

THS

MICHIGAN STATE UNIVERSITY LIBRARIES

AN INVESTIGATION OF THE RELATION BETWEEN PERFORMANCE ON A FILMED LIPREADING TEST AND ANALYSIS OF THE VISUAL ENVIRONMENT

By

Susan Claire Haske Brainerd

A Thesis

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF ARTS

Department of Andiology and Speech Sciences

ABSTRACT

6120194

AN INVESTIGATION OF THE RELATION BETWEEN PERFORMANCE ON A FILMED LIPREADING TEST AND ANALYSIS OF THE VISUAL ENVIRONMENT

By

Susan Claire Haske Brainerd

Audiologists and speech pathologists hold major roles in the rehabilitation of the surally handicapped. The development of lipreding ability has been identified by these clinicians as being one of the major components of a successful sural rehabilitation program. However, the results of empirical studies have not yet defined for these clinicians the variables they need to manipulate in order to improve an individual's ability to read lips.

The purpose of the present study was to investigate the relationship between an individual's field independency and his ability to read lips. A review of the literature suggested that liproading ability would be related to an individual's tendency to perceive his visual environment analytically.

The Utley Lipreading Test (Form A) was used as the measure of lipreading ability and the Hidden Figures Test was used as the measure of analysis of the visual environment. Both tests were administered to twenty volunteer male undergraduates at Hichigan State University. All subjects possessed normal hearing and normal vision.

Reliability estimates of the test measures were obtained through use of the split-half method. The corrected reliability estimates were .73 for the total Utley Test and .61 for the total Hidden Figures Test. The relationship between performance on the two measures was analysed through calculation of a Pearson Product Nesset Correlation Coefficient. The resulting coefficient of .46 was significant at the .025 level and indicated that performance on the Utley Test is positively related to performance on the Hidden Figures Test.

Ascepted by the famility of the Department of Andielogy and Speech Sciences, College of Communication Arts, Michigan State University, in partial fulfillment of the requirements for the Master of Arts degree.

Guidanee Counttee:	Edward & Hardicks Charmon

TABLE OF CONTENTS

	Pag
LIST OF TABLES	. 17
CHAPTER 1 INTRODUCTION	. 1
Purpose Rypothesis Importance of the Study Definition of Terms Limitations of the Study	2 2 2 4 4
CHAPTER 2 REVIEW OF PERTINENT LITERATURE	. 6
Field Dependence - Independence Assessment Repirical Relations of Liprocding to Field Independence Test Selection Subject Restrictions	6 10 12 15
CHAPTER 3 METHODOLOGY	. 17
Subjects Equipment and Materials Data Callection Analysis of Data Summary	17 18 18 18 19
CHAPTER 4 RESULTS AND DISCUSSION	. 20
Description of Distributions Reliability Estimates Significance Tests	20 24 26
CHAPTER 5	. 30
Summary Conclusions Suggestions for Further Research	30 31 30
BIBLIOGRAPHY	
APPENDIX	. 37

LIST OF TABLES

TABLE	I	•	•	•	MEASURES OF CENTRAL TEMBERCY AND DISPERSION .	•	21
TAHLE	11	•	•	•	PERCENTAGE OF CORRECT IDENTIFICATIONS	•	21
LHAT	m	•	•	•	RELIABILITY ESTIMATES	•	2 4
TAHLE	IA	•	•	•	INTERCORRELATIONS BETWEEN PERFORMANCE ON THE UTLEY LIPHEADING TEST AND PERFORMANCE ON THE HIDDEN FIGURES TEST	•	27

CHAPTER 1

INTRODUCTION

rehabilitation concerning one of the prerequisites to successful lipreading. One position in the controversy indicates that successful lipreaders rely on synthetic ability. Alternatively, the other side of the controversy indicates that successful lipreaders rely on analytic ability. Kitchen, Kitson, and Simmons are smong those who have empirically presented a relation between synthetic ability and lipreading ability. Logic, however, suggests that before an individual can synthesise (construct a whole from its parts) in the lipreading situation, he must first identify and extract the relevant parts (i.e., analyse the stimuli). There has been no empirical research reported which has investigated the role of analysis in lipreading performance.

¹Edward B. Witchie, <u>Lip-Reading</u>, <u>Principles and Practice</u> (New York: Frederick A. Stokes Company, 1912), p. 9.

Martha E. Bruhn, The Mueller-Walle Method of Lirreading for the Deaf (Lynn, Mass: The Michals Press, 1929), pp. 2-6.

Dale W. Kitchen, "The Relation of Visual Synthesis to Lipreading Performance," (unpublished Ph.D. dissertation, Michigan State University, 1968).

H. D. Kitson, "Psychological Tests for Liproading Ability,"
The Volta Review, IVII (1915), 471-476.

⁵Andrey A. Simmons, "Factors Related to Lipreading," <u>Journal</u> of Speech and Hearing Research, XI (December, 1959), 340-352.

Purpose

The purpose of the present study was to investigate a perceptual variable which was presumed to be related to liprocding shillity. The present study investigated the relationship between an individual's skill at reading lips and his tendency to perceive his visual environment analytically.

Expothesis

The following relation was hypothesised:

Performance on a filmed liprocding test is positively related to performance on an embedded figures test.

Importance of the Study

Liprosting instruction is considered to be a vital component of an effective program of rehebilitation or habilitation for the securiosally handicapped. In fact, at a recent conference of the American Speech and Hearing Association (ASHA) it was assorted that "all patients who fail to achieve optimal anditory comprehension or have possily developed speech reading should receive a program of speech reading instruction. In The most widely known methods of liprocaling instruction were developed early in the twentieth century by individuals who were themselves anditorily handicapped. O'Noill and Ores' present a survey of the methods and philosophies of these early

Report of a Conference on Hearing Aid Evaluation Procedures, Herbert J. Cyer, Chairman (Washington, D.C., ASHA Publication, 1967), P. S.

