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ABSTRACT

This paper describes the motion of electric charge
when placed on the surfaces of very slightly conducting
bodies., It is assumed that no electric charge is initially
present inside any conductor which is under consideration.
For this reason it follows, from a wellknown case, that
there will never be any charge observed inside the con-
ductor at any later time, A general method is developed
for finding the charge density at any time on the surface
of a conducting body in terms of the initial charge den-
sity on its surface. This general method is used to find
the charge density at any time for the following cases
involving specific geometries and initial charge distri-
butions:

(1) A slightly conducting cylinder with arbitrary
initial two-dimensional surface charge density.

(2) Two slightly conducting coaxial cylinders with
arbitrary initial two-dimensional surface charge density.

(3) A single cylinder conducting on its surface only,
with arbitrary initial two-dimensional surface charge
density.

(4) A similar single cylinder with a line charge on
ite s.rface initially.

(5) A slightly conducting sphere with arbitrary initial
two-dimensional surface charge density,

(6) A slightly conducting sphere with a point charge

on 1te s.rface 1in:tially.
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I INTRODUCTION

If a substance 1is rubbed againast another substance,it
generally becomes either positively or negatively charged,
Among others, Hersh, Sharman and Montgomery1 have measured
the amount of charge produced when a filament of a given
material 1s rubbed against another of the same or different
material under controlled mechanical and ambient conditions,
They used metals as well as non-metals,

Thus, electric charge may be generated on the surface
of very slightly conducting non-metallic substance., Once
the charge 1s generated, it is interesting to know how it
will move from its initial position into the final equi-
librium distribution which will be reached after a very
long time, It is discussed in this paper how the =lectric
charge initially placed on the surfaces of slightly con-
ducting bodies will behave as time progresses,

In Section II, it is shown that there will never be
any charge inside a conductor, if no charge 1s initially
present inside 1t, Although the charge may flow through
the interior of the body from one point of the surfece to
another, measurable amounts of charge aré found only on
the surface, In the same section, the general method for
finding the surface charge density at any time 1s developed,
provided that the initlal surface charge density is known.

1. Herah.S.P.,Sharman‘E.P. and Montgomery,D.J., "Textile
Research Journal," 24, 426 (1954)



In Section III, an arbitrary two-dimensional distri-
bution of charge is placed on a slightly condueting cylin-
der, The expression for the surface charge density at any
time is calculated, and is expressed in closed form,

In Section 1V, an arbitrery two-dimensional distri-
bution of charge 1s placed on the outer surface of two
conducting coaxilal cylinders. Two general expressions for
the surface charge density at a later time are calculated,
one for the surface of the outer cylindef, and the other
for that of the inner one.

In Section V A,, an arbitrary two-dimensional distri-
bution of charge 1s placed on the surface of a cylinder
which 1s conducting only within a very thin layer on the
surface, This may be considered as a special case of the
one discussed in Section IV, The expressions for the sur-
face charge density at any time are calctilated, In Section
V B., the same cylinder 1s taken bpt the initial charge
Placed on the surface 1s a line charge., The expression
for totel surface charge density at any time 1s calculated
and expregaed in closed form.,

In Section VI A,, an arbitrary two-dimensional distri-
bution of charge is placed on the surface of a slightly
conducting sphere, An infinite series for the surface
charge density is obtained, In Section VI B,, the same
sphere is taken but the initial charge placed on its sur-
face 18 a point charge, The expression for the surface
dhafge density at a later time is presented in a form

sultable for numerical computations.



II GEMERAL THEORY
Electrodynamic probloiu can be solved using Maxwell's
equations, They are a set of differential equations which
are written in the rationalized m.k.s. system of units as

rollowaz

ax-E‘- -QB- (2.1)
- a0t o
6" H a j "')
N '3 (2.2)
V.B=0
VOD = f
(2.4)
I.r the medium is isotropic and homosen;eous,
D =KE ‘
(2.5)
7 - uH
B (u' (2.6)
J «GE.
Jec (2.7)

From the conservation of charge, the relationship between

T ana 1’ 13

- -
V-J+38=0
(2.8)
? ot
where = electric fleld mtensity;B = magnetic induo-

_ -
tion; K = magnetic field intensity; 3 = ocurrent density;

5 = eleoctric displacement; f volume charge density;
K = dielectric constant; /U = magnetic inductive capaci-
ty; 6° = electric esnduestivity,

2.,Pipes, Louis A.: "Applied Mathematics for Engineers and
Physicists,” MoGraw-Hill Book Company,Inc.,New York,
1946,p.364,

3.8tratton, Julius A,: "Electromagnetic Theory," McGraw-
H1ll Book Company,Inc,,New York,1941,p.5.
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In all the o;.aos considered in this paper, known elec-
tric charge is initially placed on various conducting bodies.
If G , the electric econductivity, is very small, the charge
flows very slowly from place to place., Ve may, at any
instant, consider that the terms mvolving partial deriva-
tives with respect to time vanish in the equations, and
also say that 3 » the current density, is ¥very small,

Then, as a zeroth order approximation,
Jao (2.9)
3 » O
. ot

-d
and D and E are approximately independent of time.

(2.10)

By using (2.1) and considering the fact t.h.a.t-t is in-
dependent of time, the following relations are obtained:

‘Ezo

(2.11)

He O (2.12)
thus the magnetic field 1is noglislﬁlo, and
V«E=0. (2.13)
Thus an electric pgf.enf.u.l \ exists such that
E =-Jv (2.14)
2 P
where VWV = T (2.15)

To this approximation, we have a purely electrostatio
problem, that is, the electric potential and field at any
instant are the same as would oii-t were the charge distri-
bution at that same instant not changing with time.

As the next order of approximation, this electric
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potential and field may be put back into Ohm's law (2.7) to

find a non-zero current density:

j 6"? = - G"V;\I. (2.16)

Then %{D » the rate of change of charge density with

time, 18 obtained from the expression for the conservation
of charge (2.8&: A a

%{"V'f = VVE (2.17)
But by (2.,15), this gives

%.E --‘%f. (2.18)

The above differential equation (2.18) can be solved

14
-E‘
§ = fve (2.19)

where " - é and is known as the time of relaxation for

immediately to give

the conducting material and 'P(o) is the value of P at
tx0, that 1is, 1t is the original charge density at the same
point in bpaoo.

Two cases can be considereé: .

(a) I '?(0)4,0, the original charge at every point of
the conducting material decays exponentially. It 1s clearly
seen that the time of relaxation 1s independent of the size
and the shape of the conductor, For example, the conductor
may be either spherical or cylindrical in shape and the
radius may be either large or small,

(v) 1r ?(o)..o. then -f = 0, that is, if no charge is
present inside a conductor initially, t'.hore will never be

any charge in the interior at a later time.
3.5ee reference 3,p.15.
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In all the problems that are considered in this paper,
the original charge distribution 1s oconfined to the sur-
faces of the conducting objects, and thus only case (b) is
applicable,

The charge density on the surface of the conducting
material is defined as charge per unit area and is denoted
by W) at any timet $0, and W (o) at t=0, If Lo(t) 1s
known, the potential V can be obtained by solving laplace's
gquation subject to the proper conditions at the boundary
between the various dielectrics.

