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David L. Bradley

ABSTRACT

The photoelastic constants of synthetic sapphire were

determined by combining both static and dynamic measurements.

Procedures for obtaining photoelastic constants in rotated

coordinate systems, corresponding to specific orientations

of the sapphire crystals are outlined. The ratios of photo-

elastic constants are measured by analyzing the polarization

of the first order diffraction pattern produced by pure

longitudinal ultrasonic waves. The differences of photo-

elastic constants are obtained by applying a known stress

to the sample and measuring the phase difference of the light

with a Babinet Compensator. Values of the strain optical and

stress optical constants are tabulated.
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INTRODUCTION

Photoelasticity, the phenomenon of double refraction

accompanying mechanical stress, was discovered in 1815 by Sir

David Brewster. Early work in this field was carried out by

F. E. Neumann, who was the first investigator to systematically

develop a theory of double refraction due to a stress. G. Wertheim

was the first to experimentally verify the laws of photoelasticity

for homogeneous stresses in glasses (1).

Other investigators contributing to the early work in

this field were J. Kerr, who experimentally found the first

reliable values for the stress-Optical constants, and C. Maxwell,

who proposed essentially the same theory as F. E. Neumann.

In 1889 and 1890, the elementary theory of double re-

fraction was extended to crystals by F. Pockels (1).

Early investigators were limited in their measurements

of photoelastic constants to static measurements. A relative

change in the optical path length could be measured by applying

a stress in a given direction and measuring the difference in

optical path length with a Babinet Compensator for light polarized

normal to the stress direction and light polarized parallel to the

stress direction. The difference in optical path length is pro-

portional to the difference of photoelastic constants. Absolute

changes in optical path length were measured using interferometric



techniques. An absolute change in Optical path length is pr0por-

tional to the photoelastic constant for that direction.

In 1932, the discovery of the effect of an ultrasonic

field on light passing through a transparent material led to

an entirely new method of determining photoelastic constants.

H. Mueller, (2), (3), (h), develOped a theory of the diffraction

of light by ultrasound in isotropic solids. Mueller's theory

is an adaptation of the theory of the diffraction of light by

ultrasound in liquids by Raman and Nath (5). Mueller's theory

was experimentally verified by Hiedemann. Narasimhamurty (6)

investigated the photoelastic constants of uniaxial and biaxial

crystals, following the suggestions of Mueller. Photoelastic

constants of isotropic solids and crystals may be studied using

static methodsfirst developed and using dynamic methods, suggested

by Mueller (2).

In this investigation, static and dynamic measurements

were both employed to determine the photoelastic constants of

synthetic sapphire. The photoelastic constants may be divided

into two classes, the stress-optical constants and the strain-

optical constants, the former related to variations of stress and

the latter related to variation of strain. In this dissertation,

we shall assume stress and strain to be within the limits of Hooke's

Law. In this case, the two systems may be used equivalently. We

shall also assume stress and strain to lie along the same axis,
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i. e., a pure compressional force.

Sapphire belongs to the trigonal class of crystals.

It is a negative uniaxial ( the ordinary index of refraction is

greater than the extraordinary index of refraction) crystal with

eight stress optical (or strain optical) constants.

Investigations were performed on three samples of

sapphire oriented at particular angles with respect to an ortho-

gonal set of axes. Three samples were necessary to provide

enough relationships to obtain the eight constants of sapphire.

The static measurements were performed in the usual way, using

a Babinet Compensator to measure the relative change in the

optical path. The dynamic measurements were made using'Mueller's

Method "C", described in the experimental section.

Photoelastic constants describe the optical behavior of

sapphire when subjected to stress or strain. Knowledge of the

photoelastic constants, when coupled with the intensity distri-

bution of light in the diffraction orders created by a sound

field, provide a method of studying absolute sound pressure

amplitude.



