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ABSTRACT

Solution of the Schroedinger equation for s particle in s central

rum in sphere-cone]. coordinates results in len‘ functions. The

properties of these functions studied in this thesis ere, existence of

polynonisl solutions, orthogonality, relationship to sphericel hsrmonics,

normelizstion, end nsture of the eigenvnlues.
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I. IBTRODIETION

This thesis my be considered a departure from a paper by

Professor R. D. Spencel, and some of the mtcrial in the first

two sections following the introduction is merely a verification

of results which he obtained, shown in greater detail. These

results are then used in subsequent work.

Upon investigating the orthogonality property, we find the

rather mexpected result that these Motions are not completely

orthogonal. or special interest to us is the confluence that

results when ve vary certain parameters, and causes the sphere-

conal coordinate syste- to becom a spherical coordinate system

his confluence he been studied in sou detail.

sauncumneonntimornnépomanmmvem

obtained by Arscottz, end a general introductim to an; auction:

canbefoundin3. 'l'heequivalemebetveenthefomofhne’h

equatimuedbyArscottandthefomusedinthisvorkeanbe

shovnbythetransforntionéachZ) . Siniliarworkhas

mommwmu".



II. was WINNIE SYB'IEM

me sphero-conal coordinates,/r , é , andT] are defined by the

following eqmtions:

2 ’/

, “5% + €2)(fi2- 772)] 2 <1»

y 365—8 £71 ’/ (lb)

]22
2 2 2

2=t_/L[(a-§)(c(+n) (1.)

CI

mamfimcmtentforeeyparticularcecrdinatesysten,

Mahayaeatisfytheconditiona”+3.I, 'nserangesof C and

TI willbediscmeedlater.

Thesystenosnbeshowntobeorthogoml,withthereuouing

netricooefficients:

 

55/ h‘ [ 9;“; )J/1 1‘3" ”[tfiiilgfilr

where k). and ‘13 are the metrics associated with C and 71

respectively.
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Fran equations (In), (lb), and (lo) we can obtain, by eliminating

two of the sphero-conal coordinates in each case,

.2 .2

Y“_ __

M”? 5%”

if- .25? _

+ 7? B‘-n°"‘0

i:
<3.

Cf-r- 7?

Xd+ Y2+ Zi= ”ta“

'i'hese eqmtions show the surfaces C a constant and T] - constant to

be elliptic cones about the Z and X axis respectively, and the

surface A - constant a sphere. These are sketched in Figure l.

Clearlysettinggorn eqmltoseroputsmonthexsplans.

Ir €=0,then

x“ (aunt) - 2‘13”?) = 0

which, for a given TI is the eqmtion of two straight lines.

iii/g

X=i[gj+—%] Z

Aswevaryn fraOtofB ,theslopeoftheselinesgoesfron

i’fl/(X too, givingusasectorofthexsplane.

If a
TI 0, V. Obmn +[ 01+ ‘1 Vi

X align—La'C‘] 2

Meetwolineshavelepewaryingfron/B/Qatg'40to 00 as

€"’C( giving the remaining sector of the xx plane. This is sketched

infigm'ez.
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Figure 2. The sectors of the x2 plane corresponding to C1110 and q :1 0
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Whenbothc andTI areequaltozero,weobtaintheeqmtionof

thelineewhichborderthesectors, X=:18/C(z .

Howat €= 0 , X=x‘((/8:€;L)ZL and Z: A {a;‘§;)fi

,1 a.
.2. .9.

therefore, Xa+ Z 7-4 ((1 +18 } . This shows that the restriction

.1 .1.

(1+3 =/ ifnecessaryif/‘l istohavetheneaningof

"distance from the origin".

To include all points in space, X and 2 artist be defined with

a I sign before the radical (cf. eqmtions la and lo). his creates

anonunimsencsswherebytoagivcn/‘t , C, and 7? there correspond

four points in space. In addition to this, a given point in space my

be described by two sets of sphero-conal coordinates, nanely x‘z , ~§ ,

~7Zmd A. C . 7? . Theformrproblencannotbeavoided. nu

latter multiplicity can be resolved as follow. We can restrict c to

OfCSCX andallownsoaewhatgreaterfreedon‘fisnffl .

umsnegativevalms of T] willtakecareofpointsononesideofthe

are plans, and positive 72's the other side.

The choice of restricting 4 my seem.arbitraryz however, as we

shall see later, in the limit of ,8 going to zero, 4 because sin 9 ,

«47768 goestoaingb. Since 9 varies from 0 to 77' andqb rm

0 to 273311;...” logicaltolinit C,snanat 7?, tononmgative

values.

IfweletCK (or/8)gotosero, oursphero-conalcoordinate

systen degenerates to a spherical system with the x and z axis, respectively.
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beisgthepolarsns. Poe-emu, ifweletfigotosero,this

forcesrl togotoseroalso, forequatin(ls)tellsusthatif

wedonotplacetherestrictim -,8=77:[3 ,wetheaallow

X totahoni-ginaryvaluss. Eqmticn (lc) givesusthereduction

2/2- §= sine

[8+0

andeeuations (la)aad(lb)tellustutas7] and/Bactonm,we

(2)

nest have

//z'm 7%} 3 5m ¢ (3)

3-0
his reduction brings us to the ecoventimal spherical coordinate

systel.

Ii'welet IB—e-I (or-*0 ),thereductionhecaes

/ém 7? '5 5m 6' (5)

fi-/

.123”? 4/02 = sm #5, (5)

whichleadstcthesphericaleoordinatesystuwithxaepolaruis.

/ I

'nseangleeisneasmdfronthesaxis,aad¢isanasi-sthal

sngleintheysplsne.

Theseredncticnswillbeofvalnelater.
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The tine independent Bchroedinger equation for a central field

is sphero-cmal coordinates is

 

 

[n+4)(orf—c“)C; ,.

