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ABSTRACT

This paper describes the motion of electric charge

when placed on the surfaces of very slightly conducting

bodies. It is assumed that no electric charge is initially

present inside any conductor which is under consideration.

For this reason it follows, from a wellknown case, that

there will never be any charge observed inside the con—

ductor at any later time. A general method is developed

for finding the charge density at any time on the surface

of a conducting body in terms of the initial charge den-

sity on its surface. This general method is used to find

the charge density at any time for the following cases

involving specific geometries and initial charge distri-

butions:

(1) A slightly conducting cylinder with arbitrary

initial two-dimensional surface charge density.

(2) Two slightly conducting coaxial cylinders with

arbitrary initial two-dimensional surface charge density.

(3) A single cylinder conducting on its surface only,

with arbitrary initial two-dimensional surface charge

density.

(4) A similar single cylinder with a line charge on

its airface initially.

(5) A slightly conducting sphere with arbitrary initial

two-dimensional surface charge density.

(6) A slightly conducting Sphere with a poxnt charge

on its s.rface initially.
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I INTRODUCT ION

If a substance is rubbed against another substance,it

generally becomes either positively or negatively charged.

Among others, Hersh, Sherman and Montgomery1 have measured

the amount of charge produced when a filament of a given

material is rubbed against another of the same or different

material under controlled mechanical and ambient conditions.

They used metals as well as non-metals.

Thus, electric charge may be generated on the surface

of very slightly conducting non-metallic substance. Once

the charge is generated, it is interesting to know how it

will move from its initial position into the final equi-

librium distribution which will be reached after a very

long time. It is discussed in this paper how the electric

charge initially placed on the surfaces of slightly con-

ducting bodies will behave as time progresses.

In Section II, it is shown that there will never be

any charge inside a conductor, if no charge is initially

present inside it. Although the charge may flow through

the interior of the body from one point of the surface to

another, measurable amounts of charge are found only on

the surface. In the same section, the general method for

finding the surface charge density at any time is developed,

provided that the initial surface charge density is known.

 

1. Hershfé'mnsmmanfim. and Montgomery,D.J., "Textile

Research Journal, 2&, 426 (1954)



In Section III, an arbitrary two-dimensional distri-

bution of charge is placed on a slightly conducting cylin-

der. The expression for the surface charge density at any

time is calculated, and is expressed in closed form.

In Section IV, an arbitrary two-dimensional distri-

bution of charge is placed on the outer surface of two

conducting coaxial cylinders. Two general expressions for

the surface charge density at a later time are calculated,

one for the surface of the outer cylinder, and the other

for that of the inner one.

In Section V A., an arbitrary two-dimensional distri-

bution of charge is placed on the surface of a cylinder

which is conducting only within a very thin layer on the

surface. This may be considered as a special case of the

one discussed in Section IV. The expressions for the sur-

face charge density at any time are calculated. In Section

V B., the same cylinder is taken but the initial charge

placed on the surface is a line charge. The expression

for total surface charge density at any time is calculated

and expressed in closed form.

In Section VI A., an arbitrary two-dimensional distri-

bution of charge is placed on the surface of a slightly

conducting sphere. An infinite series for the surface

charge density is obtained. In Section VI B., the same

sphere is taken but the initial charge placed on its sur-

face is a point charge. The expression for the surface

charge density at a later time is presented in a form

suitable for numerical computations.



II GENERAL THEORY

Electrodynamic problems can be solved using Maxwell's

equations. They are a set of differential equations which

are written in the rationalized m.k.s. system of units as

follows:

a?" “33 ' (21)

_. at .. '

e. H . 3 +31)
.. 31: (2.2)

v3 = 0

_. .. (2.3)

v.3 - f

(2.4)

If the medium is isotropic and homogeneous,

KE ‘

-/‘*H

6‘

(2.5)

(2.6)

C
u

o
u
t

A

E.

(2.7)

From the conservation of charge, the relationship between

jandfig

A A

VJ +§f = O
(2.8)

g 31:

where 2: electric field intensity; 3 = magnetic induc-

.8

tion; H = magnetic field intensityz 3 = current density;

5 2: electric displacement; v? volume charge density;

K = dielectric constant;A = magnetic inductive capaci-

ty; 5' = electric conductivity.

2.Pipes, LouisA.: ”Applied Mathematics for Engineers and

Physicists,” McGraw-Hill Book Company,Inc.,New fork,

1946.1). 364.

3.8tratton, Julius A.: “Electromagnetic Theory,” HcGraw-

Hill Book Company,Inc.,New York,19M.P 5.
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In all the cases considered in this paper, known elec-

tric charge is initially placed on various conducting bodies.

If 6‘ , the electric conductivity, is very small, the charge

flows very slowly from place to place. .We may, at any

instant, consider that the terms involving partial deriva-

tives with respect to time vanish in the equations, and

also say that 3 , the current density, is Very small.

Then, as a zeroth order approximation,

‘ j” o (2.9)

O

95;,” (2.10)
d A

and D and E are approximately independent of time.

By using (2.1) and considering the fact that.E is in-

dependent of time, the following relations are obtained:

B” O (2.11)

“ ‘3 O (2.12)

thus the magnetic field is negligible, and
_' .

Thus an electric potential V exists such that

E 8 “av (2.14)

P
where Vzv -.- - T}; (2.15)

To this approximation, we have a purely electrostatic

problem, that is, the electric potential and field at any

instant are the same as would exist were the charge distri-

bution at that same instant not changing with time.

As the next order of approximation, this electric
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potential and field may be put back into Ohm's law (2.7) to

find a nan-zero current density:

3 6.? a ~C6V. (2.16)

Then gag , the rate of change of charge density with

time, is obtained from the expression for the conservation

of charge (2 8g:

3 '6? V1 e“513- . s V . (2.17)

But by (2.15). this gives

% .-6:—f' (2e18)

3 K

The above differential equation (2.18) can be solved

t
immediately to give ..1%

0

g {k 3e (2.19)

where FW- -r g and is known as the tine of relaxation for

 

the conducting material and {’(o) is the value of ‘3 at

tgo, that is, it is the original charge density at the same

point in space.

Two cases can be considered: .

(a) If 29(0)“), the original charge at every point of

the conducting material decays exponentially. It is clearly

seen that the time of relaxation is independent of the size

and the shape of the conductor. For example, the conductor

may be either spherical or cylindrical in shape and the

radius may be either large or small.

(b) If ?(O)c.o, then f g 0 , that is, if no charge is

present inside a conductor initially, there will never be

any charge in the interior at a later time.

I.See reference 3.9.15.
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In all the problems that are considered in this paper,

the original charge distribution is confined to the sur-

faces of the conducting objects, and thus only case (b) is

applicable.

The charge density on the surface of the conducting

material is defined as charge per unit area and is denoted

by (ed) at any tinot +0, andOJLO) at t=0. If bad) is

known, the potential \/ can be obtained by solving Laplace's

equation subject to the proper conditions at the boundary

between the various dielectrics.

