
FAST NCRNA IDENTIFICATION TECHNIQUES

By

Seyedeh Shohreh Takyar

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Computer Science

2012

ABSTRACT

FAST NCRNA IDENTIFICATION TECHNIQUES

By

Seyedeh Shohreh Takyar

Many noncoding RNAs (ncRNAs) function through both their sequences and secondary

structures. Thus, secondary structure derivation is an important issue in today’s RNA

research. The state-of-the-art structure annotation tools are based on comparative analysis,

which derives consensus structure of homologous ncRNAs. Despite promising results from

existing ncRNA aligning and consensus structure derivation tools, there is a need for more

efficient and accurate ncRNA secondary structure modeling and alignment methods.

In this thesis, we introduce grammar string, a novel ncRNA secondary structure rep-

resentation that encodes an ncRNAs sequence and secondary structure in the parameter

space of a context-free grammar (CFG). Being a string defined on a special alphabet con-

structed from a CFG, it converts ncRNA alignment into sequence alignment with n square

complexity. We explain how this representation is used in derivation of consensus secondary

structure through multiple ncRNA alignment and also how existing clustering methods could

be applied to ncRNAs represented by this model.

Copyright by
SEYEDEH SHOHREH TAKYAR

2012

This thesis is dedicated to my parents, Touba and Shahrokh who taught me the most
important lesson in my life: Honesty.

iv

ACKNOWLEDGEMENTS

It would not have been possible to write this thesis without the help and support of the

kind people around me, to only some of whom it is possible to give particular mention here.

First and foremost, I would like to express my great appreciation to my advisor, Professor

Yanni Sun, for her valuable guidance and advice over the course of this thesis. She has always

given me enough time to discuss ideas and evaluate different alternatives in all steps of my

research work.

My most sincere appreciation goes to Professor Titus Brown, as both my teacher and as a

member of my dissertation committee. I really enjoyed the Open Problem in Bioinformatic

course taught by him. He taught me that without having strong biology background, a

computer scientist could never make a great stride in Bioinformatics.

I would also like to extend my deepest gratitude to Professor James Cole, from Micro-

bial Ecology Center, who kindly accepted to serve on my examining committee. I really

appreciate great comments and suggestions by him.

My special thanks must go to Professor Abdol-Hossein Esfahanian, Associate Chair at the

Department of Computer Science and Engineering. He has always supported me, whenever

I needed his help to meet different milestone events.

I wish to express my heartfelt thanks to great friends at Michigan State University, for

being the surrogate family during the years I lived at Michigan. I will definitely miss our

study hours and other gatherings at MSU Dairy Store.

Finally, I am forever indebted to my parents, Touba and Shahrokh, and my family for

their endless supports and sacrifices.

v

Table of Contents

List of Tables . viii

List of Figures . x

1 Introduction . 1
1.1 Non-coding RNAs, Structure and functionalities 2
1.2 Our contribution . 3
1.3 Literature review and related works . 5
1.4 Road map of this thesis . 7

2 Grammar string design . 8
2.1 Preliminaries and standard definitions . 8

2.1.1 Formal Language . 8
2.1.2 Transformational Grammars . 9
2.1.3 Derivation process . 10
2.1.4 Parse tree . 11
2.1.5 ambiguous grammar . 12
2.1.6 Grammar classes . 14
2.1.7 Context free grammars and ncRNA secondary structure 15

2.2 Grammar string design . 16
2.2.1 An unambiguous CFG for ncRNA generation 17
2.2.2 Grammar string generation algorithm 18
2.2.3 Design a new grammar string of Rfam database 22
2.2.4 Grammar pattern for encoding stem structures 23
2.2.5 Other grammar pattern design strategies 25

3 Multiple ncRNA structural alignment based on grammar string 27
3.1 Summary of designed experiment for multiple ncRNA structural alignment

by Achawanantakun [1] . 27
3.2 Score table design for grammar string alignment 29
3.3 Extracting consensus sequence of ncRNA families 30

4 Clustering based on grammar string . 33
4.1 NcRNA clustering; problem definition and approach 34
4.2 Step by step design for clustering experiment 35

4.2.1 Extracting consensus sequences in Rfam families 35

vi

4.2.2 Strategy of extracting data sets for our experiment 37
4.2.3 Pairwise alignment . 39
4.2.4 Applying MCL clustering approach 41

4.3 Experimental results . 42
4.3.1 Experimental results of old designed grammar string 42
4.3.2 Analysis of experimental results based on using new version of gram-

mar string design . 54

Appendix . 55

A Ribosum matrix . 57
A.1 Used in grammar string chapter . 57

B Old and new score tables . 60
B.1 Old grammar string score table . 60
B.2 New grammar string score table . 62

C Links to Web Pages of Clan families and their members . . . 66
C.1 Used in experimental results section . 66

Bibliography . 67

vii

List of Tables

2.1 Observed 7→ Replacement . 23

3.1 Observed 7→ Replacement . 31

3.2 Observed 7→ Replacement . 31

3.3 Observed 7→ Replacement . 31

4.1 Mapping in the consensus sequence . 41

4.2 Classification of conserved clans based on internal average score 43

4.3 Grammar patterns of 6 Clans . 47

4.4 Discovered Clusters in Rfam−Clan . 54

viii

List of Figures

1.1 Central Dogma schema . 1

1.2 General form of ncRNA secondary structure 2

2.1 “aab” pars trees . 12

2.2 Ambiguity in pars tree of “a+a+a” left-most derivation 13

2.3 Equivalent non-ambiguous pars tree of “a+a+a” 14

2.4 Crossing and non-crossing correlation between pairs of symbols 16

2.5 Secondary structure of a sample ncRNA . 18

2.6 Left most derivation pars tree of Figure 2.5 19

2.7 Two tRNA sequences from the human genome and the alignment of their
grammar strings.The stars below the alignment denote exact matches. . . . 20

2.8 Algorithm for generating a grammar string for substring Xi..j 21

2.9 Four different stem structures and their grammar patterns. The left column
shows the 2D representation of an ncRNA folding. The right column shows
the distributions of stems along an ncRNA sequence. All grammar patterns
are generated using G4 (our chosen unambiguous context-free grammar). . . 24

4.1 Mapping in the consensus sequence . 37

4.2 Pairwise alignment configurations . 43

4.3 Summary of clustering process of conserved clans members 44

4.4 Pairwise alignment scores - Part1 . 45

4.5 Pairwise alignment scores - Part2 . 46

4.6 External and internal average scores of all conserved clans 53

ix

A.1 Ribosum matrix - Part1 . 57

A.2 Ribosum matrix - Part2 . 58

A.3 Ribosum matrix - Part3 . 59

B.1 Score table used in pairwise alignments of old garment strings - Part1 60

B.2 Score table used in pairwise alignments of old garment strings - Part2 61

B.3 Score table used in pairwise alignments of old garment strings - Part1 62

B.4 Score table used in pairwise alignments of old garment strings - Part2 63

B.5 Score table used in pairwise alignments of old garment strings - Part3 64

B.6 Score table generated based on Ribosum matrix and used in pairwise align-
ments of new garment strings - Part4 . 65

C.1 Links to Web Pages . 66

x

Chapter 1

Introduction

DNA (Deoxyribonucleic acid), RNA (Ribonucleic acid), and proteins are three major essen-

tial molecules for all known forms of life. DNA is a double-stranded nucleic acid which carries

the entirety of genetic information (called genome) of a living organism. Genome includes

thousands of genes and non-coding sequence segments. During a biological process called

transcription, genome is copied from DNA into a single stranded nucleic acid molecule called

RNA. Transcribed DNA genes are transformed into protein molecules during another biolog-

ical process called translation and serve as enzymes, hormones, or antibodies for the proper

functioning of an organism. However, transcribed non-coding sequences do not have the

potential to be translated into protein molecules. These function directly as RNA molecules

and are named non-coding RNAs (ncRNA). Figure 1.1 shows the simplified model ofCentral

Dogma [5].

Figure 1.1: Central Dogma schema

1

1.1 Non-coding RNAs, Structure and functionalities

NcRNA is a single-stranded chain of nucleotides Adenine (A), Uracil (U), Cytosine (C), and

Guanine (G). There may also be a hydrogen band between some nucleotide pairs of {A, U},

{C, G}, and {G ,U}, causing nucleotides of each pair to be bounded together and making

local folds in ncRNA sequences. These paired-up nucleotides are called Complementary

base pairs. The two-dimensional shape of ncRNA formed by these complimentary base

pairs is called secondary structure of that ncRNA molecule. Figure 1.2 shows the general

form of secondary structure and the corresponding names of possible sub-structures made

by complimentary base pairs.

C

UA

C

UA

GC

C

A

C

A

A

A

A

AA

C

UA

GC

C AUA

UA

GC

UA

GC

U

A

G

C
U

A
G

C

A

AA

A

U

A
G

C

U

A
G

C

C

C

A

A

A
C

C

C

A

U

A G

C

A

A

U C

C

C

Stems

Multi-branched loop

Interior loop

Hairpin loops

Bulge loop

Figure 1.2: General form of ncRNA secondary structure

2

Transcribed non-coding sequences play diverse and important roles in many biochemical

processes. For example, two typical house keeping ncRNAs, tRNA and rRNA, are key

components for protein synthesis while MicroRNAs (miRNAs) play critical regulatory roles

via interactions with specific target mRNAs in many organisms [23]. Also, short interfering

RNAs (siRNAs) are involved in gene silencing in RNAi process [31].

Considering the vital roles ncRNAs play in living organism, any effort which helps know

ncRNAs and their biological functions is highly important to modern biology. For example,

comparative ncRNA identification, which searches for ncRNAs through evidence of evo-

lutionary conservation, is the state-of-the-art methodology for ncRNA finding. Since the

functions of most ncRNAs are determined by both their sequences and secondary structures,

comparative ncRNA identification must exploit not only the sequence, but also the structural

conservations.

1.2 Our contribution

The origin of context free grammar lies in formal language theory. In biology, stochastic

context-free grammar (SCFG) [10] pertains to the problem of alignment and folding homol-

ogous families of RNA sequence. A successful application of SCFG is ncRNA classification,

which classifies query sequences into annotated ncRNA families such as tRNA, rRNA, ri-

boswitch families. Other secondary structure modeling representations such as base pair

probability matrices [18, 41, 45], tree profiles [14, 15], stem graphs [42] etc. have been used

in RNA alignment, an important step in novel ncRNA detection. These alignment methods

first infer the possible structures of each input sequence and then conduct structural align-

ment, whose accuracy and efficiently are highly dependent on structural representations.

Despite promising output by existing alignment tools, many existing secondary structure

representations are highly complicated, incurring high computational cost during alignment.

Even with various heuristics or pruning techniques to reduce the time complexity, ncRNA

3

structural alignment are still more computationally intensive than pure sequence alignment

and scale poorly with the number and length of input sequences. Therefore, it remains

important to develop an efficient and accurate structural modeling and comparison method.

In this thesis, we design a novel secondary structure representation and show its ap-

plication in consensus structure derivation through multiple ncRNA alignment and also in

ncRNA clustering task. The two contributions are listed below.

First, we design and implement grammar string, a novel ncRNA secondary structure

representation. A grammar string is defined on a special alphabet constructed from a care-

fully chosen context free grammar (CFG). It encodes how this CFG generates an ncRNA

sequence and its secondary structure. Compared to other secondary structure representa-

tions, grammar strings are simple and can take advantage of well-developed algorithms on

sequences or strings. For example, grammar strings can convert ncRNA alignment into se-

quence alignment without losing any structural conservation, rendering highly efficient RNA

alignment algorithm. In addition, supporting theories for sequence alignment such as score

table design and Karlin-Altual statistics [25] can be applied to grammar string alignment.

It is worth mentioning that other string-based secondary structure representations [3,30,47]

exist. However, those methods focus on deriving ncRNAs’ similarities without resorting

to alignment and thus cannot be directly applied for consensus structure derivation from

homologous ncRNAs.

An interesting application in biology is to classify ncRNAs into families with structural

homology. The Rfam database is a standard ncRNA database which will heavily be used

during the course of this thesis. This database maintains alignments, consensus secondary

structures and such for RNA families. Each family represents a set of RNA sequences that

function at the RNA level and share a clear common ancestor. However, there is still a

great interest in clustering of these ncRNA families. The reason is Rfam database employs

some quality control steps which prevent two families from annotating the same sequences.

