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ABSTRACT

Solution of the Schroedinger equation for a particle in a central
£1e14 in sphero-conal coordinates results in Lamé functions. The
properties of these functions studied in this thesis are, existence of
polyncmial solutions, orthogonality, relationship to spherical harmonics,

normalization, and nature of the eigenvalues.
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I.

INTRODUCTION

This thesis may be considered a departure from a paper by
Professor R. D. Spenco]; and saome of the material in the first
tvo sections following the introduction i3 merely a verification
of results vhich he obtained, shown in greater detail. These

results are then used in subsequent work.

Upon investigating the erthogonality property, we find the
rather unexpected result that these functions are not completely
orthogonal. Of specisl interest to us is the confluence that
results vhen we vary certain parameters, and causes the sphero-
conal coordinate system t0 become & spherical coordinate system.
This confluence has been studied in some detail.

Some recurrence relations of lamé polynomials have been
obtained by Arscott’, and a general introduction to Lamé fmctions
can be found 1n3. The equivalence betveen the farm of Lamé's
equation used by Arscott and the form used in this work can be
lhmbvthntnmtomtionga kcn(Z-) « Similiar work has
also been done by Kraus*.



. THE COORDINATE SYSTEM

The sphero-conal coordinates,. 't , 4 » and 7] are defined by the
following equations:

r-2glla% )" o))
y 'Cf/; ¢ (1v)
g
vhere C{ snd [3 are constant m.qm.mnmu systen,

but alvays satisfy the condition (X +/B=/ The renges of ( and
7 w11l ve discussed later.

The systexm can be shown to be orthogenal, with the fellewing
metric cosfficients:

oo ] ]

vhere t\l and ‘“3 are the metries associated vith ( and n

respectively.
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From equations (1a), (1b), and (1c) we can obtain, by eliminating
two of the sphero-conal coordinates in each case,
D SN Al
z ==0
B+ ¢ =
X a3 + ‘E - "_»Xi—,z. =
CON A B

h

2 <
X+ Y+ Z7 =42

These equations shov the surfaces § = constant and /] = constant to
be elliptic cones about the 7 and X axis respectively, and the

surface 7 = constant a sphere. These are sketched in Figure 1.

Cho.rlyutunggor'fl equal to zero puts us on the xx plane.
Ir C'—‘ O, then

x> e+ )= 27817 =0

vhich, for a given TI is the equation of two straight lines.

)
x=1[§{§lf] z

As ve vary | fraoto’B , the slope of these lines goes from
i,B/C( to 0, giving us a sector of the xs plane.

y =+[ﬁ§+_£]"lz

= 0%
’motomumchnveslopovaryingfrm%/aat€=0to co as

Ir 7= 0, we obtain

Q-*C( giving the remaining sector of the xz plane. This is sketched
in Figure 2.



Figure 1. Coordinate Surfaces for Sphero-conal Coordinates



Figure 2. The sectors of the xz plane corresponding to 4:0 andf? =0
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Whﬂnbothc and n are equal to zero, we obtain the equation of

the lines which border the sectors, X=t/8/az .

Nov at (= C, xz,«,([)’i—gl)%” and Z = A{C(;—Q;)ZL

therefore, Xa'+ z =1 ((X +)8 ) . This shows that the restriction
2 &
a+,8 =/ if necessary if 7 1s to have the meaning of

"distance from the origin".

To include all points in spaece, X and Z pust be defined with
& ¥ sign before the radical (ef. equations 1s and lc). This areates
& nommiqueness vhereby to a given 1 , C , and /| there correspond
four points in space. In addition to this, & given point in space may
be described by twvo sets of sphero-conal coordinates, namely .7 , -§ ’
-7 ana A, C , /| . The former problem cannct be avoided. The
latter multiplicity can be resolved as follovs. We can restrict c to
OfCSC( a.ndulwn -mtgruhrrmdm-jafnfﬁ .
Thus negative valuss of /| will take care of points on one side of the

xs plane, and positive T('s the other side.

The choice of restricting C mey Seem.arbitrary; however, as we
shall see latsr, in the limit of ﬁ going to zero, 4 becomes sin 9 »
deIZB goutosingb. Since 9 varies from O to TT a.nd(z) from

O to 277, 1t seens logical to 1mit ( , and not 7], to noucegative
values.

It ve 1ot (X (or/? ) g0 to zero, our sphero-conal coordinate
system degenerates to a spherical system with the x and z axis, respectively.
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being the polar axis. PFor example, 1fvohtﬁgotouro,mu
forces /| to go to zero also, for equaticn (la) tells us that if
wdoutplmthmtdcum-ﬂ:nzﬁ » Ve them allow

X to take on imaginary values. Equation (1c) gives us the reductiocn

Ay § = 510 0
S0

and equations (1a) and (1b) tell us that as /] ud,@ g0 to zero, Ve

(2)
mst have

jzm % = sin ¢ (3)
f3~=0
This reduction brings us to the comventiomal spherical coordinate
systea.

If ve let =/ (C(—=0 ), the reduction beccmes

/4m 71 = 5N 9’ (k)
L1
"/zim Q/C( = sin QD’ (5)

B~
vhich leads to the spherical coordinate system with . as polar axis.
/ ’
The angle 0 is measured from the s axis, amd Cb is an asimathal

angle in the yx plane.

These reductions wvill be of valus later.