John J. O'Beill and Herbert J. Oper, Visual Communication for the Hard of Hearing (Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1901), pp. 16-18.

writers. In the 1940's these methods or adaptations of them were still the most popular methods of lipreading instruction; however, they were considered "old" and it was felt there was a need for further research. 1 Twenty years later, Avery indicated that there was still no proven way to develop lipreading ability. The absence of a universal method may be a result of the fact that research conducted in an attempt to identify important individual difference factors related to lipreading ability has, for the most part, demonstrated insignificant results. For example, empirical studies have not found significant relations between lipreading ability and total scores on either intellectual tests or personality tests. Comprehensive coverage of the results of the historical lipreading studies is presented by O'Neill and Over. 3 It is felt that the results of the present study will contribute to the understanding of the nature of the liprocding process. A greater understanding of the liprocding process is required before it can be determined whether liproading instruction attempts can be more successful.

¹Harriet Montague, "Lipreading - a Continuing Mecessity,"

<u>Jammal of Speech and Hearing Disorders</u>, VIII (September, 1943), 267.

²Charlotte B. Avery, "Visual Aspects of Aural Habilitation and Rehabilitation" (paper presented at a Conference for Aural Rehabilitation of the Assestically Handicapped, East Lansing, Michigan, Hareh, 1966), p. 71.

^{30&#}x27;Heill and Oper, <u>Visual Communication for the Hard of Hearing</u>, pp. 36-49.

Definition of Terms

Throughout this report the following terms will be used as they are defined below:

Field dependency:

the tendency of an individual to rely on visual ones from a background field to aid in the perception of a focal object.

<u>Field independency</u>: the tendency of an individual to rely on internal cues to aid in the perception of a focal object.

Liproading ability: the skill an individual exhibits in understanding verbal communication through visual observations, as measured by performance on a filmed liproading test.

Analytic ability: the skill an individual exhibits in breaking down the stimulus complex in his visual environment as measured by performance on an embedded figures test.

Limitations of the Study

The ability to liproad as a behavioral characteristic is necessarily dependent upon a total complex of variables. The major limitation of this study is that it considers only one of the possible parameters.

Another restriction of the present study concerns the subjects employed. An attempt was made to concentrate on a restricted ability range in order to reduce the performance variables. Therefore, the subjects employed were all of the same sex, approximate age level, educational level and all possessed normal vision and normal hearing. Because of these limitations, cantion must be emercised that the results of this study are not generalized either to the entire normal hearing population or to the hard of hearing population.

The chosen lipreading task also places restrictions upon the present study. The majority of stimuli contained in the Utley Test are presented by a single speaker. To the extent that observance of different speakers affects lipreading performance, this study is limited. Also, the present study is restricted since performance on a motion picture lipreading test has not been adequately demonstrated to be an appropriate measure of everyday face to face lipreading ability. One dimension which could especially have implications for the present study is that different perceptual factors or abilities may be involved in perceiving stimuli in two dimensions (filmed material) as opposed to three dimensional viewing (face to face presentations).

CHAPTER 2

REVIEW OF PERTINENT LITERATURE

The intent of this chapter is to provide background literature relevant to the stated purpose of the present study. The developmental history of field dependence - independence tests is traced within the theoretical framework on which the embedded figures test is based. The empirical data which suggest a relation between liprocating performance and analysis of the visual environment are presented. Literature describing the tests of choice for the present study is reviewed along with the data which suggests a need for restrictions to be placed on the subject peal employed in the present study.

Field Dependence - Independence Assessment

The Ambedded Figures Test (EFT) is one of a series of tests which were developed to measure field dependency and field independency. These tests evolved from a research program which began in 1942 under the direction of Witkin. The purpose of the program was to determine the factors responsible for an individual's maintenance of the proper exicutation toward the upright position in space. Opright positions

Horman A. Witkin, et al., Personality Through Persontian, (New York; Harper & Brothers, 1954), p. 3.

are normally attained while an individual is perceiving a visual one (in that sees objects in the surrounding environment are upright) and a simultaneous gravitational one. Within's research was designed to investigate if maintenance of the upright position was due to the individual's reference to the visual framework in the environment, to his body position, or to both the visual framework and body position. In the late 1980's Within¹ presented standardizations of the Rod and Frame Test (RFT) and of the Tilting Room and Tilting Chair Test (TRTC). Through these tests, the perception of an object in its field, the perception of a field could each be studied. In each test the subject was required to adjust a feeal object (a rod, a room, or the subject's sun body) to an upright position when the object was surrounded by a field which conflicted with the requirements of the task (either visually or kinesthetically).

In the RFT, the subject is placed in a derivated ress and views a luminous from emplosing a luminous red. The experimenter can independently adjust the red and the from to various angles. The subject's task is to adjust the red (through directions to the experimenter) to an upright position, regardless of the angle of the from. The TRIC Test consists of two independent tests each of which makes use of a seen and a chair, either of which the experimenter can tilt a number of degrees. In the Bedy Adjustment Test (BAT) the subject

¹Resum A. Witkin, <u>The Effect of Training and of Structural Aids</u> on Performance in Three Tests of Space Orientation, Report Number 80 (Washington, D.C.: Civil Aeronautics Administration, Division of Research, 1988).

is required to adjust his own body to an upright position (through directions to the experimenter) after both his body and the room have been independently tilted by the experimenter. In the Room Adjustment Test (RAT) the subject is required to adjust the room to an upright position after both the room and the chair have been independently tilted.

The normative data from the standardisations of these tests indicated that subjects varied widely in their ability to perform each task although each subject's performance was consistent over all three tasks. Subjects who were successful in bringing one of the central objects to an upright position were also able to bring the other two central objects to an upright position. Subjects who failed one task, failed all three.