Therefore, homologous ncRNA sequences might be separated from each other and go to

4

different families because of restrictions existing in computational steps [12]. Moreover, a

single alignment may not capture all the diversity of a group of homologous RNAs. Our

second contribution in this thesis is to evaluate utilization of grammar string approach in

ncRNA clustering problem. For this purpose, we design a strategy to, first, extract consen-

sus sequence of ncRNA families, and then, generate their corresponding grammar strings

based on associated consensus sequence and secondary structure. In the next step, pairwise

alignment method is applied to these grammar strings using empirical score table and gap

penalties. Finally, ncRNA pairwise alignment scores are fed into a clustering application

called MCL to be classified in different clusters.

1.3 Literature review and related works

There are many ncRNAs whose biological functionalities remain unknown to this day. Com-

parative techniques may help us reveal possible functionalities of novel ncRNAs based on

properties of ncRNAs with already known functionalities. The base line is that the ncRNA

with similar secondary structures present similar biological functionalities. Existing ncRNA

alignment methods can be roughly classified into three basic types.

The first type aligns and folds simultaneously. The most accurate algorithm of this type

was developed by Sankoff [36]. However, it is prohibitively expensive with time complexity

O(L3N) and memory complexity O(L2N), where L andN are the length and number of input

sequences, respectively. Variants of the Sankoff algorithm have been proposed to reduce the

computational time of multiple alignment, such as Stemloc [19], Consan [9], MARNA [38].

The second type of methods first builds a sequence alignment and then folds the align-

ment [17, 28, 35, 44, 44]. They infer structures from pre-aligned sequences generated using

MULTIZ [4], ClustalW [40], or other available sequence alignment programs. The accuracy

of these tools is largely affected by the alignment quality. In particular, when homologous

ncRNA sequences only share structural similarity, building a meaningful sequence alignment

5

becomes difficult.

The third type of methods folds input sequences and then conducts structural alignment,

yielding higher accuracy. Different tools in this category differ by different secondary struc-

ture modeling methods. Although some of them used restricted Sankoff algorithm in their

implementations, we classify them into “fold and then align” category because they apply

structure prediction in the first step. As our grammar string based alignment belongs to

the third category, we discuss related “fold and then align” tools below, focusing on their

secondary structure representations.

Several programs encode secondary structure using base pair probability matrices de-

rived from McCastkill’s approach [16, 33]. NcRNA alignment is then converted into base

pair probability matrix alignment. However, base pair probability matrix comparison is

highly resource demanding. For example, pmcomp [18] takes O(n4) memory and O(n6) op-

erations for aligning a pair of sequences with length n. More recent implementations such as

LocARNA [45] and FOLDALIGNM [41] applied various restrictions or pruning techniques to

reduce the time complexity. But they are still much more expensive than sequence alignment.

RNAforester [14, 15] used tree profiles to represent secondary structures. Algorithms on

tree alignment are applied for pairwise and multiple alignment computation. The asymptotic

efficiency depends on the node number of the tree representation and the maximum degree d

of a tree node. For n structures of average size s, their pairwise algorithm has time complexity

O(s2d2) and space complexity O(s2d). RNAforester can achieve higher efficiency than base

pair probability matrix comparison. However, it is reported [45] that they tend to produce

many alignment columns that contain mostly gap characters in the multiple alignment mode.

Carnac [42] used stem graphs to represent secondary structures. However, their program

cannot accept more than 15 input sequences to remin efficient, limiting its practical usage.

6

1.4 Road map of this thesis

The remainder of this thesis is organized as follows:

• Chapter 2: Preliminaries and standard definitions of formal language is introduced

first. Next, grammar string design is discussed in details.

• Chapter 3: Multiple ncRNA structural alignment experiment designed by our colleague

Rujira Achawanantakum [1] is explained in high level. We then focus on those design

aspects which pertain to this thesis.

• Chapter 4: An experiment is designed and applied to clustering of ncRNA families

using grammar string approach. We will end this chapter with experimental results

and conclusions.

7

Chapter 2

Grammar string design

In this chapter, we first briefly introduce some preliminaries and standard definitions in

Formal Languages and Transformational Grammar. We then discuss the use of grammar

strings borrowed from formal languages in representation of secondary structure for ncRNAs.

Next, a new grammar string will be designed and utilized in a novel representation of these

secondary structures. Finally, the associated generating algorithm and the strategy to encode

stem structure of ncRNAs will be addressed.

2.1 Preliminaries and standard definitions

2.1.1 Formal Language

We are all familiar with one or more languages and practice at least one of them, e.g.,

English, French, Italian, etc. in our daily life. Informally, each language consists of a set

of symbols and a set of manipulating rules which help us express the facts, feelings, and

concepts. However, we need a formal mechanism to study languages mathematically. To

begin with, we need to know some terms used in the formal definition of languages.

• A Symbol is an abstract entity having no meaning by itself. The most common symbols

are digits, letters from variant alphabets, and special signs such as asterisk.

8

• An Alphabet is a finite set of symbols. For example, {a, b} is an alphabet containing

two symbols a and b, and {0, 1} is an alphabet with two members 0 and 1.

• A Word or a String is a finite sequence of symbols over an alphabet. For instance, abab

and 011001 are two words defined on alphabets σ1 and σ2, respectively. We use |.| to

denote the length of a word, e.g., |abab| = 4 and |011001| = 6 are the lengths of abab

and 011001 strings, respectively. The length of a null string is considered 0.

we can now formally define a language using above terms. A language is a set of strings over

a set of predefined symbols called alphabet. This set of strings could be an empty, a finite

or an infinite one.

2.1.2 Transformational Grammars

Transformational Grammars (Grammars) are used to understand the structure of natural

languages and are one of the formal ways of describing a language. Generally, a grammar is

defined as a 4-tuple G = (V, T, P, S) where:

• V is a set of symbols called nonterminal, typically S,A,B,. . .

• T is a set of symbols called terminals, typically 0,1,a,b,. . .

• P is a set of production rules

• S is the starting nonterminal from V

Each rule in P has the form: A → α where A is a variable and α is any concatenation

of terminals and nonterminals. If there are more than one candidate in right side of a

production rule, the sign | is used to separate them from each other. Moreover, a specific

symbol such as ε presents a null string. When a nonterminal is replaced by a null string, no

symbol would be added to the string.

9

As an example, a sample grammar could be defined as G = (V, T, P, S) where V = {S,A},

T = {0, 1} and the production rules from set P are:

S → 0A|0 (2.1)

A → 10A|ε (2.2)

2.1.3 Derivation process

The sequence of production rules in a grammar that transforms the starting symbol of a

grammar into a string out of any nonterminals is called derivation process. The derivation

process begins with the starting symbol. In each step, one nonterminal is replaced with one

of the possible right hand side production rules. During the whole process, all nonterminals

are replaced by terminals and finally the string is produced. The existence of a derivation

process proves that a string belongs to a grammar language. In the previous example, the

string 0101010 is derived from G using these steps:

S ⇒ 0A ⇒ 010A ⇒ 01010A ⇒ 0101010A ⇒ 0101010A ⇒ 0101010 (2.3)

As it is seen in (2.1) and (2.3) single-line arrow stands for steps in production rules, whereas

double-line arrow shows different steps in a derivation process.

There are two types of derivation: The left-most derivation and the right-most derivation.

A left-most derivation is the one in which the left-most nonterminals are always applied in

transforming rules. Similarly, a right-most derivation is the one in which the right-most

nonterminals are always applied in transforming rule processes. For example, suppose the

grammar G1 is defined as G1 = (V, T, P, S) where V = {S,A,B}, T = {a, b}, and the

10

production rules in set P are:

S → AB (2.4)

A → aA|ε (2.5)

B → bB|ε (2.6)

This grammar defines a language containing empty string, strings of a, strings of b, and

strings starting with one or more ‘a’ and continuing with any number of b. a, b, aaa, bbbbbb,

aab,and aaabbbbb are some sample words belonging to this language. These strings are

generated by production rules in grammar during the derivation process.

Two samples of left-most and right-most derivation steps of the string aab from grammar

G1 are shown as follows:

S ⇒ AB ⇒ aAB ⇒ aaAB ⇒ aaB ⇒ aabB ⇒ aab

S ⇒ AB ⇒ AbB ⇒ AbbB ⇒ Abb ⇒ aAbb ⇒ abb

2.1.4 Parse tree

The derivation process could be presented in the form of a specific tree called parse tree.

Parse tree represents the syntactic structure of a string according to some formal grammar.

In a parse tree, the root is the starting symbol (S) of the grammar, the interior nodes are

labeled by non-terminals of the grammar, and the leaf nodes are labeled by terminals of the

grammar. In Figure 2.1 two parse trees T1 and T2 present the left-most and right-most

derivation of the string aab from G1.

11

S

A

A

Aa

ϵ

B

b

b B

Aa

ϵ

Aa

ϵ

a

S

A B

Left-most derivation tree Right- most derivation tree

B

ϵ

Figure 2.1: “aab” pars trees

2.1.5 ambiguous grammar

A grammar G is an ambiguous grammar if the language generated by G contains a string w

which has at least two different parse trees, or equivalently more than one left-most derivation

tree. For example, there are two different left-most derivations (Figure 2.2) for generating

the string a + a + a using grammar G2 = (V, T, P, S) where V = {S}, T = {a}, and with

the production rules in set P as:

S → S + S

S → a.

An ambiguous grammar could be turned into a non-ambiguous one by defining some new

12

S

S

a

S

S

+ S

a

+

a

S

S

a

S

S

+ S

a

+

a

Figure 2.2: Ambiguity in pars tree of “a+a+a” left-most derivation

nonterminals. In example above, we can resolve the ambiguity problem by adding a new

nonterminal T to the nonterminal set and modifying the production rules consequently:

S → S + T |F

T → F

F → a.

Figure 2.3 shows the left-most derivation of

a+ a+ a

and its corresponding pars tree using non-ambiguous grammar above.

13

S

a

F

T
S +

a

F

T+S

a

F

Figure 2.3: Equivalent non-ambiguous pars tree of “a+a+a”

2.1.6 Grammar classes

Chomsky developed a general theory for modeling string of symbols and presented a hierarchy

of grammars called Chomsky hierarchy of transformational grammars [10]. In other

words, Chomsky divided grammars into different classes based on the type and attributes

of strings generated by these grammars. Regular grammars, context free grammars, and

context sensitive grammars are some examples of these grammar classes.

Regular grammars

A grammar G = (V, T, P, S) is called a regular grammar if all its production rules have the

form of A → w or A → wB, where A and B are variables and w is any combination of

terminals including empty string. If a language could be described by a regular grammar

14

then it is called regular language.

Regular grammars generate strings from left to right or right to left. Another property

of regular grammars lies in the fact that the generation of a symbol pair requires to be

independent and from two different nonterminals, i.e., regular grammars cannot generate a

correlated base pair from a single nonterminal. G introduced in subsection 2.1.2 is such a

regular grammar.

Context free grammars

A grammar G = (V, T, P, S) is said to be a context free grammar (CFG) if all productions are

of the form A → x where A is in V and x is any combination of terminals and nonterminals

including null string. The languages generated by context-free grammars are known as the

context-free languages.

Context free grammars generate string from outside in. For example, G3 = (V, T, P, S)

where V = {S}, T = {a, b}, with the production rules in set P as:

S → aSa|bSb|cSd|aa|bb

is an example of a context free grammars. The derivation of “abaaba” and “aacaadaa” from

G3 is given, below.

S ⇒ aSa ⇒ abSba ⇒ abaaba

S ⇒ aSa ⇒ aaSaa ⇒ aacSdaa ⇒ aacaadaa

2.1.7 Context free grammars and ncRNA secondary structure

A typical context free grammar creates strings from outside in and enables to generate

strings with nested but non-crossing correlation between pairs of symbols.These attributes

make CFG class a proper option to generate Palindrome language. Strings of a such

language have a symmetric correlation between pair of symbols and are often being read the

15

same way in either directions left or right (see Figure 2.4). Since secondary structures in

nsRNAs are considered as a type of palindrome language, they can be generated by properly

designed context free grammars.

Palindrome language
a a b ab a

Crossing correlation
a a b ba a

Figure 2.4: Crossing and non-crossing correlation between pairs of symbols

2.2 Grammar string design

Inspired by Jaakkola and Haussler’s discriminative classification method [20], we introduce

grammar string, a representation of an ncRNA sequence in the parameter space of context-

free grammar (CFG). Specifically, each ncRNA sequence and its secondary structure are

transformed into a string defined on a new alphabet, where each character corresponds to a

production rule in a CFG.

