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I. INTRODUCTION. GENERAL HEAT LAWS

The purpose of this investigation is to extend the work

of a recent paper * on heat conduction and convection from

the plane case to that of a cylinder. The treatment is the

same as that in the above mentioned paper, with modifications

and restrictions to adapt-it to the cylindrical case. This

in brief, is as follows:

A cylinder heated to the temperature of boiling water

stands vertically in an atmosphere of air at ordinary room

temperature. Surrounding this cylinder, in its immediate

neighborhood, is a thin film thru which heat flows by con-

duction and convection. The development and discussion of

the laws by which heat flows thru this film comprises this

paper.

Two empirical laws ‘* and a simplified hydrodynamics

equation make possible the present treatment.

LAI I. The locus of the maxima of the velocity curves is

an isothermal surface whose temperature is the mean of the

temperatures of the hot plate and the ambient air.

LAW 11. Half the heat is ccnvected up away inside the film

and half outside. This thin film is bounded by the cylinder

and the isothermal surface defined by Law I.

* l.8.ximba11 and l.J.King “Theory of Heat Conduction and

Convection from a Hot Vertical Plate". Unpublished -

Presented at the meeting of the American Mathematical

Society April 4, 1931.

“ Kimball and King (Same as above) p. 3
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Figure 1.

Since the gas in this thin film is transporting heat by

convection as well as by conduction, it is in motion.

. Hence there are viscous and buoyancy forces which must be

taken into consideration. In order to fully appreciate the

effect of these viscous forces in a gas and the relation

existing between buoyancy and the rate of doing work, let

us state Kimball's Theorems *.

THEORII I. The rate of doing work per unit volume by the

buoyancy is proportional to the rate of heat transfer thru

unit area.

T3103]! 11. The viscous forces operating in a gas in a

steady state form a mechanical couple, and hence their sum

is always zero. Viscosity's sole mechanical effect is that

of a couple: it passes on the reactions from place to place

within the gas or to the walls of the container together

‘ Kimball and King p.4
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with a corresponding torque.

There is also the illuminating corollary: The total

buoyancy is always balanced by inertia effects plus a down-

ward pull by the walls of the container which are together

equal and ppposite to the viscous drag.

These laws and theorems must be kept in mind and incor-

‘ggiated in the present treatment together with the funda-

mental equations of heat *. Also the Langmuir film theory"

is a convenient check upon this investigation.

II. THE FILM THICKNESS; THE TEMPERATURE EXPRESSION

If we denote the temperature of the gas at a point within

the film by T , the temperature of the cylinder by T,,

the radius of the cylinder by r the distance from the
0’

axis of the cylinder to the point by r , and the height of

the point above the plane of the base by y , (see figure 1)

we may form an empirical temperature expression

(1 - —- /+é _.,,,)/ L) T" 7; a/ 6 07f ’

where a, b, _and c1 are constants, two of which are eval-

uated by the present treatment. If we use the symbol T",

for the temperature of the film boundry, and To for the

temperature of the ambient air, we have by Law 1

7"4- 7'
7- : I O ’4 .

(a) m 2 

Substituting this expression for temperature in (1) we

‘ J.G.Ooffin 'Vectcr Analysis“ pp. 104 - 116

'* Phys. Rev., 34, 401 (1913)
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obtain the relation

 

3 r = 77-7;
( )

lo; I; 24 {/*be-49)

where r; is the radius of the film boundry. Now from (3)

it is readily seen that

 

 

7,-7.3

(4) a. -- i; e 240W")

which gives the film thickness

sz;

_ 2 1??(5) 6.4.: - 6/6: an... )__,/

This shows that the film thickness increases with the height y.

III. THE FORGE EQUATIOI

Inside the film the empirical temperature expression (1)

 

satisfies the differential equation

7‘ 7

2/:607 ’

(e) —K/—,—.Lj-J;{r2é7:)+ :77" j.

y Y .

where K is the coefficient of conductivity and (‘= 0‘ K

This equation differs from the simplified classical hydro-

dynamic equaticn for combined conduction and convection

only in that C : «K , approximately a constant, instead of

the convection energy flux density. This latter is given

by ('3;an where k is Boltzmann's constant, n is the

molecular concentration, and v is the convection velocity,

and it varies from mere at the hot cylinder to a maximum

at the film boundry. However this constancy of 0 seems

to be experimentally Justified even though the theory here

is somewhat incomplete 9.