THEORY

SECTION A: The assumption of pure longitudinal waves in this

investigation demands a determination of the directions in a

trigonal crystal along which these pure longitudinal waves can

be propagated. F. E. Borgnis (7) has develOped a general theory

for determining the directions of pure longitudinal waves in crys-

tals.

In general, the particle displacement in a crystal does

not coincide with that of the pressure wave. There are, however,

certain crystallographic orientations for which the direction of

particle displacement and the direction of pressure wave propaga-

tion coincide. Following Borgnis, a set of relationships between

the direction cosines ((1) of the pure longitudinal waves and an

orthogonal set of axes are obtained:

11=1,(Z=13=o (1)

(3:1) (1=(2=O (2)

2

r 3 r
(-c13 + C33 - 2 chh) (13- + 3 clh 73' + (-c11 + c13 + 2 chh)x

I - c = O

(7:) 1h (3)

11:0

From.Eq. (1), pure longitudinal waves may exist along the X-axis

of the crystal. For a trigonal system, a rotation of 1200 about

the Z-axis produces an equivalent coordinate system. Figure 1

indicates the directions of pure longitudinal waves in the X-Y

plane.
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From Eq. (2), pure longitudinal waves can be prOpagated

along the Z—axis of the crystal. Equation (3) gives a set of

directions in the Y-Z plane along which pure longitudinal waves

may exist. Substituting the values of elastic constants as given

by Mayer and Hiedemann (8) into Eq. (3) and solving for 73' one

2

obtains the following three sets of values for (2 and (3:

.978

.210

(2

r3 = + .78u I

+ .620 (2 + .775 (2

3 - .632 (3

Figure 2 illustrates the orientation of these angles with respect

to the Y-axis and Z-axis. Counting positive and negative directions,

there are thirteen possible directions of pure longitudinal motion.

SECTION B: F. Pockels (l), (9) developed a systematic method of

studying the photoelastic constants of crystals. His argument is

as follows; Assuming that Fresnel's laws of propagation of light

hold in a crystalline medium, the optical index ellipsoid in an

undeformed medium may be represented in general by:

0 2 o 2 o 2 o o o

Bllx + B22 y + B33 2 + 2 B23 yz +2 B31 zx + 2 B12 xy — 1 (H)

where

o l o 1
B11 _. nil , ..... . .......... 312 n2 ,

12

In a deformed medium, the optical index ellipsoid is, in general

B x2 + B22 y2 + B 22 i 2 B yz + 2 B11 33 23 zx + 2 B12 xy = l (5)
31
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Where B11 = 1 ,ooooooooooo, B12 = 1

n.2 n.2
11 12

The nij and nij may be called the Optical parameters of the system.

Pockels assumed that the differences of the corresponding coeffi-

cients Of the two index ellipsoids can be eXpressed as a linear

function of the strain, i.e.,

0

B11 ' B11 = P11511 + P12522 + P13S33 + P14323 + P15331 + p16312

--------------------------------------------------------------- (6)

0

B12 ' B12 = P61511 + p62522 + P63S33 + Peuszg + P65331 + P66312

where the pij are the strain-optical constants and the Smn are the

components of strain. Since the investigation is conducted in the

region where Hooke's law holds, stress may be substituted for

strain to give the following set of equations:

0

B11 ‘ B12 = ’(q11T11 + q12T22 + q13T33 + q11323 + q15T31 + q16T12)

------------------------------------------------------------------ (7)

0

B12 ‘ B12 = '(q61T11 + q62T22 + q63T33 + q61323 + q65T31 + q66T12)

where the qij and Tmn are the stress-Optical constants and the com-

ponents of stress reapectively. The pij and qij compose the photo-

elastic constants of a crystal. The components of stress and strain

are related by elastic constants and moduli as follows:

11 = s11T11 + 8121322 + S13T33 + S11523 + 815T31 + 816le

---------------------------------------------------------- (8)

'312 = s61T11 + S62T22 + S63T33 + S6AT23 + S65T31 + S66T12

where the sij are the elastic moduli.