Within hypothesised that the consistent individual differences shown between subjects across the three tests were due to differences in the shility of the subjects to perceive the control or feeal object independent of the surrounding field (which he suggested presented an embedding content). To test this hypothesis more directly, Witkin developed the Embedded Figures Test (EFT). In the EFT, the subject is required to locate simple geometrical figures which are hidden in more complex designs.

The EFT consists of buenty-four complex figures and five simple figures. Within used figures which had been developed by

¹Borman A. Witkin, "Individual Differences in Ease of Perception of Embedded Figures," <u>Journal of Personality</u>, III (September, 1950), 1-15.

Gottschadt to measure the role of past experience in perception.

Also, Witkin colored the figures to make them more difficult. In the

EFT the subject is shown a complex figure followed by a simple figure.

He is them asked to trace the simple figure in the complex one. Subjects are not given the opportunity to view both figures simultaneously.

A subject's secre on the EFT is determined by the time it takes for the identification of all of the simple figures. A five minute time limit is set on the identification of each figure in a particular design.

The results of the normative data from the EFT standardisation indicated that subjects who were able to locate the simple figures (i.e., were able to analyse the visual field) were the same subjects who were able to bring an object to an upright position in the RFT, BAT or RAT. The intercorrelations of these tests suggest that the RAT is the least predictive measure and, therefore, it was removed from the series.

On the basis of these data, Witkin elassified subjects as being either field dependent or field independent if they scored on the extremes of the EFT, EFT, or BAT. Witkin suggested that the field independent subjects used internal case which enabled them to react to the focal objects as items distinct from the background (i.e., they were able to separate the object from its field). Witkin suggested that the field dependent subjects, however, used irrelevant ones from the surrounding field in reacting to the focal objects. He asserted that the field dependent subjects perceived the field as a whole and did not break it down and analyze its separate parts.

¹Enrt Gettechadt, "Uber den Einfluse der Erfahrung auf die Wahrnehung von Figuren," <u>Psychologische Forschung</u>, VIII (1926), 261-317.

Herman A. Witkin, et. al., Psychological Differentiation (New York: John Wiley and Some, Inc., 1962), p. 45.

Empirical Relations of Liprociting to Field Independence

Significant results have been obtained in studies relating lipreading performance to scores on performance tasks which load on perceptual fasters. O'Neill and Davidson. 1 employing normal hearing subjects and using the Mason Filmed Liproading Test, found a signifloant relation between lipreading performance and performance on the Hanflassen-Kassmin Test. The subject task on the Hanflassen-Kassmin Test is to sort twenty-two blocks of five different colors and four different shapes into four different categories. Fielder. 2 comparing deaf subjects, showed lipreading performance as determined by school achievement in an oral school for the deaf to be significantly related to performance on the Marbleboard Test. The subject task on the Marbleboard Test is to copy designs made with colored marbles. Simmons. 3 employing hard of hearing subjects, found a significant relation between performance on the Block Design Subtest of the Wechsler - Bellevne Adult Intelligence Scale (WAIS) and liproading performance as measured by both the Utley Filmed Liproading Test and an interview. The subject task on the Block Design Subtest is to copy designs made with colored blocks.

John J. O'Heill and John L. Davidson, "Belationship Between Liproading Ability and Five Psychological Factors," <u>Journal of Speech</u> and Bearing Disorders, XXI (December, 1956), 478-461.

Mirian F. Fielder, "Good and Poor Learneys in an Oral School for the Deaf," Exceptional Children, IXIII (April, 1957), 291-295.

³simmens, "Factore Related to Liprocaing," 340-352.

One faster reported as antecedent to the successful repreduction of designs is the shility to "break up the reference."

The subject must be able to analyse the field, to take each part individually and independently out of the total context. Analytic ability, therefore, is needed for the successful completion of each of the tests presented above. Hanfmann-Kasamin, Harbleboard and Block Design.

In an unpublished study, Johnson, 2 employing normal hearing subjects, found that liprocding performance as measured by the Utley Sentence Test was significantly correlated with auditory discrimination of menosyllable words embedded in a white masking noise. This auditory discrimination task also prosupposes the ability to separate a focal object from its background.

As an analytic measure, the EFT has been found to correlate significantly with the Eleck Design Subtest of the Wechsler - Bellevue Intelligence Scale for Children (WISC). In an unpublished doctoral dissertation, Jackson found that the EFT was also significantly correlated with the ability of male subjects to identify menosyllabic words embedded in a white masking noise.

Denald R. Goodenough and Steven A. Karp, "Field Dependence and Intellectual Functioning," <u>Journal of Almornal Psychology</u>, LXIII (September, 1961), 241.

²Konnoth R. Johnson, "Correlations Between Visual and Anditory Discrimination" (unpublished study, Hishigan State University, 1968).

Veughn J. Crendall and Carol Sinkelden, "Children's Dependent and Achievement Behaviors in Social Situations and Their Perceptual Field Dependence," Journal of Percenality, XXXII (March, 1964), 1-22.

Douglas N. Jackson, "Stability in Resistance to Field Forces" (unpublished Ph.D. dissertation, Purdue University, 1955).

The above studies suggest an empirical relation between analysis of the visual environment and liproading performance, based on the parallel results of the EFT and liproading studies. In addition, performance on the EFT and on liproading tasks has been shown to correlate more highly with the Performance IQ scores of the WISC and WAIS than with either Total IQ scores or Verbal IQ scores. 1,2,3 EFT and liproading performance also significantly correlates with performance on the Digit Symbol Subtest of the WAIS. 4,5,6

Tost Selection

Throughout the twentieth century a wide variety of fernate for lipreading tests have been developed. O'Neill and Oyer? present a detailed discussion of each of these tests. One of the formats employed in these tests has been the use of filmed stimuli presentations.

John J. O'Heill, "An Exploratory Investigation of Liproading Ability Among Normal Hearing Students," Speech Monagraphs, IVIII (November, 1951), 309-311.

