I '7 . ’mq—I—wv—wv - I II . _I I L ' I ’l“ ‘ A ’I .’ . . I I 'J IIII ’III I‘ I’ ‘ I III.“ a;': 'J. 4' .I. I ‘ .I‘- ‘ ‘ ‘ . I I. IJI"‘IL.I IIII'I.1|.I]" «H: L I' .‘ d... '.. " x In}: " 3 r I . II I I I I LI .{ . . ' . - .-_ “‘ n FF 0"“. I .I. ' \' ‘Ho ' ‘ . .- *1II.""-', ‘ 1 .L\. I}. .‘I ( .11). _I .‘l -'-I- | ’1; I’ ’. 3154;;4'.‘ 4. I.I,""I '5. b.l‘l.|‘lli'l" bf ‘I- ‘4 ' If : , .0 - ' ' "” '. ‘.“': 0"I:'.'-:.."n M. 0 “a. ‘l ha. #— W I-- v\‘-. . LI- 5;»: 9 :.—I «Ft 9'".- .I r;- o A {4- I _. w .‘Ck-n - .0 b S I . . I I .I. § .- -""II ‘I '5‘" ' .H a." .. ‘d’ . I O... '1‘ . - L. 0 v I- - I III. I. I” II - . I ... . . I... I- | "I I“! 36.1.. I ' "."Il":"-J’ r‘f’ 'J l . J "'0' II:~I“ I _' ..‘. I n . " . I . I I- I . II I._ ‘I I . III- I ' I. I~ ' : - I'M. " III I '~ ‘I "I’N'ILI '- In”. - h. Mun-w -I .I‘ Irv—J «In...» H ' 'I I-' h a" i 'I . I ' I' * . ' ”II...“ 35s' I. “" “4 "#410; “III I. 1M”: 71." h, ‘3", -‘ . . - I . ‘ 4 - "a“ 5;..9 I I.' I. b ,I . ‘ .I in 'r ‘ I If “"hlIl’I ‘1 " .1." 'l b ‘l‘ H" II‘ ‘ ‘ 'I "Ix ’ 1 I...' .-.u-' ‘ 3' II r-' E‘)‘: " " “q ." I-I'an’. w'" I . (I ‘ ' I I' I h'I I . ‘_o.. '1‘..- .5 I‘ I L‘I I'd." ' . fi'to‘ .IS Ml‘~.\fiI It. 1:. I. :z'é I‘I-_) I If I I l') 'Ivv'” It. 'I J J: L' a": LT} I;“-F":7‘ I ‘ "I %' 'I‘Ivl I Q] li‘l‘lf‘" I ‘ _~ _ I ‘ , ’ 0 .0 I .. l ‘I .I.. - - I .I 1",, ' I' I ' ‘1 I I .0 , (“I II I_I'l. I .I. (I'. I I' - ". Ir - ' "J' 'I' L ."'I".- '5 .. - I. :4 I-'-"-‘IW‘ IL “’- ' * I. A" ' 4%. s'.‘ 'I.’. {I P‘ II . ~33} I I, I . I, -I I” I In . ‘0 Ir {I If v I. I {9. ,I. I- .IIII.I_II, . I .l‘. I‘.‘ . v .I., \- I i J H I' ’| ' II "“' I- I “ I’ . Yd . 1". ,a ' . . h‘ “'35 ‘I M. .- I‘d» }' ‘ ." ‘ ' 'l ' l' ‘- ‘ 'I 1:1" “‘ -.... U. ‘ ‘ ‘ J O .1 "'I T "I"'.:‘ ' "~01 -\ .It I '- ‘1 : l .‘l . l'- . l‘ .‘ ‘I ' ll ‘ ‘. I A - LIV .z’ 'b ‘ ' -I"II p‘t. " . U P. I l I O I.‘ K i. I 0‘ I I‘m _ 1': I 0 ‘I’ III 1 . < ’- g. . I Y" I} ' ' 2‘ I ‘ 'I I" II. ,"' ' Ii 'Ipl r" :"h I 1"? . I “I I‘ l' ”I“? U" “... 'J' ;.'I::I'g"I',t’éI" ' :1 '4 Inc—:52. "Q ' ’ d 1' ' . \‘I d V‘ t ‘ ..lr .. — n‘ In “ ' ’ m0\:I. r - I I ," ‘ I ‘v #1 pa I ' ~ I ) ‘l J .' -~ ‘ I. "‘V IJ ‘ ' I. U Ir ' 'I In I' I. ' "Dy. 1.-.... ' o. ‘I :ul‘Ir ".0.- ' I‘. ‘ Er ”“15 " I {I .' I "’ fl 1" I ‘.f ’I!o.l “h I i ' ‘I . . . 3 :I‘l‘10'Jr‘ 7. 7A.: " ‘.'t' ‘21 f ‘9“ ‘$:.A~:i'lt“. "'J‘” "3 “5.645 l I" ‘ '- ' ' “-1" | I I" ‘ - -"“' ' I " ' '."'°°‘ ' 1 “.r‘au'fl'; 'é‘uo I. I \' ' -*"fi :1 I" 3 ’ " ' ‘I' .. " "' H‘ i I ‘I . u ' '0‘. 0 I .‘I‘ ."I - p 2.1. I~ ~‘l- ‘DJ‘ ‘ ‘ £ ' “2 . II I. '7“? (I 'E‘. I .| -I ‘I I l .-.'-'. I- III I. III I.— I. .I. .‘ "4.;Iu- . “III ‘4 .. "'I"'I3." I I. I. . 14.3.) “‘1' . - .* I'; . ‘I «III»- - I -.I.-;u,- I? . I. . m; I ~ ~ ‘ ""I. " III-II" Inn??- 1* 'w I . I ’fiy’” . ! I," _ .I. a: 1"" h .I , «If. I. _ I: I. I, III "3- ,..II-..II a ' ‘I H .I '10:: ‘2' Q. I I i. I"“' . .II , ‘3‘ '0'. .. I. _ I .' _ '.“ .QII‘Iv'I‘ “1:?” . II ..'I-._'-‘_II’_3 "7"" 'I-' s-I -3: I - I- III“.- I “I u L~ . fir-.I. :I I «II. III?“ II. .'.. I I“ I "a I I .I . I- III I _: Inna” 4. IK Q‘I I) I.) q I,‘,.-"_III_':-Q.I . :‘- “ ' ." ' . . I". ' “ -.|O.‘ - ' " III' ’ N ' ‘I .' u. I. o 'f‘ ._ .. ._ I I ....I I y; I “a" '.."1"-I‘ . - IoI. LI I r . I in r! .I O . , - I - O I I , - . - .I . ~. . ..- _ . . M . q o ' I L T .‘ I'II' ‘I lJ‘violOA‘ .“ ' I ".'l" Iou' .bqllil I ' t‘:-‘ ' H" ”.'H‘ . w ' T 'l‘ ”“‘-.K'I" . Z; “t‘... _:"1§:%: ?O‘I:V"2. \‘i-“‘ \ N a. ‘I L 0"“ I II -- I II. I.. ". I§_I H. I. I. . I. . I‘W‘II. 5‘III ..: .' ‘I '3‘” 'rlr:'-..‘:‘l{'.' - . .J.-'“‘I :- . 1"! ‘ ‘ ° " - t![ ' ‘I 'II “‘ IIIIH‘YS I‘ I t» L. '9 “3}... - )" ' I" 34""; I I" "._ . I-o x:1‘" 3.315.3N' . ' -.I. ' ' v ' .' .I . . I ' '_,I 'I .. ’Q . '. ..-' ‘ r. ‘0 . "‘ I '3 .- _. _ _ .,I' I. . I- ,‘ II. I ' . I.‘ V '. ' 7‘ {I -I‘I..'.. ""4"! 'N “11.10 1 ‘¥. ’ ”I: .5 .JM'H'J 3‘ ”331?? H . . - ‘I '> 5 III" ‘ 1 ' ' { I. "\I- 'f . m. .I If "'1' ."|l.“. .I. ‘ E "iio‘ ' x‘ ‘ " 0 I nl - "- :Y ' 4'" ' .I ‘ “ |. . " g. -‘. ‘ I,‘ .l' I\o II .O?.z “’IV- .. ‘4'. fi —. I - l . ‘ I I . *1" ’ ' I “'5 H. v 3,“; I7. .I “A I'; {.2 VJ- L9" J'd‘! .. . ' “'3 fi‘0;. . H ... ll‘ : :..’.7 U; a-tI. . . ‘ ' - I. -- . - I. ' 3 I I-, ' ' "' .4 - - . ., I , 5 ‘ .g H" J I. “ H" . ' . ' -.,T. ”1'?“ 1' p.-. “3‘2””- -f‘~-~3IIIr‘-I3:II;' I". 0 ‘ ‘0 ',. .’ ‘ . C. I.‘ " ‘1. In; I .'-, I II I “‘l I' l ‘1‘ T I I O I L‘.' _|' ..! . ‘ .{‘ *fi _' g '{l" r - ,I III xIIII‘I IYIOI;‘ “ ‘I [fit-"I .f. ‘ I . . ..I -- I.’: ‘.I — -.| I.) o. ‘4’ {qvw ' .. ~.. .I "I '3“ ‘3'*~'$o\r~b..l_$' m"_‘ :1 : “-II ' I - .f-I -“-:~I I.. . .. - I . , - ... r 1.‘ -- I; I ., ~~ -q..II...I-.-~ III! '72:: ..- V . I“ ? q. l.‘ J u ‘ A " I' ’ . ll ' . ‘ VI W ' ' ' I ' - 13 t h ‘ " '.31 .-k‘.a ‘~ .3" 0.." - i ‘1 .‘ O ‘ f ‘ Ft! ~§¥ c. S ‘. 3 ‘ . ' ’0 - > ' I ’ .- ~ ' “”0”"“0‘ I .III‘T’L'I‘ .‘I' ' I'I "'.' . ' ‘8 '§"A ‘I ‘6 ‘ ' " v .1" ° ""iI. 0'.”p.o' . I? VJVO-‘—' ' Ht—p‘l : ’1. - I'd-II . _ man-I I-. I I I . .-I ...,. .I. _ -’ .L . -t “I, - I _,' -_,. .' "Wu"! 3...“... :4 n3 ‘. ‘5. ,il 'f .I- r - J ..f’ " P H ' ' . y‘l-N' '\ 'I I " ' “ "“1, I .‘U: - 'v t. :‘.e..l".I‘HN"‘~oO"“ I'gz‘fli ’.. 'i ' “'§ ' k ’ i.— . 'h'. - . I ,. ""1' I- .. .I -- I, .. . ~ -- .. MN I. r gum-II .I x III-.3" r .. -.-I_ I1 I§.II-I“_ \ . ~. .III.; I’I“ III- IIII .. IIIt ‘ ”II {II “I‘- H“ ‘4 . 1:“ I: 0.:"II',;I' \ fl ..II~:;..h.. -{ .91.) "3.1. . s, - aI 3- ‘ .