We first introduce an unambiguous CFG for ncRNA sequence generation. Using the

16

chosen CFG as an example, we formally define grammar strings for modeling an ncRNA

sequence and its secondary structure.

2.2.1 An unambiguous CFG for ncRNA generation

NcRNA structures without pseudo-knots can be derived by CFGs [10]. As mentioned in

previous section, a CFG is defined by a set of nonterminals, a set of terminals, a start non-

terminal, and a set of production rules of the form V → α. V is a single nonterminal symbol,

and α is a string of terminals and/or nonterminals. By recursively replacing nonterminals on

the right hand side of each production rule, an ncRNA sequence and its secondary structure

can be derived from a CFG. In this work, all our ncRNA sequences and their structures

will be generated from G4, a light-weight CFG introduced by Dowell and Eddy [8], using

leftmost derivation. Following the general definition of a CFG, G4 has a finite set of non-

terminal V = {S, T }, a finite set of terminal symbols T = {A,C,G, U, ε}, and a finite set of

production rules defined as below:

• S → aS|T |ε

• T → T a|aSâ|T aSâ

where a ∈ {A,C,G, U} and â ∈ {A,C,G, U}. a and â form complementary base pairs such

as A-U and G-C. In order to generate the unstructured single strand ‘C’ at 3’ end and the

two outmost base pairs in sequence tRNA 1 in Figure 2.7, the following production rules

from G4 are called: S → T , T → T C, T → GSC, S → T , T → USA. Continuing to

replace S by correctly chosen production rules, we can derive tRNA 1. The sequence of

production rules used for ncRNA structure generation is called a derivation.

Using the leftmost derivation, an unambiguous CFG can guaranteer a unique deriva-

tion for a given ncRNA sequence and its secondary structure. For example, by using the

unambiguous grammar G4, we have only one choice when choosing a production rule to

derive a sample ncRNA (Figure 2.5) secondary structure in Figure 2.6. For a more de-

17

tailed introduction about unambiguous CFGs, we refer readers to the review by Dowell and

Eddy [8], where several light-weight unambiguous CFGs including G4 are discussed.

Figure 2.5: Secondary structure of a sample ncRNA

2.2.2 Grammar string generation algorithm

Each ncRNA secondary structure has a unique leftmost derivation from an unambiguous

CFG, producing a one-to-one mapping between a structure and a production rule sequence.

Intuitively, homologous ncRNAs with similar structures will share similar derivations. This

motivates us to represent an ncRNA sequence and its secondary structure in the parameter

space of a CFG. Thus, ncRNA structural comparison is converted to the comparison of their

derivations.

In order to represent an ncRNA structure using its derivation, we introduce a new alpha-

bet, where each character corresponds to a production rule in a CFG. One example alphabet

derived from G4 is defined below.

• Use upper case character of a to represent production rule S → aS. For example, use

A to represent S → AS.

• Use | to represent S → ε.

18

S

C

T

SA

T

S

U

SA U

S

C G

1 2

U

T

S

C G

U S

U S

U

T

SG C

A S

S

U S

εST G C

T A

T

C

2

T

SA U

S

1

AA S

A S

A S

A

ε

T

S

Figure 2.6: Left most derivation pars tree of Figure 2.5

• Use lower case character of a to represent production rule T → T a. For example, use

c to represent T → T C.

• Use P to represent base pair emission T → aSâ.

• Use a special character # to indicate branching T → T aSâ.

• No character is needed for production rule S → T .

Thus, the new alphabet is A = {A,C,G, U, a, c, g, u, P,—,#}. If these production rules are

used on DNA sequences, we can simply replace U(u) with T (t). For brevity, we name a

string defined on the above alphabet a grammar string. As an example, the derivation for

generating the unstructured single strand ‘C’ at 3’ end and the two outmost base pairs in

sequence tRNA 1 of Figure 2.7 is: S → T , T → T C, T → G S C, S → T , T → U S A.

19

Thus, the corresponding grammar string is cPP using the alphabet A. Note that we don’t

distinguish different base pairs (i.e. A-U, G-C, and G-U if allowed) in a grammar string. All

base pairs are represented as P in order to maximize the alignment score between homologous

ncRNAs that share high structural similarity but low sequence similarity. Figure 2.7 shows

the utility of grammar strings in detecting structural similarity between two tRNA sequences

from the human genome. Because of low sequence similarity, BLAST [2] fails to align

them. However, their structural similarity yields a meaningful global alignment between

their corresponding grammar strings with 69% identity. In theory, our grammar string

C

C

G

A

A

C

C

C

C

U

A

tRNA_1: GUAAAUAUAGUUUAACCAAAACAUCAGAUUGUGAAUCUGACAACAGAGGCUCACGACCCCUUAUUUACC
(((((((..((((.....)))).(((((.......)))))....((.((.......)).))))))))).

Grammar string
cPPPPPPPUA#caac#aPPPPAACCA|PPPPPUUGUGAA|PPAcPPCUCACGA|

tRNA_2:
ACUUUUAAAGGAUAACAGCCAUCCGUUGGUCUUAGGCCCCAAAAAUUUUGGUGCAACUCCAAAUAAAAGUA
(((((((..((((.......)))).((((.........))))....(((((.......)))))))))))).

Grammar string
aPPPPPPPAA#uaaa#gPPPPAACAGCC|PPPPUCUUAGGCC|PPPPPUGCAACU|

cPPPPPPPUA#aac#aPPPPAAC--CA|PPPPP-UUGUGAA|PPPPPCUCACGA|
aPPPPPPPAA#aaa#gPPPPAACAGCC|PPPPPCUUAGGC-|PPPPPUGCAACU|
******* **** * ******* * ****** ** * ****** ** *

Pairwise alignment

ACUUUUAAAGGAUAACAGCCAUCCGUUGGUCUUAGGCCCCAAAAAUUUUGGUGCAACUCCAAAUAAAAGUA
(((((((..((((.......)))).((((.........))))....(((((.......)))))))))))).

Grammar string
aPPPPPPPAA#uaaa#gPPPPAACAGCC|PPPPUCUUAGGCC|PPPPPUGCAACU|

A

A
A

AA

A

A

A

A

A

C

C

C

C C

C

C
C

C

C

C

C
C

G

GG

G
G

G

G G

G

G

G

U

U

U

U

U
U

U
U

U

U

U

U

U

U

U

U

3'

A

A

A

A

A

A
A
A

A
A

A

A
A

U

U

U

5'

A

A

A
A

A

A A

A

A

A

C

C

C
C

C

C

C

C

C

C

C

G

G

G

G

G

G

G

G

G

G

U

U

U

U U

U

U
U

U

U

U U

U

U

U

3'

A

A

A

A
AA

A

A

A

A

A

A

A

A

U

U

5'

C

Figure 2.7: Two tRNA sequences from the human genome and the alignment of their gram-
mar strings.The stars below the alignment denote exact matches.

20

void parse(i, j)

{

if i >= j

 print '|';

 return;

else if Xi is a single stranded base

 print uppercase of Xi;

 i++;

 parse(i,j);

else if Xj is a single stranded base

 print lowercase of Xj;

 j--;

 parse(i,j);

else if Xi and Xj form a base pair

 print 'P';

 i++ and j--;

 parse(i,j);

else

 print '#';

 k = the position that forms a base pair with Xj;

 parse(i,k-1);

 parse(k,j);

}

Figure 2.8: Algorithm for generating a grammar string for substring Xi..j .

generation process consists of two steps. First, write the production rule sequence for an

ncRNA sequence and its secondary structure. Second, transform the sequence of production

rules into a grammar string according to the definition of grammar string alphabet. In

practice, we use an efficient dynamic programming algorithm to design a grammar string for

an ncRNA structure directly, skipping the step of parsing an ncRNA sequence using a CFG.

The algorithm has time complexity O(L2), where L is the length of the ncRNA sequence.

LetX be an ncRNA sequence with its predicted or annotated secondary structure. i and j

are indexes in X. Xi is the base at position i. Figure 2.8 sketches the dynamic programming

algorithm generating a grammar string for substring Xi..j . In order to generate the complete

grammar string for sequence X, one should call parse(1, L).

21

2.2.3 Design a new grammar string of Rfam database

In the grammar string presented in Section 2.2, all base pairs are mapped to the same

alphabet P . Therefore, all base pairs are considered the same in a grammar string. Here

instead we design a new grammar string which enables us to distinguish between different

types of complementary base pairs. Our goal is to compare the performance of a grammar

string when we feed it with more details about base pairs nucleotides and their decoration.

To design a new grammar string we still use G4 context free grammar, but expand its

set of alphabets from A = {A,U,C,G, a, u, c, g, P,#,—} to

A = {A,U,C,G, a, u, c, g, <,>, [,], (,), E, F, I, J, L,O, Z,#,—}.

As seen, instead of P which is a single representative for base pairs in our previous grammar

string design, some other new alphabets are added to the new alphabet set. Each new

alphabet is a representative for a specific type of base pair. In Table 2.1, it is seen how

base pairs are assigned to grammar string alphabets. For more details, read Section 4.2.1.

Both the previous and new generated consensus sequences and grammar strings of family

RF00756 along with the corresponding secondary structure are shown below, respectively.

AAAAAAAA.AAAAAAAAAAAAAAAAAAAAUUUGAAUUUUUUUUUUUUUUUUUUUUUUUUUUUUU,RF00756

<<<<<<<<.<<<<<<<<<<<<<<<<<<<<.......>>>>>>>>>>>>>>>>>>>>>>>>>>>>

PPPPPPPPPPPPPPPPPPPPPPPPPPPPUUUGAAU|

AAGAAGUG.GUUUACCGUCCCACAUACAUUUUGAAUAUGUAUGUGGGACGGUAAACCGUUUCUU,RF00756

<<<<<<<<.<<<<<<<<<<<<<<<<<<<<.......>>>>>>>>>>>>>>>>>>>>>>>>>>>>

<<]<<()]]>>><[[]>[[[<[<><[<>UUUGAAU|

22

Table 2.1: Observed 7→ Replacement
Observed Replacement

AU <
UA >
CG [
GC]
GU (
UG)
EE E
FF F
II I
JJ J
LL L
OO O
ZZ Z

2.2.4 Grammar pattern for encoding stem structures

The number of stems and their relationship largely define the basic “shape” of a secondary

structure. For example, the cloverleaf structure of a tRNA sequence consists of four stems:

acceptor stem, D stem, anticodon stem, and TΨCG stem. The precursor structure of a

miRNA usually contains only one stem. According to the definition of grammar strings, three

characters P,#, and | encode the number and relative positions of all stems in an ncRNA

secondary structure. If we simply remove all single stranded regions (i.e. substrings only

consisting of A,C,G, U, a, c, g, u) from a grammar string, we can use a simplified grammar

string to represent the abstract stem structure for an ncRNA sequence. For brevity, we name

a simplified grammar string a grammar pattern, which is a string defined on a reduced

alphabet {P,#, |}. A grammar string can be converted into a grammar pattern in two steps:

1) remove all substrings representing single stranded regions, and 2) reduce every substring

consisting of only P s as a single P . Thus, the grammar pattern for sequence tRNA 1 in

Figure 2.7 is P##P |P |P |, where each P denotes a stem. There are four Ps, denoting four

stems. The end of each stem is marked by |. Number of # defines the number of bifurcations.

Different distributions of the same number of stems can yield highly different secondary

structures. Figure 2.9 shows how grammar patterns can account for different structures with

23

the same number of stems. Note that all these grammar patterns are generated using G4

as the chosen CFG. If other unambiguous CFGs are used to generate grammar strings for

the same structures, different sets of grammar patterns might be produced. Ignoring all

P##P|P|P|

#P#P|P|P|

#P|P#P|P|

###P|P|P|P|

5'

3'

3'

3'

3'

5'

5'

5'

Figure 2.9: Four different stem structures and their grammar patterns. The left column
shows the 2D representation of an ncRNA folding. The right column shows the distributions
of stems along an ncRNA sequence. All grammar patterns are generated using G4 (our
chosen unambiguous context-free grammar).

single stranded regions and length of each stem, grammar patterns only provide a coarse-

grained description of ncRNA secondary structures. However, because of the high efficiency

of pattern matching, grammar patterns can be used to speed up grammar string comparison.

