

REDUCTION OF NITRO COMPOUNDS WITH METAL REDUCING COLUMNS IN GLACIAL ACETIC ACID

Thesis for the Degree of M. S.

MICHIGAN STATE UNIVERSITY

Harry Elmer Keller

1959

0.3

MICHIGAN STATE UNIVERSITY LIBRARIES

3 1293 01591 2599

LIBRARY Michigan State
University

REDUCTION OF HITRO COLPOUNDS WITH NETAL REDUCING COLUMNS IN CLACLAL ACCTIC ACID

By

Herry Elper Keller

A TENIS

Submitted to the College of Science and Arts of Hichigen State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Chemistry

ACKNOWLEDGE FENTS

The author is deeply indebted to Dr. Kenneth G. Stone for his guidence and his help throughout the entire investigation and preparation of this thesis.

Admostatgment is also extended to Dr. Andrew Timnick for his helpful suggestions in the use of the high frequency apparatus.

VITA

Harry Floor Keller

Borns May 20, 1930 in Read City, Middigan

Academia Careers Reed City High School, Reed City, Highigan (1944-1948)

University of Michigan, Ann Arbor, Michigan (1948-1952)

Michigen State University, Rest Lensing, Michigen (1957-)

Degrees Held: B. S. in Charletry, University of Hichigan (1952)

INDUCTION OF REPORT OF CONTROL ACTION AND CONTROL ACTION AND

DJ

Mary Take Tollar

AN ATTEMET

Submitted to the College of Foliance and Arts of History State University of Agriculture and Applied Foliance in partial fulfillment of the requirements for the degree of

HASTER OF SCIENCE

Department of Gardstry

Your 1000

Approvai K.S.Stone

ACTORCT

A motel reductor consisting of a column packed either with analgmented granted sine (2% morenry, 30 mesh granular sine) or with analgmented load (2% morenry, 30 mesh granular load) was used to reduce someonal arculation nitro compounds. Then the samples were dissolved in 0.1 H porchlaric sold in sectic sold the nitro compounds were reduced quantitatively to the axino. The animes were then determined by browingtion.

The amount of sine used was greater than the amount required by the nitro compound, since analyzented sine reduces hydrogen ion and organ dissolved in the solvent.

If the sample was described before reduction, the ensure of lead liberated, as determined by lead chromate precipitation, was equivalent to the ensure of mitro conjound. Thus this method could be used to determine the mitro conjound.

Caypen is more soluble in scotic sold than in water and was reduced by the columns with the liberation of an equivalent amount of motal ion. The solubility of organ in scotic acid determined in this marner was found to be Oulé millimoles per 100 ml. of solvent. The scotic acid was esturated with organ in contact with air at 740 millimoters.

TABLE OF CAITEINS

I	Pego
I. INTEGRUCATION	1
II. ESPECIALIZATION	2
A. Chemicals B. Standard Solutions C. Apparatus D. Roduction Proceduros E. Titration Proceduros 1. Potentionetric Titrations 2. High Frequency Titrations 3. Branination Proceduros 4. Determination of Lead by the Chromate Procedure 5. Determination of Zinc by the EJTA Method	5788990 10
III. DISCUSSION OF RESULTS	
A. Operations with the Zinc Column	n
Column	21
IV. SUIEMEY AND CONCLUSIONE	37
A. The Zinc Column	37 38
LITERANIER CITED	30

LET OF TABLES

TABLE	· ·	,6 3 9
I.	Mitre Compounds Radmond by Zino (10 mesh) Amalgam Bromination Procedure	18
II.	Nitro Compounds Reduced by Zinc (30 mosh) Amalgam Brondnation Procedure	19
m.	Mitro Compounds Reduced by Land Avalgem HgSO4 Mitration	30
IV.	Nitro Compounds Enduced by Lond Aralgem Provinction Procedure	32
٧.	Descrited Mitro Compounds Reduced by Lead Amalgan KgCrgCy	33
VI.	Air Blank with the Leed Column HgCO4 Titration	35
VII.	Air Blank with the Load Column HadraO, Procedure	36

•

LIST OF FIGURES

FICU	res	ago
	1. Potentiometric titration of theoretical column elucat	14
	2. High frequency titration of timoretical column eluent	16
	3. Effect of parchicric soid on the extent of reduction	20
,	4. Effect of perchloric sold on the blank for the sine column.	23
	5. End-point of a titration of a sample of meta-nitrobermoic acid reduced by the load column and titrated with sulfuric acid	25
	6. End-point of a titration of potassius acid phthalate plus solid bering perchlorate with sulfuric sold	26
•	7. End-point of a titration of look acctate with sulfuric acid	23
	8. End-point of a titration of the blank for the lead column with sulfuric acid	29

I. INTRODUCTION

Peré (9) and Loubonets (3,4,5,6,7,8) individually and together (10,11,12) determined several archaetic nitro compounds by reduction of the mitro group to the amino group with a liquid amalgam reductor in aqueous solution, bromination of the amine with potessium bromide-potessium bromate, addition of potassium iodide and back titration with sodium thiosulfate. These investigators used an aqueous sulfuric or hydrochloric acid solution as the reaction medium.

Schribner and Reilley (13) determined several nitro compounds indirectly by following essentially the same procedure for the reduction of the nitro group, and then titrating the sine ion liberated by the reduction with EDTA.

The use of metallic reducing columns has been reviewed by Stegemenn (14). The determination of the mitro group has been reviewed by Becker and Shanfar (1).

If the mitro group sould be reduced by an amalgam reducing column in glacial acetic acid solvent, the products would be the corresponding amine and the metal acetate. Both these products should be basic in the solvent. The object of this investigation is to determine nitro compounds by reduction with a metal amalgam reducing column to form the amine and metal acetate, and then to titrate the amine and metal acetate as bases with standard perchloric acid in acetic acid solvent.

II. ESPERIENCIAL

A. Chemicals

The chemicals used in this investigation were not repurified unless otherwise stated. Repurification of the mitro compounds was not considered necessary since the purity of the compounds could be checked by the determination of other functional groups in the compound, or by reduction of the aromatic nitro compounds to the amine and quantitatively brominating the aromatic ring.

The compounds titrated, labeled purity and source are:

Meta-nitrobensoic soid, Eastman, C.P.

Ortho-mitrobensoic acid, Enginen, C.P.

Ortho-mitrophenol, Eastmen, C.P.

Para-Hitrophenol, Eastman, C.P.

Mitrostheme, Kastman, C.P.

Mitrobensene, Esstman, recrystallised

Meta aminobensoic acid, Eastman, C.P.

Sodina scetate trihydrate, Bakers enalysed

Potassium acetate, Bakers analysed

Lead acetate trinydrate, Bakers analysed

Sulfuris soid, Dupont reegent

Zinc oxide, Bakers analysed

Perchloric soid, Nerck 70% reagent

(Ethylenedimitrilo)-Tetrescetic acid (EDTA), Hach Guemical Coupeny, reagent

Other charicals used weres

Primary standards-

Potassium acid phthalate, Bakers analysed primary standard, oven-dried for two hours at 105°.

