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ABSTRACT

CRYSTAL STRUCTURE ANALYSIS
OF COPPER NITRATE

By
Donald C. Bulthaup

The lattice constants and interaxial angles of copper nitrate
were determined, and the space group was limited to two possi-
bilities using X-ray diffraction methods. The lattice constants
were found to be: a 22.2 X, b = 4.90 X, c = 15.4 X, while the
interaxial angle 8 was found to be 132° for the unit cell chosen

in this monoclinic crystal. The space group was found to be either
Pc or P%. The values for a, b, c and 8 agree with those found by
Dornberger-Schiff and Leciejewicz, but the space group determi-

nation does not.

*Acta Crystallographica,l1,825 (1958).
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I THEORY

A. Crystal Structure

1. Crystal Habit - Since vonLaue's work in 1912, it has been
known that crystals are made up of a regular array of atoms. In
the course of studying crystal structure (started long before the
time of Laue) several "laws of crystallography' have been dis-
covered and many methods devised for representing the symmetry
of this structure.

The crystal habit exhibits symmetry which can be described

by three "'symmetry operations.'" These are:

a. Symmetry axes.
b. Mirror planes..

c. Centers of symmetry.

Rotating the crystal about a symmetry axis will cause it to be
in a position similar to the original position after rotating through
600, 900, 1200, or 180° depending upon the type of axis. These axes
are labeled two-fold axes if the necessary angle of rotation is 3—30
or 180° (n-fold axes if the necessary angle of rotation is ﬁﬁﬂ It
can be shown that only one, two, three, four and six-fold axes are

possible.

A mirror plane, as the name suggests, divides the crystal in
such a way that each face, point or line on one side of the plane has

a mate which appears as a mirror image on the other side.

A center of symmetry is a point within the crystal such that
any line through this point intersects similar points, lines or faces
on opposite sides of the crystal. Faces on opposite ends of lines

through the center of symmetry must be parallel.

All crystal habit symmetry can be described by the three

operations listed or combinations of these operations and the seven
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crystal classes’listed in Table 1 are identified in this manner. It
will be noticed in this table that one combination of symmetry
elements is especially common. This is the combination of a sym-
metry or rotation axis with a center of symmetry. The combination
is commonly called an inversion axis and is given the symbol n for

an n-fold axis.

TABLE 1 - CRYSTAL HABIT SYMMETRY

Crystal Class Identifying Symmetry Elements
1. Triclinic Center of symmetry only
2. Monoclinic Two-fold axis (rotation or inversion) in one direction only

3. Orthorhombic | Three mutually perpendicular two-fold axes (rotation or inversion)

4. Hexagonal Six-fold axis (rotation or inversion) along two axes

5. Trigonal Three-fold axis in one direction only (rotation or inversion)
6. Tetragonal Four-fold axis (rotation or inversion) one direction only

7. Cubic Four three-fold axes |

Note: Other symmetry operations exist for some classes, but the oneslisted represent
the highest order symmetry.

2. Bravais Lattices - Very early in the study of crystals it
was hypothesised that the regularity of the crystal habit implied a
regular arrangement of 'building blocks'' within. With this in mind,
many investigators studied the possible arrangements of points in
homogeneous three-dimensional lattices. In 1848 Bravais showed
that there were only fourteen distinct lattice arrangements possible.
(See Table 2 on Page 4.) To study these lattices it is convenient
to refer the points to a coordinate system. To simplify notation

the axes of this system should lie along lines of large lattice point

*Some references list only six classes by listing the trigonal system as a division of the
hexagonal system.
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population. This means that frequently the coordinate system
chosen is not orthogonal and different coordinate systems might
be chosen to describe the same crystal. The choice of coordinate
system for any given crystal depends upon the structure of that
crystal and is made to produce a model which is mathematically

the easiest to study.

The seven crystal classes can be described microscopically
in terms of angles between axes and spacing of lattice points along
the axes. Table 2 lists these seven classes and the distinguishing
axial angles and lattice spacing. It should be noted that by conven-
tion the spacing is labeled "a'' along the x-axis, ''b" along the

"n_1n

y-axis and "¢ along the z-axis. Also the interaxial angles yAz,
zAx and xAy are denoted by @, B and ¥y respectively.

A very useful concept in the study of microscopic crystal
structure is that of the unit cell. It is defined as the smallest unit
in the structure which has the physical and chemical properties of
the macroscopic crystal. The crystal is formed by packing unit
cells together in a three-dimensional arrangement. In all crystals
a unit cell (called a primitive cell) can be chosen such that lattice
points appear only at corners of regular polyhedrons and it would
seem that this choice would always be the best. It is found, how-
ever, that frequently certain simplifications result if the unit cell
is chosen in such a way that it is not primitive. An example of
this in a two-dimensional lattice is shown in Figure 1. Note that
if the cells outlined by the dashed line were chosen, a non-
orthogonal coordinate system would have to be used to describe

/</ N
’

// \\ // \\
< 1S /*
\\ V4 N 7

/

FIGURE 1 - TWO-DIMENSIONAL LATTICE
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the lattice. The cells outlined by the solid line can be described
with an orthogonal system but these are not primitive, in that an

additional point appears at the center of each.