For example, we do not expect significant structural similarities between a tRNA and a

miRNA sequence. Instead of using Needleman-Wunsch [37] like alignment algorithm between

their grammar strings, a constant time grammar pattern matching program can be applied as

a filtration step. This filtration is particularly important when we aim to derive the consensus

structure of multiple putatively homologous ncRNAs. Although these sequences are expected

to be sequenced from the same gene family, it is possible that some of the sequences are

from other regions. Thus, we can use the grammar pattern matching technique to exclude

contaminated sequences, ensuring a multiple sequence alignment with good quality. The

24

same technique can be used to remove possible errors introduced by MFE-based secondary

structure prediction tools.

2.2.5 Other grammar pattern design strategies

Designed grammar pattern in Section 2.2.4 encodes the stem structure of an ncRNA se-

quence. However, more complicated grammar patterns can be designed to carry information

about both sequence and secondary structure of a sample ncRNA. Following designed strate-

gies are such examples.

• Strategy (A)

1. Preserving all bifurcation (#) and end (|) grammar alphabets.

2. Removing individual bases from grammar string.

3. Keeping only one P as the representative of base pairs if any base pair is seen

between bifurcation and end alphabets.

• Strategy (B)

1. Preserving all bifurcation (#) and end (|) grammar alphabets.

2. Keeping one P as a representative for each segment of base pairs.

• Strategy (C)

1. Preserving all bifurcation and end grammar alphabets.

2. Finding the total number of P s, the total number of left derived individual bases

(capital alphabets), and the total number of right derived individual bases (small

alphabets) existing in the grammar string.

3. Finding the total number of segments in which base pairs (P s) occur, the total

number of segments in which left derived individual bases occur, and the total

number of segments in which right derived individual bases occur.

25

4. Calculating average length of three segments (found in the previous step) by

dividing the total number of the corresponding grammar string alphabet to the

number of segments in which the alphabet occur.

5. Calculating the average of tree averages (calculated in the previous step) and

calling it “total average”.

6. Processing the grammar string again from left to right.

7. Preserving all bifurcation (#) and end (|) grammar alphabets.

8. Putting one P , A, or a for each observed segment if the number of characters in

that segment is greater than or equal to an empirical threshold × total average.

26

Chapter 3

Multiple ncRNA structural alignment

based on grammar string

In this chapter, we present a brief overview on multiple alignment of ncRNAs secondary

structure. We must mention that the main effort in leading this research project has been

done by our colleague Rujira Achawanantakun [1]. Although the final goal of this project,

accomplished by Rujira Achawanantakun, has been to derive consensus structure through

multiple ncRNA alignment, in this thesis we only focus on those parts of the research which

have been done by the author of the current thesis. These include creating score table for

grammar strings pairwise alignment and extracting consensus sequence of ncRNA families.

We refer interested readers to [1] for more details on other steps of this experiment as well

as the final result of this research work.

3.1 Summary of designed experiment for multiple ncRNA

structural alignment by Achawanantakun [1]

Multiple ncRNA alignment has important applications in homologous ncRNA consensus

structure derivation, novel ncRNA identification, and known ncRNA classification. As many

27

ncRNAs’ functions are determined by both their sequences and secondary structures, accu-

rate ncRNA alignment algorithms must maximize both sequence and structural similarity

simultaneously, incurring high computational cost. Faster secondary structure modeling

and alignment methods using trees, graphs, probability matrices have thus been developed.

Despite promising results from existing ncRNA alignment tools, there is a need for more

efficient and accurate ncRNA secondary structure modeling and alignment methods. To

this end, Achawanantakun designed an experiment to derive consensus structure through

multiple ncRNA alignment. Major steps of aligning multiple ncRNA sequences experiment

are sketched below:

1. Use an ab initio secondary structure prediction tool to predict both the optimal and

sub-optimal secondary structures of each input sequence based on minimum free energy

criteria.

2. Generate a grammar string for each predicted secondary structure. If an ncRNA

sequence has more than one structure predicted, multiple grammar strings will be

generated.

3. Transform each grammar string into a grammar pattern. Use a voting mechanism to

choose the most popular grammar pattern that mostly likely represents the native stem

structure shared by the input sequences. All grammar strings that are not consistent

with the chosen grammar pattern will be discarded.

4. Apply a progressive multiple sequence alignment method on remaining grammar strings.

5. Derive the consensus secondary structure from multiple grammar string alignment.

Transform grammar string alignment into ncRNA sequence alignment using the ncRNA

sequences and their predicted structures as references.

In Chapter 2, we introduced an approach to generate grammar string from an ncRNA se-

quence and its secondary structure (Step2). We also addressed, in details, how to extract

28

grammar pattern from a grammar string (Step 3). In the next two sections, we first explain

how to create a score table for grammar string alignment and then how to extract consensus

sequence of ncRNA families to generate their corresponding grammar string.

3.2 Score table design for grammar string alignment

Pairwise alignment is a fundamental step to multiple alignment and clustering. Existing

alignment algorithms such as Needleman-Wunsch [37] can be directly applied to grammar

strings when a score table defined on grammar strings’ alphabet is imported. Following the

common practice in score table design, we use maximum-likelihood ratio to derive the score

between every pair of characters in grammar strings’ alphabet A. For each pair of characters

a, b in A, the score between a, b is s(a, b) = log
Pr(a,b)

Pr0(a,b)
. Pr(a, b) is the target probability

of a, b in a set of true alignments and Pr0(a, b) is the background probability that a and

b are aligned. Assuming that a and b are independent in the background model, we get

Pr0(a, b) = Pr0(a) × Pr0(b). Because ncRNA family database Rfam [13] provides a large

number of annotated ncRNA sequences, their alignments, and their associated secondary

structures, we obtain both the target and the background probabilities from Rfam. In

summary, we present following steps of designing a score table for grammar string alignment.

1. Build an alignment training set by randomly picking a large number of pairwise ncRNA

alignment from Rfam 9.1’s seed alignments. Some criteria are applied to select align-

ments with reasonably high quality. For example, if a pairwise alignment contains too

many gaps, it will not be included in the training set. After applying the selection

criteria, we had 18487 pairwise alignments in the training set.

2. Transform each pair of ncRNA sequence alignment into an alignment between grammar

strings using the given secondary structure annotations by Rfam.

3. Compute the target probability Pr(a, b) for each pair of aligned characters a, b in the

above grammar string alignments.

29

4. Generate grammar strings for a large number of ncRNA sequences that are randomly

picked from full families of Rfam 9.1. Compute the background probabilities Pr0(a)

and Pr0(b) from these grammar strings.

The complete score table for grammar string alignment can be found at our website (Ap-

pendix B). All exact matches have big positive scores. And bifurcation starting character

and stem ending character | can only be aligned with themselves or cause a gap. This

is consistent with our intuition because it is not meaningful to align a bifurcation character

with a base pair or a single stranded base.

Insertions or deletions of P or single stranded characters correspond to insertions or

deletions of a base pair or single stranded bases in the ncRNA sequence alignment. Empirical

experiments are conducted to choose default values for their gap opening and extension costs.

The default gap opening score is slightly smaller than the lowest number in the grammar

string’s score table. The default gap extension cost is set as 1/10 of the opening cost. We

assign bigger gap penalties for structural characters # and | in order to force corresponding

stems or single stranded regions to be aligned together.

3.3 Extracting consensus sequence of ncRNA families

We select a data set which includes 452 randomly chosen families from BRAliBase 2.1, an

enhanced RNA alignment benchmark [46]. This data set contains a diverse set of ncRNA

families with different average sequence identity, length, and structural conservation.

In order to generate grammar string of each family, we first need to extract its corre-

sponding consensus sequence. For this purpose, we design an empirical strategy to extract

the consensus sequence of an Rfam family from its multiple sequence alignment and consen-

sus secondary structure. We propose different approaches to generate non-complementary

bases and complementary base-pairs of consensus sequence.

To extract consensus individual base of a specific column in a multiple alignment required

30

steps are as follows:

1. Count the total number of different nucleotides occurred in this specific column of all

sequences. These nucleotides might be any of A,U,C,G nucleotides and in any number

plus dot character (“.”) which is representative of gap in multiple alignments.

2. If the number of counted dots in the column is equal or larger than a fraction of the total

number of sequences, we put “.” in that column of consensus sequence. Otherwise,

we sort non-dot nucleotides in descending order based on the number of occurrence

and then pick them from maximum in descending direction until the sum of selected

nucleotides satisfies an empirical threshold. Finally, based on Tables 3.1, 3.2, and 3.3, a

proper alphabet is selected to put in the corresponding column of consensus sequence.

Table 3.1: Observed 7→ Replacement
Observed Replacement

A A
U U
C C
G G

Table 3.2: Observed 7→ Replacement
Observed Replacement

anagrams of (UA) W
anagrams of (AC) M
anagrams of (AG) R
anagrams of (UC) Y
anagrams of (UG) K
anagrams of (CG) S

Table 3.3: Observed 7→ Replacement
Observed Replacement

anagrams of (AUC) H
anagrams of (AUG) D
anagrams of (ACG) V
anagrams of (UCG) B

31

If none of these cases happen, put N in that column. Anagrams in these tables stand

for all possible rearrangements of letters in the candidate nucleotides, e.g., AU has two

anagrams: AU and UA.

By mapping the observed nucleotides (left column) to our defined alphabets (right col-

umn), we are trying to reveal the degree of conservation in that column. For example,

when the number of an observed nucleotide is high enough to satisfy the empirical

threshold on its own, we map that nucleotide to itself and it implies that column is

well conserved. However, when the summation of more than one nucleotide is needed

to satisfy the threshold, we map them to our defined alphabets so as to show the de-

gree of conservation in that column. Obviously, the more selected nucleotides, the less

degree of conservation in that column.

To extract base pairs of a consensus sequence, we simply put AU in associated columns

of that sequence. This is because in our designed grammar string all complementary base

pair types are considered the same and are mapped to a single grammar alphabet P .

Remark 3.1. In the designed alignment pipeline, multiple structures are allowed to be pre-

dicted for each input sequence. As a result, multiple grammar strings will exist for a single

ncRNA sequence. However, predicted structures for the same ncRNA sequence can differ

significantly. It is important to align only structures that are likely to be consistent with the

native structure of the homologous sequences. For this purpose, grammar pattern introduced

in grammar string chapter is applied to pre-select grammar strings for multiple alignment.

32

Chapter 4

Clustering based on grammar string

Cluster analysis or clustering is generally the task of assigning objects of a set to separate

groups called clusters. Objects in the same cluster are more similar (in some sense) to each

other than to those in other clusters. This technique is vastly used in different areas of bioin-

formatics. More specifically, a group of ncRNAs are classified into clusters, called families,

based on their sequential and structural homology. However, as mentioned in Section 1.2,

restrictions existing in computational steps of generating ncRNA families might separate

some of homologous ncRNA sequences from each other by assigning them to different fam-

ilies. Therefore, designing techniques that enable us to identify this type of homologos but

separated families is still an interesting research area in bioinformatics.

In this chapter, we utilize grammar strings in ncRNA classification (excluding pseudo-

knots) and find clusters in a particular database, Rfam. Organization of this chapter is

as follows: Section 4.1 defines ncRNA classification problem and the big picture of our

methodology to tackle this problem. Section 4.2 discusses steps of designed experiment in

more details. Section 4.3 presents experimental results of our approach.

33

4.1 NcRNA clustering; problem definition and approach

A. Problem definition

In Rfam database, non-coding RNAs are classified into different families based on se-

quence alignments and statistical profiles known as covariance models. Examples of such

families are tRNAs, microRNAs, and such. Each family represents a set of RNA sequences

that, first, can be reasonably aligned, and second, function at the RNA level and share

a clear common ancestor. These two criteria, however, impose fundamental limitation on

finding homologous families of RNAs in Rfam.

The problem with Rfam database comes from the fact that there may be two homologous

families with a common ancestor (same functionality) but too divergent to be aligned, or with

acceptable alignment but distinct functionality. To overcome these issues, the clan concept

is borrowed from the MEROPS and Pfam databases [6,11] to take an alternative approach to

ncRNA families classification. This approach still get the right balance of sequence sensitivity

and specificity when it is applied to ncRNA families. Here, some of the internal quality

control measures used by Rfam can be relaxed for the clanned families. These clans describe

explicit relationships between families that either clearly share a common ancestor but are

too divergent to be reasonably aligned, or groups of families that could be aligned, but have

clearly distinct functions.

