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ABSTRACT

CRYSTAL STRUCTURE ANALYSIS

OF COPPER NITRATE

By

Donald C. Bulthaup

The lattice constants and interaxial angles of copper nitrate

were determined, and the space group was limited to two possi-

bilities using X-ray diffraction methods. The lattice constants

22.2 K, b = 4.90 K, c = 15.4 X, while the

interaxial angle 8 was found to be 1320 for the unit cell chosen

were found to be: a

in this monoclinic crystal. The space group was found to be either

Pc or P729 The values for “a, b, c and B agree with those found by

Dornberger-Schiff and Leciejewicz'," but the space group determi-

nation does not.

 

‘Acta CrystallographicallfiZS (1958).

350-63

5-62



CRYSTAL STRUCTURE ANALYSIS

OF COPPER NITRATE

By

Donald C. Bulthaup

A THESIS

Submitted to the College of Science and Arts

of Michigan State University in Partial

Fulfillment of the Requirements for

the Degree of

MASTER OF SCIENCE

Department of Physics

1962



ACKNOWLEDGMENT

The author wishes to thank Dr. J. A. Cowen for

suggesting this research and for the help given in carry-

ing out the work. He is also grateful to Dr. R. D. Spence

for his help; especially during the absence of Dr. Cowen.

iii



TABLE OF CONTENTS

I.Theory............ ......

A. Crystal Structure. ..................

1. Crystal Habit ............., . .

2. Bravais Lattices ...... . . ........

3. Point Groups, . . . . . . .........

4. Space Groups ..................

B. X-Ray Crystallography. . . . . . ..... . . . . .

1. Introduction...................

2. Diffraction of X-Rays . . ..........

3. Geometry of X- Ray Pictures. ........

11. Experimental Procedure . . . . . . . . . . . .......

A. Introduction. . . . . . . ...............

B. Determination of Lattice Constants and Interaxial

Angles. . . . ..................

C. Determining the Space Group.............

III.Conc1usions............... .......

Appendices

1. Calculation of Lattice Constants .........

II. Calculation of Reciprocal Lattice Quantities.

Bibliography...... .........

iv

 

«
l
u
s
t
e
r
-
a

25

25

27

30

34

36

37

38



LIST OF TABLES

Table

. Crystal Habit Symmetry . .

. Bravais Lattices ......

. Oscillation Picture Data . . .

. Conditions for Possible Reflections ....... 14

33



10.

ll.

12.

13.

I4.

15.

LIST OF FIGURES

Figure

l. Two-Dimensional Lattic’e. . . ..........

2. Glide Plane and Screw Axes . . .

3. Miller Indices . . . . . . .............

4. Bragg "Reflection". . . . .............

5. C-Face Centering Extinctions ...........

6. Laue Photograph Geometry . . . .........

7.. X—Ray Scattering by a Line of Points . . .....

8. Vector Relationships in the Formation of a

Reciprocal Lattice .................

9. Direct and Reciprocal Lattice Axes for a

.Monoclinic Crystal ................

The Reflecting Sphere- ...............

Oscillation Picture Geometry ...........

Axial Directions in One Plane ...........

Lattice Points in X-Z Plane ............

_X* - Z* Plane of Reciprocal Lattice .......

Reflecting Circles for Fourth Layer .......

vi

 

12

12

13

16

17

20

20

21

23

27

29

31

32



I THEORY

A. Crystal Structure
 

1. Crystal Habit - Since vonLaue's work in 1912, it has been

known that crystals are made up of a regular array of atoms. In

the course of studying crystal structure (started long before the

time of Laue) several "laws of crystallography" have been dis-

covered and many methods devised for representing the symmetry

of this structure.

The crystal habit exhibits symmetry which can be described

by three "symmetry operations.‘ These are:

a. Symmetry axes.

b. Mirror planes..

c. Centers of symmetry.

Rotating the crystal about a symmetry axis will cause it to be

in a position similar to the original position after rotating through

600, 900, 1200, or 1800 depending upon the type of axis. These axes

are labeled two-fold axes if the necessary angle of rotation is 33—0

or 1800 (n-fold axes if the necessary angle of rotation is 3—39- . It

can be shown that only one, two, three, four and six-fold axes are

possible.

A mirror plane, as the name suggests, divides the crystal in

such a way that each face, point or line on one side of the plane has

a mate which appears as a mirror image on the other side.

A center of symmetry is a point within the crystal such that

any line through this point intersects similar points, lines or faces

on opposite sides of the crystal. Faces on opposite ends of lines

through the center of symmetry must be parallel.

All crystal habit symmetry can be described by the three

operations listed or combinations of these operations and the seven
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' crystal classes‘ listed in Table 1 are identified in this manner. It

will be noticed in this table that one combination of symmetry

elements is especially common. This is the combination of a sym-

metry or rotation axis with a center of symmetry. The combination

is commonly called an inversion axis and is given the symbol 5 for

an 'n-fold axis.

TABLE 1 - CRYSTAL HABIT SYMMETRY

 

 

Crystal Class Identifying Symmetry Elements

1. Triclinic Center of symmetry only

2. Monoclinic Two-fold axis (ratation or inversion) in one direction only

3. Orthorhombic Three mutually perpendicular two-fold axes (ratation or inversion)

4. Hexagonal Six-fold axis (rotation or inversion) along two axes

5. Trigonal .- Three-fold axis in one direction only (ratation or inversion)

6. Tetragonal Four- fold axis (ratation or inversion) one direction only

7. Cubic Four three-fold axes L     
Note: Other symmetry operations exist for some classes, but the oneslisted represent

the highest order symmetry.