‘i .I- 3 "b 2 1. , .. ' 6. II - u I. . - r I, I‘ I"'-' _ I - u. . _ . v ., I . f ,. -. I . I . "‘1 - .I.“( 'I" " t. a"! - ‘. '§._-.‘$x-I)ht’-“ ’.‘ .“r‘ : "Kufirv; “ .i I1 ”"32: ‘3" 3F-;.Héfitf «‘Ir . I” ’ I ’ ‘I'I' ' -..I an. .LI'II ' '"rvI-~a.».II.-'.'-" . ' ”.I-I “In-:- ..8“ ' I - _ 7; -“- 3 at. ""‘r 'V' ' "‘Iv ’ I" ‘ ' "I' "‘SuI'IIP" 3 .‘-".1" 943‘ t. Q-fifléfl'ag"1§&%3‘m4 " 1"." : [l 9 I-. I I new: ‘ III . l‘.~ .1 III! \' I . “'I "r . I“. I '- . .. r I ‘I .I- ' F;O\..r L “r ‘C fi‘aj .‘ LP . t‘ ~~.- § -' . . . I"'18éI'I‘i"II~*’ .. v ~ ---' ~ . I “III" III; ";n- I .. 'F I- -; 0| I ' I ,'.' I -'- ,--.. . I a . _ I I 1' . .. c 3 I- . - v: :I II . .\.'-"-| I N I‘JI:' o ALI-I 4" I _ "I _. . I n ‘ 7:. . -. - " m2 ('3' .I h I ‘g-.. . :1” \I ie' :I‘ .r'?:.; " I?" - In I. I; ' III : _ . ‘ -' .. - "4 “33“.'-"-"£;” ”3;. ,I .1. 1.. f . “. o'll.1-" 12"43'. J—I ' 'q ' ‘ I." v v n 6 I-4I‘I19”.' '- ‘1‘, I h ' 5. g " ‘ 'L(¢-:I I'Ii‘; ‘ ‘1‘ "I, 5.0 ‘(ut .. .I. . Jay I I - LEI I VII II | I II ' O . I .\;‘Ib\. -1. , l.r . - ._‘ . ”Ix-1.. ; I. 0‘ . 43;“,3 '0— 3:1 I I '- I I * . - " ' ~ ‘ I ‘ . a. I v." I! ~ ~ ' 'fv- . ‘3'" .. . I‘ ~ fi:I. '- . .25.. I: I - , . 3.. $..\1’.f;“%‘1‘5§3r .I. -*-l I .4 .z -. I» ‘. I . . ' .. . . "I: ~ . III' . . II...“ IIII.I.»..I.'--.I. In -- ° -w-I- 0‘ I I .. .. d I I I I ‘I _ I f MI ‘3‘ .‘ ' .I.! I \V'I‘vt ‘ - «Q I- ‘ ._,.‘~ fl f... o '.".. g " J'E . l I l" . ‘I l‘ “ II ' "I I |*'l' ‘. {'7 u' "‘ 3- ‘\' I -~ ' -- - A'- .I. n. 1 fl. II I I _ II. .I \ . l k ’I : fi .‘ _ .I ‘ 'p'Yv "but firs! .. ' ‘ " I ' In. "3‘" 41‘1834 "11?: (Ia-J; "" 414‘“. - — I 1". ' I...' -~ I.: * II‘I- - I " ' ‘- up w «I z I .., - ~.-—.-:I ' " ' "1' “I" -‘ ". ' I " ' cII“: ’§.I§":t"+=;£ .m . 13'“ .. : Ir“ c 61".” 'I'. ET'"‘T!'.I_3- II ' 7... “"I" 7‘v'3L'w‘N‘ 93"- ‘ 5;. I “’7‘F3 ' 5": " g , I I I I II\ N ‘ ' - - "1 _ . .. ’I I.v I i ‘I ‘ '. If I'” I1» . I I I 'I _. ' s-..” I ‘,.. . ::.+—-\- I, "I ":3" ,,. ._I y“ 3380'. 4 ‘II “E Q! ' N IL 0 I .I II I .. I"~ I g. . wg - fgafi" ". ‘35:). :-_ 4 ‘ I h g .. . _ u I ‘ l uh . ,5 I - 'l; I‘ I III .'- - (II ' 5:,” - II ..::I.. l .I.. f. :'0¢:cifi E‘fifi’ ”2...”. r ‘l' ’ 3, Jon I w ' ”I. ,U 'I 'I V" :' 0“”. '(” I . 9374‘ “H . A! “‘0' - 1 .I (" 'HM III II II ‘I J . ‘ $.39 31 ‘L 0-14" 3» - $.- , °“ '- p- ‘ ‘J.‘r‘l 3- "'k u. d"“ I L. k "I 2“ . u I D ' - ‘9 .- '. §‘- '9‘ .'. ",‘I I. I. _ IIII‘ .l I. ’ ,_ 3 ‘ J a .. l 9.»? 'L a " II . - I..-. 'I( ._ ...I.'.‘ V1"\".(¢"|94‘< 3.. 'I I ' "t‘I-a-fftil "'7.” '. ' | H ‘4' I - ' 4.. .’.‘n‘-~»-.;r, ‘1'”3 ‘ ' o .340; -‘_.f: ' ".1. “f ..' Y I I "V "" ' .I. " I J 3 .' . ‘ .'-- -> ”77.. :, “ '13:}.5é - 3...}. ‘33! 0-.' _— §(:f"_. ' II I ml, J 9 . :- ‘3 \E .“$"]. ‘ z ' . -.-v't.. __ f .‘ - V3. ".- I H . I I t" d I, I .‘ u I . ._ . I. ~0IoII 3‘ .LV t . - -: ': :Q ~ — ;-_._"' I -,:;I I, ' o..’- ‘ .. ‘,-w . ' ‘ ‘4‘ ‘ 'i H " i... ' k I" ‘” 'FII I - lfi?’ -- :- .:I ~f}~“f"' 1‘ f ‘ . ' ‘ { " I I ’I I ‘ I I .3: Ln.“ . . . J t... . c . 5 5. . I I ' O I I a . I. i .1; ,‘L - A. I I_ D. ’9. fi' . g 1" I" ' .. 1. _~Iv ‘fl”_ ‘I .“III. I - , "Y"‘ rl ' ‘~ I I A s." . ‘. “A I ‘ -Q’ . ‘ _ .I - 3-. "“~ ‘Ul‘ '*~.-' . "'.l‘,";‘ ' 'VI ‘ ‘ l‘ - I ‘;..::'-‘ 5" ' ' ‘ I ~'.; (r. : 1‘33’ O 3*.7 l ' ‘7’. O"l .1. "I5 i F ' . °~ ‘. II _. ° "\""I 'I I} L- I 't f- . I. 92.5." - ‘ an? I‘ u 2" "_-' a- - I”? ' . . ‘ - I . . I» 3v .-.\!iII-£-‘."‘ «55“ wt" 'v-:- ~ «I 9’ ’15-» -.' I: ' ’ J‘JL I . ' I.‘ II ‘. w'l K" o' I-‘I I " -‘ an: . z: "-‘*-I " l ‘ —' 1'- V -. : 1‘1'.-"!.-.|. I" " 'II I -1. . V»,~I‘Ir\ f-I f3 \‘- " '.‘I "'3 " .' 'Il I ‘lf ".W.‘ ‘ ' ~ - t" -43 ' ""’~' -5, ° :4" "' I-“ :I f dd T. ‘ ‘. ‘I . :1 H .'I u. ‘ I 1‘ I- ' “ ‘z I ' K " ' . 1 . \'II~- 3.; It . ' ' . I - " :' ._ I“: I: " I I I I . I I . I I I. I I - I I I .5.- 1 I ‘. z I .,.' . ~. V l - -, a. .I -I" ' . ;. t’ 3 I o'. ‘ I . v H . T-" I I o . I: l . "' ‘. .__ ' I I ' ‘ :." ‘ (j 6“ V'! 3' ‘ r-“. z I. . ' I I '7' ')t l I I . . . -"”. .‘ ._ . o . - . Ik —- ‘-__‘ ’ ' ‘ I . ' I I D II ‘I , I‘ . I - ” Q. . -3. 3 ’L.. I" y? I“! "I'M I I“ ' “‘~" ’ H ' I' I . ‘ ‘ I 3 II ' ‘ £oI- 1.!19 - . - _ L: ; ‘ " ' ° ' l '5 ' - '« I”. ‘ ‘ . ' In: .' 7 ' r‘" I' . I.I-.‘ . ~ - -~ ‘1‘... 3 r51" " T "' 3 . .: ' . " " --:~"..: " I’ . *~ -‘ 5“ “ ,‘ I~-~. :3" ’3‘?:: 5‘ " g .I . I " A . I . 'I . w ‘. .. ‘ I . ._ _w _ - I“? 9 iI‘ a. ’ 0a 1.”, I : _ , I I. I ' I I - - I, . . I ‘. ~ 4 l -I'_.‘. “9 ‘°’ ' . "‘a. 1 I - I I t l-A a: I I _ ,« I . I " ‘- I . _. I : 3". U M -1 ' ' '25':- ‘l I o .I . ' .' I. I I : " v . I. ll . ‘ . ' :I DIE-- ~ T. . 'I f'fu: “i. :+-4“ ‘ 1|. " “"x . _— V-‘v ‘ “r“. ‘ ‘ I ‘ ‘I: V 1 ‘ f 'g .I.. ‘ -‘-~ In I ‘4' I - _ Q I fix I I I. v I ”I. I _ I u. ‘._ I_ 4“ _ ‘w- "h I 4 . : .. I. ,III . II: .I .. I I . . “MI—wk. .- .I .. . . In: -, . ~ ': . . , .5 'I . I I I l. I II I } II” “'4 . I . I . ' o- . -0 ' “..*l I . -p I v-- ! v .I.. ' I ‘H . . ”"' bl] It, . ' " . -[ . I I ¢' " J ‘ F£.H‘:.'-;" "3 "1 Q . In ' ' I ..‘. I ‘ II I ~ . a I . - _ . : . 5 I I: I I I I ”P II II ‘1‘ I V y n I‘ . -. I 5.. I; “I ‘- _ r‘- _ 9.“ . . I'q° ‘ a - - ‘l‘. I. , I-.- I I-I_ ' ' ' o. . I. . v '. v .. ‘ ’.° -.' ~‘."|'P I o._ . , ' -: ‘ . 'I 'II . 'I- I | ‘ I I I I l L. '- I.‘ ‘ 1 n I a. ..I . . .. . u -o I ‘I J - 'J: ! z.- .. - I I“ In I o , I I I. “ '\. I ~..{ .. ' “I o ., I . .. ' . u - k;. - ' ":.II .- . ‘40 r ' ' -" .