Potessium dichromete, Marck reagent, oven-dried for two hours at 105°.

Potassium bromate, Mallandkrodt, amalytical reagent, ovendried for two hours at 105.

Other chemicals:

Potassium browide, Fisher reagent grade

Potassium iodide, Bakers analyzed

Leed, Mallenckrodt, analytical reagent

Zinc, Bakers analyzed

Barhum perchlorate, G. Fredrick Smith

Marouric acetate, Bakers analyzed

Acetic anhydride, Eastman C.P.

Solvents

Acetic soid, Bakers analysed and Dupont reagent grade

B. Standard Solutions

Standard perchloris acid in acetis acid was prepared by diluting 8.5 ml. of 70% perchloris acid with 900 ml. of acetis acid and then adding 20 ml. of acetis anhydride while the solution was being swirled. The solution was then diluted to one liter with acetis acid. The solution was standardised by titrating weighed portions of potassium acid phthalate with this solution either to a visual end-point using exystal

violet indicator (five drops of a 1% solution in acetic acid) or potentiaustrically.

Standard sodium and potassium acetate solutions were prepared by dissolving the salts in scetic acid. Sodium acetate tribydrate was used, and acetic anhydride was added to react with the water.

Anhydrous potassium acetate was used, so acetic anhydride was not added. The solutions were standardised by titration of an aliquet portion with standard perchloric acid either to a visual end-point using crystal violet indicator or potentionstricelly.

Standard potessium dichromate solution was prepared by dissolving a weighed portion of the salt and diluting to volume in a volumetric flack.

Standard potassium bromate-potassium bromide solution was prepared by dissolving 5.2450 grams of potassium bromate and 75 grams of potassium browide in water and diluting to two liters in a volumetric flack.

Standard sodium thiosulfate was prepared by dissolving 12.5 grams of sodium thiosulfate pentshydrate in one liter of water in which 0.5 gram of sodium carbonate had been dissolved. This solution was standardised by adding potassium iodide and dilute (1:4) sulfuric acid to an aliquot portion of the potassium broadde-potassium bromate solution and titrating the iodine liberated with the sodium thiosulfate solution to a starch and-point.

A 0.1 M solution of sulfuric acid in acetic acid was prepared by diluting 2.7 ml. of concentrated sulfuric acid with one liter of acetic

soid. The solution was standardized by potentiometric titration of a weighed portion of potessium acid philadate dissolved in acetic acid. It was found that powdered barks parablarate had to be added to the potessium sold philadate solution to obtain a suitable break.

Standard sine scatate solution was prepared by dissolving 2.43,4 grams of sine oxide in water containing a slight excess of scatic sold and diluting to one liter with water. This solution contained two milligrams of sine per mi.

Standard MTA solution was prepared by dissolving 12 grass of disodium dilydrogen stiplemediaminstetrascutate dilydrate in short 800 ml. of water. This solution was standardized by titrating a 25 ml. aliquot of the standard sinc solution to which 10 ml. of pii 10 amonia-amonium chloride buffer had been added to the point where the red color of the ericohrone black T indicator could no longer be seen. The EDTA solution was then diluted to such an extent that by following the same titration procedure a 25.0 ml. aliquot of the sinc solution required 25.0 ml. of the EDTA solution to reach the end-point.

C. Apparatus

A Beckmen model MZ pli motor, equipped with a glass electrode and a sleeve-type saturated calcula electrode, was used for the potentiametric titrations.

High frequency titrations were conducted with a modified high frequency titration apparatus designed and constructed by Flook (15). The apparatus was operated at 148.5 negacycles. The current measuring

component of the Sargent Model IXI polarograph was used to measure the change in grid current, which is the response of the high frequency apparatus.

The reduction columns were prepared in typical Jones reductor columns. Class wool plugs were placed in the bottom of the column above the stopcock to retain the smalgam.

In preparing the sine amelgan, 150 grams of the sine metal was agitated with 1.8 grams of mercuric acetate dissolved in acetic acid. It was found that solid sine acetate was formed by the reaction, and several washings by decemtation were required to remove the sine acetate. When perchloric acid was added to the reaction mixture the sine acetate dissolved. The amalgam was transferred to the column and packed by tapping the side of the column with a glass stirring red.

When the grammar lead was amalgamented by treatment with nectoric accetate dissolved in scetic acid, it was found that the lead particles adherred to one another, time forming lead balls. These balls varied in dismeter, most of them being too large to fit into the Jones reductor column. To overcome this difficulty the dry grammar lead was placed in the column and a solution of morouric accetate was sucked quickly through the column into a 500 ml. suction flask attached to a water pump. The mercuric accetate solution was passed several times through the column so that complete reaction between the lead and mercuric accetate could be attained. It was assumed that the repid passage of the mercuric solution through the column would give as uniform a cost

of mercury as possible. Sufficient mercuric acetate was used to form an amalgam containing 2% mercury.

D. Reduction Procedures

Although the procedures used for passing the samples through the reducing columns varied slightly from sample to sample, only three basic procedures were used.

In one procedure a 25 or 50 ml. aliquot of the sample dissolved in either scatic acid or standard parchloric acid in acetic acid was pipeted into the storage bulb of the column. The sample was then passed through the column into a receiving vessel, the rate of flow being controlled with the stopcock. When the level of the liquid in the bulb approached the level of the smalgam, acetic acid was used to rinse down the sides of the storage bulb and to slute all of the sample from the column. A 50 ml. portion of acetic acid was found to be sufficient to slute all of the sample from the column.

In a second procedure, a larger sample dissolved in scotic soid or in standard perchloric soid in scotic soid was used. The sample was added to the storage bulb in 50 ml. portions. The first 50 ml. of election from the column was discarded, aliquots being taken from the solution being elected after that.

When samples were to be descrited a third pressure was employed. The sample, dissolved in acetic sold or standard perchloric acid in acetic sold was placed in a 500 ml. separatory funnel. A dispersion tube someoted to a cerbon dioxide cylinder was immersed in the solution.

A stress of earbon dioxide was allowed to flow through the dispersion tube and sample solution for 15 minutes. A two-hole rubber stopper was used to stopper the top of the reducing column. Two pieces of glass tubing extended from one inch above the stopper to one inch below the stopper. Before the sample solution was introduced into the storage bulb of the column, the storage bulb was flushed with carbon dioxide to displace the air. The delivery tube of the separatory furnel containing the deserated sample was attached to one of the glass tubes extending through the rubber stopper by means of a rubber tube connection. The descrated sample solution was than introduced into the storage bulb at such a rate that the level of liquid in the bulb remained fairly constant while the solution was being cluted. The solution passing through the column was saturated with carbon dioxide, and carbon dioxide was liberated while the solution was in contact with the smalsess as evidenced by the formation of bubbles. Thus no further effort was made to maintain the oxygen free atmosphere over the solution. The first 50 ml. of elment was discarded and aliquots taken from the succeeding portion of the eluent.

