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Introduction

The purvose of this thesis was to find the radiation
pattern of an electromagrnetic noint dinole of unit strength
located along the axis of symmetry of a perfectly con-
ducting prolate spheroid. Maxwell's equations are solved
in terms of the wave functicns wnich have been discussed
before by Stratton et.al.,5 Page2 and Spence.:5 Green's
theorem is used to calculate the field. Our calculations
were restricted to the limiting case where the dipole 1is
imbedded in the surfece of the spheroid. In that case,
however, there is no radiation when the point dipole is
of the magnetic type, as is easily proved.*

It is believed tnat these results will be of use in

antenna theory and may shed some light on the mode of rad-

iation by shells or other missiles.

*¥See Aporendix I.



II. Definition of Coordinates

The proleste soheroidal coordinates are defined by

the transformations

X=a yEL[J(I-77 cos¢¥ (1)
Y=a{E=N(-7%) sine (2)

Z= a%y

where§2|) "lﬁ7-—‘—"j 05 ‘F.":2TT L3)

and a'is the length of the semi-major axis. The metri-

cal coefficients are defined as

|-g:-_ a fé‘;ﬂ"— (1)
k’]:a' l: : (S)
hq = a\((#-')(l-y") (G)

The preactical utility of swheroidal coordinates may be

surtised that as the eccentricity a>-roaches unity the
prolate s:-heroids become rod-shaped, winich is approxi-

mately the snape of an antenna, see Fig., 1.



III. Maxwell's Equations in a Howmo.eneous aedium

VXE+p3t =0 (7)
vxﬁ—e%%r-o (8)

whereg and H are the electromagnetic vectors and
fl,E' are the permeability and dielectric constants,
respectively, of the medium.

Ve assumed a harmonic variation with time and define

e = i
Then equations (27 and (37 become
VxE:i,.Lw_H (7)
VXH =-lew E (19)
We assumed that é: andli.are symmetric, i.e., they
are independent of the azimuthal argle (.

Expanded in svheroidzl coordinates iaxwell's

equations become

QAT He=miewa 77 B 1)

VT Hy= iewe (T B 09
=) (=) (9 AT E
ch(ﬁ“-—’]; "6‘7 §= 5 (13

d%{%rlf? :ifwatf




%f\ﬁ?{g,(:‘»rm, J'fg‘«?‘) H'I (14)

LG

j_(gjt)u 7 <\ §_7L Cﬂ.& C1e)

7 :.-L€.coE.|()

These six eqguations have been so written as to
emphasize that tney sejarate into tso indejendent
grouss vhich corresyond to the two types of dioole
excitation, electric--equstions eleven throupgh
thirteen and magnetic--equations fuourteen throuch
sixteen. Upon combining we ovtain the folloving

two differential equations

(5 ')‘3'“?* G-l = 7 §-—1]H‘f (11)
and =7 a}(s 7 H‘{
i )iﬁgwﬁ '7'73‘7&9 T {%-'T]E'\’ (13
where EP’EJ’: él/w }ﬁ-aﬂ'/)

¢ being the velocity of light, N the wavelength.

A solution of tnese eguutions is ( qu

H\o - Su_ Q‘IXJ

The functlons S i)l)cnd ‘g’are the ern;uler and

radial nroleste snheroidal wave functions of order one,



IV.

respectively, and are defined by OLtratton et.al.5

“'e shall discuss thnem furtner in Aooendaix III.

Solution of the Partial Differential Equation and

Determination of Green's Function

%e restrict ourselves to the case of &n electric

dioole located on the Z-axis. Let us write equation

(17) as
LHe=0 (20)

where

=& 1%(75% G"ﬁ_ [§2 */]

L is the prolcte soheroiuo operato?l)eaunb to

functions of order one. 0On the perfectly conducting

spheroid{: §o ’ ch must in addition satisfy

h - 35 (he )= © (21)

wnlle at large aistances from the ori; in HV must
behave li<e an outroing wave function (radiation con-
dition).

