

j=1

f
j
i γj(k) and ∆λi(k) =

M∑

j=1

h
j
iγj(k) (2.31)
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such that the affine representation of P (λk) is given by

P (λk) =
N∑

i=1

λi(k)Pi =
N∑

i=1




M∑

j=1

f
j
i γj(k)


Pi

=
M∑

j=1

γj(k)




N∑

i=1

f
j
i Pi


 =

M∑

j=1

γj(k)P̃j = P̃ (γ(k))

(2.32)

with P̃j =
∑N

i=1 f
j
i Pi as shown in [12]. Using the same structure for λk, the system matrices

in H (2.17) are also converted to the new representation in terms of γ(k) ∈ ΛM , such that

A(λk) = Ã(γ(k)) =
M∑

j=1

γj(k)Ãj (2.33)

with Ãj =
∑N

i=1 f
j
i Ai. All other matrices in H are converted the same way. It is also shown

in [12], that by combining (2.31) with the fact that λk+1 = λk +∆λk,

P (λk+1) =
N∑

i=1

(λi(k) + ∆λi(k))Pi =
N∑

i=1




M∑

j=1

(
f
j
i + h

j
i

)
γj(k)


Pi

=

M∑

j=1

γj(k)




N∑

i=1

(
f
j
i + h

j
i

)
Pi


 =

M∑

j=1

γj(k)P̂j = P̂ (γ(k))

(2.34)

with P̂j =
∑N

i=1

(
f
j
i + h

j
i

)
Pi. The authors of [12] note that due to these representations of

P (λk) and P (λk+1), the LMIs of Lemma 1 and Lemma 2 can be rewritten with a dependency

on γ(k). They also note that a convenient parameterization of the slack variable G(λk) is

given by

G(λk) = G(γ(k)) =
M∑

j=1

γj(k)Gj , γ(k) ∈ ΛM . (2.35)

Using these parameterizations, the next two lemmas present a finite-dimensional set of LMIs

21



that guarantee the LMI conditions of Lemmas 1 and 2 [12].

Lemma 4. Consider the system H, given by (2.17). Assume that the vectors f j and hj of

Γb are given. If there exist, for j = 1, . . . ,M, matrices Gj ∈ Rn×n and, for i = 1, . . . , N,

symmetric positive-definite matrices Pi ∈ Rn×n such that




∑N
i=1

(
f
j
i + h

j
i

)
Pi ⋆ ⋆ ⋆

GT
j ÃT

j Gj +GT
j −

∑N
i=1 f

j
i Pi ⋆ ⋆

B̃T
w,j 0 ηI ⋆

0 C̃z,jGj D̃w,j ηI




> 0 (2.36)

for j = 1, . . . ,M and




∑N
i=1

(
f
j
i + f ℓi + h

j
i + hℓi

)
Pi ⋆ ⋆ ⋆

GT
j ÃT

ℓ +GT
ℓ ÃT

j Θ22,jℓ ⋆ ⋆

B̃T
w,j + B̃T

w,ℓ 0 2ηI ⋆

0 C̃z,jGℓ + C̃z,ℓGj D̃w,j + D̃w,ℓ 2ηI




> 0 (2.37)

with

Θ22,jℓ = Gj +GT
j +Gℓ +GT

ℓ −
N∑

i=1

(
f
j
i + f ℓi

)
Pi

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M, then the system H is exponentially stable and

‖H‖∞ ≤ min
Pi,Gj,η

η.

The proof for this lemma can be found in [12].

Lemma 5. Consider the system H, given by (2.17). Assume that the vectors f j and hj of
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Γb are given. If there exist, for j = 1, . . . ,M, matrices Gj ∈ R
n×n and, for i = 1, . . . , N,

symmetric positive-definite matrices Pi ∈ Rn×n and Wi ∈ Rp×p such that




∑N
i=1

(
f
j
i + h

j
i

)
Pi ⋆ ⋆

GT
j ÃT

j Gj +GT
j −

∑N
i=1 f

j
i Pi ⋆

B̃T
w,j 0 I



> 0 (2.38)

for j = 1, . . . ,M,




∑N
i=1

(
f
j
i + f ℓi + h

j
i + hℓi

)
Pi ⋆ ⋆

GT
j ÃT

ℓ +GT
ℓ ÃT

j ĜP jℓ ⋆

B̃T
w,j + B̃T

w,ℓ 0 2I



> 0 (2.39)

where

ĜP jℓ = Gj +GT
j +Gℓ +GT

ℓ −
N∑

i=1

(
f
j
i + f ℓi

)
Pi

for j = 1, . . . ,M − 1, and ℓ = j + 1, . . . ,M,



∑N

i=1 f
j
i Wi − D̃w,jD̃T

w,j ⋆

GT
j C̃Tz,j Gj +GT

j −
∑N

i=1 f
j
i Pi


 > 0 (2.40)

for j = 1, . . . ,M,



∑N

i=1

(
f
j
i + f ℓi

)
Wi − D̃w,jD̃T

w,ℓ + D̃w,ℓD̃T
w,j ⋆

GT
j C̃Tz,ℓ +GT

ℓ C̃Tz,j ĜP jℓ


 > 0 (2.41)

for j = 1, . . . ,M − 1, and ℓ = j + 1, . . . ,M, then the system H is exponentially stable and
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its H2 performance is bound by ν given by

ν2 = min
Pi,Gj ,Wi

max
i

trace {Wi} .

The proof for this lemma can be found in [12].

2.3 Control Synthesis Methods for LPV systems

2.3.1 Static Output Feedback Control Synthesis

In this section, the gain-scheduled static output feedback controller synthesis results from

[10] and [12] are reviewed.

Consider the following H∞ and H2 weighted, discrete-time polytopic time-varying sys-

tems H∞ and H2:

H∞ :=





x(k + 1) = A(λk)x(k) +B∞w(λk)w∞(k) +Bu(λk)u(k)

z∞(k) = C∞z(λk)x(k) +D∞w(λk)w∞(k) +D∞u(λk)u(k)

y(k) = Cyx(k), Cy =
[
Iq, 0

]

(2.42)

H2 :=





x(k + 1) = A(λk)x(k) +B2w(λk)w2(k) +Bu(λk)u(k)

z2(k) = C2z(λk)x(k) +D2w(λk)w2(k) +D2u(λk)u(k)

y(k) = Cyx(k), Cy =
[
Iq, 0

]

(2.43)

where x(k) ∈ Rn is the state, w∞(k) ∈ Rr∞ and w2(k) ∈ Rr2 are the H∞ and H2 exogenous

inputs, z∞(k) ∈ Rp∞ and z2(k) ∈ Rp2 are the H∞ andH2 performance outputs, and y ∈ Rq

is the measurement for control. The system matrices of H∞ and H2 belong to a polytope
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similar to the one given in (2.11).

2.3.2 H∞ Control Synthesis

In [10], gain-scheduled static output feedback synthesis LMIs that stabilize the system H∞

with a guaranteed H∞ performance bound are presented. The rate of variation of the

parameters (2.24) is assumed to be limited by (2.25).

Extending the analysis result presented in Lemma 3, the authors of [10] characterize a

finite set of LMI conditions for the synthesis of a gain scheduled H∞ static output feedback

controller for the system (2.42).

Lemma 6. Consider the system H∞, given by (2.42). If there exist matrices Gi,1 ∈ Rq×q,

Gi,2 ∈ Rn−q,q, Gi,3 ∈ Rn−q×n−q, Zi ∈ Rm×q, and symmetric matrices Pi ∈ Rn×n such

that 


(1− b)Pi + bPℓ ⋆ ⋆ ⋆

GT
i A

T
i + ZT

i B
T
u,i Gi +GT

i − Pi ⋆ ⋆

BT
∞w,i 0 ηI ⋆

0 C∞z,iGi +D∞u,iZi D∞w,i ηI




> 0 (2.44)

hold for i = 1, . . . , N and ℓ = 1, . . . , N and




(1− b)Pi + (1− b)Pj + 2bPℓ ⋆ ⋆ ⋆

Θ21,ij ĜP ij ⋆ ⋆

BT
∞w,i +BT

∞w,j 0 2ηI ⋆

0 Θ42,ij D∞w,i +D∞w,j 2ηI




> 0 (2.45)
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where

ĜP ij = Gi +GT
i +Gj +GT

j − Pi − Pj

with

Θ21,ij = GT
j A

T
i +GT

i A
T
j + ZT

j B
T
u,i + ZT

i B
T
u,j

Θ42,ij = C∞z,iGj + C∞z,jGi +D∞u,iZj +D∞u,jZi

hold for ℓ = 1, . . . , N , i = 1, . . . , N − 1, and j = i+ 1, . . . , N , with

Gi =




Gi,1 0

Gi,2 Gi,3


 and Zi =

[
Zi,1 0

]
,

then the parameter-dependent static output feedback gain

K(λk) = Ẑ(λk)Ĝ(λk)
−1, (2.46)

with

Ẑ(λ(k)) =
N∑

i=1

λi(k)Zi,1 and Ĝ(λ(k)) =
N∑

i=1

λi(k)Gi,1

stabilizes the system (2.42) with a guaranteed H∞ performance bounded by η for all λ ∈ ΛN

and ∆λ that satisfies (2.25).

A proof for this lemma can be found in [10].

2.3.3 Mixed H2/H∞ Control Synthesis

In [12], gain-scheduled static output feedback synthesis LMIs that stabilize the systems H∞

and H2 with guaranteed H∞ and H2 performance bounds are presented. As in [10], the rate
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of variation of the parameters (2.24) is assumed to be limited by an a priori known bound

b, given by (2.28).

The authors of [12] extend the analysis results of Lemmas 4 and 5 to characterize a finite

set of LMI conditions for the synthesis of a gain scheduled mixed H2/H∞ static output

feedback controller for the systems H2 (2.43) and H∞ (2.42).

Lemma 7. Consider the systems H∞ and H2, given by (2.42) and (2.43). Assume that the

vectors f j and hj of Γb are given. Additionally, assume that a prescribed H∞ performance

bound η is given. If there exist, for i = 1, . . . , N, matrices Gi,1 ∈ Rn×n, Zi,1 ∈ Rm×q and

symmetric positive-definite matrices P∞,i ∈ Rn×n, P2,i ∈ Rn×n, and Wi ∈ Rp×p, and, for

j = 1, . . . ,M, matrices G∞j,2 ∈ R(n−q)×q, G2j,2 ∈ R(n−q)×q, G∞j,3 ∈ R(n−q)×(n−q), and

G2j,3 ∈ R(n−q)×(n−q) such that




∑N
i=1

(
f
j
i + h

j
i

)
P∞,i ⋆ ⋆ ⋆

GT
∞,jÃ

T
j + ZT

j B̃
T
u,j G∞,j +G∞,j −

∑N
i=1 f

j
i P∞,i ⋆ ⋆

B̃T
∞w,j 0 ηI ⋆

0 C̃∞z,jG∞,j + D̃∞u,jZj D̃∞w,j ηI




= Θj > 0 (2.47)

for j = 1, . . . ,M and




∑N
i=1

(
f
j
i + f ℓi + h

j
i + hℓi

)
P∞,i ⋆ ⋆ ⋆

Θ21,jℓ Θ22,jℓ ⋆ ⋆

B̃T
∞w,j + B̃T

∞w,ℓ 0 2ηI ⋆

0 Θ42,jℓ D̃∞w,j + D̃∞w,ℓ 2ηI




= Θjl > 0 (2.48)
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with

Θ21,jℓ = GT
∞,jÃ

T
ℓ + GT

∞,ℓÃ
T
j + ZT

j B̃
T
u,ℓ + ZT

ℓ B̃
T
u,j

Θ22,jℓ = G∞,j +GT
∞,j +G∞,ℓ +GT

∞,ℓ −
N∑

i=1

(
f
j
i + h

j
i

)
P∞,i

Θ42,jℓ = C̃∞z,jG∞,ℓ + C̃∞z,ℓG∞,j + D̃u,jZℓ + D̃u,ℓZj

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M , and




∑N
i=1

(
f
j
i + h

j
i

)
P2,i ⋆ ⋆

GT
2,jÃ

T
j + ZT

j B̃
T
u,j G2,j +GT

2,j −
∑N

i=1 f
j
i P2,i ⋆

B̃T
w2,j 0 I



= Φj > 0 (2.49)

for j = 1, . . . ,M , and




∑N
i=1

(
f
j
i + f ℓi + h

j
i + hℓi

)
P2,i ⋆ ⋆

Φ21,jℓ Φ22,jℓ ⋆

B̃T
w2,j + B̃T

w2,ℓ 0 2I



= Φjℓ > 0 (2.50)

with

Φ21,jℓ = GT
2,jÃ

T
ℓ +GT

2,ℓÃ
T
j + ZT

j B̃
T
u,ℓ + ZT

ℓ B̃
T
u,j

Φ22,jℓ = G2,j +GT
2,j +G2,ℓ +GT

2,ℓ −
N∑

i=1

(
f
j
i + f ℓi

)
P2,i
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for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M , and



∑N

i=1 f
j
i Wi − D̃2w,jD̃

T
2w,j ⋆

GT
2,jC̃

T
2z,j + ZT

j D̃
T
2u,j G2,j + GT

2,j −
∑N

i=1 f
j
i P2,i


 = Ψj > 0 (2.51)

for j = 1, . . . ,M , and



∑N

i=1

(
f
j
i + f ℓi

)
Wi − D̃2w,jD̃

T
2w,ℓ + D̃2w,ℓD̃

T
2w,j ⋆

GT
2,jC̃

T
2z,ℓ +GT

2,ℓC̃
T
2z,j + ZT

j D̃
T
2u,ℓ + ZT

ℓ D̃
T
2u,j Ψ22,jℓ


 = Ψjℓ > 0 (2.52)

with

Ψ22,jℓ = G2,j +GT
2,j +G2,ℓ +GT

2,ℓ −
N∑

i=1

(
f
j
i + f ℓi

)
P2,i

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M where

G∞j =



∑N

i=1 f
j
i Gi,1 0

G∞j,2 G∞j,3


 , G2j =



∑N

i=1 f
j
i Gi,1 0

G2j,2 G2j,3


 , and

Zj =

[
∑N

i=1 f
j
i Zi,1 0

]
,

(2.53)

then the parameter-dependent static output feedback gain

K(λk) = Ẑ(λk)Ĝ(λk)
−1 (2.54)

with

Ẑ(λk) =

N∑

i=1

λi(k)Zi,1 and Ĝ(λk) =

N∑

i=1

λi(k)Gi,1 (2.55)

stabilizes the system H∞ with a guaranteed H∞ performance bounded by η and the system
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H2 with a guaranteed H2 performance bounded by ν given by

ν2 = min
P∞,i,P2,i,Gi,1,G∞j,2,G2j,2,G∞j,3,G2j,3,Zi,1,Wi

max
i

trace {Wi} . (2.56)

The proof for Lemma 7 is provided by [12].
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Chapter 3

Guaranteed ℓ2 − ℓ∞ gain control of

LPV systems

3.1 Introduction

The design of multi-objective, mixed H2/H∞ controllers has been a topic of interest for

sometime [9, 54, 32, 30, 15, 56, 35, 17, 12]. The goal of using both H2 and H∞ performance

criteria is to design a controller which can meet multiple performance objectives. In [9] and

[54] mixed H2/H∞ control was introduced by minimizing the H2 norm of a closed-loop

transfer function subject to an H∞ norm constraint of another closed-loop transfer func-

tion. In [32], mixed H2/H∞ state-feedback and output-feedback controllers were designed

for continuous-time systems by using a convex optimization approach to solve the coupled

nonlinear matrix Riccati equations and in [30] a similar approach is used for discrete-time

systems. The state-feedback H2/H∞ design with regional pole placement was addressed

by [15] using the linear matrix inequality (LMI) approach. In [56] and [35], the LMI ap-

proach for multi-objective control synthesis for output-feedback controllers is presented. In

[18], an extra instrumental variable was added to the LMI stability conditions to build a

parameter dependent Lyapunov function capable of proving the stability of uncertain linear-

time-invariant (LTI) systems. The new extended LMI conditions in [18] were used in [17] to

developH2 andH∞ LMI conditions for linear state-feedback and output-feedback controllers
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for uncertain LTI systems. The extended LMI conditions provided by [17] were utilized in

[11] and [10] to develop linear parameter varying (LPV) static output feedback controllers

that meet H2 [11] and H∞ [10] performance bounds for linear time-varying (LTV) systems

with polytopic uncertainty. The results presented in [11] and [10] were extended in [12] to

cover the synthesis of multi-objective H2/H∞ gain-scheduled output feedback controllers.

Gain scheduling controllers designed using the LPV method have traditionally included

H∞ performance constraints. This is largely due to the fact that H∞ controllers can provide

robust stability margins that H2 controllers cannot provide [83]. However, since the H∞

norm is defined as the root-mean-square gain, or ℓ2 to ℓ2 gain, from the exogenous input

to the regulated output, controllers designed with only H∞ performance constraints are not

suitable for use when hard constraints on responses or actuator signals must be met.

When hard constraints on responses or actuator signals must be met, a controller with

a guaranteed ℓ2 to ℓ∞ gain is needed, which is a special type of H2 controller [87]. A

controller with a guaranteed ℓ2 to ℓ∞ gain provides strict bounds on the regulated output

while minimizing the control input as much as possible. This problem was solved for LTI

systems in [87], where it is referred to as the output covariance constraint (OCC) problem.

The OCC problem defined in [87] is to find a controller for a given system to minimize the

weighted control input cost subject to a set of output constraints. The OCC problem has

two interesting interpretations: stochastic and deterministic. The stochastic interpretation

is obtained by first assuming that the H2 exogenous inputs are uncorrelated zero-mean

white noises with a given intensity. Then the OCC problem minimizes the weighted control

input covariance subject to the output covariance constraints, such that the constraints are

interpreted as constraints on the variance of the performance variables. The deterministic

interpretation is obtained by assuming that theH2 exogenous inputs are unknown but belong
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to a bounded ℓ2 energy set. Then the OCC problem minimizes the weighted control input

while ensuring that the maximum singular values, or ℓ∞ response, of the regulated outputs

are less than the corresponding output constraints. In other words, the OCC problem is

the problem of minimizing the weighted sum of worst-case peak values on the control signal

subject to the constraints on the worst-case peak values of the performance variables. This

interpretation is important in applications where hard constraints on responses or actuator

signals cannot be ignored, such as space telescope pointing [86], machine tool control, and

system identification of biological systems. For both interpretations, a solution to the OCC

control problem results in a controller with a guaranteed ℓ2 to ℓ∞ gain.

The main contributions of this chapter are the guaranteed ℓ2−ℓ∞ gain controller synthesis

LMIs for gain-scheduled state-feedback and dynamic output-feedback control for discrete-

time polytopic LPV systems in Section 3.3. When these LMIs are satisfied, the optimal

state-feedback or dynamic output-feedback LPV controller obtained guarantees that for a

finite disturbance energy, hard constraints on the regulated output are met. The guaranteed

ℓ2 to ℓ∞ gain is achieved by modifying H2 control synthesis LMIs covered in Chapter 2 to

minimize the weighted control input cost while ensuring the output covariances meet the

performance constraints.

The chapter is organized as follows. Section 3.2 formally introduces the ℓ2 − ℓ∞ gain

performance criteria. The mixed ℓ2 − ℓ∞/H∞ control problem is formulated in Section 3.3

to obtain gain-scheduled state-feedback and dynamic output-feedback controllers that have

a guaranteed ℓ2 to ℓ∞ gain. In Section 3.4, a numerical example is presented to illustrate

the performance of the algorithm. Some concluding remarks for this work are provided in

Section 3.5.
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3.2 ℓ2 − ℓ∞ Performance of Discrete-time Systems

Consider again the discrete-time, closed-loop, LPV system H in (2.17), which for convenience

is reproduced here

H :=





x(k + 1) = A(λk)x(k) + Bw(λk)w(k), x(0) = 0

z(k) = Cz(λk)x(k) +Dw(λk)w(k).

As in Chapter 2, the system matrices A(λk), Bw(λk), Cz(λk), Dw(λk), also belong to a

polytope similar to D in (2.11).

To define the ℓ2 − ℓ∞ performance criteria for the system H , first the following assump-

tions are made:

1. The system output z(k) is partitioned into z(k) = [zp(k)
T , zu(k)

T ]T ,

2. and the feed-through matrix D(λk) = 0,

such that the system output z(k) is given by

z(k) :=




zp(k)

zu(k)


 =




Cp(λk)

Cu(λk)


 x(k), (3.1)

where the vector zp(k) contains all the variables whose dynamic responses are of interest

and the vector zu(k) contains the weighted control variables to be minimized. The impulse

response of the variables in zp(k) is given by

h(k) = Cp(λk)




k−1∏

ℓ=0

A(λℓ)


Bw(λk), with

k−1∏

ℓ=k

A(λℓ) = I,
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for k ≥ 0. If we define the ℓ∞ and ℓ2 norms

‖zp‖2∞ = sup
k≥0

zTp (k)zp(k), ‖w‖22 =

∞∑

ℓ=0

wT (ℓ)w(ℓ), (3.2)

then from [74, 85] it can be shown that

‖zp‖2∞ ≤ σ

( ∞∑

k=0

h(k)hT (k)

)
‖w‖22, (3.3)

where σ(·) denotes the maximum singular value. In [12] it is demonstrated that

∞∑

k=0

h(k)hT (k) = Cp(λk)P̄(λk)CTp (λk) (3.4)

where P̄(λk) is the closed-loop controllability Gramian from the disturbance input w(k)

satisfying

P̄(λk+1) = A(λk)P̄(λk)A(λk)
T + B(λk)B(λk)T , (3.5)

such that

‖zp‖2∞ ≤ σ
(
Cp(λk)P̄(λk)CTp (λk)

)
‖w‖22. (3.6)

Suppose that some a priori information about the constraints on the performance of zp

is known such that an output covariance bound Zp can be constructed. It is the purpose of

this chapter to design an LPV state-feedback or dynamic, output feedback controller with

‖zp‖2∞ ≤ σ
(
Zp
)
‖w‖22, (3.7)
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such that the guaranteed ℓ2 − ℓ∞ gain is given by

sup
w∈ℓ2,‖w‖22 6=0

‖zp‖2∞
‖w‖22

≤ σ
(
Zp
)
, (3.8)

where

Zp(λk) = Cp(λk)P̄(λk)Cp(λk)T ≤ Zp. (3.9)

This problem, which we call the guaranteed ℓ2 − ℓ∞ gain problem, is defined as follows:

find a static state feedback or full-order dynamic output feedback controller to minimize the

control energy

Zu(λk) = trace
{
Cu(λk)P̄(λk)Cu(λk)T

}
, (3.10)

of the closed-loop system H , subject to the hard constraint Zp.

Theorem 8. Consider the system H, given by (2.17) with the performance output given by

(3.1). Given the output covariance Zp, if there exist parameter-dependent matrices G(λk),

P(λk) = P(λk)
T > 0, and W(λk) = W(λk)

T > 0, for all λk ∈ ΛN , such that




P(λk+1) A(λk)G(λk) B(λk)

G(λk)TA(λk)
T G(λk) + G(λk)T − P(λk) 0

B(λk)T 0 I



> 0, (3.11)




W(λk) Cu(λk)G(λk)

G(λk)TCu(λk)T G(λk) + G(λk)T −P(λk)


 > 0, (3.12)

Zp − Cp(λk)P(λk)Cp(λk)T ≥ 0, (3.13)

then the closed-loop system (2.17) is exponentially stable with a guaranteed ℓ2 to ℓ∞ perfor-
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mance given by

sup
w∈ℓ2,‖w‖22 6=0

‖zp‖2∞
‖w‖22

≤ σ
(
Zp
)
, (3.14)

and a control energy bounded by

Zu = inf
P(λk),G(λk),W(λk)

sup
λk∈ΛN

trace {W(λk)} ,

≥ trace
{
Cu(λk)P(λk)Cu(λk)T

}
≥ Zu(λk).

