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Introduction

The purpose of this thesis was to find the radiation

pattern of an electromagnetic noint dipole of unit strength

located along the axis of symmetry of a perfectly con-

ducting orolate spheroid. Maxwell's equations are solved

in terms of the wave functions which have been discussed

before by Stratton et.al.,5 Page2 and Spence.5 Green's

theorem is used to calculate the field. Our calculations

were restricted to the limiting case where the dipole is

imbedded in the surface of the spheroid. In that case,

however, there is no radiation when the point dipole is

of the magnetic type, as is easily proved.*

It is believed that these results will be of use in

antenna theory and may shed some light on the mode of rad-

iation by shells or other missiles.

 

*See Appendix I.



II. Definition of Coordinates

The prolate spheroidal coordinates are defined by

the transformations

X=afi§§7a~74j case? (I)

Y=¢J7§‘-n(:-71) 51w (.1)

Z: l§7

 

 

where §Z|) —lé7§b 05?:532“. (3)

and (1,13 the length of the semiamajor axis. The metri-

cal coefficients are defined as

‘k: a. 2.22:. ('1)

k7: a I: : (S)

5‘? -.-.-.. aJGE'UU-f'). U”)

The practical utility of soheroidal coordinates may be

 

surmised that as the eccentricity approaches unity the

prolate spheroids become rodeshaped, which is approxi-

mately the shape of an antenna, see Fig. l.



III. Maxwell's Equations in a Homogeneous iedium

VX§+H9;%:O (7)

vxg-e%—%=O (3)

where g and H are the electromagnetic vectors and

[1.6 are the permeability and dielectric constants,

respectively, of the medium.

We assumed a harmonic variation with time and define

a ~c' w
Then equations (77 and.(37 become

VxB:-iecu§ U0)

We assumed that g andflare symmetric, i.e., they

are independent of the azimuthal angle? .

Expanded in suheroidal coordinates Maxwell's

equations become

37557 Hstiewafgi-Z-F 5., (H)

371W Hw' ““W’h "'7"

Mam-r); 5-)— 3:9: Es
*Q’Gatgvt) 371/? I

“gfflgE? :31“qu

 

 

(l3



 

gffifi’g‘strwa figs-7‘) H1 (NI)

gig? 13., -.-. -1pwaL§‘-7’) HS (15*)

B’i-év’é-i-w-sJi—Eéiws w
A. (557»

 

 

Z". ~££co Egg

These six equations have been so written as to

emphasize that they separate into two independent

grougs which correspond to the two types of dipole

excitation, electric--equations eleven through

thirteen and magnetic--equations fourteen throuph

sixteen. Upon combining we obtain the following

two differential equations

5%(5-0%“;“3,('7/9"“Ht/"[17 117]”? (‘7)

nd : — a} (31- gt)“:

4 d
a§G;I)%fiE%+‘a§1§-(k773%7?£q "L‘J—f- +§t11t4€ (18‘

- avt

where 6". z. ‘11::-yéZ/w‘ij f2. Elf/A

C, being the velocity of light, A the wavelength.

A solution) ofthese equations is ( l7]

f4k?-‘ Sig” R115)

The funct ons S‘Wand R‘giare the ar;,;jular and

radial prolate spheroidal wave functions of order one,



IV.

reSpectively, and are defined by btratton et.al.D

We shall discuss them further in Appendix.III.

Solution of the Partial Differential Equation and

Determination of Green's Function

We restrict ourselves to the case of an electric

dipole located on the Z-axis. Let us write equation

(I?) as

L H. = 0 («20)
where

L156-7)1%75;“6:?iii-[62351']
£411 1?};

L is thefprolate soheroioa+§operatoz 8231an to

 

functions of order one. On the perfectly conducting

spheroidf': 30 , ”wemust in addition satisfy

iggprflx) (2!)

while at large distances from the origin HY must

behave liae an outgoing wave function (radiation con-

dition).