8

The time independent Bchroedinger equation for a central field
is sphero-comal coordimates is

+€ ) (dbg) - ;‘z“ 2
[nm(f" wEn e Al e 3

/

Gl ie=n* 4
+ %N(n)‘/’ =gy (6)

A
DN T Y o alley

We assume a solution of the type
Y=RixlZIC) Hin

mtmmmwmﬁ and /] from those dspeading
o A gilves

WC(aC)J d I, ’y‘
Z (L% 7n7] act(ﬂ‘é -c)J d¢

oGy ARy
Lﬁ T ) 47 ertge ) et

(1)
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If we nov separate the terms dcpendingonC from those depending on ]
ve introduce a nev separation constant, A .

[@iéjbiﬁﬂ d%[

o
ha'??f&ﬁ-nﬂ j!n_[p(t in*)]bg%u(/w)ni-*

e ] S AR

(8v)

It is obvious from these tvo equations that any discussion of one also
applies to the other. In fact,

Hinl=c Zlin) (9)

The solutions of these tvo equaticns are called lamé functions. We
choose to discuss equation (8a), vhich becomes

1 Gl 2¢ -
A SR =y AT

This equation is now in the form

Z'vpl)Z'sq 01 Z =0

Ve soe immdistely that both D and have poles of order 1 at { = * (X
lndatc=+2,8 , making these points regular singular points of the
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differential equation. The point at infinity also turns out to be a
regular singular point.

The indicial roots at the four finite singular points are O and 1/2

in each case. At infinity, they are ’/a t\/'4+((€f-() .« As
& check, we may note that all the indicieal roots, including the two at

infinity, add to & total of 3 (3, p. 203, footnote).

Of the various possible combinations of indicial roots at each
singularity, ve choose to eliminate some for convenience. We write the

solutions to equation (8a) as follows:

ZM gk) /2 C )%Z - 23'K3 (10)

Y=0

K Kl,und chc.neachbnloro. This form eliminates, for

example, solutions in whieh C-ri[j and g-é/j appear explicitly in

different powers.

Substitution of this solution into equation (8a) ylelds the

recursion relation

d =0 (1)
CJ(52‘J'+K3"’Z ¥ J62I+K3 + 6162_],%_2

= C(;ﬁ;(aj+}(3+ 2\’(23-1’ K5+ l)

= (ZJ+~J[[ZI+K —l)(O( ﬁ) (ZK +\) —(fol)ﬁ}HC( K(?: -A

e = (2J+K;Z](23’+K3+ 2k, + 2k, -1 )+ 2K +2k, +2xk, - L)



III. THE POLYNOMIAL SOLUTIONS

Referring to equation (11), we now proceed to show that, by virtue
of the special form of d 7 and € -, these recursions permit certain
terminated solutious. These then lead to sphero-conal functions (10)

containing polynomials.

In the reduction ,8=O(C(=/) ,or}@-—-/{a:O) the
sphero-conal coordinates lead to the spherical coordinates. It is the
above referred to polynomial solutions of the sphero-conal operator
vhich reduce to the spherical harmonics. We will call them sphero-
conal harmonics.

Clearly, for the series in equation (10) to terminate, two con-
secutive (5 's must vanish. Let us call these two 5,2,,4.,(3 4.2 and

6,2,1“(3 +¢ , thus making 6_2,7¢,<3 the last non-zero coefficient.

Tvo conditions must be satisfied for this to happen. First, to
insure (So,_n.“(},(;,_zo,vemd

= 4 =
Ch 2n+K; Cp Qmu@-.’z =0 I

~

and second, for O‘m,f,(jﬂz to vanish also, we must have

Cr+1 D 8 §
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We can multiply out the C,, and () ;,, because they are not equal
to zero except vhen (X or ﬁ is zero. Kegative valuss of /7 of course,
are of no significence in our Taylor series.

Ve examine condition II first.

eﬂﬁ:[oz(n +/)+ K3+01]Lzln +/)+/-<5+ 02,<’+,2)£ /]+ 07;<’+-2K _5_4»0?‘,, "y £ l’/ + /) =0

This equation is quadratic ia N . We keep in mind that the nwmber N
vill govern the degree of the polynomial, i.e., 02_,7“(3 o Simce all
of the K; are cne or zero, ve can use the fact that Kf‘:lﬁ’f. Yor

coaveaiesce, ve shall give the symbol O to K, + Ky + K3 .

arslagi 2]y + 2lk K+ K K, +K K;d)—/(/w): 0

!

. ageol* Vies s
= 8

One can see here vhy the first separation constaat was called j(/+/)
instead of simply C. The form Z(/+/] 1s needed to form a perteet
square. This gives us the following expressiom for I :

n=l2\4-0) (12)

This tells us that for the series to de a polynomial, ve must have
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thmtueuathatjboumugr. Intnct,/-(fmtboum

d 6 e O =0

+
NT2NtKy "N antky-a

Pmthoutmottbclnvommthtﬂulemuumpheu.

restriction om A It generates eigenvalues in /{ « Some examples
of how this takes place follow.

It /=0 ve see that K, =K,=K;=Oand n= O . Conditicn I 1s then
simply doéo::O , and aiméo 1s aa arbitrary coastant clo=0. This

Ifl):.—/mun mst be zero, but nov ome of the K mst be 1.