Laplace's equation is written as

6V 8 0 ‘ (2.20)

At the boundary, the boundary conditions or?

V, a V; (2.21)

and (D1,). 49“);- (ACE) (2.22)

where V, and V; are the potentials in the two mediums, (1),).

andflgnlare the normal coaponents cf the electric displace-

ments in the two mediums.

A

‘When \I is known,\J can be obtained by using (2.14) and

(2.7).

.r

By charge conservation, the relationship between.’

and no is such thag

" .a .4

3,... -3,“ . 332d) (.1...)
d 4

where ‘1 is the normal, 3, and J: are the current densities

 

in the two mediums evaluated at the surface(see Fig.1).

3.5 reference 3.13.164.

6.3ee reference 3,p.483.



O” 1.

Fig. 1.

If 00(i) is known, equation (2.20) can be solved

subject to the boundary conditions (2.21) and (2.22), to

give V in terms of (0d) . But V in turn gives 3 by

equations (2.14) and (2.7). Equation (2.23) then gives

.333 , the time rate of change of charge density, in

terms of J ,and thus in terms of “((1) . We may con-

clude, therefore, that the above set of equations is

equivalent to a first order partial differential equation

for the charge distribution and can be solved for 03(t)

if LOCO) is known. Probably this solution for God.) is

satisfactory if the relaxation time T in (2.19) is much

larger than the time required for light to cross the con-

ducting objects.

It is not possible to solve these equations in general.

Instead, they will be solved for ODCt) in a number of

examples involving specific geometries and initial charge

distributions.



III TWO-DWI“ GiARGE DISTRIBUTION ON A

CONDUCTII}W

In this section, the

investigation is done on an

yinfinitely long dielectric cy-

linder (Fig.2) whose radius is

(K, . Throughout the cylinder,

 the dielectric constant is K'L

and the conductivity is g" ,

' where 61 is very small. '

Outside the cylinder, the di-

elecgic constant is K0 and
   

the conductivity is zero. The

Fig.2. radial'distance from the axis

of the cylinder to any point is denoted by l‘ . 9 is

the angle between T‘ and the x axis. The surface charge

density to is considered to be arbitrary at time t =' 0,

except that it is independent of Z and is a function of

I 0 only. We will, furthermore, restrict unto be symmetric

about the x axis, so that

(no) . (ad-0). (3.1)

To find the surface charge densitytodkt a later time

{*n let us expand it in the orm

LOG.) .{ P9) Cosme (3.2)

whereESL)“ given by “‘0

Rm- : (3.3)
' A‘. SowC‘l)‘. 11.0



The potentials about the surface - either outside or

inside of the. cylinder - satisfy Laplace's‘ equation

(2.20). Therefore VL , the potential inside the cylinder,

is obtained by solving the Laplace's equation, using the

boundary conditions (2.21) and (2.22). It can be written

 

cl co

'V° 1“003110 Pa)? CO

L - ' 71R“-.(K(*KD" ‘ (3.4)

‘1')

where Co is an arbitrary constant.

it I1: K , by using (2. 23), (2. 14) and (2.7) from the

previous chapter, we have

 

103$) .6431.)
at ER (3.5)

= _ 5‘;EKG.) Coshfi ( 6

“a. Ki. + K. N . 3° )

0n differentiating both sides of (3.2) partially with

respect to t, we have

3—95)) aziP-m C°“‘ 9 (3.7)

For (3.7) to be equal0to (3.6), it is necessary that

- . (t) —

a 43’— ‘0"

i3. )= K. “‘0 (3.8)

all:
0 “30

m solving (3.8) for Est), we have

9.5.0) e’t’v. -

git), W‘” ‘ (3.9)

(O) I ‘h a. A

7.3:; Appendix A. P.
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1':(K1*Ke)/5‘
where '

(3.10)

After substituting the value of £3)er (3.9) in (3.2),

the magnitude of charge per area of the surface at any

time is
J;

“’3)= zgwclwnec"5 +ECO). (3.11)
fine;

But the sum can be evaluated in closed form because the

exponential is the same for each term in the sum, and

Ramona . 03(0) ._ Bay). (3.12)

Thus (3.11)) can now be written as

J: .t

“(£) 3 WCO)€ m+ ECO |)v- 2 ’1], (3.13)

where (.305) is the surface charge density at any time t

and 00(0) is the arbitrary charge density on the surface at

tsc. Equation (3.13) can be interpreted in the following

way: At t = o, acct) . ”(0) , because étéis unity. As time

progresses, the initial distributionw(c)decreases to (zero

exponentially, with a time constant or time of relaxation

"C given by (3.10). In its place arises a charge distri-

bution Fob)“ .. e't‘t] which is independent of 6 and

everywhere. the same on the cylinder. After an infinite

time, the charge distribution is everywhere given by B“),

the average value of the charge density initially placed on

the surface. from (3. 3), it can be expressed as

Pa) 3 [m(°)]¢:1J—S:m(°) 49 (3. 14)

This result (3.13), incidentIy, is correct whether or not

the symmetry condition (3.1) - via 00(9) 3 w(—O)- is
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satisfied. The relaxation time Tie given by(k[ +15)“: .

It is independent ofR, the radius of the cylinder, and

depends only on Ki' K0 and €1- . Thus, the relaxation time

is the same for all cylinders, large or small, made from

the same material.



IV TWO—DIMENSIONAL CHARGE DISTRIBUTION ON TWO

CONDUCTING COAXIAL CYLINDERS

In this section, the

  

Z investigation is done on two

infinitely long conducting

KMO’. st3 coaxial cylinders (Fig. 3).

K The radius of the inner

V201 R. :e cylinder is R1: and that of

y the outer cylinder is K1. The

4 \9/ >~ conductivities are 6'; for the

inner cylinder, 6‘1 for the  
”3 outer cylinder, and zero outside

the cylinders. The meanings of

Fig.3. 9 (and Y’ are same as in .

Section III.

The problem in this section is to find the surface

charge density at a later time, if the charge density at

t=0 is given. Initially, the charge distributions on both

the surfaces are arbitrary except that they will be assum-

ed independent of Z and a function of 6 only. As before,

let us expand the charge density at t=0 on the surface of

the inner cylinder in the form

Q

I oo’cc) . s2.) cane (4.1)
1!.

where a“) is expressedoas

, 331.2,) Cos-nods 1),. .

3J0.) a. O . (4.2)

'5

*gdwEAO Mao
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The charge density at t=0 on the surface of the outer

cylinder can be expanded in the form

oo'(o') 3201230) E°SDG (4.3)

2,... (be. e... i. m.

{5.30) = a, 1 (4.4)

. VT: ). “"0 “L9 1 ”L 0

At time12 if 0 , the charge densities can be expressed as

similar series:

(59.)-_2%\(L) Cos-V16

“,0? (4.5)

a (I

to' (L3 = 2 Pct) Cosme (4.6)

W1: 0

The only case considered here is with.£0GDidentically

zero and therefore from (4.2), EEO): 0 for all n. It is

impractical to put electric charge on the surface of the

inner cylinder at time t=0 if the cylinders are solid.