The Green's f1mct:i{:cn6’(§37lg,7;)",satisfies

LG{§,7j§;7'}=" 1’? A? I»)?

and the sa;=ne boundary condition as Pk? , namely



i%(h.e)=o)€=§a (13>

and the radiation condition at infinity.

Once Green's function is determined ”Ifcg7) is

found from Green's theorem

H660): ,E‘v(§17)3:£a7§"“?33”')]‘°i W)

in.terms of the values of the integrand on the boundary.

1

The surface 0': 0? +0; +03 , where

2:: boundary spheroid g.

=.a small surface surrounding the point dipole

0
3
.
“
“
1
-
”
fi
-

=the great sphere, fifiwo

The significance of the similarity in the boundary condi~

tions (1|) and (23) is ta image the integrand in (‘1‘!)

I

vanish. Warn 0'20; , anda‘z 6; . Equation (2") is

so written that. 394977 signifies normal derivatives

into the field space.

The central problem of this thesis consisted of

constructing this Green's function, from which it is

possible to calculate the total magnetic field £1 at

any point in space in terms of the current distribution

on the antenna. The Green's function was so constructed

that it satisfies the same boundary conditions on the

spheroid as the electric and magnetic fields E; and

Li . Because of the symmetry of the problem, the mag—
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netic field consists of the single azimuthal component

It? and therefore the Green's function has a simple

scalar form.

We found the Green's function by the use of eigen-

functions as described by Morse and Feshbach.‘L We

assume Gig/7} §;7’) to be of the form .

66,7167? 2 ; (Luggage)My) (.25)
I

and that it is symmetric in (6,71'517". Substituting

(25)in (22., , multiplying both sides by S'flC‘7yand inte-

grating with respect to 7 and (P we get

1
, , lo

- l

(§r|)"a')0. +[Au +1504 6 Jam- :- AQEJ (24,)

a 6-:
where N‘lis the norm of the angular function.

By referring to equation (59) of Appendix III we

see that 0118,?) satisfies the radial Spheroidal

- I

differential equation at all points §# § . The

differential equation (2(9) asserts that the left

hand side is infinite when g: g, . This means that

dug/£1) and/or its derivatives are infinite. I

If we integrate (26) with respect to g over

’

any range including the point -- ' we get

’5 Z 2 z i _._:_L_ L2")

4 #‘Q‘E +All+tJ§-§-2#'} 0‘1! df" 2114M,~ )

The result is clearly independent of the range of g .

We may therefore Shrink it arbitrarily close to the



I

point 6:? . In that case the derivative term in the

integral outweighs all others because of the singu—

larities discussed above. We obtain

(1 (1.16,?) g _ -' L“)

d§ gL. 11W» Nu. (€14)
l‘ 1+

whereg ,§ are two points arbitrarily close to

 

l

3 at either side.

In additionauG'g )must be symmetric in (g, g ) and

must satisfy Sommerfeld's radiation condition when So

0

§_7oo. Therefore

. IRIO-‘é’aknl‘bvg' (2m

a,,(g,§)—. @RutgBOWEN/g“ 3'

where”R”(UR+l$ i the radial function with

outgoing-livave behavior,*m‘ancg R‘L is a linear combi-

nation of the fundamental set of radial wave functions

(”Rugg)Bu“('3‘ , such that the condition (.13) be

satisfied at the bouandry spheroid go . Thus e vrite

u) L0 e)

To solve for , 3’» , two simultaneous equitions are

required. As the first we have the boundary condition

L23) , which can be written in the form

 

*See Appendix III.
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(1) (I) (I)
7,117;($03.30 a... ufimsfiz‘r Rug) (3.)

As the second equation determining 61’’3L we have

available equationQwL* Thus one obtains the result

L _ __ ( 2.

