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ABSTRACT
ERROR ANALYSIS OF REFLECTION-ONLY MATERIAL CHARACTERIZATION METHODS
By
RAENITA ANN FENNER

Material characterization is the process of determining the electrical properties of a material by
using knowledge of how electromagnetic waves reflect and transmit through a material sam-
ple. This characterization can be critical to the design of high-speed circuits and packaging,
microwave remote sensing, bioengineering, food engineering, agriculture, and general materi-
als science. An interesting problem within material characterization is the non-contact, non-
destructive characterization of conductor-backed media. Conductor-backed media are mate-
rials which are directly adhered to a good or a perfect electric conductor (PEC). This scenario
occurs in real-life applications such as the characterization of in-situ materials or character-
ization of shielding apparatus. For this specific case, reflection-only methods must be used
because measurement of transmission properties is impossible due to the PEC backing.

The main focus of this dissertation is the study of the strengths and weaknesses of vari-
ous reflection-only material characterization methods by performing a thorough error analysis.
More specifically, the propagation of measurement errors into extracted material parameters is
investigated. Such analysis is lacking in the material characterization area. Key contributions of
this research are (1) a general formulation for deriving reflection-only material characterization
methods, (2) a general process for determining the propagated error into many reflection-only
material characterization methods, (3) a method for characterizing conductor-backed media,
(4) expanding the use of interval analysis in the electromagnetic community, and (5) deter-
mining the impact of wave curvature on free-space reflection-only material characterization

methods.



To my loving husband for all of his love and support.

I would not have made it without you.

iii



ACKNOWLEDGMENTS

When I think upon the years that [ have spent writing this dissertation, I am reminded of the
great author Maya Angelou when she said "We delight in the beauty of the butterfly, but rarely
admit the changes it has gone through to achieve that beauty." Throughout my time at Michigan
State University, I have gone through an intellectual, professional, and spiritual metamorpho-
sis. However, all that I have achieved was not done alone and many people and organizations
deserve my many thanks.

First, I would like to thank the person at the cornerstone of my intellectual growth, my ad-
visor Dr. Edward Rothwell. Dr. Rothwell has been a patient and knowledgable teacher and
counselor. It has been a pleasure working with you for the past six years, and I hope we can
continue to work together in the future.

I also would like to thank my committee members Dr. Shanker Balasubramaniam, Dr. Leo
Kempel, and Dr. Lydell Frasch. Thank you for sharing your wealth of knowledge and your con-
stant support in this process. Additionally, I would like to especially like to thank Dr. Frasch,
Boeing, and the Air Force Research Lab for sponsoring several years of my doctoral studies.

Professionally, I have learned an immense amount of knowledge from participation in the
Sloan program and the AGEP program. The Sloan program has been a home away from home
for me. I would like to thank Dr. Percy Pierre and Dr. Barbara O’Kelly for all of your behind the
scenes help and organization of a program which transformed my graduate school experience.

Many, many thanks are given to all of my family and friends. To my parents, you have been
there for me for my entire life. You sowed the seeds for me to succeed in earning this degree
many years ago. One of the most important lessons you taught me was to never give up and to
not be a quitter. I am forever thankful for all of your support and prayers, and especially for the
confidence you have always had in me, even when I didn’t have it for myself.

To my husband, Dr. Anthony Plummer, Jr, [ am so proud of all of your accomplishments. I

know without a doubt that I would not be here today if it wasn't for all of the intangible support

iv



you provide for me.

Last but not least, I give honor to my savior Jesus Christ. There were many days I thought I
would not complete this work, but the strength you gave me enabled me to push through the
tough times. I owe everything to you and I hope I share with others the blessings you have

bestowed upon me.



Table of Contents

List of Tables X
List of Figures xiii
1 The Introduction 1
1.1 Overview of Material Characterization . ... ... ... ... .. ........... 1
1.1.1 A Brief History of Materials Science and Material Characterization . . . . . . 1

1.1.2 The Physical Nature of Materials in the Presence of Electric and Magnetic
Fields . . . . . . . o e 2
1.2 Microwave Material Characterization . . . ... ... ... .. .. ........... 6
1.2.1 A Brief History of Material Characterization at Microwave Frequencies . .. 6
1.2.2 C(lassification of Microwave Material Characterization Methods . . . . . .. 7
1.2.3 Characterization of Conductor-Backed Media: Reflection-Only Methods . . 8
1.3 Overview and ContributionsofthisWork . . . . . ... ... .. ... . ... ... 9
2 Plane Wave Propagation 12
2.1 Time-Harmonic Uniform Plane Waves in Unbounded Media . . .. ....... .. 12
2.2 Reflection and Transmission at Planar Interfaces . ... .. ... ........... 15
2.2.1 Obliquelncidence . . ... ... .. .. .. i 15
2.2.2 Normallncidence. . . . .. ... ... . .. 19
2.3 Reflection and Transmission at Layered Slabs . . . . . ... ... ... ........ 19
3 Overview of Error Analysis Methods 28
3.1 ThelImportanceof ErrorAnalysis. . . . . .. ... ... .. ... .. .. .. ... ... 28
3.2 Uncertainties in Measurement . . . . . . .. .. ... ..., 29
3.2.1 Types of Measurement Uncertainty . . ... ................... 30
3.2.2 The Normal Distribution . . ... ... ... ... .. ... ......... 31
3.3 Calculating Measurement Error . . ... ... ... ... ... ... .. ... ..... 32
3.3.1 Overview of Monte Carlo Simulations . . . . .. ... ... ........... 32
3.3.2 Overview of the Error PropagationMethod . . . . . . ... ........... 32
4 General Formulation of Reflection-Only Material Characterization Methods 36
4.1 Introduction . . . . . . . . . . . . e e 36
4.2 A General Approach to Overlays and Underlays . . ... ................ 37
4.2.1 Free-spacesySteIn . . . . . . . . . ittt e 38
4.2.2 TEMand WaveguideSystems . . . . . .. .. .. ... ... .. ... .. ... 44

vi



4.2.3 Closed Form Expressionsforepanduy . ... ... ... ........ 44

4.2.4 Some Special Layer Arrangements . . . . . . ... ... 46

4.3 Formulation of Standard Methods Using Impedance Approach . . . . ... ... .. 48
4.3.1 Two-BackingMethod. . . . ... .. ... ... .. ... .. . L. 48
4.3.2 Conductor-Backed Methods . . ... ... ... ... ... ......... 50
4.3.3 Two-ThicknessMethod . .. ... ... .. ... ... ... .. .. ... ... 53

4.4 Conclusion . . . . ... . 55
5 The Dual Polarization Method 67
51 Introduction . . . . . . . . . . . e e 67
5.2 Extractionmethod . ... ... ... ... .. ... .. 68
5.2.1 Dual-polarization methodforpande . . . ... ... .............. 70
5.2.2 Dual-Polarization Method foreand A . . . . ... ... ... .......... 72
5.2.3 Dielectric Materials with A Known (Short-Circuited Reflection Method) .. 73

5.3 Error analysis of the Dual-Polarization Method . . . .. ... ... ... ....... 73
5.3.1 Errorsduetoinaccuraciesinmeasuredf . . . .. ... ... ... ....... 76
5.3.2 Errorsduetoinaccuraciesinmeasured A . . . .. .. ... ... 77
5.3.3 Errors due to inaccuracies in measuredI') and I’y .. .. ... ..oy 78

5.4 Numerical Experiments . . .. ... .. ... ... .. ... . 79
5.4.1 ErrorAnalysisofPlexiglas . . ... ... .. .. ... ... .. .. ... .. ... 80
542 FGMA40 . . . . 80

55 Conclusions . . . . . . . . . .. 81
6 Interval Analysis 96
6.1 Introduction . . .. .. . .. .. . ... 96
6.2 Background of Interval Analysis . . . ... .. ... ... .. ... .. ... 98
6.2.1 Introductionto Interval Functions . . . . . .. ... .. ... ... ...... 98
6.2.2 Overview of Interval Arithmetic . . .. ... ... ... ... .......... 100
6.2.3 ComplexIntervals . ... ... .. ... .. . .. . ... 101

6.3 Interval Sensitivities and Statistical Analysis . . .. ... ... ... ... .. ..... 103
6.3.1 Interval Sensitivities . . . . . ... ... .. ... 103
6.3.2 Interval Analysis Used as a Statistical AnalysisTool . . . ... ... ...... 104

6.4 Error Analysis of the Layer-Shift Method . . . .. ... ... ... ... .. ... ..... 104
6.4.1 Extraction Equations for the Free-Space Layer-Shift Method . ... ... .. 105
6.4.2 MeasurementSet-Up. . . ... ... ... ... ... .. 106
6.4.3 Comparison Interval Analysis to Monte Carlo Simulations . . . . . ... ... 107

6.5 Conclusions . . . . . . .. .. e 110

7 Effects of Curved Wavefronts on Free-Space Material Characterization Techniques 123

7.1 Introduction . . . . . . . . L e e e 123
7.2 Reflection Coefficients Due to an Electric Line Source . . .. ............. 124
7.2.1 Field of An Electric Line Source Above a Layered Medium . . . . ... .. .. 124
7.2.2 Reflection Coefficient to Emulate Plane Wave Reflection . . . . .. ... ... 129
7.3 Reflection Coefficient for a Magnetic Line Source . . . ... ... ... ........ 131
7.4 Wave Curvature Impact on the Two-Thickness Method . . . . . ... ... ... ... 132

vii



7.4.1 Scenario 1: Variation of Line Source Distance to the MUT
7.4.2 Variable MUT thickness
7.5 Conclusions

8 Conclusions

viii



List of Tables

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

6.4

6.5

7.1

7.2

7.3

7.4

7.5

Measurement tolerances chosen for error analysis for two polarization method . . 83
Material parameters for Plexiglasat8.20GHz . .. ... .. .. .. .. ... ..... 83
Material parameters for Plexiglasat8.20GHz . ... ... ... ... ......... 83
Material parameters for FGM40at8.20GHz . .. ... ... ... ........... 83
Decrease in total error for FGM40 with increase of é’r .................. 83
Mean e¢r and pr predicted by Monte Carlo simulations and interval analysis at

510, and 15 GHz . . . . . . . . . 111
Standard deviation of € and ur predicted by Monte Carlo simulations and inter-
valanalysisat IOGHz . . . . .. .. . .. .. e 112
Standard deviation of yr predicted by refined interval analysisat 10GHz . . . . . . 113
Standard deviation of e predicted by refined interval analysisat 100 GHz . . . . . . 114
Standard deviation of ¢ and ur predicted by Monte Carlo simulations and Inter-

val Analysisat I0GHz . . . . .. .. . . . . e 115

Reflection coefficients calculated with a TM polarized plane wave (Plexiglas) . .. 136

Reflection coefficients calculated with a magnetic line source at variable distances
from the MUT (Plexiglas) . .. .. ... ... ... . . .. 136

Reflection coefficients calculated with a TM polarized plane wave (35% MagRAM) 137

Reflection coefficients calculated with a magnetic line source at variable distances
from the MUT (35% MagRAM) . . . . . .. . . . .. it 137

Reflection coefficients calculated with a TE polarized plane wave (Plexiglas) . . . . 138



7.6 Reflection coefficients calculated with an electric line source at variable distances
from the MUT (Plexiglas) . .. ... .. ... ... .. 138

7.7 Reflection coefficients calculated with a TE polarized plane wave (35% MagRAM) . 139

7.8 Reflection coefficients calculated with an electric line source at variable distances
from the MUT (35% MagRAM) . . . . . . . . . it i 139

7.9 Reflection coefficients calculated with a TM plane wave (Plexiglas) ... ... ... 140

7.10 Reflection coefficients calculated with a magnetic line source with variable MUT

thickness (Plexiglas) . . .. .. ... ... .. ... . . 140
7.11 Reflection coefficients calculated with a TM plane wave (35% MagRAM) . . .. .. 141
7.12 Reflection coefficients calculated with a magnetic line source with variable MUT

thickness (35% MagRAM) . . . . . . . . .. 141
7.13 Reflection coefficients calculated with a TE plane wave (Plexiglas) . . . .. ... .. 142

7.14 Reflection coefficients calculated with an electric line source with variable MUT
thickness (Plexiglas) . . ... .. ... . . . . . . 142

7.15 Reflection coefficients calculated with a TE plane wave(35% MagRAM) . . . .. .. 143

7.16 Reflection coefficients calculated with an electric line source with variable MUT
thickness (35% MagRAM) . . . . . . . .. . e 143

7.17 Extracted e calculated with an electric line source reflection coefficients (MagRAM)144

7.18 Extracted pr calculated with an electric line source reflection coefficients (Ma-
GRAM) . . oo 145



List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

Permittivity vs. frequency for a hypothetical dielectric [46] . ... .......... 11
Geometry of the canonical problem of plane wave incidence on a planarslab . . . 22
Ilustration of the plane of incidence with perpendicular polarization . . . . .. .. 23
[lustration of the plane of incidence with parallel polarization . . . ... ... ... 24
Resolution of incident wave vector and electric field of components with perpen-

dicular polarization . . . . . . . . . ... 25

Resolution of incident wave vector and electric field of components with parallel

polarization . . . . . . . ... e e e 26
Diagram of stackedmedia . . . . ... ... .. ... ... ... o L 27
Drawing emphasizing the difference between systematic and random errors . . . . 34
Sample plot of the normal distribution . . .. ... ... ... ... .......... 35

A free-space material characterization configuration that uses reflection-only mea-

SUIEIMENTS . . . . . v vt e et e e e e e e e e e e e e e e e e e e e e e 56
Free-space arrangement for the air/conductor backed method . . . . .. ... ... 57
Rectangular waveguide arrangement for the air/conductor backed method . ... 58

Material parameters for Plexiglas extracted using the air/conductor backed method
with arectangular waveguide system . . .. ... .. ... .. ... .. ..., 59

Free-space implementation of the layer-shift method . .. ... ... ... ... .. 60

Permittivity of a 35% MagRAM sample extracted using free-space reflection-only
methods . . . . . . . 61



4.7 Permeability of a 35% MagRAM sample extracted using free-space reflection-only
methods . . . . .. ... 62

4.8 Coaxial representation of the layer-shift method . . . . . ... .. .. ... ... ... 63

4.9 Diagram of the coaxial fixture used for TEM guided-wave implementation of the

layer-shiftmethod . . . ... .. ... . .. .. ... 64
4.10 Permittivity extracted using a coaxial implementation of the layer-shift method . . 65
4.11 Free-space implementation of the two-thicknessmethod . . .. ... ... ... .. 66
5.1 Diagram illustrating the dual-polarizationmethod . . ... ... ... ... ..... 84
5.2 Amplification factors for u’r, u’r’ , e‘;,, and 6;! Vs.O . . 85
5.3 Denominator of Equation5.20Vvs. €y . . . . . . . . . 86
54 Equationb5.20Vs. €7 . . . . o o i i i e e e e e e e e e 87
5.5 ErrorforPlexiglass . . ... .. ... .. ... 88
5.6 Analyzer error of Plexiglass vs. MUT thickness . . . . ... ... .. .......... 89
5.7 Analyzer error of Plexiglass vs. MUT thickness . . . . ... ............... 90
5.8 Changein phaseforI' | and L) vs. MUT thickness (Plexiglas) . . . . ... ...... 91
5.9 Errorfor PlexiglassforA=.1inch . ... ... ... ... .. ... .. .. ... .... 92
510 Error for FEGMA40 . . . . . . . . e 93
5.11 Decrease in error vs. increase of é;, ............................. 94
5.12 Error for FGM40for € =20 . . . . . . . . . e e 95
6.1 Rectangular interval representation in the complexplane . . ... .. ... ... .. 116
6.2 Circular interval representation in the complexplane . ................ 117
6.3 Sector interval representation in the complexplane. . . . ... ... ... ...... 118
6.4 Normal probability plots of extracted ey from the layer-shift method ... ... .. 119
6.5 Normal probability plots of extracted yr from the layer-shift method . .. ... .. 120
6.6 Layer-shift extractionofvs.frequency . . . . . ... ... ... . ... . ... ... 121

xii



6.7

7.1

7.2

7.3

7.4

7.5

Layer-shift extractionof ey vs. frequency . . . ... ... ... ... .. ... .. ... 122

Diagram of plane wave incidence for free-space material characterization . . . . . 146

Diagram of curved wavefront incidence for free-space material characterization . 146

Diagram of a line source above alayeredslab . ... ... ... ............ 147
Geometry reflection coefficient simulations . . . ... ... .............. 148
Image theorysetup . . . . . . . . . .. .. 149

xiii



Chapter 1

The Introduction

1.1 Overview of Material Characterization

1.1.1 A Brief History of Materials Science and Material Characterization

The study of materials has spanned the history of human kind. Early materials research can
be conceptualized as early humans learning which natural resources were suitable for building
shelter, making tools, fabrics, weapons, etc. As time has moved forward, human technological
and societal advancements have lead to much more sophisticated research and applications of
materials.

In today’s society, the impact of materials research is ubiquitous. Materials research encom-
passes the design of automobiles, electronic devices, health and beauty products, computer
networks, green energy technologies, etc. Subsequently, materials research spans many disci-
plines and fields of study. Materials science and engineering embodies metallurgy, chemical
engineering, physics, inorganic chemistry, organic chemistry, crystallography, electrical engi-
neering, and many more areas of study [42]. Each one of these disciplines examines a specified
set of physical material properties. For example, a crystallographer may study the diffraction
patterns caused by materials to examine the the physical arrangement of atoms within a solid.

Alternatively, an organic chemist may study the solubility or melting/boiling point of a material.



Within the discipline of electromagnetics (in the context of electrical engineering), of large
interest is material characterization. Material characterization is the process of determining the
intrinsic properties of materials with knowledge of the material’s response to electromagnetic
waves. The intrinsic properties of materials are the properties due to the underlying physi-
cal behavior of the material, as opposed to extrinsic properties which are performance related
properties (resonance, intrinsic impedance, reflectivity, etc.). Intrinsic properties include per-
mittivity, €, magnetic permeability, ¢, conductivity, o, propagation parameters, and electrical

transport parameters [33].

1.1.2 The Physical Nature of Materials in the Presence of Electric and Mag-

netic Fields

The characterization of materials in electromagnetics is largely dependent on the macroscopic
physical behavior of materials in the presence of an electromagnetic field. Maxwell’s equations
and the constitutive relations govern the macroscopic relationship between the electromag-
netic field and the media through which the field is propagating. Maxwell’s equations and the

constitutive relations defined in the frequency domain are

VxE:—]wE (1.1)
Vxﬁ:]w5+7 (1.2)
V-D=p (1.3)
V-B=0 (1.4)



D=¢cE= (e’—]e”)ﬁ (1.5)
T — (1 N
B=puH=(W —ju )H (1.6)

J=0E. (1.7)

In equations 1.1-1.7, E is the electric field strength vector, H is the magnetic field strength
vector, D is the electric flux density, B is the magnetic flux density, and J is the current density
vector. Also, p is the electric charge density, € is the complex permittivity, u is the complex
permeability, and o is the conductivity. Examination of equations 1.1-1.7 shows that ¢, g, and
o determine the electromagnetic response and spatial penetration of electromagnetic fields at
a particular frequency [33].