E. Titration Procedures

1. Potentiometric Titrations

The standardisation control of the pli mater was adjusted to sero volts with the selector knob in the standardise position. The sample was placed in a 250 ml. beaker and stirred with a magnetic stirrer continuously during the titrations. The selector knob was turned to

the 0-800 millivolt scale and titrant was added in 1.0 ml. increments, except near the end-point where the increments were reduced to 0.1 ml. Readings of potential were taken after each increment.

2. High Frequency Titrations

The high frequency titration appearates and the polarograph were allowed to warm up at least 10 minutes prior to titrations. The samples were introduced into the titration vessel and the volume adjusted to 150 ml. with acctic acid.

Polarograph adjustments were made so that the recorder indicator assumed some desirable initial value. This was accomplished by selecting a 1.0 volt span, a 20% bridge setting and a sensitivity of 0.06 microsuperes per millimeter. The upscale or desmecale compensation was used for the final adjustment.

The tip of the burst extended below the surface of the solution being titrated. Reagent was added in measured 0.5 or 1.0 ml. portions. Instrument readings were made when the indicator became steady after each portion of the titrant had been added.

3. Bremination Procedures

The browinstion procedure was used extensively to determine the amount of smine formed from a weighed sample of certain aromatic nitro compounds. After the solution of the nitro compound had been passed through the column, an aliquot was pipeted into a 500 ml. indine flask. An aliquot of the standard potassium bromide-potassium bromate solution

was also pipeted into the flask and sufficient water was added to double the volume. A 10 ml. portion of 1th sulfuric acid was then added, and the flask was stoppered and shelton. The mixture was then allowed to stand until the color of bronine could be detected in the solution or langur, although longer standing had no effect on results.

Folid potassium inclide was then placed in the cup of the indina flash, and water was added to dissolve the potassium inclide. The potassium inclide solution was then allowed to enter the flash by raising the stopper, and the flash was swirled. The solution was then titrated with standard sodium thiosulfate solution to the point where the indine color was faint. Starch indicator was then added and the titration continued until the blue color of the starch-indicator couplax could no longer be seen.

Men the lead column was used for the reduction, lead broads precipitated when the sample solution and the potassium broads-potassium broads solutions were mixed. Then the potassium indide was added, the precipitate changed to the yellow load indide. This yellow color made it quite difficult to determine when the titration of the indine was nearly complete, but when the starch was added, the end-point was quite sharp.

4. Determination of Lead by the Chromate Procedure

To detormine the emount of lead in the eluent from the column, an aliquot was pipeted into a 400 ml. booker and diluted to about 250 ml. with water. Standard potassium dichromate solution was then added from

a pipet while the solution was being stirred constantly. Then the aliquot of potassium dichromate had been added, the mixture was allowed to stand for 10 minutes. The head chromate precipitate was then filtered under suction through a 30 ml. medium porosity sintered glass crucible, and the filtrate conglit in a 500 ml. suction flask. The precipitate was washed five times with water.

Potassium iodide and 10 ml. of 1:4 sulfuric acid were added to the filtrate and the liberated iodine was titrated with standard sodium thiosulfate to a starch emi-point as in the bromination procedure.

Certain of the amines appeared to be reordized by the potassium dichromate, and this method could not be used in these cases.

5. Determination of Zine by the EDTA Nothed

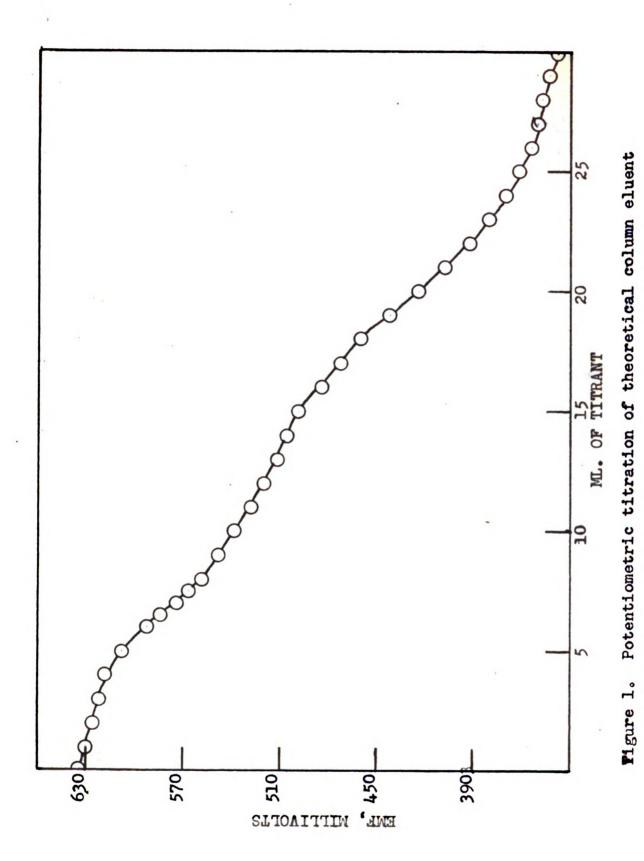
The sinc in the column elucat was determined by evaporating the acctic acid from the solution under reduced pressure and titrating the sinc acctate remaining with EDTA.

An aliquot was pipeted into a 500 ml. suction flack and a few boiling chips added. The flack was then stoppered with a rubber stopper
and a thick walled rubber hose was attached to the side arm of the flack
and to a suction pump. The flack was then partially immersed in hot

(90° C.) water and the suction applied until the acetic acid had
evaporated.

The solid remaining in the flack was dissolved in water, 10 ml. of pH 10 ammonia-ammonium chloride buffer and six drops of eriochrone black T indicator solution were added, and the solution was titrated with standard EDTA solution to the point where the red color of the indicator could no longer be detected.

III. DISCUSSION OF RESULTS


A. Operations with the Zinc Column

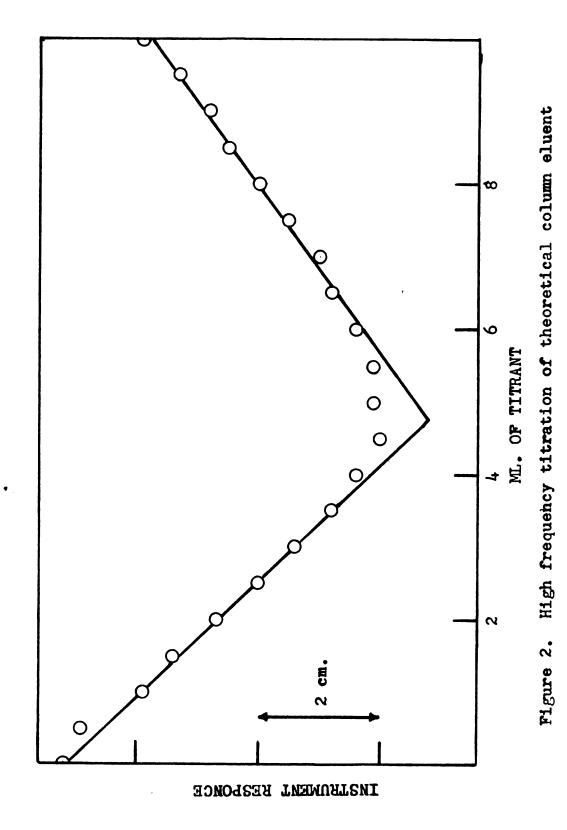
1. Initial Work

Samples of ortho- and note-nitro phenol dissolved in scatic soid were run through the column. Titrations of the elect with perchloris soid using crystal violet indicator were attempted. It was found that the indicator changed color over a range of approximately 15 ml. of O.1 H perchloric soid.

