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ABSTRACT

An Object-Oriented Framework for Constructing
Visual Formalisms

By

Yile Enoch Wang

In the past decade, formal methods have been recognized as a rigorous software
development approach through which consistency, completeness, and unambiguity can
be obtained. However, there is no mature methodology and development paradigm
that can fully apply formal methods throughout the entire software development
process. In contrast, numerous diagramming techniques that makes use of intuitive
and easy to understand graphical notations, are extensively used. Our thesis asserts
that the area of visual formalisms that combines the strengths of formal methods
and diagramming techniques is a promising research direction, which can result in
formal methodologies that are both practical and scalable. Currently, there is no
generic framework or development environment that supports the construction of
various visual formalisms. This thesis presents a framework developed to facilitate
the development of graphical editors and the generation of formal specifications from

the visual formalisms constructed using the automatic graphical editors.
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CHAPTER 1

Introduction

People have been struggling with the software crisis for nearly 30 years, and sig-
nificant progress has been achieved [1]. However, with the rapidly growing demand
for software and the continuously increasing complexity of software, the crisis is not
only unsolved, but it has become more severe. With the emergence of fourth gen-
eration techniques (4GT) [1] for software development, object-oriented technologies
are quickly displacing more conventional software development approaches in many
application areas [1].

Although some 4GT paradigms have been proposed and many CASE (Computer
Aided Software Engineering) tools have been developed to facilitate object-oriented
technologies, the new development methodologies of 4GT are still largely ad hoc ap-
proaches [1]. There is no significant improvement from the previous methodologies.
The consistency, completeness, unambiguity, and validation of a system still cannot
be guaranteed when using these techniques. The reusability, maintainability, and
extensibility of existing or newly developed software are not well supported. One
explanation for this situation is that the guidelines and criteria for the development
approaches still use informal representations to describe the numerous, complex as-
pects of a software system. New methods that are able to precisely address the

features of software systems must be introduced and applied in order to develop con-



sistent and unambiguous software systems, while supporting reuse and facilitating
maintenance.

It is a hypothesis of this research that formal methods is a good candidate to sup-
port this goal. A formal method consists of a formal specification language that has
a well-defined syntax and semantics and a set of rules for reasoning about the formal
specifications [2]. Formal methods offer many benefits to software development, such
as enabling determination of software correctness, facilitating automated processing,
and minimizing the number of errors due to ambiguity, inconsistency, and incom-
pleteness {2, 3]. Applying formal methods to software engineering is the fundamental
motivation of this research. Indeed, formal methods are not intended to be a panacea
[4] to all software engineering problems, but they can be used as a means to achieve

a systematic approach towards software development.

1.1 Problem Description

Object-oriented analysis and development techniques, such as the Object Modeling
Technigue (OMT), are extensively used today. Most of the fourth generation tech-
nologies make use of some kind of diagramming scheme to describe systems or certain
features of systems, which enable system analysts, designers, programmers, and users
to better understand a system. But the informality of the diagramming notations
and the lack of well-defined semantics present the potential to introduce errors to
the development, particularly as the systems become more complicated. All the dif-
ficulties encountered by other development methodologies, such as maintainability,
ambiguity, and system consistency, are also present. Similarly, software reusability is
also not well supported with informal diagramming techniques.

Several formal specification languages, such as Z [5], Lotos [6], and Larch [3],

are commonly used. There have been several successful attempts in applying formal



methods to large-scale software development projects [7]. Recently several papers
and technical reports show that the users, as well as the respective projects, bene-
fited greatly from the use of formal methods [8]. However, the application of formal
methods to software engineering is still rare when compared to the large number of
systems being developed. The advantage of formal methods, whose foundation is
hased largely on mathematical notation with a well-defined syntax and semantics,
tends to intimidate many system analysts, designers, and programmers. Although
the level of difficulty of mathematics applied in formal methods is not as great as
it is often perceived, the notation may still prohibit users who are not accustomed
to working with mathematical notation from taking full advantage of what formal
methods have to offer.

Visual formalisms have been proposed as a means to bridge the gap between the
popular informal diagramming technologies and the perceived difficult to use formal
method techniques. A visual formalism is a diagramming technique that imposes
well-defined syntax and formal semantics to the visual notations. We propose that
visual formalisms may offer a new approach to software development. With this
new approach, users can enjoy the ease of use of diagramming notations while also
takinug advantage of the automatic reasoning, consistency, and completeness checking
enabled by using formal methods. Of course, there is a tradeoff between informality
and formality. In our investigations, one of our objectives is to determine the balance
between user-friendliness and rigor.

This thesis presents a framework developed to support visual formalisms. The
application of the framework is focused on Rumbaugh’s Object Modeling Technique
(OMT) [9] comprising three diagramming techniques: object model, dynamic model,
and functional model. The object model describes the static structure of a system

with object diagrams; the dynamic model captures a system’s behavior in terms of



state diagrams; the functional model depicts the functionality of a system using data
flow diagrams. The diagrams are formalized in terms of Larch [3] specifications.
Thesis Statement: Visual formalisms, with the strengths of formal methods and
diagramming techniques, is one hopeful research direction that can bring us formal
methodologies that are both practical and scalable. This thesis presents a framework
developed to facilitate the development of graphical editors for diagrams and the gen-

eration of formal specifications for the visual formalisms.

1.2 Contributions

This thesis makes several contributions to the field of software engineering. First,
we have developed a software architecture to integrate a graphical diagram and its
corresponding formal specifications. Second, we have constructed a development envi-
ronment that uses a graphical object library that facilitates the creation of graphical
diagram editors and formal specification generators. Third, we have developed a
tool, VISUALSPECS, based on the above architecture and environment to support the
graphical construction of OMT diagramming notations and to generate the corre-
sponding formal specifications both in a generic algebraic specification language as
well as in the Larch language. Finally, we have developed a cross-referencing util-
ity between different types of diagrams with the same diagramming notation, which

assists the system analysis process, while simplifying the formal specification process.

1.3 Organization of Thesis

The remainder of the dissertation is organized as follows. Chapter 2 gives background
information on graphics utilities, specification languages, and object-oriented model-

ing. Chapter 3 introduces the architecture of the framework. Chapters 4, 5, and 6



illustrate how the tools developed based on the framework support the construction
of diagrams and the generation of formal specifications for the object model, state
schema, and dynamic model, respectively. A new modeling paradigm to perform sys-
tem modeling is introduced in Chapter 7, including a sample application. Chapter 8
shows the cross-referencing mechanism developed to facilitate the modeling process.
Chapter 9 gives an example that shows how the generated specifications can be used
with previously developed tools. The related work is discussed in Chapter 10. Chap-

ter 11 gives the conclusions of the thesis and addresses several future investigations.



CHAPTER 2

Background

Since the purpose of the framework is to facilitate the construction of visual for-
malisms, several complementary fields are integrated in order to satisfy the overall
objective of the project. The creation and modification of diagrams require the use
of several geometric properties, and the generation of formal specifications also has
a set of corresponding issues relevant to the project. This chapter gives background
knowledge, identifies obstacles encountered during the project, and overviews the

respective solutions.

2.1 Geometry

Some issues of geometry were encountered during the construction of the graphical
development environment. The following section addresses specific areas of concern

and discusses the corresponding solutions.

2.1.1 Determine the relation between a point and an area

lu general, 1t is straightforward to check whether a point is inside a rectangular
region or not. But for some other shapes of regions, such as that of a diamond and a

triangle, the number of possible cases of point location increases and is more difficult



to determine. A well-known algorithm to determine the relative position of a point
to a polygon is to calculate the accumulated degrees of the between-vector angles
formed by point-to-vertex vectors [10]. Figures 2.1 and 2.2 show two cases of point
positions relative to a polygon area. Since the coordinates of a point and all vertices
of an area are known, given a point P and a vertex P;, the vectors can be computed

by FF: = P, — P. The angles between two vectors can be obtained by

PP PP

cos;; = ——t I (2.1)
’ |p—ﬁ,. < |PP
7R . PP
0;; = arcos | ———1— (2.2)
’ PB| x |PP,

The summation of the vector angles can be calculated by the formula given in
(2.3).
n—1
Total Angles = E Oii+1) + 0 (2.3)
=1

If the summation of the angles is equal to 2w, then the point is inside the area.
Otherwise, the point is outside. Clearly, the accumulated vector angle is 27 in Fig-

ure 2.1, whereas the accumulated vector angle is 0 in Figure 2.2.

2.1.2 End point placement

The placement of the end point of a line connecting graphical objects is a more
complex issue than identifying the location of a point. The position of an end point
associated to a visual object must be changed with the movement and the resizing of
the object. Attaching an end point to a fixed point of the edge of an object, as shown
in Figures 2.3 and 2.4, may appear odd visually.

Another concern is the circular shape of some end points. It must be placed in

the proper location to make it tangential with the edge of an object. Consequently
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another parameter, tangent direction between a circle and an edge, must be computed
in order to achieve the best visual effect. Figures 2.5 and 2.6 illustrate the difference
between drawing an end point with and without the tangent direction parameters

respectively.

T 3>

Figure 2.5. Without the tangent direc- Figure 2.6. With the tangent direction
tion parameter parameter

2.2 Formal methods

A formal method is characterized by a formal specification language and a set of rules
governing the manipulation of expressions in that language. A formal specification

language provides [3]:
e a syntactic domain: the notation in which the specifications are written.
e a semantic domain: a universe of elements that may be specified, and

e a satisfaction relation: indicates which elements in the semantic domain satisfy

(implement) which specifications in the syntactic domain.

Formal specifications can be checked by tools that help explore the consequences

of analysis results and design decisions [2], detect logical inconsistencies [11], simulate
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execution [12], execute symbolically [13], and prove the correctness of implementations
steps (refinements) [14].

There exists many types of formal specifications. Formal specification languages
can be partitioned according to a high-level classification [15]. The formal speci-
fications are commonly categorized into three classes: axiomatic, operational, and

denotational.

2.2.1 Axiomatic specifications:

The ariomatic approach implicitly defines the semantics of a programming language
by a collection of axioms and rules of inference, which enable the proof of properties
of programs, such as program correctness, in terms of specified input/output rela-
tions. The assertions about programs can be proven by either a mathematical or an
operational definition and mathematical reasoning. The axioms are rules of inferences
that can be regarded as theorems within the framework of mathematical semantics.
The objective of the axiomatic formal specification is to provide a formal system that
enables a proof to be constructed using only the uninterpreted specification text.
Axiomatic specifications can be further classified into predicate specifications [16]

and algebraic specifications [17].

2.2.1.1 Predicate specifications:

A predicate specification explicitly describes properties of the behavior of a system
that a given implementation must satisfy. The specifications describe the system’s
required functionality. Predicate specifications are not bound by the constraint of
constructivity. The properties can be stated separately and then combined, which
facilitates specification modularity. The properties include input/output constraints
and other behavior conditions, such as fault tolerance, safety, security, response time,

and space efficiency. Figure 2.7 contains a predicate specification describing a proce-
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dure that, given an appropriate argument, x, computes an integer approximation to

its square root.

Precondition S Postcondition
Precondition: = > 0 A integer(z);
Postcondition: Vi:0 < i <z : abs(z — result x result) < abs(z — 1 x 1)

Figure 2.7. A predicate specification of integer square root

2.2.1.2 Algebraic specifications:

An algebraic specification is a mathematical description language, based largely on
equations, commonly used to specify abstract data types (ADT). An ADT is a well-
defined data structure described by the available services and properties of these
services. The properties of the data type are specified in terms of equations.

An algebraic specification normally consists of
e Sort(s): the names of the abstract data types being described.

e Operation(s). the services available on instances of the abstract data type and

syntactically describes how they have to be invoked (signatures).

e Azioms or theorems: formally describes the semantic properties of the algebraic

specification.

The Larch family of specification languages [18] uses a two-tiered approach to
formal specifications in which one tier, the Larch Interface Language (LIL), specifies
program behavior and programming language interfaces. For example, LCL [19] is a

LIL for the C language that specifies program behavior in terms of predicate logic and
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function and procedure interfaces in C syntax. The other tier, the Larch Shared Lan-
guage (LSL), is an algebraic specification language used to specify properties that are
independent of a particular programming language and paradigm. Algebraic specifi-
cations can be used to describe object-oriented software in a straightforward manner,
using abstract data types as the basic unit in software specification. Accordingly,
the basic unit of specification in LSL is the trait, which axiomatizes theories about
functions and data types that are used in programs. A collection of general purpose
traits that are designed for constructing application-specific traits is called a trait
handbook [18]. In Figure 2.8, an algebraic specification describing the properties of

the Abelian group is given in the Larch specification language.