As mentioned before, Bravais showed in 1848 that there were
only fourteen distinct three-dimensional lattices possible. These
include a primitive configuration for each crystal class plus non-
primitive configurations for several of the classes. These Bravais

lattices are listed in Table 2.

TABLE 2 - BRAVAIS LATTICES

Symmetry Interaxial Angles Axial Ratios Lattice Type

Cubic a =B=v=9" a=b=c Primitive (P)
Face Centered (F)
Body Centered (I)

Tetragonal a =B=v=900° a=b#c Primitive (P)
Body Centered (1)

Orthothombic a =B=v=9° atb#c Primitive (P)
C-Face Centered (C)
Body Centered (I)
Face Centered (F)

Monoclinic a=y=9"%p atb#c Primitive (P)
C-Face Centered (C)
Triclinic a #+PB+y#90° atbic Primitive (P)
Hexagonal a =B=90° y=12°la=btc Primitive (P)
Trigonal - a=B=v4+9° az=b=c Primitive (P)

3. Point Groups - The crystallographic symmetry operations
have already been discussed (Page 1) and it was found that crystal
habit could be defined in terms of these operations. In modern
crystallography, however, the study of crystal habit makes up a
very small portion of the total work done. The ultimate goal is to
determine the lattice structure and which atoms occupy each posi-

tion. If the above symmetry operations are changed to include
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inversion axes (described on Page 2) as well as rotation axes,
then these operations are useful in the microscopic study of
crystals. It can be shown that there are thirty-two distinct
"point groups'' which can be produced by applying these operations
in various combinations to a single point in space. The Interna-
tional Tables” lists these point groups and employs the following

notation:

X - X-fold rotation axis.

X - X-fold inversion axis.

% - X-fold rotation axis with mirror plane normal
to it.

X2 - X-fold rotation axis with two-fold axis (axes)
normal to it.

Xm - X-fold rotation axis with mirror plane (planes)
parallel to it.

X2 - X-fold inversion axis with two-fold axis (axes)
normal to it.

Xm - X-fold inversion axis with mirror plane (planes)
parallel to it.

E)E_n - X-fold inversion axis with a mirror plane

normal to it and mirror planes parallel to it.

These point groups then represent all possible ways for arranging
points in space about a single point such that the group has sym-
metry consistent with observed crystals.

Every crystal fits into one of the thirty-two 'point groups,"
but it is not always easy to establish which one. To aid in the
determination several methods have been developed which depend

*Intemnational Tables for X-Ray Qrystallography, Kynoch Press, Birmingham, 1952, Vol. I,
Section 3.3.
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upon the physical properties of the crystal. These can be divided
into two categories; (1) studies of facial development and other
external features and (2) information concerning certain internal

physical characteristics.

In theory the point group can be determined by the symmetry
of facial development, and this was the only method available to
early crystallographers. This method, however, is not generally
good in practice because the facial development may not be clear.
The facial development depends upon the lattice plane population
but is subject to change by impurities in the solution during growth
and so the size of a particular face may be different in different
crystals of the same type.

In some cases where the development of faces is inadequate,
etch figures can be used to good advantage. A non-optically active
etching reagent is placed upon one face. If the trial is successful,
the etching will take place at different rates in different crystal
directions resulting in an etch pit which has the symmetry of one
of the ten two-dimensional point groups® From this much can be
learned about the crystal symmetry. Since the etch rate in dif-
ferent directions is often the same, the symmetry of the etch pit
must be considered as the highest possible symmetry. This must
be used with other information to produce a satisfactory analysis.

In general, internal physical properties of a crystal are
easier to analyze and are more satisfactory for point group
analysis. The three physical properties usually studied are
optical refraction, optical activity, and pyroelectric and piezo-

electric effects.

If a crystal is transparent, optical refraction can be deter-

mined in several directions. Only crystals of the cubic system

*International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1952, Vol. I,
Section 3.1.
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are isotropic and among anisotropic crystals those in the
Orthorhombic, Monoclinic and Triclinic systems are biaxial while

the remainder are uniaxial.

The only characteristic which canbe implied byopticalactivity
and the piezoelectric effect is the presence or absence of a center
of symmetry. Fifteen of the twenty-one non-centrosymmetric point
groups are optically active and all but one exhibit the piezoelectric
effect. Even though the one non-centrosymmetric group whichdoes
not exhibit the piezoelectric effect is optically active, the absence
of both effects in tests does not necessarily mean the crystal is
centrosymmetric because sometimes the piezoelectric effect is
too weak to measure. The presence of either effect, however, does

mean that the crystal is non-centrosymmetric.