Laplace 8 equation 1is written as

W=06 ‘ (2.20)

At the boundary, the boundary conditions a.r§
V=V, (2.21)
and (D ) —(17 )= w(t) (2.22)

where \G and \G.are the potentials in the two mediun-.(];;)'
and(ll“)‘are the normal components of the electric displace-
ments in the two mediums,

When V 1s knovm,j can be obtained by using (2.14) and
(2.7).

By charge conservatlion, the relationship botween:f'
and (O 1is such thag

M PO (2.29)

where W 1s the normal, 3. and Jx are the current densities
in the two mediums evaluated at the surface(see Fig.1).

5.8ee reference 3,p.164,

6.30¢ reference 3,p.483.



Fig., 1.

Ir u)(&) is known, equation (2.20) can be solved
subject to the boundary conditions (2.21) and (2.22), to
give V 1in terms of (A)d:) . But V 1in turn gives \T by

equations (2.14) and (2.7). Equation (2.,23) then gives
dw

ot
terms of :r ,and thue in terms of w(t) . we may con-

» the time rate of change of charge density, in

clude, therefore, that the above set of equations is
equivalent to a first order partial differential equation
for the charge distribution and can be solved for w(t)
1f W (0) 1s known. Probably thie solution for w(t)1s
satisfactory if the relaxation time Ft in (2.19) 1s much
larger than the time required for light to cross the con-
ducting objects.

It is not poesible to solve these equations in general,
Instead, they will be solved for W(t) in a number of
examples involving specific geometries and initial charge

distributions.



III TWO-DIMENSIONAL CHARGE DISTRIBUTIONK ON A
CONDUCTING CYLINDER

[ )

4
Vi Kioy |Ke
y
a//’/ | 8 :F‘

—__<_>

Fig.2.

In this section, the

investigation 1is d4one om an

-infinitely long dielectric cy-

linder (Fig.2) whose radius 1s
R « Throughout the cylinder,
the dielectric constant is Ki

and the conductivity is g, ,

" where 6; 1s very small.

Outside the cylinder, the d4i-
electric constant is K, and
the conductivity is zero. The

radisl distance from the axis

of the cylinder to any point is denoted Dy »* 8 is
the angle between 7 and the X axis. The surface charge

density (O 1is considered to be arbitrary at time t = 0,

except that it iz independent of Z and is a function of

© only. We will, furthermore, restrict W), to be symmetric

about the X axis, so that

W) « W(-90). (3.1)

To £ind the swrface charge densityWw()at a later time
f’. s let us expand it in the form
W) - ?,ﬁ-*) Cosme (3.2)

where p.ét)ls given by

MaeO

©
RH=9 (3.3)

3 ﬂowd) 4’ M0



The potentials about the surface - either outside or
inside of the oylinder - satisfy Laplace's equation
(2.20). Tnerefore V{ , the potential inside the cylinder,
is obtained by solving the Laplace's equation, using the
boundary conditions (2.21) and (2.22). It can be written

QZ (. -}
V. T Cosn® P.,G')*- C
b T L mRMUKaR) C(3.4)
MNal

where co is an arbitrary constant,
At A = R , by using (2,23),(2.14) and (2.7) from the

previous chapter, we have

dwd) . 3_‘_’»)
ot R (3.5)
=T “zw) i (3.6)
'n" ki. + KQ . 3.

On differentiating both sides of (3.2) partially with

respect to t, we have

éw(b Zi—%‘“’ Cosmé (3.7)

Por (3.7) to be equal to (3.6), it is necessary that
-6 A&) .
¢ —"-E— "l
dB®_) ik, (3.8)
dt
o Ma0

on oolvins (3.8) for P“("-’), we have

%\(o)c;t"( :
Bct), nzl (3.9)

(0) "al
L) Appendix A, P’
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wmere 1= (KiaK)[g . (3.10)

After substituting the value of &\(*)tro- (3.9) 1in (3.2),
the magnitude of charge per area of the surface at any
time 1is

3
W)= Z\%co)com.e %+ Bo). (3.11)
Msy
But the sum can be evaluated in closed form because the
exponential is the same for each term in the sum, and

g‘(ﬂCosnG = W) - &(ﬂ), (3.12)
Thus (3.113‘can now be written as

-t -t
w(l:) = w()e N'_._ E.(o v e /'t]' (3.13)

where wd) is the surface charge density at any time t
and W(s)1s the arbitrary charge density on the surface at
t=0. Equation (3.,13) can be interpreted in the following
way: At t = 0, W(t) . w(o) » because e't‘cu unity. As time
progresses, the initial distributionw(c)decreases to zero
exponentially, with a time constant or time of relaxation
"C given by (3.10). In its place arises a charge distri-
bution ﬁ(o)[\ - e't"f] which is independent of 6 and
everyvhere the same on the cylinder, After an infinite
time, the charge distribution is everywhere given by P.(a),
the average value of the charge density initially placed on
the surface. From (3.3), 1t can be expressed as

(O) = [w(o)L &w(o) de (3.14)
This result (3.13), 1noidonﬁy. is correct whether or not
the symmetry condition (3.1) - viz w(#8) = w(—.)- is
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satisfied. The relaxation time " is given ,by(Kt +K°)I6‘i .
It is independent of R, the radius of the oylinder, and
depends only on Ki.’ Ko and 6} . Thus, the relaxation time
is the same for all cylinders, large or small, made from

the same material,



IV TYO-DIMENSIONAL CHARGE DISTRIBUTION ON TWO
CONDUCT ING COAXIAL CYLINDERS

In this section, the

z investigation i1s done on two
infinitely long conducting
K\ViT K3Vs coaxial cylinders (Fig. 3).

K The radius of the inner

R —  cylinder 1s R, and that of

y the outer cylinder is R:.‘ The

,{ \e‘/ > conductivities are 6| for the
inner cylinder, 6, for the

\/@ outer cylinder, and zero outside

the oylinders. The meanings of
Fig.5. ® end Y are same as in
Bection III,

The problem in this section is to find the surface
charge density at a later time, if the charge density at
t=0 1is given, Initially, the charge distributions on both
the surfaces are arbitrary except that they will be assunm-
ed independent of Z and a function of 8§ only. As before,
let us expand the charge density at t=0 on the surface of
the inner cylinder in tEg form

, 05(6) - %&d}(}svre (4.1)

vhere E,‘(O) 1s expressed ‘as

2 (¥, 40
/ 2\ wlo) Cosme "y |
B() = “S° C (4.2)

L]
%Sow’(o) 48 M0
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The charge density at t=0 on the surface of the outer

cylinder can be expanded in the form

() ,1?_ P (6) Cosm & (4.3)
where LA g w(o) Cosnedd Wl
[ (o]
F(& = (4.4)
" R
' 4 SO“;(O) de "=0

At ttme‘t * 0, the charge densities can be expressed as

gimilar series:

W) = z_ ) Cosm b

hso
wdy = i X &y Cosm® (4.6)

The only case conaidered here is with U(o)identically

(4.5)

zero and therefore from (4.2), &\(O)a 0 for all n, It is
impractical to put electric charge on the surface of the
inner cylinder at time t=0 if the cylinders are solid.