²Crandall and Sinkeldam, "Children's Dependent and Achievement Behaviors in Social Situations and Their Perceptual Field Dependence," 1-22.

Witkin, Psychological Differentiation, p. 61.

O'Noill, "An Exploratory Investigation of Liprocoting Ability Among Normal Hearing Students," 309-311.

Simmens, "Factors Related to Ligreading," 340-352.

David Fitagibbons, Los Galdberger, and Herris Eagle, "Field Dependence and Hencry for Decidental Material," Perceptual and Motor Skills, IXI (December, 1965), 743-749.

^{70°} Hoill and Oper, <u>Visual Communication for the Hard of Hearing</u>, pp. 22-28.

In 1940, the Meidere, employing a personally developed hiprocding test, estimated the reliability of filmed tests to be sufficiently high to justify their use.

The Standardisation advantage of using filmed material, this format of test presentation was chosen for the present study. The Utley Liproading Test (Form A) was the test of choice for the present study and is the only liproading test discussed further in this chapter. The Utley Liproading Test (Form A) consists of three parts. Part I is a sentence test and contains thirty-one sentences and common expressions. Part II is a word test of thirty-six words taken from Thermdike's Teacher Word List. Part III consists of six short stories with five questions following each story.

The Viley feet has been found to discriminate between levels of liprocaling performance within separate groups of normal hearing and hearing impaired individuals.^{2,3} Using the split-half method for estimating reliability, Utley reported a corrected reliability estimate of .94 for the total test (Parts A and B combined). Utley calculated her reliability estimate from scores on 762 deaf and hard of hearing individuals who ranged in reading level from third grade competence to

Prits E. Heider and Grace M. Heider, "Studies in the Psychology of the Deaf," <u>Psychological Memographs</u>, LII (1940), 123-133.

Joan Utley, "A Test of Liprosding Ability," Journal of Speech and Hearing Diserders, XI (June, 1946), 109-116.

Louis M. DiCarlo and Raymond Estaja, "An Analysis of the Utley Liprosding Test," Journal of Speech and Hearing Disorders, XVI (September, 1951), 226-240.

[&]quot;Utley, "A Test of Liprosding Ability," 109-116.

adult comprehension. Dicarle and Estaja¹ have made the most complete independent analysis of the Utley Test. They reported a corrected reliability estimate of .96 calculated from the scores of fifty-seven annully handlespeed children and adults. They conclude that the Utley Test is too difficult to be clinically useful, based on their obtained mean percentage of correct identifications of 19%.

The field independence measure chosen for the present study was an embedded figures test, with a multiple choice format which allowed the test to be administered to a group of subjects. The validity of using group embedded figures tests to measure analytic visual perception was determined by Jackson, Messick and Myers.² Their results indicated that the group embedded figures test with a multiple choice format correlated at the Al level with the individually administered EFT developed by Witkin. Part I and II of the Hidden Figures Test (HFT) were employed in this study.³

Each form of the HFT consists of sixteen achronatic complex designs and five simple figures. The format is multiple choice with the five simple figures appearing at the top of each page. The subject is required to indicate which simple figure is contained in each complex design.

DiCarle and Estaja, "In Analysis of the Utley Liproading Test," 226-240.

Douglas H. Jackson, Samuel Mossick and Charles T. Myers, "Evaluation of Group and Individual Forms of Embedded Figures for Field Independence," <u>Educational and Psychological Measurement</u>, IXIV (Summer, 1964), 177-192.

The Ridden Figures Test is from the Kit of Reference Tests for Cognitive Factors available through the Educational Testing Service.

Reliability estimates of the HFT were not available. The reliability of Witkin's original test, however, has been repeatedly estimated by the split-helf procedure to be in the low mineties. The reliability of group embedded figures tests with a multiple choice formst was estimated by Jackson, Hessiak and Myers² to be in the low eighties. They contismed, however, that the estimate could be spuriously high since they used the Ender-Richardson 21 formula to calculate the estimate and the tests used were timed.

Subject Restrictions

has identified a small but significant sex difference in perfermence on the perceptual tasks. Within accepts this difference based on his own research and the results of other writers. Although similar individual differences are obtained within groups of either sex, males are consistently shown to be more field independent than are females. The same sex difference as found in the perceptual task would be expected in perfermence on liprocating tasks if analysis of the visual field is truly a major parameter of liprocating shility. Such a difference in liprocating perfermence, however, has not been

Within, Inventorical Differentiation, p. 40.

²Jacksen, Hossick, and Myore, "Evaluation of Group and Individual Perus of Eukodded Figures for Field Independence," 177-192.

Witkin, Psychological Differentiation, pp. 214-221.

reported in the literature. In fact, clinical experience suggests that females are better liprocders them males. This apparent theoretical contradiction cannot be explained within the limits of the present study. It does, however, point to an area for further research. To simplify the analysis and collection of data therefore, subjects of only one sex were used in the present study.

Although liproading is defined as a visual behavior, little
has been written on the relationship of visual acuity to liproading
ability. In a paper presented at the 1968 ASHA convention Hardick,
Over and Irion reported that "there is a relationship between lipreading performance and visual acuity and that people with relatively
minor acuity problems will obtain significantly lower scores on a
liproading test than these with normal acuity. In this conclusion was
based on a study employing normal hearing college students. The purpose
of the study was to investigate the relation between scores on the
Otley Test and the results of an eptemetric examination. The results
of the above study suggest that visual acuity should be considered
in assessing liproading performance. In the present study, therefore,
all subjects were screened for normal visual acuity.

¹Edward J. Hardick, Herbert J. Oyer, and Philip Irien, "Liproading Performance as Balated to Measurements of Vision," (paper presented at the Convention of the American Speech and Hearing Association, Denver, Celorade, Herenber, 1968), p. 7.