Egan}L‘s-) airlift»ALIS.)wkmg) 3 )

where Q.) / l (l) /

milk) = WTLQERtLC‘) "W‘gfktégj (3’)

The calculation of Green's function for our

 

problem is now complete. The exyansion (28) takes

the final form

96'7ng7)

:31 Sl S L I a“)Bk|é§b§<§ (gq)

NKim‘s) define(30,57?

 
fIt can be easily 3lOWIl from the radial differential

equation (5’9), Appendix III that the Wronskian of its

fundamental set of solutions is

(I) (J (2 (’1’ /

Ru. R11““kw IA: Ed3--l)

i. e|.’~, essentially the riht hand side of (.23)
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Use of Green's Theorem to Calculate the Magnetic Field

at any Point for an Electric Dipole on the Axis of

Symmetry

In accordance with the remarks on page seven,

Green's theorem reduces to

I

i g a I I

Hawfiwws—sawmills
1

where 0;. is a small surface surrounding the dipole,

and where H? (3317') , the field in the immediate

neighborhood of an electric dipole, is defined4 as

l

L'k R
’ 36

He' wees—see "he )7 ‘HF R1

where E: is the distance from the dipole to the field

point.

I

The surface q: over which we are integrating is

infinitesimally small and approximates a circular

cylinder, see Fig. Two. The dipole is located at D.

I

The side of the cylinder )4: surrounding D is

constructed from the coordinate hyperbolohd :7 equals

l

constant and nearly unity. The bases of q are

cut out by this hyperboloid from two coordinate

+ —-

Spheroids g, and 3. , symmetrically above and

below the point D. Substituting (3‘!) and [36) in

(5‘) and integrating we find that the singularities
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FIG. 2. P(;)7) is the variable point of integration;

J is an infinitesimally small positive number.
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are integrated out, with the final result* .

__ é'é 8’ (g ' (‘3 7

where

B _____ fitCLl L” (58)

X Nu. U :15»)

As gl—y §bthis coefficient simplifies to

I!

__ g c. . (a?)

B. -- Nae-aw
which applies when our dipole is imbedded in the

 

spheroid. This coefficient is singular whengo‘" .

Since the Spheroid in the limit§o=l becomes a rod

of zero thickness and length 3a. , this result means that

the system would radiate an infinite amount in this

limiting case” At large distance fflufaeaG) be—

comes (-iffle‘hflag and fire? becomesfifi, . Thus,

for the radiation field we find

in.

HQGIV): 11.". LP‘ _e—fl:_ (“4x BX Suc7) 0-H)

 

*Details of this calculation are described in Appendix II
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Energy Radiated

The radiation intensity is defined as the real

part f the complex Poynting vector

sfllg x1“)? (4))
1 —

%

where L} , is the complex conjugate of }+ . When

we substitute (#0) in Q0) we find that

EFWEH.

ES: 0

Thus we obtain the Poynting flux

to"): $1913"; 7'; pews.) H 34
2T Ed.

when 3’ is large (7'1)

where w . ‘ 2

fie/£473.) :. (get)! B, swam (7‘3)

Here 6 is the polar angle measured from the positive

z-axis. The coordinate 7 becomes 6036 at large

distance as the hyperboloids apvroach the cones of

constant £3 .

The functioni represents the variation with

angle of the radiated energy, and depends in addition

on the parameters fiat-377% and g .
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VII. Results

The radiation pattern for a number of values

of $0 and Q& are plotted against angle in figures

four to fifteen.

The values chosen for 30 ‘were 1.005, 1.020, 1.044

and 1.077. These represent prolate Spheroidal radi-

ators whose eccentricity decreases in the order given,

and their proportions are illustrated by figure three.

The parameter the was given the values one, two

and three. Since “=51?de and 25L is roughly the

length of the radiator, these values of fie. correSpond

to wavelengths equal to 1T ,IT/A and "/3 . In other

words, in no case considered is the wavelength

shorter than the spheroid, being roughly equal to it

in the shortest case, “~23 .

We realize that it would be of interest to com-

pute radiation patterns for wavelengths shorter than

the spheroids. However, the results are given as

infinite series representations in terms of Spheroida

wave functions, cf. equation (‘{3), and the convergence

deteriorates as *& increases. We limited ourselves

to cases where the computation was accurate while

using no more than four termsin the series (”3) , i.e.,

fl:O/|I3)3 . As it was, this required an extension

of the tables of spheroidal wave functions over the
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existing ones of Stratton et.al.,5 and of Spence.3

Some of these results are tabulated in Appendix III.