It is important to note here that through specification of equations 1.5-1.7 that a specific
class of materials have been defined. Again, the characteristics of ¢, u, and o determine the
electromagnetic behavior of materials. Therefore, if €, i1, or o are dependent on applied field
strength, orientation, or on spatial coordinates equations 1.1-1.7 will have to be adapted. For
instance, if €, 1, or o depend on applied field strengths in a non-linear fashion, the material
is termed non-linear. Thus, 1.5-1.7 will have ¢, y, or ¢ depend non-linearly on applied E and
H. If e, u, or o depend on orientation, the material is said to be anistropic. For anistropic
materials, €, i, or o can be second-rank tensors or matrices. Lastly, if¢, i, or o depend on spatial
coordinates then the material is termed inhomogeneous. For inhomogeneous materials, €, (., or
o are functions of space [15]. Moreover, it is important to note the behavior of materials can vary
due to temperature, applied field strength, operating frequency, pressure, etc. A case in point
is that, if a material placed within a weak electric field may behave in a linear fashion, while a
material placed in a strong electric field may behave in a non-linear fashion. In this work, only

linear, isotropic, homogeneous materials are considered. Also, all analysis is conducted in the



frequency domain.

Along these lines, materials are grouped appropriately by their €, i, and o values. To make
comparison of materials more simple, all materials are related to the electromagnetic prop-
erties of free-space. The properties of free-space include €0 = 8.859 x 10712 F/m, Ho = 47 x
10”7 H/m, and o = 0 S/m. All other material parameters are defined in terms of the free-space

values of € and . Respectively, € and p are defined as follows:

€= e’reo —]e'rleo, egp =1, egp’ =0 (1.8)

W= [rlo = JHF RO, My =1, 1y 20, (1.9)

Generally, materials are classified by either their conductive (o) or magnetic properties pr.
Classic organization of materials by their conductive properties includes dielectrics (or insu-
lators), semiconductors, and conductors. All three classification of materials have minor re-
sponses to magnetic fields, but are generally considered non-magnetic (¢ = o).

In terms of magnetic properties, materials are classified as either diamagnetic (¢ < o),
paramagnetic (4 = o), or highly magnetic (u > po). Ferromagnetic and Ferrimagnetic ma-
terials are considered highly magnetic materials. Although, many magnetic materials are also
highly conductive, they are still considered magnetic because their magnetic properties are
more meaningful in application.

In this work, of special interest are dielectric and paramagnetic materials. Dielectrics and
paramagnetic materials are of special interest because they are commonly used in microwave
measurements and applications which are described in Section 1.2. Therefore, the behavior
of dielectrics and paramagnetic materials are qualitatively described in order to understand
theoretical calculations, measurements, and possible sources of error in the characterization

process.



Dielectric Materials

The physical response which determines the permittivity of materials is displacement of free
and bound electrons due to the electric field [33]. The complex permittivity of a dielectric ma-
terial is thus determined by several physical phenomena related to the displacement of free
and bound electrons. The prominent physical phenomena responsible are ionic conduction,
dipolar relaxation, atomic polarization, and electronic polarization [22]. Figure 1.1 shows that
permittivity is frequency dependent and different physical phenomena are dominant at differ-
ent frequencies [28]. Dipolar relaxation is the process of the misalignment of permanent and
induced dipoles due to thermal noise. At lower frequencies, dipolar relaxation is dominant
because the thermal effect on atoms is not overshadowed other dielectric phenomena. Also
prevalent at lower frequencies is ionic conductivity. Ionic conductivity is due to electrolytic
conduction of free ions. Ionic conductivity mostly introduces losses to the material and hence
is a major contributor to e’r’ .

In the visible light and ultraviolet parts of the spectrum, electronic polarization dominates.
Electronic polarization is due to induced dipoles created by the separation of positively charged
atomic nuclei from negatively charged electron clouds. At microwave and infrared frequencies,
atomic polarization dominates which is caused by deformation of the electron cloud due to

applied electric field.

Diamagnetic and Paramagnetic Materials

Similar to how permittivity is related to the displacement and relaxation of free and bound elec-
trons, permeability is related to changes of electron orbits due to applied magnetic fields [46].
Essentially, the electrons spinning in their orbits can be thought of as magnetic dipoles. The
physical phenomenon which affects the permeability is analogous to Faraday’s law. Fundamen-
tally, a time-varying magnetic field induces an electric field. In turn, the electric field induces a
current which generates a secondary magnetic field which opposes the original magnetic field.

Like permittivity, the permeability is frequency dependent. In addition, the magnetic proper-



ties of materials can vary based on operating temperature, pressure, etc.

1.2 Microwave Material Characterization

As noted, the macroscopic electric and magnetic behaviors of materials vary from material to
material (e.g. - dielectrics, magnetic materials, superconductors), frequency, and temperature,
etc.. Therefore, there is not one special material characterization method which is applicable to
all materials across all possible deployment environments. Accordingly, a sub-area of material

characterization is characterizing materials at microwave frequencies.

1.2.1 ABrief History of Material Characterization at Microwave Frequencies

Research on characterization of materials dates back to late 1800’s. In [47], there is reference of
characterization of materials at microwave frequencies as early as 1895 by Drude in [14]. Drude
developed two methods to characterize materials. One method entailed measuring wavelength
with a pair of lecher wires, a pair of parallel wires or rods. Another method included measuring
the capacitance of a small resonant capacitor.

World War II created the need for electromagnetic signature control and reducing radar
cross sections. These applications required the design of tailor made composite materials for
radar absorbtion. In 1940, the basic ideas by Drude were expanded upon by von Hipple in [22].
von Hipple described what he termed a "hollow pipe" method. The method utilized an instru-
ment similar to a slotted line which had a transmitter at one end and a metallic boundary at the
opposite end. The methodology included placing a dielectric sample adjacent to the metallic
boundary and measuring the voltage maximum and minimum parallel to the length dimension
of the pipe. By 1947, the "hollow pipe" method was expanded upon in [12] with a rectangular
waveguide system. In [12], characterization was done on a variety of materials like nylon, teflon,
pork meat, and ivory. The real part of the permittivity, loss tangent, attenuation constant, index

of refraction, and power reflection coefficient were characterized for all of the materials.



By 1967, microwave material characterization was influential in the design of circuits and
wave transmission calculations. New characterization methods including capacitor, liquid im-
mersion, cavity, and transmission line measurements were cited as state of the art microwave
material characterization methods in [9].

Today microwave material characterization is critical to the design of high-speed circuits
and packaging, microwave remote sensing, bioengineering, food engineering, agriculture, gen-

eral materials science, etc. [39],[56].

1.2.2 Classification of Microwave Material Characterization Methods

Considering all of the various applications of microwave material characterization, it makes
sense that there are an abundance of characterization methods to suit the variety of applica-
tions. Frequency, availability and size of material samples, dielectric losses, anistropy all deter-
mine which characterization method should be used [29].

Microwave material characterization methods can broadly be classified as either resonant
methods or nonresonant methods. Resonant methods are generally used for characterizing di-
electrics at a single frequency or at several discrete frequencies. Common examples of resonant
methods are the resonant-perturbation method and the resonator method [33].

Nonresonant methods are generally used to characterize materials over a broad frequency
range. Nonresonant methods make use of the difference between material impedances and
wave velocities. For instance, as a wave transitions between free-space and a dielectric sam-
ple, the difference between the impedance and wave velocity of free-space and the dielectric
sample provide a means to calculate the permittivity and permeability. Nonresonant meth-
ods are further broken down into reflection/transmission methods and reflection-only meth-
ods. Reflection/transmission methods use measurement of both the reflection coefficient and
transmission coefficient. The most popular reflection/transmission method is the Nicholson-
Ross-Weir (NRW) algorithm described in [40] and [54].

Reflection-only methods, as the name implies, use only data gathered by measuring the



reflection coefficient. Reflection-only methods can be realized with waveguide, coaxial-line, or

free-space implementations.

1.2.3 Characterization of Conductor-Backed Media: Reflection-Only Meth-

ods

An interesting problem within microwave material characterization is the noncontact, non-
destructive characterization of conductor-backed media. Conductor-backed media are mate-
rials which are directly adhered to a good or a perfect electric conductor (PEC). This scenario
occurs in real-life applications such as the characterization of in-situ materials or characteri-
zation of shielding apparatus [7]. For this specific case, reflection-only methods must be used
because measurement of transmission properties is impossible due the PEC backing.

There are many different implementations of reflection-only methods. Coaxial-line reflection-
only methods are a popular type of reflection-only methods. Coaxial-line methods are realized
with open-ended coaxial probes or coaxial-line cells. Open-ended coaxial probes are coaxial
transmission lines where the outer conductor is bent such that the inner conductor is flush
with the material sample. Coaxial-line cells are coaxial transmission lines designed such that
material samples can be placed within the coaxial cell. Many coaxial-line methods can also be
adapted for waveguide methods. There are many advantages to coaxial-line methods which

include that they are:

1. Quick, easy and relatively cheap
2. Asingle probe can be used over a frequency range of with suitable samples
3. Well-suited for non-destructive testing

4. One of the best techniques at microwave frequencies for high loss and medium loss sam-

ples.



Although coaxial-line methods have several positive attributes, they are not useful when
noncontact, non-destructive material characterization methods are necessary. Noncontact meth-
ods are often needed in quality control or diagnostic material characterization. When noncon-
tact methods are necessary, coaxial-line methods cannot be used. In these cases, free-space ma-
terial characterization methods are mandatory. Free-space material characterization methods
are methods that illuminate a planar material sample with a plane wave. A far-field require-
ment, appropriate sample size compared to a wavelength, and an environment few additional
scatters are necessary to perform free-space methods.

There are several well-known reflection-only free-space material characterization methods.

Some of these methods include the:

1. Layer-Shift Method [3]
2. Two-Thickness Method [4]

3. Air/Conductor Method [33].

The free-space methods mentioned here are explained in detail in Chapter 4.

Unfortunately, all of these well-known free-space methods require some form of contact
with the sample material or alteration to the structure containing the sample. This leaves the
engineer who wishes to perform noncontact, non-destructivematerial characterization on conductor-

backed mediain a precarious situation.

1.3 Overview and Contributions of this Work

The main goals of this work is dual-fold. One goal is to provide a thorough error analysis of
reflection-only material characterization methods. Error analysis is of high importance to engi-
neers who perform material characterization. Error analysis is important because it is critical to

know to what extent the extracted permittivity and permeability are valid for a sample material.



The first step in the error analysis is the formation of a general set of extraction equations for
all reflection-only material characterization methods; this work is presented in Chapter 4. This
is an important step because it provides a starting point for an error analysis for all reflection-
only methods. In addition, the general formulation provides a central set of extraction equa-
tions which can be referenced by everyone wishing to use reflection-only material characteri-
zation.

In addition, implementation of a relatively new error analysis method, interval analysis, is
introduced in Chapter 6 and sensitivity of reflection-only methods on wavefront curvature is
discussed in Chapter 7.

The second goal of this work is find a suitable way to characterize conductor-backed me-
dia in a noncontact, non-destructive fashion. Noncontact, non-destructive characterization of
materials have been demonstrated in [6] with a coaxial probe and in [49] and [50] with an ellip-
sometry technique. However, there still is not a free-space noncontact, non-destructive method
to characterize conductor-backed media. Research on what is termed the dual-polarization
method is demonstrated in Chapter 5. The dual-polarization method is a way to characterize

conductor-backed dielectrics and magnetic media.
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Figure 1.1: Permittivity vs. frequency for a hypothetical dielectric [46]
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Chapter 2

Plane Wave Propagation

The characterization of materials with reflection-only free-space techniques requires the anal-
ysis of plane wave reflection off of a planar slab. Thus, the canonical problem, shown in Fig-
ure 2.1, of plane wave incidence on an infinite slab is of great importance. Furthermore, the
reflection-only coaxial-line and waveguide methods presented in this work can be considered
special cases of plane wave propagation.

Since the canonical problem of plane wave incidence on an infinite planar slab is essential
to the study of reflection-only material characterization methods, the general analysis of this
canonical problem is shown in detail. Topics covered in this chapter include: (1) plane wave
propagation in unbounded media, (2) reflection and transmission at normal and oblique inci-

dence, and (3) reflection and transmission at layered slabs.

2.1 Time-Harmonic Uniform Plane Waves in Unbounded Me-
dia

As a starting point, the understanding of plane wave propagation in unbounded media is fun-
damental to the analysis of the canonical problem of plane wave reflection off of an infinite

slab. A plane wave is a wave where the surfaces of constant phase are planes. A plane wave is
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termed uniform when the field amplitudes are constant over the surfaces of constant phase.
The study of time-harmonic plane waves in unbounded media starts with the time-harmonic

form of Maxwell’s equations in equations (2.1)-(2.4), which are

VxE:—]wE (2.1)
VxH=jwD (2.2)
V-D=0 (2.3)
V-B=0. (2.4)

Only source-free (p = 0 and J = 0), linear, homogeneous, isotropic, and time-invariant me-

dia are considered. The constitutive relations for such a medium are

D=¢E=("-;c""E (2.5)

B=pH=@ - /A, (2.6)

Taking the curl of both sides of equation (2.1), yields

VxVxE=—joVxB). 2.7)

Using a vector identity, the left-side of equation (2.7) can be rewritten as

VxVxE=V(V-E)—V2E, 2.8)

In consideration of € being independent of spatial coordinates and equations (2.3) and (2.5),

13



the V(V- E“) term can be rewritten as in [24] as

V-D=0=V-eE=¢V-E—V-E=0. 2.9)
The right side of equation (2.7) can be written in terms of E by using equations (2.2) and
(2.6) such that
VxB= p(V x H) = ]w,ueﬁ. (2.10)
Replacing the left side of equation (2.7) with equation (2.9) and the right side with equation
(2.10) gives the very important result of
V2E - w?pucE = 0. 2.11)

A similar process can be followed by starting with equation (2.2) to yield

V2 H - w?uef =0.. 2.12)

Equations (2.11) and (2.12) are the homogeneous vector Helmholtz equations. In rectangu-
lar coordinates, the vector Helmholtz equations can be separated into three equations of the

form

v2y _ 2y =, 2.13)

where Y is one of the three components of the electric field in either the x, y, or z direction.
Through the separation of variables, equation (2.13) has a product solution of harmonic, prop-
agating wave functions ¥ = A(w)etJkx(@)x %] ky(@)y o jkz(@)z The solution to equation

(2.11) is therefore

EF ) = Es(w)e*/ kx(@)x £1ky@)y  +kz(w)z (2.14)
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In equation (2.14), Eo is the vector amplitude of the plane wave. For a more compact form of
equation (2.14), the wave vector is defined as k=kxi+ kyy+kzZzwith k2 = w? e = k% + ICJZ, + k%

as its magnitude. Hence,

B, w) = Boe 1K T, (2.15)

with 7 = xX + yy + zZ as the position vector. Using the standard engineering notation for
electromagnetic field propagation, the negative sign is apart of the exponential function and
thus the components of the wave vector are positive or negative such that waves decay with
distance.
Finally, for a uniform plane wave there is a specified relationship between the electric and
magnetic fields such that
kxE
ou

H= (2.16)

2.2 Reflection and Transmission at Planar Interfaces

Understanding plane wave propagation in unbounded, linear, homogeneous, and isotropic
media is the first step in understanding what happens when plane waves are incident on a pla-
nar interface. A half-space geometry is initially discussed for oblique and normal incidence.

Reflection off of multiple layers is discussed in Section 2.3.

2.2.1 Oblique Incidence

Consider an interface at z = 0 between two different different material mediums as in Figure
2.1; material 1 extends infinitely in the —2 direction and material 2 extends infinitely into the
+2Z direction. The plane wave originates in material 1 and is incident on material 2 at an angle
6;. The incidence angle, 0;, is between 0 —90° and is measured from the normal vector of the

interface.
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An important aspect of the geometry is the plane of incidence. The plane of incidence is the
plane in which the wave vector lies. For example, if the wave vector is in the X and Z directions
the plane of incidence is the xz-plane. Figures 2.3 and 2.2 diagram the plane of incidence in
relationship to the interface between the two materials for parallel and perpendicular polariza-
tion respectively.

For simplicity, plane wave reflection at oblique incidence is broken into two different cases:
(1) transverse magnetic polarization and (2) transverse electric polarization. Any other arbi-
trary polarization is a linear combination of transverse magnetic and transverse electric polar-
izations.

What is of specific interest for this work is the definition of the wave or field impedance in
both materials 1 and 2 and the interfacial reflection coefficient defined for both transverse mag-
netic and electric polarizations. The wave impedance is defined as the ratio of the electric and
magnetic fields in planes parallel to the boundary [46]. For instance, if the interface between
material 1 and 2 is in the xy-plane, the ratio of the appropriate x and y the components of elec-
tric and magnetic fields are computed. The wave impedance is defined in this manner because
of the continuity of the tangential electric and magnetic fields across the boundary. Once the
wave impedance is defined, the reflection coefficient can be calculated with the well known
formula

LH-4

R=—— 2.17)
Zo+ 24

where Z7 is the wave impedance in material 1 and Z is the wave impedance in material 2.

Transverse Magnetic Polarization

Transverse magnetic (TM) polarization is when the magnetic field is perpendicular to the plane
of incidence and the electric field lies in the plane of incidence. TM polarization is also often re-
ferred to as parallel polarization. The incident, reflected, and transmitted electric and magnetic

fields are
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. KLk i i
Ej(x,2) = Ejq (k_zx - k_xz) s (2.18)
1 1
. E;o _ i
Hl-(x,z):f/%e Tk ey x+kz2) (2.19)
1
. kL kT roo ol
Er(X,Z)=ErO(/C_ZfC +k_x2)e T i (2.20)
1 1
N E _ r r
Hr(x,z):?fe Thollxrizs) (2.21)
1
2 kg katc — ko (kL x+klz)
Et(x,2) = E¢o ch—k—z e JR2 Ky Xty (2.22)
2 ko
. Efo _ Y
Ht(x,z)=37n—toe Jko(ksx+kzz) (2.23)
2

whereny = \/% andny = \/g are the intrinsicimpedances in materials 1 and 2 respectively
[24]. Take note that the intrinsic impedance is different from the wave impedance; the intrinsic
impedance is due to physical properties of the material and the wave impedance is the ratio of
particular components of the electric and magnetic fields.

For TM polarization, the wave impedance is calculated with the £-component of the electric
field and the j-component of the magnetic field. For the fields in material 1, either the ratio
the of incident electric and magnetic fields or the ratio of the reflected electric and magnetic
fields may be used to calculate the wave impedance. In consequence, the wave impedance

k!
in medium 1 using equations (2.18)-(2.19) is Z{l =m k_i Using Figure 2.5, it is customary to

i
rewrite the ﬁ term in terms of the incidence angle such that

Z{l =171 cosO (2.24)

where 60 is equal to 6y due to Snell’s law of Reflection. The wave impedance for the medium 2

is simply
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=y kg (2.25)
2 2k2. .

The interfacial reflection coefficient for TM polarization is then computed using equations,

(2.17), (2.24), and (2.25).