CHAPTER 3

METHODOLOGY

The hypotheses of the present study have been presented along with the background literature relevant to the state purpose. The intent of this chapter is to identify the methodology under which the data for the present study were gathered.

Subjects

Twenty male volunteers from an undergraduate payabalogy course at Hishigam State University were used as subjects. All subjects possessed menual hearing and normal vision. The mean age of the subjects was mineteen years and nine menths. The age rungs was from seventeen years and eleven menths to twenty-cix years and one menth. The subjects were servened for hearing at 20 dB ISO at all estaves from 250 Hz through 2000 Hz and at the half estave of 3000 Hz. Servening was done in a quiet electron. Subjects meeded a Smallen Chart score of 20/20 for visual acuity electrons. The subject's affirmation that he had received no prior liproading instruction or experience with either the Utley Test or an embedded figures test was also required.

Equipment and Materials

The following items were employed in the collection of the data:

Pure Tune Andiemeter
16 mm Projector
Screen
Smallen Visual Assity Test Card
16 mm Silent Color Film
Hidden Figures Test

(Beltome, Model 10C) (Bell and Howell, Medel 302M)

(Utley Test "How Well Can You Read Lips!"

Data Collection

All qualified subjects were tested in small groups of six or less. All testing was done in one session for each group. Subjects were sested within a rectangular area in front of the screen. The leading edge of the rectangle was not more than three foot from the screen and the back edge was no more than nine foot from the screen. The length of the rectangle was no more than six foot. The Utley Test was administered first to all groups, fullesed by Part I and then Part II of the Hidden Figures Test. He eral instructions were given for either instrument. Instructions for the Utley Test are presented on the beginning of the film. Instructions for the Hidden Figures Test are printed on the first page of the test bestlet.

malyris of Date

The tests used in the present study were secred in the following manner. The Utley Test was secred by giving one point for each correct word in Part I and one point for each correct answer in Parts II and III.

Hemsphenous words were accepted as correct only in Part II. The maximum score was 191. Each form of the Hidden Figures Test was secred by giving one point for each correct identification within a ten minute time limit. The scores were then corrected for guessing through use of the following formula: right minus wrong divided by four. The rew scores from the two measuring instruments were then analyzed through the results of a Fearem Product Nement Correlation Coefficient.

STEMALY

It has been shown empirically that liproading performance may be related to analysis of the visual environment. The liproading studies that were reviewed suggested that good liproaders will be more successful in analysing their visual environment than will poor liproaders. The studies on perceptual tendencies that were reviewed suggested that the individuals who are better able to analyse their environment will be identified as field independent by having the ability to identify simple geometrical figures hidden in complex designs. Within this framework, subjects were chosen and the empirical data were analysed.

William L. Hayee, Statistice for Paychalogists (New York: Melt, Rinehart and Winsten, 1963), pp. 505-506.

CHAPTER 4

RESULTS AND DISCUSSION

The main consideration of this study was to investigate the relation between liproading ability as measured by a total score on the Utley Liproading Test and analytic ability as measured by a total score on the Ridden Figures Test. The analysis of data, however, includes information on each part of both measuring instruments. This information is included in order to present a more complete investigation of the relation between liproading ability and field independence.

Description of Distributions

Summaries of the descriptive statistics calculated on the obtained data are presented in Tables I and II. Table I provides the mean, median, range and standard deviation for each distribution. Table II indicates the percentage of total possible points obtained on the average by all subjects and by the subject scoring the highest on each distribution.

Inspection of Table II indicates that on the average the subjects were able to identify only 21% of the stimuli presented in the Utley Test. This low percentage of correct identifications (only 29% for the best liproader) adds further evidence in support of DiCarle and Kataja's conclusion that the Utley Test is difficult (see

TABLE I
MEASURES OF CENTRAL TEMBENCY AND DISPERSION

		Noen	Hodiam	Rango	Standard Deviation
Total Utle	y Tost	39.30	41.50	41	11.86
Part	•	30.00	50.50	34	9.89
Part	n	4.15	4.10	8	2.06
Part	m	5.15	4.50	9	2.60
rotal Hidd	on Figures	Tost 10.11	8.875	23.75	6,50
Part	I	4.90	4.500	12.00	3.51
Part	n	7.80	3.375	16.75	4.90

TABLE II
PERCENTAGE OF CORRECT IDENTIFICATIONS

	Harisum Pessible Segre	Averege Percentage	Highest Percentage
stal Utley Test	191 ,	215	29%
Part I	125	245	364
Part II	36	125	225
Part III	30	17\$	33%
tal Midden Figures Tost	32	35%	73\$
Pert I	16	30 %	79\$
Part II	16	49%	88%

above, p. 14). The results of this study also suggest that the three parts of the Utlay Test are not equal in average difficulty. The highest near percentage of correct identifications (34%) was obtained on Part I (sentences and estuan expressions). Following Part I in average percentage of correct identifications came the total Utlay Tost, then Part III (steries). Part II of the Utley Test (isolated words) gave the lowest mean persentage of correct identifications (125). As Part I was administered first to all subjects, the better performence on this section does not seem attributable to either a leasuing factor or to adjustment to the test situation. The poerer men performence on the other two parts of the Utlay Test, however, may have been obtained because the material presented in these parts is more difficult than the natorial presented in Part I or there may be a frustration factor developing as the test proceeds. In any event the lew percentage of correct identifications does indicate that the Utley Test is a difficult test. In fact, the difficulty level of the test could have easily biased the results of this study by allowing significant relations which are not due to true differences in linreading ability.

Heen everages from other empirical studies were not evallable on the Hidden Figures Test. However, in comparison with the Utley Test the HFT appears to be an easier test considering the mean percentages of correct identifications for each test section. The highest percentage of correct identifications (73%) for the total HFT suggests also that field independent subjects are able to achieve more success on the HFT than the better liprocalers experience on the Utley Test.