In theory the presence of the pyroelectric effect means that
the point group of the crystal must have a unique polar axis. In
practice, however, it is found that the stresses set up in the
crystal by unequal heating or cooling during the test give rise to
a piezoelectric effect and so the only safe deduction is that the

crystal is non-centrosymmetric.

One other method is available to assist in point group deter-
mination, but this involves the symmetry of X-ray pictures and

will be discussed later.

4. Space Groups - The symmetry operations discussed thus
far have referred to crystal habit or lattices of indistinguishable
points in space. In actual crystals the lattice positions are
occupied not by indistinguishable points, but by atoms which differ
from one another. This complicates the issue somewhat, and it
can be seen that there will be many more than thirty-two arrange-
ments possible. It is found that two more symmetry operations
are needed to describe the additional arrangements.
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These operations are combinations of:
1. A simple rotation axis with a translation parallel to it.

2. A mirror plane with a translation parallel

to it.

The first operation listed is called a screw axis, while the second
is called a glide plane. Figure 2 shows equivalent points for each
operation and lists the notation used for each. Note that these
operations, unlike the other symmetry operations, do not bring a
point back into coincidence with itself but rather bring it into
coincidence with a corresponding point of a neighboring lattice
position. These operations, therefore, only have meaning when
applied to an extended point system.

é/ Glide Plane

Equivalent Points in Glide Plane Operation

— \
X t/. L "L
3/ 4

AT 1/ ‘%1.7\

" Two-Fold Three-Fold Four-Fold Six-Fold
(2y) (31) (41) (61)

SCREW AXES

(Note that each translation for an n-fold axis is%—of the repeat distance along
the axis.)

FIGURE 2 - GLIDE PLANE AND SCREW AXES
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For the complete description of atomic arrays in real
crystals, some knowledge is needed of the possible "infinite"
distributions of points (not all identical) in space which will bear
the observed crystallographic symmetry. In 1891, Schoenflies
proved that there were 230 such distributions, and these have been
called the 230 space groups. The space groups can be derived by
placing a point group at each point of a Bravais lattice of the same
symmetry then using the appropriate symmetry operation from
those introduced above (screw axis or glide plane). The symbol
for each space group is a combination of the symbols representing
the appropriate Bravais lattice, point group and screw axis or
glide plane. A complete list of all space groups as well as the
essential information about each can be found in the '"International

Tables for X-Ray Crystallography."



B. X-Ray Crystallography

1. Introduction - In the last section some general concepts
about the structure of crystals were presented. It is found, how-
ever, that these concepts are inadequate in most cases where a
complete analysis of a crystal is desired. For such a study of
crystal structure one of the most useful methods available is
X-ray diffraction and the purpose of this section is to outline
the theory involved in this method.

2. Diffraction of X-rays - Every student of college physics
has been exposed to the interference pattern formed by a double
slit or a diffraction grating and knows that this pattern is formed
when coherent waves reach some position either in phase or out
of phase. This is somewhat analogous to the diffraction pattern
formed when X-rays are allowed to strike a crystal. The major
difference between the two is that in the double slit experiment
the '"diffracting objects'' are the slits, while in diffraction by a
crystal the electrons of the atoms in the lattice positions perform
this function. The process involving the crystal is more difficult
to analyze for two reasons:

a. It is a three-dimensional process rather than
two.

b. The scattering process at the lattice positions

is more difficult to describe quantitatively.

As X-radiation passes through a crystal each electron in
the crystal finds itself in an oscillating field which means it
experiences a periodically varying force. According to classical
electromagnetic theory the acceleration which results causes the
electron to emit radiation with a frequency the same as that of
the varying force. This radiation is emitted with a spherical
wave front, but the intensity is not the same in all directions.
Viewed from an energy viewpoint, it is seen that energy is trans-

ferred from the incident radiation to the electron and then

10
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re-radiated so that the net effect is that part of the energy of the
incident radiation is ''scattered" by the electron. From this it
would seem that the total scattering from each lattice position
would be directly proportional to the number of electrons present.
This is approximately true but due to the fact that at any given
lattice position the electrons are separated by a short distance,

there is some destructive interference in the emitted radiation.

In order to describe the interference pattern formed by a
three-dimensional crystal, the scattering from each lattice posi-
tion and the multiple interference at a point in space of radiation
from these positions must be considered. It can be seen that this
is not a simple thing todoandthe calculations would be extremely
cumbersome. Fortunately, a simpler alternative method involving
what is known as the "Bragg Law' is available and in general use.
This method is based upon the fact that the interference pattern
can be accurately described by assuming that the X-ray beam is
reflected from planes within the crystal drawn so that they contain

many lattice points.

In order to use the Bragg Law described above, it is necessary
to have a simple method for describing the planes within the crystal.
If a three-dimensional coordinate system is placed on the lattice
(origin position is arbitrary) the planes can be described in terms
of the intercepts on these axes. If the plane of concern is parallel
to one or two axes, then the intercept is at infinity and not at all
convenient in any calculations. To eliminate this problem, Miller
proposed a system whereby the plane is described by the reciprocal
of the intercepts. Thus the plane parallel to the x-y plane would
have the '""Miller indices" (0, 0, 1).