2. Bravais Lattices - Very early in the study of crystals it

was hypothesised that the regularity of the crystal habit implied a

regular arrangement of "building blocks” within. With this in mind,

many investigators studied the possible arrangements of points in

homogeneous three-dimensional lattices. In 1848 Bravais showed

that there were only fourteen distinct lattice arrangements possible.

(See Table 2 on Page 4.) To study these lattices it is convenient

to refer the points to a coordinate system. To simplify notation

the axes of this system should lie along lines of large lattice point

 

‘Some references list only six classes ‘by listing the trigonal sysrem as a division of the

hexagonal system.
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population. This means that frequently the coordinate system

chosen is not orthogonal and different coordinate systems might

be chosen to describe the same crystal. The choice of coordinate

system for any given crystal depends upon the structure of that

crystal and is made to produce a model which is mathematically

the easiest to study.

The seven crystal classes can be described microscopically

in terms of angles between axes and spacing of lattice points along

the axes. Table 2 lists these seven classes and the distinguishing

axial angles and lattice spacing. It should be noted that by conven-

tion the spacing is labeled "a" along the x-axis, "b" along the

n n
y-axis and c along the z-axis. Also the interaxial angles yAz,

zAx and xA y are denoted by a, B and 7 respectively.

A very useful concept in the study of microscopic crystal

structure is that of the unit cell. It is defined as the smallest unit

in the structure which has the physical and chemical properties of

the macroscopic crystal. The crystal is formed by packing unit

cells together in a three-dimensional arrangement. In all crystals

a unit cell (called a primitive cell) can be chosen such that lattice

points appear only at corners of regular polyhedrons and it would

seem that this choice would always be the best. It is found, how-

ever, that frequently certain simplifications result if the unit cell

is chosen in such a way that it is not primitive. An example of

this in a two-dimensional lattice is shown in Figure 1. Note that

if the cells outlined by the dashed line were chosen, a non-

orthogonal coordinate system would have to be used to describe

 

 

\

 

FIGURE 1 - TWO-DIMENSIONAL LATTICE
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the lattice. The cells outlined by the solid line can be described

with an orthogonal system but these are not primitive, in that an

additional point appears at the center of each.

As mentioned before, Bravais showed in 1848 that there were

only fourteen distinct three-dimensional lattices possible. These

include a primitive configuration for each crystal class plus non-

primitive configurations for several of the classes. These Bravais

lattices are listed in Table 2.

TABLE 2 - BRAVAIS LATTICES

‘

 

Symmetry lnteraxial Angles Axial Ratios Lattice Type

 

 

 

Cubic Q = B = ‘Y = 900 a = b = c Primitive (P)

Face Centered (F)

Body Centered (I)

 

Tetragonal a = B = 7 = 90° a = b s c Primitive (P)

Body Centered (I)

 

Orthorhombic a = B = 'y = 90° 3 at b r c Primitive (P)

C-Face Centered (C)

Body Centered (1)

Face Centered (F)

 

 

 

 

Monoclinic 0: =7 = 90° at B a t b at c Primitive (P)

CeFace Centered (C)

Triclinic a s B 4 7 s 90° a 4 b 4 c Primitive (P)

Hexagonal a! = B = 90° 7=120° a = b 4 c Primitive (P)

.Trigonal .. a = B = 7 4 90° a = b = c Primitive (P)     
 

3. Point Groups - The crystallographic symmetry operations

have already been discussed (Page 1) and it was found that crystal

habit could be defined in terms of these operations. In modern

crystallography, however, the study of crystal habit makes up a

very small portion of the total work done. The ultimate goal is to

determine the lattice structure and which atoms occupy each posi-

tion. If the above symmetry operations are changed to include
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inversion axes (described. on Page 2) as well as rotation axes,

then these operations are useful in the microscopic study of

crystals. It can be shown that there are thirty-two distinct

"point groups" which can be produced by applying these operations

in various combinations to a single point in space. The Interna-

tional Tables? lists these point groups and employs the following

notation:

X - X-fold rotation axis.

X - X-fold inversion axis.

% - X-fold rotation axis with. mirror plane normal

to it.

X2 - X— fold rotation axis with two-fold axis (axes)

normal to it. .

Xm - X- fold rotation axis with mirror plane (planes)

parallel to it.

5(2 - X— fold inversion axis with two-fold axis (axes)

normal to it.

Sim - X-fold inversion axis with mirror plane (planes)

parallel to it.

5:57. - X—fold inversion axis with a mirror plane

normal to it and mirror planes parallel to it.

These point groups then represent all possible ways for arranging

points in space about a single point such that the group has sym-

metry consistent with observed crystals.

Every crystal fits into one of the thirty-two "point groups, "

but it is not always easy to establish which one. To aid in the

determination several methods have been developed which depend

 

'International Tables for x-Ray sttallography, Kynoch-Press, Birmingham. 1952, Vol. 1,

Section 3.3.
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upon the physical properties of the crystal. These can be divided

into two categories; (1) studies of facial development and other

external features and (2) information concerning certain internal

physical characteristics.