A comparison of Part I and Part II of the RFT suggests that control of the section of the sectio sculd be due to may of the following alternatives. Part I and Part II of the HFT new not have equal difficulty levels. Date on the difficulty levels of each form were not available. This discrepancy between forms could also suggest that the forms are not measuring the same attribute. A final alternative would be the processe of a practice effect. The results of other emirical studies emecraine field independence as measured by an embedded flaures test have shown the presence of a warm up factor. The results of Witkin's standardisation of the EFT showed that significantly loss time was needed for identification of embedded figures as the task proceeded. Using an extended series of sixty-eight embedded figures, Galdstein and Chance reserved that all subjects should improvement with practice. In correlating group embedded figures tests with individually administered tests. Jackson, Mossick, and Myers also found that additional experience with embedded figures led to faster edution times. Because of this practice effect, Jackson. Messick and Myers realised that tests administered to subjects who were not familiar with the embedded flammes task and tests administered to subjects who had practiced with the embedded figures task could be measuring different underlying shilities. Therefore, they presented

Witkin, "Individual Differences in Ease of Perception of Embedded Figures," 1-15.

²Alvin 6. Galdstein and June E. Chance, "Effects of Prestice on Sex-Related Differences in Performance on Embedded Figures," <u>Payebonomic</u> <u>Science</u>, III (October, 1965), 361-362.

³Jackson, Hossick and Hyers, "Evaluation of Group and Individual Ferms of Embodded Figures for Field Independence," 177-192.

the group ETT first half of the time and the individual ETT first
the other half of the time. They found a correlation of .75 between
individually administered items and the multiple choice group test.
They concluded that if the underlying ability that was being measured
did change with practice and if practice was corrected for, the results
would only serve to increase the correlation. To check the influence
of a learning factor, the two parts of the Eidden Figures Test should
be administered alternately. The alternation was not done in the
present study.

Reliability Estimates

Reliability estimates were calculated on the total Utlay Test, the total Hidden Figures Test, and Part I and Part II of the HFT. Table III presents a summary of these results.

TANLE III
RELIABILITY ESTIMATES

	Total Utley Tost	Total HFT	Part I HFT	Part II HFT
Split-Helf Estimates	•73	.a.	.67	.94
Perellel Forms Estimate		.13		

Corrected by Speamen-Brown

The reliability of the Utley Test was estimated through use of the split-half method. In this method a Pearson Product Memont Correlation Coefficient was calculated between the scores on the even items and scores on the edd items. The coefficient obtained was corrected

¹G. C. Helmstadter, <u>Principles of Psychological Measurement</u> (New York: Appleten-Century-Croft, 1964), p. 68.

fee length by using the Speamen Bream Prophecy Formula. The corrected reliability estimates for the Utley Test of .73 is lower than previous reported reliability estimates for the test (see above, pp. 13-14). The difference in these estimates may be due to differences in the studies concerning the subjects used. In the present study, the subject pool was restricted in terms of satisfacy and visual acuity levels, sex, age, and educational level. Also in the present study, only part A of the Utley Test was administered. Because of these methodological differences, the lower reliability estimate obtained in this study would be expected.

The reliability of the total HFT was estimated by using the parallel forms method and the split-half method. The parallel forms reliability estimate was determined since the total test consisted of two separately timed parts. The estimate was calculated by obtaining the Pearson Product Humant Correlation Coefficient between seeses on Part I and scores on Part II of the HFT. The resulting coefficient of .13 suggests that the forms are not equivalent. Possible reasons for this namequivalence have been discussed earlier in this chapter (see above, pp. 23-24). Because the equivalence of the two test parts was in question, a second reliability estimate employing the split-half technique was calculated. (This estimate would not have been made if the two parts of the HFT could have been presumed to be equally difficult.)

Conserming the use of the split-half technique on the HFT, Thorndile indicates that this method will give spuriously high reliability estimates when it is used with a timed test, to the

extent that the test is a speed test rather than a power test. The theory behind the HFT, however, suggests that not all subjects are able to identify the hidden simple figures regardless of the amount of time they are given. To the extent this theory is true, the HFT should be considered a power test. However, as the possibility that the HFT is a speed test was not dispreved within this study, the odd-even method of calculating a split-half reliability estimate was used. Theredike identifies the odd-even method as the most valid way to obtain a split-half reliability estimate on a speed test. Enough that the split-half estimate is a high estimate, the real reliability of the HFT are truly not identical, the real reliability of the test more likely approaches the split-half estimate than the parallal forms estimate.

Inspection of Table III does indicate that the results of the corrected split-half correlations are all within minimally accepted limits for reliability estimates.

Significance Tests

Given that the measuring instruments were reasonably reliable, the following hypothesis was tested:

Robert L. Thorndike, "Reliability," in Educational Measurement, ed. by E. F. Lindquist (Monasha, Wis: George Banta Publishing Company, 1951), p. 582.

PM4.

³G. C. Helmstedter, Principles of Psychological Measurement, p. 84.

Performance on a filmed liprociting test is positively related to perference on a group embedded figures test.

Poursen Product Homent Correlation Coefficients were calculated between performance on the Utley Test and performance on the HFT to test this hypothesis. The intercorrelations found for the two measures are presented in Table IV.

TAHLE IV INTERCORRELATIONS BETWEEN PERFORMANCE ON THE UTLEY LIPREADING TEST AND PERFORMANCE ON THE HIDDEN FIGURES TEST

	Total HFT	Part I HFT	Part II HF
Total Utley Test	.46***	.19•	.47***
Part I	.38**	25*	,43***
Part II	.62****	.11•	,5h0000
Pert III	.13*	01+	.09*
Significence levels	100. ****		•
	••• .025 •• .05	nificent et .0	S level

• Bot significant at .05 level

Inspection of Table IV indicates that at the .05 level of confidence performance on the total Utley Test, Part I of the Utley Test and Part II of the Utley Test are each significantly related in the predicted direction to performance on the total NFT and Part II of the HFT. Part I of the HFT, houses, was not significantly related to my of the score distributions of the Utley Test. The low reliability of this form and its namequivalence with Part II have been discussed earlier in this chapter (see above, pp. 22-25).