- ' v' ‘ ’ I“. ' ’ "I" I . < I . . I -' ° *‘ ‘WC- P’ qP—SB . - I . ‘ ' , : II n' "I ' I' C... 'I' .. .. ". - I '. q -I ‘ . ' ‘ .I Q. ' TI I‘ 5 0" .0 -I . a- - '9 |_. ., v.1? ‘0 - ' 'L‘ "1‘ 2“!“ In"L “ - . ' ‘ ' " ‘J ‘-. - ... , ‘ - 5-“. - I I . . :fi 1 '8', III . I I ‘ - ' '~ 0.. I "‘ "I-I 4-] I '1 :u' ‘. ‘ - 'h ‘ ' -'. . . i ' I - L. - 4 A . ‘ .‘ ‘h ‘ i Z. .11).). . .‘l . II . 'II 0-. 'I '. I" . I‘ ‘ I I Q “t" u -‘.- . ;" - $2.“, .. . I’OC? . ' ”I- " 8 q. ' ‘I-lryu'l 0"". - 1." v" ' I ' I ‘ "I . ' ' . ‘ ‘ ' f} o . o. . —-.. 0.. . I I I .v, . I I, 7 ' . o - . - ’ I ' I 4 c : V; - 1 .l f ' '5‘ I'lI‘.!"< ' I' . ‘ III ‘ ' if" ..I , ;' ~ ' ." ", ‘ .3: I‘ A .' ‘ . ' ~ ' - g I I , I I - _.. . _.. .I. ; ;. t ’- . u ..'I ,- I A ; .' '. I. . Q ..- - . 3 £45..“ I; ‘ > I. I I ' ' | , I ' .. .nII ‘ . I. . ‘. : I . . -0 -I: . . «4: M . I. . ' _. -. . _ ' . - -.,_;_ .1'. ' - . '- ' ' I I. I o . ' ‘ ' ' ‘ .‘ I —I v. 9“ G o. ‘ ‘. r ’ I | I " . . -‘. ' . I a . ' I .0 I ! ‘ ' II . ' I . ' I - . - - . - 'J _ . .. Y I ‘ .-‘:. . ' ~ - I I - I A $ - .._ ;. _ 0; ‘ ' ‘ o I I 3. ' . I - ‘ . . -.. II. ; I' , I .‘. ?_ I i «A. I I . . . '- M . ‘ 0 3", '00. ‘ J’ I . ‘ . o '* . "" ’:- . . . . ‘ . ' - t “. - I ' , I ' ' ‘ . "' ° .0 7' l I - F‘ I I ' - h . " ‘ c ' ‘ 0 ‘ "' I ‘ g .. ‘7‘ I : II . I I ‘ o . . t . .I ' ‘ ‘c‘v. : I l - - _ ' I . . - .. I. v I- 1- . . - “ .;.. :l ‘ t' ‘ I]. _ I ‘ - - ' u -. I . ‘ ' o . -. ° ' .1 S héo— ',' o . f." . ‘ . I u. b; 3 - I l . I " ' . ‘ ‘ I I_ I i . I" ‘. . I I Y _ """ t - . ‘ .. o - ' II O'~ h , . I - . I -- -' ._ ." : I _I :0” by F. N. ' I ‘ .. . __ - - ‘ - I . I a .: I .' ‘ '\ . ' . ‘ ' . _ ’ ' — O - : I.» -I | "I I o __. 2 . _ - - l n I. a '0' -. ‘ ~ ._ ,‘o.—..' 3 ' ' -- I o. ' I ‘ ' ‘ -_ 4 I __ ‘ " I .l 1| I .- I . I. . I _. _ ~ I T . ". o . - - ' I 3 I ' - , .n ' o . II : - tc - 1 I' . ' U . -I . ‘ ‘ .. -~ ‘ ‘ ‘ I . I I 4 . . I . .- .‘ I ‘ ' 'I . I I I I." - _ . o 3— I. . ‘ I o_ I ’ . - O.‘ I 1. O I U I i . _ Y' I ' I I —II D . ‘ I l ! . II ‘ . ' . . .'* . .' I I ‘I ' ' ' " I I " . J I ' ' I .' II ' I l‘ I I I ; I I l ' I I I. II I I I I I I I I ". I . P ' ' ' ; AW, fllllfllllllllllllHllHllllUllllHllllllllllHllllllllllllllfl 1293 01592 3499“ ___1 FI’HES‘S (Ll We {PM "M r“ r 3 WW $453519? “ , 1 4 ‘ at?) 3-131! 21“ H 11,151; .. 111.1 1 ~ 11 in? H1! \‘ giant a5? £192.! a! 1 ‘“ y A?! 1'" f‘ 1: i111 13113333; 1"“ BM 1'1 PLACE ll RETURN BOX to monthl- chockout from your record. To AVOID FINES Mum on or More data duo. DATE DUE DATE DUE DATE DUE I ’1 > ‘ 1 .. . ‘ | ' a ~ * l' '- - u - ‘ 1, on f ' r ,AV< _ h = r ,_ M, \ = MSU laAnNflnndlvkooNEwd Opportunity lnothlon THE DSSIGN OF A CAMPUS ROAD A Thesis Submitted to The Facultity of MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE By Henry D. Knapp Candidate for the Degree of Bachelor of Science December 1947 \ 1- 1 w PmiFaCL A Campus road is here designed to aid in the solu- tion of the traffic problem and the shortage of parking area which has been created by the increased enrollment at Michigan State College. The proposed road will decrease the congestion at the intersection of Kalamazoo and Sarrison, provide married students, that are living in the anartment area, with better access to student par ing lots; and aid in routing traffic around the Stadium and Field House dur- ing major atheletic events. Included in the design of the road is the removal of the hill just south of Demonstration Hall. This will provide fill dirt for the low area now occupied by the cavalry stables. The removal of the cavalry stables and leveling off of this area will provide greatly need- ed building or parking area. The pine grove that covers the hill has long past the stage of being an experimental wood lot. Also it is no longer needed as a wind braker to stop blowing sand. The Author has received helpfull suggestions dur— ing the designing and preparation of this thesis from Professor C. L. Allen and members of the Civil Engin- eering faculty of Fichigan State College, T. B. Simons and members of the Buildings and Utilities Engineering Division, H. J. Lautner and members of the Landscape Archetecture Division, and D. W. Putman, Project Engin— eer, Eichigan State Highway Department, for which thanks are hereby eXpressed. The first consideration in the design of a concrete slab is the load which it is to carry. In the absence of a local traffic survey it will be assumed that the volume and character of traffic that the pavement will carry places it in the class of a Lightly Traveled Pri- mary Route. Plate #l shows the traffic volume and number and size of wheel loads characteristic of the class of road. The stress set up by these moving wheel loads are con uted by the mathematical analysis developed by DP. H. 1‘1. airesteraaalqd. 5__j.3dpp /_ 2% ' 0.925-rCL22 i?