11 = C11311 + C12522 + c13333 + °1u523 + c15331 + C16312

---------------------------------------------------------- <9)

12 = c61511 + C62322 + c63333 + °6h323 + C65331 + c66312

where the c. are the elastic constants. Combining Eqs. (6), (7),

11

(8), and (9), one obtains:

6 b

Pkl = Z‘qkjcjl qkl = Zpkjsjl (10)
)3

.:|

where the indices k, l = 1.......6 also.

In order to avoid repetition, only the pij will be discussed

henceforth, but the assumption of working in the region where Hooke's

law is valid makes it possible to use the relationships derived for

the qij also.

In the most general case, there would be 36 different constants

pij for the triclinic crystal. Crystal symmetry reduces the number

of constants to eight in the case of sapphire, which is a trigonal

crystal. Pockels' equations may be written in matrix form for the

trigonal system as follows:

 

  

.— 77

o '- W 1

B11 ' B11 = p11 P12 P13 Plu o 0 S11

0 l

B22 ’ B22 = P12 P11 p13 'Plu O 0 S22

0

B - B = O O O S

33 33 p31 P31 p33 33 “ (1 )

1

B - B0 = p‘. -p O p O O S '

23 23 A1 11 an 23

0

B31 - 331 = O O O O Pun thl i331

B - B° = o o o o p
12 12 L 11+ p11- p12L L312.)    
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It is this set of constants that is to be investigated.

Consider two illustrative cases of calculating photoelastic

constants.

Case 1: The crystal is oriented along the orthogonal set (X-Y-Z)

of axes. Strain is along the Z-axis and observation along the Y-axis.

With no strain, the cross section Of the undisturbed index ellipsoid

is represented by:

o 2 O 2

B11 x + B33 F = 1 (12)

Upon application of a strain, the index ellipsoid is distorted and

and the ellipsoid cross section is represented by:

B x2 + B 22 + 2B

11 33 31 zx = 1 (13)

where the B31 term indicates the ellipse is, in general, tilted with

respect to the orthogonal axes. From Eq. (11), one Obtains:

0

B11 ‘ B11 = Pllsii + P12522 + p13533 + Plu323

B (1h)
0

33 B33 ’ P31511 + p31322 + p33533

0

B31 ' B31 = 9&4331 + thlslz

where B0

31

of strain. Since the only strain is along the Z-axis, all the Sum

0, since the index ellipse is not tilted in the absence

are zero except S Eq. (1h) can then be written as:

33'

0

B11 ' B11 = p13333

- 30 = S 1

B33 33 P33 33 ( 5)

331 = o,

Indicating in this particular case that the cross section Of the

index éllipsoid is not tilted with respect to the X-Z axes.
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Case 2: The crystal is oriented at an angle with respect to the

' orthogonal (X-Y-Z) set of axes. For this example, assume the crystal

has been rotated #50 about the X-axis. The strain is along the

X'-axis and Observation is along the Y'-axis and indicated in Fig. 3.

The rotation matrix may be written as follows:

 

x y z

x (1 m1 1“1

y (2 mg mg (16)

where the e., m., and n are direction cosines relating the X', Y',
1 1 i

Z' axes with the original X, Y, Z axes. For a Specific rotation of

#50 about the X-axis, Eq. (16) becomes

 

y o 1/{5 41le (17)

z 0 l/{B 1/{5

Using Eq. (16) and rewriting the strain of the original coordinate

system in terms of the strains in the new coordinate system, one

obtains

I I I I

2 2 2 m n + S n

S 33 1 2(323 11 31 1(1+S12(1m1)

I

11’1

l

m
-

H

N

I
-
' + U
)

N N

B
H

+ U
)

5 +

(18)

I I I I

312 = Sllll(2 + SZZmlmZ + S33n1n2 + 823(m1n2 + mznl) + S31(n1(2+[1n2)

+ 312((1m2+(2m1)



11

where Sén are the strains in the new system. Using Eq. (17),

one may write;

1 1
_ I _ _ I _ _ I

S11 “ S11 S23 " 2 S22 2 S33

_ ,]_- I l I _ I _ 1 I 1 I

S22 ‘ 2 S22 + 2 S33 523 S31 ‘4? S31 +4? S12 (19)

_ .1; I l I I ___1 I 1 I

333 ‘ 2 322 + 2 S 33 23 S12 ‘72 331 +72 S12

Now the equation for the differences of coefficients of the index

ellipsoid may be written in terms of the strains in the new system.