‘ Kimball and King p. 3



-- 5 --

It may be easily seen that for a constant value of y

the left member of (6) vanishes. This indicates pure con-

duction outward from the cylinder thru the film for a

constant height with no loss of heat on route. This is a

refinement of the Langmuir film concept, a theory which

represents resultant effects accurately in terms of pure

conduction thru practically stationary gas in an equivalent

film of constant thickness surrounding a hot body.

lithin the film the fundamental equations of hydrodynamics

are simplified by neglecting inertia effects, second order

velocity effects, horizontal velocities, and by using the

gas law. The downward viscous force I on an annular sur-

face of dimensions ¢3fl7‘x1 will then be (see figure 3)

m F= —Z1r»7r'07i—V ,

where v7 is the coefficient of viscosity of the gas and

v is its convection velocity. The difference between the

force outside the ring ang the force inside is a resultant

downward force which is the viscous drag ‘. This is given by

(8) dF= —Z7TI7/”flJV dr.

If there is no acceleration, this force must be balanced by

the buoyancy. Let m be the mass of a molecule of the gas

g the acceleration due to gravity, n the molecular density

of the hot gas and no that of the caller gas. Then mgn is

the weight in absolute units per unit volume of hot gas and

mgno the corresponding weight of the displaced unit volume

of the cooler gas. From Archimedes principle, the buoyant

‘ Leigh Page 'Introduction to Theoretical PhysicsI p. 330
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force per unit volume is

(9) ”79% — ”Vim M9 ”3-4.

‘
3

I

  
1EEEDJr

 

 

zuwfl‘
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  r

Figure 2.

The condition that the buoyancy balance the drag is therefore

0) oh/ -
21/77 ”fig; 1/“ - ermg/Igdfi/‘dr,

from which we obtain the fundamental force equation

(10) _ .. Li/réjem ”47

7/“ Jr /r i/” j

It is illuminating to compare this fundamental force

equation with the classical laws of Poiseuille, for viscous

flow in capillary tubes, and LaPlace for pressure distri-

bution in isothermal atmosphere. For the first case we

have simply to replace the right band member of (10) by its

equivalent in terms of pressure, that is,

.baV/Qg-lgj -=‘:L/Qg 7gb) = cabjfiavf;



,

"'

4

_‘. .7“

5“.
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we now integrate the resulting expression and obtain a

formula for velocity. The volume V of fluid passing any

cross section in unit time is found to be given by the

relation 5

4

fTC
(11) V: ZW/VI’C/l' = 87! (fl ‘/9) '

a

Formula (11) is the well known formula of Poiseuille‘.

 

For the second case we assume that there is no viscosity,

hence the left hand mamber of (10) is zero. By holding T

constant and using the gas 1aw*'

 

(12) p = n/rT ,

Instead 0/#0)

we have trcmzflnti

67= l137/7g-Iz);£5-I7g7h7aé/ = aéo' ,

c/ .- My,” 0/9 ‘
/7 k 7‘

(13) M

/b = /3 <3 k7‘

ls have then the La Place law for pressure distribution"!

Thus the fundamental force equation (10) is perhaps the

simplest combination of the two classical formulas.cf

Poissuille and La Place.

‘ L.B.Loeb 'Kinetic Theory of Gases" p. 843

** Leigh Page p. 294

'** Hertzfeld 'Kinetische Theorie der warme' p. 81
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IV. CONVECTIOI VELOCITY

With the application of the gas law (12) the force

equation (10) becomes

(14’ 7771’s'43me 7;"? :77; 7%)

For simplicity, let us make the following definitions:

x=/0 J: ' X” -/ ILL” -

(15) 9,; J I fly)? :QAa/Héé/ ,flvm/y,

Xo:/0.7;/f::0

  

Equation (14) may then be written in the simplified form

2

(16) —7 J y
x mg? T—7;

,jy’ -. c. IfZ; // 7‘ /)’

and the temperature expression (1) becomes

(17) 7“ 77 - m/néf") .