In Figure 3 plane ABC has indices (53 1) or (2, 3, 6).

These are equivalent indices because the labeling depends on the
choice of origin which is arbitrary. By the same reasoning, the

11
3) or (1, 1, 1).

indices of plane DBE are (%,§,
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FIGURE 3 - MILLER INDICES

If the assumption of reflection from lattice planes is accepted,
then the condition for constructive interference is easily derived.
In Figure 4 the X-ray beam is incident from the left and ''reflected"
by the set of lattice planes shown. If constructive interference is
to take place, the difference in path length between the beams
"reflected" from adjacent planes must be equal to n A. From the
diagram it can be seen that nA = 2d sin 6. This is known as the
Bragg equation. A more eloquent derivation based directly upon
scattering concepts can be found in many of the texts listed in the

bibliography.

— Q. —nd

FIGURE 4 - BRAGG "REFLECTION"
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In a complete crystal analysis the relative intensity of the
reflection is very important, since it is from this information that
the position occupied by each type of atom is determined. This
project is not carried to that extent, but the conditions under which
a certain reflection does not occur are important. It is from infor-
mation about systematic absences of certain reflections that the

space group of the crystal is determined.

As an example, consider a monoclinic, C-face centered
crystal. The C-face is shown in Figure 4(a) along with planes of
the form (234). Figure 5(b) shows the C-face with planes of the
form (13/).

111
e’

(a) (b)

FIGURE 5 - C-FACE CENTERING EXTINCTIONS

In order for the planes (23/) to produce a constructive interference
for a given X-ray beam the path difference between portions of the
beam reflected from consecutive planes must be equal to . The
planes formed by the centering points are parallel to and midway
between the planes (23[). They also have the same scattering
power (same point density), so the net result will be cancellation

of these reflections. Notice that if all planes are considered, they
will have the form (46[). The planes of the form (137) shown in
Figure 5(b) also contain the centering points, and the problem does

not exist. It can be seen that both sets of planes considered which
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do not produce extinctions satisfy the condition h + k = 2n. It can
be shown that this is true in general and gives a means for deter-
mining if a chosen unit cell is C-face centered. Similar arguments
can be carried out for other non-primitive cells resulting in the
conditions for non-extinction of general reflections for each cell as
listed in Table 3.

TABLE 3 - CONDITIONS FOR POSSIBLE REFLECTION

Condition for

Lattice Type Possible Reflection

A-face centered k+/ =2n
B-face centered h+/Z = 2n
C-face centered h+k = 2n

F (all faces centered)
I (body centered)

R (rhombohedral indexed on
hexagonal axes)

Hexagonal indexed on
rhombohedral axes

P (primitive)

h, k, Z all odd or all even
h+k+/ =2n

-h+k+/Z = 3n
orh-k+/Z =3n

P+q+r=3n

No restrictions

In addition to the above conditions for non-extinction of
general (hk[) reflections there are also conditions for reflections
from sets of planes which have one or two of the indices zero. The
list is quite long and can be found in the '"International Tables for

X-Ray Crystallography."

3. Geometry of X-Ray Pictures - In the analysis of crystal
structure many different types of apparatus are available for use
with the X-ray machine. The theory of operation varies all the
way from the relatively simple Laue method to rather complex
moving film methods such as those used with the Weissenburg
camera. The methods involving the most complex theory are, in
general, the easiest methods from which to get the necessarydata.
For this project the only equipment available was that necessary
to take Laue pictures and simple rotation or oscillation pictures.

The discussion here will be limited to those two methods.
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In taking Laue pictures white X-radiation (continuous band
of frequencies present) is directed on a stationary crystal. The
diffraction pattern is then formed on a flat film placed either
behind the crystal (transmission pattern) or in front of the crystal
("reflection' pattern). This method is the simplest and also the
oldest in existence. The first diffraction pattern of a crystal
formed with X-rays was the one taken by Laue in 1912 using this
method.

Since the crystal and X-ray beam remain fixed, the angle €
between the beam and a given set of planes is also fixed. The
Bragg equation shows that with these conditions the wavelength of
radiation reflected from each set of planes is also fixed. However,
closer inspection reveals that if a set of planes (hk £ ) reflects a
wavelength X then the set (2h, 2k, 2 ) which is parallel to the first
set will reflect radiation with wavelength%. These reflections
will be in the same direction, and so it can be seen that one spot.

on the film could be contributed by several distinct wavelengths.

One characteristic feature of Laue photographs is that the
spots all fall on a series of conic sections which pass through the
central position on the film. The reason for this can be seen if
reflection from a set of planes with a common line of intersection
(called a zone axis) is considered. Figure 6 illustrates this
condition. It would appear that since a real crystal contains an
extremely large number of planes about any zone axis, the conic
section would contain a very large number of spots and perhaps
be almost a solid line. Closer inspection, however, reveals that
each set of planes about the axis has a definite spacing which will
reflect only a certain wavelength, so that since_all wavelengths of

radiation are not present, some planes will not reflect.