Transverse Electric Polarization

Transverse electric (TE) polarization is when the electric field is perpendicular to the plane of
incidence and the magnetic field lies in the plane of incidence. TE polarization is also often
referred to as perpendicular polarization. The incident, reflected, and transmitted electric and

magnetic fields are

) T
E;(x,2) = JBjoe K1 (kxX+z2) (2.26)
. Eiof kL ki) _ i i
Hi(x,2) = —12 | =234+ Xz | g k1 Uy Xt kz2) (2.27)
m\ ki ki
- _ r r
Er(x,2) = JEj e F1KxxTz2) (2.28)
. Ero (KL kT ) _ r r
Hr(x,2) = 22 (225 4 ZX 5| o Th1 hyxtkz2) (2.29)
n1 \ k1 k1
o _ t t
Ey(x,2) = §Egoe 1 k2 (Kx X +kz2) (2.30)
E Kt Kt _ t t
Hy(x,2) = L2 [ 2234 X | eI h2lkyx+kz2) (2.31)
n2\ k2 ko

Again 117 and 1o are the intrinsic impedances in materials 1 and 2 respectively. For TE po-
larization, the wave impedance is calculated with the j-component of the electric field and the
X-component of the magnetic field. The wave impedance in medium 1 using equations (2.26)-

i

(2.27) is Zf- =m ]—} Using Figure 2.4, it is customary to rewrite the ﬁ term in terms of the
c

incidence angle such that
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1 n
/i = —, 2.32
1 ™ cosh (2.32)

The wave impedance for the medium 2 is

1_. ko
Z

The interfacial reflection coefficient for TE polarization is then computed using equations,

(2.17), (2.32), and (2.33).

2.2.2 Normal Incidence

A special case of oblique incidence is normal incidence. Normal incidence is when the wave
vector is perpendicular to the interface between medium 1 and medium 2 and 6; = 0°. Plugging

6; = 0° into equations (2.24), (2.25), (2.32), (2.33) yields:

Z{I =z =ny, (2.34)
2V =z =n,. (2.35)

2.3 Reflection and Transmission at Layered Slabs

Many reflection-only material characterization methods make use of stacked layers of mate-

rials as in Figure 2.6. In these cases, the interfacial reflection coefficients do not account for
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the measured reflection coefficient for the entire material stack. The reflection coefficient mea-
sured due to a layered stack of materials is termed the global reflection coefficient and denoted
with the Greek letter I'.

The global reflection coefficient accounts for the multiple reflection and transmissions which
occur between the interfaces of the materials. For example, consider a stack of two layered ma-
terials as in Figure 2.6. A plane wave is incident on the interface 0; at interface 0 some of the
wave will be reflected and some of the wave will be transmitted. This same process will also
occur at interface 1 with the incident wave being the original transmitted wave at interface 0.
The reflected wave from interface 1 will then be a secondary incident wave on interface 2. The
multiple reflections and transmissions will continue to occur until there is sufficient decay of
the waves.

There are several methods which can be used to derive the global reflection coefficient
which include using boundary conditions, recursion [16], and the wave matrix method [11].
The wave matrix represents each layer of the material stack with an individual 2 x 2 matrix called
a transmission matrix. Denoting forward moving waves with ¢ j and backward moving waves
with b j (with j being the j¢ I material layer), the initial step in calculating the global reflection

coefficient is utilizing

j s
CO noq ]k 5] R]-e ]kz6]
]‘[T— (2.36)

J J
bg —]k 0 e]kzé

z0j j bj+1

Rje

th material

where T i and 0 j are the interfacial transmission coefficient and thickness of the j
in the stack.
The global reflection coefficient is the ratio of the backward and forward going waves at the

first interface, bo Thus, equation (2.36) is solved for ¢ and b and the ratio is taken of the two

terms.
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Three specific forms of the reflection coefficient are vital in this work: (1) a single material
backed by air (2) a single material backed by a conductor, and (3) two material stacks backed by
a conductor. For a material backed by free-space or another dielectric (medium 2 is backed by

air in Figure 2.6), the global reflection coefficient is

2
Ri1-P
po -9 (2.37)

_p2p2
1R2P

For a material backed by a conductor (medium 2 is a conductor in Figure 2.6), the global

reflection coefficient is

Ry - P2
ek S (2.38)
1- R%Pz

Lastly, for two material layers backed by a conductor (medium 2 is backed by a conductor

in Figure 2.6), the global reflection coefficient is

Ry +RyP% -~ P1P2 - R Ry PS

= ; - 22. (2.39)
1+ Ry RyP? — R P3PZ - Ry P2

In equations (2.37)-(2.39), P jare the propagation factors through a material layer and is de-

_ad
fined as e~/ KzZ. Also, R jare the interfacial reflection coefficients between the material layers.
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Chapter 3

Overview of Error Analysis Methods

3.1 The Importance of Error Analysis

The science of the measurement of errors is a branch of metrology, the science of measurement
[45]. From [53], error analysis is defined as the study and evaluation of uncertainty in measure-
ment. A scientific experiment cannot be concluded until an analysis of the uncertainty in the
final result has been conducted [23]. Also, [23] tells us that error analysis seeks to answer the

following questions:

1. Do the results agree with theory?
2. Are the results reproducible?

3. Has a new effect or phenomena been observed?

Throughout this work, and in general uncertainty analysis, the term error is used frequently.
To be clear on the use of the term error, [53] gives an excellent definition. Stated concisely, Taylor
says that errors are not mistakes or blunders, but inevitable uncertainties which acculminate in
the measurement process. Thus, the term error is synonymous with uncertainty.

Error analysis is an extremely important aspect of material characterization. In perspective

of the many applications of material characterization, some of which are listed in Chapter 2, the
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level of certainty in the extracted permittivity and permeability is paramount. Error analysis in
material characterization has included the study of the effect of temperature [8], calibration
liquids [41], numerical techniques [40], propagation of high order modes [12], and air gaps in
material samples [55] on the reliability of the characterization process.

The intent of this chapter is to expound upon the error analysis methods utilized in this
work. In addition, an overview of types of uncertainty, interpretation of uncertainty, and the

normal distributed are presented.

3.2 Uncertainties in Measurement

Rabinovich in [45] defines a measured quantity or measurand as "a property of phenomena,
bodies, or substances that can be described qualitatively and expressed quantitatively." Mea-
surement is the process of determining the value of a physical quantity. The true value of the
measurand is the known measured quantity which most accurately reflects qualitatively and
quantitatively the corresponding property of the object. Thus, the measurement error is devia-
tion of the measured measurand and the true value from the measurand.

Uncertainties or errors in measurements arise from various sources. For example, errors can
arise from misreading measurement scales, improper calibration of equipment, and equipment
malfunction. As with the measurement methods discussed in this work, several measurement
instruments are used to arrive to a single result. Since each instrument has its own precision
capabilities, there is an inherent uncertainty in the final result. Therefore, the uncertainties
in the multiple instruments are said to propagate into the final result. Knowing the extent the
instrument uncertainties propagate into a result is essential to knowing the degree to which the
result can be trusted.

Measurement error can be expressed in two distinct ways. One way of expressing measure-
ment error is to use relative error. Relative error expresses the measurement uncertainty as a

fraction or percentage of the true value. Absolute error expresses measurement uncertainty as
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positive or negative bounds relative to the true value. The absolute error notation is mostly
used in this work. Therefore, when a measurement result is presented, it is presented as the

best estimate of the measurand plus or minus the measurement error like

measurement of quantity x=Xppe;+0. (3.1

Here xp,,¢; is the best estimate of quantity x and o provide the confidence bounds for
Xpest- Itis important to note that +o is regarded as a statement of probability for the values of

x [23].

3.2.1 Types of Measurement Uncertainty

There are two categories of error in the measurement process. One type of error is systematic
error and the second type is random error. Systematic errors are reproducible inaccuracies
which consistently influence the experiment in the same manner. Sources of systematic error
may be imperfect calibration of measurement instruments, changes in the environment which
interfere with the measurement process, or imperfect scales on measurement instruments.

Random errors are uncertainties that lead to inconsistencies in repeated measurements.
Random errors are inherently unpredictable and have null arithmetic mean. Examples of sources
of random error include unpredictable fluctuations in the readings of measurement instru-
ments or in the experimenter’s interpretation of the instrumental readings. Figure 3.1 graph-
ically shows the difference between systematic and random errors.

Systematic errors are very hard to detect because their source is often embedded within
measurement instruments or measurement processes. Therefore, systematic errors are unique
to a specific experiment. In contrast, random errors are present within every experiment and
can be predicted with knowledge of the instrument tolerances in the experiment. Thus, random

errors are the focus of this work.
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3.2.2 The Normal Distribution

In view that all measurements contain uncertainty due to random error, there is inherently
some spread or variability is measurement outcomes. In order to describe the spread of mea-
surement outcomes, probability distributions are essential. The relationship between random
variables and the probability distributions which describe them are the fundamental study of
probability theory and statistics. The purpose of the probability distribution is to show the
range of possible random variable values and their probability of occurrence.

Random variables can either be discrete or continuous. Discrete random variables can be
finite set of values or an infinite sequence of values. Conversely, continuous random variables
can take on any value in an interval. Due to the types of measurements considered in this work,
only continuous random variables will be examined.

In view of the statistical analysis needed for error analysis, there is a need for defining a
probability distribution for this work. In order to perform the error analysis, an assumption
of the distribution of the permittivity and permeability must be made. The distribution does
not need to be the best-fitting distribution for the permittivity and permeability, but adequate
enough such that statistical techniques yield valid conclusions. A common distribution to use
in science and engineering is the normal distribution. The normal distribution is a very im-
portant statistical data representation and appropriate to represent many natural phenomena.
Hence, the normal distribution represents the distribution of permittivity and permeability in
this work.

The plot of a normal distribution is a symmetric bell-curve as in Figure 3.2. The center
of the normal distribution is the mean or best estimate of the experiment, and the standard
deviation of the data represents the spread of the curve. In addition, the data represented by
the normal distribution follows the 64-95-99.7 rule; this rule means that 64% of the data in the
normal distribution will lie within two standard deviations of the mean, 95% of the data will lie
within three standard deviations of the mean, and 99.7% of the data will lie within four standard

deviations of the mean.
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3.3 Calculating Measurement Error

To define the normal distribution of the permittivity and permeability, the statistical mean and
the standard deviation must be determined. In this work, two methods to determine the stan-
dard derivation are implemented - Monte Carlo simulations and the error propagation method.

This section will provide an overview of both methods.

3.3.1 Overview of Monte Carlo Simulations

Monte Carlo simulations are a class of computational algorithms that use repeated random
sampling to compute results. Monte Carlo simulations are named after the famous casino in
Monte Carlo from the 1940’s. Monte Carlo simulations are used for a variety of applications such
as, but not limited to, computational physics, physical chemistry, and computational biology.
In addition to the applications listed above, Monte Carlo simulations are widely used for

error analysis. The Monte Carlo simulation algorithm proceeds as follows:

1. Define a domain of possible inputs.
2. Generate a set of pseudo-random numbers over the domain.
3. Perform a deterministic computation on the inputs.

4. Aggregate the results (i.e. - calculate the standard deviation).

Positive attributes of Monte Carlo simulations are that they are easy to implement and find-
ing the probability of multi-variable functions is simple. Drawbacks of Monte Carlo simulations
are that they can be computationally heavy (hundreds of thousands of trials are necessary for

high accuracy) and it is difficult to attain functional behavior over a range of inputs.

3.3.2 Overview of the Error Propagation Method

The error propagation is a method that allows for calculation of the standard deviation of a

quantity that is dependent on other measurements. For example, suppose calculation of a hy-
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pothetical quantity A is desired. The calculation of A is dependent on the measurement of
quantities x,y, and z. However, quantities x, y, and z have their own uncertainties o x, 0y, and
o z. Therefore, A will have inherent uncertainty due to the uncertainties in x,y, and z.

The error propagation method represents the potential change in the quantity A due to the
uncertainties in x,y, and z with the first derivative of A with respect to x,y, and z. The formula
for the standard deviation of A due to the uncertainties in independent quantities x,y, and z is

the quadrature formula

0 (0AN2 5 (0AV2 5 (0A)2
TA=1\/0% a +O'y E +O'Z & . (3.2)

For a complete derivation of the error propagation method, the reader is encouraged to read
[53].

The error propagation method advantages include being able to calculate the standard de-
viation over a range or interval and the ability to use the equations to infer mathematical and
physical weaknesses in a method. Disadvantages of the error propagation method include cal-
culations which involve dependent variables, possible issues with calculating the derivative,
ignoring higher order derivatives, and properly implementing the correct rules for quotients,
products, and the like. Also, the error propagation method suffers when the derivatives vary
rapidly. When this occurs, an overestimation of the standard deviation is encountered because
the assumption that the standard deviation of the input variables is very close to to the change

in the derivative is no longer valid.
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Figure 3.1: Drawing emphasizing the difference between systematic and random errors
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Chapter 4

General Formulation of Reflection-Only

Material Characterization Methods

4.1 Introduction

Over time many different formulations of reflection-only characterization methods have be-
come available in the literature, each method having its own set of extraction equations. The
purpose of this chapter is to derive and demonstrate a unifying set of extraction equations for
most reflection-only material characterization methods. Analysis of the interfacial transverse
impedance of a generic free-space arrangement of materials allows for derivation of the unify-
ing set of extraction equations.

Two independent measurements are required to determine the parameters y and € for any
material characterization method. In the case of reflection-only characterization methods, two
independent reflection measurements must be made. Several approaches have been investi-

gated for obtaining these two measurements, including the
1. Conductor/Air Backed Method

2. Layer-shift method
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3. Two-thickness method.

Simultaneous observation of all three reflection-only approaches reveals that all of these
reflection-only methods are variations of one single scheme. Analysis of this single scheme
reveals a powerful formulation which unifies many reflection-only material characterization
methods. The extraction equations are evaluated on several different reflection-only arrange-
ments utilizing measured data. The permittivity and permeability extracted with the unify-
ing methodology compare very well to those found using widely-accepted material charac-
terization methods. The unifying extraction equations shown in this chapter systemize most
reflection-only methods and provide a common starting point for comparison and analysis.

Thus, a common resource for all extraction equations for ¢ and € has been developed.

4.2 A General Approach to Overlays and Underlays

The geometry of any reflection-only material characterization method may be described using
a subset of the arranged overlays and underlays shown in Figure 4.1. In a free-space system,
a plane wave originates in free-space, region 0, and is incident on an overlay, region 1. In a
guided-wave system (waveguide or TEM), the wave originates in an empty section of guide
and is incident on the overlay. The overlay is assumed to be inhomogeneous, with arbitrary
z-dependent permittivity and permeability profiles €1 (z) and p1 (z). Region 1 can represent an
assortment of formations including a layering of different homogenous materials or layers of
spatially-varying materials. The overlay is stacked against region 2, which is the homogeneous
MUT with parameters uy and eo. Finally, the material under test (MUT) is backed by an under-
lay, region 3, which has inhomogeneous permittivity and permeability profiles e3(z) and u3(z),
and thus has all of the same potential formations as region 1.

The process for obtaining the formulas for p and € is slightly different with a free space sys-
tem than with the guided-wave systems, since the incident wave in a free-space system has an

arbitrary angle of incidence and polarization. Thus, these two cases are considered in separate
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sections.

4.2.1 Free-space system

TM Polarization

Assume that the incident plane wave is polarized either perpendicular to the plane of incidence

(TE) or parallel to the plane of incidence (TM). For the case of TM illumination there is a y-

component of H but not of E. Since the fields cannot depend on y, only the fields Hy, Ex, and

Ez are non-zero, and these must obey Faraday’s law

0Ex(x,y) 0Ez(x,2)

=—jou(z)Hy(x, 2),

0z 0x
and Ampere’s law
0Hy(x,z)
————— = jwe(2)Ex(x,2)
0z
0Hy(x,z)
—— = jwe(2)Ez(x,2).
0x

Substituting (4.2) and (4.3) into (4.1) gives the wave equation for Hy [20]:

0
—+————+Ic2}Hy(x,z):0,

where k2(z) = w? w(z)e(z) and €/ (2) = de(z)/ dz. Substituting the product solution

Hy(x,2) = x(x){(2)

leads to the separated equations
d2
{d—xz'i'k)zc}X(X) =0,
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(4.2)

(4.3)

(4.4)

(4.5)

(4.6)



d® ) d 2
{ﬁ__é‘(z) E‘i‘kz(z) ((2) =0,

where kac + k%(z) = k2 (z). The solution to (4.6) is simply

1) _etikxx

(4.7)

(4.8)

Note that in order to satisfy the boundary conditions for all x, kx = ky = kg sin in all regions.

The form of the solution to (4.7) depends on the profile €(z), but can always be written as

the sum of two independent solutions to the second-order equation, f(z) and g(z). Thus,

Hy(x,2) = [Af(2) + Bg(2)] e Jkx0X,
Defining I' = —B/ A, Hy can be written as
Hy(x,2) = A[f(2) -Tg(2)] e~/ *x0*

while Ey is given from (4.2) as

J

Ex(x,z2) = ——A f’(z) —Fg’(z) e~ JKkx0%,

we(z2)

From these the transverse impedance is defined as

_Exxa _ j f@-Tg'w®

Z(z) = = .
D Hy o we@ f0-Tg@

(4.9)

(4.10)

(4.11)

(4.12)

The transverse impedance is easily specialized to each region in figure 4.1. In region 0,

f(2) = e~ K202 and g(z) = e/ K207, where k( = kg cos8p. Using these in (4.12), gives

e~ Jkz0% 4 FoeijOZ

Z0(2) =7 - - )
0 Oe—szoz_rOeszoz
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with
Zp=mngcosby. (4.14)

Here I'j is the ratio of the transverse components of the electric field at the z = 0 interface; this

is the reflection coefficient that is measured in the experiment. In region 2, the MUT material is

homogeneous, and so f(z) = e~/ %227 and g(2) = e/¥22%, where ko = \/ k% - k% sinZ 6. Thus,

e—jk22z + erjk22z
e~ Jkz22 _ er]'k22z,

where

A
Zy, =22, (4.16)
wen

Here the parameter I'» must be determined by applying boundary conditions.

Regions 1 and 3 are potentiallyinhomogeneous, and thus the forms of f(z) and g(z) depend
on the material parameter profiles €(z) and p(z). In order to determine the parameters I'y,
I'p, and I'g, the boundary conditions on tangential fields must be applied at z =0, z = z7 and
z = zg. Continuity of both tangential electric and tangential magnetic fields may be achieved

by enforcing continuity of transverse impedance. For TM illumination, Zy(0) = Z7 (0) produces

14Ty j fl0-T1g10

Z . (4.17)
0T-Ty ~ we1(0) f1(0)—T1g1(0)
This can be solved for I'y:
W f1(0) - f{(0)
1= o (4.18)
Wg1(0)-g;(0)
where
. 1+I
W =—jwe1(0)Z . (4.19)
1-T'g

Since the properties of the overlay (region 1) are known and the reflection coefficient I' is mea-
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sured, I'; is a known quantity. Next, the boundary condition Zj (z1) = Z»(z7) produces

e‘f’“zZZl + r23f1622zl
e‘f’“zZZl - r23f1622zl .

21(z1) = Zz (4.20)

Here
j  fGeD-T1g](zD)
wez(z1) f1(z1) -T'181(21)

Z1(z)) = (4.21)

is a known quantity, since I'y is known from (4.18). Finally, implementing Z5(z5) = Z3(z2)

results in _ _
e~ Jkz222 1 1,eikz2%2
Z3(z9) = Zz 7 7 . 4.22)
e JXz272 —Tyelkz2%2
Here ) ,
i f3(20) —T'385(20)
Zy(zp) = —L 3 3 (4.23)

weg(22) f3(22) ~T'383(22)
is a known quantity, since the properties of the underlay (region 3) are known. Solving for I'p

and substituting into (4.15) gives

Z3(z9) + sz tan kzZ (290 — 2)

Z =7 . 4.24

2(2) 2 JjZ3(z9)tank;o(z9 — 2) + Zz ( )
Using this in the boundary condition Zj (z1) = Z(z7) then gives
Z3(z9) + jZptank,96

21 () = 2, 5L T IE2 0220 (4.25)
JZ3(zp)tan k226 + Zz

where 6 = z9 — z7 is the MUT thickness.