As an example, CL0002 clan contains five homologous families RF00030, RF01577,

RF00373, RF00010, RF00011 and RF0009. These families contain ribozyme RNAs involved

in processing of pre-tRNA and pre-rRNA sequences. However, they are difficult to align to

each other. Furthermore, RF01577 and RF00030 are distinct molecules from a functionality

point of view [21].

Another clan of interest is CL00011. This clan contains RF00128 and RF00083 Rfam

families which are homologous, but distinct in functionality. Small RNAs sequences in

RF00128 activate expression of RF00083 while those in RF00083 regulate the translation of

a coding gene [22].

34

B. Our methodology towards ncRNA classification process

Our goal is to evaluate the possibility of using grammar string approach to identify

existing clans in Rfam database, and also to discover novel clan families. In other words,

we would like to apply a clustering method to derived grammar strings and evaluate the

performance of grammar string approach in ncRNA classification problem.

In our proposed approach, we take the following steps:

i) Designing and applying two consensus sequence derivation strategies to Rfam families.

ii) Generating two different corresponding grammar strings GS1 and GS2 based on the

associated consensus sequence and secondary structure.

iii) Extracting two subsets of grammar strings from each set of GS1 and GS2 as data sets

for our experiment.

iv) Applying pairwise alignment method to all the subsets, built in previous step, using

empirical score table and gap penalties.

v) Feeding ncRNA pairwise alignment scores into a clustering application called MCL

(Markov cluster Algorithm) to be classified into different clusters.

In next section, we discuss these steps in more details.

4.2 Step by step design for clustering experiment

4.2.1 Extracting consensus sequences in Rfam families

In order to generate grammar strings in Rfam families, we first need to extract their consensus

sequences. We design two empirical strategies to extract the consensus sequence of an Rfam

family from its multiple sequence alignment and consensus secondary structure. In one

strategy, we assume all base pairs are the same, whereas in the other one, different base

pairs are separated from each other.

35

To extract consensus sequences of Rfam families without distinguishing between base

pairs, we apply the same strategy introduced in Section 3.3, and therefore, the approach will

not be repeated here again. To extract complementary base-pairs of consensus sequences

with distinguished base pairs from multiple alignment of an Rfam family, a new strategy is

designed and presented here.

Extracting base pairs of a consensus sequence from multiple alignment

In this case, the number of different occurrences of base pairs are counted. Possible base

pairs could be any of AU,UA,CG,GC,GU,UG, or even two dots to present un-conserved

base pairs in multiple alignment. If the number of occurring dot base pairs is larger than or

equal to an empirical fraction of family members, we put dot in the corresponding columns of

consensus sequence and secondary structure. Otherwise, we select two most occurring base

pairs. Denoting the first and second most repeated base pairs and number of non-dot base

pairs by X, Y, and N , respectively, and assuming three thresholds th1 = 0.6, th2 = 0.45, and

th3 = 0.4, we arrive at five different cases to be handled as follows:

1. If (the count of X ≥ th1 ×N) then we put X in the consensus sequence (e.g., X=AU

then we put AU in corresponding columns of consensus sequence).

2. If (th2 × N ≤ the count of X < th1 × N) and (the count of Y < th3 × N) then we

still put X in the consensus sequence (e.g., X=AU then we put AU in corresponding

columns of consensus sequence).

3. If (th2 ×N ≤ the count of X < th1 ×N) and (the count of Y ≥ th3 ×N) then we use

the the Figure 4.1 to set the corresponding columns in the consensus sequence.

4. If (the count of X < th2 ×N) and (the count of Y < th3 ×N) then we put ZZ in the

corresponding columns of the consensus sequence.

36

Observed Replacement

AU EE

UA FF

CG II

GC JJ

GU LL

UG OO

Figure 4.1: Mapping in the consensus sequence

4.2.2 Strategy of extracting data sets for our experiment

In Subsection 4.2.1, we explained how C1 and C2 as two sets of consensus sequences are

built from Rfam families. In C1, all base pairs are shown by single alphabet ‘P’ while in

C2 base pairs are distinguished based on the type of nucleotides and their decoration. By

adding conserved secondary structures of Rfam families to C1 and C2, we can apply two

grammar string approaches to these data sets. The version of grammar string design without

distinguishing between base pairs will be applied to C1 , whereas the one with separated

grammar string alphabets for each type of complementary base pair will be applied to C2.

As a result, two sets GS1 and GS2 of grammar strings will be generated for whole Rfam

families.

So far, we have designed two grammar string approaches in Sections 2.2.1 and 2.2.3. From

37

now on, we refer to these by “old” and “new” labels, respectively. To prepare the data sets

for the experiment, we first need to generate two grammar sets of whole Rfam families based

on our old and new grammar string designs. To this end, we extract secondary structures of

Rfam families from Rfam database and associate them with their corresponding consensus

sequences in C1 and C2 and create CS1 and CS2 data sets, respectively. Now, we apply

our old grammar string approach to CS1 and generate grammar string set GS1, and apply

the new grammar string approach to CS2 and generate grammar string set GS2. In next

two subsections, we will describe how to prepare data sets for our experiment from GS1 and

GS2.

Strategy for extracting Rfam families of clan database

To study the performance of two different grammar string designs in identifying well-known

clans, they need to be tested on Rfam families whose clusters have already been identified.

Since generally grammar string approach is a representation for ncRNAs secondary structure,

we would like to see if this approach is able to identify and consequently cluster clan family

members with similar secondary structures but different functionalities. For this purpose, we

take advantage of grammar pattern strategy. We define label “conserved” for clan families

whose Rfam family members have the same grammar pattern. By applying tree strategies in

Section 2.2.5, we extract fourteen conserved clans. Table 4.3, shows these conserved clans,

their family members as well as their corresponding grammar patterns. we now extract

grammar strings of conserved clans from GS1 and GS2 and name them old and new grammar

strings of conserved clans, respectively.

Strategy for extracting Rfam families which are not in clan database

To study the performance of two different grammar string designs in discovery of novel

ncRNA clusters, grammar strings of Rfam families whose clusters have not been discovered

yet are required. We extract this subset of grammar strings from both GS1 and GS2 sets

38

and call them old and new grammar strings of Rfam−Clan, respectively. Here and hereafter,

we use “Rfam−Clan” grammar strings to denote the entire grammar strings of Rfam families

excluding members of Clan database.

4.2.3 Pairwise alignment

After extracting four data sets (old/new conserved clans and old/new Rfam−clan grammar

strings), we run pairwise alignment application on these data sets. More specifically, we

design two empirical score tables called as “old” and “new” score tables. In the old score

table, which will be used in pairwise alignment of old grammar strings, all values are chosen

empirically, following a set of guidelines given below.

• Individual bases do not align with base pairs, bifurcations (#), or end of derivations

(|).

• Left derivation individual bases do not align with right derivation individual bases and

viceversa.

• Base pairs do not align with bifurcations (#) or end of derivations (|).

• Bifurcations (#) do not align with end of derivations and viceversa.

• The score of aligning two same alphabets is positive and that of aligning two different

alphabets is negative.

• The score of aligning two bifurcations (#), or two end of derivations (|) is greater than

aligning two other equivalent grammar string alphabets.

• Individual bases {A,G} and {C,U} are aligned better than other combinations of

individual bases. Therefore, alignment score of these individual bases is still negative,

but greater than alignment score of other individual bases.

39

To construct the new score table which is used for pairwise alignment of the new grammar

strings, we take advantage of RIBOSUM matrices (see Appendix A). These matrices are

designed by Robert.J Klein and Sean.R Eddy [27] to search for homologs of a single RNA

molecule in a sequence database, based on secondary structure. There are the guidelines to

build the new score table:

• The left derivation individual base columns existing in a left derivation individual base

row are filled in with scores from the corresponding table of RIBOSUM matrix. The

remaining columns in such a row (a left derivation individual base row) will be filled in

with a very large negative number so as to avoid selecting alignments associated with

those columns.

• The right derivation individual base columns existing in a right derivation individual

base row are filled in with scores from the corresponding table of RIBOSUM matrix.

The remaining columns in such a row (a right derivation individual base row) will be

filled in with a very large negative number so as to avoid selecting alignments associated

with those columns.

• To assign scores to columns of base pair rows, we go through different strategies based

on the type of participating base pairs:

– If base pair alphabets {<,>, [,], {, }} are aligned with each other, we use scores

from the corresponding RIBOSUM matrix.

– If base pair alphabets {E,F,I,J,L,O} are aligned with each other, we use a quarter

(1/4) of corresponding base pair scores from RIBOSUM matrix (Based on our

observations, base pair alphabet Z is never seen in any grammar strings).

– If a member of {<,>, [,], {, }} is aligned with a member of {E,F, I, J, L,O}, we

use half of the corresponding base pair score from RIBOSUM matrix.

– The remaining columns of a base pair row are filled in with very large negative

numbers.

40

• The alignment score of two bifurcations (#) or two end of derivations (|) is set to a

very large positive number. The remaining columns of such rows are filled in with very

large negative numbers.

We refer to Appendix B for both old and new score tables. We also need to set the gap

penalties to perform pairwise alignment. Our gap penalty consists of open and extension

gap penalties. The open penalty is assigned to the first matched gap with a grammar string

alphabet. If after this gap we have to match another gap with a grammar alphabet then

the negative gap extension score is used. We set gap penalties and extension empirically.

In Table 4.1, each data set is presented along with the corresponding score table and gap

penalties used in pairwise alignment.

The implementation of pairwise alignment is done by our colleague Achawanantakun and

we refer the interested reader to [37] for more details on the subject.

Table 4.1: Mapping in the consensus sequence
Data sets Score tables Gap Penalties

Old conserved clans Old score table Open -8 / Ext -2
New conserved clans New score table Open -8 / Ext -2
Old Rfam-Clans Old score table Open -1 / Ext -12
New Rfam-Clans New score table Open -1 / Ext -15

4.2.4 Applying MCL clustering approach

The MCL (Markov Cluster Algorithm) is an unsupervised clustering algorithm for networks.

This algorithm which is claimed to be fast and scalable originates from simulation of stochas-

tic flow in graphs. Stijn van Dongen invented this algorithm which applies to different areas,

especially in bioinformatics. The algorithm simulates flow using algebraic operations on ma-

trices, namely expansion and inflation. The former operation coincides with normal matrix

multiplication to model the spreading out of flow and its homogeneity. The latter (inflation)

models the contraction of flow and its thickness/thinness in regions of higher/lower current.

The MCL process causes flow to spread out within natural clusters and evaporate in between

41

different clusters. See [43] for mathematical theory behind the MCL algorithm. MCL has

O(N ∗ k2) time complexity in worst case, where N is the number of nodes in the graph, and

k is the maximum number of neighbors tracked during computations.

We use pairwise alignment scores as inputs to MCL clustering application. Our as-

sumption is that the pairwise alignment score between each two grammar strings shows

the degree of similarity between their grammar strings and consequently between their sec-

ondary structures. Before feeding pairwise alignment scores of a data set to MCL, we first

find the minimum score of data set and map it to the origin (zero). All other scores of the

corresponding set are accordingly shifted.

We run MCL application on a set of pairwise alignment scores with various cut-off thresh-

olds. The cut-off threshold is used to eliminate scores less than this threshold. This option

helps us limit our search domain especially when we deal with large scale data sets.

4.3 Experimental results

4.3.1 Experimental results of old designed grammar string

Data set: conserved clans

In Figure 4.2, conserved clans along with their Rfam family members are shown.

We calculate the average of pairwise alignment shifted scores between Rfam family mem-

bers within each clan. This value is called “internal average score”. Table 4.2 shows classified

conserved clans based on the internal average score factor. Experimental results show that

clustering process is more successful in identifying clans whose members have higher internal

average score than 4. We first analyze the behavior of Rfam families which belong to these

clans during clustering process. To begin with, we name and also explain some figures and

tables that will heavily be used in our analysis.