Samples of ortho- and note-nitrophenol were dissolved in 0.1 H perchlorie acid and passed through the column. Titration of the excess acid in the eluent was attempted with standard sodium scattate using enystel violet indicator, but again the indicator changed color over approximately 15 ml. of the 0.1 H sodium scattate.

A solution was prepared by dissolving sinc oxide and meta-aminobenzolc sold in excess O.1 N perchloric sold. This solution approximated the theoretical elment from the column. This solution was titrated potentiamstrically with standard sodium scetate. Figure 1 shows the titration curve for this sample. Two slight breaks can be observed in the surve, one corresponding roughly to the excess perchloric sold and the second to the sine perchlorate soting as an acid. During the course of this titration sine scetate precipitated from the solution. Neither of the breaks are sufficiently distinct to be useful analytically.

This sample was also titrated by the high frequency titration procedure. Figure 2 shows the titration curve for this titration.


Thus the excess acid can be determined quite easily by the high frequency titration in the theoretical column shout.

A sample of meta-nitro bornoic acid was dissolved in standard perchloric acid and passed through the column. According to the theoretical stoichiometry of the reduction there should have been a slight excess of perchloric acid in the sample after the reduction. High frequency titration of the element with solium acotate gave no end point, however, the plot of instrument response versus ml. of titrant being a straight line. Thus the amount of base in the element is not equivalent to the amount of nitro compand passed through the column.

In order to see if the zinc column would reduce the perchlorate ion in acetic acid, a portion of 0.1 H perchloric acid was passed through the column and the elucat diluted with water. Silver nitrate test solution was added to the solution, but no precipitate of silver chloride was observed. Since it is harder to reduce perchlorate than any other oxidation state of chlorine and since no chloride ion was found, it was assumed that the zinc smallgam would not reduce perchlorate ion.

2. Reduction of Mitro Compounds with the Zinc Column

To check the efficiency of the column in the reduction of the nitro compounds, several samples of orthos and mate-nitrobensoic acid and nitrobensons were run through the column under various conditions and

the amount of smine in the clucut determined by the brownstion procedure. Tables I and II show the results of these determinations.

The column reduced the mitro compounds with 100.0 ± .6% efficiency as determined by the bromination method if the proper conditions were maintained.

Percilorie soid must be present in the solution passing through
the column in order that there be complete reduction, but part of the
hydrogen for the reduction can be supplied by the scetic soid.
Figure 3 shows how the extent of reduction varies with the concentration
of the perciloric soid present in the solvent. The sample size used in
the samples represented in Figure 3 should have required approximately
0.2h N perchloric soid if the perchloric soid alone were to supply the
hydrogen for the reduction, but the reduction appears complete when
the concentration is greater than about 0.06 H.

When scotic said was used as a solvent consistently, sine scottice accumulated in the column, and the reduction efficiency decreased as the sine scottate accumulated. Samples numbered 24 to 32 in Table II are samples which were run consecutively through the column to illustrate this point.

The rate of passage of the sample through the column and the surface area of the smalgam available affect the reduction efficiency of the column. A column packed with analgamented 10 mesh granular sine was first prepared. Nost of the samples run through this column were not completely reduced. The samples in Table I were run using this column.

TABLE I

NITRO COLPOURDS REDUCED BY ZINC (10 METH) AMALGAM; BROUMATION PROCEDURE

Seeple	HCLO4 Conon.	lig. Sample	ll. I Blank	Sample	n na _s s _s o _a	Percent Recovered		
lista-nitrobensois acid								
1	0.1	103.1	13.59	9.15	0.1081	99.6		
2	0.1	103.1	13.59	9.65	0.1081	99.1		
3	0.1	103.1	43.59	15.05	0.1081	83.3		
4	07	1044	43.59	27.05	0.1081	47.7		
3456 7 8	0.1	1044	43.59	13.00	0.1081	88.2		
6	0.1	1044	43.59	12.50	0.1031	89.7		
7	07	2044	L3.59	20.25	0.1081	67.3		
8	0.7	103.1	113.59	10.52	0.1081	96 .6		
9 10	0.1	103.1	43.59	10.62	0.1081	96.3		
10	0.1	103.1	43.59	10.58	0.1081	964		
11 12 13 14 15 16 17 18	0	102.1	43.59	19.8և	0.1061	70.0		
12	0	102.1	113.59	25.64	0.1081	52.9		
13	07	1024	13.59	13.40	0.1081	88.7		
24	0.1	102.4	13.59	11.60	0.1081	94.0		
15	0.1	1024	13.59	14.58	0.1081	95.3		
16	0.1	102.4	13.59	10.62	0.1081	96.9		
17	0.1	1024	13.59	23.10	0.1081	15.5		
18	0.1	1024	13.59	30.80	0.1081	37.6		
19	0.1	1021	13.59	32.30	0.1081	33.2		
20	0.1	104.6	43.59	9.78	0.1081	97.3		
21	0.1	104.6	13.59	10.25	0.1081	95.9		
Ortho-mitrobensoic soid								
22	0.1	102.6	48.10	10.96	0.09806	99.4		
23	0.1	102.6	13.10	10.60	0.09806	99.8		
23	0.1	102.6	48.10	10.76	0.09306	99 14		

MITED COLDONEDS REDUCED BY ZENC (30 LETER) AMALGAM; BROLENATION PROCEEDING

Sample	HCLO ₄ Concn.	Mg. Sample	id. No Dioni:	Saple	n na _s s _s o _s	Percent Recovered		
Ortho-nitroborsole seid								
12345	07 07 07 09	102.6 102.6 102.6 102.6 102.6	11810 11810 11810 11810	10.96 10.60 10.76 10.54 10.60	0.09806 0.09306 0.09306 0.09306 0.09306	99.8 99.4 99.8 98.9		
Note-nitroberacic scid								
6789911111111111111111111111111111111111	0.1 0.1 0.1 0.0 0.0167 0.0333 0.0500 0.0500 0.0667 0.0667 0.0667	101.8 101.8 101.8 101.2 101.2 101.3 101.3 101.3 101.3 101.3	#3.10 #3.10 #3.10 #3.10 #3.10 #3.10 #3.10 #3.10 #3.10	10.70 10.78 10.79 10.84 12.54 11.64 11.64 11.54 11.48	0.09806 0.09806 0.09806 0.09806 0.09806 0.09806 0.09806 0.09806 0.09806 0.09806 0.09806 0.09806	100.3 100.1 100.1 96.0 96.2 97.8 98.3 99.3 99.8 99.6 99.7 99.8 100.0 100.0		
litrobe	18000							
22 23 24 25 26 27 28 29 30 31 32	0.05 0.05 0.0 0.0 0.0 0.0 0.0 0.1	73.81 73.81 73.81 74.70 74.70 74.70 74.70 74.71	17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80	12.23 10.68 17.22 10.70 17.98 13.70 27.85 29.65 39.70 10.68 10.50	0.09806 0.09806 0.09806 0.09806 0.09806 0.09806 0.09806 0.09806 0.09806	97.0 101.2 83.4 101.1 80.3 78.4 53.7 48.9 21.9 100.0		