Another feature of Laue photographs which is very important
is the symmetry of spots which occurs when the X-ray beam is
directed along a crystalline axis. The symmetry of the pattern on
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FIGURE 6 - LAUE PHOTOGRAPH GEOMETRY

the film is quite sensitive to changes in crystal position and
therefore provides a suitable method for aligning the crystal on
the X-ray machine.

Although the Laue pictures are useful for certain things,
the information obtainable is very limited and other methods are

necessary for a complete crystal analysis.

The oscillation photograph is generally considered the fun-
damental type of single crystal photograph. All more elaborate
methods for examining crystals are merely extensions of this
basic method. An oscillation picture is produced by allowing
essentially monochromatic X-radiation to fall on a crystalwhich
is rotating about an axis perpendicular to the X-ray beam. The
film is usually situated on a cylinder whose axis is the rotation
axis of the crystal. As the crystal rotates, many reflecting
planes are brought into the proper position thus.producing a spot
on the film.
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The most noticeable feature of oscillation photographs taken
on cylindrical film is the arrangement of spots on parallel, hori-
zontal lines. The reason for this occurrance can be seen by
considering the scattering of X-rays by points along a straight line.
All points along the line scatter X-rays in all directions but the
radiation from neighboring points will interfere destructively except
for 'preferred' directions as illustrated in Figure 7. From the
figure it is apparent that for each value of n there is a fixed angle
which the scattered beam makes with the line of points. There is
no condition on the azimuthal direction so from a single line of
points the scattered radiation which does not interfere destruc-
tively must fall along lateral surfaces of cones which have the line
of points as axes. If two or more non-parallel lines of points are

present, the constructive interference can take place only in

directions where the cones associated with each line of points

intersect.

 _

Incident X-Ray Beam

d
-t

FIGURE 7 - X-RAY SCATTERING
BY A LINE OF POINTS

With a crystal properly oriented on an oscillation goniometer
one of the crystalline axes and hence a row of lattice points is the
oscillation axis. With this arrangement, all radiation interfering
constructively falls along the cones associated with the axis of
rotation. Since these cones intersect a circumscribing cylinder

in circles, the observed pattern of spots is formed. It can also be
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seen from Figure 7 that by measuring the distance between these
"layer lines'' (y) and knowing the wavelength of the radiation, the

repeat distance along the axis can be found.

n)
sin tan~ ! -%I—

In studying crystals, much information is best conveyed by
referring to a direct crystal lattice. Some information, however,
is not easily conveyed by this method and it is found convenient to
introduce the concept of the reciprocal lattice. This lattice con-
sists of a three-dimensional array of points each of which
represents a family of planes in the direct lattice. The reciprocal
point lies on the normal to the set of planes it represents and its
distance from the origin is inversely proportional to the spacing of
the planes. This concept is primarily used in X-ray studies of
crystals and it is found useful to let the constant of proportionality

be equal to the wavelength of radiation used.

The fact that the points in reciprocal space form a regular
three-dimensional lattice is not immediately obvious and requires
proof. Any set of planes (hk) in the direct lattice /c\an be
represented in vector notation if unit vectors /z;\, b, c, are defined
along the three axial directions. Since the intercepts of the planes
on these axes are —1-;—1,—1, the plane is represented by the vectors
AA A h* k'€

b < It & . ,is the vector representmg the normal drawnfrom
Bk "z hk £
the origin to the plane (hk £), and d Z is the vector representing
the position of the reciprocal pomt, then by the definitions of

. . L= %k .
reciprocal vector and reciprocal point dhk,Z . dth— 1. Figure$8

illustrates these vectors. From the figure it can also be seenthat

— \ A
Gl B " dhkl(r}'%) y (dth)z (1)
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where fl is the unit normal to the planes (hk[) and d
RN

p—

1

dhx s 3
dhk £
% 1
and so dhk.& F = ((-i*—- )2
hk £
Also because of the colinearity
A%
Ny g - A M/
hk * * 2
ksl (nkl)
hk/f
| so that th )
hkl
now by substituting (5) in (3)
T
hk,& AR
n ¥ 2
A £ (dpy £
—A 5k A
~and dhkﬂ a =h 3

— A
similarly dh;:.Z. b=k ?

A
and dth~c—Z

Again from the definition of reciprocal vector
AN
2.8%=1,2.%"-0

so that equations (7) are satisfied only if

_s* A\ % A\ *
hkj ha + kb +/c

hic /18 the
distance between them. Since dhkl and dhk,[ are colinear

(2)

(3)

(4)

(5)

(6)

(7)
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y Reciprocal Point
—>e
dhk £
)
k Lattice Plane
7\
dy
X
a \
h

FIGURE 8 - VECTOR RELATIONSHIPS IN THE
FORMATION OF A RECIPROCAL LATTICE

From this it can be seen that for every set of planes (hk.£)in the
direct lattice there is a reciprocal point with coordinates e *, k% *
and l’c\* in a lattice defined by the three unit vectors. Also since
h, k, and Z are integers, it can be seen that the reciprocal lattice
consists of regularly spaced points.