Abelian: trait
introduces _o : T, T = T
asserts Vx,y: T
X0Oy=yox
implies Commutative (T for Range)

Figure 2.8. A Larch algebraic specification of the Abelian group

2.2.2 Operational specifications:

An operational specification [20] gives one solution that satisfies the required proper-
ties, instead of describing the required behaviors. Commonly, the operational specifi-
cation is similar in format to a program. This approach has an advantage in that the
operational specifications can be executed directly as a rapid prototype of the system
being specified. Thus the specifiers and their clients can obtain feedback about the

software system quickly. The disadvantages are that it is difficult to extract the essen-
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tial properties that the system must fulfill and the specifications tend to be relatively
longer than behavioral specifications. The operational specification in Figure 2.9 gives

a simple implementation algorithm to compute the square root of an integer.

int sqrt (int x)
requires x > 0;

effects

1= 0;
while i x i < x
i=i+1end

if abs(i x i-x) >abs((i-1) x (i-1)-x)
then returni- 1
else return i

Figure 2.9. An operational specification of integer square root

2.2.3 Denotational specifications:

The denotational specification [21] maps a specification directly to its meaning, called
its denotation. The denotation is usually a mathematical value, such as a number
or a function. No interpreters are used; a valuation function maps a specification
directlv to its meaning.

A denotational definition is more abstract than an operational definition, since it
does not specify computation steps. Its high-level, modular structure makes it espe-
cially useful to language designers and users, since the individual parts of a language
can be studied without having to examine the entire definition. On the other hand,

the implementor of a language is left with more work. The numbers and functions
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must be represented as objects in a physical machine, and the valuation function must
be implemented as the processor.

Therefore, denotational semantics is more abstract than an operational specifica-
tion and less abstract than an axiomatic specification. Like an algebraic specification,
it can be stated in modules, which makes it especially useful to system analysts and
designers.

Figure 2.10 shows a denotational specification of boolean expressions. The value
denoted by an expression depends on the state because it may contain variables. E
maps an expression onto a function from states to boolean values. For a particular
expression, €, E[¢]: S — Bool is a function from S to Bool, which corresponds to
a set of values. States, S, is the set or data-type of functions from identifiers, Ide,
to Value. A particular state, o, is a particular function from variables to values.

Therefore, a specific value is obtained by evaluating the expression E[e]o: Bool,

where o gives the state in terms of identifiers and their values. Suppose o[z] = true

and o[y] = false then the boolean expression z and not y can be evaluated as:

I
[d
]
c
(1]
>
=
=
wn
[¢]

2.3 OMT Overview

The Object Modeling Technique is a methodology developed by Rumbaugh, et al [9],
to facilitate object-oriented analysis and design (OOA and OOD). It includes three

diagramming techniques to describe different aspects of a system.
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Exp:
¢ :x=and € |
egore|
not ¢ |
true |
false |
¢
Ide:
€ ::= syntax for identifiers
E: Exp + S — Bool
E[e and ¢']o = E[e]o A E[¢']o
Ele or ¢']oc = E[¢]o vV E[¢']o
E[ not €]o = - E[¢]o
E[ true Jo = true
E[ false Jo = false
E[e]o = o[e]

Figure 2.10. A denotational specification of boolean expression
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2.3.1 Complementary diagramming techniques

The essence of the Object Modeling Technique is to build a model of an application
domain during the analysis of a system that can be augmented with implementation
details during the design phase. The modeling consists of three orthogonal models,
object model, dynamic model, and functional model, each depicting different features
of a system. Each model is applicable during all stages of development and acquires
implementation detail as the development progresses. The models are represented as

the object diagram, state diagram, and data flow diagram, respectively.

2.3.2 Object Model

An object diagram is used to capture information about the real world that is im-
portant to an application. Thus it is the most important of the three diagrams. It
describes the static objects in a system by showing their identity, their relationships
to other objects, their attributes, and their operations. Therefore, it is straightfor-
ward to derive abstract data types (ADT) from the object diagrams. The object
diagram forms a basic framework upon which the dynamic and functional models are
based. The diagram provides an intuitive visual representation of a system that can
be valuable in the communication between the customers and the developers since the
diagrams serve to document the structure of a system. Figure 2.11 gives a high-level
object diagram of the graphical editor implemented in the framework, where boxes
represent classes; lines between boxes represent associations; empty, solid circles at

the end of association lines represents different multiplicities.

2.3.3 Dynamic Model

A state diagram graphically represents the dynamic models that describe the be-

havioral aspects of a system concerned with events, time, and changes. Each state
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User Legend (left to right)

one-one
manipulates ———@ one-many

———l'. one-one or more
communicates with —< > isaparto
Diagram partof
W
maintains |
Component List Graphical Object

Figure 2.11. The object model of the graphical editor

diagram depicts the state and event sequences allowed in a system for one class of
objects. The notation used for dynamic models is a variation of Harel’s Statechart
notation [22], where ovals represent states; arrow arcs represent state transitions. An
example state diagram is given in Figure 2.12, where rounded rectangles represents
states and labels on arrows represent events that trigger state transitions. State
diagrams also reference the other diagrams. Functions in a the data flow diagram
correspond to the actions from the state diagram; operations on objects in the object

diagram are modeled as events in a state diagram.

2.3.4 Functional Model

The functional model, depicted in the form of data flow diagram, is the third di-
mension of the three orthogonal modeling techniques of OMT. Data flow diagrams

consist of nodes and arcs, which correspond to processes and data flows, respectively,
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brake_released

brake_pushed

Figure 2.12. An example state diagram

that specify and implement the control aspects of a system (rectangles represent ex-
ternal entities). Figure 2.13 is a high-level Data Flow Diagram showing the overall
architecture of the framework. The data flow diagram also specifies the meaning of
the operations in the object model and the actions in the dynamic model, as well as

constraints for values within an object model.

graphical editor)_textual descriptions @

user input for

A formal specifications
the generation of

a diagram
User
Specification
tool
environment

Figure 2.13. A high-level Data Flow Diagram of the framework
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2.4 Requirements Analysis and Design

The three complementary diagrams depict different aspects of a system and are at-
tractive to analysts and designers initially. However, it is not an easy task to obtain
an accurate description of a system using the three diagramming schemes. Typically,
several iteratious are necessary in order to refine the diagrams to obtain a useful

depiction of the system.

2.4.1 Analysis

The object diagrams that describe the types of objects existing in the system and the
allowable relationships among the objects are the first diagrams obtained from the
requirements analysis process. Requirements analysis typically focuses on the static
architecture of the system. Only the types of objects and the relationships among
them are depicted. Object attributes and operations are left to the design phase to
be resolved. Although different people have different perspectives about the same
system, the inherent object-oriented properties of a system will largely limit this kind
of variation. Our experience shows that the final diagramming results tend to be
similar after several iterations. Furthermore, analysis facilitates the communication
between system analysts and customers during the analysis phase, which is critical to
obtaining a good understanding of the system. A systematic analysis process serves
to reveal miscommunication between the customer and the analyst, and to achieve a
well-defined object model for later analysis and design.

The essence of computation of the Turing machine is to deal with the changes
of state; a system without state changes typically provides no functionality. The
dynamic model is also critical in gaining a thorough understanding of a system.
Based on the object diagrams, a system may be further decomposed in order to

model the basic state changes of components. This process is much more complicated
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than object diagramming. The states of a system might increase exponentially with
respect to the size of the problem. How to control the modeling process is a key issue
in obtaining an appropriate depiction of the state changes.

Data flow diagrams can be largely based on information object and state diagrams
in order to bridge the gap between the static and dynamic models respectively. The
functional aspect described in a data flow diagram answers how the state changes
in state diagrams are realized. It resolves the implicit behavior exhibited by state
transitions that appear in the dynamic model and provides a framework upon which

the design phase may be built.

2.4.2 Design

Design is the second iterative process that refines the three diagrams, because more
detailed (implementation-specific) information will be added to the corresponding
diagrams. The attribute and operation properties of the static object diagram are
available from the statechart and data flow diagrams. In this stage, abstract data
types (ADTs), the kernel of object-oriented software development methodology and
described by algebraic specifications, are available for refinement and use. In turn,

the dynamic model and the functional model can be further analyzed and revised.



CHAPTER 3

Architecture of Graphical

Environment

Since the objective of the project is to develop a graphical environment to facilitate
the development of visual formalisms, the architecture of the environment plays an
important role in the flexibility, usability, and extensibility of the environment. The
environment is divided into three components: a graphical editor, a textual descrip-
tion of the diagrams, and a parser to output formal specifications from the textual
descriptions. Figure 3.1 is a high-level Data Flow Diagram showing the overall archi-
tecture of the three components. The graphical editor is constructed by a graphical
component library. The diagrams edited by the graphical editor then output their
corresponding intermediate textual descriptions to be processed next by a parser. It
is the parser that takes the textual description of a diagram and finally generates the
formal specifications. The remainder of this chapter describes the diagram, tertual

description, and parser.

21
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graphical editor textual descriptions >

user input for formal specifications
the generation of
adiagram
User
Specification
tool
environment

Figure 3.1. A high-level Data Flow Diagram of the overall architecture

3.1 Graphical Editor

Figure 3.2 gives the high-level object model of the graphical editor. The graphical
editor is composed of a graphical icon library that contains a set of graphical com-
ponent objects. Since the diagram graphical object in the library is so special, it will

be discussed separately in this section.

3.1.1 Graphical Icon Library

The graphical icon library contains a set of icons that can be used as graphical com-
ponents and visual notations in a diagram. The icons are designed and implemented
as objects that encapsulate the data structure with their operations. The hierarchical
inheritance relationships between the objects are also taken into consideration and
designed into the objects. Thus new icons can easily be constructed and added into
the library or derived from one or more existing icons. Treating the icons as ob-
jects is straightforward and intuitive, and the development framework benefits much
from such a design decision. Figures 3.3, 3.4, 3.5, and 3.6 depict the inheritance

relationships among the graphical icons.
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Figure 3.2. The object model of the graphical editor
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Figure 3.3. Level 0 inheritance relationship among the graphical icons
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SuperBox

AN

NameBox Oval Triangle Diamond Diagram Label Box

Figure 3.4. Subclass hierachy for SuperBox class

Line

AN

DashArrowLine ArrowLine DoubleArrowLine ArcLine MtpLine

Figure 3.5. Subclass hierachy for Line class

EndPoint

le

Aggregate ArrowEndPoint DoubleArrowEndPoint MtpEndPoint

Figure 3.6. Subclass hierachy for EndPoint class
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3.1.1.1 Set of icons:

The library currently has the following high-level graphical icons for constructing

object diagrams:
e Boz: the class visual notation in an object diagram.

QOval: the instance visual notation in an object diagram.

e Diamond: the association notation in an object diagram.

Triangle: the super/subclass notation in an object diagram.

Binary: the binary association notation in an object diagram.

Although the above icons were designed for the object diagram, they are composed of
the following general-purpose graphical objects, which can be reused through compo-
sition, modification, or both to construct new icons.

Some of the utility graphical objects can be used to construct graphical icons are

also included in the library:

o Graphical object: the superclass of all graphical objects (if there exists another
class inherited from class 1, we say ¥ is a superclass). It declares the basic data
structure needed in a graphical icon object and specifies the essential operations

common to all objects or diagram.

e Super boz: the superclass from which boz, oval, diamond, and some other classes
are derived. It declares several of the common data structures as well as oper-

ations shared by the above-mentioned objects.
o String boz: a box containing a string.

e Label: a variation of the string box, which makes the rectangular boundary

invisible and only allows one line of string of text.
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e String dialog boz: a variation of the string box with a method that performs

interactive modification of the strings through a dialog box.
e Line: a generic line connecting other objects.

e Rubber line: a rubber-banding line that changes its length with the move of the

mouse pointer. It is used to connect objects.

e FEnd point: An object links objects, such as a line and a box or a diamond
and passes information between the two objects connected for communication

purposes.