- dz. S: Laximum tensile stress in p.s.i. at the ton of the slab in a direction parallel to the bisector of the corner angle, due to a wheel load of P lbs. P::flheel load in lb. placed on the slab corner. P is the static wheel load increased by a factor to pro- adequate allowance for the impact of moving loads. TYPICAL TRAFFIC VOLUEE HE FOR LIGHTLY TRAVELED 3 Ann wt EL LOAD DISTRIBUTION PRIKARY ROUTE Average daily traffic Automobiles Commcr1Ca1 vehicles Per- Per- cent cent All of of Number vehi- Number total Number total of cles vehi- vehi- Axles cles cles 1,310 1,090 83.2 220 16.8 469.2 m Distribution of wheel loads on commerical vehicles Number of wheel loads per day and per cent of total commerical wheel loads. Less 4,000 5,000 6,000 7,000 8,000 9,000 than to to to to to to 4000 5,000 6,000 7,000 8,000 9,000 10000 lb. lb. lb. lb. lb. lb. lb. No. fio. No. No. No. No. No. 395 25 25 12 8 3 1.2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 84.18 5.33 5.33 2.56 1.70 .64 .26 .PZATE'fi/ d: ThiCLness in inches of a concrete slab at a corner (uniform thicxness or equivalent thiczness of a thickened edge slab). _ N a;.radius in inches of tne circular area equivalent to the contact of the tire with the pave- ment. Eé=radius of relative stiffness defined by the equation. ‘; Q... Eciz‘ /Z(/—-¢(‘),&. ll Lodulus of elasticity of the concrete L2- Foisson’s ratio for the concrete C n W H Kodulus of subgrade reaction in lb. per sq. inch oer inch. The stress given by the formula are for loads on the corners of the slabs. Stress due to loads in the interior of the slab or on the slab edge at some distance from the corner are not considered. Research and past excerience .as proven that the critical point in a pave- ment slab is the corner. Slab thicgness computations have been based on the assumption that the req uired life of the pavement is 30 years. Laboratory and field studies by the Eichigan State Highway Department indicates that the value of subgrade reaction (k) for subbases in Hichigan of sandy nature is 100 p.s.i. ner inch. This value of (k) is (3) used to find Jestergaard's radius of relative stiffness Concrete like other st uctural materials is effect- ed more by repeated loads then by a single load of the same magitude. Application of the fatigue principle to pavements design is based on the facts that when a repeated stress does not exceed 50 per cent of the ultimate strength (safety factor not less than 2) the concrete will stand an unlimited number of stress repetitions without failure; when repeated stress is less than 50 per cent (safety factor greater than 2) the repetitions of stress is not harmful; when the repeated stress exceeds 50 per cent (safety factor ess than 2) continued repetition of stress will cease failure. Plate #2 shows the fatigue behavior of concrete in flexure. The relationshio between the safety factor and the number of stress repetitions required to induce failure represents the best data available. The computations are tabulated in plate #3 to facilitate analysis of design. The wheel load groups taken from table #1 are tabulated in column (1). A 20 per cent allowance for impact is added to the maximum load in each group to give the loads actually used in this design and record in column (2). he anticipated number of vehicles per 24 hour period from plate (1) FATIGUE 0F CONCRETE Number of stress Safety repetitions to Factor induce failure 0 ......................................... 0.00 5,000 ---------------------------------------- 1.45 10,000 ---------------------------------------- 1.53 15,000 ---------------------------------------- 1.59 20,000 ---------------------------------------- 1.64 25,000 ---------------------------------------- 1.68 50,000 ---------------------------------------- 1.72 35,000 ---------------------------------------- 1.76 40,000 ........................................ 1.79 45,000 ---------------------------------------- 1.82 50,000 ———————————————————————————————————————— 1.&4 55,000 ---------------------------------------- 1.87 60,000 ---------------------------------------- 1.L9 65,000 ---------------------------------------- 1.90 70,000 ...................................... -- 1.92 75,000 ---------------------------------------- 1.93 80,000 ---------------------------------------- 1,95 85,000 ---------------------------------------- 1.96 90.000 ---------------------------------------- 1.97 95,000 ---------------------------------------- 1.90 100,000 ............................ - ....... ---- 1.99 Plate #2 (4) are going both directions. This total is divided by wet wheel loads in one direction and recorded L. two to in column (3). The values in column (3) are multiplied by 10,950 days (30 year design period) to get the total number of anticipated load repetitions for each load group and the results are tabulated in column (4). The accumulated number of wheel load repetitions for each load plus all heavier loads for the 30 year period are computed. The proceedure is Carried on until the accumulated number of wheel loads exceeds 100,000. Beyond this point a pavement will be adequate for an unlimited number of repetition of all lighter wheel loads. This is recorded in column (5). From plate #2 determine and inter in in column (6) the safety factor required for each accumulated total of load repetitions. The maximum wheel loa , plus 20 per cent im act is multiplied by the anticipated load repetition for the 30 year period and recorded in column (7). Compute the allowable stress corresponding to each safety factor and wheel load by dividing the modulus of repture (700 p.s.i.) by the safety factor and record in column (8). Determine by the design formula the required thick- ness for each wheel load and record in column (9). The pavement must be designed so that it is not PAVEMENT DESIGN FOR LIGHT VELSD PRIMARY ROUTE (1) (2) (5) (4) (5) .1. <7) <8) <9) (10) (11) (12) (13) - _ , Analysis of design selected Jheel load, 10. Load repetitions value of “d" 7.00 in. haxi— ho. Cumulated .501- 2 A1}OW" R?" a Per cent mum for per day Anticipated for each r ‘1. 