A general solution of the Laplace's equation in cylin-

8
dricel co-ordinates 13

V= a,lm-r_‘_z.r‘h(a cos.hg+\,5xv‘m9>

e (4.7)
+ZJ% (% Cosmé +-§- S\M'V\G) Co
where V 1s‘nt;1‘e potential, '
V = V (T‘» 9) (4.8)

because it is independent of Z.

Let us denote the potentials as V\ for the inner cylin-
der, V,_ for the outer cylinder, and V3 for the medium
outside the cylinders.

8.See reference 2,p.407.
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They are of the form

V. =S A C
\ Z|A’V\ COS‘V\G 4+ vo (4.9)

@ (- -] -
\/1 = ZB“"“Cos o +§_'D_“T‘Qos'“9+£° +F°‘[“"'n (4.10)

’VIO;! MN=\ .
Vi =) GV Cosm® +H " (4.11)
where A:",' g,“, Co , 'D_“ , Eo , FO , q“ and “o are constants

whose values will be determined later, The terms contain-
ing S‘i'v\ O do not appear in any equation because the vpoten-
tlal is symmetric about the X axis, The terms containing
T‘-'n do not appear in (4.9) because the potential is finite
et T =0 . The terms cdntaining Y‘“ do not appear in (4.,11)
because potential cannot go to infinity as T —» 00 more
rapidly than InTY . In (4.10), both " and v can appear
because = 0 and T = o0 are excluded from the re-
glon in which Vz is applicable,

There are two boundary conditions (2,21) and (2.22) to

be satlsfied at each boundary,

aA Y - R,

V., = Va (4.12)

and \

av,> _ M) . d 4,
‘Kl(f‘: r,R‘-‘-K\(-}‘—Vi +-R| “® et

Similerly at ¥ = R,

and }\I BV u;/<£>
3 RS =
- Ks( )r)nk M Ki( T SR, (4.15)

The valuee of V\ and v)_from (4.,9) and (4.10) are substitu-

ted into (4.12) and (4.13). Expressions (4.12) and (4.13)
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are evaluated at T - K‘ . The values of V). and V3
from (4.10) and (4.11) are substituted into (4,14) and
(4.15). Expressions (4.14) and (4.15) are evaluated at
T = Ra_'

Thus the following four equations are obtained from
(4.12),(4.13),(4,12) and (4.15) together with (4,5) and
(4,6)

| ZA“Q Cos mB 4+ 0y = ZB.,‘ RTCos "o 4_2121 IiTCos X
M=)

N=j N=
+E + F—?m R‘ (4.16)
(Z MR Cos me +ZD () R Cos wo +Fo
M=y ! R'
+ K Z.A'nR Cos Tne z P(-l) Cos me (4.17)
M=p
ZBR Cos MO +Z}>Q Cos MO +E°+F{ R
Ma| ‘h-\w (4.18)

ZQ'“R (‘,os-ne + Y, %“R
-, ZQ "\3R Cos b + “ +\( }__B‘V\R Cos Mo +
5

=) 7\:.
ZD(-'h)R Cos V10 .ﬂ%) = Z&,@)ﬁos 7o (4.19)
on" equating the coefficlents of COS M8 15 the above four

equations, we have

Ay Ri- B Ry -D“R’ms 0 (4.20)
-

KAWK, *K'D.VR, -KB R =§&)ln (4.21)

B-nRz + DR . _é".n . = (4.22)

- n-l -n-! v
K.BnR, - KRR, +\<3CT,‘R1 ,Eﬂ(‘nlv\ (4.23)
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Also,
e -R ?(’c) (4.24)
(‘g(“‘)R, + ﬁg({)R\) (4.25)
E, - [-B® R; g R, (Ka K-k | R, (4,26)
Cy = EO*F tn R, 5 (4.27)

The values of A‘h ’ By\ ’ 'D.“ and Q‘-“ can be obtained by

~ solving (4.20), (4.21), (4. 22) end (4.23) using determinants:

d.ewo)

o, R _R" o
%\ <A kzk K, 2“"" 0
QY g;*‘ R
- -n-l
.A _ gﬂ&)l—n K R, k@, K; R:N
M " -
R, R -] 0
Ksé:\- -K;RT-. K;R.;“-‘ 0]
0 Ry & -jT
Nn- -n-| -n-|
or o K ‘-Rl - sz: KSR,
/
&) -m-l
Av‘:s%‘_ [R R, (Ky-k)-R, R(K3+K)] :,p({)RRK {/(4 28)

where |4 emo| means the value of the denominator

ldewo|- R R (K K-« x-kg«) RRICKka‘\: +kk ) (4.29)

Similarly the values of B and (‘Y“ are obtained as

follows:

Bv\ %&(P Q‘ -1“ -K) %_'_DR g (K,-»k)i/ld.cwo\ (4.30)
3‘33‘})!1 < (“*'ﬂ fP‘bR R;“ck,-xl\i [tdemol (4.31)
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Gfs'ai R Ky 3\?[‘2 R ;)R OY -52)

!m‘
The next step is to find the time rate of change of charge

density by using (2.23).

Thus _ '
o) M b
%LFO = -6 )“R‘-} Q(r}ﬂnk. (4.33)
dVa
g%(t) = - G" ( )T‘ Ya R)_ (4.34)

The values of \/. and \<L from (4,9) and (4,10) ere
substituted into (4,33) and evaluated 2t T"a= R, . Similarly
the value of Vz from (4.,10) is substituted into (4,.3%)

and evaluated at T = Rz. After subs'&itution, we have
aw(t) =~ 6, (ZA-“ R tOS N+ 6 (ZB'VIQ COS "o

a.t © MNe) et YY)
=20k, Cos mo 4 TolR)) (4.35)

and ns)
}w('l) = -ez(ZBnR Cosme th?-(',os m+F3 (4.3G)
B't MNe) - )
oug from (4,5) and (4.6)
Qs .5 d Pci) Cos Mo (£.37)
a* 'h-o

w‘h Zal ﬁC’O Cos e (4.38)

After subbtituting A, B+ T ena Fy into (4,35)
and (4.36), the coefficient of (08 MO 1in (4.35) 1s
equated to that in (4,.37). Similarly the coeflicient of
(',os MNPe in (4.36) is equated to that in (4,38), By this
pno“dm‘o, we obtain