A general solution of the Laplace's equation in cylin-

8

drical co-ordinates“is

V .._._ almr+ 2.370.Cosme. 1.Sim «1.9)

«1.1 (4.7)
+211. (CW)005110 .1}some). C.

where \/ 1.12;; potential. '

V = V (T39) (4.8)

because it is independent of 2.

Let us denote the potentials as v; for the inner cylin-

der, V1 for the outer cylinder, and V3 for the medium

outside the cylinders.

 

S.See reference 2,p.407.
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They are of the form

v.“AW C‘ 1;.“ 'V\ Cosine + O
(4.9)

m a .‘Y‘

‘ V1 .ZBf‘Ceme + 'DJ‘Cosnga-EO +121“? (4.10)

“0:1 71:1 _

V3 3 :GYKMCosne +140er
(4.11)

where A:*,' a“. CO . D,“ . E0 . $0 , q“ and “O are constants

whose values will be determined later. The terms contain-

ing 91‘“ 9 do not appear in any equation because the poten-

tial is symmetric about the X axis. The terms containing

1".“ do not appear in (4.9) because the potential is finite

at T‘s. O . The terms containing Yr do not appear in (4.11)

because potential cannot go to infinity as T‘ -) 00 more

rapidly than lnT‘ . In (4.10), both TI.“ and Y‘“" can appear

because 7‘ = O and T‘ a on are excluded from the re-

gion in which V1 is applicable.

There are two boundary conditions (2.21) and (2.22) to

be satisfied at each boundary.

At'P-K,,

V\ = V). (4.12)

and

0V1) , 3V1 .- t», CA (4.13)_K1(5; “1+ 19(5; 12R, )

Similarly at T‘ = R1 ,

V], =-. v3 (4.14)

and II

3V. 2. we)

1 K1(§T)T=Q, (4'15)

The values of V\ and vLfrom (4.9) and (4.10) are substitu-

" K3)%)rek +

ted into (4.12) and (4.13). Expressions (4.12) and (4.13)
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are evaluated at T‘ = R‘ . The values of V1 and V3

from (4.10) and (4.11) are substituted into (4.14) and

(4.15). Expressions (4.14) and (4.15) are evaluated at

r 1. R,

Thus the following four equations are obtained from

(4.12),(4.13),(4.14) and (4.15) together with (4.5) and

(13,6)

. EAhR: C0!» 118 + Q0 s: 28." RT Cos 716 +212" RTCos 116

M: “31 1‘12;

+EO + Fin R, (4.16)

“’K (:31?) R‘Tc“ 7‘9 +2210“) R‘mCOS v19 +152

2' ‘11 K1

+ KliA-“RTCos 716-1120PG) Cos 1116 (4'17)

ZBR:Cosme 123.33(3050719 +£1.15.“R.

~“tel “‘1:

- (4. 8)

== “ZS-“R.“Gos‘ne
+ “chat 1

-K3(Zka3Rr-Jcos-no+ “.E‘)+1(R(B“Rméos ~10 1-
‘“a‘

“"11

ZD('“)R:\603 v.9 11% x=Z P”161-3005 716 (4.19)

On.“equating the coefficients.“of1‘6 C05 “9 in the above four

equations, we have

A“ R“. (51?...th“= 0 (11.20)

k1Ahké1-'*K®.R.—KMBRgemln (4-2‘)

BMRQ. *9“R2W—QT‘‘ = (4.22)

KiBnR?-E- szRr-..» KSC:1R.:J, E317“ (11.23)



Also,

F, 2 -R__._Kzgc’c)

“(1500ng schR )

Eo “[@3431;.4ch (1(-Jul-n R,

CO ‘-"- EO“.FM

The values of A“, 8“

solving (4.20), (4.21), (4.22) and (4.23) using determinants:

K2“:

16

(4.24)

(4.25)

(4.26)

(4.27)

. 11,, and Q.“ can be obtained by

 

  

..;nR - Rm 0

(:ch ‘KzRT'- KRm" 0

e71 R;Y\ ' Q-‘h

4 -“-| 1

A - Rm KR“ “* “5;“
M — 1‘ _“

R1 "R1 -R, O

-1 1,4 _ _'

Kid? -K2.R1 K32? O

0 R? R? .R;‘-‘

7“ WM 'fl- 1

or. 0 RR, -1<1R1 KR

/

(*3 3111-1

Am??? [RTR1 (KWK)R?RSOS-1K3)]- 3,9“)Riga-“K{/(428)

whereULC‘HM means the value of the denominator: ”5“"

| i; = 1m:;‘W-‘ 1 -1 _| 1,
m1 RR ( K,K3-K,\<{k1$+1<a)-R,R1(K;K3+ 19 Kt, +193WW9)

lililarly the values of B1“ ,

follows:

8,:§""R’Rf(K“.10 gLDRR'“,(Knfii

and Q“ are obtained as

/|4¢m\ (4.30)

%)-E)RK:‘31““3 +L;‘*’R“R'“ck. J0) lawman
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Qn' $_1_EfbgngzKN E35.”R;“MK-K134!:(KMQVM..32)
40nd

The next step is to find the time rate of change of charge

density by using (2.23).

Thus _ ' _

’d)= aw )95$: .. 6‘ S‘Xaf 63($¥’)r.n. (AJB) .

3‘5

332*) 3 - 61(TT T: R), ““310

The values of V, and V1 from (4.9) and (4.10) are

substituted into (4.33) and evaiuated at T‘. R. . Similarly

the value of ‘Wz from (4. 10) is substituted into (4. 34)

and evaluated 3t T:R1. After substitution, we have

Bux*)= ~5‘(Z_A1;h Rhos-no + 6‘; (ZEN?Cosmo
3+ m ‘Hcl ‘1‘- nu

d '21)“? C03 719 +¥°IR|j (4°35)

3<SG_____) - «61(ZB'V‘R1‘dOShO -ZDY\R:-Cos uni.) (4. 36)

at ‘hul - ‘W-I

But from 4.5) and (4. 6)

Q93) d.1196*) Cot ‘ne (4.37)
3* ‘h-o

Sad) 24:W0 Cos me (4.38)

After substituting'A“, B“ , D” and F0 into (4,35)

and (4.36), the coefficient of Cos no in (4.35) 1.

equated to that in (4.37). Similarly the coefficient of

COS M9 in (4.36) is equated to that in (4.38), By this

medium. , we obtain

I , I

d and) = 0‘" P; + «u Pm, C“ ) 0 (“'39)

A;
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I / ll

‘ a
RIPE) = 0(2‘Rn + 091R“ (M >,t') (4.40)

/ /

ct _ -c i

(if;) ' 151%) . (4.41)

