ANATOMY OF PHASEOLUS VULGARIS L. VAR. BLACK VALENTINE

MHITIS FOR THR DBGRER OR Pa. D.
Margaret T. Doutt
1932

Thosis Freseitad for Doureo da
Doctor of Ftilosomy
aicidan State Coile-e

Sy
A.ar:aretr. 以utt
1982.

THES:S

Introducion:
baterial ad nethods
Gross incryaiolo
Airatory
Root

Stem
Leuf
Stipule
Cotylean
Critoceny
Root
Ston
Secondary Foots
Adventitious Roots
Pransition Recion
Lear
Course of Jascular Lundes
Root, Rmasition Recion, finst liode
Becond rioue
"Aird node
Eranches
Simple Lsaf
Com ound Lear
yloner
Sumam:
Literature Cited
95503

The writer is ereatly indebted to D . E . a. Bessey and Dr. E. F. woodeoch of hicinan State Collese for helpful criticisns and advice durine tris investication ama in the presaration of tia menuscirt. mo writer is also vory eratefol to De. Ruy relsor for the rrouration of tiee rhotomicrocrups and for surestiors in refard to the plates.

Introduction

The first anatomical work on the eerus fhaseolus was published by Nàceli (185s). He used two species, F. rulcoris and F. multiflorus, in ris investieations of the course of the vascular burdles in the ster. Van Tieshem (1871) was interested prinarily in the structure of the root and studied it durina both primary ard secordary ero:ath.

It was not until 1872 that any very detailed studies were made on the anatony of Fhascolus vulcaris. In that your Dodel (1872) published an extensive paper dealinf with tho course of the vasculur bundes as well as with the structure of the tissues; however, this was only in the rypocotyl and root. Petit (1337) and Flitt (1886) investifated the petiole of the bean, and de Eary (1384) the differentiation of tissues in the root tip.

De Eold (1894) worked on three hundred syecies of the tribe Fhaseolae, in an atterpt to obtain anatonical criteria for the differentiation of the species. In his systantic work on the dicotyledone, Solereder (1908) pointed out various features of the aratomy of faseolas vulcaris.

More recently, Cormpton (1912) carried on an extensive study of the seeding structure of the Lequminosae. Harris (1921) investifated variations in the nuriber of vascular bundles at different heichts in seedlings. Within the last few years, many studies have been rade on bean mosaic, a virus disease of rrent economic irrortance.

This study of Phaseolus vulfaria has been made with tre rumpose of tracin the course of the vascular tissue throurhout the plant, and of
studyine the development of the various tissues. The writer ias endeavore: to make this as conplete a study as rossible, with the idea in view that such an investiration of the normal structure of the plant nay prove to be of value to those workire on the mosaic and other diseases of the bean.

Material and ietrods

The material for study was obtained from plants row in the reenhouses at Nichiran State Collee and at the Vniversity of California. The Elack Vilentine variety was used in the investisation. The naterial was fixed in chromacetic acid, and the microtone sections mere stained with Delafield's haematorylin and safranin. Fhlorólucin ard hydrochloric acid were used for ryler studies in the free-hand sections. Fortions of the plant were cleared by usin: equal parts of turpentine and phenol.

Gross Iorphology

Fhaseolus vilgaris L. var. Elack Valentine, a nemuer of the Léuminosae, is a dwarf bean, twelve to fourteen inches hich, and erect (Jarvis, 1908). The root system is fibrous; the prinamy root persists but is equaled by the secondary roots. ddventitious roots commonly arise fran tie lower portion of the hypocotyl.

The sten below the cotyledons, i. e. the hypocotyl, is round in cross-section, and especially enlareed in the lomer fortion. ibove the cotyledons, it is mare or less anfular or ridred. The cotyledons ane epiEeal, and oppositely arranged at the first node. The first leaves to develop appear at the second node; they are simile and also opposite. Tre base of each is deeply cordate. The subsecuent leaves wich develop are all compound, composed of three leaflets, and they have an alteriate
arrangerient on the sten.
The petioles of the leaves are enlareed for a lene th of two nillimoters at their base, thus formire a definite pulvinus in this reâion. ibove the pulvinus, tie petiole in cross section is round except for a sroove on its ventrul surface. There is present on either side of this depression a wing or ridॄe, wici ends in a stipel several millimeters from the base of the klade. The leaflets of the compound leaf are shortly petiolulate. Mie marsin of the simple leaf and of the leaflets is entire. The venation of the leaves is of the retted type and the main veins are three in number, branciing from the sarie point at the bese of the blade. Lateral branches arise frai. these and anastomose.

Stipules reeularly occur in connection with both the simple and compound leaves. Two ovate, acute stipules oricinate st the base of the petiole of the compound leaf. At the second node, where the two opposite leaves are attached, there is one pair of stipules. It is interestinf to note that each of these is double-toothed at the apex, but united at the base. Ferhaps these represent two united stipules. Stipels occur at the base of the leaflets of the compound leaf. A pair is evident at the base of the temrinal leaflet, and on the petiole where the t:o lateral leaflets orisinate.

The flowers are born in suml racenes, tie peduncle arisine in tie axils of the leaves. The pedicels of the flowers bear bracts at the yoint on the feduncle fror which thay oricinate. i pair of bracts also occurs just belieath the flower. INe flovers are papilionaceous, consiatinc: of five united sefals, an irrexular corolla of an outermost lare stardard, a lateral pair of clawed mimss, ad tio inneriost pair of petals,
united and pressed tocethor over the stime:s di:d pistil to form tho keel. The ten stamens are inserted at the saine heicht as the corolla and are diadelphous, nine beinc united, wi th tre terth one free. 'Ihe pistil consists of a sincle carpel; tie style is rolled. In fruit, a typical lecume or pod is formed, which encloses the shiny, black seeds.
ingtor:

Root

A cross section throuch the prinary root, at a stace when secondary frowth is just befinnine, shows a central core of vascular tissue which is limited on the outside by the endodermis and cortex (Plate I, F). The vascular tissue has a tetrurch arrarement. In the phloem, the most evident cells are a eroup of thick-walled fibers, which are lone and pointed. Just outside of these is the more or less crushed protophloer, ard inside, the remainine primary tissues o? sieve tubes, conpanion cells, a.d a few parenchuma colls (Ilate IV, G).

The protoxylen elenents of the oxarcin xyler: are still and spirally thickened. nae netaxylen colls are lareer and pitted. a cambiu: lajer lies between the Xylar. and the phloen.

T'he pericycle consists of one layer of cells opposite tie phloen, but several rows opzosite the xyle... a simle row of endoderial cells separates the vascular cyinder fron the cortex. The cortex consists of fifteen or sixteen rows of parenchana cells, armene which are intercellular spaces. This is bounced on the outside by the root epidermis, which slounh of f early.

Stem:

Since the transition recion at the base of the hycocotyl will be taken up in detail later, only tee portion of the hypocotyl wich shoms a typical sten structure will be described here. In th:s rerion, below the cotyledors, a rine of collateral bundes surrounds a lerce central fith (Flate $I, G ;$ Tre xyler of these bundes has a tareential arranement rather than a radial such as occurs in the sten above the cotyledons (Flate VII, a, F). The xyler is emdarch. a fascicular cambina separates it from the phloen, which is nurked by larec, darkly stuinine tamin sacs, wrich are not fourd in the roct. These sacs are elonated cells with transverse cross walls. Surpoundine each is a rine of parenchyna cells. Bieve tubes and comranion cells maie up tie renainine tissue of the phloem. The sieve tubos are cylindrical cells with trarsverse end walls. The eirtire transerse wall consists of a sieve plate (Flate III, D). They are found also in the lonitudinal walls (flate III, F). altrouqh sieve plates ocour in the prinary sicve tubes, they are nuch nore noticeable in secondary tissue. mis is probably due to the erater number of secondary sieve tubes in relation to ot er phloer cells.