In theory the point group can be determined by the symmetry

of facial development, and this was the only method available to

early crystallographers. This method, however, is not generally

good in practice because the facial development may not be clear.

The facial development depends upon the lattice plane population

but is subject to change by impurities in the solution during growth

and so the size of a particular face may be different in different

crystals of the same type.

In some cases where the development of faces is inadequate,

etch figures can be used to good advantage. A non-optically active

etching reagent is placed upon one face. If the trial is successful,

the etching will take place at different rates in different crystal

directions resulting in an etch pit which has the symmetry of one

of the ten two-dimensional point groups? From this much can be

learned about the crystal symmetry. Since the etch rate in dif-

ferent directions is often the same, the symmetry of the etch pit

must be considered as the highest possible symmetry. This must

be used with other information to produce a satisfactory analysis.

In general, internal physical properties of a crystal are

easier to analyze and are more satisfactory for point group

analysis. The three physical properties usually studied are

optical refraction, optical activity, and pyroelectric and piezo-

electric effects.

If a crystal is transparent, optical refraction can be deter-

mined in several directions. Only crystals of the cubic system

 

‘International Tables for X-Ray Crysrallography, Kynoch Press, Birmingham, 1952, Vol. 1,

Section 3.7.
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are isotropic and among anisotropic crystals those in the

Orthorhombic, Monoclinic and Triclinic systems are biaxial while

the remainder are uniaxial.

The only characteristic which can be implied by optical activity

and the piezoelectric effect is the presence or absence of a center

of symmetry. Fifteen of the twenty-one non-centrosymmetric point

groups are optically active and all but one exhibit the piezoelectric

effect. Even though the one non- centrosymmetric group which does

not exhibit the piezoelectric effect is optically active, the absence

of both effects in tests does not necessarily mean the crystal is

centrosymmetric because sometimes the piezoelectric effect is

too weak to measure. The presence of either effect, however, does

mean that the crystal is non-centrosymmetric.

In theory the presence of the pyroelectric effect means that

the point group of the crystal must have a unique polar axis. In

practice, however, it is found that the stresses set up in the

crystal by unequal heating or cooling during the test give rise to

a piezoelectric effect and so the only safe deduction is that the

crystal is non- centrosymmetric.

One other method is available to assist in point group deter-

mination, but this involves the symmetry of X- ray pictures and

will be discussed later.

4. Space Groups - The symmetry operations discussed thus

far have referred to crystal habit or lattices of indistinguishable

points in space. In actual crystals the lattice positions are

occupied not by indistinguishable points, but by atoms which differ

from one another. This complicates the issue somewhat, and it

can be seen that there will be many more than thirty-two arrange-

ments possible. It is found that two more symmetry operations

are needed to describe the additional arrangements.
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These operations are combinations of:

1. A simple rotation axis with a translationparallel to it.

2. A mirror plane with a translation parallel

to it.

The first operation listed is called a screw axis, while the second

is called a glide plane. Figure 2 shows equivalent points for each

operation and lists the notation used for each. Note that these

operations, unlike the other symmetry operations, do not bring a

point back into coincidence with itself but rather bring it into

coincidence with a corresponding point of a neighboring lattice

position. These operations, therefore, only have meaning when

applied to an extended point system.

A/Glide Plane

 

Equivalent Points in Glide Plane Operation

/

\,

A J_/ _L___. L”.

    
.3. t J.

2 - _r_ \

./_I’ I7 41/ i7
I Two-Fold Three-Fold Four-Fold Six-Fold

<21) <31) (41) (61)

SCREW AXES

(Note that each translation for an n-fold axis 13%“ the repeat distance along

the axis.)

FIGURE 2 - GLIDE PLANE AND SCREW AXES
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For the complete description of atomic arrays in real

crystals, some knowledge is needed of the possible "infinite"

distributions of points (not all identical) in space which will bear

the observed crystallographic symmetry. In 1891, Schoenflies

proved that there were 230 such distributions, and these have been

called the 230 space groups. The space groups can be derived by

placing a point group at each point of a Bravais lattice of the same

symmetry then using the appropriate symmetry operation from

those introduced above (screw axis or glide plane). The symbol

for each space group is a combination of the symbols representing

the appropriate Bravais lattice, point group and screw axis or

glide plane. A complete list of all space groups asdweil as the

essential information about each can be found in the "International

Tables for X- Ray Crystallography."



B. X-Ray Crystallography
 

1. Introduction - In the last section some general concepts

about the structure of crystals were presented. It is found, how-

ever, that these concepts are inadequate in most cases where a

complete analysis of a crystal is desired. For such a study of

crystal structure. one of the most useful methods available is

X-ray diffraction and the purpose of this section is to outline

the theory involved in this method.

2. Diffraction of X-rays - Every student of college physics

has been exposed to the interference pattern formed by a double

slit or a diffraction grating and knows that this pattern is formed

when coherent waves reach some position either in phase or out

of phase. This is somewhat analogous to the diffraction pattern

formed when X-rays are allowed to strike a crystal. The major

difference between the two is that in the double slit experiment

the "diffracting objects" are the slits, while in diffraction by a

crystal the electrons of the atoms in the lattice positions perform

this function. The process involving the crystal is more difficult

to analyze for two reasons:

a. It is a three-dimensional process rather than

two.

b. The scattering process at the lattice positions

is more difficult to describe quantitatively.