Equation (4.25) is a key result. For a given 6, Z1 (z1) is determined entirely by the proper-
ties of the overlay, and Z3(z») is determined entirely by the properties of the underlay. Thus, the
following important observation is clear: if two measurements are made with different overlays,
exactly the same information is present in (4.25). Since two independent measurements cannot
be made, €5 and uo cannot be recovered, and so no technique that relies on altering the over-

lay can be successful. This is in contrast to material characterization using waveguide probes,
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where altering the overlay has been successfully employed to determine both € and p [38]. This
result was initially demonstrated in [2].

In contrast, if two measurements are made with different known arrangements of the un-
derlay, the two values of (4.25) provide sufficient information to find €5 and uo. In fact, these
parameters may be determined in closed form regardless of the configurations of the under-
lay. Note that since an overlay is not helpful in measuring the parameters of the MUT, it may
be prudent to perform measurements with no overlay present. This special case may be easily

implemented by setting Z7 (z1) = Z(0), or
1+
Z1(z1) = ZOI——. (4.26)

TE Polarization

For the case of TE illumination, only the field components Hy, Hz, and Ey are nonzero; these

must obey Ampere’s law

0Hx(x,y) 0Hgz(x,2)

e Fy e jwe(2)Ey(x, 2) (4.27)
and Faraday’s law
6Ey(x, Z) .
0 - jou(z)Hx(x, z) (4.28)
0Ey(x,2) )
- jou(z)Hz(x, 2). (4.29)

Substituting (4.28) and (4.29) into (4.27) gives the wave equation for Ey:

2 8 da
— 4 — ———+k® } Ey(x,2) =0. 430
{axz 0z2 0z yes 450
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Seeking a product solution as in the TM case leads directly to
Ey(x,2) = A[f(2) + Tg(2)] e~ Kx0% (4.31)

and

___J Iy —To! —Jjkxox
Hy(x,2) = w,u(z)A[f (2)-T'g (z)]e X0 (4.32)

From these the transverse impedance for TE fields is defined as

Evy(x, 2) +T
! = —jwu(z)M.
fl(2)+I'g'(2)

(4.33)

In region 0, f(2), g(2), and k() are defined the same as for the TM polarization case described

in Section 4.2.1. Using f(z), g(z), and k() in (4.33) again gives (4.13), but with

10
Zg=———. 4.34
0 cosfg 34

The definitions of I'g), f(2), g(z), and k,» are defined the same as in Section 4.2.1, but with

2. - ©OH2

= . 4.35
2 k0 (4.35)

In the case of TE polarization, an equation identical to (4.25) is obtained. However, in the TE

case
f1(z1)+T181(21)
flz)+T18](z1)

Z1(z1) = —jowuy(z1) (4.36)

A=V
ry=- — (4.37)
g1(0-Vvgl 0

Zg 1+I
wp10)1-Ty’

V= (4.38)
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and
f3(22) +T'383(22)

, k) (4.39)
f3(22) +I'383(22)

Z3(2zp) = — jouz(z2)

4.2.2 TEM and Waveguide Systems

The approach described above can also be applied to other types of wave systems, such as TEM
field applicators, and rectangular waveguides. For TEM systems, equations (4.14) and (4.34)
can be used by setting 6y = 0, and by using the appropriate value for Z in each region of figure

4.1. For a TEM system with impedance Z), this produces

ke=k, Zp=Zg, |22, (4.40)
€2r

For rectangular waveguides, it is assumed that the frequency band is such that only the
dominant TEy mode propagates in the empty guide. Then, the equations for k,» in Sections
4.2.1 and 4.2.1 may be used with sinf replaced by k¢/ k. Here k¢ = n/ ais the cutoff wavenum-

ber, where a is the width of the guide (assumed to be the wide dimension). This produces

2
kg = kz—(z) , (4.41)
a
Zg = __ 9% Zy = __Ym (4.42)
2 2
k5 - (%) k- (%)

etc.

4.2.3 Closed Form Expressions for €, and u,

Assume that measurements of I'j are made with two different underlays, designated A and B.
From these, values of Z7 (z1) can be computed from (4.21) or (4.36) and values of Z3(z9) can be

computed from (4.23) or (4.39). Solving (4.25) for tan k96 in both measurements A and B and
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equating gives

zg - z{! zg-zp
tank,26 = jZo =jly , (4.43)
2_,A,A 2_-,B,B
25-23 2 25-23 2
where Zf1 = Zf‘(zl), ZE,‘:l = Z?‘:l(zz), etc. Solving for Z- then gives
A~B,~B A A~B,~B A
L3 2P Ly —Z3) =25 27 (27 — Z37)
Z%: 1713 3 3 731 1 . (4.44)

B_,A_(7B_,A
(Z3 =230 - (Zy - Z7)

Using this value of Z5, k;» may be computed from (4.43), and from these €5 and uy are found

from
2 2 2
~ kzoM0 ~ lcz2 + lcO sin“ 0 145
€2r=".7. H2r= 5 (4.45)
042 IcOle
for TM polarization, and
2 22
kgZy ~ k7o + ki sin“ 6 4G
Hor=——=, €= 5 (4.46)
010 k():UZr

for TE polarization. Note that kysinfy = 7/a should be used with (4.46) for a rectangular
waveguide with a TEq incident field. In a TEM system, the equations are merely
kz2Z2 kz2Z0

= === = . 4.47
IJZr kOZO 621" kOZZ ( )

Some care is required to ensure that the proper branch of the arctangent function is used when
computing k,». However, if it is known a priori that the material is a dielectric with u = g, then

€2 may be computed using only Z%. In this case,

2 ZZ

n
€oy = é 1+ |1-4—2sin26 (4.48)
2 Mo
for TM polarization, and
2
n
exr = —g +sin®f (4.49)
ZZ
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for TE polarization. A TEM system gives the particularly simple formula

7 2
0 ) (4.50)

€2r = (z

for a dielectric.

Note that these closed-form expressions are valid for any combinations of overlays and un-
derlays, and thus the MUT may be contained within any known sequence of material layers.
Note also that when the sample has low loss, the condition tan k;»6 = 0 may be encountered at

certain frequencies when computing k.- from (4.43). Thus, the sample thicknesses
A2
5272?, n=12,... (4.51)

should be avoided. Here Ay =2m/R{k,o}.

4.2.4 Some Special Layer Arrangements
Homogeneous material backing

Consider the case where region 3 in Figure 4.1 is an unterminated homogeneous material of

permittivity e3 and permeability u3 (a special case of which is air). Then

f3(2) =el*23%, ga(2)=0, (4.52)

where kz3 = /&3 - kZ sin? 6. Substituting these into (4.23) and (4.39) gives
Z3(2) =13 (4.53)

for both TM and TE polarization.
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Shifted Conductor Underlay

Consider the case where region 3 is a homogeneous material of permittivity e3 and permeability

13, backed by a perfect conductor located at z = z3. Then
f3(z) = e k232 ga(z)=eTkz3%. (4.54)
Applying the boundary condition Z(z3) = 0 using the equations (4.23) and (4.39) leads to
Z3(z) = jZ3tank,3(z3 —2), 20 <z<2z3 (4.55)

for both TM and TE polarization. For the special case where the conductor is located directly

against the MUT, using z3 = 0 produces
Z3(z) =0. (4.56)

Material backing terminated by air

In this case region 3 consists of a homogeneous material layer of permittivity e3 and perme-
ability u3 extending from z = zy to z = z3, backed by an unterminated air region, z > z3. In this

case

e Jkz32, 29 <z<2z3
f3(2) = . (4.57)
e~ Jkz02, z>z3

e/kz32, zy<z<zg
g3(2) = . (4.58)
0, zZ=2z3

Applying continuity of the impedances at z = z3 results in

ZO + j23 tank,3(z3 — 2)

23(2) = 23 23 + jZO tank,3(z3 — 2)

, 22 <2<23 (4.59)
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for both TM and TE polarizations.

4.3 Formulation of Standard Methods Using Impedance Approach

Several standard methods can be established by combining measurements for the specific un-
derlays considered in section 4.2.4. Several of these produce particularly simple expressions for
er and ur. Note that to implement these methods, the measurements should be calibrated so

that the phase reference for both reflection coefficients is at the front face of the MUT.

4.3.1 Two-Backing Method

In this technique the MUT is backed by underlays consisting of two different materials. Typi-
cally, measurement A is made with the MUT backed by unterminated air. Measurement B is
made with a layer of material behind the MUT, occupying z» < z < z3, with an unterminated air
region occupying z > z3. Then,

Lo+ jlgztank,z3zA
3 L3+ jlptank,z3zA

A_ B _
Z3 =0, Z3 =7 (4.60)
where A = z3 — z5 is the thickness of the underlay.

Although the resulting equations are more complicated, it is straight forward to extend this

technique to using two underlays, each backed by air. Then

.2 A A
ZA:ZAZO—”Z‘% tankngA 461)
3 3 744 7 tanch A ’ .
-~ B B
ZB:ZBZO+]Z3 tanszAB (4.62)
3 3 ZB 1 izotan kB, A ' .
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Air/Conductor Backed Method

The air/conductor backed method is a special case of the the two-backing method, and is de-
scribed in [33]. In this formulation, let measurement A be made with a conductor placed di-
rectly behind the MUT, and let measurement B be made with the MUT backed by an untermi-
nated air region. The appropriate arrangement for a free-space system is shown in Figure 4.2. In
a guided-wave system, the conductor backing is replaced by a short circuit, and the air backing
is replaced by a matched load, as shown in Figure 4.3.

In each case the MUT may be covered by an arbitrary overlay. From (4.56) and (4.53),
z8(zp) =0, ZB(2p) =2y, (4.63)

Substituting these into (4.44) gives

o ZgZ{N2) 2B (2) won
2~ A B ’ '
ZO + Zl (z1) — Z1 (z1)
while (4.43) produces
z(z)
tankzp6 =—j . (4.65)
22

Recall that if there is no overlay then Z7 (z7) is computed via (4.26).

Experimental Results Using the Air/Conductor Backed Method with a Waveguide System

As an example of employing the air/conductor backed method, a Plexiglas sample of thickness
0 = 0.498 cm was placed into an X-band rectangular waveguide, as shown in Figure 4.3, and
the reflection coefficient I'g was measured using an HP 8510C vector network analyzer (VNA).

The VNA was first calibrated using a waveguide calibration kit with the short/open/match tech-

nique. Following this, the reflection coefficient Fgl was measured with the sample backed by a

short circuit and then the reflection coefficient Fg was measured with the waveguide termi-

nated in a matched load. From these, the quantities Zfl and ng were computed assuming no
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overlay (i.e., using (4.26)). Finally, Zy and k,» were found from (4.64) and (4.65), and then er
and ur were calculated using (4.46).

The extracted complex values of yr and ey are shown in Figure 4.4. The extracted real part
of ur is very close to unity and the extracted imaginary part of ur is close to zero. This is as
expected, since Plexiglas is non-magnetic. The extracted real part of ey is around 2.6 across
X-band, which is the typically quoted value for Plexiglas. There is some slight oscillation in this
value, indicative of an imperfect waveguide calibration. The imaginary part of €y is small and

imaginary over most of the band. Again, this is as expected for a low-loss dielectric.

4.3.2 Conductor-Backed Methods

Conductor-backed methods are those techniques that utilize a single material sample with two
different homogeneous, conductor-backed underlays. The underlays may consist of the same
material with two different thicknesses (A 4 and Ap), two different materials with the same
thickness, or two different materials with two different thicknesses. The underlay material may
be air, or any other material with known parameters. If both underlays are air, the method is
viewed as placing short circuits at two positions behind the MUT. Each of these cases may be
treated using

z8zp) = j7ftank 0 5, 2B (2p) = jZB tankBap. (4.66)

Substitution into (4.44) gives the formula for Z5, with 1 and e, found from (4.45) or (4.46).

Layer-Shift Method

The layer-shift method is a simple implementation of a conductor-backed method, as described
in [3]. Here measurement A is made with the conductor placed directly behind the MUT, and
can be viewed as having an underlay of zero thickness. Measurement B is made with the MUT
shifted a distance A from the conductor, and is viewed as having a spacer underlay (typically

air) with properties €3 and u3. See Figure 4.5 for a free-space implementation of the layer-shift
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method.

The two arrangements thus produce
2829 =0, ZB(29) = jZgtank,gA (4.67)
3 ) , 3 ) ] 3 an K z3A. .
Using equation (4.67) in conjunction with equation (4.44) then gives

22 ~ [ngtankng] Z{l(zl)ZlB(Zl)

Vi B (4.68)
JZ3tankz3zA+ Z1%(21) — Z77 (21)
and
Ziap
tank, 90 = —j (4.69)
Z3

from which € and p¢ may be found. Note that when the spacer has low loss, the condition

tan k;3A = 0 may be encountered at certain frequencies. Thus, the spacer thicknesses

A3
A:n?, n=1,2,... (4.70)
should be avoided. Here A3 = 27 /R{k3}.
As examples of the layer-shift method, experiments were undertaken using both a free-

space and a coaxial TEM implementation.

Free-Space Implementation of the Layer-Shift Method

A free-space implementation of the layer-shift method was used at the Boeing Materials Mea-
surement Laboratory to characterize a sample of magnetic radar absorbing material (MagRAM)
consisting of a suspension of 35% by volume of BASF EW grade magnetic particles in a commer-
cially available polyurethane elastomeric resin. A sample sheet of thickness 6 = 0.1452 cm and
60.96 cm on a side was placed on top of an aluminum plate, and illuminated using a focus-beam

system at an incidence angle of 6y = 40° with both parallel and perpendicular polarization.
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The reflection coefficient I'g was measured in the frequency range 5-18 GHz using a E8362C
PNA network analyzer, which was calibrated using the same aluminum plate. Next a plexiglas
spacer of thickness A = 0.5861 cm was placed between the sample and the plate, and I'g was
again measured. The two sets of measurements were used to determine €, and pr via (4.68)
and (4.69), with the dielectric constant of Plexiglas assumed to be €3, = 2.66. The results for
both polarizations are shown in Figures 4.6 and 4.7. Also shown in the figures are the values for
er and pur found by taking a small section from the sample sheet, placing it into a waveguide,
and using the Nicolson-Ross-Weir reflection/transmission method [40],[54]. Results are rea-
sonably consistent between polarizations, and agree well with the waveguide results, except for
the real part of ey where the waveguide measurement reveals a somewhat smaller value. This
is most likely due to a variation in the material parameters across the sheet. Indeed, it is not
unusual for e to be slightly different at the edge of the sample, where the waveguide section
was removed, than in the middle of sheet where the beam illumination is concentrated.

Note that the extracted material parameters become quite unreliable around 17 GHz. At this
frequency, the spacer is approximately one half of a wavelength thick, and thus tank,3A = 0.
Under this condition, values of Zo computed from (4.68) experience large error due to mea-

surement uncer tainty.

Coaxial Implementation of the Layer-Shift Method

A coaxial implementation of the layer-shift method was carried out using an applicator consist-
ing of two Electro-metrics EM2107-A coaxial adapters mated with a brass fixture. The adapters
provide a transition from a standard N-type coaxial connector to a 15 cm long, 51 Q coaxial sys-
tem with a center conductor of diameter 3.3 cm, and an outer conductor with inner diameter
7.6 cm (Figure 4.9).

An 11.8 cm long Plexiglas sample was machined into a coaxial shape and placed into the
fixture. The reflection coefficient I'j was then measured using an Agilent 8753D VNA calibrated

using a through-reflect-line (TRL) method [44], [17]. The reflection coefficient was first mea-
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sured with the plexiglas sample placed against a shorting plate, then with a styrofoam spacer
(er =1) of thickness 2.54 cm placed between the sample and the plate (see Figure 4.8).

Values of € and ur were computed in the band 44-1000 MHz using the measured values of
I'g, and are shown in Figure 4.10. In the range 100-700 MHz the results are those expected for
Plexiglas, with the real part of €, approximately 2.6, the imaginary part of ¢ close to zero, and
ur = 1. Below 100 MHz the sample becomes quite short compared to a wavelength, and the
measured phase of I'() is greatly affected by VNA phase uncertainty. Thus, the results below this
frequency are unreliable. Around 700 MHz, the Plexiglas sample becomes a half wavelength
long, and so tank;26 = 0 in (4.69). Again the results become unreliable due to measurement

uncertainty.

4.3.3 Two-Thickness Method

The two-thickness method, illustrated in Figure 4.11, differs in principle from the other un-
derlay methods in that the properties of the underlay are not entirely known. This is because
the underlay material is assumed to be identical to the unknown MUT. Here measurement A is
made with the MUT backed by a conductor, and so Zé‘l(zz) =0.

From (4.25) this implies

z{ = jZytank 6. (4.71)

Measurement B is made with the MUT placed against an underlay of material identical to the
MUT, with thickness A (essentially creating a MUT with a larger thickness than in measure-
ment A). Thus, measurements A and B are in essence two measurements of the MUT but with

different thicknesses. From (4.25) and (4.55), the impedance of configuration B is

4B _ jlotank, oA+ jZotank,00
1 2 —Zotankzobtank, oA+ 7o
= jZotanky (8 +A). (4.72)
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Eliminating Z» then gives a transcendental equation for ko:

A
4

B
Z

tank;96 = tank,o (6 +A). (4.73)

This can be manipulated to show that k;» also satisfies the alternative equation

B_ A
zB_7
sink, oA=L L gink 5@26+A) (4.74)
z2 B A z2 ’ .
zB+ z

which may be numerically advantageous. Once this is solved, Zo can be computed from (4.71).

Obviously, the two-thickness method is more complicated than the other underlay tech-
niques in that it requires a root search (although once the root search is completed the same
closed form expressions for € and pr are used). Fortunately, the special case of A =6 (i.e.,
using two sample thicknesses with the second thickness twice the first) does give closed-form

solutions for Z5 and k,o:

2
2 4] -
277 A (4.75)
1
2L _
B
Zl
2
tan(k;96) =— |1-2—. (4.76)
< ZIB

Afree-space implementation of the two-thickness method was undertaken using the Boeing
free-space range in the manner described in Section 4.3.2. First a 0.142 cm thick sample of
MagRAM was placed against an aluminum plate and the reflection coefficient was measured
under both parallel and perpendicular polarizations at an aspect angle of 6y = 40°. Then a
0.145 cm thick sample of the same type of MagRAM was laid on top of the first sample and the
reflection coefficients were again measured.

The two samples were first assumed to be of the same thickness, and the formula (4.76) was

used to find k;». This result was then used as an initial guess in (4.73) to find the actual value
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of ko using the two slightly different sample thicknesses. With k5 known, Z9 was found from
(4.71) and €y and ur computed from the closed-form expressions. The resulting permittivity
and permeability are shown in Figures 4.6 and 4.7 for the frequency range 5-18 GHz. It can be
seen that the extracted parameters compare quite well to the results obtained using the free-
space implementation of the layer-shift method. However, the two-thickness results do not

show the anomaly at 17 GHz caused by the spacer used in the layer-shift method.