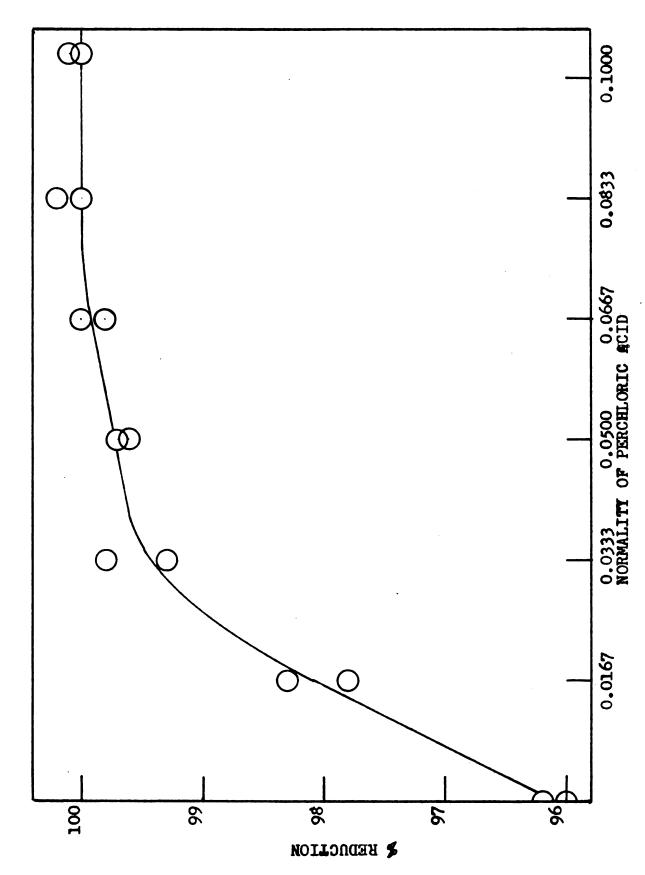


Figure 3. Effect of perchloric acid on the extent of reduction

A column packed with smalgamented 30 mesh sine was then prepared.

Using this column 100.0 io.6% of the theoretical amount of smine was found by the bromination method for most samples of cetho- and notamiterchancels acid and mitrobensens when perchloric acid was used as the solvent. The samples run using this column are in Table II.

3. Determination of the Blank

The sinc in the column eluant was determined as previously described by the ETA method. It was found that in all cases where the sine was determined it was not present in an amount equivalent to the nitro compound. For example, when 0.307 millimoles of meta-nitrobenzoic in 0.1 M perchloric acid was passed through the column 1.57 millimoles of sine was found in the cluent instead of the 0.92 millimoles expected. Whenever 0.1 H perculoric acid was used as a solvent. there was more sine in the cluent than could be accounted for as having telem part in the reduction of the nitro group. By running samples of acetic acid, and of perchloric acid through the column it was found that this extra sine arose from two sources. Oxygen is quite soluble in acetic acid, and when the solvent with the dissolved acygon is pessed through the column, the arrigen is reduced with the liberation of an equivalent amount of sinc. When the acetic acid was descrated with carbon dioxide prior to passage through the column, the enount of sine in the eluent was reduced greatly.

The second source of the entre sino is from the perchloric acid.

Amalgorated sino is a strong enough reductant that it will reduce

hydrogen from a solution of parchloric acid in acetic acid. Samples of various concentrations of parchloric acid were descrated and passed through the column. Zinc was determined in the eluent by the EDTA method. The results are shown in Figure 4. The amount of sinc found in the eluent and time the amount of reaction between the sinc smalgam and the parchloric acid is directly proportional to the concentration of the parchloric acid. Figure 4 also shows the very slight reaction between descrated acctic acid and the amalgam.

Since sinc acetate precipitated during the titration of solutions containing sine percilorate with solium acctate, formed during the proparation of the sinc analysm, and formed in the column itself during reductions if excess perciloric acid were not present, the solubility of sinc acetate in acctic acid was determined. Zinc motal was beated with acetic acid to effect reaction. The solution was then cooled mostly to room temperature, during which time sinc acetate began to crystallize from the solution. The minture was then placed in a constant temperature bath at 25° for several days to allow the equilibrium to be established. The solid sinc acetate was then removed from the supernatural liquid by filtration through a fine powerty sintered glass crucible and the sinc in the filtrate determined in the usual way with versons.

A value of 0.7h grams of sinc acetate per liter of solution was obtained, which compares quite poorly with the value of 0.055 grams per liter reported by Davids of and Refillistor (2).

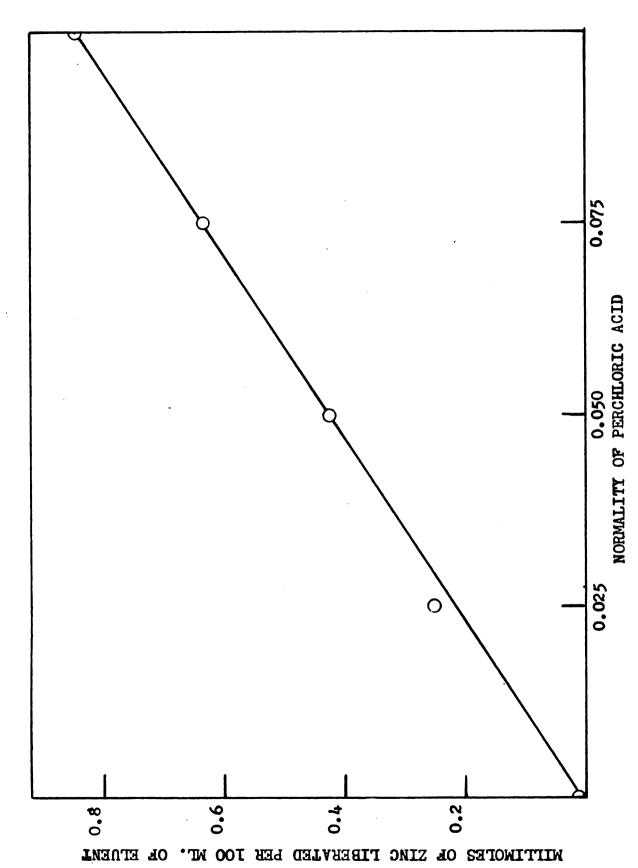


Figure 4. Bffect of perchloric acid on the blank for the zinc column

B. Operations with the Lead Column

1. Reductions of Nitro Compounds

Since lead acetate is soluble in acctic acid and since lead is a fairly good reducing agent, a column was constructed using amalgamented granular lead.