As regards to the radiation patterns of Figs.

4-15, the spheroids have the effect of radiating into

directions where 9>70°. Vihereas for the dipole alone,

the radiation is symmetric about the z-axis. This

type of radiation oattern becomes more pronounced as

thL increases.

A greater amount of energy is radiated as the

soheroids approach the limiting case, where ‘7— , as

was predicted by equation (3") .
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A Magnetic Dipole Near the Tip of the Spheroid

The electromagnetic field can in this case be de-

duced from the component £5q> alone. It must satisfy

the boundary condition

E'f : 0 when g: go (17(5)

The calculation for Green's function yields

G67; 57') Utmé Gk

2% W (‘5) (3) 3‘? Q1“)

2 mfiaue.) (”RZGWRmu)?>§’

where now

.
I :2)

“Li?(3)3R;s”)R.
(9-9Ruej'RLLS) an)

in order that Gfi7jg'l7)satisfy the same bounds 1y

condition as Ehe .

The calculation of En? yields an expression

analogous to equation (37) , but now: the coefficients

of this reqresentation have the form

81: taC. fkm(SM/{ET

NUF’R (3.) (“mu

where g , is the coordinate of the dipole at any point

I



of the pos tive z-axis such that €12 go . Now as

§,->§°,L u , and therefore 811. as well as the

entire field must vanish.

A simple physical argument can be advanced to

account for this fact. When a magnetic dipole is

approached to a perfectly conducting surface, with its

magnetic moment perpendicular to it, there will arise

surface currents producing an opposing magnetic dipole

field vanish, as required by general theory. In the

limit of zero distance the effect is complete cancel-

lation.



II. The Integration in Equation (35)

We substitute from equations (34) and (35) into

the integral (35). The integration variables are the

I

primed coordinates g , 7’, and all quantities are re—

presented in terms of these. Thus one finds, cf. Fig. 5

and equations 0) , L1) and C5) , that

sin e: f/R H?)

where

R= a J(§'-U0-7")+(§'-§.)‘ (‘9’

f z: aJ(§”-’-l)(|“7'T) (5‘!)

also z! =a§‘ , and $2 fig. since 7:: I“; (5 2’)

where J- is an arbitrarily small positive number.

 

a
 

In substituting from (5‘!) it will be convenient to

write down here just a typical term of the infinite

series, and furthermore only that part of the term

which varies during the integration, i.e.,

, ( :

512(7) 11(3) (53)

This clearly is the function to be used in finding the

field at points (3,7) more distant from the origin

I

than the dipole D itself (§?§) . (If the near field,

such as the current on the spheroid, were desired,

Lu’RU. would be reilaced by (”R [L ).



The integral breaks Up into three parts, the top,

bottom and sleeve of the cylinder. Since the cylinder

is infinitesimal in size, those terms with the highest

negative power in R predominate, all others can be

neglected. Thus on'esobtains

_ we ,

~3‘fkw153-??— 5‘77‘9'“r‘ 7

9R“Ur-3...:— (3 6" 1R 5,1977”?'hf' d7 ' (5”

+4 S,,(I~5)fr7K’é ”fig(3')RSAp M

The choice of prOportions of the cylinder is

 

arbitrary, and if we assume it to be long and slender

such that

/°<< «(3"; §,)

then it is easily snown that the first two integrals

cancel each other, while in the tJde

'11; Z: "t— r*' ‘II -+ .1 éyi

R a‘[u-7'v(§'—I)+<3—§.)j

can be expanded by the binominal theorem.

 

I

Since the value of the integral over 1‘ must

be independent of its size so long as it enclosed the

dipole, we may now shrink it arbitrarily close to the

point D.and obtain the result that only the first term
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of the binomial exoansion will contribute an amount

waich is not arbitrarily small. The calculation

yields the result

_.’2Lw 311("'$) m (57)

a “4”); Jacki,”

 

One finds that the bracKeted expression becomes the

IQ
coefficient Q , defined in (B7) .