4.4 Conclusion

This chapter demonstrates use of a unifying set of extraction equations for many non-resonant,
reflection-only material characterization methods. Accuracy of the extraction equations was
proven via implementation of three different reflection-only methods with actual measured
data of both dielectric and magnetic media. Excellent agreement between extracted € and ur
using the extraction equations presented in this work and traditional material characterization
methods and nominal material parameters was achieved. Therefore, a common resource for all
performing material characterization using non-resonant, reflection-only material characteri-

zation methods has been accomplished.
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Figure 4.1: A free-space material characterization configuration that uses reflection-only mea-
surements
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Figure 4.2: Free-space arrangement for the air/conductor backed method
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Figure 4.3: Rectangular waveguide arrangement for the air/conductor backed method
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Figure 4.4: Material parameters for Plexiglas extracted using the air/conductor backed method
with a rectangular waveguide system
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Figure 4.5: Free-space implementation of the layer-shift method
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methods
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Chapter 5

The Dual Polarization Method

5.1 Introduction

The characterization of conductor-backed media has become an important task. For example,
with the increased need for nondestructive testing of shielding materials adhered to perfect
electric conductors (PEC) or in quality control applications, knowledge of a material’s electri-
cal properties can be very useful. There are three main categories of material characterization
methods: (1) waveguide methods, (2) probe methods, and (3) free-space methods. There are
several ways to characterize a conductor-backed medium using waveguide methods or probe
methods as found in [5], [31], and [7]. Unfortunately, these methods are insufficient for non-
destructive in situ samples or where no contact or alteration to the sample is allowed. In the
specific cases where waveguide or probe methods are not feasible, free-space material char-
acterization methods are necessary. However, most mainstream free-space methods that are
considered reliable, like in [40] and [33], utilize transmission data or removal of the PEC back-
ing in some capacity.
A proposed method for characterizing conductor-backed media is termed the dual-polarization

method. The dual-polarization method uses the measured reflection coefficient from parallel

and perpendicular polarized incident plane waves. In this manner, closed form expressions can
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be found for yur and er.

This chapter explores the usefulness and reliability of the dual-polarization method by per-
forming a thorough error analysis of the method. Thus, the main contribution of this chap-
ter is to determine when the dual-polarization method can be used utilized and explain the
method’s shortcomings. Section 5.2 reviews the derivation of the dual-polarization method.
Section 5.3 describes the parameters which cause error in the dual-polarization method, er-
ror analysis methods used, and analysis of how error can be amplified. The dual-polarization
method is then used to simulate extraction of two sample materials in Section 5.4. Conclusions

and future work are presented in Section 5.5.

5.2 Extraction method

Consider a conductor-backed planar material layer with thickness A, complex permeability
w(w) = popr(w) and complex permittivity e(w) = eger (w), as shown in Figure 5.1. The layer
is illuminated by a uniform plane wave of frequency w, originating in an overlay region with
complex permeability fi(w) = yofir (w) and complex permittivity €(w) = €gér (w). If illumination
occurs at an incidence angle 0 from the normal to the surface, then the electric field reflected

by the layer is determined by the global reflection coefficient

R(w) — P2 (w)
Iw)=———+—. (5.1)
1- R(w)P?(w)
Here P is the propagation factor
P(w) = e_jkz(w)A (5.2)
and R is the interfacial (Fresnel) reflection coefficient
Z(w)—Z
R(w) = 2= 2@), (5.3)
Z(w)+ Z(w)

68



The wave impedances are dependent on the polarization of the illuminating field with respect
to the plane of incidence. For the material under test (MUT) the impedance is

knlkz, L-polarization
Z= ‘ (5.4)

kznlk, |-polarization,

while for the overlay the impedance is

3 ki/kz =7/ cosf, L-polarization
5o nikz=1 p (5.5)

kzilk =fcos@, |-polarization.

Here kg = w/c, k= ko\/pirer, n =ng+/Mr/er, and kz = kg \/Nr€r —firér sin2 0. The definitions
of k, 1, and k follow, with (fir,ér) in place of (urer).

Defining

i
2z kn ,_nk (5.6)
]Cz kn kn

allows the interfacial reflection coefficients to be written as

H-K

= 5.7
L H+K 6.7
for perpendicular polarization and
K-1

for parallel polarization. Substituting these into (5.1) then gives the global reflection coefficients

r, - HQ-K (5.9)
L= HO+K '
KQ—1
ry = Q (5.10)
KQ+1
where
2
= = jtan(kzA). (5.11)
Q 1+ P2 J “
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Three situations are of interest:

1. Both yr and ey are unknown, but A is known.

2. The MUT is a dielectric with u = ), but both € and A are unknown.
3. The MUT is a dielectric with u = i, but only €7 is unknown.

The first two situations have two unknown quantities, and thus require two independent
measurements. Using measurements of I' | and I'j at the same angle 6 is called the dual-
polarization method. The third situation involves a single unknown quantity and thus requires
only one measurement, which can be made at any angle and with either polarization. The third
situation is also a variation of a well known method termed the short-circuited reflection method
[33]. Since the focus of this dissertation is on characterization of both € and ur, situation one
is the focus of this chapter. The extraction equations for all three situations are derived for com-
pleteness. A fourth case in which the three parameters ur, €y and A are all unknown is left to

future study.

5.2.1 Dual-polarization method for i and ¢

To find pr and €r, begin by solving (5.9) for K:

1-T
K=HQ——=L. (5.12)
1+ FJ_
In addition, solve (5.10) for K:
:£1+F” (5.13)
Q1- F”
Multiplying these gives
K2=HIY (5.14)
where
1-T 1+T
V= ( L L. (5.15)
1+ FJ_ 1- F”
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Here Y is a known quantity, computed from the measured values of I | and I'|. Substituting

from (5.6) into (5.14) then gives

kz 2 k2
— | =Y(HI])==Y. (5.16)
kz k2
Thus,
k2 = k% — k% sin® 6 = k? Y cos? 6. (5.17)
Rearranging gives
k2
—= (1 — Y cos?® 9) = sin®6. (5.18)
2
But since
i 2
o=k (5.19)
k2 @rér

the product of the relative permeability an permittivity is given by

sin2 0

. (5.20)
1-Ycos20

prer = frér

It is worth pausing to examine this simple expression. Since the numerator of the fraction

is bounded by unity, if the product prer is relatively large (as is the case with many radar ab-

sorbing materials) but the product fir€r is much smaller (as would happen if the incident field

originatesin air), then Y cos2 0 must be close to unity. If this is true, then the risk of cancelation

error is high when the denominator is computed, and thus the expression (5.20) has the poten-

tial for being ill-conditioned with respect to both the measured quantity Y and the assumed
known angle 6.

Next, equate (5.12) and (5.13) to give

H
7Q2 =X (5.21)
where
1+T 1+T
X = ( l) I (5.22)
1—Fl l—F"
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But since

2
H
2 ’7_5 (5.23)
I 5
the ratio of relative permeability to relative permittivity is
pr_ 2 .2 X
2ot =pe . 5.24
er Mr="0r Q2 (5.24)

Because the product prer is known from (5.20), P and Q are known, and thus (5.20) and (5.24)

can be combined to give closed-form formulas for relative permeability and relative permittiv-

ity:
_: X sin20 (5.25)
Hr ==Hr Q2 1-Ycos26 .
ey = +6 \/ Q* _ sin®6 (5.26)
TN X 1-vcos2e '

In these expressions, the proper sign is chosen to make R{ey} > 0 and R{ur} > 0.

5.2.2 Dual-Polarization Method for ¢ and A

If A is unknown, the fact that ur = 1 is known a priori produces closed-form expressions for

both ey and A. From (5.20), €7 is found to be

sin20

T (5.27)
1-Ycos20

€r = firér

while (5.24) gives A as
1 -1 /[ -2
A= k—ztan —ernsX. (5.28)

Note that while A is a real number, (5.28) will produce complex values due to experimental

error. Thus, the imaginary part of A gives a measure of the error in finding A.
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5.2.3 Dielectric Materials with A Known (Short-Circuited Reflection Method)

If only € is unknown, then a single measurement is required. Under perpendicular polarization

the measured reflection coefficient is given by (5.9). Substituting the expressions for H, Q, and

K gives
ixtan(kody) — i
r =% (kodx) = Firx. (5.29)
jxtan(koAx)+firx
where y = \/er —érfirsin2 and X = +/frércosb. Rearranging gives
firy = j€ 1 ftan (koAy), (5.30)

where¢ | =(1-1"))/(1+T ). Thisis a single transcendental equation for er.
If a single measurement is made under parallel polarization, then the measured reflection
coefficient is given by (5.10). Substituting the expressions for K, Q, and I gives
jxértan(kgAyx) —eri

I = . 5.31
I jxértan(kgAyx) +erg 631

Rearranging gives
erX = jéjérxtan (koAy), (5.32)
where ¢ | = a-r ”)/ a+r I ). This is again a single transcendental equation for €;. Similar ex-
pressions can be obtained for a purely magnetic material.
Although only a single measurement is necessary to characterize €r, if two measurements

are available, then equation (5.27) can be used and the root search of the transcendental equa-

tion can be avoided.

5.3 Error analysis of the Dual-Polarization Method

There are many factors that can lead to errors in the extracted values of € and p with the dual-

polarization method. Among these are model assumptions (plane wave excitation, infinite

73



sample size), manufacturing issues (uniformity of thickness, surface roughness), and measure-
ment issues (alignment of antennas, network analyzer accuracy). The effects of three important
quantities are easy to identify and analyze. It is desirable that the dual-polarization technique
be robust with respect to uncertainties in 6, A and the measured reflection coefficients I | and
I'jj. Uncertainties in the first two of these are caused by inaccurate information regarding ge-
ometrical parameters. For instance, the value of 6 used to perform the measurements must
be measured or established in a controlled manner. Similarly, knowledge of the thickness A is
subject to measurement uncertainty or manufacturer tolerance. The measured reflection coef-
ficients are subject to error due to measurement uncertainties introduced by the instrumenta-
tion (network analyzer).

Assume that when the measurementsof 6, A, I' | and T’ | are measured repeatedly, the distri-
bution of their measurements is described by a normal distribution with mean ¢; and standard
deviation o;. Here i = 1 refersto 6, i =2to A, i=3to|[||,i=4toLl|,i=5t0 |F|||, and
i=6to AF" . Then when these measured values are used to compute y and €, the computed

quantities will also be normally distributed with standard deviations given by the propagation

of error formula
6 F) 2
ou=4| Y o? (ﬂ) (5.33)
6 0 2
ge=4| Y o2 (ﬂ) (5.34)

where x7 = 0, etc [53]. This formula holds as long as the six parameters are investigation are
statistically independent. Although A and 8 certainly are, there may be some nonzero corre-
lation between I' | and I due to the manner in which the network analyzer operates. If so,
this is assumed minor and is ignored in this analysis. Note that the partial derivative terms
in (5.33) and (5.34) are sometimes called amplification factors. Large the amplification factors
may cause the standard deviation in the computed quantity to be increased compared to the

standard deviations in the measured quantities.
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General formulas for the derivatives may be established by writing

A= e sin” 0 (5.35)
€ = = €Cy—m78783837383M3 o
Hrer Hr rl—Yc0s29
X
Er_p = 7?5 (5.36)
€r Q
so that
pr =+firvVAB (5.37)
_ A
€r = *€r 3 (5.38)
Then
a,Ur _ 0 \/— ,L_lr (1 0A 1 OB)
= —g—(vVAB| = | 5.39
axi 'uraxl( ) 2'U,r Aaxl Baxl ( )
Ger_é 0 \/Z_ér(laA 103) (5.40)
dxl-_ rdxl- B| 2er Adx; BOx; '
or
our _ pir
°Pr _ Pl (E. 4G 5.41
axi Nr( l+ l) ( )
a€r €r
=r T (F.—Gs 5.42
axi 26]"( 1 l) ( )
where
1 0A 1 0B
(5.43)

i 5A0x; i 2Box;

In addition to using the error propagation method, Monte Carlo methods were also used to
calculate error for the dual-polarization method. Monte Carlo methods are a broad class of nu-
merical techniques that use repeated sampling experiments to calculate results, as described
in Section 3.3.1. Monte Carlo simulations were implemented by adding Gaussian distributed
noise to the nominal values chosen for 6, A, I' |, and I'j. Monte Carlo simulations were cho-

sen in addition to the error propagation method because of the issue of rapidly varying am-
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plification factors encountered with the error propagation method described in Section 3.3.2.
Even though the error propagation method was not used to calculate the error due to all of the
parameters, the functions for the derivatives were found because a great amount of insight is

gained in observation of those functions.

5.3.1 Errors due to inaccuracies in measured 0

An unexpected result is that very large errors may result from small uncertainties in the mea-

surement angle. This effect can be seen by examining the amplification factors (3$t_er and %%
Computing the derivatives (5.43) and simplifying the results gives
OUT _ i (Fp +Gg), XL =& (Fg Gy (5.44)
o _HTHeTE0N 5e T Crio 0 '
where
cotf(1-Y)
Fp=———— (5.45)
1-Ycos=0
—4jdP%k!
= ]—g (5.46)
Q(1+P2)
Yk% sin% 6 (cos 260 — Y cos? 9)
K, = (5.47)

2kz(1-Y cos? 9)2

An initial assumption for the cause of large errors is the choice of angle to perform the ex-
traction process. High errors are expected near 6 = 0° because parallel and perpendicular po-
larizations are identical at normal incidence. In addition, high errors are expected at 6 = 90°
due to the impracticality of plane wave incidence completely tangential to the MUT. However,
outside of the cases of f = 0° and 6 = 90° a surprising result is found when one plots the am-
plification factors for p., u//, ¢/, and ¢!/ from 6 = 0° and 6 = 90°. From Figure 5.2, it is seen
that the amplification factors for i, u//, €/, and ¢!/ are insensitive to choice of angle once 6 is
chosen sufficiently away from 6 = 0° and 6 = 90°.

From Section 5.2.1, it was noted that the denominator in equation (5.20) can potentially lead
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to high errors due to cancelation effects, which in turn create large increases in the amplifica-
tion factors. In fact the denominator in (5.20) is the primary source of error due to angle. The
denominator of (5.20) can be found in the amplification factor in equations (5.45) and (5.46) via
equation (5.47). The denominator in (5.20) can be separated into its real and imaginary parts
as (1 -Yr cos? 9) -JY; cos? 0. Examination of this expression shows that Yr and Y; are the only
quantities that can be controlled to prevent the real and imaginary parts from approaching
zero. Recalling the fact that the term Y (defined in (5.15)) is essentially a product of I' | and I I’
Y can be controlled by the level of impedance mismatch (or media contrast) of the overlay and
the MUT. In Figure 5.4, it is shown that as € increases the real part and the imaginary part of
the denominator of (5.20) grow. This effect then causes rapid decrease in (5.20) as also shown
in Figure 5.4. Therefore, as the contrast between the overlay and the MUT is decreased, the

denominator in (5.20) is less prone to cancelation, and (5.45) and (5.46) are less likely to grow.

5.3.2 Errors due to inaccuracies in measured A

Errors introduced by imperfect knowledge of the sample thickness can be found by examining
the amplification factors 0ur/0A and der /0A. Computing the derivatives (5.43) and simplifying

the results gives

our _ Oer
ﬁ_ur(FA“'GA)’ E_E”(FA Gp) (5.48)
where
FA=0 (5.49)
4jkz P2
Gp=—12—. (5.50)
Q(1+P2)

In general, the dual-polarization method is fairly insensitive to inaccuracies in measure-
ment of MUT thickness. In fact, error due to measurement of A is not important until error due
to 6, T |, and I'| are sufficiently decreased.

However, there are certain material thicknesses where error due to A will become sub-
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4]CZP2

tan(kzA)(1+P2)
Q = jtan(kzA). With this formulation of (5.50), it can seen that when kz is nearly real, (5.50)

stantial. Equation (5.50) can be rewritten as

) where it can be shown that
will be large when A = kz T wheren=1,2,3....

5.3.3 Errors due to inaccuracies in measured I'; and I’

Accurate measurement of I' | and I'y is essential in the extraction of material parameters with
the dual-polarization method. In order to examine the error in extracted material parameters,
the derivatives from (5.43) must be computed and analyzed for both the magnitude and phase
of'| andTI’ I The contribution of the error caused by both the magnitude and phase of I' | and

Ly will be called collectively analyzer error, and its standard deviation will be computed as:

2 2
Uﬂ:\l Zlo'a(z a_,U) (5.51)
a=

n:
2
O¢ = Z
a=1

Here n = 1 represents L, n = 2 represents ||, a = 1 represents Z¢, and a = 2 represents |I'p|,

2
o'a( Y i). (5.52)

n=19an

with I = [T'|Z¢. To compute (5.43) for the analyzer amplification factors, the terms Fg,, =

2
1_cos“6 0Y _ 1 90X 100 ] 14Ty
21-Y cos26 dan and Gap = 3% 54~ ~ (aa, &eused. In (553)-(5.55), Ny = {—p* and
_ Coso+ jsin¢g where
(1-Tp?

0X 2jlIlnIN1 Ny ap=1

5= (5.53)
an 2NiN>  ap=2
2jIT'1IN1 Ny a=1
- 22| No _1
e Ny (5.54)
an —N1 Ny a=2,i=1
Np PN
W]_ a=2,n=2




0Q 2J"’3k(2)‘p2 sin?fcos2f Y (5.55)
O0an  (1+p2)? (1-Ycos26)> 0an

Error due to analyzer uncertainty in the dual-polarization method can be substantial. One
reason for the large amount of error is the presence of the term 1 -Y cos® 6 term as explained
in Section 5.3.1. This term is present in Fgj and in (5.55). Another reason analyzer error can
be substantial is due to the term 1 —I'y, which is present in each N7 and N» term, and sub-
sequently in each Fg,, and Gg;,. The reason 1 —1I'y is especially troublesome is again due to
cancelation effects. The magnitude of I'y; is bounded between 0 and 1. Thus, depending on the
impedance match of the overlay and the MUT, 1 -I'y5; can potentially become very small and
Fa;, and Gg, large. Increasing €y can help decrease the effect of analyzer error. However, an-
alyzer error can still remain substantial relative to error due to 6 and A uncertainty even if the
impedance mismatch between the overlay and the MUT is decreased because reflection from
the conductor backing can force the magnitude of I'; to unity. This again makes 1 —I'y; small.
However, reflection from the conductor can potentially be reduced when the MUT thickness is
such that the phase change in I'y; makes 1 —I'y; # 0, or if there is sufficient absorption to make

IT'7;] small.

5.4 Numerical Experiments

In order to examine the feasibility of the dual-polarization method to perform extraction of e
and pur, error analysis of two sample materials has been undertaken. The error analysis was per-
formed generating synthetic reflection coefficients that would be measured in real application
of the the dual-polarization method. Synthetic ¢ and uy values were then computed using the
dual-polarization extraction scheme described in Section 5.2. The error propagation method
or Monte Carlo simulations were then implemented as necessary. All programming was done
in Matlab. The measurement uncertainties for 6, A, [I'y|, and ¢ are given in Table 5.1. The

uncertainties for |I'5|, and ¢ 5 were taken from [21].
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5.4.1 Error Analysis of Plexiglas

Plexiglas is a well known transparent thermoplastic. Plexiglas was chosen as an initial MUT
because it is non-magnetic and has low loss. The MUT is assumed to have A = 1in. with 6 = 45°.
The material parameters of plexiglas are in Table 5.3 and were taken from [13].

The error due to uncertainties in 8, A, analyzer error, and the total error for plexiglas are
presented in Figure 5.5. The error shown in Figure 5.5 is done by performing 100,000 Monte
Carlo trials.

Figure 5.5 shows that extraction of ,u’r and ,u’r’ for Plexiglas is relatively insensitive to uncer-
tainty for the dual-polarization method, with the total standard deviations being .18 and .23
respectively.