The Green's fmctl[}né'(?} §, 7;) satisfies
LG’(§/7j§/’7’):- 4§ h7 he

and the sane boundsry condition as th , namely



L9 (heG)=0,8=3% (23)

"3

and the radiation condition 2t infinity.
Once Green's function is deteruined Hlf(g 7) is

found from Green's theorvrem

Hol5)= ﬂw 7)2E - G & Hel&)m)[de )

in terms of ths values of the integrand on the boundary.
[

The surface 0 = 0y +0; +07 , where

)

o = boundary soheroid §,

q:' snall surfece surrounding the point dipole

03‘ the great sphere, ﬁ%w-
The significance of the sirilarity in the bcundery condi-
tions (1) and (23)'is ta pake the integrand in (R4)

‘

'} Vi '}
vanizh vhen =0, | and 0= 6; . Fauation (.2"/) ie

so written that | a/a” signifies normal derivatives
into the field s»ace.

The central ~roblem of tinls thesis consisted of
constructine this Green's: function, from which it 1is
possible to calculate the t:>tal magnetic field H at
any point in space in terms of the current distribution
on the antenna. The Green's function was so constructed
that it satisfies the saxe boundary conditions on the
spheroid as thne electric and magnetic fields _E_ and

M . Because of the syvmnetry of the problem, the mag-



netic field consists of the single azimuthal component
}*q»and therefore the Green's function has a sianle
scalar form.

We found the Green's function by the use of eigen-
functions as described by ¥orse and Feshbach}' We

assume G‘(g,‘?)' §;7’) to be of the form )
G (57587 = 7. Gy, S0 5.8") (25)

1
and that it is symmetric in (&,'7)‘ §,7'}. Substituting
(25)in (22), wultiplying both sides by Sm(‘7)and inte-
grating with respect to7 and ‘P we get

60 +Ae +Ee)y Jee S22 _2._.57%2 ()

where N\lis the norm of the angular function.

By referring to equation (57) of Aopendix III we
sce that d_u(g,g') satisfies the radial spheroidal
differential equation at all zoints §# f, . The
differential equation () asserts that the left
hand side is infinite when §=‘ gl . This means that
a-w (§/§') and/or 1ts derivatives are infinite.

If we integrate (&) with resnect to g over

any ;ange 1nzcluding the ?oi:t z‘-’- we get -_—;L_ qu
Aﬁiﬂ jﬁg%{g&',g%g'fJAu!*'ihfgziéisi}[‘Lvt‘ig-:mhz'uu. )

The result is clearly indejsendent of the rance of % .

We may therefore sirink it arbitrarily cloze to the



[
point gzg . In that case the derivative term in the
integral outweighs ali others because of the singu-
larities discussed above. Ve ovbtain

4 g,68)] = — | (2%
dg " gl_ - Afra NU. (gz—l)

- ]
where§ ,§ + are two points arbitrarily close to

]
3 at either side.
' . '
In additiond.u(glg )must be symmet.rlc in (§, § ) and
must satisfy Sommerfeld's radiation condition wnen 5 or

'
§—700. Therefore

ReHR 5 5>¢ (a9)

ybs)= REIFR) 5<§

Gy _O ¢ | -
where R'l- Ru‘l"l 1w i the radial function with

outgoing-wave behavior,¥* and R'L is a linear combi-
nation of the fundamental set of radial wave functions
2
Q)R\g&)g)kw_(g\ , such that the condition (-13) be
satisfied at the boundary spheroid §° . Thus ve write
> JL" Q@
R =% Ry +9.K,

To solve for » 3‘. , two simultaneous cqu-tions are
required. As the first we have the boundary condition

L-'la) , wnich can be written in the form

*5ee Apoendix III.
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1 @ z
(%UT,:(%V'O rhere W (Y = YE5) Q’)R\,,_(%) G1)

As the second equation determining AQ. gk we have

available equation Qa .* Thus one obtains the result

C _ (32
I{{\L%) :m'N\‘ (S.) R S )
where (g, | /

U[kusﬂ: {UT;.(%S)RU.( —uﬁ(g,fk —

The calculation of Green's function for our

aroblem is now complete. The exnansion (28) takes

G357

_ =R 5 L SL' iﬁ\(ﬁ) km‘é)jﬁq B4)
AT ‘3"w’ Ry 6%, 8), 525"