By substituting for T in (16) its value as given by (17)

we obtain a function of x . If we expand this as a power

series in x using no terms greater than second order and

integrate using law I to determine the constants of inte-

gration, that 13.5%5=6’ when x~xh1, we obtain as the result

of the first integration the expression

(18) via £2141. /7,*-—7/)r»x,,,+x’.x,,f+3é.{xixfl/

-,:§Loa/%¢?fly {gér1c§f23&:6/:j%%42?7nfiéflflyii&;{/z

Integrating again using the fact that v= 0 at r= r , or

in terms of the variable x we have from (15) that v==0

when x==0, we obtain for the convection velocity



Z

(19) = A4.“’"2 L‘C/ Hi +5— —§_"_7«;/{i:4_13- £14
V 74-70-71- 24“) 24a! .19an X Z 3 é ’

_ / / ,4?” _ "- 7:at!)

wherein w-(zv‘zm’ 7/ , 4- 7‘4” :27? ’

and .5: 7-7—2973].— 13— azwz‘,

By Law I the maximum convection velocity v”,occurs at the

outer boundry of the film, that is, where x==xnfl hence

from (19) we readily obtain

J

(20) v -_- ems/27H") p. =74- + see) .

m 57*7zta‘w 3“” 2....

V. TRANSFER OF HEAT; TH! LANGMUIR FILM.

The heat conduction per unit area*at the hot cylinder is

r _

(21 =-—4~—/ =/[é./+éc~’
) ? fldr‘ r4; (I; / c j

the right hand expression being obtained by substituting

forégzy its value obtained from the differentiation of the

reg

temperature expression (1). The total heat ccnvected away

from a cylinder of height L is

L I

-4 / ml

(33) 62 = errgyd’y = 27752 /r///+55 Vé/y = Zflaf/Z’f/I-C’U/I

low according to Law II we may write

(23) Q.- Z/raxf/Z = Z/faf—é//—€wy
Z q

‘ Ooffin p. 104
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The heat transferred to the gas beyond the film is Zlm KL

and Zfla/(qéflrd/ is the excess supply of heat at the lower part

of the film due to the larger temperature gradient there.

This excess heat is ccnvected up thru the film. Although

the theory involved is somewhat incomplete, the fact repre-

sented by (23) is justified experimentallyt.

Is may interpret this equivalence of 2a- and Zvaxfl by

reliance upon the Langmuir film concept, a theory which

shows that actual rates of heat transfer, heat transfer

coefficients, and so forth, are exactly what they would be

if heat were transported away from a hot body by pure con-

duction across a film of stationary gas and of constant

thickness. For such a case, if Q is the total heat flow

for pure conduction across any cylindrical surface within

the Langmuir film at r distance from the axis, then

Integrating between the temperature limits T, and To ,

and expressing the boundry of the Langmuir film by r;, we

have

(25) 0= ZIr/{L '7‘

My

Since Q 3 T, , 1'0 , K , and r0 are all measureable, we

G
I

 

“
W
I
h
\

can easily compute the Langmuir film boundry n, and thus

find the film thickness.

If we divide (25) by two we obtain

* Kimball and King p. 11
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c2 = .ézzfiZL jE;ZL. .

(26) ”2“ A); a z
’3

Equation (26) shows that if half the temperature drop takes

place between the hot cylinder and the Langmuir film boundry

r , then in the case of pure conduction , half the heat is
I.

transported beyond the film.

A comparison of (26) with (23) which we take as the math-

ematical equivalent of the experimental law II shows that

77-2;

Z /oy

 

a:

o
\
(
a

(37)
7.5;;

kin/(f {4; = I; 5’ ‘7“ -/j

Thus we have the relation between the constant a

and the Langmuir film thickness rL- r0. Tt is interesting

to compare (27) with (5) and note that the Langmuir film

thickness is the limiting value of (5) as y becomes infinite

This suggests that the isothermal film thickness at the top

of the cylinder is approximately the same as the Langmuir

film thickness. This fact was also apparent in the case of

a hot vertical plate '.