In addition to the hundes composed of prinary rylem and primary phlon, therc occur betweon the lareer ones, siall bundias which consist of prilary phloeni orly (Plate V, C).

The pericycle, in the form of a can over the plioen of each buidle, consists of several rows of fibers, whose walls are rot lienified until secondary thickenir $r_{-\varepsilon}$ cocurs. Zotween tie bundes the pericycle consists of perenchyma cells which are continuous w ith those of the rays and the pith.

The cortex, as in the root, consiets of several rows of larc parenchyma cells, ard fron the epidermis arise hairs. The cells of the epidermis of the sten are olomated in the direction of the lonce axis of the stel:, ad their walls in surface view are not undulate. Stovata occir in the eridomis of the star.

Above the cotyledons ti.e vasculsir hurdes are collateral, and the rylen exterds toward th: cer.ter of the sten parallel to the redius instaad of taneential to tie radius as in the rerion below the cotricdcrs (flate I, F). In the internode 0 otween the cotyleanon and the prinary leaves, there are alyous twelve bundles. rite six larcer bunciles ocoupy the six rides or areles of the ster, and alterm te with six srell bundes. Lhe tissues are sinilar to those in tie hypocotyl, but the pith is considerably smaller. nine six lare bundles form the leaf traces to the prinary leaves (Flate V, D). ibove the primry leaves, the sten is warked by five more or less distinct rides, which narl the position of the five laree bundes that form the leaf traces to the cornound leaves (Plate I, C). The number of bundles is somewhat variable st this point.

The branci: traces orifinate in the axils of the leaves as branckes of the individual bundles on either side of the gap left by the median leaf trace (Flate I, D). The vascular s:ster. of the branch is, tron, connecter to trat of the min ste: k these two bundles.

Ieaf

In a cross section of tio pulvinus (Flate JI, D), it is evident that the vascular cylinder consists of a mited rinc of tissues compressed into a sajll space in the center, wi th only a very simill pith. Thee cortex is very thic, and consiats of eist or nore rows of parenchya cells. mien
the leaf traces first enter the pulvinus, the vascular eleuents huve an amphicribral arrarement (Flate II, $\bar{B}, C)$, but shortly, after some anastomosine, thoy assume a collateral position wita the phloer toward the outside. ine endodernis surrounds the united circle of conductine tissue, and deliaits it from the cortex.

As the top of the pulvinus is reached, tomard the narrowing of the petiole, the circle of vascular tissue breaks up into definite, separate, vascular bundlas. A furrow eradually develops on the vertral surface of the petiole, and a narrow wine develops on either side. Thus sections from the midde of the petiole show a rine of separate vascular bundes, eleven in number in the caround leaf. mene circle is not cornplete on the ventral side, opposite tha furrow, uut is separated by a gap. Two of the eleven bundles lie in the winç, each formine a trace to one of the stipels; these traces are anphicribral. The other bundles of the potiole are similar in structure to those of the sten. Their xylem consists of shall protoxylem elements, metarylem, a:d a fen secordary vessels and tracheids. In the phloem are sieve tubes, compan cells, and larce tannin sacs. Each bundle is capped by a rous of pericycle fibers. Orly a narrow cortex of one or two rows of cells surrounds the stale, except on the wincis and to the autsice of the five larae burdles. The collenchyma tissue opposite the bundles consists of several rows of cells; in other parts it consists of but one layer. din epiciemis with stonata surrounds the petiole.

Dhe structure of the petiole of the sinile lo夫f is sinilur to that of the comound leaf, except that ther are but nine bundes instead of eleven.

The mesophyll of the blade of the leaf consists of a falisade layer and a sponey layer (Flate VI, C). The palisade tissue is in the form of a sirfle layer of eloncated cells arranced perpendicular to the epidermis, and separated by only a fov intercellular spaces. These cells are in contact with the sponey parenchya tissuc, whose cells are irregular in shape and arraikerert, and which has laree intercellular spaces and chambers. There are usually not more thon four layers of cells in this sponcy tissue, and the chloroplasts are not as numerous es in the palisade tissue.

The cells of both upper and lower epidermis apesr deeply undulate in shape in surface view (Flate VI, J). The thickness of the upler opiderinis is about one and one-half times creater than that of the lower epidermis. Some of the epicemal cells are modified in several ways, ard so shon variation from the tifical shape and arrandement.

A pair of euard cells containine chlorophyll surrousds each stoma, but no accessory cells are present. Over the veins the epidermal cells are much eloncated parallel to the loreitudinal axis of the veine, and their radial walls are mostly straicht. The cells in contact with an epidermal cell which has fiven rise to a hair differ from adjecent ones. These surroundinc cells are eloncated, have straicht malls, and radiate from the hair cell (Flate VI, I). N.o chloroplasts are found in the epidermal cells, aside from the fard cells of the stomata.

There is considərable variation in the numer of stomata occurrinc in the leaf epidermis. They are rore numerous on the lower surface, averarine there, in nature leaves, ibout eithty-five stomata per suare millineter. Cn very younc leaves, two hundred and fifty stomita may occur per
square millimeter, but as the eridernal tissue increases in size, the stomata are pushed farther apart. Thus in still youre leaves, but older than the former, there will be but me kundred stomata per square millineter.

Hairs of severel kinds are conmon, especially on the yourcer plants. iside fron the root hairs, three main types nay be distincuished, cocurrinc on the stems, leaves, stipules, und otlier parts (Plate JI, R). The longest hairs which are fouva are straich, taper to a foint, and sometines.are 400 micrors in leneth. irey consist of three cells, two of wifh aie basal and short, the tiofd being luag and terninal. Then there are the hocked haire, sinilar to the first, but wose end curves; these are the "Klimmer" hairs of de zold. The elandular hairs are siort and clubshaped, consisting of a number of cells; and usually are about fo microns lonc. No hairs are found on tie cotrleans or corolla, but they are comison on all other parts of the plant, especially alone the veins of the leaves. The vascular tissue of tie blado is a contimuation of tiat of the petiole into the midrib. The midrib proje:ts proni:e..tly on the lower sur"ace of the blade, but less so on the unper surface. Tie vascalar tissue has the seme fenorial arranement as in a bunde in tho petiole. In cross section it has a sericiccular form wi th the oren part toward the upper surface. The vascular elements consist of xylea snd phloem with a cap of fibers ofer the jatter. The stracture of the branch veins is essentially like that of the ridrib, fror: wiich they have aniser. as the veins k et maller, the mount of xyler and phloen decreases accordindy until finally all ti:e phloen disarpeure, diad ony one or tom spiril elenents of the xylen readin surrounced by conductine virenchy:..a.

Stipules

Since the stipules may be considered as a part of tie leaf, their structure should be trgated here. As has been statod previously, tie stipules at the base of the petiole of the sinple leaf ure tro-toothed at the apex and united at the base. The vasculur suprly consiats of two traces which orisinate as branches of the two lateral leaf traces as they pass into the petiole of the leaf. Since in the comound leaves there is a pair of stipules for each leaf, it is probable that these it the base of the simple leaves reprosent t:ro which have become united.