Combining Eqs. (11) and (19):

_ _ I l".
' l ' 'B11 B11 ‘ p11311 + 2(912 + p13 i p1”)822 + 2(p12 + p13 plu)s33

_ 1 I 1 I

B12 B12 ‘4‘2‘9111 P11 + "12)S 31 +{2(P111 + P11 p12)S12

Since only a strain along the X'-axis is being considered, the

Sén are all zero, except 311' Therefore, Eq. (20) reduces to:

- ° _ I _ ° = I

B11 B11 “ p11311 B23 B23 p111311

- O _ ' _ O _

B22 B22 ‘ p12311 B31 B31 ‘ O (21)

B - Bo - p S' O

33 33 31 11 B12 - 312 = 0

Now consider the index ellipsoid in the rotated system:

A x'2 + A '2 + A z'2
II II II_

11 22y 33 + 2A23y z + 2A 2 x + 2A12x y _ l (22)
31

The coefficients of the optical index ellipsoid in the transformed

system.may be written in terms of the coefficients of the Optical

index ellipsoid in the original coordinate system. Using Eq. (16),
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one may write,

2 2 2

A11 = B11(1 + B22 (2 + B33(3 + 2(323(2Y3 + B31(3K1 + 312(112)

------------------------------- (23)

A12 = Bllilml + 322 (zmz + B33(3m3 + B23((2m3 + (3m2) + B31((3m1 + (1m3)

+ B12([1m2 + (lml)

Combining Eqs. (17) and (23);

1 1

A11 ’ B11 A23 ‘ ' 2 B22 +~2 B33

A = 1-B + l-B + B A = 1 B v 1 B (2h)
22 2 22 2 33 23 31 {‘2‘ 31 12

-1 l _ _ 1 1

A33‘2B22+2B33 B23 A12" {2331+ B12

For observation along the Y' axis, the cross section of the index

ellipsoid is, in general,

I2 I2 II__
A11 x + A332 + 2 A31 2 x _ l (25)

The values of A11 , A33 , and A31 may be determined from Eqs. (21)

and(211):

_ I 0

A11 ‘ p11311 + B11

A =l(p +1) +21: )S' +l(B° +B°) (26)
33 2 12 31 Al 11 2 22 33

A31 = 0

Note that A = O , indicating in this particular case, that the
31

ellipse is not tilted with respect to the new coordinate axes.

In general, for a rotated system with respect to the

crystallographic axes, the procedure is: 1. write the strains in the

unprimed system in terms of the strains in the primed system. 2. write

the difference of coefficients Of the index ellipsoid in the un-

primed system in terms of the strains in the primed system.
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3. write the coefficients of the index ellipsoid in the primed

system in terms of the coefficients in the unprimed system. Briefly

then, one wants to write the photoelastic constants, as originally

defined in a rectangular coordinate system, in the coordinate sys-

tem in which the investigation is being carried out, which in gene-

ral, is rotated with respect to the system defined by the crystal-

lographic axes.

SECTION C: Dynamic measurements: Introduction Of a strain in a

transparEnn medium results in a change in the index Of refraction

of the medium. The Optical parameters discussed earlier are the

indices Of refraction for a crystal. Thus, the lengths of the

axes of the index ellipsoid are proportional to the indices of

refraction of the medium and are also proportional to the pressure

or strain exerted on the medium. In the case Of an ultrasonic wave

providing the strain, the axes of the index ellipsoid will vary

periodically, where the periodicity is determined by the frequency

of the ultrasonic wave.