(3.15)

Proof. The closed-loop system H is stabilized with the control energy bounded by (3.15) as

a result of applying Lemma 2. However, the guaranteed ℓ2 − ℓ∞ gain performance (3.14) is

a result of the LMI (3.13). Since (3.11) implies that

P(λk+1) > A(λk)P(λk)A(λk)
T + B(λk)B(λk)T , (3.16)

there exist matrices M(λk) = M(λk)
T > 0 such that

P(λk+1) = A(λk)P(λk)A(λk)
T + B(λk)B(λk)T +M(λk). (3.17)

Consequently, P(λk) > P̄(λk) for all k ≥ 0, which shows that

Zp ≥ Cp(λk)P(λk)Cp(λk)T ≥ Cp(λk)P̄(λk)Cp(λk)T = Zp(k). (3.18)

Thus, it follows that the guaranteed ℓ2 − ℓ∞ gain (3.14) is satisfied.

Since LMI conditions have been characterized for the ℓ2 − ℓ∞ gain performance of a
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polytopic LPV system, attention will now be focused on using this LMI conditions to develop

LMIs for the controller synthesis of gain-scheduled state feedback and dynamic, output

feedback controllers.

3.3 Controller Synthesis for mixed ℓ2− ℓ∞/H∞ Control

Problem

This section considers the design of minimum energy gain-scheduled controllers that provide

a guaranteed ℓ2 − ℓ∞ gain for the closed-loop system, while also satisfying some other H∞

performance criteria for robustness. Thus, in this section we consider the following discrete-

time polytopic time-varying systems: the system Hh with the ℓ2 − ℓ∞ gain, which provides

hard constraints that must be satisfied, given by

Hh :=





xp(k + 1) = A(λk)xp(k) +Bh(λk)wh(k) +Bu(λk)u(k)

zp(k) = Cp(λk)xp(k)

zu(k) = Dhu(λk)u(k)

y(k) = Cy(λk)xp(k) +Dyh(λk)wh(k)

(3.19)

and the H∞ weighted system H∞ given by

H∞ :=





xp(k + 1) = A(λk)xp(k) + B∞(λk)w∞(k) +Bu(λk)u(k)

z∞(k) = C∞(λk)xp(k) +D∞(λk)w∞(k) +D∞u(λk)u(k)

y(k) = Cy(λk)xp(k) +Dy∞(λk)w∞(k)

(3.20)
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where xp(k) ∈ R
n is the state, wh(k) ∈ R

rh and w∞ ∈ R
r∞ are the exogenous inputs,

and u(k) ∈ Rm is the control input. The outputs zu(k) ∈ R
ph and z∞(k) ∈ Rp∞ are

the weighted system performance outputs for the mixed control synthesis, while the output

zp(k) ∈ Rc contains all variables whose dynamic responses have hard constraints that must

be met. The output vector y(k) ∈ R
q is the measurement to be used for control. The goal

is to provide a finite-dimensional set of LMIs for the synthesis of both gain-scheduled state

feedback controllers of the form

u(k) = K(λk)x(k) (3.21)

and gain-scheduled, strictly proper, output feedback controllers of the form

xc(k + 1) = Ac(λk)xc(k) +Bc(λk)y(k)

u(k) = Cc(λk)xc(k)

(3.22)

such that the closed-loop systems given by

Hh
cl :=





x(k + 1) = A(λk)x(k) + Bh(λk)wh(k),

zp(k) = Cp(λk)x(k),

zu(k) = Cu(λk)x(k),

(3.23)

and

H∞
cl :=





x(k + 1) = A(λk)x(k) + B∞(λk)w∞(k),

z∞ = C∞(λk)x(k) +D∞(λk)w∞(k),

(3.24)

are exponentially stable and satisfy hard constraints on desired performance outputs for all

possible trajectories of the parameter λk ∈ ΛN , while minimizing the control energy and

satisfying a robustness criteria defined as an H∞ performance bound.
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3.3.1 Gain-Scheduled State Feedback Control Synthesis

In this section, it is assumed that the state vector, xp(k), is available for feedback without

corruption from the exogenous inputs wh(k) or w∞(k). This is a standard assumption, and

as in [17] can be enforced on the measurement equation in (3.19) and (3.20) by assigning

to the matrices Cy(λk), Dyh(λk), and Dy∞(λk) the values Cy(λk) = I, Dyh(λk) = 0,

and Dy∞(λk) = 0. The feedback structure provided by the gain-scheduled state-feedback

controller (3.21), produces the closed-loop systems Hh
cl and H∞

cl in (3.23) and (3.24), where

x(k) = xp(k) and the closed-loop system matrices given by

A(λk) = A(λk) +Bu(λk)K(λk), Bh(λk) = Bh(λk), B∞(λk) = B∞(λk),

Cp(λk) = Cp(λk), Cu(λk) = Dhu(λk)K(λk),

C∞(λk) = C∞(λk) +D∞u(λk)K(λk), D∞(λk) = D∞(λk).

(3.25)

When substituting these closed-loop matrices into the first LMI of Theorem 8, the fol-

lowing bilinear matrix inequality results:




Ph(λk) (A(λk) +Bu(λk)K(λk))G(λk) Bh(λk)

⋆ G(λk) +G(λk)
T − Ph(λk) 0

⋆ ⋆ I



> 0. (3.26)

Multiplying the instrumental variable into the parenthesis gives




Ph(λk) A(λk)G(λk) +Bu(λk)K(λk)G(λk) Bh(λk)

⋆ G(λk) +G(λk)
T − Ph(λk) 0

⋆ ⋆ I



> 0, (3.27)
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which clearly shows a multiplication between the state-feedback controller K(λk) and the

instrumental variable G(λk). However, by letting L(λk) = K(λk)G(λk), the following LMI

is recovered: 


Ph(λk) A(λk)G(λk) +Bu(λk)L(λk) Bh(λk)

⋆ G(λk) +G(λk)
T − Ph(λk) 0

⋆ ⋆ I



> 0. (3.28)

The same substitution can be made in the second LMI of Theorem 8 to produce the

following LMI: 


W (λk) Dhu(λk)L(λk)

⋆ G(λk) +G(λk)
T − Ph(λk)


 > 0. (3.29)

The parameter-dependent, full-state feedback controller is solved for by performing a

convex optimization over a set of linear matrix inequalities. The LMIs in this section are

an extension of the work presented in [12], which is covered in Chapter 2. Using the pa-

rameterizations (2.32), (2.33), and (2.34) from Chapter 2, the finite-dimensional LMIs in the

following theorem can be solved to obtain a full-state feedback controller (3.21) such that the

closed-loop systems for Hh and H∞ have a guaranteed ℓ2 − ℓ∞ and H∞ gain, respectively.

In the following theorem, the LMI conditions from Lemma 7 are adapted to solve the

mixed controller synthesis problem posed in this section for the gain-scheduled state-feedback

control problem.

Theorem 9. Consider the system Hh, given by (3.19). Assume that the vectors f j and hj

of Γb are given. Given Zp, if there exists, for i = 1, 2, . . . , N , matrices, Gi ∈ Rn×n and

Zi ∈ Rm×n, and symmetric positive-definite matrices Ph,i ∈ Rn×n and Wi ∈ R
ph×ph such
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that




P̂h,j ⋆ ⋆

G̃T
j Ã

T
j + Z̃T

j B̃
T
u,j G̃j + G̃T

j − P̃h,j ⋆

B̃T
h,j 0 I



= Φj > 0 (3.30)

for j = 1, 2, . . . ,M , and




P̂h,j + P̂h,ℓ ⋆ ⋆

Φ21,jℓ Φ22,jℓ ⋆

B̃T
h,j + B̃T

h,ℓ 0 2I



= Φjℓ > 0 (3.31)

with

Φ21,jℓ = G̃T
j Ã

T
ℓ + G̃T

ℓ Ã
T
j + Z̃T

j B̃
T
u,ℓ + Z̃T

ℓ B̃
T
u,j

Φ22,jℓ = G̃j + G̃T
j + G̃ℓ + G̃T

ℓ − P̃h,j − P̃h,ℓ

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M , and




W̃j ⋆

Z̃T
j D̃

T
hu,j G̃j + G̃T

j − P̃h,j


 = Ψj > 0 (3.32)

for j = 1, 2, . . . ,M and




W̃j + W̃ℓ ⋆

Z̃T
j D̃

T
hu,ℓ + Z̃T

ℓ D̃
T
hu,j Ψ22,jℓ


 = Ψjℓ > 0 (3.33)
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with

Ψ22,jℓ = G̃j + G̃T
j + G̃ℓ + G̃T

ℓ − P̃h,j − P̃h,ℓ

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M and

Zp − Cp,iPh,iC
T
p,i ≥ 0, i = 1, 2, . . . , N, (3.34)

with

P̂h,j =
N∑

i=1

(
f
j
i + h

j
i

)
Ph,i, P̃h,j =

N∑

i=1

f
j
i Ph,i,

G̃j =

N∑

i=1

f
j
i Gi, Z̃j =

N∑

i=1

f
j
i Zi, and W̃j =

N∑

i=1

f
j
i Wi.

then the parameter-dependent full state feedback gain

K(λ) = Ẑ(λ)Ĝ(λ)−1 (3.35)

with

Ẑ(λ) =

N∑

i=1

λiZi and Ĝ(λ) =

N∑

i=1

λiGi (3.36)

stabilizes the the system Hh with a guaranteed (weighted) control energy bounded by Zu given

by

Zu = min
P∞,i,Pσ,i,Gi,Zi,Wi

max
i

trace{Wi}

≥ trace{RK(λ)Ph(λ)K(λ)T } = Zu(λk)

(3.37)

while also ensuring that the hard constraint Zp is satisfied. Additionally, consider the system
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H∞, given by (3.20). If there exist, for i = 1, 2, . . . , N , symmetric positive-definite matrices

P∞,i ∈ Rn×n such that




P̂∞,j ⋆ ⋆ ⋆

G̃T
j Ã

T
j + Z̃T

j B̃
T
u,j G̃j + G̃T

j − P̃∞,j ⋆ ⋆

B̃T
∞,j 0 ηI ⋆

0 C̃∞,jG̃j + D̃∞u,jZ̃j D̃∞,j ηI




= Θj > 0

(3.38)

for j = 1, 2, . . . ,M and




P̂∞,j + P̂∞,ℓ ⋆ ⋆ ⋆

Θ21,jℓ Θ22,jℓ ⋆ ⋆

B̃T
∞,j + B̃T

∞,ℓ 0 2ηI ⋆

0 Θ42,jℓ D̃∞,j + D̃∞,ℓ 2ηI




= Θjℓ > 0

(3.39)

with

Θ21,jℓ = G̃T
j Ã

T
ℓ + G̃T

ℓ Ã
T
j + Z̃T

j B̃
T
u,ℓ + Z̃T

ℓ B̃
T
u,j

Θ22,jℓ = G̃j + G̃T
j + G̃ℓ + G̃T

ℓ − P̃∞,j − P̃∞,ℓ

Θ42,jℓ = C̃∞,jG̃ℓ + C̃∞,ℓG̃j + D̃∞u,jZ̃ℓ + D̃∞u,ℓZ̃j

for j = 1, 2, . . . ,M − 1 and ℓ = j + 1, . . . ,M , where

P̂∞,j =
N∑

i=1

(
f
j
i + h

j
i

)
P∞,i, P̃∞,j =

N∑

i=1

f
j
i P∞,i,
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then the parameter-dependent full-state feedback gain K(λ) given by (3.35) also stabilizes the

system H∞ with a guaranteed H∞ performance bounded by η.

Proof. The following properties are a consequence of applying Lemma 7:

• The system H∞ is stabilized with a guaranteed H∞ performance bounded by η when

the LMIs (3.38) and (3.39) are satisfied.

• The system Hh is stabilized with a guaranteed (weighted) control energy bounded by

Zu (3.37) when the LMIs (3.30),(3.31),(3.32), and (3.33) are satisfied.

However, the fact the output constraint (3.7) is satisfied for i = 1, 2, . . . , N follows from the

LMI constraint (3.34)

Zp − Cp,iPh,iC
T
p,i ≥ 0, i = 1, 2, . . . , N.

Since the LMIs (3.30),(3.31),(3.32), and (3.33) are all required to be positive-definite, from

[12] it can be shown that

Ph(λk) =

N∑

i=1

λi(k)Ph,i > P̄(λk), ∀k ≥ 0,

where P̄(λk) is the controllability Gramian satisfying (3.5). Thus, it is also true that

Zp − Cp(λk)P̄ (λk)Cp(λk)
T ≥ 0

such that

Zp(λk) = Cp(λk)P̄(λk)Cp(λk)
T ≤ Zp.
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3.3.2 Output Feedback LMIs

The feedback structure provided by the gain-scheduled dynamic output-feedback controller

(3.22), produces the closed-loop systems Hh
cl and H∞

cl in (3.23) and (3.24) where x(k) =

[xTp (k) xTc (k)]
T with the closed-loop system matrices given by

A(λk) =




A(λk) Bu(λk)Cc(λk)

Bc(λk)Cy(λk) Ac(λk)


 ,

Bh(λk) =




Bh(λk)

Bc(λk)Dyh(λk)


 , B∞(λk) =




B∞(λk)

Bc(λk)Dy∞(λk)


 ,

Cp(λk) =
[
Cp(λk) 0

]
, Cu(λk) =

[
0 Dhu(λk)Cc(λk)

]
,

C∞(λk) =

[
C∞(λk) D∞u(λk)Cc(λk)

]
, D∞(λk) = D∞(λk).

(3.40)

For the full-state feedback problem, the parameter-dependent, strictly proper output

feedback controller is also solved for by performing a convex optimization over a set of linear

matrix inequalities. The LMIs in this section are an extension of the work presented in [13].

It is clear that when substituting the closed-loop matrices (3.40) into the matrix inequalities

of the performance conditions in Lemma 1 and Theorem 8 nonlinear matrix inequalities

result, due to the multiplication between the unknown controller matrices and the slack

variable G(λk). To obtain set of LMI conditions, the authors in [13] first chose the slack

variable G(λk) to be independent of the scheduling parameter λk, such that G(λk) = G.

Then the slack variable G, its inverse G−1, the Lyapunov matrix P(λk), and the controller

46



matrices K(λk) are partitioned as

G :=




X Z1

U Z2


 , G−1 :=




Y T Z3

V T Z4


 ,

P(λk) :=




P (λk) P2(λk)

P2(λk)
T P3(λk)


 , K(λk) :=




Ac(λk) Bc(λk)

Cc(λk) 0


 .

From the definition of G and G−1, it is clear that the following relationship must hold:

GG−1 =




X Z1

U Z2







Y T Z3

V T Z4


 =




XY T + Z1V
T XZ3 + Z1Z4

UY T + Z2V
T UZ3 + Z2Z4


 =




I 0

0 I


 ,

such that XY T + Z1V
T = I and UY T + Z2V

T = 0. Now, as done in [56, 35, 17, 13], the

parameter-independent transformation matrix

T :=




I Y T

0 V T


 (3.41)

is introduced and the following nonlinear parameter-dependent change of variables is defined:




Q(λk) F (λk)

L(λk) 0


 :=




V Y Bu(λk)

0 I


K(λk)




U 0

Cy(λk)X I




+




Y

0


A(λk)

[
X 0

]
,

(3.42)
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


P (λk) J(λk)

J(λk)
T H(λk)


 := T TPT , (3.43)

S := Y X + V U. (3.44)

The nonlinear matrix inequalities that result from substituting the closed-loop matrices

into the matrix inequalities in Theorem 8 can be transformed into the following LMIs:




P (λk) J(λk) A(λk)X +Bu(λk)L(λk) A(λk) Bw(λk)

⋆ H(λk) Q(λk) Y A(λk) + F (λk)Cy(λk) Y Bw(λk)

⋆ ⋆ X +XT − P (λk) I + ST − J(λk) 0

⋆ ⋆ ⋆ Y + Y T −H(λk) 0

⋆ ⋆ ⋆ ⋆ I




> 0

(3.45)


W (λk) Dzu(λk)L(λk) 0

⋆ X +XT − P (λk) I + ST − J(λk)

⋆ ⋆ Y + Y T −H(λk)



> 0 (3.46)

Zp − Cp(λk)P (λk)Cp(λk)
T > 0 (3.47)

by using the congruence transformations T1 = diag(T , T , I) and T2 = diag(I, T ) on the

first and second nonlinear matrix inequalities, respectively. While the matrix inequalities in

(3.45), (3.46), and (3.47) are now LMIs, they are still infinite dimensional and must be evalu-

ated for all values of time-varying barycentric coordinates λk. To obtain a finite-dimensional

set of LMIs, the parameter dependent structure imposed on the Lyapunov matrix in (2.23) is

imposed on the Lyapunov matrix here as well. In the following, the same parameterizations

used for the state-feedback case are utilized for the gain-scheduled dynamic output-feedback
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control problem.

Theorem 10. Consider the system Hh, given by (3.19). Assume that the vectors f j and

hj of Γb are given. Given Zp, if there exists matrices X ∈ Rn×n, Y ∈ Rn×n, and for

i = 1, 2, . . . , N , matrices, Jh,i ∈ Rn×n, Li ∈ Rm×n, and Fi ∈ Rn×q, and symmetric

positive-definite matrices Ph,i ∈ R
n×n, Hh,i ∈ R

n×n, and Wi ∈ R
ph×ph such that




P̂h,j Ĵh,j ÃjX + B̃u,jL̃j Ãj B̃h,j

⋆ Ĥh,j Q̃j Y Ãj + F̃jC̃y,j Y B̃h,j + F̃jD̃yh,j

⋆ ⋆ X +XT − P̃h,j I + ST − J̃h,j 0

⋆ ⋆ ⋆ Y + Y T − H̃h,j 0

⋆ ⋆ ⋆ ⋆ I




= Ψj > 0 (3.48)

for j = 1, . . . ,M , and




P̂j + P̂ℓ Ĵj + Ĵℓ Ψ13,jℓ Ãj + Ãℓ B̃h,j + B̃h,ℓ

⋆ Ĥj + Ĥℓ Q̃j + Q̃ℓ Ψ24,jℓ Ψ25,jℓ

⋆ ⋆ Ψ33,jℓ 2I + 2ST − J̃j − J̃ℓ 0

⋆ ⋆ ⋆ 2Y + 2Y T − H̃j − H̃ℓ 0

⋆ ⋆ ⋆ ⋆ 2I




= Ψjℓ > 0 (3.49)
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with

Ψ13,jℓ = ÃjX + ÃℓX + B̃u,jL̃ℓ + B̃u,ℓL̃j

Ψ24,jℓ = Y Ãj + Y Ãℓ + F̃jC̃y,ℓ + F̃ℓC̃y,j

Ψ25,jℓ = Y B̃h,j + Y B̃h,ℓ + F̃jD̃yh,ℓ + F̃ℓD̃yh,j

Ψ33,jℓ = 2X + 2XT − P̃j − P̃ℓ

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M , and




W̃j D̃hu,jL̃j 0

⋆ X +XT − P̃j I + ST − J̃j

⋆ ⋆ Y + Y T − H̃j



= Φj > 0 (3.50)

for j = 1, . . . ,M , and




W̃j + W̃ℓ D̃hu,jL̃ℓ + D̃hu,ℓL̃j 0

⋆ 2X + 2XT − P̃j − P̃ℓ 2I + 2ST − J̃j − J̃ℓ

⋆ ⋆ 2Y + 2Y T − H̃j − H̃ℓ



= Φjℓ > 0 (3.51)

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M , and

Zp − Cp,iPσ,iC
T
p,i ≥ 0, i = 1, 2, . . . , N, (3.52)
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where

P̂h,j =
N∑

i=1

(f
j
i + h

j
i )Ph,i, Ĵh,j =

N∑

i=1

(f
j
i + h

j
i )Jh,i, Ĥh,j =

N∑

i=1

(f
j
i + h

j
i )Hh,i,

P̃h,j =

N∑

i=1

f
j
i Ph,i, J̃h,j =

N∑

i=1

f
j
i Jh,i, H̃h,j =

N∑

i=1

f
j
i Hh,i,

Q̃j =

N∑

i=1

f
j
i Qi, L̃j =

N∑

i=1

f
j
i Li, F̃j =

N∑

i=1

f
j
i Fi,

Ãj =
N∑

i=1

f
j
i Ai, B̃u,j =

N∑

i=1

f
j
i Bu,i, B̃w,j =

N∑

i=1

f
j
i Bw,i,

C̃z,j =

N∑

i=1

f
j
i Cz,i, D̃zu,j =

N∑

i=1

f
j
i Dzu,i, D̃zw,j =

N∑

i=1

f
j
i Dzw,i,

C̃y,j =
N∑

i=1

f
j
i Cy,i, D̃yw,j =

N∑

i=1

f
j
i Dyw,i,

(3.53)

then the parameter-dependent, strictly proper output feedback controller

xc(k + 1) = Ac(λk)xc(k) +Bc(λk)y(k)

u(k) = Cc(λk)xc(k)

with

Ac(λk) = V −1 (Q(λk)− Y A(λk)X − Y Bu(λk)L(λk)− F (λk)Cy(λk)X
)
U−1

Bc(λk) = V −1F (λk)

Cc(λk) = L(λk)U
−1

(3.54)

stabilizes the system Hh with a guaranteed (weighted) control energy bounded by Zu while

also ensuring that the hard constraint Zp is satisfied. Additionally, consider the system H∞,

given by (3.20). If there exist, for i = 1, 2, . . . , N , matrices J∞,i ∈ R
n×n and symmetric
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positive-definite matrices P∞,i ∈ R
n×n and H∞,i ∈ R

n×n such that




P̂∞,j Ĵ∞,j ÃjX + B̃u,jL̃j Ãj B̃∞,j 0

⋆ Ĥ∞,j Q̃j Y Ãj + F̃jC̃y,j Θ25,j 0

⋆ ⋆ X +XT − P̃∞,j I + ST − J̃∞,j 0 Θ36,j

⋆ ⋆ ⋆ Y + Y T − H̃∞,j 0 C̃T
∞,j

⋆ ⋆ ⋆ ⋆ ηI D̃T
∞,j

⋆ ⋆ ⋆ ⋆ ⋆ ηI




= Θj > 0 (3.55)

with

Θ25,j = Y B̃∞,j + F̃jD̃y∞,j

Θ36,j = XT C̃T
∞,j + L̃T

j D̃
T
∞u,j

for j = 1, . . . ,M




P̂∞,j + P̂∞,ℓ Ĵ∞,j + Ĵ∞,ℓ Θ13,jℓ Ãj + Ãℓ Θ15,jℓ 0

⋆ Ĥ∞,j + Ĥ∞,ℓ Q̃j + Q̃ℓ Θ24,jℓ Θ25,jℓ 0

⋆ ⋆ Θ33,jℓ Θ34,jℓ 0 Θ36,jℓ

⋆ ⋆ ⋆ Θ44,jℓ 0 Θ46,jℓ

⋆ ⋆ ⋆ ⋆ 2ηI Θ56,jℓ

⋆ ⋆ ⋆ ⋆ ⋆ 2ηI




= Θjℓ > 0 (3.56)
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with

Θ13,jℓ = ÃjX + ÃℓX + B̃u,jL̃ℓ + B̃u,ℓL̃j

Θ15,jℓ = B̃∞,j + B̃∞,ℓ

Θ24,jℓ = Y Ãj + Y Ãℓ + F̃jC̃y,ℓ + F̃ℓC̃y,j

Θ25,jℓ = Y B̃∞,j + Y B̃∞,ℓ + F̃jD̃y∞,ℓ + F̃ℓD̃y∞,j

Θ33,jℓ = 2X + 2XT − P̃∞,j − P̃∞,ℓ

Θ34,jℓ = 2I + 2ST − J̃∞,j − J̃∞,ℓ

Θ36,jℓ = XT C̃T
∞,j +XT C̃T

∞,ℓ + L̃T
j D̃

T
∞u,ℓ + L̃T

ℓ D̃
T
∞u,j

Θ44,jℓ = 2Y + 2Y T − H̃∞,j − H̃∞,ℓ

Θ46,jℓ = C̃T
∞,j + C̃T

∞,ℓ

Θ56,jℓ = D̃T
∞,j + D̃T

∞,ℓ

for j = 1, . . . ,M − 1 and ℓ = j + 1, . . . ,M , and

P̃∞,j =

N∑

i=1

f
j
i P∞,i, P̂∞,j =

N∑

i=1

(f
j
i + h

j
i )P∞,i,

J̃∞,j =
N∑

i=1

f
j
i J∞,i, Ĵ∞,j =

N∑

i=1

(f
j
i + h

j
i )J∞,i,

H̃∞,j =

N∑

i=1

f
j
i H∞,i, Ĥ∞,j =

N∑

i=1

(f
j
i + h

j
i )H∞,i,

(3.57)

then the parameter-dependent, strictly proper output feedback controller also stabilizes the

system H∞ with a guaranteed H∞ performance bounded by η.