Remembering that the actual termof the ex-)

.
(3 (,5

pansmn (3"!) is not (53) , but “(7)WRMW\

times (5.5) , and imposing the summation appearing in

(3%), one Obtains the final result embodied by

equations (37) and (58)



(
A
!

III. Formulas Useful in Computation with Prolate Spheroidal

have Functions

The partial differential equations (/7) and ([8)

upon separation of the variables yield two ordinary

differential equations

(7LI)%SIA +[Afl :2 O (58)
Isl

      

3
1
¢
.

(59)

 

       

J- 1 J l

--( 4.8.

«1? g )ds' 1i” §*—

The solution of (5:9 is given by Stratton et.al.5

‘
50’3 May)"- i0/: H(7) “0)

The prime on this summation and those which follow

indicate that the sum contains only terms even.ir1 *7

if 2(- is even and odd in VI if! is odd.

The norm of the angular functions is given by

' , z 00 I l :L I

N";[ [7%)] ‘17 2 ggfihiifii (a!)
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The functions SUE?) possess singularities at

7:1. and therefore must be eliminated as a possible

solution in problems where the 7~ axis lies in free

space.

The radial equation (57) has two fundarinextal

(1)
solutions,)1?“(3) and I“) . The radial function

of the first kind is given by

0" IO. K-l-l/A
Q __ A. I 1—1 (62)

where the factor I or g are used when l is even

or odd, respectively and V'here

___l_' 1.... (as)

x"Iii-41k (1:1)!"

x ‘Efl.’ toil w»
111 :Jfi-ch#4} (£11).

11

The coefficients CK are found from the

recursion formulas

3K(2g+2)CL1+{UK-Hulk}:+115
1 +2 4%?! 01:] (a) 5)

+£zatCk-1JKGVC’?
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4K(2K+2)C.l+ §(:K‘H)2K +A|Q +fiz¢1}C‘Q"l ((0‘)

Mi?1C11 on

(L7)

 

”I a l

and (:;:l::: 1:5: ‘4” (7Tf4?

m9: 271,

We did not use the expansion of the radial

function of the second kind as defined by Spencea

for two significant reasons, namely

(1) his eXpansion is a power series in the

variable f-lz' (é‘fUG'U. If one wishes

to compute the value of this series in

the range 3 just beyond-bl the use of

the variable 3-] alone is clearly of

advantage;

(ii) the coefficients in the expansion given by

Spence are determined as infinite series,

which do not always converge raoidly,

whereas the coefficients of an expansion

in the powers ofg'l are detafmined in

closed form from the set of (fé previous—

ly defined.

Consequently, we found the following expansion

for( useful:

( .— g)~ +6;afiurf"fifi§:+dzz(gb+dlg+1 (ng

(9%}0k}
1+4

where

{=§-l



cf: I/ei

G": -— as /e.,3

61 = ( 3811“ 2£061)/Q7
.1

G; = -- Hels- L625, €1+1e:93)/ef

and where

60 :: 2C?

:1
e, : (fl-MK,“ 0R. 3C6.“ 4-qu

, Q IL

e12 aqfi. 3c,“ on cg‘L-z-sc,’ +9c,

. . 2
e, ‘-’.- c,“+:.1c,"+mg" on. 5c, ll+2acf~+m€§

where the first alternative corresoonds to evenl ,

the second to odd ,2 . Finally, the constant K1 is

defined in terms of infinite series over the coeffi-

cients A), which, however, ravidly converge in the

range of our calculation, viz.



 



«40—w

K = 3:“. $114: 22.."«1+! 6"
‘ 2&6"? (0&3)?ij .2 °

l "’ Q

«.1.:§[Jf(fl+l)(n+a)2%]~l'wZ (.1 "1.94:- i};- L Qfi)

ital)(:F‘WF‘Lif ' Keven

Aim

 

('2 i 1.3+! C'1

K‘2%.3"" +1(C.‘9’ :otQ“)‘.‘‘ta °

Z[J.(w)tn
+z)§"']'Z

J(Mani;
(7o)

.31" (MM-1)} ’- 0H

”:5 =

Other radial functions arise in the solution

of boundary value yroblems involving Hrolte

(I)

spheroids. They are linear combinations of RIO.

and(”Rm given) in L51) and (b!) .