As X-radiation passes through a crystal each electron in

the crystal finds itself in an oscillating field which means it

experiences a periodically varying force. According to classical

electromagnetic theory the acceleration which results causes the

electron to emit radiation with a frequency the same as that of

the varying force. . This radiation is emitted with a spherical

wave front, but the intensity is not the same in all directions.

Viewed from an energy vieWpoint, it is seen'that energy is trans-

ferred from the incident radiation to the electron and then

10
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re-radiated so that the net effect is that part of the energy of the

incident radiation is "scattered" by the electron. From this it

would seem that the total scattering from each lattice position

would be directly proportional to the number of electrons present.

This is approximately true but due to the fact that at any given

lattice position the electrons are separated by a short distance,

there is some destructive interference in the emitted radiation.

In order to describe the interference pattern formed by a

three-dimensional crystal, the scattering from each lattice posi-

tion and the multiple interference at a point in space of radiation

from these positions must be considered. It can be seen that this

is not a simple thing to do and the calculations would be extremely

cumbersome. Fortunately, a simpler alternative method involving

what is known as the "Bragg Law" is available and in general use.

This method is based upon the fact that the interference pattern

can be accurately described by assuming that the X-ray beam is

reflected from planes within the crystal drawn so that they contain

many lattice points.

In order to use the Bragg Law described above, it is necessary

to have a simple method for describing the planes within the crystal.

If a three-dimensional coordinate system is placed on the lattice

(origin position is arbitrary) the planes can be described in terms

of the intercepts on these axes. If the plane of concern is parallel

to one or two axes, then the intercept is at infinity and not at all

convenient in any calculations. To eliminate this problem, Miller

proposed a system whereby the plane is described by the reciprocal

of the intercepts. Thus the plane parallel to the x-y plane would

have the ”Miller indices" (0, 0, 1).

In Figure 3 plane ABC has indices (é: %; 1) or (2, 3, 6).

These are equivalent indices because the labeling depends on the

choice of origin which is arbitrary. By the same reasoning, the

indices of plane DBE are (%,—;, 21,—) or (1, 1, 1).
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FIGURE 3 - MILLER INDICES

If the assumption of reflection from lattice planes is accepted,

then the condition for constructive interference is easily derived.

In Figure 4 the eray beam is incident from the left and "reflected"

by the set of lattice planes shown. If constructive interference is

to take place, the difference in path length between the beams

"reflected" from adjacent planes must be equal to n A. From the

diagram it can be seen that n A = 2d sin 0. This is known as the

Bragg equation. A more eloquent derivation based directly upon

scattering concepts can be found in many of'the texts listed in the

bibliography.

 

 

FIGURE 4 - BRAGG "REFLECTION"
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In a complete crystal analysis the relative intensity of the

reflection is very important, since it is from this information that

the position occupied by each type of atom is determined. This

project is not carried to that extent, but the conditions under which

a certain reflection does not occur are important. It is from infor-

mation about systematic absences of certain reflections that the

space group of the crystal is determined.

As an example, consider a monoclinic, C-face centered

crystal. The C-face is shown in Figure 4(a) along with planes of

the form (231). Figure 5(b) shows the C-face with planes of the

form (135).

///

/

 

 

 

  
 

  

./

/A
//

(a) (‘3)

FIGURE 5 — C- FACE CENTERING EXTINCTIONS

In order for the planes (23,!) to produce a constructive interference

for a given X-ray beam the path difference between portions of the

beam reflected from consecutive planes muSt be equal to A. The

planes formed by the centering points are parallel to and midway

between the planes (23/). They also have the same scattering

power (same point density), so the net result will be cancellation

of these reflections. Notice that if all planes are considered, they

will have the form (46K). The planes of the form (1 3[) shown in

Figure 5(b) also contain the centering points, and the problem does

not exist. It can be seen that both sets of planes considered which
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do not produce extinctions satisfy the condition h + k = 2n. It can

be shown that this is true in general and gives a means for deter-

mining if a chosen unit cell is C-face centered. Similar arguments

can be carried out for other non- primitive cells resulting in the

conditions for non- extinction of general reflections for each cell as

listed in Table 3.

TABLE 3 - CONDITIONSFOR POSSIBLE REFLECTION

 

Condition for

Lattice Type Possible Reflection
 

A-face centered k +£ = 2n

B-face centered h +Z = 2n

C-face centered h + k = 2n

F (all faces centered) h, k,Z all odd or all even

I (body centered) h + k 4%,! = 2n

R (rhombohedral indexed on -h + k +[ = 3n

hexagonal axes) or h - k +Z = 3n

Hexagonal indexed on I

rhombohedral axes P + q + r = 3n

P (primitive) No restrictions   
 

In addition to the above conditions for non- extinction of

general (th) reflections there are also conditions for reflections

from sets of planes which have one or two of the indices zero. The

list is quite long and can be found in the "International Tables for

X- Ray Crystallography. ”

3. Geometry of X— Ray Pictures - In the analysis of crystal

structure many different types of apparatus are available for use

with the X- ray machine. The theory of operation varies all the

way from the relatively simple Laue method to rather complex

moving film methods such as those used with the Weissenburg

camera. The methods involving the most complex theory are, in

general, the easiest methods from which to get .the necessary data.