3.1.1.2 Operations applicable to icons:

Though there are many different icon classes that exist and can potientially be added
into the library, the common operations applicable to these graphical objects are not

as numerous. Several commonly owned operations are:

e (Create: to create a new graphical object from either scratch or a file containing

a previously drawn diagram.
e Delete: to delete an existing object from a specific diagram.

e Draw: to draw the boundary as well as the label and some other attributes of

an object.
e Move: to move an object around the diagram.
o Resize: to enlarge or shrink an object.
e Save: to save information relevant to an object into a file.

e Message: to communicate with other graphical objects or a diagram.
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3.1.2 Diagram

Diagram is a special graphical object containing other graphical objects, such as boxes
and lines. From the view of formal specifications, a diagram is a specification com-
posed of visual formal notations. In order to impose the least number of constraints
on the diagram for generality and reusability purposes, the formal semantics of the
diagram is decoupled from the graphical objects and moved to the parser component.
The diagram for a specific visual formalism with its visual notation set and formal se-
mantics can be constructed by composing or modifying the existing graphical objects
in the graphical library and reconstructing the parser. Only the syntax checking of
the entire diagram (specification) is delegated to the parser. However, some simple
errors, such as linking two objects with an improper line, could be eliminated by

adjusting the graphical environment to a specific specification language.

3.1.2.1 Functionality of the diagram:

The purpose of the diagram is to serve as a repository to accommodate graphical
components and to support their corresponding manipulations. It serves as an event
dispatcher and object container to convey users’ requests, such as moving an object,
to the individual object, and performs some general diagramming activities, e.g.,

saving a diagram.

3.1.2.2 Structure and working mechanism of diagram:

To a programmer, a diagram is a graphical object container and a message dispatcher.
Since all the graphical object components are subclasses of the GraphicalObject su-
perclass, they have a uniform method, message, to communicate information from
another object. Thus, a diagram maintains a general-purpose list that contains all

the graphical components created and several iterators that deliver messages to the
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objects. To some extent, the list is a stack that allows an iterator to process the
graphical objects it contains in a first in last out order. This process enables the
most recently drawn objects to remain on the top of the objects. All the relevant
windowing events (button press, pointer motion, button release, ...) are passed to
graphical objects, such as boxes and lines, by the iterators. The objects, in turn,
determine if the event or message is valid and behave accordingly. A diagram has no
global view of the objects and their inter-relationships. It is only aware of graphical
components, boxes, lines, diamonds, etc., but not their inter-relationships, such as

association or aggregation.

3.1.2.3 Communication model between objects:

Since neither the diagram nor the individual graphical components have a global
understanding of the inter-relationships between graphical objects, the project uses a
message passing communication mechanism to exchange information between objects.
Of course, the lack of a global view necessitates message passing, which incurs a
heavy communication cost. However, the modularity of this design greatly benefits
the environment in terms of flexibility, extensibility, reusability, and maintenance.
Figure 3.7 shows a communication example that is used to control the layout of the
diagram if one object is moved or resized. The numbers enclosed in circles indicate the
order of events; a dashed line represents a binary relationship; dashed arrows indicates
an ordered binary relationship; solid arrows indicates the direction of communication

or message passing; the bold line represents a line object.

3.2 Textual description

Besides serving as a repository for graphical objects, a diagram is considered to be a

graphical representation of specifications. Once a visual formalism with well-defined
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Figure 3.7. The communication among end points, connected object, and line to repose
the end point
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formal semantics is given, formal specifications can be derived, which can be used to
facilitate the system analysis and design processes. For a given formalization of the
diagrams, there may potentially be more than one algebraic language that can be used
to represent the semantics (e.g., OBJ3 [23], Larch). Since the project is not restricted
to a specific formal specification language, the component used to extract formal
specifications from the diagram is separated from the diagramming module. Instead,
intermediate text descriptions of the diagram, written in a well-defined language, is

analyzed and processed by a parser to generate particular formal specifications.

3.2.1 Icon level attributes

Since there is no global view of the diagram in the diagramming phase, the textual
descriptions derived from the visual representation also largely describe the attributes
of those individual graphical icons. The textual attributes include object type, name,
identification number, and identification numbers of those objects that are connected,

where identification numbers play a key role in obtaining a global view of the diagram.

3.2.2 Diagram level attributes

One of the diagram level attributes is the diagram name. Graphical object identi-
fication numbers can also be regarded as a global attribute. A parser specific to a
certain formal language relates the connected objects in its global tables obtained
from the textual descriptions of diagrams to achieve a global understanding of the

inter-relationships among the objects, and generates formal specifications.

3.3 Parser

Unlike the graphical editor, which deals with the syntactic aspect of a visual for-

malism, the parser is the crucial component in our framework that interprets the
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d 1agrams and generates the corresponding formal specifications. More succinctly, the
formal semantics of a visual formalism is imposed by the parser. As a consequence,
the parser becomes the component that requires the most effort when constructing a
visual formalism, using components of a graphical icon library to build a graphical
editor.

The complete BNF grammar that describes the diagrams is given in Figures 3.8
and 3.9. The BNF grammar forms the syntactic part of a parser, while the formal
semantics of a certain visual formalism is manually coded into the parser. At present,
the parser is implemented with LEX and YACC. However, users have the flexibility

to implement the parser with other tools.
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< diagram >

< state name >

< object >

< class >

< n_ary association >

< binary association >

< aggregate >

< super sub class >

<< super subclasses >
< superclass ids >

< superclass id >

< subclass ids >

< subclass id >

< state >

44

Y

2 e

BEGIN DIAGRAM < sign > < state name >

< object >* END

< identi fier > < parameter part >

< class > | < n_ary association > |

< binary association > | < aggregate > |

< super subclass > | < state > | < instance > |

< line > | < endpoint >

BEGIN CLASS < object id > < identifier >

< attributes > < operations > < endpoint ids > END
BEGIN N_ARY_ASSOCIATION < object id >

< sign > < identifier > < attributes > < operations >
< endpoint ids > END

BEGIN BINARY _ASSOCIATION < object id >

< sign > < identifier > < attributes > < operations >
< object id > < object :d > END

BEGIN AGGREGATE < sign > < object 1d >

< multiplicity > < object id > < endpoint :ds > END
BEGIN SUPERSUBCLASS < object id >

< super subclasses > END

< superclass ids > < subclass ids >

< superclass ids > < superclass 1d >

SUPER < object id >

< subclass ids > < subclassid > | < subclass id >
SUB < object id >

BEGIN STATFE < object :d > < identifier >

< endpoint ids > END

Figure 3.8. The BNF grammar that describes the diagrams
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< instance >

< line >

< endpoint >

< types >

< multiplicity >
< attributes >
< operations >

< strings >
< string >

< parameterpart >

< parameters >
< endpoint ids >
< identi fier >
< object 1d >

< sign >

4

L T N N AR

BEGIN INSTANCE < object id > < identi fier >
< endpoint ids > END

BEGIN LINE < object id > < identifier >

< object id > < object id > END

BEGIN ENDPOINT < object id > < types >

< object id > < object id > END
MULTIPLICITY < multiplicity > | ARROW |
DOUBLE_ARROW

ONE | MANY |ONE_.OR.MORE | OPTIONAL
BEGIN ATTRIBUTE < strings> END
BEGIN OPERATION < strings> END

< strings > < string > | < string >

BEGIN < identifier >* END

BEGINBRACE < parameters> ENDBRACFE
< parameters > < identifier > | < identifier >
< endpoint ids > < object id >

IDEN

NUMBER

NUMBER

Figure 3.9. The BNF grammar that describes the diagrams (continued)




CHAPTER 4

Object Diagrams

The object model is the most important of the three diagrams of OMT. The first tool
of VISUALSPECS, based upon the graphical environment, facilitates the diagramming
of the object model and generates formal specifications from the object diagrams.
The remainder of this chapter discusses the object model notation, including exam-
ples. We present an overview of the formalization of the object model developed by
Bourdeau and Cheng [24, 25, 26] in terms of a well-defined syntax and the corre-
sponding semantics. It is precisely this formalization that is used as the basis of the

specifications that we generate automatically for diagrams constructed by the user.

4.1 Graphical depiction and formal specification
generation

Bourdeau and Cheng [24] identified a subset of the object model notation appropriate
for describing requirements. In object diagrams, rectangles enclose the names of
classes, where a class describes a particular type of object in the system. Relationships
between objects, called associations in OMT, are specified by connecting the classes
involved in the relationship by a line with the name of the association centered on

the line. Object models expressed in the context of requirements analysis are referred

34
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to as A-schemata to represent analysis object schemata. An A-schema describes the
static structure of a system. It consists of a set of classes and associations among
those classes.

In Bourdeau and Cheng’s formalization, the semantics of the A-schemata and
instance diagram notations are described by an algebraic formalization. A graphical
overview of this formalization process is given in Figure 4.1.

In this figure, the arrow labeled “OMT semantics” represents the currently in-
formal concept of consistency between an instance diagram and an A-schema. The
arrow labeled “algebraic semantics” represents the formal concept of consistency be-
tween an algebra and an algebraic specification that has been well-developed in the
literature [27]. In Bourdeau and Cheng’s formalization, A-schemata are formalized as
algebraic specifications, and instance diagrams are formalized as algebras. As a result,
the OMT semantics, which were previously not well-defined, can now be described in

terms of an algebraic semantics.

OMT semantics Insta
o Instance
A-Schemata > Diaarams
I
|
|
i described .
formalized as : in terms of formalized as
|
Algebraic -
Specifications - Algebras

algebraic semantics

Figure 4.1. Basic approach to formalization.
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First, the semantics of classes, objects, and object-states will be given. Next, the
semantics of associations will be addressed, and finally, the combination all of the
formalizations will be presented in order to describe the semantics of A-schemata.

Bourdeau and Cheng use the Larch Shared Language (LSL) [28] to illustrate how

these basic formalisms are incorporated into a structured, algebraic specification.

SPECNAME ( parameters ) : trait

includes

list of pre-existing specification modules to be used
introduces

syntar declarations for functions are listed here
asserts

arioms are listed here

SPECNAME is the name of the specification module. The sorts that are to be
considered as the parameters of the module are given in the parameter list following
the name of the trait. /Includes indicates other traits on which the given trait is
built. The introduces section itemizes function signatures, each of which gives the
number and types of input arguments and result type of a function. Asserts defines
the constraints for the specification. When using LSL, one assumes that a basic
axiomatization of Boolean algebra is part of every trait. This axiomatization includes
the sort BOOL, the Boolean constants true and false, the connectives ‘A’ and ‘V’,

implication ‘=", and negation ‘-’

4.1.1 Semantics for Classes and Object States

Let S be an A-schema, and let C = {C},...,C,} be the set of class names given in S.
Formally, each class name C; € C, where 1 < 1 < n, is considered to be the name of
a sort (type). For each class name (7;, a sort C;-STATES is introduced, which char-
acterizes the set of states that are possible for any C;-object. For each object-state s

of class Cj, s is specified with the signature (syntax and type specifications for input
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arguments and output value)

s: — Ci-STATES

States are nullary functions with no input arguments, therefore they are considered
to be constants. For every class C;, the set of possible states defined by C;-STATES
must include a state undef:,, in which case the state of C; is undefined. The corre-

sponding signature is
undef, :  — Ci-STATES
For every pair of object-states s; and sz of C; (including undefg,), s; # s2. In order

to bind a Cj-object to one of its possible states, a valuation function, $, is introduced

with the signature

$:C; - C-STATES

for each class name C; € C. Figure 4.2 contains a user constructed A-schema Ss,
containing object-states s; and s;, where VISUALSPECS generates the corresponding

specification according to the above formalizations.

SCHEMA_diagraa :
includes CLASS_C

CLASS_C : trait

C introduces
| : err. ¢ ->C
52 : -> C_STATES

trait

s1 : => C_STATES

State_C : C -> C_STATES
asserts

forall x, y :

C_STATES
(x=52 /\ y=s1) => (x ~= y);

Figure 4.2. Schema S3 containing object states and its corresponding specification
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When using VISUALSPECS [29], the user is presented with a single diagram canvas
or sheet [9] to begin the graphical depiction of the requirements of a system. There
are four types of options for the user. First, the “file” options allow the user to load an
existing diagram, save the current diagram, or generate the (algebraic) formal spec-
ifications for the current diagram. Second, two different categories of associations
may be selected when two graphical icons are related: binary or aggregate. In both
cases, the default is a one-to-one relationship, but the user may change each endpoint
individually. Third, the user has several different output options for documentation
preparation or integration with other tools, such as a postscript representation of the
diagram, a Latex [30] representation of specifications (a text formatting language),
and the Larch specification language [3]. VISUALSPECS has been implemented such
that most algebraic languages can be generated to describe the diagrams, given that
the language has a well-defined grammar. Larch is specifically provided as an option
in the current prototype in order to facilitate the integration of VISUALSPECS with
other tools that have been developed by the Software Engineering Research Group in
Michigan State University, such as LDE, an integrated environment for Larch specifi-
cations, including a syntax and type checker [31], theorem prover [11], and a graphical
browser for existing specifications. Fourth, users have the options to the specific font
and font size for the text in a diagram. The default font is Roman-Times; the default
font size is 12 point.