The stipules of the simple leaf have a mesophrll tissue which consists of sponry parenolyma, with no palisade cells (Plate TI, 7). Usually it is under the stomata that mest of the air spaces cocur. The veins are similar to thos: of the laf, but the anount of each tissue is reduced. There are two main veins, each munilir cut to the apex, and a smaller vein along each marin. The stimules of the compund leaf also consist of spong parenchyma, but it is ora loosaly arranfed than in the stirules of tie simple leaf. Four main veins furnish the vascular suprly, with a samaller vein on each narin.

The stipules are covered with an epidomis, tio cells of wicio differ fion tiose of the leaf blade. may are slichtly elonated parallel to the lone axis of the stipule, and their radial walls are not undulste. Stonats are rore aburdant in the lower epiderris than in the upper.

Cotyledons

A cross section of a coteledon sines that it consists of large parenchnea cells with thiclened walls anàmuerous pits. (Flate JI, D, I). The intercellular spaces are small in canarison with those present in the
leaves. The cells of the epidenis have straicht radial walls (Flate VI, i:). The cells of the upper epidernis are much flattened, while those of the lower epidermis are almost isodianetric. Stomata occur only on the lower epidermis. The vascular tissue is siwilar to that of the leaves, and is derived fron two traces from the hrpocotyl. It is interestine to note the lareer number of starch greins and of aleurone fains in the imediate vicinity of the veins in the storace parenchyma cells. No hairs of any kind project from the cotyledons.

Ontoreny

? 300 t

A loneitudinal section trrourt a youne root shons that it is carposed of very dafinite parts. it its tip is the root cir, of aore or less loosely arrane ed cells, and directly behind this lics the reधion of rapidIy dividing proneristen. Fron this reeion the cells shon a eradual elonEation and enlurement until finally the rature condition is evident at the base of the root.

Eehind tho root cap, three regions are distinct (Flate IV, B), tho dematoren, a sinele luyer of cells at the outside; the periblem wition, which later forrs the cortex; and finally tie central repion of slichtly elonated cells, the plerone. About one ard a ralf hillineters behind the root tip in tiee plerone, tie central cells have increased in diareter and have eloncated to five tines their diameter. Outside of these pith initials, lie four strarids of long, narrow, densely protoplasmic cells. These are the cells of the procambiur which $\mathfrak{C i}$ ve rise to the phlom. They are seven to ton times as lonk as wide. In cross section these strands anpear as groups in the four cormers of a square (Flate IT, ..) . Detiveen these froups or
strands are larcer ceils which differentiste into the first clem. At this stare, tre ondoderuis ard pericyclo canot te veiv roadily distinruisied from the surroundine cells of the peribler. Tre dernatonen is fairly well marzed off fron tle otrer layers, its cells havire divided by anticlinal walls only.

Althourh the phlosin is the first of the vascular tissues to differentiste, it is extrenely difficult to follow the steps, due to the inconspicuous differences between the protornloen and tre procanimio. Howevar, in secticns mare it is evidert, one or tro cells next to tine pericycle in each of the four procantiur strunds show siantly thicher walls.

Sinultaneous with the formition of the first protophlow elenents, the first xylen cells differentiate (ILato IV, C). The protoxyleri. can le recocrized by the noticeable thickering of the cell walls, and by their spiral thickenines (Flate III, Z^{\prime}) E E the time the frotoxylen forms, the pericycle and the endcderis are nors definite. In the recion of the piloem, the pericycle consists of but one lajer of celle, one and a half to tro tinos as lone as wide. The cells of the endoderris in lengitudingl sections appear slichtly lomer than tose of the fericycle.

The reraininf protoxylen cells raridy differertiate centripetally, thus makire the xyla: exarch. Thess later formed cells are larcer in diaueter tinn tioe first to differentiate, witl spiral thickerines more closely arrancd, and pass over into the reticulute typs. hoanhile, y..ore sieve tubes ana comparion celle of the protophloen forn (Plate IV, D). Then some of the procarbiur cells of tho phloer reion elonsate, their and Walls becane obliuve, and their malls thichen to form the first netuprioem
fibers, which lie adjacent to the protop:loar: (Flate IV, ㄷ) . lietep:loen, consistine of sieve tubes, conpanion cells, and parenchana cells differentiates to the inside of the fibers. We Farenchum cells betwoen the xyle.. ind the philom strands increase in number.

Alone with the developrent of retaphloen occurs the differentiation of tie metaxjlen, whose cells have a much lareer dianeter than tiose of the protorylen and have nuruerous simple pits (Flate IV, F). At this tire, a cross section of a root shows four well develored ams of rylen, wit? four alternatinf eroups of phloen, the letter well harked ky the thich walled fibers. ine the walls of the cells occuryine tha certral portion of the root thicken, liexify, and becone fitted, thus formine a solid canter of conductine tissue (flate IV, G). as a result of the increase in size of the cells of the vascular cylinder, the fey rows of protophloen cells lyine between tre pericycle and the fibers becone crustod and the cells in sone cases are entirely obliterated, ever before secondary frowth has taken place.

The cells in otier portions of the root have uncercone little chanee except in size. Intercellular spaces have appeared in tie corter. At this stife of developrent sore of the rarenclyra cells between the phloen and netaxylem divide lonfitudimally by tancential walls. is row of the colls of the rericycle just outside of tie protoxylen likewise divides, and thus the carbiuri layer develops by the revorsion to merister: of these parenchyna cells.

Secondary Growth in the Root

Liost of the tissue of the risture root is secondary. In coitrast to the seall vascular cylinder of the priwary root surrounded by the thick
cortex, the mature roct consists of a very narrow cortex surroundin a creat arount of vascular tissue.

The secondary $x j l e r$ of the root consists mainly of tracheids and fibers arraced in radial rows. is in the sten, several tancential rows of these have thicker walls, and sive an ardearance of amular rings. Desides this tissue, liree vessels differontiate fron the canbiur. mese are well provided with simpe pits. Farenchya is formed especially in the vicinity of the vessels, but also to sone extent anone tie tracheids. Four broad rays of parenchyma cells are cut off by tie cambiua cprosite the four eroups of protoxylem, and extend out throuki the fhloen. as a result, the conductine tiscues are not continuous around the root. The walls of the larenchyra cells eventually timicken ard becaie lisnified. Nost of the phloeir is secondary, and much less is formed tran xylem. The protophloor: is so crusted that it is no loncer reconizuble. "re characteriatic froup of prinary fibers is unchanced. The secondary phloer consists mainly of sieve tubes, confanion cells, and only a fex parenchyma cells. Sieve plates are coman.

The cells of the cortex, as well as those of the pericycle and endodermis, ars crushed and flattened due to the enormous increass in size of the vasclur crinder. The outerrost die and are slourhed off. The opidemis slough off soon after secordary erowth be ins and noting remains of the cortex except three or four rows of colls.
Ste.

The tip of tise star is comparable to the roct tip onlly in the fact that it chasists of meristan winch differentiates into tne prinary tissues; their arranerant diffors from that in the root. a roct cap is
entirely lackine at the sta: tif. is in the root, the apex consists of thin-walled, densely protoplashic cells, which, directly behind the tip, becin to differentiate into more or less definite refons. These refions consist of tis dematogen, the eround moristca, and the isolated strands of procambium. The cells of the procaubium differ ireitly from all others in beine elongated lonfitudinally, wh in having a sraller diameter than the surrounding tissue. They also have denser protoplasm tian the surroundine ground neristen.