It should be noted that when the axes of the direct lattice are
orthogonal then the axes of the reciprocal lattice are colinear with
them. If the direct lattice axes are not at right angles, as with the
x and z axes of the monoclinic cell, then the reciprocal lattice axes

are not colinear with them as illustrated in Figure 9.

FIGURE 9 - DIRECT AND RECIPROCAL LATTICE AXES
FOR A MONOCLINIC CRYSTAL
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One of the principal reasons for introducing the reciprocal
lattice is that it simplifies the otherwise complicated process of
indexing the spots on the X-ray photographs. To understand this
process as applied to oscillation pictures it is necessary to discuss
the geometry of diffraction pattern formation using the reciprocal
lattice. The basis for this discussion is the concept of the
reflecting sphere which was first introduced in 1921 by Ewald. In
Figure 10 a cross section of a reflecting sphere is shown along
with one set of direct lattice planes and some reciprocal lattice
points. The sphere is drawn with a radius R =—1;- where k is the
reciprocal constant. Since k is usually chosen to be equal to A,
the radius is a unitless 1. P is the reciprocal point for the set of

planes drawn.

Lattice Planes

X-Ray Beam

Reciprocal Lattice Points

FIGURE 10 - THE REFLECTING SPHERE

In the diagram it is apparent that angle APC is 90° and LCBP =
2(L. BAP). Since the line PC is perpendicular to both the lattice
planes and line AP, the angle BAP = @. The reflected X-ray
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beam, then, has a direction the same as the line BP. If this

reflection occurs then Bragg's equation must be satisfied

and A = 2d sin 6
; = Al
sin 6 2d

From the diagram

but CA = 2 by construction and by the definition of reciprocal

lattice

kA
CP-d-d

: A

o) sin @ 2d

From this it is seen that whenever a reciprocal lattice point falls

on the reflecting sphere, the corresponding set of lattice planes is

in a position to reflect. If an oscillation picture is being taken, the

process can be thought of as the rotation of a reciprocal lattice so
that many different lattice points in turn pass through the reflecting

sphere thus indicating a reflection from a set of lattice planes.

In the course of studying a crystal by X-ray methods it is
necessary to know which spot on the film was caused by which set
of crystalline planes. The concepts of the reflecting sphere and
reciprocal lattice discussed above are helpful in this determination.
Figure 11 shows the reflection geometry and the coordinates which
can be measured. The oscillation axis is, of course, on the axis of
the cylindrical film but the radius of the reflecting sphere is so
small compared with the radius of the film that its center can also
be considered as lying on the axis. In the diagram, the point P is
a reciprocal lattice point on the reflecting sphere while Q is the

spot produced on the cylindrical film by the corresponding reflection.
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€ and ¢ are two of the cylindrical coordinates of the point P. It
can be seen that since P is x;equired to be on the reflecting sphere
(which has a known radius), the coordinates of the spot on the film
will be sufficient to determine § and § for the lattice point pro-
ducing it and also which lattice point if the orientation of the crystal
is known. If the picture is being made by rotating the crystal
through 360° it is not usually possible to determine which lattice
point was in position because in fact more than one point may
produce a spot in the same location. For this reason most oscil-
lations are made by limiting the motion of the crystal to 10° to 15°

and the orientation of the crystal is carefully noted.

Direction of
Reflected
Wall of Cylindrical "Camera” Beam

Reciprocal
Lattice Point

Undeviated
X-Ray Beam
- >
Beam
Crystal
Position

FIGURE 11 - OSCILLATION PICTURE GEOMETRY
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The spots on any given layer line are produced as the

reciprocal lattice points in a plane normal to the rotation axis
cross the reflecting sphere. The intersection of the plane and
sphere is a circle, called the reflecting circle, which can be used
to index the spots on any given layer line. It should be noticed
that for layer lines other than the zero line the reflecting circle
has a radius smaller than that of the reflecting sphere and does
not pass through the axis of rotation (the origin of the reciprocal

lattice plane).



II EXPERIMENTAL PROCEDURE

A . Introduction

This research was undertaken in order to obtain the

following information about copper nitrate:

1. The lattice constants.
2. The interaxial angles.

3. The space group.

The crystal class had previously been established as monoclinic
by morphological studies. Before work along these lines could be
started, however, a method had to be found for keeping the crystal
from deliquescing. The humidity in the laboratory was very high
(70-75% at times), and it was found that the crystal would not last

long enough for even one Laue picture.

Several methods were tried for isolating the crystal without
making it inaccesible for X-ray pictures. First, the crystal was
dried in a desiccator then while inside a sealed glove box was
sprayed with a plastic coating. When mounted on the X-ray
machine, the crystal again deliquesced leaving a plastic shell. The
process was repeated several times with great care, yet the result

was the same.