An attempt was made to titrate a solution of lead acetate in acetic acid with perchloric acid potentionetrically. No break could be observed in the potential versus ml. of perchloric acid plot.

Sulfuric soid is not a strong acid in acetic acid. However, since lead sulfate is insoluble in acetic acid, sulfuric acid should be a fairly strong soid during that part of the titration where lead sulfate is precipitating. A sample of moto-nitrobensoic acid dissolved in scatic acid was passed through the column and the elment titrated potentionstrically with 0.1 M sulfuric acid. Figure 5 shows the rather poorly defined break obtained for this titration.

An attempt was made to standardize the sulfuric acid by titrating a weighed portion of potessium acid phthalate with the sulfuric acid potentiametrically. No break could be detected in the potential versus ml. sulfuric acid for the titration. Then powdered barium perchlorate was added to the solution being titrated, an end-point was detectable, although rather poorly defined. Figure 6 shows such a titration curve.

A solution of locd scotate in acetic acid was prepared and standardised by the dishrocate southed. The sulfuric acid was then

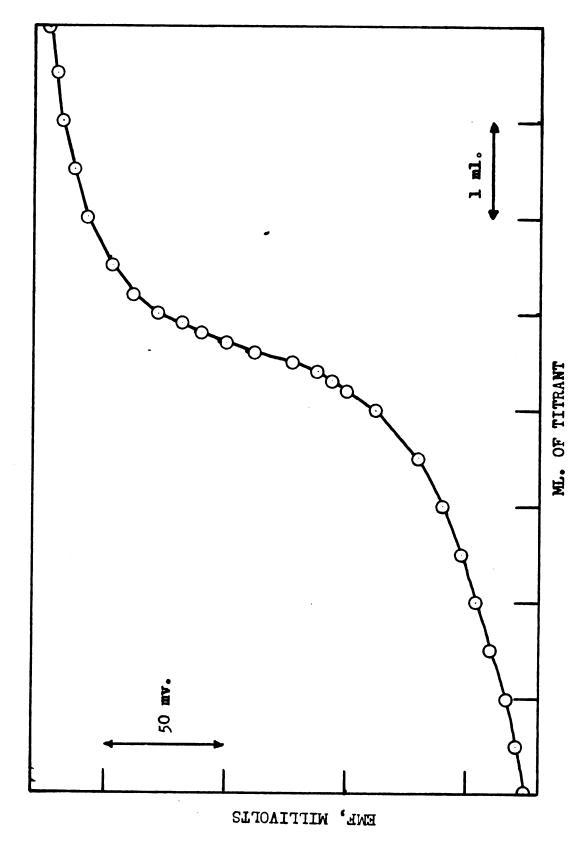


Figure 5. End-point of a titration of a sample of meta-nitrobenzoic acid reduced by the lead column and titrated with sulfuric acid

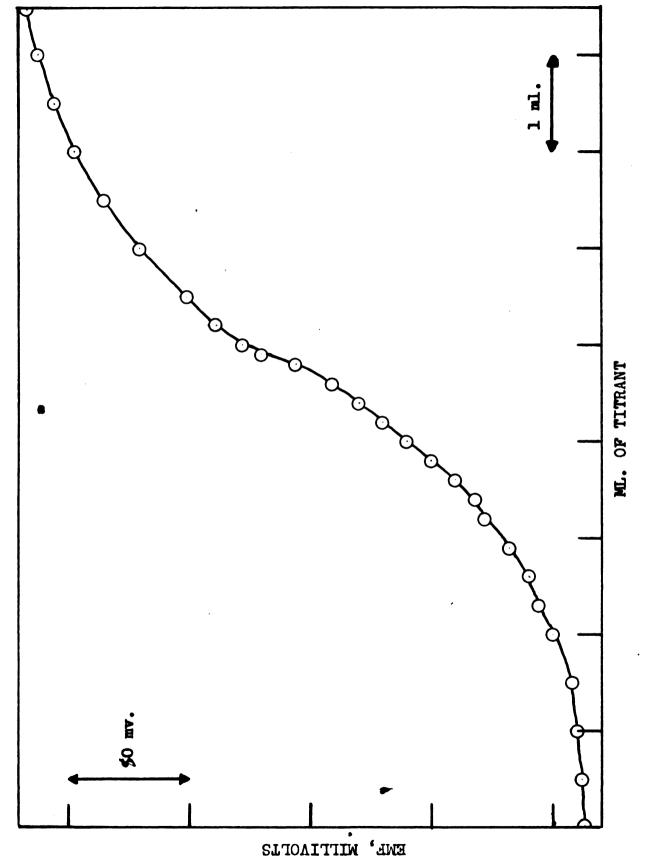


Figure 6. End-point of a titration of potassium acid phthalage plus solid barium perchlorate with sulfuric acid

standardized by titrating an aliquot of this load acetate solution with the sulfuric acid potential particular. Figure 7 shows the titration curve for this titration.

Samples of nete-nitrobonanic acid, para-nitrophenal, and nitrobonane dissolved in acctic acid wars passed through the column and
the elements were titrated potentionetrically with sulfuric acid.

A blank was run along with these samples, the volume of sulfuric acid
being required for the blank was subtracted from the volume required
for the sample. Figure 8 shows a titration curve for the titration of
the blank. Table III shows the results of titrations of the nitro
compounds. The smount of sulfuric acid required per mole of nitro
compound varied considerably, but in no case was the theoretical amount
of acid required. This indicates that the reduction is not complete
under the conditions used, and that the outent of reduction is highly
depondent on conditions.

It was found that using the lead column the amount of smine formed sould be determined by the bromination procedure. Using this method as a criteria, it was found that the extent of reduction was dependent upon the rate with which the solution was passed through the column and upon the concentration of perchloric acid present. It was found, however, that if a small amount of perchloric acid were added to a sample and the sample then passed through the column, no potentiometric end-point could be obtained by thitration of the abunit with smilfuric acid.