(a) I Ky=7/, K, = /{.2:0 dod,::&

d =c*-f-A =0 A =cl-B=1-23"

O
B
X
il
o
X
i
X
"
Q

1f /- 2we can bave U either 2 or O. 110-0, =/ , the condition

for

_ 5 e
.2.7‘+K3’0 J')f;hocauc.s.-?.. = -31__ .
(~]



1k

but we lmov from the recursion that Coé_L=cJo 60 » 80

€ _ = + . —
d - ozfu‘z—azqu = - /3*) )
The quadratic equation yields the two
ol oza-c
utions TN B

= alcpEe oo B ]

If =2 ve get again ~7 = 0, or & ome term polynomisl with the
condition d, =0 . This becomes

Ks[(flk_;/lcx'l-(,z K + /18°]+ K™K - -
There are three vays to have (J =<

@) H,=0 K =K,=/
/L:/—Q._/Bl

) k=0 K=Ky =/
\=v-583"

(e) KJ:& AR /
A=/-58"

Uohntmmdsm\noforf\ vhea ./ : -2, 3 values for /:/,
and 1 value for /:ﬂ.
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The general condition restricting eigenvalues is obtained as

follows:
Consider the following forms of the recursion.
5 __ga
L1+ Ky - C‘O K3
C ~
6 =_...L(S _@_L_”C’ =[_él._+§.l_a_9_]o
4+ K, =t €, TKj s ¢ do A
- Ay €2 _ __2’& '.Sé[.cd_.a (5
-7 6 - ) cez _ ,+é, ° Y +Kx
o +K; Lo T4 £ K, < Tut A gt . k)
clearly we cen alwvays write é‘zs*gin terms ot(SU‘KJ_Lnnd a finite

continued fraction. The condition for termination of the series at

02/74-/(3 gives us (5
~antk; _ £fa
Oansnga  9n

and application of this condition to the finite continued fraction
glving é,znxtk.’,- in terms of 2n+Ky -2 results in an equation in-
volving only the C - , the dj, snd the €y . This equation will
also be in the form of a finite continued fraction, and it will be
from this equation that we can obtain eigenvalus solutions for /\ .
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é

T = - ‘/n—/ €,

Ci)‘) - - A
c C

n—{ n—/

=
f-2_ -2
/
— J“ _ _
-
n-3
=
T2
- Ei_'- _ g,
C/ C/
/
- :('0
C

To solve this equation for/\ ’

we may recall that /\ appears

linearly in each of the d T If we put the right side over a

common denominator, there will be a term which is a product of

-, of the d;, 1.e., which will contain the I th pover of A .

Cross multiplication by a/n raises this to the /N +/ ) st power,

thus giving us N+/ values for A

Now let us look at what happens for fixed / . For

convenience, we separate the case vhere/ is odd from the case

where / is even.

If.{ is odd, then (" must be odd. There are four possible

combinations of the K 's resulting in odd J .



K K, KJ
a) 1 0 )
b) 0 1 o
c) 0 0 1
da) 1 1 1

This gives us 3 cases vith -/ and 1 case with O -3 . There are
N+/ soluticns for A for esch cass. Thus the total mumber of
different eigenvalues for fixed £ will be,using equatiom (12),

3 [,//Z//;’/)-/‘/] T [/f /é-3)+/] =24+

It € 1s even, again b comdinations of the < 's are possible,
this time for evm O .

K K <
a) 0 ) )
b) 1 1 0
e) 1 (1] 1
a) ) 1 1

We bave 3 cases vith T=. and 1l case vith 0 =-C . The total mumber
of eigenvaluss vill be

3 [//g é/—e)HJ + / [% (("’-o)f/] =24/
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The conclusion is that for any/ there will be Z/+/eigenvalues of /\ .

It should be emphasized that each of these eigenvalues is a function
of (X or of [3 . Either of these parameters depends on the other through
z F
the relation >’ f-l.:’ =/ and only one of them is, therefore, significant.

We will choose 4 as the variatle.

. T
We can now write these eigenvalues as /\Z (/B where fvill order
the 2/ #/eigenvalues associated with each/. We shall let £ take on

integer values from —,Z to /Z

Upon considering/\ as a function ofB , We find that no two /l 's
associated with a singlejcross, except at the end points,B:O and
B =/ . We can thus order fby the sizes of the eigenvalues them-
selves taken at any point except[} =0 or ﬂ =/ . This means that
the largest /\; will have 7= /2 , the next largest Z".:/—/ etc.

down to f:——// Some of these elgenvalues are now listed in table 1.

TJ

To each eigenvalue Al there corresponds agzr in the form of
equation (10), since a given/\; has definite K 's associated with it.
A 1ist of some of the eigenfunctions is given in table 2. It should be
noted that until we decide upon a norm for these functions, bothéo and
(S/ are arbitrary constants, one corresponding to the odd and one to

the even polynomials.
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Table 1. List of Eigenvalues

X, =0

-~/ z
- B

Ao/ = /- 2/31/
/\j =/“Bp

= 2(1-28 7+ \I-B+B%)

L [z ¢
=2-7/3 —2\I-3+3

Z

2

~/
A)J
/\2/

/

2

A, =4-58
4

y

7
A

3

L

/\3

3

/

= 5-103"- 2\/4-,7/3’?4/34
=4 -8 3°
\, =2~ 7B % o\1-3%p

X =5-108" o\z-+ S
X =5-78% 785457
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Table 2. List of Eigenfunctions

Z. [(a”@’/ vfé

Z;(B’?c’/’} 5
Z» i é"[/;?t(%)J

B4

'Z =) [’*PB”(/ )

v

Z, = 45[”“ ’6%7/—%%) :

]

‘]
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Tatle 2. (continued)
/87’/ N4
-l + z
gt
N 2z v 2 %j
e

_/ 5 z%,
7 -rsned sl

N
ll
=
M




Iv.