The proof of Theorem 10 is similar to the proof for Theorem 9 and is omitted.
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3.4 Numerical Example

Consider the discrete-time LPV system (originally used in [19], and later used in [4] and

[17])

xp(k + 1) =




2 + δ1 0 1

1 0.5 0

0 1 −0.5




︸ ︷︷ ︸
A(δ1(k))

xp(k) +




1 + δ2

0

0




︸ ︷︷ ︸
Bu(δ2(k))

u(k) +




0

1

0




︸ ︷︷ ︸
Bh

wp(k)

zp(k) =




1 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
Cp

xp(k)

zu(k) = u(k)

(3.58)

where δi, i = 1, 2 are the time-varying parameters. In this section, two design examples with

different performance constraints will be considered for both state-feedback and dynamic

output-feedback control.

3.4.1 State Feedback Control

For the state-feedback controller design, the time-varying parameters were assumed to have

the following parameter variation bounds:

δ1 ∈ [−1, 1], and δ2 ∈ [−0.5, 0.5]. (3.59)
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The discrete-time LPV system (3.58) is converted to the discrete-time polytopic LPV system

(3.19) by solving A(δ1) and Bu(δ2) at the vertices of the parameter space polytope of δ1 and

δ2. The exogenous ℓ2 disturbance wp is a scalar and the performance variable zp has three

components.

In the following, we consider two different ℓ2 to ℓ∞ gain designs. The designs differ in

the grouping of the performance variables inside of zp used to define the constraints (3.9).

The constraints for each design are given as follows:

Design 1: Zp ≤ 1.85× I3, (3.60)

Design 2: Zp,1 ≤ 1.85, Zp,2 ≤ 1.85× I2, (3.61)

where for design 1, Zp denotes the (3 × 3) output covariance matrix corresponding to the

all performance outputs in zp grouped together. In design 2, Zp,1 denotes the (1 × 1)

output variance corresponding to the first performance output of zp and Zp,2 denotes the

(2×2) output covariance matrix corresponding to the second and third performance outputs

grouped together.

For each design, to enhance the robustness of the closed-loop system with the controller

K(λk) with respect to uncertainty in the measurements of the time-varying parameters δ1

and δ2, the closed-loop H∞ norms of the transfer functions of some appropriately defined

extra inputs and outputs that ‘pull out’ [19, 17] the uncertain parameters are bounded.
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Specifically, the following H∞ system is defined:

H∞ =





x(k + 1) = A(δ1(k))x(k) +Bu(δ2(k))u(k) +




1

0

0



w∞,1(k) +




1

0

0



w∞,2(k)

z∞,1(k) =

[
1 0 0

]
x(k)

z∞,2(k) = u(k)

(3.62)

so that the robustness requirement is given by

‖Hz∞,iw∞,i
(λ)‖∞ < η = 100, i = 1, 2, (3.63)

where η defines the robustness level. Note that the notation used here, specifically w∞,1(k)

and w∞,2(k) with the same input matrix, was selected to match what is found in the liter-

ature [19, 17].

For each of the ℓ2-ℓ∞ designs (3.60)-(3.61), the LMIs in Theorem 9 are programmed into

MATLAB using the LMI parser YALMIP [34] and solved with SeDuMi [59] to minimize the

cost function (3.37). As shown in Fig. 3.1 and Fig. 3.3A, each design is feasible and the

achieved covariance bound is tight with the design bound in at least one dimension. The

constraint in design 1 ensures that the covariance bound ellipsoid of Zp remains inside of

the sphere displayed in Fig. 3.1A. Side views of the covariance bound Zp are displayed in

Fig. 3.1B, Fig. 3.1C, and Fig. 3.1D. As displayed in Fig. 3.1C, the output covariance Zp is

tight with the bound in the zp,2-zp,3 plane.

For design 2, the constraints ensure that the variance of the first output of zp will be
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Figure 3.1: Design 1: The covariance bound Zp achieved compared to the constraint (3.60).
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Figure 3.2: Design 1: The output response of zp,1, zp,2, and zp,3 plotted against each other
for design 1 simulated with a positive (I1) and negative (I2) impulse function and compared
with the ℓ∞ norm bound.
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Figure 3.3: Design 2: A. The covariance bound Zp,2 achieved compared to the second
constraint in (3.61). B. The output response of zp,2 plotted against zp,3 for design 2 simulated
with a positive and negative impulse function and compared with the ℓ∞ norm bound.

below 1.85 and the covariance bound of second and third outputs of zp will remain inside of

the circle in Fig. 3.3A. The dashed ellipses in Fig. 3.3A are the obtained output covariances

at each of the vertices for i = 1, . . . , 4, and as shown they are tight with the bound.

To test the performance of each design, we simulate each of the controllers with a positive

impulse (I1) followed by a negative impulse (I2) as displayed in Fig. 3.4A. To see the effect of

the time-varying parameters, the parameters δ1 and δ2 are varied as displayed in Fig. 3.4B.

The values used to compute the controller at each time step k are the noisy measurements

displayed with a gray dashed line. The response to the ℓ2 disturbance wp(k) for design 1 is

displayed in Fig. 3.2. The response in Fig. 3.2 is plotted inside of the ℓ∞ norm constraint

(the square root of the covariance bound) sphere and the achieved ℓ∞ norm bound ellipsoid.

In Fig. 3.3B, the response of design 2 is plotted inside of the ℓ∞ norm constraint circle and

the achieved ℓ∞ norm bound ellipse. The path of the response, with respect to each of the

impulses (I1) and (I2), is also displayed in Fig. 3.3B. As shown in Fig. 3.2 and Fig. 3.3B, the
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Figure 3.4: The ℓ2 disturbance (A) and the parameter variation (B) used to simulate each
controller design.
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response for each design stays inside of the ℓ∞ bound.

3.4.2 Dynamic Output-Feedback Control

For the dynamic output-feedback controller design, the measurement equation in [19, 4, 17]

is given as

y(k) =

[
0 1 + δ3(k) 0

]
x(k), (3.64)

where δ3 is an additional time-varying parameter. As one might guess, this is much more

restrictive than the state feedback case. The good news is that the system is still observable

(assuming δ3 6= −1). However, the bad news is that in order to obtain a feasible controller

with the LMIs provided by Theorem 10, some modifications need to be made to the problem.

The modified discrete-time LPV is given by

xp(k + 1) =




2 + δ(k) 0 1

1 0.5 0

0 1 −0.5




︸ ︷︷ ︸
A(δ(k))

xp(k) +




1 + δ(k)

0

0




︸ ︷︷ ︸
Bu(δ(k))

u(k) +




0

0.1

0




︸ ︷︷ ︸
Bh

wp(k)

zp(k) =




1 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
Cp

xp(k)

zu(k) = u(k)

y(k) =

[
0 1 + δ(k) 0

]

︸ ︷︷ ︸
Cy(δ(k))

x(k) + 0.01v(k)

(3.65)
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Notice that in the modified system, each of the time-varying parameters δi, i = 1, 2, 3 have

been set equal to each other such that δ = δ1 = δ2 = δ3, which was originally done by the

authors in [4]. Also, as in [4], the time-varying parameter δ is assumed to have the following

parameter variation bound:

δ ∈ [−0.2, 0.2]. (3.66)

As for the state-feedback design case, the discrete-time LPV system (3.65) is converted to

the discrete-time polytopic LPV system (3.19) by solving A(δ), Bu(δ), and Cy(δ) at the

vertices of the parameter space polytope of δ. For the dynamic output-feedback design, the

exogenous ℓ2 disturbance is given by the process disturbance wp(k) and the measurement

disturbance v(k), such that w(k) = [wp(k), v(k)]
T . The performance variable zp, again has

three components.

As we did for the state-feedback control example, we also consider two different ℓ2 to ℓ∞

gain designs for the dynamic output-feedback control example. As before, the designs differ

in the grouping of the performance variables inside of zp used to define the constraints (3.9).

The constraints for each design are given as follows:

Design 1: Zp ≤ 5× I3, (3.67)

Design 2: Zp,1 ≤ 5, Zp,2 ≤ 5× I2, (3.68)

where for design 1, Zp denotes the (3 × 3) output covariance matrix corresponding to the

all performance outputs in zp grouped together. In design 2, Zp,1 denotes the (1 × 1)

output variance corresponding to the first performance output of zp and Zp,2 denotes the

(2×2) output covariance matrix corresponding to the second and third performance outputs
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grouped together.

The robustness of the closed-loop system with the dynamic output-feedback controller

with respect to uncertainty in the measurements of the time-varying parameter δ, the closed-

loop H∞ norms of the transfer functions of some appropriately defined extra inputs and

outputs that ‘pull out’ [19, 17] the uncertain parameters are bounded. The system H∞ used

for the dynamic output-feedback design is the same as given in (3.62), with the following

additions:

y(k) = Cy(δ(k))x(k) + w∞,3(k)

z∞,3(k) =

[
0 1 0

]
x(k)

(3.69)

such that the robustness requirement is now given by

‖Hz∞,iw∞,i(λ)‖∞ < η = 100, i = 1, 2, 3, (3.70)

where η defines the robustness level.

For each of the ℓ2-ℓ∞ designs (3.67)-(3.68), the LMIs in Theorem 10 are programmed

into MATLAB and solved with LMI Lab [22] to minimize the control energy Zu. As shown

in Fig. 3.5 and Fig. 3.7A, each design is feasible and the achieved covariance bound is tight

with the design bound in at least one dimension. The constraint in design 1 ensures that

the covariance bound ellipsoid of Zp remains inside of the sphere displayed in Fig. 3.1A.

Side views of the covariance bound Zp are displayed in Fig. 3.5B, Fig. 3.5C, and Fig. 3.5D.

As displayed in Fig. 3.5C, the output covariance Zp is tight with the bound in the zp,2-zp,3

plane.

For design 2, the constraints ensure that the variance of the first output of zp will be
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Figure 3.5: Design 1: The covariance bound Zp achieved compared to the constraint (3.60).
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Figure 3.6: Design 1: The output response of zp,1, zp,2, and zp,3 plotted against each other
for design 1 simulated with a positive (I1) and negative (I2) impulse function and compared
with the ℓ∞ norm bound.
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Figure 3.7: Design 2: A. The covariance bound Zp,2 achieved compared to the second
constraint in (3.61). B. The output response of zp,2 plotted against zp,3 for design 2 simulated
with a positive and negative impulse function and compared with the ℓ∞ norm bound.

below 5 and the covariance bound of second and third outputs of zp will remain inside of

the circle in Fig. 3.7A. The dashed ellipses in Fig. 3.7A are the obtained output covariances

at each of the vertices for i = 1, 2, and as shown they are tight with the bound.

To test the performance of each design, we again simulate each of the controllers with

a positive impulse (I1) followed by a negative impulse (I2) as displayed in Fig. 3.8A. To

see the effect of the time-varying parameter, the parameter δ was varied as displayed in

Fig. 3.8B. As before, the values used to compute the controller at each time step k are the

noisy measurements displayed with a gray dashed line. The response to the ℓ2 disturbance

wp(k) for design 1 is displayed in Fig. 3.6. The response in Fig. 3.6 is plotted inside of the

ℓ∞ norm constraint (the square root of the covariance bound) sphere and the achieved ℓ∞

norm bound ellipsoid. In Fig. 3.7B, the response of design 2 is plotted inside of the ℓ∞

norm constraint circle and the achieved ℓ∞ norm bound ellipse. The path of the response,

with respect to each of the impulses (I1) and (I2), is also displayed in Fig. 3.7B. As shown
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controller design.
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in Fig. 3.6 and Fig. 3.7B, the response for each design stays inside of the ℓ∞ bound. It is

interesting to note that the response to the positive impulse (I1) is larger than the response

to the negative impulse (I2). This is caused by the different time-varying parameter δ(k)

values at the time of each impulse, as is displayed in Fig. 3.8.

3.5 Conclusions

In this chapter, discussion motivating the necessity of the ℓ2− ℓ∞ gain performance criteria

was provided. Then, the ℓ2 − ℓ∞ gain performance criteria was introduced to allow for the

specification of hard constraints when designing gain-scheduling controllers. Controller syn-

thesis LMIs are provided for the synthesis of state-feedback and dynamic output-feedback

controllers with guaranteed ℓ2−ℓ∞ gain andH∞ performance. To demonstrate the effective-

ness of the controller synthesis LMIs provided in this chapter, gain-scheduled state-feedback

and dynamic output-feedback controllers are designed for a numerical example.
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Chapter 4

Gain-Scheduling Control of

Port-Fuel-Injection Processes

4.1 Introduction

Increasing concerns about global climate change and ever-increasing demands on fossil fuel

capacity call for reduced emissions and improved fuel economy. Port-fuel-injection (PFI)

fuel systems are widely used in vehicles today; however, direct-injection (DI) fuel systems

have also been introduced to markets globally. To improve the full load performance of DI

engines at high speed, Toyota introduced an engine with a stoichiometric DI system with

a DI injector and an intake port injector for each cylinder (see [29]). The use of gasoline

PFI and ethanol DI dual-fuel system to substantially increase gasoline engine efficiency is

described by [28]. This shows that with the introduction of DI fuel systems for the internal

combustion engine, PFI fuel systems will remain part of the engine fuel system for improved

engine performance, which is the main motivation for revisiting the air-to-fuel (A/F) ratio

control problem for a PFI fuel system.

There have been several fuel control strategies developed for internal combustion engines

to improve the efficiency and exhaust emissions. A key development in the evolution was

the introduction of a closed-loop fuel injection control algorithm [53], followed by the lin-

ear quadratic control method [14], and an optimal control and Kalman filtering design [47].
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Specific applications of A/F ratio control based on observer measurements in the intake

manifold were developed by [8]. Another approach was based on measurements of exhaust

gas A/F ratio measured by the oxygen sensor and on the throttle position [42]. [16] also

developed a nonlinear sliding mode control of A/F ratio based upon the oxygen sensor feed-

back. Continuing research efforts of A/F ratio control include adaptive approaches [62, 80],

observer-based controllers [46], H∞ controllers [36], model predictive controllers [38], sliding

mode controllers [43], and linear parameter-varying controllers [25, 82, 88]. Conventional

A/F ratio control for automobiles uses both closed-loop feedback and feedforward control to

have good steady state and fast transient responses.

For a spark-ignited engine equipped with a port-fuel-injection system, the wall-wetting

dynamics are commonly used to model the fuel injection process; and the wall-wetting effects

are compensated on the basis of simple time-invariant linear models that are tuned and

calibrated through engine dynamometer and vehicle tests. These models are quite effective

for an engine operated at steady state or slow transition conditions but they are difficult

to use at fast transient and other special operational conditions, for instance, during engine

cold start. One of the approaches to model the wall-wetting dynamics during engine cold

start is to describe it using a family of linear models to approximate the system dynamics

at a given engine coolant temperature, speed and load conditions, that is, to translate the

fuel system model into a linear parameter varying (LPV) system.

As stated earlier, the use of LPV modeling to control the A/F ratio of a port-fuel-

injection system has been reported by [25, 82, 88]. In [88], a continuous-time, LPV model is

developed considering only engine speed as a time-varying parameter. Due to the simplicity

of the model used, the issue of engine cold start is not addressed. Furthermore, the control

synthesis method used in [88] relies on gridding the parameter space at a finite number of
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grid points. In [82], a large variable time delay is present in the A/F ratio control loop for

a lean burn spark ignition engine. LPV control methods are used to compensate for the

variable time delay. In [25], a discrete-time, LPV model is developed with manifold absolute

pressure, exhaust value closing, and inlet value opening as the time-varying parameters.

However, only manifold absolute pressure is used as a scheduling parameter in the gain-

scheduling control that is synthesized. Also, [25] does not address the issue of engine cold

start. Additionally, all LPV control synthesis methods used by [25] are based in continuous

time, relying on Tustin’s (bilinear) transformation to convert the discrete-time system to a

continuous-time system, thus fixing the engine speed and sampling rate of the discrete-time

system. In contrast to all of these efforts, in this chapter an event-based, gain-scheduling

controller for an event-based, discrete-time LPV system with wall-wetting parameters and

engine speed as time-varying parameters is designed. To cope with practical situations,

the discrete-time LPV control synthesis method in Lemma 6 is used to develop the event-

based, gain-scheduling controller. An affine LPV model including the feedforward control

dynamics is obtained. Gain-Scheduling controllers have been synthesized to guarantee the

robust stability and performance of the affine LPV model.

The contribution of this chapter is as follows. First, an event-based, discrete-time LPV

model for the wall-wetting and oxygen sensor dynamics with wall-wetting parameters and

engine speed as scheduling variables is developed. Then an event-based, gain-scheduling

controller for the derived LPV model is designed. To cope with practical situations, the

discrete-time LPV control synthesis method given by [10] is used to develop the event-based,

gain-scheduling controller.

The control structures used in this study are proportional-integral (PI) and proportional-

integral-derivative (PID). PI controllers are widely used in industry since they are well un-
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Figure 4.1: Flowchart of the design and validation process of an LPV controller.

derstood by field control engineers. The PI gains are often calibrated in field tests for the

best performance as functions of system operational conditions. However, the system sta-

bility and performance are not guaranteed for all time-varying parameters. Therefore, LPV

techniques proposed in this chapter are applied to design gain-scheduling PI controllers for

guaranteed stability and performance for all time-varying parameters. Furthermore, the ad-

dition of derivative control to a PI controller adds an extra layer of complexity. The design

of a PID controller at a single operating point can be a difficult iterative procedure, which

would make calibrating PID gains as functions of system operational conditions very time

consuming. However, designing a gain-scheduling PID controller using LPV techniques pro-

vided in this chapter is as simple as adding a derivative channel to the control input. The

ability to design either a gain-scheduling PI or PID controller with guaranteed stability and

performance in one shot without requiring hours of calibration is expected to be well received

by industrial control engineers.

The process of designing an LPV controller for any automotive application is depicted
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in Fig. 4.1. Due to the complexity of internal combustion engines, designing controllers for

specific engine systems using an entire engine model is extremely difficult if even possible.

Therefore, to design a controller for a specific engine subsystem, first a physics-based simpli-

fied model is developed to represent the engine subsystem. After the varying parameters are

identified, the physics-based model can be transformed into an LPV model. LPV controller

design can then be carried out on the LPV model to develop an LPV controller. Once the

LPV controller is obtained it must be tested on the original engine to ensure that it meets

all stability and performance requirements. A cost effective way of validating developed

LPV controllers is to implement them in a rapid prototyping real-time control systems and

validate them through hardware-in-the-loop (HIL) simulations.

In this work, we first develop a physics-based model for the port-fuel-injection process

based on the wall-wetting dynamics and formulate it as an LPV system. The system param-

eters used in the engine fuel system model are engine speed, temperature, and load. These

system parameters can be obtained in real-time through physical or virtual sensors. A gain-

scheduling controller is then obtained for the derived LPV system based on the numerically

efficient convex optimization (or LMI) techniques. To validate the gain-scheduling PI and

PID controllers, HIL simulations were performed using a mixed mean-value and crank-based

engine model [79].

This chapter is organized as follows. The models and the modeling techniques used are

given in Section 6.2. The design of the gain-scheduling controller in Section 4.3 is covered by

first introducing the control strategy in Section 4.3.1. Then the feed-forward compensated

generalized plant is developed in Section 4.3.2 and its first-order Taylor series expansion is

computed in Section 4.3.3. Next the measurement for control is elaborated in Section 4.3.4.

The gain-scheduling synthesis problem is stated in Section 4.3.5. In Section 4.3.6, the aug-
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mented LPV plant obtained in Section 4.3.4 is converted into a polytopic time-varying sys-

tem, which is an LPV system with a polytopic dependency on a scheduling parameter that

takes values in the unit-simplex, so that the gain-scheduling controller synthesis technique

reviewed in Section 2.3.2 given by [10] can be performed. For comparison, a linear time-

invariant feedback H∞ controller is designed in Section 4.4 using the nominal parameters.

Simulation results from three separate engine operating conditions are presented in Sec-

tion 4.5. Next, an HIL simulation set up is introduced in Section 4.6 and components of

the mixed mean-value and crank-based engine model [79] are reviewed. In Section 4.7 the

results from the HIL simulations are presented. The concluding remarks are given in the

final section.

4.2 Event-based discrete-time system modeling

In this section, the dynamics of the plant (Fig. 4.2) will be carefully explained and modeled

to develop a control oriented linear parameter varying (LPV) model. The plant given in

Fig. 4.2 shows the port-fuel-injection process for a single cylinder engine. However, the

methods used in this chapter can be extended to a multiple cylinder engine by using the

individual cylinder fuel-gas ratio estimation method developed by [60].

4.2.1 Sampling period of the event-based discrete-time system

The discrete-time linear system is obtained by event-based sampling of the port-fuel-injection

process; hence the sampling time of this discrete-time system is the period of an engine cycle,

ts =
1

Ne

min.

rev.

(
60 sec.

1 min.

)(
2 rev.

1 cycle

)
=

120

Ne

sec.

cycle
, (4.1)
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Figure 4.2: The block diagram of the port-fuel-injection process and sensor dynamics.

where Ne represents the engine speed in revolutions per minute (rpm) (see general engine

modeling techniques in [7]).

4.2.2 Dynamics of the port-fuel-injection process

The wall-wetting dynamics can be described as follows:

mw(k) = (1− αk)mw(k − 1) + (1− βk)mi(k),

mc(k) = αkmw(k − 1) + βkmi(k),

(4.2)

where k ∈ Z≥0, and mw, mc, and mi denote the amount of fuel, on the wall, in the cylinder,

and injected, respectively. The coefficients α ∈ [0, 1], and β ∈ [0, 1], are the ratios of the fuel

delivered from the wall to the cylinder, and of the fuel entering the cylinder from injection,
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respectively. For notational simplicity, αk and βk will be used to denote the wall-wetting

parameters at time k, such that αk = α(k) and βk = β(k). These values can be estimated

online through an available set of engine sensors, which allows application of gain-scheduling

control to the plant. Using the discrete-time dynamics in (4.2), the transfer function G(q)

from mi to mc is

G(q) :=
mc(k)

mi(k)
=

βk + (αk − βk)q
−1

1− (1− αk)q
−1

, (4.3)

where q is the forward shift operator that satisfies qu(k) = u(k + 1). The dotted box in the

block diagram in Fig. 4.2 illustrates the fuel-injection process. The output of G(q) is the

input to the gain block of 1/m0
A, which is the nominal value of the inverse of the mass of air

trapped in the cylinder mA. The signal w1 represents the deviation

(
mc

mA
− mc

m0
A

)
,

which will be treated as a disturbance. Another constant gain factor c = 14.6 in Fig. 4.2

is the value for the air-to-fuel-ratio at stoichiometric. After the combustion delay block the

equivalence ratio y is generated. The diagram of the transfer function from the amount of

fuel injected mi and the disturbance w1 to the equivalence ratio y (inverse of normalized

air-to-fuel ratio) is shown in the dotted box in Fig. 4.2.