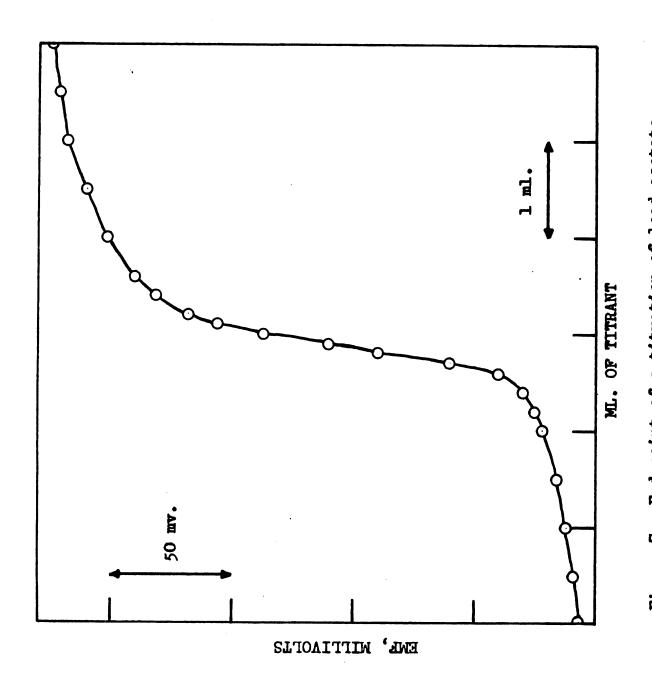


Figure 7. End-point of a titration of lead acetate with sulfuric acid

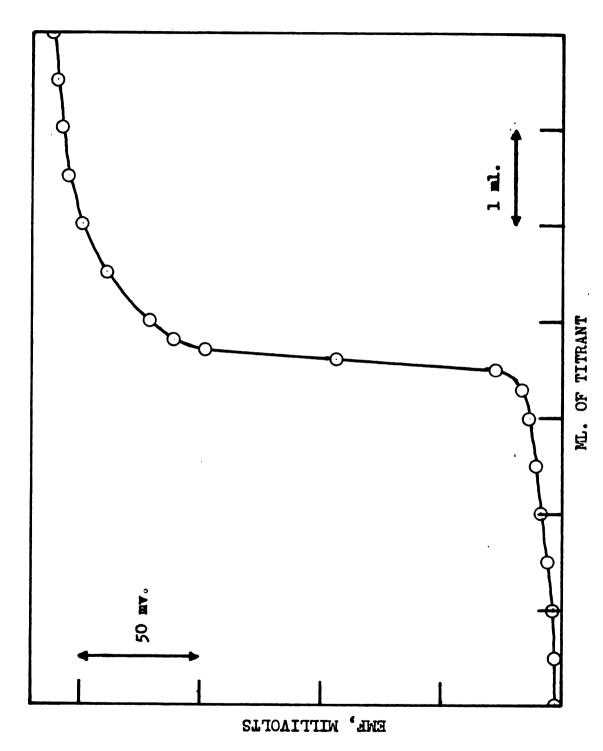


Figure 8. End-point of a titration of the blank for the lead column with sulfuric acid

TABLE III

NITRO COMPOUNDS REDUCED BY LEAD AMALGAM; H. SO. TITRATION

	lig. Samle	n co				
Savile		м.	u	Haq. Blank	lieq. per limile.Eio	
iata-nit	robungolo	cid				
1 2 3 4	101.7 101.7 62.01 62.01	36.95 36.70 31.50 30.34	0.03912 0.03912 0.03912 0.03912	0.55 6 0.556 0.677 0.677	4.65 4.62 5.74 5.13	
Ortio-ni	troulenol					
5 6 7	以.91 红.71 红.71	26.96 37.25 37.25	0.03912 0.03912 0.03912	0.588 0.648 0.648	7.02 7.19 7.19	
Mt. obc	2610					
8	36.91	३० यह	0.03912	0.66	6.8	

By dissolving samples in 0.1 H porchloric soid, and passing thom through the column, and determining the amine formed by the browningtion procedure, it was found that 100.0 ± 0.66 of the theoretical amount of suine could be recovered from the column eluent. Samples number 9 to 15 of Table IV show these results.

Determinations based on the chromate procedure for the amount of lead in the eluent were carried out both by determining the blank due to dissolved oxygen and by descrating the solution before passage through the column. Sample number 1 of Table V shows a 0.9% deviation for the mitrobensons when the blank was determined, but samples numbered 2 to 7 in Table V show an average of only 0.4% deviation for several samples of mitrobensons and meta-nitrobensons acid when the samples were descrated prior to passage through the column. Attempts were made to determine orthose and para-nitrophenol by this method, but the smines were apparently exidised by the dichromate, and the resulting mixture could not be filtered.

A sample of nitroethene was dissolved in 0.1 M perchloric acid, descrated, and passed through the column. Lead was determined in the element by the dichromate method. Using the amount of lead found, only about 25% of the nitroethene was reduced.

2. Determination of the Blank

Blanks due to air dissolved in the scotic soid were determined several times for the lead column by titration potentiometrically with

TABLE IV
NITRO COMPOUNDS REDUCED BY LEAD AMALOAN; BROMUNATION PROCEDURE

Sample	HClO ₄ Conen.	lig. Sample	Blank	Samle	n nessos	Percent Recovered
Mitrobe	os en e					
1234567890112	0.05 0 0 0 0 0 0.1 0.1	73.81 73.81 74.80 74.80 74.80 74.80 74.80 74.95 74.95 72.37	17.60 17.80 17.80 17.80 17.80 17.80 17.80 17.80 17.80	10.68 13.65 11.30 13.71 11.37 19.85 11.65 10.60 10.48 10.57 11.40	0.09306 0.09306 0.09306 0.09306 0.09306 0.09306 0.09306 0.09306 0.09306	99.8 91.9 99.3 90.2 98.1 67.9 96.7 97.4 100.2 100.0 100.6
lista-ni	brobenso16	acid				
13 14 15	07 07 07	117.27 96.15 96.15	17.80 17.80 17.80	4.74 12.34 12.33	0.09806 0.09806 0.09806	100.3 100.6 100.6

TABLE V

DEAURATED MITRO COMPOUNDS HEDUCED BY LEAD AMALGAM; KgCrgO, PROCEDURE

Sample	lig. Sample	lieq. KgCrgOy	Ma.	5-0-	Percent Recovered
Nitroben	reme				
1** 2 3 4	74.95 83.31 72.37 72.37	7.5 7.5 7.5 7.5	7.36 14.40 22.85 22.78	0.09806 0.09806 0.09806 0.09806	100.9 100.0 99.4 99.5
lieta-nit	robennoic ec	14			
5 6 7	117.27 96.15 96.15	7.5 7.5 7.5	12.58 23.93 23.62	0.09806 0.09806 0.09806	99.6 99.5 100.1
Mitrosth	ene e				
8	112.50 112.50	7.5 7.5	62.5 64.0	0.09806 0.09806	26.9 24.0
10 and 11	***				

[&]quot;Sample not descrated, a blen!: of 1.240 mag. of $K_B Gr_B O_{\psi}$ being determined.

Ortho- and para-nitrophenol were run, but the solution was unfilterable after $K_B Gr_B O_{\gamma}$ was added.

O.1 I sulfuric soid and by the dichronate mothod. The results of these determinations are found in Tables VI and VII.

No precipitate of lead chromate could be detected when potassium dichromate was added to the chuont whon descrated 0.1 N perchloric acid was passed through the column. Thus the only blank is due to dissolved oxygen.