Consider the two cases discussed earlier; in Case 1, re-

peating Eq. (15):

o l 1

B11 ' B11 = p13333 ” n.2 ' n2

11 11

O 1 1B .. B = S = —"'" _ _
1

33 33 p33 33 n12 n2 (5)
33 33

B31 - O = O , indicating nO tilt Of the index ellipse.

Since S33 is a periodic strain, the axes Of the index ellipse vary

periodically. Following Mueller (2), B1 and B may be written as:
1 33





ll

33—

where
1
‘

a

h
‘

P
‘
N

H

I

H

:
3

W
I
N
)

L
A
)

This indicates

pf variation of the principle axes of the index ellipsoid.

1h

(2nf* A kfisin 2nf*(t - (zcosg + ysinfl)/V*))

_ sound frequency

density of the medium

_ sound velocity

amplitude Of the sound waves

3 (21rf* A RF sin 21rf*(t - (zcosQ’ + ysinfl) /V*))

(27)

constant proportional to the elastic constants Of

the medium.

and ithat i1 3

the above equations, one Obtains:

Comparing again with

(11)(K) (n11)3 = A11-11

 

  

are prOportional to the amplitude

From

 

 

 

 

Mueller's equations;

and <11><K><n33>3 = A.
33

 

 

El. B11 - 1/ni1 Eli—E33 .313

13 B33 ' 1/“33 P33 S33 p33

Let Anll and An33 be the change in the index of refraction along the

X and Z directions respectively. One may then write:

211 = 1 = 1 = 1 ' 3““11/“11 = 1

(“11 ““11111)2 (1 +'A“11M11)n11 “11 “11

B33 = (n +1an )2 = 1 = 1 ’ 11:33/“33;

33 33 (1 + An33/n33)%33 n33 n33
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Therefore,

An i n3 n3 p n3 p

11 = 1 11 = 111 13 = O 13 = R1 (30)

An 3 3 3

33 13 n33 n33 P33 ne p33

From the theory of Raman and Nath (5), one may show that a change

in both n11 and 1133 produces two diffraction patterns and the inten-

sity of each pattern is dependent upon.An and An respectively.

11 33

Thus, if the th order of the diffraction pattern due to Anll is

Observed, the amplitude will be

Eml = E1 J'm.(vl)"

where E1 is the magnitude Of the electric vector Of the incident

light. Similarly for the pattern due to An33,

Em3 = E3 Jm(v3)

where

v1 = 11 L v = 2n:An33 L

A 3 A

Jm is the mth order Bessel Function, L is the width of the sound

field, and X is the wavelength of the light. For small values of

m and v,

11ml 11(V1)In E1 Am11 m m ( )
— = —+— = — — = R 31

Em3 23(v3f“ E3 An33 1

If the light is polarized at ABC to the sound field, E = E3 and
l

3

R? = 32. 313. (32)

n2 P33
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where R? is the quantity that is experimentally determined. In this

investigation, only the intensity in the first order diffraction

pattern was measured, therefore, m.= 1. For Case 2, following the

same procedure, one obtains:

2

- 1/n11

  

A11 = p11 S11

'2 1 l (26)

A33 ' 1/n33 = 5 (p12 + p31 ' 2 PM) S11

From.Eq. (28), where the system is rotated, so that A11 and A33 are

used instead of B11 and B33, the ratio can be written as

i A -1/n'2 (p + p - 2 ~p )S' n'3 (p +p -2p ) m
= = 12 31 Al 11 = 33L 12 31 1+1 = (33)

T3. 2 ' 21

1 A11'1’“11 2 p11 S11 n11 (2 911)

where the ratio KT is the experimentally determined quantity.