Since there were three object-states in the A-schema, undefc, s, and s,, three
inequality axioms are needed to establish uniqueness among object-states. (The name
of a specification is constructed by adding a prefix ‘CLASS-’ to the name of the re-

spective class.)
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4.1.2 Semantics for Associations

An instance of an n-ary association R consists of a set of R-links, where an R-link
is an n-tuple of object names. For example, the subgraph in Figure 4.3 depicts a
single stops-link, whose 2-tuple can be formally represented by the newly created

two-argument stops predicate.

stops(by,wy) = true
def
stops(by,wy) = true
stops(bs,ws) = true (4.1)
stops(bg, wy) Y true

stops(z,y) = false when the pair (z,y) is not one of those above.
Similarly, the stops predicates for Figure 4.4 are :

stops(by,wy) = true

stops(bs,wy) = true (4.2)

stops(z,y) = false when the pair (z,y) is not one of those above.

The predicate for the stops association has the signature:
stops : Brake, Wheel = BOOL

If an association name R is used to name several different associations, then
VISUALSPECS uses a naming convention that includes associated class names as part
of the name given to its specification.

Multiplicity constraints are described in terms of four relational properties: func-
tional, injective, surjective, and total, whose properties have been formalized as pred-
icates and incorporated into VISUALSPECS. Figure 4.5 contains a summary of the
formalization of the endpoints. A reference to any of the four relational predicates,

for example
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F:j,,, T Re b W = E" foscciots Tode pa_gtione =
o=l o o,
E=OED =l [=— G =
@J_@, , y

Figure 4.4. An instance diagram, Z,, in-
consistent with the A-schema S,.

Figure 4.3. An instance diagram Z, of the
A-schema S,

total(stops, Brake, Wheel) (4.3)

is replaced with the corresponding predicate definition to obtain the given expression,

(Vb : Brake . (Jw; : Wheel . stops(by,w;))) (4.4)

which is “skolemized” (removal of the existential quantifier ‘3’) to obtain

(Vb, : Brake . stops(ey, skolem(b,)))

where the signature of the Skolem function skolem is given by

skolem : Brake — Wheel

Given the formalization techniques presented thus far, it is possible to obtain several
equivalent specifications for this diagram, which differ in the way they are modu-

larized. As a convention, VISUALSPECS extracts the specifications corresponding to



41

classes first, followed by the specifications for the associations, which are extracted by
importing the relevant class specifications. The specification for a class C' is named
CLASS-C, and that for an association R is named ASSOCIATION-R. In addition to
the specifications for the constraints on the endpoints of the association, the speci-
fications for the associated classes are included via the “extends” keyword and the

‘*+’ operator.

Let R be a predicate (denoting an association) with signature

R:A,B— BOOL

The statement (Vz: X . P) is read “for any element z of sort X, the statement P

evaluates to true,” and a similar reading applies when the existential quantifier ‘3’ is

used in place of ‘V’.

R is functional from A to B: if every element of A is related to at most one ele-
ment of B:

functional(R,A,B) ©f (Va: A, z,y: B . (R(a,z) AR(a,y)=>z=y)) .
(4.5)

R is injective from A to B: if every element of B is related to at most one element

of A:

injective(R,A,B) < (Vz,y: A, b: B . (R(z,b)AR(y,b) =z =y)) . (4.6)

R is surjective from A to B: if every element of B is related to some element of

A:

surjective(R,A,B) < (vb: B . (3a: A . R(a,b))) . (4.7)

R is total from A to B: if every element of A is related to some element of B, or
formally:

total(R,A,B) Y (Va: A . (Ib:B . R(a,b))) . (4.8)

Figure 4.5. Formalization of relations that characterize endpoints




42

An aggregation association between two classes A and B is defined to be a general
binary association between A and B having the name hasPart. A part name is
appropriately formalized as a mapping from a set of aggregate objects to a set of
their parts. Axioms are added to ensure consistency between aggregate parts and the
aggregation association. Each part name of an aggregate object must correspond to

a distinct part. Figure 4.6 summarizes the A-schemata semantics.

Definition (Semantics of A-schemata, part 1) :
Let S be an A-schema. The semantics of S is an algebraic specification satisfying the
following data.

(SS1) Each class C in the schema § is denoted by a sort of the same name.

(SS2) For each class C, a sort C-STATES is introduced as well as a nullary function
undefc having signature undef,: — C-STATES .

(SS3) Each object-state s, for which a double-headed arrow leads from a class C
to the oval containing s, is denoted by a function with signature s : —
C-STATES , and for every pair of object-states s, and sg, the axiom s; # s
is included.

Definition (Semantics of A-schemata, part 2) :

Let S be an A-schema, and let R be a k-ary association in S relating objects from
classes Dy, ..., D. The semantics of S is an algebraic specification satisfying require-
ments (SS1)-(SS3), given earlier, and the requirements below:

(SS4) Association R is denoted by the predicate R: Dy,...,Dy — BOOL .

(SS5) The multiplicity constraints of R are denoted by a set of axioms derived from
R using the basis schemata, relational predicates, unfolding, and skolemization.

Figure 4.6. The semantics of A-schemata
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4.2 Consistency between Class and Instance Dia-

grams

Next, the relationships between algebraic specifications and algebras are dis-
cussed [24]. When defining an algebra for an instance diagram, VISUALSPECS uses
the types and function signatures from the corresponding original schema diagram as
specified by its algebraic specification. An algebra differs from an algebraic specifi-
cation in that a set of elements are specified for each sort name in an algebra, and a
function is defined on these sets for each function symbol of the algebraic specification.
An algebra A is said to be consistent with its specification S, if the axioms of S are
satisfied by the functions defined in the algebra A. In general, any instance diagram
can be denoted by an algebra. Due to space constraints, the detailed descriptions of
the formalization of instance diagrams in terms of algebras are omitted, but can be

found in [24]. Figure 4.7 summarizes the instance diagram semantics.

4.3 An example of a simplified automobile system

We illustrate the use of the notation and its corresponding formalization with a sim-
plified automobile transportation system. Figure 4.8 depicts a simple transportation
system.

In order to construct the specification for a given A-schema, VISUALSPECS per-
forms a union of the specifications, as indicated by the operator ‘+”, of its classes and
associations.

Figure 4.9 contains the corresponding formal specification of the more complex
object model for the automobile transportation system modeled in Figure 4.8. The
axioms of this specification are those that are imported from the respective class and

association specifications.
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Definition (Semantics of Instance Diagrams, part 1) :
Let S be an A-schema, and let 7 be an instance diagram. The algebraic denotation
of Z, with respect to schema S, is given (in part) by the following data.

(IS1) For each class C in the schema S, the data value set C7 is the set of objects
{z1,...,zx} given in Z for which a dashed arrow leads from each z; to C.

(IS2) The data value set C-STATES? is the set of object-state names, including
undefc, given in § for w which a double-headed arrow leads from C to the
object-state.

(IS3) For each object e of class C in Z, if there is a double-headed arrow leading

from € to some object-state s, then $7(e) % s, otherwise, $7(e) % undefc.

(IS4) For each object-state s, s7 < s.

Definition (Semantics of Instance Diagrams, part 2) :

Let S be an A-schema, and let R be a k-ary association in S relating objects from
classes Dy,...,Di. Let Z be an instance diagram. The algebraic denotation of Z,
with respect to schema &, is given by (IS1)-(IS4), and the following data.

(IS5) For each R-link in Z, relating objects d; : Dy, ..., di : D, RX(dy,...,dy) ¥

true.

(IS6) For each tuple of objects dy : Dy, ..., di : Dy, if T has no R-link relating
these objects, then RZI(dy,...,dy) = false.

Figure 4.7. The semantics of simple instance diagrams.
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Figure 4.8. A simplified automobile transportation system
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incTudes CLASS_Braksswitch, CLASS_BrakeLight

introduces
control : iruusﬂtd-. Brakslight -> Bool
skoles_B Brakelight -> BrakeSwitch
asserts
forall x1, x2 : BrakeSwitch : Brakslight

1.
(control(x1, yi) A\ mtral ol n)) o i - %2
control (skofem B(y1). y1);

ASSOCIATION_hasPart_BrakingSystea_BrakeSwitch : trait
includes CLASS_BrakingSystes. CLASS_BrakeSwitch

introduces
hasPart : InHrqS‘stu. BrakaSvitch -> Bool
skolea_Bb ystea -> DrakeSvitch
skoles_Ba : dasﬂtch -> BrakingSystes
forall x BrakingSystes, y1,

X2 : 2 : BrakeSwitch
(hlsPlrt(xl. yl) /\ hasPart(xt, y2)) => y1 = y2:
(hasPart(xt, N hnsﬂurt(uz. y1)) *> x1 = x2;
hasPart(x1, ea_Bb(x1)):

hasPart(skolen_Ba(y1). y1):

SCHEMA_TransportationSystes : trait
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CLASS_whe
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asserts

Figure 4.9. Formal specifications of the simplified automobile object model
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4.3.1 Classes and Binary Associations

Figure 4.10 contains a sample session with VISUALSPECS, where the stops associa-
tion relates the brake and wheel components of the transportation control system.
This diagram is intended to express that a single brake controls a single wheel. Its

corresponding Larch specification is given in Figure 4.11.

File Associate Mode Output Options

Figure 4.10. A simple A-schema, &)

4.3.1.1 Diagram Consistency

Given an A-schema, it is possible to construct examples of consistent and inconsis-
tent instance diagrams for that schema, where an instance diagram describes how
a particular set of objects relate to each other. An instance diagram is said to be
consistent with an A-schema if it represents a valid system state. For each class C

of the A-schema, the instance diagram has a set of named objects represented by
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ASSOCIATION_stops : trait
includes CLASS_Brake, CLASS_Wheel

introduces
stops : Brake, Wheel -> Bool
skolem_W : Brake -> Wheel
skolem_B : Wheel -> Brake
asserts

forall x1, x2 : Brake, y1, y2 : Wheel
(stops(x1, y1) /\ stops(x1l, y2)) => y1
(stops(x1, y1) /\ stops(x2, y1)) => x1
stops(x1, skolem_W(x1));
stops(skolem_B(y1l), y1);

y2;
x2;

Figure 4.11. The corresponding Larch specification of the simple A-schema, S,

circles with each object’s name inscribed. Continuing with our example, the instance
diagram Z, shown in Figure 4.3 represents four brakes (b, b;,bs, and b4) and four
wheels (w;, w,, w3, and w,). As shown, a dashed arrow connects each object to its
class. In a consistent instance diagram, each association specified by the schema must
be satisfied. For example, since the stop association is a one-to-one correspondence
between Brake and Wheel objects, Figure 4.10, the instance diagram, Z;, in Figure 4.4
is inconsistent with the A-schema S; (wheel w2 is controlled by brakes b1 and 42, thus
violating the one-to-one constraint on the stops association). Due to the simplicity
of this example, we are able to detect the inconsistency visually; however, for more
complex diagrams, relying on visual techniques is clearly inadequate for detecting

inconsistencies.



49

4.3.2 Aggregation

An aggregation association is a relationship between two objects, where one of the
objects is considered to be a part of the other. For example, parts of a brake system
would include brakes, a brake switch, and brake lights. The notation used to specify
this type of association is illustrated in Figure 4.12, where the diamond-headed line
denotes the aggregation association; the Associate Mode menu is displayed indicating
that the user can select either a binary or an aggregate association between two
classes. This figure asserts that the class BrakeSystem has at least one brake as its
parts. Endpoints are used to specify multiplicity constraints on an association, which
describe a restriction on the number of objects from one class that may be associated

with any one object from another class. Figure 4.13 contains its Larch specification.

T diagram
File | Resociate Mode | Qutput —l

] =

Figure 4.12. An aggregation association.
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ASSOCIATION_hasPart_BrakingSystem_Brake : trait
includes CLASS_BrakingSystem, CLASS_Brake

introduces
hasPart : BrakingSystem, Brake -> Bool
skolem_Bb : BrakingSystem -> Brake
skolem_Ba : Brake -> BrakingSystem
asserts

forall x1, x2 : BrakingSystem, y1, y2 : Brake
(hasPart(x1, y1) /\ hasPart(x2, y1)) => x1 = x2;
hasPart(x1, skolem_Bb(x1));
hasPart(skolem_Ba(y1), y1);

Figure 4.13. The corresponding Larch specification of the aggregation association.