Restricting the discussion now to the isothermal film

as defined by (5), we shall find the total amount of heat

carried away vertically from this film. The excess energy

per unit volume coming from the hot cylinder is

§_nk/T-7;)

where k is Boltzmann's constant. Hence the flux is

‘ Kimball and King p. 11



.The heat carried away inside the film, which we have shown

to be ég- is the integral of the flux over the total surface

thru which heat flows, hence

(28) Q = 3/74 ”(T—7:) VM/r .

’3

By use of the gas law (12) this may be written

I

a” m

(39) 2Q- =3f/‘/9/ 7:7; V/"é/l’ = Eff/7:7; V5262

/‘ l a I

The right band member of (29) is obtained by substituting

for r , r and rm the values defined by (15). We now
0’

express the integrand of the right member of (29) as a power

series in x up to and including terms of the third order

by using the expression for v from (19) and the power series

7—7;
 expansions of and of 42‘ . Performing the indicated

integration we obtain for the heat carried away inside the

£11: '

.61...- 37/79”'7’:/,r 7) {(+3,1} j

Z /é7rf'7;/7'a 33w 4"“)

  

(30)

'h01'91n [’ = /,4_ A ,1 81",

2.2a) Jaw ’

*4 —-' I

29- /I-Z)~§——— i .. ,

2’7

and. E = 2w _ a.” raw/5-5)- /”r*?§)('77+65’)+ @213

ff” 3 27; I; be“)
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VI. EVALUATION AND SIGNIFICANCE OF CONSTANTS

To determine the constant a we equate (30) and (23)

and find that
,5

a = PI." /r—7;)“

.1.

wherein p: /~’2’z””j /("‘.§2‘”*«if&2) ]4'

3277:T,2k1.l<w’ 7

By expressing all of the factors involved in (31) in terms

(31)

of the fundamental dimensions length, time, mass, and temp-

erature, it was found that a had only temperature for its

dimension. From the empirical expression (1) it is readily

seen that a is a linear function of temperature, the other

factors being dimensionless. Hence we have a dimensional

check.

The above valuqbf a in the expression (15) for the

logarithm of the ratio of the bounding radii of the film

gives

(38) X = ,

m 2“ (”56“") 2P6 map-“7 /z= 7.”)

By expanding 1m=/oy it” into a power series in rm- so we

find that to a first approximation

7‘73 _ /J

 

‘

 

F
R
.

*».=.’_7L‘_’3_.

I”
0

Substituting this valme of xh, in (32) gives the relation

/

ZPK‘néP‘V/fié’ 4- ’

which shows that to a first approximation the film thickness

 (33) r—ro‘ -_..
”7

rm- r0 varies inversely as the fourth root of the temperature
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difference and is independent of the radius of the cylinder.

These facts check with the given data.

In terms of P from (31) the heat equation (30) may be

written J_

6? = fiz’KzPVT—r),
a3

Now substituting the value of a found above, the expression

for Q becomes

a = 4m; m P/r-ZI)

5.

i

2

which may be expressed in terms of xn,from (32) in the form

X», (Ii-éeD—qy

Comparing (34) with (26) we note that the expressions are

equivalent when '

“45/, ~ , f‘

(35) X", {/1‘55‘ / - [7/ é. : X‘ )
/

where x, is defined for the Langmuir film in a manner to

correspond with xn)for our film bounded by the isothermal

surface.

From (23) and (26) we find that

(35) a : El

2767 i.

. ’3

Expanding the denominator in a power series in r,- rb and

neglecting all powers of 17." r0 except the first, we obtain

as a first approximation

(37) .4. = .1113.

1: z/rz-C)

In other words, f; is to a first approximation one half the
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temperature gradient of the equivalent Langmuir film. This

corresponds to the value a as derived for the plans case *.

to know that the heat conduction per unit area at the hot

cylinder may be expressed in thrms of the heat transfer

coefficient h as

(33) g: A/T-Z) = /(—/-f—-Z—//+ éc-qjj.

from (21). Hence from (31)

 

_ Ka {#5647} _ + -q, _ 5,-
(39) A - cg?) . A/Pfl 5.? 1/7: 7;)

This expresses the heat transfer coefficient as being inde-

pendent of the radius of the cylinder and proportional to

the fourth root of the temperature difference, a fact which

seems to be in accord with known data.

lith the aid of (31) we may now express (20), the maximum

convection velocity at the top of the cylinder as

  (40) V...” ng/f/Z—z} ‘7 //+e%+§f’3

- swam/5.2"?) [wfp «=45; ‘5

we note here that the maximum convection velocity is propor-

tional to the square root of the temperature difference and

is independent of the radius of the cylinder.

