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I. INTRODUCTION

Within the last two years there has been a renewal of theoret-
ical interest in the single particle model of the nucleus. The lack
of comnrehensive experimental data males the justification for any
model somewhat arbitrary. The single particle model assumes that
trhe nucleon interaction produces a uniform notentizl so thot each
nucleon may be thowht of as a single varticle in a square well
votential, Variations of this votential are discussed by Feenberg
and Hammackl but we shall not be concerned with them in this thesis,
A shell structure in the nucleus in many ways similar to that in
atomic structure is strongly indicated? by the stability of ruclel
vossessing the "magic number® values for ¥ or Z of 2, 8, 20, 50, 82,
and 126 which avnear to be the values for closed shells. Stability
1s assuted on the relative abundance in nature of isotones and iso-
topes characterized by these "magic numbers". This stability for
particular N and Z values as well as the marked occurence of iso-
mers among odd-mass nuclides with nearly closed shells led to sev-
eral closely related explanations3 among which that of M. G. Mayer

was perhans the most successful.

1See references 1-6 in the bibliosranny at the end of this
t}lesis.
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In Mayer's interpretation a stroasz spin-orbit coupling is
assumed which increases with the angular momentun. The energsy
levels are obtained from a guantum mechonical trectment on the
basis of the single varticle rodel. Assuming that the spins of
paired nucleons cancel and that the total nuclear spin of odd-mass
nwclei - is just thet resulting from the odd nucleon, Mayer nre-
dicted correctly the svins of 2ll odd nuclei up to 2 =853 encount-
erin~ only two excentions. The occurence of isomerism near the
closed-shell state results from the fact that at this point there
are closely snaced energy levels with very different snins. The
immediate shortconing of this theory was noted by Rainwater5 who
pointed out that on the assumption of an eporoximctely soherical
charge distribution the gquadravole moment is much lower than the
observed one. To overcome the difficulty he sucgested an oblate
svheroidal motential well. Feenberg and Hammack6, by an &porox-
imation method based on a smherical nucleus determined the
m,{~devendent changze in the enersv levels for smzll distortions.
The vurpose of this thesis is to show the resultins change for

avorecliably larger distortions,
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IT, THECRY AND CCMPUTATIONAL METHCDS

We assume an ordinsry uniform notential distributed through-
out the volume of the snheroid. It is further assuned that the
volune is not changed by the distortion., The Schrodinser eruztion

in the usual time-independent form is
£ V¢ o+ vy =EY, (1)

The potential energy of the square well votential is

V-V inside the spheroid, (2a)
V* O outside the svheroid. (2b)

*'e then have for the Schrodinecer eou~tion

V¢ o+ %—E’":(v,+sw-o, (2)
Letting K= ’L:é—“‘(Vo-bE\ N (%)

we obtain the ordinary scslar Felmholtz eouation
2
V¢ + X'ymo. (5)

Eisevhart7 has shovn thzt there are eleven coordinate systemes in
vhich this equetion is sensrsble, The oblate spheroidal system is
one of them and our problem is thet of obtzining solutions for the

equation in this system,

‘L. P. Eisenhart, Annels of Mathematics 35, pp. 2854=325L (1934).




The oblate svheroidal coordin:tes, % » M » and <f. are relzted to

the rectansuwler system by thie following transformationss

X= ala-m 0+ 0™ cosg, (é2)
y= ol u-""rus o T $ing, (6v)
E= a’?.{) (60)

vhere o6 is the semi-focal distance. The wave ecuation in this
system is

a4 ay o L& (7
L LI+ +d [ -V 1+ [ - =721 et vryM)¥=0, (7
AR RIS LU b= S RSt S AR et
where ¢ reoresents tke product ka. Uvon sevarztion of variabtles

we obtein the three ordinary differential ecuations

& (3F) + mE=0, (3a)

AQ*

déi[(l-%"ﬁ]‘ [1“3‘;‘3 “ A, r U180, (5b)
R __’!:-- - b * = S

ﬁ-gwﬁ“j;h[”,{, A, + COr™IR=0, (Se)

where m and ‘0 are sevarction constants.
mA
Comprehensive, althoush slightly different, treatments of this
nroblem have been corried out, both by Leitner and Spencea, and

Strotton et 319. As the latter includes tables of coefficients

CA. Leitner, and R. D. Snence, The Oblate Sohaeroidal Veve Funct-
ions, Journal of the Frerklin Insiitute. 2493 299 (1950).