ORTHOGONALITY

The Lame’ functions do rnot form a completely orthogonal set of

functions, as we shall now show.

In the first part of this section we study the conditions for the
74
mutual orthogonality of a set of functions Z[ (é) with[fixed,

7’~—// /Zover the ranges -—O(é XX and O < g =X

The second part of the section will consider the orthogonality
T
over the surface of a sphere of the spheroconal harmonics Z/ /g)//// /1)

when the /(;s differ,

Let us write equation (8a) for two functions, %f and %r
r > v Z2
ey
(4 7
_G,L dZ ‘2/_ 4 f: 9]
{( O,C {1 #+[ja*ﬂg /\LJZ,( (6a)
/ r L T r
& o # [///#QC—/\ZJZ/( =0 (8)

We multiply the first equation byZ[ , the second byZ , and subtract.

/Qf(Z// / o I)Z/ijo

If we now integrate from-—-(Y to (X

—

7y F LT 7 7yl
X)) [ dn(Z 2 272
- > X

! -

(13)

nn
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T
Consider the form of tneZl given by equation (10). ILet us say that
(G 2 Y
4 has ,Q/ =/. ThenZ will have terms containinb(ﬁ g)
24
KX—'C) fZ also has K /, the + 1/2 power of (X— C from
the function will cancel the -1/2 power from the derivative. The

+1/2 power in f will thus send the bracket to zero at both limits.
|

7 T
Ir both% and Ze have /€/= 0, again {/ will force the bracket

to vanish at both limits.

If, however, one of the functions, say , has /( z/ and the

r_7
other one has k O the term é Z vanishes at the limits when it
T 7/
is nmltiplied by{ but the term Z Z has one term containing
..//a, £

[(X C ) When multiplied by the (XZ §/ in 7[ , this term will

not, in general, be zero at either limit.

We may still have orthogonality if the bracket in equation (13)
is even ing , 80 that it will vanish inside symmetric limits. It will
be noted that the oddness or evenness of the Z's is controlled
entirely by ,é The condition for the bracket to be even is that

one of the functions Z be odd and the other even, i.e. that their

/{ 's differ.
g

To summarize, two ‘Zl 's are orthogonal when they have their k, 's
alike, and also when their /(,'s differ provided, then, that their

/<, 's also differ. This leaves as non-orthogonal only those functionsg

which differ in /</ , but have alike K;s.

(4
It should be quite clear that the same can be said of the /4// (7) )



excert that Kywill take on the role cf K/ andB the role of (X .
Come examrles Tollow wnlecn conflirm tazse conclusions.

a) Toth K's ard K 's unlike@(
-/ _ o
.JTL é—éoé/ ’a (/81:"_42«)/2,

=X
b) &(,;s a/li‘r:e, Kj's unlikne.Crg g
2 7 ) d _
| FE =08 | tion-c
=X ~ XX
c) K/'s unlike, Kj's alike
X 7 X »
ZL g =67 | (=6 200%0
! O
d) ®Roth K: 's and /S’s unlike
Z Z/ 2 fa
zj(L_a/c—(Zél (/@-/—4) Cc/éro
~rx / S ¢
e) K 's unlixe, K. 's alike
X 1 T X .,
| e REEDEESS

If we restrict the cocrdinate g to vary from O tc(X, we ottain
' z
different results as tc the orthogonality of the 4-[ 's. The bracket
in equaticn (13) still vanishes at the upper limit for like K,'s.
Jowever the function in the bracket rust be odd in 4 to ensure 1its
teing zerc at the orlgin. Thls requires that the KJ's be alike.

7
Ve thus huve crthogonelity reduced to only Z& with both K/ 's and /S 's

alike.
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Now we consider two sphero-conal harmonics of unequal / and 7 .

{;,_aac_ Al +/(/*/>/Ci72”JZ =0 o

o5 vt it ZH, -

%:[(a W (B 7?}

T
Again, v- mltiply the first equation by Z "l// , the second by

(7)

Z, 1wt suveran.

o 5 ZHZH-ZHZ, H; )

vt 2 HZH ZH - ZH ZH, )
-t 70 H jH;. o
[,///w) - f(f+1) (4* ) Z; ;Z/ Hj,,— _

£

T T >
& Hy 4 FW(Z, z”’>+z§ ; _d_,f\/\/(H H)

\/\/ here signifies the Wronskian determinant.
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Integrating over the sphere, we obtain

7

/3 Z’A/ /4/2'
[Z(Zf/) /M,/)Jf 'l ~ /C"OJC/QO{”

%
X

l,\u

(—fli may be identified as .hz_h}_

Fiofo ¥
We discussed the conditions necessary for é bracket like the one
appearing above to vanish at the limits-(X and (X in the earlier part
of this section. Here we need to have the two brackets vanish

simultaneously. .

Therefore, orthogonality over the sphere exists between sphero-
conal harmonics of different /whenever the associated /{jare unlike,
or, if they are alike, whenever both pairs of/€ and /f:are also

alike.



V.