*It can bve easily snown from the radial differential
equation (59) , Appendix III that the Wronskian of its
fundarnental set of solutions is

O Go’ @b 0,7
R,. Ruz k w= BZ(S=D

i. e ’ eqqentially the rizht hand side of (27)
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Use of Green's Theorem to Calculate the Magnetic Field

at any Point for an Electric Dipole on the Axis of

Symmetry

In accordance with the remarks on page seven,

Green's theorem recduces to

’
o I
Hisp= [DgsyRe — 2 WSy I 4G (39)
2
where d;‘ is a small surface surrounding ine dipole,

and where HQC’)‘}?.) , the field in the imnediate

neighborhood of an electric dipole, is defined? as

[}
(kR
;’ w C 36
w1 T g R
where R 1s the distance from the disole to tae field
point.
’

The surface 0: over which we are integrating is
infinitesimally small and aooroximates a circular
cylinder, see Fig. Two. The dipole 1s located at D.

’
The side of the cylinder d; surrounding D 1is
constructed from the co-rdinate hynerboloid 7 equals
q
constant and nearly unity. The bases of q are
cut out by tnis hyperboloid from two coordinate
f —-—

spheroids §‘ and 3. , Symmetrically above and
below the noint D. Substituting (3¥) and (36) in

(5‘) and integrating we fina that the singularities
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FIG. 2. P(‘,?) is the varisble point of integration;
J is an infinitesimally small positive number.
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*
are integrated out, with the final result

- N . |
Hglsn)= 2= Z B, S.tﬁBRu‘g) (37)

=

where

o - BCRGAET (39)
, Nig iy 52)

rs § = $athis coefficient simplifies to

1L
_ Co 69
B, = N (-1, 8)

wnich applies when our dipole is imbedded in the

spheroid. This coefficient is singuler whenﬁk‘,l .
Since the spher>id in the limitgo——-"l becomes a rod

of zero thickness and lenith 2@ , this result means that
the system would radiate an infinite amount in this
limiting case. At large distance f—’“,(‘ﬁe&G) be-

comes (—i)’“’e‘h}/fas and ﬁa? becomesﬁ}l_ . Thus,

for the radiation field we find

33y

He &)= ﬁ;’;—? -Q,L Z(--i)SL 13, 3,17) (4¢)

‘betails of this calculation are described in Aorendix II
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Energy Radiated

The radiation intensity is defined as the real
part of the complexjsynting vector
S*=L ExE “1)
wheren , 1s the complex conjugate of _H: . When
we sub;itute (40) in(jo) we find that

E,’=J—% He
ES: O

Thus we obtain the Poynting flux

Re(SF) = Jé{-‘lif = (CALUHY 4 34

AT ea

when g is large (‘/'l)

where oo . ) 2
plo sy = |2t Bsgp”  LH3)

Here © 1is the nolar angle measured from the positive
z-axis. The coordinate 7 becomes €03 © at large
distance as the hyperboloids ao .roach the cones of
constant © .

The function'i represents the variation with

angle of the radiated energy, and depends in addition

on the paramneters ﬁd-:afra,/A and ; .
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Provortions of spheroids

3.

FIG.
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Results

The radiation pattern for a nunber of values
of ?o and ka. are plotted against angle in figures
four to fifteen.

The values chosen for §o were 1,005, 1.020, 1.044
and 1.077. These represent prolate soheroidal radi-
ators whose eccentricity decreases in the order given,
and tneir pronortions are illustrated by figure three,

The parameter th- was given the values one, two
and three. Since k¢.=:zrd/4, and QA& is roughly the
length of the radiztor, these values of ‘ﬁa. corresnond
to wavelengths equal to T ,]T/.l and "/3 . In other
xords, in no case considered is the wavelength
saorter than the stheroid, being rouphly equal to it
in the shortest case, =3

Ve realize that it would be of interest to com-
pute radiation patterns for wavelengths snorter than
the spheroids. However, the results are given as
infinite series represcntations in terms of spheroidsal
wave functions, cf. equation (‘13), and the convergence
deteriorates as 'Q& increases. Ve limited ourselves
to cases where the com»-utation was accurate while
using no more tnan four terms.in the series “faﬂ , 1.e.,
Y:OIIIQ)B . As 1t was, this required an extension

of tne tables of spheroidal wave functions over the



- 17 -

exlisting ones of Stratton et.al.,5 anua of S‘pence.5
Some of these results are tabulated in Appendix III.