ESL“HM W077‘) 394 (3+4    

 

+ (aini)fi[18&- ”4-),“ c) 02’ 2,)21 a1— slat/I'M

”Jug-+72") MUG”? 18-72 J72+V(/‘)WT‘E‘70 (5)

Heassmeasolntionocfthstype

LP=PM)Z(§) H {77)

Beparatingtheter-sdependingoné and” fruthosedepsading

m/‘i gives

[locust :1] 3%
Z (4‘1 72“) AH L

k

 

i + 'L
’ ‘- "'

L?!(24$?J”‘ Jfl‘afln‘m'” ”£31324le (7)
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vaenoveepontothotemsdependingoné fromthoecdependingonn

we introduce e not eeparation oonotont, A .

' "/.L

t i .1 - A .,. A a; ;184%Wg (fig—[(13+C lat; )] jg+j(x/+IJ€=A (8o)

V).

.1 9. 5: a. a. 4K2 ,2.

(01+ H (fa-[WWW] fidw/mq

It in obvioue frul thee. two equetione that w diocuuion of mo also

  
 

(3b)

eppnee to the other. In feet,

H(rz)=cZ{in) I (9)

be eolutiue of the“ two eqmtione are called hn‘ function. We

chooeo to diam eqmtion (8a), vhich becomes

" (14.3:451 ’ 1M4» ) 91A

Z+ +Q‘xa‘f-f) Z + wag/2%.?) Z = 0

z"+Ptc)z'+%(4)z = 0

Vominldietolythetbothp 11:qu hevopoleeoforderlat€=ia

unfit if} ,nkingtheeopointo regulertinguhrpointeofthe

(8.)
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dirtemntiel eqmtion. The point at infinity also turns out to he s

resale: singular point.

The indicicl roots st the four finite sing-uln- points ere O and 1/2

ineechcese. At infinity, theyere [/2 t‘\/I4+€(€H) . As

e check, we may note that ell the indicinl roots, including the two at

 

infinity, odd to e. total of 3 (3, p. 203, footnote).

Of the various possible combinstions of indicinl roots st each

singularity, we choose to elininete some for convenience. We write the

solutions to equstion (8e) es follows:

00

Zm = (aicw‘éwfig‘f‘i 62M 4““ m
J's-O

K , Kz,cnd KJceneechheloro. ’mis fornelininetes, for

example, solutions in which C+£f5 and 44p eppeer explicitly in

different powers .

Substitution of this solution into eqmtion (8e) yields the

recursion relstion

:: O (n)

63627+K3+Z + J .ZJHK3 + ejésza-z

CI =Q$fiz(3j+K3+2}(2]+K5+l)

A]. 7— (2-14- 5)“ 2f +K3- l )(a“/3‘)+(2Kt+\)sz-"(2K|tl)fi‘] +K2C(: K’ {3171

QJ: (2J+K3'2)(23'+K3+' ZK‘ + 2Kl-‘ ) + 2K1+8Ka +2KIK2- _,€(£#/)



III. m moan. amass

Referring to cqustion (ll), we now proceed to show that, by virtue

of the special form of 643. and e 3-, these recursions permit certain

terminated solutions. These then lead to sphero-conol functims (10)

conteining polynanisls .

Inthereduction [3:0 (CHI) , or [3 =/ {C(=0) the

sphero-coml coordinates lead to the spherical coordinates. It is the

shove referred to polanmisl solutions of the spheroocoml open-star

which seduce to the spherical herncnics. He will cell them sphero-

cmsl hernonics.

Clcerly, for the series in eqmtim (10) to terninete, two con-

secutive (5 's mast vsnish. Let us cell these two 64,7413 {.2, and

6;,HK3 +4 , thus raking (5.227%K3 the lest non-sero coefficient.

Two conditions must be sstisfied for this to heppen. first, to

insure 6&n4K3447-0, weneed

Q52. Ea.
- + 6

an .m+-K3 an .mwg-a =fl I

sndsecond, for Onn+K5+§l tovenishslso,venusthsve

Cn-H “ . II
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Vecsnmltiplyosrtthecnssdcnfl, beceusethsyerenotsglel

touroexceptvhena or fl is zero. Kegstive vdaesothotconrse,

sreofnosigniricenceinourihylorseries.

We emails condition II first.

(em/401M +/)+ K3+ol][o2.(n +/)+/<3+ ”2K,+’27(; /]+ “QR,“ZKJ’ 02K, K2:— [1’1+ /} =.- 0

mismatimisqmdrsticinn. Hebepinnindthetthemssbern

villgovsrnthedegrseorthepolmisl, i.e., 0277+,(3 . Sinceell

ottheK;ereoneorsero,vecenusethefectthst Kids/ff . For

“mince,“shellxintheqnbolg to K,+KJ-+K3 .

#n‘z+[40’+2)n +2(I< lgHg/{s-t/{I KA+U)-j([+/): 0

l7 _ 4403-2) i 2Vl+4/M+/1

_ 8

\

necesseeheremtherirstsemstiucmstutmcslled lit/+4

insteedoi’sispl: C. herons/{Ada neededtorornepertect

squere. hisaivesusthefollwingexwessimfor n:

n: //2{/-O” (12)

histellsusthetfortheseuestoheemel,veuetheve
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themtrietionthst/(heesinteger. Infect,/-U’Inetbeeneven

C‘ + : O

n 6JH+K3 er; 61n+K3-a.

Prathenetureofthedn noenseethetthisconditim
plscese

restrictiona A. Itgsneretessiaenvelmsin A . Sousa-pies

othowthistekesplsoei'onov.

I: /=Ovo seetht K,:K;=K3=Oua n:- 0 . Condition: um

simply d060=0 , end sinceéo is es erbitrery ccnstent 30:0. his

givesus A: 0 .