However, the extraction of €/. and €} show much more sensitivity to the dual-polarization
method measurement uncertainties. Figure 5.5 shows that the largest contributor to the error
of e’r and e’r’ is analyzer error. Considering that errors due to analyzer uncertainty and un-
certainties in 8 are both dependent on impedance matching between the overlay and MUT as
described in Sections 5.3.1 and 5.3.3 and error due to uncertainty in 6 is not substantial, the
bulk of the error due to analyzer uncertainty must be from cancelation in N7 and N (defined
in Section 5.3.3). Figures 5.6 and 5.7 are plots of the error due to uncertainty in analyzer vs. the
thickness of the MUT for €y and ur respectively. From Figures 5.6 and 5.7, it can be seen that
are 4 distinct thicknesses where the error spikes. These thicknesses correspond to points where
¢ | and off equal zero as in Figure 5.8. If one chooses to recalculate the error for the point in
Figures 5.6 and 5.7 where the analyzer uncertainty is the smallest, much better results can be

achieved as shown in Figure 5.9.

5.4.2 FGM40

FGM40 is a broadband silicone absorber. It can be used in various applications such as im-
proving radar performance, reducing radar cross section, and reducing specular reflections

[1]. FGM40 was chosen as a second example for a MUT because performance knowledge of
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the dual-polarization method with a high-loss magnetic material was desired. Also, it is com-
mon for a material like FGM40 to be used is shielding applications. The material parameters of
FGMA40 are given in Table 5.4. Also, A = 40 mils and 6 = 45° are used.

The total error for FGM40 is shown in Figure 5.12. The errors were calculated with 100,000
Monte Carlo trials because the error propagation method provides an overestimation of error.

Figure 5.10 shows that both the real and imaginary parts of iy and e are sensitive to extrac-
tion with the dual-polarization method. Again, error due to analyzer uncertainty is very high,
especially for e’r and e’r’ . However, error due to 8 uncertainty is much more of a contributing
factor, especially for ﬂlr and ,u;,’ .

Initially, one may think that the error due to analyzer uncertainty for FGM40 is associated
with reflection off of the conductor backing like for Plexiglas as described in Section 5.4.1. How-
ever, this is not the case for FGM40. FGM40 is such a lossy material that there is a substantial
amount of attenuation before waves reach the conductor backing.

Considering the increase in error due to uncertainties 0 when compared to the errors calcu-
lated for Plexiglas, a majority of the error must be from the impedance mismatch between the
overlay and the MUT, as described in Section 5.3.1. Figure 5.11 is a plot of the standard devia-
tion for € and ur due to 6 uncertainty vs. the dielectric constant of the outside medium, €. It
shows that as €y increases there is a rapid decrease in error. Table 5.5 then shows the decrease
in total error for values of €y of 1, 10, and 20. Figure 5.12 shows the breakdown of the error when
€r = 20; this shows that error due to uncertainties in 8 and analyzer uncertainties are still sub-
stantial. The only way to gain marked improvement in error due to 6 and analyzer uncertainties

is to create an even better impedance match by making the overlay a magnetic medium.

5.5 Conclusions

The dual-polarization method for characterization of both €y and pr is examined. Although

the dual-polarization method can be formulated for dielectrics with unknown thickness or di-
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electrics with known thickness, the focus of this chapter is on characterizing conductor-backed
media for both ey and pur.

Thorough analysis of the error propagated into the extraction of e and pr by uncertainties
in angle, thickness, and reflection coefficients has been conducted. Analysis has shown that the
dual-polarization method can be very sensitive to uncertainties in angle and reflection coeffi-
cients, but relatively insensitive to uncertainties of MUT thickness. However, in very specific

situations, the dual-polarization method have been can be applied accurately.
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| Measured Parameter | Tolerance (Standard Deviation) |

Thickness, A op=1mil
Angle of Incidence, 0 ogg=.5"
Magnitude of T', [Tz Oy = .004
Phase of 'y, ZI'=¢pp T, = ©

Table 5.1: Measurement tolerances chosen for error analysis for two polarization method

aAraraNa
| 1 ] 0 [265].0076 |

Table 5.2: Material parameters for Plexiglas at 8.20 GHz

rArdEaKa
| 1 ] 0 [265].0076 |

Table 5.3: Material parameters for Plexiglas at 8.20 GHz

[ e [
| 2.08 [ 2.53 | 21.86 | .389 |

Table 5.4: Material parameters for FGM40 at 8.20 GHz

ol [ e [ e |
1 |212| 445 | 12.52 | 13.24
10 1.13 | 99 | 6.71 | 7.74
20| 45 | 45 | 394 | 3.55

Table 5.5: Decrease in total error for FGM40 with increase of &/,
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Figure 5.1: Diagram illustrating the dual-polarization method
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Figure 5.2: Amplification factors for p’r, p'r' , e'r, and e'r' vs. 6
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Figure 5.3: Denominator of Equation 5.20 vs. €r
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Figure 5.4: Equation 5.20 vs. €r
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Figure 5.7: Analyzer error of Plexiglass vs. MUT thickness
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Chapter 6

Interval Analysis

6.1 Introduction

Interval analysis is the mathematics of sets of numbers. A set or interval can be the set of all
real numbers, a range of specified integers, the empty set, etc. Given a defined interval, interval
analysis forms the rules of interval arithmetic and interval extensions .

Interval analysis was initially introduced in the thesis of R.E. Moore in [36]. One of the ini-
tial uses of interval arithmetic was to create bounds on machine calculations. For example,
there are many different ways to represent a number within a programming language such as
short, long, etc. As calculations are performed on different representations of numbers, a large
amount of error can be inserted into a final computation. Thus, interval arithmetic has been
used as a way to reduce error in computer calculations by bounding solutions.

Today interval analysis is being used in a variety of applications. Interval analysis has been
used to solve various computer graphic issues [51], design analog integrated circuits [32], study
economic utility analysis [34], and design of robots [25].

An increasing area of interest for interval analysis is its use for error analysis. Accurate er-
ror analysis is needed in various areas in electromagnetics as demonstrated in [43], [27], and

[30]. Traditional error analysis methods include, but are not limited to, the error propagation
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method and Monte Carlo methods both of which can suffer from several computational issues
as described in Chapter 3. Interval analysis is a suitable error analysis tool because the output
interval directly quantifies the impact of propagated uncertainties [35]. In addition, interval
analysis is quick and easy to implement. There are several software packages available that
implement interval arithmetic. A popular package for interval analysis computations is Intlab.
Intlab is a Matlab extension developed by Sigfried M. Rump [48]. Intlab utilizes outward round-
ing and performs computations on functions of interval arguments (discussed in section 6.2.1).
For more about Intlab, one is encouraged to seek [19] and [48].

The major contribution of this chapter is to demonstrate the use of interval analysis as a
tool for error analysis for material characterization methods. When attempting to measure the
permittivity and permeability of a material in a laboratory, error inserted into the extraction is
unavoidable. Therefore, it is crucial to know to what degree the extracted permittivity and per-
meability are valid. With the use of interval analysis, the parameters used in the measurement
setup can be formed into intervals based on the instrument tolerances. Then the final solutions
are intervals that give the exact bounds for the permittivity and permeability.

This chapter presents use of interval mathematics for use in error analysis of material char-
acterization methods. An overview of interval mathematics is presented. In addition, example
use of interval analysis is presented for error analysis of the free-space implementation of the
layer-shift method which is described in Chapter 4.3.2. In these examples, measured permittiv-

ity and permeability data are shown combined with calculated interval bounds.
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6.2 Background of Interval Analysis

6.2.1 Introduction to Interval Functions
Interval Notation

The essential concept of interval analysis is to perform computations with intervals of real num-
bers instead of real numbers themselves [19]. Again, an interval is simply a range of numbers

or values. For example, the interval X can be represented as
(X, X]={xeR:a<x<bh). (6.1)

In interval analysis, the intervals are always closed sets with the endpoints included within
the interval. It is common for capital letters to represent intervals and for lowercase letters
to represent members of intervals. This particular representation of intervals is called infi-
mum/supremum representation. Infimum/supremum representation entails that the lower
and upper endpoints are referred to as the infimum and supremum respectively. In this chap-
ter the infimum will be denoted with an underline, and the supremum will be denoted with an
overline. Intervals can also be represented with their midpoint and radius. The midpoint of an
(X +Y)

interval is the point in the center of the interval defined as m(X) = — The radius is simply

half the width of the interval, which is r(X) = X%X The midpoint-radius form is then

X=<m,r>xeR. (6.2)

Interval analysis utilizes computation of sets. Solutions to problems are considered enclo-
sures, which are intervals that are guaranteed to include the true solution. In order to ensure an
interval is an enclosure during machine calculations, rounding is performed in such a way that
the lower bound always moves to the left and the upper bound always moves to the right at the

last digit. This is termed outward rounding.
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Interval Functions

There are two main classifications of functions in interval analysis. The first classification of
interval functions are united extensions. United extensions are functions that are created by
taking a real-valued function f and computing the range of values f(x) takes as x is varied
through an interval X [37]. United extensions are denoted as f(X). United extensions result in

the set image of f(X) which is defined by

fXO={f):xeX}. (6.3)

The other type of interval functions are interval-valued extensions, or shortly termed inter-
val extensions. Interval extensions are created by directly extending an ordinary real-valued
function to interval arguments [37]. Common notation for an interval extension of a function
f is F. Although there is not a unique interval extension for a specific real-valued function,
any interval extension is valid as long as when a degenerate interval (an interval with the same
lower and upper bounds) is plugged into the interval extension then the correct value for the

real-valued function is retrieved, i.e.,

F([x,x]) = f(x). (6.4)

In order to make clear the difference between a united extension and a interval extension
consider the real-valued function f(x) = x(x — 1) where x € X : X = [0,1]. If one evaluates f(x)
over X, one will find the united extension f(X) = [— %, O] . Now consider the interval extension
of f(x), F(X) = X(X —1). When one calculates F(X) for X = [0,1], one finds F(X) = [-1,0].
This examples demonstrates the fundamental theorem of interval analysis. The fundamental
theorem of interval analysis states that if F is an inclusion isotonic interval extension of f, then

the range of f is a subset of the set F [37], i.e.,

f(X1,--, Xn)<F(X1,...,Xn). (6.5)
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6.2.2 Overview of Interval Arithmetic

Since intervals are sets, operations that are associated with sets are applicable to intervals. For

example, the intersection of two intervals, X and Y, is defined by

XNY =[max{X, Y},min{X, Y}]. (6.6)

However, if X and Y have no points in common or either Y < X or X < Y are true, then the
intersection of X and Y yields the empty set, . The union of two intervals X and Y is the points

shared and included in X and Y as defined by

XUY = |min{X, Y}, max{X, Y}|. (6.7)

If X and Y have no points in common an interval cannot be formed with intersection.
Nonetheless, an interval can be formed with what is called the interval hull. The interval hull is

a subset of the intersection of two intervals and is defined by

XUY = |min{X, Y},max{X, Y}|. (6.8)

For interval arithmetic to be well-defined the basic operations of addition, subtraction, and
division must be defined. All of these operations can be generally defined with XoY = {xoy:x €
X,y e Y} for @ € {+,—, x,+}. The endpoint formulas for addition, substraction, multiplication,

and division are:

X+Y=[x+y,x+)] (6.9a)

X-Y=[x-y,x-yl (6.9b)



X x Y = [min{S}, max{S}] (6.9¢)

1
X+Y=Xx—. (6.9d)
Y

Here the set S is defined as S = {xy, xy,yx,xy}. In addition, % = ] aslongas y >0

1
Yy
or ¥ < 0. Thus, division by an interval containing zero is not defined. For a more complete

<~

treatment of interval arithmetic one is encouraged to consult [37].

6.2.3 Complex Intervals

Naturally, in the course of studying many engineering applications, especially in electromag-
netic theory, complex numbers will be encountered. This section will review the three different
ways to represent complex numbers in interval analysis and will present pertinent arithmetic

properties in each representation.

Rectangular Representation

Arectangular interval is represented with intervals for the real and imaginary parts separately as
in (6.10). As the name suggests, a rectangle is constructed in the complex plane as illustrated in
Figure 6.1 with rectangular representation. The equation for a rectangular interval is composed

of individual intervals for the real and imaginary parts as

Z=X+jY={x+jy:xeX,YeY}. (6.10)

In general, addition/subtraction are very accurate with rectangular complex intervals. Addi-
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tion and subtraction of rectangular intervals are performed with similar endpoint formulas as in
Section 6.2.2 on the real and imaginary parts of the interval individually. However, multiplica-
tion/division in rectangular representation usually provides an overestimation in the resulting

interval and is avoided [19].

Circular Representation

Another way to represent complex intervals is with circular arithmetic which was originally for-
mulated in [18]. In order to convert from a rectangular interval to a circular interval, one must
calculate the midpoint, a, and radius, r, of the circle. This process is similar to converting from
infimum/supremum representation to midpoint/radius representation. One then represents

the complex interval as

Z={a,ry={zeC:lz—a|l<r}, (6.11)

which is portrayed in Figure 6.2. Unfortunately, addition/subtraction provides an overesti-
mation in circular arithmetic. Circular arithmetic is especially useful for multiplication/division.

Multiplication of circular complex intervals is defined as

Z1 x Zp ={aq x ay,laylry +lag|ry +ryro). (6.12)

Sector Representation

When parameters are encountered in polar form (i.e., reflection coefficients or impedances), it
is useful to use sector representation. In sector representation as found in [26], the interval is

represented with a radius, r, and an angle, w. Common notation for sectors is

z=R-eJW.={r-eWreRwew}. (6.13)

Sectors form arcs in the complex plane as depicted in Figure 6.3. Utilization of complex sec-
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tor intervals often involves converting to circular or rectangular complex intervals to perform

arithmetic operations and then conversion back to sector intervals.

6.3 Interval Sensitivities and Statistical Analysis

6.3.1 Interval Sensitivities

When performing an error analysis with interval analysis, the sensitivity interval is desired. The
sensitivity interval is the interval which represents the lower and upper bounds for the param-
eter on which error analysis is being performed. Thus, the sensitivity interval represents the
absolute bounds of a parameter and the radius of the sensitivity interval quantifies the impact
of the propagation of errors in an experiment. In the cases presented in this work, the parame-

ter can be ey or yr and will be represented in infimum/supremum representation as

ey = e}l (6.14a)
el =€}, el (6.14b)
Il T

Kr = 1y, iy (6.14¢)

pr = (W, g (6.14d)

To calculate the sensitivity interval, the original extraction equations for € and ur are adapted
for interval analysis by creating interval extensions. Unfortunately, sensitivity intervals can be
an overestimation of the most probable bounds of € and ur. Overestimation can occur with
interval arithmetic operations such as multiplication of rectangular intervals [19]. The primary
method of overcoming overestimation is refinement. Refinement is a process of sub-dividing an

interval X into n smaller intervals, X i where X i€ X. The values of the interval extensions are
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then computed for each sub-interval, F(X;). Finally, the interval hull of all the F(X;) is taken to

find an interval with a smaller radius which still contains the united extension f(X).

6.3.2 Interval Analysis Used as a Statistical Analysis Tool

The intent of error analysis is to determine the experimental uncertainty in a measurement pro-
cess due to random errors. Assuming that a data set is normally distributed, random error in
an experimental process is quantified by the standard deviation [53]. Standard deviation is thus
a measurement of how much variation exists from the mean or expected value; the higher the
standard deviation the more variance is found in a data set and vice versa. In order to imple-
ment interval analysis as an alternate method for error analysis, standard deviations predicted
by interval analysis should match standard deviations predicted by other well-known statistical
methods, like Monte Carlo simulations. Hence, the standard deviation and mean calculated
with Monte Carlo simulations are compared to the radius and midpoint of the sensitivity inter-

val respectively.

6.4 Error Analysis of the Layer-Shift Method

The layer-shift method is a well known material characterization method which was originally
developed in [3]. The layer-shift method is performed by measuring the reflection coefficient
twice, once with the MUT backed directly by a metal plate, and again with a spacer placed in
between the MUT and the metal plate. The layer-shift method can be performed with free-
space, coaxial, and waveguide implementations. The methodology of the layer-shift method is
displayed in Figure 4.5 and explained in Section 4.3.2. In [10], the method is noted for being
particulary good for characterizing dielectric media.

This section demonstrates how interval analysis can be used to predict the sensitivity of
extracted p and e values using the layer-shift method. Analysis is shown for free-space imple-

mentation of the method.
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6.4.1 Extraction Equations for the Free-Space Layer-Shift Method

In order to extract u and € using the layer-shift method, several parameters must be computed.

From Sections 4.2.3 and 4.3.2, ur and ey are calculated from

kz2M0 lcg2 + lc% sin2 6
€r=— 7 'Hr= 5 ) (6.15)
042 ICOEr
for TM polarization and
2 2 2
kooZ k%, + k5 sin“ 0
= Iz2 2,€r= z2 20 (6.16)
070 Icour

for TE polarization.

In equations (6.15-6.16), the intrinsic impedance, 7, and the wavenumber, k), are deter-
mined by the medium which the plane waves originate. Here ng and kg are the free-space
values and the subscript 2 denotes the MUT region.

To solve equations (6.15-6.16), two parameters must be calculated: (1) the impedance of
the interface between the MUT and the metal plate or the spacer ,Zy, and (2) the wave vector
for the MUT in the z-direction, k;». Through calculation of the transverse impedance of each

region and the interfacial reflection coefficients, Z» and ko can be found with:

. zb 28z1) 2P (2)
9= 5 P b (6.17)
Z3 +Z1 (z1) —Z1 (z1)
1 VAZE))
kZZ = 5 tan 1 -] IZZ 1 (6.18)

where

105



1+Fa b_ 1+rb
1-1, 1~ 911,

Zla = ZO (6.19)

z8=0, z8 = jZgtan(k3N). (6.20)

Equations (6.17)-(6.20) are derived in Section 4.2.1. Here Z; and Z3 are the wave impe-
dances, which are determined by the angle of incidence, the intrinsic properties of the medium
(subscript 0 is for free space and subscript 3 is for the spacer), and the polarization of the inci-
dent waves. The thickness of the MUT is represented by 6 and A is the thickness of the spacer.
Also, I'q and I'y, represent the reflection coefficient with the metal plate directly against MUT

and with the spacer between the MUT and the metal plate, respectively.

6.4.2 Measurement Set-Up

The same measurement statement described in Chapter 4.3.2 was used. To reiterate, measure-
ments were made at Boeing on a bistatic reflection range of a commercial MagRAM from 5-18
GHz. The angle of incidence was 40° and 6 = 57.16 mil. Plexiglas was used as a spacer with
thickness A = 230.74 mil. The incident field was transverse magnetic (TM) polarized. Although
measurement of incidence angle, MUT thickness, spacer thickness, and reflection coefficient
(magnitude and phase) propagate error into the extracted permittivity and permeability, this
work only demonstrates interval analysis for use of error propagated by measurement of an-
gle. Error due to MUT thickness, spacer thickness, and reflection coefficient can also be accu-
rately analyzed with interval analysis. However, angle uncertainty is sufficient to demonstrate
the basic principles of error analysis with intervals. Based on the instrument tolerances used in

the measurements, the angle interval sensitivity is taken as

0 = 40° + .5° = [39.5°,40.5°]. (6.21)
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6.4.3 Comparison Interval Analysis to Monte Carlo Simulations

To test the usefulness of interval analysis as a method for error analysis, interval sensitivities
are compared against standard deviations predicted by Monte Carlo simulations. Thorough

analysis of the propagated error due to measurement of angle is presented.