4 for 8019 QUlred actual fatigue By groups mroup W one for load plus quir *‘ ‘l loads stress value Actual safety Actual resistance static“ plus 20 direct- 30-7933 heavier safe pving 650 of ”d" stress factor allowable consumed percent ion peroid loads facti ! rty factor S.F. inches p.s.i. _§§Q_ load by each impact , 9s than 2 P.S.I. Col 10 repetition load Undgr 4,000 4,800 1'98 2,168, 1‘00 °.°°."°'. 2'0 o.oooooo 525 oooooo oooo. oooo.. unlimited- ooooo... 4,000-5,000 6,000 13 142,559 2-0 525 unlimited é’OOO—6,QOO 7,200 15 124.2, jDO "':'.'.:_ 2.0‘ .... .ooooooo 325 ooooo. .o... ooo... unlinlited ooooooo. O’Doo-P/’OOO 13,400 6 65,700 132,495 2.0 3". oooooooo 525 ooo... 0.... ooo... urllirflited ooooooo. LOCO-8,000 9,600 4.0 43,800 '66,?95 1.53 '_ ’ 540 6.85 5225 2.00 unlimited 8:000-9NOO 10,600 1.5 16,525 213.29 1.0“ I 590,000 5&9 6.67 360 1.550 42,000 59.1 9JKW-10,000 12,000 0.6 6,570 0.3/0 1.4,1 eafgao,ooo 442 6.50 390 1,57 23,000 28.6 Subtotal 001 43 7 and 13 (for wheel loads a»: 1888 131184112 0...... """ L)6,r(rg)5 °'°"... ..." .FKlO’UOO ooooo .ooooo .ooo oooo ooooooooo 6,707 Weighted aver— agecfi‘wheel loads having - _ S.F.leSS th.an2 10,100 oooooo ((6,795 °"°"°. 1'. ooooo. 5‘4‘0 7.00 .....O oooooo ooooooooo oooooooo L; 15147.5 #3 ._A—‘Qu-v—‘v—o _.— —’ (5) only adequate for each wheel loud group but also for the combined effect of all wheel load groups. The weight average of all thes wheel load groups having a required safety factor of less than 2 is taken and treated as another group having the number of repet- tions equal to the total number of repetitions of all the loads included in the weighted average. The weight- ed average wheel load is the total of column (7) divid- ed by the total of column (4). This value is entered in column (2) and the corresponding number of loud repe- tition is entered in column (4). The required safety factor for this accumulated total of load repetitions is taken from plate #1 and recorded in column (6). The allowable stress is computed and the correSponding value of "d" is recorded. It is now possible to select a design to meet these requirements. It is seen that the grestest required value of "d" is 7.00 inches. The uniform as well as the thickened edge cross section have been considered here. Athough a pavement of uniform thickness slightly increases the concrete quantities it does not necessarily increase the cost, because subgrade preparation can be a complished better and cheaper and it simplifies joint design and construc- ion. In this design it was decided to use a uniform (6) thicgness cross-section with "d" equal to 7 inches. A check is made on the final design by recording in column (10) the actual stresses correSponding to each wheel load for the value of "d": 7.00: The safety factors are computed and entered in column (11). Read from plate %3 the actual allowable nunher of stress repetitions for each safety factor and record in column (12). From the actual allowable wheel load repetitions in column (12) and the anticipated wheel load repe- titions in column (4) the percentage of the total fatigue resistance is determined and recorded in column (13). The limit of fatigue resistance used by the wheel losds is 100 per cent. The 7.00”uniform cross-section is satisfactory since not all of its fatigue resistance is used up by the anticipated loads. n”: w r” Uzi/db The crown of the 30 foot pavement is 1 5/8 inch. This is the crown Specified by the Iichigan 8 ate Eigh- way department for this type road. Concrete being of higher type surfacing requires very little lepe to assure water run off. The crown is based on the modi- fied parabolic curve. Jclxas Joints are used in concrete pavement to reduce stresses caused by changes in temperature and moisture content which cause changes in volume of the concrete. These changes in volume cause compression, tension and flexure in the slab. EXpansion joints, contraction joints, and hinged joints are installed in pavement to keep those stresses to a minimum. Thqfiuestion of joint Spacing in concrete pavements is very debatiable. The Spacing of eXpansion joints is dependent on the allowable connressive stress in the concrete and on the maximum compressive stress created by the eXpansion of the slab. It was assumed in the calculations for slab thic ness that no forces are act- ing at the ends of slabs where the reinforcement is bronen. This requires an expansion joint at every break in the reinforcement. This is impractical, how- ever, and unnecessary because concrete is strong in compression. The average compressive strength of pave- ment concrete in Richigan is between 4,000 and 6,000 pounds per square inch. Suppose a pavement was laid during a temperature of 409F. and the following summer reached a temperature of 1406F. If the pavement is fully restrained the maximum possible unit compressive stress would be 2,500 pounds per square inch computed by the A O“) V following equation: Sc = Eet Sc - unit compressive stress in