The results listed in Table IV also show that the HFT correlated the highest with Part II of the Utley foot (significant at the .001 level). In this section of the Utley Test the Liproader is given isolated words, which are presented with background case, to identify, Part I procents a whole contence for identification and in Part III, the subject is required to grosp only ideas from conversations taking place within an appropriate background setting. Since the observer receives the fewest associated visual cass in Part II, this section would necessarily be considered the most analytic section of the Utley Test. Thus, the high correlation of this section with the HFT would be as predicted. The significent correlation of the HFT with the contenes section of the Utley Test indicates that an analytic skillity is important in identifying the sentences presented in the Viley Test. The manufactificance of the correlation between the HFT and Part III of the Viley fort suggests that the liproader is required to perform some everyiding task basides analyse lip nevements.

In interpreting the significant positive relationship between performance on the total HFT and performance on the Utley Test, the limitations presented in the introduction of this study need to be recalled. First, field independence needs to be realized as being only one variable which is related to the complex behavior involved in liprocating. Second, the sample used in this study was of a restricted shillity range. Third, the results of this study must not be over-emphasized even for the population to which the sample

belongs since the study employed a filmed test which by itself imposed additional restrictions.

The calculated Pearson Product Homent Correlations (see above, p. 27) indicate that analytic ability is significantly related to performance on both Part I and Part II of the Utlay Test. Since these two parts of the test comprise 8% of the total test, it could be assumed that 8% of the Utlay Test requires prerequisite analytic ability to a significant degree. Therefore, this study has implications for suggesting either that the Utlay Test is an analytic measure of liproading ability or that good liproaders are field independent. Based on the results of the present study, both of these possibilities are seen as areas strongly meeding further research.

As there have been no previously reported studies investigating the relation of liprociting to field independence, this study has necessarily been exploratory in nature and needs further validation. The results also need to be viewed in light of the insensiatencies present in the background literature relative to this study. Pirst, the area of sex differences needs further investigation (see above, pp. 15-16). Second, the results of this study are in conflict with commonly accepted clinical beliefs which are based on prior research suggesting that liprociting is related to an individual's ability to synthesise. These inconsistencies can be solved only through additional research.

CHAPTER 5

SUMMARY, CONCLUSIONS, SUGGESTIONS FOR FURTHER RESEARCH

The research problem has been described and the purpose of the present study has been stated. Background literature relevant to this stated purpose has been reviewed. Methodological precedures have been discussed. The data have been analysed and the implications have been considered. The intent of the present chapter is to summarise the precedings, list the final conclusions and present implications for further research which have evalved from the present study.

Sumary

Andialogists and speech pathologists held major reles in the rehabilitation of the surally handicapped. The development of liproching ability has been identified by these clinicians as being one of the major compensate of a successful sural rehabilitation program. However, the results of empirical studies have not yet defined for these clinicians the variables they need to manipulate in order to improve an individual's ability to read lips.

The purpose of the present study was to investigate the relationship between an individual's field independency and his ability to read lips. A review of the literature suggested that

liproading ability would be related to an individual's tendency to perceive his visual environment analytically.

The Utley Liprocding Test (Ferm A) was used as the measure of liprocding ability and the Hidden Figures Test was used as the measure of analysis of the visual environment. Both tests were administered to twenty volunteer male undergraduates at Michigan State University. All subjects possessed normal hearing and normal vision.

Reliability estimates of the test measures were obtained through use of the split-half method. The corrected reliability estimates were .73 for the total Utley Test and .81 for the total Ridden Figures Test. The relationship between performance on the two measures was analyzed through calculation of a Pearson Product Hement Correlation Coefficient. The resulting coefficient of .46 was significant at the .025 level and indicated that performance on the Utley Test was positively related to performance on the Ridden Figures Test.

Conclusions

Within the limits imposed by the instruments used in this study and the subjects who participated, the following conclusions seem warranted.

- Performance on a filmed liprocating test is positively related to performance on an embedded figures test at a significant level.
- 2. The high difficulty level of the Utley fest may serve to past, out true differences between liprocesses.

Suggestions for Further Research

In the past, econom for perceptual shilities has not defined a major area of research for those interested in predicting or improving lipreading shility. The significant results found in the present study, however, strongly suggest a need for further research. This research should first be economical with cross-validating the results of the present study. Other lipreading tests should be correlated with field independence measures to determine whether requisite analytic shility is meeded for general lipreading or only for the Utley Test. Further research should then be concerned with the sample population employed. The study should be repeated using normal hearing female subjects and hearing impaired subjects.

If the results of this study upon further testing are assumed to be valid, further research areas would be defined by the results of factor analytic studies and correlational studies which have been extensively carried out on the field independence - dependence measures. BUBLIOGRAPHY

BOOKS

- Broke, Hartha. The Meeller-Walle Method of Liprosding for the Deaf. Lynn, Hass: The Hichels Press, 1929.
- Hayes, William. Statistics for Psychologists. New York: Helt, Rimshart and Winston, 1963.
- Helmstadter, G. C. Principles of Psychological Heasurement. New York: Appleton-Century-Craft, 1964.
- Mitchie, Edward. Lip-Reading, Principles and Prestice. New York: Frederick A. Stekes Company, 1912.
- O'Hoill, John J. and Oyer, Herbert J. <u>Visual Communication</u> for the Hard of Hearing. Engleweed Cliffs, N.J.; Prentice-Hall, Inc., 1961.
- Thorndike, Robert L. "Reliability," in <u>Edmontional Measurement</u>, ed. by E. F. Lindquist. Honasha, Wis: George Benta Publishing Company, 1951.
- Witkin, H. A.; Louis, H. B.; Hertman, H.; Machover, K.; Heisener, P. Bretnell; and Vapner, S. <u>Personality</u> Through Persoption. New York; Harper & Brethers, 1954.
- Witkin, H. A.; Dyk, R. B.; Faterson, H. F.; Goodensugh, D. R.; and Karp, S. A. <u>Psychological Differentiation</u>. How York: John Wiley and Sons, Inc., 1962.