J—P({) = uP + “izP (V\)\) (4.39)
5 = "
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’ / u
dﬁ!‘——(h = Ky + oL, (m2t) (. 10)
/
F.“ - -Spct
: R}lpo( ) (4.41)
y
d—'&-(-h = &k F":&) (4.42)
d+ k1 Ra
where
-l «2m- A
= R KK )68 +RE (K 1 )66 J e (443)
iz = [él‘dR.:(l K% - ZK@-DI /l denol (h.44)

M- ,

Xq, ={_RTR':"‘(K;KD(-6:) -R-‘:‘R:‘ (Kg KD(G_D] / \dc-m)\(lh%)
-l _ ‘ v\fl an-! ae

LoT SIR:R;(K‘-\- K X&) +é‘\ R (KTK),XG'D] lldcno\“"- 5)

The solutions of the two differential equations (4,.39)

and (4.,40) are essumed to be of the fornm

¢ -2t
P‘\: = J‘ne > (4o47)
and o o —)t |
/ B‘n ‘J'ne (4.48)

[’}
vi:ere the J’H and J.‘Vl are independent of time, ""henthe
solutions (4.47) and (4.48) are substituted into (4.7%9)

-

and (4,40), the following equations are obtained:
/ N
(< +2 ), + Kpdn = 0 (4449)

/ [
°(1|J"'\ + (0(,_.246-}‘)]“-0 (4.50)

/ ¥
In order to be consistent, the coefficients of I—v, and J.“
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have to satiafy the determinant given below:

oL
(% +3) ' _ 0 (4s51)
0(1| (0&1.’_ + >)
Expanding the above determinant gives two values of /\
which are
kS
)*l = —(dlp'l"{:;) + J?"(Il -ﬁi){. LI"!;";I (4.52)
l ‘ .
s
N = - C4 + ‘*11) - J—(fd“ °*‘)-) + L‘*"\—ﬁl (4.53)
% 3: » .

From equation (4.49), the value of J4, 1is

JJ=-(_u->~3J.

X (4.54)
Because there are two values for )‘ (4.52) and (4.53),
the general solutions (of the differential equations) ere

as follows:

/
Nt 1
P.,,=C,C'+c1c‘t (4.55)
Yok N - -)t
R = ("‘L;‘—l' )C‘e -(*";:*)Ce (4.56)

where C( and c; are constants whose valu~s are obtained
/ Y "

from the requirement that, at t=0, ﬁne.oandgh =B-

After evaluating C| and C.z y (4.55) cud (4.56) become

pd) = pc)() < )(')t et 't) (4.57)

p @)= |?>co)[ (*unn) -“'t+(du +>~;) -’*J (4.58)

On solving (4.41) SR F,(i). 14 18 Fouma’that

+
Bct F"”e L (4.59)
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/
because &Co) =0

()
Also, on solving (4.42) for Bocl),it is found that

Bty = Blod (4.60)
On substituting (4.57) and (4,59) into (4.5), and (4,58)
and (4.60) into (4.6), we have

0o
wet) = ZP,:@ ( ;—-—‘*lil (e""i e"i‘)cos we (4.51)
®

t t
74 , Uj . > 4 ,2)
(.)” ty = Blo) & E (o)l_(c('-;h e ! b (Rt e’}c«w‘ )

( ) po .‘,’c.B )1—)1) ;1—>')

These equations (4.61) and (4,.62) complete the general

solution for u{(f) and O;tf) , the charge densities at a
later time on the inner and outer surfaces respectively.
For a particular known Og(o), the initial charge distri-
bution on the surface, F;Zd)can be found from (4.4)., Then
%y, %y o ¢5‘ and %;1 can be found from (4.43), (4.44),
(4,45) and (4,.46) respectively. '7\| and )1 are obtained
from (4,52) and (4.53). These results are then put into
(4,61) and (4.62) to give the charge distribution at any
later time t.'

The series involved in (4.61) and (4.52) cannot be
summed because the relaxation times of the terms in the
series are not all the same as they depend on n, No general
conclusions are drawn from these expressions in this section.
In Section V, nowever, we will solve a more specific problem

for the surface charge density using the expressions

obtained in *this section.



V TWO-DIMENSIONAL CHARGE DISTRIBUTION ON A SINGLE
CYLINDER WITH SURFACE CONDUCTIVITY

A._Arbitrery Charse Distribution on a Sinsle Cvlinder

The case considered in this ‘section is that of an
infinitely long cylinder which is not condﬁcting in its
interior, but only conductirig slightly in a very thin
layer on 1ts surface, The expressions obtained in the
previous section can be used to solve this problem direct-
ly. The only changes necessary are the following:

(a) It is assumed that the outer cylinder of the two
conducting coaxial cylinders, discussed in the previous
section, 1s very thin, such that

R_.RrU-%) (5.1)
where R|1s the ra.ldius 21’ the inner cylinder, R, 1s the
radius of the ouf.er cylinder, and 5 is very small(S« |).
Then all the expressions involving 6 can be expanded in
powers of I) , and the ’)1 and higher terms cen be ne-
glected, For example

,'5 O T Y (5.2)

Also,
I(b + b% = B[W] X ‘a_'[l +£.a’6} (5.3)

a +b5 _ (o +b5)E-25)
¢ +4dd O S
LA (% - “’-;%) 0 (5.4)

(b) It is assumed that the dielectric constants of the

two eylinders have ti.e same value and the inner cylinder is

not conductiing,
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Thus :

K = K, (5.5)
and s“ =0 (5.5a)
when the equations of the previous section are rewritten
after substituting (5.1),(5.5) and (5.5a) in appropriate
places, we have:

From (4,43)
-2 _
o(u = %Kz [" (7.'n-|')‘a](K3-\<;)6‘2+ R:(\+‘))(k3+ KDG‘?S/I (5.6)

From (4.44) devol
-1

0L|1 = %g,{l-(‘Y\-‘z)b](—'lk‘s;)iﬁdg-“o‘ (5.7)
From (4,45)

Ly = §R;a(““é)c‘nkgs-;}}/lelcho\ | (5.8)
From (4,46)

A

Koy = %Rl (la 5)(1K'6‘1)§ﬁd¢“°| (5.9)
Here

\i\rchol = ..R?(l-tﬁ)(‘)K\qu- aky) (5.10)

By using (4.43), (4.44),(4.45),(4.46) and putting K, =K,
and €, = @ » the values of Ng in (4.52) and (4.53)

become

(5.11)

(5.12)

Ny= 2 Ki+K, (5.13)

7‘-,_‘)" - K‘-vk (5.14)



7%?%%‘3;’ = (’ 1K < \)(}-+ ‘5\) (5.15)

On substituting (5.15),(5.12),(5.11) into (4.57) and
(5014) (5012) ()012) (5 ‘1) into (4 58)’ we have

.mcbt
R(‘L) = P‘VEO)[ )(l + e K,+K5
Gat Ne,Kabt
| \ é) 6 X LG
K + Ky

—
Ch
g

(5.