ItL-Jusnn netheermhutnovueofthe K, uttei.

(i) If K325 “13/1230 dad/=0

do gnaw -.- a A za‘iflil—efi”

, 0L

/\:C(OL=/'/8

lf/r-elueoenhm deitherQorO. HU:0,/7:/ , thsconditim

for =0 I7nbecass§l=-§1_ .
2.7+K3 (so I



1h

butve know fronthe recursion that C06¢=CJO (30 , so

 
 

.. + ‘ __ ‘6

d1 ‘ #aZ/QIJ‘A .~ Q/QJ-IB‘I—A

no "antic equtiu m;

solutions f’éfl-A : 5%:

A = n[aifia':W]

Ird=2wogotamnn=0,orsosotonpoumsiuthtu

condition do=0 . hishecass

yieldethem 

gnaw/10614.2 K, + NE] + Kga‘i K; 8'2— A = 0

Menthreemstohsveo’zoz.

(.) K3=0 A” =/<_2=/

/l=/-l)8;

“) K120 /(°Z=K3 =/

A :4- 5/82

(c) fizzy /g=/{3=/

A=/«5/3'L

VehsvethmohtsinedSnluestor/\ M/:£,3musfor_.1:/,

sndlveluefor jzfl.
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The general condition restricting eigenvalues is obtained as

follows:

Consider the following forms of the recursion.

6 - flats
L+K3 CO [(3

C i

5 ._..___,_5 is, =[_éi+2la_2_]o

¥+K3 (’l 44K; C, K3 a, a! O —Z+‘f3

e

" 3’ €- _ €13. '_J-_2ZSI_C

" “FE-6 “—4- ) ~§ Caz — '+e’ °§64+K‘
b+K3 -,2. y+K3 4. J+K3 5;- 5:3; 3

clearlyvecenalveysvriteé intern-sot andefinite
.2 3+5; 214K34-

continned fraction. he condition for termination of the series st

42/1+K3 ave, m (5

M3 :3 :1

(42.”4K3'Q- n

and application of this condition to the finite contimsed fraction

giving 6.2m “<3 in terms 0: “HQ"- results in en eqmtion in-

volflngmlythecj , the dj, andthe eJ . m. equtionwill

alsebeinthefornofsfinite contimsedfraction, anditvillbe

frus this eqmtim that we can obtain eigenvelue solutions for A .



l6

 

 

 

 

 

.— — C/fl—/ _ (En—l
CO

’7’/ C)}../

__ 2/ .. c _
C—A—L __ d ;

fl—L “IV-2’

r"
—— ‘J‘_‘ — _

(VI-x3

”is.

\Z/

- ELL. ._ 6/

C/ (I

/

C

To solve this equation fork , we may recall that A appears

linearly in each of the 09 . If we put the right side over a

common denominator, there will be a term which is a product of

" of the c!)- , i.e., which will contain the n th power or A .

Cross multiplication by 61/“ raises this to the (nH ) at power,

A .thus giving us '14—! values for

Now let us look at what happens for fixed/ . For

convenience, we separate the case where / is odd from the case

where f. is even.

Hf") is odd, then CT must be odd. There are four possible

combinations of the K '5 resulting in odd 0 .
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s)

b)

c)

d) P
O
O
H

H
O
P
O

H
P
O
O

misgimus3caseswith OE/andlcssevithO'rB. Theresa

VH/ solutionsror/lforeachcase. ihusthetotaleuberof

differenteigenvaluesfor 1'de willbe,usingeqmtim(12),

3 [/Z/L/fi/J + / [/5 /é—3)+/] =21+/

Hf iseven,sgsinhcastisatimotthe K 'saxepeesible,

thistiuforevea C7 .

 

K, ’3} K}

a) O O 0

b) 1 1 o

e) l 0 l

a) o 1 1

Vehaveaceseewith 03$ andlcssewith J:O . WWW

«eigenvalueswillbe

3%aw + / [WW] ,/
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The conclusion is that for any/ there will be Z/+/eigenvalues of A .

It should be emphasized that each of these eigenvalues is a function

offlor of f3 . Either of these parameters depends on the other through

z r”

the relation )1 r-lc’ ;/ and only one of them is, therefore, significant.

We will choose A as the variable.

- r

We can now write these eigenvalues as AZ (/8) where (will order

the Z/J/eigenvalues associated with each/ We shall let f’take on

integer values from -/ to /Z.

Upon considering/1 as a function ofB , we find that no two A '3

associated with a singlejcross, except at the end points,fl=0 and

,8 = / . We can thus order (by the sizes of the eigenvalues them-

selves taken at any point except/3 :0 or [B .-:= / . This means that

the largest A; will have 7’; ,5 , the next largest fzjv/ etc.

down to [2%. Some of these eigenvalues are now listed in table 1.

f

To each eigenvalue Al there corresponds aéz’ in the form of

equation (10), since a givean has definite K's associated with it.

A list of some of the eigenfunctions is given in table 2. It should be

noted that until we decide upon a norm for these functions, bothéO and

(3/ are arbitrary constants, one corresponding to the odd and one to

the even polynomials .
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Table l. List of Eigenvalues

 

i0 =0

if = 43”

A0 .-.-. /, M”

A: swflp -

X: = 2(/—-2/3y——\/"/3~+/34)

X/ =/—Sflp

A: :/ ‘2/32/

A; 94-5/3” .