Almost simultaneously with the settine off of these reions, the first conductinc tissue differentiates from that part of the procaibiun strand toward the center of the ster: (Flate $V, \dot{A})$. This is tie protoxylem. These elements are loner than the surroundin procarbium cells and are ciaracterized ky secondary wall thickeninf in tie form cf locse rincs. The ralls are not yet lisrified. additional protoxyler cells differentiate centrifucally, and thus the syle.: of the ster. is endarch in contrast to the exarch xylem of the root. The sacessive protoxylem cells that formare larcer than the first, and their wall thickenines are in the form of closer spirals, spiral-nets, aid nets (Flate III, E). at the sane tine, or probably a little before the arpearance of the protoxyler, the protophloen differentiates from the procsubium. rine protopiloan cells are so like the procaribiun that it is shloost impossible to recoenize then, and thoy soon disapresr. The netaphloen is the first to be differentiated claarly. In the formation of a sieve tube, a procanbium cell enlares, eloncates, and ei her directy forms sieve tube or it may divide to form a sieve tube and adjacemt companion cell. The first sieve tubes are differentiated frow the procwibiun cells toward
the outside of th:e ster and so further develoment is centripetal. The most noticeable cells to develop in the primary phloer are the tannin sacs (Plate $V, E)$. Treir formation is initiated ty the enomous enlarenent of certain procubium cells, both in lon th ard in dianeter. Such cells very soon becone filled with materiel aict stains deeply with Delafield's haenatoxyjir. These tamin sucs appear very early in the development of the phloen. A single row of prccambiun cells surrouidine a tannin sac usually enlarges, and aay divide loncitudinally parallel to the walls of the sac. The inner row foms a rine of paranchna cells around the sac. Isolated rarencyan cells nay differentiate fron the procarbiun, and thus lie scattered throush the phloem. By the time the phloem has devaloped to this stace, the ralls of the protoxylem have becore slichtly lienified.

The ground meristem has slmost ceased to divide ard has ascumed the arpearance of parenchyna cells. A few intencellular spaces liave developad. The dermatosen divides only by anticlinal walls to form the eridernis. The hairs appear fron the epiderral cells very early. The sinfle row of endodernal cells is evident at this tine, and they ure recoenized by their freuter diareter, esecially in a radial direction, and by a sreator lene th than the adjucent cortical colls. The pericycle cells of severul rows are claurly harked off wher they form a cap over the phloen just undor the endedernis. In comparison gith the cortical cells, these cells have thicker walls und less denso protoplasn. In addition, they are loneer and rarrower.

This period of differentiation is follomed Uu one of ereat cell enlarcement in all tissues. rhe appeararce of a fascicular cartur charactorizes the rext step in developrent (Flate V, C). It is forired
by the tin eatiul division of a row of undifferentiatsd procankiun cells between tre xylein and the priloen. Lonitudinally tie ca biun cel ls are Iong and hariow with sli hty poinded ende. soon after tie difierentiution of this fasciculun cuiviun, sinteriascicular canbium arises. It ori inates by the reversion to merister of a rov of parencinma cells between tioe curdies.

In the xylan reejon at this stace, the metaxylen campetes its differentiation as lareor colls winci are charaoterized by their pitted and reticulate walls. sithounis most of the cells of the netaxyler consist of lare pitted vessels, same varenchya differentiates, especially arand the vessels. Linnification of tie walls of the vessels soon follows their differertigtior. mhe protoxylon: elements, now lisnified also, are beconinc stretched, and the annular thickonings are farther apart.

In the phloen, ill the cells have now differentiated fror: the proca:biur (Plate $V, C)$. Mese rouss are tle "soft bust" of Dodel. Groups of sieve tubes and conanion cells ocour, duna fen perenciota cells•; me lare tinizin sacs, surrouded by tie laver of paroriciva, are conspicuous. \quad Ne end walls of the sieve tubes lave develored into sieve Plates.

Phe cells of the fericjele lave enlared considerably, but the walls of those whict cap the filoer are still c..ly slivity thickened. Tiey are packed close tocether and are anculur. No intercellular spaces are evident. In loneitudinal sections, these ceils luve increased in lengeth, and the encis of adjacont cells have sioved past each otier. rhe cells of the endodermal layer have increased in size, but no other chanee is evident. The cortical cells aremuch lanser than in the previous
stafe, ardman intercellular spaces have developed.
 that secondary eromith is initiated, and so to a certain extent the two staces overlap. Priadry differentiution ends with the corirlete differentiation, enlaregent, and maturation of the proto- and meti- xyler uad phloem elments. The walls of the pericycle fikers whin cap the phloen are not yet lignified. That portion of the pericycle opposite the rays consists of parencryma cells rinci are continuous wit: the rays between the bundles. The epidermis is a singlo lover of cells, mith fully develored stomata. It bears numerous hairs. The sndodernal cells in cross sectic.: are elongated in a taneatial direction rather than in a radial direction as in ycuncer staces. In loncitudinal section, the: are slifhty loncer than the parenchyna cells of the corter.

Becondury Crowth in tie itar

iith tie differentiation of the fasciculer and the interfassicular cunbiun, furtier inorease in size of tios stoll is bicueft about by the fomation of secondary tissues by these carioiurs.

The first xylan cells forred by the caibiun rine are tiro or three roms of thick-walled fibers which foric a α ntinucus rick around the steri (Plate V, E). Aost of the cells outside these fibers consist of radially arranged rows of tracheids. Only a fev $i t t=d$ vessels are forwed. Fibers may occur armen tie tracheidis. Cften a second layer of fibers is formed as the last layer of sectrary xyler. Tis residis fin civire the appearance of an amual rine. Tho secndary parenchma cells have a diffuse arrancemort.

Besides the loneitudial corductine sistem of secondary xylan and phloen, the fascicular and interfascicular cuabiuis fom a transverse systen consistine of vascular rays. In the xyler, tive rarenchyua cells of these rays are radially elobated. Eoth uniseriate and multisoriate rays are formed. In heieht or vertical extent, the are six or are cells, and their radial extent varies. Bane of the rays are continuous throurh the rylen and phloer. The multiseriate rays formed by the interfascicialar saribiur: are continuous with the cortex.

The carbium associated rith the erups of primary phaon mich have no accompanyine xylem, first forms the three layered rine of thick walled fibers toward the inside of the stem. 'he secondary rylen, later forred, like that of tho primary buades havinf both aylem and phloen, consists of lare pitted vessels and tracheids. Thus these burdles have no primary xyla: elements projectine into the pitil (Ylate V, F).
as the secondary xylai forms, erout stress and pressure are exertea on the first formed xylen lyine aljacent to the pith, finally causine the protoxylen to entirely disappear. Remants of the cells maj be seen, especially in loncitudinal sections, miero they are crushed and distorted, and the rine and sriral thichenines are scattered. The parenchyma in this reain of the vascular buide is likewiso crushed and the walls crupled. The parencryma cells of the rith are especially affected, finally resulting in the disarpearance of rost of the rith and thes causing the mature ster to ke hollo\%. Usually one or to rows of farenclyma cells of the pith mici lie adjacent to the innemost xjlem remain. intact.