As recards to tne rasiation patterns of Figs.
4-15, tne spheroids have the effect of radiating into
directions where 6>90°. Vhereas for tue dipole alone,
the radiation is symmetric about tne z-axis. Tnis
type of radiation nattern becomes more pronounced as
ﬂﬁ—increases.

A greater amount of energy is radiated as Llhe
soheroids approach the limiting case, where §;=| y S

was predicted by eguation (3Q) .
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FIG. 10
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A Magnetic Dipole Near the Tip of the Spheroid

The electromagnetic field can in this case be de-
duced from the component fE%) alone., It must satisfy

the boundary condition

E‘e - O when §= %o (LIS)

The calculation for Green's function yields

G<§,7; $,7) /< 3&
2 5 S 5§ Rk (3,347 | (4)
::Ei'nﬁﬂfjtatl(SQ) i;g&gLL(g)Cﬂﬂilgﬁij,g; :§

where now

\ )
TR © =R, R, YRS RG @)

in order that GG,?)S"?)satisfy the same boundary

condition as E‘Q .
The calculation of £;f ylelds an expression
analogous to equation (37) , but now the coefficients

of thls re>resentation have tihe form

N\l |L(§°) G ﬁ\

where g , 15 the coordinate of the dipole at any point
I



of the posjtive z-axis such thatg"?_ §° . Now as
g“')go,L TR and therefore Bﬂ. as well as the
entire field must vanish,

A simpnle ~hysical argument can be aavanced to
account for trnis fact. Vhen a magnetic dioole is
aoproached to a pnerfectly conducting surface, with 1its
magnetic moment perpendicular to it, there will arise
surface currents producing an o>.»osing magnetic dioole
field vanish, as required by general tneocry. In the
limit of zero distance the effect is comolete cancel-

lation,
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The Integration in Equation (35)

e substitute from equations (3%)anc (36) into
the integral (35). The integration variables are the
primed coordinates gi, 7(, and all quantities are re-
presented in terms of these. Thus one finds, cf. Fig. 3

and equations (1) , Ll) end (3) , that

sihe= p/R (%9)
where

R=a VE=D0-y" I+G s (50)

p=aE=D0-y" (1)
also EI =4§‘ , and P= a,g‘ since 7: /—5 (5 2')

where J- is an arbitrarily s:sall positive number.

and

In substituting from (3") it will be convenient to
write down here just a typiczl term of the infinite
series, and furthermore only that part of the term

which varies during tue integration, i.e.,

P ¢ /
5477 Ry (%) (53)

This clexrly 1s the function to bte used in finding the
field at points (37) more distant from the origin

‘
than the dioole D itself (§7§) . (If tne near field,

such as thne current on the spheroid, were decired,

n’R‘l would be re.laced by (’)R Tt ).



The integral breaks up into taree parts, the too,
bottom and sleeve of the cylinder. <Since the cylinder
is infinitesimal in size, those terms with the highest
negative power in R predominate, all others cuan be

neglected. Thus one obtains
-3¢ wfkﬁ "i‘. P C R\S“L’] )‘77 l\r: (17

R ) __L_fe"“_s Ihyhyedy” (Y

+2 ,Rw)f ok E R b 4

The choice of osroportions of the cylinder is
arvitrary, and if we assume it to be long and slenuer
such that

p << a(s-s,)
then 1t is easily suown that the first two integrals

cancel each other, winile in the tuird

' =

5 72) [ L T o 292
& [ IEEN)+EES )]
can be exoanded by the binominal theorem.
/
Since the value of the integral over g? must
be indenendent of its size so long as it enclosed the

dipole, we may now shrink it arbitrarily close to the

point D and obtain the result that only the first term
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of the binomial exoansion will contritute an amount
wiiich 1s not arbitrarily sma:l. The calculation

yields the result

_.?Lw Sc.l(l"S) @i&d}.«l (57)

Vi—(-§* J.,owlgﬁl

One finds that tqhe bracketed expression becomes the
[
coetricient (= , defined in (67).