AN ADDITION T:[EOREM

7
Now since the spherc-conal harmonics / Cp /-/;/ and the spherical
5 (_f 4
harmonlcs /0 c are solutions to the same partial differential equation

Tl

7
in different coordinate systems, we expect that Z 1 may bte expressible
as a linear comtination of spherical harronics with the same L . Ve

assume

“( [5 7 ; p
Z, ) 4, (/_ W D it @)
Se-g

Let us take the right side of equation (14) and substitute it for 2

in equation (8a). It should satisfy the equation, since / is a solution,

and /,/is a corstant with respect to the .ﬁ operator.
L P s ¢ £ .
I 2 N 2° W
fos fa Thce Lee1)-A] a F e
v : / o~ Lt - ; 8 = 0
T ()¢ AL

_, _9.;,_024,2(/3#)4—11 7Y,
..\':—/é g é J.
IZO we set it equal to c{//: J cos 6

l)L_, a ces O (74

We alsc use 57(_ @ Q/ (JQ, _))1
g P

To evaluate terms like < <ccs & and b we turn to equaticns (la),

To evaluate

9<
(1v), and (lc), and wri‘c,eg the cartesigh coordinates in terms of

spherical coordinates. We then have
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L

s/n D cos ) = i/-gé [(ﬂ:'g’)(/;}‘ n") ] i (15a)

sin @ cos® =é—/ﬂ3— , (15v)

. 2 2% (15¢)
cs 6= =& (o= )]
From equation (15c) we can write
2 %’/
96056:_ra+hy _é_
N . > ¥ 2
~ C LCX = é X .(16)
And dividing equation (15b) by equation (15a) gives us
L
Candh = R N 2
SN [PV LY
X
Therefore
: ~% 3 Vo
20 _ Xn(5-n) | (17)

r

R e (B

-

s .S

Thus we have introduced terms into equation (8a) involving ﬁé ) {Z )
s (sp ) . Lsg g i
e Ls€e , and, after the second J operation, also -5 ¢ and ¢
| .

The details will not be shown here; however we will write one of the

transitional forms.



- 5974 >, ¥ s/ . 2 2
Z a = cd){i e Tn)(B+L /Q_ + Y [-COS o (2¢+5)
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Xt sa*g xXYsin® 6
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X" 5178

We make use of well known recursion formﬁlae for Legendre functions¥* to
s’ s S S-2
eliminatef and /; , introducing instead /5 and /fy

Also, since the equation must hold for all values of & ande , we get, for

convenience, (Z) = O .

Z 5 7 '[57"-/372)-/3’14%#4-AJ/2‘

B (st 1) sl sy a7 )= 0

* L) 20 74 S / ) o
(/‘/\/),4// —2 X /‘Zf +{Z/,Z+/j—/fj—};‘z]/}

y _ PR o
/V/O /,}/ ,-—‘1——-——//*) /}/_,(:/.)é

&

/
O ey X 5 #/ p -

< —_——— - : a . 2 s
4 2(s+/) (g 2)% oy (s N prni) 2 o=c



This may be rewritten as

R R VeV R G NI

4—/3L(,/,—:-/J(/—Jj/fj;.g;//i("g’,z_ o2 )i, } = O

and {inally

BEa —{40sm0-28" s 000 0] )

S -2

+(/L’[—_>’—//K[—J)/,é/v‘f"‘/)ég#f “’2’)“/7“51«24:0 (18)

giving us the desired relation between coefficients.

This relation has been tested and verifled for z2ll cases for which

T o~
/

7 S
Z //é was worked out independently, and expressed as a series of{fg «
Some of tihese are listed in table 3.
<
It will be noted that certain of the é? are absent in these
' =
series. 1In particular, for a given/, all the,f vith S even, or
\"' 2 , 2 —~
all the{? with £ odd are absent. For example,z_u /72 contains /_: ,
2 - -2 / _/
/i , and é , but not/; or/i .

If we attempt to use equation (18) to relate these missing coeffi-

cients, e.g. if we let 5.-—/ in the above mentioned case, and relate /’Z;.,L

and d& , and then let S;/ and relate Q5 and _(Sl_ 2 ve obtain a set of

contradictory conditions, resolved only by setting £ and 0,,/ equal
, -

to zero.

<
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Teble 3. Examples of the Addition Theorem
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S
One can, without reference to the recursion, predict wnich /5
will be absent. It is a matter of symmetry. Consider the form of the

Legendre polynomials.

s <
é" (cosF)=(Gin ) (polynomial of degree/-us in o5 @)

Now 5. & 1s even about the equator, 9:'77//4 , Whereas cus & is odd.
Thus 4/. is odd or even about the equator according to whether j - <
is odd or even.
z T
The sphero-conal harmonics possess like symmetry. The functicns ;%/:
P4
are odd or even about tke equator according to whether,(; is 1 or O.
This can be seen from the following arguments: the xy plane corresponds
to C = (X 1in the sphero-consl system, cf. equations (1lc) and (15c), due
¥ > J;J .

to the factor @-5 ) . This factor is present in the sphero-conal
harmonic vheneverkl: / , and abtsent when A::. O, cf. equation (10). A T
sign must be attached before this radical, respectively, according to

whether 6% %

Therefore, depending on the choice of/, and depending on the
value of,(/ , evenSonly, or odd § only will be present in the

addition theorem.



VI.