The secandiry phioen consists of crups of sieve tuhes and car-
panion cells, and a few parenchina cells (Plate V, ij). In the fomation of sieve tubes and cancamion colls a canbium cell enlarees slichty and then undereoes several loneitudinal divisionse me first divisioin is usially in a radial direction, forming two sieve tube mother cells. of these, each may then cut off a small comnanion cell by another loneitudinal division. Sieve plates in the trarsverse ralls of the sieve tubes are consplcuous ard mmerous, and they occur also in tie loneitudinal walls. No secondary tamin sacs are formec. Like the protoxylen the protonhloen becones crushed and absorbod, and as the secondary tissues increase in mount, much of the yrimur becomes an unreconizuble mass, pressed a, ginst the cap of rericycle fibers.

The fibrous tissue of tre pericycle, wiose cells mere only slifhtly tichened at tioo end of princry crowth, koan thich licinfied walls with winute lunens at tho srid of secordary tinicinenine : inoy iever form a continuous rire of tissue around ti:e ster, beine interrupted by the parenchyida tissue opposito the rays.

The endodermi cells durini secondary Erowth flatten out ind are ciusies, due to the increase in trichness of the sten, ind at other tines are amost indistincuishuble from the ceils of the corter. These cortical cells, as a result of the stress of the flluranf tissues, lose their shape, and are much flattened in a radial direction.

Secondarr Rocts

Secondary roots arise ve:nr esrly in the differentiation of tre primary root. In sonie cases, those roots becorie auch acre cansicuous than the primary root. They arise in tie usuil runner, endocencusly, by the reversion to meristen of tas pericycle cells oronite tio protoxylem.

Thus the organization of the prinary structure of the rimin roct predetermines the arransenent of tre secondamy roots into four lonzitudinal rows. meir structure is sinilis to that of the rain root, althons the arount of of each tissue is less, as for instance, the number rows of parenchyna cells of the cortox is ruch reduced, often to tro or thres rows.

Since the various tissues in the wain root first develow behind the root tip, the differentiatine vascular elerents of tie yourif secondary root are continuous soon with these of the lain root. ihe four phloeat strands of the secondary root join at different levela with adjacent parts of two strands of the main root. The oylen is continuous with but the one group of the prinary root (Flaje I, F).

idvertitious Roots

Adventitious roots are camonly fouta on the lower fart of tre hypocotyl. They are similar in structure to tie true secordary roots (those oricinating from the root), and arise endogenously from the pericircle. Liservise, the region from which each caues is almays opposite one of the four groups of protoxylen cells, which in the typocotyl are ordarch.

Trunsition ?erion

The chance in the arranemont of the vascialar tissues from thet which occurs in the root to that in the sten tales place in the lower part of the hopocotyl. n"e trpical sten ampeasent of collateral vascular tissues is not completed until afton he passire off of the cotylacrany bundies.

The four protorle erous in tie root fork ardually, due to the Laterul differentiation of procanbiun cells into xyler, ard the to forks
swinf laterally, finally separatime ontirely. Thus are formed eifit froucs of xylen in cross section views, the elenents not arranced parallel to the radius as in the typical sten structura, but taneentially (Flute I, G). The phloern, durine these xylen chanes, at first broadens dut tancentially fron tise four erours alterneting with tre xylem in the root, to four bands of tissue to the outside of the xylen in the lower portion of the hyoocotyl. Finally, at the tine the eift groups of xylem form, each of the phloer bands becomes divided, thus forning eigh erouks wich. Lie over the eicht xylem groups, with the collaterul arrarcenent of tissues. Althoueh the tissues in the hypocotyl actually have a collat eral arrancenert, it is not similur to that of the sten because the xylen has a tancential arraneament, not radial.

Leaf

In a young primary leaf, still folded between tie cotyledons, differentiation in the rieristem tissue has already bes:un (Plate VI, A). In a cross section, the urrer and lower exidemis are distinct, and the cells beneath the uprer eridemis are slichtly elonegted perfendicular to the surface. The cella of tho future spory mesophyll are still tishtly packed tocether, with no intercellular spaces. The procankiun: strand are evident and lerimnive to differentiate into the initiols of the vascular tissue. Gilly very few hairs have developed.
at a later stuce, men the leaves are befinnine to unfold above Eround, tie palisade layer has elonated to tirae ti es its lencth in the previous stace (flate VI, E). Storata have Jeveloped, kut the sponey mesophyll, although its cells rave assuied various skapes, have as yet no intercellular spaces. Hairs of the tiree trpes prevously nentioned are well devcloped.

The developrent of the storata fam nerister: is evideat. Surface views of the epidormal tissue from tie plumule milo it is yet enclosed within the seed, shows it to be curcosed of small isodianctric cells, eirht to twelve microns square with ro indication of even the initial staces in the fomation of stomata (Plate VI, G). However, as soon es ermination takes place and the primary leaves enerce froz bstween tiie cotyledons, early stares in the develowent of tlic stomata occur (Flate VI, F). A merister cell enlurges to sbout twenty microns intancentisl extent, and it is cut by an anticlimal mall (1), curved tomard tie center of tio cell. In this cut-off cell, another curved anticlinal wall (i) appewns. Then a cell arises within the last forred cell by the formation of still another anticlinal wall (E), wich curves out noticeably fron the previous wall. This last cell is the mother cell proper of the cuard coll, and it is elliptical in shape. The nother cell divides by a lonatuaimil radiul wall (4) into the two fuard cells, betwean wich the storiatal slit luter urgears, ane guard cells and suroundié epidermal cells ircrease in size. (Flate VI, I and J).

The structure of the mature leaf has keen described already in the discussion of the anatany.

Course of tre Vascular undles

This descrirtion of the course of the vascular bundles will ce taken up urdar several headines, and will be followed by a surdary to emphasize certain features. Since the root and transition region are the orcons yhere the tissues are first differentiated, they will be taker up first.

Root, Pransition Recior, and First yode

The course of the bundes in the root is sirilur throurlout its lensth, four strands of xyler: alternstinc :"itl four of phloeri (Flate VIII A). The first evidence of a chance occurs in the lo:isr part of the bynocotyl, when each of these strands divides, thus formine eisht stanads of xylar:
亡e refered to as priary buniles, $1,2,3,4,5,6,7$, a.d 3, are sionn in the figme. at the point where this division takes pace, there appear the "urischerssträne", or intercalary kundes of Dodel ard other investicators (Flate VIII, A, 9 and 10). 'hese badles, consistine of several metaxyle: ceils, but io protoxyler., ard a fev phlceri cells, sern to kave a "מind" oricin, there bein, no conrection betwen than ard the primery burdles. Their nurber varies; sore times there aro as many as threa, usumly, however, only one or two, ata in rany cases, none. rhese intercalary bundles urite with the primery bundes mid pass out into the cotyledons, and never cortinue above the first node.

Just below the first node, the frastor part of t::\% prinary bundles, 16 and $2 b$, and $5 b$ and $0 b$, passes out into sach of the nearly opposite cotyledons. These, just befcre thoy turn into the cotylaíons, each form brarch bundles, $13,2 a$, $5 a$, and $̈ a$, wii ch unite with adjacent bundes and contin'e into tie internode above the cotyledonary traces, after traversine the cortex, unite, and then, at the base of the cotyledons divide to form three bundes, $w i$ ch continue into the cotilemons.