Z, :m-mW—BZB“)
<2

A.3

A:

5

 

 

 

r. 2431’4 VIP-[3:34

_ -.: 540/3”- 2\/4-,7flz’+4/34

=4 -8/3"

A} = 2 —- walla/”[5195"

A: = 5 -— mg“? 2\/4 —/3”+ /34

9C z.— 5 —‘7/3 ’1. #4432434
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Table 2. List of Eigenfunctions

Z7:- /O<:€ 965.,

2/0: 56/

y/fv

2}: (Big) a

"é = X” C”

2’“ “SJ’W‘LFUEJ

Z =,/o<Z-’—€"){’cé, '

2: [sir—470334712.

Z:=(B:C9”€d ‘

Z: 3 6° [253 £2] £3 ,, r

Z. = @5471; [, * 2,8713”) 4 J

' Z '1 Ni” iii/:23? Cy]

N
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Table 2. (continued)

7/
 

(/3 +4/c; [Mg/125%]

0 fl

Z: :[(B”+53(c814’jjca,

 

’ 2, A £321;

ZJ:(C( ”'42) C30 {’7‘2/87’0—15’9]

 

Z :4 5' i” 212:5:2-5 ]

 

,. 3 a, / 2, 3

4 :(B Q3/2230 [H $153123]



ORTETOGONALITYIV.

The Lame, functions do not form a completely orthogonal set of

functions, as we shall now show.

In the first part of this section we study the conditions for the

7-4

mutual orthogonality of a set of'functions Z1 (é) with/Zfixed,

7‘1 /jover the ranges -—O(f5£ and of, 4 :’:CL

The second part of the section will consider the orthogonality

7’ 7’

over the surface of a sphere of the spheroconal harmonics 2/ {éjé/g fl)

when the 1‘s differ.

Let us write equation (8a) for two functions, éf and éf

3/ 2/ 3. 1/ ‘/2, I

=[(O<~C)(B+C:]

{(21— {JJZ§+[ZCZ+/§b—/\fJZ/:’

a4 ’ “Z” 11 (8a)

P _. _

fig: 75 3% + [IffijL-u/flfgjzj—TO (88)

We multiply the firstequation byzf, the second bny , and.”subtract.

fizzf(Z[/f:-Z ij (51:)5’ Z=0

If we now integrate from—a toa

O(
Zr «5’

(A:;)z%—§d;[(21 /ZZZ Z1); (13)

99
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T

Consider the form of the; given by equation (10). Let us say that

7” 2, [2/

Z? has k::../ ThenZ will have terms containing ((X-C) and

257/ Z?’ 2/

@“CJ. also has K’=/, the + 1/2 power ofCX~€ from

the function will cancel the -l/2 power from the derivative. The

+1/2 power in f will thus send the bracket to zero at both limits.
I

2' ‘1'"

If bothé and Z! have «a: 0 , again 7€ will force the bracket

to vanish at both limits.

If, however, one of the functions, say 4, has (=- / and the

27/

other one has k:0, the term 42; vanishes at the limits when it

'2’ r/

is multipli/ed by[, but the term{a Z has one term containing

4.»

(a: Q ). When multiplied by thefOi—féJl/y in f, , this term will

not, in general, be zero at either limit.

We may still have orthogonality if the bracket in equation (13)

is even inc , so that it will vanish inside symhetric limits. It will

be noted that the oddness or evenness of the Z 's is controlled

entirely by ,6. The condition for the bracket to be even is that

one of the functions Zbe odd and the other even, i. e. that their

g ’s differ.

2'

To summarize, two Z1 's are orthogonal when they have their k, ’s

alike, and also when their «'3 differ provided, then, that their

K, 's also differ. This leaves as non-orthogonal only those functions

which differ in IQ] , but have alike “'3.

2' .

It should be quite clear that the same can be said of the {72 (7) ,
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except that Kywill take on the role of K/ andB the role of (X .

Some examyles follow whi n confirm these conclusions.

a) Cloth K 's and K 's unlike

 

3 ,

“223 -55 0% lé =0
—/ C” o I a(flfi(”)/2/

M..(j J

'3 alike, K '9 unlikea

C
Jdé" (so (3,fa(a2J€€:)/y-0

c) 's unlike, K3'5 alike

2 g

57:71a; :50” cry—=60 20(#0

-O( OK

d) Both K 's and K "s unlike
I / J a

+6 4-05, (MM §=o
._ (X - (X

e) Kl's urine, Kj'e alike

OCZ/ Z'/ L CX 0/ 2/ 2

- _ O

[tree/4m §€<5,/30‘*
:1 -a

If we restrict the coordinate g to vary from OtoCX , we obtain

7'

different results as to the ortnogonality of the Z . The bracket

in equation (13) still vanishes at the upper limit for like 39's.

However the function in the bracket must be odd in g to ensure its

being: zero at the origin. This requires that the KJ's be alike.

2'

we thus have orthogonality reduced to only Z5 with both K, 's and If; 's

alike.
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/
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Integrating over the sphere, we obtain

?'/30(W.

[2(Zf/j —-/[//,
/)]sz[£15.21 [/gfoja/éo/q

9
1
]
.
.
“

 

{X .

T _O(,B 2’ - flCX

tWQ’Z; f.LL/:#?Jq+;w/MT31;Z__£

Q

( 1v

£4," ) may be identified as .m—

7C! f2. ,1”

We discussed the conditions necessary for a bracket like the one

appearing above to vanish at the limits -CX andCX in the earlier part

of this section. Here we need to have the two brackets vanish

simultaneously.

Therefore, orthogonality over the sphere exists between Sphero-

conal harmonics of different/1(whenever the associated 1:;are unlike,

or, if they are alike, whenever both pairs of/éj and.4;:are also

alike.