4.2.3 Dynamics of the oxygen sensor

To measure y, a full range oxygen sensor is placed in the exhaust manifold at some dis-

tance downstream from the exhaust valve. Notice that the continuous-time dynamics and
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delays will change in the event-based, discrete-time system according to the speed of the

engine (or the sampling time). Therefore, the objective of this section is to obtain oxygen

sensor dynamics in the form of the finite dimensional, event-based, discrete-time LPV sys-

tem. Finite dimensionality is required for the applicability of most LPV controller design

techniques and the controller design method which will be presented in Section 4.3. To this

end, in general, one can approximate the continuous-time system with a delay by a finite

dimensional event-based, discrete-time LPV system in any standard method. To illustrate

this procedure, we demonstrate how we approximate the oxygen sensor dynamics by Taylor

series approximation in which the approximation error can be minimized by increasing the

order of the Taylor series approximation.

The dynamics of the oxygen sensor are modeled as a first-order sensor delay coupled

with the transport delay of the exhaust gas mixture. The transport delay, TD =
d

Ne
, of the

exhaust gas mixture is both a function of the oxygen sensor placement, which determines

the constant d, and the engine speed, Ne. The combined transfer function in the continuous

time domain is

ys(s) =
exp (−TDs)

TO2
s+ 1

y(s), (4.4)

where ys is the equivalence ratio measured by the sensor and TO2
is the time constant of

the oxygen sensor. Since the delay

TD ∈
[

d

Ne
,
d

Ne

]
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is small, Equation (4.4) can be approximated by the second-order system

ys(s) =
1

TDs+ 1

1

TO2
s+ 1

y(s),

which has the state-space representation

ẋO2
=




− 1

TD

1

TD

0 − 1

TO2




︸ ︷︷ ︸
=:AO2

xO2
+




0

1

TO2




︸ ︷︷ ︸
=:BO2

y,

ys =

[
1 0

]

︸ ︷︷ ︸
=:CO2

xO2
.

(4.5)

Using ts as the sampling rate, the corresponding discrete system of Eq. (4.5) is

xO2
(k + 1) = AO2d

xO2
(k) +BO2d

y(k),

ys(k) = CO2d
xO2

(k),

(4.6)

where, due to the invertibility of the matrix AO2
in (4.5),

AO2d
= exp(AO2

ts),

BO2d
=

(∫ ts

0
exp(AO2

τ)dτ

)
BO2

= A−1
O2

(AO2d
− I)BO2

,

CO2d
= CO2

.

Since both TD and ts are functions of engine speed, Ne, naturally AO2d
and BO2d

are as

well. To capture this parameter variation, the matrices AO2d
and BO2d

are now computed
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for a given transport delay of TD =
80

Ne
. To solve for AO2d

, first AO2
is multiplied by ts

AO2
ts =




−Ne

80

Ne

80

0 − 1

TO2



120

Ne

=




−3

2

3

2

0 − 120

TO2
Ne


 .

(4.7)

Next, the matrix exponent of AO2
ts is computed, which gives

AO2d
=




exp

(
−3

2

)
p1(Ne)

0 p2(Ne)


 , (4.8)

where

p1(Ne) =

−3

2

(
exp

(
−3

2

)
− exp

(
− 120

TO2
Ne

))

− 120

TO2
Ne

+
3

2

, (4.9a)

p2(Ne) = exp

(
− 120

TO2
Ne

)
. (4.9b)

To represent the parameter variation in AO2d
, a fourth-order Taylor series approximation of

p1(Ne) and p2(Ne) is used. To ensure that the coefficients of the Taylor series approximations

of p1(Ne) and p2(Ne) are numerically stable with respect to the condition number [61],
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1

Ne
∈ [

1

Ne
,
1

Ne
] is normalized to γ in the following way:

γ =

1

Ne
− 1

Ne,0

1

Ne
+

1

Ne,0

where
1

Ne,0
=

1

Ne
+

1

Ne

2
. (4.10)

Solving equation (4.10) for
1

Ne
, and substituting into equations (4.9a) and (4.9b), p1(γ) and

p2(γ) are found to be

p1(γ) =

−3

2

(
exp

(
−3

2

)
− exp

(
− 120

TO2
Ne,0

(
1 + γ

1− γ

)))

− 120

TO2
Ne,0

(
1 + γ

1− γ

)
+

3

2

, (4.11a)

p2(γ) = exp

(
− 120

TO2
Ne,0

(
1 + γ

1− γ

))
. (4.11b)

Finally, the forth-order Taylor series approximation of AO2d
is represented with the following

lower LFT:

AO2d
= Fℓ(MAO2d

, γI4) (4.12)

where

MAO2d
=




exp

(
−3

2

)
a0 a1 a2 a3 a4

0 b0 b1 b2 b3 b4

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




(4.13)
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and

a1 =
1

1!

d1p1(0)

dγ1
, a2 =

1

2!

d2p1(0)

dγ2
, a3 =

1

3!

d3p1(0)

dγ3
, a4 =

1

4!

d4p1(0)

dγ4
,

b1 =
1

1!

d1p2(0)

dγ1
, b2 =

1

2!

d2p2(0)

dγ2
, b3 =

1

3!

d3p2(0)

dγ3
, b4 =

1

4!

d4p2(0)

dγ4
.

Now focusing attention on Bd, recall that BO2d
= A−1

O2
(AO2d

− I)BO2
(see (4.6)). Since

AO2d
is already found, A−1

O2
is now computed. The inverse of AO2

is given by

A−1
O2

= TDTO2




− 1

TO2

− 1

TD

0 − 1

TD


 =




−TD −TO2

0 −TO2


 =




− 80

Ne
−TO2

0 −TO2


 . (4.14)

Thus, A−1
O2

can be represented with the following lower LFT:

A−1
O2

= Fℓ

(
M

A−1
O2

,
1

Ne

)
, (4.15)

where

M
A−1
O2

=



0 −TO2

−80

0 −TO2
0

1 0 0


 . (4.16)

To normalize
1

Ne
to γ, the following upper LFT is used:

1

Ne
= Fu(Mγ , γ), where Mγ =




1 1
2

Ne,0

1

Ne,0


 . (4.17)

The approximated state-space matrices ÂO2d
and B̂O2d

are represented in Fig. 4.3 by

their respective dotted boxes. The approximated state matrix ÂO2d
block is formed by the
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CO2dq−1I2

MAO2d

MAO2d
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γkI4 γk

Mγ

y ys

Figure 4.3: Block diagram of the combined dynamics of the exhaust gas and sensor delays.

lower LFTMAO2d
connected to the time-varying parameter matrix γkI4. The approximated

input matrix B̂O2d
block is formed by the matrix multiplications of BO2d

in Eq. (4.6). The

ÂO2d
, B̂O2d

, and CO2d
blocks are then connected in the standard state-space intercon-

nection [58]. After performing the interconnection displayed in Fig. 4.3, the fourth-order

approximated system used for controller design is given by

x̂O2
(k + 1) = ÂO2d

(γk)x̂O2
(k) + B̂O2d

(γk)y(k),

ŷs(k) = CO2d
x̂O2

(k),

(4.18)

where

ÂO2d
(γk) =


 exp(−120

d
) a(γk)

0 b(γk)


 ,

B̂O2d
(γk) =




d (γk + 1)

v0 (γk − 1)

(
a(γk)

TO2

)
− b(γk) + 1

1− b(γk)


 .

The approximated state matrix ÂO2d
(γk) follows directly from (4.8). The approximated
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Figure 4.4: Comparison of the response to a unit step function for the 4th order Taylor
series approximation model in Eq. 4.18 (dashed line) and a model Eq. 4.6 with the engine
speed fixed at 3500 rpm (dash-dot line) to the exact discretized oxygen sensor delay model
in Eq. 4.6 (solid line) at 1000 rpm and 6000 rpm.

input matrix B̂O2d
(γk) follows from the matrix operations performed to compute BO2d

in

(4.6). The following polynomial functions a(γk) and b(γk):

a(γk) = 0.3972− 0.4891γk − 0.0984γ2k + 0.0608γ3k + 0.0975γ4k,

b(γk) = 0.3114− 0.7266γk + 0.1211γ2k + 0.3095γ3k + 0.2231γ4k,

were found when selecting an oxygen sensor time constant of TO2
= 0.06 seconds and a

transport delay of TD =
80

Ne
, by setting d = 80, indicating that the transport delay is about

54 ms at an engine speed of 1500 rpm. This was determined empirically through engine

calibration tests.

To demonstrate the effectiveness of the proposed model for the event-based sampling of

the oxygen sensor delay, a comparison is made between the proposed 4th order Taylor series

approximation model and a fixed model computed at the nominal engine speed (3500 rpm).
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In Fig. 4.4, the step response of the 4th order Taylor series approximation model (dashed

line) is compared to the exact discretized model (solid line) at engine speeds of 1000 rpm

and 6000 rpm. The fixed model computed at the nominal engine speed (dash-dot line) is

also compared to the exact model in Fig. 4.4. It is clear that the fixed model computed

at the nominal engine speed either responds too slowly when the engine speed is less than

the nominal speed or too quickly when the engine speed is greater than the nominal speed.

However, the approximated model’s response very closely follows the exact model’s response

as shown in Fig. 4.4.

4.2.4 An LPV system

In summary, by combining the wall-wetting dynamics in (4.2) and the oxygen sensor delay

and dynamics in (4.18) as shown in Fig. 4.2, we obtain the following LPV system for the

event-based discrete-time port-fuel-injection and oxygen sensor dynamics:




xww(k + 1)

xcomb(k + 1)

x̂O2
(k + 1)


 =




1− αk 0 0
cαk
m0

A

0 0

0 B̂O2d
(γk) ÂO2d

(γk)







xww(k)

xcomb(k)

x̂O2
(k)




+




1− βk

cβk
m0

A

0


mi(k) +


0c
0


w1(k),

z(k) =
[
0 0 −CO2d

]



xww(k)

xcomb(k)

x̂O2
(k)


+ w2(k),

(4.19)

where xww(k) = mw(k − 1) and xcomb(k) are the wall-wetting state and the combustion

state for the system in the dotted box in Fig. 4.2.
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Table 4.1: Modeling parameters.

Parameter Value used in Study
TO2

is a constant 0.06

TD is a function of engine speed, Ne
80

Ne

Table 4.2: Measurable time varying parameters (scheduling parameters).

α(cylinder head temperature(t),manifold absolute pressure(t)) ∈ [0.081, 0.1]
β(cylinder head temperature(t),manifold absolute pressure(t)) ∈ [0.28, 0.89]

γ(Ne(t)) =

1

Ne(t)
− 1

Ne,0

1

Ne(t)
+

1

Ne,0

∈ [−0.55556, 0.26316]

As can be seen from (Eqs. 4.5, 4.6, 4.18, and 4.19), to apply the model of the LPV system,

one needs to identify TD and TO2
(which are shown in Table 4.1) and measurable time

varying parameters such as α, β, and γ (which are shown in Table 6.1), which will be used

for scheduling the gain of the controller. In particular, the identified bounds of scheduling

variables ([α, α], [β, β] and [γ, γ]) as shown in Table 6.1 will be used in synthesizing the

gain-scheduling controller. From now on, a compact notation Θ will denote an appropriate

gain-scheduling matrix that contains the scheduling variables. The specific structure of Θ

will be presented in Eq. (4.24) of Section 4.3.2. In addition, the LPV system in Eq. (4.19)

is denoted by P (Θ). In the following section, we illustrate how to design the LPV gain-

scheduling controller as a function of Θ for the LPV model developed in this section.
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Figure 4.5: The proposed control strategy for the fuel injection process (without the weight-
ing functions W1(q) and W2(q)). Weighting functions W1(q) and W2(q) are only used for
controller synthesis. A first-order Taylor series expansion is applied to the to the systems
inside the dashed box and the LPV control strategy is applied to the all of the systems inside
of the bold box.

4.3 LPV gain-scheduling controller design

4.3.1 Control Strategy

The objective of the control system is to regulate the equivalence ratio y to a reference input

w2 using feed-forward and feedback control against the disturbance signal w1 (See Fig. 4.2)

and the time-varying wall-wetting dynamics. In particular, we want to guarantee the stability

of the closed-loop system and also minimize the effect of the disturbances for any conceivable

wall-wetting dynamics variations. The proposed control architecture is illustrated in Fig. 6.2.

This scheme has five possible components, that is a feedback controller K(Θ), a feed-forward

controller Kf (Θ), a filter L(q), an integrator I(q), and possibly a differentiator D(q) (if a

PID controller is desired).

86



The feedback controller K(Θ) will be designed for the generalized plant (solid box of

Fig. 6.2), after selecting Kf (Θ), L(q), I(q), possibly D(q), and weighting functions W1(q)

and W2(q). Next, we will explain how to select these functions. After the selection, we will

derive the generalized plant in Section 4.3.4 and we will synthesize K(Θ) for the derived

generalized plant in Section 4.3.5.

The feed-forward controller Kf (Θ) is designed using the inverse of cG(q)

Kf (Θ) =
G−1(q)

c
=

1

c

(
1− (1− αk)q

−1

βk + (αk − βk)q
−1

)
.

The selection of the inverse of the plant as a feed-forward controller is a standard technique

[58]. The input to the feed-forward controller is the mass of the air mA, which can be

measured online, multiplied by the equivalence ratio set point w2. This is denoted by w3,

such that w3 = w2mA. L(q) is designed as a low-pass filter such that the error output z(k)

is filtered with it

L(q) =
0.9999

q − 0.0001405
.

The reason to filter the error output is that the control synthesis technique given by [10]

requires that the output matrix be independent of the time-varying parameters and the

measurement for control must not be corrupted by the unweighted exogenous input, w̃(k)

of the generalized plant. The low-pass filtering for this purpose is a standard procedure

[2]. The low-pass filter L(q) was obtained from the discretization of the following first-order

continuous transfer function:

Lc(s) =
2πfc

s+ 2πfc

with a sample period of
120

Ne,0
. The cut-off frequency fc of Lc(s) was selected to be 20 Hz,
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which is high enough to obtain low error between the intended output of the continuous-time

filter Lc(q) and the observed output of the discrete-time filter L(q) at different engine speeds,

since the sampling rate is engine speed dependent. The filtered output is also integrated using

the integrator

I(q) =
1

q − 1

to obtain zero steady-state error. To enhance the response of the closed-loop system when

large changes in w1 are present, then derivative action [5]

D(q) :=
eD(k)

eP (k)
=

F (q − 1)

(F + 1)q − 1

is introduced, where F is chosen to set the location of the pole of the derivative filter. Notice

that I(q) and D(q) are not functions of the sampling rate, ts. This is due to the requirement

that, as previously stated, that the output matrix Ĉ2 be independent of the time-varying

parameters. For this reason, I(q) is really just a numerical summation and D(q) is a filtered,

numerical differencer.

To use ℓ2 gain or H∞ norm [84] for the performance criterion for shaping the frequency

response of the closed-loop system, weighing functions (which can be considered design

parameters) are also introduced in Fig. 6.2. The weighting functions are selected in the

continuous-time domain as

W c
1 (s) =

100

50s+ 1
,

W c
2 (s) =

(
20

50s+ 1

)2

.

The bandwidth (or cut-off frequency) of each weighting function is very small and the DC
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Figure 4.6: Magnitude plot of the weighting functions W1 and W2.

gain is large, as shown in Fig. 4.6. The weighting functions are selected to model the

frequency content of their respective input. For the fuel-to-air ratio disturbance w1, the

weighting function W c
1 (s) is selected as a simple first-order low-pass filter to place an em-

phasis on low frequency disturbances, such as a step throttle change. The weighting function

W c
2 (s) is chosen to be a second-order low-pass filter with a high DC gain (4 times larger than

that of W c
1 (s)) to provide more weight on the low frequency signals since w2 is the step input

of the desired equivalence ratio. To incorporate the weighting functions W c
1 (s) and W c

2 (s)

into the discrete time system, they were discretized at a sample period of
120

Ne,0
to obtain the
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following discrete-time weighting functions:

W1(q) =
0.1411

q − 0.9986
,

W2(q) =
0.0003982q + 0.0003979

q2 − 1.997178q + 0.997180
.

The input to each of the weighting functions are the unweighted exogenous inputs which are

denoted by w̃1, w̃2, and w̃3. Since there is no weighting function for w3, in this case w̃3 = w3;

which means that it is weighted equally at all frequencies. Notice that the weighting functions

are chosen by the expected system inputs and their relative (frequency) importance, and they

are only used for controller synthesis [84, 58].

4.3.2 Feed-forward compensated generalized plant

The feed-forward compensated generalized plant is denoted by H(Θ). As depicted in the

dashed box of Fig. 6.2, the feed-forward compensated generalized plant consists of the feed-

forward controller Kf (Θ), the plant P (Θ), and the weighting functions W1(q) and W2(q).

The components of the feed-forward controller Kf (Θ) and the plant P (Θ) are illustrated in

Fig. 4.7. The feed-forward controller Kf (Θ) components are encased inside of the dashed

box in Fig. 4.7 and the plant P (Θ) components are outside of the dashed box.

In the feed-forward control compensated generalized plant H(Θ), the time-varying pa-

rameters αk and βk are equivalently transformed to a constant nominal value plus a time-

varying fluctuation. For instance, the parameter variation of αk ∈ [α, α] with α0 =
α+ α

2

is represented by

αδ(k) = αk − α0 ∈ [α− α0, α− α0],

so that the parameter range of αδ(k) is centered around zero. Hence, αk is replaced by
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Figure 4.7: The feed-forward control compensated generalized plant with the time-varying
parameters included.

α0 + αδ(k). The same is done for βk ∈ [β, β] as well. The parameter variation of v is

represented by γ as shown in Eq. (4.10). The upper LFTs (see Appendix A) inside the

dotted box in Fig. 4.7, M1/β and Mα/β are used to isolate the time-varying parameters

βδ(k) and αδ(k) [84]. βδ is isolated from
1

βk
by

1

βk
=

1

β0 + βδ(k)
= Fu

(
M1/β, βδ(k)

)
, (4.20)
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where

M1/β =




− 1

β0
− 1

β0
1

β0

1

β0


 . (4.21)

Both βδ(k) and αδ(k) are isolated from
αk
βk

by

αk
βk

=
α0 + αδ(k)

β0 + βδ(k)
= Fu

(
Mα/β ,∆(k)

)
, (4.22)

where

Mα/β =




− 1

β0
− 1

β0
−α0
β0

0 0 1
1

β0

1

β0

α0
β0



, and ∆(k) =




βδ(k) 0

0 αδ(k)


 .

With the parameter variation represented in this way, the system is written as a discrete-

time LPV system with LFT parameter dependency,




x(k + 1)

l(k)

z(k)



=




A B0 B1 B2

C0 D00 D01 D02

C1 D10 D11 D12







x(k)

p(k)

w̃(k)

u(k)




,

p(k) = Θ(k)l(k),

(4.23)

where x(k) ∈ Rn is the state at time k, w̃(k) ∈ Rr is the unweighted exogenous input,

z(k) ∈ Rp is the error output, p(k), l(k) ∈ R
np are the pseudo-input and pseudo-output

connected by Θ(k), and u(k) ∈ R
m is the control input. The state-space matrices for the

LPV system in (4.23) are provided in Appendix B.

92



The time-varying parameter Θ in Eq. (4.23) follows the structure

Θ ∈ Θ = {diag(βδI3, αδI2, γI9) : |αδ| ≤ δ1, |βδ| ≤ δ2, |γ| ≤ 1}, (4.24)

where δ1 =
α− α

2
and δ2 =

β − β

2
.

4.3.3 First-order Taylor series expansion of the LPV system

By inspection of the LPV system in Eq. (4.23), D00 was found to be a non-zero matrix.

Hence, the system matrices are not affine functions, i.e., a linear combination of the time-

varying parameters plus a constant translation. It is noted at this juncture that LPV control

techniques exist which do handle rational parameter variation, namely the method developed

by [75]. However, for discrete-time systems, no controller formula covering all parameter

variation is given by [75]. Instead, for each set of parameters a controller must be solved

for using the method given by [21]. Since a different controller is needed for each set of

parameters, gridding over the parameter space [1] is necessary, which increases the complexity

of implementing the controller in practice. In contrast, the method developed by [10] does

not require any gridding over the parameter space. Also, as shown in Eq. (4.24) and Table 6.1

each of the parameters are less than 1 at all times. Therefore, neglecting the higher-order

parameter variation is a justifiable approximation. Hence, to utilize the control synthesis

technique given by [10], we calculate the first-order Taylor series approximation of the system

matrices to obtain affine functions in Θ. To find the Taylor series expansion, first the LFT
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(4.23) is re-arranged to the following representation:




l(k)

x(k + 1)

z(k)


 =



D00 C0 D01 D02

B0 A B1 B2

D10 C1 D11 D12




︸ ︷︷ ︸
=:M




p(k)

x(k)

w̃(k)

u(k)


 ,

p(k) = Θ(k)l(k).

(4.25)

Notice that Eq. (4.25) is an upper LFT, i.e.,

H(Θ) := Fu(M,Θ)

=

[
A B1 B2

C1 D11 D12

]
+

[
B0

D10

]
Θ (I −D00Θ)−1

[
C0 D01 D02

]
.

(4.26)

Using the Taylor series expansion at Θ = 0, the system can be approximated as

Ĥ(Θ) = H(0) + αδ

[
▽αδ

H(0)
]
+ βδ

[
▽βδ

H(0)
]
+ γ

[
▽γH(0)

]
,

=:


 Â(αδ, βδ, γ) B̂1(αδ, βδ, γ) B̂2(αδ, βδ, γ)

Ĉ1(αδ, βδ, γ) D̂11(αδ , βδ, γ) D̂12(αδ , βδ, γ)


 ,

(4.27)

where the relationship between αδ , βδ , and γ, and Θ can be found in Eq. (4.24) and [▽aH(0)]

is the partial derivative of the LFT system H(Θ) in Eq. (4.26) with respect to a, which can

be calculated as shown by [39]. The state-space representation after performing the Taylor

series expansion is given by

[
x(k + 1)

z(k)

]
=


 Â(αδ, βδ, γ) B̂1(αδ, βδ, γ) B̂2(αδ, βδ, γ)

Ĉ1(αδ, βδ, γ) D̂11(αδ, βδ, γ) D̂12(αδ, βδ, γ)






x(k)

w̃(k)

u(k)


 . (4.28)
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4.3.4 An augmented LPV system for synthesis

To create an appropriate measurement for gain-scheduling control, the LPV system Ĥ(Θ)

must be augmented with the low-pass filter L(q), the integrator I(q), and the numerical

differencer D(q) (when designing a gain-scheduled PID controller).