I'he four ranimine priram bundes, $3,4,7$, and 8 continue their passace throu h the hypocotyl uncince? urtil weveral rillimeters below the cotyledonary node. There ech splits into two rarts, for example, 7
into 7a ard 7b, aid 3 linto $3 a$ ard $3 b$, and the lalvos 7a and $3 a$ nourest the cotyledonary truces, suing over until they ure annate with the cotulecionary traces 1 h and 2 b . ifter the passine of of the traces into the octyledoris, these bundes turn beck into position und cortirue in to the next irternode, united with lu and $2 a$, the trancies of tio cotiledonar. traces, and are now desimated as 170 , 2ja. Sca, and 4Ea. These four bundles form the lateral traces to the simple louf at the socond node. The reauiniry halves of the primary buades $7 \mathrm{~b}, 8 \mathrm{~b} .3 \mathrm{~b}$, and 4 b , unite at the :ole to form the larce bundes 7 Eb and 3 ft . Waese tac lare bundles fora the median trace of the triree wicin pass cut into the ofposite sirple leaves of the second node. at the node and indediately abovo it, six shall burdes alterating. with the six laree ones, arise as bralaches frof tie laree ones. rine iocst
 traych fro: bundles $23 a$ and $45 a ; 17 c$ and Sec.frar bundies $17 a$ and $8 \dot{a} a$; ard 17b and 80 from $17 a$ and sea. There is sae variatio: in this, due to the fact that 17 b and $83 b$ seem to have the abjlity to arpear as lranctes from either 23a on 17a, and S3a or 45a. Trese tivelve bundies, than, are those found in the intemoie abova the cotrledors.

The rupocotils of reny plarts tint were oxainod show a vascular s:ニtan sifthy different frow that described above. the bunde course of such revocotirls is :uct identicul on the two sides of the sten below the cotyledons. nem prifor: budlos 7 and E lmance to fom: 7a, 7b. Sa, and © prinay iundes 3 and 4 on the oprosite side of the rapocotyl. ine sucord Foint of difference lies in the fact tiat tre sumll bundes 17 c una eoc, on

and 2os.
Dodel, workiry with ihaseclus viraris, considered the cotyledor-
 vranok from. e:ch of wo other mundes. In the mesent study, such a condition never was found; in every cese tre cotileIonary trace consisted orly of the rreater portion cf tro lupocotjl buides, in additicn to the intercalary rundies.

Fiaris (1sizl) describes the cotyledonary twace as mede up of but two bundes of the rypocotyl, tie wholc of wich burales fomas the tivace.
 unites with tie two adiacent budus.

jecerd Nose

\#e twolve bundles pass unchanced froia ti.e first node to tho second rode mere t:e onnosito sintio lonves er: found (Flate IIII, E). Several millineters belon tine latter node the nexia: bundes 7eb wa bab berin to swine out frourh the cortex, and the mode puss into the basal part of the petiole. The latoral traces Bja, 4ija, l7a, ád 2ua each branch, and form a cunlets rirdle fround tie node for instance, 45a divides into 45 and sex; 4 au pisses under the bumale box, and forms onehilf of the lateril leaf truce, gox forminy tre otiver ralf. the bunde

 the vascular suply to euch sinde leaf actuull comsjets of a median bundle und two laterul undles, euch formed in tion maner just described.

Cil either gide of tio stan at the securd lodeja stipule cocurs. 're vascular suprly of eush of these has its orisin fin tuo bundes wich
brach frcin the lataral leaf traves as they anc mi rabin throna the corter.

Fhe six sraller kurdles minch ave not entered lito the formation of the vascular survily of the leaves at the sechad rode, and wich altermate With tie six lure leaf trace bundes, ach fork, the rakime trelve bu:dles above the second rode. Fowever, this mumber clanses very scon, for four of the bundles divide cnce more, into 17 ê, 17 h .170 , 17 d , and 801 ,
 the second and third nodes. The sixteen buidles of ten do not anfor until directly below the third node, sinee frequertly tie four bundles branch at various heishts in different flants.

The writer's studios oii the derivation of the vascular traces to the primery leaves do not arree wit. those of läeli.

'hird Iode

Of the sixtoen bundes usually found below the third rode, fire are lurcer aid act as treces to the compound leaf (plate VIII, E) Eunde
 a d 2 Zb are the four lateril traces. as these five bundles pass into the petiole, an incomplete rirde $i: s$ formed aroud helf the stone

Fre stipules on eitier side of the stur obtain their vaecular sapply from the latemal bundes of tio leif traces in tie fom of braches fror then. as they rass into the retiole.

Virectiv doove the thimd noda, elevon lunales are foma. Very soon, kowever, cundes $45^{\circ} \mathrm{b}$ und 20 c divide to fom 45 d and 400 , and 23 d and
 15 bundles in a cross section of the stelle

The nodes above the trira, at winal comoud leuves orisinate, have tie saie gen aral structure, ard into $\begin{gathered}\text { euch leaf pass five bunjes, }\end{gathered}$ just as irto the leaf it the third node. an ere is coisidorajle variation in tie number of bundles in the internodes at difforent heinht.

Several cases huve beer. found in ruterial investifater, rhene, instead of the nomal five bundles passire in to the petiole of a compound leaf, there aro six. In such cases, the presence of the extra bunde seens to be correlated with a veristion in the external morpholoj of the leaf. In these cises it consists of the arnoerarce of an extra leaflet, reduced in size, just at the base of the petiolulos of one of the lateral leaュ土ets•
slthouith the compound leaves are normally ultermately arrined on the stan, two plants have been found, wich at the fifth node bore a pair of cnnosite campound loavas. Sectiors cf tia noun shomed that seven bundles in the ston fommed the traces to thes leavos, trree aud a half bundles passine into each petiolo.
 traces to the compound leaf. Lise four cunde sondition has not been found in tris investioution.

Brarici:es

Me Vascular sur: iy of tio brancies mich aris: in the axils of the leaves, is dorived from brunches of tio two bundles of the sten minch border the sap lade bj the redian trace of the lean (Plate VIII, Z). These too bundres, inici alwars oricimate at or inmouiately belo: the node that bears the sioot, airide to form a ring of vascular bindles (Flate I, D).

Simpe Iex

as tiae five bundles formin: the trace to the sin. l= leaf pass into the basul fortion of the pulvinus of the petiole, tia tio aenbers of each Iateral pair becon united into one; tie rylea lies in the center, With the philoen surroundine it. sbove this roint, there is anastarosine grong the bundles, and they then becace rearraneod wheform a circle of tissue in the center of the pulvinus, only a siall pith reninine. at the upper rontion of tie pulvinus, tho pitir incroases in size, wid the ring of vasculur tissum sradually separates into more or less distinst bundles.
sbove the pulvinus,fire bundlos arə distinct, arraiced in a circle mica is open on the veitral side (Flate VIII, D, C) . rreme is a median dorsal bundie $\overrightarrow{0}$, with tho lateml ones on either side, $1.2,4$, and 5. Tre petiole in cross sectior at this point is round with aroove on
 Eroova muns t:e full lerenn of tie vetiole, up to tie roint of attachant of the stipels.