Distribution of Data

As an initial assessment, it must be shown that the data collected during the experimental im-
plementation of the layer-shift method is normally distributed. In previous chapters, ey and ur
were assumed to be normally distributed. Assumption of a normal distribution for ¢y and pr
is a fair assumption because the normal distribution is a very common distribution for natural
phenomena. Normal distribution of the data is critical for the probability theory discussed in
Section 6.3.2 to be valid.

To demonstrate that the extracted ey and pr are normally distributed a normal probability
plot is created. The normal probability plot assesses the data distribution by creating a cumu-
lative distribution plot of the data set. Then a line joining the first and third quartiles of a data
set is superimposed on the cumulative distribution plot [52]. The first and third quartiles are
the points that cut off the lower and upper 25% of the data respectively (i.e. - the 25% and 75%
percentiles). If the data set is normally distributed, the plot will be linear; otherwise there will
be curvature in the plot. Here the extracted ey and ur values extracted using layer-shift method
discussed in Sections in 6.4.1 and 6.4.2 are the data sets which are being tested for normal dis-
tribution. The extracted ey and pr are in Figures 4.6 and 4.7, respectively.

Figures 6.4-6.5 are normal probability plots of the extracted ey and pr from using the layer-
shift method from 5-18 GHz as described in Section 4.3.2. Observation of Figures 6.4-6.5 show
that the extracted e and ur data can be considered normally distributed. There is some slight
curvature in normal probability plot of Nlr- This curvature is due to the waviness in the extracted
,u;, values. Figure 4.7 shows that the extracted ﬂlr data set experiences a slight downward trend

from 5-16 GHz. This downward trend in the N,r data set then creates some waviness in the
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cumulative distribution plot. In contrast, e/, €/, and pi). are relatively flat from 5-16 GHz, which

then leads to a straighter cumulative distribution plot.

Initial Comparison of Interval Analysis and Monte Carlo Simulations

The mean, ¢, and the standard deviation, o, of extracted ¢y and yr predicted by Monte Carlo
simulations and interval analysis is compared. Table 6.1 shows the mean calculated with Monte
Carlo simulations and interval analysis at several points in the frequency band.

Again, the midpoint of the interval is interpreted as the mean when using interval analy-
sis. At 10 GHz, the mean for both real and imaginary parts of ¢y and ur are extremely close.
However, there are great discrepancies at 5 GHz and 15 GHz. At 15 GHz, the Plexiglas spacer is
approaching an integer multiple of a half-wavelength. Thus, equation (6.20) becomes large and
the extraction of ey and ur suffers. This behavior at 15 GHz is detrimental to Monte Carlo sim-
ulations which is evidenced by the drastic change in the mean values of € and ur. The Monte
Carlo simulations also suffer at 5 GHz; at 5 GHz the edge diffractions on the edge of the sample
make it difficult to accurately measure the reflection coefficients, and thus affect the extraction
process. Other frequencies between 5-15 GHz will show similar results to the one found at 10
GHz because the extraction process is not subject to the Plexiglas thickness or edge diffraction
issues. This is evidenced by the flatness in the plot of ey and pr versus frequency in Figures 4.6
and 4.7.

These type of physical phenomena which result in random error in the measurement pro-
cess are difficult to quantify with Monte Carlo simulations. In these situations, Monte Carlo
simulations produce so many extreme values that the entire normal distribution is shifted. In
these cases, interval analysis is a great tool to implement. Observation of Table 6.1 shows that
the mean predicted by error analysis is much more stable. The stability of the mean values
allows for immediate assessment of the sensitivity of ey and pr.

Table 6.2 shows the standard deviations by Monte Carlo simulations and sensitivity intervals

computed via interval analysis. At first glance, it appears that the interval analysis predictions
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are overestimated. However, one must remember that one standard deviation, o, predicted by
Monte Carlo simulations is valid for only 34.1% of the extractions [53]. Even so, the sensitiv-
ity intervals are still considerably larger than the 3o tolerances predicted by the Monte Carlo
simulations which represent nearly 100% of ey and ur extractions. It is emphasized that inter-
val analysis gives absolute bounds for yr and €r. From this perspective, the interval analysis
solutions provide a useful benefit in that the worst possible solution is explicitly stated. Nev-
ertheless, the worst possible solutions are not the most probable bounds for ur and €. Using

refinement as explained in Section 6.3, tighter sensitivity intervals can be calculated.

Comparison of Refined Interval Analysis and Monte Carlo Simulations

The refinement process described in Section 6.3 was used to obtain closer intervals to the stan-
dard deviations for ey and pr found with Monte Carlo due to propagation of angle error. Tables
6.3 and 6.4 show the refined bounds for the real and imaginary parts of ¢ and yr. The column
labeled 7 shows how many times the angle interval was subdivided. As nincreases, the radius of
the ey and pr intervals become smaller. For n=100, there is the greatest amount of correlation
between the standard deviations predicted Monte Carlo and interval analysis. Table 6.5 show
the standard deviations predicted by Monte Carlo simulations and the original and refined in-
terval standard deviations. In addition, further refinement past 7=100 does not provide further
decrease in the width of the interval. Additionally, Tables 6.3 and 6.4 show a great amount of
stability in the midpoint of the intervals. The stability of the midpoint of the intervals is very
important to ensure accurate comparison between Monte Carlo simulations and other interval

results.

Visualization of Error Analysis

Interval analysis also provides a clear method for determining error introduced over a frequency
band or any parameter where a sweep is desired. Figures 6.6 and 6.7 shows the infimum, supre-

mum, and extracted pr and e vs. frequency for the layer-shift method. The figure shows that
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the layer-shift method provides accurate extractions of ur and ey until the Plexiglas spacer be-
comes an integer multiple of 1/2 around 17 GHz where Z3 becomes large and the extraction
cannot be performed. In this manner, interval analysis is particularly useful opposed to the
Monte Carlo simulations because it is computationally lighter; for Monte Carlo simulations

hundreds of thousands trials must be run for each frequency which is to be evaluated.

6.5 Conclusions

This chapter demonstrate use of interval analysis for error analysis in reflection-only material
characterization techniques. Interval analysis is shown to be useful by implementing it in pre-
dicting the error introduced by incidence angle uncertainty into the layer-shift method. Error
tolerances predicted with interval analysis are compared to error bounds predicted with Monte
Carlo simulations. Excellent agreement between error bounds found with Monte Carlo simu-
lations and refined interval analysis are found. Thus, an additional tool for performing error
analysis for material characterization has been found. Future work includes performing multi-

variate error analysis with interval analysis.
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Freq. (GHz) Method (fu/r élulr/ ée/r ée/r/
5 Monte Carlo 4.8197 | -1.5683 | 9.5510 | -0.3274
5 Interval Analysis | 2.4534 | -1.0872 | 10.3583 | -0.3780
10 Monte Carlo 1.7135 | -0.9394 | 10.6874 | -1.5008
10 Interval Analysis | 1.7157 | -0.9420 | 10.6944 | - 1.5105
15 Monte Carlo -1.3249 | -0.1793 | -7.0188 | -6.2221
15 Interval Analysis | 1.2173 | - 0.9263 | 10.6892 | - 1.1006

Table 6.1: Mean ¢ and uyr predicted by Monte Carlo simulations and interval analysis at 5,10,
and 15 GHz
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Frequency (GHz) Method o o oy o
Fr Fr r r

10 Monte Carlo 0.0068 | 0.0113 | 0.0892 | 0.0562

10 Interval Analysis | 0.1556 | 0.1556 | 0.4983 | 0.4983

Table 6.2: Standard deviation of ¢y and pr predicted by Monte Carlo simulations and interval
analysis at 10 GHz
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A T A R A T
2 | 17138 | 0.0778 | -0.9398 | 0.0800
5 | 17135 | 0.0345 | -0.9394 | 0.0381
10 | 1.7135 | 0.0206 | -0.9394 | 0.0246
20 | 17135 | 0.0137 | -0.9394 | 0.0179
50 | 17135 | 0.0096 | 0.9394 | 0.0140

100 | 1.7135 | 0.0083 | -0.9394 | 0.0127

Table 6.3: Standard deviation of ur predicted by refined interval analysis at 10 GHz
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n ¢y o '/, on
€l €l e/ el

2 |10.6102 | 0.2865 | -0.8675 | 0.2701
5 | 10.6083 | 0.1665 | -0.8654 | 0.1401
10 | 10.6076 | 0.1276 | -0.8649 | 0.0979
20 | 10.6072 | 0.1083 | -0.8647 | 0.0770
50 | 10.6070 | 0.0929 | -0.8645 | 0.0645
100 | 10.6070 | 0.0083 | -0.8645 | 0.0604

Table 6.4: Standard deviation of €, predicted by refined interval analysis at 10 GHz
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Method 0'(_:; 0'€/r/ O"u/r Uﬂ;’,
Monte Carlo 0.2274 | 0.1091 | 0.0329 | 0.0226
Interval Analysis 2.6321 | 2.6321 | 1.0224 | 1.0224
Interval Analysis (Refined) | 0.2194 | 0.0953 | 0.0333 | 0.0255

Table 6.5: Standard deviation of ¢ and ur predicted by Monte Carlo simulations and Interval
Analysis at 10 GHz
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Figure 6.1: Rectangular interval representation in the complex plane
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Figure 6.2: Circular interval representation in the complex plane
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Figure 6.3: Sector interval representation in the complex plane
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Chapter 7

Effects of Curved Wavefronts on Free-Space

Material Characterization Techniques

7.1 Introduction

Up to this point, there has only been analysis of random error in reflection-only material char-
acterization methods. This chapter performs an error analysis on a source of systematic error
in free-space reflection-only material characterization methods.

In all free space material characterization techniques, a plane wave is assumed to illuminate
the MUT. A plane wave is defined as a constant-frequency wave whose wavefronts (surfaces of
constant phase) are infinite parallel planes of constant amplitude normal to the phase velocity
vector.

Since in practice a true plane wave cannot be produced, the assumption of plane wave inci-
dence used to derive extraction formulas introduces a source of error into extraction schemes.
To examine the extent of this error, the canonical problem of a line source above a material slab
is examined. By varying the height of the line source, the effect of wavefront curvature on the
accuracy of the extracted material properties can be explored.

The scattered electric field produced by both electric and magnetic line sources above an
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air-backed and conductor-backed MUT are computed via the Sommerfeld integral approach,
and used to determine a reflection coefficient for the case of a nonplanar incident-field wave-
front by maintaining Snell’s law of reflection. This data is then used in the expressions for yr
and e derived using a planar incident field, and the error computed. The effect of wavefront
curvature is explored for various combinations of aspect angle and material parameters to de-

termine the conditions under which the effect of curvature is least pronounced.

7.2 Reflection Coefficients Due to an Electric Line Source

7.2.1 Field of An Electric Line Source Above a Layered Medium

In order to find the reflection coefficient due to a curved wavefront, the scattered electric field
in region 3 (shown in Figure 7.3) must first be found. The infinite electric line current supports
the fields E and H. The approach taken to find E and H in region 3 is to solve the wave equation,
V2A+ k2 A =0, for Ain each source-free region depicted in figure 7.3, where k2 = w2 UE.

Before solving the wave equation for A, a few simplifications can be made. First due to the
invariance of the geometry in figure 7.3 in the x-direction, A can simply be written as £Ax (y,2).
The Lorentz condition (V- A + joueg = 0) then shows that the scalar potential is zero because
V-A= %Ax (y,2) = 0. Therefore from E = —jwA— V¢, there is only an x-component to the
electric field and Ey = —jwAy. In addition, the magnetic field is expressed as H = %V x A=
%[ﬁ% - 2%], and so Hy = %651% and Hz = —%aaiyx

The method chosen to solve the wave equation is to take the Fourier transform of Ax in each

region; the Fourier transform is performed on the y-variable to reduce the partial differential

equations to ordinary differential equations. The Fourier transform pair is defined as

i o _

Ax(kyz) = f_ Ax (o) e KV ay @.1)
oo

Ax(y2) = 5H _OoAx(ky,z)eJkyydky. (7.2)
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Plugging the inverse Fourier transform into the wave equation for Ay, one will find

T+ 12— 1E | Ax (ky, 2) ! VY diy =0, (7.3)

1 oo [ 92
022 y

27 )00

2
Since the inverse Fourier transform is zero, { 66_2 + k2% — k%,} Ax =0. Therefore, there are two
z
ordinary differential equations that must be solved.

2 _
The equation (66—2 + pz) Ax (ky, z) = 0 has to be solved in regions 0, 2, and 3. The equation
z

A _ — 22 22
(@ +q )Ax (ky,z) = 0 must be solved in region 1. Here p = + ko —ky and g = £,/ k= — k3,
with the sign chosen such that waves decay as they propagate.

The solutions to the ordinary differential equations can be assumed to be Ax (ky, z) etJpz

in regions 0, 2, and 3 and Ay (ky, z) -~ e*/9% in region 1. Thus, the solutions in each region are:

Ax = Cre JPZ inregion3s (7.4)
Ay = Cpe/PZ4C3e /P inregion2 (7.5)
Ax = Cysin(gz)+ Cgcos(qz), inregion 1. (7.6)

The fields are then found from the potentials using

1 o0 1 6A~x(]€y,Z) k
- ki AP LY AT 2 7.7
Y on f—oo u 0z ¢ M D
—1 [o© 1 _ k
Hz = g oo ﬁ]]CyAx(ky,Z)ej yydky (78)
1 [o© ~ k
Ev=p-| - Jwhx(ky, 2!V dky. (7.9)

In order to find the constants Cq, Cy, C3, Cy4, and Cs, the boundary conditions on the tan-
gential electric and magnetic field must be enforced (7 x (E3 — Ep) = —Ms , # x (Hg — Hp) = J)

atz=tand z=h.
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At z = h, the is no magnetic current, so Ex and Ay are continuous. Thus, Eyp = Ey3, Ayp =
Ays. Hence, from equating equation (7.4) to equation (7.5), Cg = C1 — Cpel 2P,
2 -
Atz = h, Hy is discontinuous by the electric line source. Therefore, the equation (66_2 + pz) Ax (ky, z) =
z

0 at z= h becomes

0z 0z

= uol. (7.10)
Substituting the solutions of Ay in equations (7.4) - (7.5) in equation (7.10), equation (7.10)
becomes

]pCle_Jph+]pC2e~’ph—]pC3e_Jph:uOI. (7.11)
Substituting C3 = C} — Coe/ 2ph into equation (7.11) then gives

e_Jph
2jh

Co =ppl =F (7.12)

where F is an alternate variable name for C».
At the z = ¢ interface, Ex and Hy are continuous. The tangential electric fields, Ex, and

magnetic fields, Hy, are then

Coel P+ Cgel Pl = Cysin(qt) + C5 cos(qt) (7.13)
1P ool Pt 1P caelPt = Dy singgn) - Lcscos(qo. (7.14)
Ko 1o p It

The boundary equations at z = h and z = ¢ give two equations and three unknowns. The
boundary conditions at z = 0 give a condition for C4 and Cs, i.e. - C5; = WCy4 (where W is yet to

be determined). With C5 = Wy,
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Fel Pt 1 c3el Pt = ¢4 [sin(qt) + W cos(q1)] (7.15)

FypurelPt — jpurel Pt = C4[gceos(qr) - Wasin(q1)). (7.16)
Equations (2?)-(7.16) are then solved for C3, which yields

C3 = 20 gemIp(h=20), (7.17)

where

_ prjpsin(qt) - qcos(qt) + W [gsin(qt) — urjpcos(qt)]
prjpsin(qt) + gcos(qt) — W [gsin(qo) + urjpcos(qn)]

R (7.18)

Equation (7.17) has a singularity at p = 0. To remove this singularity, R+1 is examined. R+1

yields

2urjpsin(qt) +2urWjqcos(qt)

R+1= ~
prjpsin(gt) + gcos(qt) — W [gsin(qt) + purjpcos(qt)]

p. (7.19)

This property will be used later.
Using equation (7.17) and Cg = Cy — Cpel2P h Ay in both regions 2 and region 3 can be

written as

Ay = POl = yplz—hl  FOL g —2)p(h—0) ,~2]p(z~), (7.20)
21p 2]p

To find Ay, the inverse Fourier transform of equation (7.20) must be taken. Taking the in-

verse Fourier transform of equation (7.20), Ay is calculated from

A= [ “—(ﬂe‘JP'Z‘h'e]kYMLfoo Kol 5 o=21p(a—h), (7.21)
2 J—oc02]p 2nJ—oc02)p

where R = e2JP("=0R_ The first term in equation (7.21) is equal to a zeroth-order Hankel

function of the second kind [20]. Therefore, equation (7.21) is equal to
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I 1 (o ol - _ _
Ay = Folp@ (kOr)Jrgf HO- po=2jp(z—h) (7.22)

45 0 ~002]P
where r =/ (z— h)2 +y2.

The first term in equation (7.22) represents the principal reflected potential produced by the
line source at z = h and y = 0. The image of the principal potential produced by the line source
is —Z—?IIH(()Z) (ko7), where 7 = \/h2 + y2. The second term in equation (7.22) is the correction
term in the scattered potential. The correction factor still contains the singularity at p = 0. To

remove the singularity at p = 0, make the R = e—2]P(h=1 R substitution into equation (7.22),

and again examine R + 1. Adding 1 to R removes the singularity at p = 0. The correction factor

then becomes
I oo in(gt)+ W p)e=JPh
AS = Ho f ‘ ur (sin(ge) cos(q ) e efkyydky, (7.23)
21 J—oco purjpsin(ge) + gcos(qt) — W [gsin(gt) — pr jpcos(qt)]

where h=z+h-2t.
For the special case of a conductor-backed slab, Ex = 0 at z = 0 because the tangential com-
ponent of the electric field equals zero at a PEC. Thus, Ax = 0 since Ex = — jwAy. Furthermore,

Cs =0 because Cy sin(qt) + Cscos(qt) =0 at z= 0. Ultimately, W = 0 and AJCC becomes

!5V dky. (7.24)

A€ - Mol foo prsin(qt)e” /PR
Y 2m J—co prjpsin(gt) + gcos(qt)

As noted in Section 7.2, the scattered potential due to the electric line source is

Ax = A3+ A% (7.25)

The scattered electric field due to the electric line source is computed with Ex = — jw Ay, where
EY=ER,EC (7.26)
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with

ER- TH(Z)(IC 7) (7.27)

(7.28)

. —iph
EC wuolf 2jursin(gte /P ]kyydky,
4w oo Urjpsin(gt) + gcos(qt)

where 7 = \/(z— 2t - h])2 + yz.
Equation (7.28) can be rewritten in a more useful form. Expanding el kyy into cos(kyy) +
Jsin(kyy) with Euler’s identity, dividing numerator and denominator with sin(q 1), and realizing

that g and p are even in ky gives

- I oo ~Jph
ES = —2H0 f < cos(kyy)dky. (7.29)
T JO jp+gq l?cot(qt)

—-2]x
Next, using cot(x) = % the final form of the correction factor of the scattered electric
field becomes
—Jph
~wugl fOO e IP
E$= cos(kyy)dky. (7.30)
oom o Ho 1+e—2Jq! yr ety

P ‘WW

The final scattered electric field is thus:

~jph
s_ouol @) —wuoffoo e JP
ES = 220 1) (kg 7y + —0° cos(kyy)dky.  (7.31)
x=—g Mo tonT— ) B 1+e—21q¢t YVt
P —2qt

7.2.2 Reflection Coefficient to Emulate Plane Wave Reflection
Geometry for Simulations

In order to find an appropriate reflection coefficient, the free-space measurement setup that

would be used in an actual measurement scenario is emulated. The free-space measurement
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setup is diagrammed in Figure x.
Considering the setup in Figure 7.4, the y, h, and 7 in equation (7.33) can be rewritten in
terms of an equivalent incident angle 6;. With r as the distance from the front face of the slab,

y =2rsinf;. Similarly, h=2rcos 0;. Lastly,

F= \/4(h -02+y2= 2\/r2 cos?0; +r2sin20; = 2r. (7.32)

As aresult, equation (7.33) can be rewritten in terms of 6; as

wpel (2
EY = — - Hg 2kor) +

~ougl foo e—2]prcost9i

0 Ho1+e~2)q1t
pta M 1—9_2]qt

cos(2kyrsin€;)dky. (7.33)

Reflection Coefficient for the Electric Line Source

In order to find the global reflection coefficient, a calibration similar to a real laboratory mea-
surement process is used. The calibration process works by placing a PEC plate at the same
location as the front layer of the material stack at z = ¢. Since the reflection coefficient for a PEC

plate is -1, the calibrated reflection coefficient is

N
Ex

r=-—2%
p}
Ex

(7.34)

where E )’? is the scattered field due to the PEC plate. To find the scattered field off of the PEC
plate by the electric line source, image theoryis used. Figure 7.5 shows the diagram of the image

theory setup. The calculated scatted field is

I
EP = %H&m (kod), (7.35)
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where d is the distance from the image line source to the observation point in Figure 7.5. The

very important result for the calibrated reflection coefficient is therefore

r=-1+-
™ 5 2kgd) /0

4 1 0o p—2]prcosb;
cos(2kyrsin@;)dky. (7.36)

f L 0147241 Y e
Prap_=2yq1

7.3 Reflection Coefficient for a Magnetic Line Source

The process for finding the reflection coefficient due to a magnetic line source follows the same
steps for finding the reflection coefficient for the electric line source described in Section 7.2.
The goal is to find the scattered electric and magnetic fields, E and H, supported a magnetic
line source. To find E and H, the wave equation is solved for the magnetic vector potential,
F, in the three source-free regions diagramed in Figure 7.3. Additionally, boundary conditions
are applied at z = ¢ and z = h to find the amplitude constants generated from solution of the
wave equation. The same Fourier transform pair in equations (7.1)-(7.2) are used to solve for
the wave equation in terms of F.