V. AN ADDITION THEOREM

7.“.
Now since the Sphere-cone. harmonics Z/ fikf and the Spherical

(5 '

harmonics f0 c are solutions to the same partial differential equation

f 7’

in difxerent coordinate systems, we expect that Z). #1 may be expressible

as a linear combination of spherical harmonics with the same 47 . We

ESSUEEB

,[

5 7d xi“ 5' [5 ' - .N f /

Z/(sMQ m— ; a P c t //s I

a=~£

Let us take the right side of equation (11+) and substitute it for Z

in equation (8a). It should satisfy the equation, since 2? is a solution,

’\

and /47/is a constant with respect to the .37; operator.

  

”3., 5 . ‘95 I '
(a .‘ [5q:) 1

S (JTQD

{lg—:fiflé :52 (fix/DC +[Zflfiyét’A]:/€ 4556 =0

,/ ‘ 5 .

V af[7fl 12Lli+1(/*/)€"‘AI QOCZJ®~OL._.u é)
' ‘-

.5:—/[ 4 94

To evaluate (75$ we set it equal to a]?! I CO5 9

3”?"'
6/ <fcdr29 _:5<:

 

We also use 07c (Sq): J(\5¢C)

»t"s j; tZ

To evaluate terms like «9 CS f} and QCb we turn to equations (la),

(lb), and (lo), and write9 the cartechoordinates in terms of

Spherical coordinates. We then have
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em a: 545 ¢ .= 3734 [(flptCfifl/f‘vp) ] V (153)

mg) =57];- . (15b)

 

 

 

4., p a . ‘7 (15c)
05 6 = *a [(CX"S)<a +0)

From equation (15c) we can write

. 72/

96.58 :, busy] 1;.
,5 . 7’ )Zr

r35 LQ-L‘. J a ‘16)

And dividing equation (15b) by equation (15a) gives us

}'

f4/1d) :. V 1' 51. 7

/- .4" [(s+g)(,3—n)]
C1

Therefore

: ,1 3. y}

.30 : (1505—0) m)

g)
c 0214’)” {c’nfia’wfigin’lj

is

Thus we have introduced terms into equation (88) involving E2 , f”
(2 I

\S'»? L5?

3”

8 L56: , and, after the second Joperation, also —5Hg (P and

I I

The details will not be shown here; however we will write one of the

transitional forms.



57/ 2/ 2, 2, 5/ . 2/ L

Z 6% c °¢{/Z (mi/1‘)LB+C )3 + *5 ['cos a (2C+/5)

_2¢5Lz/€77 COSQCCZ@]++4?:X[_ [SQyQL(0ZQ

Q Jx;9 ofi’57/2U9

 

_2/5§7] Cof¢5ase+5$3 ”(8 -77My~4) fjafljgll] :0
all 5//)¢T91 r

We make use of well known recursion formulae for Legendre functions* to

’ .m/ 5";. 5.2.,

eliminateé7 and .77 , introducing instead/£9 and K?

Also, since the equation must hold for all values ofé’ andgb , we set, for

convenience, Q5 : O .

2 as a

 

+33 {47-.+/){z..W;//+,__/ Maj/:7 j; 0

* 9/) 517/ m 5 / , <2, p5

(/“X ,4" '72.)( f2 74 Z/Zg/j—/:j72 [=0

( . /

' __._L__/> ‘* __

fl: /r fifléij J/“A’Je/

.21 5f/ 5'

<. .__._.i(__.. , -/~,

{6/0 2(’+/J(/_ij%é2 ~/- 4’"5/45/747‘:'7‘ “”47"“



This may be rewritten as

Z 425 {/8 L434, — [4/j 7: A)’2/32/<51;/6Z f/)> 1175

7— B ”(A/«277742722 2222 2 5221/ E' 0
and finally

2/

/3 2;; {4z’2tl)—.2,/3”[5"+2/22.2)] “'2

+/2¢‘«5—//‘// -22;2'—’222/)//22 7'3/‘322222IO (18)

giving us the desired relation between coefficients.

This relation has been tested and verified for all cases for which

T f 75(5V/9'

é; (a? was worked out independently, and expressed as a series Offiggf ‘.

Some of these are listed in table 3.

(

It will be noted that certain of the 1?? are absent in these

. ' 5

series. In particular, for a givenvAK: all theié? with.5 even, or

.3; .2, ,2. ha

all the<?'with.! odd are absent. For example,4§:./i; contains {:7 ,

2/ I -L / _/

'7 a{1’ , and 6 , but not /: or /: .

If we attempt to use equation (18) to relate these missing coeffi-

cients, e.g. if we let 5:-/ in the above mentiOned case, and relate 42:5,,”

and 45 , and then let 5.:/ and relate Q5 and a. 2’ , we obtain a set of

contradictory conditions, resolved only by settinggz and.5L,/ equal

/ —~

to zero.
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Table 3. Examples of the Addition Theorem

 
.l 3 f I . - qo

22H“: 67 {AW-1" 7* 'flm Jr“.
2 C 3—3—83 I

l

.
,2 2

' -
' I z 1 2" l ”I 3‘1.“ -1: ‘ ”1‘

+ 7.4 l-- 2/31 + V713 re‘Ma +\;:~,r3 +53,“ 52?, a .4131qu
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J

One can, without reference to the recursion, predict which “5??

will be absent. It is a matter of symmetry. Consider the form of the

Legendre polynomials.

{J J .

é") (as c'fijzfi'm (9) (polynomial of degree/Z-J in (as 6)

Now 5m 9 is even about the equator,9:—- fil/Z , whereas (CL; 9 is odd.

Thusg?’ is odd or even about the equator according to whether ,4(.i_r

is odd or even.

,1 n/

L

The sphero—conal harmonics possess like symmetry. The functions ;€;'/91

.4

are odd or even about the equator according to whether/g is l or O.

This can be seen from the following arguments: the xy plane corresponds

to(:::CX_ in the sphero-conal system, cf. equations (lc) and (15c), due

V‘D'yé” .

to the factor(Ex-w>‘) . This factor is present in the Sphere-conal

harmonic wheneverfi§:-/’, and absent when &;:.é3, cf. equation (l0). A 1:

sign must be attached before this radical, respectively, according to

whether 9 g 7%.