Bundles 1 ard 5 , suove the wulvinus, send off shisll branch burdles, la urid 5a, wile form tie stifellor traces. riese trices, at the point miere tiney pass cut into tioe stipels at the kase of the klude, branch, one part fomang the truce to the stipel and the otren reuritini. with the kundles 1 and 5 fron wich they orisinally cane
 cells, vrancı fror tie adjucent lundes a fe: rillincters abovis tiee fulvinus. At the base of ti: blade, ti:ese tro burdles urite with the miedian dorsal burdle and ro to fon the ridrib of the blade.
sbove the attuchuent of the stipels just delow tise Elude, tie bundes of the fetiole dran close tocetrer, and 1, 2, and Bu becone adnate to each otiner. The saine unica occurs with $\overline{0}$, 4, and che fitus tio petiole at this point in cross section has the appeerance of possessing a contracted, crescent-sinaped mass of conducting tissue, actially x nsistine of united buades. As tris enters tine blade, burale z, anited with 3a ard 3 b , form the midrib of the leaf blaue together with a branch from 1 and 5. Eundles 2 and 4 soon separate from 1 and 5 , and fom tie lateral veins on either side of the midrib. The reaining portion of 1 and 5 fom the veins of the simple laaf whici follow closely the rarin of the blade.

Sections of the nidrib at various places from the tase of the blade to the apex were stadi三d to detemine the forman of the branch veins. It was found that whenever a vein branched from the miarib, a suall pitch of ajle: und piloze cells serarated fron the lidurib bunde. Thus as the consecutive veins are fomen, the ahount of tissue in the mi urib decreases, until finally at tie atex it consists of ony a fe:i xyleri and rhluen cells.

Comound Leaf

The course of the vascular tissiق in the pulvinus of tire compound leaf is essentially the sume as in thet of tie simple leaf, with the axception tiat tiere are roce bundles involved. In fact, excert for the freater muber of bundes, tie structree of the ertire petiole up to the Goint where the lateril leaflets oririategis sicilin to that of the simple leaf (Plate VIII, i, u) . Thus the nine bunales rlus the two srall ones fomint the stipellar traces, pass unard urchares until
just below the opposite luteral louflets. Irere the uraces to tie stifels divide, one-half passine into the stipels and the other reunitiae with the adjacent petiole bunde. Just sbove the stipels, there is a compliceted armanement and ancustomosinc of tie renaininc bundes of the petiole, as sore of than pass off as traces to the lateral leaflets.

Eundes 2 and 8 of tre retiole form the median bunales of the five mich rass into each lateral leuflet. Purdes 1 and 9 each divide into three parte, the hidale portion of which wasses up:rard into tho petiole above the attachrent of tiee loaflets. The tranch nearest the one leaflet foms part of the trace into it; tie otier branch passes around to the other side, whers it foms part of the trace to the other leaflet. The sare occurs in the case of burdle l. Euniles 7 and \mathbb{E} sinilarly each divide into three parts, uid oehsve us in the previous case. Inus the tiro pairs of lateral bundes of each trace to the leaflets ansists of tio bundles derived froii adjacent turdes of the letiole, wid tio fron bundes fron he other side. fhere is sone anstonosif between bundias 3 and 4 , and 6 and 7 .

The five bundies maisine up eacii trace to tioe literul loaflets romain as a compact tissue in the certer of tho petiolule to the le fflet and do rot appear as separate bundes as shom in the diaerm.

Above the attachuent of the leafleta, seven bundes continue, arran ed in tre sans ramer as in tie petiole below, although less in nuber. Thoir furtier course is sirilar to that of the correspondine recion of the petiole of the simple leaf.

Flomer

The pedicel in cross section shous trelve vascular bundiee, wich tend to te erouped in a circle, in four clustere of three bundles euch (Pigte II, F). At the insertion of the pair of bracts ariciare attactod to the peaicrl just below the calyx, one bunde on eitrer side of the pedicel divides, and the outer furts puss though tie cortex and into tie bracts (Plate VII, C). Each trace at the base of the bract dividos into three burdes, wici aro the principle ones of tre bract. phus each bract is fumizhed with a trace consistins of the lareer fart of a vunde of the pedicel.
as tinese traces pess into the bracts, ton bundes branch ficu the vascular bunde in tia fedicel, min mikrato into the cortex, were they form a broken rime (Flate VII, D). It is these ter corticul bu:dies Which furnisi the pascilar surzly of the calyx, corolla, ird stai:as. ithe remiainimé bunales in the stele fom the tracss to the pistil. whe zyemorphy of the flower is noticosble fron the first, for the vascular supply to the anferior parts alway passee from the stele before that to the posterior

Wi:e three arterior bundles of the ton in the cortex, 1, 2, and 10, the tro lateral ones of miin ${ }^{h}$ furnish the traces to the keel of the corolla, have a somemat different oririu than the other seven. these threc are merny three branches from one bundle in the stele. The other seven consist each of a single one. Therefore, the ten buncles are rot exactly sinilar as to their oricin.

The traces to the calyx and corolle branch fron the ten burdles at practically the sane tine. Dy roferrins to Flate VII, \mathcal{L}, tre oricin
of the traces to the united calyx can te followed. Froni five burdes, la, Za, 5a, 7a, and 9a, three sall bundes branch, ard fron tiee renaining five wicl: alternate with the first five, two bunales brancil. Tiese t\%o bundles unite $\begin{aligned} & \text { ith adjucent nembers of the frour of threc. For }\end{aligned}$ instance, la forms branches lb, lc, und ld. Euncle aa hus but two branches, $2 c$ and 2d, and bundle $10 a$ forms $10 c$ and lod. In the tase of the calyx, ld unites with $2 c$ to form $1 d$, ac, and $1 b$ wit: 10 d to forr: $10 d$ 1b. Ic continues us a sinte bunde. In this a_{j}, fifteen oundes mas into tie calgr, these beine ...ic on less united at its lase. only a distance of abcut ore hundred ank twenty-five nicrons lies betweon the pointe from wic: the truces to the brauts pass.
alternatine with the five kundes exe of aich sends theo traces to the calyx, are tiaf five, za, 4a, üa, sa, and loa, mich at the Sarie time finch of portions wice fom the tracea to the corolla, $2 b$, $4 \mathrm{~b}, 6 \mathrm{~b}, 8 \mathrm{~b}$, and lob. The remainine 10 bundles la, 2a, $3 \mathrm{a}, \mathrm{etc}$, form the traces to the stanens. when tho tracee to the sepuls lave rifriated to the outer portion of the cortex, a clesvace furrow bacins in the cortex, separatine the corolla and tiae calyx from the pistil ard the strimas. This becins at the anter!or side, noticeabl: first at tie outside of the two bundes wiich form tie traces to the keel.

A little hiaer, tio calys is comietely soparated fror the remainine florel parts (Flate VII, F), and it casists of a narroy circle of parenchrat cells, about twelve cells in thichness. ate two renbers of the heel are separated frai the starinal rine, but the wines and the standard are still united :"ithit. The star:in traces, althouk they ar pear to be arrunged in a sinfle whorl, actimily ure in two, those oprosite the
sepals arisire first and formine the outernost row and those altornating Fith the sepals arising later. The former bundes lie a little farther torard the outside of the rine. The bundle of the stanen onposite the stardard, which son becones separated frof the rine united ones, at tris stana, is surrounded luturally by more cortical tissue than the other stimifinal bundes.