JOURNAL ARTICLES AND COMPERENCE REPORTS

- Crendall, Venghn J. and Sinkelden, Carol. "Children's Depandent and Ashievement Behaviors in Secial Situations and Their Perceptual Field Dependence." Journal of Percenality, IXXII (March, 1964), 1-22.
- Dicario, Louis H. and Estaja, Raymond. "An Analysis of the Utlay Liprociting Test." Journal of Speech and Bearing Disorders, IVI (September, 1951), 226-240.

- Fielder, Miriam F. "Good and Poor Learners in an Oral School for the Doof." <u>Exceptional Children</u>, IIIII (April, 1957), 291-295.
- Pitagibbens, David: Galdberger, Loo: and Eagle, Norris. "Field Dependence and Homory for Incidental Material." <u>Percep</u>tual and Hotor Skills. XXI (December, 1965), 743-749.
- Oeldstein, Alvin G. and Chance, June E. "Effects of Practice on Sex-Related Differences in Performance on Embedded Pigures." Psychonomic Science, III (Ortober, 1965), 361-362.
- Gottschaft, Eurt. "Uber den Einfluss der Erfahrung auf die Wahrnehmung von Figuren." <u>Psychologische Ferschung</u>, VIII (1926), 261-317.
- Geodenough, Demald R. and Karp, Steven A. "Field Dependence and Intellectual Functioning." <u>Journal of Almormal Psychology</u>, LXIII (September, 1961), 241.
- Heider, Frits K. and Heider, Grace H. "Studies in the Psychology of the Deaf." <u>Psychological Memographs</u>, LII (1940), 124-133.
- Jackson, Douglas H.; Hossick, Samuel and Myore, Charles T. "Evaluation of Group and Individual Forms of Embedded Figures for Field Independence." Educational and Psychological Hossurement, IXIV (Summer, 1964), 177-192.
- Kitson, H. D. "Psychological Tosts for Liproading Ability." The Yelta Review, XVII (1915), 471-476.
- Hontagne, Harriet. "Lipreading a Continuing Housesity."

 Journal of Speech and Hearing Disorders, VIII (September, 1943), 267.
- O'Heill, John J. "An Exploratory Investigation of Liproading Ability Among Normal Hearing Students." Speech Managraphs, IVIII (November, 1951), 309-311.
- O'Heill, John J. and Davidson, Johnn L. "Relationship Between Liprocding Ability and Five Psychological Factors." Journal of Speech and Hearing Disorders, IXI (December, 1956), 478-481.
- Report of a Conference on Hearing Aid Evaluation Procedures.

 Oyer, Herbert J., Chairman (Washington D. C., ASHA
 Publication, 1967).
- Simons, Andrey A. "Fasters Related to Liproading." <u>Janual</u> of Speech and Hearing Research, II (December, 1959), 340-352.

- Utley, Jean. "A Test of Lipreading Ability." Journal of Speech and Hearing Disorders, XI (June, 1946), 109-116.
- Witkin, Herman A. The Effect of Training and of Structural Aids on Performance in Three Tests of Space Orientation, Report Rumber 50. Washington, D.C.: Civil Aeronantics Administration, Division of Research. 1948.
- Witkin, Hormen A. "Individual Differences in Ease of Perception of Embedded Figures." <u>Journal of Perception</u>, XIX (September, 1950), 1-15.

UNPUBLISHED MATERIALS

- Avery, Charlette B. "Visual Aspects of Aural Habilitation and Rehabilitation." Paper presented at a Conference for Aural Rehabilitation of the Acoustically Handicapped. East Lonsing, Michigan. March, 1966.
- Hardick, Edward J.; Oyer, Herbert J. and Irian, Philip. "Lipreading Performance as Related to Heasurements of Vision." Paper presented at the Convention of the American Speech and Hearing Association. Denver, Colorado. November, 1968.
- Jackson, Douglas N. "Stability in Resistance to Field Porces."
 Unpublished PhD Dissertation. Purdue University. 1955.
- Johnson, Kesmeth R. "Correlations Between Visual and Amditory Discrimination." Unpublished Study. Michigan State University. 1968.
- Kitchen, Dale W. "The Relation of Visual Synthesis to Liprosding Performance." Unpublished PhD Dissertation. Michigan State University. 1968.

RAW SCORES

UTLEY TEST

HIDDEN FROMES TEST

Subject Number	Part I	Part II	Part III	Part I	Part II
1	40	7	9	9.50	14.00
2	44	5	4	4.75	7.00
3	40	5	6	8.00	13.00
4	43	4	3	1.00	8,00
5	39	3	8	1.00	11.00
6	35	•	6	5.00	1.75
7	32	7	5	6.00	10.00
8	3	3	7	12,00	1.00
9	39	•	5	3.25	1.00
10	26	6	8	4.50	9.00
11	, 3 4	5	5	4.75	1.00
12	26	8	3	3.75	8.50
13	26	2	10 g	6.00	-2.75
14	27	6	5	7.50	0.00
15	39	1	6	0.00	0.75
16	*	•	2	11.00	7.00
17	23	3	2	0.25	-4.50
18	16	2	1	4.00	4.00
19	11	•	7	0.00	2,50
20	. 10	4	1	6.00	2.75

))

MICHIGAN STATE UNIV. LIBRARIES
31293010918120