Among these 13(3)RIF—(S)

0“(S): ORR,(E) +‘LdRmtv (7’)

which for large g takes the form

(‘43

(s __ _ 14-16 (71)

i”(3) I ) £03

In conjunction uith the assumed time dependence
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this function satisfies the Sommerfeld radiation con~

dition at infinity.

The extensions of the tables of prolate soheroidal

constants and functions by Stratton et.al.5 and by

Spenceg are given in the following tables.

  

A15 A14

at»: 2 -21. 94014372 -51. 96275891

3 ~24.408312175 -54.45404458

4 -27.91179



C
N

(
0
4
1
0
1
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I
I 1
0

ka ka-5

  

 

0
0
0
3
m
e

10

0.000004 f)

-0.000055 6

-0.0008115

0.0058659 6

0.086649

0.97072

-0.055648

0.0005902

-0. 000002

-0.000001l e

-0. 000016829 Q

0.00050497

0.0051979

0.068002»

1.0158

~0.052729

0.0004799

-0.000052

~0.00005 r

0.0004587 6

-0.0026501

-0.019055

0.042681 6

0.18268

0.95056

-0.07719

0.00288

-0.00002

0.000010 9

-0.0000€364 e

-0.00045567 6

0.0056564

0.015012

0.15410

1.0246

-0.074684

0.00246

-0.00006



223,5. ka

0.0000000

0.795116

1.508551

2.07587

2.45897

2.561776

2.452795

2.0675668

1.507590

0.8179867

0.080981

-0.6142452

-1.18185

-1.55095

-1.67654

-1.545167

—1.1805748

—0.658058

0.0000000

- 45 -

= 2

0

3:5,}:{82'8
 

0.000000000

0.716985

1.57558

1.913126

2.28670

2.46921

2.40488

2.12959

1.65492

1.02998

0.52501

—O.57405

—0.990095

-1.59907

-1.58209

-l.49921

-l.16551

-0.65606

0.0000000

L41 Rag-15
 

0.000000000

1.22076

2.27047

2.99461

5.50957

5.15275

2.55889

1.62687

0.514655

-0.58565

-1.47125

—1.98655

-2.05822

-1.62865

-0.85874

0.9015 .

0.99475

1.64097

1.87500

The table appearing on this page was computed by

H. Myers and is reproduced by kind permission.



 

  

If
C0 11:: 5

ka - 2 9.2697

5 6.6629

)nfl.

ka - 2. 999.69

6 190.06

ka = 2 4.2142

5 5.9656

c)
Ru ,2 =5, ka=2

g .1.005 .00094696

1.020 .0020092

1.044 .0052755

1.077 .004901,4

(11R '

In

5 :1.005 .096646

1.020 .058550

1.044 .049859

1.077 .049565

-44..

‘X . 4

 

14.720

14.524

12,946

1751.5

5.6501

9. :5, Ka=3 K :4, ka=2

 

.004461

.0094066

.015115

.022155

.46222

.26741

.22060

.21015

.00011757

.012558

 

.00085277

.0018652

.0051594

.0049581

.090415

.057522

.052962

.056820



(#93

I!

‘§;1.005

1.020

1.044

1.077

(1) l
R

l!-

3:1.005

1.020

1.044

1.077

I :3, ka=2

-45...

    

-262.46

-l52.07

—l46.5

~2.x 102

52858.

1745.2.

-556.5

-1 x 103

:6, ka:5 1:4, ka=2 i=4, 149:5

~51.977 -1792-1 -166.62

-10.59 «60.65

-2.26 -28.

2.8

4.1 x 103 2.6609 x 105 21525.

591. 2560.

2.1 x 102 7 x102

1.2 x 102
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