_wmest
(&) (o p Kivky
F E )[k+K
_glz 6%, 5¢
+ Ky e % :0&“0 (5a17)
K, + K,

respectivelj, we have

Then substituting (5.16) and (5.17) into (4.5) and (4.6)
wetb) . 2235(6)[<r

L ) \-\» ‘a)'e \’

K
—( Ky 3('46) —E- %) COSTw(a.iS)

K+ K
K _mest
w(ly = P(")*ZP’@[KB K e
Ml +

+ K g " ‘(KH@K Cos M&  (5.19)
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Expressions (5.18) and (5.19) can be rewritten as
w(’e)s Ki (\+‘a)ZP(o) a. Cos e -k, gus),-.z Z&@““""‘ .20)
|*K~3 e |+k3 MNed

ety = FCo) 4 ¥ 7_@(0} o' Cos L Ky e‘gzﬂmwma(s .21)
K™ k2K
|-¥ Y

vhere

&5t kk\*‘@ 6,5t s /

a -=e Q =e Kk (5 o)

The expressions (5.20) and (5.21) are the general results
for any two-dimensional charge distribution. uf(f)is the
charge density on the surface of the inner cylinder at any

[}
time and W C{B 1s that on the outer cylinder.

B, Line Crarre on a Single Cvlinder

The case consldered in Section V A is a general case,
- where the original charge pPlaced on the cylinder may be
any arbitrary two-dimensional distribution. A special case
1s consicdered in this section, where the original charge
placed on the cylinder 1s a line charge. In this cease,

(4
ﬁ&(o) in (5.,20) and (5.21) becomesg
J f/ﬁkz ")

0) = . (5.23)
P‘s‘ ?/25R, M= 0

where f’ is the charge per unit length of the originel
line charge, The value of P(d)in (5.21) can be obtained
fromn (5.23). On substituting the value of P(ﬁ)from (5.23)

into (5.20) and (5.21), we have

9, See Appendix B,
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WS =, (! +s)fg Za Cos e

AL & Ney
P kP S

wd.):—.— +—-—--— Q, Coes Mo ®

% UK e, £ D aeeasme

R k|+k ‘R\.“"

The serl a Cos me can be suimed in a closed form

'n.
to give 0o

%
: | = |
Za' Cos Mo = [2(|_aat:ose+o") ) 3]

e 0utein two orders of mognitude for relaxation times
in (5.24) and (5.25): The ones appearins in G4 and Q. are
of the order of some dlelectric constant K divided byée;,
while the last two terms are multiplied by an exponential
nich has a relaxation time of K,[g . If ?<<| and the
surface layer 1s very thin, the rela;ation assocliated with
a 't of the order of K./szill occur much more rapldly
than the others. Experimentally, one can probably observe
only the slower rélaxations associated with a,. and Q.2 ,
because tlie other relaxation will have already taken place,
Also, 1if é is small, it 1s not possible to distinguish
experimentally' between charges placed on the surfaces of
the inner and outer cylinders, lMathematically we may there-
fore resirict our solution to determining w(t) y the sum
of u{({)nni w’(f) for the case when 6, 1s very large, é
is very small, while 6 6 has some finite non-zero value,
The factor 6,4 will be designated by G , whilch may be
callec the surface conductivity, From the definition of

10, Ses Appendix C,
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’a , 1t may be seen that G"- €T , where 6 is
the conductivity of the surface %ayor of thickness T ,
wvhiles R 1s the radius of the cylinder,

Thus after subetitutins O f~r 9 ; oo for 6,

/ .
¢ for 66‘ P and) S aawz)g‘oria Cozsmo

into (5.24) and (5.25), we have N
@) = S «wd) of =2 A I (5.26)
2(l- mcosu?-) TR,
After substituting the value of Q, in (5.26), 1t can be
rewritten as 2%
%
w) = ( ‘ ftfe -at P oen
(1- 267 Cos8+2) /2TR,

where K .

T Kk (5.26)

When both the numerator and the denominator of the right.
hand side of expression (5.27) are multiplied by g /'r, ,

we have
t t
/ -%
wd) =[ e _ e ., AR
o T"' _2Cosh 4 /2Ry

wd) -( Simh Ty P (5.30)
Gosh Tt —Cosh ) 2R,

where W®})1s the total charge density or the total charge

per unit area on the surface at any time,

In Fig.4, & set of curves is plotted with W(t)as
ordinate and © » the angular position, as abscissa for
various values of t/ X . The graph is normalized
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(by setting f = 2TWR, ) so that the charge distribution
at infinite time 1s unity everywhere on the cylinder. The
charge density at any time w({)for any f can be obtained
by multinlying ti:e @raph by ‘P/Q‘\‘ R:. . The values of +/';
used are 0.2, 0.5, 1, 2 and 5, From the curves the
following conclusioﬁs may be drawn: For the intermediate
times between{' = () and {'-‘-.-oo » 1t 1s found that, at Q=0
(the originol position of the line charge), the charge .
16<43)
decays as tine nrogresses, At places vhere 8 1is small?\,
the charce density increases at ofirat. and falls off later, ’
At nlaces where 8 1is largc%)zgi charge denslty increases
monotonely with time. The flow of charge ceases when the
surface charge density 1s the same everywhere, Thus the

line charge pnlaced on the cylinder at t=0 spreacs out until

the charce density 1s everywhere the same at t . oo .



TA F G
T wt wit) wet) 3 t
A
0 10,0140  4.,0839 2,1639 1,3130 1,0136
6 " T.8633 - - - -
10 5.7025 - - - -
15 3.7140  3,2226 - - -
30 1,3063 1,9920 1.,7356 1.28523 1,0117
60 0.3870 0.8303 1,1266 1,1118 11,0067
90 0.1973  0.4621 0,7616 0.9640 0.9999
120 0.1324 0.3202 0.5752 0.8509 0,9932
150 0.1067 0.2614 0,4878 0.7837 0.,9884
180 C.0996 0.2449 0.4621 0.7616 0,9866
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VI TWO-DIMENSIONAL CHARGE DISTRIBUTION ON A
CONDUCT ING SPHERE

A, Arbitrary Charge Distribution on a Sphere
In this section, the inves-

tigation 1s done on a conduc-
ting sphere, The radius of .
the sphere 1is R . Inside the

sphere, the dielectric con=-

stant is Ki. and the conduc-

tivity 1s 6; . Outside the

sphere the dielctric constant

1s K, and the conductivity 1is

zero, Radial distance from

the center of the sphere to

any point 1s denoted by Y

end © 1s the angle between
Flg.5. T  and the Z axis(See Fig.5)

e is sometimes known as the co-latitude angle.

The charge density at time t=0 is a two-dimensional dis-
tribution and arbitrary except for the fact that it is cy-
lindrically symmetric. Ve will denote it sas w(o) .