'l I

AR“) = 53 31- Rfi) ‘ (4 2+2)

I: h R2 '
where

0‘..[n-RI2-|(2‘n- mmC)+R:R;3H(K+K)(6*G)]/I¢{ (443)

"‘0‘

OH]:«[§-1R.:(1K
16 —lKgyl/Ldeno

‘ (4.44)

Wkd(K-K13(‘G
a)-R‘R2W(K+

K2)(62)] /\d-€‘V\o\((1+ 4
5)

n‘[R:R;HCK+K
X613+RT

'tR1“(K'KXG,31I
‘dcno\Mo

1+6)

The solutions of the two differential equations (4.39)

and (4.40) are assumed to be of the form

I I1a-).‘t

and X‘:

I B: 1.x];9 . (’+.48)

wlere the I“ and I11 are independent of time. 'Jhenthe

solutions (4.47) and (4.48) are substituted into (4.39)

and (4.#O), the following equations are obtained:

I

(°<..+)~)J.h + 0(1i“ 8 O (4.49)

I

“1‘3“ + (412+)~)J;'0 ' (4.50)

I II

In order to be consistent, the coefficients of I and J“
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have to satisfy the determinant given below:

 

 

 

 

0L

(0Q, 1'» n. __ O (4.51)

x1. (can + )0

Expanding the above determinant gives two values of A

which are

a.

)‘l x —(°‘n + “(131+ Rt" ~33... Ll‘fif‘il (4.52)

l A .

'1.

>\ 3 - (“H + ‘11) " Ed“ 'JX‘») + “‘11!” (4 53)

" TL u '

From equation (4.49). the value of 1‘ is

J;=-(.u—>)J’.
x”- (4 54)

Because there are two values for )‘ (4. 52) and (4. 53).

the general solutions (of the differential equations) are

as follows:

I

->t ->t

PM"j’-(le“f":-i°z (4.55)

at +>~ ~7‘t -H; ‘

a: —(_u__.ch “’ GEL—”>0“ (4. 56)
“n.

where C‘ and :1 are constants whose values are obtained

’ II at

from the requirement that, at t=0, anaemia“ . Eng) .

After evaluating 0‘ and C1 , (4.55) and (4.56) become

fad) 9550“)j‘>u)(€::' PM) (4.57)

p(4): [5”..co>[ («#0»)?+(d\_.___Hz) and] (4. 58)

On solving (4.141) forN .P/(i), it isfound that

.t

P?” ‘ F’s/”meGk. o (4.59)
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/

because RC0) = 0

”

Also, on solving (4.42) for PECE),it is found that

POW») = Po'co) (4.60)

On substituting (4.57) and (4.59) into (4.5), and (4.58)

and (4.60) into (4.6), we have

w’=ct):§(0)(;———:'_‘;' (e‘m’ie"at"°)(1as‘n6 (1+. 61)

'E t

at. N g. )1 '9‘ afl-n‘4. 62)

(SM)pco>+29co>(<+ )e4;:)e]
‘th 1

 
 

  

These equations (4.61) and (4.62) complete the general

solution for with) and OO'C‘L) , the charge densities at a

later time on the inner and outer surfaces respectively.

For a particular known (3(0) , the initial charge distri-

bution on the surface, Fu26)can be found from (4.4). Then

0‘1” , 04” , da‘ and in can be found from (4.43),(4.44),

(4.45) and (4.46) respectively..'>‘l and )1 are obtained

from (4.52) and (4.53). These results are then put into

(4.61) and (4.62) to give the charge distribution at any

later time t..

The series involved in (4.61) and (4.62) cannot be

summed because the relaxation times of the terms in the

series are not all the same as they depend on n. No general

conclusions are drawn from these expressions in this section.

In Section V, however, we will solve a more specific problem

for the surface charge density using the expressions

obtained in this section.



V'TWO-DIMENSIONAL CHMRGE DISTRIBUTION ON A SINGLE

CYLINDER WITH SURFACE CONDUCTIVITI

0 a- 1:. e ' : 91- 09 '2 : ‘9'. ' 4-dr

The case considered in this'section is that of an

infinitely long cylinder which is not conducting in its

interior, but only conducting slightly in a very thin

layer on its surface. The expressions obtained in the

previous section can be used to solve this problem direct-

ly. The only changes necessary are the following:

(a) It is assumed that the outer cylinder of the two

conducting coaxial cylinders, discussed in the previous

section, is very thin, such that

RI ___,_ R20 .. ‘0) (5.1)

where R‘ is the radius of the inner cylinder, R1 is the

radius of the outer cylinder, and ‘6 is very small($<<|).

’ ri‘hen all the expressions involving 6 can be expanded in

powers of ‘3 , and the [)1 and higher terms can be ne-

glected. For example

I = '+6+l32+"'#|+5 (5.2)

«-5 ‘

Also,

la; 4- ()5 2:. RIM] ,4; ED +33] (5.3)

0.455 ‘ (a.+‘33)(C-§_5)

c 4 4‘3 (11-6%"

’3’ 070’ + (b/c - “3%)6 (5.4)

(b) It is assumed that the dielectric constants of the

 

two cylinders have the same value and the inner cylinder is

not conducting.
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(Thus _

when the equations of the previous section are rewritten

after substituting (5.1),(5.5) and (5.5a) in appropriate

places, we have:

From (4.43)

_ -2 ..

- g. 1.-1s/
From (4.44)

-1.

0411 = 312,9«whey—inmiflmm. (5.7)

From (4.45)

.11 .

‘2' 7‘ §R10-7‘6)<‘2K56;3§/l4eno( (5.8)

From (4.46)

-1.

«22 = g R, 0+ $)(1K‘6‘1)§/ld¢.m, (5.9)

Here

Home! = ~R?(‘+$)C9K1K3+ 9k?) ' (5.10)

By using (4.43).(4.1+4).(4.45).(4.45) and putting K,-.-.- K

and 6" 3 O , the values of )\’5 in (4.52) and (4.53)

‘2.

become

>1 3 Meg’a

(Kfika)

>\ a 6—} + ‘3 ‘V‘GNXKSB

K, k1CK.+k33 (5.12)

 

>~,-7~. k|+k3 _ (5.13)

 

A-N . K +1< (5.14)



 

‘Séfti >;_ 1:: ('L\<.:,K:3i)()-+ ‘5j) (5.15)

On substituting (5.15), (5.12), (5.11) into (4.57) and

(5.14).(5.13) (5.12) (5 11) into (4 58). we have

 

   

-ncbt

ROE) = PTSO)[kK'+KK3)(l + §)e—-L_K.+K3

kl Cat K5t

”Erwre‘cétg
(I +($\)(BT (r “5)

--K'K""‘K3
3' ‘)

_Mth A

ears.—

6). C0 ”"3

F“ P )[Kjkf

3_eit+ st'

‘f’ K) e x, +‘Egéiérg3 :l ().rz)

KL-+1<
‘ 3

respectively, we have

Then substituting (5.16) and (5.17) into (#. 5) and (4.6)

A)3)"~“*11.1%”

+‘n61:35t

_( K. )(Hg5 at 1.77.?) C05716(5.18)

kl-§ K3 .