For this project the only equipment available was that necessary

to take Laue pictures and simple rotation or oscillation pictures.

The discussion here will be limited to those two methods.
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In taking Laue pictures white X-radiation (continuous band

of frequencies present) is directed on a stationary crystal. The

diffraction pattern is then formed on a flat film placed either

behind the crystal (transmission pattern) or in front of the crystal

("reflection" pattern). This method is the simplest and also the

oldest in existence. The first diffraction pattern of a crystal

formed with X-rays was the one taken by Laue in 1912 using this

method.

Since the crystal and X-ray beam remain fixed, the angle 9

between the beam and a given set of planes is also fixed. The

Bragg equation shows that with these conditions the wavelength of

radiation reflected from each set of planes is also fixed. However,

closer inspection reveals that if a set of planes (hkl) reflects a

wavelength A then the set (2h, 2k, 2 X.) which is parallel to the first

set will reflect radiation with wavelength%. These reflections

will be in the same direction, and so it can be seen that one spot.

on the film could be contributed by several distinct wavelengths.

One characteristic feature of Laue photographs is that the

spots all fall on a series of conic sections which pass through the

central position on the film. The reason for this can be seen if

reflection from a set of planes with a common line of intersection

(called a zone axis) is considered. Figure 6 illustrates this

condition. It would appear that since a real crystal contains an

extremely large number of planes about any zone axis, the conic

section would contain a very large number of spots and perhaps

be almost a solid line. Closer inspection, however,_reveals that

each set of planes about the axis has a definite spacing which will

reflect only a certain wavelength,_ so that since_a_l_l_wavelengths of

radiation are not present, some planes will not reflect.

Another feature of Laue photographs which is very important

is the symmetry of spots which occurs when the X-ray beam is

directed along a crystalline axis. The symmetry of the pattern on
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FIGURE 6 - LAUE PHOTOGRAPH GEOMETRY

the film is quite sensitive to changes in crystal position and

therefore provides a suitable method for aligning the crystal on

the X- ray machine.

Although the Laue pictures are useful for certain things,

the information obtainable is very limited and other methods are

necessary for a complete crystal analysis.

The oscillation photograph is generally considered the fun-

damental type of single crystal photograph. All more elaborate

methods for examining crystals are merely extensions of this

basic method. An oscillation picture is produced by allowing

essentially monochromatic X— radiation to fall on a crystal which

is rotating about an axis perpendicular to the X-ray beam. The

film is usually situated on a cylinder whose axis is the rotation

axis of the crystal. As the crystal rotates, many reflecting

planes are brought into the proper position thusproducing a spot

on the film.
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The most noticeable feature of oscillation photographs taken

on cylindrical film is the arrangement of spots on parallel, hori-

zontal lines. The reason for this occurrance can be seen by

considering the scattering of X- rays by points along a straight line.

All points along the line scatter X-rays in all directions but the

radiation from neighboring points will interfere deStruc’tively except

for ”preferred" directions as illustrated in Figure 7. From the

figure it is apparent that for each value of n there is a fixed angle

which the scattered beam makes with the line of points. There is

no condition on the azimuthal direction so from a single line of
 

points the scattered radiation which does not interfere destruc-

tively must fall along lateral surfaces of cones which have the line

of points as axes. If two or more non-parallel lines of points are

present, the constructive interference can take place only in
 

directions where the cones associated with each line of points

intersect.

t: 

 Incident X-Ray Beam (1

,E i
  

 

 

FIGURE 7 - X-RAY SCATTERING

BY A LINE OF POINTS

With a crystal properly oriented on an oscillation goniometer

one of the crystalline axes and hence a row of lattice points is the

oscillation axis. With this arrangement, all radiation interfering

constructively falls along the cones associated with the axis of

rotation. Since these cones intersect a circumscribing cylinder

in circles, the observed pattern of spots is formed. It can also be
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seen from Figure 7 that by measuring the distance between these

"layer lines" (y) and knowing the wavelength of the radiation, the

repeat distance along the axis can be found.

d — n4
. -1 y

8111 tan R

In studying crystals, much information is best conveyed by

referring to a direct crystal lattice. Some information, however,

is not easily conveyed by this method and it is found convenient to

introduce the concept of the reciprocal lattice. This lattice con-

sists of a three-dimensional array of points each of which

represents a family of planes in the direct lattice. The reciprocal

point lies on the normal to the set of planes it represents and its

distance from the origin is inversely proportional to the spacing of

the planes. This concept is primarily used in X—ray studies of

crystals and it is found useful to let the constant of proportionality

be equal to the wavelength of radiation used.

The fact that the points in reciprocal space form a regular

three-dimensional lattice is not immediately obvious and requires

proof. Any set of planes (hkl) in the direct lattice can be

represented in vector notation if unit vectors /a\, b, /C\, are defined

along the three axial directions. Since the intercepts of the planes

on these axes areW, the plane is represented by‘the vectors

/\ A /\
b ..._i

L; k ’2 . If dhkl is the vector representing the normal drawn from

the origin to the plane (hkl), and (1th is the vector representing

the position of the reciprocal point,hthen by the definitions of

reciprocal vector and reciprocal point alikZ - FhIEZ: 1. Figure 8

illustrates these vectors. From the figure it can also be seen that

__. /\ /\

‘3th Pr = dhkflaflfi) = (dhk2)2 (1)
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where 1’} is the unit normal to the planes (hk!) and dhkl is the

distance between them. Since dhkl and dhk! are colinear

1

dW

‘1th

9 1
and so dhké -—fi- (dT- )2

th

Also because of the colinearity

/\ *

1} “‘1th
/rId Z ‘— -

hk ’ * ‘ * 2

‘1th (‘1th )

dh__k_/2
so that dth:

(dhklfi

now by substituting (5) in (3)

__i*

dhkx Q = 1

<d)2 n «1* )2
hkl hit!