It cen be expanded as

w(o) = i?“b) P.h(CosQ)

(6.1)
s b
where P“(COSO)are Legendre Polynomials and &\Co) is ex-

pressed !a;

]
%\(o) - g;ws\;t_l Sow(o) Eh(Cose) Simneds (6.12)

11.8ee reference?,p.418 and also Appendix E,




B

W (6)1is considered to be cylindrically s:rmetiric and inde-
pendent of (.e

It has already being proved that 1f tliere 1s no charge
in ihe interior of a conductor at t=0, there will never be
any chege in the interior at a later time, Although charge
flows in the interior, it appears only on the surface,

The problem is to study the way the charge is distri-
buted on the surface of the sphere at a later time if the
original charge on 1t is of the form given by (6.1). The
charge density wW)at any time ¢, can be expa.ﬁded as

W) =Z B £.(Cos 8) (6.2)

"N=0
then the potentia.l inside the sphere 1232

Z PC“)?‘ A (Cos )

1 (6.3
o BT (R k) vRo} ’
The above exprecsion (6.3) is the particular solution of

V:

L

Laplace's equation in spherical poler coordinates when the
boundary conditions are satisfied, Using (2,23), the time
rate of change of charge density 1is

dud) _ av~>
x & . R
. _e Z&&)‘h R,(Cos8)

I
= MKyt ki) + Ko (6.4)
But uslns (6.2), the time rate of cha.nge of charge density

is

3 wd:) Z E\(‘D R, (Cosd)
W\so ~ (6.5)
12.See Appendix D,
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Since (6.4) equals (5.5), the coefficients of E,‘(Coto)can

be equated, Thus

dpd =-SnBd) (6.6)
at Y Ko
The exvression (6.6) can be 2 *soTved for P({)to cive

-6t (6.7)
B <= powe MK KD+ K,

vhere eh(p) is the value of B ¢tdat t=0. hen (6.7) 1is cubp-

stituted into (6.2), we have,
- /'t 5.2
Wit - Zf‘@e R, (Cose) (5.)

wiere wW@)Ts the caarge ver Wit aren at any time and

Y, = W(Ke+Ki)+ Ko (G.0)
6 n

The expression (6. 8) is the general result for any

two-dimenslonal charge distribution initially placed on

h) 1.
the snier

Co

For any Civenw(o), E‘So)can be found by using (6.12).
Then 1i‘ﬁ$d)is substituted into (6.8), the surface charge
denslty et a later time can be found., The value of 'Lh
can be obtained by using (6.9). It 1s interesting to note
thet the values of 'f-n atre inlependent of the fadius R
although trey Zdevend orn n,

Eecause the relavetion times ol the teirms of the scries
are not el1 the same, 1t 4s not nossible to sum the series
in expression (6.8). Therefore no conclucion will he cérowvm
from this exmression ot precent, lowever, (6.2) will %e
usel in Scctilon VI =, wliere we wi1ll colve for the ﬁurface

charre dersitr In e speciflc exennle,



B, Point Charge on a Sphere

As a specific example of the results of VI A, the case
of a conducting sphere with a point charge on it 1s con-
sidered in this section,

Let a point charge of total charge C" be pleced on the
sphere at® = 0 instead of the arbitrary charge distribution,
The coefficlents of R{Cos@)in (6.1) 1is 't.helll3

P(o} = (3ma4)
D < GnaD g
47R
The above value of ﬁh(,o') 1s substituted into (6.8) and the

ceneral expression for w(t) is now

: 0o
t
w(t) = , M
i 4%1“-(:"“"'02 i FrGase) (6.10)

From the above equation it is seen that at t=0,

W) = T_ D 3mad By(eos)

4“R1 "o (6.11)
and at t=«a,
w(®0) = ___-qr
AR (6.12)

The original charge is a point charge whose magnitude 1is v
and the area of the sphere is QT\ Rl « It shows that the to-
tal charge present at the begining is present at the end,

It also shows that the point charge placed on the sphere at
the begining is uniformly distributed throughout the surface

of the sphere after a very long tine,

13.See Appendix E,
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To determine how the charge is distributed at times
0ct<oo (6 10) can be rewritten as

wt) = I Z(a'nu)P CCose)e

ﬂ:o

t t
anm.) (Cose)[e on_ & "‘-]
;-,g-%@é "‘~ °V Z@m.)P (Cos e)[e il :"‘-]cé,.‘s)

R mee

where r\"m _ (K°* K“-)IG’L (6.14)
and é(o), the Dirac delta function, from (6.11), is equal
to Z(z-n+|)P CCOSQ) in this case. The first term of the
rlght hand side of equation (6.13) means that the point

charge decreases exponentially with relaxation time Ton .

Also we ca.n write

Z(zv\ +\)[e "w efr't-]P Qos®) = Z.',M (q:,) e R, (Coss)

ﬁ'l
+§‘_[m-g X&) + KRR 0
s-ETe) ZRM B, (Coe &) (bos)

MNa|

where K = KO/(K°+K)
'(1“'\-&\)[2 ] ®
—[&x(l-*)(:ab) + (& )]?_ e
The expression (6.15) can be rewritten as

anmo[e o iR, (cose) (1- &) _axE &g

-V).o

—["“"G‘ ~OXE 7* *Qk )] e’ “t [Sme + Siw o}*zcz P (Cos8)
Nz (g |‘\)

Fing,

(6.16)

251*'\!
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14
because
¢ = (F.2
'nZBR“( °38) "Sweh. )
and P
) . EY
Z‘ Pa (Cos® _ _ ‘!'V‘,_[Sw"-!; +3(v\%] (F.3)

"
The particular division of (6. 17) into several terms plus

ZR P(CO”)is necessary oecausez (Cos®) ZP S 8 , and

t.he original series (6.10) do not converge. he series

ZV\P (Los8)does converge. Thus )(am +D[e v - € "o-]P (Qosb)
T\ﬂ

may be evaluated numerically .gy elimineting the non-conver-
gent series and exnressing them in closed forms,

The expression (6.,13) can now be rewritten, after

(6.17) 1s subatituted into 1it, as

t
wt) = ‘UR ‘5(°)€ /e + 9£ LA - 1: ht")—”‘('[let(‘ 1&1\!)
P-4 Ry + <D Y 1e " Jsm ysme]

"'ZR"\?““'“ e)} (6.18)

Na)
where w({Sis the surface charge density at any time. Tne

series Z& P(coso)is a relatively small fraction of the entire
exnression for w(‘l) For t/r( of the order of unity, it is
about 17 ofw(:t). Also, the series converges rapidly, with
the first ten terms constituting about 99 of the sum, Thus,
in numerical computation, limiting the serics to ten terms
cilves wW@)to an accuracy of &bout 0.17,

For scaple calculation, the value of & is chosen to be
%, that 1;,\(;/ =3, In Fig.6, a set of curves is plotted

wi t}.w{_t)as ordinate end § as abscissa for various values

14,5ee Appendix F.
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of t/'t-' The values oft/ used aret; . 1,2,4 and 10. In
Table II, the values of%