 

 

-mett

K.

oo'ct)= gc°)+:P.:‘°)[K: k 3 T";

“g_%t max

+ K‘ e 1(K.+k33 005.719 (9.19)

ifi+K3 '
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Expressions (5.18) and (5.19) can be rewritten as

. - a» ' k“,

1.1a) =_E_1_<1+‘r>)ZP.sov at; co: m-flgdfiefi ZéoaquszS-zm

 

K|+K3 'HM k'+k3 “a!

v " 1: i ”c “c m 1: £45” a 915.21)b) C") = RC0) .1, 3 @1110) o.‘ o:- +__1_ c Emmi(«M

H“: .. k1“; *1"

where t

_6,_5 (“‘ka 391:1(3/

— K: k K

Cl’1 " e 0‘3 = e '< H 3) (5.22)

The expressions (5.20) and (5.21) are the general results

for any two-dimensional charge distribution. qut)1s the

charge density on the surface of the inner cylinder at any

11

time and.)0 (£3 is that on the outer cylinder.

B, Line Charge on a Single Cylinder

The case considered in Section V A is a general case,

.where the original charge placed on the cylinder may be

any arbitrary two-dimensional distribution. A special case

is considered in his section, where the original charge

placed on the cylinder is a line charge. In this case,

If

E%Co) in.(5.20) and (5.21) becomesg

u /1iR,_ “’17”

P593 = . (5.23)

A flux, 11: o

where i) is the charge per unit length of the original

0

line charge. The value of Pom) in (5.21) can be obtained

a

from (5.23). On substituting the value of PM“) from (5.23)

into (3.20) and (5.21), we have

 

9. See Appendix B.
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‘ O .

(Jo/(f) C-a-Ki(l +6)"f% 20.? COS'ne a

' 1 ' K. ('1 3 iii-ti. (Browne (5 24)

- EfiK, +3 e .‘R‘ 71-11 .

k .

w’({)= SEQ-(f fik'z-izzarcbs 710 O 1| 1 (5 25)

‘ a. h: K1 9.9% f... 20.; CO! 716 O

‘ ‘ K‘+k3 ‘Rxm‘.

The series Q Cos 119. can be summed in a closed form

on)“

. 1-0: __._ ‘
ZCL COS 7'9 =[2<|_QQCO&O+}) 3}

1Ie octein two orders of magnitude for relaxation times

to give

 

in (5.24) and (5.25): The ones appearing in a. and Q; are

of the order of some dielectric constant K divided byég,

while the last two terms are multiplied by an exponential

which has a relaxation time of K'IG‘ . If 9(< \ and the

surface layer is very thin, the relaxation associated with

a w: of the order of’Kfllégwill occur much more rapidly

than the others. Experimentally, one can probably observe

only the slower relaxations associated with a,‘ and a: ,

because the other relaxation will have already taken place.

Also, if 6 is small, it is not possible to distinguish

experimentally between charges placed on the surfaces of

the inner and outer cylinders. mathematically we may there-

fore restrict our solution to determining 00(t) , the sum

of («{Ct)nndw'(t) for the case when 6‘1 is very large, 6

is very small, while 616 has some finite non~zero value.

The factor 6‘). I} will be designated by G, , which may be

called the surface conductivity. From the definition of

 

10. See Tppendix C.
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' . I

§ , it may be seen that G'- g , where 6‘ is

R

the conductivity of the surface layer of thickness T ,

while R is the radius of the cylinder.

 

Thus after substituting O fer 3 ; for 6"1 ;

6", for 6 6‘1 ; and‘Ia.(|:-1(:M?)-fiferia(308710

into (5. 21+) and (5.25), we have $1..

(.01at L (5.26)
 

I II

sit) a and) +u><£)=\:10laCeSO+T)—_TR

After substituting the value of a, in (5.26), it can be

 

rewritten as 1*

1 E '1 +
QCE : ( “— —— (5.27)

) (I- lfiusé+ 211) HR

where K .

't "" 5.17.3 (5.28)

When both the numerator and the denominator of the right

hand side of expression (5.27) are multiplied by e l'f, ,

 

 

we have

t' 1:
/ -/

03(1):) - e '1. _ c 't L (5.29)

-QCOSB 4.5%: 13R;
OI"

_ . 1:

amt) .. ( Sm). fir. j: (5.30)

CoskT/rt~¢o$0 11R;

 

where wfl) is the total charge density or the total charge

per unit area on the surface at any time.

In Fig.4, a set of curves is plotted with 003-) as

ordinate and 9 , the angular position, as abscissa for

various values of t/ 't . The graph is normalized
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(by setting f -..-.- 1‘31 R1 ) so that the charge distribution

at infinite time is unity everywhere on the cylinder. The

charge density at any time m(‘L)for any ‘f‘ can be obtained

by multiplying he graph by ‘P/‘l‘fl R1 . The values of +75:

used are 0.2, 0.5, 1, 2 and 5. From the curves the

following conclusions may be drawn: For the intermediate

times between‘t’ -.-.. O and {-1.03 , it is found that, at 9.0

(the original position of the line charge), the chargeeg 5

decays as time progresses. At places where ‘9 is smafleti]

the charge density increases atofirst and falls off later. '

At places where '9 is largeg>ihi charge density increases

monotonely with time. The flow of charge ceases when the

surface charge density is the same everywhere. Thus the

line charge placed on the cylinder at t=O spreads out until

the charge density is everywhere the same at t e as .



 

 

TA 3 c

‘F is? 1:“ “as.“ as 6 as
degrees 1!— oa. theas tau! tat. 1 tunes

0 10.0149 4.0839 2.1639 1.3130 1.0136

6 '7.8633 - - - -

10 5.7025 - - - ~

15 3.7140 3.2226 - - -

30 1.3063 1.9920 1.7356 1.2523 1.0117

60 0.3870 0.8303 1.1266 1.1118 1.0067

90 0.1973 0.4621 0.7616 0.9640 0.9999

120 . 0.1324 0.3202 0.5752: 0.8509 0.9932

150 0.1067 0.2614 0.4878 0.7837 0.9884

180 0.0996 0.2449 0.4621 0.7616 0.9866
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VI TWO-DIMENSIONAL CHARGE DISTRIBUTION ON A

CONDUCTING SPHERE

A. Arbitrary Charge Distribution on a Sphere

In this section, the inves-

tigation is done on a conduc-

ting sphere. The radius of .

the sphere is F{ . Inside the

sphere, the dielectric con-w

 stant is Ki. and the conduc-

 

tivity is 6‘1 . Outside the
 

sphere the dielctric constant

 is K0 and the conductivity is

zero. Radial distance from

the center of the sphere to

any point is denoted by Y'

and 9- is the angle between

F15'5° 7‘ and the Z axis(See Fig.5).