97. A. Stratton, P.M. Morse, L. J. Chu, and R. A. Futner,
Fllintic C;linger and Snhercidal Vave Functions. John VWiley, New
York, 1941.







vhich are perticularly useful in the comrutetional work it is used
througshout the discussion.

If a vhysicel situation is to be revpresented by a wave function
it is necessary thet the function and its derivative be continuous,
finite, and sirgle-valued at every point in svace. This of course
limits the acceotable solutions. Obviously the solution of the
equation in ¢ is of the form ed'4t In order that the wave function
te single-valued m must be restricted to positive or negative
integers. Solutions of the enfular ecuation (8b) are series of

. . m . :
associcted Legendre molynomials, P , With a consequent re-

M m
striction on m that it te less than or equszl to £ . In determin-
ing the energr eigenvelues we require only the radizl solutions.

Tne radizl ecuction 1s put in a form differing only slichtly

from the ecuztion of the associzted Legendire functions by the sub-

stitution §=¢2 . The resulting ecuztion is

| -ar - —g:-—— hd - > =
:\l;[( a)j_“-:.,.] = A, * U z)]s‘“ 0. (9)

This ecquation hes a resular singuler point at z=%1, tket is at
¥=+¢ . It differs from the sssocieted Lecendre ecustion in that

it has an irregsular singular voint at infinity. As the ecuztion is
of second order it has two indevendent solutions. One of these, the
raedial function of the first kind, remairs finite at z=*1; the other,
the radial function of the secornd kind, contains logarithmic
sinpularities at these voints. This occurs for imaginary values

of ¥ .which are not in its physical range. EHowever the logcarithmic

term becomes the arc tangent when its ar;unent becomes ¢ z, i.e. t .



The arc tancent of § hes a branch point at § = 1; consequently the
condition that the wave function be single-veclued eliminates the
redial function of the second kind in regions which include ¥ = 1,
in our case the interior of the spleroid.

The boundary condition of the continuity of tle weave function
and its derivetive is apnlied &t the motentizl boundary. Here the
radial function of the first kind should bve joined to a proper linecr
combinction of radial functions of the first and second kind. The
argunent of the solution outside the spheroid will te »ure imaginary.
This results from the fact thet the new k defined must be imaginary
as V, becomes zero in equstion (4). The radizl functions of the
second kind are considerably more difficult to obtain and to evzluste
than are functions of the first kind. If the notential K is con-
sidered quite large the amnlitude of the wave function inside the
snheroid 1s lar¢e commared to the exnonentially decreasing function
outside the svheroid. With the assuwantion of a large votential then,
to a first avnroximation, the boundary condition may be altered to
a recuirement thet the wave function vanish at the votentizl toundary,
i. e. at some velue of f , hereafter designated ¥°. This annrox-
imation is varticulerly good for the lowver lyving energy levels. The
Justification for such an apouroximation decreases markedly for in-
creasing £ and n.

In a few cases § = 1 lies outside the votential boundary. Eowever

the fact that the racial solution of the second ¥ind oscillates only



in regions outside% = 1, combined with our boundary conditions elim-
incztes the function of the second kind for this case as well.
The radial function of the first kind is

)] it A = g malom . (10)
lf e+ T8 mram)! (e k)

nh \Mz‘ "t s 2t " o
M

A ~z0,¢

M:.“

vhere Xm LE VE 3 (e ®) (11)

€Y mEmet

is a sphericzl Bescel function. In tle notztion of Stratton et 21,
A is used to designczte £ - m as used here where AL and m follow
the ordinery notation of quintum mechanics. The vprime denotes
summstion over even values of the summatioﬁ index n vhen - m is
even; over odd n vwhen £ - m is odd. The solution is normzlized such
that 1t reduces to the snhericzl case when ¢ ,0es to zero or k
becomes infinite.

With the assummtion that the volume of the svheroid remains
constant throushout the distortion we obtain an exnression for the
semi-focel distance a in terms of the radius @,0f the undistorted

snhere. The volume of the svherical nucleus is given by
v :%n’a" (12)

and that of the snheroidal nucleus by

W)

Ve mapy, (12)

vhere o= renresents the semi-major axis and Y the semi-minor

axis of the spheroid. From the coordintte transformestion, ecuztions



(6), they are exnressed in terms of @ ard % as

o=8=a(} +\), (14)
end

¢=at, , (15)
Equeting the volurmes it is evident thet

o z—-=2o (16)

Cheeend”

Rememberinge that ¢ = ka, we obtein for the eigenvalue
kY 2 2 }fg )
K¥= & [k +n)7. (17
a,

Under our assu.ntions the radial function must go to zero
et the spheroidal boundary. Picking a ¢ value we return to the
radial function (10) and determine the value of the argument c§ ,
and hence t., for which the series in svherical Ressel functionslo
goes to zero. The "total" quantum number n indicates the number
of spheroidal nodes; n=1 gorresponding to the first zero, n=2
to the second, etc. It should be noted thzt unlike the ztomic
czse { is not restricted to values less than n.