Qn+ |)[€t/"‘"._ 't't"]P“ (Cos ®) are
tabulated aga.inst va.rio.a;.ﬁ'.r. for different values of tl'\'..‘
In Table III,i_R“‘R‘(Cos&)ls tabulated against various %

for different-.“ Yalues of t/"(,.' The value of R,“P“ (Cos®) for

© = 15° 15 not computed because it is ver?r’.small end can
be ignored, The following conclusions can be drawn from the
curves (Fig.6):

As time increases, the magnitude of the point charge,pleced
at ® = 0 initially, decreases exponentially and the charge
density increases at 2ll other pointfs. There 1is, however,
one exception.At points close to =0 , charge density in-
creases at first, reaches a maxirmm, and then decreases
afterwards, The flow of charge ceases when the cherge den-
sity 1s everywhere the same, In general, the point charge
Placed on the surface of the sphere at the begining spreads
out in 21l directions as time progresses until the charge

density is the same everywhere,
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TAB c R F -
R " wet wdd 3
B A S A
16 1,28495 1,51 1.13802 1.
30 - 0.87202 1.06329 1.,049008 1,00085
60 0.64848  0.88423 0.99088  1.00017
90 0.56623 0,81263 0.96541  0.99979
120 0.52555 0.77c14 0.95139 0.99953
150 0.50546  0.75845 0.94403  0,99939
130 0.49929  0.75284  0,94172 0.99936

R
w ({) in this table is ZCI“N)I.C - e /o

MN=p

lfiwahﬁd)

TABLE III, TABLE FOR ginl%,(cosb) = Zn

=t
ien t.—az.:b z“ za% z“

derrees a3 t"ﬂz Yzl h"‘ﬁ"'o
Z0 -0.,00285 -0,00337 0,00336 0.00031
60 -0.00248  0,00010 0,00130  0,00012
00 0.00097  0.00035 '=0,00037 =0.00003
120 0.00428  0,00016 =0,00162 =-0,00016
150 0.00631  0,00247 =0.,00236 =0.00023
130 0.00095  0.00275 =0.00260 =0,00024
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VII SUMMARY .

(1) A general epproximate method for solving Maxwell's
equations 1s given for the case when the conductivities of
all materials present are very small, This method of solu-
tion permits the charge distribution at any time to be cal-
culated if the charge distribution at any preceeding time
is known.

(2) To the above approximation, it is proved that 1if
no charge 1s present initially inside a conductor, there
will never be any charge inside it at a later time, 1If
charge is originally present inside the conductor, the
charge at every point will decay exponentially with a re-
laxation time equals to 5_ , where K 18 the dlelectric
constant and ©' is the ch:ductivity. Thies relaxation time
is independent of the size and the shape of the conductor,

(3) It is found that if any two-dimensional distribu-
tion of charge ®(0)is placed on the surface of a slightly
conducting cylinder, the surface charge ‘density at any
later time 1s given by w@®)= w(o)ét"t + %@[‘_gh"u] (3.13),
where wW(0)is the arbitrary two-dimensional charge density
at t=0, R(o) 1s the average value of the original distribu-
tion of chargews(e), and "L , the time of relaxation, 1is
given by K_{_-!-_&, , where K{ is the dlelectric constant in-
side the cys.ltlnder, Ko 18 the dlelectric constant outside
the cylinder and 6\ 1s the conductivity of the cylinder.
The relaxation time is independent ofthe size of the
oylinder,’
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(4) For two conducting coaxial cylinders with an arbi-
trary two-dimensional distribution of charge initially on
the surface of the outer cylinder, the general formula for

u;c{j, the charge density at any time, 1s given in
equations (4.61) and (4.62) as infinite Fourier series,

(5) For a single cylinder conducting only within a
very thin layer én 1its surface and with a line charge on
it initially, it is found that the surface charge density

at any time t can be expressed as

4y = -P Sivh t/'(, )
0 = 2R Gt By - Cosd (5.30)

where W#)1s the total charge density residing on the

surfaces of the cdnducting layer at any time t,'f is the
line charge per unit length initially placed on the cylinder,
R, 1s the radius of the cylinder, and L= K '+¥; , where
—o7

L(‘is the dielectric constant of the cylinder, K3 is the
dlielectric constant of the outside medium, 6" is the
product of the bulk conductivity of the conducting layer
and its thickness divided by the radius of the cylinder.
A set of curves are plotted in Fig. 4 for the variation of
charge densityw(t)with time tana & , angular position
measured from the line charge,

(6) For a conducting sphere, with a twé-dimensional
charge distribution on its surface, uact) » the charge
density at any time, ia glven by

w(t) = ZP“)? Ccosb) (6.8)
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where E“Lo) are the expansion coefficients of (W(6) in
Legendre Polynomialsa\(cgge) . Tw\: 7 (K, + K , where
K, and K, are the dielectric constants of the mediums
outside and inside the sphere, and 6{; is the conductivity
of the sphere,

(7) For a conducting sphere with a point charge on 1its
surface initially, the surface charge density at any later
time 1s given by equation (6.18)., A set of curves are plot-
ted in Fig.6 for the varliation of charge density w(t)with
time t and € , angular position measured from the ori-
ginal position of the point charge., It is found that the
rate of relaxation of the charge density 1s independent of
the size of the sphere,
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APPENDIX A
ROIENTIAL ARQUND A CXLINDER
The problem is to find the potentlials instde and out-’
side a cylinder with a two-dimensional distribution of -
charge on its surface., The charge density on the surfeace
will be denoted by W(®). It 1s an arbitrary function of
© only, and can be expanded as

®©
we) = 7 B Cos Mo (A1)

Mao
The radius of the cylinder 1is R and the dielectric con-

stant of the cylinder 18 K; s The dielectric constant

of the medium outside the cylinder is K, and 7 18 the

radial distance from the axis of the cylinder to any point,
The potentials V‘ inside the cylinder and Vo out-

side the cylinder are particular solutions of Laplace's

equation in c¢ylindrical coordinates, They can bé written

in the rorm15

(- ~)
V, = ZB,‘T’hCos we 4+ C, (A.2)

Nzt
A Zp\ Cosme + Atn
Nat ™
'\1\ ’ Eﬁh ’ f\o and cb are constants whose values are

to be determined cso that the boundary conditions are
satisfled,

The first boundary condition states that Vi = Ve at

15.Smythe, William R,: "Statie and Dynamic Electriocity,"
MoGraw-Hill Book Company,Inc,,New York,1939,p.67.
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'\a = R , therefore, ‘
(A.4)

At A, Cos me
;&,‘Ras'\ne + 6= "R*;_"_ﬁ?ﬁ-——
. " .
R = A'h K (A.5)
Also, Bh , I
AR = G (8.6)
The second boundary condition states that at 7> o R ,
)Vl. )Vo
there{:re,
k(2878 Cos me ) - Z °°‘ meim, \
N=y Nas
= ch« ne (8.7)
MNzo0
or
. - (A.8)
KL B_‘_T‘R + KQAE‘;‘N = %‘
Also, R
AO = - EO__S (A.9)
and Ke
C, - _E._!_(,[“ R (A.10)