SECTION D: Static Measurements: By applying a static or constant

stress to the sapphire crystal and measuring the relative change in

optical path length with a Babinet Compensator, a relationship invol-

ving differences of photoelastic constants is obtained. To illustrate,

following Vedam (lO)assume a crystal whose dimensions are oriented

along the orthogonal set of axes has a strain (stress) in the X direc-

tion and observation is in the 2 direction. From Eq. (11)

0

B11 ‘ B11 = P11 S11

0

B22 ' B22 ‘ P12 S11 (31)

B - B° — s

33 33 ‘ p31 11

B23 = Phl S11



 

 

 

. o _ 2 o _ _ ZAn
Since B11 — l/nll, A.B11 — 11

n3

11

b t B - 3° 1 ual to A30 thus
“ 11 11 3 eq 11’ ’

o ZAn

B11 ' B11 " AB11 ’ 311 = p11511 (35)

1111

or, rearranging,

_ _ 3

An11 ' n11 p11 S11 (36)

2

The differential path retardation is obtained from A(nllz) where z

is the distance the light travels in the sample, and (nllz) is de-

fined as the Optical path length.

Mun.) = (Annxz) + (nuxm) = 511 (37>

Note that Anll has been defined above and Am is the strain in the

Z direction, i.e., Rewriting Eq. (33) and using Eqs. (32) andS33.

(8), one obtains

3 s_ _ _ n p z _
611 — An.z + n11.Az — ll :1 ll n11 z 813 T11 (38)

The same procedure may be carried through for 622, corresponding to

 

n22, with the result that,

3
_ _ n p S g _

2

The relative retardation is defined as the difference of equations

(35) and (3M) and this retardation is equal to the phase difference

of the two beams of light, i.e.,

B . 2n = £3 (511 - 5 (no)

22)



v
.
l

1
1
’
1
k
l

I
.
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where B is some fraction of 2n which determines how much phase change

occurs, and A is the wavelength of the light. Rewriting Eq. (36),

using the values of 5 and 522 from Eqs. (3M) and (35),

  

 

11

B = 1- '“§1 p11 S11 2 - n z s T - l- '“32 p12 S11 2 - n s z T
A 2 ll 13 11 A 2 22 13 ll

.3 (n3p -n3p>s _
B — k 22 12 11 ll 11 + S13 T11 (n22 n11) (#1)

2

but n11 and n22, which correspond to the no of the crystal, are

equal, so Eq. (37) may be written as

B — 3'- “3 s ( - ) (112)
"x -2—°- 11 p12 1)11

Assuming uniform stress throughout the medium of the specimen, S11

may be written as

where 311 is the elastic modulus. Also, T11 = F/A

where F is the force on the Specimen and A is the area over which

the force is applied. Finally then,

2B x A

P12 ’ p11 ‘ d nfl F 311 (M)

Table I provides a complete list of observation directions, strain

directions, and the relationships of photoelastic constants for those

directions which are used in this investigation. The direction cosines

of the normals to the cube faces with respect to an orthogonal set of

axes are given to indicate the orientation of the cubes used.
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EXPERDMENTAL PROCEDURE

Dynamic Measurements: See Fig. h. The experimental apparatus

consisted of a mercury arc light source filtered to obtain the 5h6l A

green line of mercury. The light was focused on a vertical slit which

acted as an image for the measurements. Light from.the slit was col-

limated and passed through a Nicol polarizing prism, which polarized

the light at #50 to the vertical. The light then passed through the

sample perpendicular to the path of the sound. The WOllasUmn double

image prism splifiithe light into two rays, one polarized in a direction

parallel to the sound beam and the other polarized perpendicular to

the sound beam. The light then passed through a focusing lens and

analyzing prism, after which the two rays were Split by a right angle

mirror, each ray going to a pick-up tube of a differential photometer.