Remembering that the actual term of the ex-

pansion (3"’) is not (53) but ”‘(7 ‘és)/N\(-‘?) (

times (53) , and imposing the summation advearing in

(31]), one ovtains the finesl result embodied by

equatians@?} and (38) .



(N
(o))
|

III. Formulas Useful in Com>utetion with Prolate Spneroidal

Yave Functions

Tne vpertizl differential equations(]?t) and (I‘)
upon senaration of the vsariables yield two ordinary

differential equations

d (7"’)%750. +[ All 1-*2‘7 T ,’_.';T] Sli = O (58)

SLl

7

4 (s1)dR 12er | -0 9
g5 SV [Pards R

The solution of (5’7 is given by Stratton et.al.5

7) = Z J: H-n(7) (LO)

The prime on tuis summation and tinose wnich follow
indicate th-t the sum contains only terans even in »7
if /l is even and odd in »7 iftC is odd.

The norm of tne angular functions is given by

" 2 0,/ g2 i
N=[ [0l =2 2 (s
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The functions( S;E')) possess singulrrities at
'7:1] and therefore must be eliminated as a nossible
solution in problems where tne Z— axis lies in free
snace.

The raalal equation (57) has two fundamentsal
solutlons, R (g) and(‘)
of the first kind 1s given by

@, 4 , K+l
R0, (47,0650 (62

where the factor ' or g are used waen l is even

1(&) . The radial function

or oad, respectively and vhere

VARTETY
_¢ec &H) 63)
WEde @

\ =20 c (Li‘z)’ ( odd (6Y)
$ T (5

il

The coefficicents CK are found from the

recursion formulas

QK(JI:-l-.z)Ck {(uﬂ)(:xq) +A, +2 +ka CK '" (65)

+ ¥ 1Ck-.1 ZG"‘C')



- 38 =

ak(ak+2)C '£+ i(‘“‘*')-?K +A )y + A% ‘}C -
.kl 3 C l oJJ

Wie did not use the expansion of the radial

function of the second kind as defined by Spences

for two significant reasons, namely

(1) nis exnansion is a power series in the
variable §*/= ($+1)(3-1)) . If one wisues
to compute the value of this series in
the range § just beyond+l the use of
the variasble §=J) alone is clearly of
advantage;

(i1) the coefficients in the exnansion given by
Soence are determined as infinite series,
wiich do not always converge ra»idly,
whereas the coefficients of an expansion
in the powers of §~I are determined in
closed form from the set of (:
ly defined.

Conseguently, we found the following expansion

(

for usefule

Jid

previous-

(6¢)

(67)

“Km— }sx{ +6 Lf+‘<a+Z Gira M) G

where

1=$-1



G = /e
Glx:: _—s /6’03

Gl = (3¢/-2%¢, )/ &’

2

G; = — (‘-Ie,’- e Q,_'Ple:es)/e:-

and where

e, = QC‘:I
! 1'8
Ez_::(;lqaﬁkrl on 33C:1,+_Lf(;
p (P}
e, = 40480 on CH+8C"+IC,

L kg e
e, = '+ 1261 +16G" on 5¢ 20116

where the first alternstive corresponds to even £ ’
the second to odd ,Q . Fineily, the constant K& is
defined in terms of infinite series over trie coeffi-
cients db wnich, however, ra’idly converge in the

range of our calculation, viz.
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L

— C"‘Z f;‘id_:_ 2+ c"‘
2(C, “)3 (a(C.‘PJ j .7.“ ‘ °
—= i[‘l (nﬂ)(nu)i ]"LZ (“"‘H’)J J' (&%)