4.3.4.1 PI Control

After augmenting the affine LPV system with the low pass filter and the integrator the

augmented state space representation is given by



xAUG(k + 1)

z(k)

e(k)


 =




Ã(αδ, βδ, γ) B̃1(αδ, βδ, γ) B̃2(αδ, βδ, γ)

C̃1(αδ, βδ, γ) D̃11(αδ , βδ, γ) D̃12(αδ , βδ, γ)

C̃2 0 0






xAUG(k)

w̃(k)

u(k)


 (4.29)

where the augmented states are given by xAUG(k) =
[
x(k)T xL(k) xI (k)

]T
∈ R

nAUG with

nAUG = n+2, and the measurement for control is given by e(k) = [eP (k) eI(k)]
T ∈ R

q with
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q = 2. The state-space matrices are given by

Ã(αδ, βδ, γ) =




Â(αδ, βδ, γ) 0 0

BLĈ1(αδ, βδ, γ) AL 0

0 CL 1


 ,

B̃1(αδ, βδ, γ) =




B̂1(αδ, βδ, γ)

BLD̂11(αδ, βδ, γ)

0


 ,

B̃2(αδ, βδ, γ) =




B̂2(αδ, βδ, γ)

BLD̂12(αδ, βδ, γ)

0


 ,

C̃1(αδ, βδ, γ) =
[
Ĉ1(αδ, βδ, γ) 0 0

]
,

C̃2 =

[
0 CL 0

0 0 1

]
,

and D̃11(αδ, βδ, γ) = D̂11(αδ, βδ, γ), D̃12(αδ, βδ, γ) = D̂12(αδ, βδ, γ). The matrices (AL,

BL, CL) represent the state-space matrices of the low-pass filter L(q).

4.3.4.2 PID Control

When designing a gain-scheduling PID controller, the augmented the affine LPV system with

the low pass filter, the integrator, and the numerical differencer, the augmented state space

representation is given by



xAUG(k + 1)

z(k)

e(k)


 =




Ã(αδ, βδ, γ) B̃1(αδ, βδ, γ) B̃2(αδ, βδ, γ)

C̃1(αδ, βδ, γ) D̃11(αδ , βδ, γ) D̃12(αδ , βδ, γ)

C̃2 0 0






xAUG(k)

w̃(k)

u(k)


 (4.30)

where the augmented states are given by xAUG(k) =
[
x(k)T xL(k) xI (k) xD(k)

]T
∈ R

nAUG

with nAUG = n+3, and the measurement for control is given by e(k) = [eP (k) eI(k) eD(k)]T ∈
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R
q with q = 3. The state-space matrices are given by

Ã(αδ, βδ, γ) =




Â(αδ, βδ, γ) 0 0 0

BLĈ1(αδ, βδ, γ) AL 0 0

0 CL 1 0

0 BDCL 0 AD



,

B̃1(αδ, βδ, γ) =




B̂1(αδ, βδ, γ)

BLD̂11(αδ, βδ, γ)

0
0


 ,

B̃2(αδ, βδ, γ) =




B̂2(αδ, βδ, γ)

BLD̂12(αδ, βδ, γ)

0
0


 ,

C̃1(αδ, βδ, γ) =
[
Ĉ1(αδ, βδ, γ) 0 0 0

]
,

C̃2 =



0 CL 0 0

0 0 1 0
0 DDCL 0 CD


 ,

and D̃11(αδ, βδ, γ) = D̂11(αδ, βδ, γ), D̃12(αδ, βδ, γ) = D̂12(αδ, βδ, γ). The matrices (AL,

BL, CL) represent the state-space matrices of the low-pass filter L(q) and the the matrices

(AD, BD, CD, DD) represent the state-space matrices of the filtered, numerical differencer

D(q).

4.3.5 A gain-scheduling control synthesis problem

Having augmented all components for the controller synthesis, we need to synthesize the

H∞ gain-scheduling controller K(Θ). The ℓ2 gain of the LPV system in Eq. (4.29) with a
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gain-scheduling feedback controller is defined as

max
Θ∈Θ,‖w̃‖ℓ2 6=0

‖z‖ℓ2
‖w̃‖ℓ2

. (4.31)

Now we formally state the gain-scheduling control design problem.

Problem : The goal is to design a static gain-scheduling control u(k) = K(Θ)e(k) that

stabilizes the closed-loop system and minimizes the worst-case ℓ2 gain (H∞ norm) of the

closed-loop LPV system in Eq. (4.31) for any trajectories of Θ(k) ∈ Θ.

The gain-scheduling method provided by [10] guarantees an H∞ cost such that for an

exogenous input w̃, the performance output z satisfies

‖z‖ℓ2 < η ‖w̃‖ℓ2,

for any trajectories of Θ(k) ∈ Θ. This method was derived for discrete-time polytopic time-

varying systems. Therefore, in the next section, we will transform the augmented, affine

system into a polytopic time-varying system to synthesize the controller.

4.3.6 Controller synthesis for polytopic linear time-varying sys-

tem

The augmented state-space representation (Ã(αδ, βδ, γ), B̃1(αδ , βδ, γ), ...) in either (4.29) or

(4.30) can be converted into a discrete-time polytopic time-varying system (Ā[λ(k)], B̄1[λ(k)],

...) by using the state-space matrices at vertices {Vi} of the parameter space polytope

displayed in Fig. 4.8. Any system inside of the convex parameter set is represented by a

convex combination of the vertex systems as weighted by the vector λ(k) of barycentric
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Figure 4.8: Parameter space polytope.

coordinates. Barycentric coordinates are used to specify the location of a point as the center

of mass, or barycenter, of masses placed at the vertices of a simplex. [64] provides a formula,

which is covered in Appendix 2.1.2, for computing the barycentric coordinates for any convex

polytope. The discrete-time polytopic linear time-varying system is given by



x(k + 1)

z(k)

e(k)


 =




Ā[λ(k)] B̄1[λ(k)] B̄2[λ(k)]

C̄1[λ(k)] D̄11[λ(k)] D̄12[λ(k)]

C̄2 0 0






x(k)

w(k)

u(k)


 ,

e(k) =
[
eP (k) eI(k)

]T
,

(4.32)

where, for all k ∈ Z≥0, λ(k) is the vector of time-varying barycentric coordinates that belong

to the unit simplex (2.12). A way to compute the barycentric coordinate vector λ(k) for a

given αδ(k), βδ(k), and γ(k) is provided in Appendix 2.1.2. For all k ∈ Z≥0, the rate of

variation of the weights

∆λi(k) = λi(k + 1)− λi(k), i = 1, · · · , N
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is limited by the calculated bound b such that

−bλi(k) ≤ ∆λi(k) ≤ b(1− λi(k)), i = 1, · · · , N (4.33)

where b ∈ [0, 1].

The system matrices Ā[λ(k)] ∈ Rn×n, B̄1[λ(k)] ∈ Rn×r, B̄2[λ(k)] ∈ Rn×m, C̄1[λ(k)] ∈

Rp×n, D̄11[λ(k)] ∈ Rp×r, D̄12[λ(k)] ∈ Rp×m belong to the polytope

D = {(Ā, B̄1, B̄2, C̄1, D̄11, D̄12)(λ(k)) :

(Ā, B̄1, B̄2, C̄1, D̄11, D̄12)(λ(k))

=
N∑

i=1

λi(k)(Ā, B̄1, B̄2, C̄1, D̄11, D̄12)i, λ(k) ∈ ΛN}.

The system matrices at any time k are the weighted summation of vertex system matrices

{Vi} weighted by their barycentric coordinates λi(k), i.e.

Ā(k) =

N∑

i=1

λi(k)Ā(Vi), i = 1, · · · , N.

The same computation holds for B̄1, B̄2, C̄1, D̄11, and D̄12 as well.

Lemma 6 provides a finite set of LMIs that can be used to design the gain-scheduling

controller. Due to Lemma 6, if there exists matrices Gi,1 ∈ Rq×q, Gi,2 ∈ R
(nAUG−q)×q,

Gi,3 ∈ R
(nAUG−q)×(nAUG−q), Zi,1 ∈ Rm×q and symmetric matrices Pi ∈ R

nAUG×nAUG

such that the LMI conditions in Eq. (2.44) and Eq. (2.45) are satisfied, the gain-scheduling

static feedback control is then obtained as shown in (2.46). The LMI’s in Eqs. (2.44) and

(2.45) are solved by programming them into MATLAB using the LMI lab solver [22], which

is included in the Robust Control toolbox. The matrices Gi,1, Gi,2, Gi,3, Zi,1, Pi, and the
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H∞ cost η are programmed in MATLAB as free matrix variables for the LMI optimization

to choose. During the solution process, the the H∞ cost η is minimized until the optimal

solution is obtained.

4.4 Design of LTI Feedback Controller

The open-loop state-space plant used for designing this controller is the same as the one in

Fig. 4.7, but has the low-pass filter L(q) and the integrator I(q) added without performing

any Taylor series expansion. Using the nominal parameters, the closed-loop state-space

representation is

x(k + 1) = ACL(K)x(k) +B1w(k),

z(k) = CCL(K)x(k) +D11w(k),

(4.34)

where

ACL(K) = A+B2KC2 and CCL(K) = C1 +D12KC2.

Denoting the transfer function from w to z by Hwz , the inequality ‖Hwz‖2∞ < µ holds if,

and only if, there exists a symmetric matrix P such that




P ACL(K)P B1 0

PAT
CL(K) P 0 PCT

CL(K)

BT
1 0 I DT

11

0 CCL(K)P D11 µI




≻ 0 (4.35)
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is feasible [17]. The optimal feedback controller K for the closed-loop system (4.34) is

formulated as the optimization of the bilinear matrix inequality (BMI)

min
µ,P,K

µ subject to (4.35) (4.36)

where P = PT ∈ Rn×n and K ∈ R1×2 for a PI controller or K ∈ R1×3 for a PID controller.

The BMI (4.36) was solved using the PENBMI software [33] as a MATLAB function in

conjunction with the YALMIP [34] programming interface to find the fixed H∞ PI controller

KPI = [1.8260 0.3205] and the PID controller KPID = [1.4871 0.5009 0.8942].

4.5 Simulation Results

To validate the effectiveness of the proposed gain-scheduling controller, simulations are shown

using the original plant in Eq. (4.23) for the following cases: engine cold start, load change,

and engine speed change.

The necessity of a gain-scheduled controller is demonstrated by comparing its perfor-

mance with that of a fixed gain H∞ controller for the nominal parameters. The fixed gain

H∞ control synthesis procedure is reviewed in Appendix 4.4.

In each simulation, the time varying parameters α and β are corrupted by low-pass

filtered white noise of up to 10% their nominal values to represent the slowly drifting offset

that might occur in practical situations. To see transient responses, the initial conditions

of the plant for Case 1 were chosen such that a little extra fuel is injected at first, giving

a slightly higher equivalence ratio than 1. The initial conditions in Cases 2 and 3 were set

such that the plant would start with an equivalence ratio of 1. For the following simulation
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cases, the extracted profiles of time varying parameters from engine dynamometer tests were

used.

4.5.1 Case 1: Engine Cold Start

We simulate an engine operation when it was started at freezing temperatures (0◦C) and

heated to its normal operation temperature of approximately 100◦C within about 2 minutes

at an engine speed of 1500 rpm. The purpose of this simulation is to emulate the cold

start of an internal combustion engine when the engine is operated at high idle speed during

the warm-up. Note that during the engine warm-up process the fuel vapor is much less

at low temperature than that at high temperature. Therefore, this leads to quite different

wall wetting dynamics. The wall wetting dynamics coefficients α and β defined in Eq. (4.3)

were obtained from actual engine test data and they are functions of engine cylinder head

temperature, speed and load. Since speed and load are fixed in this simulation, both α and

β are functions of engine temperature and their values are shown in Fig. 4.9E. Notice that

the transient response at 25 seconds in Fig. 4.9 is due to the change in the wall-wetting

parameters as shown in Fig. 4.9E. When the engine has been warming up for about 90

seconds, the closed-loop system with the fixed H∞ controller becomes unstable, while the

LPV controller remains stable. Thus, in Fig. 4.9A, one can readily see the LPV controller’s

advantage of guaranteed stability as the parameters vary with time.

4.5.2 Case 2: Load Change

In this case we simulate an engine dynamometer experiment for an engine operated at a

temperature of 80◦C with an engine speed of 1500 rpm. After the engine is stably operated
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Figure 4.9: Case 1 Engine Cold Start: In plots A, B, C, and D the equivalence ratio y(k),
proportional control up(k), integral control ui(k), and the feed-forward control are compared
for the gain-scheduling feedback controller (solid line) and the fixed H∞ controller (dashed
line). The time varying parameters α (dotted line, left axis) and β (dash-dot line, right axis)
are displayed in plot E.
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at this condition with a 32% throttle, the load is increased by a step throttle position from

32% to 46%. Note that in the dynamometer test, the engine speed was maintained by

dynamometer by increasing the load torque. This is similar to the driving condition that a

step throttle is applied to maintain the vehicle speed when the vehicle is driven up a hill.

Note that the step increment of throttle position produces a slight change in the wall-wetting

parameter β as shown in Fig. 4.10E. But in Fig. 4.10, one can find the benefit of guaranteed

performance of the gain-scheduling controller over the time-varying parameters. Note that

the step throttle occurred at the 30th second results in a momentary spike in the equivalence

ratio due to the step air mass flow; but it is quickly pulled back into its target level by the

gain-scheduled controller, while the fixed H∞ controller takes much longer time with a lot

of oscillations and uses more control effort.

4.5.3 Case 3: Engine Speed Change

In this simulation, an engine was operated in a dynamometer with its cylinder head tempera-

ture at 80◦C. To demonstrate the capability for the gain-scheduling controller to handle fast

engine speed variations, smoothed step commands were applied to the engine dynamome-

ter to manipulate the engine speeds shown in Fig. 4.11F. The resulting engine wall-wetting

dynamic parameters, shown in Fig. 4.11E, were used in the simulation. In Fig. 4.11A, one

can see that both controllers, gain-scheduling and fixed H∞, regulate the engine equivalence

ratio to its target value of one within 5% error except at 25th second when the engine speed

was increased abruptly from 1000 rpm to 4500 rpm. In this case, the engine equivalence ratio

response converges to its target value smoothly for the gain-scheduling controller but with a

lot of oscillations for the fixed H∞ controller. This situation is similar to a transmission gear

shifting where a rapid engine speed change may occur. Again, one can see the advantage of
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Figure 4.10: Case 2 Load Change: In plots A, B, C, and D the equivalence ratio y(k),
proportional control up(k), integral control ui(k), and the feed-forward control are compared
for the gain-scheduling feedback controller (solid line) and the fixed H∞ controller (dashed
line). The time varying parameters α (dotted line, left axis) and β (dash-dot line, right axis)
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guaranteed performance over the time-varying parameters as the gain-scheduled controller

regulates the equivalence ratio back into safe limits quicker and with less overshoot than the

fixed H∞ controller.

4.6 HIL Simulation

The engine model used for the HIL simulation is a control oriented four cylinder dual fuel

mean-value engine model developed at Michigan State University [79], which satisfies the

requirements of validating an engine controller. The term “mean-value” indicates that the

developed engine model neglects the reciprocating behavior of the engine, assuming all pro-

cesses and effects are spread out over the engine cycle. For the HIL simulation, this model

describes the input-output behavior of the physical engine systems with reasonable simu-

lation accuracy using relatively low computational throughput. Ref. [26] provides a good

overview of engine modeling, and most of dynamic equations used in our modeling work are

from this reference book. This engine model also includes all engine transient dynamics.

Figure 4.12 shows the overall mean-valve engine model architecture, along with main sub-

system models, such as air-to-fuel ratio, manifold air pressure (MAP), brake mean effective

pressure (BMEP), engine torque, exhaust temperature, etc.

4.6.1 Mean Value Engine Models

The subsystems that are described mathematically by their averaged dynamic behaviors are

given below.
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Figure 4.11: Case 3 Engine Speed Change: In plots A, B, C, and D the equivalence ratio y(k),
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Figure 4.12: Mean Value Engine Model.

4.6.1.1 Valve Model

The valve model is used to compute the mass flow rate of air across the valve. The model

used for the intake throttle and the EGR valve follow the governing equations

mv = Cd(θ)A(θ)
Pu√
RTu

Ψ

(
Pd
Pu

)
, (4.37)

and

Ψ

(
Pd
Pu

)
=





√
2
Pd
Pu

(
1− Pd

Pu

)
if

1

2
<

Pd
Pu

< 1,

1√
2

if
Pd
Pu

<
1

2
,

(4.38)

where Cd is the valve discharge coefficient; θ is the valve opening angle; R is the gas constant;

A is the valve open area; Pu and Tu are the pressure and temperature upstream from the

valve; and mv is the mass flow rate across the valve. The governing equations (4.37)-(4.38)

follow the assumption that the spacial effects of the connecting pipes before and after the

valve are neglected and that the thermodynamic characteristics of the connecting pipes are

isentropic expansion.
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4.6.1.2 Manifold Filling Dynamic Model

The manifold pressure of the intake and the exhaust is computed as a function of time by

the governing equation

Pm(t) = Pm(0) +

∫ t

0

RTm
Vm

(min −mout)dt (4.39)

where Pm is the manifold pressure; Tm is the manifold temperature; Vm is the manifold

volume; min and mout are the inlet and outlet air mass flow rates; and R is the universal

gas constant. The assumptions made by the governing equation (4.39) are that the receiving

behavior is an adiabatic process; the thermodynamic states are uniform over the manifold

volume; and the manifold temperature is averaged over one engine cycle.

4.6.1.3 Engine Respiration Model

The mass flow rate of the air across of the engine cylinders, me, is computed by the engine

respiration model

ṁe =
Pin
RTin

VdNe

30
κ

(
Pout
Pin

, v

)
(4.40)

where κ is a two degree of freedom look-up table; Pin and Tin are the mean pressure and

temperature at the intake manifold; Pout is the mean pressure at the exhaust manifold; Vd

is the engine displacement.
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4.6.1.4 Crankshaft Dynamic Model

The crankshaft dynamic model, based on Newton’s theory assuming a rigid crankshaft, is

derived as

Ṅe =
60

2π

Tb − Tl
Je

(4.41)

where Je is the rotational inertia of the engine crankshaft; and Tb and Tl are the engine

brake and load torques. The desired engine speed is maintained by an engine dynamometer

model that generates the engine load torque, Tl, using a feedback PID controller.

4.6.2 Event Based Engine Models

The mathematical models used to simulate the cycle-to-cycle varying variables of engine

subsystems are given below. Each variable in this sections is updated based on the engine

cycle (k) and is independent of time, t.

4.6.2.1 Event Based Wall-Wetting Dynamics

When port-fuel-injection is used to deliver fuel to the engine cylinders, some of the fuel

injected after each injector pulse enters the cylinders. However, the remaining fuel sticks

to the walls of the intake port and on the back of the intake valve. The total fuel entering

the engine cylinders then consists of fuel injected from the current injection pulse and fuel

vapor from the fuel mass stored on the walls from previous injection pulses. Knowledge of

this process is necessary to control the metering of fuel for precise air-to-fuel ratio control.

The event based wall-wetting dynamics used in the engine for HIL simulation are the same

as those in Eq. (4.2).
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4.6.2.2 Event Based Engine Air-to-fuel Ratio

The gas exchange behavior of the engine introduces dynamics into the air-fuel ratio calcula-

tion. Since the engine uses exhaust gas recirculation, a substantial amount of the burned gas

remains in the cylinder. The gas fraction carries the air-to-fuel ratio of the previous engine

cycle into the current cycle. Due to this behavior, the air-fuel ratio is modeled cycle-to-cycle

as

λe(k) =
λ̃e(k)Mfresh(k) + λe(k − 1)Mburnt(k)

Mfresh(k) +Mburnt(k)
, (4.42)

where λ̃e is the normalized air-to-fuel ratio defined as

λ̃e(k) =
mA(k)

mc(k)

1

c
. (4.43)

λe is the normalized air-to-fuel ratio of the gas mixture inside the engine cylinder after the

intake valve is closed. Mfresh is the mass of the fresh gas mixture charge in the cylinder,

which is the summation of the fresh air mass mA and the fresh fuel mass mc, and Mburnt is

the burned gas remaining in the engine cylinder after the exhaust valve closes, which includes

burned gas due to both internal and external EGR (exhaust gas recirculation). Note that

these dynamics are quite different from the LPV design model described in Fig. 4.2.

4.6.2.3 Event Based Engine Brake Torque

Every combustion event, the engine brake torque calculation is triggered using the following

equation:

Tb(k) =
mc(k)Hln

4π
ηe(Ne, χ, θst, xEGR) (4.44)
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where n is the number of engine cylinders; Hl is the lower heat value of the fuel; ηe is

the engine efficiency, which is a function of engine speed, normalized air-to-fuel ratio, spark

timing θst, and the exhaust-gas-recirculation rate xEGR.

4.6.3 Set-up and Implementation

The mean value engine model was implemented into an Opal-RT HIL system using MAT-

LAB/Simulink. The engine model was updated at a sample period of 1 millisecond. Similarly,

the LPV controller, along with feedforward controller, was implemented as an event-based

discrete controller in Simulink into a Mototron Engine Control Module (ECU) sampled ev-

ery 5 milliseconds as a function call, see HIL simulation scheme shown in Figure 4.13. The

Opal-RT HIL simulator communicates with the Mototron ECU controller through the high

speed controller-area network (CAN), where signals were sent and received with minimal

delay.

The Opal-RT simulation step size of 1 millisecond was chosen in order to emulate a

real-world continuous time engine. Similarly, the Mototron sample rate of 5 milliseconds

for the controller updating is used in many production engine control systems. The CAN

communication between Opal-RT and Mototron has a time delay between the time when

signals are sent from Mototron and the time when they are received by Opal-RT, and vice

versa. This delay was less than 1 millisecond for our setup since only a few variables were

communicated between the HIL simulator and Mototron controller, see the timing scheme

in Figure 4.14. The event based function call was implemented as follows. At each sample

time, the controller checks if the event based sample condition is met; and if so, the function

call will be made to execute the event based control strategy (see Figure 4.14). Since the

sample period of the event-based LPV controller is a function of engine speed and it can
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Figure 4.13: HIL engine model and controller setup.

executed with a 5ms sample period, the LPV controller can not be updated exactly at each

fuel injection event. This leads to some sample time error between ideal event based sampling

and actual function call implementation.

4.7 HIL Simulation Results

In Fig. 4.15-4.18, the responses for the gain-scheduling PI and PID controllers are given

by, respectively, the solid gray and black lines. The gray dashed line shows the response

of the fixed gain H∞ PID controller. In each of the HIL simulations, white Gaussian noise

was added to each of the measured signals to represent measurement noise. The standard

deviation of the noise added to each signal was set such that the value of the noise would

not be larger than the following percentages of the measured signals: air flow mA ∼ 3%,

equivalence ratio ys ∼ 2%, coolant temperature ∼ 5%, intake pressure ∼ 5%, and engine

speed Ne ∼ 1%. Even though the cycle-to-cycle combustion variations typically present

in internal combustion engines are correlated to engine speed, load and temperatures, the
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Figure 4.14: HIL timing scheme.

sensor measurement noise, due to cycle-to-cycle combustion variations and sensor noise, was

simplified as a Gaussian white noise due to its simplicity and broad bandwidth. Also, in

each of the HIL simulations, the fuel injected is saturated, as a function of the mass air flow,

to ±25% of the fueling that keeps equivalence ratio at one.