The pick-up tubes of the differential photomultiplier were adjusted so that

their slits were in the focal plane of the focusing lens. The sound

source is an X-cut lO megacycle quartz crystal, driven by a continu-

ous wave, variable frequency oscillator. Standing sound waves are

produced in the sapphire sample by the quartz crystal. These standing

waves produce a diffraction pattern of the slit image in the focal

plane of the focusing lens. If the investigations are carried out at

low sound intensities, it can be assumed that light in the first order

diffraction pattern treated by the standing sound waves is plane polar-

ized, but rotated at an angle with respect to its original direction

21
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of polarization. If the sound is a pure longitudinal wave, and the

incident light is polarized at h5° to the vertical, then from

Mueller (2), one may write,

tan (a + 15°) = Jm (R1V1) _~_ R (1+5)

Jm vl

l
-
‘
B

for low v and m. See Eq. (31).

(x is the angle of rotation of the plane polarized light,

Rlv1 is the Raman-Nath parameter for light polarized perpendicular

to the sound beam, and v1 is the Raman-Nath parameter for light

polarized parallel to the sound beam. Mueller suggested three methods

of measuring photoelastic constants. ‘Method "C" utilizes a double

image prism, which separates the light into two components, one polar-

ized parallel to the sound beam and the other polarized perpendicular

to the sound beam, which is exactly the procedure used in this investi-

gation.

The experimental procedure used in taking measurements is

to adjust the analyzing prism so that each phototube is subject to}

equal intensity of light, i.e., at h5° to the vertical. The phototubes

were adjusted to allow only the first order diffraction pattern to pass

through their slits. The sound is then turned on and the analyzing

prism rotated until the first orders were of equal intensity. With the

differential photometer, this would correspond to a null or minimum

reading. If the angle of rotation to equalize the intensities of the

first order diffraction line is<1, then tan (h5° +<x) is the R1 of



2%

Eq. (#5).

Static Measurements: See Fig. 5. The same light source

and filtering arrangement is used here as was used in the dynamic

measurements. Collimated light is polarized at h5° to the vertical

and is incident normal to the specimen. Light then passes through

the Babinet Compensator and an analyzing Nicol prism set in the crossed

position with respect to the polarizing prism. The fringe system pro-

duced by the Babinet Compensator is viewed at the focal plane of the

focusing lens with an eyepiece. The specimen issuniformly stressed

with an apparatus similar to that used by Waxler and Napolitano (11).

See Figs. 6. The Babinet Compensator has a calibrated movement and

the experimental procedure is to find the number of divisions N for

a phase change of 2x, which is a constant for the instrument. After

applying a known load to the specimen, a fringe shift occurs. The

fringe is then reset to its initial position by movement through n

divisions of the Babinet Compensator. This ratio of n divisions for a

given load to N divisions for a phase change of Zn is the experi-

mentally determined B, used in Eq. (HO).
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FIGURE 6.

 
End view of stressing table, showing

sapphire cube position when under stress.
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Ratio:

(Voltage)2

2.25 x 10h(v.)2

1.00

6.25

9.00

12.25

16.00

3-25

3-19

3.01

2.92

2.90

2.72

Tan(a + #59)

Ratio: (p12 + p31 + 2ph1)/2p11

(Voltage)2

2.25 x 10h(v.)2

4.00

6.25

9.00

12.25

16.00

Ratio: I ./I ,

x y

(Voltage)2

1.00 x 101‘(v.)2

6.25

9.00

12.25

16.00

b.20

4.17

3-98

3-78

3-58

3-27

Tan(a +

2.15

2.38

2.31

2.26

2.20

27

Tan(a + #59)

35°)

EXPERIMENTAL RESULTS

Ratio: p31/p11

(Voltage)2

9.00 x 10u(v.)2

12.25

16.00

18.06

Ratio:

p13/933

(Voltage)2

6.25 x lOu(v.