_s* /\ _

_ and dhké a — h 1

. . —‘* A
$1m11arly dth- b = k >

 __‘* A_

and dth-c-Z .

Again from the definition of reciprocal vector

A
@.9*=1,Q-b*=o

so that equations (7) are satisfied only if

—I* A* As:

dhkj: ha* +kb +£c

(2)

(3)

(4)

(5)

(6)

(7)
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y Reciprocal Point

.ae

A dhkt

.13.
k Lattice Plane

_1

dh

x

.3- \
h

FIGURE 8 — VECTOR RELATIONSHIPS IN THE

FORMATION OF A RECIPROCAL LATTICE

From this it can be seen that for every set of planes (hkjhn the

direct lattice there is a reciprocal point with coordinates h’a *, k/S *

and [9* in a lattice defined by the three unit vectors. Also since

h, k, and Z are integers, it can be seen that the reciprocal lattice

consists of regularly spaced points.

It should be noted that when the axes of the direct lattice are

orthogonal then the axes of the reciprocal lattice are colinear with

them. If the direct lattice axes are not at right angles, as with the

x and z axes of the monoclinic cell, then the reciprocal lattice axes

are not colinear with them as illustrated in Figure 9.

  

FIGURE 9 - DIR‘ECT AND RECIPROCAL LATTICE AXES

FOR A MONOC LINIC CRYSTAL
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One of the principal reasons for introducing the reciprocal

lattice is that it simplifies the otherwise complicated process of

indexing the spots on the X-ray photographs. To understand this

process as applied to oscillation pictures it is necessary to discuss

the geometry of diffraction pattern formation using the reciprocal

lattice. The basis for this discussion is the concept of the

reflecting sphere which was first introduced in 1921 by Ewald. In

Figure 10 a cross section of a reflecting sphere is shown along

with one set of direct lattice planes and some reciprocal lattice

points. The sphere is drawn with a radius R =31}?- where k is the

reciprocal constant. Since k is usually chosen to be equal to A,

the radius is a unitless 1. P is the reciprocal point for the set of

planes drawn.

  

 

Lattice Planes

X-Ray Beam

Reciprocal Lattice Points

FIGURE 10 - _THE REFLECTING SPHERE

In the diagram it is apparent that angle APC is 900 and LCBP =

2([.. BAP). Since the line PC is perpendicular to both the lattice

planes and line AP, the angle BAP = (9. The reflected X-ray
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beam, then, has a direction the same as the line BP. If this

reflection occurs then Bragg's equation must be satisfied

and A = 2d sin 6

- = .2.
sm 6 2d

From the diagram

but CA = 2 by construction and by the definition of reciprocal

lattice

-_l<_-A_
CP—d—d

. =_A.
so s1n9 2d

From this it is seen that whenever a reciprocal lattice point falls
 

on the reflecting sphere, the corresponding set of lattice planes is
 

in a position to reflect. If an oscillation picture is being taken, the
 

process can be thought of as the rotation of a reciprocal lattice so

that many different lattice points in turn pass through the reflecting

sphere thus indicating a reflection from a set of lattice planes.

In the course of studying a crystal by X- ray methods it is

necessary to know which spot on the film was caused by which set

of crystalline planes. The concepts of the reflecting sphere and

reciprocal lattice discussed above are helpful in this determination.

Figure 11 shows the reflection geometry and the coordinates which

can be measured. The oscillation axis is, of course, on the axis of

the cylindrical film but the radius of the reflecting sphere is so

small compared with the radius of the film that its center can also

be considered as lying on the axis. In the diagram, the point P is

a reciprocal lattice point on the reflecting sphere while Q is the

spot produced on the cylindrical film by the corresponding reflection.
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E and C, are two of the cylindrical coordinates of the point P. It

can be seen that since P is required to be on the reflecting sphere

(which has a known radius), the coordinates of the spot on the film

will be sufficient to determine 5 and I; for the lattice point pro-

ducing it and also which lattice point if the orientation of the crystal

is known. If the picture is being made by rotating the crystal

through 3600 it is not usually possible to determine which lattice

point was in position because in fact more than one point may

produce a spot in the same location. For this reason most oscil-

lations are made by limiting the motion of the crystal to 100 to 150

and the orientation of the crystal is carefully noted.

Q
Direction of

Reflected

Wall of Cylindrical "Camera" Beam

”nu-'- ”wan—n...