4.3.3 Object States

The OMT notation describes the system in terms of the relationships between objects.
For some classes, however, it may be necessary to describe allowable states for their
objects. Consider the brake light, which should indicate that the automobile is slowing
down when the brake pedal is pressed. Such a light must be turned on whenever the
brake is in effect. These states are expressed pictorially in Figure 4.14; the double-
headed arrows leading away from the class BrakeLight specify possible states for
objects of that class. The text enclosed by an oval gives the name of an allowable
object-state.” Figure 4.15 exhibits an instance diagram for the A-schema given in

Figure 4.14, in which the current state of the BrakeLight-object named ¢ is on.

This notation is an extension to the OMT definition.
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Figure 4.15. An example instance dia-
Figure 4.14. Notation for object states  gram

4.3.4 N-ary Associations

The notation used to express n-ary associations is slightly different than that used
to express a binary association. For each class of the association, there is an edge
connecting the class to a diamond enclosing the name of the association; the multi-
plicity constraints may be specified on either end of an edge. Figures 4.16 and 4.17,
respectively, contain an example of a ternary association and its corresponding Larch
specification. In this example, the multiplicity constraints on the edge connecting the
class Engine to the motion association are interpreted as follows. Given any arbi-
trary Engine object €, there are one or more pairs of Brake and Transmission objects
that are associated with e. Also, given any one pair of Brake and Transmission ob-
jects (b, s), there is at most one Engine object associated with (b,s). An analogous
interpretation applies to the other edges of the association. The circled numbers
around the motion diamond are designed to represent the order of the signature for
the association motion.

Each edge in an n-ary association is read as a binary association relating objects

of one class to tuples of objects of the remaining classes.
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Figure 4.16. An A-schema S, consisting of a simple ternary association.

The instance diagram notation for instances of n-ary associations is essentially the
same as that used for binary associations. Figure 4.18 gives an instance diagram, 7,
that is consistent with the A-schema S, given in Figure 4.16. This instance diagram
depicts a single engine, a transmission, two brakes, all of which are related by the

respective motion relationships.
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ASSOCIATION_motion : trait
includes CLASS_Engine, CLASS_Brake, CLASS_Transmission

introduces
motion : Engine, Brake, Transmission -> Bool
skolem_B : Engine -> Brake
skolem_T : Engine -> Transmission
skolem_E : Brake, Transmission -> Engine
skolem_E : Brake -> Engine
skolem_T : Brake -> Transmission
skolem_B : Engine, Transmission -> Brake
skolem_E : Transmission -> Engine
skolem_B : Transmission -> Brake
skolem_T : Engine, Brake -> Transmission
asserts

forall al, a2 : Engine, b1, b2 : Brake, c1, c2 : Transmission

ZMultiplicity constraints for Engine-edge
(motion(al, b1, c1) /\ motion(al, b2, c2))

=> (b1 = b2 /\ c1 = c2);
(motion(al, b1, c1) /\ motion(a2, b1, c1)) => al = a2;
motion(al, skolem_B(al), skolem_T(al));
motion(skolem_E(b1l, c1), b1, c1);
#Multiplicity constraints for Brake-edge
(motion(al, b1, c1) /\ motion(a2, b1, c2))

=> (a1l = a2 /\ ci1
motion(skolem_E(b1), b1, skolem_T(b1l));
motion(al, skolem_B(al, c1), c1);
ZMultiplicity constraints for Transmission-edge
(motion(al, b1, c1) /\ motion(a2, b2, c1))

=> (a1l = a2 /\ bl
(motion(al, b1, c1) /\ motion(al, b1, c2)) => ci1
motion(skolem_E(c1), skolem_B(cl), c1);
motion(al, b1, skolem_T(al, bi));

c2);

b2);
c2;

Figure 4.17. The corresponding Larch specification of the A-schema S,
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Figure 4.18. An instance diagram, Z3, consistent with the A-schema S,




CHAPTER 5

State Schemas

In Chapter 4, we introduced the object model and instance diagram to depict the
static aspects of a system. Instance diagrams, based on object models, are a set of
possible states that a system may enter. Chapter 9 will show that the consistency
between the formal specifications of an object model and that of its corresponding
instance diagrams can be checked by Larch tools. This consistency checking capabil-
ity enables a means for validating the object models obtained in the analysis phase.
However, an instance diagram only represents one out of many possible system states.
Since the dynamic model is another very important model for describing the behav-
ioral features of a system with respect to state changes, we need a more powerful and
general method other than the instance diagrams to describe the primitive system
states.

The state schema developed by Bourdeau and Cheng [24] is a predicative definition
of state that delineates a family of possible system states by predicates. Instance
diagrams may be checked against several state schemas to determine whether the
state schemas are satisfied. A state schema represents the primitive states in the
dynamic model which is discussed in the next chapter. Thus, the state schemas
provide a crucial link between object models and dynamic models. We divide the

discussion on state schema into two sections. Section 5.1 introduces the syntax and

55
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semantics for the state schema. Section 5.2 discusses how state schemas were added

into VISUALSPECS.

5.1 Syntax and semantics

The state schema introduces a hybrid graphical notation to define the state-predicates.
It is composed of the name of the schema with parameters attached and an instance
diagram. The major syntactic difference between instance diagrams and state schemas
is the naming mechanism and the negation symbol. Since the state schema is intended
to use predicates to describe a family of states, parameters are allowed in the name
structure of a state schema. These parameters can later be instantiated by the names
of real objects to obtain a specific state description, which can be referenced to verify
if a certain system state satisfies a specific state schema. Because state schemas
correspond to predicates, there is a need to negate diagrams that represent sate
schemas. The negation symbol ‘x’ is used to negate either the whole state schema or
associations within a state schema.

Figure 5.1 shows a simple state schema depicting a braked state of the trans-
portation system presented in Chapter 4. b is the variable in the state schema that
represents a predicate depicting the braked state. Figure 5.2 illustrates a scenario
that the transportation system has a bad engine.

The semantics of a state schema is a typed predicate whose definition describes
the situation depicted by the instance diagram enclosed in the state schema [26]. A
state schema P with parameters z; : X;,2, : X»,...,7, : X,,, is expressed by a param-
eterized predicate as:

P:X;,Xs,...,X,, — BOOL
A formal semantics for state schemas has been defined in [26]. The definition of

P can be obtained by systematically applying the following set of rules to the state
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Figure 5.1. A state schema showing a braked state
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Figure 5.2. A state schema specifying a bad engine




39

schema. Generally, the definition of the state schema predicate P is presented in one

of two forms

(Voy 2 Xy, 220 Xoy ooy 2t Xn P2y, 22, ..., 20) == 1) or (5.1)

(Voy : Xpoxg s Xoy oy 2 Xo P2y, 22, .., ) == —9) (5.2)

which represent the state schemas without and with negation, respectively. The
statement i is based on the instance diagram enclosed in the state schema. The
format of 9 is:
prefiz . matriz
where prefir is of the form:
By Yy Yo, o ym i Yo)

and matriz is a conjunction of literals. Figure 5.3 contains three rules to determine
the prefiz and matriz [32].

The Larch specifications of the state schemas in Figures 5.1 and 5.2 are shown in
Figure 5.4 and 5.5 respectively. The binary association stops and the ternary associa-
tion motion in both of the state schemas yield conjuncts stops(b, w) and motion(e, t,
b), respectively. The instances are evaluated to their corresponding states by opera-
tion State_X for z: X. Instance b of class Brake is universally quantified in Figure 5.4,
while instance e of class Engine is universally quantified in Figure 5.5. The negation

in state schema BadEngine creates a \neg (negation) in the definition of predicate

STATE_BadFEngine.
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(SR1) For every free variable (appearing in the state schema but not in the param-
eters of predicate P) y of class Y in the state schema P, y: Y is in the prefix of
Y (y is existentially quantified).

(SR2) For each association and valuation (object states and attributes) in state
schema P, a conjunct is contributed to the matrix of ¢. A visual object (associ-
ation or valuation) with a negation symbol ‘x’ derives a literal preceding with
a ‘-’ sign.

(SR3) For every object name z: X that is a free variable in the state schema P, the
expression z # err_X is a conjunct of the matrix of .

Figure 5.3. Rules to obtain the prefir and matriz parts of a specification from a state
schema.

5.2 Implementation

Since there are only minor changes in the state schema with respect to what is con-
tained in an instance diagram, the addition of state schema to VISUALSPECS was
easily accomplished by reusing the design and code for the object model and instance
diagrams. A few minor changes were made to the graphical object classes and the
grammar used for the parser in order to meet the new syntax of the requirements of
state schemas and to obtain the corresponding specifications.

A data field sign, representing the negation when it is set and its corresponding
drawing operation have been added to the graphical object classes, binary and n_ary
associations, aggregate, diagram, and state evaluation, addressed in Chapter 4. Fig-
ures 5.6, 5.7, and 5.8 demonstrate a procedure for negating the binary association
stops.

Figures 5.9, 5.10, and 5.11 illustrates a similar procedure for negating a ternary

association motion. Figure 5.9 gives the state schema before negating the association.
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STATE_Braked(b): trait
includes ASSOCIATION_stops
, ASSOCIATION_motion
, CLASS_Transmission
, CLASS_Wheel
, CLASS_Brake
» CLASS_Engine

introduces
Braked : Brake-> BOOL

asserts
\forall b: Brake

STATE_Braked(b) ==
\exist w: Wheel, e: Engine,
t: Transmission
stops (b, w)
\and motion (e, t, b)

STATE_BadEngine(e): trait
includes ASSOCIATION_stops
, ASSOCIATION_motion
» CLASS_Engine
, CLASS_Wheel
, CLASS_Transmission
» CLASS_Brake

introduces
BadEngine : Engine-> BOOL

asserts
\forall e: Engine

STATE_BadEngine(e) ==
\neg (
\exist w: Wheel, b: Brake,
t: Transmission
stops (b, w)
\and motion (e, t, b)
\and State_Wheel (w) = rotating

\and State_Brake (b) = pushed \and State_Brake (b) = released
\and State_Wheel (w) = notRotating \and State_Engine (e) = started
\and State_Engine (e) = started \and State_Transmission (t) = drive

\and State_Transmission (t)
\and w \= err_Wheel
\and e \= err_Engine
\and t \= err_Transmission

= drive \and w \= err_Wheel

\and b \= err_Brake
\and t \= err_Transmission

)

Figure 5.4. The corresponding Larch Figure 5.5. Larch specification of the

specification of the Braked state schema

BadFEngine state schema
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Figure 5.10 and 5.11 demonstrate that by selecting the Negation item in the popup

menu of association motion, the association can be negated.

i File Associate Mode Dutput Options ile Associate Mode Output Options

Figure 5.9. Before negating the ternary Figure 5.10. Negating the ternary associ-
association motion ation motion

i File Associste Mode Qutput Options

Figure 5.11. After negated the ternary
association motion

The grammar for the state schemas are based on that of the instance diagrams.

Some modifications were made to accommodate parameters for the names of state
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schemas and to incorporate the negation of associations or state schemas. The parser
has been further refined to enable the identification of the variables that appear in the
parameters of the predicate as universal variables and the remaining variables as free
variables that are considered to be existentially quantified. As shown in Figure 5.1,

variable b is a universal variable while w, e, t are existentially quantified.



CHAPTER 6

Dynamic Models

The dynamic model that describes the behavior of a system has been studied ex-
tensively [9, 22, 33, 34]. Both informal and formal approaches that currently exist
attempt to present the dynamic aspects of systems easily and rigorously. In this
chapter, we discuss the formalization of the OMT’s dynamic model [9] and the tool
support that VISUALSPECS environment can provide. Section 6.1 introduces the for-
mal semantics imposed on the state diagram of OMT. Section 6.2 illustrates the
editor developed for VISUALSPECS and shows how it supports the diagramming of

state diagrams and the generation of formal specifications.

6.1 Formalized Dynamic Model

The dynamic model of the OMT has been formalized previously [22, 35, 25]. How-
ever, we have developed the formalization of both state and transition in terms of
algebraic specifications, thus facilitating the integration between the object and dy-
namic models via their specifications. The state diagram, unlike the object diagram,
whose major contribution is the description of the static system structure delineates
the dynamic aspects of a system through state transitions that alter the system states

in response to various events. The state and event arc are two primitive graphical
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notations that are used in composing a state diagram. A state is referred to as a
certain condition or a mode that a system may be in at a given time; the event arc
represents a stimulus that provokes system state changes.

Furthermore, the states are categorized into partitioning and orthogonal states in
accord with the decomposition rules. In the following subsections, we discuss the

syntax and semantics of states and state transitions.