Therefore, depending on the choice of,Z¢, and depending on the

value of/C , evenS‘only, or oddS only will be present in the

addition theorem.



VI. REDUCTION OF SPHERO-CONfiL INTO SPHERICAL HARMONICS AS £3-—6>C3

In the limit£§_s¢)and in the limit/3—e>/ the sphero-conal

coordinates reduce to spherical coordinates, as has been mentioned in

the first section of this thesis. We may expect in these limits

that each of the sphero-conal harmnics é7(€)//22}77)

and the associated eigenvalues ,AjE'CEL) reduce to a single

Spherical harmonic and eigenvalue, respectively. This is indeed

the case, as we will show in the present section.

Moreover, we shall choose - arbitrarily - to normalize the

sphero-conal harmonics in such a manner that they reduce exactly

to their associated limiting Spherical harmonic as I£Q~9'CD .

Recalling equations (2), (3), (h), and (S), the confluence

of our coordinates into spherical coordinates in the limits/?—912 /

respectively takes the form

[any C = on}; 6 (2)

,890

17(7),! __—; ”5/ ‘ (3)

qus % 70‘)

xéfc727 7? :;_5(§2 69/ (h)

39/

[’(I/y/ cg :2 58/? Q5/ (5)

Is>/

The first system, (,7 , (9 , (p ), corresponds to polar axis Z ,

/ /

the second, (at ,¢9 , ¢5 ), to polar axis Xi.-

33



3h

When we letgi—919, equation (18) becomes

7/

3' '2 ..

4(5 "11)?“ 0

Indicating that all the as are equal to zero except the two for which

T' t. _

/}[:5 . This value of e} we will call “1 .

(19)

M in) ¢ _M 'm’ z . /,.0-M is

A"

The two surviving terms involve/6 :2 and/£7J (:1 e

An

linearly dependent upon‘ég . The two surviving terms combine into

In AV

one, which can be expressed asfié? 5nw7n7qb or i2? (795 A” 95 . This

can easily be verified.

In the case/3‘*{{Q;f /Zé reduce to a single {é?(?;::b”§0 ,'

but not the same 5 as the reduction when/3+ O. This value of 5 we

/

shall refer to as rn .

We choose a normalization for the 21's (and.//as), such that in

1’ 7’ m
the limit —»0 /—/, will 0 to . or ‘ ”7 (

)8 )Z,{ i 3 if) ova/77¢) /i,. 0... mm

with coefficient 1.

We can, at the same time, include the proper power ofC) , so that

2’ z"

235 14/' will remain finite in the CX—$>C) reduction as well, even

though, as we find upon detailed calculation, we cannot simultaneously

make the coefficient I for both reductions. We will choose the

,L5‘*CD reduction, simply because this takes us to a more familiar

coordinate system. A list of some of the sphero-conal harmonics is

given in table h along with the klassociated with each, and the

“by A7

particular/2’20; 277(1) or /) 5/4 mq‘) to which they reduce in the
. A A!

limitp—po .
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Table h. Reduction of Sphero-conal Harmonics

Sphere-conal Harmonic

Z~/fi/—/

/ /

”<7

1

.L

4’?
Reduction as /3 ‘4' O

1

p0

/

iris/fig)

C§>Cfch5'Qb



p

a ,

)0

Two things may be noted in table b. one is the relationlfj(being

/ ”9/”O or 1) to .rmfly in the ,2? being even or odd, as was predicted

earlier. The other is the fact that thecfas /W§t> reduction seems to

be related to K3: 5) , and th 5/4 ”NZ; reduction to K; -'= / .

This latter fact will be discussed further in the next section.



VII. NORMALIZATION

As indicated in the foregoing section, we choose, for convenience,

. a normalization factor for any given sphero-conal harmonic ééiqgj/297I7YJ

as follows: In the limitfl-a O , the sphero-conal coordinates flow

into the spherical coordinates whose polar axis is if. we now cause

7'Ieégr in the limit /3-> C? to reduce exactly to its associated

spherical harmonic.

To achieve the normalization, we study the form of the sphero-eonal

harmonics as obtained from equations (9) and (10). We keep in mind that

we are considering the polynomial solutions, i.e. the summation goes

to r), not to infinity, We also set (3 of equation (9) equal to l for

reasons of symmetry. .

K/ (3/), (I n

J

4:2?65: [fix-{1d+7] /] [CB+§7(/8‘7? J] @473) wéy.:€Z )

(26M50),]? (20)

7:

fig}, g)? :75 ((0.5 QJ/Szflé’j ((454))(LN/(b)(9‘26/0;)[0V CS

{Xe/mm]gag»..76HQ}

. m (21)

We know that this expression in equation (21) must be Ci; cfca§ /ngb

I

or (Z? ”5/4 MCfi . Thus we can match up the 6 and gD dependence.

We start with the 95 dependence.

37
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(0.5 Inc'bwith even ”fie an even polynomial of degree /)7 in (5-5 (p

or an even polynomial of degree /77 in .574 d)

(05 Webwith odd /)7 is an odd polynomial of degree fly in (.11; ¢

or is 505$ (even polynomial of degree //7-/ in 5/0 95)

5/1/777prith even /7/ = 320$ (a 54) (even polynomial of degree 0-2 incest?)

ej/x2QS (’0ng (even polynomial of degreefli-J in 57/705)

5/!) MG) with odd/7 =—>’//)q> (even polynomial of degree ”7—/ 11160.5 Q5 )

= odd polynomial of degree /77 in 5/4 <25

”-

(

7

Looking at the form of the g A? , it seems better to choose the

polynomials in 5/}; Q‘) for our representation.