Using (A.5) and (A.8), the values of A enda B, cen be
oomputed

« =(B R™) /n(k + k) (A.11)
B_“ = 1\ /T\R“M(Ki_ + KO) (A.12)

On substituting the values of the arbitrary constants into
(A.2) and (A.3), we have




o P .
Vi = Z( ‘hR“?'(kﬁK.\)r Cos me

Mey
-e‘_l%lnR (A.13)
00 ﬁ_‘ R'V\+l |
Vv, = z_( T (K + K) ) @-%-iwl“—‘
_ PRl R (A.14)

o
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Let us again expand the charge density ((#)as in (A.1):

(D(Q) Z&\ COs e (A.1)

Ns=o
To find &‘ both sides of (A.1) are mltipliod by

COSPOQO and integrated from § « O 08N -

'.l‘hul, ! |
S Cos \oo w(e)do = Zﬁ SCos ‘oo Cos e 46
(o) "‘\to (-]
- ?\'5. A (Bo1)
and . a“ M= 0
2§wa) Cos Mo 46 Mo
= L (B.2)
${wwrde n=0

If the initial charge placed on the surface of the cylinder
(.,t 6=0) is a 1ine charge,then we have

LARGE 60
P W) =
0
a0 é$0
From Fig.7, we have
SMALL ANGLE
Sw(O)(R de)-L p (.3)

o
where f is the charge per

unit lQngtho
Fig.7. _

In tais case (B.2) can

h\ {?”)e.smu.}{i“ﬁno .f‘ ">
\lnmcs».u .i-\»a)do .;.‘ neo

because vhen the s small, £48 Mo « | i



DIX C

on APPEN
" _
;CL Coshe
IHE YALURE QFf AN _CLOSED FCRM

Let 6 (@)be an arbitrary functiom of € that can be

expanded | as

6(o) = ZP Cos Mo ~ (c.1)
Then, ¥ MNn=0
S 6'(6) Cos me de¢ = Zﬁ,, S Cosme Cosme 46
- P,,,§ Coswmede

S 6(0) Cos me d6 My

P’h = 1 (Cc.2)
6
Now we note that1 # SO 6(0) d.O he=0
k|
} Cosmée de w
go (1-2aCosd +Q‘) . %{‘
l-a (Y ﬂoS'modﬁgt a .
2 S(I—?.G.CQ‘O + @) 27 (6.3)
Thus if - q.
§(8)= 1[\-1a(!os°¢¢)
it follows that QM, Q™ rprovided that ‘m,‘. 0.
When ‘W = 9, by using (C.2) we have,
- (¥ o -
TS i-2at086.Q Po‘ (C.4)
But rrom (C 3) .
s de = ¥/ (6.5)
—w S T-1a0nbsar 2
tl_nrorore '

“
. A
or from (C.1) ,_q

(c.6)

22 2atose+d) ZO’ Cosmo+ 4 “n

Consequently _1 C.Y
Q Cos me 'm-mt:ou ) 2

n

180.Dwight, : "Tables of Integrals and othor Mathematiocal Datal

#860.1.

P A
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APPENDIX D

'POTENTIALS ARQUND A SPHERE

The problem 18 to find the potentials inside and out-
side of a ephere with a two-dimensional distribution of
charge on its surface at the bezgining,.

The charge on the surface will be denoted by w(o) .
It is arbitrary except that 1t is a function of only,
It can be expanded as

NOE z&n 2, (Cos8) (D.1)

The radius of the sphere 13 K and the dlelectric constant
of the sphere is K| . The dlelectric constant of the
medium outside of the sphere is Ko and ¥ 4is the radial
cistance from the centre of the sphere to any point,

The potentialjyelther inside or outside, is the particular

solution of the lLaplace's equation in spherical coordinates.

It can be written in the for-m17
Vi = zB,,Y‘“R,(Cos ) (D.2)
1‘\:0
A (Cos ) (D.3)
“Z:OA'V\ "

where Vi 1s the potential 1nside the sphere and Vo is
the potential outtside the sphere, An and B.“ are the
constants whose values are to be determined so that the
boundary condltions are satisfied, Th. first boundary
conditlon states that V =V, at Yo R . Therefore

ZB R P, (Cos®) .Egy,?m ((‘,osé) (D.4)

M=o
t7.See reference 2,p.417-41 8.

AR e es mt bk m e r e amE~ . ek -



- or

B R — (D.5)
‘7\4
The second boundary condition states that
OV bVo _

Ki 3-; )n &
at T z . Therefore,
K-L(Z_B R R, (Cos 8))-K (ZA <-mR-)§,1(cos&

= ZR P‘n(cos e) (D.6)
>0 .

[K B‘V\R +K°A (n+1)/ '“*"] E‘ (0.7)

Uslng (D.5) and (D.7), the values of A-n and BV\ can be

BE

T‘(Kt*ko)*k (D.3)

B,
Bn = E"\(KL.‘.KO)H(‘,] (D.9)

On substituting the values of the constants into (D.2)

obtained:

‘V\-—‘

and (D.3) we have

"R
Vi Z<["‘<KL*\<)+K]R >? W (Cos8) (p.10)

E B.R" > B, (Cos &) ,
= - W11)
% ( MK+ k) +Ko /T o

m=0
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Let us expand the charge density W) as in (D.1),
Thus Ww(e) = Z E"Pv\CCOSQ) (D.1)
=0
8

where k‘ is given by _
.

E‘"‘-’?—%ﬂ‘ nge) R\CCose)Simode (E.1)

o
If the charge placed on the surface of the sphere(a.t an)

is a point charge,

An.!
Bo= 2~

SQMM.L ANGLE
()
because for small angles [, (C0S8)a |

w(e) Sm 6 de (E.2)

From Fig.8, it is clearly
seen that area cLA is given
by

dA= ni'smo 46 (E.3)

But
SSAML ANGLE

we)dA = 9/ (E.4)

where 1r is the magnitude of

Fig.8. the point charge,
Therefore \ ‘ SMALL ANGLE
274 L I
or
ﬁm-s\ (E.6)
B, =22

4R’

18.8ee reference 2,p.418,
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«  APPENDIX F

ZR.CCD:O) AR > Pn(Cos®)

In terms of the generating function, the Legendre

polynomiall may be defined by the following equation:19
‘ (F.1)
.,‘Z‘t ,,(6030). - atcosut)&
¥hen t = E%;
' |
= B (F.2)
,‘,f (Cas8) (- Lessp) BSmbn
From (F.1), we also have :
‘ .
= -
.;E 1 (Cos £) (l-— ;teosb-»’c‘)g‘
+
S:ﬁ W(Cosp) dt - S,,t[(n 2ECosta L J"“

Performing the 1ntegrat10no ‘gives

Qo .
P (COSQ . .
Z '“_“ - - ‘kv\,’[gmg_ + Sim _QJ (F.3)

19.8ee reference 2,p.327.
20.D;§i£r::'rablel of Integrals and other Mathematical Data,"
]
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