7):1 hzo

(‘-‘1’) l""")(l“-"-if | Kc'ren
P‘l

L, GY  grdl [l %
Ky= - H{CY? +1(c,9’ 10(C*fd] { G,

¢
— Z [41 (ﬂﬂ)bﬂ'l)g ‘,!‘] - ‘T ’é Jh (ahﬁ)f%l ( 70)

d-p (MJ(rfl)} L odd
?:f -

Other ridial functions arise in the solution
of boundary value ~roolems involving prolate

()
spher01ds Tney are linear combinations of RIQ

and Rll given in Lbl) and (Y) .
Among these is( R”_(S)

@k 8= ‘R L&) ‘t'lde_(S) (71)

which for lerge g takes the form

(Rat
(s _ L e (72)
R (3) =) -

In conjunction with the assuned time deoendence
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this function satisfies tne Sommerfeld radiation con-
dition at infinity.

The extensions of tne tables of prolate soheroidal
constznts and functions by Stratton et.al.5 and by

Spence3 are given in the following tables.

Az Al4
Bo- o -21.94014372 -31.96273891
3 -24.408312175 -34.45404438

4 -&7.91179



® O v v O
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1l
V]

Ka

0.000004 F
-0.000053
-0.0008113 g

0.0032638

0.03664¢

0.97072
-0.0856438

0.0005202
~0.000002

-0.0000011 e
-0.000015829 e
0.00030497
0.0031279
0.068002
1.0138
-0.032729
0.0004799
-0.000052

ka = 3

-0.00003 r
0.0004587 e
-0.0026301
-0.019033 e
0.042681
0.18268
0.53036
-0,07718
0.00288
-0.00002

0.000010 @
-0.0000664 e
-0.0004556"7 e

0.00%6564

0.0156812

0.15410

1.0246
-0.074684

0.00246
-0.00008



cos
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-2, ia-2 £ -3, xa=-3 f -4, ka -
0.00000000 0.000000000 0.000000000
0.793116 0.718983 1.22076
1.508531 1.37%58 2.27047
2.07587 1.213126 2.99451
2,45897 2.28670 3.30957
2.561776 £.45921 2.15275
2,432795 2.40483 2.55889
2.0673568 2.12939 1.62687
1.507390 1.65492 0.514635
0.8179367 1.02923 -0.52263
0.080081 0.32501 -1,47123
-0.6142452 -0.37405 -1.98655
-1.18183 -0.990093 -2.03822
-1.55095 -1.39207 -1.62865
~1.67634 -1.58209 -0.85874
-1.545187 -1.49921 0.9015
~1.1803748 -1.16531 0.99475
-0.6833058 -0.63606 1.64097
0.0000000 0.0000000 1.87500

The tatle apoearing on tuls puge was computed by

H. Myers and is reproduced by kind permission.



- 44 -

1{
C, g =53 L =4
ka = 2 9.2397 14.720
3 8.2329 14.224
)nl.
ka = 2 9£9.69 12,946
2 130.06 1731.5
ka = 2 4.2142 5.8%01
3 3,9658
(" . 1. T
Rl! ﬂ:S, ka=2 L :3, ka=3 £=4, Ka=2 1:4:, =
§ =1.005 .00094323 . 004481 .00011757 .00035277
1.020 .0020082 .0024068 .0013672
1.044 .0032753 .015113 .0021594
1.077 .004201,4 .022153 .0045581
(I)R ‘
ip
S -1.005 .0Y8246 .46222 .012538 .0c0413
1.020 ,058350 .26741 .057222
1.044 .049859 . 22060 .052962
1.077 .049563 21013 .056820
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(1)3‘2 lzs, ka=2 A=3, ka=3  f =4, ka=2 g=4, ka=3
§21.005 -262.46 ~31.77 -1792.1 -186.62
1.020  -152.07 ~10.39 -60.65
1.044 -146.3 —2.26 _28.

1.077 -2 x 10% 2.8

@ ¢
R
e

§=1.c05 52838, 4.1 x 10° 2.3309 x 10° 21325,
1.020  1743.2 581. £560.
1.044 -536.5 2,1 x 10° 7 x 10°
1.077 -1 x 10° 1.2 x 10°
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