In equation (21), the summation can only contribute an even poly-

nomial in 5/4 ¢> . This leavesé05@)fizb®j, and results in the following

four possibilities:

a) If both/(Land (jare zero, we have an even polynomial in 52/? (Z),

and the reduction must be to (6.5”) Qb With ”7 even.

b) If K2,:0 and KJ=/ we get an odd polynomial inS/O (Z; , or

reduction to 5/0 mg) , with W odd.

c) If K}:/ and KJ'JO we have (45¢ (even polynomial in 510$ )

meaning a reduction to Ca; m¢Jwith 07 odd.

(1) Finally, if both KJ/and KJ are equal to l we get

501(1) (054/) (even polynomial inn/fl», i.e. reduction to 5/0 ”7?) n7 even.
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Summarizing, if 1‘3:- 0, the reduction is always to (as fl)¢". If K50,

the summation in equation (21) is of degree ”I in 5/7) 1) , and if K 2/ ,
2,

it is of degree /7/'/.

If K3=/, the reduction is always to 5/7/ M45. If K2:0 , the

above mentioned summation is of degree /)7-—/ in ..Y/'/2QS ' , and if sz/ ,

it is of degree we; .

In general, the summation in equation (2l) is of degree @»l(;/g,

and 'thus ”/‘ig‘K3 must always be an even integer. Clearly, for this

to happen, all the. terms higher than //7-/é;'/{-/2 must contain a greater

power of ,8 , and go to zero in the reduction. Let us examine the

form ofCS to verify this. The following is the recursion relation

4.73/9

satisfied by these coefficients, and was obtained earlier:

CL: 9 '

:: -' w 6 J' K '2’ — If“/ 6zen/<3 ( 1 + 3 (7" 2.59% -—4 (11)
.7=/ .x-/ 3

Repeated application of this relation will give usé in terms ofé ,

which is an arbitrary constant, and the C 's, d's, and C 's.

1’

Now all the C. 's are of order/3 , while the 5 '3 do not contain /8.

The important term, i.e. the term containing the highest negative

power of/G , in the relation Just mentioned is

(i/ij/Jz/ 447:2], . . 07/ (4

(41/ (J23, "' ’6’ C

0

Let us now look at the nature of the 4's.
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1—

Cl: :: (2]‘+K‘_¥K3} — A‘:(O) + @(p‘) (22)

F
2/

. For any givené (and thus a

Z'

We know, of course, that A1 (0):: H7

7' .

particular A! ) there is, according to equation (22) precisely one d3.

’

z/

which is of order/6 - the one whose 3- satisfies the relation ij‘txfrs

 

The term

_ d3-‘ - on - d‘ do

CI-I ' ' ' C: Ca .ugf *Jffl.

and thuré , is then clearly either of orderfl orfi , depending

on whether the a/of order/6 is contained, in the above term.

. f a 2/

62~7+é8 5x'r;¢j is then either of order )6 or/B . In particular,

I
af

:0 6LJ+L3 {/3 ;/’4¢))

L

in the limit [8"0 will break off at the point where the c[ of order/8

appears in theéjfl‘ . The last non-zero coefficient will then be

e 3

‘~"'"_‘.‘_2:_‘I‘.2. , corresponding to 2 3’ = m“ K;K . This will contain 61H ,

1/

but not 65/,- , which is of order 5 . The highest power of sx'flCb

will be /)7—-/<’;(J , in agreement with the conclusion reached on the

previous page. We also find that multiplication by a power of )8 is

not needed for the 17 series.

The series in 4 have coefficients CS which behave like

air-H:

the ones in the 17 series; however 4 reduces to 107$ (whereas 7

reduced tofiS/kmp) and thus multiplication by some power of/3

will be necessary for finite, non-zero reduction.
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m

Let us consider, once again, the 9 dependence of the Pi .

P2 = 5m 9 (a polynomial of degree/(Ca, in (45 9)

This must be equal to the t9 dependence of the right side of equation (21)

i.e.

I? if

k /d . 43 +6 . ’

/ r ’/~ , ’

((65 9) (”M / 6/] (Z (””9) ’6‘“)? 61.74%?)
J30 3’90

The lowest surviving power ofsm (9 must be M , and so the lowest

surviving power in the summation must be fl/«lé-‘L'réj . The highest

surviving power must 1381—»? ~43 (always an even number) higher than

that. This means that the highest surviving power must be of degree '

[eg-é&-A/J in 5M 9 . By equation (12), this is equal to 30 ,

the original highest power of J in the summation.

The power of/3 necessary to send the powers of Sin Elower than

”Pg-k.) in the summation to zero is then, clearly, the negative of the

power of/g) in (S wich :fl- -/€ .

.z:7’+/<’3 I J g 3

 

N
\ "1“;

{5 N (I) )ngi’ dmimfi“ d.Clo

2cm-.. -K -1 mgm (3)

The 01 of order [3" is not contained here. Thus ( M‘possesses as its

.. M‘ch

highest negative power offs ’3‘ ,0 and the series has to be

m-x-x

multiplied by (3 ‘ 5.
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K rK

In addition, there appears in equation (21) a factor [3 ‘ 3 .

c—(‘I— K

This requires multiplication by [3 3 , making the full power of /3

m—ZK‘—-2KJ .

necessary for normalization f3 . We can achieve this by

Hr %-K‘.{’

1133’?

A completely analogous investigation gives the not too surprising

multiplying each of the .ZQf and

m' ~K'-K

result that a factor of <1 A 3is required for finite, non-zero

reduction of the sphero-conal harmonics in the limit an . m' is

defined by

t |>

It“) /l (p) :oirv‘!)

[5.9, f ._ ‘.

This leaves us only to consider the factor necessary to make the

W‘ In 3 .
coefficient of Pg COS (EKymmequal to l in the [3’90 reduction.