Like for the solution for the scattered electric field due to the electric line source, the scat-
tered magnetic field due to the magnetic line source is composed of two parts - the reflected

field and a correction factor. The total scattered magnetic field is thus written as

S =HR 4+ g¢. (7.37)

In equation (7.37), H}? is the reflected portion of the scattered magnetic field and is found
to be
R a)eg Im

e R (7.38)

while H )(C: is the correction factor of the scattered magnetic field which is
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p—2]prcosb;

- I fole)
Hg: @0 mf cos(kyy)dky. (7.39)

€0 1+e— 29!
Praey_=2qt

At this point, it is necessary to find the scattered electric field due to the magnetic line source
since this is the field is what is measured experimentally. The electric field is computed from
the magnetic field by using

1 O0Hy

Using equation (7.40), equations (7.38)-(7.39) are used to find the scattered electric field which

is

R ]COIm z+h-2t
Ey =
J4

H® (ko) (7.41)

0 pe —Jp(z+h-21)

0 €0 1+e~2Jq!
Prae _~2qt

cfm

cos(kyy)dky. (7.42)

Once again using a calibration process similar to that used in an actual laboratory setting

and employing image theory the reflection coefficient for the magnetic line source is found to

be

Fm—1+—
T kocosb; H( ) (k) /0

45 1 0o p—2]preosb;
f cos(ZkyrsinGi)dky. (7.43)

4450 1+e—2]q¢
Prae 1-e—2Jqt

7.4 Wave Curvature Impact on the Two-Thickness Method

The two-thickness method is a method for characterizing conductor-backed media. The two-

thickness method is utilized by measuring the reflection coefficient for two different MUT thick-
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nesses. The extraction equations and further information about the two-thickness method is
found in Section 4.3.3. Additionally, a diagram of the two-thickness method is found in Fig-
ure 4.11. For the analysis in this chapter, a hypothetical implementation of the two-thickness
method is created. To see the impact of wave curvature on the the two-thickness method, the
reflection coefficients calculated with both the line sources and plane waves are compared.
Comparison of the reflection coefficients is a good starting point because if there is little change
between the reflection coefficients computed with the line sources and plane waves, then there
will most likely be little difference in the extractions of e and pr. The reflection coefficients are

then compared under two different scenarios which include:

1. Variable line source distance to the MUT (incidence angle and MUT thickness held con-

stant)

2. Variable MUT thickness (incident angle and distance to MUT held constant).

Both scenarios are tested on TE and TM polarized fields incident on Plexiglas and a 35%
MagRAM described in Chapter 4. In all scenarios, the the second MUT thickness is always twice
the thickness of the initial MUT thickness; this is done so the extraction equations are in closed

form. All measurement setup parameters are presented in each scenario.

7.4.1 Scenario 1: Variation of Line Source Distance to the MUT

In a real laboratory environment, a true plane wave is not physically realizable since a wave
would have to propagate to infinity to be a true plane wave. However, waves which can be ap-
proximated as plane waves are achievable when the distance between the source and the MUT
is great enough. Thus, the distance from the source to the MUT in the laboratory environment
is an important factor in the plane wave assumption in free-space material characterization
models.

To test the effect of the distance between the source and the MUT, the reflection coefficients

due to the electric and magnetic line sources derived in Section 7.2 are computed and used in
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the two-thickness extraction scheme as if they were calculated with the plane wave assumption.
The angle of incidence and the MUT thickness are held constant. The reflection coefficients are
calculated for the line source placed at various distances from the MUT. The angle of incidence
is set to 6 = 40° and the MUT thicknesses are set to 40 mil and 80 mil. Analysis is conducted at
3 GHz. The reflection coefficient is defined as I = I/ + jI'"’.

Tables 7.2 and 7.4 show the real and imaginary parts of the reflection coefficients calculated
by varying the distance of the electric line source to the MUT. Here I'y and I'y are the reflection
coefficients for when the MUT is 40 mil thick and 80 mil thick respectively. Also, £ is the dis-
tance from the electric line source to the MUT in meters as shown in Figure 7.4. The reflection
coefficient is then calculated for h=2" forn=1,2,3....

Observations of Tables 7.2, 7.4, 7.6 and 7.8 show for each increase in # there is little to no
change in the reflection coefficients for both polarizations and both materials. Additionally,
there is very little difference between the reflection coefficients calculated with a plane assump-
tion, shown in Tables 7.1, 7.3, 7.5, and 7.7 and the reflection coefficients calculated with the
electric and magnetic line sources. Since there is very little difference in the reflection coeffi-
cients calculated with the plane wave and line sources, there is little impact on the extracted er
and pur values.

Analysis of this scenario may show deceiving results. The MUT thicknesses in this scenario
are very thin. Although these thicknesses are not uncommon in shielding or electromagnetic
shielding control applications, the wavefronts do not cycle through enough phase for the pres-
ence of the MUT to be very significant. Therefore, analysis of scenario 2 where the MUT thick-
nesses are increased is necessary to show if a MUT with a greater thickness will have a greater

affect on the calculation of the reflection coefficients using the line sources.

7.4.2 Variable MUT thickness

In this scenario, the MUT thickness are varied from 120 mil to 400 mil in 40 mil increments.

The incidence angle is 40°. Also, & is set to 1 m and the operating frequency is set to 3 GHz.
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This value of & is chosen because most laboratory setups will be able to have greater distance
between the source antennas and the MUT. Thus, this scenario is a worst case scenario of sorts
and better results can be assumed in real laboratory environments.

Tables 7.9, 7.11, 7.13, 7.15 show the reflection coefficients calculated with the plane wave
assumption for both TE and TM polarizations for both Plexiglas and the MagRAM. Tables 7.10,
7.12, 7.14, 7.16 show the reflection coefficients calculated with the electric and magnetic line
sources. Again, there is great agreement between the reflection coefficients calculated with the
plane wave assumption and the line sources. There is the least amount of agreement between
the reflection coefficients calculated with the TM polarized plane wave and the magnetic line
source for the MagRAM sample. Tables 7.17 and 7.18 show the extracted ey and pr values with
this case. Observation of the percent errors noted in these tables shows that there is very little

impact on the extraction of e and pur.

7.5 Conclusions

The impact of wave curvature on free-space material characterization methods has been inves-
tigated. The plane wave assumption in free-space material characterization methods can be
thought of as a type of systematic error in all free-space methods because a true plane wave is
not physically realizable in a laboratory environment.

To test the impact of wave curvature, the Fresnel reflection coefficients for TE and TM polar-
ized waves are replaced with reflection coefficients calculated with electric and magnetic line
sources in the two-thickness extraction algorithm. Results showed very little impact on the re-
flection coefficients or extracted ey and pur values for the line source distance of 1 m. As many
labaratory setups should be able to have greater distance between the source antenna and the
MUT, the impact on wave curvature is not expected to be great in many free-space material

characterization measurements.
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| MUT Thickness | I’ | 17 |
40 mil -0.995 [ 0.097
80 mil -0.980 | 0.196

Table 7.1: Reflection coefficients calculated with a TM polarized plane wave (Plexiglas)

Line Source Distance (meters)‘ F'l ‘ T '1' ‘ T '2 ‘ F'Z'
1 -994 [ 9.79 x 1072 | -.979 | .196
2 -994 [ 9.79 x 1072 | -.980 | .196
4 -995 [ 9.79 x 10~2 | -.980 | .196
8 995 | 9.79 x 1072 | -.980 | .196
16 -992 [9.79x 10~ 2 | -.980 | .196

Table 7.2: Reflection coefficients calculated with a magnetic line source at variable distances
from the MUT (Plexiglas)
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MUT Thickness | 7 | 17 |

40 mil -0.8238 | 0.2298
80 mil -0.5968 | 0.3776

Table 7.3: Reflection coefficients calculated with a TM polarized plane wave (35% MagRAM)

Line Source Distance (meters) ‘ T '1 ‘ T '1' ‘ F'2 ‘ T '2' ‘
1 -0.824 | 0.230 | -0.597 | 0.378
2 -0.824 | 0.230 | -0.596 | 0.378
4 -0.823 | 0.230 | -0.596 | 0.377
8 -0.823 | 0.229 | -0.596 | 0.377

Table 7.4: Reflection coefficients calculated with a magnetic line source at variable distances
from the MUT (35% MagRAM)
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MUT Thickness | 17 [ 17 |

40 mil -0.990 | 0.140
80 mil -0.960 | 0.279

Table 7.5: Reflection coefficients calculated with a TE polarized plane wave (Plexiglas)

Line Source Distance (meters) ‘ T '1 ‘ T '1' ‘ F'2 ‘ T '2' ‘
1 -0.992 | 0.139 | -0.961 | 0.280
2 -0.990 | 0.140 | -0.960 | 0.279
4 -0.990 | 0.140 | -0.960 | 0.279
8 -0.990 | 0.140 | -0.960 | 0.279

Table 7.6: Reflection coefficients calculated with an electric line source at variable distances
from the MUT (Plexiglas)
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MUT Thickness | " [ 1" |

40 mil -0.899 | 0.148
80 mil -0.762 | 0.268

Table 7.7: Reflection coefficients calculated with a TE polarized plane wave (35% MagRAM)

Line Source Distance (meters) ‘ r ’1 ‘ r ’1’ ‘ F’2 ‘ r ’2’ ‘
1 -0.899 | 0.148 | -0.761 | 0.267
2 -0.899 | 0.148 | -0.762 | 0.267
4 -0.899 | 0.148 | -0.762 | 0.267

Table 7.8: Reflection coefficients calculated with an electric line source at variable distances
from the MUT (35% MagRAM)

139



MUT Thickness (mil) | 7 | T |

120 -0.9554 | 0.2952
160 -0.9186 | 0.3950
200 -0.8685 | 0.4954
240 -0.8027 | 0.5960
280 -0.7181 | 0.6953
320 -0.6110 | 0.7908
360 -0.4769 | 0.8778
400 -0.3111 | 0.9488

Table 7.9: Reflection coefficients calculated with a TM plane wave (Plexiglas)

MUT Thickness (mil) | T | 17 |

120 -0.954 | 0.295
160 -0.917 | 0.394
200 -0.867 | 0.495
240 -0.801 | 0.595
280 -0.716 | 0.694
320 -0.608 | 0.789
360 -0.474 | 0.876
400 -0.308 | 0.946

Table 7.10: Reflection coefficients calculated with a magnetic line source with variable MUT
thickness (Plexiglas)
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MUT Thickness (mil) | I’ r’

120 -0.5739 | 0.3346
160 -0.3516 | 0.2911
200 -6.04x1072 | 0.102

240 -0.1982 | 0.1043
280 -0.3513 | -0.2345
320 -0.4794 | -0.2430
360 -0.5615 | -0.1989
400 -0.6000 | -0.1403

Table 7.11: Reflection coefficients calculated with a TM plane wave (35% MagRAM)

MUT Thicknessmil) | 17 | 17
120 20.603 0.301
160 20.406 0.270
200 20.259 0.120
240 -0.250 | -7.50x102
280 20.349 | -0.198
320 20464 | -0.227
360 20545 |  -0.201
400 0590 | -0.154

Table 7.12: Reflection coefficients calculated with a magnetic line source with variable MUT

thickness (35% MagRAM)
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| MUT Thickness mi) | T/ | 17 |

120 -0.9097 | 0.4146
160 -0.8385 | 0.5443
200 -0.7456 | 0.6656
240 -0.6306 | 0.7752
280 -0.4932 | 0.8688
320 -0.3339 | 0.9413
360 -0.1545 | 0.9863
400 0.0411 | 0.9971

Table 7.13: Reflection coefficients calculated with a TE plane wave (Plexiglas)

MUT Thickness (mil) | I’ | 7]
120 0911 [ 0415
160 -0.840 | 0.545
200 -0.747 | 0.667
240 -0.632 | 0.777
280 -0.494 | 0.871
320 -0.334 | 0.944
360 -0.154 | 0.990
400 -4.14x1072 | 1.001

Table 7.14: Reflection coefficients calculated with an electric line source with variable MUT
thickness (Plexiglas)
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| MUT Thickness (mil) | T’ r”

120 -0.3319 | 04177
160 -0.0820 | 0.3193
200 0.0603 | 0.1019
240 0.0397 | -0.1299
280 -0.0914 | - 0.2699
320 -0.238 | -0.298
360 -0.3462 | - 0.2579
400 -0.4027 | -0.1876

Table 7.15: Reflection coefficients calculated with a TE plane wave(35% MagRAM)

MUT Thickness (mil) | I’ | 7]
120 -0.331 0.419
160 -8.14x10™2 | 0.320
200 -6.04x1072 | 0.102
240 -3.96x10~2 | -0.129
280 -9.16x102 | -0.269
320 -0.238 | -0.298
360 20347 | -0.256
400 0402 | -.0186

Table 7.16: Reflection coefficients calculated with an electric line source with variable MUT
thickness (35% MagRAM)
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MUT Thicknesses ‘ e;, e;, Percent Error e’r’ e’r’ Percent Error

120 and 240 mil | 10.6139 34 -1.4870 1.3
160 and 320 mil | 10.6367 A2 -1.5119 73
200 and 400 mil | 10.6300 19 - 1.5098 .6

Table 7.17: Extracted ey calculated with an electric line source reflection coefficients (MagRAM)
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MUT Thicknesses | ) | i} PercentError | )/ | p} Percent Error

120 and 240 mil | 1.6487 .078 -0.9079 .88
160 and 320 mil | 1.6525 15 - 0.9037 41
200 and 400 mil | 1.6534 21 - 0.9024 27

Table 7.18: Extracted pr calculated with an electric line source reflection coefficients (MagRAM)
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Chapter 8

Conclusions

The main objective of this dissertation is the study of the strengths and weaknesses of vari-
ous reflection-only material characterization methods by performing a thorough error analysis.
More specifically, it was desired to know the propagation of measurement errors into extracted
material parameters.

The characterization of materials with reflection-only free-space techniques requires the
analysis of plane wave reflection off of a planar slab. Thus, the canonical problem, of plane
wave incidence on an infinite slab is of great importance. Furthermore, the reflection-only
coaxial-line and waveguide methods presented in this work can be considered special cases of
plane wave propagation. In Chapter 2 the general analysis of this canonical problem is shown
in detail. Topics covered in this chapter include: (1) plane wave propagation in unbounded
media, (2) reflection and transmission at normal and oblique incidence, and (3) reflection and
transmission at layered slabs.

Error analysis is an extremely important aspect of material characterization. In perspective
of the many applications of material characterization, some of which are listed in Chapter 2, the
level of certainty in the extracted permittivity and permeability is paramount. Error analysis in
material characterization has included the study of the effect of temperature [8], calibration

liquids [41], numerical techniques [40], propagation of high order modes [12], and air gaps in
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material samples [55] on the reliability of the characterization process.

Chapter 3 expounds upon the error analysis methods utilized in this work. In addition, an
overview of types of uncertainty, interpretation of uncertainty, and the normal distributed are
presented.

Chapter 4 demonstrated the use of a unifying set of extraction equations for many non-
resonant, reflection-only material characterization methods. Accuracy of the extraction equa-
tions was proven via implementation of three different reflection-only methods with actual
measured data of both dielectric and magnetic media. Excellent agreement between extracted
er and pr using the extraction equations presented in this work and traditional material char-
acterization methods and nominal material parameters was achieved. Therefore, a common
resource for all performing material characterization using non-resonant, reflection-only ma-
terial characterization methods has been accomplished.

In Chapter 5, the dual-polarization method for characterization of both €7 and pr is exam-
ined. Although the dual-polarization method can be formulated for dielectrics with unknown
thickness or dielectrics with known thickness, the focus of this chapter is on characterizing
conductor-backed media for both € and py.

Thorough analysis of the error propagated into the extraction of € and pr by uncertainties
in angle, thickness, and reflection coefficients has been conducted. Analysis has shown that the
dual-polarization method can be very sensitive to uncertainties in angle and reflection coeffi-
cients, but relatively insensitive to uncertainties of MUT thickness. However, in very specific
situations, the dual-polarization method have been can be applied accurately.

Chapter 6 demonstrated use of interval analysis for error analysis in reflection-only mate-
rial characterization techniques. Interval analysis is shown to be useful by implementing it in
predicting the error introduced by incidence angle uncertainty into the layer-shift method. Er-
ror tolerances predicted with interval analysis are compared to error bounds predicted with
Monte Carlo simulations. Excellent agreement between error bounds found with Monte Carlo

simulations and refined interval analysis are found. Thus, an additional tool for performing
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error analysis for material characterization has been found. Future work includes performing
multivariate error analysis with interval analysis.

In Chapter 7, the impact of wave curvature on free-space material characterization meth-
ods has been investigated. The plane wave assumption in free-space material characterization
methods can be thought of as a type of systematic error in all free-space methods because a
true plane wave is not physically realizable in a laboratory environment.

To test the impact of wave curvature, the Fresnel reflection coefficients for TE and TM polar-
ized waves are replaced with reflection coefficients calculated with electric and magnetic line
sources in the two-thickness extraction algorithm. Results showed very little impact on the re-
flection coefficients or extracted ey and pr values for the line source distance of 1 m. As many
labaratory setups should be able to have greater distance between the source antenna and the
MUT, the impact on wave curvature is not expected to be great in many free-space material

characterization measurements.
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