pounds per Square inch [31 ll Kodulus of elasticity assumed as (5,000,000 p.s.i.) coefficient of expansion assumed as (.000005) T = Temperature differential (lOOOF) It is obvious that expansion joints could be omitt- ed in construction during the summer months without cause of any harmful effects, where as, during the colder months it would be desirable to place them at inter- vals of not more than 400 feet. Expansion joints may by necessary to relieve un- desirable horizontal pressures at bridge structures or at critical joints such as short horizontal and vertical curves and intersections. It is recommended by the Eichigan State Highway Department that a narrow eXpansion joint of 1 inch be used between 400 foot slab sections.during cold weather construction. This practice will be accepted as it will eliminate the undesirable features associated with contraction joints. (9) Contraction joints are installed in the pavement for the purpose of controlling cracking. Since the re- inforcement must be broken at contraction joints, the joint is free to Open. This presents a difinite mainte- ance problem, eSpecialmy when they open more tuan 1/4 inch. The longer the slabs are constructed the wider the joints will Open. Contraction joints are to be constructed every 100 feet. This gives an eXpansion or contraction joint at every 100 feet to create con- tinuous reinforced 100 foot slab sections. A tie joint is installed down the center line of the pavement to control longitudinal cracking. Since the primary purpose of the joint filler is to prevent infiltration of foreign matter when the slabs are contracting and to support the joint slabing com- pound at the tOp, the material best fitting the reuire- ments is pre-aompressed wood. The wood boards are pre- compressed in the dry state to approximately 70 per cent of their original thickness and are inserted in the pave- ment while still in this condition. rhe Joint Sealer should be as soft as can be used (10) without flowing from the joint in warm weather. non- bituminous materials or combinations of bituminous and non-bituminous materials make the better sealers. An aSphalte rubber compound used here offers the most satis— factory results. RE I :3 F C. R '3 3177331 IT 5 Steel reinforcement is generally employed in concrete pavements to control crackina, tie bars in longitudinal center joints, and slip dowels in trans- verse eXpansion and contraction joints. It in no way increases the resistance of an unbroken slab to flexu- ral stress or adds to its streng h. Its sole purpose is to hold toaether the fractured slabs after cracks formed so as to aid in load transmission and to prevent cracks from Openning wide. Sinc steel does not per- form its function until the concrete has cracked it is necessary to use enough steel to take all tension. Tension in the steel members across any cracm is equal to the force required to over come friction be- tween pavement and sub-grade from the crack to the near- est free joint or edge. Steel bar mat is therefore designed to be adequate for a crack in the middle of a slab. Although the amount of steel may be reduced (11) toward the ends of the slab the same wei_ht is usually used through out the slab. The area of steel required for 1 ft. width of slab is computed from the formula: Lfk/ A ZS A==Area of steel, running in the direction in which L is measured, in sq. in. L=—The distance in Ft. between free trans- verse joints when the equation is used to calculate longitudual steel of be- tween free longitudual joints or edges when figuring transversal steel. w: The weight in lb. of 1 sq. ft. of slab f: The coefficient of friction between slab and subprade S= Allowable worming stress in the steel in p.s.i. The standard 1/4" bar mat will be used as it will meet these requirements. EXperience indicates that small bars or mesh are more effective than the same area of larger bars, because they can be distributed more uniformly in the slab. The position of the steel in the slab is not important except that it should be far enough from either surface to be adequately protected from corrosion. (12) Tie bars are used across longitudinal joints to insure firm contact between slab forces and to insure adequate load transfer. They are also used across longi- tudinal joints in oruer to prevent separation of the slabs at fills and curves. The tension on the tie bars is equal to the weight of the slab between the joint to be tied and the free longitudinal joints or ddges multiplied by the subgrade friction. EXpressed as a formula: L_x§ h/1[ 5 total arose-section area of steel in all the tie bars across L ft. of longitudinal joint. A : 3:. H L.=length of longitudinal joint in ft. (0 n tension in the steel in p.s.i. b =distance between the tied joint and the nearest free joint or edge J=-the weight of the pavement in p.s.i. f =coefficient of friction between pave- ment and subgrade A: /oo-/‘5-84‘/-$" _. 6-53 ZS‘OO Using 40 tie bars in the lOOft of joint at maxi- mum Spacing of 30 inches. fEach tie bar must have a erpss seeteom area pf 6.53/40 = 0.163 sq. in. (1/2" bar dia.equals 0.196). Tie bars are embedded far enough in each slab to develop the necessary bond. The maxinum working stress .