9 is sometimes known as the co-latitude angle.

The charge density at time t=0 is a two-dimensional dis-

tribution and arbitrary except for the fact that it is cy-

lindrically symmetric. We will denote it as 00(0) .

It can be expanded as

00(0) = 3-310) PMCCosO)

71.0

where R‘CCosO) are Legendre Polynomials and flu) is ex-

pressed Al
‘

gnu) . 13%;) $0003) KCCO$9331719¢9 (6,19,)

11.8ee reference21PJ+18 and also Appendix E.
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oo(d)is considered to be cylindrically srmetric and inde-

pendent of (.6

It has already being proved that if there is no charge

in the interior of a conductor at t:0, there will never be

any chage in the interior at a later time. Although charge

flows in the interior, it appears only on the surface.

The problem is to study the way the charge is distri-

buted on the surface of the sphere at a later time if the

original charge on it is.of the fonm given by (6.1). The

charge density wetht any time t, can be expanded as

tact) =2 915+) 91(903 9) (6 2)

M20

then the potential inside the sphere é?

=ZPfi‘bV‘P“(60563

.11" swam“? ‘5'”
The above expression (6. 3) is the particular solution of

Laplace's equation in spherical polar coordinates when the

boundary conditions are satisfied. Using (2.23), the time

rate of change of charge density is

341.38) _ :13

at ‘ " 6‘ .R

1.. _€29,5011Pccem

’ 4

0"‘(K0‘1k0‘rko (O )

But using (6.2), the time rate of)change of charge density

is

300d?) :2% Est) P.n (COSO) .

M804 ~ (605)

 

12.8ee Appendix D.
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Since (6.4) equals (6.5). the coefficients of EqCCesakan

be equated. Thus

 

«1.112543 g ,_ 61-“ a) . (6.6)

at ‘h Ko+ i+ke

The expression (6.6) can be so ved for encifio give

6‘ rt (6.7)

E543): PageTICKm+k3+k

where (£10319 the value ofPMCi)at t:_—O. '.."hen (6.7) is sub-

stituted into (6.2), we have,

in. 1 V

0001:):- :PC032 PC0039) (6°Q)

wnere cufi¥)is the charge péfi'unit' area 0.t any time a.a

Vt“ = 10081-19131. E0 (6.9)

5?“

The expression (6.8) is the general result for any

 

two-dimensional charge distribution initially placed on

the sphere.

For any givenw(°),§‘£o)can be found by using (6.1a).

Then if E110) is substituted into (6.8), the surface charge

density at a later time can be found. The value of ”En

can be obtained by using (6.9). It is interesting to note

that the values of Ty. are independent of the radius R

although they depend on n.

Because the relaxation times of the terms of the series

are not all the same, it is not possible to sum the series

in expression (6.8). Therefore no conclusion will be drawn

from this expression at present. However,(6.8) will be

used in Section VI 9, where we will solve for the surface

charge density in a specific example.



_1_3. Point Charge on 'a Sphere

As a specific example of the results of VI A, the case

of a conducting sphere with a point charge on it is con-

sidered in this section.

Let a point charge of total charge ‘1, be placed on the

sphere ate :0 instead of the arbitrary charge distribution.

The coefficients of P340563 in (6.1) is then3

PCO)__. (3%+0 61/

41"?

The above value of P100) is substituted into (6.8) and the

general expression for 006:) is now

met)":- 1 (17111139t"""13-111PPMC1313383 (6 10)

411R ‘10: 0 '

From the above equation it is seen that at t:0,

00(0) _ L i171 +1) P“(0036)

4-“R‘ "“30
(6011)

and at t: 00,

00016) .-_ 3L...

411R9- (6.12)

The original charge is a point charge whose magnitude is Co"

and the area of the sphere is [1‘11 R1 . It shows that the to-

tal charge present at the begining is present at the end.

It also shows that the point charge placed on the sphere at

the begining is uniformly distributed throughout the surface

of the sphere after a very long time.

 

1 3 . See Appendix E .
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To determine how the charge is distributed at times

04t< co (.6 10) can be rewritten as

ted): 4113' ZCir+0P (Cos 9)e:/

“to

61:, ~

+4IRCKZ<a~1.1)P.,<cese)[e”C“- " 1 1:

PHDE"1+4?‘V’RZCITHOP{Cos fife”‘2. Z/b](&>.13)

RW‘O

where 11"” z “(0* “DIG: (6.14)

and6(0), the Dirac delta function, from (6.11), is equal

toZia-n+1)?“((3099) in this case. The first term of the

right hand side of equation (6.13) means that the point

charge decreases eXponentislly with relaxation time Too .

Also we can write

Zczn.1)[é'"In é-lulP(Case): ZN(‘1
L)"9e PC8090)

Mil

+Zho<ct“XYJHNEDL-tmpPC9099)

+(I-é'M) ZR“?PCQoSB) (1.15)
an

where pg: KO/CK°+KL)

R“.C1.‘+015tl'F-11_ 4113.]- ism-{c- )e

—[i~(<1-°‘X:g.)++"<<-45“3:19. It“?

The expression (6.15) can be."rewritten as

22371.01};"‘2‘ 311,113@039): (l— Ctlt”)- 2*? SW!

3’11...

(6.16)

.231‘n!

~[aoc(i-o()(’i).o(£")]e$31....wa ad‘s-bigness)

m1 (1, "D
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14
because

P c e e (F.2
7:3.“( 08 ) 3.31MGI1 )

and co

7 81(09363 g .. also, [Shag 1.311513] (F55)

“a! e’ 7' 1'h

The particular division of (6.17) into several terms plus

ZR.“PCCOSOXs necessary becauseZP“(C0563 {if (Co59,3 and

“:1

the original series (6 .10) do noot convertge. The series

:KPCQo3Qdoes converge. ThusZCw. +1313!“ - e1..]1’.‘C3080)

may be evaluated numerically I‘Byoeliminating the non-conver-

gent series and expressing them in closed forms.

The expression (6.13) can now be rewritten, after

(6.17) issubstitutted into it, as

1.11,. 1.1111113 .11; .1...-""191111-1—1-212‘0’as)
t“,

{211(1— 06:.)+26%.)15 4n[5“ +5“ ’1

+ZRT1?“(¢°$ 6)} (6.18)
31:11

where u>CE3is the surface charge density at any time. The

series2K“Pccesfiis a relatively small fraction of the entire

expression for 0001.3. For t/vtof the order of unity, it is

about 1% 0fuoci). Also, the series converges rpidly, with

the first ten terms constituting about 99% of the sum. Thus,

in numerical computation, limiting the series to ten terns

gives w(t3to an accuracy of dbout 0.175.