4.7.1 Case 1: Engine Cold Start

We simulate an engine cold start process from freezing temperatures (0◦C) to its normal

operation temperature of approximately 100◦C within about 2 minutes at an engine speed

of 1500 rpm. The purpose of this simulation is to emulate the cold start of an internal

combustion engine when the engine is operated at high idle speed during the warm-up. Note

that during the engine warm-up process the fuel vapor is much less at low temperature than

that at high temperature. Therefore, this leads to quite different wall-wetting dynamics.
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The wall-wetting dynamics coefficients α and β defined in Eq. (4.3) were obtained from

actual engine test data and they are functions of engine coolant temperature, speed and

load. Since speed and load were fixed in this simulation, both α and β were functions of

engine temperature and their values are shown in Fig. 4.16C. The responses of the gain

scheduling PI and PID controllers during this simulation, given in Fig. 4.16, are nearly

identical. However, at between 100 and 110 seconds, the fixed gain H∞ PID controller

becomes saturated causing the measured equivalence ratio to oscillate between 0.8 and 1.2,

while both LPV controllers continue to regulate the equivalence ratio to the desired value

of 1. Also, in Fig. 4.16B, the mass of the fuel injected when using the fixed gain H∞ PID

controller has noticeable perturbations due to the noise added to the measured equivalence

ratio. However, the gain scheduling PI and PID controllers have no noticeable perturbations

which demonstrates that not only do they remain stable over the entire operating range of

the engine, but they are also robust to the added measurement noise.

For comparison purposes, a simulation was carried out using the control model described

in Section 6.2 for the engine cold start problem with the response displayed in Fig. 4.15. In

this simulation, no measurement noise is added to the measured signals. Also, a saturation

level is not imposed on the feedback control input.

4.7.2 Case 2: Load Change

In this case we simulate an engine dynamometer experiment for an engine operated at a

temperature of 80◦C with an engine speed of 1500 rpm. After the engine is stably operated

at this condition with a 32% throttle, the load is increased by a step throttle position from

32% to 46%. Note that in the dynamometer test, the engine speed was maintained by

dynamometer through torque regulation. This is similar to the driving condition that a step
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throttle is applied to maintain the vehicle speed when the vehicle is driven up a hill. Note

that the step increment of throttle position produces a slight change in the wall-wetting

parameter β as shown in Fig. 4.17C. The responses of each controller is given in Fig. 4.17A.

Notice that the throttle step occurring at the 30th second results in a drop in the equivalence

ratio due to the step air mass flow. In the detail of Fig. 4.17A, we see that with the gain-

scheduling PID controller the equivalence ratio only drops to approximately 0.85, while the

gain-scheduling PI and fixed gain H∞ controller both drop to nearly 0.8. Also, notice that

the equivalence ratio with fixed gainH∞ PID controller overshot to over 1.1 with over fueling

as seen in the detail of Fig. 4.17B.

4.7.3 Case 3: Engine Speed Change

In this simulation, an engine was operated on a dynamometer with its coolant temperature

at 80◦C. To demonstrate the capability for the gain scheduling controller to handle engine

speed variations, a smoothed step command from 1500 rpm to 2500 rpm was applied to the

engine dynamometer to manipulate the engine speed as shown in Fig. 4.18D. The resulting

engine wall-wetting dynamics parameters, shown in Fig. 4.18C, were used in the simulation.

Notice in Fig. 4.18A that the gain-scheduling PID controller regulates the equivalence ratio

of the engine to the target value of 1 within 5% error, while the measured equivalence ratio

of the engine with the gain-scheduling PI controller and the fixed gain H∞ PID controller go

above 1.05. Also, the equivalence ratio with the fixed gainH∞ PID controller drops to below

0.95, while both gain-scheduling controllers only lower the equivalence ratio to about 0.96.

The equivalence ratio with the fixed gain H∞ PID controller also has many oscillations and

uses more control effort as shown in the detail of Fig. 4.18B, which hurts engine transient

fuel economy.
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4.7.4 Case 4: Combined Load and Engine Speed Change

In this simulation, an engine was operated on a dynamometer with its coolant temperature

at 80◦C. To demonstrate the capability for the gain scheduling controller to handle load

changes combined with engine speed variations, the load is increased by a step throttle

position from 32% to 46% and then combined with an engine speed variation generated by a

smoothed step command from 1500 rpm to 2000 rpm as shown in Fig. 4.19D. The resulting

engine wall-wetting dynamics parameters are shown in Fig. 4.19C. Notice in Fig. 4.19A both

of the gain-scheduling controllers drop the measured equivalence ratio to approximately 0.85,

while the fixed gain H∞ PID controller drops the measured equivalence ratio below 0.85.

Also, the fixed gain H∞ PID controller overshoots to nearly 1.15 with over fueling as seen

in the detail of Fig. 4.17B.

4.8 Conclusion

In this chapter, a systematic process for developing gain-scheduling PI and PID controllers

for discrete-time LPV systems is presented. First, a control oriented LPV model is devel-

oped by using the dynamics of a port-fuel-injection process. Then the LPV model obtained

is investigated and found to contain parameter variation that is not affine. Due to limita-

tions in current LPV control schemes for discrete-time systems discussed in Section 4.3.3, a

first-order Taylor series approximation is performed on the LPV system H(Θ) in (4.26) to

obtain an approximated LPV system Ĥ(Θ) in (4.27) with only affine parameter variation.

The measurement for control is generated by augmenting the approximated LPV system

with a low-pass filter and an integrator. The augmented, approximated LPV system is then

converted to a polytopic LPV system so that the synthesis method given by [10] can be uti-
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lized. To validate the gain-scheduling controller found with the finally obtained LPV system

Ĥ(Θ), simulations are performed using the original LPV system H(Θ). From the simula-

tion results, it is clear that although the approximated LPV system Ĥ(Θ) is used to design

the gain-scheduling controller it still performs very well when applied to the original LPV

system H(Θ). Furthermore, not only do the HIL simulation results reaffirm the success of

the simulation results, they also demonstrate the feasibility of implementing of the proposed

LPV scheme on a hardware controller that could be used as an engine control module.

To the authors’ knowledge, this is the first work to develop an air-to-fuel ratio gain-

scheduling controller for the port-fuel-injection process using the wall-wetting parameters α

and β, and the engine speed Ne as scheduling variables. Future investigation that would

further this research effort includes developing a systematic framework for the off-line es-

timation of the wall-wetting parameters α and β over all operating conditions for a given

intake manifold.

124



Chapter 5

Mixed H2/H∞ Observer-Based LPV

Control of a Hydraulic Engine Cam

Phasing Actuator

5.1 Introduction

The intake and exhaust valve timing of an internal combustion (IC) engine greatly influence

the fuel economy, emissions, and performance of an IC engine. Conventional valvetrain

systems can only optimize the intake and exhaust valve timing for one given operational

condition. That is, the optimized valve timing can either improve fuel economy and reduce

emissions at low engine speeds or maximize engine power and torque outputs at high engine

speeds. However, with the development of continuously variable valve timing (VVT) systems

[37], the intake and exhaust valve timing can be modified as a function of engine speed and

load to obtain both improved fuel economy and reduced emissions at low engine speeds and

increased power and torque at high engine speeds.

To adjust the intake and exhaust timing, the most common cam phasing system is the

hydraulic van type cam phaser [20]. The control of hydraulic cam phasing systems has been

discussed in [24] and [52]. In [24], a significant nonlinearity in the hydraulic cam phasing
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system is noted and a nonlinear controller is designed to compensate for it. In [52], an H2

controller is designed using the output covariance constraint (OCC) control design approach

[87]. In this chapter, a gain-scheduling controller is developed using linear parameter varying

(LPV) control design.

In recent years, the use of LPV modeling and control in automotive applications has

received a great deal of attention. LPV modeling and control techniques have been applied

to both diesel engines [65, 55] and gasoline spark-ignition engines [88, 82, 66, 69]. In [65], LPV

control techniques are applied to the air path of turbocharged diesel engines to control the

transient exhaust gas fraction pumped into the cylinders to reduce nitrous oxide emissions.

In [55], an LPV identification technique is applied to a nonlinear turbocharged diesel engine

to obtain an LPV model suitable for control synthesis. In [88], a continuous-time LPV

model is developed considering only engine speed as a time-varying parameter. In [82], a

large variable time delay is present in the air-fuel ratio control loop for a lean burn spark

ignition engine. LPV control methods are used to compensate for the variable time delay.

In [66] and [69], event-based gain-scheduling proportional-integral (PI) and proportional-

integral-derivative (PID) controllers are developed using the wall-wetting parameters and

engine speed as time-varying parameters. In this chapter, the techniques used in [66] and

[69] to obtain the static PI and PID gain-scheduling controllers are augmented to develop

an observer-based dynamic LPV controller using the dynamics of the plant.

To obtain the model of the VVT system, closed-loop system identification was used in

[48] and [52]. A main reason for selecting closed-loop system identification in [48] and [52]

was due to high open-loop gains that makes it difficult to maintain the cam phaser operated

at a fixed location for system identification. During the system identification process, it

was found that the system gain of the VVT actuator is a function of engine speed, load, oil
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Figure 5.1: Flowchart of the design and validation process of an LPV controller.

pressure, and temperature. Therefore, it seems only natural to exploit the knowledge of how

the system gain of the VVT actuator varies with the time varying parameters. To do this,

the VVT system can be described as a family of linear models to approximate the system

dynamics for a given engine speed, load, oil pressure, and temperature. Thus formulating

an LPV model for the VVT system.

The purpose of this chapter is to develop a dynamic gain-scheduling controller with

guaranteed stability and performance over all time-varying parameters. To do this, the

process depicted in Fig. 5.1 was followed. First, a family of linear-time-invariant (LTI)

models was obtained. Using engine speed and the oil pressure as system parameters, a

family of linear models of the VVT system were obtained by performing multiple system

identifications while maintaining engine speed and oil pressure at specified levels. With the

family of linear models, the LPV model of the VVT system was formulated. To design
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the dynamic gain-scheduling controller, a standard control structure of observer-based state

feedback with integral control was employed. This control structure, along with H2 and

H∞ performance weighting functions, were then appended onto the LPV model of the VVT

system to obtain the LPV system of the generalized plant. Then the LPV system of the

generalized plant was converted to a polytopic system, which is an LPV system with a

polytopic dependency on a scheduling parameter that takes values in the unit-simplex, so

that the mixed H2/H∞ discrete-time LPV control synthesis method given by [12] could be

applied to obtain the gain-scheduled state feedback and observer gains. Once a potential

controller was obtained, its performance was experimentally validated on the test bench

used to obtain the family of LTI systems. If the performance and stability requirements

of the VVT system are not satisfied when testing the LPV controller, the selected H2 and

H∞ performance weighting functions are modified and the control synthesis procedure is

performed again. This loop is performed until stability and satisfactory performance are

obtained on the test bench.

As stated previously, a multi-objective, mixed H2/H∞ control design is performed in this

chapter. The goal of using both H2 and H∞ performance criteria is to design a controller

which can meet multiple performance objectives. In this chapter, a loose H∞ performance

bound is used to guarantee stability of the closed-loop system under parameter variations.

Meanwhile, a tight H2 performance bound is used to make the LPV controller robust to

input disturbances. The selection of H2 and H∞ performance weighting functions is an

important design problem. The selection of H∞ performance weighting functions can be

done as described in [83] and [58]. However, the selection of H2 performance weighting

functions is not covered in such detail. In [87], a systematic way is provided for iteratively

tuning the output H2 weighting functions for robust control of LTI systems. Unfortunately,
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no such iterative procedure exist yet for LPV systems.

The chapter is organized as follows. The family of linear models obtained from the series

of bench identification tests are introduced in Section 5.2 and the LPV system is formulated.

In Section 6.3, the LPV gain-scheduling controller design method is provided. The bench

test set-up is discussed in Section 5.4.1. In Section 5.4.2, the obtained LPV gain-scheduling

controller is operated on the test bench and compared to the baseline PI and OCC controllers

used in [48]. Concluding remarks are given in the final section.

5.2 LPV System Modeling

To obtain a family of linear models, the closed-loop system identification outlined in [48] was

performed at a series of fixed engine speeds Ne and oil pressures p. The open-loop transfer

functions of the identified family of linear VVT systems sampled at 5ms are given by

G(Ne, p = 310 kPa (45 psi)) =
Ψ(Ne, p) (0.0859q − 0.0609)

q2 − 1.9547q + 0.9553
,

G(Ne, p = 414 kPa (60 psi)) =
Ψ(Ne, p) (0.0615q − 0.0364)

q2 − 1.9547q + 0.9553

(5.1)

where Ψ(Ne, p) is the gain at a specific engine speed Ne and oil pressure p as given in

Table 5.1 and q is the forward shift operator that satisfies qu(k) = u(k + 1).

By inspection of the identified transfer functions in (5.1), the LPV model for the VVT

system is given by

G(αk, βk) =
αkq + βk

q2 − 1.9547q + 0.9553
(5.2)

where αk and βk are used as the time-varying parameters. For notational simplicity, αk and

βk will be used to denote the parameters at time k, such that αk = α(k) and βk = β(k).
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Table 5.1: Identified Gain Ψ(Ne, p)

Pressure, p Engine Speed, Ne (rpm) Gain Ψ(Ne, p)

310 kPa (45 psi) 900 0.70

1500 0.72

1800 0.68

414 kPa (60 psi) 900 0.95

1500 0.98

1800 0.93

Table 5.2: Time-varying parameters (scheduling parameters).

α(Ne(t), p(t)) ∈ [0.0571, 0.0618]

β(Ne(t), p(t)) ∈ [−0.0438,−0.0339]

The values of αk and βk are found for a specific value of engine speed Ne and oil pressure

p by multiplying the appropriate Ψ value found in Table 5.1 with the appropriate transfer

function in 5.1. The range of values that αk and βk can take are given in Table 6.1.

Using the transfer function in (5.2), a state-space representation of the VVT system is

found to be

xG(k + 1) =




0 −0.9553

1 1.9547




︸ ︷︷ ︸
AG

xG(k) +




βk

αk




︸ ︷︷ ︸
BG

uG(k),

y(k) =

[
0 1

]

︸ ︷︷ ︸
CG

xG(k).

(5.3)

For convenience, the compact notation Θ = [αk, βk] will be used to denote the scheduling

variables for the remainder of the chapter.
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5.3 LPV Gain Scheduling Controller Design

5.3.1 Control Strategy

The objective of the control system is to regulate the cam phase y to a reference phase r

using feedback control against the disturbance signal d and the time-varying parameters αk

and βk. In particular, we want to guarantee the stability of the closed-loop system and also

minimize the effect of the disturbances for any conceivable engine speed and oil pressure

variations. The proposed control architecture is illustrated in Fig. 6.2. This scheme has four

components, that is a state observer P̂ (Θ), observer gains L(Θ), a state feedback controller

KS(Θ), and an integrator I(q).

The multi-input, single-output LPV plant P (Θ), depicted inside of the dotted box in

Fig. 6.2, is obtained by augmenting the VVT system G(Θ) with the forward Euler method,
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discrete-time integrator I(q) = ts/(q− 1), where ts is the sample period of the discrete-time

system in seconds. The integrator I(q) introduces integral action into the system to ensure

that the steady-state error between the measured cam phase y and the reference phase r can

be eliminated. By allowing the input to the VVT plant G(Θ) to be equal to

uG(k) = uP (k) +
ts

q − 1
uI(k),

as displayed in the dotted box of Fig. 6.2, one possible state-space representation of P (Θ) is

found to be

xP (k + 1) =




0 −0.9553
√
tsβk

1 1.9547
√
tsαk

0 0 1




︸ ︷︷ ︸
AP (Θ)

xP (k) +




βk 0

αk 0

0
√
ts




︸ ︷︷ ︸
BP (Θ)




uP (k)

uI(k)




︸ ︷︷ ︸
uS(k)

,

y(k) =

[
0 1 0

]

︸ ︷︷ ︸
CP

xP (k).

(5.4)

In (5.4), it is clear that the state matrix AP (Θ) and the input matrix BP (Θ) are both

affected by the time-varying parameters αk and βk.

The state observer P̂ (Θ) is used to obtain the estimated states x̂P of the plant. The

observer P̂ (Θ) has the standard state-space representation

x̂P (k + 1) = AP (Θ)x̂P (k) +BP (Θ)uS(k) + L(Θ)eL(k),

ŷ(k) = CP x̂P (k),

where the error input to the plant observer is given by eL(k) = r(k) − (y(k) + d(k)) +
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(ŷ(k)+d(k)), which simplifies to eL(k) = r(k)−y(k)+ ŷ(k). Since we are solving the S/KS

mixed-sensitivity H∞ optimization using the regulation form, during control synthesis we

let the set point r equal zero as shown in [58], thus further simplifying the observer input

error to eL(k) = −y(k) + ŷ(k). This satisfies the condition in [12] that the measurement for

control is not corrupted by the exogenous input w(k). Notice in Fig. 6.2 that the output

disturbance d(k) is connected to the estimated plant output ŷ(k) by dash-dot lines. This

is to signify that the exogenous input d(k) is only available to the observer during control

synthesis. However, during implementation since the output disturbance d(k) cannot be

measured it is not available to the observer.

To use mixed H2/H∞ norms as the performance criteria for shaping the frequency re-

sponse of the closed-loop system, weighting matrices (which can be considered control design

parameters) are introduced in Fig. 6.2. Oftentimes, the weighting matrices are chosen as

frequency dependent functions; however, for this problem static weighting matrices sufficed.

The weighting matrix Wd was selected to model the signal d using the signal based approach

discussed in [58]. The H∞ performance weighting functions Wz∞ and Wu∞ were selected

to limit the maximum magnitude of the sensitivity function |S(jω)| and the controller mul-

tiplied by the sensitivity function |KS(jω)| as discussed in [83]. In this study, the H∞

performance weighting functions were selected primarily for LPV stability. However, the H2

performance weighting functions were selected for LPV performance. The weighting matrices

Wz2 andWu2 were selected using an iterative trial-and-error process. In the iterative process,

Wz2 and Wu2 started out with values of unity. The control synthesis procedure outlined in

Algorithm 1 was then carried out and the sensitivity function was computed and examined.

The values used in the weighting function Wu2 were then increased and the control synthe-

sis was carried out again and the sensitivity function was examined again. This procedure
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was executed until desirable characteristics were displayed in the frequency response of the

controller, the sensitivity function, and the controller multiplied by the sensitivity function.

The resulting weighting matrices are as follows:

Wd = 0.01, Wr = 1, Wu∞ = 10,

Wu2 =




15 0

0 15


 , Wz∞ = 1, and Wz2 = 1.

These weighting matrices where tuned to obtain the frequency responses plotted with the

bold lines in Fig. 5.3. For comparison, a full-order dynamic output covariance constraint

(OCC) controller (dashed lines) [52] was used. This controller is known to work well on the

VVT cam phaser test bench at the fixed operational condition of 1500 rpm and 414 kPa

(60 psi) oil pressure, so it was deemed an appropriate starting point.

In Fig. 5.3, the frequency responses of the LPV controller and the OCC controller are

displayed at the corner points of the parameter space polytope (i.e. [α, β], [α, β], [α, β],

[α, β], where α = αmin and α = αmax). In Fig. 5.3A, the frequency response of each

controller is displayed. At low frequencies, each controller has high gain due to the integral

action built into each controller. In Fig. 5.3B, the sensitivity function of each controller is

displayed. In a typical feedback system, the sensitivity function is linked to the tracking

error performance [83]. At low frequencies, each controller’s sensitivity function is small,

which minimizes tracking error and maximizes disturbance rejection. Fig. 5.3C displays the

frequency response of the controller multiplied by the sensitivity function for each controller.

This plot shows that over the frequency range of 1Hz-20Hz the mixed H2/H∞ dynamic

LPV controller has lower control effort than the full-order dynamic OCC controller. Since

134



 

 
|K

(j
ω
)|
(d
B
)

|S
(j
ω
)|
(d
B
)

|K
S
(j
ω
)|
(d
B
)

|T
(j
ω
)|
(d
B
)

Freq. (Hz)Freq. (Hz)

A B

C D

H2 Controller

LPV Controller

10−310−3 10−210−2 10−110−1

100

100100

101

101101 102102

20

10

10

0

0
0

0

0

-10

-10
-10

-10

-10

-20

-20

-20

-20

-5

-15

-15

-25

-30

-30

-30

-35

-40

-40

-50

-50

-60

-6

-6

Figure 5.3: Frequency response comparison of the mixed H2/H∞ dynamic LPV controller
with an OCC (H2) controller [52] at the corner points of the parameter space polytope.

this is the frequency range over which the output disturbance d(k) is generally active, it

means that the mixed H2/H∞ dynamic LPV controller should be robust to the disturbance

d(k). The frequency response of the closed-loop transfer functions with the mixed H2/H∞

dynamic LPV controller and the OCC controller are displayed in Fig. 5.3D. The benefit of

the mixed H2/H∞ dynamic LPV controller can be seen in the close-up view in Fig. 5.3D. At

−6 dB, the closed-loop bandwidth with the OCC controller varies between approximately 2

to 4.8 Hz. However, the closed-loop bandwidth with the LPV controller only varies between
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approximately 1.8 to 2.9 Hz, which is a reduction in span of about 60%.

As displayed in Fig. 6.2, the state feedback gains KS(Θ) and the observer gains L(Θ)

are placed outside of the solid, bold box. This designates that the control synthesis in

Algorithm 1 is performed on only the items inside of the box. By isolating the static gains

KS(Θ) and L(Θ), the design of the observer-based dynamic controller is transformed into

the design of a single static controller K(Θ) by using the following structure:




uS(k)

uL(k)




︸ ︷︷ ︸
u(k)

=




KS(Θ) 0

0 L(Θ)




︸ ︷︷ ︸
K(Θ)




x̂P (k)

eL(k)




︸ ︷︷ ︸
e(k)

(5.5)

where x̂p ∈ R3, eL ∈ R, uS ∈ R2, and uL ∈ R3.

5.3.2 Generalized Plant

As shown in Fig. 6.2, the state feedback controller KS(Θ) and observer gains L(Θ) are

designed for the generalized LPV plant H(Θ). The generalized LPV plant H(Θ) is composed

by the multi-input, single-output LPV plant P (Θ) and its corresponding state observer P̂ (Θ),

along with the static weighting matrices Wd, Wu∞, Wu2, Wz∞ and Wz2 . The state-space

realization of the generalized plant H(Θ) is found by combining the state-space realizations
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of P (Θ) and P̂ (Θ) and performing the connections in Fig. 6.2 to obtain




xP (k + 1)

x̂P (k + 1)




︸ ︷︷ ︸
x(k+1)

=




AP (Θ) 0

0 AP (Θ)




︸ ︷︷ ︸
Â(Θ)




xP (k)

x̂P (k)




︸ ︷︷ ︸
x(k)

+




BP (Θ) 0

BP (Θ) I




︸ ︷︷ ︸
B̂(Θ)




uS(k)

uL(k)




︸ ︷︷ ︸
u(k)

z(k) = Czx(k) +Dww(k) +Duu(k)

e(k) = Cex(k)

(5.6)

where x(k) ∈ Rn is the state at time k, w(k) ∈ Rr is the unweighted exogenous input,

u(k) ∈ Rm is the control input, z(k) ∈ Rp is the performance output, and e(k) ∈ Rq is the

measurement for control. The state matrix AP (Θ) and the input matrix BP (Θ) are both

given in (5.4) and the other state-space matrices are given by

Cz =




0 1 0 0 0 0

0 0 −10
√
ts 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, Dw =




1

0

1

0

0




,

Du =




0 0 0 0 0

−10 0 0 0 0

0 0 0 0 0

15 0 0 0 0

0 15 0 0 0




, Ce =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −1 0 0 1 0




.
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5.3.3 A gain-scheduling control synthesis problem

Now that the state-space representation of the generalized plant H(Θ) has been obtained,

the mixed H2/H∞ gain-scheduling controller K(Θ) must be synthesized. The H∞-norm

from w(k) to Z∞ = [z1, z2]
T of the LPV system H(Θ) in (5.6) with the gain-scheduling

controller is defined as

‖H(Θ)‖∞ = sup
Θ∈Θ,‖w‖ℓ2 6=0

‖Z∞‖ℓ2
‖w‖ℓ2

. (5.7)

The H2-norm from w(k) to Z2 = [z3(k), z4(k), z5(k)]
T of the LPV system H(Θ) with the

gain-scheduling controller is defined as

‖H(Θ)‖22 = lim
T→∞

sup E
{

1

T

T∑

k=0

Z2ZT
2

}
, (5.8)

where E denotes the expectation operator and the positive integer T denotes the time horizon.