REDUCTION OF SFHERO-CONAL INTO SFiERICAL HARMONICS AS /B —= O

In the limitﬂ»o end in the limitﬂ—é/ the spherc-conal
coordinates reduce to spherical coordinates, as has been mentioned in
the first section of this tnesis. We may expect in these limits

7 ,
that each of the sphero-conal harrnonics Z,( (g)/'/[ (}7)
T
and the associated elgenvalues /\l (/3) reduce to a single
spherical harmonic and eigenvalue, respectively. This is indeed

the case, as we will show in the rresent section.

Moreover, we shall choose - arbitrarily - to normalize the
sphero-conal harzonics in such a manner that they reduce exactly

to their assoclated limiting spherical harmonic as /Q*O .

Recalling equations (2), (3), (4), and (5), the confluence
of our coordinates into sgpherical coordinates in the limits/@—>0, /

respectively takes the form

Y = i (2)
/3»@4 = cin 8

E e — oo (3)
g om B = cind

Cim N = sin® )
B>/
/'c'/;q % = S (p/ (5)

-/

The first system, (7 , & , (p ), corresponds to polar axis Z ,

7 /
the second, (4 , &, Qb ), to polar axis X".-

33
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waen we letj->0, equation (18) becomes
> o
4/5 _,{/) ‘o= O

Indicating that all the a. are equal to zero excert the two for which

/\T

2
/:. S . This value of S we will call ™ ,

2 ¢ -1 i % -
Tae two surviving terms 1nvolve£ e and@ c . ,/'0 is
e ;

linearly dependent upon /@ . Tre two surviving terms comtine into

(19)

e ”
one, which can be expressecd as//; SN mgb or /}7 cos m Q) . This

can easily be verified.

T S er
In the caseﬂ*JZ[ /;2, reduce to a single /j éfy)n@ ,
tut not the same S as the reduction whenﬁ-; O. This value of S we

/
shall refer to as m .

Ve choose a normalization for the Z's (and /—/'s), such that in

r, T 7
o ” -+
the linit >0, Z, A, will go to /j siam®or LI cosm
with coefficient 1.

We can, at the same time, include the proper power of (X, so that
(

Z[ ez will remain finite in the (X— 2 reduction as well, even
though, as we find upon detailed calculation, we cannot simultaneously
make the coefficient | for both reductions. We will choose the
,B"’O reduction, simply because this takes us to a more familiar
coordinate system. A list of some of the sphero-conal harmonics is
given in table 4 along with the kLassociated with each, and the

A 2
particular/;'(o_s m(Z) or /7 sz )n(ﬁ to which they reduce in the
. /d /_'/

limitﬂ—-;'o .
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Table 4. Reducticn of Sphero-conal Harmonics

Sphero-conal Harmonic

77 4
/ /

K .

(2

A2

/(/

Reduction as (3 — o

po

/

/f’/_sxﬂq)

Llcesd

(4]

A2

/
5//,¢

7/

A ces Q{)

2

v

2 e 2

/3 e S ZQb



~;

o

Two thinzs may be ncted in teble 4. One is the relationn{j(being
/ A
O orl) to £-s7 ia the /5 being even or odd, as was predicted
earlier. The other is the fact that the Ccas Kﬂgb reduction seems to
be related to /<3= 7 , and the 5/ ﬁ;([) reduction to Kj =/ .

Tnis latter fact will te discussed further in the next section.



VII. NORMALIZATION

As indicated in the foregoing section, we choose, for convenience,

- a ncrmalization factor for any given sphero-conal harmonic ,Z;/QJ/%r/T[)
as follows: In the limit/%-—; & , the spnero-conal coordinates flow
into the spherical coordinates whose polar axis i1s . We now cause

7f4~?' in the limit /j —> O to reduce exactly to its associated

spherical harmonic.

To achieve the normalization, we study the form of the sphero-conal
harmorics as cbtained from equations (9) and (10). We keep in mind that

we are considering the polynomial solutions, i.e. the surmation goes

to N, not to infinity. We also set C of equation (9) equal to 1 for
reasons of symmetry.
Ky, n \

=4 et o] (e, 0

(Z(S (/)n (20)

7, r K35 A dfs -
252, %% B Cos Dising) Cost) Gl {Z(s,n@)zm s

->0 .lff-ﬁ 5

{Z(/){Bwr] QD) //5 6,:r+k_.>}

S (21)
We know that this expression in equation (21) must be //L(z CoS /'7¢

or /f M5,’,7 m(j) . Thus we can match up the 5 and gb dependence.

we start with the §b dependence.

37



38

oS m¢with even /7}'13 an even polynomial of degree /27 in Ceo < @

or an even poclynomial of degree /7 in s/ ¢)

oS W&Z}vith odd » 1s an odd rolynomial of degree » in Cof ¢

or is ::a,sgb (even pclynomial of degree #-/insm CZ))

577 /'@with even /%) = JZO(b Co 5¢) (even polyrormial of degree #2-2 incﬂ.(f)

=J//;d) msﬂﬁ (even polynomial of degree.2in 5//)d))

sén mD with odd ~ =->’//)q> (even polyncmial of degree #-/ inces ¢3 )

= odd polynomial of degree /¥ in S/ QD

7 7
Looking at the form of the ; /4/{/ , 1t seems better to choose the

polynomials in S,z ¢) for our regrresentation.