• Figure 4.3 illustrates the summary of a clustering process (presented in five levels)

42

Clan name Clan family members Description

CL00015 RF01376 RF01377 RF01318 CRISPR

CL00010 RF00008 RF00163 ribozyme

CL00088 RF00685 RF00794 snoRNA; CD-box;

CL00099 RF00643 RF00692 snoRNA; CD-box;

CL00073 RF00046 RF00609 snoRNA; CD-box;

CL00074 RF00186 RF00339 snoRNA; CD-box;

CL00076 RF00610 RF01280 snRNA;

CL00044 RF00581 RF01249 snoRNA; CD-box;

CL00048 RF00569 RF01183 snoRNA; CD-box;

CL00050 RF00087 RF00136 snoRNA; CD-box;

CL00064 RF00151 RF00608 snRNA;

CL00067 RF00270 RF01170 RF01200 snRNA;

CL00072 RF00055 RF01299 snRNA;

CL00008 RF00206 RF01277 snoRNA; CD-box;

Figure 4.2: Pairwise alignment configurations

Table 4.2: Classification of conserved clans based on internal average score
Average score interval [1,2) [2,3) [3,4) [4,5) [5,6)

Conserved Clan families CL00099
CL00008
CL00044
CL00088

CL00067
CL00064
CL00048
CL00073

CL000072
CL00050
CL00076
CL00076
CL00074
CL00015

CL00010

applied to Rfam family members of conserved clans. These clans all have internal

average score of more than 4, i.e, two most right columns in Table 4.2, except for Rfam

families shown in rectangles (in levels 3 and 4) which do not belong to the two most

43

right columns. We will later explain why this is the case.

• The table shown in Figure 4.5 presents shifted pairwise alignment scores between each

two participating Rfam families in the clustering process. We fill in diagonal elements

of the table with zeros as pairwise alignment of each family with itself is not defined.

The two most right columns are also filled in with zeros. This will be taken up later

in this section.

• Table 4.3 presents grammar patterns of conserved clans with internal average score

higher than 4.

c

RF01320

RF01318
RF01377

RF01376 RF00163

RF0008
c

RF01320

RF01318 RF01377

RF01376 RF00163 RF00186

RF00339

RF00610

RF0008

RF01299

RF00055

RF00087

RF00136 RF01280

RF00186

RF00339

c

RF00136

RF00610
c

RF01280

RF00087

RF01299

RF00055

c

RF00339

RF00186

RF00136
RF00610

RF01280RF01299

RF00055

RF00151

RF00087

RF00163

RF0008
cc

RF01320

RF01318
RF01377

RF01376

c

RF00339

RF00186

RF00136
RF00610

RF01280RF01299

RF00055

RF00151

RF00087
RF00163

RF0008
cc

RF01320

RF01318
RF01377

RF01376

Summary level: 1

Summary level: 2

Summary level: 3

Figure 4.3: Summary of clustering process of conserved clans members

44

CL00015 CL00074 CL00076

RF01320 RF01376 RF01377 RF01318 RF00186 RF00339 RF00610 RF01280

CL00015

RF01320 0 4.07 5.38 4.74 1.47 1.4 1.39 1.24

RF01376 0 3.11 5.64 1.42 1.42 1.24 1.17

RF01377 0 3.39 1.92 1.87 1.82 1.64

RF01318 0 1.15 1.22 1.16 0.98

CL00074

RF00186 0 4.99 4.38 3.8

RF00339 0 4.38 3.84

CL00076

RF00610 0 4.67

RF01280 0

CL00050

RF00087

RF00136

CL00072

RF00055

RF01299

CL00010

RF00008

RF00163

Figure 4.4: Pairwise alignment scores - Part1

45

CL00050 CL00072 CL00010

RF00087 RF00136 RF00055 RF01299 RF00008 RF00163

CL00015

RF01320 1.545381 1.497188 1.256737 1.520346 0 0

RF01376 1.25098 1.35261 1.24301 1.403463 0 0

RF01377 1.605622 1.891358 1.500366 1.8 0 0

RF01318 1.074509 1.164285 0.963441 1.15671 0 0

CL00074

RF00186 3.968627 4.461044 3.820689 3.874796 0 0

RF00339 3.169697 4.086274 3.989855 3.916049 0 0

CL00076

RF00610 3.567816 3.765891 4.177011 3.634599 0 0

RF01280 3.511355 3.78608 4.064583 3.302564 0 0

CL00050

RF00087 0 4.122222 3.252083 3.226515 0 0

RF00136 0 3.764912 4.092857 0 0

CL00072

RF00055 0 4.349425 0 0

RF01299 0 0 0

CL00010

RF00008 0 5.690196

RF00163 0

Figure 4.5: Pairwise alignment scores - Part2

46

Table 4.3: Grammar patterns of 6 Clans
Rfam families Strategy 1 Strategy 2 Strategy 3 (P: 0.5, A:0.7, a:0.7)

CL00015

RF01320
RF01376
RF01377
RF01318

P|
P|
P|
P|

P|
P|
P|
P|

AaPA|
AP|

AaPA|
AaP|

CL00010
RF00008
RF00163

P#P|P|
P#P|P|

P#P|P|
P#P|P|

Pa#aPA|PA|
PA#aPA|P|

CL00074
RF00186
RF00339

P|
P|

P|
P|

PA|
PA|

CL00076
RF00610
RF01280

P|
P|

P|
P|

PA|
PA|

CL00050
RF00087
RF00136

P|
P|

P|
P|

PA|
PA|

CL00072
RF00055
RF01299

P|
P|

P|
P|

PA|
PA|

A. CL00010 and CL00015 clans

CL00010 and CL0015 are both identified and remained very well-conserved during clus-

tering process (Figure 4.3). We study these two clans and investigate why our method could

also put them together in the clustering process, very much like what clan database did.

CL00010 is called “Hammerhead clan” in Clan database. This clan carries two RNA

families Hammerhead 1(RF0008) and Hammerhead 3(RF00163). Homology between these

families has been established in the published literature [7,26]. In clustering process CL00010

family members are clustered together and remained isolated from other Rfam families.

The reason is that although RF0008 and RF00163 share a similar secondary structure with

each other, they are very different from other participants in structural level. RF0008 and

RF00163 are the only two Rfam families in the Table 4.3 which have bifurcation (#) in

their grammar patterns and as a result their pairwise alignments with other families result

in large negative scores. Based on our own defined rule in pairwise alignment application,

47

these alignment types are filtered out and do not appear at the output. As a result, these

families do not participate in clustering process and remain isolated from other families.

Clan CL00015 is also called “CRISPR-2 clan” and contains RNA families CRISPR-

DR5 (RF01318), CRISPR-DR7 (RF01320), CRISPR-DR63 (RF01376) and CRISPR-DR64

(RF01377). To verify the relationship between Rfam families of this clan we refer to [32,34,

39]. CL00015 members are also identified and remained isolated from other Rfam families

during the clustering process. However, CL00015 clan members are not far from other

participants in structural level that much. As it is seen in the grammar pattern Table 4.3,

members in this clan share the same grammar patterns as other participants (excluding

RF0008 and RF00163). Members of CL00015 have long chains of individual bases starting

at both ends 3’ and 5’. CL00074, CL00076, CL00050, and CL00072 clan members do not

have this attribute. As a result, this clan family members could share a high score pairwise

alignment with each other, have low pairwise alignment with other Rfam families, and finally

are isolated from other clusters. For more details, one can see the table in Figure 4.5, and

check the pairwise alignment scores of CL00015 family members with inside and outside of

clan Rfam families.

48

B. CL00074 and CL00076 clans

CL00074 and CL00076 are both identified in clustering process (Figure 4.3), but are not

remained isolated. We start with a short biological introduction of these clans and next will

analyze the outcome of the experimental results for them.

CL00074 is called “SNORD101 clan” and contains two RNA families SNORD101 (RF000186)

and snoR60 (RF00339). Small nucleolar RNAs snoR60 (RF00339) and snoRD101 (RF000186)

both are non-coding RNA (ncRNA) molecules which function to modify other small nuclear

RNAs (snRNAs). They both belong to the C/D box class of snoRNAs containing the

conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Bioin-

formatic methods discussed in [32,34,39] confirm the relationship between these families.

Clan CL00076 is called “SNORD110” and contains two RNA families SNORD110 (RF00610)

and snoR14 (RF01280). Functionality of both families is to modify other small nuclear RNAs

(snRNAs). They also belong to C/D box class of snoRNAs which contain the C (UGAUGA)

and D (CUGA) box motifs. Bioinformatic methods discussed in [24] confirm the relationship

between these families.

Based on the Table 4.3, these two clans not only share very similar secondary structures

with each other, but also they are similar to CL00050 and CL00072 clans in this aspect.

Instead of high degree of similarity between this clan members with other participating

Rfam families in the structural level, our clustering approach is still successful to identify

CL00074 and CL00076 clans. Also in the pairwise alignment shown in Figure 4.5, it is clearly

seen that members of CL00074 or CL00076 share higher pairwise alignment score with their

clan-mates than those of other clans. Furthermore, although secondary structures of these

clans are very similar to each other and to the members of other clans, designed grammar

strings and score table are still successful to distinguish between Rfam family members of

these two clans. However, in further steps of the clustering, RF00136 is merged with CL00074

clan members. This observation will be discussed in the next step.

C. CL00050 clan

49

CL00050 is also called “SNORD26 clan” and contains two RNA families SNORD26

(RF00087) and SNORD81 (RF00136). Small nucleolar RNAs SNORD26 and SNORD81

both are members of the C/D class of snoRNA and contain the C (UGAUGA) and D

(CUGA) box motifs. Bioinformatic methods discussed in [32, 39] confirm the relationship

between these families.

During the clustering process, RF00136 joins the cluster of CL00074 Rfam family mem-

bers. The reason is that RF00136 is more similar to RF00186 member of CL00074 in both

sequence and structure level. To see this fact better, please visit the corresponding pages

in Clan database which show the secondary structure of CL00074 and CL00050 (Appendix

C). In the following, pairwise alignments of {RF00136,RF00186} and {RF00136,RF00087}

are shown, respectively. As it is seen, RF00136 has a better alignment with RF00186 than

its clan-mate RF00087.

PPPPP---AAUGAUGA-CUUW----AAUUGUCGGAUACCCCUUCACUCCYU--YYA--UGAGUGA

PPPPPPPCA-UGAUGAUCUCACYCCAACU-U--GA-ACUCUCUCAC----UGAUUACUUGA-UGA

-AACAUAAYAG-UCUGA|

YAAUA-AA-AGAUCUGA|

score= 243.00

align length= 83

RF00186-RF00136 pairwise alignment score before shifting:2.927711

RF00186-RF00136 pairwise alignment score after shifting:4.461044

cPPPP------GGGGAUGAUUUYA----AGAAC-UGAACUCUCU--CU--UU-C-UGAUGGWUUA

-PPPPPPPCAUG---AUGAUCUCACYCCA--ACUUGAACUCUCUCACUGAUUACUUGAUGA--YA

GUGGAGAAAASMMAAAAWMUCUGA|

AU----AAAA---GA----UCUGA|

score= 233.00

align length= 90

RF00087-RF00136 pairwise alignment score before shifting:2.588889

50

RF00087-RF00136 pairwise alignment score after shifting:4.122222

D. CL00072 clan

CL00072 is also called “SNORD96 clan” in Clan database and contains the RNA families

SNORD96 (RF00055) and snR39B (RF00608). They are both members of the C/D class of

snoRNA and contain the C (UGAUGA) and D (CUGA) box motifs [29].

Rfam family members of CL00072 are clustered together along with RF00151 Rfam family

which belongs to CL00064. CL00064 is called “SNORD58 clan” and contains RNA families

SNORD58 (RF00151) and SNORD99 (RF00608). These families are both non-coding RNA

(ncRNA) molecules whose functionality is to modify other small nuclear RNAs (snRNAs).

These both belong to the C/D box class of snoRNAs and contain the C (UGAUGA) and

D (CUGA) box motifs. Bioinformatic methods discussed in [32,39] confirm the relationship

between these families.

RF00151 joins the cluster of CL00072 clan members because this Rfam family is more

similar to RF01299 Rfam family in sequential level than RF00608 which is its clan-mate.