The second attempt involved sealing the crystal in ordinary
scotch tape. This may have worked, except that the necessary

visual alignment on the X-ray machine could not be accomplished.

The third method tried was to seal the crystal in a glass
tube which had been drawn out so that the walls were very thin.
There were two drawbacks to this method. The glass absorbed
too much radiation (Lindemann glass was not available) and the

tube did not offer enough mobility for alignment about all axes.

The method which was finally used involved mdunting the
crystal in modeling clay then inverting half of a clear gelatin

25
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capsule over it. The capsule did not produce an interference
pattern, and was thin enough to not absorb a significant amount
of radiation. Also, the crystal was clearly visible for alignment
and was accessible for reorientation at any time. It was found
that by placing the goneometer assembly in a desiccator every

night, the crystal remained dry.



B. Determination of Lattice Constants and Interaxial Angles

The crystal was first mounted so that its long dimension
was vertical. By viewing the faces through a microscope attach-
ment, the crystal could be aligned so that the X-ray beam would be
parallel to a face. A series of Laue pictures was taken to complete
the alignment. As was mentioned in Part I of this report, the Laue
picture is highly symmetrical when the X-ray beam is parallel toa
crystalline axis. It was found that the position could be detected by

this method to within one-quarter degree.

After taking many Laue pictures as described above, the
presence of axes in the horizontal plane was established as indicated

in Figure 12.

o 82.75°

219° 130.75°

176.75°

FIGURE 12 - AXIAL DIRECTIONS IN ONE PLANE

Since no two axes were 90° apart, it was concluded that the vertical
axis was the y-axis of the crystal. Since the crystal was aligned
with this axis vertical, a rotation picture was taken to determine
the lattice spacing along y. This was found to be 4.90 X. (See
Appendix I.)

27
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Now that one axial direction had been established there
remained to select the directions from those shown in Figure 12
which would be called x and z axes. To accomplish this the
crystal was set so that the X-ray beam would be parallel to the

axis marked 176.75° in Figure 12 then turned about this axis until

the y-axis was horizontal and the direction marked 82.74° was up.
More Laue pictures were then taken to perfect alignment and the
crystal was tipped 4° so the axis marked 82.75° would be vertical.
A rotation picture showed good layer line formation which indicated
good alignment of the crystal. A similar method was followed for
each of the other axes and a lattice constant was computed for each

as follows:
. o o
1. Axis at 82.75° - 15.4 A.

2. Axis at 130.75° - 22.2

o?>o

3. Axis at 219.75° - 16.7 A.

Figure 13 shows the lattice point positions for the points in the

X - z plane. From this diagram it is seen that there are several
possible CohOiCES for ugit cells. Orc1>e choice gives a cell with
a=222A,b=490A,c = 15.4 Aand B8 = 132° while the other
choice gives a cell with a = 16.7 X, b = 4.90 X, c = 15.4 X and
B = 94°.
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//'\\
/ N
/// \\
e \\
J/ \
AL A
4
N\
AN
15.4 8 \\ 16.7 &
N\
\\
\, 88°
48 22.2 & 44

FIGURE 13 - LATTICE POINTS IN X-Z PLANE

The first choice was selected and the analysis of the space group
was based upon this cell.



C. Determining the Space Group

As was indicated in Part I, the space group for a crystal can
be determined by analyzing the systematic absences in X-ray
reflections. In order to do this the spots on the film must be
indexed and catalogued. Ten oscillation pictures were taken about

the z axis and these were indexed.

The indexing is a geometrical process based upon the con-
cepts of the reciprocal lattice and the reflecting sphere which were
previously discussed. As can be seen from Figure 11 (Page 23), it
is necessary to determine the value of § and ¢ for each spotfrom
measurements made on the film. To facilitate this, a Bernal chart
was used. This chart is drawn for a ''camera' of a particular
radius and consists of a mesh of lines labeled with values of & and
¢ . By placing the film on the chart, a set of values for each spot

can be obtained directly.

Again referring to Figure 11 it can be seen that a crystal
oscillation of 10° between known limits is comparable to oscil-
lating the reflecting sphere about the oscillation axis through the
same angle over a known region of the lattice. The spots expected
on the film, then, are those corresponding to lattice points crossed
by the surface of the sphere. In practice the layer lines are
analyzed separately and so the important consideration is for lat-
tice points on a particular lattice plane which were crossed by a
reflecting circle. This circle, of course, is the intersection of the

sphere and the lattice plane.