6.1.1 States
6.1.1.1 Syntax

The syntax of states is a tuple (X,~, ¢), where

1. X: a set of states,

3. @1 © = {PART,ORTH}.

Functions 4 and ¢ are decomposition and type functions respectively. vy(z) rep-
resents the set of immediate successive states (substates) that composes the state z.
In addition, we introduce two terms, superstate and substate, for convenience. Given
states r and y, if y € y(x), we say y is x’s substate and z is y’s superstate. The type
function ¢ categorizes states into PART and ORT H state types. Informally, being in
an orthogonal state, P, means being in each of P’s substates; being in a partitioning
state, P, means being in exactly one of P’s substates. In terms of graphical notations,

the state and the functions v and ¢ are denoted as:

e State r and type function ¢: a state r is represented by a solid oval or a dashed

rectangle labeled with the name of the state. The label is placed on the outside

of the solid oval or dashed rectangle, but enclosed in an attached rectangle.
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The state of type ORT H is represented by an oval in which the substates are
separated by dashed lines, whereas the state of type PART is denoted as an

oval that encloses its substates.

e State decomposition function y: the set of states directly enclosed in a solid

oval z are considered substates of z, and are denoted as ¥(z).

Figure 6.1 is an example that shows a moving partitioning state of an automo-
bile. The mouving state consists of accelerating, constantly moving, and decelerating
substates among which transitions can be triggered when certain events occur. Fig-
ure 6.2 is a state diagram that contains an accelerating orthogonal state comprising
the engine_started, brake_released, gas_pedal_pushed, and wheel_rotating substates. For
a system in an orthogonal state, the exact state of the system is actually determined
by the encapsulated substates, which, in turn, are determined by the subsystem states

of the system.

Figure 6.1. The partitioning moving state
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6.1.1.2 Formal Semantics

Since ¥ contains only a set of state names that do not have any specific meanings,
the formal semantics of the dynamic model mainly comes from the interpretation of
the decomposition and type functions, v and ¢, respectively. The formal semantics

of these two functions are defined by the following rules:

1. (Vzx € E. (¢(x) = PART) = ((Vy € v(z)y = ) AN (Vy,z € v(z). y# z —
(y = ~2)) A (z = (Va(x)))))

2. (Vz € E. (é(z) = ORTH) = (z = (A+(2)))).

Rule (1) says that if a system, at a certain time, is in a partitioning state z,
it must also be in one and only one substate of z; a substate of z refines state z.
Rule (2) implies that whenever a system is in an orthogonal state, it is also in all
of its substates simultaneously, which indicates that an orthogonal state of a system
depends on the states of its subsystems. Thus the orthogonal state is analogous to

the system decomposition hierarchy.

6.1.2 State transitions
6.1.2.1 Syntax

Since the purpose of state diagrams is to describe the dynamic aspects of a system,
which changes in response time and events, state transitions become crucial in achiev-
ing this objective. A state diagram would convey very little information without state

transitions. The syntax of the state transition is an extension of the (X,~,¢) tuple

and is defined as (2, 4), where
1. Q: a set of events.

2. 6 Xpart, ! = TparT U {(D}, where X papr = {.tl.t EXA (b(l?) = PART}
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Set ) contains events that trigger transitions between partitioning states. There
is no state transition associated with orthogonal states. The set § actually defines
transitions, fired by specific events, between partitioning states. The state on the left
side of the arrow “—” is called the departure state; the state on the other side is
called the arrival state. Given a state s and an event e, if §(s,e) = {}, then we say
there is no transition from s when event e occurs.

In terms of graphical notations, every transition is denoted by a labeled arrow
that connects two ovals that represent partitioning states. The states can be further
identified as departure or arrival states in accordance with whether the state is asso-
ciated with an arrow. Thus the syntax of a state diagram is extended to become the

combination of the state and transition tuples, (X,v,¢,9Q,6).

6.1.2.2 Formal Semantics

Because neither timing factor nor time constraints were introduced into the for-
malisms of the dynamic model, a transition happens instantaneously when the trig-
gerring event occurs and the system is in the appropriate departure state. The formal
semantics of the transition is

(Vre E,Vee Q. (x Ap(z) = PART Ne) — é(z,€)),
which means a system in state £ immediately changes to state §(z,e) once event e
occurs. If §(z, €) is {}, the system then remains in the current state. This occurrence

implies that the given event has no effect on the (sub)system.

6.2 Tool support

We have developed a graphical editor based upon the VISUALSPECS environment
and its graphical icon library in order to support the formalized dynamic model.

The architecture of DMToOOL is exactly the same as that introduced in Chapter 3.
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Only slight changes to the graph editor and parser were made in order to support
the construction of the dynamic model. The remainder of this section discusses the

details of the changes to the graph editor and the parser.

6.2.1 Graphical editor

The architecture of the graphical editor of DMTOOL is exactly the same as that of the
object model. The graphical editor maintains a list of graphical components, such as
ovals and arcs, and is responsible for passing information to the graphical objects. A
part of the syntax of the state diagram is also incorporated into the graphical editor in
terms of context-sensitive diagramming in order to eliminate some invalid drawings.

The primary graphical constructs of the state diagram are relatively simple in
comparison to those used by the object diagram. Solid oval, dashed rectangle, and
arc arrow are the only notations that are used in the dynamic model of a system,
whereas, in contrast, a description of the object model needs rectangle, oval, triangle,
diamond, segment, etc.

Since the properties of an are arrow are very similar to that of a line object class
previously defined in the object model, the arc arrow object class was derived from
the line class with the draw member function modified to draw the shape of an arc.
Unlike the object model and state schema, the state diagram introduced modularity
as a means to facilitate the decomposition of states. Thus the DMTOOL has to provide
the corresponding facilities to support the modularity characteristics of the dynamic
model. A new graphical construct, floating diagram, was implemented to enable users
to enclose a subdiagram as a graphical component in a diagram.

Partitioning diagram and orthogonal diagram are two subclass derivations of the
floating diagram as a means to represent the partitioning and orthogonal states, re-
spectively. The user is free to incorporate either a normal state or a subdiagram, typed

as PART or ORTH, which may be further decomposed into other states, during the
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construction of a state diagram. As we mentioned in Section 6.1.1, the ovals with
substates separated by solid or dashed lines represent the partitioning and orthogonal

substates respectively.

lirsmisson state L e eeeieiicccieceeecceenaae.

n
g

|

Figure 6.3. The motion_state orthogonal state

In order to support modular construction of specifications, the floating diagram
object has operations that support the viewing of the contents of a superstate with
a mouse click. Then another diagram, whose content is exactly that of the clicked
state, will be displayed in another pop-up window.

Figure 6.3 shows an orthogonal state, motion_state, of the simplified automobile

system that was introduced in Chapter 4. As illustrated in the figure, the motion_state
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state is composed of transmission_state, brake_state, and engine_state substates. Fur-
thermore, each substate is itself a superstate for other states. For example, transmis-

ston_state can be further decomposed into park, reverse, neutral, and drive substates.

6.2.2 Larch specification generation

As with the object models, the Larch specification language is used to describe the
formal semantics of states and state transitions introduced in Section 6.1. The trait
construct provided by Larch is used to describe the functions v, ¢, and 4.

Since the semantics of the state diagram is twofold, we need two different schemas
to describe state diagrams. First, a Larch trait is generated for each superstate along
with its corresponding substates with respect to the partitioning and orthogonal state
decomposition rules. The distinct semantics of the two types of states is reflected by
the different axioms in the assert portion of the traits. Figure 6.4 is the specification
generated for the state motion_state shown in Figure 6.3. The specification indicates
that a system is in the motion_state state only if it is also in engine_state, brake_state,
and transmussion_state.

Figure 6.5 contains the specification derived from transmission_state, which is
also a substate of motion_state. Although the transmission_state state is enclosed
by motion_state, which is an orthogonal substate, it, itself, is actually a partitioning
state. The specification implies that an object in transmission_state state must be in
one and only one of the park, reverse, neutral, and drive states.

Second, every transition represented by an arc and two solid ovals should also pro-
duce a Larch specification trait in order to depict a system state transition triggered
by the transition event when the system is in the departure state. The generated spec-
ifications describe the system changes in accordance with events. Figure 6.6 shows a
transition that changes the state of a transmission from the drive state to the neutral

state given the sw_dn event which represents “switch from drive to neutral”.
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STATE_motion_state: trait
includes STATE_engine_state
, STATE_brake_state
, STATE_transmission_state

introduces
motion_state : 0Object -> Bool
asserts
\forall a: Object
motion_state (a) == (engine_state (a) ) \and (brake_state (a) )

\and (transmission_state (a) )

Figure 6.4. Larch specification of the motion_state orthogonal state
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STATE_transmission_state: trait
includes STATE_drive
» STATE_neutral
, STATE_reverse
» STATE_park
introduces
transmission_state : Object -> Bool

asserts
\forall a: Object
drive (a) => transmission_state (a)
neutral (a) => transmission_state (a)
reverse (a) => transmission_state (a)
park (a) => transmission_state (a)
drive (a) => ~ neutral (a)
drive (a) => ~ reverse (a)
drive (a) => - park (a)
neutral (a) => ~ reverse (a)
neutral (a) => ~ park (a)
reverse (a) => ~ park (a)
transmission_state (a) == (drive (a)) \or (neutral (a))
\or (reverse (a)) \or (park (a) )

Figure 6.5. Larch specification of the transmission_state partitioning state
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STATE_TRANSITION_transmission_state_drive_neutral_sw_dn : trait
include STATE_drive
, STATE_neutral

introduces
sw_dn : => EVENT
Trans_drive_neutral_sw_dn: Bool, EVENT -> Bool

asserts
forall a : OBJECT, e : EVENT
( drive (a) /\ e = sw_dn ) => (Trans_drive_neutral_sw_dn(drive(a), e)
=> ( - drive (a) /\ neutral (a) )

Figure 6.6. Larch specification of the transition from state drive to neutral




CHAPTER 7

A New Modeling Paradigm

The statechart [36] allows a given state to be decomposed into XOR (orthogonal) and
AND substates, where the XOR substates can be considered as a refinement of states
whereas the AND substates are normally a result of splitting a state in accordance
with its physical subsystems [36].

Since the statechart is state-oriented and does not address the properties of system
objects, the purpose of decomposition is solely to reduce the complexity of traditional
state machines. However, within the OMT framework, for each object diagram, there
is a corresponding statechart, thus defining the integration between the two modeling
approaches. No modification was applied to statecharts to facilitate its integration
with the structure of the object model which favors the object-oriented development
paradigm. Therefore, the inter-relationship between the object and dynamic models
in the OMT has a loose coupling that is not well-defined. Additionally, there are no
explicit guidelines for integrating the two models.

Also, no detailed guidelines were given to conduct the XOR state decompositions
in statecharts. On the one hand, the XOR substate is a refinement of their superstate.
On the other hand, the superstate is a clustering of its respective XOR substates in
order to make the statechart concise. Thus the XOR is, in fact, a type of abstraction

of the state space. Nevertheless, how to perform the abstraction process in order
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to take advantage of the benefits of applying XOR decomposition is not explicitly
described and greatly depends on the experience of the individual software engineers.

We propose a new approach to perform system state decomposition, which is
designed to tightly couple the object and dynamic models. More specifically, our
approach to the integration of object and dynamic modeling techniques enables us to
depict the static and dynamic aspects of a system in the same modeling framework.

In this chapter, we introduce the concept of substate decomposition and present
critera that such decompositions must satisfy. Statecharts so structured will be of
much greater use in the specification process due to their modularity. With parti-
tioning states and state schemas, we are able to conduct a state space decomposition
that is tightly coupled with the construction of object diagrams. In our approach,
the object diagrams and the statecharts are constructed alternately in an iterative

process. There are four steps in every iteration.

—

. Develop the object model

S

. Develop the dynamic model

(a) State refinement

(b) Transition assignment

3. Depict the states in the dynamic model by state schemas

NN

. Refine object model to include states from state schemas

The remainder of this chapter discusses the four steps along with examples from
the ENFORMS [37, 38, 39, 40] system. ENFORMS is a distributed object-oriented
multimedia decision support system for environmental science and global change,

being developed by the Software Engineering Group at Michigan State University [41].
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7.1 Develop the Object Model

The first step of modeling in every iteration is to develop an object model based on
the previous iteration. The exception is the first iteration where no previous models
can be referenced. In this case, object modeling is used to decompose the whole
system into subsystems and to model the system and its corresponding subsystems
with aggregation, binary, and n-ary associations. For convenience, the object or
(sub)system being decomposed is referred to as the current object or (sub)system;
the other objects or (sub)systems are called component classes or (sub)systems. The
decomposition is only applied to the current (sub)system level. No other decompo-
sition and modeling is allowed for the component classes. Thus, through iterations,
the system can be decomposed and modeled with increasing detail at each iteration.
Figure 7.1 shows the level one object model diagram of the ENFORMS system.