In equation (21), the surmation can only contribute an even poly-
. £ 5
noxial in s~ ¢) . This leaves((o_s’@)(s/o@), and results in the following

four possibilities:

a) If both/{iand (;are zero, we have an even polynomial in s/~ CZD,

and the reduction rmst be to ces ” d) with »7 even.

b) IfK, =0 and K=/ we get an odd polynomial ins/7 & , or

reduction to <77 A,?@ , with #7 odd.

c) If K_;,=/ and KJ:O we have Ca.f¢) (even polynomial in s« /)¢))

meaning a reduction to <c.5 /;;Lz)with 27 odd.

@) PFinally, if both Kband K_; are equal to 1 we get

S:’n¢ cO5<f) (even polynomial 1n5('/1¢)), i.e. reduction to s/ /)7?)) n) even.
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Surmarizing, if /S:: O, the reduction is always to (S ﬂl(,t". If KfO,
the sumation in equation (21) is of degree /7 in Sih i\ , and if K =/ »
2

it is of degree /7/'/.

If K_?=/, the reduction is always to s« ﬁ)¢\ If Kfa , the
above mentioned summation is of degree -/ in ._Y/kzq‘) © , and if Ka,;/ ,

it is of degree 7-2.,

In general, the surmation in equation (21) 1is of degree @-K;’S,
and "c‘nus/-}/-KJ’—-’(j3 must always be an even integer. Clearly, for this
to happen, all the terms hizher than /f/—é’;g must contain a greater
power of /8 , and go tc zero in the reduction. Let us examine the
form ofé to verify this. The following is the recursion relation

T 4k

satisfied by these coefficients, and was obtained earlier:

p .
== J':"L é Tik -2 | LL CS
2 T+K; C. 274K - 2 T+ K, ~4 (11)
7=/ T/ <
Repeated application of this relation will give usé in terms of(s ’
-Z.T-f-k_; KJ
vhich is an arbitrary constant, and the C's, &'s, and & 's.

K
Ncw all the C 's are of orderB , while the € 's do not contain /8.

The important term, i.e. the term containing the highest negative

power of/@ , In the relation just mentioned is

(—/)f‘/ﬂ/ Ly Q/ "4

C_/:/ C\]’;& ""C/ C

o
Let us now look at the nature of the c{'s.




Lo

(234& F Y] A (0) + @(F) (22)

<

I

2 4
We know, of course, that /\ //)., . For any givené (and thus a

particular /\/ ) there is, according to equation (22) precisely one d

-

z
wtich is of order/g - the one whose 7 satisfies the relation 23%;«;'4

The term
dp .. dld,
C

7-v 0 G C, I =22

and thu*‘é , 1s then cLearly either of ordcr/B or,B , depending
2T 4Kk
3
on whether the Jof orderﬁ is contained in the above term.

58 5//;(}5) is then either of order /3 or/é> In particular,

2,_74» L/ (/3 f/7¢})

2
in the limit /B"o will break off at the point where the c[ of order/B

.

appears in the(?zjﬁ< . The last non-zero coefficient will then be
2
‘v’"_"_‘é'_‘z , corresponding to & J =™ <% . This will contain d:—/ ,

b .
but not C_/, , which 13 of order /8 . The highest power of 5/4C/)

will be /}7—/<;_—€

% in agreement with the conclusion reached on the

previous page. We also find that multiplication by a power of /9 is

not needed for the /7 series.

The series in C have coefficients 6 which behave like
2T +k
the ones in the /] series; however é reduces to 5//7¢ (whereas /]
reduced toB 5/'/7(1)) and thus multiplication by some power of‘B

will be necessary for finite, non-zero reduction.
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w\
Let us consider, once again, the 6 dependence of the Pt .

wm m /
Pf = Sn 0O (a polynomial of degz‘ee/(cxa/ in cos ©)

Tais rust be egqual to the 6 deperndence of the right side of equation (21)

i.e.

# <7
(54»5 Q)kl G 6}’{/‘ *(’/;(Z (Sc‘/? &) A 6_2'J.+ py }

The lowest surviving power of s © must be »7 , and so the lowest
surviving power in the summation rust be ﬂ/—/éz_—,é;, . The highest
surviving power must be_¢-4; -4, (always an even number) higher than
that. This means that the highest surviving power must be of degree -
4;/'6/—,6&—/{/3 in sn & . By equation.(l2), this 1s equal to 27 ,

the original highest power of 7 in the summation.

The power ofB necessary to send the powers of s$(n & lower than
//7-/(‘-»@, in the surmation to zero is then, clearly, the negative of the

power of/g’ in 6

with ZI:/’]-/L:‘/(} .

-Z."-f-kj
5, A S A,
A - land 2
e C"L%'_‘L-, ... Q,C, (23)
The 01 of order /3" is not contained here. Thus (5,\1p083esses as its

-(Mm-K-%
highest negative power of(a 'ﬁ'( v ,') and the series has to be

LN

™M
multiplied bty @ .
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K rx
In addition, there appears in equation (21) a factor (3 * 3 .