For sample calculation, he value of °(.is chosen to be

i, that 111,1(‘1/K:3. In Fig.6, a set of curves is plotted

wit11wL-t)as ordinate and 6 as abscissa for various values

 

14. See Appendix F.
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of t/L The values oft] used are‘t ,. 1,2, 4 and 10. In

Table II, the values orgasm-tog”«3"... '”“1? (cos 0) are

tabulated against various6'; for different values of ilk-

In Table 111:3“?(cos0)is tabulated against various 9’:

for differentvalues of t/vt“ . The value ofMR“?(Cone)for

9 = 15° is not computed because it is verysmall and can

be ignored. The following conclusions can be drawn from the

curves (Figi6):

As time increases, the magnitude of the point charge,placed

at Q: 0 initially, decreases exponentially and the charge

density increases at all other points. There is, however,

one exception.At pointsgclose to 9: 0 , charge density in-

creases at first, reaches a maximum, and then decreases

afterwards. The. flow of charge ceases when the charge den-

sity is everywhere the same. In general, the point charge

placed on the surface of the sphere at the begining spreads

out in all directions as time progresses until the charge

density is the same everywhere.
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TAB GR F 7

, 3f . ‘2 > 3:? 3:13 :3
defizges, ‘hhf' fipgaL ”9&9 '0

15 1.28495 1.51 1.13802 1.

30- 0.87202 1.06329 1.04998 1.00085

60 0.64848 0.88423 0.99088 1.00017

90 0.56623 0.81263 0.96541 ' 0.99979

120 0.52555 0.77514 0.95139 0.99953

150 0.50545 0.75845 0.94403 0.99939

180 0. 49929 0. 75284 0.94172 0. 99936

-It“to.
(,0 (1L) in this table is 2C1m+018tm__ 3 1911103086)

1n.°

TABLE III. TABLE FOR fk..fi,(cosb) = 211 '

“-1

degéeeg t4§;?’ :Egzl tigfiL §£§izo

30 40.00885 -0.00337 0.00336 0.00031

60 -0.00348 0.00010 0.00130 0.00012

90 0.00097 0.00035 '-0.00037 -0.00003

120 0.00428 0.00016 -0.00162 -0.00016

150 0.00631 0.00247 -0.00236 -0.00023

180 0.00695 ' 0.00275 -0.00260 -0.00024
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VII SUMMARY .1

(1) A general approximate method for solving Maxwell's

equations is given for the case when the conductivities of

all materials present are very small. This method of solu-

tion permits the charge distribution at any time to be cal-

culated if the charge distribution at any preceeding time

is known.

(2) To the above approximation, it is proved that if

no charge is present initially inside a conductor, there

will never be any charge inside it at a later time. If

charge is originally present inside the conductor, the

charge at every point will decay exponentially with a re-

laxation time equals to 5, , where K is the dielectric

constant and 6‘ is the cgnductivity. This relaxation time

is independent of the size and the shape of the conductor.

(3) It is fomd that if any two-dimensional distribu-

tion of charge w(o)is placed on the surface of a slightly

conducting cylinder, the surface charge'density at any

later time is given by acct): 110(0):" 1. fibihert’m] (3.13),

where 04(0) is the arbitrary two-dimensional charge density

at t-_-.-o, a(03 is the average value of the original distribu-

tion of charge wee). and '1. , the time of relaxation, is

given byM. , where K1 is the dielectric constant in-

side the cyslcinder, K0 is the dielectric constant outside

the cylinder and 61 is the conductivity of the cylinder.

The relaxation time is independent ofthe size of. the

cylinder.’
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(4) For two conducting coaxial cylinders with an arbi-

trary two-dimensional distribution of charge initially on

the surface of the outer cylinder, the general formula for

006.5: the charge density at any time, is given in

equations (4.61) and (4.62) as infinite Fourier series.

(5) For a single cylinder conducting only within a

very thin layer on its surface and with a line charge on

it initially, it is found that the surface charge density

at any time t can be expressed as

. t

.. 1° 31‘1“ ”c i)
CDC‘E) - {Li—R1 Goth tl't __ 6°39 (5.30)

where‘flét)is the total charge density residing on the

surfaces of the canducting layer at any time t,'f is the

line charge per unit length initially placed on the cylinder,

R1 is the radius of the cylinder, andIr- K,'+ K3 , where

‘TFT'

K‘is the dielectric constant of the cylinder, K3 is the

dielectric constant of the outside medium. 6" is the

product of the bulk conductivity of the conducting layer

and its thickness divided by the radius of the cylinder.

A set of curves are plotted in Fig. 4 for the variation of

charge density 03(t3with time t and 9- , angular position

measured from the line charge.

(6) For a conducting sphere, with a two-dimensional

charge distribution on its surface, Doc-E) , the charge

density at any time, is given by

on _‘t '1’.

00(1):) -.—. ZR“) 9 5.320» b) (6.8)

‘V\:o
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where E‘Lo) are the expansion coefficients of (9(9) in

Legendre PolynomialsRWCCeso) . I“: “1093+ thKJ, where
 

K0 and kg are the dielectric constants of the mediums

outside and inside the sphere, and (Q, is the conductivity

of the sphere.

(7) For a conducting sphere with a point charge on its

surface initially, the surface charge density at any later

time is given by equation (6.18). A set of curves are plot-

ted in Fig.6 for the variation of charge densitycoC€3with

time t and é} , angular position measured from the ori-'

ginal position of the point charge. It is found that the

rate of relaxation of the charge density is independent of

the size of the sphere.
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APPENDIX A

IEHEREIALLAEQEEQJLfiflldflDEB

The problem is to find the potentials inside and out-'

side a cylinder with a two-dimensional distribution of V

charge on its surface. The charge density on the surface

will be denoted by (0(6). It is an arbitrary function of

9 only, and can be expanded as

Mo) = Zg‘cos 719 (4.1)

The

The radius of the cylinder is R and the dielectric con-

stant of the cylinder is FKL . The dielectric constant

of the medium outside the cylinder is K0 and 1" is the

radial distance from the axis of the cylinder to any point.

The potentials V" inside the cylinder and V0 out-

side the cylinder are particular solutions of Laplace's

equation in cylindrical coordinates. They can be written

in the form15

0 TI

Vi, = ZBJ’ Co: 116 + C, <A.2)

11:1

. A.

V0 2:9 £05110 + Roi—“'1' ( 3)

11-1 1""

A“ . B“ , A0 and Co are constants whose values are

to be determined so that the boundary conditions are

satisfied. '

The first boundary condition states that V; 1- Vo at

15.8mythe, William R.: "Static and Dynamic Electricity,"

McGraw-Hill Book Compeny,Inc.,New York,1939,p.67.
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10 , R , therefore, _

(AA)

éflm‘los no + co = Act” R * gA—T—M‘2’ “9

. n 1.