Since Figure 7.1 is the first level object model, the states, initiating, idle, and
querying, associated with the Enforms class are not derived from the previous iteration
of modeling, but are directly constructed by the user. For object modeling other
than that performed for level one modeling, the object states are acquired in step 4
(decomposition) of the previous iterations.

In this example, the Manipulator, NameServer, ArchiveServer, and Client classes

will be decomposed and modeled in the next iteration of modeling.

7.2 Develop the Dynamic Model

The dynamic model of the (sub)system that is decomposed and modeled in step one
is constructed in this step. The modeling procedure consists of two sub-steps: state

refinement and transition assignment.
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Figure 7.1. The level one object model diagram of the ENFORMS system
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7.2.1 State refinement

We have noticed that the current class is the only object associated with states.
During the first iteration of modeling, these states are directly constructed by the
users; for the other iterations, these states are acquired in step four of the previous
iterations. The states associated with the current class, if possible, are further refined
into substates, called refining substates, in this substep.

The strategy to conduct the refinement has been discussed in the literature [9, 42,
43], and is also one of our ongoing research topics. However, the refinement strategy
still heavily depends on the users’ preference and experience.

Figure 7.2 gives one possible refinement of the querying state. The state ArchReso
means that the system is resolving the internet address of the archive server on which
a query is to be performed; the state QueryPerfo is the state in which the querying is
taking place. In contrast, the state queryingis a clustering or a higher level abstraction
of the ArchReso and QueryPerfo states. In order to maintain simplicity and support
abstraction, the states associated with the current object or (sub)system in the object
diagram obtained in step one will not be changed, even though they may be refined in
this step. In step one of the next iteration of modeling, the refinement to the object
model will be captured.

Since it did not appear necessary to refine the dynamic model, Figure 7.3 is kept

as our level one dynamic model for ENFORMS system.

7.2.2 Transition assignment

Given a set of states associated with the current class, transition and trigger event
between the states or the refining substates must be assigned such that a dynamic
model of the current class can be constructed. In both Figures 7.2 and 7.3, transitions

between the states initiating, idle, and querying as well as between the refining sub-
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Figure 7.2. A possible refinement of the state querying
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Figure 7.3. The level one dynamic model of the ENFORMS system
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states ArchReso and QueryPerfo are shown. Although we are not giving any specific
guideline to determine the transitions and triggering events, the constraint that every

state must be reachable must be satisfied in the constructed dynamic model.

7.3 Depict the States in the Dynamic Model by
State Schemas

In this step, we try to give a state schema for every state that appears in the dynamic
model constructed in step two. The result of this step provides another perspective
on the system states. The state schema is intended to reveal the relationship between
the state of the current object and the states of its component class. Since there are
no states associated with the component classes yet, we also need to determine in
what states the components object classes should be during the construction process
of the state schemas associated with the states of the current class.

Figure 7.4 illustrates a state schema depicting the querying state of class Enforms.
There are four instances e, ns, ¢, and as typed as Enforms, NameServer, Client, and
ArchiveServer, respectively. The ns, ¢, and as instances are related by association
query, which means that the three, as a whole, carry out query activities. The
e instance of class Enforms is composed of ns, ¢, and as instances. In addition,
the as instance is associated with state doQuerying; and c is associated with state
waitQuerying. Therefore, these relationships imply that doQuerying is a state of
class ArchiveServer and waitQuerying is a state of class Client. Since there is no
state associated with the ns instance, the querying state of class Enforms will not be
affected by the states of its NameServer components.

In Figure 7.5, a Larch specification generated from the state schema is given. The

meaning of the specification is: if there are at least three components, archive server,



84

Figure 7.4. The state schema of the querying state of the Enforms object
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includes ASSOCIATION _hasPart_Enforms NameServer
, ASSOCIATION basPart_Enforms_Client
, ASSOCIATION_hasPart_Enforms_ArchiveServer
, ASSOCIATION query
,CLASS_NameServer
,CLASS_ArchiveServer
,CLASS_Client
,CLASS_Enforms

introduces
querying : Enforms-> Bool

asserts
\forall e: Enformq
querying(e) ==
\exist c: Client, as: ArchiveServer, ns: NameServer
query (ns, ¢, 2s)
\and hasPart (e, ns)
\and hasPart (e, c)
\and hasPart (e, as)
\and State_Client (c) = waitQuerying
\and State_ArchiveServer (as) = doQuerying
\and State_NameServer (ns) = undef NameServer
\and c \neq exr_Client
\and as \neq err_ArchiveServer

Figure 7.5. The state schema of the querying state of the Enforms object
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name server, and client, in an ENFORMS system working together to implement
query activities, and the archive server is performing a query while the client is waiting
for the result of a query, then the ENFORMS system can be said to be in a querying
state. Although a typical statechart is also able to depict the aggregate association
between the system and its components through the orthogonal decomposition, it
cannot describe the relationships between the components and does not have the
means to depict the states of multiple numbers of system components. Clearly, the
state schema provides a more precise semantics. The query association in Figure 7.5
shows the strength of the state schema. It eliminates the abnormal system states that
may be otherwise acceptable in a statechart. Consider the following scenario.

Two client programs ¢;, ¢, two archive servers as;, as;, and a name server are
running in an ENFORMS system. The clients ¢;, ¢, issued two queries to the archive
servers asy, as; respectively and are waiting for the query results while the two archive
servers are performing the queries. Accidently, client ¢; and archive server as; die
and leave ¢, waiting for as; and as, serving for ¢;.

In a typical statechart, this state is considered a legal state; the potential system
hazard cannot be detected. However, the state schema in Figure 7.5 does not accept

the state as a querying state and will clearly reveal the problem.

7.4 Refine Object Model to Include States from
State Schemas

Based on the state schemas developed in step three, we are able to associate states
to the component class in the object diagram constructed in step one. However, not
all the component classes need to have corresponding states. If there are no states

associated with the instances of a certain component class in the state schemas, the
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state of that object class is considered insignificant for the behavior of the system
and no state needs to be attached to the component class in this step. VISUALSPECS
will automatically associate a default state to the object during the specification
generation process.

For a component class that is already given states in the state schemas, we need
to collect the states that may be scattered in the state schemas in order to form a
complete set of states for that component class. Unfortunately, the set of collected
states (from all the state schemas) of a component class usually does not cover all
the possible states. The users need to carefully study the component class and the
states it already has, then determine whether there are missing states and add them
into the state space. Thus a relatively more complex and informative version of the
object diagram obtained in step one is derived. We consider those component classes
that are associated with states to be likely candidates for decomposition in the next
iteration of modeling.

Figure 7.6 is the revised object diagram obtained by adding states to component
classes. The difference between Figures 7.6 and 7.1 is that classes ArchiveServer,
NameServer, and Client are now associated with their corresponding available
states, which are collected from the state schemas derived for states idle, initiat-
ing, and querying of the Enforms class. In the next iteration of modeling, classes
ArchiveServer, NameServer, and Client will be decomposed and modeled in a similar

fashion.
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Figure 7.6. The revised level one object model diagram of the ENFORMS system




CHAPTER 8

Intra- and Inter-model Referencing

Visual formalisms are intended to model systems that are potentially quite complex.
However, it is unrealistic to draw everything in one diagram. A system of reasonable
complexity is always decomposed into smaller pieces and modeled separately. As a
consequence, a graphical object may occur in multiple diagrams. To complicate things
further, several modeling techniques that describe different aspects of a system may
need to be integrated into one modeling framework [44]. Thus a cross-referencing
mechanism that supports both diagram and graphical object references is necessary
as a means to facilitate the modeling process.

Diagram-level referencing involves techniques and concerns, relevant to configu-
ration management, which is beyond visual formalisms. Currently only graphical
object referencing is supported. The reference mechanism supports both intra- and
inter-model referencing. Section 8.1 illustrates the intra-model referencing we have
implemented for the object model. Section 8.2 shows the inter-model referencing be-
tween the object and dynamic models. Section 8.3 introduces the mechanism that we

developed to support cross-referencing.
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8.1 Intra-model Referencing

Figure 8.1 shows an indexed object model of the ENFORMS system in which class
ArchiveServer is found of interest and highlighted. By selecting reference from the
popup menu with the cursor in the ArchiveServer class, the reference collaborator

can be activated.

File ARAssociate Mode Output Options
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Figure 8.1. The object diagram of ENFORMS system

In Figure 8.2, the reference collaborator is displayed. It contains three categories of
available diagram references—object diagrams, instance diagrams, and state schemas.

After checking all the diagram index files, the collaborator lists om1.dgm as an avail-
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able object diagram reference; query.ins2.dgm and query_insl.dgm as available in-
stance diagram references; query_ssl.dgm as an available state schema reference. The
file name, insl.dgm, in the text field at the lower part of the reference collaborator
is the selected referenced diagram for viewing. According to our classification of dia-
gram types, the object and instance diagrams both belong to the object model, hence

the referencing between the two diagrams is considered intra-model referencing.

H Otyect Diagram
3/user /u25/wangyi/thes13/pro) 2/TSE/oml . dom

AL, L,

Figure 8.2. An instance diagram of interested is selected to display

The referenced instance diagram, query_insi.dgm, is finally displayed at the upper-
left corner of Figure 8.3. The displayer, diagram.viewer, is a read-only diagram viewer.

No modifications or other manipulations are allowed in the diagram.viewer.
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/user/u25/vangyl/thesis/proj2/FSE/query_ssl.dga

Y user/u25/uangyi /thes1s/pro)2/FSE/query_insl.dgn

Figure 8.3. The referenced instance diagram is displayed




93

8.2 Inter-model Referencing

Figure 8.4. An inter-model referencing

Similar to intra-model referencing, the inter-model referencing is achieved by select-
ing the available reference diagrams from the different types of models. Figure 8.4 is
the result of performing referencing on association query in the object model of EN-
FORMS. But this time, the state schema query_ss!.dgm is referenced and displayed

at the upper-left corner of Figure 8.4.
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8.3 Referencing Mechanism Implementation

The cross-referencing mechanism is implemented through an index generator, a ref-
erence collaborator, and a reference displayer. Figure 8.5 is a high level data flow
diagram that shows how the index generator, the reference collaborator, and the

reference displayer cooperate to provide the numerous referencing services.

type and name of

eraphical object
Reference Collaborator ) ------- > Reference Display

Textual Description Diagram Indices

Reference List

Figure 8.5. A high data flow diagram of the referencing sub-system

The index generator is a parser that takes the textual description of a diagram
as input and creates an index file. Each valid diagram, where valid means syntactic
correctness, has a corresponding index file, that contains information about the di-
agram and its graphical objects. The information stored in the index files includes
the names and full paths of the files containing the indexed diagrams, the types,
names, and signatures of the indexed graphical objects, etc. By modifying the index
generator, a user can add new graphical objects of interest to be indexed.

During the construction or browsing of diagrams, if a user is interested in viewing
the references related to a certain graphical object, the reference collaborator can

be launched from the popup diagram menu associated with the graphical object of
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interest. The reference collaborator then searches through the diagram index files to
find the diagrams that contain the graphical object whose type, name, and signature
(only for associations) match those of the graphical object from which the reference
collaborator was activated. The selected diagrams forms a reference list and are
loaded to a reference displayer. The reference displayer, in turn, displays a dialog
box to show the reference list. If a diagram in the reference list is found of interest,

a read-only diagram viewer can be triggerred to show the contents of that diagram.



CHAPTER 9

Integration with Other Tools

Because VISUALSPECS can generate multiple types of formal specifications, it can
be integrated with other tools. Currently, VISUALSPECS is used with LDE (Larch
Development Environment), an integrated environment supporting the construction
and manipulation of Larch specifications. The remainder of this section gives an

overview of the integration between VISUALSPECS and LDE.

9.1 LDE tool

A related project developed an integrated environment that facilitates the construc-
tion of LSL specifications, including a graphical interface to theorem proving and syn-
tax checking tools. The tool, LDE (Larch Development Environment) [45], provides
simplified access to trait handbooks, editing facilities for traits, graphical interfaces
to the LSL syntax checker [3, 18, 46], the Larch theorem prover (LP) [11], and a
graphical rendering of trait hierarchies based on trait inclusion.