From equation (21) and subsequent work, we see that

7‘ Z -' ’ ’

th7 Z! /4// _;_— 5' 65/409 (def/6:9 (of/(1(p 5/.”A/J¢> 6k+0(51.n”¢)
.6

£45 ‘ . 3

‘ /)/—;(;—'<‘j J

[/3 (S + (9 (5/4 79)
”7—5

which for small values of 9 and 91) becomes 7

' -e —/2

ZgiJ/IOA, e 5"”[j d) 6k I80 A J ém~£
J 3’

whereas the spherical harmonies for smallé? and(¢)take the following

forms:



h3

 

,m .

Pm ~ '7‘; {UN m
cos me ~ m '-—-— Sm J

g a m! {vi/rig

m LI)!” 1
Pg an cf ~ 1 «1,, it“;- “1? Sm j

8 m! {é-- m,’

. “71' . 1:

Clearly the factor by which 4-1, [—12 needs to be multiplied (let

I ‘C' 2.

us call it’\. I’ )is

 

(’ t '-,z__ I'ljmefm.‘ I'm-3033, _ 1

”ex '" I. e ,I 3- “J ”‘3 Mm v
. 2 m. ‘1 m). m c}? L 0153 [3 d

m-Kz

fir €+ mjl
—-v—- --—.-—-—.~—-—--....._.- . .-___.___

2M1m-K )1 it’m 1 "3 Or Meg-«'3

\ 3"). 1" L K3/3 Jam—Ks.

   

J wax-m

The only surviving term in M“ will be the one containing {3 3

1»

cf. equation (23). Let us examine this term.

I O Kim fl mg,

.30

@ "1323};4 , . . C0 C0

From equation (22) we can see that the product of the d 's can be

written as

[(m—af— M; i

:
5
!
N

i 3



Mt

. «5+2 iKétl I

From equation (ll) we can write the C s as m K aw i

 

 

 

 
 

so that

Z‘ m k-K3 f __ ._ M :5“; ans-2"'2 i2m’4 f4” , .‘KfistM/«gkgka-Wl}

W fl QM, - '2 .. . .

(”0 am‘KzI-xm‘Kz“. Nests”?

:3“) (”4.7% (ZM—ZlZM—AE. . , , I‘vYI+K,tK3E

\ I
f! _' 'l: '

\ .e.

if 1.3 ‘33. .. tm—-K‘,_e—!+K}}

It will be recalled that f7)"K;'K3 is always even,

,’ ,t ‘-_2 {It {£1—migl}.‘31{5},,¥“ KfH-KJ}

m a :- -. .. \ .. —-— (22.)
l [.1 2 {Y'anayh’e-Yni! (.ng\rr\+K+K3erK3+K+2}. ”:2m'2;

Now if we define N: by

.- l

film N:’ZHK: =Pm Casi-ilkrmcp;
(5-90 \ )4 I

-\

E2 -K «K3 (25)

75 c

I \ : //" I; - K3: K3 _

1 \Je /‘\Q' (3 (I '



EIGENVALUES

We discussed briefly how the eigenvalues r);Q3) were obtained in

section III, and a partial list was given in table l. In figure 3, the

7 eigenvalues associated with [:3 have been sketched. It may be noted

from figure 3 that the eigenvalues come together in pairs at both ends

of the range of fi3(0 and l), where they take on values of squares of

integers. Only the value 0 is taken on by a single eigenvalue. These

values can be easily seen from equation (19) to be rn‘at)3=0(analo-

gously (m‘)3 at {3‘4 ).

These degeneracies correspond to the degeneracy of the eigenvalues

m

m A .

of the pair of spherical harmonics F; Ufi>QJanmfand IZ<¢J‘9/Cos~ewhen 3-49,

'7‘. , I I . I ,

zmdoftmagnrtgfiwad Sal“? mm FyYou9)CfiSM? mmn

,5.al , as was already shown on pp. 33 and 3h.

(

We find, empirically, that the/dz

M

correspond to P, C05 «1? (and <3 =0 ), whereas the smaller T

with the larger 1: will

will correSpond to the F?“ stn nu? reduction (and ‘5331 ).

This enables us to write an empirical formula for if. It will be

recalled that the ”('8 are ordered by the size of the corresponding /i: ,

and that 1' takes on integer values from —£ to ,6. We can.order the

C 's, then, in terms of the values of the ii; whenIB=C>(i.e. by

ordering the vn's), and resolve the duplicity resulting from two ):

having the same value, of; by using the empirical result Just

mentioned, and distinguish the two by their ‘§3 's. The expression

we want then is: ’t : Einq~—E —,<é



 

t .

Figure-5, lgmheea.
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It would be desirable to prove the empirical fact that, of the two

T ,,
,%£ (X?) which reduce to the same A7 , the one with.F<3 ==69 is

the larger.

In order to show this, we embarked on a calculation of a series

?’ >' 2/

expansion for A2? (12’) in the powers of )8) . It is permissible

to assume that

éijzmvk A, 31;" A” [3): , , ,

(as)

where 0 f M f j , and. where to each value of”) are associated

two eigenvalues of different 3'.

The values of./\} can be found by successive approximations of

the finite continued fraction determining the eigenvalues, as given

on p. 16.

It is interesting to note that for the pairs of eigenvalues

P

reducing to the same/W asfi§*>-o , Jaj’ and JAuL’ come out to be the

same. For example

A
/

”i [Ma/[([wA (”‘0

\
l

KB— [2491)? h=O

-/\2’ also does not differ for the pair of eigenvalues, except for

'similar special cases. We suSpect strongly that a difference will

appear in JAE , but the calculations for higher coefficients becomes

extremely laborious, and no results have yet been obtained for this case.
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