"' ' P ”A;

’

Reciprocal

Lattice Point

 
 

 

__ ..._..
Undeviated

X-Ray /,,”
Beam

————i-

Beam

Crystal

Position

 
   

FIGURE 11 - OSCILLATION PICTURE GEOMETRY
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The spots on any given layer line are produced as the

reciprocal lattice points in a plane normal to the rotation axis

cross the reflecting sphere. The intersection of the plane and

sphere is a circle, called the reflecting circle, which can be used

to index the spots on any given layer line. It should be noticed

that for layer lines other than the zero line the reflecting circle

has a radius smaller than that of the reflecting sphere and does

not pass through the axis of rotation (the origin of the reciprocal

lattice plane).



II EXPERIMENTAL PROCEDURE

A. Introduction
 

This research was undertaken in order to obtain the

following information about c0pper nitrate:

l. The lattice constants.

2. The interaxial angles.

3. The space group.

The crystal class had previously been established as monoclinic

by morphological studies. Before work along these lines could be

started, however, a method had to be found for keeping the crystal

from deliquescing. The humidity in the laboratory was very high

(70-75% at times), and it was found that the crystal would not last

long enough for even one Laue picture.

Several methods were tried for isolating the crystal without

making it inaccesible for X- ray pictures. First, the crystal was

dried in a desiccator then while inside a sealed glove box was

Sprayed with a plastic coating. When mounted on the X-ray

machine, the crystal again deliquesced leaving a plastic shell. The

process was repeated several times with great care, yet the result

was the same.

The second attempt involved sealing the crystal in ordinary

scotch tape. This may have worked, except that the necessary

visual alignment on the X-ray machine could not be accomplished.

The third method tried was to seal the crystal in a glass

tube which had been drawn out so that the walls were very thin.

There were two drawbacks to this method. The glass absorbed

too much radiation (Lindemann glass was not available) and the

tube did not offer enough mobility for alignment about. all axes.

The method which was finally used involved mounting the

crystal in modeling clay then inverting half of a clear gelatin

25
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capsule over it. The capsule did not produce an interference

pattern, and was thin enough to not absorb a significant amount

of radiation. Also, the crystal was clearly visible for alignment

and was accessible for reorientation at any time. It was found

that by placing the goneometer assembly in a desiccator every

night, the crystal remained dry.



B. Determination of Lattice Constants and Interaxial Angles
 

The crystal was first mounted so that its long dimension

was vertical. By viewing the faces through a microscope attach-

ment, the crystal could be aligned so that the X-ray beam would be

parallel to a face. A series of Laue pictures was taken to complete

the alignment. As was mentioned in Part Iof this report, the Laue

picture is highly symmetrical when the X-ray beam is parallel to a

crystalline axis. It was found that the position could be detected by

this method to within one-quarter degree.

After taking many Laue pictures as described above, the

presence of axes in the horizontal plane was established as indicated

in Figure 12.

 ,- 82.750

2190 130. 75°

176.750

FIGURE 12 - AXIAL DIRECTIONS IN ONE PLANE

Since no two axes were 900 apart, it was concluded that the vertical

axis was the y-axis of the crystal. Since the crystal was aligned

with this axis vertical, a rotation picture was taken to determine

the lattice spacing along y. This was found to be 4.90 A. (See

Appendix I.)

27
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Now that one axial direction had been established there

remained to select the directions from those shown in Figure 12

which would be called x and z axes. To accomplish this the

crystal was set so that the X-ray beam would be parallel to the

axis marked 176.750 in Figure 12 then turned about this axis until
 

the y-axis was horizontal and the direction marked 82.740 was up.

More Laue pictures were then taken to perfect alignment and the

crystal was tipped 40 so the axis marked 82.75O would be vertical.

A rotation picture showed good layer line formation which indicated

good alignment of the crystal. A similar method was followed for

each of the other axes and a lattice constant was computed for each

as follows:

. o 0

l. Ax1s at 82.75 - 15.4 A.

O

2. Axis at 130.750 - 22.2 A.

O

3. Axis at 219.750 - 16.7 A.

Figure 13 shows the lattice point positions for the points in the

x - 2 plane. From this diagram it is seen that there are several

possible cgioices for ugit cells. One choice gives a cell with

a = 22.2 A, b = 4.90 A, c = 15.4 A and 8 =1320 while the other

choice gives a cell with a = 16.7 A, b = 4.90 A), c = 15.4 A and

B = 94°.
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FIGURE 13 - LATTICE POINTS IN X-Z PLANE

The first choice was selected and the analysis of the space group

was based upon this cell.



C. Determiningthe Space Group
 

As was indicated in Part I, the space group for a crystal can

be determined by analyzing the systematic absences in X-ray

reflections. In order to do this the spots on the film must be

indexed and catalogued. Ten oscillation pictures were taken about

the z axis and these were indexed.

The indexing is a geometrical process based upon the con-

cepts of the reciprocal lattice and the reflecting sphere which were

previously discussed. As can be seen from Figure 11 (Page 23), it

is necessary to determine the value of g and g for each spot from

measurements made on the film. To facilitate this, a Bernal chart

was used. This chart is drawn for a "camera" of a particular

radius and consists of a mesh of lines labeled with values of g and

g . By placing the film on the chart, a set of values for each spot

can be obtained directly.

Again referring to Figure 11 it can be seen that a crystal

oscillation of 100 between known limits is comparable to oscil-

lating the reflecting sphere about the oscillation axis through the

same angle over a known region of the lattice. The spots expected

on the film, then, are those corresponding to lattice points crossed

by the surface of the sphere. In practice the layer lines are

analyzed separately and so the important consideration is for lat-

tice points on a particular lattice plane which were crossed by a

reflecting circle. This circle, of course, is the intersection of the

sphere and the lattice plane.