Now we formally state the gain-scheduling control design problem.

Problem : The goal is to design a static gain-scheduling control u(k) = K(Θ)e(k) that

stabilizes the closed-loop system and minimizes the worst-case H∞ and H2 norms of the

closed-loop LPV system in (5.7) and (5.8) for any trajectories of Θ(k) ∈ Θ.

The gain-scheduling method provided by [12] was derived for discrete-time polytopic

time-varying systems. Therefore, in the next section, the state-space representation of H(Θ)

in (5.6) will be transformed into a polytopic time-varying system so that the controller K(Θ)

can be synthesized.
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5.3.4 Polytopic linear time-varying system

The state-space representation of the generalized plant H(Θ) in (5.6) can be converted into

a discrete-time polytopic time-varying system by solving the state matrix Â(Θ) and the

input matrix B̂(Θ) at the vertices of the parameter space polytope, e.g. the state matrix

at vertice V2 is given by A2 = Â(Θ = [α, β]). Any Θ inside of the convex parameter set is

represented by a convex combination of the vertex systems as weighted by the vector λ(k) of

barycentric coordinates. Barycentric coordinates are used to specify the location of a point

as the center of mass, or barycenter, of masses placed at the vertices of a simplex. A formula

for computing the barycentric coordinates for any convex polytope is provided by [64]. The

discrete-time polytopic time-varying system is given by

x(k + 1) = A(λ(k))x(k) +Bu(λ(k))u(k)

z(k) = Czx(k) +Dww(k) +Duu(k)

e(k) = Cex(k)

(5.9)

where the state matrix A(λ(k)) ∈ R
n×n and the input matrix B(λ(k)) ∈ R

n×m belong to

the polytope

D =

{
(A,Bu)(λ(k)) : (A,Bu)(λ(k)) =

4∑

i=1

λi(k)(A,Bu)i, λ(k) ∈ Λ

}
, (5.10)

and the other state-space matrices are the same as in (5.6). The state matrix A(λ(k)) and

the input matrix Bu(λ(k)) are the weighted summation of the vertex matrices as weighted
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by the vector λ(k) of barycentric coordinates, i.e.

A(λ(k)) =

4∑

i=1

λi(k)Ai and Bu(λ(k)) =

4∑

i=1

λi(k)Bi

where Ai and Bi are the vertices of the polytope and λ(k) ∈ R4 is the barycentric coordinate

vector which exists in the unit simplex

Λ =

{
ζ ∈ R

4 :
4∑

i=1

ζi = 1, ζi ≥ 0, i = 1, · · · , 4
}
. (5.11)

For all k ∈ Z≥0, the rate of variation of the barycentric coordinates ∆λi(k) = λi(k + 1) −

λi(k), is limited such that −b ≤ ∆λi(k) ≤ b, with b ∈ [0, 1], which should be selected with

the application in mind. If a worst-case set of parameter variation is known, then this bound

can be calculated.

A finite set of LMIs in [12] can be used to design the H2/H∞ gain-scheduling controller

K(Θ) in (5.5). Due to Theorems 8 and 9 of [12], if there exists for i = 1, . . . , 4, matrices

Gi,Ks ∈ R3×3, Gi,L ∈ R(q−3)×(q−3), Zi,Ks ∈ R(m−3)×3, and Zi,L ∈ R3×1 assembled as

Gi,1 =




Gi,Ks 0

0 Gi,L


 and Zi,1 =




Zi,Ks 0

0 Zi,L


 , (5.12)

along with the other matrix variables defined in Theorems 8 and 9 of [12] satisfying the H∞

LMIs and the H2 LMIs in [12], then the H2/H∞ controller K(λ(k)) is given by

K(λ(k)) = Ẑ(λ(k))Ĝ(λ(k))−1, (5.13)
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with

Ẑ(λ(k)) =
4∑

i=1

λi(k)Zi,1 and Ĝ(λ(k)) =
4∑

i=1

λi(k)Gi,1.

This control is proved to stabilize affine parameter-dependent systems such as (5.9) with a

guaranteed H2 and H∞ performance for all λ ∈ Λ and |∆λ| ≤ b. In this work, to ensure that

all possible parameter variations would be covered, we selected b = 0.4. The LMI conditions

of Theorems 8 and 9 of [12] are solved by programming them into MATLAB using the LMI

parser YALMIP [34] and solved using SeDuMi [59]. During the solution process, the goal is

to calculate the gain-scheduled feedback controller K(λ(k)) that minimizes the bound ν on

the H2 performance from w(k) to [z3, z4, z5]
T under a prescribed bound η on the H∞ norm

from w(k) to [z1, z2]
T. The procedure for performing the mixed H2/H∞ control synthesis

is outlined in Algorithm 1.

Note that the minimum feasible H∞ bound ηL can be solved for by using an iterative

algorithm [58], such as the bisection algorithm.

The resulting LPV controller solved at an engine speed and oil pressure of Ne = 1500rpm

and p = 414kPa (60 psi) (for comparison with the H2 output covariance controller) is found

to be

KLPV (q) =
0.109255247q3 − 0.302866405q2 + 0.278279285q − 0.0846677044

q4 − 3.132121334q3 + 3.625898107q2 − 1.853079890q + 0.359303117
. (5.14)

As stated previously, the robust H2 controller designed in [52] using the OCC control

design algorithm presented in [87] is used for comparison with the LPV controller. The

robust H2 OCC controller designed in [52] is given by

KOCC(q) =
0.3158302q3 − 0.9301618q2 + 0.9129406q − 0.2986088

q4 − 3.4051293q3 + 4.3533113q2 − 2.4909563q + 0.5427743
. (5.15)
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Algorithm 1 Mixed H2/H∞ Gain-Scheduling Synthesis

Require: Polytopic LPV system in (5.9), rate of variation bound b ∈ [0, 1], H2 and H∞
input and output channels of (5.9), and a range of prescribed H∞ bounds η ∈ [ηL, ηU ],
where it is assumed that ηL is the minimum feasible H∞ bound.

Ensure: The gain-scheduling controller matrices Gi,1 and Zi,1 needed to compute K(λ(k))
in (5.13).

1: Determine selection matrices Lj and Mj for each performance specification j as in Sec-
tion 5.3 of [12].

2: Compute Hj using selection matrices Lj and Mj for each performance specification j,
for j = 1, 2.

3: Compute the vectors f j and hj using rate of variation bound b as shown in Appendix 11.3
of [12].

4: Using equation (28) of [12], convert the polytopic LPV system in (5.9) to the form used
in the LMIs of Theorems 8 and 9 of [12].

5: for η = ηL:ηU do
6: Initialize the matrix variables introduced in Theorems 8 and 9 of [12] as free matrix

variables into MATLAB using the YALMIP interface [34].
7: Using Gi,Ks, Gi,L, Zi,Ks , and Zi,L, generate Gi,1 and Zi,1 as shown in (5.12).
8: Using the YALMIP interface [34], program the H∞ LMIs in Theorem 8 of [12] using

prescribed bound η and the H2 LMIs in Theorem 9 of [12] into MATLAB.
9: Using an LMI solver, like SeDuMi [59], solve the system of LMIs with the objective

of minimizing
∑4

i=1Tr{Wi}, where Wi is a positive-definite H2 free matrix variable
introduced in Theorem 9 of [12], thus minimizing the H2 norm.

10: end for
11: Select the solution that minimizes the H2 norm the most, yet still has an acceptable

bound η on the H∞ norm.
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Figure 5.4: VVT phase actuator test bench

5.4 VVT System Test Bench

5.4.1 Bench Test Set-up

The closed-loop system identification outlined in Ref. [52] and the control design testing were

conducted on the VVT test bench displayed in Fig. 5.4. A Ford 5.4L V8 engine head was

modified and mounted on the test bench. The cylinder head has a single cam shaft with a

VVT actuator for one exhaust and two intake valves. These valves introduce a cyclic torque

disturbance to the cam shaft. The cam shaft is driven by an electrical motor (simulating the

crankshaft) through a timing belt, see Fig. 5.5.

An encoder is installed on the motor shaft, which generates the crank angle signal with

one degree resolution, along with a so-called gate signal (one pulse per revolution). A

plate with five magnets adhered is mounted at the other side of the extended cam shaft. As

displayed in Fig. 5.5, one magnet is placed on the edge of the plate and is used to synchronize
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Figure 5.5: VVT phase actuator test bench diagram

the top dead center position of the combustion phase. The other four magnets on the face

of the plate are used to determine the cam phase four times per engine cycle. The two

squares in Fig. 5.5 represent hall-effect cam position sensors. As the cam shaft rotates, the

magnets on the plate face pass the hall-effect cam position sensor used to to determine cam

phase and the magnet on the edge of the plate passes the hall-effect cam position sensor

used to determine top dead center position. Within an engine cycle, the cam position sensor

generates four cam position pulses, which are sampled by an Opal-RT real-time controller.

By comparing these pulse locations with respect to the encoder gate signal, the Opal-RT

controller calculates the cam phase with one crank degree resolution.

The cam phase actuator system consists of a solenoid driver circuit, a solenoid actuator,

and a hydraulic cam actuator. The solenoid actuator is controlled by a pulse-width modula-

tion (PWM) signal, whose duty cycle is linearly proportional to the DC voltage command.

An electrical oil pump was used to supply pressurized engine oil to be used for lubrication

and as hydraulic actuating fluid for the cam phase actuator. The cam actuator command
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voltage signal is generated by the Opal-RT prototype controller and sent to the solenoid

driver. The PWM duty cycle is linearly proportional to input voltage with a maximum duty

cycle 99% corresponding to 5 V and a minimal duty cycle of 1% corresponding to 0 V. The

solenoid actuator controls the hydraulic fluid (engine oil) flow and changes the cam phase.

The cam position sensor signal is sampled by the Open-RT prototype controller and the

corresponding cam phase is calculated within the Opal-RT real-time controller.

A PI controller was tuned for the VVT system on the test bench for comparison purpose

with the LPV and OCC controllers. The PI gains tuning process was completed at different

engine speeds and oil pressures. The following tuned PI controller achieves good balance

between response time and over-shoot oscillations at different conditions:

KPI(q) =
0.2q − 0.1995

q − 1
. (5.16)

5.4.2 Bench Test Results

The mixed H2/H∞ observer-based dynamic LPV controller was tested on the VVT cam

phaser bench at engine speeds of 900, 1200, 1500, and 1800 rpm for both engine oil pressures

of 310 (45) and 414 kPa (60 psi). The step response of each controller is displayed in Fig. 5.6

for the cam advance (-20◦ to 0◦) and the cam retard (0◦ to -20◦) at an engine speed of

900 rpm and an oil pressure of 310 kPa (45 psi). In Fig. 5.6B, the control effort of both the

LPV and H2 controllers is visibly lower than the PI controller. Also noticeable in Fig. 5.6B

is that the control effort corrections produced by the LPV controller are smaller than those

produced by the H2 controller. This was anticipated from frequency response plot of each

controller in Fig. 5.3A. Since the LPV controller has lower gain than the H2 controller, it
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is less sensitive to the change in error signal (which has the resolution of one crank degree

in the experiment), which makes the LPV controller more robust to disturbances in the

cam phase when compared to the H2 controller. This is even more noticeable during cam

retard in Figs. 5.6C and 5.6D. The performance of the LPV controller in comparison with

the H2 and PI controllers can also be shown by computing the control variance once the cam

phase has reached steady state. During cam advance with an engine speed of 900 rpm and

oil pressure of 310 kPa (45 psi), the control variances of the LPV, H2, and PI controllers

were found to be 0.0048 V2, 0.0265 V2 and 0.0079 V2, respectively. During cam retard at

the same engine conditions, the control variances of the LPV, H2, and PI controllers were

found to be 0.0063 V2, 0.0281 V2 and 0.0068 V2, respectively. Similar values for the control

variance for each controller were found at all other engine conditions tested as well. The

control variances of the LPV controller under all engine conditions tested were found to be

approximately anywhere from 6% to 33% of the control variance of the H2 controller.

In Fig. 5.7, the mean of the measured overshoot from ten test runs at each engine con-

dition is plotted for each controller. It is easy to see from Fig. 5.7A and Fig. 5.7B, that

in all cases both the H2 controller and LPV controller obtain lower overshoot than the PI

controller, with the H2 controller displaying the lowest overshoot in most cases. However,

during the cam retard situation displayed in Fig. 5.7B, the overshoot of the LPV controller

is much closer to that of the H2 controller and is even smaller than the H2 controller at

an engine speed of 1800 rpm. The difference in performance between cam advance and cam

retard is attributed to the fact that the dynamics are slightly different. During cam advance,

the actuating torque generated by the oil pressure overcomes the cam load torque causing

the cam phase to advance. However, during cam retard, the oil trapped inside the actuator

bleeds back to the oil reserve when the cam phase is pushed back by the cam load shaft.
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This difference in dynamics between the cam advance and cam retard, as shown in Fig. 5.7A

and Fig. 5.7B, generally results in lower overshoot and faster settling and rising times for

the cam retard performance compared to the cam advance performance. Also, while the

overshoot performance of all of the controllers in Fig. 5.7A and Fig. 5.7B is above 15%, none

of the controllers include feedforward control. With feedforward control the overshoot would

be significantly reduced.

In Figs. 5.8A and 5.8B the mean of the measured 5% settling time from ten test runs

is displayed. It is observed that for nearly all cases the LPV controller settles quicker than

the H2 controller, with one exception of when the engine is operated with an oil pressure of

310 kPa (45 psi) and at an engine speed of 1800 rpm. For the cam advance, the PI controller

almost uniformly has the quickest settling time. However, as observed in Fig. 5.8B, during

cam retard the settling time of the LPV controller is quicker than the PI controller in most

cases, especially when the engine oil pressure is 414 kPa (60 psi).

The mean 10 to 90% rising time from the ten test runs is displayed in Figs. 5.9A and 5.9B.

The rising time performance during cam advance is very similar for each of the controllers

as displayed in Fig. 5.9A. However, as shown in Fig. 5.9B, during cam retard it is quite

clear that the LPV and PI controllers are faster than the H2 controller by an unmistakable

amount.

5.5 Conclusion

A dynamic gain-scheduling controller was designed by employing an observer-based state

feedback design and static multi-objective H2/H∞ controller synthesis. By examining the

frequency response of the LPV controller and comparing it to a previously obtained ro-
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bust H2 OCC controller, the LPV controller was found to reduce the operating bandwidth

variation of the closed-loop system by approximately 60%. The frequency response of each

system also demonstrated that the LPV controller had lower control effort over the crucial

frequency range of 1-20 Hz. This was validated by the bench tests run with each controller,

which showed that the LPV controller had much lower control variance than the robust H2

OCC controller. Also, the LPV controller has lower overshoot than the PI controller at all

operating conditions with similar settling and response time characteristics. Additionally,

the LPV controller was designed with a systematic approach while the PI controller was

obtained through ad hoc testing.
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Chapter 6

Dynamic, Output-Feedback,

Gain-Scheduling Control of an

Electric Variable Valve Timing

System

6.1 Introduction

The fuel economy, emissions, and performance of an internal combustion (IC) engine are

heavily influenced by the intake and exhaust valve timing. With a conventional valvetrain

system, the intake and exhaust valve timing can only be optimized for a single operating

condition. That is, the optimized valve timing can either improve fuel economy and reduce

emissions at low engine speeds or maximize engine power and torque outputs at high engine

speeds. Due to the growing fuel economy demands and emissions regulations, continuously

variable valve timing (VVT) systems [37] were developed. The challenging problem of im-

proving fuel economy and reducing emissions at low engine speed while maintaining engine

performance at high engine speed can be addressed with the use of VVT systems.

To adjust the intake and exhaust timing, two of the most common cam phasing systems
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are a hydraulic vane type cam phaser [37, 20] and an electric cam phaser [45, 63, 27, 50, 51].

The advantage of hydraulic VVT systems is that only minor changes are required to im-

plement them on conventional valvetrain systems, which reduces the design and engineering

effort. However, the performance of hydraulic VVT systems is significantly degraded at some

engine operating conditions. For instance, during engine cold start before the engine oil is

warmed up the hydraulic VVT system cannot be activated and must remain in the default

position [27]. Also the response time of the electric VVT is significantly shorter than the

hydraulic VVT, which makes it possible to be used for the mode transition control between

spark-ignited and homogeneously charge compression ignition combustion [78]. The electric

cam phaser studied in [50, 51] uses a planetary gear train driven by an electric motor op-

erated with respect to the current engine speed to phase the camshaft. In [50, 51], an H2

controller is designed using the output covariance constraint (OCC) control design approach

[87, 51]. Promising results were obtained, however, in [51] it is noted that the engine oil

viscosity has a significant impact on the performance of the electric cam phaser. Thus in

this chapter, the physics based model developed in [50, 51] will be reconsidered with a time-

varying friction coefficient to account for the variation of the engine oil viscosity to obtain a

linear parameter-varying (LPV) system. The obtained LPV system is then used to develop

a gain-scheduled, dynamic, output-feedback controller.

The use of LPV modeling and control in automotive applications has received a great

deal of attention. LPV modeling and control techniques have been applied to both diesel

engines [65, 55] and gasoline spark-ignition engines [88, 82, 66, 69, 71]. In [65], LPV control

techniques are applied to the air path of turbocharged diesel engines to control the transient

exhaust gas fraction pumped into the cylinders to reduce nitrous oxide emissions. In [55],

an LPV identification technique is applied to a nonlinear turbocharged diesel engine to
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obtain an LPV model suitable for control synthesis. In [88], a continuous-time LPV model is

developed considering only engine speed as a time-varying parameter. In [82], a large variable

time delay is present in the air-fuel ratio control loop for a lean burn spark ignition engine.

LPV control methods are used to compensate for the variable time delay. In [66] and [69],

event-based gain-scheduling proportional-integral (PI) and proportional-integral-derivative

(PID) controllers are developed using the wall-wetting parameters and engine speed as time-

varying parameters. In [71], the techniques used in [66] and [69] were augmented to develop

an observer-based dynamic LPV controller using the dynamics of the plant for a hydraulic

VVT system. In this chapter, a dynamic, output-feedback gain-scheduling controller with a

guaranteed ℓ2 to ℓ∞ gain is designed for the electric VVT system considered in [50, 51] by

applying a controller synthesis technique that builds on the techniques provided in [13].

The conventional application of gain-scheduling control involves the calibration of con-

troller gains in a field test for the best performance as functions of system operational

conditions. However, in addition to the fact that this approach can be very expensive and

time consuming the system stability and performance are not guaranteed for all time-varying

parameters. The purpose of this chapter is to efficiently develop a dynamic, output-feedback

gain-scheduling controller with guaranteed stability and performance over all time-varying

parameters. The first step to accomplish this is to obtain a discrete-time LPV model of the

electrical VVT system since the LPV control technique to be used is based in discrete time.

As previously mentioned, the physics based model derived model developed in [50, 51] is

considered with a time-varying friction coefficient to account for the variation of the engine

oil viscosity. Since the model of the electric VVT system developed in [50, 51] is a continuous

time model, the LPV model of the electrical VVT system must then be discretized. Then the

discrete-time LPV system is converted to a polytopic system, which is an LPV system with
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a polytopic dependency on a scheduling parameter that takes values in the unit-simplex,

so that the guaranteed ℓ2 to ℓ∞ discrete-time LPV control synthesis can be performed to

obtain the gain-scheduled controller matrices of the dynamic, output-feedback controller.

As stated previously, an ℓ2 to ℓ∞ gain control design is performed in this chapter. A

controller with a guaranteed ℓ2 to ℓ∞ gain provides strict bounds on the regulated output

while minimizing the control input. Compared to the H∞ performance specification, also

known as an ℓ2 to ℓ2 gain, used in many LPV gain-scheduled controllers which only guarantee

that the root-mean-square gain from the exogenous input to the regulated output is bounded,

a controller designed with a guaranteed ℓ2 to ℓ∞ gain provides hard constraints on the

performance outputs for any exogenous input with bounded ℓ2 energy. Thus controllers

with an ℓ2 to ℓ∞ gain control design are very useful in applications where hard constraints

on responses or actuator signals cannot be ignored, such as space telescope pointing [86] and

machine tool control.

6.2 Plant dynamics

The electric VVT system studied in this chapter operates with two main components: an

electric motor and a planetary gear set. The planetary gear set consists of an outer ring

gear, a planet gear carrier with planet gears attached, and a sun gear. The ring gear acts

as the VVT pulley, which is driven directly by the crankshaft through a timing belt at half

crankshaft speed. The planet gear carrier is connected to electric motor output shaft. The

planet gears engage the ring and sun gears. The camshaft is connected to the sun gear. The

two inputs to the planetary gear system are the ring gear acting as the VVT pulley and

the planet gear carrier which is driven by the electric motor. The output of the planetary
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Figure 6.1: The block diagram of the electric motor with the planetary gear system.

gear system is the sun gear which connects directly to the camshaft. The modeling of the

electric VVT system was performed in [50, 51]. In the following, an overview of the each of

the transfer functions displayed in Fig. 6.1 is provided. The block diagram will be used to

develop a state space model to be used for controller synthesis. As shown in Fig. 6.1, the

electric VVT system has three main parts that contribute to the system dynamics: the local

motor controller, the motor and planetary gear train dynamics, and the planetary gear train

kinematics.

6.2.1 Local Motor Controller

The electric motor for the electric VVT system has a local PI controller such that it is

operated by providing a desired rotational velocity. The transfer function of the local motor

controller is

Kmc(s) =
kps+ ki

s
(6.1)
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where kp and ki are the proportional and integral gains. With the inputs and outputs

displayed in Fig. 6.1, the following state-space equation can be found:

ẋKmc(t) = ki (u(t)− Ωc(t))

Ea(t) = xKmc(t) + kp (u(t)− Ωc(t))

(6.2)

where the state xKmc is the integrated error and the output Ea is the motor armature

voltage.

6.2.2 Motor and Planetary Gear System Dynamics

The motor and and planetary gear train dynamics contained inside the dashed-line box in

Fig. 6.1 are formed by the feedback connection of the transfer functions Ge(s) and Gm(s).

The transfer function Ge(s), which represents the input-output relationship from the voltage

drop across armature circuit to the torque produced by the motor, is given by

Ge(s) =
Kτ

Lms+ Rm
(6.3)

where the armature resistance and inductance are Rm and Lm, respectively, and Kτ is the

motor torque constant. Using the transfer function (6.3), the following state-space equation

can be found:

ẋe(t) = −Rm

Lm
xe(t) +

1

Lm
(Ea(t)− Em(t))

T (t) = Kτxe(t)

(6.4)
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where the state xe is the current running through the armature circuit, Em is the back-EMF

voltage, and the output T is the torque produced by the motor.

The transfer function Gm(s), which represents the input-output relationship from the

torque acting on the load to the motor speed, is given by

Gm(s) =
1

Js+ β(t)
(6.5)

where J is the lumped inertia of the planetary gear system and the motor shaft and B(t) is

the time-varying friction coefficient, to which the oil viscosity is a major contributor. Using

the transfer function (6.5), the following state-space equation can be found:

ẋm(t) = −β(t)

J
xm(t) +

1

J
(T (t)− kTcam(t))

Ωc(t) = xm(t)

(6.6)

where k, given by k = 1 + 2nr/ns, is the gear ratio from the planetary gear system that

disturbance torque form the camshaft Tcam acts through and the state xm is equal to the

carrier angular velocity Ωc.