From (18) and (31) we may now determine the slope of the

velocity curves at the hot cylinder. to find this to be

a
3

(41) 9—)?- flmfl; [77": 4 //*1m*%x..’— I‘l/H-év)- C(77-7glq/
ix 1:.) 27k 7:77P(l+b€‘m’) 47" 3’ /2[“w

It is evident that the viscous drag per unit area at the hot

‘ Kimball and King p. 14
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cylinder varies among other things as the three fourths

power of the difference in temperature between the

cylinder and the ambient air.

VII. STATISTICAL CHECK

Using the available data, we find that the expressions

developed herein check to within a small percent of error.

With the following table of constants in c.g.s. units, the

constant a , the film radii and thickness, and the values

of various constants involved in the development were

determined.

6 _I(. —4.

1.013 x 10 k2 1.37 x 10 7= 2.00 x 10p r:

-27

m = 28xl.66x10 T,=- 383 To= 293

g = 980 K= 2720 L =25

The check was made using the approximation cf=fé which is

equation (23) when the small exponential term is neglected.

The expression (#5517) in this case becomes (#656) for y

equal to L. The tabulated results of the computations

for various values of x are as follows:

x": log 5'3 r0 b a a (C+§D+4i) Film thickness

0 n, rm- a,

.05 8.19 2 86.5 709 .4 .42

.05 7.98 2.2 90.6 724 .4 .43

.l 4.03 2 87.9 354 .45 .42

.2 1.86 2 95 177 .58 .41

.5 .39 2 120 71 1.33 .36
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From the fact that the value of the constant (Cfféhzfa

increases somewhat as the radius of the cylinder decreased,

it is evident that for more accurate results the expansion

of the various power series herein involved should include

terms of the third and perhaps higher order. However within

the limits of experimental accuracy the expansion to the

second order seems to be sufficient for values of the

cylinder radius r; greater than one centimeter.

A comparison of the results of this paper and those of

the plane case* is interesting. It is quite evident that

since the underlying principles are the same in both develop-

ments, the results should check to a large extent. The most

striking ckeck perhaps is the fact that the limiting value

of the isothermal film thickness as y becomes infinite,

that is, dropping the factor (l+6e””'), is the same as the

Langmuir film thickness. This was exactly the situation in

the plane case.

The value of a as determined by Kimball is approximately.

the same as the value of 13 determined herein. They have the

6

same dimensions and play the same part, befé the half temper-

ature gradient of the equivalent Langmuir film.

New results of the present theory are that the maximum

velocity, heat transfer coefficient, and thickness of the

film, to a first approximation, are independent of the radius.

' Kimball and King p. 21
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VIII. CONCLUSIONS

The theory checks the following laws:

1.. The heat conducted and ccnvected away from the cylinder

is proportional to the five-fourth's power of the temper-

ature difference.

2. The maximum convection velocity is independent of the

radius of the hot cylinder and is proportional to the

square root of the temperature difference.

3. To a first approximation the thickness of the film is

independent of the radius of the cylinder.

4. The heat transfer coefficient is independent of the

radius of the cylinder,proportionm1 to the fourth root

of the temperature difference and the square root of the

pressure.

5. The thickness of the equivalent Langmuir film is the

same as the thickness of the present isothermal film

at y equal to infinity. Furthermore it agrees with

its experimental magnitude being between .40 and .50

cms. depending upon the choice of b exactly as was

the case for the hot plate film. It is independent of

the radius of the cylinder. This is perhaps the most

important experimental check afforded by the present

treatment.

6. The theory holds accurately for cylinders of radius 1 cm.

or greater. Smaller cylinders can be treated by consi-

1b

dering additional terms in the expansions.
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