While LDE contains features found in many browsers, it also contains functions to
assist the specifier in the development of traits, including creation, modification, and
saving traits as well as traversal of their dependencies. LDE provides capabilities such

as the graphical display of traits, operators, sorts (data types), and dependencies,
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all of which can be generated with respect to the context of trait dependencies.
Figure Y.1 contains a sample session with the LDE, where a specification for the
dictionary trait is displayed in the “Larch Trait Browser” window. The operators
and sorts are declared within the section headed introduces. Axioms are included
in the asserts section. Any traits that have been included, as delimited by the
includes keyword, can be selected (highlighting) for display in a “Trait Reference
Window,” which cannot be edited. Figure 9.1 also contains the interface to the syntax
checker [31] and LP [11], which supports many types of verification tasks, including
consistency and completeness checks. Finally, the user may select from the list of

“Known Traits” for modifying or viewing available traits.

9.2 Integration with Larch tools

Next, we consider the generation of Larch specifications and illustrate how
VISUALSPECS can be integrated with tools that support the processing of Larch
specifications. Recall the class diagram given in Figure 4.10, which depicts the stops
relationship between the Brake and Wheel classes. Further, recall the two instance di-
agrams for this class diagram given in Figures 4.3 and 4.4. Figure 9.2 contains all three
diagrams, their corresponding Larch specifications, and the LDE. The corresponding
specifications are all correct syntactically, but upon invocation of the Larch Prover
(LP), it is discovered that the second instance diagram (Figure 4.4) is inconsistent
with the class diagram. More specifically, the stops relationship is one-to-one, and yet
wheel w2 has brake b2 and b3 traveling in it. Notice that the error messages in the LP
window describe the inconsistencies with respect to the axioms in the specification
for the schema in Figure 4.10. In other words, when checking for inconsistencies, LP

takes the stops relation axioms from the INSTANCE_ASSOCIATION stops specifica-
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;

Deduction rule CLASS_Wheel 1 was normalized to equation CLASS_Wheel 1.1,
W] == w2

{ ASSOCIATION_stops : trait
i includes CLASS_Brake, CLASS_Wheel
introduces

stops : Brake, Wheel -> Bool

|

Deleted equation INSTANCE_ASSOCIATION_stops1_steps_instance2 6, which reduced
to an identity.

i{ Deleted equation INSTANCE_ASSOCIATION _stops1_stops_instance2.7, which reduced
i to an identity.

:t The equations cannot be ordered using the current ordering,

asserts
forall x1, 32 : Brake, y1, y2 : Wheel
(stops(x1, y1) A stops(x1, y2)) => y1 = y2;
(stops(x1, y1) A stops(x2, y1)) => X1 = x2;
stops(x1, skolem_W(x1));

i Eile

INSTANCE_ASSOCIATION _stops1_stops_insta
includes CLASS_Brake, CLASS_Wheel, ASSOC
asserts

forall bl, b2, b4, b3: Brake, wl, w2, wd: Wheel

Brake [ Wheel |

State_Brake (b1) == undef_Brake;
State_Brake (b2) == undef_Brake;
State_Brake (b4) == undef_Brake;
State_Brake (b3) == undef_Brake;
State_Wheel (w1) == undef Wheel;
State_Wheel (w2) == undef Wheel;

State_Wheel (w4) == undef Wheel;
X ops S stops (b1, w1) == true;
‘ Sen g @,.--" / 3 stops (b2, W2) == true;

stops (b4, wd) == true;
‘- .’ stops (bsr m) == true;

-
Aranan A

R

rpona rmsnr AR Sy

Figure 9.1. Sample session with Larch Shared Language Browser
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tion and checks them against the axioms in the ASSOCIATION _stops specification.

T dlagram @ Tralt Reference Window N
tops : trait
[ £iie mesociste rode Otmn  Optione {ncTudes CLASS Brake. CLASS. Whes!
ntroduces
r stops 8rake,
] whee! -> Bool
I File Asscciste Mode Prake staps Weed Brake -> Wheal skolen ¥
1 Brake skelens .@
sheel -> Br
tsseres forall x1, x2 : Brake, yi
oral , %2 : Brake, y1,
U .
y2 : wheel -m
\ s us (stops(x1, y1) /\ stops(x1,
Al k1l m -
(v) . (+) e L? interface Windew o
'." K (Fis @) (elo.) (Options..)
c‘. N =]
" e R Equation ASSOCIATION_stops.i.1, y! == y2, 1s inconsistent.
) = . :’—m— P Al y
Equation ASSOCTATION_ stops.2.1, x! == x2, is inconsistent.
T @«‘: Equation CLASS_Brake.1.1. b1 == b2, is Inconsistent.
".‘ g Equation CLASS_Wheel.1.1, wi == w2, is inconsistent.
.‘.. ." The equations cannot be ordered using the current ordering.
. J
() L_ @ ® Larch Trait Brewser
(Fie 9) (Syntax Check Trait)  (Debug Trait)  (Refersnce t
|- asserts 2
foral)l b1, b2, b4, b3: Drake. wi, v2, wé: Whee!
. Ad . State_Brake (b1) == undef_Brake:
S X State_Brake (b2) == undef_Braks;
0 kS State_Brake (b4) == undef_Brake;
S kS State_Braks (b3) == undef Brake:
R e . State_Whee] (vi1) == undef_Wheel:
K 0 o NN 2t|tt_mt} E'zl)\ e ungo:_mn};
e “ tate_Wheel (v4) == undef_wheel:
ke . R stops (b1, wi) == true; ~
stops (b2, w2) == true; -
Seel .o st . ﬁE == true; ]
S, -.@ __swpe (.,).- S stops (b3, w2) == true;
. .
" ‘-' State_Wheel (v3d) == undnf:lnd;
. stope / State_Wheel (wd) == undef_wheel;
‘ “; @ stops (b1, 1) e= true: Operators
stops (gz. v;) o= trus:
stops » ¥3) == trus;
stops (b4, v‘; -= trus; Expan “-'J
- h

Figure 9.2. Class and instance diagrams with their respective Larch specifications




CHAPTER 10

Related Work

This chapter describes several categories of related work, including system modeling
techniques that use more than one diagramming notation as well as projects that

involve adding formalisms to existing diagramming notations.

10.1 Object-Oriented Modeling

Rumbaugh et al. [9] and Shlaer and Mellor [47] proposed two similar object-oriented
modeling techniques that model the real world in terms of three orthogonal models:
object, dynamic, and functional models. The modeling procedure is also divided
into three phases in order to construct the three models. However, there is no well-
defined guideline to direct system analysts to achieve the goal. The informal graphical
notations allow the possibility of incompleteness, inconsistency, as well as ambiguity.
More studies are needed to extend and understand the inter-relationships among the
three models, and more specific guidelines for the analysis and design process are
needed to illustrate the benefits of OMT and other graphical modeling techniques.
The remainder of the discussion describes other projects that have addressed the

formalization of graphical modeling approaches.
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10.2 Statechart

David Harel introduced statecharts [22, 36, 48, 42] as a visual formalism to describe the
dynamic behaviors of complex systems. Statecharts extend conventional state transi-
tion diagrams with essentially three elements dealing, respectively, with the notions
of hierarchy, concurrency, and communication. Thus state diagrams are transformed
into a highly structured and concise description language that is expressive as well as
compositional and modular.

STATEMATE, based on Harel’s statecharts, is a commercial product intended for
the specification, analysis, design, and documentation of large and complex reactive
systems, such as real-time embedded systems, control and communication systems,
and interactive software or hardware. STATEMATE enables a user to prepare, an-
alyze, and debug diagrammatic, yet precise, descriptions of the system from three
complementary perspectives that capture structure, functionality, and behavior.

However, the relationship and information exchange between the three types of
diagrams are complicated and potentially difficult to manipulate. The complex and

intricate charts also make changes, modifications, and maintenance challenging.

10.3 Requirement State Machine Language
(RSML)

Leveson, et al. [35, 49] developed a formal approach to using a state-based model
to specify the requirements for process-control systems and successfully applied it
to an industrial aircraft collision avoidance system (TCAS II). Unlike other systems
that use multiple different and incompatible models within the same specification
(e.g., STATEMATE [42], Hatley/Pirbhai [50], and Ward/Mellor [51]) to specify the

information needed in a system requirements model, the proposed approach builds
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one state-based model that includes all of the information needed to describe the
behavior of the components of the systems, including the computer and the interface
between the components.

The RSML approach models the required software black-box behavior along with
the assumptions about the behavior of the other components of the system. Formal
analysis procedures can be applied to the model in order to ensure that the software

requirements model satisfies required system functional goals and constraints.

10.4 SAZ Method

The SAZ [52, 53] method was developed at the University of York. It addresses some
of the problems of structured and formal methods, by integrating SSADM (Structured
Systems Analysis and Design Method) version 4 and SAZ.

The SAZ approach is to use SSADM to specify the whole system. The SSADM
method includes five modules: feasibility, requirements analysis and specification,
logical and physical design. The system state of the logical data model and parts of the
functional requirements that are particularly complex or critical are then presented
in specification language Z. SAZ can be used either as a pure quality assurance tool,
or as an integral systems analysis technique. It comprises three main elements: the
specification of the system state (or a sub-model of the state), the specification of
critical processing, and the specification of selected inquiries.

The principal benefits of the integrated method are,

o the ability to express features of the functional system requirements that are not
well documented or which have been omitted from the SSADM requirements

specification;
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e the expression of all functional requirements in a common, mechanically-

checkable notation;

e the ability to provide (formal or informal) reasoning about, for instance, pre-

conditions to operations;

e the facility for concise expression of error processing.

However, SAZ is currently still a proposed methodology and, so far, there is no

sophisticated tool support.

10.5 OMT and Z

Hartrum and Bailor give a high-level Z formalization of the three OMT notations,
including a subset of the OMT object model notations [54]. Their formalization
of object models is designed to guide the development of formal specifications from
object models, where it is intended for the specifier to modify the specification directly
to include details about analysis and design information. Our approach, in contrast,
assumes that much of the analysis process will proceed at the diagram level, and our
formalization techniques can be used to obtain a formal specification of the explicit

and implicit information in the diagrams.



CHAPTER 11

Conclusions and Future

Investigations

Software development, especially for complex systems has been a great challenge for
the academic and industrial environment, thus prompting research in many disciplines
of computer science, such as software engineering, artificial intelligence, knowledge
engineering, etc., dealing with different aspects of the software development process.
One of the fundamental problems that makes software development difficult is the
large gap between the formal world of computation and the informal, real world.
Formal methods are considered to be a means to bridge the gap by providing formal
approaches throughout the software development process [2]. Although many formal
specification languages for various application domains have been developed so far,
the lack of methodologies that can incorporate formal methods into the development
process hinders the widespread acceptance and use of formal methods.

In contrast, numerous diagramming techniques, due to their intuitive and easy to
understand graphical notations, are broadly adopted in industry. The diagramming
techniques are intended to visualize information, especially information that is com-
plex and intricate in nature. Naturally, formal semantics has been one of the research

subjects for visualizing information. Visual formalisms [36, 48], with well-defined
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graphical syntax and formal semantics carried by graphical notations, are recognized
as an approach to potentially bridge the gap between the formal and informal meth-
ods. In the past decade, considerable progress has been achieved in formal methods
and diagramming techniques. There have also been several attempts to incorporate
visual formalisms into the software development process [36, 52].

This dissertation presents a framework to support visual formalisms. The archi-
tecture and graphical library of the framework facilitates the construction of graphical
editors for various diagram notations and the generation of formal specifications from
the the visual formalisms. The visual formalisms developed by Bourdeau and Cheng
were used as a testbed of the framework. The graphical editors for four different
diagramming notations, the object diagram, the instance diagram, the state schema,
and the statechart, were constructed respectively using the framework. The four
parsers to create Larch specifications from their corresponding diagrams were devel-
oped. We have also shown how the formal specifications derived from their graphical
representation can be used with other tools to perform system consistency checking.
A cross-referencing mechanism has also been developed to facilitate the intra- and
inter-model referencing during the diagram construction or browsing process.

Future investigations will focus on formalizing the Data Flow Diagram (DFD) for
integration into the visual formalisms developed for the object and dynamic models.

The overall objective of our work is to
1. Further investigate the integration of the three models.

2. The proposed paradigm for performing modeling with OMT will be refined and

studied more extensively.

3. We will also investigate the development of transformations that can be applied

to the diagrams and their specifications in order to obtain design information.
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