7%y ) making the full power of /3

m—ZK\-‘Z '<_, .
necessary for normalization ﬁ . We can achieve this by

Hf Sl

y by 3

A comrletely analogous investigation gives the not too surprising
WAL

This requires multiplication by [3

mltiplying each of the Z(t and

result that a factor of o 1s required for finite, non-zero
reduction of the sphero-conal harmonics in the limit «—=0 . m' is
defined by

4 >
,[LW) /l ((3) -_-‘_ml)
5l I i
This leaves us only to consider the factor necessary to make the
™ R
coefficient of PQ cos "EKqu;equal to 1 in the [5—?0 reduction.
From equation (21) and subsequent work, we see that

r 7 ,, , , N
Lo Zz A = 4 @5///”76 (a.f/‘;é’ ./05(@5 :‘/é%@b q+@(51/) <pb)

< 3
/5)-#0 . ,,/_(1_,&;? ]

[/3 § +0Ginel

/V—Ky
which for smell values of & and (’Z) becomes

A .Y . £y -k, -/,
(Csin” @502 6k_; B (5,,,_6‘,

whereas the spherical harmonies for small & and@take the following

forms:
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W .
P cos mp & ALy
P 2" ml e

( Z M' {‘E "m;l
. -~ T , T
Clearly the factor by walch £, 1‘1{ needs to be multiplied (let
AT &
us call 1t | E ) is
(% -l 4tml mp
= m
/AZm.’il'M,!Sm ?L’J ﬁ"xk i
‘ 3, )
! M
- / U""
e
O ko | 5 o e
l L OLS ﬂ JM-&.'

K tK -
The only surviving term in :[_t will be the one containing [3 mm

ES

cf. equation (23). Let us examine this term.

m-k,- | m-¥ “Ks dm-‘; 3
lim IE VS g = £ ey .. did,

20 C
/a u{f_)_ | o o o Co C’°

From equation (22) we can see that the product of the d's can be

written as

f 21 = m? -4 - V'\z-i K vk >
Um‘ ) {‘ i J e o . .L‘. "+K3,'—MJ



Ly

e

. { - K t]
From equation (11) we can write the C 's eg M-k m=cl.... Kyl K]
so that
K ~-K IS 9., | 1
Z M=K oKy - 7 'ﬁ_'i:z 3 ;‘am-gl "2 [2m—4; ‘*4 -K:*Ka'mlth"“g""‘}
cm O, =171, o A M B
(a0 ‘ LAY ERT

M=K, K, (2m{3Qm—4,‘,,pw+&fg?

: ! ./: o )
\f23 Du..im—ﬁq+%}

It will be recalled that ™M-K,-K, 1s always even,

m i’ Vi s \ . \
e Tl M D38 kst |
‘A l} - m 3 '

: A T
2 ’\vr\—Kafv!{\[—m"! L Jd;j r\w\ti(L&»KJ"llmrqu—K‘_fZ}... §2m—2

<
Now if we define r\& by
s

. sy m ,
ﬁggo N()ZHI ZP( COS'L%!@—MCP)

\

I\\J = /:C ";" Ko~ Ky M _k -k (25)
‘ e /_\Q {3 o Sl



EIGENVALUES

We discussed briefly hcw the eigenvalues ,);(/3) were obtained in
section III, and a partial list was given in table 1. In figure 3, the
7 eigenvalues associated with f:3 kave been sketched. It ray be noted
from fizure 3 that the eigenvalues come together in pairs at toth ends
of the range of (3 (0 and 1), where they take on values of squares of
integers. Cnly the value O 1s taken on by a single eigenvalue. These
values can be easily seen from equation (19) to be m’ at 3:0(analo-

gously (m‘)3 at 3= ).

These degeneracies correspond to the degeneracy cf the eigenvalues

™M -
of the pair of spherical harmonics P[ (cos©) s«nmfax1d I? (=23, Cosmpwhen B0,

v"\'

1 ' ) i LI
and of the pair £ (¢»@) sn Mg and le(um@) cos™¢P  when

¢

g | , as was already shown on pp. 33 and 3.

Pt

We find, empirically, that the )(;,'

m
correspond to Pf Cos P (and ‘<3 =0 ), whereas the smaller T

with the larger <« will

will correspond to the em SLn g reduction (and 73‘—'\ ).
This enatles us to write an empirical formula for T. It will be
recalled that the <T's are ordered by the size of the corresponding /\f ’
and that T takes on integer \'ralues from -4 to ( . We can order the

T 's, then, in terms of the values of the )t( when f3=0 (i.e. by
ordering the wm's), and resolve the duplicity resulting from two )Z

having the same value, (\'ILI by using the empirical result Jjust

mentioned, and distinguisn the two by their N 's. The expression

we want then is: T = &m -4 - (3



rgue 3. X, (F), 1=3



L7

It would be desirable to prove the emrirical fact that, of the two
T
/& (/g) which reduce to the same 7~ , the one with KJ =0 is

the larger.

In order to show this, we embarked on a calculation of a series
7T > 2
expansion for %Z (/B) in the powers of ,,6) . It is permissible

to assume that
T 3> = 4
,&(ﬂj:ﬂ? 4"]\,/ /2 1"_/\_2/ /34.. C .. 126)

where O = n £ /Z , and where to each value of 77/ are associated

two eigenvalues of different .

The values of ./\-7 can be found by successive approximations of
the finite continued fraction determining the elgenvalues, as given

on p. 16.

It 1s interesting to note that for the pairs of eigenvalues
t 4
reducing to the same 777 asﬁ-» o _/\../ and /\'.z, come out to be the

same. For example

A

A 20 ) L

= Ka—tZKSHM N=0
‘/\‘z/ also does not differ for the pair of eigenvalues, except for

* similar special cases. We suspect strongly that a difference will

appear in ./\3 , but the calculations for higher coefficients becormes

extremely laborious, and no results have yet been obtailned for this case.
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