To see this fact better, please visit the corresponding pages in Clan database which show

the secondary structure of CL00072 and CL00064 (Appendix C). In the following, pairwise

alignments of {RF00608, RF00151,RF01299} are shown, respectively. As it is seen, RF00151

has a better pairwise alignment with RF01299 than its clan-mate RF00608.

cPPPP----WGUGAUGA---CU-WUCUUA--GGACACCUUUGGAU--UA---AC---CAUGAAAAS

yPPPPPUCMAG-GAUGAAACCYAAUYUSAGUGGACAUCUMUGGAUGAWAMWUGCGGAUAUGGGA--

AAAWMWRUUCU--GA|

---------CUGAGA|

score= 172.00

align length= 82

RF00151-RF00608 pairwise alignment score before shifting:2.588889

RF00151-RF00608 pairwise alignment score after shifting:3.630894

51

cP--PPPWGUGAUGACUWUCUUAGGA-CACCUUU--GGAUUAACC----AUGAAAASAA-AWMWRUU

-PPPPPPWAUGAUGGC------A-WAYCAUCUUUCGGGACUGACCUGAAAUGRAGAGAWUAYWYAUU

-CUGA|

GCUGA|

score= 208.00

align length= 73

RF00151-RF01299 pairwise alignment score before shifting:2.849315

RF00087-RF00136 pairwise alignment score after shifting:4.382648

E. Conserved clans with internal average score less than 4

The clustering process is not successful to identify clans whose members have internal

average score (Section 4.3.1) less than 4. We calculate the average of pairwise alignment

scores between members of each clan and call it “external average score”. In Figure 4.6,

both internal and external average scores of 14 participating clans in this experiment are

presented. Clans whose internal and external average scores are much closer to each other,

have a lesser chance of being identified or remained isolated during clustering process. Clans

whose members could not stick to their clan-mates and create their own isolated clans have

close external and internal average scores. Also, their internal and external scores are close

to the corresponding average scores of other clans.

Clustering results of Rfam−Clan data set

By applying the clustering approach to the shifted pairwise alignment scores of Rfam−Clan

grammar strings, we could find some clusters which remain well-conserved. These clus-

ters are presented in Table 4.4 following with a short description of the common biological

functionality for members of each cluster.

• RF01112 and RF01083 are needed for efficient transcription. For more details on

biological functionalities of RF01112 and RF01083, please visit the corresponding pages

in Clan database (Appendix C).

52

0

1

2

3

4

5

6

C
L
00

01
0

C
L
00

01
5

C
L
00

07
4

C
L
00

07
6

C
L
00

07
2

C
L
00

05
0

C
L
00

08
8

C
L
00

09
9

C
L
00

07
3

C
L
00

04
4

C
L
00

04
8

C
L
00

06
4

C
L
00

06
7

C
L
00

00
8

Internal average scores External average score

Figure 4.6: External and internal average scores of all conserved clans

• RF01111 and RF01109 are needed for efficient transcription. For more details on

biological functionalities of RF01112 and RF01083, please visit the corresponding pages

in Clan database (Appendix C).

• RF01025 and RF01017 have multiple roles in negative regulation (transcript degrada-

tion and sequestering, translational suppression) and possible involvement in positive

regulation (transcriptional and translational activation). For more details on biological

functionalities of RF01112 and RF01083, please visit the corresponding pages in Clan

database (Appendix C).

• RF01386 and RF00014 are used in translation and transcription terminator. For more

details on biological functionalities of RF01112 and RF01083, please visit the corre-

sponding pages in Clan database (Appendix C).

53

Table 4.4: Discovered Clusters in Rfam−Clan
Number Rfam families Grammar pattern RNA Type Domain

1
RF01112
RF01083

APA|
APA| Cis-reg Viruses

2
RF01111
RF01109

aA|
aA| Cis-reg

Viruses
Viruses,Bacteria

3
RF01025
RF01017

PA|
PA| miRNA Eukaryota

4
RF01386
RF00014

APA|
APA| sRNA

Bacteria
Bacteria,Eukaryota

5
RF01340
RF01322

aP|
aP| CRISPR Bacteria

6
RF01115
RF01106

APA|
APA| Cis-reg

Viruses
Viruses,Eukaryota

• RF01340 and RF01322 function as a prokaryotic immune system. For more details

on biological functionalities of RF01112 and RF01083, please visit the corresponding

pages in Clan database (Appendix C).

• RF01115 and RF01106 are needed for efficient transcription. For more details on

biological functionalities of RF01112 and RF01083, please visit the corresponding pages

in Clan database (Appendix C).

4.3.2 Analysis of experimental results based on using new version

of grammar string design

By applying clustering process to the shifted pairwise alignment of conserved clans which

are generated based on new grammar string design, the results are the same as we achieved

before in Section 4.3.1. We can conclude that the performance of old designed grammar

string is as well as the new one. Designing a grammar string with distinguished base pairs

54

or defining a new score table could not enhance our ability to do a better clustering. We

have done the same experiment for the new grammar string design, however, the questions

as to how to interpret the results require more investigation and are parts of the future work

on this subject.

55

APPENDICES

56

Appendix A

Ribosum matrix

A.1 Used in grammar string chapter

A 2.22

C -1.86 1.16

G -1.46 -2.48 1.03

U -1.39 -1.05 -1.74 1.65

A C G U

Figure A.1: Ribosum matrix - Part1

57

AA -2.49

AC -7.04 -2.11

AG -8.24 -8.89 -0.8

AU -4.32 -2.04 -5.13 4.49

CA -8.84 -9.37 -10.41 -5.56 -5.13

CC -14.37 -9.08 -14.53 -6.71 -10.53 -3.59

CG -4.68 -5.86 -4.57 1.67 -3.57 -5.71 5.36

CU -12.64 -10.45 -10.14 -5.17 -8.49 -5.77 -4.96

GA -6.86 -9.73 -8.61 -5.33 -7.98 -12.43 -6

GC -5.03 -3.81 -5.77 2.7 -5.95 -3.7 2.11

GG -8.39 -11.05 -5.38 -5.61 -11.36 -12.58 -4.66

GU -5.84 -4.72 -6.6 0.59 -7.93 -7.88 -0.27

UA -4.01 -5.33 -5.43 1.61 -2.42 -6.88 2.75

UC -11.32 -8.67 -8.87 -4.81 -7.08 -7.4 -4.91

UG -6.16 -6.93 -5.94 -0.51 -5.63 -8.41 1.32

UU -9.05 -7.83 -11.07 -2.98 -8.39 -5.41 -3.67

AA AC AG AU CA CC CG

Figure A.2: Ribosum matrix - Part2

58

CU -2.28

GA -7.71 -1.05

GC -5.84 -4.88 5.02

GG -13.69 -8.67 -4.13 -1.98

GU -5.61 -6.1 1.21 -5.77 3.47

UA -4.72 -5.85 1.6 -5.75 -0.57 4.97

UC -3.83 -6.63 -4.49 -12.01 -5.3 -2.98 -3.21

UG -7.36 -7.55 -0.08 -4.27 -2.09 1.14 -4.76 3.36

UU -5.21 -11.54 -3.9 -10.79 -4.45 -3.39 -5.97 -4.28 -0.02

CU GA GC GG GU UA UC UG UU

Figure A.3: Ribosum matrix - Part3

59

Appendix B

Old and new score tables

B.1 Old grammar string score table

Our website: http://www.cse.msu.edu/ yannisun/grammar-string

A U C G

A 7 -12 -12 -1

U -12 7 -1 -12

C -12 -1 7 -12

G -1 -12 -12 7

a -1000000 -1000000 -1000000 -1000000

u -1000000 -1000000 -1000000 -1000000

c -1000000 -1000000 -1000000 -1000000

g -1000000 -1000000 -1000000 -1000000

P -100 -100 -100 -100

-1000000 -1000000 -1000000 -1000000

| -1000000 -1000000 -1000000 -1000000

Figure B.1: Score table used in pairwise alignments of old garment strings - Part1

60

a u c g P # |

A -1000000 -1000000 -1000000 -1000000 -100 -1000000 -1000000

U -1000000 -1000000 -1000000 -1000000 -100 -1000000 -1000000

C -1000000 -1000000 -1000000 -1000000 -100 -1000000 -1000000

G -1000000 -1000000 -1000000 -1000000 -100 -1000000 -1000000

a 7 -12 -12 -1 -100 -1000000 -1000000

u -12 7 -1 -12 -100 -1000000 -1000000

c -12 -1 7 -12 -100 -1000000 -1000000

g -1 -12 -12 7 -100 -1000000 -1000000

P -100 -100 -100 -100 7 -1000000 -1000000

-1000000 -1000000 -1000000 -1000000 -1000000 72 -1000000

| -1000000 -1000000 -1000000 -1000000 -1000000 -1000000 58

Figure B.2: Score table used in pairwise alignments of old garment strings - Part2

61

B.2 New grammar string score table

A U C G a u c

A 2.22 -1.39 -1.86 -1.46 -1000000 -1000000 -1000000

U -1.39 1.65 -1.05 -1.74 -1000000 -1000000 -1000000

C -1.86 -1.05 1.16 -2.48 -1000000 -1000000 -1000000

G -1.46 -1.74 -1.48 1.03 -1000000 -1000000 -1000000

a -1000000 -1000000 -1000000 -1000000 2.22 -1.39 -1.86

u -1000000 -1000000 -1000000 -1000000 -1.39 1.65 -1.05

c -1000000 -1000000 -1000000 -1000000 -1.86 -1.05 1.16

g -1000000 -1000000 -1000000 -1000000 -1.46 -1.74 -1.48

< 1.11 -2.75 -3.72 -2.92 -2.78 0.825 -2.1

> -2.78 0.825 -2.1 -3.48 1.11 -2.75 -3.72

[-3.72 -2.1 -0.58 -4.96 -2.92 -3.48 -4.96

] -2.92 -3.48 -4.96 0.515 -3.72 -2.1 -0.58

(-2.92 -3.48 -4.96 0.515 -2.78 0.825 -2.1

) -2.78 0.825 -2.1 -3.48 -2.92 -3.48 -4.96

E 0.555 -5.56 -7.44 -5.84 -5.56 0.412 -4.2

F -5.56 0.412 -4.2 0.29 0.555 -5.56 -7.44

I -7.44 -4.2 0.29 -9.92 -5.84 -6.69 -9.92

J -5.84 -6.69 -9.92 0.257 -7.44 -4.2 0.29

L -5.84 -6.69 -9.92 0.257 -5.56 0.412 -4.2

O -5.56 0.412 -4.2 -6.96 -5.84 -6.69 -9.92

Z -13 -13 -13 -13 -13 -13 -13

-1000000 -1000000 -1000000 -1000000 -1000000 -1000000 -1000000

| -1000000 -1000000 -1000000 -1000000 -1000000 -1000000 -1000000

Figure B.3: Score table used in pairwise alignments of old garment strings - Part1

62

g < > [] ()

A -1000000 1.11 -2.75 -3.72 -2.92 -2.92 -2.78

U -1000000 -2.78 0.825 -2.1 -3.48 -3.48 0.825

C -1000000 -3.72 -2.1 -0.58 -4.96 -4.96 -2.1

G -1000000 -2.92 -3.48 -4.96 0.515 0.515 -3.48

a -1.46 -2.78 1.11 -2.92 -3.72 -2.78 -2.92

u -1.74 0.825 -2.78 1.11 -2.1 0.825 -3.48

c -2.48 -2.1 -3.72 -4.96 0.58 -2.1 -4.96

g 1.03 -3.48 -2.92 0.515 -4.96 -3.48 0.515

< -3.48 4.49 1.61 1.67 2.7 0.59 -0.51

> -2.92 1.61 4.97 2.75 1.6 -0.57 1.14

[0.515 1.67 2.75 5.36 2.11 -0.27 1.32

] -4.96 2.7 1.6 2.11 5.62 1.21 -0.08

(-3.48 0.59 -0.57 -0.27 1.21 3.47 -2.09

) 0.515 -0.51 1.14 1.32 -0.08 -2.09 3.36

E 0.29 2.25 0.805 0.835 1.35 0.295 -1.02

F -5.84 0.805 2.485 1.375 0.8 -1.14 0.57

I 0.257 0.835 1.375 2.68 1.055 -0.54 0.66

J -9.92 1.35 0.8 1.055 2.81 2.42 -0.16

L -6.96 0.295 -1.14 -0.54 2.42 1.735 -4.18

O 0.257 -1.02 0.57 0.66 -0.16 -4.18 1.68

Z -13 -10 -10 -10 -10 -10 -10

-1000000 -1000000 -1000000 -1000000 -1000000 -1000000 -1000000

| -1000000 -1000000 -1000000 -1000000 -1000000 -1000000 -1000000

Figure B.4: Score table used in pairwise alignments of old garment strings - Part2