The next step in the indexing process was to draw, to scale,
the reciprocal lattice plane normal to the oscillation axis. This is
shown in part in Figure 14. (Reciprocal lattice dimensions are
calculated in Appendix II.) Note that marked on this diagram are
angles which refer to the position of the crystal. It had been pre-
viously noted from known axial directions in the crystal that an

oscillation from 0° to 10° would be as indicated on this diagram.
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a /t/ 0~ Her
6.0 6.2 6.4
7.1 5.3
4,0 4,2 4.4
T 3.1 3,3
t3 30 2,2 2.4
0,4 0,3 Ty— 0,0 0,2 0,4 b
i — 11 1.3 ]
12— 20 2.2 2.4 90°
T 51 3.3 Here
7~ | 40 4.2 4.4
5,1 5,3
6.0 6.2 6,4

FIGURE 14 - X* - z¥ PLANE OF RECIPROCAL LATTICE

The points labeled ty» ty, etec., in Figure 14 represent the origin of
the reciprocal plane for different layer lines. Since the z-axis is
not perpendicular to the x-axis, the z* reciprocal axis is not normal
to the x* - z* plane. Because of this, if the same drawing is to be
used for each layer line a new origin must be computed. These

computations are also in Appendix II.

The next step, as might be expected, was to draw reflecting
circles for each layer line as shown in Figure 15. As is indicated
in Figure 11, the radius of the circle depends on the layer line but
the distance from the origin of the lattice plane to the center of the
circle is a constant. Two circles are drawn as shown to indicatea
10° oscillation. With this diagram placed on the diagram of the
reciprocal lattice in the proper position, all points falling within

the lunes could have produced spots.

The final step in indexing consisted in marking arcs on the
reflecting circles for each layer line of each oscillation picture.
Each arc corresponded to an observed reflection and had a radius

equal to & for that spot. This diagram is now placed in the proper
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position on the reciprocal lattice, and as can be seen from Figure
11, each arc will intersect a point of the reciprocal lattice within
the lunes. This point has the same indices as the planes which
produced the reflection. Table 4 is a compilation of all reflec-
tions observed. The indices are arranged in a regular order to

facilitate the location of systematic absences of reflections.

Origin

FIGURE 15 - REFLECTING CIRCLES FOR
FOURTH LAYER
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III CONCLUSIONS

As stated previously, the unit cell chosen has the dimensions

a = 22.2 A
(o]
b = 4.90 A
o]
c = 154 A
B = 132°

This is an agreement with the findings of Dornberger-Schiff and

Leciejewicz.’

Examination of the data in Table 4 shows that there are no sys-
tematic absences for the general reflections (hk £) but reflections of
the type (h, o, 1) only occur when ,( = 2n. There are no other special
absences which indicates that there are no screw axes.

The above observations would indicate that the cell chosen is
primitive and has a glide plane normal to the y-axis with a glide com-
ponent of % This is not in agreement with Dornberger-Schiff and
Leciejewicz because they indicated a space group of Cc or C-;— while
the above information leads to the conclusion that the space group is

2
Pc or P-g.

Several things need be considered in analyzing the accuracy of
the results. One is the fact that the spots (especially high 6 spots)
on the oscillation pictures were split. According to Buerger* this
indicates a flaw in the crystal known as lineage structure. This type
of flaw usually causes some reflections to be very weak; perhaps to
the extent they would not be observed. It is doubtful that this flaw
caused an error in the determination but it rendered the films
practically useless for density measurements and a more complete

analysis.

*Acta Crystallographic, 11,825 (1958).
*Buerger - Crystal Structure Analysis, John Wiley & Sons, 1960.
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The fact that one flaw occurred in the crystal raises the question
of another possible flaw called twinning. If this occurred (there is no
real reason for assuming it did) then there would be a tendency for
spots to appear on the film which the symmetry of the crystal would
indicate should not be there. The author believes this to be highly
unlikely and that the space group is either Pc or P%



APPENDIX I

CALCULATION OF LATTICE CONSTANTS

o)
A for Ka is 1.5374 A
1

1. For a - spacing

2. For b - spacing

3. For c - spacing

y = 0.346 cm
R=5cm
o
¢ = na - 1x1.5374 A
. -1 yn . -1 0.346 cm
sin tan g sin tan %5 cm
o
t = 22.2A
y = 1.65 cm
R=5cm
2 o
e A - 400 A
sin tan T —4/——
5 cm
y = 0.487 cm
R=5cm
53 4X o
1.537
t = = 15.4 A
sin tan_l 0.487 cm
5 cm
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APPENDIX II

CALCULATION OF RECIPROCAL LATTICE QUANTITIES

a¥ =& - 19374 ) geg

a 22.2
* _ A _ 15374 _
b™ = b - '——4.90 = 0.313
* A 1.5374 _
S 15.4 - 0.099

Radii of Reflecting Circles

Vi - §2

First Layer Line:

! V1 - 0.00941 = 0.995

R =
R. =

Second Layer Line: R2= '\/l_-m
R.=
R,=

0.982

Third Layer Line: 3 '\/1 - 0.0846 0.957
Fourth Layer Line: 4 V1 - 0.151"= 0.920

Displacement of Origin of Reciprocal Lattice for Higher Layer Lines

For n = 1 t, = C* Cos 48
tl = 0.099 x 0.6691 = 0.0667
Forn = 2 t2 = 0.133
Forn = 3 t3 = 0.200
Forn = 4 ty = 0.267
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