The variation in the magnitude of the blank for the various samples could be due to the change in the solubility of oxygen in the acetic acid with temperature, or due to the fact that different betches of acetic sold had more oxygen dissolved in them.

To determine if the roduction product of the exygen was hydrogen peroxide, exygen was bubbled through an acetic acid sample. The sample was then passed through the column into a solution of potassium iodide, starch indicator and lik sulfuric acid under a carbon dioxide atmosphere. No blue color was observed. However, when hydrogen peroxide was added to the mixture, the blue color of the starch-iodine complax was observed. Thus the reduction product of the exygen in acetic acid does not appear to be hydrogen peroxide.

To be certain that nitrobenzene was reduced to smiline, five grass of nitrobensene dissolved in scatic acid was passed repeatedly through the column. Bromine was added to the almost to prepare 2,4,6-tribromomiline. The product was recrystallized from aqueous ethanol. The melting point of the recrystallized product was 120-1°, of an authentic sample 115-117°, and of a mixture 115-118°.

TABLE VI AIR BLANK WITH THE LEAD COLUMN; H_SO_ TITRATION

		H-SO		Mmole. Pb	
Sample	Vol. HOAc	M.	N	100 ML. HOAC	
1	85 85 85	6.32	0.08912	0.331	
2	85	6.17	0.08912	0.323	
3	85	6.60	0.08912	0.346	
4	100	7.60	0.08912	0.339	
5	100	7.60	0.08912	0.339	
6	100	7.45	0.08912	0.327	
7	100	5.92	0.1085	0.321	

TABLE VII

AIR BLANK WITH THE LEAD CHURH; KaCraO, PROCEDURE

Sample	Vol. Solvent	ECLO ₄ Concn.	Neq. KaCraO _y	Ma.S	.O. T	Mode, Po 100 H., Solven
1	100	0.0	2.50	15.70	0.09806	0.320
2	125	0.0	3.00	17.95	0.09806	0.331
3	100	0.0	3.75	29.65	0.09806	0.274
4	100	0.0	1.50	7.00	0.09806	0.271
4 5 7 8	100	0.1	1.50	6.10	0.09806	0.301
6,	100	0.1	1.50	7.00	0.09806	0.271
7.	100	0.7	1.50	15.78	0.09806	0.000
8	100	0. 0	1.50	15.70	0.09806	0.000

^{*}Sample was descripted.

IV. FULWARY AND CONCLUSIONS

A. The Zine Column

A metal reductor consisting of a reducing column packed with sinc analyza containing 2% moreous prepared from 30 mesh granular sine will reduce several aromatic nitro compounds dissolved in 0.1 H perchloric acid quantitatively to the amine. The amine can then be determined by the brownstion method, thus providing a rapid, convenient and accurate method for the determination of aromatic nitro compounds. One of the main difficulties expected with this method would be in those cases where bromination is not a suitable method for the determination of the amine.

No method was found whoreby the nitro compound could be sessured by determining the amount of sine in the column eluent. If there was not sufficient perchloric acid in the sample, solid sine scetate formed in the column, and if perchloric acid is present, it will react with the smalgam to liberate sine perchlorate and hydrogen. Acetic acid itself reacts slightly with the column to liberate sine acetate and hydrogen.

Oxygen is considerably more soluble in scotic sold than in water, and it is reduced by the column with the liberation of an equivalent smount of sinc. If the solution is descrated before the sample is passed through the column, oxygen is removed and thus does not liberate sinc.

B. The Lord Column

A metal reductor consisting of a reducing column packed with lead amalgam containing 2% mercury and prepared from granular lead will reduce several aromatic nitro compounds dissolved in 0.1 N perchloric acid quantitatively to the amino. The amine can then be determined by the brownination method, but the determination is less desirable than when the sine column is used, since lead indide precipitates and causes a slight interference with the end-point of the indine titration.

This method is subject to the same restrictions using the lead column as it was when the sine column was used.

If the solutions of the nitro compounds in 0.1 M perchloric sold were descrated before passage of the solution through the column, the smouth of lead in the elment was equivalent to the smouth of nitro compound originally in the sample. The lead in such samples of the elment can be determined by the dichromate method for some nitro compounds, but for other nitro compounds, the potassium dichromate apparently oxidises the smine, and the method fails.

No method was found by which the excess acid could be determined after the reduction of the nitro compound. If no perchloric acid is added prior to passage of the sample through the column the amount of basic material formed can be determined by potentionstric titration of the cluent with 0.1 N sulfuric acid, but the reduction of the nitro compounds is not complete under these conditions.

LITTUATURE CITED

- 1. Becker, W. W., and W. E. Shaefer, in Organic Analysis, Vol. 2, Interscience Publishers, Inc., New York, 1954, pp. 71-93.
- 2. Davidson and McAllistor, J. Am. C.on. Foc., 52, 507 (1930).
- 3. Lobunets, M. M., Univ. etat Kiev, Bull. sci., Rocueil chim., 2, No. 2, 69-72 (1936); through Chan. Abstracts, 31, 2969 (1937).
- 4. Lobumets, M. M., <u>101d</u>., 2, No. 2, 81-3 (1936); through Chem. Abstracts, <u>31</u>, 2955 (1737).
- 5. Lobumets, M. M., <u>191d</u>., No. 3, 71-8 (1937); through G.am. Abstracts, <u>33</u>, 2139 (1939).
- 6. Lobunets, M. M., <u>101d</u>., No. L., 23-6 (1939); through Cham. Abstracts, <u>35</u>, 1356, (1941).
- 7. Lobunets, M. M., 151d., No. 4, 41-4 (1939); through Chem. Abstracts, 35, 1356 (1941).
- 8. Lobunets, M. M., Zavodskoya Lab., 7, 872-4 (1938); through Chom. Abstracts 33, 504 (1939).
- 9. Perte, M. I., Univ. etat Kiev. Pull. sci., Recueil chim., No. 3, 37-41 (1937); through Chem. Abstracts, 13, 2439 (1939).
- 10. Per's, M. I., and M. M. Lobunets, <u>101d</u>., 2, No. 2, 15-50 (1936); through Green. Abstracts, <u>21</u>, 2966 (1937).
- 11. Perte, M. I., and M. M. Lobunots, 111d., 2 No. 2, 73-9 (1936); through Chem. Abstracts, 31, 2969 (1937).
- 12. Per'e, H. I., and H. M. Lobunots, <u>filld.</u>, No. 3, 13-7 (1937); through Chem. Abstracts, <u>33</u>, 2138 (1939).
- 13. Scribner, W. G., and C. N. Meilley, Anal. Chem., 30, 1152-62 (1950).
- 14. Stegemen, K., in Novere messemelytische Methoden, Ferdinand Enka Verlag, Stuttgert, 1956, pp. 163-185.
- 15. Timmick, A., and L. Fleck, in "High Frequency Titration of Some Monobesic and Dibesic Acids in Nonequeous Media." M. S. Thesis, Michigan State University.

MICHIGAN STATE UNIV. LIBRARIES
31293015912599