63

E F I J L O Z

A 0.555 -5.56 -7.44 -5.84 -5.84 -5.56 -13

U -5.56 0.412 -4.2 -6.96 -6.96 0.412 -13

C -7.44 -4.2 0.29 -9.92 -9.92 -4.2 -13

G -5.84 -6.96 -9.92 0.257 0.257 -6.96 -13

a -5.56 0.555 -5.84 -7.44 -5.56 -5.84 -13

u 0.412 -5.56 -6.96 -4.2 0.412 -6.96 -13

c -4.2 -7.44 -9.92 0.29 -4.2 -9.92 -13

g -6.96 -5.84 0.257 -9.92 -6.96 0.257 -13

< 2.25 0.825 0.835 1.35 0.295 -1.02 -3

> 0.805 2.485 1.375 0.8 -1.14 0.57 -3

[0.835 1.375 2.68 1.055 -0.54 0.66 -3

] 1.35 0.8 1.055 2.81 0.605 -1.6 -3

(0.295 -1.14 -0.54 0.605 1.735 -4.18 -3

) -1.02 0.57 0.66 -0.16 -4.18 1.68 -3

E 1.125 0.402 0.417 0.675 0.147 -2.04 -3

F 0.402 1.242 0.687 0.4 -2.28 0.285 -3

I 0.417 0.687 1.34 0.527 -1.08 0.33 -3

J 0.675 0.4 0.527 1.405 1.21 -0.32 -3

L 0.147 -2.28 -1.08 1.21 0.867 -8.36 -3

O -2.04 0.285 0.33 -0.32 -8.36 0.84 -3

Z -10 -10 -10 -10 -10 -10 -10

-1000000 -1000000 -1000000 -1000000 -1000000 -1000000 -1000000

| -1000000 -1000000 -1000000 -1000000 -1000000 -1000000 -1000000

Figure B.5: Score table used in pairwise alignments of old garment strings - Part3

64

|

A -1000000 -1000000

U -1000000 -1000000

C -1000000 -1000000

G -1000000 -1000000

a -1000000 -1000000

u -1000000 -1000000

c -1000000 -1000000

g -1000000 -1000000

< -1000000 -1000000

> -1000000 -1000000

[-1000000 -1000000

] -1000000 -1000000

(-1000000 -1000000

) -1000000 -1000000

E -1000000 -1000000

F -1000000 -1000000

I -1000000 -1000000

J -1000000 -1000000

L -1000000 -1000000

O -1000000 -1000000

Z -1000000 -1000000

100 -1000000

| -1000000 80

Figure B.6: Score table generated based on Ribosum matrix and used in pairwise alignments
of new garment strings - Part4

65

Appendix C

Links to Web Pages of Clan families and their members

C.1 Used in experimental results section

Name Webpage

CL00074 http://rfam.sanger.ac.uk/clan/CL00074

CL00050 http://rfam.sanger.ac.uk/clan/CL00050

CL00072 http://rfam.sanger.ac.uk/clan/CL00072

CL00064 http://rfam.sanger.ac.uk/clan/CL00064

RF01112 http://rfam.sanger.ac.uk/family/RF01112

RF01083 http://rfam.sanger.ac.uk/family/RF01083

RF01111 http://rfam.sanger.ac.uk/family/RF01111

RF01109 http://rfam.sanger.ac.uk/family/RF01109

RF01025 http://rfam.sanger.ac.uk/family/RF01025

RF01017 http://rfam.sanger.ac.uk/family/RF01017

RF01386 http://rfam.sanger.ac.uk/family/RF01386

RF00014 http://rfam.sanger.ac.uk/family/RF00014

RF01340 http://rfam.sanger.ac.uk/family/RF01340

RF01322 http://rfam.sanger.ac.uk/family/RF01322

RF01115 http://rfam.sanger.ac.uk/family/RF01115

RF01106 http://rfam.sanger.ac.uk/family/RF01106

Figure C.1: Links to Web Pages

66

BIBLIOGRAPHY

67

Bibliography

[1] Rujira Achawanantakun, Seyedeh Shohreh Takyar, and Yanni Sun. Grammar string:
a novel ncRNA secondary structure representation. In 9th Annual International Con-
ference on Computational Systems Bioinformatics, pages 2–13, Stanford, CA, August
2010.

[2] S F Altschul, W Gish, W Miller, E W Myers, and D J Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215:403–410, 1990.

[3] F Bai, D Li, and T Wang. A new mapping rule for RNA secondary structures with its
applications. J. Math. Chem., 43:932–943, 2008.

[4] M. Blanchette, W. J. Kent, C. Riemer, L. Elnitski, A. F. Smit, K. M. Roskin,
R. Baertsch, K. Rosenbloom, H. Clawson, E. D. Green, D. Haussler, and W. Miller.
Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res,
14(4):708–715, 2004.

[5] Francis Crick. Central dogma of molecular bilogy. Nature, 227:561–563, August 1970.

[6] Neil D. Rawlings and Alan J. Barrett. Evolutionary families of peptidases. Biochem J.,
290:205–218, 1993.

[7] Ruffner DE, Stormo GD, and Uhlenbeck OC.

[8] Robin Dowell and Sean Eddy. Evaluation of several lightweight stochastic context-free
grammars for RNA secondary structure prediction. BMC Bioinformatics, 5(1):71, 2004.

[9] Robin D Dowell and Sean R Eddy. Efficient pairwise RNA structure prediction and
alignment using sequence alignment constraints. BMC Bioinformatics, 7(400), 2006.

[10] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis Prob-
abilistic Models of Proteins and Nucleic Acids. Cambridge University Press, UK, 1998.

[11] Robert D. Finn, Jaina Mistry, Benjamin Schuster-Bockler, Sam Griffiths-Jones, Volker
Hollich, Timo Lassmann, Simon Moxon, Mhairi Marshall, Ajay Khanna, Richard
Durbin, Sean R. Eddy, Erik L. L. Sonnhammer, and Alex Bateman. Pfam: clans,
web tools and services. Nucleic Acids R., 34:247–251, 2006.

[12] P. Gardner, J. Daub, J. Tate, B. Moore, I. Osuch, S. Griffiths-Jones, R. Finn,
E. Nawrocki, D. Kolbe, S. Eddy, and A. Bateman. Rfam: Wikipedia, clans and the
decimal release. Nucleic Acids Res., 39(Database):D141–D145, 2010.

68

[13] S. Griffiths-Jones, S. Moxon, M. Marshall, A. Khanna, S. R. Eddy, and A. Bateman.
Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res., 33:D121–
D124, 2005.

[14] M. Höchsmann, B. Voss, and R. Giegerich. Pure multiple RNA secondary structure
alignments: a progressive profile approach. IEEE/ACM Trans Comput Biol Bioinform,
1(1):53–62, 2004.

[15] Matthias Höchsmann, Thomas Töller, Robert Giegerich, and Stefan Kurtz. Local Sim-
ilarity in RNA Secondary Structures. In CSB ’03: Proceedings of the IEEE Computer
Society Conference on Bioinformatics, page 159, Washington, DC, USA, 2003. IEEE
Computer Society.

[16] I.L. Hofacker. Vienna RNA secondary structure server. Nucleic Acids Res., 31:3429–
3431, 2003.

[17] IL Hofacker, M Fekete, and PF Stadler.

[18] Ivo L. Hofacker, Stephan H. F. Bernhart, and Peter F. Stadler. Alignment of RNA base
pairing probability matrices. Bioinformatics, 20(14):2222–2227, 2004.

[19] Ian Holmes. Accelerated probabilistic inference of RNA structure evolution. BMC
Bioinformatics, 6(1):73, 2005.

[20] Tommi Jaakkola and David Haussler. Exploiting Generative Models in Discriminative
Classifiers. In NIPS, pages 487–493, 1998.

[21] Ellis JC. and Brown JW. The RNase P family. RNA BIOLOGY.

[22] Urban JH. and Vogel J. Two seemingly homologous noncoding RNAs act hierarchically
to activate glmS mRNA translation. PLoS Biol., 6:e64, 2008.

[23] Matthew W. Jones-Rhoades, David P. Bartel, and Bonnie Bartel. MicroRNAs and
Their Regulatory Roles in Plants. Annual Review of Plant Biology, 57:19–53, 2006.

[24] Brown JW, Echeverria M, Qu LH, Lowe TM, Bachellerie JP, Httenhofer A, Kastenmayer
JP, Green PJ, Shaw P, and Marshall DF. Plant snoRNA database. Nucleic Acids Res.,
31:432–435, 2003.

[25] S Karlin and S F Altschul.

[26] Hertel KJ, Pardi A, Uhlenbeck OC, Koizumi M, Ohtsuka E, Uesugi S, Cedergren R,
Eckstein F, Gerlach WL, and Hodgson R. Numbering system for the hammerhead.
Nucleic Acids Res., 20:32–52, 92.

[27] Robert J Klein and Sean R Eddy. RSEARCH: Finding homologs of single structured
RNA sequences. BMC Bioinforma, USA, 2003.

[28] B. Knudsen and J. Hein. Pfold: RNA secondary structure prediction using stochastic
context-free grammars. Nucleic Acids Res, 31(13):3423–3428, 2003.

69

[29] Laurent Lestrade and Michel J. Weber. snoRNA-LBME-db, a comprehensive database
of human H/ACA and C/D box snoRNAs. Nucleic Acids Res., 34:158–162, 2006.

[30] C Li, A H Wang, and L Xing. Similarity of RNA secondary structures. J. Comput.
Chem., 28:508–512, 2007.

[31] Shanfa Lu, Rui Shi, Cheng-Chung Tsao, Xiaoping Yi, Laigeng Li, and Vincent L.
Chiang. RNA silencing in plants by the expression of siRNA duplexes. Nucl. Acids
Res., 32(21):e171–, 2004.

[32] Martin Madera. Profile Comparer: a program for scoring and aligning profile hidden
Markov models. Bioinformatics, 24(22):26302631, 2008.

[33] J. S. Mccaskill. The equilibrium partition function and base pair binding probabilities
for RNA secondary structure. Biopolymers, 29(6-7):1105–1119, 1990.

[34] Eric P. Nawrocki, Diana L. Kolbe, and Sean R. Eddy. Infernal 1.0: inference of RNA
alignments. Bioinformatics, 25:13351337, 2009.

[35] Elena Rivas and Sean R. Eddy. Noncoding RNA gene detection using comparative
sequence analysis. BMC Bioinformatics, 2(1):8, 2001.

[36] David Sankoff. Simultaneous Solution of the RNA Folding, Alignment and Protose-
quence Problems. SIAM Journal on Applied Mathematics, 45(5):810–825, 1985.

[37] Needleman SB and Wunsch CD. A general method applicable to the search for similar-
ities in the amino acid sequence of two proteins. J Mol Biol, 48:443–453, 1970.

[38] Sven Siebert and Rolf Backofen. MARNA: multiple alignment and consensus struc-
ture prediction of RNAs based on sequence structure comparisons. Bioinformatics,
21(16):3352–3359, 2005.

[39] Eddy SR. A probabilistic model of local sequence alignment that simplifies statistical
significance estimation. PLoS Comput Biol.

[40] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. CLUSTALW: improving
the sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22(22):4673–
4680, 1994.

[41] Elfar Torarinsson, Jakob H. Havgaard, and Jan Gorodkin. Multiple structural alignment
and clustering of RNA sequences. Bioinformatics, 23(8):926–932, 2007.

[42] Helene Touzet and Olivier Perriquet. CARNAC: folding families of related RNAs. Nucl.
Acids Res., 32(suppl. 2):W142–145, 2004.

[43] Stijn van Dongen. Graph clustering by flow simulation. PhD thesis, University of
Utrecht, May 2000.

70

[44] S. Washietl, I. L. Hofacker, and P. F. Stadler. Fast and reliable prediction of noncoding
RNAs. Proc Natl Acad Sci U S A, 102(7):2454–2459, 2005.

[45] Sebastian Will, Kristin Reiche, Ivo L Hofacker, Peter F Stadler, and Rolf Backofen.
Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-
Based Clustering. PLoS Comput Biol, 3(4):e65, 2007.

[46] A. Wilm, I Mainz, and G. Steger. An enhanced RNA alignment benchmark for sequence
alignment programs. Algorithms Mol Biol., 1(19), 2006.

[47] Y Zhang, J Qiu, and Su L. Comparing RNA secondary structures based on 2D graphical
representation. Chemical Physics Letters, 458:180–185, 2008.

71