The tro wing soon are separated fron the staninal ring, leavinc the standard only attached to tie posterior stanem, mich is nov separated from the remaning nine staneme Then the standard ard single stanem are separated and sil three outemost worls ane distinat (Flate VII, G). Ple vascular tissues in tre stanens lave un ampicribral arrage enent.
tive traces to diefistil cansiet of tie portions of the bunciles of tile central stele which do not pass out is traces to the vracts and to the otter three morls of floral parts. These divide and fom a a ore or less continucus circle in tho stele. at the base of the pistil, these divide into twelve bundes; six rove toward the posterior side and si x toward the anterior. Thus, by the time the pictil is serarated from the staminal rine, the vascular suprly consists of ore laree, crescent-shaped bunde in the antemor side of the carpel, remresentirs the dorsal suture or midrib, and two posterior kundes at the vontral suture, equivisert to the murinal veins of the lesf minse marcins cun be seen reetinc (Flate VII, T). These bundes, until the zistil semarates fran the staninal rine, are adierent to the bundle of the single posterior staren.

The ovules are attached to tre placenta by the funiculus, and it is thount this twat the vasoulur tissue passes to tine intenmatio, were it brancies into two bundes. The two ve:tral burdies of the ovary tien

 secod ovale by the otion, etc. at tho point mear the lust orale has

 The tissie lecomes fory tuch rediced in the stillo.
i.ost of the cunales i: the cvary \#all.s ure funcd as brancies of the lurce doreal bunile in a mancer ainilan to that in wisc the lateral veins kranch fran the ionib of tho leaf. Each of tio veatran bundes fives off only a few branches to the ovar: wan. Whese corresponit to the brancies of the rarcina? veins of the laf.

Sumary

Fhaseolus V:learis I. var. Elsci Veletire is a drarf tean with
 ine ones that devel op are caround and altermetely arranced on the stam. Me primary vasculur tissugs of the root have a tetrach arrarce-
 pare cora, aid a ver notiegaly frop of tick-millod fibers. The first vascular cells to difforoltiate a ee the rrotophloer. it arout the

 and parancana. io tannin sacs oceur in the root.
He strastare of the rucotyl is sililar to tlat of the stan,

 Bons, thon, are tirelva Listinct Vasculur buados arrane el in a circio. six lure bunilea, tie leaf tanes to the wrinury leaves, aitemate witi sis shaller bundes. The prinar. piloc: is charaodorized ly tho
 tissues. 'He first frotoxy

The pith cells, except for severil rows nert to tie sulen, disanrear as secondary routh continues, feavin the suo. nollow. The pericycle ontosite the vascular buxilos comsiets of fibers. ail endodomis surrounds the vascular cylinder. Tee opidemis bars tires tipee of hatirs.

 stomatia. RMo stipules hava no paisede celle. me stipulee at the babo

 throe. The vascuan tissue of the stimens has an whicribrai arrares-

orans•

 trace to each of tie cotelerionse rile course of tio burdlus at the cotyledonary node as voras ou in tris stuay, ioes sot díree iditin tiut of Dodel asd rarris. Fortions of al? ei:ht rypocotyl buniles rasa out intu tioe simple loaves at the second node as tio five traces aic: fo into euch petiole. Cf thes five traces, one chusists of an entire iunde, the othen four lein: only ajn-burdes. at the third rione, five wole

 firer rive of the hypocoty bunciles. Emuncies of the stem are derived fromi two vundioe of the suen ail eithor sjue ofthe leuf, an.

Lituriture vited

Coripton，rubert E ．
1912．A：investiautio：of the souline structiare ir the

De Dary，A．Translation fra：the Geman bju．C．Eonon und L．F．Ścott．
1est．Comarative anatom of tie phanorona ad the ferme． i－xvi，l－isis．Illus．Cuford：Clareadri lre：s．

De Eclu，Tadoly．
190．Leitr＂are zur aratorischon Ciaraltortstil：jav Fiasooloen． Diss．Lirchen und Lffenture．1－7n． 1 nl．

Dicel，．．．
1972．Der Öber ane dis Dicotrleng gi－iten els in dia ffahl－
 5：148－120．IT．I－2．

102l．Ge vasoular whto．．．．of dinordiu ard trinerolis sesalime
 $\because 1.1-13$ ．

Jurvis，U．ن．
 200：145－2らす．11．1－15．

Nügeli．Curl．
1853．Das \＃aciectur dos Strines und der iuraэi bei do： Cefücspflazen und die sicudnum der Cef゙̈sstiăne in：

 Uncelman．

Sranon，Rav．

 115：1－71．F1．1－J］．

Fetit, Louis.
1897. Le pétiole des dicotiléanon au poi:.t de vie de 1'anatorio colarée et de la tarinorie. nu:... Boc. des BC. Phys. et Mat. de Fordoux. sér. 3. 3:371-27. II. 1, E.

Flitt, Curl.
 donen. Dies. iarbure $25-34$. I. 1.
 Eritseh. Revised E: D. I. Ucott.
1909. Byster atic antory of tha dicotuledors. $\frac{1}{\text { a }}$:vi-rii, l-344. Illus. Cxford: Clarenton rees.

Van Iiesher, i: Fh.
1071. Recherchos wir lu suétrie de stucture dis plantes

Enclanation fflgtos

amatomy of Thaseclus vilapis I. Vir. Elug Vilentine.
Flates I-III are photoricrorapis reducos $2 x$. plates IV-III drawr with canera lucida; reduced $\leq x$. Flaje . III recorstructed \because an tranoverce sections dran with canera jucila; reaue: 4 ․
rite followin abtroviatons uro used: iL, alewrons; P, bract;

 tanortial rilow; U IF, upper eridewis; U S. unitod sterens, V, vir;

「1aさé I．
s．Crose section of wiurit at kase of leaf（ $\because 120$ ）．

 of rorel five（ x 20）．
 $(\therefore x)$ ．

 of irncer ret（x
 （：10）．

11use II

Plut心 III．

Flute IV.

ミ. Low itadinui soction ef roct tif.

Flate V.
 (i, C - x 700).
i. Cross section of vascian burde of sten wich ioms a trace to the priany leuf (: 700).

F. Cruss section of budua in wion no priwary xilu ocours: efter seocniar: tilekenin: (x 700).
G. Cross section of budla in mino: ony paimary rilom cocurs; priaury Eroatil ($: 700$).

Plutz II.
A - C. Devenoron of tissues in tia louf (x 700).
. Cross abctore of fluala.
D. Cross section of roun leas.
C. Cooss section of detre
j. Cross suctio. cotuledor (: 100 j.

2. Croes secion of stipile (x 700).

E. Lyidomis of racicle (x roc).

in. Lo:rer onidemis of cotjlyan (x ricu).

c. G idenis of corolla (x 700).

R. Tiree tures of iairs (x 700).

H Fiocked hair
SH Strai rt hair
GL Glandular hair
Flate VII.
 arañencat of xylam (x 700).
E. Cruas səction of unale of the hupocotil uftar secaduru thickonir (Z 7 CO).

C - C. Course of vasciaur lualae in the flowo (:
Plate VIII.
Diafrans of the course of the vascular buitios (x Joj.
A. Root, trangition region, firt node.
E. Secord node.

D. Petiole of sirislo leaf ubove tie pulvinus.
a. Whirinode.
F. Hubit siretoh of comound lof to sho: yortion diacruaded in (i.
G. Feticle of curound leaf lelon taminal leaflé.

PLATE I

PLATE II

PLATE III

PLATE IV

PLATE V

PLATE RI

PLATE III

PLATE VIII
,$^{\prime}$

Sep 7 49,
ROOM USE ONLX