6.2.3 Planetary Gear System Kinematics

The planetary gear train kinematics is the final part of the electric VVT model. The sun

gear of the planetary gear system essentially integrates the difference between the planet

carrier rotational velocity, Ωc, and the ring gear rotational velocity, Ωr, to obtain the phase

for the camshaft. The transfer function GK is given by

GK(s) =
2(nr + ns)

nss
(6.7)
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where nr and ns are the number of teeth on the ring and run gears, respectively. With the

transfer function (6.7), the following state-space can be found:

ẋK(t) =
2(ns + nr)

ns
(Ωc − Ωr)

φ(t) = xK(t)

(6.8)

where the state xK is equal to the phase φ of the camshaft.

6.2.4 An LPV System

The state space equations can be gathered together to form the following state space model:

ẋ(t) = A(β(t))x(t) +Buu(t) +BdTcam(t) +BrΩr

φ(t) = Cx(t)

(6.9)

where x = [xKmc , xe, xm, xK ]T and

A(β(t)) =




0 0 −ki 0

1

Lm
−Rm

Lm
−kp +Km

Lm
0

0
Kτ

J
−β(t)

J
0

0 0
2(ns + nr)

ns
0




, Bu =




ki

kp
Lm

0

0




, Bd =




0

0

−k

J

0




,

Br =




0

0

0

−2(ns + nr)

ns




, C =

[
0 0 0 1

]
.
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In order to apply the control synthesis in the next section, a discrete-time LPV system is

required. In general, the discretization of the time-varying system (6.9) can be very difficult.

However, the oil viscosity rate of variation is very slow compared to the sample rate ts, such

that they occur on different time scales. With this information, we can assume the friction

coefficient β is constant during a given time step. As such, the following discrete-time system

can be found:

xd(k + 1) = Ad(β)xd(k) +Bu,d(β)u(k) +Bd,d(β)Tcam(k) +Br,dΩr(k)

φ(k) = Cdxd(k)

(6.10)

where

Ad(β) = exp(A(β)ts),

Bu,d(β) =

(∫ ts

0
exp(A(β)τ)dτ

)
Bu,

Bd,d(β) =

(∫ ts

0
exp(A(β)τ)dτ

)
Bd,

Br,d =

(∫ ts

0
exp(A(β)τ)dτ

)
Br,

Cd = C.

(6.11)

This computation could be performed with the symbolic toolbox in MATLAB by letting β

be a symbolic variable. Then, for each element in the system matrices that still contains the

friction coefficient β, the 1st-order Taylor series expansion can be performed as done in [66]

to obtain the discrete-time LPV system. However, it was found that with the continuous-

time system (6.9), this approach was found to be excessively time consuming. Instead, a

much more efficient numerical approach based on the linear least squares technique [31] was

used to obtain (6.10).
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6.2.4.1 Linear least squares estimation of discrete-time LPV system

For any given fixed friction coefficient β, the discrete-time system can be easily computed

to obtain the discrete-time state matrix

Ad(β) =




a11(β) a12(β) a13(β) 0

a21(β) a22(β) a23(β) 0

a31(β) a32(β) a33(β) 0

a41(β) a42(β) a43(β) 1




, (6.12)

and input matrices

Bu,d(β) =




bu,1(β)

bu,2(β)

bu,3(β)

bu,4(β)




, Bd,d(β) =




bd,1(β)

bd,2(β)

bd,3(β)

bd,4(β)




. (6.13)

After computing each of these discrete-time matrices over a range of β values, it was noted

that the parameter variation with respect to β appeared to be affine. With this information,

the coefficients of Ad(β), Bu,d(β), and Bd,d(β) were assumed to have the following form

aij(β) = pij(β) + ǫ,

bu,i(β) = pu,i(β) + ǫ,

bd,i(β) = pd,i(β) + ǫ,

(6.14)
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where ǫ is noise due to numerical error and model mismatch and pij , pu,i, and pd,i are affine

functions with respect to β such that

pij(β) = θij,0 + θij,1β,

pu,i(β) = θui,0 + θui,1β,

pd,i(β) = θdi,0 + θdi,1β.

(6.15)

The unknown parameters θij,0, θij,1, θui,0, θui,1, θdi,0
, and θdi,1

can be collected into the

following unknown parameter vectors:

Θij =




θij,0

θij,1


 , Θu,i =




θui,0

θui,1


 , Θd,i =




θdi,0

θdi,1


 (6.16)

such that (6.15) can be re-written with the following linear regression model:

pij(β) = h(β)Θij

pu,i(β) = h(β)Θu,i

pd,i(β) = h(β)Θd,i

(6.17)

where h(β) is given by

h(β) =

[
1 β

]
. (6.18)

Thus, given M randomly selected values for the friction coefficient β, we would like to

determine the linear least square estimates Θ̂ij , Θ̂u,i, and Θ̂d,i that minimize the following
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residual sums of squares:

S(Θij) =

M∑

l=1

|aij(βl)− h(βl)Θij |2, (6.19)

S(Θu,i) =
M∑

l=1

|bu,i(βl)− h(βl)Θu,i|2, (6.20)

S(Θd,i) =

M∑

l=1

|bd,i(βl)− h(βl)Θd,i|2, (6.21)

where | · | denotes the magnitude operator on a complex number. If we let Yij, Yu,i, and

Yd,i be the collection of “measurements” and H be the collection of h(β) for all M friction

coefficients β such that

Yij =




aij(β1)

...

aij(βM )



, Yu,i =




bu,i(β1)

...

bu,i(βM )



,

Yd,i =




bd,i(β1)

...

bd,i(βM )



, and H =




h(β1)

...

h(βM )



,

(6.22)

then the residual sum of squares equations (6.19)-(6.20) can be re-written as

S(Θij) =
(
Yij −HΘij

)T (
Yij −HΘij

)
, (6.23)

S(Θu,i) =
(
Yu,i −HΘu,i

)T (
Yu,i −HΘu,i

)
, (6.24)

S(Θd,i) =
(
Yd,i −HΘd,i

)T (
Yd,i −HΘd,i

)
. (6.25)

In [31], it is shown that the estimates that minimize each residual sum of squares are given
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Figure 6.2: Proposed control scheme for the electrical VVT system.

by

Θ̂ij =
(
HTH

)−1
HTYij,

Θ̂u,i =
(
HTH

)−1
HTYu,i,

Θ̂d,i =
(
HTH

)−1
HTYd,i.

(6.26)

By using this method, an approximate of the discrete-time LPV system (6.10) can be

efficiently obtained by computing the discrete-time state-space matrices at a finite number

of randomly selected friction coefficients β, and then by solving for the linear least square

estimates as given by (6.26).

6.3 LPV gain-scheduling controller design

The objective of the control system is to regulate the cam phase to a reference phase using

output feedback control against the disturbance signal wp and the time-varying parameters.

In particular, we want to guarantee the stability and performance of the closed-loop system

for any finite energy disturbance and engine oil viscosity variations. The proposed control
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architecture is illustrated in Fig. 6.2. This scheme has a single component, that being the

dynamic, output-feedback, gain-scheduled controller, K(q, β).

6.3.1 Guaranteed ℓ2 to ℓ∞ gain controller

The plant G(q, β) in Fig. 6.2 can be represented as the following open-loop discrete-time

polytopic LPV system

xp(k + 1) = Ap(λk)xp(k) +Bp(λk)u(k) +Dp(λk)wp(k)

zp(k) = Cp(λk)xp(k)

y(k) = Cy(λk)xp(k) + v(k)

(6.27)

where xp(k) is the state, u(k) is the control input, wp(k) is an exogenous ℓ2 disturbance

weighted by the positive definite symmetric matrix Wp, and zp(k) is the vector of all dynamic

variables of interest, and y(k) is the vector of measurements corrupted by the noise v(k)

weighted by the positive definite symmetric matrix V . The system matrices belong to a

polytope similar to the one introduced in (2.11).

Suppose that we apply to the plant (6.27) a strictly proper, dynamic, output-feedback,

stabilizing control law of the form

xc(k + 1) = Ac(λk)xc(k) +Bc(λk)y(k),

u(k) = Cc(λk)xc(k).

(6.28)
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Then the resulting closed-loop system is given by

x(k + 1) = A(λk)x(k) + B(λk)w(k),

zp(k) = Cp(λk)x(k),

zu(k) = Cu(λk)x(k),

(6.29)

where x = [xTp , x
T
c ]

T , w = [wT
p , v

T ]T , W = block diag[Wp, V ], and

A(λk) =




Ap(λk) Bp(λk)Cc(λk)

Bc(λk)Cy(λk) Ac(λk)


 ,

B(λk) =




Dp(λk)W
1/2
p 0

0 Bc(λk)V
1/2


 ,

Cp(λk) =
[
Cp(λk) 0

]
,

Cu(λk) =
[
0 Du(λk)Cc(λk)

]
.

(6.30)

Then, as shown in Chapter 3, a controller that minimizes the (weighted) control energy

Zu(λk) = trace
{
RCu(λk)P̄(λk)Cu(λk)T

}
, R > 0 (6.31)

of the closed loop system, subject to an ℓ2 to ℓ∞ gain Zp given by

‖zp‖2∞ ≤ σ
(
Zp
)
‖w‖22. (6.32)

where Zp(λk) = Cp(λk)P̄(λk)Cp(λk)T ≤ Zp, can be efficiently solved for by a convex opti-

mization with the LMI constraints given in Theorem 10.
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6.3.2 H∞ (ℓ2 to ℓ2 gain) Controller

For comparison with the guaranteed ℓ2 to ℓ∞ gain controller, an H∞ controller is designed as

well. The H∞ controller differs from the ℓ2 to ℓ∞ gain controller in that it has the following

property:

‖z‖2 ≤ η‖w‖2 (6.33)

where z = [zTp , zTu ]
T . This is also known as the ℓ2 to ℓ2 gain, or root-mean-square gain.

The main difference is the lack of the maximum singular value constraint. This is the reason

why H∞ controllers are not suitable when hard constraints cannot be ignored.

The H∞ controller designed is also a strictly proper, dynamic, output-feedback controller

and has the form given in (6.28). The H∞ controller synthesis was carried out to minimize

the H∞ performance η with LMIs developed based on the work presented in [12] and [13].

6.4 Simulation Results

A simulation study was performed on the electrical VVT system to effectiveness of the

guaranteed ℓ2 to ℓ∞ gain controller compared to the H∞ controller. The parameter values

used in this study for the electrical VVT system are displayed in Table 6.1. During the

simulation, the engine speed was set to 1500 and the cam phase, φ, was stepped from 0◦ to

10◦ for 10 seconds and then back to 0◦. The ℓ2 disturbance in Fig. 6.3 was used as the cam

load disturbance Tcam.

The guaranteed ℓ2 to ℓ∞ controller was designed with an ℓ2 to ℓ∞ gain given by

Zp = 9.5434× 10−4 rad2
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Table 6.1: Electric VVT System Parameters

ts 5 µs Kτ 45
Nm

A
ns 30 teeth Km 1/90 Vs

nr 60 teeth J 0.2 kgm2

Lm 0.01 H kp 1 Vs

Rm 1 Ω ki 0.1 V

which is equivalent to a maximum displacement of 1.77◦ from the desired cam phase. The

other control design parameters were chosen to be

Wp = 10, V = 0.0012, and R = 1.

The parameters Wp, V , and R were also used to synthesize the H∞ controller as well.

During the gain-scheduled controller design, it was assumed that the friction coefficient

β varied between 0.5 and 2 , with the smaller friction coefficient corresponding to low oil

viscosity (or oil that has been heated up) and the larger friction coefficient corresponding

to high oil viscosity (oil that is cold or at room temperature). Since the oil viscosity varies

slowly, simulations were performed at the following three friction coefficients: 2, 1, and 0.5,

corresponding to the behavior that might occur when engine oil is heated up. The results of

each simulation are displayed in Figs. 6.4-6.6.

In Figs. 6.4-6.6, the cam phase obtained when using the guaranteed ℓ2 to ℓ∞ gain con-

troller is displayed by the solid black line, whereas the cam phase obtained when using the

H∞ controller is displayed by the solid grey line. The reference cam phase is displayed by

a dashed line and can be seen in the close-up details of Figs. 6.4A-6.6A. The bound rep-

resenting the maximum allowable displacement is displayed by a dash-dot line. Notice in

169



A B
T
ca
m

(N
m
)

Time (s)Time (s)

22

1.81.8

1.61.6

1.41.4

1.21.2

11

0.80.8

0.60.6

0.40.4

0.20.2

00

0 55 10 15 20 4.5 4.6 4.7 4.8 4.9

Figure 6.3: Cam load disturbance.

Figs. 6.4A-6.6A that the cam phase stays within the bounds when using the ℓ2 to ℓ∞ gain

controller. However, for each friction coefficient value, the cam phase violates the bound

when using the H∞ controller.

The activation voltage of the electrical VVT motor is displayed in Figs. 6.4B-6.6B. A sat-

uration of ±14 was placed on the motor activation voltage during the simulation. As clearly

displayed in Figs. 6.4B-6.6B, the ℓ2 to ℓ∞ controller uses large amounts of the activation

voltage potential during the cam phase changes compared to the H∞ controller, which is

why it reaches the reference cam phase about 10 times faster than the H∞ controller. Also

during the cam load disturbance, as displayed in the details in Figs. 6.4B-6.6B, the ℓ2 to ℓ∞

gain controller uses ever so slightly more potential to ensure that the maximum displacement

bound is not violated. Notice also, that as the friction coefficient gets smaller, the activation
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voltage needed to hold the cam phase at the desired position decreases since the motor does

not have to work against the oil as much with lower oil viscosities.

6.5 Conclusion

In this chapter, a discrete-time, LPV system representing the electric VVT system is devel-

oped with engine oil viscosity as the time-varying parameter. A gain-scheduled, dynamic,

output-feedback controller is then designed such that the closed-loop system will have a

guaranteed ℓ2 to ℓ∞ gain, which is very closely related to the physical performance con-

straints. For comparison, an H∞ controller is also designed to demonstrate the benefit of

guaranteed ℓ2 to ℓ∞ gain controllers. Simulation study results demonstrate the effectiveness

of the proposed scheme.
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Figure 6.4: Electrical VVT simulation with β = 2.
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Chapter 7

Conclusions and Future Research

7.1 Summary

In this dissertation, first the current LPV control theory methods were reviewed. Second,

since the current LPV control theory was missing the ability to design LPV controllers with

physically meaningful performance design constraints that could guarantee hard bounds,

the current theory was extended to allow the use of ℓ2 − ℓ∞ gain performance constraints.

Controller synthesis LMIs are provided for the synthesis of state-feedback and dynamic

output-feedback controllers with guaranteed ℓ2− ℓ∞ gain and H∞ performance. To demon-

strate the effectiveness of the controller synthesis LMIs provided a numerical design example

is considered for both the state-feedback and dynamic output-feedback control designs.

Also included in this dissertation is the application of the current and newly developed

LPV methods to engine control problems. In Chapter 4, gain-scheduling PI and PID con-

trollers were developed for the air-to-fuel ratio control of port-fuel-injection processes with

the wall-wetting parameter and engine speed as the time-varying parameters. Simulation and

HIL simulation results demonstrate the successful application of current LPV control the-

ory to obtain a gain-scheduling controller. The HIL simulation results also demonstrate the

feasibility of implementing the obtained gain-scheduling controller on a hardware controller

that could be used as an engine control module.

In Chapter 5, a dynamic output-feedback gain-scheduling controller was designed for a
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hydraulic variable valve timing actuator. This was done by employing an observer-based

state feedback design and static multi-objective H2/H∞ controller synthesis. The LPV

controller designed was compared with the robust H2 OCC controller and an ad-hoc PI

controller designed in [52]. The LPV controller was found to have much lower control variance

than the robust H2 OCC controller. Also, while the LPV controller is more complex than

the PI controller in both concept and implementation, it has lower overshoot than the PI

controller at all operating conditions with similar settling and response time characteristics.

Additionally, the LPV controller was designed with a systematic approach while the PI

controller was obtained through ad hoc testing.

The guaranteed ℓ2 − ℓ∞ gain controller synthesis techniques provided in Chapter 3 are

applied to the control of the electric variable valve timing actuator with engine oil viscosity

as the time-varying parameter in Chapter 6. A gain-scheduled, dynamic, output-feedback

controller is designed such that the closed-loop system will have a guaranteed ℓ2 to ℓ∞ gain.

To demonstrate the benefit of guaranteed ℓ2 to ℓ∞ gain controllers, an H∞ controller is also

designed for comparison. The simulation study results demonstrate the effectiveness of the

proposed scheme.

7.2 Specific Contributions

The contributions of this research to systematic gain-scheduling control are as follows:

1. The characterization of the ℓ2 to ℓ∞ gain performance constraint as an LMI constraint

for discrete-time polytopic LPV systems [73].

2. Guaranteed ℓ2 to ℓ∞ controller synthesis LMIs for the state-feedback and dynamic

output-feedback control of discrete-time polytopic LPV systems. These controllers
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can provide hard constraints on system outputs when the exogenous input is modeled

as a bounded ℓ2 disturbance [73].

3. Chapter 4 is the first work to develop an air-to-fuel ratio gain-scheduling controller for

the port-fuel-injection process using the wall-wetting parameters and the engine speed

as scheduling variables [66, 69, 67, 70, 68].

4. In Chapter 4, a novel approach is developed to express the parameter variation of the

continuous-time oxygen sensor dynamics in the event-based discrete-time model with

minimal error [66].

5. In Chapter 5, a systematic approach is provided for the design of gain-scheduling

controllers when system identification is used to obtain the system model [71].

6. In Chapter 6, an LPV model is developed for the electrical VVT system with engine

oil viscosity as the time-varying parameter [72], which large impact on the response

time according to [49].

7. In Chapter 6, a method for obtaining an approximate discrete-time LPV system from

a continuous-time LPV system based on the linear-least squares estimation method is

provided [72].

7.3 Future Research

The following topics deserve future investigation:

1. The guaranteed ℓ2 − ℓ∞ gain control design considered in this research minimized the

control effort subject to desired system output constraints. It would also be interesting
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to investigate a guaranteed ℓ2 − ℓ∞ gain control design that finds the best achievable

performance for a fixed amount of control energy, meaning that the control energy

would be constrained and the performance of the system outputs would be optimized

as much as possible.

2. A systematic framework for the off-line estimation of the wall-wetting parameters over

all operating conditions for the a given intake manifold would be desirable for the

practical application of wall-wetting parameters as a scheduling parameter for gain-

scheduling control.

(a) It may also be necessary to develop on-line estimation procedure to validate the

wall-wetting parameters stored in the engine control unit in case the wall-wetting

parameters change over the life of the engine due to build up of fuel residuals.

3. The hydraulic VVT system studied in Chapter 5 was only capable of being operated

at low engine speeds. To demonstrate the benefits of the LPV approach, a wider range

of engine operating conditions needs to be considered.

4. A mixed ℓ2−ℓ∞/H∞ LPV controller design should be performed for the electrical VVT

system and that controller should be tested on an engine equipped with an electrical

VVT actuator.
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Appendix A

Linear Fractional Transformation

For completeness, we will now give the definition of a linear fractional transformation (LFT).

Linear fractional transformations are used to efficiently formulate the interconnection of

multi-input multi-output sub-systems with multiple sources, such as uncertainties, noises,

disturbances, and varying parameters. As given by [84], the possibly complex coefficient

matrix M is partitioned as

M =

[
M11 M12

M21 M22

]
∈ C

(p1+p2)×(q1+q2) (A.1)

with ∆ℓ ∈ Cq2×p2 and ∆u ∈ Cq1×p1 . A lower LFT is given with respect to ∆ℓ as

Fℓ(M,∆ℓ) = M11 +M12∆ℓ (I −M22∆ℓ)
−1M21. (A.2)

An upper LFT is given with respect to ∆u by

Fu(M,∆u) = M22 +M21∆u (I −M11∆u)
−1M12. (A.3)

From the diagrams in Fig. A.1, the reason behind the terminology of lower and upper LFTs

should be clear. The set of equations representing the lower LFT diagram in Fig. A.1a are
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Figure A.1: (a) Diagram of a lower LFT. (b) Diagram of an upper LFT.

given by

[
z1
y1

]
=

[
M11 M12

M21 M22

] [
w1
u1

]
,

u1 = ∆ℓy1,

(A.4)

and the equations representing Fig. A.1b are given by

[
y2
z2

]
=

[
M11 M12

M21 M22

] [
u2
w2

]
,

u2 = ∆uy2.

(A.5)

The partitioning of M depends on the interconnections with the isolated parameter ∆ℓ

or ∆u and can be determined using the MATLAB function “sysic” [6].
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Appendix B

Port Fuel Injection System Matrices

The state-space matrices for the LPV system in (4.23) have been found to be

A =




0.91 0 0.0369 0 0 0 0 0
0.2617 0 0.1544 0 0 1.4352 0 0

0 0 0.8475 0 0 0 0 0
0 1.4506 0 0.2231 0.3972 0 0 0
0 2.6311 0 0 0.3114 0 0 0
0 0 0 0 0 0.9986 0 0
0 0 0 0 0 0 1.9972 −0.9985
0 0 0 0 0 0 0.9987 0




∈ R
8×8 (B.1)

B0 =




−0.09 0.0625 0 0 1 0 0
0.2617 0.2617 0 0 0 0 0

0 −0.2585 1.6949 1.6949 0 0 0
0 0 0 0 0 0.0664 −0.0027
0 0 0 0 0 0.0436 −0.0073
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.0214 −0.0179 −0.0933 −0.4891 −0.0984 0.0608 0.0975
−0.0186 −0.0134 0 −0.7266 0.1211 0.3095 0.2231

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




∈ R
8×14

(B.2)
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B1 =




0 0 0.0043
0 0 0.0179
0 0 −0.0073
0 0 0
0 0 0

0.3756 0 0
0 0.0266 0
0 0 0




∈ R
8×3, (B.3)

B2 =




0.0369
0.1544

0
0
0
0
0
0




∈ R
8×1 (B.4)

C0 =




0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0.1525 0 0 0 0 0
0 0 −1 0 0 0 0 0
−1 0 0.41 0 0 0 0 0
0 63.6832 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 25.2968 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




∈ R
14×8, (B.5)

C1 =
[
0 0 0 −1 0 0 0.015 0.015

]
∈ R

1×8 (B.6)
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D00 =




0 1.6949 0 0 0 0
0 −1.6949 0 0 0 0
0 0.2585 −1.6949 −1.6949 0 0
0 −1.6949 0 0 0 0
−1 0.6949 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

−0.4891 −0.0984 0.0608 0.0975 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




∈ R
14×14,

(B.7)

D01 =




0 0 0.1161 1
0 0 −0.1161 0
0 0 0.0073 0
0 0 −0.0476 0
0 0 0.0476 0.41
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




∈ R
14×3, (B.8)
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D02 =




1
0
0
0

0.41
0
0
0
0
0
0
0
0
0




∈ R
14×1 (B.9)

D10 =
[
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]
∈ R

1×14, (B.10)

D10 =
[
0 0 0

]
∈ R

1×14, (B.11)

D10 =
[
0
]
∈ R. (B.12)
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[24] A.U. Genç, K. Glover, and R. Ford. Nonlinear control of hydraulic actuators in variable
cam timing engines. In MECA International Workshop, University of Salerno, Italy,
September 2001.
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