The eccentricity for a particular value of k is found from the

defining equstion,

= (}, +1)0

. -
“YTables of Sobericel Pessel Functions, Columbia University

Press (1947).
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III. EVALUATION OF THI DATA

Stratton et al tabulate the coefficlents &A‘“for‘l values
through three end for values of ¢ through five, This necessarily
restricted our computztions to s, b, 4, and f levels., Ve were able
to obttein values for the first two closed shells on the liaryer sclieme.
The tiiird shell contains a lg%hterm closing it which is just beyond
our commutationsl reach. The linit on ¢ nrovided no wmroblem as the
velues given pernitted eccentricities sufficiently larger then those
vhich seem vhysically probable. This would remsin true for a fairly
large range of n, although for & sveciiied ¢ velue the eccentricity
is reduced by increasing n.

In the computations ¢ values vwere taken from zero to five, pre-
dominz tely &t intervals of five-tenths. Vhere grovhing indiceted
necessery this interval was shortened. Ineryy levels were computed
for n ecusl to one and two. The limit on the £ values obtainable made
hizher values of n useless. The real limit on the n values which
can be used lies in the tables of svherical Bessel functions avail=-
eble at the nresent time. Most of the vpoints were found bty succes-
sive apvroximations, although a gravhical method was occesionslly
emnloyved. The results are good to three significant fifures. Con-
secuently the deta is given in gravhicel form, with the veristion in
the enersy levels plotted ageinst the eccentricity. As we «re con-

cerned only with the veriztion in the levels, the energy is exnressed

Az
in terms of the dimensionless chg .
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As may be scen from the gravhs there is some crossing of the
eneregy levels for a givenaz . More imvortant is the indication thet
for a slishtly larger eccentricity we may expect a crossinz of the

5 and E

‘0 2 1levels. Crossing of the levels is found exverimentally,

varticularly for larger values of n., Our graphs indicate that for
increasine n the rate of variation versus eccentricity increases
quite sharnly, Also the greatest variation seems to occur for s and
p levels, Perhaps the crossing of levels which does occur could be
at least partizlly explained on this basis,

The results obtained indicate that the bpreviously mentioned
perturbation method of Feenberg and Hammack which gives the variation
in the energy levels is a fairly good approximation for eccentricities
less than one-tenth and n eaual to one, but for increasing n is re-

liable for a decreasing rance of eccentricities.,



IV. NOTE CN THE QUADRAPOLE MOMINT

As noted in tke introduction, & svhericel nucleus cannot ade-
cus.tely account for the relatively large guadreapole moments wkich
are observed. Quzlitatively it avvwears evident that the oblate
spheroidecl potential well results in &an avvroxim:tely prolate soher-
oidal distribution of the weve function. This result is indicated by
the fact thet in most instences maxima in the snsular function occur
at—i = 1. This ¢ives a larger vositive cuzdravnole monernt which is
desired.

The ordinary exnression for the quedranole moment is

@’f ¢ ¢ (32*-v)dT, (19)
v

where r is the rcdial distance from the center of the charge dis-
tribution and.dT; is the element of nuclecr voluue.

Exnressed in the oblate svheroidal system this becomes

. A Y L] (20)
q = $ 28 - (-0 F VT OV dd
‘so A)f-l 0
where
imfoRl . ™~ C pn o (21)
=< 25‘ P"_(\\J_____‘- + Y ¢'£ %‘ (mem)l - )
f=r Fhery - {. ‘s-‘-.‘(‘“*a‘d! ® M M )
4 8 ™ h=o
Mme, ¢
and
- imd 2. L % T empm (22)
¥ E_‘.‘. Si P KV % ) (-4')‘ g‘ (me2m)l k ey,
r;a_ LN -~ o ~ ——MS Mt
et g yme et
‘ ~ ~ mzO, !

Mce0 .



The problem of computing the cuadrevole moment is ratrer com-
plicated due to the term (M*+ ¥*) appeering in the intezrend from

the ervression for the volume element in this systen,
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