‘ for Lend in deformed cars is taken as 200 p.s.i. Each bar will cary a total tension of s - 100 x l} x 84 x 1.5 = 4450a 40 and will need 4450 = 22.25 Sq. in. of a ea on each 200 half of the bar to provide sufficient bond. As the circumference of a t inn. round bar is 1.5708 in., each half bar will need to be at least ga.25 = 14.3 in. 1.5706 long. 40 tie bars 1/2" x 30" long will be used in the 100 ft. of longitudinal joint. In view of the fact that there is insufficient factual data available upon which one can conclusively base design as to the preper size, type and Spacing for dowel bars, it will be assumed that practice and experience is to be the deciding factor in selection of a suitable load transfer unit. The recommended 15" x 15" dowel at 12" centers with metal sleeves will be used. Usually the fl. dowel nearest the pavement edge is placed 0 from the 1 edae. This permits 12 dowels per 13 foot slabs. V V x V l . i r?!“ ;-I )I 4- A.‘ .' ‘i The width of pavement used is 30 feet. This width of pavement is not only in keeping with the width of other campus roads but will allow two ordinary private passenger vehicles to pass each other safely with vehicles parked parallel along one curb. The actual width of roadway available is only 29 feet (see road cross-section illustration Plate #5). Eichigan laws limit the gross width of vehicles to 8 feet. This leaves 21 feet for moving traffic. STORI-L olfi DES SN Preliminary to the design of a storm sewer system the amount of sewage that it must carry requires con- sideration. The rational method is used in analysis of the various factors effecting the amount of rainfall runoff. This method is eXpressed in the following edition: Q, = AIR ,2' w the runoff in cubic feet per second the area of the section to be served in acres. I = the coefficient of runoff of the area 4"; R = the rainfall rate in inches per hour. The area of the section to be served can be measured from the map. The runoff coefficient is very largely de- pendent upon the per cent imperviousness of the area from (15) which the runoff is derived. The percent of impervi- ousness for the whole area is derived after estimating or ascertaining the pronortions of the various surfaces of the whole area. In this case very little water will be running on the pavement from the shoulders due to its construction. Therefore the greater part of the area in concern is the pavement itself. Two considerations will inter into the rainfall intensity to be used. One being the time of rainfall duration and the other the expected rainfall intensity. Sufficient data can be obtained from prepared rainfall intensity curves and formulas to avoid guessing as to the eXpected intensities. The combination curb and gutters illustrated in Tlate #5 is used to carry off the surface water. Catch basins collect the surface water from the gutters at about every 500 feet along the roadway. In the design of the pipe to take care of the water that has entered the catch basins the following assumptions were made: ‘ l. The minimum size sewer to be used is 8 inches. 2. n is 0.013 3. the minimum allowable velocity is 2.5 ft. per second. 4. The minimum cover over the crown of the sewer is 5 feet. (16) 5. Area to be served by each catch basin is 0.034 acres. 0. The time of concretration is 11 seconds. 7. The imperviousness is 50 per cent 8. The rainfall formula adopted is: R = 106 t+27 Substituting the time of concentration for t, R = 106 = 3.92 inches per hour. 11+27 These quantities are substituted in the formula: Q = AIR Q : .032 (.50) 3.92 - .0556 cu. ft per. sec. The qu ntity of flow originating in the road area does not warrent laying a new sewer line. The existing storm sewers as shown on the plan will e used to carry off water collected in the catch basins. A 21" line crosses the pavement at station 6+-40 and empties into 24" line in about 500 feet. The 24" line empties into the Red Ceda r River back of the Jenison Field House. This line can easily ta_e care of the additional load of 0.266 cu. ft. per second that it collects as it passes under the roadway. The 12" line that draings the tennis courts and emeties into a 15' line thayempties "V ‘V - a . ‘ into the River wiii we Uiufl Qu ,gnin the pavement from 6+40 to 15+ 55. This area of road way will produce a (1'?) flow of 0.38 cu. ft. per second. The pavement South- west of Demenstration Hall will drain its runoff into the 24" line running to the diver. “‘ "‘ " "'V ’7‘ ': "’1 r‘ ‘ T ' .-'_‘ “F?! ‘ ‘ T ' T \r ' -4 ’ 3, d |'l. - s; .g ; . ' ._J‘JIK} 1‘ (De. ‘.J\\ 4‘! -J‘QLJ—J J. “J A'..LA'X The design of concrete mixtures is based princi- pally upon the net quantity of mixing water used per sack of air-intrained cement. The selection of a water- cement ratio involves a consideration of both the degree of exnosure'to which the pavement is to he subjected and the strength requirements of the pavement. In de- termining the prOportions of A. E. cement, water, and aggregate it is desirable to arrive at those pronortions which will give the most economical results. The rel- ative pronortions of fine and coarse aggregates and the total amount of aggregate that can be used with fixed amounts of A. E. cement and w ter will depend not only on the consistency of the concrete required but also on the grading of each aggregate. A modification of the Mortor Void iethod for the design of air-entraining concrete mixes has been used by the Kichigan State Eigh- way Department since 1940. Their specifications and classifications are here used in design of a Grade "A" pavement concrete mix with a cement content of 5.5 sacks per cubic yard. The materials to Le used are: Sement ----------- A. 3. Fine aggregate -------- 233 Coarse aggregate ------4A hoarse aggregate ------ ion In a l-bag batch there will be 1 cubic foot of cement, l.t7 cubic foot of sand, 3.6} cubic feet of coarse aggregate (combined 4A and 10A using half and half of each) and 0.8 cubic foot of water. m1 ' "4 ‘ ‘1‘ r'-,—1._-f"r‘- Iib‘nD 14b -I.; i a.