R g A g (4.5)

Also, an - “I K

Act'nR': Co (A.6)

The second boundary condition states that at T’ .. R

k1(%*‘1’5)1sa“‘o(?s¥f ‘n-R' 6')

therefore , on

(dis;18h. m ) - “(n-W. if)

=4 igloo: ‘ne “'7’

The

K 81113M K A ‘n = “'53)

. . * as.— E
Also,

A0: -Ee.3 (11.9)

and ' Kc
Co -_-, —_2_glv1 K . (4.10)

Using (A.5)(.and (A.8), the values of A.“ and B.“ can be

computed

A.“ “(P11 R“+‘)/T\(Ki+ K.) (A.11)

B“ 3 B., /T1R “(K-L + K.) (A.12)

m substituting the values of the arbitrary constants into

(A.2) and (AJ), we have

 



 

Th, .

.— 92.0114 R (11.13)

on R. KY1“

V0 3: —:n(Kl-+K) COS T16

11-1 ' o 1’

(A.14)
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Let us again expendathe charge density 59(9)... in (Ad):

991- 29. Co: a. <14)
'n-e

To find R , both sides of (A.1) are mltiplied by

Cos‘» do and integrated ”on G. O to 9- ‘fi .

Thus,

I

8 (10st 00(0) ale . 2P S‘Cos ‘00 Cesneete

O
“’0 O

- “'5. 1“ ‘ (B.1)

T s

and
1 P“ 1‘ 0

ages“) Cos 110 40 'H)‘

a. i o (3.2)

*23L0346
71:0

If the initial charge placed on the surface of the cylinder

(gt 5.0) is a line charge,then we have

' gun!“ a . 0

° 0 1: 0

hon Fig.7, we have

Smu. emu

(«012 4.0) .15 f (3-3)

0

where f is the charge per

 unit length e

Fig.7.

In this case (B.2) can

“Iowans;s}: “1040:;‘2M

‘sfffumt

mum.» .i-chnde3

Wuhanthe sslall,Usv
\9.1. ‘I



APPENDIX C. p m -

z a Come

W

Let €(9)be an arbitrary function of G that can be

 

expanded ' as

 

 

6(9) = 29,100: no ’ (c.I')

Then, 1'
11-0 ‘D 1

so «(93 (103 ‘MG do a Zfi.‘‘SOCosm Cosmo do

v1.0

- his: cosweds

2 1

is 5(9) C05 ‘me do a).

Rn ' 01
(0.2)

I

Now we note that16 7 So 6(0) d” Th- 0

1

.

I Gos'mecle- M

gofi- 361.0039 +4?)
" 11%;:—

Lzflf" 1 Cosmed9:1am

2 S (1-246qso +d) 2 (0.3)

Thus if -

 

-a.‘

6(9):)»(1-14005N0

it follows that gm, Q?" provided thnt Wu": 0 ,

Whenmgo, by using (C. 2) we have,

 

1.4. 1 e g _

TS, Inamed? 90‘ (CA)-

But from ‘03..3)d' . (O )

11¢QC—T'a'c—T-z . 172 .5

therefore "/5.

erfron (C. 1)._a (C5)

2Imean?)ZQCosmui

Consequently I (C7)

QCo: “a 'x(-IIQCOOO+?)-1 ..

1.3.Dwieightd:"Tables of Integrals and other hthematical Date}.'

0 1. .
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APPENDIX D

.W

The problem is tofind the potentials inside and out-

side of a sphere with a two-dimensional distribution of

charge on its surface at the begining..

The charge on the surface will be denoted by taco) .

It is arbitrary except that it is a function of only.

It can be expanded as

coca): Z?” RICCOSO) (v.1)

The radius of the sphereis “L and.the dielectric constant

Of the sphere is '(L . The dielectric constant of the

medium outside ‘of the sphere is K0 and T‘ is the radial

distance from the centre of the sphere to any point.

The potential,either inside or outside, is the particular

solution of the Laplace's equation in spherical coordinates.

It can be written in the form17 ‘

V; =ViBn‘Y‘“RflCCos 6) (13.2)

7130

“2A,, R. (00$ 63 (9-3)

“—'WT‘T_’
“so

where \/C is the potential inside the sphere and VB is

the potential outside the sphere. A“ and B,“ are the

constants whose values are to be determined so that the

boundary conditions are satisfied. The first boundary

condition states that \/L ”\I at'T”. F{ . Therefore

:3RP“(Cos e) .25.,133(Case) (n.4,

‘h-o

17.8ee reference 2,p.417-418.

 

 



'OP

BSR (v.5)

 

 

 

A1n+1

The second boundary condition states that

IBVh - 6(3V'

W( “K fifln-o

tT‘ zit . Therefore,

LC? 8;! "PPCCosID)KK.(ZA(“‘9134““
o R*1 .

=3REE, P‘v‘CCOS 6) (9.5)

1130
,

[KL 5“?“va'HKoA(“WWRM] En (n. 7)

Using.“(D. 5) and (D. 7). the values of A71 and BY} can be

obtained:

”P1. l
M<KL++KQ+ko (1)-8)

B = a ; . (D >
7‘ E1<KL+K03*K]R '9

On substituting the values of the constants into (D.2)

and (D. 3) we have

“P

Vt :Z°([‘VI(KL+¥)+K]R5? (Case) (”'10)

h

«on.

V ,E V R'R #) fag—9) (v.11)

° MCKL+K3+ko ‘r
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Let us expand the charge density 00(0) as in (DA ).

Thus 00(9) . 2 gap-“(6036) (1).!)

"(5°

more A is given by_

I

En ‘-‘- 23:13; game) KCCosefi
amode (152.1)

0

If the charge placed on the surface of the sphere<¢t 9,0)

is a point charge,

P __ but

1:" a
0

because for small angles R‘CCOSO) a I

00(9) 9m 9 do (3.2)

 

Senna. Avail-E

From Fig.8, it is clearly

seen that area OLA is given

by

4A. TERISMB 49 (EJ)

But

$5“hLL ‘mL'

000(9) 4A - 1; (3.4)

where 1f is the magnitude of

 

 

Fig.8. the point charge.

Therefore ‘ ‘ smu. ANQLI

l'vu 1-
F g ______- ————- ”ammo 21K (3.5)
"\ 2 11 R‘ 8‘“

or O

P .3 17H” 1; (3.6)

7‘ «WK1

15.8ee re?erenoe 2,p.418.
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a, 11?me 1?

MR(“"3 my.,Zavc‘le‘filmw

In terms of the generating function, the Legendre

  

 

 

 

 

polynomials may be defined by the following equation:19

on V‘ . ‘ #— (F.1)

2" 24w 6) " 27. atme +9
M...

.When t-= 53:“

' l4— a.- ________.. (F.2)

“a?"(we) (a - ices)" assnbu

From (F. 1), we also have .

‘ .

a A -'

if“?(Cos 6) (l- itcoso+9311

Th

aUc

g?E“?“(002 9) “H: ‘itI:(I-attend"? [1

Performing the integrations2° gives

 

G .

P (€035) . .3.

Z “n _- - knigmg + 9m g] (133)

1§.lee reference 2,p.327.

20.nwiiaf.:'reblee of Integrals and other Isthemetioal Date,“

“I
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