The next step in the indexing process was to draw, to scale,

the reciprocal lattice plane normal to the oscillation axis. This is

shown in part in Figure 14. (Reciprocal lattice dimensions are

calculated in Appendix 11.) Note that marked on this diagram are

angles which refer to the position of the crystal. It had been pre-

viously noted from known axial directions in the crystal that an

oscillation from O0 to 100 would be as indicated on this diagram.

30
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00 Here

90°

Here

 
FIGURE 14 - x* - 2* PLANE OF RECIPROCAL LATTICE

The points labeled t1, t2, etc., in Figure 14 represent the origin of

the reciprocal plane for different layer lines. Since the z-axis is

not perpendicular to the x—axis, the 2* reciprocal axis is not normal

to the x* - 2* plane. Because of this, if the same drawing is to be

used for each layer line a new origin must be computed. These

computations are also in Appendix II.

The next step, as might be expected, was to draw reflecting

circles for each layer line as shown in Figure 15. As is indicated

in Figure 11, the radius of the circle depends on the layer line but

the distance from the origin of the lattice plane to the center of the

circle is a constant. Two circles are drawn as shown to indicate a

100 oscillation. With this diagram placed on the diagram of the

reciprocal lattice in the proper position, all points falling within

the lunes could have produced spots'.

The final step in indexing consisted in marking arcs on the

reflecting circles for each layer line of each oscillation picture.

Each arc corresponded to an observed reflection and had a radius

equal to g for that spot. This diagram is now placed in the proper
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position on the reciprocal lattice, and as can be seen from Figure

11, each arc will intersect a point of the reciprocal lattice within

the lunes. This point has the same indices as the planes which

produced the reflection. Table 4 is a compilation of all reflec-

tions observed. The indices are arranged in a regular order to

facilitate the location of systematic absences of reflections.

  

FIGURE 15 - REFLECTING CIRCLES FOR

FOURTH LAYER
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III CONCLUSIONS

As stated previously, the unit cell chosen has the dimensions

0

a = 22.2A

O

b = 4.90A

O

c = 15.4A

B = 132°

This is an agreement with the findings of Dornberger-Schiff and

Leciejewicz.‘

Examination of the data in Table 4 shows that there are no sys-

tematic absences for the general reflections (hkl) but reflections of

the type (h, o, 1) only occur when X = 2n. There are no other special

absences which indicates that there are no screw axes.

The above observations would indicate that the cell chosen is

primitive and has a glide plane normal to the y-axis with a glide com-

c

7' C

Leciejewicz because they indicated a space group of Cc or C-2- while

ponent of This is not in agreement with Dornberger-Schiff and

the above information leads to the conclusion that the space group is

2

PcorP c'

Several things need be considered in analyzing the accuracy of

the results. One is the fact that the spots (especially high 9 spots)

on the oscillation pictures were split. According to Buerger" this

indicates a flaw in the crystal known as lineage structure. This type

of flaw usually causes some reflections to be very weak; perhaps to

the extent they would not be observed. It is doubtful that this flaw

caused an error in the determination but it rendered the films

practically useless for density measurements and a more complete

analysis.

 

‘Acta Crystallographic. 11.825 (1958).

"Buerger - Crystal Structure Analysis. John Wiley 8:. Sons. 1960.
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The fact that one flaw occurred in the crystal raises the question

of another possible flaw called twinning. I_fthis occurred (there is no

real reason for assuming it did) then there would be a tendency for

spots to appear on the film which the symmetry of the crystal would

indicate should not be there. The author believes this to be highly

unlikely and that the space group is either Pc or P%.



APPENDIX I

CALCULATION OF LATTICE CONSTANTS

O

1 forK is 1.5374A

“1

1. For a - spacing

2. For b - spacing

3. For c - spacing

 
 

 

 

y = 0.346 cm

R = 5 cm

0

t = nA = 1 x 1.5374 A

sin tan.1 yn sin tan-w cm
H 5 cm

0

t = 22.2 A

y = 1.65 cm

R = 5 cm

0 o
t = 1.5374A = 4.90 A

. -1 1.65 cm

s1n tan -——--

5 cm

y = 0.487 cm

R = 5 cm

4 A 01.537

t = = 15.4 A

sin tan-1 0.487 cm

5 cm
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APPENDIX II

CALCULATION OF RECIPROCAL LATTICE QUANTITIES

a* =4- ———1'5374 - 0.069
a 22.2

>1< L_ 1.5374 _

b — b — ——4.90 — 0.313

c* =—t—= -1—'1%"—= 0.099

Radii of Reflecting Circles

First Layer Line: R = V1 - {2

R1= V1 - 0.00941 = 0.995

 

 

Second Layer Line: R2= V1 - 0.0376 0.982

 

Third Layer Line: R3= V1 - 0.0846 0.957

Fourth Layer Line: R4= V1 - 0.151’ = 0.920

Displacement of Origin of Reciprocal Lattice for Higher Layer Lines

Forn= 1 t1=C*Cos48

t1 = 0.099 x0.6691 = 0.0667

For n = 2 t2 = 0.133

For n = 3 t3 = 0.200

Forn = 4 t4 = 0.267
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