9.00

12.25

16.00

20.25

)2

Ratio: Ix./Iz,

(Voltage22

2.25 x 10h(v.)2

8.00

6.25

9.00

12.25

16.00

Tan(a +

5.1h

4.92

n.83

1.55

Tan(a +

6.9h

6.61

6.31

5.67

5.10

Tan(a +

1.81

1.67

1.52

1.15

1.37

1.31

h5°>

h5°)

h5°)
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Determination of N (= phase change of 2n) for the Babinet

Compensator: Sixty measurements were made to obtain the

number of divisions on the drumhead of Babinet Compensator

corresponding to a phase change of 2x between the ordinary

and extraordinary ray. N for the Babinet Compensator used

is 1288 divisions. Below are the tabulated values of n/kg.

for the determination of p11 - p12 and p13 - p33:

 

P12 ' P11‘ 2&2; 111.1221 n_/kB; 111.1%;

5.93 2.89 3.85 1.13

n.76 1.73 n.18 3.7M

3.92 1.58 1.81 6.18

5.60 5.20 6.15 1.62

1.13 1.14 3.85 3.66

5.53 1.21 1.51 5.57

5.38 5.09 5.2M u.58

3.66 1.18 1.25 3.70

3.66 . 1.07 1.58 b.36

3.81 u.18 6.56 6.52

nav/kg. = b.6h

 

p13 ' P33‘ n/kg. n/kg. n/kg. n/kg.

2.12 1.87 2.67 2.53

2.53 2.31 2 M5 1.9M

2.31 2.31 2.19 2.09

2 3h 1.9M 1 13 2.27

2.93 2.09 2 B5 2.75

2.93 2 56 3 on 3.59

2.56 1.51 2.82 3.11

2.53 1.32 1.79 1.65

1.90 2.20 2.6M 2.86

2.h5 1.50 2.12 2.82

nav/kg. = 2.31



1
'
‘
l
l
e
l

‘
I
'
I

‘
|
«



(5917 + 0WD)

 

 

4
-
4  J

A 2

F
I
G
U
R
E

7
.

3)

l
2

A
A

A

P
.
2
+
P
3
1
+
2
P
4
.

 

2
P
”



O
N

N
.

O
.

.
1
0
.
{
.
2
2

 .
m
“
£
3
0
:

 

 

 

 

 

 

 

 

 

 

.
x
.

1

f
w
"

.4

1
x

l
x
l

1
x
,

.
1

.x.
i
n

q
4

d
q

q
1

q
I

1
J
J

1
d

a
1

d

i

l

x
[
K
l

I
x
!

.
5

I
I
I
!

/
_

 

 
 

(0917+D)u01



31

Sample calculation of Photoelastic Constants:

Repeating Eq. (uh), one may write,

 

 

 

 

 

P12 - P11 = Z 2 n: W S
o g 11

where,

n/w = 1.61 div./kg.

N = 1288 div.

= 5.161 x 10'5 cm.

no = 1.771 (Reference (12))

n2 = 5.551

A = (1.60)2 mmz.

d = 1.60 cm.

g = 980 cm./sec.2

311 = 2.28 x 10"13 cmZ/dyne (Reference (8))

p12 - p11 = (1.61)(5.161)(1o'5)(2)(1.so)2 _

(10)3(1.288)(1.60)(5.55h)(9.8)(10)2(2.28)(10) 13

p12 - p11 = (cm.)(cm)2 2 = (unitless)

(@(cmflcmMCmL

(sac)2<gm)(cm)

(sec)2

p12 ' p11 = 0°5O7

P12/911 = +3.31 (From dynamic measurements. See Fig. 7)

The determination of the sign of the ratio of photoelastic con-

stants follows the convention suggested by Hagelberg (l3).

Combination of the two equations yields,

P11 = 00219

0.725
p12
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Table II. Strain optical constants of synthetic sapphire.

p11 = 0.219

P12 = 0-725

p13 = 0.311

p11L = -0.029

p31 = 1.259

p33 = 0.011

pl;1 = 0.119

pML _ —0.118

Table III. Stress optical constants of synthetic sapphire.

qll = -0-037

q12 = 1.396

q13 = 2.163

qlh = 0.011

q31 = 0.300

Q33 = -0-539

qu1 = 0.225

q11 = -2.916

In units of 10-13 cmZ/dyne
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