-. The preliminary survey was made with transit and tape, the angles and distances being carefully measur- ed and recorded. The Tonograghy was fully noted to— gether with any details that would effect the final road location. The data from the preliminary survey was plotted to scale and the road location determined. Center line stations were established at 100 feet stations and cross sections taken at each station, or fraction there of, if ground elevation meet an a runt change. fine center line profile data was plotted on profile paper and the road grades determined. ‘Sirface of Qi1fl£luni havegent %" Pavement sinfnr‘“*znt ( ot carried throurh joint. I A. ‘ . ' u ' . . ' ‘ . .I . . ' I l.—-' A . r . _ I‘ . fit‘fi F_lé" :{ 15 DO‘|!€1 Z A’ . ; ~ *1 J D b r _-.;:rs snaced of I .. _ ' . g j ._ . ‘.' -p._ , . . I b \ y-e,- - . l2” intervals L-a “ ' A ' L ' . "3‘b'°““v across slrh '..' .I. . Au. . . ' .£~—'-1’--- -'-—‘ ' -Q., ‘ - ' Gk ' ' . u ‘ k) ”LU. I;l/8" Parting Strip The joint fornin' strin on the load transfer device shall be removed and the joint formed while he concrete is still fresh and shall be true to position and line. The joint shall be fill>d with hot poured, Rubber ‘gee connx31r'. The conqxnui shall be :manwmi so as to completely fill and seal the joint Without overflowing the navenent. ——-—_.-_ I q > l. n 5.. 1/2"¢x48" Tie Ears spacede 40" C. to C. CURB AND GUTTER Surface of finished Premolded Bituminous pa\.re::1ent\ ”‘1 |"' wfiller - l 5": _. 1/2"¢x 30” Tie Bars’///f Pavement Reinforcement spaced at 30” intervals (not carried through joint) 'b LC'IITTITUDEJAL LALLE TIE JOINT / x§“3\I/' beseqe err “841 .0 ”0+ deifii »Q at 11*;\‘[ \focl '"‘ I J i I g C TRAISVZRSE EXPANSION JOIKT IITH LOAD TRAXSFSR Surface of finished pavemen t" R . :- :.‘-.".. n-- . -.. l" EXpansion Joint l .'- _ .-~a_ ..‘. . .- .—.—-—1 4M?.t§:§/4u. Pavement Reinforcement 9“ . . . . l . . - I . - 1%" x 15" Dowel Bars spaced\\\‘l" Filler to be left in place at 12" intervals accross slab The filler strip shall be left in place and the joint formed while the concrete is still fresh and shall be true to position and line. The joint shall be filled with hot poured, Rubber Type compound. The compound shall be poured so as to completely fill and seal the joint without overflowing the pavement. . x \ \ \\ \\_ .lj / 9.? _ _ "I . 4’ tr' L' ~N 31:44. . 'I I. CC, +u "T E. «’7‘ "'9" -‘.'.O. - n' .,.( .L x \. ‘u' . ‘ .‘ ”gs-Oi . A..L.-o- J I... -.'. six: n'J'iz. I [N t’) . T , f: s“: new "NJ- ,‘4' I“: N’IHC a (c r ,'_.. .LKJ; r‘( 4. ml; o. 1;, 1 w- er'r A“ \ - ' J, 1‘ If JJ_ ‘1‘... 3 [V “ ’ ,‘L; Q1 -.‘_: lrf“ T _f\i\v - e “H HlJV .J-Vlu QUAVTITY EST KATE Items of Work Quantities Clearing -------------------------------- 2 Acres drubbing -------------------------------- 1.58 acres Earth excavation ------------------------ 37,963 cyds Steel reinforcement --------------------- 77,927 lbs ‘” Culvert --_—-----__-_---------------i- 720 lin. ft. Catch Basins ---------------------------- 10 each Curb and Gutter ------------------------- 6,370 lin. ft. Concrete pavement, 7" uniform ----------- 9,167 syds COST EST 1mm Items of dork Unit Price Amount Clearing ---—--------—--- slS0.00 / acre ------ § 300.00 Grubbing ---------------- 300.00 / acre ------ 474.00 Earth excavation -------- 0.40 / cyds ------ 10,185.20 Steel reunforcement ----- 0.10 / lb ------ 7,793.00 8” Culvert -------------- 1.00 / lft ------ 720.00 Catch Basins ------------ 100.00 / each ------ 1,000.00 .Curb and Gutter --------- 2.50 / lft ------ 15,925.00 Concrete pavement, 7" --~ 8.00 / syds ------ 73,336.00 Total - 109,733.20 BIPLIL' ' 'Pr‘r 1“ -'1-1.¢--—,v‘q '1“* .Y ‘ T f : ‘ '\—)\ w‘lfi 4 .1 . v. ‘. ¢-. -:-A ‘I‘ .I. ‘—J--~,l—‘-\ -4 1; ~11: «7 (T'. "“I‘ 19" a. L I '-»‘ L- t -.t. . 1) ‘R‘lr-Id __ 1*; [-1 VD P- mv'-~w-~7,~. it... ringelnq "'11 ‘1‘??? 0'1? V‘ ‘ 7" ('17.: ' .--.L'J .L JILL: k1 iA ‘ :‘1 gr; ft 1731 ‘1Tf‘1 m""'\:- - "r L S Squiuhliu“ -A.¢A InTSR SUP LY 350 SSJSRAGE :.,-*.'-~~. , ~v -, , 1‘ r ‘7 Jl‘JimJJTBL DA LE ‘ L 1.43. T13 x‘inD 31'1‘T m .1 r ' L...‘i..-1_i_1.4 1 101.1. J- 3'; \‘fl {1’ $791 \"‘ "\(‘"‘fi‘v ' - A ‘ 3'“... ~ . 1 1 L'_;‘JI1-.i‘ujtv bi) UK.) 1 Judi ‘4 QLDLJI. E7 5111731: (LICK :~ ‘w- 'v :. tn- n; by John H, Bateman by Portland Cement Association by Richigan State highway department by R. Brodbury 1942 Standard Specifications ‘0 ‘yr :1: o 331'. liteel by Amco Drainage Products associ ation by American Concrete Institute MICHIGAN STATE . 3 1293 «I j; T .___ HICHIGQN STQTE UNIV 1‘ 1 .I 1 1111 5823 LIBRQRIES '11‘ | 1 99 .O-O- w- Qua-ls. wow-9...».— . ' C 1 1 1 1. 1 1 - ~OQQ7- “or . 4.0.“.u-w-